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Abstract

After nearly a century of inquiry, the particle nature of dark matter remains unknown. As a wide

array of DarkMatter (DM) phenomenologies map onto similar variations in cosmological observ-

ables, cosmology places far-reaching constraints on the theoretical parameter space of DarkMatter

models beyond the StandardModel (SM) of particle physics. This dissertation presents the results

of several inquiries that demonstrate the use of cosmology to measure the parameter space for differ-

ent classes of DMmodels assuming only gravitational interactions. This dissertation first considers

an extension of ΛCDM involving additional particle degrees of freedom of non-zero mass in early

thermal contact with the SM, which are called Light but Massive Relics (LiMRs). LiMRs introduce

a characteristic scale into the cosmology through their free-streaming while relativistic. Effects on

the distribution of galaxies and the Cosmic Microwave Background (CMB) are explored and used

to impose constraints on the mass, abundance, and degrees of freedom of LiMRs. Implications

for measuring the mass and hierarchy of massive neutrinos, a special case of LiMR, are considered.

Representing another class of DMmodels, ultralight axion-like particles (ALPs), like LiMRs, in-

troduce characteristic scales into the cosmology: one set by the oscillation time of the field; another

characterized by the macroscopic wavelength of the field, the Jeans Scale. The nonlinear connec-

tion between matter perturbations and halo perturbations, the halo bias, is modelled in the presence

LiMRs, neutrinos, and ultralight ALPs. Gravitational waves (GWs), a burgeoning source of cosmo-

logical information, motivate the concluding study of this dissertation which considers the degree to

which mHz-Hz frequency GW detectors can infer the formation channels of black holes - a process

which may be influenced by the introduction of new physics to the SM and ΛCDM.
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0
Introduction

For beyond a century, the thread of DarkMatter (DM) has been joined deeper into the weave of

knowledge comprising our understanding of physics, astrophysics, and cosmology; yet, its mecha-

nisms remain elusive to the best observational efforts and theoretical guidance of these disciplines.

We have yet to confirm the non-gravitational interactions, if any, that DM has with the Standard

Model of Particle Physics (SM). More generally, the particle nature of DM remains unknown. As

with any difficult problem, it is best to seek insight from a variety of sources and approaches. And so
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we have: the pursuit of DM extends across dozens of orders of magnitude of energy; collider physics;

planetary, solar, galactic, and extragalactic astronomy; the astrophysics of black holes, supernovae,

and clusters; and the entire cosmological history of the Universe. Indeed, the enthrall of DM is evi-

denced by the scale of its presence in the modern resource prioritization of these communities 155,56.

A natural response to the persistence of the DM problem is to allow our theoretical postulations of

its properties to become increasingly imaginative. Caution, however, must be taken. Unbounded

theoretical creativity without diligent reduction to observational consequence is a recipe for failing

to appreciate where we have already labored experimentally to exclude implausible physics. Igno-

rance puts at risk the time, financial, and human resources of the scientific community - potentially

slowing our progress for decades more to come. Worse yet, it threatens a misdirection of our physi-

cal intuition which has sweeping consequences across all domains of physics. It is therefore impera-

tive that the collage of increasingly kaleidoscopic DM theories be continuously corralled by incisive

mappings onto the interconnected landscape of experimental constraint. The use of cosmological

datasets to constrain, and expand knowledge of, broad swathes of phenomenological descriptions of

the particle nature of DM shall be the overarching theme of this dissertation.

Cosmological data provide a powerful tool in the search for physics beyond the StandardModel.

An interesting target are light relics, new degrees of freedom which decoupled from the SMwhile

relativistic. Nearly massless relics contribute to the radiation energy budget, and are commonly

parametrized as variations in the effective numberNeff of neutrino species. Additionally, relics with

masses greater than 10−4 eV become non-relativistic before today, and thus behave as matter in-

stead of radiation. This leaves an imprint in the clustering of the large-scale structure of the universe,

as light relics have important streaming motions, mirroring the case of massive neutrinos. In one

line of inquiry, we forecast how well current and upcoming cosmological surveys can probe light

massive relics (LiMRs). We consider minimal extensions to the SM by both fermionic and bosonic

relic degrees of freedom. The broad theoretical coverage attained by this study is a result of assum-
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ing only gravitational interactions between LiMRs and the rest of the SM - any interacting theory

must at least satisfy the bounds set here. By combining current and upcoming cosmic-microwave-

background and large-scale-structure surveys, we forecast the significance at which each LiMR, with

different masses and temperatures, can be detected. We find that a very large coverage of parameter

space will be attainable by upcoming experiments, opening the possibility of exploring uncharted

territory for new physics beyond the SM.

The massive neutrino is a particle with studied and observed SM interactions which conforms to

the definition of a LiMR. As in the case of the generic LiMR, a promising avenue to measure the

total, and potentially individual, mass of neutrinos consists of leveraging cosmological datasets, such

as the cosmic microwave background and surveys of the large-scale structure of the universe. In or-

der to obtain unbiased estimates of the neutrino mass, however, many effects ought to be included.

Here we forecast, via a Markov ChainMonte Carlo likelihood analysis, whether measurements by

two galaxy surveys: DESI and Euclid, when added to the CMB-S4 experiment, are sensitive to two

effects that can alter neutrino-mass measurements. The first is the slight difference in the suppres-

sion of matter fluctuations that each neutrino-mass hierarchy generates, at fixed total mass. The sec-

ond is the growth-induced scale-dependent bias (GISDB) of haloes produced by massive neutrinos.

We find that near-future surveys can distinguish hierarchies with the same total mass only at the 1σ

level; thus, while these are poised to deliver a measurement of the sum of neutrino masses, they can-

not significantly discern the mass of each individual neutrino in the foreseeable future. We further

find that neglecting the GISDB induces up to a 1σ overestimation of the total neutrino mass, and we

show how to absorb this effect via a redshift-dependent parametrization of the scale-independent

bias.

Where our ability to cosmologically constrain LiMRs is driven by observational sensitivity to the

energy scale introduced by their free streaming, we can generalize our study further by considering

other classes of models which introduce characteristic energy scales into the cosmology. Ultra-light
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axions with masses 10−33 < mφ/eV < 10−22 are allowed to constitute only a small fraction of

the observed dark matter abundance. Nevertheless, they may yet produce a visible impact on the

cosmology due to their macroscopic quantum scale. Next generation galaxy survey data are poised

to challenge this possibility, but in order to do so, all aspects of structure formation in this quasi-

linear regime must be accounted for consistently and precisely. This includes modeling not only the

effect of these axions on the background cosmology and matter fluctuations, but also on the halo

bias that governs the tracers we observe, namely galaxies. In this work we discuss the effect of ultra-

light axions on cosmological observables, and present a prescription for computing the growth-

induced scale-dependent bias in their presence. We find that these axions introduce a step in the halo

bias at their characteristic Jeans scale, representing – even at percent-level abundances – a sizable

increase in the total scale-dependence of the bias, compared to the ΛCDM fiducial. We implement

this prescription as a function of axion mass and relic abundance, in a public package which we dub

RelAxiFast, an extension of the extant RelicFast.

The first observation of the gravitational wave signature of a binary black hole (BBH) merger

has provided another avenue of inquiry into unknown physics. Since this observation, there have

been further detections of BBHmergers of anomalous mass - casting doubt as to the astrophysical

formation channels of black holes. One candidate for both DM and black hole formation is a theory

for primordial black holes (PBH) formed early in the Universe. We consider how these different

formation astrophysical and cosmological formation channels can lead to differences in the residual

orbital eccentricity of BBH systems in the regimes of gravitation wave experiments. Contrasted with

the study of individual black holes and binary systems, we consider how resolving characteristics of

black hole populations offers insight into the mechanisms which may have formed the black holes in

our Universe. This work considers how one population characteristic, the distribution in the orbital

eccentricity of black hole binary pairs, might be studied within the experimental landscape of mHz-

Hz frequency gravitational detectors. We expand on prior works which considered these effects at
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fixed eccentricity. As an example, we present how the eccentricity distributions corresponding to

different formation channels produce dramatic shifts in the number of observed binaries in a mHz

range detector like LISA. We also demonstrate how adding the capability to observe highly eccentric

orbits offers a stark improvement in formation channel distinguishability due to the breaking of

dataset degeneracies, offering motivation for the development of eccentric gravitational waveform

templates.

In all the studies presented in this dissertation, we seek to infer limits on new physics through

only the gravitational effects of those processes. In this sense, these approaches cover an extremely

broad set of phenomenological parameter space, as any model with additional StandardModel in-

teractions will need to at least satisfy the constraints derived here. Our ability to use gravitational in-

teractions to derive competitive bounds with other observational channels is a recent phenomenon

that is only enabled by the observational and sensitivity scales achieved by modern detectors. The

promise of a fleet of upcoming galaxy, gravitational wave, and electromagnetic surveys in the ap-

proaching decade is a compelling reason to further refine the methods presented in this dissertation

so that we can quickly narrow the field of DM candidates using information from the only channel

through which DM is known to interact - gravity.

5



1
Finding eV-scale Light Relics with

Cosmological Observables

1.1 Introduction

The nature of the dark sector is one of the major puzzles of fundamental physics, integral to the

understanding of our universe across almost every epoch. Searches for the composition of the dark
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sector and, more broadly, of physics beyond the StandardModel (SM), take place at different en-

ergy scales, and use data ranging from particle colliders to astrophysical and cosmological surveys.

The interactions of the dark sector with the SM are central to many of these searches. Yet, the small

energies and interaction cross-sections expected in many models often result in low experimental

sensitivity to new physics. In contrast, by exploring the entropic effects of new dark-sector physics,

cosmological data is in an exciting position to make robust discoveries.

Numerous extensions of the SM happen to posit the existence of light, feebly interacting parti-

cles, including axions and axion-like particles167,201,192,32, dark photons13,46,31,84, and light fermions61,97,86.

One broad category are light relics, stable particles which were in thermal contact with the SM in the

early universe and decoupled while relativistic. Consequently, their cosmic abundance was frozen

and survived until z = 0. The quintessential example within the SM are neutrinos, but they need

not be the only light relics to populate our universe. Different proposed new light relics include

a fourth, sterile neutrino, whose existence is suggested by different anomalous experimental re-

sults92,148,19 (see Ref.73 for a recent review); as well as the gravitino, the supersymmetric partner

of the graviton45.

New relics that are sufficiently light will manifest as dark radiation, and can be searched for

through their effect on the cosmic microwave background (CMB) anisotropies37,112,40, typically

parametrized by the effective number of neutrino species,Neff (which is 3.045 in the standard cos-

mological model139,72,22). Massive relics can, on the other hand, become non-relativistic at some

point in cosmic history, and behave as other components of matter in the Universe thereafter. How-

ever, their decoupling while relativistic gives these relics significant streaming motion, which sets a

scale below which they cannot cluster, thus altering the large-scale structure (LSS) of our universe.

This has allowed cosmology to set the leading constraints on neutrino mass, at Σmν<0.26 eV (95%

C.L.), assuming standard cosmology17. In this work we will search for new Light—butMassive—

Relics (LiMRs) using cosmological observables.
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Cosmological data from near-future surveys are expected to provide exquisite measurements

of the distribution of matter in our universe. LiMRs that have become non-relativistic before

z = 0 (with massesmX ≳ 10−3 eV), will impact that distribution by behaving as hot dark mat-

ter50,36,44,81,42. In addition to the relic mass, two relevant parameters determine the relic abundance.

The first is their number gX of degrees of freedom. The second is their temperature T(0)
X today. Due

to comoving-entropy conservation, any relic that was in equilibrium with the SM in the early uni-

verse ought to have T(0)
X ≥ 0.91 K. This minimum temperature gives rise to different values of

ΔNeff for each type of relic54: 0.027 for scalars (gX = 1), 0.047 for Weyl fermions (gX = 2), 0.054

for massless gauge bosons (gX = 2), and 0.095 for Dirac fermions (gX = 4). In addition, relics with

masses in the eV-scale will become non-relativistic before z = 0, leaving an imprint in the form of

suppressed matter fluctuations. Here we forecast how well eV-scale LiMRs can be observed by joint

CMB and LSS surveys.

This paper is structured as follows. In Section 1.2 we briefly review light relics and their effects

on cosmological observables. In Section 1.3 we detail the datasets we consider, which we employ in

Section 1.4 to forecast constraints on LiMRs within the mass range 10−2 eV- 101 eV. We conclude in

Section 1.5.

1.2 Light relics and their effect on cosmological observables

We begin with an overview of the physics of light relics and their effects on cosmological observables.

A LiMR X is characterized by its present-day temperature T(0)
X and massmX, as well as its statistics,

bosonic or fermionic, and its number gX of degrees of freedom. The present-day temperature of a

light relic (massive or not) is set by the time at which it decouples from the SM thermal bath, which

is found as

T(0)
X =

(
g(0)∗S

g(dec)∗S

)1/3

T(0)
γ , (1.1)
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where g(0/dec)∗S denotes the entropy degrees of freedom in the universe today/when the relic decou-

pled, and T(0)
γ = 2.725 K is the present-day temperature of the photon bath. In this way, the con-

servation of comoving entropy provides a minimal light relic temperature assuming the SMwith no

additional degrees of freedom (other than the relic),

T(0)
X ≳

(
3.91
106.75

)1/3
T(0)
γ ≈ 0.91 K, (1.2)

where just after the electroweak phase transition we have g(dec)∗s = 106.75 encompasses all the known

degrees of freedom of the StandardModel, and the present-day value of g(0)∗s = 3.91 includes pho-

tons and decoupled, cooler neutrinos. As an example, the SM (active) neutrinos have T(0)
ν = 1.95

K, as they decoupled just prior to electron-positron annihilation where g(dec,ν)∗s = 10.75. Note that

the baryonic and cold-dark matter (CDM) contributions are negligible, given their exponentially

suppressed abundance.

In contrast, light relics decoupled while relativistic, and so are cosmologically abundant, with

number densities comparable to that of photons or neutrinos. For instance, a Weyl fermion decou-

pling as early as possible (with minimal present-day temperature 0.91 K) will have a number density

today of 11 cm−3, and a vector boson that decouples just before e+e− annihilation (with a temper-

ature today of 1.95 K, as neutrinos) will have a present-day number density of 150 cm−3. Thus, the

contribution of light relics to the cosmic energy budget can be significant.

It is often enlightening to describe the cosmological effects of other relics in relation to those of

neutrinos, given their common origin as light relics. As advanced in the introduction, relics in the

early universe (while TX ≫ mX) behave as radiation, and their cosmological impact while relativistic

can be encapsulated in the number of effective neutrinos,Neff, defined with respect to their contri-
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bution to the radiation energy density,

ρrad(z) =
π2

30

(∑
bosons

gbT4
b(z) +

7
8
∑

fermions

gfT4
f (z)

)

≡ π2

30

(
2T4

γ(z) +
7
4
NeffT4

ν(z)
)
, (1.3)

where Tγ/ν(z) is the temperature of photons and neutrinos at redshift z, gb/gf are the degrees of

freedom, and Tb/Tf are the temperatures of each boson/fermion, respectively.

Introducing an entropically significant light relic will generate a contribution to Eq. (1.3) of

(π2/30)gXT4
X for bosonic species, or 7/8 times that for fermionic species. We can then describe

any departure from the predicted value ofNΛCDM
eff = 3.045 in the standard ΛCDMmodel by the

quantity ΔNeff, given by

ΔNeff = cγ1

(
gX
gν

)(
T(0)
X

T(0)
ν

)4

, (1.4)

in terms of the neutrino parameters gν = 2 and T(0)
ν = 1.95 K. The factor c1 = 8/7 accounts for

the difference between the Bose-Einstein (γ = 1) and Fermi-Dirac (γ = 0) distributions.

This discussion is encapsulated in Fig. 1.1, showing the relation between the present-day relic

temperature to the time of relic decoupling, and its corresponding contribution toNeff. Note

that the present-day temperature of a relic for fixed decoupling epoch does not depend on particle

species, but its contribution to radiation energy does.

Current limits on ΔNeff arise primarily from observables at two epochs. The first is recombina-

tion. Measurements of radiation at recombination are sensitive to relics lighter than∼ 0.1 eV. The

Planck 2018 analysis reports a measurement ofNeff = 2.99+0.34
−0.33 (TT+TE+EE+lowE+lensing+BAO)

at 95% C.L.17. The proposed CMB-Stage 4 (CMB-S4) experiment is expected to refine this mea-

surement to the σ(Neff) = 0.03 level2. The second is the Helium abundance, from where we can

infer the number of relativistic species present during big bang nucleosynthesis (BBN). The 68%
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Figure 1.1: Cosmic evolution of ΔNeff due to a light relic that decoupled when the universe had a temperature T(dec)
γ .

We assume four different types of relics with spin s, as described in the text, and show the 68% C.L. constraints
achieved by Planck as a horizontal solid line, and the forecast by CMB‐S4 in dashed lines. The right vertical axis shows
what the temperature of the relic would be at z = 0, following the violet (lowest) curve plotted for s = 0. Note that

these constraints only apply to relics withmX ≈ 0.1 eV or lighter.

C.L. measurement during that era isNeff = 2.85 ± 0.2869, which is valid for all relics lighter than

mX ≲ 106 eV. Note that this does not affect dark matter (DM) produced via the freeze-in mecha-

nism, as it can contribute negligibly toNeff
60,83.

In this work we consider detection prospects for four types of LiMRs: scalars, vectors, and both

Dirac andWeyl fermions. We study relics with eV-scale masses, 10−2 eV ≤ mX ≤ 101 eV, such

that they all behave as matter at z = 0, with the highest mass candidates constituting up to∼10%

of DM abundance. Finally, we also consider a range of temperatures, bounded by T(0)
X ≥ 0.91 K
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from below. Our maximum temperature is informed by the constraint ΔNeff ≤ 0.36 from Planck,

corresponding to a single additional species of Weyl fermion at T(0)
X ≤ 1.5 K. This bound could

be further improved by combining with BBNmeasurements of e.g. D/H ratios87, Lyman-α forest

flux power spectrum data184,164, as well as Baryon Acoustic Oscillations (BAO) and galaxy power

spectrummeasurements23,207,41.

Effect on the LSS of the Universe

LiMRs can become non-relativistic at some point in cosmic history, and comprise a fraction of DM

at z = 0. Unlike CDM, which is expected to compose the majority of the matter sector, LiMRs

have significant thermal motions, even if non-relativistic. Thus, these relics will stream away from

structures below their free-streaming scale, which during matter domination is given by25,48

kfs =
0.08√
1+ z

( mX

0.1eV

)(T(0)
X

T(0)
ν

)−1

hMpc−1. (1.5)

Throughout this section we assume aWeyl fermionic relic, and we will relax this assumption

later. This presents another way of searching for LiMRs: through their effect on the matter fluctua-

tions. LiMRs produce a suppression in the matter power spectrum at scales smaller than kfs, which

we discuss below. The size of this suppression depends on the present abundance of the LiMR,

which (if non-relativistic) is given by

ΩXh2 =
mX

93.14 eV
gX
gν

(
T(0)
X

T(0)
ν

)3

. (1.6)

From Eq. (1.6) we see that there is a maximum allowed particle mass, found by saturating the ob-

served DM abundance Ωcdmh2 = 0.1217. For a relic temperature T(0)
X ≈1.5 K, this ismX≈10 eV.

Additionally, in this work we are interested in the relics that become non-relativistic before today.
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Thus, the mass range we will study encompasses

10−2 eV ≤ mX ≤ 101 eV. (1.7)

LiMRs produce a suppression in matter fluctuations, similar to neutrinos, due to two reasons.

The first is simply that the light relic does not cluster at small scales, and its fluctuation δX at small-

scale roughly follows δX = (k/kfs)−2 δm with respect to the matter overdensity δm. The second is

that the absence of relic fluctuations at small scales slows down the growth of CDM (and baryon)

overdensities. Together, these two factors produce a suppression of roughly (1− 14fX) in the matter

power spectrum129, where fX is the fraction of matter that is composed of the LiMRX. This sup-

pression is less pronounced for relics that stay relativistic for longer, which yields the well-known

result of (1 − 8fν) for neutrinos comprising a fraction fν of matter, as neutrinos only become non-

relativistic during matter domination. These numbers are for illustration purposes only, and in

all cases we find the full effect of LiMRs on the cosmological observables using the publicly avail-

able software CLASS49. Nevertheless, they provide intuition about the physical effect of such a relic.

While the mechanism that produces the suppression is the same as for neutrino masses, the free-

streaming scale kfs for a LiMR is not fully determined by its mass (or abundance), as their temper-

ature today is unknown. Relics that are still relativistic at z = 0 (withmX ≲ 10−3 eV) will have

never collapsed into structures and thus their observable effects can be fully included into ΔNeff. In

practice, this is the case for LiMRs with masses below∼ 0.1 eV, as we will show, so we will use our

results for a 10−2 eV relic for lighter masses.

To study LiMRs, the relevant observables are the fluctuations of baryons and cold dark matter,

as only those will gravitationally bind to form the visible structures we observe as galaxies, the relics

being too light to cluster (see, however, Ref.136). The power spectrum of baryonic plus cold dark-
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matter fluctuations is modeled by

Pcb(k) = Pζ(k)
(
fbTb(k) + fcTc(k)

)2
, (1.8)

where Pζ is the primordial power spectrum, the transfer functions Tb and Tc are found using CLASS49,

and the fractional abundances are defined by

fb/c ≡
ωb/c

ωb + ωc
, (1.9)

where ωb and ωc are the baryon and CDM abundances.

We show the suppression in Pcb in Fig. 1.2 (upper panel) for a fermion withmX = 0.02 eV

and TX = 0.91 K, for degrees of freedom gX = 2, 3 and 4. In all cases the high-k power is more

suppressed, as expected. Increasing the abundance of the LiMR, by augmenting gX, produces a

more marked suppression, while keeping the shape fixed. Moreover, increasing the relic abundance

produces wiggles at the BAO scale, as the LiMR both contributes as radiation at recombination and

free streams – like neutrinos – changing the BAO phase37.

The suppression of matter fluctuations produces a change in the biasing of galaxies, which has

been calculated for both neutrinos and other relics133,152,63, and accounted for in neutrino-mass

forecasts in our companion paper205. This produces a growth in the galaxy power spectrum that

partially compensates the relic-induced suppression. Here we account for this growth induced scale-

dependent bias (GISDB) by multiplying the Lagrangian bias by a k-dependent factor

g(k) = RΛCDM
L (k)RX

L(k)Rν
L(k), (1.10)

where the functionsRi
L account for different effects, following Ref.152. First,RΛCDM

L accounts for

the step-like change in the growth rate of fluctuations before and after matter-radiation equality,
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parametrized as

RΛCDM
L (k) = 1+ ΔΛCDM tanh

(
αk
keq

)
, (1.11)

where ΔΛCDM = 4.8× 10−3 and α = 4 determine the amplitude and location of the step, given the

scale keq of matter-radiation equality. The two other factors account for the effect of a LiMR on the

matter power spectrum, also taken to be a step-like function

Ri
L(k) = 1+ Δi tanh

(
1+

ln qi(k)
Δq

)
, (1.12)

with an amplitude Δi = 0.6fi determined by the fraction fi of matter composed of the relic i (X or

ν), width Δq = 1.6, and where we have defined qi(k) ≡ 5k/kfs,i, given the free-streaming scale kfs,i

of each LiMR.

Effect on the CMB

The CMB is sensitive to the presence of LiMRs in the universe, through their mean energy den-

sity168,78 and their perturbations38,112. Their additional energy density changes the expansion rate

of the universe, which in turn affects the CMB damping tail. Since matter-radiation equality is very

well measured through the location of the first acoustic peak, this causes the power spectrum to be

suppressed on short-wavelength modes. In addition to this effect, their perturbations cause a change

in the amplitude and a shift in the location of the CMB acoustic peaks (for a review of the phase

shift in the acoustic peaks in the CMB, see Ref.40).

We show an example of the effect of a LiMR on the CMB in Fig. 1.2 – again for a fermion with

mX = 0.02 eV and TX = 0.91 K, for degrees of freedom gX = 2, 3 and 4. The amplitude and phase

shift of the BAO is clearly seen to increase with gX.
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Figure 1.2: Effect of introducing a fermion with degrees of freedom gX, temperature TX = 0.91 K and mass
mX = 0.02 eV on the CDM+baryon power spectrum (upper panel) and the CMB temperature power spectrum (lower
panel). Here all cosmological parameters are fixed when introducing the LiMR so the fraction of the matter or radiation
energy occupied by the LiMR before and after its non‐relativistic transition will increase with its abundance. Since the
LiMR energy density is not counted in the CDM plus baryon power power spectrum, an increase in LiMR abundance will
manifest as an overall suppression to Pcb. We note that an effective fractional number of degrees of freedom may be

achieved as a result of out‐of‐equilibrium processes.
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Types of Relic

Throughout this work we will study four major types of LiMRs, two fermionic and two bosonic,

which we now describe.

In the fermionic category, the first type we study are the neutrino-like Weyl fermions, with non-

zero mass, spin s = 1/2, and two degrees of freedom (gX = 2). In addition to sterile neutrinos, an

intriguing example is the gravitino, the supersymmetric partner of the graviton. While the gravitino

has s = 3/2, only the longitudinal modes couple to the StandardModel and hence behaves equiva-

lently to an s = 1/2 particle with gX = 2. The gravitino is predicted in models of supersymmetric

gravity to have a mass in the eV range161,144, within the range relevant to our study. The second

type we tackle are the related Dirac fermions, such as the axino66, which simply have twice as many

degrees of freedom (gX = 4).

In the bosonic category we study two types of particles as well: firstly scalars, with only one de-

gree of freedom (gX = 1). A realization of this model could be a Goldstone boson, which can have

naturally small masses. The second type are spin-1 vectors. We assume that they have a Stueckelberg

mass, as it is technically natural180 and avoids complications fromHiggs mechanisms. While this

relic will be non-relativistic today, its longitudinal mode was decoupled in the early universe (while

it was relativistic), and thus only two of the three degrees of freedom were populated. Therefore,

this relic has gX = 2.

Instead of modifying the distribution function for each type of relic, we will take advantage of

the fact that any relic, whether bosonic or fermionic, can be recast onto an equivalent Weyl relic (i.e.,

a neutrino with gW = 2), with some temperature Teq
W and massmeq

W
152,50. Justification for this pro-

cedure is based on the results of other works which considered the significance of the distribution

shapes for different species152. Assuming a relic of temperature TX, with gX degrees of freedom, the

17



equivalent Weyl relic has

Teq
W = TX (gX/gW)1/4 cγ/41 (1.13)

meq
W = mX (gX/gW)1/4 cγ/41 cγ2, (1.14)

where we correct for the different distributions of these particles by setting γ = 1 for bosons (and

γ = 0 for our base case of fermions as before), with constants c1 = 8/7 (as in Eq. 1.4) and c2 =

7/6. Note that our normalization is slightly different from that found in Ref.152, as there fermionic

degrees of freedom contributed by 3/2.

1.3 Methods

We now present our forecasting methods. In this first exploratory work we will follow a Fisher-

matrix approach, in order to efficiently explore the 2D parameter space (T(0)
X ,mX) of possible

LiMRs. We encourage the reader to visit Appendix 1.6 for a comparison against MCMC results. We

will also cover different combinations of datasets. For the CMB, we will study the current Planck

satellite17 as well as the upcoming ground-based CMB-S41. On the galaxy-survey side we will con-

sider the current BOSS70, the ongoing DESI16, and the upcoming Euclid28 surveys.

1.3.1 Parameters

We are interested in forecasting how well different LiMRs with varied temperatures and masses

can be detected. Therefore, a simple Fisher forecast of the relic mass and temperature, assuming a

particular fiducial relic, is insufficient. Instead, we will find how well LiMRs of varying massmX and

temperature T(0)
X can be observed by different experiments. The parameter we will forecast is gX, the
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number of degrees of freedom of the LiMR.* Then, gX/σ(gX) is a good proxy for the significance at

which a LiMR of a particularmX and T
(0)
X can be detected.

In order to properly search for a LiMRwe have to marginalize over the six ΛCDM parameters.

These include the baryon and cold dark-matter abundances, ωb and ωcdm (with fiducial values of

ωb = 0.02226 and ωcdm = 0.1127), the (reduced) Hubble constant h = 0.701, and the optical

depth τreio = 0.0598 to reionization. The last two parameters are the amplitude As, and tilt ns, of

primordial fluctuations, with fiducial values of As = 2.2321 × 10−9 and ns = 0.967. In addition,

we marginalize over the effect of neutrino masses. We assume for our fiducial model the existence of

three degenerate massive neutrinos, with
∑

mν = 0.06 eV, and we will report constraints both with

and without marginalization over neutrino masses. Unless explicitly stated, no prior will be assumed

for these parameters in the Fisher forecasts used to provide parameter constraints. For a discussion

about the effect of the neutrino hierarchy see Refs.30,205.

1.3.2 CMB experiments

Wewill model both Planck and CMB-S4 as having a single effective observing frequency, to avoid

marginalizing over foregrounds. For Planckwe will use CMB temperature (T) and E-mode polar-

ization data, covering the range ℓ = [2 − 2500]. We take noises of ΔT = 43μK-arcmin and

ΔE = 81μK-arcmin, with a θFWHM = 5 arcmin angular resolution. This well approximates the

(more complex) Planck data likelihood.

For CMB-S4 we take ΔT = 1μK-arcmin, and ΔE =
√
2ΔT, with an angular resolution of

θFWHM = 3 arcmin. Additionally, we include lensing data, where we perform iterative delensing of

B-modes to lower the noise, as in Refs.106,160. All modes cover the range ℓ = [30 − 5000], except

for the TT autocorrelation, where we do not go beyond ℓ = 3000 to avoid foreground contamina-

*We note that, while gX appears to be a fixed quantity for a given relic, e.g. gX = 1 for a scalar, changing gX
simply means altering the amount of relic particles (as both ΔNeff ∝ gX and ΩX ∝ gX) while keeping their
thermal properties identical. That makes gX a useful variable to forecast.
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tion2. We add a Gaussian prior on the optical depth of reionization of σ(τreio) = 0.01, instead of

the ℓ < 30 modes in this case. This follows the prescription in the CMB-S4 Science Book2, as well

as our companion paper205 and is the sensitivity reported from the Planck 2018 results. As such, it

serves as a conservative estimate for futuristic surveys, such as CMB-S4.17

The CMB data will perform two main roles. First, it will very precisely measure the standard cos-

mological parameters, breaking many degeneracies in the LSS data. Second, the CMB is sensitive to

the effects of a LiMR both during recombination and in the matter fluctuations at lower redshifts,

through the weak lensing information.

1.3.3 Galaxy surveys

For the LSS data we will consider three surveys, all of them spectroscopic. We leave for future work

studying the promise of photometric surveys, such as the Vera Rubin Observatory117, and weak-

lensing surveys, such as the Dark Energy Survey9.

We take the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey Baryon Oscilla-

tion Spectroscopic Survey (BOSS)70, which will serve as an indication of the power of current data.

To showcase the promise of upcoming surveys we study the emission-line galaxy (ELG) sample of

the Dark Energy Spectroscopic Instrument (DESI)16, and the more futuristic Hα-emitters of Eu-

clid28. We restrict our analysis to a single tracer, the most populous for each survey, though more

optimistic results are expected for multi-tracer approaches51. The noise per redshift bin for each

sample is reported in Table 1.1. We assume sky coverages of 10,000 deg2 for BOSS; 14,000 deg2 for

DESI; and 15,000 deg2 for Euclid.

As each of these surveys contain distinct tracers, the bias description of each will be somewhat

different as well. Here we follow a simple approach, and parametrize the linear Eulerian bias as

b1(k, z) =
[
1+ bL(k, z) + αk2k2

]
, (1.15)
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where the αk2 term (with a fiducial value of 1Mpc2) accounts for non-linearities in the bias149. We

emphasize that we do not include the clustering of light relics in this description. We also note that

while cold dark matter and baryons may demonstrate different clustering behaviors at small scales,

we do not consider such scales in this work and so do not include corrections to the bias that would

differentiate the baryon and cold dark matter clustering fields. An additional scale-dependence

comes from the aforementioned GISDB effect, which enters in the Lagrangian bias,

bL(k, z) = [b0(z)− 1] g(k), (1.16)

where g(k) is as defined in Eq. (1.10). The redshift evolution of the bias is encapsulated in the term

b0(z), which is chosen such that the scale-independent (i.e., k → 0) behavior of the Eulerian bias

matches with suggestions made elsewhere in the literature152. For the ELGs in DESI we match to

b0(z) =
β0

D(z)
, (1.17)

whereD(z) is the growth factor and β0 = 116; whereas for the tracers in BOSS and Euclidwe take

b0(z) = β0(1+ z)0.5β1 , (1.18)

with fiducials β0 = 1.7 and β1 = 1 as in Ref.191. We marginalize over the nuisance parameters

β0, αk2, as well as β1 for BOSS and Euclid. We note that a full analysis of the data might require

marginalization over the amplitude of the bias at each redshift bin independently, which would

however lead to a loss in constraining power.
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z 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
dNLRG

dz ddeg2
[BOSS] 8 50 125 222 332 447 208 30 0 0

dNELG

dz ddeg2
[DESI] 0 0 0 0 0 0 309 2269 1923 2094

dNHα

dz ddeg2
[Euclid] 0 0 0 0 0 0 2434 4364 4728 4825

z 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95
dNLRG

dz ddeg2
[BOSS] 0 0 0 0 0 0 0 0 0 0

dNELG

dz ddeg2
[DESI] 1441 1353 1337 523 466 329 126 0 0 0

dNHα

dz ddeg2
[Euclid] 4728 4507 4269 3720 3104 2308 1514 1474 893 497

Table 1.1: Forecasted number of target galaxies measurable by each survey: LRGs for BOSS, ELGs for DESI, and Hα
emitters for Euclid per redshift per deg2 at each redshift bin z, taken from Refs. 16,28,89.

1.3.4 Fisher matrix

Wewill obtain forecasted constraints using the Fisher-matrix formalism122,206,194. For the CMBwe

follow the approach of Refs.154,95. For the galaxy observables we detail below how we construct our

Fisher matrix.

As described in Section 1.2, LiMRs suppress the clustering of matter in our universe, and as a

consequence, that of biased tracers of matter, such as galaxies. We take into account several effects to

convert frommatter to galaxy fluctuations. First, there are redshift-space distortions (RSD), induced

by the gravitational infall into, and peculiar velocities of galaxies120,55. We write the galaxy power

spectrum as

Pg(k, μ) = R(k, μ)F(k, μ)Pcb(k), (1.19)
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in terms of the power spectrum Pcb(k) of CDM+ baryon fluctuations, where the two pre-factorsR

andF account for the RSD and the finger-of-god (FoG) effect, both of which make Pg anisotropic,

as they depend on μ = k̂ · n̂, the line-of-sight angle.

We model the linear RSD term simply as

R(k, μ) =
[
b1(k) + fμ2

]2
, (1.20)

where b1 is the linear Eulerian bias, as described above, and f ≡ d lnD/d ln a is the logarithmic

derivative of the growth factorD, which can be well approximated by131

f(z) =
(

Ωcb(1+ z)3

Ωcb (1+ z)3 +ΩΛ

)γ

, (1.21)

with γ = 0.55. The non-linear FoG effect is included in the term

F(k, μ) = exp
[
−k2μ2σ2v/H2] , (1.22)

with σv = (1+ z)
√

c2 σ2z + σ2FoG/2, where σFoG = σ(0)FoG
√
1+ z, with σ(0)FoG ≡ 250 km s−1 208 as the

intrinsic velocity dispersion of galaxies, and we take a spectroscopic redshift error σz ≡ 0.001c 16,

which corresponds to the DESI precision requirement at z = 1.

In addition, we include the Alcock-Paczynski (AP) effect24,33,128, which accounts for changes in

the observed k and μ and the comoving volumes from assuming different cosmologies. For that, we

write the observed galaxy power spectrum as150

P̃g(k′, μ′) = Pg(k, μ)
(
Htrue

Hfid

)(
DA,fid

DA,true

)2
, (1.23)

where the subscript “fid” refers to fiducial, and the “true” wavenumber k′ and angle μ′ are given by
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k′ = k

[
(1− μ2)

D2
A,fid(z)

D2
A,true(z)

+ μ2
H2

true(z)
H2

fid(z)

]1/2
(1.24)

μ′ = μ
k
k′
Htrue(z)
Hfid(z)

. (1.25)

Properly accounting for the AP effect, thus, implies evaluating the entire galaxy power spectrum

at different wavenumbers for each cosmological-parameter change. That can be computationally

consuming, so instead we will perform a simpler step that is accurate to first order in derivatives (as

any further is not captured by Fisher). Therefore, we can write

∂P̃g(k′, μ′)
∂θi

=
∂Pg(k, μ)

∂θi
+ Ci(k), (1.26)

for each parameter θi, where

Ci(k) =
∂Pg
∂k

dk
dθi

+
∂Pg
∂μ

dμ
dθi

, (1.27)

accounts for the AP correction to linear order, with the derivatives of k and μ computed from

Eq. (1.25).

The Fisher element for parameters θi, θj is then calculated as89

Fij =
∑
z

∫
k2dk

∫
dμ

V(z)
2(2π)2

(
nP̃g

nP̃g + 1

)2

(
∂ log P̃g
∂θi

)(
∂ log P̃g
∂θj

)
, (1.28)

whereV(z) is the comoving volume for each redshift bin summed over, and n(z) is the comoving

number density of tracers, given by n(z) = ΔzfskyV−1(z) dN/(dz ddeg2),where the last factor is

reported for each survey in Table 1.1. The integral over μ goes from−1 to 1, and over wavenumbers

24



from kmin = πV(z)−1/3 to kmax = 0.2hMpc−1, which is mildly in the nonlinear regime64. While

at higher z the fluctuations are smaller and, thus, we could reach higher kmax while linear, the biasing

of galaxies becomes more complex, so we fix kmax for all z. We expect that non-gaussianities in the

likelihood will affect constraints on cosmological parameters, but we do not model those effects in

this work102.

1.4 Results

In this section we discuss our cosmological constraints for a LiMR.We will perform two parallel

analyses. First, we will show the reach of different combinations of datasets by forecasting σ(gX)

for a Weyl (neutrino-like) relic of different masses and temperatures, covering the entire range of

interest. Then, we will focus on the minimal case (that with T(0)
X = 0.91 K) for the four relic types

we consider, and find more precisely above which massmX they can be ruled out.

1.4.1 Full Parameter Space

Wewill start with a Weyl relic, and cover a broad range of cases, where in each case we will assume

that there exists a LiMR in our universe with massmX and temperature today T(0)
X , and forecast

how well gX can be measured as a measure of how significant a detection would be.

We scan through a range of LiMRmassesmX from 10−2 eV, as all lighter relics behave identically,

up to∼10 eV, where the relic abundance overcomes that of all DM. As for their temperature, we

cover T(0)
X = [0.91 − 1.50]K, where the lower limit is as found in Section 1.2, and the upper limit

saturates the current 95% C.L. Planck + BOSS DR12 BAO limit onNeff
17.

First, as a test, we forecast the errors onNeff by looking at our lightest relic (mX = 0.01 eV) as a
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proxy of the massless case, and translating the forecasted error σ(gX) in the degrees of freedom into

σ(Neff) =
σ(gX)
gν

(
T(0)
X

T(0)
ν

)4

. (1.29)

For reference, we have confirmed that assuming lower values ofmX result in the same forecasts

forNeff. This result is largely independent of the chosen T
(0)
X , so we will show forecasts for a Weyl

fermion with T(0)
X = 0.91 K.

Beginning with the CMB, the Planck-only forecast gives σ(gX) = 8.11 corresponding to σ(Neff) =

0.19 which is in agreement with the Planck value of σ(Neff) in non-photon radiation density when

allowing extra relativistic degrees of freedomRef.17. Likewise, the CMB-S4-only forecast yields

σ(Neff) = 0.040. This is to be compared with the value of σ(Neff) = 0.035 reported in Ref.2

for the same combination of resolution and sensitivity. The∼ 10% difference is due to the delens-

ing of T and E modes40,126 that is performed in Ref.2 but not in our forecasts. This is because we

are chiefly interested in more massive relics, for which the phase shift is not the main cosmological

signature.

In both cases, as well as the ones below, we account for a noted degeneracy with Σmν by marginal-

izing over the neutrino mass in our forecasts. Adding LSS data only improves these results, as we

show in Table 1.2. In particular, we find that adding BOSS to Planck gives σ(Neff) = 0.14; substi-

tuting DESI for BOSS yields σ(Neff) = 0.06. Looking to the future, Euclid and CMB-S4 will lower

this constraint to σ(Neff) = 0.02.

We nowmove to non-zero masses, and provide marginalized posteriors from forecasts for a 0.91

K (minimum temperature) Weyl relic at different masses in Fig. 1.3. We only show the 2D contours

between gX and other cosmological parameters; for the full triangle plots at fixed massmX = 0.01

eV, see Appendix 1.8. The combination of information from the CMB and LSS can be seen to sig-

nificantly improve constraints by breaking parameter degeneracies present in the individual datasets.
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σ(Neff) CMBOnly BOSS DESI Euclid
LSS Only 0.92 (0.84) 0.29 (0.25) 0.20 (0.13)
Planck 0.19 (0.19) 0.14 (0.08) 0.06 (0.04) 0.06 (0.04)
CMB-S4 0.04 (0.04) 0.04 (0.03) 0.03 (0.02) 0.02 (0.02)

Table 1.2: Forecasted 1σ errors onNeff from different combinations of experiments. Numbers in parenthesis assume
fixed total neutrino mass, whereas the rest are marginalized over neutrino masses.
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Figure 1.3: 68% C.L. and 95% C.L. projected confidence ellipses for each of the parameters we marginalize over, as
well as the LiMR number gX of degrees of freedom, for DESI (red), Planck (purple), and their combination (green). Each

row has a different fiducial relic mass, denoted on the right, all with an assumed temperature T(0)
X = 0.91 K at z = 0.

Note that we also marginalize over the unknown neutrino mass, which loosens our constraints by as much as 143% for
LSS‐only information, 64% for CMB‐only information, and 81% for combined LSS and CMB information.
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Interestingly, the degeneracy directions change with LiMRmass. As an example, the degeneracy

line for gX and ωcdm for CMB data changes direction as the LiMR becomes more massive, and starts

behaving as matter instead of radiation at recombination. The LSS degeneracy line, however, stays

relatively stable, improving the CMB result by different amount at each mass.

The result described above indicates that combining CMB and LSS information is critical for

an optimal constraint of LiMRs. We confirm this in Fig. 1.4, where we show the forecasted error in

gX for CMB and LSS data on their own, as well as together, which dramatically improves the con-

straints. For the rest of this work we will consider different combinations of CMB and LSS surveys

together.

We now forecast to which level of significance different LiMR can be constrained, under three

different survey combinations. The first is what would be realizable by current data, where we as-

sume galaxy data from BOSS and Planck for the CMB.We show the forecasted σ(gX) in Fig. 1.5,

which clearly shows that LiMRs with larger T(0)
X andmX are more readily observable. However, to

observe (or rule out) a LiMR at 3σ it has to be relatively heavy (mX ≳ few eV), as we will see below.

Note that in this figure we show results for T(0)
X < 0.91 K, as for instance a scalar at that minimum

temperature would be equivalent to a Weyl fermion with T(0)
X = 0.79 K, as we will discuss below.

The second case we consider is the near-future one, where we add DESI data to Planck . We show

the forecasted constraints on gX for this combination in Fig. 1.6, which are clearly improved with re-

spect to the results shown in Fig. 1.5. In this case one can rule out relics of any mass with T(0)
X = 1.4

K at 3σ. More interestingly, we see that masses above 1 eV would be ruled out, even for the lowest

possible relic temperature of T(0)
X = 0.91 K.

The final case we consider is more futuristic, and adds CMB-S4 data to DESI. We show the re-

sults in Fig. 1.7, which further improves the prospects for detecting light relics. In this case even

relics at low temperatures can be ruled out at 3σ confidence for masses above 0.78 eV, whereas

minimum-temperature massless Weyl relics can only be found at 0.5σ confidence.
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Figure 1.4: Improvement of Weyl relic measurements by addition of LSS data with DESI and Planck constraints. The
relic is fixed at its minimum possible temperature, T(0)

X = 0.91 K. As shown, the joint constraints are much stronger
than the LSS or CMB alone.

1.4.2 Minimum Temperature

While the figures discussed above covered a broad range of temperatures and masses, they all as-

sumed aWeyl relic. Here we extend our results to other types of relics, focusing on the minimum

temperature of T(0)
X = 0.91 K, corresponding to the earliest decoupling from the SM plasma. We

divide our results into fermionic and bosonic relics. The cumulative results of our forecast for each

type of particle are tabulated in Table 1.3.
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Figure 1.5: Forecasted errors on gX for a Weyl (neutrino‐like) relic of different fiducial masses and temperatures, in all
cases with fiducial gX = 2, assuming BOSS+Planck data. The region of parameter space measurable at the 3σ‐level

lays rightward of the purple solid line, and the dashed red line shows the minimum temperature expected for a relic.

Fermionic Relics

We start with a massive Weyl fermion with T(0)
X = 0.91 K, for which we show our forecasts on

σ(gX) for various combinations of galaxy surveys and CMB experiments in Fig. 1.8a, with a finer

mass resolution than the results above. We report the minimum relic masses that are observable at

3σ significance, both with (and without) marginalizing over the neutrino masses, as a test of how

degenerate LiMRs are with the total neutrino mass. The combination of presently available Planck

and BOSS datasets are forecasted to observe or rule out LiMRs above 2.85 (2.47) eV at 3σ signifi-
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Figure 1.6: Same as Fig. 1.5 for DESI + Planck.

cance. For Planck and DESI, this is lowered to LiMRs with masses above 1.20 (1.00) eV. This result

should motivate an analysis using presently available datasets. For the futuristic combination of

CMB-S4 and Euclid datasets, we show that LiMRmasses above 0.63 (0.59) eV can be observed or

ruled out at 3σ significance.

As an example of the physical implications of these constraints, let us apply to them to the (s =

3/2) gravitino, which is related to the scale of SUSY breaking in some models. The gravitino is cos-

mologically equivalent to the neutrino-like Weyl relic that we have studied, as only the s = 1/2

modes are thermalized with the SM plasma in the early universe161, and are expected to have the

lowest relic temperature of 0.91 K. This has allowed previous work to constrain the gravitino mass
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Figure 1.7: Same as Fig. 1.5 for DESI + CMB‐S4.

by requiring that their abundance does not overcome that of the cosmological dark matter151.

Our forecast above shows that current data is sensitive to gravitinos heavier thanmX = 2.85 eV,

which is around the benchmark of some models of SUSY breaking110,109, and a factor of a few bet-

ter than the best limits currently available199,161. Upcoming data from CMB-S4 combined with

Euclid is expected to further detect such gravitino population masses above 0.63 eV. Under the

assumption that a cosmological gravitino population no longer exchanges entropy after decou-

pling from the SM bath, we can relate constraints onmX to bounds on the SUSY breaking scale

ΛSUSY ∼
√
mXMPl

76,144. Our forecasted Planck and BOSS dataset translates to an upper bound

ΛSUSY ≲ 80 TeV, whereas the CMB-S4 and Euclid datasets lower this to ΛSUSY ≲ 50 TeV. These
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Figure 1.8: Forecasted error on the relic degrees of freedom for a neutrino‐like Weyl fermion (with fiducial gX = 2, top
left), a Dirac fermion (gX = 4, top right), a real scalar (gX = 1, bottom left), and a vector particle (gX = 2, bottom
right), all at their minimum temperature TX = 0.91 K, for various combinations of CMB + LSS experiments. The hori‐

zontal line denotes the uncertainty required to detect each relic at 3σ.
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projections are interestingly complementary to the energy range that will be reached by the pro-

posedO(100 TeV) particle collider, showing the promise of our approach.

We also consider a Dirac fermion, with gX = 4 and massmX. In terms of the equivalent Weyl

fermion, this corresponds to a temperature Teq
W = 1.08 K and massmeq

W = 1.19mX. In Fig. 1.8b,

we show that the combined Planck and BOSS datasets are forecasted to observe or rule out such

particles above 1.30 (1.12) eV at 3σ significance. For Planck and DESI, the 3σ constraint is lowered

to 0.61 (0.52) eV. Interestingly, CMB-S4 data will enable the parameter space of Dirac fermions
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with any mass to be observed or ruled out at 3σ significance when combined with LSS data from

DESI.

Bosonic Relics

We nowmove to bosonic degrees of freedom. First, we study a minimum-temperature real scalar,

with s = 0, gX = 1, and massmX. This is equivalent to a Weyl relic with Teq
W = 0.79 K and

meq
W = 1.01mX. We show in Fig. 1.8c that, while the combination of presently available Planck and

BOSS datasets cannot constrain scalar relics at the 3σ significance, DESI and Planck can jointly rule

out scalars with masses above 1.96 (1.61) eV. Further, the combination of CMB-S4 with either the

DESI or Euclid datasets can observe or rule-out real scalar bosonic relics above 1.14 (1.06) and 0.93

(0.87) eV, respectively.

Second, we consider a massive vector, with s = 1 and gX = 2. This massive vector is equivalent

to a Weyl relic with Teq
W = 0.94 K andmeq

W = 1.21mX. In Fig. 1.8d we show that the combination

of Planck and BOSS datasets can observe or rule-out massive vector bosonic relics above 2.05 (1.79)

eV, whereas substituting BOSS for DESI improves this number to 0.90 (0.75) eV. Combining the

CMB-S4 and Euclid datasets further improves this to 0.47 (0.44) eV.

1.4.3 Neutrino-mass forecasts

We have detailed in each previous subsection the constraints with and without marginalizing over

neutrino masses to emphasize the importance of this step, as it is seen to affect results noticeably

when LSS information is being considered. We note that DESI is particularly sensitive to the marginal-

ization or fixing of
∑

mν. This is due to its chosen bias prescription, which does not include a pa-

rameter to marginalize over the redshift dependence of the bias, as opposed to BOSS and Euclid.

This underscores the sensitivity of our results to the details of the bias prescription, which is further
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CMBOnly BOSS DESI Euclid
ScalarmX[eV]

LSS Only - (-) 4.98 (4.54) 3.24 (3.22)
Planck - (-) - (-) 1.96 (1.61) 1.31 (1.16)
CMB-S4 1.48 (1.44) 1.41 (1.31) 1.14 (1.06) 0.93 (0.87)

Weyl FermionmX[eV]
LSS Only - (-) 3.13 (2.78) 2.42 (2.41)
Planck - (-) 2.85 (2.47) 1.20 (1.00) 0.87 (0.78)
CMB-S4 1.03 (1.02) 0.98 (0.91) 0.78 (0.71) 0.63 (0.59)

VectormX[eV]
LSS Only - (-) 2.41 (2.08) 1.88 (1.88)
Planck - (-) 2.05 (1.79) 0.90 (0.75) 0.65 (0.60)
CMB-S4 0.81 (0.78) 0.75 (0.70) 0.58 (0.54) 0.47 (0.44)

Dirac FermionmX[eV]
LSS Only 4.06 (3.72) 1.82 (1.36) 1.50 (1.50)
Planck - (-) 1.30 (1.12) 0.61 (0.52) 0.45 (0.43)
CMB-S4 0.56 (0.55) 0.51 (0.48) All (All) All (All)

Table 1.3: Minimum mass at which a LiMR (scalar boson, Weyl fermion, vector boson or Dirac fermion, from top to
bottom) can be observed or ruled out at 3σ significance. Also reported in parentheses is the result with fixed

∑
mν (to

its fiducial value). A“−” sign corresponds to no masses within the 3σ constraint. “All” corresponds to all LiMR masses
analyzed being within the 3σ constraint.
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explored in our companion paper205.

As a consequence of our analysis, we can also forecast howmuch neutrino-mass measurements

would be affected by the presence of a LiMR, given the degeneracies between
∑

mν and gX shown

in Fig. 1.3. We show in Fig. 1.9 the relative increment in the error of the sum
∑

mν of neutrino

masses when marginalizing over a relic of varying mass. For reference, we forecast σ(
∑

mν) to be

61.1 × 10−3 eV for BOSS and Planck, 28.2 × 10−3 eV for DESI and Planck, and 24.1 × 10−3

eV for DESI and CMB-S4, with a fiducial at the (normal-hierarchy) minimum
∑

mν = 60 ×

10−3 eV and no other relics. The degradation in the expected errors ranges from 10% for heavy

relics and futuristic data (DESI+S4), to nearly 100% for lower masses and current or upcoming

data. (BOSS/DESI+Planck). Note that for relics ofmX ≈ 0.3 eV the degradation minimizes in all

survey specifications. This mass corresponds to relics that become non-relativistic around the time

of recombination. In essence, heavier relics produce suppression in the matter fluctuations, whereas

lighter relics chiefly affect CMB and LSS observables through their change inNeff. We encourage

the reader to see our companion paper205 for in-depth neutrino forecasts without relics.

1.5 Conclusions

In this work we have studied how well current and upcoming cosmological surveys can detect light

(but massive) relics (LiMRs), focusing on the 10−2 eV to 101 eV mass range. These particles be-

come non-relativistic before z = 0, and thus affect the formation of structures in the universe. By

combining information from the CMB and the LSS we have shown that a large swath of the 2D-

parameter space (of relic mass and temperature) will be probed by upcoming surveys.

There is a minimum temperature that any relic that was in thermal equilibrium with the Stan-

dardModel should have, T(0)
X = 0.91 K. Interestingly, we find that Weyl, vectors, and Dirac relics

with this temperature, and masses above≈ 1 eV, can be observed or ruled out at the 3σ significance
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using the presently available combination of Planck and BOSS datasets. Looking slightly to the fu-

ture, the Planck and DESI datasets will improve these constraints, and reduce the minimummass

allowed for LiMRs by roughly 50%. The more futuristic Euclid and CMB-S4 datasets will present

an 80% improvement and, in the case of Dirac fermions, fully cover the parameter space. If the sum

of neutrino masses,
∑

mν, can be learned independently of CMB and LSS surveys, the effect of fix-

ing the
∑

mν parameter manifests as an approximate 20% improvement on these constraints. This

could be accomplished, for example, by KATRINwhich currently sets the leading upper bound

on the effective electron neutrino mass of 1.1 eV, independently of cosmology21. We emphasize

that the effect of marginalizing
∑

mν significantly weakens the 3σ constraints for some of the cases

reported, suggesting that it is important to account for
∑

mν in any search for LiMRs. While the

need to properly account for
∑

mν has been discussed in previous work43,100,41,81,89,37, our analysis,

which does so for massive but light relics, is unprecedented.

This result is particularly interesting for the case of the gravitino. Since the gravitino would have a

cosmological imprint identical to a Weyl fermion, we have shown that Planck and BOSS can observe

or rule out gravitinos heavier than 2.85 eV. If a gravitino, or any other LiMR, were detected, then

their parameters (i.e., mass and temperature) could also be measured, as suggested in Ref.36.

In summary, while light relics are commonly assumed to be nearly massless — and constrained

throughNeff —here we have shown that relics with masses on the 10−2 eV to 101 eV scale can

be constrained with cosmological data. These constraints are broadly expected to apply to the full

range of allowed relic masses, from effectively massless to saturating the DM abundance. This com-

plements current efforts in the search of relics, allowing many new routes for finding physics beyond

the StandardModel.
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1.6 MCMCValidation of Fisher Forecasts

In this Appendix we show a comparison of our Fisher formalism and anMCMC analysis of the

same mock data to confirm our Fisher analysis throughout the main text. In Fig. 1.10 we show the

MCMC (solid) and Fisher forecasted (dotted) marginalized posteriors for cosmological parameters

and nuisance parameters (including the neutrino mass
∑

mν), assuming CMB-S4 + DESI data.

This Figure shows that the predicted errors agree remarkably well between our Fisher-matrix ap-

proach and the full MCMC of mock data.

Moreover, we show posteriors for models with and without the growth induced scale-dependent

modification to the bias (as described in our companion paper205), which we termed GISDB. The

MCMC results are from Ref.205, and the Fishers are calculated here. The non-GISDB Fisher el-

lipses are centered on the correspondingMCMCmaximum likelihood point. The GISDB ones,

however, are shifted by153

δθi = (F−1)ijDj, (1.30)

in each parameter θi, where we have defined

Dj =
∑
z

∫
k2dk

∫
dμ

V(z)
2(2π)2

(
∂ log P̃g(k, μ)

∂θj

)
(
P̃g,GISDB(k, μ)− P̃g,no GISDB(k, μ)

)( nP̃g
nP̃g + 1

)2

, (1.31)

and the GISDB Fisher ellipses are computed centered on the shifted best-fit. As shown, the good

cohesion between the Fisher andMCMC analyses of the data, particularly in the inclusion of the

GISDB effect, demonstrates that the considered effects are well-approximated by the linearity of the

Fisher approach, and thus validates the constraints we present on additional light relics.
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Figure 1.10: MCMC and Fisher forecasted marginalized posteriors for cosmological parameters and nuisance parameters
for a joint DESI + CMB‐S4 analysis. The degenerate hierarchy is assumed with a total mass of

∑
mν = 0.1 eV.

Models with and without the bias step (GISDB) are considered. As shown, the good consistency between MCMC and
Fisher results, particularly the reproduced shift in parameters upon turning off GISDB, demonstrates that the effects we

consider are well‐captured at linear order and validates our results regarding the detectability of LiMRs.
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Figure 1.11: Fisher‐matrix forecasted marginalized posteriors for the parameters gX andmX. In this forecast, the LiMR
mass has been allowed to vary in addition to its degrees of freedom. We present the marginalized posterior contours for
five choices of the fiducial LiMR mass: 10−2 eV, 10−1.4 eV, 10−0.8 eV, 10−0.2 eV, 100.4 eV and 101 eV. As shown, the
degeneracy lines are driven by the relative orthogonality of CMB information at low masses, and by strong degeneracy

in the LSS data at intermediate to high masses.

1.7 Marginalization Over the RelicMass

Throughout the main text, the LiMRmass has been held fixed. In this appendix, we allow the

LiMRmass to vary in the forecasts to study what effect this has on the LiMR constraints presented

earlier, as well as to study how well a prospective LiMR detection could constrain its properties.

For all combinations of LiMR species, galaxy surveys and CMB experiments studied in this work,

we find that marginalizing over the LiMRmassmX weakens the constraint on the relic degrees of

freedom gX, as expected. This effect is most exaggerated in the cases where the constraint is domi-

nantly set by LSS information. In a joint Planck-BOSS analysis, high-mass relics (withmX ≥ 0.2

eV) see the gX constraint weakened by nearly a factor of 2. In cases where CMB information domi-

nates, however, such as when adding CMB-S4 to BOSS, the gX constraint is weakened by no more

than 6%. Adding Planck information to DESI, the higher-mass region sees the gX constraint weak-

ened by no more than a factor of 2. Adding CMB-S4 to DESI, the gX constraint is weakened by no

more than 25%.

In Figs. 1.11 and 1.12, we illustrate this effect, assuming that a Weyl fermion with fiducial TX =

0.91 K and different values ofmX is observed using different combinations of galaxy and CMB

surveys. The broadening of the error bars is primarily driven by the LSS information and, as a con-
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sequence, the biggest shift in constraints is observed for datasets that are primarily or exclusively

constrained by the galaxy surveys.

We see in Fig. 1.11 that the Planck constraint monotonically weakens with increasing fiducial

relic mass. This can be explained by the decreasing effect of a relic on the radiation energy density ρr

which the CMB is primarily sensitive to. At low masses, the Planck dataset demonstrates an orthog-

onal relationship between the relic mass and degrees of freedom. Considering that at low masses,

changes in mass will modify the weak lensing signal of the CMB and produce no change in ρr yet
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small changes in gX will produce directly proportional changes in ρr we expect a nearly orthogonal

relationship between these two parameters at low masses primarily governed by Eq. (1.4), as the

CMB signal is dominated by changes to ρr. However, as the fiducial relic mass is increased, and the

relic effect on ρr at recombination becomes smaller, the CMB becomes sensitive to the relic primar-

ily through its effect on the weak lensing signal and the governing relationship changes to Eq. (1.6)

which is directly proportional to the product ofmX and gX. Thus, these two parameters are ex-

pected to develop an anti-correlation at high masses in the CMB dataset, which is indeed what we

observe in Fig. 1.11 at higher masses.

Now we consider how the degeneracy direction in themX − gX plane varies at different relic

masses for the LSS datasets. Here the scales affected by the relic, as governed by Eq. (1.5), and by

the magnitude of the effect, as determined by Eq. (1.6), control the effect on the LSS signal. At low

masses, the contribution of the relic to ωM is small and the relic will primarily affect the LSS signal

through its free-streaming scale, which is independent of gX. So at small relic masses, we expectmX

and gX to be approximately orthogonal. As the fiducial relic mass is increased, the contribution of

the relic to PM and hence to the LSS signal increases and is again proportional to the product ofmX

and gX. So with increasing relic mass, we generally expect an anti-correlation to develop between the

relic mass and degrees of freedom. We again see this to be the case in Fig. 1.11.

As discussed above, allowing the relic mass to vary modifies the constraints of the LSS and CMB

datasets such that the accuracy of those constraints is generally less affected for lower mass relics.

As the relic occupies a greater portion of ΩM, it becomes more important to simultaneously vary

the relic mass and degrees of freedom. We emphasize that for a fixed relic abundance, there is a de-

generacy between the relic parametersmX, TX, gX according to Eq. (1.6). This allows us to translate

constraints on any two of these parameters into constraints on the third parameter. Where we have

allowed the relic mass and degrees of freedom to vary, the resulting constraints can be translated to

errors on the temperature. We also bring attention to the fact that marginalizing over the relic mass
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is only valid in the neighborhood of parameter space around each fiducial choice, and not over the

entire parameter space of masses permitted.

1.8 Sampling of FullModel Posterior Forecasts

Datasets with different parameter degeneracies can powerfully constrain parameters when com-

bined. To illustrate this complementary effect between CMB and LSS surveys, we present a sam-

pling of fully marginalized posteriors in Fig. 1.13 for a Weyl (neutrino-like) relic with temperature

0.91 K and mass 0.01 eV. In each figure, we present constraints using only DESI (red), only Planck

(violet), and the joint dataset (green).

As in the case of the LiMR parameter gX (number of degrees of freedom) discussed in the main

text, the addition of LSS information to CMB data will generally break degeneracies between pa-

rameters. As an interesting example, we observe that the LSS provides a measurement of ωcdm that

is very close to orthogonal from the CMB one, breaking degeneracies with As, ns and gX for very

light relic masses. DESI information also serves to set the measurements on h and
∑

mν, which are

poorly measured by Planck as their effects on the CMB are degenerate. In turn, the LSS by itself is

generally ineffective at measuring the other cosmological parameters, and provides no information

on τreio. While, as illustrated in Fig. 1.3, the degeneracies between gX and other parameters shift sig-

nificantly between relics of different masses, those between the cosmological parameters themselves

remain largely unchanged.
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2
Accurately Weighing Neutrinos with

Cosmological Surveys

2.1 Introduction

The existence of neutrinos has long been established, but comparatively little is known about them,

due to their weak couplings to the visible sector. Although in the StandardModel (SM) neutri-
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nos are massless, compelling evidence of flavor oscillations from solar, atmospheric, and reactor

fronts146,121,159,98,88,138,137 yield measurements of two mass splittings, indicating non-zero masses

for at least two of the three neutrino species. The sign of one of the measured mass splittings is yet

to be determined, suggesting that neutrinos are ordered in one of two scenarios: the normal hierar-

chy (NH), where the two lighter neutrinos are closer in mass, or the inverted hierarchy (IH), where

the two heavier ones are. Distinguishing between the two neutrino hierarchies, as well as measuring

their overall mass scale, are integral steps towards amending the StandardModel via characterizing

its least-understood fermions.

Current results from the KATRIN Tritium decay experiment have improved the limits on the

massmν of each neutrino species tomν < 1100 meV in the quasi-degenerate regime21, and are ex-

pected to constrain each neutrino mass in this regime to 200 meV with upcoming data162. This is,

however, still far from the minimum (total) masses expected for the NH and IH, of 60 and 100 meV

respectively. A diverse range of other particle experiments are also underway aiming to fully charac-

terize the oscillation parameters and determine the mass ordering29,93,15,12,34,20,11. At the same time,

cosmological data sets provide a powerful tool in the search for massive neutrinos, as these particles

are very abundant in our universe, with a density per species today of nν ∼ 100 cm−3, comparable

to that of cosmic microwave background (CMB) photons. This cosmic neutrino background in-

fluences the formation of large-scale structure (LSS) in the universe: at least two of these species are

non-relativistic at the present day and contribute to the dark matter (DM) content. However, their

small masses imply large streaming velocities and induce structure suppression at small scales (see

Refs.129,127 for detailed reviews of these effects).

Indeed, the leading constraints on the sum of neutrino masses are currently obtained with cos-

mological data198,127,58,26,68. The latest 2018 Planck data, in conjunction with measurements of the

baryon acoustic oscillations (BAO) from the Baryon Oscillation Spectroscopic Survey (BOSS), have

been used to constrain
∑

mν ≤ 120 meV at 95% C.L.17. This measurement is compatible with
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both the normal and inverted hierarchies, though the available parameter space for the latter will

always be smaller. Upcoming data from the CMB Stage-4 (CMB-S4) experiment, as well as the Dark

Energy Spectroscopic Instrument (DESI) and Euclid galaxy surveys, will reduce these error bars dra-

matically, and it is expected that these experiments will measure the sum of neutrino masses at least

at the 3σ level82.

As cosmological data (especially that from large-scale structure experiments) become increasingly

precise, it becomes critical to accurately characterize the cosmological effects of neutrinos in the

analysis of this data. This is crucial both for the correct characterization of cosmological neutrinos

and also for the measurement of relevant parameters of structure formation, such as the amplitude

of fluctuations or the intrinsic bias of tracers. Currently, searches for massive neutrinos with cosmo-

logical data often make two simplifying assumptions, described below.

The first assumption commonly made is that the three neutrinos have the same mass, a config-

uration commonly termed the degenerate hierarchy (DH). While this is a valid approximation for

neutrino masses much heavier than their splittings (mνi ≫ 50 meV), it fails for the range of masses

still allowed by current data. While the dominant cosmological effect of neutrinos is set by the sum

of their masses, the distribution of individual masses has an effect that, although subtle, might be

detectable by future surveys130,174,71,119,103,96,104,198,30. It is possible that the next-generation mea-

surement of total neutrino mass will simply eliminate the inverted hierarchy by ruling out its mini-

mummass. However, in the case that this measured sum permits both normal and inverted configu-

rations (
∑

mν ≥ 100 meV), it is also worth investigating whether cosmological data has the power

to distinguish between the two.

The second approximation is that the halo bias is unaltered by the presence of light degrees of

freedom. However, it was shown in Refs.134,133,152 that the same scale-dependent growth that gives

rise to a suppression in the matter power spectrum in the presence of massive neutrinos induces

a scale- and redshift-dependent enhancement to the halo bias as well. This growth-induced scale-
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dependent bias (GISDB) can partially compensate the effect of neutrinos on the galaxy power spec-

trum and, opposed to other biasing effects that abound in standard cosmology, its amplitude and

shape are determined by the neutrino masses, so it must be properly modeled during searches for

these particles.

In this work we include both of these effects for the first time (see for instance Refs.175,197,135

for previous efforts), and forecast constraints on the neutrino mass from the upcoming DESI16

and Euclid28 surveys, combined with the CMB-S4 experiment2. We study whether the omission

of these corrections would bias upcoming results. To find the halo power spectrum in the presence

of neutrinos with three different masses we employ the publicly available software CLASS49, which

we have modified to include the recently developed RelicFast* 152 code as a native module. We dub

this code RelicCLASS†, and in addition to neutrino masses, it can also be used to search for any other

light relic (as we do in our companion paper75).

This paper is structured as follows: in § 2.2 we briefly review the effect of neutrinos on the LSS

observables. In § 2.3 we explain the datasets we consider, which we employ in § 2.4 to forecast the

resulting constraints on neutrino masses. We conclude in § 2.5.

2.2 Neutrinos and their effect on the LSS

We begin with an overview of the physics of neutrinos and their effects on the LSS observables,

which can be divided in two pieces: the suppression of the matter power spectrum, and a modifi-

cation to the galaxy-halo bias. Both of these effects are most relevant at scales of k ∼ 0.01 h/Mpc

for currently allowed neutrino masses, making galaxy surveys such as DESI and Euclid ideal probes,

given their expected low noise at those scales.

The SM contains three species of neutrinos corresponding to the electron, muon, and tau lepton

*https://github.com/JulianBMunoz/RelicFast
†https://github.com/wlxu/RelicClass
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flavors, which mix into three non-degenerate mass eigenstates. Various oscillation experiments have

measured two mass splittings to be137

Δm2
21 = 79meV2

|Δm2
31| = 2.2× 103meV2, (2.1)

where the absolute value on the latter measurement denotes ambiguity to which species is heavier.

This results in two possible mass configurations, the normal hierarchy, wherem3 > m1, and the

inverted hierarchy, wherem3 < m1. Assuming the lightest neutrino is massless, the NH has a total

mass sum of∼ 60 meV and the IH has one of∼ 100 meV129.

Neutrinos decouple shortly before cosmic electron-positron annihilation, and so their present-

day temperature T(0)
ν is offset from that of the photon bath, T(0)

γ , by the subsequent entropy in-

jection, yielding T(0)
ν = (4/11)1/3T(0)

γ = 1.95 K. Thus, a neutrino of massmνi will become

nonrelativistic at zNR ∼ 500(mνi/100meV), so by today we expect at least two of the species to

be non-relativistic. In that case, the neutrino abundance Ων today is related to the sum of masses

simply as129

Ωνh2 =
∑
i

mνi
93.2 eV

, (2.2)

where h is the reduced Hubble parameter. The non-zero temperature of neutrinos allows them to

freely stream out of dark-matter structure. This defines a free-streaming scale as the wavenumber

kfs,i above which neutrinos behave as hot dark matter, given at late times z < zNR,i by

kfs,i =
0.08√
1+ z

( mνi
100meV

)
hMpc−1, (2.3)

assuming matter domination48,25. We will focus on neutrinos in this paper, but we note that other

light (but not massless) relics produce similar effects, and we search for them in our companion
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paper75.

2.2.1 Effect onMatter Fluctuations

For this discussion it is informative to differentiate between two different types of matter content in

the universe: the component consisting of cold dark matter and baryons (CDM+b), which largely

follow each other at late times and actually source the formation of galaxies, and neutrinos, which

are generally non-relativistic at the present day but do not cluster at small scales47,57. At late times,

when all neutrinos are non-relativistic, we can define the matter fluctuations as a sum of these two

components:

δm = fcbδcb +
∑
i
fνiδνi , (2.4)

where δi is the overdensity in the i component, fi = Ωi/Ωm its fraction of the total matter abun-

dance Ωm, and we define fν =
∑

i fνi , where this sum includes all massive neutrinos.

On large scales (k ≪ kfs,i), neutrinos νi will follow CDM+b fluctuations, so δν ≈ δcb, whereas

on small scales (k ≫ kfs,i) they will freely stream out of matter potential wells and their fluctuations

will be suppressed, following δν ∝ δcbk−2 129. This affects structure formation in two main ways.

First, δm is suppressed by a factor of (1−fν)with respect to δcb, as the larger the neutrino abundance,

the smaller the fraction of matter content that contributes to the growth of structure. Second, and

more important, the absence of small-scale neutrino fluctuations slows the growth of the CDM+b

component at large k. If the neutrinos become non-relativistic after matter-radiation equality, this

produces an additional scale-dependent suppression on δcb of roughly (1 − 3fν). The result in the

linear approximation is a total suppression of the matter power spectrum of (1− 8fν) for fν ≪ 1129.

Both of these effects become present at k ∼ kfs,i for each species, so not only do neutrino masses

determine the overall amount of suppression, but also the location in the power spectrum where

said suppression occurs. The effect is dominantly determined by the total fν, and thus the total neu-
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trino mass
∑

mν. However, hierarchical neutrinos will each modify the power spectrum at slightly

different free-streaming scales due to their individual masses. For instance, for the same total neu-

trino mass of
∑

mν = 100 meV, the normal hierarchy suppression effects turn on at kfs,i ∼ 0.02 h

Mpc−1 (for the lighter neutrinos) and kfs,i ∼ 0.04 hMpc−1 (for the heavier), while the inverted hi-

erarchy suppression effects turn on at kfs,i ∼ 0.005hMpc−1 and kfs,i ∼ 0.03hMpc−1, respectively.

Furthermore, although the difference is subtle, the amplitude of the small-scale suppression of

Pcb(k) for cosmologies with fixed total fν is dependent on the epochs zNR,i where neutrinos begin to

behave as matter, with larger suppression for heavier individual species as the growth of fluctuations

is slowed from an earlier time. Thus, the scale-dependent suppression is most prominent in the limit

where all the mass is carried by one neutrino, and least prominent for the case of three degenerate

neutrino; and in general, the inverted scenario will generate more suppression for the same total

neutrino mass than the normal one.

In addition to these scale-dependent effects, the inclusion of massive neutrinos while holding

fixed the baryon and DM abundances (ωb, ωcdm), and the Hubble parameter (h) forces a shift in

the dark-energy abundance (ΩΛ), the effect of which is an overall suppression of the amplitude

of fluctuations at all scales. However, this effect is less important for our analysis here, as it can be

mimicked by a compensating shift in the amplitude As of fluctuations, the Hubble parameter, or the

overall halo bias.

We illustrate the effects described above in Figure 2.1, where we incorporate massive neutrinos

into the cosmology with various masses and fixed hierarchy (upper panel) and with various hierar-

chies and fixed total mass (lower panel). We investigate the suppression of each with respect to a cos-

mology with massless neutrinos, holding fixed the other cosmological parameters {ωb, ωcdm, h,As, ns, τreio}

at values listed in Table 2.2 (where ns is the tilt of primordial fluctuations and τreio is the optical

depth to reionization). Note that the suppression is larger for heavier neutrinos and occurs at smaller

scales, and also it is larger for the inverted hierarchy than the normal hierarchy, though only becom-
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ing apparent at comparatively small scales.
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Figure 2.1: Percent differences in CDM+baryon power spectra compared to a massless neutrino cosmology; for differ‐
ent total neutrino masses assuming the degenerate hierarchy (upper panel) and for different hierarchies assuming a total
neutrino mass of 100 meV (lower panel). In each case we fix the cosmological parameters {ωb, ωcdm,Ωm,As, ns},
varying h. As shown, the primary effect of massive neutrinos is a suppression of amplitude at small scales – the change
in amplitude at large scales is attributed to varying values of h. Note that both the total mass and individual neutrino
masses affect the amount of suppression and scale at which it turns on, though the latter effect is subdominant. In
addition, the amount of suppression is redshift dependent, with a larger spread at small scales for larger neutrino

masses.
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2.2.2 Effect on the Bias – RelicCLASS

We can observe the neutrino-induced suppression in δm by directly measuring the matter power

spectrum, for example through weak lensing of the CMB or galaxies123,10. Most measurements are,

however, of galaxy distributions, which trace the underlying matter fluctuations. In this case it is not

enough to study how neutrinos affect the matter power spectrum, but rather it is necessary to find

how they change the relation between the halo and the matter overdensities, the galaxy bias.

Due to the nonlinearity of halo formation, the overdensity of haloes traces that of the matter,

albeit with a rescaling referred to as the bias. In this work we will always refer to the bias with re-

spect to the CDM+b field, to avoid spurious scale-dependencies due to the non-clustering nature of

neutrinos47,200,58,65. In that case, the halo fluctuation (without redshift-space distortions) is given

by

δh(k, z) = b1(k, z)δcb(k, z) (2.5)

to linear order, where b1 is the Eulerian bias, which can be written in terms of the linear Lagrangian

bias bL as

b1(k, z) = 1+ bL(k, z), (2.6)

where the Lagrangian bias is also defined with respect to the cb fluid.

In previous LSS searches for neutrino masses it was typically assumed that either b1, or its equiva-

lent with respect to all matter, was constant at all scales. Nonetheless, neutrinos produce a scale- and

redshift-dependent growth in the CDM+b fluctuations, due to their free-streaming nature. This

effect cannot be simply included through transfer functions, due to the non-local temporal nature

of the halo-formation process188,187,133,134, and the process of halo collapse has to be modeled.

We use the publicly available code RelicFast, which solves for the spherical collapse of haloes

including the effect of neutrinos. In Ref.152 we found that, while the overall value of the bias is
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very sensitive to the astrophysics of specific tracers, the scale-dependence of the Lagrangian bias is

impervious to those effects within our model.

The result of this correction is a scale-dependent step in the Eulerian bias as shown in Figure 2.2,

which we term the growth-induced scale-dependent bias (GISDB). We parametrize the bias through

bL(k, z) = bL(z)f(k, z), (2.7)

where f(k, z) is numerically computed with RelicFast to properly account for the effect of neu-

trinos in the halo bias, and bL(z) denotes the scale-independent magnitude of the Lagrangian bias,

which we will marginalize over. We remind the reader that f(k) can be approximated in terms of

tanh[log(k)], as it is roughly a step function in log-k space152. Nonetheless, we choose to use the

full shape of the function, in order to fully capture its physical effect. Additionally, as the amplitude

bL(z) of the bias depends very sensitively on the properties of the haloes studied, we will marginalize

over it as a free parameter. On the other hand, the scale-dependent behavior, parametrized through

f(k, z), is largely independent of those factors152,133.

The specifications of the RelicCLASS code is as follows: We have modified the publicly available

Boltzmann solver CLASS to include the effect of neutrinos in the halo bias computed by RelicFast

within CLASS, which directly outputs both Eulerian and Lagrangian scale-dependent biases for the

input cosmologies. Here, RelicFast is included as a CLASSmodule, executed after the Lensingmod-

ule, which outputs the realistic scale-dependent Lagrangian bias for requested ranges of redshifts

and halo masses. This output is accessible from the python wrapper to facilitate interfacing with

MontePython and other codes that take CLASS outputs. Inverted, normal and degenerate neutrino

scenarios with lightest neutrino mass (m0 in the code), which sets the full spectrum, are accepted as

specifications at the input level. Aside from neutrinos, RelicCLASS can also be used to model other

scale-dependent effects on the growth function, such as those induced by other light (but massive)
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degrees of freedom.
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Figure 2.2: The growth‐induced scale‐dependent bias (GISDB) for redshifts from 0.65 (lightest) to 1.65 (darkest) with
massive neutrinos. The total neutrino mass is set at 90 meV and the degenerate scenario is assumed. As shown, the

growth‐induced scale‐dependent bias (GISDB) is both scale‐ and redshift‐dependent.

2.3 Datasets

In this section we describe the data sets used in our analysis, code specifications, and discuss details

of likelihoods and nuisance parametrizations. We use mock data from CMB-S4 as well as either

DESI or Euclid for the LSS component.
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z 0.65 0.75 0.85 0.95 1.05 1.15 1.25
dNELG

dz ddeg2
[DESI] 309 2269 1923 2094 1441 1353 1337

dNHα

dz ddeg2
[Euclid] 2434 4365 4729 4826 4729 4508 4270

z 1.35 1.45 1.55 1.65 1.75 1.85 1.95
dNELG

dz ddeg2
[DESI] 523 466 329 126 0 0 0

dNHα

dz ddeg2
[Euclid] 3721 3104 2309 1514 1475 894 498

Table 2.1: Forecasted number of ELGs measurable by DESI and Hα emitters measurable by Euclid per redshift per deg2

at each redshift bin z, taken from Refs. 16,28.

2.3.1 Galaxy Data

For the LSS component we will use a modified version of the basic pk likelihood implemented in

Montepython v353 adapted to mock data from the upcoming DESI16 and Euclid28 surveys, as-

suming their most abundant tracers. For this analysis we consider emission line galaxies (ELGs) for

DESI, and assume the baseline survey covering 14,000 deg2. Conversely, for Euclidwe study Hα

emitters and assume the reference efficiency given in Ref.28 with 15,000 deg2 coverage. The pro-

jected galaxy number densities achievable by the DESI and Euclid surveys are given in Table 2.1.

Somewhat more optimistic constraints could potentially be achieved through multi-tracer tech-

niques51. Nonetheless, our goal in this work is to determine whether the inclusion of different

neutrino-induced effects would bias the results from upcoming surveys, so we will limit ourselves

to the case of one tracer per survey.
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The shot noise spectrum is given simply by the inverse of the observed galaxy density,

n−1
g (z) =

dV(z)
dNg(z)

, (2.8)

where dV(z) is the comoving volume of the shell at redshift z in the fiducial cosmology, and dNg(z)

is the total number of tracer galaxies within the shell, as computed in Table 2.1.

Galaxies are located in the line-of-sight n̂ direction at their measured redshift z. Gravitational

attraction of galaxies into clusters, as well as bulk velocities of the clusters themselves, give rise to dis-

tortions to the inferred 3D positions of galaxies, which are usually termed redshift-space distortions

(RSD)120. To linear order we can relate the redshift-space galaxy power spectrum to the CDM+b

one as

Pg(k, z, μ) =
[
b1(k, z) + fcb(k)μ2

]2 Pcb(k, z), (2.9)

where μ = k̂ · n̂, and we have defined the growth factor of CDM+b fluctuations as

fcb(k, z) = −
d log

√
Pcb(k, z)

d log z
, (2.10)

which we compute numerically using CLASS.

Additionally, the non-linear integrated effect of RSD (usually referred to as the Finger-of-God

effect), as well as the intrinsic redshift uncertainty of the galaxy, can be encoded as a multiplicative

damping term55

P̃g(k, z, μ) = Pg(k, z, μ) exp
[
−μ2k2σ2v(z)

H2(z)

]
,

with σv = (1+ z)

√
σ20 +

σ2fog(1+ z)
2

, (2.11)

where σ0 = 10−3 accounts for the resolution limits of DESI16 and Euclid28, and σfog is related to
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the velocities of galaxies and is treated as a nuisance parameter in this work.

The physics of galaxy formation is known to produce an additional scale-dependence to the bias

term, proportional to k2 at high k. While unrelated to the effect of neutrinos on the LSS, this k2-

term is properly accounted for here following the formulation of Ref.149. We follow their prescrip-

tion in writing the total Eulerian bias as

b1(k, z) = 1+ bL(k, z) + α2k2, (2.12)

where α2 is a free parameter that we marginalize over. At large scales (k → 0), where both the

growth-induced and k2-terms are negligible, the bias is scale-independent and we choose a fiducial

value that matches the simulations of each specific tracer. For the DESI survey of ELGs we use the

parametrization b1(z) = β0/D(z), whereD(z) is the growth function, and for the Euclid survey of

Hα emitters we use b1(z) = β0(1 + z)0.5β1 , following the prescriptions of their respective Science

Books16,28. The nuisance parameter β0 rescales the overall bias, and β1 parametrizes any uncertainty

in redshift dependence of the bias. We will take as fiducial β0,DESI = 1.0, β0,Euclid = 1.7, β1 = 1.0,

consistent with recent results from simulations63.

Figure 2.3 shows the percent differences in P̃g(k, z, μ)with respect to a fiducial scenario of in-

verted neutrino hierarchy with
∑

mν = 100 meV, upon changing the hierarchy (while fixing the

total neutrino mass) and switching off the GISDB. Other cosmological parameters are held fixed,

and the shaded regions represent the shot noises expected fromDESI and Euclid. This figure shows

that the effect of the neutrino hierarchies, as well as the GISDB, is at the 0.5% level. However, while

the hierarchies affect the ratio differently at different scales, the GISDB acts as an overall change in

normalization at k ≳ 10−3 h/Mpc.

We also account for the Alcock-Paczynski effect24,33,128, which concerns the cosmology-dependence

of inferring distance from angular- and redshift-space measurements, by multiplying the power
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Figure 2.3: Percent differences in galaxy power spectra P̃g(k, z, μ) between the various neutrino hierarchies (at fixed∑
mν = 100 meV), as well as with and without the GISDB, compared to a fiducial case of inverted hierarchy with

GISDB, at z = 0.75. The shot noises associated with DESI and Euclid are shown as the shaded areas. Here the
cosmological parameters {ωb, ωcdm, h,As, ns,

∑
mν} as well as all bias and RSD nuisance parameters are held fixed.

spectrum and the shot noise at each bin byH(z)/D2
A(z), dividing by the same quantity evaluated

at our fiducial cosmology, as well as writing the inferred k, μwith respect to the fiducial k, μ by the

relation

k(z, μfid)
kfid

=

[
(1− μ2fid)

D2
A,fid(z)
D2

A(z)
+ μ2fid

H2(z)
H2

fid(z)

]1/2
, (2.13)

μ(z)
μfid

=

[
(1− μ2fid)

D2
A,fid(z)
D2

A(z)
H2

fid(z)
H2(z)

+ μ2fid

]−1/2

. (2.14)
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Additionally, we stop our analysis at kmax(z) = 0.2 × (1 + z)2/(2+ns)hMpc−1, safely within the

linear regime.

We compute the log-likelihood as191

− logL =
1
2
∑
z

∫
dkfidk2fid

∫
dμfid

Vfid(z)
2(2π)2 H(z)

D2
A(z)

P̃g(k, z, μ)− Hfid(z)
D2

A,fid(z)
P̃g,fid(kfid, z, μfid)

H(z)
D2

A(z)
P̃g(k, z, μ) + Hfid(z)

D2
A,fid

n−1
g (z)

2

. (2.15)

Additional parameters, such as those accounting for non-Poissonian shot noise or theoretical

error in this likelihood function, can be considered for more detailed analyses, as in e.g. Ref.52.

2.3.2 CMBData

We complement the LSS information from galaxy surveys with mock CMB data from the upcom-

ing CMB-S4 experiment, implemented with MontePython’s Likelihood_mock_cmb. We model the

CMB-S4 simply as a single effective frequency channel, with temperature noise ΔT = 1 μK-arcmin,

and polarization noise ΔP =
√
2ΔT. We additionally assume a resolution of θFWHM = 3 arcmin.

CMB data will not only help break the degeneracies between cosmological parameters, but can

also measure the matter power spectrum directly through CMB lensing. This data will, for instance,

break the degeneracy between the Hubble parameter and
∑

mν. We perform iterative delensing as

in Ref.106,160 to obtain the deflection field with nearly optimal noise. Finally, we do not account for

modes below ℓ = 30 from CMB-S4, as it will be ground-based, and instead add a Gaussian prior on

τreio with a width of 0.01 to account for low-ℓCMB data. This width is reflective of current Planck

sensitivities17 but conservative in light of future measurements.
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2.4 Results

In this section we performMarkov ChainMonte Carlo (MCMC) analyses on mock data for CMB-

S4 added to either DESI or Euclid galaxy power spectra, for cosmologies with massive neutrinos. We

consider parameters {ωb, ωcdm, h,As, ns, τreio,
∑

mν} as well as nuisance parameters {β0, β1, αk2, σfog},

and show our fiducial values in Table 2.2. We vary our model in three types of ways. First, we at-

tempt to distinguish between the normal, inverted, and degenerate hierarchies. Second, we study if

the recovered parameters would be shifted if the GISDB was not included, both with and without

marginalizing over the redshift-dependence uncertainty β1. Additionally, we omit the τreio prior in

one case with CMB-S4+Euclid, to investigate the importance of additional optical depth informa-

tion in the presence of the existing CMB lensing and LSS shape information.

These different runs are designed to explore the set of physical effects that will appear in upcom-

ing measurements of neutrino masses. A table of relevant reconstructed parameters and associated

best-fit log-likelihoods for selected models is shown in Table 2.3 for runs with Euclid data, and in

Table 2.4 for those with DESI. We emphasize that in all cases our fiducial model corresponds to the

inverted hierarchy with its lightest neutrino taken as massless, and thus represents a plausible model

of nature; shifts from the best-fit in other models can be seen as the expected shift one would ob-

serve in a realistic analysis.

We find that with CMB-S4+DESI data the total neutrino mass is expected to be measured up

to uncertainty of 26 meV, while for CMB-S4+Euclid data that would be improved to 20 meV.

For
∑

mν = 98 meV this corresponds to a 4σ and 5σ detection respectively, and theminimum-

mass scenarios of normal and inverted hierarchy (with total masses 60 and 100 meV) can be dis-

tinguished at the 1.5σ and 2σ level. We note that neglecting the nuisance parameter β1 results in an

over-tightening of
∑

mν resolution to an uncertainty of 15 meV. Finally, the omission of a τreio

prior results in a
∑

mν uncertainty of 27 meV for the combined CMB-S4+Euclid data; equivalently
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showing that these data are able to measure τreio to the 10% level despite the lack of low-ℓ informa-

tion. Conversely, we find that a stricter τreio prior of width 0.006 would tighten e.g. CMB-S4+DESI

sensitivities to 20 meV.

Cosmological Parameters
ωb ωcdm h As ns τreio

∑
mν

[meV]
Hierarchy

2.226e-2 0.1127 0.701 2.2321e-9 0.967 0.0598 98.5 Inverted

Nuisance Parameters
Euclid DESI
β0 β1 β0 α2 σfog [km/s]
1.7 1.0 1.0 1.0 250

Table 2.2: Fiducial cosmology used in generation of mock data for MCMC analysis. Consistent cosmologies are used for
DESI and Euclid analyses except for β0, which is matched to simulation results.

2.4.1 Differentiation of Hierarchy

We first consider whether we can differentiate the neutrino hierarchies, if they had the same
∑

mν.

In Figure 2.4c we show a corner plot comparing posteriors for the three hierarchies (the two physical

ones plus the degenerate one), where the underlying fiducial cosmology is IH. Due to the physi-

cal lower bounds for the total mass of neutrinos in the IH, the posteriors for that case are notably

one-sided, and as a result the mean value of most cosmological parameters for the other two hierar-

chies are shifted relative to the inverted one. This is because all cosmological parameters other than

ωb exhibit significant degeneracy with
∑

mν. However, as Table 2.3 shows, these near-future sur-

veys show at most a 1σ preference for the fiducial choice of hierarchy, as far as best-fit likelihoods are

concerned. This agrees with the recent Bayesian analysis done in Ref.30.
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Data Model Mean and error
LSS CMBHNuis. GISDB −2Δ logL Mν τreio β0 β1

Euc.
S4
+ τ

D β0, β1 Yes 1.3 103.6 5.85e-2 1.702 1.005
(20.1) (5.96e-3) (2.97e-3) (3.08e-3)

No 1.3 104.2 5.97e-2 1.704 1.003
(21.9) (6.47e-3) (3.14e-3) (3.24e-3)

β0 Yes 1.5 102.8 5.93e-2 1.699 -
(16.5) (5.124e-3) (2.71e-3)

No 1.9 114.5 6.25e-2 1.707 -
(15.6) (4.96e-3) (2.59e-3)

I β0, β1 Yes 0.0 113.0 6.30e-02 1.700 9.99e-1
(+9.06∗
−0.72 ) (3.34e-03) (3.07e-03) (2.64e-03)

N β0, β1 Yes 0.9 98.90 5.89e-2 1.701 1.00
(21.3) (6.18e-3) (3.13e-3) (3.09e-3)

S4 D β0, β1 Yes 1.3 102.9 5.95e-2 1.699 1.001
(27.5) (8.29e-3) (3.31e-3) (2.94e-3)

Table 2.3: Comparison of reconstructed mean and error of cosmological and nuisance parameters as well as best‐fit log‐
likelihoods with respect to the fiducial for different models, with Euclid mock data. The fiducial for all these cases is the
same and is given in Table 2.2, which is exactly recovered by the inverted model tabulated here. The Σmν posterior of
this model (denoted by an asterisk), is truncated by the prior at its minimum mass and thus is narrower than its normal
and degenerate hierarchy counterparts. We use the following symbols: Euclid (“Euc.”), CMB‐S4 (“S4”), τreio (“τ”), Hier‐
archy (“H”), Degenerate (“D”), Inverted (“I”), Normal (“N”), Nuisance Parameters (“Nuis.”), Σmν [meV] (“Mν”). We denote
errors on reported values by parentheses.

2.4.2 Effect of GISDB

We then look more in detail into the runs with and without the GISDB. In this case the effects are

twofold: a scale-dependent step that counteracts the scale-dependent suppression induced by neu-

trinos, and a redshift-dependent amplitude of the step that enhances the redshift-dependence in-

duced by neutrinos at the smallest scales. Omission of the GISDB in the analysis analysis is then

expected to underpredict
∑

mν if the former effect is dominant, and overpredict if the latter effect

is. However, the former effect is largely rendered insignificant due to cosmic variance – the scale-

dependence of the bias plateaus at scales smaller thanO(10−2hMpc−1), which is the regime with

strongest statistical power. Thus, it is the latter small-scale redshift-dependent effect that becomes
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Data Model Mean and error
LSS CMB HNuis. GISDB −2Δ logL Mν τreio β0

DESI S4 + τ

D β0 Yes 0.9 107.6 5.99e-2 1.000
(26.7) (7.20e-3) (1.70e-3)

No 1.1 112.0 6.07e-2 1.003
(26.1) (6.93e-3) (1.73e-3)

I β0 Yes 0.0 107.2 6.16e-2 1.001
(+15.2∗
−0.42 ) (3.84e-3) (1.63e-3)

N β0 Yes 1.0 99.7 5.89e-2 1.000
(28.6) (6.52e-3) (1.68e-3)

Planck† D β0 Yes - (27.44) (8.99e-3) (7.62e-3)

Table 2.4: Similar to Table 2.3, with DESI used as LSS data. The fiducial for all these cases is the same and given in
Table 2.2. Note that as before, the Σmν posterior of the inverted model (denoted by an asterisk) is prior‐informed and
thus narrower than those of other hierarchies. In addition, the cases with Planck CMB data (denoted by a dagger) are
reported as Fisher forecasts only, without an MCMC analysis. Symbols are defined equivalently as in Table 2.2.

relevant.

The most evident effect of neglecting this growth-induced step is a misreconstruction of the nor-

malization bias, resulting in a shift towards larger b̄L(z), and in turn the incorrect values of β0 and

its redshift dependence β1, as seen in Figure 2.5. If the nuisance parameter β1 was not marginalized

over, this would further result in a significant shift of reconstructed cosmological parameters such

as As, h, and τreio, notably overestimating the total neutrino mass by≳ 1σ, as expected. This effect

is shown in Figure 2.4a, where we show the ellipses with and without the GISDB, although as op-

posed to Figure 2.5 we did not marginalize over β1. As the DESI bias prescription does not include

a degree of freedom to vary the redshift dependence, neglecting the GISDB induces a shift in the

aforementioned cosmological parameters, albeit at the sub-σ level, due to the smaller signal-to-noise.

We illustrate this point in Figure 2.4b. We note that the same shifts can be recovered using a simpler

Fisher-matrix formalism, as we show in our companion paper75.

In general, we expect the DESI and Euclid prescriptions for analysis of real data, when collected,

to be more sophisticated than those presented in the Science Books. Nonetheless, this is additional
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reason for the analyses of upcoming e.g. DESI data to marginalize over the redshift dependence of

the bias, or parametrize the bias at each redshift bin independently, to avoid cosmological-parameter

shifts due to the neutrino GISDB. Note, however, that even when marginalizing over β1 there is a

leftover shift on the scale-independent bias β0, as seen in Figure 2.5. The value of this parameter

affects other observations, such as galaxy high-order functions and cross correlations with other data

sets, so if one requires an unbiased estimate of β0 the full GISDB ought to be accounted for.

2.5 Conclusions

In this work we presented forecasts on the ability of current and upcoming CMB and LSS exper-

iments to measure neutrino masses, both in total and individually. We included all known linear

effects induced by neutrinos in the treatment of galaxy survey data, specifically assessing the impact

of the scale-dependent bias induced by the effect of neutrinos in the growth function. We also in-

vestigated the effect and detectability of realistic neutrino hierarchies in the analysis of these survey

data.

Starting with the different neutrino hierarchies, we have shown that for the data considered,

the total neutrino mass is determined up to an uncertainty of σ
∑

mν ∼ 20 meV at a fiducial of∑
mν = 98 meV, the minimum-mass scenario of the inverted hierarchy. While this is a 5σ detection

away from 0, the minimum-mass scenario of the normal hierarchy (
∑

mν = 60 meV) is excluded

only at the 2σ level. Furthermore, for a fixed total neutrino mass of 98 meV, a different choice of

hierarchy constitutes a difference of∼ 0.3% in the power spectrum amplitude, and we show that

this is expected to result in a 1σ shift in inferred cosmological parameters. As such, more advanced

surveys are necessary to definitively distinguish between the two hierarchies, particularly in the case

that the total neutrino mass is the same.

As for the growth-induced scale-dependent bias (GISDB), we find that, while cosmic variance
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limitations render the data insensitive to the scale-dependent shape of the halo bias for allowable

neutrino masses, upcoming surveys are expected to be highly sensitive to the redshift dependence of

the GISDB at small scales. In joint analyses of CMB-S4 data with large-scale surveys such as DESI

or Euclid, not including this GISDB step can result in aO(1σ) over-prediction of total neutrino

masses, as well as similarly shifted reconstructions for degenerate parameters such as h and τreio. If

one marginalizes over the redshift dependence of the bias, these shifts can be removed, although the

resulting analysis will retain aO(1σ) shift in the magnitude and redshift dependence of the Eulerian

bias of the relevant tracers. Thus it is imperative to include these effects in order to accurately re-

cover galaxy and cosmology parameters simultaneously, or otherwise marginalize over bias redshift

dependence if the latter is prioritized.
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3
Cosmologically Measuring Ultralight

Axion DarkMatter

3.1 Introduction

Axions and, more generally, axion-like particles (ALPs) constitute an intriguing possibility for the

particle makeup of dark matter (DM), or at least a subcomponent thereof. Motivated in the QCD
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sector as a solution to the Strong-CP problem, and in the general case as a consequence of gravi-

tationally complete models of quantummechanics 202,32, these particles may also produce phe-

nomenologically interesting deviations from the standard picture of cold dark matter cosmology

(ΛCDM). This is because independent of any couplings assumed under a specific particle model,

the axion or ALP (henceforth, simply “axion”) has a purely gravitational signature that can be de-

tected cosmologically.

Ultra-light and extremely feebly coupled axions can acquire a matter abundance via vacuummis-

alignment, where the particle can be thought of as an initially slowly-rolling field that transitions

its equation of state when it begins oscillating at the minimum of its potential. This transition oc-

curs when the Hubble rate is of order the axion massH(aosc) ≈ mφ, occurring at later redshifts for

lighter masses. For an axion produced via the misalignment mechanism, the relic abundance today

ωφ,0 is determined by the axion massmφ and the initial “misaligned” field value φI. For axions with

mφ ≳ 10−33 eV, this transition has occurred before today, and its relic abundance will contribute

to the presently observed DM abundance. Additionally, ultra-light axions impede the growth of

perturbations at small scales through an effect which has been called “quantum pressure” as a result

of their macroscopic de Broglie wavelengths,∼ 10Mpc atmφ ∼ 10−30 eV. These two effects are

known to change the ratios of cosmological species and the rate of universe expansion throughout

cosmic history, as well as suppress the growth of matter perturbations at small scales relative to a

ΛCDM cosmology 114.

Upcoming Cosmic Microwave Background (CMB) observations and galaxy surveys will offer

the ability to interrogate these processes at a much more detailed level. In order to exploit these

substantially larger data sets to search for axions, its effects on structure formation and other cos-

mological observables must be modeled to adequate precision. While the effect of ultra-light axions

on the linear theory of structure formation is well understood, less extensively studied is how these

particles influence the non-linear process of structure formation at late times. The halo bias is a
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key parameter in modeling this late-time physics, quantifying to leading order the relationship be-

tween galaxy density perturbations, which we directly observe, and the underlying (predominantly

dark) matter density perturbations, which we would like to learn about. While previous work 74 has

demonstrated how axions affect the redshift dependence of the halo bias, this work presents the first

consideration of how ultra-light axions affect the scale dependence of the halo bias.

In this work we will specifically consider ultra-light axion dark matter with masses frommφ =

10−20 eV tomφ ≈ 10−33 eV. While other thermal and non-thermal axion production channels

are possible105, we will only consider the vacuummisalignment production mechanism. The high

end of this mass range is best constrained by small-scale Lyman-αmeasurements, which rule out an

ultra-light axion composing all of the DM for masses below 2 × 10−20eV182,183. For masses below

10−24 eV, measurements of the CMB and large-scale structure (LSS) constrains the axion to only

comprise a percent level fraction of the total CDM 108. Combined CMB and galaxy-clustering

analyses set the lowest bounds to date on the allowed fractional abundance of ultra-light axion dark

matter, with the most stringent constraint set at 1.4% for a 10−28 eV axion * 107,170,125,114,27.

There are also a number of complementary and similarly model-independent analyses in the

literature that have leveraged other data sets to constrain axion dark matter, such as galaxy cluster

counts 79; probes using 21cm tomography 111,32,132; line intensity mapping 39 ; weak-lensing shear

74; kinetic Sunyaev-Zeldovich effects 85; and gravitational waves 99. If we also assume some axion

coupling to photons, there are a number of astrophysical and laboratory data sets that can be uti-

lized to constrain the properties of the axion142,14. Similarly, model-dependent cosmological probes

include modifications to the Lyman-α effective opacity 185 and rotations of the CMB polarization

angle32.

Nevertheless, galaxy surveys in particular provide powerful information on the large scale struc-

*It should be noted that in all these cases, a model with only a single axion is considered. It is plausible
that these constraints would change in models containing a spectrum of axions.

72



ture of the universe, and a precise map of way dark matter fluctuations grow and cluster may well

be our only path to discovering these elusive axion populations. Modeling the halo bias accurately is

consequently critical to extracting this information faithfully, in order to match the increasingly pre-

cise experimental data promised by near-future surveys. To facilitate this work, we develop a modi-

fied version of the RelicFast† code, which we call RelAxiFast‡. In its un-modified form, RelicFast

is able to quickly compute the halo bias to linear order in the presence of thermal relics, including

massive neutrinos. RelAxiFast extends the functionality of RelicFast to additionally compute the

linear halo bias in the presence of an ultra-light axion with time varying equation of state. We make

RelAxiFast publicly available for use, including scripts to reproduce all results presented in this

work.

We review the process of how an ultra-light axion affects the matter power spectrum in §3.2, be-

ginning with a phenomenological description of the axion in §3.2.1, and then showing how the

axion field dynamics effect the background evolution §3.2.2 and evolution of perturbations at dif-

ferent scales §3.2.3. We describe the code axionCAMB in §3.2.4, which we use to compute the back-

ground and perturbation evolution. We go on to describe how we model the axion in the non-linear

dynamics of halo collapse in §3.3. We first describe modifications to the dynamics of halo collapse in

§3.3.1 and present our calculation of the halo bias in §3.3.3. We describe the RelAxiFast code which

we use to evaluate the halo collapse process in §3.3.2. We present our results and conclude in §3.4.

†github.com/JulianBMunoz/RelicFast
‡github.com/ndeporzio/RelAxiFast
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3.2 Axion Cosmology

3.2.1 Axion Phenomenology

The QCD sector of the SM allows the incorporation of a CP-violating interaction, but this term,

while generically expected to be sizable, is experimentally constrained to be exceedingly small35.

An elegant solution to this “Strong CP-Problem” is found in the introduction of a periodic scalar

known as the QCD axion, which dynamically sets the size of the CP-violation. This sets the scales

at which the QCD axion is expected to interact, and correspondingly bounds its mass atmφ ≳

6× 10−6 eV, so as to avoid overclosing the Universe193,167,202,203,172,80,5.

However, periodic axion-like particles with analogous couplings to gauge fields are known to

arise in various string theory scenarios; for example, as Kaluza-Klein zero modes of antisymmetric

tensor fields under manifold compactification204,101,192. These particles are not required to solve the

Strong CP problem, and as a result, ALPs have a less-constrained parameter space compared to the

QCD axion and broader phenomenological possibilities. Throughout this work, we will take the

“axion” to simply mean any axion-like scalar with a periodic potential.

We assume an axion φ has an effective Lagrangian of the form

L = − 1
2
(∂φ)2 − Λ4U(φ/f), (3.1)

whereU(φ/f) can be any dimensionless potential minimized at φ = 0 and periodic under φ →

φ + 2πf. f is known as the decay constant of the field, and Λ is the symmetry breaking scale when

mapped onto a low energy theory.

We apply a sinusoidal approximation to the true potential,

U
(
φ
f

)
≈ 1− cos

(
φ
f

)
, (3.2)
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Phenomenologically, choices of potentials with an exponent greater than 1 have been considered,

for example, in the context of early dark energy (EDE) models171,190,18; however, axions in these

scenarios ultimately do not behave as CDM at late times. In this work, we are interested in axions

that may contribute to the relic CDM density, and so restrict the analysis to the potential in Eq. 3.2.

The behavior of Eq. 3.1 expanded around the potential minimum is then described by the effective

Lagrangian

L ≈ − 1
2
(∂φ)2 − 1

2
m2

φφ2 , (3.3)

which has canonical mass term

mφ ≡ Λ2

f
. (3.4)

determined by the axion decay constant f and symmetry breaking scale Λ.

3.2.2 Background Evolution

The Klein-Gordon equation of motion corresponding to Eq. 3.3 governs the evolution of the ho-

mogeneous free-axion field

φ̈ + 2Hφ̇ +m2
φa2φ = 0 , (3.5)

where overdots indicate derivatives with respect to conformal time η, and where the conformal

Hubble parameter isH ≡ aH. Notice in Eq. 3.5 the presence of a Hubble friction term that im-

pedes the growth of the axion field. When the φ and φ̇ terms become similar, the field begins to

oscillate around its minimum, occurring when

mφ ≈ 3H(a) , (3.6)

75



with a time scale of oscillations given by

δtosc ≈ m−1
φ . (3.7)

The stress-energy tensor for an arbitrary scalar field is given by

Tα
β = gαν

∂φ
xν

∂φ
xβ

− gαβ

(
1
2
gμν

∂φ
∂xμ

∂φ
∂xν

+ U(φ)
)

. (3.8)

Combining the free-axion potential of Eq. 3.3 and the Friedmann-Lemaître-Robertson-Walker

metric (FLRW) with Eq. 3.8, the background energy density and pressure are then given by

ρφ(a) = −T0
0 =

1
2
a−2φ̇2 +

1
2
m2

φφ2 , (3.9)

Pφ(a) = Ti
i =

1
2
a−2φ̇2 − 1

2
m2

φφ2. (3.10)

Given some initial choice of φ and φ̇, we can use Eq. 3.5, Eq. 3.9, and Eq. 3.10 to calculate the

background values of ρφ(a), Pφ(a) and the equation of state

wφ ≡
Pφ
ρφ

, (3.11)

at all points in time. For the axion, we assume slowly rolling initiation conditions, φ̇ ≈ 0, so we have

wφ ≈ −1 and the axion field evolves like dark energy (DE). Once the axion field begins to oscillate,

its energy density redshifts as ordinary matter196, such that the relic density is approximately given

by

ωφ,0 = h2Ωφ,0 =

(ρφ,osc
ρcrit

)
a3osc, (3.12)

where ρcrit = 3H2
0M2

P is the critical energy density to produce a flat background,MP ≡ (8πG)−1/2
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is the reduced Plack mass,H0 ≡ H(a = 1) is the value of the Hubble parameter today, and where

we have used the definitions: ωi ≡ h2Ωi, Ωi ≡ ρi/ρcrit, and h ≡ H(a = 1)/100[km/s/Mpc].

This non-thermal production mechanism is known as the vacuummisalignment mechanism -

the field being initially misaligned with the minimum of its potential evolves as to realign with, and

then oscillate about that minimum.§ In this work, we only consider the case of axions produced

by the misalignment mechanism and with a symmetry breaking scale greater than the scale corre-

sponding to the end of inflation. The effects of other non-thermal production channels, such

as production via topological defects formed by symmetry breaking after inflation, are beyond the

scope of this work. Likewise, as we have assumed no SM couplings to the axions considered here,

any thermal production can be safely ignored.

Throughout this work, we assume a flat background cosmology with ωb,0 = 0.02226, ωd,0 ≡

ωcdm,0 + ωφ,0 = 0.1127, ns = 0.96659, As = 2.2321 × 10−9,Neff = 3.046, and including three

massless neutrinos. Note that we consider the effects of introducing massive neutrinos in Appendix

§3.5. Here, ωb,0, ωcdm,0 and ωφ,0 refer to the energy density today of baryons, CDM, and axions,

respectively. The background cosmology will determineH(a), and in turn set the time aosc when

H(a) falls belowmφ/3 and the axion field oscillates about the minimum of its potential. Using

this cosmology, the oscillation time as a function of axion mass is numerically calculated in Fig. 3.1.

Note that these oscillation times are robust to different choices of relic axion abundances between

0% and 10% of ωd,0, down to at least one part in 105. During radiation domination, we see that

aosc ∝ m−1/2
φ and during matter domination aosc ∝ m−2/3

φ in accordance withH(a) during those

epochs. Whilst disfavored cosmologically125, larger abundances would produce more substantial

shifts to matter-radiation equality and substantially change the aosc(mφ) relationship shown in

Fig. 3.1.

§For this reason, the “misalignment mechanism” is sometimes referred to as the “realignment mecha-
nism”.
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Figure 3.1: The time when the axion field begins to oscillate,mφ = 3H(a), as a function of the axion massmφ . The
rate of change of the Hubble parameter during matter domination, ∂ logH/∂ log a = −3/2 is shown in orange,
and during radiation domination ∂ logH/∂ log a = −2 is shown in blue. The transition between these two regimes
occurs at matter‐radiation equality. The matching to the matter solution breaks downs at small redshift, when dark
energy begins to dominate. The red shaded region is bounded by the redshift of recombination z ≈ 1100 and the
redshift when a CMB mode of ℓ ≈ 2500 crosses the horizon. The grey shaded region is bounded by the largest redshift

of halo collapse modeled in this work z ≈ 200 and today.
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Using the n = 1 result from125, we can map the parameters of this ultra-light axion dark matter

model (mφ, f, φI) to the cosmological parameters (H0, aosc, Ωφ) as

Ωφ(a) ≈
1
3

(
fmφ

MPH0

)2 (
1− cos (φI/f)

)
× ...

...


( aosc

a
)3 , a > aosc

1 , a < aosc .

(3.13)

As shown in Fig. 3.1, the relation between aosc andmφ depends on whether the axion field begins to

oscillate while the background is radiation dominated or matter dominated. In the case of lighter,

sub-dominant axion masses, which begin oscillating during matter domination

aosc ≈
(
3H0

mφ

)2/3
(2Ωm,0)

1/3 . (3.14)

Alternatively, for heavier, sub-dominant axion masses, which begin oscillating during radiation

domination

aosc ≈
(
3H0

mφ

)1/2 (
2Ωm,0aeq

)1/4 . (3.15)

We can identify which axion mass begins oscillating at the time of matter-radiation equality, again

assuming that the axion is a sub-dominant component of the energy density

mφ,eq ≈
(
3H0

√
2Ωm,0

)
a−3/2
eq . (3.16)

So we can express Eq. 3.13 in terms of the cosmological parameter aeq instead of the axion parameter
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aosc

Ωφ,0 = A × ...

...


6Ωm,0 ,mφ < mφ,eq

23/4
√

3mφ
H0

(
Ωm,0aeq

)3/4 ,mφ > mφ,eq

(3.17)

where we have defined the following dimensionless coefficient which depends only on the axion

model parameters

A ≡
(

f
MP

)2 (
1− cos (φI/f)

)
. (3.18)

Assuming the axion field always begins in a slowly rolling configuration φ̇ = 0, different choices

of the initial value of the field φI will produce different values of the relic axion relic density today

ωφ,0. An axion described in this manner will have a mass determined by its symmetry breaking scale

and decay constantmφ(fφ,Λφ) and a relic abundance determined by all three model parameters

ωφ(fφ,Λφ, φi). Without a means of independently determining the symmetry breaking scale, we

can only assume a lower bound on Λφ set by our choice of the Hubble expansion rate during infla-

tion and the assumption the symmetry breaking occurs before the end of inflation.

The cosmological evolution of such an axion will have an oscillation redshift set exclusively by

mφ(Λ, f), so long as the axion abundance does not substantially change the background evolution

ofH(a). In Fig. 3.2, for a single choice ofmφ the transition from a DE equation of state to a CDM

equation of state always occurs at the same redshift for different choices of ωφ,0 (all of which are

small compared to ωCDM). Conversely, in Fig. 3.3 the transition occurs at later times for lighter

axion masses. Notice that if too light of a mass is chosen, the field will need to have much a much

smaller primordial abundance in order to recover reasonable relic abundances today. For this rea-

son, any axion produced through the misalignment mechanism with masses below 10−33 eV will

comprise a negligible fraction of the energy density and have a similarly negligible effect on the cos-
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Figure 3.2: The exact evolution of the axion background energy at fixed axion massmφ = 10−26 eV (solid line) com‐
pared with a dark energy like evolution with matching early universe abundance (dashed) and dark matter like evolution
with matching relic abundance (dotted). The time of the transition from wφ = −1 to wφ = 0 at aosc is negligibly
changed for different choices of the relic axion abundance. The exact solution is evaluated untilmφ = 3H(a), at

which point the dark matter like evolution is assumed for the axion field.

mology. In other words, axions with masses below 10−33 eV and significant relic abundances cannot

be produced by the misalignment mechanism.
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Figure 3.3: The exact evolution of the axion background energy at fixed axion relic abundance ωφ . Note that aosc
occurs at later times for lighter axion masses ‐H needs more time to evolve to a lower value before lighter fields begin
to oscillate. For extremely light masses ofmφ ≲ 10−33 eV (the energy scale ofH0), the axion field does not begin

oscillating before today and its background energy density is not able to decay to the desired relic abundance.

For the lightest mass in Fig. 3.3,mφ = 10−32 eV, notice that the transition of equation of

state can occur deep within the redshift regime of halo collapse. This suggests that axions of such

masses can leave unique imprints in the halo collapse process, which may have a different sensitivity
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to the presence and redshift behaviors of the cosmological species than the evolution of the matter

perturbations alone.

3.2.3 Perturbation Evolution

To fully utilize cosmological data sets, we are also interested in the evolution of the perturbed (isotropic)

axion field around its background value φ0.

φ(τ, k) ≡ φ0(τ) + φ1(τ, k) . (3.19)

In Synchronous gauge, the perturbed field equation of motion corresponding to Eq. 3.5 for the

background field becomes

φ̈1 + 2Hφ̇1 + (m2
φa2 + k2)φ1 = − 1

2
φ̇0β̇ , (3.20)

where β is the trace of the scalar metric perturbation. Likewise, the perturbed stress-energy tensor

defines the energy density and pressure of the perturbed field. This system of equations defining the

evolution of φ can be expressed equivalently as a generalized dark matter (GDM) fluid with the

following equations of motion for the fluid density perturbation δφ and velocity perturbation uφ in

Synchronous gauge113:

δ̇φ =− kuφ − (1− wφ)(β̇/2)− 3H(1− wφ)δφ

− 9H2(1− c2ad)(uφ/k)
, (3.21)

u̇φ = 2Huφ + kδφ + 3H(wφ − c2ad)uφ , (3.22)
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where the the adiabatic sound speed is defined in the GDM formalism to be

c2ad ≡
Ṗ
ρ̇
= wφ −

ẇφ

3H(1+ wφ)
. (3.23)

The same physics is determined by either the second order field equation of motion Eq. 3.20 or

the set of first order GDM equations of motion Eq. 3.21 and Eq. 3.22. The motivation for work-

ing with the GDM equations of motion is to take advantage of approximation schemes developed

for the GDM fluid in the fast oscillation regime 170,140,107,114,116,141,166,158,115,163,113. Recall from

Eq. 3.7 that the axion field oscillates on a time scale inversely proportional to its massmφ. AsH

drops below the axion mass, it becomes computationally difficult to evaluate Eq. 3.21 and Eq. 3.22.

This is overcome by using the WKBmethod to find the evolution of the average fluid variables over

the oscillation time scale when a ≫ aosc

δ̇φ = −kuφ −
β̇
2
− 3Hc2effδφ − 9H2c2effuφ/k , (3.24)

u̇φ = −Huφ + c2effkδφ + 3c2effHuφ , (3.25)

where the effective sound speed of the fluid is

c2eff ≡
δP
δρ

=
(k/km)2

1+ (k/km)2
. (3.26)

An additional benefit of this formulation is that the effective sound speed c2eff is a gauge invariant de-

scription of perturbation growth, unlike the adiabatic sound speed c2ad, which encodes both spatial

and time variations in the equation of state.

To understand the physics described by the effective sound speed of the generalized axion fluid,

we first review several relevant scales that are introduced to our cosmology by the presence of a sub-
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Figure 3.4: Evolution of different physical momentum scales in units of the axion mass as a function of the scale factor
for an axion oscillating before matter‐radiation equality (top panel,mφ = 10−22 eV) and for an axion oscillating after
matter‐radiation equality (bottom panel,mφ = 10−31 eV). Grey lines indicate constant comoving modes, arbitrarily
chosen. When the axion field begins to oscillate aosc, the Hubble parameterH (we usemφ = H(a) as the oscillation
condition here), axion Jeans Scale kJ and axion mass scale km are all equal, by definition. At all times, comoving modes
smaller than the axion Jeans scale (grey lines above the kJ lines) will be suppressed. Note a slight shift in the location of

matter‐radiation equality, despite both axions having the same relic abundance.
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dominant ultra-light axion. First, the time when a given perturbation mode crosses the horizon ac

is set by the evolution of the Hubble parameter. Modes that cross the horizon during different cos-

mological epochs (e.g. matter domination versus radiation domination) will evolve at different rates.

This behavior is largely independent of the physics specific to axions. Each comoving momentum

mode k of the axion field will cross the horizon at a different time ac determined by

k(ac)
ac

= H(ac) . (3.27)

However, such a mode can be either relativistic or non-relativistic at the crossing time ac dependent

upon the mass of the axion. A given mode will be relativistic in the case where its physical momen-

tum is greater than the axion mass. The time when a mode transitions from being relativistic to

being non-relativistic is determined by the condition

k(anr)
anr

= mφ . (3.28)

So we see that a mode which is relativistic at horizon crossing satisfies

krel > mφac . (3.29)

whereas a mode that is non-relativistic at horizon crossing satisfies

knon−rel < mφac . (3.30)

Only in the case where a mode is non-relativistic will it contribute to the the CDM perturbations at

that particular scale. So we should expect suppression to the matter power spectrum at those modes

which are relativistic. In Fig. 3.4, we show two examples of the mode evolution for different axion
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masses - a heavy mass beginning to oscillate before matter-radiation equality, and a lighter mass be-

ginning to oscillate after. At the level of the background cosmology, the lighter mass will slightly re-

duce the amount of CDM around the time of matter-radiation equality and thus push aeq to larger

values. In Fig. 3.4, this is evidenced by the slight mismatch in the position of the vertical dashed line

indicating aeq. In each mass case, the axion mass is indicated by the horizontal dot-dashed line. Con-

stant comoving modes are arbitrarily chosen to guide the eye and are indicated by grey lines. In both

cases, we see that the largest comoving kmode (highest grey band) first intersects the evolution of

the Hubble parameter (orange line) before intersecting the horizontal axion mass line, meaning the

mode crosses the horizon while relativistic before becoming non-relativistic. The smallest comoving

kmode (lowest grey band) is an example of the opposite - the mode first becomes non-relativistic

before crossing the horizon. Those modes which become non-relativistic before crossing the hori-

zon will evolve identically to CDM.We can infer precisely which modes satisfy this condition, and

define a corresponding mode km above which this condition no longer holds. As an example, in the

case where we assume the axion begins oscillating well within radiation domination, the time of

oscillation is given by

aosc ≈
√

H0

mφ

(
Ωmaeq

)1/4 (3.31)

so that the modes which are non-relativistic at the time of oscillation are given by

knon−rel < km ≡ mφaosc =
√
mφH0

(
Ωmaeq

)1/4 . (3.32)

The final relevant scale is the Jeans scale kJ - it is the physical scale corresponding to the de Broglie

wavelength of axions moving with the Hubble flow. Momentummodes of the axion field become

equal with the Jeans momentum of the field when

87



kJ
a

≡
√

mφH(a) . (3.33)

The Jeans scale characterizes the scale where the axion field pressure matches the competing po-

tential of gravitational collapse, to linear order. Perturbations at length scales greater than the Jeans

length will be dominated by gravitational collapse and continue to grow into the non-linear regime

and perturbations at smaller lengths will be dominated by the field’s quantum pressure and oscillate

between collapse and expansion 114. The physical effect of kJ is encoded in the field (or equivalent

GDM fluid) equations of motion, and dynamically manifests the transition in the effective sound

speed c2eff of the axion. In other words, it determines when the sound speed terms become relevant

in the evolution of the perturbations.

Returning to Fig. 3.4, we can see how the evolution of the Jeans scale (red line) has a differing

affect on large kmodes versus small kmodes. First, let’s consider the case of a large axion mass such

that the field begins to oscillate before matter radiation equality aeq. We see that all k < km are

non-relativistic when crossing the horizon, and are always smaller than kJ, thus they act identically

to CDM. However, for those modes k > km, they become non-relativistic after horizon crossing,

but remain larger than kJ until the scaling relation ofH(a) changes after matter-radiation equality.

These large kmodes will be suppressed relative to the small kmodes until they cross kJ. If we con-

sider axion masses sufficiently small such that the axion begins oscillating after aeq (bottom panel),

an additional possibility emerges - the possibility for a mode kJ < k < km before aeq. In this

situation we can have a mode that is suppressed by the sound speed while the background is still ra-

diation dominated. However, this situation likely is not of much interest because we note that this

situation can only occur before the axion field begins to oscillate. In such a regime, the axion still

possesses the equation of state of dark energy and we can exactly evaluate the evolution of the field.

We now know the relevant scales needed to determine when the axion behaves differently from
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regular CDM.We can use these scales to infer the shapes and sizes of particular features of the mat-

ter power spectrum. In the case of ultra-light axions withmφ < meq eV such that they oscillate after

matter-radiation equality, we expect a suppression to small scales beginning at km and suppression

factor that grows with the time between matter-radiation equality and the mode becoming larger

than kJ
Pd

Pd,ΛCDM
≈ 1−

3ωφ
4ωm

log
(

aJ
aeq

)
(3.34)

where aJ is the scale factor when the mode crosses kJ 32. We expect this suppression factor to man-

ifest as a step-like feature in the matter power spectrum and see that it appears when we compute

Pmm for various cases¶ in the next section.

3.2.4 Computationwith the axionCAMBCode

To compute the transfer functions and background evolution of a cosmology consisting of the stan-

dard ΛCDM species with an additional (single) axion fluid produced via the Misalignment Mech-

anism, we use the modified version of the CAMB Boltzmann solver known as axionCAMB 107. For a

given cosmology and axion mass, the exact field-level equations are used by axionCAMB to track the

background evolution of c2eff, Pφ, ρφ and wφ at all times. Additionally, when a < aosc, the exact

GDM fluid equations of motions are used to track the evolution of δρ, δP, u, and δ. When a > aosc,

the time averaged GDM fluid equations of motion are used instead, and the background equation

of state for the axion is assumed to be exactly wφ = 0. We restrict our analysis to masses which have

aosc < 1, roughly corresponding tomφ > 10−33 eV. We assume that the symmetry breaking scale

for the axion field must be higher than that of the end of inflation, which we set toHinf = 1013.7

GeV. Eq. 3.9 is used to exactly calculate ρφ(a) until the point wheremφ = 3H(a), after which

wφ = 0 and the axion energy density exactly scales like matter ρφ ∝ a−3. The axionCAMB code

¶we also consider cases of early time oscillation. Need to derive results for those cases as well.
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iterates the initial field value φφ(z ≫ 0) until the requested relic density is recovered to precision

of 10−4. Because the axion relic always behaves as CDM today, we subtract the axion relic density

from the CDM relic density when running axionCAMB so that the quantity ωφ + ωCDM is constant

throughout this work.

Using axionCAMB we calculate Pmm for various axion parameter choices, and identify the mass

and abundance dependent suppression to the matter power spectrummatching results previously

recovered in the literature 125, as shown in Fig. 3.5. We can also look for the redshift dependent fea-

tures in the axion suppression to Pmm in Fig. 3.6. First, notice that only those masses which begin

to oscillate after equality introduce a BAO phase shift, apparent in the appearance of oscillations

around BAO scales for those masses. We see that the heaviest mass, which oscillates well before

equality, always introduces a step like suppression to the matter power spectrum due to its Jeans

Length. Also, that suppression grows with the time since equality. For the lightest masses, these

fields will not transition before the onset of matter-radiation equality and so there is an additional

effect set by the scale entering the horizon when the field begins to oscillate, km. Scales larger than

km will be outside the horizon at equality. In this case, part of the CDMwhich would normally be

present during matter dominated perturbation evolution is not. We should expect that anytime os-

cillation occurs at low redshifts where non-linear structure collapse is occurring, there should be a

distinct signature in the structure formation observables, which we consider next.

3.3 Structure Formationwith Ultra-Light Axions

The presence of an ultra-light axion modifies the process of structure formation throughout cosmic

history. These changes can be summarized through three effects. First, the axion modifies the ratios

of standard cosmological species to each other. Shifting these abundances presents a new expansion

historyH(z), changes when periods of equality occur and alters the speed and extent to which over-
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Figure 3.5: The matter power spectrum for three choices of axion abundance normalized to the ΛCDM value. Two
choices of axion massmφ = 10−26 eV (dashed line) andmφ = 10−30 eV (solid line) are shown with the corresponding
Jeans scales indicated by black lines. In the case of the lighter axion mass, the field does not begin oscillating until after
matter‐radiation equality, so a redshift of matter‐radiation equality is slightly shifted in this case, with a corresponding
phase shift introduced to the BAO. This shift in the BAO phase is evidenced by the presence of oscillations around BAO

scales in the relative matter power spectrum for the lighter axion mass, but not the heavier.

densities and perturbations evolve. These effects were reviewed in §3.2 and are calculated using the

axionCAMB code. Second, the presence of an axion modifies the non-linear dynamics of halo collapse

91



Figure 3.6: The matter power spectrum normalized to the ΛCDM value withΩφ/ΩCDM = 0.05 for three choices
of redshift. In each case, the Jeans scale for a given axion mass is indicated by a circle. In the high‐mass limit, the axion
Jeans length becomes cosmologically small and it behaves identically to CDM. At the lowest masses, the Jeans length
approaches the horizon size and acts identically to DE. For the three axion masses above, the field begins to oscillate at

zosc(mφ = 10−26 eV) ≈ 17, 800, zosc(mφ = 10−29 eV) ≈ 321, zosc(mφ = 10−32 eV) ≈ 2.

92



Figure 3.7: The Lagrangian bias normalized to the ΛCDM value for various choices of axion mass. The Jeans scale at
z = 0.65 is indicated for a given axion mass by a circle. A halo mass of 1013M⊙ is assumed. Note the presence of the
percent level ΛCDM step in the bias at scales smaller than keq along with a second, larger step at scales set by the axion
mass. In the case of the lightest masses, an apparent attenuation in the step height occurs due to the late oscillation

time of the field.

at late times. One driver of this change is the difference in the ratio of clustering to non-clustering

matter during collapse. We consider this effect in §3.3.1. Third, an axion will change the critical
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overdensity necessary for a halo to collapse at a given scale. Along with axion-induced changes to

the HaloMass Function (HMF), this manifests a scale-dependent modification to the halo bias. We

explore the axion modifications to the bias in §3.3.3. In all these cases, note that care must be taken

when introducing the axion as the expression of the sound speed at the time of field oscillation will

depart from approximations which match in the far from oscillation regimes. At the time of this

dissertation, the proper method of incorporating this effect is still being considered. As such, re-

sults for axion fields which begin oscillating around the redshift at which we initialize the collapse

procedure should be considered with limited confidence.

3.3.1 Halo Collapse

Tomodel how the presence of an ultra-light axion affects the structure collapse process, our goal is

to parameterize how the halo radius as a function of timeR(t) is modified by an ultra-light axion. A

complete consideration of the spherical collapse process in the presence of a GDMmodel is consid-

ered in 163. Under standard spherical collapse, the evolution of a halo is given by

R̈(t) = − GM
R2(t)

− 4πGR(t)
3

∑
i

(
ρi(t) + 3Pi(t)

)
. (3.35)

Here, the index summation over i includes all species besides CDM and baryons. For the axion, this

means an additional contribution of ρφ + 3wφρφ to Eq. (3.35). At very early times, a ≪ aosc, be-

fore the axion has started to oscillate, the axion will generate a contribution of−2ρφ. At late times,

a ≫ aosc, for the n = 1 axion, this contribution will instead be simply ρφ. If the axion transitions

its equation of state during spherical collapse, it will leave a distinct impression onR(t) that cannot

be exactly duplicated by the standard cosmological fields. Even in the case of generic Light but Mas-

sive Relics (LiMRs), amongst which massive neutrinos are a special case, which are known to free

stream, the early universe equation of state will look like radiation, not dark energy. At all times, the
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exact expression for Eq. (3.35) used in calculations is given by

R̈(t) = − GM
R2(t)

− 4πGR(t)
3

(
− 2ρΛ(t) + 2ργ(t)

+ ρν(t) + 3wν(t)ρν(t) + ρφ(t) + 3wφ(t)ρφ(t)
)
.

(3.36)

Note we include dependence on wν(t) only when we include massive neutrinos in our cosmology.

However, in the main text of this work, we only consider the massless neutrino case, in which case

the neutrino terms in Eq. 3.36 are set to zero. We consider the case of massive neutrinos, including

degeneracies with ultra-light axions, in Appendix §3.5.

At the level of perturbations, the energy densities and pressures are modified to152

ρi(z) = ρ̄i(z)(1+ δi(z)) , (3.37)

Pi(z) = P̄i(z)
(
1+

c2eff,i(z)
wi(z)

δi(z)
)
, (3.38)

where overbars denote the background value.

In this work, the conditions for determining whether a halo collapses are as set in the peak-

background split 91,189 model of halo collapse. In this framework, δi can be expressed in terms of

some long δL wavelength perturbations we introduce into the system

δi ≡ δL
Ti(k, z)
Tc(k, zini)

, (3.39)

where Tc(k, zini) is the CDM+B transfer function. The evolution of this long wavelength mode

throughout collapse is set by ratios of transfer functions between some initial redshift where the

collapse process is chosen to begin, zini and some redshift we chose for collapse zcoll. Additionally,
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a short wavelength perturbation δS is introduced at zini and we are interested in the magnitude of

short wavelength perturbation, at a chosen scale, is necessary to produce collapse by zcoll. We will

call the minimum satisfactory small wavelength perturbation, evaluated at the collapse redshift, the

critical overdensity δcrit. Likewise, δL, evaluated at the collapse redshift, will be δL,coll. To determine

these quantities, the halo collapseR(t) is computed between zini and zcoll in the presence of these

long and short wavelength perturbations using the specially developed code RelAxiFAST. This code

is used to compute the value of the critical overdensity for collapse δcrit(k) at some redshift of col-

lapse zcoll in the presence of long δL and short δS wavelength perturbations at some initial redshift of

collapse zini.

3.3.2 Computationwith the RelAxiFastCode

To track the evolution of CDM+baryon halos in the presence of background overdensities of long

and short wavelengths, we will use a modified version of the RelicFast code. The dynamics of the

halo evolution computed by the RelicFast code and the initial conditions used for halo evolution

are described in detail in 152. The RelAxiFast execution is equivalent up to the following modifica-

tions:

1. The background energy densities are modified by the presence of an ultra-light axion with

time varying equation of state. This modifies all background quantities, including the energy

densities ρi(a), the scale factor a(η), Hubble parameterH(a), and the transfer functions Ti.

The full background cosmology in the presence of an ultralight axion is computed by the

axionCAMB code at RelAxiFast run time and collected for use in the bias calculation. In this

sense, axionCAMB replaces the role of CLASS in the original RelicFAST implementation.

2. The perturbation evolution is also modified in the presence of an ultra-light axion. The ax-

ion fluid pressure Pφ, effective sound speed c2eff and oscillation redshift aosc are also calculated
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by axionCAMB at run time and used by RelAxiFast to compute the evolution of the axion

fluid perturbations.

3. RelAxiFast evaluates Eq. 3.36, a modified version of the spherical collapse equation of mo-

tion to account for the presence of a time varying axion fluid. Qualitative changes which

occur when the axion field begins to oscillate are accounted for.

With these modifications, RelAxiFast quickly (O(10) seconds) calculates the critical overden-

sity for collapse, including calculation of the axion fluid background. If the axion background is

pre-generated, the bias calculation is much faster (< 1 second). Because of the highly non-linear na-

ture of the collapse, the critical overdensity of collapse is calculated via a shooting method. As input,

a collapse redshift is specified by which an initial matter density should form a halo by. Then, for

many long wavelength perturbations kL, RelAxiFast calculates the critical overdensity of collapse

δcrit(kL, δL, zcollapse) by varying an initial short wavelength overdensity δS at an initial redshift of

collapse of zini = 200, evolving the system forward in time, and varying δS until the collapse condi-

tion is satisfied at zcollapse. The solutions for δcrit are then used to compute the halo power spectrum

Phh(k), which (at a single redshift) relates to the matter power spectrum Pmm(k) through the scale

dependent bias function

Phh(k) = b21 (k)Pmm(k) . (3.40)

3.3.3 The Scale DependentHalo Bias

The halo bias provides a functional description of the likelihood of a halo to collapse in a back-

ground matter field. Particularly, it is a measure of the dependence of the halo formation process

on different perturbation modes. The halo bias is known152 to develop a scale dependence in re-

sponse to different modes growing at different rates (e.g. a step due to the transition from radiation

to matter domination in ΛCDM) and we will see similar scale dependencies develop due to late-
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time transitions in the axion equation of state which we can search for in cosmological data sets. In

Fig. 3.8, we see an example of how the matter and halo power spectra, here represented by a suppres-

sion factor relative to an equivalent ΛCDM cosmology, can evolve to different values.

Figure 3.8: Suppression factor normalized at k = 10−4 Mpc−1 for matter (dashed) and halo (solid) power spectra. This
is for halo massesM = 1013M⊙ collapsing at z = 0.65.

Prior work has shown that the introduction of light relics to the cosmology introduces a scale-
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dependence in the halo bias due to their free streaming115,165,75. Scale dependence emerges in the

halo bias as a reflection of different perturbation modes evolving at different rates over cosmic his-

tory62,187. While different in nature, the axion introduces a qualitatively similar suppression to the

matter power spectrum as do free-streaming relics, and it also introduces distinct scales kJ and km

which modify the evolution of perturbation modes, so it is reasonable to consider how they might

manifest a scale dependence in the halo bias as well.

At linear order, the Lagrangian bias is defined by

bL1 (k) =
(∂ log n

∂δcrit

)
|δL,coll=0

( dδcrit
dδL,coll=0(k)

)
, (3.41)

where the first term is the HaloMass Function (HMF) and the second term is calculated by solving

for spherical collapseR(t) assuming the peak-background split model. This work is primarily con-

cerned with calculating the scale dependence of the second term using the combined axionCAMB +

RelAxiFast codes. There are few points to mention concerning the first term, the HMF function.

The halo mass function in the CDM paradigm has been extensively modeled and tested to great

success leading to various calibrations to the Press-Schechter HMF173,189,118,195,77. In contrast,

much fewer work has been done to study the HMF for the FDM case143,124,145,59,186. In particu-

lar,186 demonstrated a substantial reduction in the number of low mass halos at late redshifts in

comparison to standard CDMHMF realizations, while agreeing with the CDMHMF for high

masses. With that said, these studies have only modeled ultra-light axions in the realization where

they compose all of the CDM. As such, they tend to only consider masses at the higher end of the

range we consider hereMφ > 10−22 eV. For these reasons, we avoid using a special HMF derived

from axion simulation. In this work, we use the HMF derived from the MICE simulation67. Alterna-

tively, there is the possibility of modifying an effective field theory prescription for generalized DM

as in163 or124. We do not consider effective descriptions of the ultra-light axion HMF here. In any
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case, Fig. 3.9 demonstrates that while the Eulerian bias is quite sensitive to different halo masses, the

Lagrangian bias, which is the quantity studied throughout this work, is affected relatively little.

Figure 3.9: The Eulerian bias (top panel) and Lagrangian bias (bottom panel) normalized to the ΛCDM value for various
axion mass and halo mass choices. Note that the effect of varying the halo mass is nearly indistinguishable in the

Lagrangian bias.

It is known that the ΛCDM cosmology introduces a step-like enhancement to the Lagrangian
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bias of the form

RΛCDM
L ≡ bL,ΛCDM

1 (k)
bL,ΛCDM
1 (kref)

= 1+ ΔΛCDM tanh (αk/keq)

(3.42)

with ΔΛCDM = 4.8 × 10−3 and α = 4. Similarly, light massive thermal relics (LiMRs) - including

massive neutrinos - with temperature today T(0)
X produce a similar step-like feature in the bias at the

relic’s free streaming scale kfs, given during matter domination by

kfs =
0.08√
1+ z

( mX

0.1 eV

)(T(0)
X

T(0)
ν

)−1

hMpc−1 (3.43)

and with an amplitude set by the relic’s abundance fX

RX
L = 1+

ΔX

2

(
tanh

(
log q
Δq

)
+ 1
)

(3.44)

with ΔX = 0.6fX, q = 5k/kfs and Δq = 1.6152. In a similar manner, we provide the following fit to

the Lagrangian bias response in the presence of ultra-light axions

Rφ
L = 1+ Δφ tanh

(
k
kJ

)
, (3.45)

Δφ ≡ α
(
ωφ
ωd

)
tanh

((
aeq
aosc

)
(1− aosc)

)
. (3.46)

Eq. 3.46 represents the amplitude of the bias step induced by the relic, which is proportional to its

fractional abundance (the first term) and is attenuated if a mode enters the horizon after aeq due

to late oscillation of the axion (the second term). In the large mass limit, Eq. 3.45 should resemble

an unattenuated step at the free streaming scale akin to thermal relic dark matter. So we see that
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the qualitative behavior of ultra-light axions resembles that of thermal relic dark matter up to an

additional redshift dependence in the amplitude.

3.4 Results andDiscussion

The RelAxiFast procedure, combined with the MICEHMF prescription provides a computation

of the linear Lagrangian bias. In Fig. 3.7, we compute the Lagrangian bias for various choices of

axion mass at zcoll = 0.65. We observe the presence of a percent level enhancement to the scale

dependent halo bias which, appearing at a scale set by the axion mass through the axion Jeans scale,

kJ. Additionally, a redshift dependence to the halo bias is manifest as a result of the ultra-light axion

transitioning its equation of state when the axion field begins to oscillate. The effects of the axion

beginning to oscillate at time aosc are two-fold. First, this oscillation can happen before or after mat-

ter radiation equality aeq. Large masses which oscillate before aeq are growth suppressed until the

time of matter domination. However, for lighter masses with aosc > aeq, modes which enter the

horizon before the field begins to oscillate are additionally suppressed. The second consequence is

that this redshift dependent suppression is in addition to the suppression to modes which are below

the Jeans scale of the axion.

In the case of the largest mass axions, the behavior closely resembles that of CDM as they begin

oscillating long before structure formation. In this case, each perturbation mode will evolve identi-

cally up to a modification to modes entering the horizon before or after matter-radiation equality,

which is a purely ΛCDM effect. So we expect no additional step due to the axion Jeans length, for

heavy masses, because we are not sensitive to the very small modes effected by the axion field transi-

tion. In the case of very light masses, the Jeans wavelength approaches the Hubble scale today and

will only affect modes just entering the horizon. Qualitatively, we expect all but the largest modes

to evolve similarly to a cosmology which is ΛCDMwith a slightly enhanced amount of dark energy

102



and reduced amount of CDM. Again, since nearly all modes are affected identically, we expect no

scale dependent effect to emerge in this case either (apart from the ΛCDM step). Another way to

realize this is to consider that the only modes affected by very light masses will have only just entered

the horizon. As such, there has not been much time for the integrated effect onR(z) to become sig-

nificant. This offers an explanation for the gradual suppression in the bias amplitude as you move

towards the lightest masses.

In Fig. 3.10 we consider the redshift dependence of the bias for choices of the ultra-light axion

mass at representative locations in the mass range we consider. Here we see the interactions of the

various scales relevant to the axion’s quantum pressure and how they are modified by the times of

oscillation and mode crossing.

Previous literature has demonstrated that introducing an ultra-light axion field into the λCDM

cosmology will generate a suppression in Pmm due to the macroscopic wavelength of the fundamen-

tal axion field. In §3.2.2 and §3.2.3 we reviewed how this signature manifests in cosmological observ-

ables. While modeling the axion in the linearly perturbed universe is a critical first step towards mea-

suring axion signatures in cosmological data sets, it is also important to model the non-perturbative

effects of an ultra-light axion in the non-linear structure formation process.

In this work, we presented the first characterization of the ultra-light axion’s effect on the lin-

ear halo bias. We demonstrated a unique signature in the bias which partially compensates for the

suppression in the matter power spectrum at the percent level. The unique relationship between

the mass of an ultra-light axion and various factors of suppression to its perturbative modes is not

obviously replicated in other cosmological models of physics beyond the StandardModel, making

the halo bias a rich source of information for constraining such models. It should be emphasized

that the non-linear process of structure formation is distinct from the evolution of the linear cosmo-

logical background; structure formation is sensitive to the presence of an ultra-light axion in ways

different from the background cosmology and therefore provides information in addition to the
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Figure 3.10: Lagrangian bias at various collapse redshifts normalized at k = 10−4 Mpc−1. Redshifts linearly span
from z ≈ 0 to z = 10. Red (blue) colors are redshifts before (after) oscillation occurs for given mass. The color scale
progresses from red (small redshift) to black to blue (high redshifts). Circles indicate kJ. Note that in the lightest mass
cases, the enhancement to the bias at the expected Jean’s scale is suppressed relative to the heavier mass cases. This
is because even those modes which enter the horizon during matter remain suppressed until the axion field begins
oscillating. So only those modes which are larger than the size of the horizon when the field begins oscillating will be

enhanced. That is to say, late time oscillation “cools” the size of the bias steps introduced by the axion field.
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Figure 3.11: The amplitude at k = 10−0.5 Mpc−1 of the Lagrangian bias normalized at kref = 10−4 Mpc−1 for
various axion masses and abundances. Percent level contours are in white. At the time of writing of this dissertation, the
origin of the jump corresponding tomφ = 10−29.25 eV (the mass beginning to oscillate at the initialization redshift of
collapse) is still being explored. Note, for example, that care must be taken with approximate expressions for the sound

speed of axion fields which begin oscillating around the redshift at which we begin analyzing collapse.

cosmological signature. Further, modeling ultra-light axions into the structure collapse evolution is

a more accurate model even if it does not provide enough distinguishing power to better constrain
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the ultra-light axion model parameters. This may manifest, for example, as a shift in the reported

maximum likelihood values reported by analyses with and without ultra-light axions modeled in

the collapse functions. While not pursued in this work, it is interesting to consider the possibility

of modeling the clustering of ultra-light axions in spherical collapse processes in future work. Up-

coming cosmological probes will reach into higher redshifts where perturbations at smaller scales are

still small enough to be linear - the prospect of such probes investigating the scale dependent effects

in the halo bias introduced by the lightest axion masses is exciting . In light of previous work on

massive neutrinos, and light but massive relics, which share some qualitatively similar effects as the

axion but with different fundamental origin, we expect that proper consideration of the axion bias is

critical in any constraint of ultra-light axions using galaxy surveys at the risk of mischaracterizing the

axion mass otherwise.

3.5 ComparingMassive Neutrinos

Thermal relics are known to introduce a suppression to the matter power spectrum and scale de-

pendent effects in the halo bias as a consequence of their free-streaming while relativistic. As an

example, massive neutrinos will have an equation of state that transitions from w = 1/3 to w = 0

whenmν = Tν. While relativistic, neutrinos will free stream and are known to suppress the matter

power spectrum below their corresponding free-streaming scale

kfs =
0.08√
1+ z

( mν,i

100 meV

)
hMpc−1 . (3.47)

We would like to qualitatively understand how degenerate the imprint on the scale dependent bias is

between ultra-light axions and thermal relics such as massive neutrinos. To test this, we compare one

cosmology with massive neutrinos and a second cosmology where the neutrinos are made massless,

but an axion is introduced with the same relic abundance and axion mass chosen such that kJ equals
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Figure 3.12: Lagrangian bias normalized at k = 10−4 Mpc−1 for a cosmology with three, degenerate, massive neutrinos
with Σmν = 60 meV (solid) and Σmν = 1 eV (dashed). We compare (in black) with an identical cosmology where the
neutrinos are made massless and an axion with the same abundance and kJ equal to the neutrino free‐streaming scale.

the free-streaming scale of the neutrinos from the first scenario. As an approximation to using either

the inverted or normal neutrino hierarchy, we consider a three neutrino degenerate hierarchy with
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Figure 3.13: Same as Fig. 3.12 except in both cases we have an axion with a relic abundance of 1% of the CDM. We
show the effect of replacing massless neutrinos with a massive degenerate hierarchy of three neutrino generations with

total mass of 104 eV such that they also have a relic abundance of 1% of the CDM.

mν,i =
1
3Mν =

1
3
∑

mν,i and

ων =
∑

ων,i =
Mν

93.14 eV
. (3.48)
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In Fig. 3.12, we see that these two signals are not fully degenerate. While the normalized (and ab-

solute) bias is overall larger for the cosmology with an equivalent axion at large k, there is a crossing

that occurs at smaller scales for larger neutrino masses. This suggests that scale dependent measure-

ments of the halo bias have the potential to discriminate these two scenarios, and perhaps for more

generic light but massive thermal relics (LiMRs). In both cases, a statistical analysis is necessary to

determine whether near term surveys would be sensitive to these differences. We also want to verify

whether the enhancement to the scale dependent bias introduced individually by massive neutri-

nos and ultra-light axions combines independently of each other. In Fig. 3.13, we show the case of

a cosmology possessing both an ultra-light axion and massive neutrinos, each sector composing 1%

of the CDM, and having kfs = kJ. Note that the presence of both sectors increases the overall bias

enhancement, allowing measurements of the halo bias to jointly constrain these two sectors. While

axions may possess a wide range of kJ, laboratory measurements of neutrino masses will set bound

their corresponding range of kfs, introducing another mechanism by which bias measurements may

differentiate these two species.
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4
Inferring Black Hole Formation Channels

with Eccentricity

4.1 Introduction

The initial detection of binary black hole pair (BBH) mergers by LIGO/VIRGO 4, have since been

complemented by a host of similar detections 8,7 ushering in an era of gravitational wave astronomy
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and suggesting the existence of a sizeable BBH abundance. The development of our understanding

of early Universe physics, the nature of dark matter, and astrophysical black hole production not

only stand to benefit from this data, but are challenged by such findings as the existence of black

holes of anomalous mass 6. For these reasons, it is both timely and compelling to consider how we

might better infer the formation channels of the black holes we observe in our detectors.

Various properties have been proposed as useful probes of the formation mechanisms of black

holes, including black hole spin and mass 156,90,147. This work is concerned with how the orbital

eccentricity of BBHs may offer insight into black hole formation. Prior work has demonstrated how

various static and dynamic processs can lead to populations of black holes with different distribu-

tions in their orbital eccentricity 157,181,177. As a BBH approaches merger, orbital eccentricity will

be quickly attenuated through the radiation of gravitational waves. While this means we should ex-

pect little residual eccentricity at Hz frequencies for stellar mass black holes typical to the detection

bands of experiments like LIGO/VIRGO, it allows for considerable eccentricity at lower frequen-

cies further frommerger. Planned and proposed experiments in this frequency regime (e.g. LIGO,

DECIGO) are well-positioned to measure this eccentricity and potentially lend insight into BBH

formation mechanics.

Prior work has considered the observable consequences of eccentricity in mHz frequency de-

tectors176,179. Amongst such effects are an increase in the perceived number of events in a given

frequency window, and a suppression to the detector Signal-to-Noise Ratio (SNR). While these

works have demonstrated the detection response for any single eccentricity of BBH, the effects of a

BBH population possessing a distribution in eccentricity have not yet been studied. In this work, we

consider the observational consequences of introducing a distribution in eccentricity to a BBH pop-

ulation. We will limit the eccentricity distributions studied to the case single-peaked distributions.

For such cases, there are two qualitative changes which occur with respect to a population of fixed

eccentricity: a widening about some peak value of eccentricity, and a shifting of the location of the
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peak value of eccentricity. The result of each effect is studied.

In Section 4.2, we introduce the dynamics of an eccentric BBH. In Section 4.4, we forecast the

sensitivity of a LISA-like detector to the presence of particular populations of eccentric BBHs. In

Section 4.5, we estimate the extent to which a LISA-like detector can discern populations of BBHs

characterized by their eccentricity distributions. We conclude in Section 4.6 and offer on outlook

for how gravitational wave detectors in other frequency bands might offer complimentary findings.

4.2 Eccentric Binary Dynamics and Evolution

Only for sufficiently large metric perturbations is a higher-order general relativistic description nec-

essary to model the gravitational signature of binaries in the detectors we consider. For mHz range

gravitational wave signals, typical binary systems are far frommerger and such considerations are not

necessary. To this effect, we shall only consider the quadrupole gravitational wave emission of the

signal, modeled to the post-Newtonian order in General Relativity.

We describe a BBH, composed of massesm1 andm2, in terms of its total mass

m ≡ m1 +m2, (4.1)

its reduced mass

μ ≡ m1m2

m
, (4.2)

its chirp mass

mc ≡
μ3/5

m2/5 , (4.3)

the semi-major axis of its orbit, a, and the orbital eccentricity, e. A non-circular binary with e > 0
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will tend to circularize through emission of higher harmonic quadrupole radiation. As the circular

orbit is the lowest energy configuration given some a, eccentric binaries will take a longer amount

of time to merge in comparison to their circular counterparts. To the post-Newtonian level, these

dynamics are described by the Peters’ equations 169

da
dt

= −64
5
G3μm2

c5a3
1+ 73

24 e
2 + 37

96 e
4

(1− e2)7/2
, (4.4)

de
dt

= −304
15

G3μm2

c5a4
e(1+ 121

304 e
2)

(1− e2)5/2
. (4.5)

This set of equations fixes the relationship a(e) in the evolution of a binary system. Ignoring correc-

tions which occur near the merger, they can be used to estimate the time to merger by evolving until

a is of order the black hole radius

tmerge ≈ 5
256

c5
μm2G3

×
(
(1+e)2γ/3G1/3m1/3

(1−e2)(fpπ)2/3

)4
(1− e2)7/2 .

(4.6)

Observing that the e dependent term, and hence the lifetime, in Eq. 4.6 grows monotonically with e

and, as noted earlier. Further, we can describe the peak frequency of quadrupole emission by 178,176

fp ≈
√
Gm(1+ e)γ

π(a(1− e2))3/2]
, (4.7)

with γ = 1.1954, which departs from the e = 0 relationship fp = 2forb as eccentricity grows. While

emission also occurs at higher harmonics of this frequency, in this work we only consider the signal

of a single BBH to be comprised of the emission at fp - a more sophisticated analysis might consider

the expected enhancement due to simultaneous observation of the emission at multiple frequen-

cies. Combining Eq. 4.4 and Eq. 4.5 with Eq. 4.7, we see that specifying the mass, frequency, and

113



10-3 10-2 10-1 100
10-8

10-6

10-4

10-2

fp / Hz

e

10
0y
r

10
yr

1y
r

τ
=
1m
on
th

10 -2

10 -3

10 -4

10 -5

10 -6

10 -7

e
*=10 -8

L
IS
A
W
in
do
w

T
ia
n
Q
in

D
E
C
IG
O

L
IG
O

Galactic Center
In-Cluster
Ejected
Isolated

Figure 4.1: Evolution of black hole binary eccentricity as a function of peak quadrupole emission frequency. The evo‐
lution for several choices of e∗ ≡ e(fp = 10 Hz) is shown ‐ for each, the lower limit of fp is indicated by a circle.
Points to the right of the shown magenta lines will merge within the indicated time period. Along the right edge, drawn

at fp = 10 Hz, are the e∗ distributions corresponding to four different formation channels.

eccentricity of a binary at a fixed point in time determines the evolution of all physical properties

at all times. Alternatively, we can use these same relations to describe the frequency evolution (i.e.

chirping) of the BBHwith time

dt
dfp

=
5c5

96π8/3
(Gmc)

−5/3f−11/3
p F(e), (4.8)

F(e) ≡ (1+e)8γ/3−1/2

(1−e)3/2
(
(1+ e)(1+ 7

8 e
2)

− γ
288 e(304+ 121e2)

)−1
. (4.9)

Noting thatF(e) → 1 as e → 0, we see that theF(e) acts as a suppression to the chirping (dfp/dt)

of a circular BBH pair.

In Fig. 4.1 we demonstrate the evolution of e(fp) for various choices of e∗ ≡ e(fp = 10 Hz).

Note that for any choice of e∗ there will exist a lower bound on fp corresponding to e = 1. As an

114



example, it is worth noting that sufficiently eccentric BBHs with e∗ ≳ 10−3 will never radiate in the

LISA window but will still merge in the LIGOwindow; in such a situation, the difference on BBH

counts in LISA versus LIGO could be used to infer the presence of a population of highly eccentric

binaries. Likewise, while all BBHs with e∗ ≲ 10−3 will produce a signal in LISA and eventually

enter the LIGO band, only those which initially appear in the LISA band with sufficiently high

frequency will make this transition in a period of time reasonable for a follow up observation in

LIGO. The magenta bands in Fig. 4.1 indicate this lower bound on fp for various choices of follow-

up time.

In this work, we are not concerned with the evolution of BBHs at a single e∗ but rather for a pop-

ulation distributed at e∗. In Fig. 4.1, the upper limit of fp is drawn at 10 Hz, the same frequency at

which e∗ is defined. So we can gain a qualitative understanding of how various e∗ populations evolve

through a potential detector landscape by drawing the e∗ distribution at 10 Hz and tracing lines of

constant e∗ to the left of the distribution. We show predictions for the e∗ distributions generated via

different astrophysical mechanisms (Isolated, Ejected, In-Cluster, Galactic Center) 157,181,177. As an

example, we consider the evolution of an Isolated distributions, such as might describe a primordial

black hole population existing in a void of large scale structure. In this case, we see that the majority

of the population will possess an e∗ ≈ 10−6; will appear in both LISA and LIGO; and will merge

within 10 years for binaries appearing in LISA with fp ≳ 0.02 Hz.

4.3 Observing Eccentric Binaries

Wewish to consider the role that eccentricity plays in modifying the signal entering a gravitational

wave detector, as well as in the noise response of the detector to such a signal. We begin by noting

there are a number of population characteristics which we assume are independent of the e∗ distri-

bution. In the case of a static Universe, we assume that the distribution in spatial position and mass
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Figure 4.2: The effect on number density and signal‐to‐noise ratio in LISA as a function of binary eccentricity at fixed
frequency. Shown in blue is the enhancement to the observed number density of binaries in LISA relative to circular
binaries. Shown in yellow (dashed) is the suppression to the LISA (DECIGO) SNR relative to circular binaries. The
nearly identical effect on SNR in LISA/DECIGO indicates that suppression is driven by the change in signal rather than

difference in the detector noise strains.

do not correlate with the eccentricity distribution of the population. To this end, we utilize the mass

distribution inferred by LIGO to describe BBH populations of any eccentricity 3

p(m1) ∝ m−2.3
1 . (4.10)
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Likewise, we assume that binaries are uniformly distributed spatially

p(r) ∝ 4πr2 (4.11)

and that the local merger rate is a constant

R =
dn
dt

= constant (4.12)

We note, however, that the same mechanisms which generate the eccentricity distributions of in-

terest may also modify these distributions. For example, we do not expect populations produced

by astrophysical processes near the galactic center to populate many BBH pairs at extragalactic dis-

tances. Such considerations would certainly be necessary to draw conclusions about the underlying

formation channels, but as a stepping stone we only consider here the modifications to the signal

and noise that eccentricity introduces.

The first place that eccentricity enters the signal is in the fp distribution of binaries. As we are

always concerned with the number of binaries observed over fixed time intervals, the likelihood of a

BBH possessing a particular fp is given by Eq. 4.8

p(fp) ∝
dt
dfp

. (4.13)

The only remaining population parameter is e∗, whose distribution p(e∗)will be provided by one of

the underlying formation mechanisms shown in Fig. 4.1.

Combining these distributions provides a measure of the expected number of events in a given

time interval

Nevents =

∫
Rp(mc)p(r)p(fp, e(fp))p(e∗)dmcdrdfpde∗ (4.14)

So we see that eccentricity affects our signal - the event count - in three ways: (1) dt/dfp sees an en-

117



hancement due to eccentricity given by Eq. 4.9, (2) the fp(t) evolution is set by the value of e∗, and

(3) the likelihood of a particular e∗ is weighted by p(e∗).

We adopt a simplified model for the SNR in the presence of chirping binaries

ϱ(fp, e)2 = 4
∫

dt
h2c (fp(t), e = 0)

SN(fp(t))
(1− e(t))3/2 (4.15)

shown to be a good approximation 179 to the true SNR

ϱ2 = 4
∑
n

∫
dt
h2n(fn(t))
SN(fn(t))

(4.16)

which involves a summation over the n harmonic components of the gravitational wave emission.

Here, SN(f) is the noise strain and h2c = Σh2n is the signal strain averaged over an orbital period.

Noting that ϱ ∝ (1 − e)3/4 and thatN ∝ r3, we see that there should be an suppression to the

expected number of counts with respect to the circular case given by (1 − e)9/4. Combining this

suppresion term with the enhancement given byF(e), in Fig. 4.2 we demonstrate the overall effect

to the event count with respect to circular BBHs that results from introducing eccentricity to non-

chirping BBHs. We also show the suppression to the SNR for the cases of both LISA and DECIGO

to demonstrate that this effect is driven by the fp(e) dynamics rather than the specific shape of the

detector noise curve.

The competition of these two effects will depend on which eccentricities we assume our detectors

are able to observe, which is driven by the availability of gravitational wave templates necessary to

detect eccentric BBH gravitational waves. This will introduce a cut into our event count over the

parameter space wherever the eccentricity is larger than is observationally possible

Θecut(e) = Θ(ecut − e) . (4.17)
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Figure 4.3: Number of observed counts in LISA for fixed, Isolated, Ejected, In‐Cluster, and Galactic Center e∗ distribu‐
tions. Dashed line indicates expected counts for a perfectly circular distribution. While a fixed e∗ distribution would
exhibit a lower bound in fp, distributions in e∗ distribute counts across all frequency bins for all choices of ecut. Magenta
lines indicate events which will merge within 10 years and have ecut = 0.9 ‐ suggesting events which can have an

observable Hz range terrestrial observation follow‐up.

Likewise, the calculated SNRwill determine whether a signal is observationally viable. We impose

SNR> 8 over 10 years of LISA observation as the criteria by which to consider events observable

ΘSNR(r, fp,mc, e∗) = Θ(ϱ(r, fp,mc, e∗)− 8) . (4.18)

Combining these terms, the observable number count is given by

Nevents =
∫
Rp(mc)p(r)p(fp, e(fp))p(e∗)

×ΘSNRΘecutdmcdrdfpde∗ .
(4.19)

In Fig. 4.3 we show the expected number of observable events in LISA over a 10 year observation

period for five choices of the BBH eccentricity distribution. In each case, we also highlight the sub-

set of events which will merge within 10 years as an example of candidates that could potentially be

followed-up with a LIGO-like detection. For reference, we compare with what the expected number

of counts would be assuming a BBH population of only circular binaries, demarked by the black

dashed line. In the leftmost panel, we show the result for a fixed - and relatively small - eccentricity
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to indicate the close matching the circular case. Progressing to the right, we consider the Isolated

distribution, which is peaked at e∗ ≈ 10−6 but extends to both higher and lower eccentricities. As

indicated by the four different colored histograms, we begin to lose sensitivity to events as we im-

pose progressively lower bounds on ecut, to the point that no events would be observed in the case

of a Galactic Center distribution without eccentricity templates of ecut ≧ 0.01. Interestingly, in

this situation, a mismatch between the LIGOmerger event rate and LISAmerger event rate would

indicate the existence of an eccentric sub-population, despite having no direct observations in the

LISA detector.

Another important consequence of transitioning from fixed e∗ to a distribution is that there is no

longer a single lower bound on fp as each choice of e∗ will produce a different bound. Sensitivity to

the shape of the e∗ distribution is contained in how the counts per frequency bin shift as we move

ecut, most notably evidenced by the shifting the Galactic Center distribution counts. In general, we

see that the overall counts give an indication of where the peak of the distribution sits, the difference

between successive ecuts indicating how far the distribution extends to higher eccentricities. While

the difference between successive ecut grows larger for more eccentric distributions, the overall num-

ber of counts is lower. So we see that there is a tradeoff between the signal uniqueness and statistical

significance of the signal which will be expanded on in the next section.

4.4 Eccentricity Breaking of Observational Degeneracy

Considering the Isolated and Ejected panels of Fig. 4.3, we notice that there is a very similar number

of events at each frequency bin. In this case, we expect there to be a significant amount of degener-

acy between these two models in the dataset. Glancing at the shape of these distributions in Fig. 4.1,

this should not be surprising due to the similarity in distribution shape. It is useful to ask how such

degeneracies in the LISA dataset can be broken through the use of choices in ecut. To answer this
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question, we consider a model for the distribution of e∗ given by

f(e∗) = Aifi(e∗) + Ajfj(e∗), (4.20)

such that

Ai + Aj = 1 . (4.21)

To quantify the observational degeneracy between models in our dataset, we proceed to con-

struct a Fisher information matrix for the two parameter model Ai, Aj where i, j correspond to the

Isolated, Ejected, In-Cluster, and Galactic Center distributions 94. The elements of the Fisher ma-

trix are defined by

Fij ≡
∑
fp,k

√
Nk

∂Nk
∂Ai

∂Nk
∂Aj

, (4.22)

where the index k runs across each of the fp bins. We derive three separate Fij, one for each of ecut =

1.0, 0.4, 0.1. For each of these, we consider three different fiducial choices of the ratio

R ≡ Ai

Aj
. (4.23)

So that in total, there are nine versions Fij. As a base case, we will consider how the Isolated distri-

bution is degenerate with the other, more eccentric distributions. We show the resulting covariance

contours between AIsolated and Aj in Fig. 4.4.

Considering each ecut as an independent dataset, we generally expect that ecut = 1, containing the

must counts, would always offer the greatest constraining power. Indeed, when compared to distri-

butions of substantially higher eccentricity than the Isolated channel this is the case for choices of

R. However, the constraint between the relatively similar Ejected and Isolated distributions exhibit

the opposite behavior in the case whereR takes on larger values.
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Figure 4.4: Forecasted 3σ constraint contours on coefficients of binary e∗ distributions for a LISA‐like experiment. Ai
represents the abundance of e∗ distribution i. In all cases, only two e∗ distributions i, j are considered at a time such
that Ai + Aj = 1. Three different abundance ratiosR ≡ Ai/Aj are considered, as well as three choices of maximum
observable eccentricity ecut = 0.1 (black), 0.4 (dark red), and 1.0 (light red). All panels span±0.1 from the center
point. Generally, ellipse size indicates constraining power, while ellipse angle indicates parameter degeneracy (e.g. the

Isolated and Ejected distributions are highly degenerate).
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Figure 4.5: The χ2 measured by LISA assuming a true model corresponding to the Isolated e∗ distribution, but measur‐
ing the Ejected, In‐Cluster, Galaxy Center e∗ distributions, and assuming constraining power is systematically limited
over 12 independent frequency bins. Shown are four choices of ecut = 0.9 (dark red), 0.4 (light red), 0.1 (light
blue), 0.01 (dark blue). The black dashed line indicates the χ2 value corresponding to a p‐value of 0.05. Plotted for

R ∈ [0.125, 5.0].

Of most interest here are cases where we see that different choices of ecut provide powerful break-

ing of the dataset degeneracy. In the case of the Isolated and Ejected channels, the similarity of these

two distributions ensures that they are highly degenerate - evidenced by the≈ −45◦ angle of every

contour. This suggests, in the such cases, there is little information gained by pursuing higher ecut in

the data. This is sharply contrasted by the cases of the In-Cluster and Galactic Center. Here, we see

substantial amounts of orthogonality in the contours - suggesting a combined constraint using data

from both ecut would provide a dramatic improvement over a single cut dataset.

4.5 Distinguishing Populations with LISA

We now wish to consider how the dataset sensitivity to the population coefficients explored in Sec.

4.4 translates to the significance to which an experiment like LISAmight be able to distinguish the

proportion of a BBH population deriving from different eccentricity distributions. As in Sec. 4.4,

we consider the Isolated distribution as a base case. We then ask the question - howmuch of the

BBH population needs to be derived from a different eccentricity distribution before LISA can

rule out the presence of an entirely Isolated distribution with statistical significance. We will again
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quantify the portion of the population derived from a non-Isolated distribution by the parameter

R. We then construct a simple chi-square statistic for the dataset:

χ2 =
∑
fp,k

(NIsolated −Nobserved)
2

NIsolated .
(4.24)

For each choice of ecut, we construct χ2 as a function ofR as shown in Fig. 4.5. We then calculate

the χ2 corresponding to a p-value of 0.05 for this data, indicated by the dashed line, with value of

χ2 above this threshold denoting regimes where LISA can significantly claim the presence of an

eccentricity distribution that is not just Isolated. We see that in all cases, the most efficient metric

for significantly distinguishing different populations remains the lowest ecut = 0.01 but thatO(1)

improvements can be had by considering joint ecut constraints.

4.6 Conclusions

We have shown how different choices of eccentricity distribution for a population of BBHs can

produce substantially different numbers of counts per frequency bin in a gravitational wave detector

like LISA. While the ability to observe mergers of higher max eccentricity is capable of strongly

breaking dataset degeneracies between models of mixed distributions, the distinguishing power of

detectors like LISA is still driven by data from of low eccentricity events.
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5
Conclusion

This dissertation details several methods by which to infer the properties of dark sector physics ex-

clusively through the gravitational interaction of those sectors with the rest of the StandardModel.

We have shown that phenomenological models of DarkMatter which comprise a massive particle

in contact with the SM at early times manifests a distinct energy scale in the cosmology known as

the free streaming scale. Such Light but Massive Relic particles not only introduce a suppression to

the linear matter perturbations below their free streaming scale, but additionally introduce a scale
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dependent feature in the non-linear growth of structure due to spherical gravitational collapse. To

take advantage of the plethora of upcoming galaxy survey datasets to study DM, it is requisite that

models describe the influence of DM on the relationship between halo overdensities and the linear

cosmological perturbations - a relation known as the galaxy bias. We have shown that LiMRDM

introduces a step like enhancement to the scale dependent halo bias which partially compensates for

the suppression introduced to the linear matter power spectrum. Due to the non-linearities of struc-

ture collapse, this Growth-Induced Scale Dependent Bias feature is non-degenerate with the DM

effect on the matter power spectrum. Therefore, we both learn additional information about DM

by measuring the halo bias as well as infer more accurate constraints on DM properties. We demon-

strate through forecasting how well the SDSS-BOSS, DESI, and Euclid galaxy surveys combined

with the Planck 2018 and CMB-S4 CMB surveys will be able to constrain the mass, temperature

and effective internal degrees of freedom (which can be recast as a constraint on the relic abundance)

of LiMRs. Over the region which is physically allowable, we find that most masses above≈1 eV

are excluded at the 3σ significance. As a specific example, we then applied the LiMR analysis to the

case of massive neutrinos. While we found that accounting for the GISDB for massive neutrinos

induced a 1σ shift in the inferred maximum likelihood of the neutrino mass, this shift vanishes if

we marginalize over the redshift dependence of the halo bias, which must be done if we do not have

good information constraining this dependence. The addition of the GISDB to the case of massive

neutrinos provided negligible enhancement to how well constrained the neutrino mass is about its

maximum likelihood value. We then considered the case of an alternative DM phenomenology com-

prised of an ultralight axion field. We demonstrated that, like in the case of a LiMR, and ULA in-

troduces an energy scale into the cosmology which is determined by its mass. In this case, the ULA

sets when the field begins to oscillate about the minimum of its potential. Unlike the LiMR case,

the ULA introduces a second scale which is set by is macroscopic wavelength called the Jeans Scale.

These two effects combine to produce a distinct feature of ULA physics in both the linear cosmol-
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ogy as well as the non-linear halo bias of the same scale as the degree to which the comprise the relic

DM fraction of the Universe today≈ 1% level.

It is known that different dark sector theories affect the evolution and characteristics of astro-

physical objects today. It is then reasonable to assume that astrophysical processes dependent on

galaxy dynamics may be directly or indirectly affected by dark sector physics. One such process is the

production of black holes. It is then relevant to ask to what degree we may be able to distinguish the

formation channel of black holes. It is even more relevant due to the possibility of the primordial

black hole production that could account for a portion of the relic dark matter. In this dissertation,

we considered how different populations of black holes might be distinguished from each other us-

ing the persistent orbital eccentricity of Binary Black Hole pairs that form within the population.

We demonstrated that a mHz frequency detector like LISA can strongly break degeneracies between

population statistics with access toO(0.1) level eccentricity templates for gravitational waveforms.

Though we show that the constraining power of such observations is still driven by higher sensi-

tivity to low eccentricity events, combining observations across gravitational wave experiments of

different frequency regimes enables inference of population eccentricity without having access to

high eccentricity templates. In all these inquiries, we find that competitive bounds on a wide array

of DM phenomenologies can be set by gravitational interactions alone and that such gravitational

constraints may be sufficient to test BSM physics without analyzing the consequences of other inter-

action pathways.
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