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ABSTRACT

After nearly a century of inquiry, the particle nature of dark matter remains unknown. As a wide
array of Dark Matter (DM) phenomenologies map onto similar variations in cosmological observ-
ables, cosmology places far-reaching constraints on the theoretical parameter space of Dark Matter
models beyond the Standard Model (SM) of particle physics. This dissertation presents the results
of several inquiries that demonstrate the use of cosmology to measure the parameter space for differ-
ent classes of DM models assuming only gravitational interactions. This dissertation first considers
an extension of ACDM involving additional particle degrees of freedom of non-zero mass in early
thermal contact with the SM, which are called Light but Massive Relics (LiMRs). LiMRs introduce
a characteristic scale into the cosmology through their free-streaming while relativistic. Effects on
the distribution of galaxies and the Cosmic Microwave Background (CMB) are explored and used
to impose constraints on the mass, abundance, and degrees of freedom of LiMRs. Implications
for measuring the mass and hierarchy of massive neutrinos, a special case of LiMR, are considered.
Representing another class of DM models, ultralight axion-like particles (ALPs), like LiIMRs, in-
troduce characteristic scales into the cosmology: one set by the oscillation time of the field; another
characterized by the macroscopic wavelength of the field, the Jeans Scale. The nonlinear connec-
tion between matter perturbations and halo perturbations, the halo bias, is modelled in the presence
LiMRs, neutrinos, and ultralight ALPs. Gravitational waves (GWs), a burgeoning source of cosmo-
logical information, motivate the concluding study of this dissertation which considers the degree to
which mHz-Hz frequency GW detectors can infer the formation channels of black holes - a process

which may be influenced by the introduction of new physics to the SM and ACDM.
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Introduction

For beyond a century, the thread of Dark Matter (DM) has been joined deeper into the weave of
knowledge comprising our understanding of physics, astrophysics, and cosmology; yet, its mecha-
nisms remain elusive to the best observational efforts and theoretical guidance of these disciplines.
We have yet to confirm the non-gravitational interactions, if any, that DM has with the Standard
Model of Particle Physics (SM). More generally, the particle nature of DM remains unknown. As

with any difficult problem, it is best to seek insight from a variety of sources and approaches. And so



we have: the pursuit of DM extends across dozens of orders of magnitude of energy; collider physics;
planetary, solar, galactic, and extragalactic astronomy; the astrophysics of black holes, supernovae,
and clusters; and the entire cosmological history of the Universe. Indeed, the enthrall of DM is evi-
denced by the scale of its presence in the modern resource prioritization of these communities '555.
A natural response to the persistence of the DM problem is to allow our theoretical postulations of
its properties to become increasingly imaginative. Caution, however, must be taken. Unbounded
theoretical creativity without diligent reduction to observational consequence is a recipe for failing
to appreciate where we have already labored experimentally to exclude implausible physics. Igno-
rance puts at risk the time, financial, and human resources of the scientific community - potentially
slowing our progress for decades more to come. Worse yet, it threatens a misdirection of our physi-
cal intuition which has sweeping consequences across all domains of physics. It is therefore impera-
tive that the collage of increasingly kaleidoscopic DM theories be continuously corralled by incisive
mappings onto the interconnected landscape of experimental constraint. The use of cosmological
datasets to constrain, and expand knowledge of, broad swathes of phenomenological descriptions of
the particle nature of DM shall be the overarching theme of this dissertation.

Cosmological data provide a powerful tool in the search for physics beyond the Standard Model.
An interesting target are light relics, new degrees of freedom which decoupled from the SM while
relativistic. Nearly massless relics contribute to the radiation energy budget, and are commonly
parametrized as variations in the effective number N of neutrino species. Additionally, relics with
masses greater than 10™# eV become non-relativistic before today, and thus behave as matter in-
stead of radiation. This leaves an imprint in the clustering of the large-scale structure of the universe,
as light relics have important streaming motions, mirroring the case of massive neutrinos. In one
line of inquiry, we forecast how well current and upcoming cosmological surveys can probe light
massive relics (LiMRs). We consider minimal extensions to the SM by both fermionic and bosonic

relic degrees of freedom. The broad theoretical coverage attained by this study is a result of assum-



ing only gravitational interactions between LiMRs and the rest of the SM - any interacting theory
must at least satisfy the bounds set here. By combining current and upcoming cosmic-microwave-
background and large-scale-structure surveys, we forecast the significance at which each LIMR, with
different masses and temperatures, can be detected. We find that a very large coverage of parameter
space will be attainable by upcoming experiments, opening the possibility of exploring uncharted
territory for new physics beyond the SM.

The massive neutrino is a particle with studied and observed SM interactions which conforms to
the definition of a LIMR. As in the case of the generic LIMR, a promising avenue to measure the
total, and potentially individual, mass of neutrinos consists of leveraging cosmological datasets, such
as the cosmic microwave background and surveys of the large-scale structure of the universe. In or-
der to obtain unbiased estimates of the neutrino mass, however, many eftects ought to be included.
Here we forecast, via a Markov Chain Monte Carlo likelihood analysis, whether measurements by
two galaxy surveys: DESI and Euclid, when added to the CMB-S4 experiment, are sensitive to two
effects that can alter neutrino-mass measurements. The first is the slight difference in the suppres-
sion of matter fluctuations that each neutrino-mass hierarchy generates, at fixed total mass. The sec-
ond is the growth-induced scale-dependent bias (GISDB) of haloes produced by massive neutrinos.
We find that near-future surveys can distinguish hierarchies with the same total mass only at the 1
level; thus, while these are poised to deliver a measurement of the sum of neutrino masses, they can-
not significantly discern the mass of each individual neutrino in the foreseeable future. We further
find that neglecting the GISDB induces up to a 15 overestimation of the total neutrino mass, and we
show how to absorb this effect via a redshift-dependent parametrization of the scale-independent
bias.

Where our ability to cosmologically constrain LiMRs is driven by observational sensitivity to the
energy scale introduced by their free streaming, we can generalize our study further by considering

other classes of models which introduce characteristic energy scales into the cosmology. Ultra-light



axions with masses 1073% < my/eV < 10722 are allowed to constitute only a small fraction of
the observed dark matter abundance. Nevertheless, they may yet produce a visible impact on the
cosmology due to their macroscopic quantum scale. Next generation galaxy survey data are poised
to challenge this possibility, but in order to do so, all aspects of structure formation in this quasi-
linear regime must be accounted for consistently and precisely. This includes modeling not only the
effect of these axions on the background cosmology and matter fluctuations, but also on the halo
bias that governs the tracers we observe, namely galaxies. In this work we discuss the effect of ultra-
light axions on cosmological observables, and present a prescription for computing the growth-
induced scale-dependent bias in their presence. We find that these axions introduce a step in the halo
bias at their characteristic Jeans scale, representing — even at percent-level abundances — a sizable
increase in the total scale-dependence of the bias, compared to the ACDM fiducial. We implement
this prescription as a function of axion mass and relic abundance, in a public package which we dub
RelAxiFast, an extension of the extant RelicFast.

The first observation of the gravitational wave signature of a binary black hole (BBH) merger
has provided another avenue of inquiry into unknown physics. Since this observation, there have
been further detections of BBH mergers of anomalous mass - casting doubt as to the astrophysical
formation channels of black holes. One candidate for both DM and black hole formation is a theory
for primordial black holes (PBH) formed early in the Universe. We consider how these different
formation astrophysical and cosmological formation channels can lead to differences in the residual
orbital eccentricity of BBH systems in the regimes of gravitation wave experiments. Contrasted with
the study of individual black holes and binary systems, we consider how resolving characteristics of
black hole populations offers insight into the mechanisms which may have formed the black holes in
our Universe. This work considers how one population characteristic, the distribution in the orbital
eccentricity of black hole binary pairs, might be studied within the experimental landscape of mHz-

Hz frequency gravitational detectors. We expand on prior works which considered these effects at



fixed eccentricity. As an example, we present how the eccentricity distributions corresponding to
different formation channels produce dramatic shifts in the number of observed binaries in a mHz
range detector like LISA. We also demonstrate how adding the capability to observe highly eccentric
orbits offers a stark improvement in formation channel distinguishability due to the breaking of
dataset degeneracies, offering motivation for the development of eccentric gravitational waveform
templates.

In all the studies presented in this dissertation, we seek to infer limits on new physics through
only the gravitational effects of those processes. In this sense, these approaches cover an extremely
broad set of phenomenological parameter space, as any model with additional Standard Model in-
teractions will need to at least satisfy the constraints derived here. Our ability to use gravitational in-
teractions to derive competitive bounds with other observational channels is a recent phenomenon
that is only enabled by the observational and sensitivity scales achieved by modern detectors. The
promise of a fleet of upcoming galaxy, gravitational wave, and electromagnetic surveys in the ap-
proaching decade is a compelling reason to further refine the methods presented in this dissertation
so that we can quickly narrow the field of DM candidates using information from the only channel

through which DM is known to interact - gravity.



Finding eV-scale Light Relics with

Cosmological Observables

1.1 INTRODUCTION

The nature of the dark sector is one of the major puzzles of fundamental physics, integral to the

understanding of our universe across almost every epoch. Searches for the composition of the dark



sector and, more broadly, of physics beyond the Standard Model (SM), take place at different en-
ergy scales, and use data ranging from particle colliders to astrophysical and cosmological surveys.
The interactions of the dark sector with the SM are central to many of these searches. Yet, the small
energies and interaction cross-sections expected in many models often result in low experimental
sensitivity to new physics. In contrast, by exploring the entropic effects of new dark-sector physics,
cosmological data is in an exciting position to make robust discoveries.

Numerous extensions of the SM happen to posit the existence of light, feebly interacting parti-

167,201,192,32 61,97,86

cles, including axions and axion-like particles , dark photons 13:46:3084 and light fermions
One broad category are /ight relics, stable particles which were in thermal contact with the SM in the
early universe and decoupled while relativistic. Consequently, their cosmic abundance was frozen
and survived until 2 = 0. The quintessential example within the SM are neutrinos, but they need
not be the only light relics to populate our universe. Different proposed new light relics include

a fourth, sterile neutrino, whose existence is suggested by different anomalous experimental re-
sults?>"4#%19 (see Ref.”? for a recent review); as well as the gravitino, the supersymmetric partner

of the graviton*.

New relics that are sufficiently light will manifest as dark radiation, and can be searched for
through their effect on the cosmic microwave background (CMB) anisotropies*”' **4°, typically
parametrized by the effective number of neutrino species, Negr (which is 3.045 in the standard cos-
mological model *37>2*). Massive relics can, on the other hand, become non-relativistic at some
point in cosmic history, and behave as other components of matter in the Universe thereafter. How-
ever, their decoupling while relativistic gives these relics significant streaming motion, which sets a
scale below which they cannot cluster, thus altering the large-scale structure (LSS) of our universe.
This has allowed cosmology to set the leading constraints on neutrino mass, at 272, <0.26 eV (95%

C.L.), assuming standard cosmology 7. In this work we will search for new Light—but Massive—

Relics (LiMRs) using cosmological observables.



Cosmological data from near-future surveys are expected to provide exquisite measurements
of the distribution of matter in our universe. LIMRs that have become non-relativistic before
z = 0 (with masses my = 1072 eV), will impact that distribution by behaving as hot dark mat-
ter 330448542 Tn addition to the relic mass, two relevant parameters determine the relic abundance.
The first is their number gy of degrees of freedom. The second is their temperature Tg?) today. Due
to comoving-entropy conservation, any relic that was in equilibrium with the SM in the early uni-
verse ought to have T)(?) > 0.91 K. This minimum temperature gives rise to different values of
AN for each type of relic °#: 0.027 for scalars (¢x = 1), 0.047 for Weyl fermions (¢x = 2), 0.054
for massless gauge bosons (gx = 2), and 0.095 for Dirac fermions (gy = 4). In addition, relics with
masses in the eV-scale will become non-relativistic before 2 = 0, leaving an imprint in the form of
suppressed matter fluctuations. Here we forecast how well eV-scale LIMRs can be observed by joint
CMB and LSS surveys.

This paper is structured as follows. In Section 1.2 we briefly review light relics and their effects
on cosmological observables. In Section 1.3 we detail the datasets we consider, which we employ in
Section 1.4 to forecast constraints on LiMRs within the mass range 1072 eV-10' eV. We conclude in

Section 1.5.

1.2 LIGHT RELICS AND THEIR EFFECT ON COSMOLOGICAL OBSERVABLES

We begin with an overview of the physics of light relics and their effects on cosmological observables.
A LiMR X is characterized by its present-day temperature 7?) and mass 72y, as well as its statistics,
bosonic or fermionic, and its number gx of degrees of freedom. The present-day temperature of a
light relic (massive or not) is set by the time at which it decouples from the SM thermal bath, which

is found as
g(o) 1/3
Tﬁé)) - (Zic) ﬂyo)’ (r.1)
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where g, ¢~ denotes the entropy degrees of freedom in the universe today/when the relic decou-
pled, and Tg,o) = 2.725 Kiis the present-day temperature of the photon bath. In this way, the con-
servation of comoving entropy provides a minimal light relic temperature assuming the SM with no

additional degrees of freedom (other than the relic),

1/3
91
70 > (32 70 ~ 0.91 K
x =\ 10675 y ’ (12)
where just after the electroweak phase transition we have gifec) = 106.75 encompasses all the known

degrees of freedom of the Standard Model, and the present-day value of g&?) = 3.91 includes pho-
tons and decoupled, cooler neutrinos. As an example, the SM (active) neutrinos have 7{,0) =195
K, as they decoupled just prior to electron-positron annihilation where g&j‘“’v) = 10.75. Note that
the baryonic and cold-dark matter (CDM) contributions are negligible, given their exponentially
suppressed abundance.

In contrast, light relics decoupled while relativistic, and so are cosmologically abundant, with
number densities comparable to that of photons or neutrinos. For instance, a Weyl fermion decou-
pling as early as possible (with minimal present-day temperature 0.91 K) will have a number density
today of 11 cm ™2, and a vector boson that decouples just before e*e™ annihilation (with a temper-
ature today of 1.95 K, as neutrinos) will have a present-day number density of 150 cm™>. Thus, the
contribution of light relics to the cosmic energy budget can be significant.

It is often enlightening to describe the cosmological effects of other relics in relation to those of
neutrinos, given their common origin as light relics. As advanced in the introduction, relics in the
early universe (while T’y >> my) behave as radiation, and their cosmological impact while relativistic

can be encapsulated in the number of effective neutrinos, Nefr, defined with respect to their contri-



bution to the radiation energy density,
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where 7}/, (z) is the temperature of photons and neutrinos at redshift z, g;/grare the degrees of
freedom, and 7/ Ty are the temperatures of each boson/fermion, respectively.

Introducing an entropically significant light relic will generate a contribution to Eq. (1.3) of
(7% /30)gx T% for bosonic species, or 7/8 times that for fermionic species. We can then describe

any departure from the predicted value of N4PM = 3.04S in the standard ACDM model by the

7O\
AN = ¢ (i) (&) ; (1.4)

in terms of the neutrino parameters g, = 2 and 7{,0) = 1.95 K. The factor ¢; = 8/7 accounts for

quantity AN, given by

the difference between the Bose-Einstein (y = 1) and Fermi-Dirac (y = 0) distributions.

This discussion is encapsulated in Fig. 1.1, showing the relation between the present-day relic
temperature to the time of relic decoupling, and its corresponding contribution to Neg. Note
that the present-day temperature of a relic for fixed decoupling epoch does not depend on particle
species, but its contribution to radiation energy does.

Current limits on AN arise primarily from observables at two epochs. The first is recombina-
tion. Measurements of radiation at recombination are sensitive to relics lighter than ~ 0.1 eV. The
Planck 2018 analysis reports a measurement of Ny = 2.9970 3% (TT+TE+EE+lowE+lensing+BAO)
at 95% C.L."7. The proposed CMB-Stage 4 (CMB-S4) experiment is expected to refine this mea-

surement to the 7(Ng) = 0.03 level *. The second is the Helium abundance, from where we can

infer the number of relativistic species present during big bang nucleosynthesis (BBN). The 68%
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Figure 1.1: Cosmic evolution of A/N.g due to a light relic that decoupled when the universe had a temperature T7<,dec).

We assume four different types of relics with spin s, as described in the text, and show the 68% C.L. constraints

achieved by Planck as a horizontal solid line, and the forecast by CMB-54 in dashed lines. The right vertical axis shows

what the temperature of the relic would be at z = 0, following the violet (lowest) curve plotted fors = 0. Note that
these constraints only apply to relics with my ~ 0.1 eV or lighter.

C.L. measurement during that era is Neg = 2.85 & 0.28°°, which is valid for all relics lighter than
my < 10° eV. Note that this does not affect dark matter (DM) produced via the freeze-in mecha-
nism, as it can contribute negligibly to Neg>*3.

In this work we consider detection prospects for four types of LiMRs: scalars, vectors, and both
Dirac and Weyl fermions. We study relics with eV-scale masses, 1072eV < my < 10'eV,such

that they all behave as matter at z = 0, with the highest mass candidates constituting up to ~10%

of DM abundance. Finally, we also consider a range of temperatures, bounded by T&?) > 091K

II



from below. Our maximum temperature is informed by the constraint AN < 0.36 from Planck,
corresponding to a single additional species of Weyl fermion at 7?) < 1.5 K. This bound could
be further improved by combining with BBN measurements of e.g. D/H ratios®7, Lyman-« forest

184,164

flux power spectrum data , as well as Baryon Acoustic Oscillations (BAO) and galaxy power

spectrum measurements *»*74",

ErrecT ON THE LSS oF THE UNIVERSE

LiMRs can become non-relativistic at some point in cosmic history, and comprise a fraction of DM
atz = 0. Unlike CDM, which is expected to compose the majority of the matter sector, LIMRs
have significant thermal motions, even if non-relativistic. Thus, these relics will stream away from

structures below their free-streaming scale, which during matter domination is given by >+

v/1+ 2z \0.1eV T(VO)

Throughout this section we assume a Weyl fermionic relic, and we will relax this assumption

. O\
ka: 0.08 ( mx ) ( X ) bMpCil. (I-S)

later. This presents another way of searching for LIMRs: through their effect on the matter fluctua-
tions. LIMRs produce a suppression in the matter power spectrum at scales smaller than kg, which
we discuss below. The size of this suppression depends on the present abundance of the LiMR,

which (if non-relativistic) is given by

0\ 3
Qub? = X & <T§f > . (1.6)

T 934V g, \ 70

From Eq. (1.6) we see that there is a maximum allowed particle mass, found by saturating the ob-
served DM abundance Qc4n»* = 0.12"7. For a relic temperature 7?)%1.5 K, this is mx=10 eV.

Additionally, in this work we are interested in the relics that become non-relativistic before today.

I2



Thus, the mass range we will study encompasses

1072 eV < my < 10%eV. (1.7)

LiMRs produce a suppression in matter fluctuations, similar to neutrinos, due to two reasons.
The first is simply that the light relic does not cluster at small scales, and its fluctuation Jy at small-
scale roughly follows 3y = (k/kg) > 9, with respect to the matter overdensity 3,,. The second is
that the absence of relic fluctuations at small scales slows down the growth of CDM (and baryon)
overdensities. Together, these two factors produce a suppression of roughly (1 — 14fx) in the matter
power spectrum '*?, where fx is the fraction of matter that is composed of the LIMR X. This sup-
pression is less pronounced for relics that stay relativistic for longer, which yields the well-known
result of (1 — 8f;) for neutrinos comprising a fraction f; of matter, as neutrinos only become non-
relativistic during matter domination. These numbers are for illustration purposes only, and in
all cases we find the full effect of LIMRs on the cosmological observables using the publicly avail-
able software CLASS**. Nevertheless, they provide intuition about the physical effect of such a relic.
While the mechanism that produces the suppression is the same as for neutrino masses, the free-
streaming scale kg for a LIMR is not fully determined by its mass (or abundance), as their temper-
ature today is unknown. Relics that are still relativistic at z = 0 (with mx < 1073 V) will have
never collapsed into structures and thus their observable effects can be fully included into ANg. In
practice, this is the case for LIMRs with masses below ~ 0.1 eV, as we will show, so we will use our
results for a 1072 ¢V relic for lighter masses.

To study LiMRs, the relevant observables are the fluctuations of baryons and cold dark matter,
as only those will gravitationally bind to form the visible structures we observe as galaxies, the relics

being too light to cluster (see, however, Ref.3®). The power spectrum of baryonic plus cold dark-
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matter fluctuations is modeled by

Pa(k) = AR (ATLR) +£T8) (18)

where Py is the primordial power spectrum, the transfer functions 7} and 7; are found using CLASS*,

and the fractional abundances are defined by

where w;, and w, are the baryon and CDM abundances.

We show the suppression in Py, in Fig. 1.2 (upper panel) for a fermion with my = 0.02eV
and Ty = 0.91K, for degrees of freedom gy = 2, 3 and 4. In all cases the high-k power is more
suppressed, as expected. Increasing the abundance of the LiMR, by augmenting ¢x, produces a
more marked suppression, while keeping the shape fixed. Moreover, increasing the relic abundance
produces wiggles at the BAO scale, as the LiMR both contributes as radiation at recombination and
free streams - like neutrinos — changing the BAO phase®7.

The suppression of matter fluctuations produces a change in the biasing of galaxies, which has
been calculated for both neutrinos and other relics 235> and accounted for in neutrino-mass
forecasts in our companion paper*°S. This produces a growth in the galaxy power spectrum that
partially compensates the relic-induced suppression. Here we account for this growth induced scale-

dependent bias (GISDB) by multiplying the Lagrangian bias by a k-dependent factor

(k) = REPY (k)R (k)R (k). (r.10)

where the functions Ri account for different effects, following Ref. 5. First, RIL\CDM accounts for

the step-like change in the growth rate of fluctuations before and after matter-radiation equality,
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parametrized as

R%CDM(/e) =14 Aacpum tanh (Zk> , (r.11)
€q

where Apcpy = 4.8 x 1072 and @ = 4 determine the amplitude and location of the step, given the
scale k.q of matter-radiation equality. The two other factors account for the effect of a LIMR on the
matter power spectrum, also taken to be a step-like function

Ri(k) =1+ A, tanh <1+lnzf(k>>, (1.12)
q

with an amplitude A; = 0.6f; determined by the fraction f; of matter composed of the relic 7 (X or
v), width Ag = 1.6, and where we have defined ¢;(k) = 5k/ kg, given the free-streaming scale kg, ;

of each LIMR.

ErFFecT ON THE CMB

The CMB is sensitive to the presence of LiMRs in the universe, through their mean energy den-

16878 and their perturbations®®**. Their additional energy density changes the expansion rate

sity
of the universe, which in turn affects the CMB damping tail. Since matter-radiation equality is very
well measured through the location of the first acoustic peak, this causes the power spectrum to be
suppressed on short-wavelength modes. In addition to this effect, their perturbations cause a change
in the amplitude and a shift in the location of the CMB acoustic peaks (for a review of the phase
shift in the acoustic peaks in the CMB, see Ref.#°).

We show an example of the effect of a LIMR on the CMB in Fig. 1.2 — again for a fermion with
my = 0.02eVand Ty = 0.91 K, for degrees of freedom gy = 2, 3 and 4. The amplitude and phase

shift of the BAO is clearly seen to increase with gx.
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Figure 1.2: Effect of introducing a fermion with degrees of freedom gy, temperature Tx = 0.91 K and mass
my = 0.02 eV onthe CDM+baryon power spectrum (upper panel) and the CMB temperature power spectrum (lower

panel). Here all cosmological parameters are fixed when introducing the LiMR so the fraction of the matter or radiation

energy occupied by the LiIMR before and after its non-relativistic transition will increase with its abundance. Since the

LiMR energy density is not counted in the CDM plus baryon power power spectrum, an increase in LiIMR abundance will

manifest as an overall suppression to ;. We note that an effective fractional number of degrees of freedom may be
achieved as a result of out-of-equilibrium processes.
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Throughout this work we will study four major types of LiMRs, two fermionic and two bosonic,
which we now describe.

In the fermionic category, the first type we study are the neutrino-like Weyl fermions, with non-
zero mass, spins = 1/2, and two degrees of freedom (gy = 2). In addition to sterile neutrinos, an
intriguing example is the gravitino, the supersymmetric partner of the graviton. While the gravitino
hass = 3/2, only the longitudinal modes couple to the Standard Model and hence behaves equiva-
lently to ans = 1/2 particle with gy = 2. The gravitino is predicted in models of supersymmetric
gravity to have a mass in the eV range*®"'#4, within the range relevant to our study. The second
type we tackle are the related Dirac fermions, such as the axino ¢ which simply have twice as many
degrees of freedom (gx = 4).

In the bosonic category we study two types of particles as well: firstly scalars, with only one de-
gree of freedom (gy = 1). A realization of this model could be a Goldstone boson, which can have
naturally small masses. The second type are spin-1 vectors. We assume that they have a Stueckelberg

mass, as it is technically natural 180

and avoids complications from Higgs mechanisms. While this
relic will be non-relativistic today, its longitudinal mode was decoupled in the early universe (while
it was relativistic), and thus only two of the three degrees of freedom were populated. Therefore,
this relic has gy = 2.

Instead of modifying the distribution function for each type of relic, we will take advantage of
the fact that any relic, whether bosonic or fermionic, can be recast onto an equivalent Weyl relic (i.e.,
a neutrino with gypr = 2), with some temperature TquV and mass mquV‘ 359 Justification for this pro-
cedure is based on the results of other works which considered the significance of the distribution

152

shapes for different species '5*. Assuming a relic of temperature T, with gy degrees of freedom, the
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equivalent Weyl relic has

5 = Ty (gx/gw)/* &/ (1.13)

me,/?/: my (gx/gW)l/4 f{“/z, (1.14)

where we correct for the different distributions of these particles by setting = 1 for bosons (and
y = 0 for our base case of fermions as before), with constants ¢; = 8/7 (asin Eq. 1.4) and ¢, =
7/6. Note that our normalization is slightly different from that found in Ref."5*, as there fermionic

degrees of freedom contributed by 3/2.

1.3 METHODS

We now present our forecasting methods. In this first exploratory work we will follow a Fisher-
matrix approach, in order to efficiently explore the 2D parameter space (7§?), my) of possible
LiMRs. We encourage the reader to visit Appendix 1.6 for a comparison against MCMC results. We
will also cover different combinations of datasets. For the CMB, we will study the current Planck
satellite 7 as well as the upcoming ground-based CMB-S4'. On the galaxy-survey side we will con-

sider the current BOSS7°, the ongoing DESI 16 and the upcoming Euclid 28 surveys.

1.3.1 PARAMETERS

We are interested in forecasting how well different LIMRs with varied temperatures and masses
can be detected. Therefore, a simple Fisher forecast of the relic mass and temperature, assuming a
particular fiducial relic, is insufficient. Instead, we will find how well LiMRs of varying mass 72y and

0 . . . .
temperature 7§() can be observed by different experiments. The parameter we will forecast is gy, the
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number of degrees of freedom of the LIMR." Then, gx/o(gx) is a good proxy for the significance at
which a LIMR of a particular my and Tg?) can be detected.

In order to properly search for a LIMR we have to marginalize over the six ACDM parameters.
These include the baryon and cold dark-matter abundances, w;, and w.4, (with fiducial values of
wp = 0.02226 and wegm = 0.1127), the (reduced) Hubble constant # = 0.701, and the optical
depth 7p¢jo = 0.0598 to reionization. The last two parameters are the amplitude A4, and tilt ;, of
primordial fluctuations, with fiducial values of 4, = 2.2321 x 10~ and 7, = 0.967. In addition,
we marginalize over the effect of neutrino masses. We assume for our fiducial model the existence of
three degenerate massive neutrinos, with > | m, = 0.06 eV, and we will report constraints both with
and without marginalization over neutrino masses. Unless explicitly stated, no prior will be assumed
for these parameters in the Fisher forecasts used to provide parameter constraints. For a discussion

about the effect of the neutrino hierarchy see Refs.>**5.

1.3.2 CMB EXPERIMENTS

We will model both Planck and CMB-S4 as having a single effective observing frequency, to avoid
marginalizing over foregrounds. For Planck we will use CMB temperature (7) and £-mode polar-
ization data, covering the range { = [2 — 2500]. We take noises of A7 = 43uK-arcmin and
Ap = 8luK-arcmin, with a fpwim = 5 arcmin angular resolution. This well approximates the
(more complex) Planck data likelihood.

For CMB-S4 we take A7 = 1uK-arcmin,and Ap = V2A 1, with an angular resolution of
frwnaM = 3 arcmin. Additionally, we include lensing data, where we perform iterative delensing of
B-modes to lower the noise, as in Refs. *°>*%. All modes cover the range £ = [30 — S000], except

for the 7T autocorrelation, where we do not go beyond ¢ = 3000 to avoid foreground contamina-

"We note that, while gx appears to be a fixed quantity for a given relic, e.g. gx = 1 for a scalar, changing gx
simply means altering the amount of relic particles (as both AN o< gyand Qy o< gx) while keeping their
thermal properties identical. That makes gy a useful variable to forecast.
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tion”. We add a Gaussian prior on the optical depth of reionization of 7( 7o) = 0.01, instead of
the ¢ < 30 modes in this case. This follows the prescription in the CMB-S4 Science Book?, as well
as our companion paper *°5 and is the sensitivity reported from the Planck 2018 results. As such, it
serves as a conservative estimate for futuristic surveys, such as CMB-S4.'7

The CMB data will perform two main roles. First, it will very precisely measure the standard cos-
mological parameters, breaking many degeneracies in the LSS data. Second, the CMB is sensitive to
the effects of a LIMR both during recombination and in the matter fluctuations at lower redshifts,

through the weak lensing information.

1.3.3 GALAXY SURVEYS

For the LSS data we will consider three surveys, all of them spectroscopic. We leave for future work
studying the promise of photometric surveys, such as the Vera Rubin Observatory''7, and weak-
lensing surveys, such as the Dark Energy Survey”.

We take the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey Baryon Oscilla-
tion Spectroscopic Survey (BOSS)7°, which will serve as an indication of the power of current data.
To showcase the promise of upcoming surveys we study the emission-line galaxy (ELG) sample of
the Dark Energy Spectroscopic Instrument (DESI) ¢, and the more futuristic Ha-emitters of Exu-
clid*®. We restrict our analysis to a single tracer, the most populous for each survey, though more
optimistic results are expected for multi-tracer approaches®’. The noise per redshift bin for each
sample is reported in Table 1.1. We assume sky coverages of 10,000 deg2 for BOSS; 14,000 deg2 for
DESI; and 15,000 deg? for Euclid.

As each of these surveys contain distinct tracers, the bias description of each will be somewhat

different as well. Here we follow a simple approach, and parametrize the linear Eulerian bias as

bl(kvz) = [1 + bL(kvz) +0‘k2k2] ) (1.15)
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where the a4, term (with a fiducial value of 1 Mpcz) accounts for non-linearities in the bias'+. We
emphasize that we do not include the clustering of light relics in this description. We also note that
while cold dark matter and baryons may demonstrate different clustering behaviors at small scales,
we do not consider such scales in this work and so do not include corrections to the bias that would
differentiate the baryon and cold dark matter clustering fields. An additional scale-dependence

comes from the aforementioned GISDB effect, which enters in the Lagrangian bias,

br(k,z) = [bo(z) — 1] g(k), (1.16)

where g(k) is as defined in Eq. (1.10). The redshift evolution of the bias is encapsulated in the term
by (z), which is chosen such that the scale-independent (i.e., # — 0) behavior of the Eulerian bias

matches with suggestions made elsewhere in the literature *>*. For the ELGs in DESI we match to

by(z) = (r.17)

where D(z) is the growth factor and 8, = 1'°; whereas for the tracers in BOSS and Euclid we take

bo(z) :[80(1+z)0‘5ﬁ1, (1.18)

with fiducials 8, = 1.7and £, = lasin Ref."'. We marginalize over the nuisance parameters
B> @r2> as well as B, for BOSS and Euclid. We note that a full analysis of the data might require
marginalization over the amplitude of the bias at each redshift bin independently, which would

however lead to a loss in constraining power.
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z ‘o.os 0.I§ 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

——— [BOSS] 8 5O 125 222 332 447 208 30 o o

dz ddeg
dNere
——  [DESI o o o o o o o 2269 1923 20
ddeegz[ ] 309 9 1923 2094
ANy,
—Hz[Echz'd] o o o o o 0 2434 4364 4728 4825
dz ddeg
z ‘1.03 I.I5 1.25 1.35 I.45 I1.55 1.65 1I1.75 1.85 1.95

dN,

LRGZ [BOSS] o o o o o o o o o o
dz ddeg
dN;
iGZ[DESI] 1441 1353 1337 523 466 329 126 O o o
dz ddeg
dNpg, .

o [Eudid] | 4728 4507 4269 3720 3104 2308 1514 1474 893 497
dz ddeg

Table 1.1: Forecasted number of target galaxies measurable by each survey: LRGs for BOSS, ELGs for DESI, and Hz
emitters for Euclid per redshift per deg2 at each redshift bin 2, taken from Refs. 162887,

1.3.4 FISHER MATRIX

We will obtain forecasted constraints using the Fisher-matrix formalism 122,206,194 For the CMB we
follow the approach of Refs. "5#%5. For the galaxy observables we detail below how we construct our
Fisher matrix.

As described in Section 1.2, LIMRs suppress the clustering of matter in our universe, and as a
consequence, that of biased tracers of matter, such as galaxies. We take into account several effects to
convert from matter to galaxy fluctuations. First, there are redshift-space distortions (RSD), induced
by the gravitational infall into, and peculiar velocities of galaxies **>%5. We write the galaxy power

spectrum as

Py(k, ) = Rk, u)F (k,u)Pe(k), (1.19)
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in terms of the power spectrum Py, (k) of CDM + baryon fluctuations, where the two pre-factors R
and F account for the RSD and the finger-of-god (FoG) eftect, both of which make P, anisotropic,
as they depend on p = k- 1, the line-of-sight angle.

We model the linear RSD term simply as

Rk, p) = [br(k) + f2]°, (1.20)

where &y is the linear Eulerian bias, as described above, and f = dln D/dIn a is the logarithmic

131

derivative of the growth factor D, which can be well approximated by

B Qu(1+2)°
fle) = (ch (1+2P+Qn) (1:21)
with ¥ = 0.55. The non-linear FoG effect is included in the term
Fk,p) = exp [—k*plo; JH], (1.22)

witho, = (14 2)4/c? 6% + 0%, /2, where opoG = al(:g)c\/m, with J](:(;)G = 250 kms~12°% as the
intrinsic velocity dispersion of galaxies, and we take a spectroscopic redshift error o, = 0.001c¢ e
which corresponds to the DESI precision requirement at z = 1.

In addition, we include the Alcock-Paczynski (AP) effect*#?%"*%  which accounts for changes in
the observed £ and y and the comoving volumes from assuming different cosmologies. For that, we
write the observed galaxy power spectrum as*>°

= Hrue D fid >
DK, ) =P ‘ 4 :
dlote) = Lellos) (Hﬁd ) <DA,tme ’ (1.23)

where the subscript “fid” refers to fiducial, and the “true” wavenumber F and angle /1,’ are given by
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1/2
D124,ﬁd (Z) 2 thrue (Z)

o= kl(1—-4?) + (1.24)
“ D @ R0

ro_ éHtrue(z) (I 25)

“ “u Hgq(z) '

Properly accounting for the AP effect, thus, implies evaluating the entire galaxy power spectrum
at different wavenumbers for each cosmological-parameter change. That can be computationally
consuming, so instead we will perform a simpler step that is accurate to first order in derivatives (as
any further is not captured by Fisher). Therefore, we can write

Gﬁg(k’, ¢) _ OPy(k, 1)
09; 00;

+ Ci(k), (1.26)

for each parameter ¢;, where
OP; dk  OPy du
i(k) = %di@—kaiﬂdi@’ (1.27)

accounts for the AP correction to linear order, with the derivatives of £ and ¢ computed from

Eq. (1.25).

The Fisher element for parameters ;, §; is then calculated as®?

- , e [ 7P\
Fz’j—zz://e dk/dﬂz(zﬁ)z (nj)gi1>

alogﬁg 8logi3g
< aez ) ( 89] 7 (1-248)

where V(z) is the comoving volume for each redshift bin summed over, and 72(z) is the comoving

number density of tracers, given by 7(z) = Azfyy V' (2) AN/ (dz ddeg®), where the last factor is

reported for each survey in Table 1.1. The integral over # goes from —1 to 1, and over wavenumbers
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from ki, = ﬂV(z)_l/ 3 t0 kmax = 0.2h Mpc ™!, which is mildly in the nonlinear regime ®*. While
at higher 2 the fluctuations are smaller and, thus, we could reach higher £.,,,x while linear, the biasing
of galaxies becomes more complex, so we fix £,y for all z. We expect that non-gaussianities in the
likelihood will affect constraints on cosmological parameters, but we do not model those effects in

this work °2.

1.4 RESULTS

In this section we discuss our cosmological constraints for a LIMR. We will perform two parallel
analyses. First, we will show the reach of different combinations of datasets by forecasting o(¢gx)
for a Weyl (neutrino-like) relic of different masses and temperatures, covering the entire range of
interest. Then, we will focus on the minimal case (that with TA(,?) = 0.91K) for the four relic types

we consider, and find more precisely above which mass 72y they can be ruled out.

1.4.1 FuLL PARAMETER SPACE

We will start with a Weyl relic, and cover a broad range of cases, where in each case we will assume
that there exists a LIMR in our universe with mass 72y and temperature today 7?), and forecast
how well gx can be measured as a measure of how significant a detection would be.

We scan through a range of LIMR masses 7y from 1072 eV, as all lighter relics behave identically,
up to ~10 eV, where the relic abundance overcomes that of all DM. As for their temperature, we
cover Yf,?) = [0.91 — 1.50] K, where the lower limit is as found in Section 1.2, and the upper limit
saturates the current 95% C.L. Planck + BOSS DR 12 BAO limit on N.g'7.

First, as a test, we forecast the errors on N by looking at our lightest relic (my = 0.01eV)asa
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proxy of the massless case, and translating the forecasted error o(gy) in the degrees of freedom into

0)\ 4
-0 ()

For reference, we have confirmed that assuming lower values of 72y result in the same forecasts
for Negr. This result is largely independent of the chosen 7’§)), so we will show forecasts for a Weyl
fermion with T/(,?) =0.91K.

Beginning with the CMB, the Planck-only forecast gives o(gxy) = 8.11 corresponding to o(Neg) =
0.19 which is in agreement with the Planck value of o(Ng) in non-photon radiation density when
allowing extra relativistic degrees of freedom Ref. 7. Likewise, the CMB-S4-only forecast yields
o(Negr) = 0.040. This is to be compared with the value of o(Negr) = 0.035 reported in Ref.*
for the same combination of resolution and sensitivity. The ~ 10% difference is due to the delens-
ing of T and E modes *>'>° that is performed in Ref.> but not in our forecasts. This is because we
are chiefly interested in more massive relics, for which the phase shift is not the main cosmological
signature.

In both cases, as well as the ones below, we account for a noted degeneracy with w2, by marginal-
izing over the neutrino mass in our forecasts. Adding LSS data only improves these results, as we
show in Table 1.2. In particular, we find that adding BOSS to Planck gives (Neg) = 0.14; substi-
tuting DESI for BOSS yields ¢(N.g) = 0.06. Looking to the future, Euclid and CMB-S4 will lower
this constraint to o(N.g) = 0.02.

We now move to non-zero masses, and provide marginalized posteriors from forecasts for a 0.91
K (minimum temperature) Weyl relic at different masses in Fig. 1.3. We only show the 2D contours
between gy and other cosmological parameters; for the full triangle plots at fixed mass my = o.o1
eV, see Appendix 1.8. The combination of information from the CMB and LSS can be seen to sig-

nificantly improve constraints by breaking parameter degeneracies present in the individual datasets.
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o(Ng) | CMBOnly BOSS DESI Euclid

LSS Only 0.92(0.84) 0.29 (0.25) 0.20(0.13)
Planck 0.19 (0.19) 0.14 (0.08) 0.06 (0.04) 0.06 (0.04)
CMB-S4 0.04 (0.04) 0.04 (0.03) 0.03 (0.02) 0.02 (0.02)

Table 1.2: Forecasted 10 errors on N.g from different combinations of experiments. Numbers in parenthesis assume
fixed total neutrino mass, whereas the rest are marginalized over neutrino masses.
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Figure 1.3: 68% C.L. and 95% C.L. projected confidence ellipses for each of the parameters we marginalize over, as
well as the LIMR number gy of degrees of freedom, for DESI (red), Planck (purple), and their combination (green). Each
row has a different fiducial relic mass, denoted on the right, all with an assumed temperature T§(0) = 091Katz = 0.
Note that we also marginalize over the unknown neutrino mass, which loosens our constraints by as much as 143% for
LSS-only information, 64% for CMB-only information, and 81% for combined LSS and CMB information.
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Interestingly, the degeneracy directions change with LIMR mass. As an example, the degeneracy
line for gx and w 4y, for CMB data changes direction as the LIMR becomes more massive, and starts
behaving as matter instead of radiation at recombination. The LSS degeneracy line, however, stays
relatively stable, improving the CMB result by different amount at each mass.

The result described above indicates that combining CMB and LSS information is critical for
an optimal constraint of LIMRs. We confirm this in Fig. 1.4, where we show the forecasted error in
gx for CMB and LSS data on their own, as well as together, which dramatically improves the con-
straints. For the rest of this work we will consider different combinations of CMB and LSS surveys
together.

We now forecast to which level of significance different LIMR can be constrained, under three
different survey combinations. The first is what would be realizable by current data, where we as-
sume galaxy data from BOSS and Planck for the CMB. We show the forecasted (gy) in Fig. 1.5,
which clearly shows that LIMRs with larger Tﬁp) and my are more readily observable. However, to
observe (or rule out) a LIMR at 3¢ it has to be relatively heavy (my 2 few eV), as we will see below.
Note that in this figure we show results for Tgé)) < 0.91K, as for instance a scalar at that minimum
temperature would be equivalent to a Weyl fermion with 7§)) = 0.79 K, as we will discuss below.

The second case we consider is the near-future one, where we add DESI data to Planck . We show
the forecasted constraints on gy for this combination in Fig. 1.6, which are clearly improved with re-
spect to the results shown in Fig. 1.5. In this case one can rule out relics of any mass with T)(?) = 1.4
K at 30. More interestingly, we see that masses above 1 ¢V would be ruled out, even for the lowest
possible relic temperature of Tf,?) = 0.91K.

The final case we consider is more futuristic, and adds CMB-S4 data to DESI. We show the re-
sults in Fig. 1.7, which further improves the prospects for detecting light relics. In this case even
relics at low temperatures can be ruled out at 3¢ confidence for masses above 0.78 ¢V, whereas

minimum-temperature massless Weyl relics can only be found at o.5¢ confidence.
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Figure 1.4: Improvement of Weyl relic measurements by addition of LSS data with DESI and Planck constraints. The
relic is fixed at its minimum possible temperature, Tg{o) = 0.91 K. As shown, the joint constraints are much stronger
than the LSS or CMB alone.

1.4.2 MINIMUM TEMPERATURE

While the figures discussed above covered a broad range of temperatures and masses, they all as-

sumed a Weyl relic. Here we extend our results to other types of relics, focusing on the minimum
T(O) . . .

temperature of 75 = 0.91 K, corresponding to the earliest decoupling from the SM plasma. We

divide our results into fermionic and bosonic relics. The cumulative results of our forecast for each

type of particle are tabulated in Table 1.3.
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Figure 1.5: Forecasted errors on gy for a Weyl (neutrino-like) relic of different fiducial masses and temperatures, in all
cases with fiducial gy = 2, assuming BOSS+Planck data. The region of parameter space measurable at the 3o-level
lays rightward of the purple solid line, and the dashed red line shows the minimum temperature expected for a relic.

FErMIONIC RELICS

We start with a massive Weyl fermion with Ti(,?) = 0.91 K, for which we show our forecasts on
o(gx) for various combinations of galaxy surveys and CMB experiments in Fig. 1.8a, with a finer
mass resolution than the results above. We report the minimum relic masses that are observable at
30 significance, both with (and without) marginalizing over the neutrino masses, as a test of how
degenerate LiMRs are with the total neutrino mass. The combination of presently available Planck

and BOSS datasets are forecasted to observe or rule out LIMRs above 2.85 (2.47) eV at 3¢ signifi-
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Figure 1.6: Same as Fig. 1.5 for DESI| + Planck.

cance. For Planck and DES], this is lowered to LIMRs with masses above 1.20 (1.00) eV. This result
should motivate an analysis using presently available datasets. For the futuristic combination of
CMB-S4 and Euclid datasets, we show that LIMR masses above 0.63 (0.59) eV can be observed or
ruled out at 3¢ significance.

As an example of the physical implications of these constraints, let us apply to them to the (s =
3/2) gravitino, which is related to the scale of SUSY breaking in some models. The gravitino is cos-
mologically equivalent to the neutrino-like Weyl relic that we have studied, as only thes = 1/2
modes are thermalized with the SM plasma in the early universe 161 and are expected to have the

lowest relic temperature of 0.91 K. This has allowed previous work to constrain the gravitino mass
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Figure 1.7: Same as Fig. 1.5 for DESI + CMB-54.

by requiring that their abundance does not overcome that of the cosmological dark matter *5*.

Our forecast above shows that current data is sensitive to gravitinos heavier than my = 2.85¢V,
which is around the benchmark of some models of SUSY breaking '***°?, and a factor of a few bet-
ter than the best limits currently available '9*'**. Upcoming data from CMB-S4 combined with
Euclid is expected to further detect such gravitino population masses above 0.63 eV. Under the
assumption that a cosmological gravitino population no longer exchanges entropy after decou-
pling from the SM bath, we can relate constraints on 7y to bounds on the SUSY breaking scale
Asusy ~ /mxMp 7% . Our forecasted Planck and BOSS dataset translates to an upper bound

Asusy S 80 TeV, whereas the CMB-S4 and Euclid datasets lower this to Asysy < 50 TeV. These
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Figure 1.8: Forecasted error on the relic degrees of freedom for a neutrino-like Weyl fermion (with fiducial gx = 2, top
left), a Dirac fermion Q{X = 4, top right), a real scalar (gX = 1, bottom left), and a vector particle Q{X = 2, bottom

right), all at their minimum temperature 7y =

0.91 K, for various combinations of CMB + LSS experiments. The hori-

zontal line denotes the uncertainty required to detect each relic at 3.
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Figure 1.9: Forecasted DESI + CMB-S4 uncertainty on the sum Z m,, of neutrino masses, when it is jointly searched for
with a relic of mass 72y and temperature 7y = 0.91 K. The degeneracy is minimized at ~ (9(0.36V) for all particle
types, although the constraints on neutrino masses using CMB data from Planck are always expected to weaken by

~ 10%), if a new light relic is present.

projections are interestingly complementary to the energy range that will be reached by the pro-
posed O(100 TeV) particle collider, showing the promise of our approach.

We also consider a Dirac fermion, with ¢y = 4 and mass 7. In terms of the equivalent Weyl
fermion, this corresponds to a temperature 771 = 1.08 K and mass me;, = 1.19 my. In Fig. 1.8b,
we show that the combined Planck and BOSS datasets are forecasted to observe or rule out such
particles above 1.30 (1.12) eV at 3o significance. For Planck and DESI, the 3o constraint is lowered

t0 0.61 (0.52) eV. Interestingly, CMB-S4 data will enable the parameter space of Dirac fermions
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with any mass to be observed or ruled out at 3¢ significance when combined with LSS data from

DESIL

Bosonic Rerics

We now move to bosonic degrees of freedom. First, we study a minimum-temperature real scalar,
withs = 0,gx = 1, and mass my. This is equivalent to a Weyl relic with f;}, = 0.79Kand
me,f,[/ = 1.01my. We show in Fig. 1.8¢ that, while the combination of presently available Planck and
BOSS datasets cannot constrain scalar relics at the 3o significance, DESI and Planck can jointly rule
out scalars with masses above 1.96 (1.61) eV. Further, the combination of CMB-S4 with either the
DESI or Euclid datasets can observe or rule-out real scalar bosonic relics above 1.14 (1.06) and 0.93
(0.87) eV, respectively.

Second, we consider a massive vector, withs = 1and gy = 2. This massive vector is equivalent
to a Weyl relic with 7 = 0.94Kand me;/ = 1.21my. In Fig. 1.8d we show that the combination
of Planck and BOSS datasets can observe or rule-out massive vector bosonic relics above 2.05 (1.79)
eV, whereas substituting BOSS for DESI improves this number to 0.90 (0.75) €V. Combining the

CMB-S4 and Euclid datasets further improves this to 0.47 (0.44) eV.

1.4.3 NEUTRINO-MASS FORECASTS

We have detailed in each previous subsection the constraints with and without marginalizing over
neutrino masses to emphasize the importance of this step, as it is seen to affect results noticeably

when LSS information is being considered. We note that DESI is particularly sensitive to the marginal-
ization or fixing of )  7,. This is due to its chosen bias prescription, which does not include a pa-
rameter to marginalize over the redshift dependence of the bias, as opposed to BOSS and Euclid.

This underscores the sensitivity of our results to the details of the bias prescription, which is further
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CMB Only BOSS DESI Euclid

Scalar my[eV]

oo I O 985 324 (322)
)

Planck -(- 1.96(1.61) 1.31(1.16)
CMB-S4 1.48 (1.44) 1.41(1.31) 1.14(1.06) 0.93 (0.87)
Weyl Fermion mx[eV]
TOnly_ -(-) 3.13 (2.78) 2.42 (2.41)
Planck 2.85 (2.47) 1.20 (1.00) 0.87 (0.78)
CMB-S4 1.03 (1.02) 0.98 (0.91) 0.78 (0.71) 0.63 (0.59)
Vector my[eV]

oSO, 0 4T o8) 88 ()
Planck 2.05 (1.79) 0.90 (0.75) 0.65 (0.60)
CMB-54 0.81 (0.78) 0.75 (0.70) 0.58 (0.54) 0.47 (0.44)

Dirac Fermion my[eV]

LSS Only 4.06(3.72) 1.82(1.36) 1.50(1.50)

Planck -(-) 1.30(1.12) 0.61 (0.52) 0.45 (0.43)
CMB-$4 0.56 (0.55) 0.51 (0.48) All (All) All (All)

Table 1.3: Minimum mass at which a LiMR (scalar boson, Weyl fermion, vector boson or Dirac fermion, from top to
bottom) can be observed or ruled out at 3¢ significance. Also reported in parentheses is the result with fixed Z m,, (to
its fiducial value). A“—" sign corresponds to no masses within the 3¢ constraint. “All” corresponds to all LIMR masses
analyzed being within the 3¢ constraint.
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explored in our companion paper°S.

As a consequence of our analysis, we can also forecast how much neutrino-mass measurements
would be affected by the presence of a LIMR, given the degeneracies between ) | 72, and gx shown
in Fig. 1.3. We show in Fig. 1.9 the relative increment in the error of the sum ) 7, of neutrino
masses when marginalizing over a relic of varying mass. For reference, we forecast o( _ m,) to be
61.1 x 1073 eV for BOSS and Planck, 28.2 x 1073 eV for DESI and Planck, and 24.1 x 1073
eV for DESI and CMB-S4, with a fiducial at the (normal-hierarchy) minimum ) m, = 60 X
1073 ¢V and no other relics. The degradation in the expected errors ranges from 10% for heavy
relics and futuristic data (DESI+S4), to nearly 100% for lower masses and current or upcoming
data. (BOSS/DESI+Planck). Note that for relics of my ~ 0.3 eV the degradation minimizes in all
survey specifications. This mass corresponds to relics that become non-relativistic around the time
of recombination. In essence, heavier relics produce suppression in the matter fluctuations, whereas
lighter relics chiefly affect CMB and LSS observables through their change in Ng. We encourage

the reader to see our companion paper*°S for in-depth neutrino forecasts without relics.

1.5 CONCLUSIONS

In this work we have studied how well current and upcoming cosmological surveys can detect light
(but massive) relics (LiMRs), focusing on the 1072 eV to 10' eV mass range. These particles be-
come non-relativistic before # = 0, and thus affect the formation of structures in the universe. By
combining information from the CMB and the LSS we have shown that a large swath of the 2D-
parameter space (of relic mass and temperature) will be probed by upcoming surveys.

There is a minimum temperature that any relic that was in thermal equilibrium with the Stan-
dard Model should have, Tgp) = 0.91 K. Interestingly, we find that Weyl, vectors, and Dirac relics

with this temperature, and masses above ~ 1 eV, can be observed or ruled out at the 3¢ significance
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using the presently available combination of Planck and BOSS datasets. Looking slightly to the fu-
ture, the Planck and DESI datasets will improve these constraints, and reduce the minimum mass
allowed for LIMRs by roughly 50%. The more futuristic Euclid and CMB-S4 datasets will present
an 80% improvement and, in the case of Dirac fermions, fully cover the parameter space. If the sum
of neutrino masses, Y 72,, can be learned independently of CMB and LSS surveys, the effect of fix-
ing the ) | 7, parameter manifests as an approximate 20% improvement on these constraints. This
could be accomplished, for example, by KATRIN which currently sets the leading upper bound
on the effective electron neutrino mass of 1.1 eV, independently of cosmology**. We emphasize
that the effect of marginalizing ) _ 2, significantly weakens the 3¢ constraints for some of the cases
reported, suggesting that it is important to account for ) | 7, in any search for LIMRs. While the
need to properly account for | m, has been discussed in previous work #31°%+5858937 | our analysis,
which does so for massive but light relics, is unprecedented.

This result is particularly interesting for the case of the gravitino. Since the gravitino would have a
cosmological imprint identical to a Weyl fermion, we have shown that Planck and BOSS can observe
or rule out gravitinos heavier than 2.85 eV. If a gravitino, or any other LIMR, were detected, then
their parameters (i.c., mass and temperature) could also be measured, as suggested in Ref. 36,

In summary, while light relics are commonly assumed to be nearly massless — and constrained
through N,g — here we have shown that relics with masses on the 1072 eV to 10! eV scale can
be constrained with cosmological data. These constraints are broadly expected to apply to the full
range of allowed relic masses, from effectively massless to saturating the DM abundance. This com-

plements current efforts in the search of relics, allowing many new routes for finding physics beyond

the Standard Model.
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1.6 MCMC VALIDATION OF FISHER FORECASTS

In this Appendix we show a comparison of our Fisher formalism and an MCMC analysis of the
same mock data to confirm our Fisher analysis throughout the main text. In Fig. 1.10 we show the
MCMC (solid) and Fisher forecasted (dotted) marginalized posteriors for cosmological parameters
and nuisance parameters (including the neutrino mass ) | 72,), assuming CMB-S4 + DESI data.
This Figure shows that the predicted errors agree remarkably well between our Fisher-matrix ap-
proach and the full MCMC of mock data.

Moreover, we show posteriors for models with and without the growth induced scale-dependent
modification to the bias (as described in our companion paper*°°), which we termed GISDB. The
MCMC results are from Ref.>°5, and the Fishers are calculated here. The non-GISDB Fisher el-
lipses are centered on the corresponding MCMC maximum likelihood point. The GISDB ones,
however, are shifted by '>3

35,’ = (Fl)lij (I.}O)

in each parameter &;, where we have defined

_ 2 V(z) [ OlogPylk,u)
Dj_g/k dk/dﬂz(zﬂ)z ( a‘;j )

. 2
- ~ nP

P k, 1) = Pyno k, £, -
(Py.cispB (£, 1) — PynocispB (£, 1)) (nPg n 1) (1.31)

and the GISDB Fisher ellipses are computed centered on the shifted best-fit. As shown, the good
cohesion between the Fisher and MCMC analyses of the data, particularly in the inclusion of the
GISDB eftect, demonstrates that the considered effects are well-approximated by the linearity of the

Fisher approach, and thus validates the constraints we present on additional light relics.
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Figure 1.10: MCMC and Fisher forecasted marginalized posteriors for cosmological parameters and nuisance parameters
for a joint DESI + CMB-S4 analysis. The degenerate hierarchy is assumed with a total mass of Z m, = 0.1ev.
Models with and without the bias step (GISDB) are considered. As shown, the good consistency between MCMC and
Fisher results, particularly the reproduced shift in parameters upon turning off GISDB, demonstrates that the effects we
consider are well-captured at linear order and validates our results regarding the detectability of LiMRs.
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Figure 1.11: Fisher-matrix forecasted marginalized posteriors for the parameters gy and 7. In this forecast, the LIMR
mass has been allowed to vary in addition to its degrees of freedom. We present the marginalized posterior contours for
five choices of the fiducial LIMR mass: 1072 eV, 1014 eV, 10798 v, 10702 v, 1094 eV and 10! eV. As shown, the

degeneracy lines are driven by the relative orthogonality of CMB information at low masses, and by strong degeneracy
in the LSS data at intermediate to high masses.

1.7 MARGINALIZATION OVER THE RELIC MASS

Throughout the main text, the LIMR mass has been held fixed. In this appendix, we allow the
LiMR mass to vary in the forecasts to study what effect this has on the LiMR constraints presented
earlier, as well as to study how well a prospective LIMR detection could constrain its properties.

For all combinations of LiMR species, galaxy surveys and CMB experiments studied in this work,
we find that marginalizing over the LIMR mass my weakens the constraint on the relic degrees of
freedom gy, as expected. This effect is most exaggerated in the cases where the constraint is domi-
nantly set by LSS information. In a joint Planck-BOSS analysis, high-mass relics (with my > 0.2
eV) see the gx constraint weakened by nearly a factor of 2. In cases where CMB information domi-
nates, however, such as when adding CMB-S4 to BOSS, the gy constraint is weakened by no more
than 6%. Adding Planck information to DESI, the higher-mass region sees the gy constraint weak-
ened by no more than a factor of 2. Adding CMB-S4 to DESI, the gx constraint is weakened by no
more than 2.5%.

In Figs. 1.11 and 1.12, we illustrate this effect, assuming that a Weyl fermion with fiducial Ty =
0.91 K and difterent values of 2 is observed using different combinations of galaxy and CMB

surveys. The broadening of the error bars is primarily driven by the LSS information and, as a con-
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Figure 1.12: Forecasted sensitivity on the relic degrees of freedom gy for a Weyl fermion with (solid) and without

(dashed) marginalization over relic mass 72y for combinations of datasets BOSS + Planck and DESI + CMB-S4. As

expected, there is little degeneracy in the low-mass limit, where the relic mainly contributes as Ng; thegy — my
degeneracy enters most at intermediate masses.

sequence, the biggest shift in constraints is observed for datasets that are primarily or exclusively
constrained by the galaxy surveys.

We see in Fig. 1.11 that the Planck constraint monotonically weakens with increasing fiducial
relic mass. This can be explained by the decreasing effect of a relic on the radiation energy density o
which the CMB is primarily sensitive to. At low masses, the Planck dataset demonstrates an orthog-
onal relationship between the relic mass and degrees of freedom. Considering that at low masses,

changes in mass will modify the weak lensing signal of the CMB and produce no change in o yet
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small changes in gx will produce directly proportional changes in o, we expect a nearly orthogonal
relationship between these two parameters at low masses primarily governed by Eq. (1.4), as the
CMB signal is dominated by changes to p . However, as the fiducial relic mass is increased, and the
relic effect on p, at recombination becomes smaller, the CMB becomes sensitive to the relic primar-
ily through its effect on the weak lensing signal and the governing relationship changes to Eq. (1.6)
which is directly proportional to the product of 7y and gx. Thus, these two parameters are ex-
pected to develop an anti-correlation at high masses in the CMB dataset, which is indeed what we
observe in Fig. 1.11 at higher masses.

Now we consider how the degeneracy direction in the my — gx plane varies at different relic
masses for the LSS datasets. Here the scales affected by the relic, as governed by Eq. (1.5), and by
the magnitude of the effect, as determined by Eq. (1.6), control the effect on the LSS signal. Atlow
masses, the contribution of the relic to wy is small and the relic will primarily affect the LSS signal
through its free-streaming scale, which is independent of gx. So at small relic masses, we expect 7y
and gx to be approximately orthogonal. As the fiducial relic mass is increased, the contribution of
the relic to Par and hence to the LSS signal increases and is again proportional to the product of mx
and gx. So with increasing relic mass, we generally expect an anti-correlation to develop between the
relic mass and degrees of freedom. We again see this to be the case in Fig. 1.11.

As discussed above, allowing the relic mass to vary modifies the constraints of the LSS and CMB
datasets such that the accuracy of those constraints is generally less affected for lower mass relics.

As the relic occupies a greater portion of Qy, it becomes more important to simultaneously vary
the relic mass and degrees of freedom. We emphasize that for a fixed relic abundance, there is a de-
generacy between the relic parameters my, T, gx according to Eq. (1.6). This allows us to translate
constraints on any two of these parameters into constraints on the third parameter. Where we have
allowed the relic mass and degrees of freedom to vary, the resulting constraints can be translated to

errors on the temperature. We also bring attention to the fact that marginalizing over the relic mass
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is only valid in the neighborhood of parameter space around each fiducial choice, and not over the

entire parameter space of masses permitted.

1.8 SAMPLING OF FULL MODEL POSTERIOR FORECASTS

Datasets with different parameter degeneracies can powerfully constrain parameters when com-
bined. To illustrate this complementary effect between CMB and LSS surveys, we present a sam-
pling of fully marginalized posteriors in Fig. 1.13 for a Weyl (neutrino-like) relic with temperature
0.91 K and mass 0.01 eV. In each figure, we present constraints using only DESI (red), only Planck
(violet), and the joint dataset (green).

As in the case of the LIMR parameter gy (number of degrees of freedom) discussed in the main
text, the addition of LSS information to CMB data will generally break degeneracies between pa-
rameters. As an interesting example, we observe that the LSS provides a measurement of w¢gp, that
is very close to orthogonal from the CMB one, breaking degeneracies with 4;, ; and gy for very
light relic masses. DESI information also serves to set the measurements on » and )  m,, which are
poorly measured by Planck as their effects on the CMB are degenerate. In turn, the LSS by itself is
generally ineffective at measuring the other cosmological parameters, and provides no information
on Tyejo. While, as illustrated in Fig. 1.3, the degeneracies between gx and other parameters shift sig-
nificantly between relics of different masses, those between the cosmological parameters themselves

remain largely unchanged.
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Figure 1.13: 2-dimensional posterior distributions for parameter forecasts using DES| + Planck , and each experiment
individually. We assume here the presence of a Weyl fermion LIMR (¢xy = 2) with Ty=0.91Kand my=0.01eV.As
shown, the complementarity between the two datasets results in marked improvement on the sensitivity to such a relic.



Accurately Weighing Neutrinos with

Cosmological Surveys

2.1 INTRODUCTION

The existence of neutrinos has long been established, but comparatively little is known about them,

due to their weak couplings to the visible sector. Although in the Standard Model (SM) neutri-
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nos are massless, compelling evidence of flavor oscillations from solar, atmospheric, and reactor

fronts 146 121:159,98,88,138,137

yield measurements of two mass splittings, indicating non-zero masses
for at least two of the three neutrino species. The sign of one of the measured mass splittings is yet
to be determined, suggesting that neutrinos are ordered in one of two scenarios: the normal hierar-
chy (NH), where the two lighter neutrinos are closer in mass, or the inverted hierarchy (IH), where
the two heavier ones are. Distinguishing between the two neutrino hierarchies, as well as measuring
their overall mass scale, are integral steps towards amending the Standard Model via characterizing
its least-understood fermions.

Current results from the KATRIN Tritium decay experiment have improved the limits on the
mass 2, of each neutrino species to 72, < 1100 meV in the quasi-degenerate regime*', and are ex-
pected to constrain each neutrino mass in this regime to 200 meV with upcoming data'®>. This is,
however, still far from the minimum (total) masses expected for the NH and IH, of 60 and 100 meV
respectively. A diverse range of other particle experiments are also underway aiming to fully charac-
terize the oscillation parameters and determine the mass ordering*%9%15 134211 " At the same time,
cosmological data sets provide a powerful tool in the search for massive neutrinos, as these particles

are very abundant in our universe, with a density per species today of 7, ~ 100 cm ™3

, comparable
to that of cosmic microwave background (CMB) photons. This cosmic neutrino background in-
fluences the formation of large-scale structure (LSS) in the universe: at least two of these species are
non-relativistic at the present day and contribute to the dark matter (DM) content. However, their
small masses imply large streaming velocities and induce structure suppression at small scales (see
Refs. 2227 for detailed reviews of these effects).

Indeed, the leading constraints on the sum of neutrino masses are currently obtained with cos-
mological data'9%'27:5%:26:63_ The latest 2018 Planck data, in conjunction with measurements of the

baryon acoustic oscillations (BAO) from the Baryon Oscillation Spectroscopic Survey (BOSS), have

been used to constrain ) 7, < 120 meV at 95% C.L."7. This measurement is compatible with
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both the normal and inverted hierarchies, though the available parameter space for the latter will
always be smaller. Upcoming data from the CMB Stage-4 (CMB-S4) experiment, as well as the Dark
Energy Spectroscopic Instrument (DESI) and Euclid galaxy surveys, will reduce these error bars dra-
matically, and it is expected that these experiments will measure the sum of neutrino masses at least
at the 3¢ level *2.

As cosmological data (especially that from large-scale structure experiments) become increasingly
precise, it becomes critical to accurately characterize the cosmological effects of neutrinos in the
analysis of this data. This is crucial both for the correct characterization of cosmological neutrinos
and also for the measurement of relevant parameters of structure formation, such as the amplitude
of fluctuations or the intrinsic bias of tracers. Currently, searches for massive neutrinos with cosmo-
logical data often make two simplifying assumptions, described below.

The first assumption commonly made is that the three neutrinos have the same mass, a config-
uration commonly termed the degenerate hierarchy (DH). While this is a valid approximation for
neutrino masses much heavier than their splittings (72,, > 50 meV), it fails for the range of masses
still allowed by current data. While the dominant cosmological effect of neutrinos is set by the sum
of their masses, the distribution of individual masses has an effect that, although subtle, might be
detectable by future surveys 3174751 19,103,96,104,198,30 Tt jg possible that the next-generation mea-
surement of total neutrino mass will simply eliminate the inverted hierarchy by ruling out its mini-
mum mass. However, in the case that this measured sum permits both normal and inverted configu-
rations (D m, > 100 meV), it is also worth investigating whether cosmological data has the power
to distinguish between the two.

The second approximation is that the halo bias is unaltered by the presence of light degrees of
freedom. However, it was shown in Refs. '3#'3>5% that the same scale-dependent growth that gives

rise to a suppression in the matter power spectrum in the presence of massive neutrinos induces

a scale- and redshift-dependent enhancement to the halo bias as well. This growth-induced scale-
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dependent bias (GISDB) can partially compensate the effect of neutrinos on the galaxy power spec-
trum and, opposed to other biasing effects that abound in standard cosmology, its amplitude and
shape are determined by the neutrino masses, so it must be properly modeled during searches for
these particles.

In this work we include both of these effects for the first time (see for instance Refs. 75:197:135
for previous efforts), and forecast constraints on the neutrino mass from the upcoming DESI*¢
and Enclid*® surveys, combined with the CMB-S4 experiment*. We study whether the omission
of these corrections would bias upcoming results. To find the halo power spectrum in the presence
of neutrinos with three different masses we employ the publicly available software CLASS #°, which

152 code as a native module. We dub

we have modified to include the recently developed RelicFast”
this code RelicCLASST, and in addition to neutrino masses, it can also be used to search for any other
light relic (as we do in our companion paper”3).

This paper is structured as follows: in § 2.2 we briefly review the effect of neutrinos on the LSS

observables. In § 2.3 we explain the datasets we consider, which we employ in § 2.4 to forecast the

resulting constraints on neutrino masses. We conclude in § 2..5.

2.2 NEUTRINOS AND THEIR EFFECT ON THE LSS

We begin with an overview of the physics of neutrinos and their effects on the LSS observables,
which can be divided in two pieces: the suppression of the matter power spectrum, and a modifi-
cation to the galaxy-halo bias. Both of these effects are most relevant at scales of & ~ 0.01 »/Mpc
for currently allowed neutrino masses, making galaxy surveys such as DESI and Euclid ideal probes,
given their expected low noise at those scales.

The SM contains three species of neutrinos corresponding to the electron, muon, and tau lepton

*https://github.com/JulianBMunoz/RelicFast
Jrhttps ://github.com/wlxu/RelicClass
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flavors, which mix into three non-degenerate mass eigenstates. Various oscillation experiments have

measured two mass splittings to be 37

Am3; = 79 meV?

|Am3| = 2.2 x 10° meV?, (2.1)

where the absolute value on the latter measurement denotes ambiguity to which species is heavier.
This results in two possible mass configurations, the normal hierarchy, where 723 > m, and the
inverted hierarchy, where m3 < m;. Assuming the lightest neutrino is massless, the NH has a total
mass sum of ~ 60 meV and the IH has one of ~ 100 meV **°.

Neutrinos decouple shortly before cosmic electron-positron annihilation, and so their present-
day temperature 78 is offset from that of the photon bath, 7§,0), by the subsequent entropy in-
jection, yielding 7V = (4/11)1/3 Tg,o) = 1.95 K. Thus, a neutrino of mass m,, will become
nonrelativistic at zng ~ 500(72,,/100meV), so by today we expect at least two of the species to
be non-relativistic. In that case, the neutrino abundance ., today is related to the sum of masses
simply as'*?

m,,

Q=Y " :
Z: 93.2eV’ (22)

where /4 is the reduced Hubble parameter. The non-zero temperature of neutrinos allows them to

freely stream out of dark-matter structure. This defines a free-streaming scale as the wavenumber

kg, ; above which neutrinos behave as hot dark matter, given at late times z < zngr ; by

b — 0.08 ( My, )hM 1 (23)
5= Ttz \100mev/ "~ D¢ >3

assuming matter domination **>5. We will focus on neutrinos in this paper, but we note that other

light (but not massless) relics produce similar effects, and we search for them in our companion
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paper”s.

2.2.1 EFFECT ON MATTER FLUCTUATIONS

For this discussion it is informative to differentiate between two different types of matter content in
the universe: the component consisting of cold dark matter and baryons (CDM+b), which largely
follow each other at late times and actually source the formation of galaxies, and neutrinos, which
are generally non-relativistic at the present day but do not cluster at small scales*7>57. At late times,
when all neutrinos are non-relativistic, we can define the matter fluctuations as a sum of these two

COHlpOIlel’ltS:

Om = fbdeb + Zﬂ[é\m (2.4)

where d; is the overdensity in the 7 component, f; = Q,/Q,, its fraction of the total matter abun-
dance Q,,, and we define f, = ) f,,, where this sum includes all massive neutrinos.

On large scales (k¢ < kg ;), neutrinos »; will follow CDM+b fluctuations, so J, ~ 9,4, whereas
on small scales (£ > kg ;) they will freely stream out of matter potential wells and their fluctuations
will be suppressed, following 8, oc d,,k~2 "%, This affects structure formation in two main ways.
First, 9,, is suppressed by a factor of (1—£;) with respect to J, as the larger the neutrino abundance,
the smaller the fraction of matter content that contributes to the growth of structure. Second, and
more important, the absence of small-scale neutrino fluctuations slows the growth of the CDM+b
component at large £. If the neutrinos become non-relativistic after matter-radiation equality, this
produces an additional scale-dependent suppression on d,;, of roughly (1 — 3f;). The result in the
linear approximation is a total suppression of the matter power spectrum of (1 — 8f;) for f, < 1.

Both of these effects become present at & ~ kg, ; for each species, so not only do neutrino masses
determine the overall amount of suppression, but also the location in the power spectrum where

said suppression occurs. The effect is dominantly determined by the total £,, and thus the total neu-
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trino mass )  m,. However, hierarchical neutrinos will each modify the power spectrum at slightly
different free-streaming scales due to their individual masses. For instance, for the same total neu-

trino mass of ) | 7, = 100 meV, the normal hierarchy suppression effects turn on at kg ; ~ 0.02 b
Mpc ! (for the lighter neutrinos) and ke ~ 0.04h Mpc_1 (for the heavier), while the inverted hi-
erarchy suppression effects turn on at k¢ ; ~ 0.0055 Mpc~!and ke i ~ 0.03/Mpc ™!, respectively.

Furthermore, although the difference is subtle, the amplitude of the small-scale suppression of
P,,(k) for cosmologies with fixed total £, is dependent on the epochs znr ; where neutrinos begin to
behave as matter, with larger suppression for heavier individual species as the growth of fluctuations
is slowed from an earlier time. Thus, the scale-dependent suppression is most prominent in the limit
where all the mass is carried by one neutrino, and least prominent for the case of three degenerate
neutrino; and in general, the inverted scenario will generate more suppression for the same total
neutrino mass than the normal one.

In addition to these scale-dependent eftects, the inclusion of massive neutrinos while holding
fixed the baryon and DM abundances («5, @c4m), and the Hubble parameter (b) forces a shift in
the dark-energy abundance (Q 4 ), the effect of which is an overall suppression of the amplitude
of fluctuations at all scales. However, this effect is less important for our analysis here, as it can be
mimicked by a compensating shift in the amplitude 4 of fluctuations, the Hubble parameter, or the
overall halo bias.

We illustrate the effects described above in Figure 2.1, where we incorporate massive neutrinos
into the cosmology with various masses and fixed hierarchy (upper panel) and with various hierar-
chies and fixed total mass (lower panel). We investigate the suppression of each with respect to a cos-
mology with massless neutrinos, holding fixed the other cosmological parameters {@;, @cdm, 7, A, 75, Treio
at values listed in Table 2.2 (where 7, is the tilt of primordial fluctuations and 7, is the optical
depth to reionization). Note that the suppression is larger for heavier neutrinos and occurs at smaller

scales, and also it is larger for the inverted hierarchy than the normal hierarchy, though only becom-
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ing apparent at comparatively small scales.
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Figure 2.1: Percent differences in CDM+baryon power spectra compared to a massless neutrino cosmology; for differ-
ent total neutrino masses assuming the degenerate hierarchy (upper panel) and for different hierarchies assuming a total
neutrino mass of 100 meV (lower panel). In each case we fix the cosmological parameters {a)b, Wedmy Qs A, nj},
varying b. As shown, the primary effect of massive neutrinos is a suppression of amplitude at small scales - the change
in amplitude at large scales is attributed to varying values of /. Note that both the total mass and individual neutrino
masses affect the amount of suppression and scale at which it turns on, though the latter effect is subdominant. In
addition, the amount of suppression is redshift dependent, with a larger spread at small scales for larger neutrino

masses.
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2.2.2 EFFECT ON THE B1as — RelicCLASS

We can observe the neutrino-induced suppression in d,, by directly measuring the matter power

12319 Most measurements are,

spectrum, for example through weak lensing of the CMB or galaxies
however, of galaxy distributions, which trace the underlying matter fluctuations. In this case it is not
enough to study how neutrinos aftect the matter power spectrum, but rather it is necessary to find
how they change the relation between the halo and the matter overdensities, the galaxy bias.

Due to the nonlinearity of halo formation, the overdensity of haloes traces that of the matter,
albeit with a rescaling referred to as the bias. In this work we will always refer to the bias with re-
spect to the CDM+b field, to avoid spurious scale-dependencies due to the non-clustering nature of

200,58,65

neutrinos*” . In that case, the halo fluctuation (without redshift-space distortions) is given

by
oy(k,z) = by(k,z)dy(k, 2) (2-5)

to linear order, where &y is the Eulerian bias, which can be written in terms of the linear Lagrangian

bias &% as
bl(ka Z) =1+ bL(/e7 Z), (26)

where the Lagrangian bias is also defined with respect to the ¢4 fluid.

In previous LSS searches for neutrino masses it was typically assumed that either &y, or its equiva-
lent with respect to all matter, was constant at all scales. Nonetheless, neutrinos produce a scale- and
redshift-dependent growth in the CDM+b fluctuations, due to their free-streaming nature. This
effect cannot be simply included through transfer functions, due to the non-local temporal nature

188,187,

of the halo-formation process 133134 "and the process of halo collapse has to be modeled.

We use the publicly available code RelicFast, which solves for the spherical collapse of haloes

I52

including the effect of neutrinos. In Ref. *>* we found that, while the overall value of the bias is
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very sensitive to the astrophysics of specific tracers, the scale-dependence of the Lagrangian bias is
impervious to those effects within our model.
The result of this correction is a scale-dependent step in the Eulerian bias as shown in Figure 2.2,

which we term the growth-induced scale-dependent bias (GISDB). We parametrize the bias through

b (k,z) = ﬁ(z)ﬂ/@, 2), (2.7)

where f{k, z) is numerically computed with RelicFast to properly account for the effect of neu-
trinos in the halo bias, and 4L (z) denotes the scale-independent magnitude of the Lagrangian bias,
which we will marginalize over. We remind the reader that f{k) can be approximated in terms of
tanh[log(k)], as it is roughly a step function in log-k space *>*. Nonetheless, we choose to use the
tull shape of the function, in order to fully capture its physical effect. Additionally, as the amplitude
L (2) of the bias depends very sensitively on the properties of the haloes studied, we will marginalize
over it as a free parameter. On the other hand, the scale-dependent behavior, parametrized through
flk, z), is largely independent of those factors'5>'3?.

The specifications of the Re1icCLASS code is as follows: We have modified the publicly available
Boltzmann solver CLASS to include the effect of neutrinos in the halo bias computed by RelicFast
within CLASS, which directly outputs both Eulerian and Lagrangian scale-dependent biases for the
input cosmologies. Here, RelicFast is included as a CLASS module, executed after the Lensing mod-
ule, which outputs the realistic scale-dependent Lagrangian bias for requested ranges of redshifts
and halo masses. This output is accessible from the python wrapper to facilitate interfacing with
MontePython and other codes that take CLASS outputs. Inverted, normal and degenerate neutrino
scenarios with lightest neutrino mass (29 in the code), which sets the full spectrum, are accepted as
specifications at the input level. Aside from neutrinos, RelicCLASS can also be used to model other

scale-dependent effects on the growth function, such as those induced by other light (but massive)
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degrees of freedom.
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Figure 2.2: The growth-induced scale-dependent bias (GISDB) for redshifts from 0.65 (lightest) to 1.65 (darkest) with
massive neutrinos. The total neutrino mass is set at 90 meV and the degenerate scenario is assumed. As shown, the
growth-induced scale-dependent bias (GISDB) is both scale- and redshift-dependent.

2.3 DATASETS

In this section we describe the data sets used in our analysis, code specifications, and discuss details
of likelihoods and nuisance parametrizations. We use mock data from CMB-S4 as well as either

DESI or Euclid for the LSS component.

56



z ‘ 0.65 0.75 0.85 0.95 1.0§ I.1§ 1.25

dNELG
—— [DESI] | 309 2269 1923 2094 1441 1353 1337
dz ddeg
dNHzx .

5 [Eudid) | 2434 4365 4729 4826 4729 4508 4270
dz ddeg

2 ‘ 1.35 1.45 1.55 1.65 1.75 1.85 1.95
dNELG
———— [DESI 2 66 2 126 o o o
% ddegz[ 1| 523 4 329
dNHa .

5 [Eucid] | 3721 3104 2309 1514 1475 894 498
dz ddeg

Table 2.1: Forecasted number of ELGs measurable by DES| and Ha emitters measurable by Exuclid per redshift per deg2

at each redshift bin z, taken from Refs. 1628,

2.3.1  GALAXY DATA

For the LSS component we will use a modified version of the basic pk likelihood implemented in
Montepython v35? adapted to mock data from the upcoming DESI*® and Euclid*® surveys, as-
suming their most abundant tracers. For this analysis we consider emission line galaxies (ELGs) for
DESI, and assume the baseline survey covering 14,000 deg?. Conversely, for Euclid we study Ha
emitters and assume the reference efficiency given in Ref.>® with 15,000 deg2 coverage. The pro-
jected galaxy number densities achievable by the DESI and Euc/id surveys are given in Table 2.1.
Somewhat more optimistic constraints could potentially be achieved through multi-tracer tech-
niques’’. Nonetheless, our goal in this work is to determine whether the inclusion of different
neutrino-induced effects would bias the results from upcoming surveys, so we will limit ourselves

to the case of one tracer per survey.
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The shot noise spectrum is given simply by the inverse of the observed galaxy density,

Zg_l(z) = 7’ (2.8)

where dV/(z) is the comoving volume of the shell at redshift z in the fiducial cosmology, and 4N, (z)
is the total number of tracer galaxies within the shell, as computed in Table 2.1.

Galaxies are located in the line-of-sight 7 direction at their measured redshift z. Gravitational
attraction of galaxies into clusters, as well as bulk velocities of the clusters themselves, give rise to dis-
tortions to the inferred 3D positions of galaxies, which are usually termed redshift-space distortions
(RSD) "*°. To linear order we can relate the redshift-space galaxy power spectrum to the CDM+b

one as

Pylk, 2, 1) = [b1(k,2) + fi (B)¢2]” Py(k, 2), (2.9)

where ¢ = k- n, and we have defined the growth factor of CDM+b fluctuations as

 dlog \/Pylk.2)

ok 2) = dlogz

, (2.10)

which we compute numerically using CLASS.

Additionally, the non-linear integrated effect of RSD (usually referred to as the Finger-of-God
effect), as well as the intrinsic redshift uncertainty of the galaxy, can be encoded as a multiplicative
damping term 5

212
; R
Py(k, 2, pt) = Py(k, 2, 1) exp [— ) |’

2 (1+2)

with o, = (14 2){/ 5 + fog2 , (2.11)

where oy = 1072 accounts for the resolution limits of DESI'® and Exclid*>®, and Tfog 1s related to
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the velocities of galaxies and is treated as a nuisance parameter in this work.

The physics of galaxy formation is known to produce an additional scale-dependence to the bias
term, proportional to k% at high . While unrelated to the effect of neutrinos on the LSS, this k-
term is properly accounted for here following the formulation of Ref. #?. We follow their prescrip-

tion in writing the total Eulerian bias as
bi(k,z) = 14 b"(k,2) + ask?, (2.12)

where 2, is a free parameter that we marginalize over. At large scales (¢ — 0), where both the
growth-induced and k*-terms are negligible, the bias is scale-independent and we choose a fiducial
value that matches the simulations of each specific tracer. For the DESI survey of ELGs we use the
parametrization b (z) = f,/D(z), where D(z) is the growth function, and for the Euclid survey of
Ha emitters we use b1 (z) = f,(1 + 2)*1, following the prescriptions of their respective Science
Books'®*%. The nuisance parameter 3 rescales the overall bias, and 3, parametrizes any uncertainty
in redshift dependence of the bias. We will take as fiducial 8, ppgy = 1.0, 8 1,0 = 1.7, £ = 1.0,
consistent with recent results from simulations ®3.

Figure 2.3 shows the percent differences in j)g(k, 2, ) with respect to a fiducial scenario of in-
verted neutrino hierarchy with ) 7, = 100 meV, upon changing the hierarchy (while fixing the
total neutrino mass) and switching off the GISDB. Other cosmological parameters are held fixed,
and the shaded regions represent the shot noises expected from DESI and Euclid. This figure shows
that the effect of the neutrino hierarchies, as well as the GISDB, is at the 0.5% level. However, while
the hierarchies affect the ratio differently at different scales, the GISDB acts as an overall change in
normalization at £ 2> 10~ »/Mpc.

We also account for the Alcock-Paczynski effect 233128 \which concerns the cosmology-dependence

of inferring distance from angular- and redshift-space measurements, by multiplying the power
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Figure 2.3: Percent differences in galaxy power spectra j’g(/e, 2, [u) between the various neutrino hierarchies (at fixed
E m, = 100 meV), as well as with and without the GISDB, compared to a fiducial case of inverted hierarchy with

GISDB, at 2z = 0.75. The shot noises associated with DESI and Ezclid are shown as the shaded areas. Here the
cosmological parameters {wb, Wedm s b,AJ7 7y, Z m,,} as well as all bias and RSD nuisance parameters are held fixed.

spectrum and the shot noise at each bin by H(z)/D?(z), dividing by the same quantity evaluated

at our fiducial cosmology, as well as writing the inferred &, u with respect to the fiducial &, « by the

relation

k(2, pgq) _ [(1 2 )Dj,ﬂd(z) , H(2) ]1/27

o “E) ) TR ) (13)
2 %) —1/2

(2) 2 DA,ﬁd(z)Hﬁd(z) 2

— = (1 —5y) > + w5 (2.14)

“d [( ) Di(z) H*(2) #ha
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Additionally, we stop our analysis at £may(2) = 0.2 x (1 + 2)%/+2) h Mpc ™, safely within the
linear regime.

We compute the log-likelihood as "

2

1 Vad(z
—log L = 5 /dkﬁdkﬁ /d‘uﬁdz )
H(z

Dj(z)j)g(kvz’/‘) - H“d((i) Py ad(kad; 2, gq)
)+ Hﬁ ( )

(2.15)

”g l(z)

Additional parameters, such as those accounting for non-Poissonian shot noise or theoretical

error in this likelihood function, can be considered for more detailed analyses, as in e.g. Ref.5*.

2.3.2 CMBDaTta

We complement the LSS information from galaxy surveys with mock CMB data from the upcom-
ing CMB-S4 experiment, implemented with MontePython’s Likelihood_mock_cmb. We model the
CMB-S4 simply as a single effective frequency channel, with temperature noise A7 = 1 uK-arcmin,
and polarization noise Ap = V2A 7. We additionally assume a resolution of frwpm = 3 arcmin.
CMB data will not only help break the degeneracies between cosmological parameters, but can
also measure the matter power spectrum directly through CMB lensing. This data will, for instance,
break the degeneracy between the Hubble parameter and ) | 7,. We perform iterative delensing as
in Ref. "°®1% to obtain the deflection field with nearly optimal noise. Finally, we do not account for
modes below ¢ = 30 from CMB-S4, as it will be ground-based, and instead add a Gaussian prior on
Treio With a width of 0.01 to account for low-¢ CMB data. This width is reflective of current Planck

sensitivities "7 but conservative in light of future measurements.
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2.4 RESULTs

In this section we perform Markov Chain Monte Carlo (MCMC) analyses on mock data for CMB-
S4 added to either DESI or Euclid galaxy power spectra, for cosmologies with massive neutrinos. We
consider parameters {@y, @cdm» b, As; 75 Treio, Y, 75 } as well as nuisance parameters {5, B, @2, 7fog }»
and show our fiducial values in Table 2.2. We vary our model in three types of ways. First, we at-
tempt to distinguish between the normal, inverted, and degenerate hierarchies. Second, we study if
the recovered parameters would be shifted if the GISDB was not included, both with and without
marginalizing over the redshift-dependence uncertainty 4,. Additionally, we omit the 7, prior in
one case with CMB-S4+Euclid, to investigate the importance of additional optical depth informa-
tion in the presence of the existing CMB lensing and LSS shape information.

These different runs are designed to explore the set of physical effects that will appear in upcom-
ing measurements of neutrino masses. A table of relevant reconstructed parameters and associated
best-fit log-likelihoods for selected models is shown in Table 2.3 for runs with Euclid data, and in
Table 2.4 for those with DESI. We emphasize that in all cases our fiducial model corresponds to the
inverted hierarchy with its lightest neutrino taken as massless, and thus represents a plausible model
of nature; shifts from the best-fit in other models can be seen as the expected shift one would ob-
serve in a realistic analysis.

We find that with CMB-S4+DESI data the total neutrino mass is expected to be measured up
to uncertainty of 26 meV, while for CMB-S4+Euclzd data that would be improved to 20 meV.

For ) m, = 98 meV this corresponds to a 40 and S¢ detection respectively, and the minimum-
mass scenarios of normal and inverted hierarchy (with total masses 60 and 100 meV) can be dis-
tinguished at the 1.50and 27 level. We note that neglecting the nuisance parameter 8, results in an
over-tightening of ) _ m, resolution to an uncertainty of 15 meV. Finally, the omission of a 7o

prior resultsin a ) | m, uncertainty of 27 meV for the combined CMB-S4+Euclid data; equivalently
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showing that these data are able to measure 7y, to the 10% level despite the lack of low-£ informa-
tion. Conversely, we find that a stricter 7, prior of width 0.006 would tighten e.g. CMB-S4+DESI

sensitivities to 20 meV.

Cosmological Parameters

Wy @edm h A, 7, Treio > m, Hierarchy
[meV]
2.226e-2 | 0.1127 | 0.701 | 2.2321e-9 | 0.967 | 0.0598 98.5 Inverted

Nuisance Parameters

Fuclid | DESI

By |6 | By | Trog [KM/5]

1.7 1.0 1.0 1.0 250

Table 2.2: Fiducial cosmology used in generation of mock data for MCMC analysis. Consistent cosmologies are used for
DESI and Euclid analyses except for [80, which is matched to simulation results.

2.4.1 DIFFERENTIATION OF HIERARCHY

We first consider whether we can differentiate the neutrino hierarchies, if they had the same > _ m,.
In Figure 2.4¢ we show a corner plot comparing posteriors for the three hierarchies (the two physical
ones plus the degenerate one), where the underlying fiducial cosmology is IH. Due to the physi-

cal lower bounds for the total mass of neutrinos in the IH, the posteriors for that case are notably
one-sided, and as a result the mean value of most cosmological parameters for the other two hierar-
chies are shifted relative to the inverted one. This is because all cosmological parameters other than
wy, exhibit significant degeneracy with ) _ 72,. However, as Table 2.3 shows, these near-future sur-
veys show at most a 1o preference for the fiducial choice of hierarchy, as far as best-fit likelihoods are

concerned. This agrees with the recent Bayesian analysis done in Ref.*°.
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Data Model Mean and error
LSS|CMB[H[Nuis| GISDB | —2AlogL | M, | 7o £, 2,
D&, 8, Yes 1.3 103.6 | 5.85e-2 1.702 1.005
(20.1) | (5.96e-3) | (2.97¢-3) | (3.08¢-3)
No 1.3 104.2 | 5.97€-2 1.704 1.003
(21.9) | (6.47€-3) | (3.14€-3) | (3.24€3)
S4 &, Yes 1.5 102.8 | 5.93¢-2 1.699 -
Euc| +7 (16.5) [(s.124€-3)| (2.71€-3)
No 1.9 114.5 | 6.25e-2 1.707 -
(15.6) | (4.96e-3) | (2.59¢-3)
L|8,,8, Yes 0.0 113.0 | 6.30€-02 1.700 9.99¢e-1
(*3957)|(3-34¢-03)| (3.07¢-03) | (2.64¢-03)
N|5,.54, Yes 0.9 98.90 | 5.89e-2 1.701 1.00
(21.3) | (6.18e-3) | (3.13e-3) | (3.09¢-3)
S4 D&, 4, Yes 1.3 102.9 | 5.95€-2 1.699 1.001
(27.5) | (8.29e-3) | (3.31e-3) | (2.94e-3)

Table 2.3: Comparison of reconstructed mean and error of cosmological and nuisance parameters as well as best-fit log-
likelihoods with respect to the fiducial for different models, with Euclid mock data. The fiducial for all these cases is the
same and is given in Table 2.2, which is exactly recovered by the inverted model tabulated here. The 2z, posterior of
this model (denoted by an asterisk), is truncated by the prior at its minimum mass and thus is narrower than its normal
and degenerate hierarchy counterparts. We use the following symbols: Euclid (“Euc.”), CMB-54 (“S4"), Ty.io (“7”), Hier-
archy (“H”), Degenerate (“D”), Inverted (“I”), Normal (“N”), Nuisance Parameters (“Nuis.”), 27z, [meV] (“M,”). We denote
errors on reported values by parentheses.

2.4.2  EFFECT oF GISDB

We then look more in detail into the runs with and without the GISDB. In this case the effects are
twofold: a scale-dependent step that counteracts the scale-dependent suppression induced by neu-
trinos, and a redshift-dependent amplitude of the step that enhances the redshift-dependence in-
duced by neutrinos at the smallest scales. Omission of the GISDB in the analysis analysis is then
expected to underpredict ) | m, if the former effect is dominant, and overpredict if the latter effect
is. However, the former effect is largely rendered insignificant due to cosmic variance — the scale-
dependence of the bias plateaus at scales smaller than O(10~2hMpc "), which is the regime with

strongest statistical power. Thus, it is the latter small-scale redshift-dependent effect that becomes
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Data Model Mean and error
LSS | CMB |HNuis., GISDB | —2Alog L M, Treio 8,
D| 4, Yes 0.9 107.6 5.99€-2 1.000
(26.7) (7.20e-3) | (1.70€-3)
No I.1 112.0 6.07¢e-2 1.003
Sqtz (26.1) (6.93¢-3) | (1.73€3)
DESI I 3, Yes 0.0 107.2 6.16€-2 1.001
(Y0a) | (3:84e-3) | (1.63¢:3)
N| £, Yes 1.0 99.7 5.89e-2 1.000
(28.6) (6.52¢-3) | (1.68¢-3)
Planck'|D 8, Yes - (27.44) (8.99¢-3) | (7.62¢-3)

Table 2.4: Similar to Table 2.3, with DESI used as LSS data. The fiducial for all these cases is the same and given in
Table 2.2. Note that as before, the 2z, posterior of the inverted model (denoted by an asterisk) is prior-informed and
thus narrower than those of other hierarchies. In addition, the cases with Planck CMB data (denoted by a dagger) are
reported as Fisher forecasts only, without an MCMC analysis. Symbols are defined equivalently as in Table 2.2.

relevant.

The most evident effect of neglecting this growth-induced step is a misreconstruction of the nor-
malization bias, resulting in a shift towards larger 4/ (z), and in turn the incorrect values of 4, and
its redshift dependence £, as seen in Figure 2.5. If the nuisance parameter 4; was not marginalized
over, this would further result in a significant shift of reconstructed cosmological parameters such
as A;, b, and 7y, notably overestimating the total neutrino mass by 2 10, as expected. This effect
is shown in Figure 2.4a, where we show the ellipses with and without the GISDB, although as op-
posed to Figure 2.5 we did not marginalize over 4. As the DESI bias prescription does not include
a degree of freedom to vary the redshift dependence, neglecting the GISDB induces a shift in the
aforementioned cosmological parameters, albeit at the sub-glevel, due to the smaller signal-to-noise.
We illustrate this point in Figure 2.4b. We note that the same shifts can be recovered using a simpler
Fisher-matrix formalism, as we show in our companion paper”’.

In general, we expect the DESI and Euclid prescriptions for analysis of real data, when collected,

to be more sophisticated than those presented in the Science Books. Nonetheless, this is additional
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reason for the analyses of upcoming e.g. DESI data to marginalize over the redshift dependence of
the bias, or parametrize the bias at each redshift bin independently, to avoid cosmological-parameter
shifts due to the neutrino GISDB. Note, however, that even when marginalizing over 4, there is a
leftover shift on the scale-independent bias j, as seen in Figure 2.5. The value of this parameter
affects other observations, such as galaxy high-order functions and cross correlations with other data

sets, so if one requires an unbiased estimate of 4 the full GISDB ought to be accounted for.

2.5 CONCLUSIONS

In this work we presented forecasts on the ability of current and upcoming CMB and LSS exper-
iments to measure neutrino masses, both in total and individually. We included all known linear
effects induced by neutrinos in the treatment of galaxy survey data, specifically assessing the impact
of the scale-dependent bias induced by the effect of neutrinos in the growth function. We also in-
vestigated the effect and detectability of realistic neutrino hierarchies in the analysis of these survey
data.

Starting with the different neutrino hierarchies, we have shown that for the data considered,
the total neutrino mass is determined up to an uncertainty of &)  m, ~ 20 meV at a fiducial of
> m, = 98 meV, the minimum-mass scenario of the inverted hierarchy. While this is a S detection
away from o, the minimum-mass scenario of the normal hierarchy () 7, = 60 meV) is excluded
only at the 27 level. Furthermore, for a fixed total neutrino mass of 98 meV, a different choice of
hierarchy constitutes a difference of ~ 0.3% in the power spectrum amplitude, and we show that
this is expected to result in a 1o shift in inferred cosmological parameters. As such, more advanced
surveys are necessary to definitively distinguish between the two hierarchies, particularly in the case
that the total neutrino mass is the same.

As for the growth-induced scale-dependent bias (GISDB), we find that, while cosmic variance
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limitations render the data insensitive to the scale-dependent shape of the halo bias for allowable
neutrino masses, upcoming surveys are expected to be highly sensitive to the redshift dependence of
the GISDB at small scales. In joint analyses of CMB-S4 data with large-scale surveys such as DESI
or Enclid, not including this GISDB step can result in a O(1¢) over-prediction of total neutrino
masses, as well as similarly shifted reconstructions for degenerate parameters such as b and 7yejo. If
one marginalizes over the redshift dependence of the bias, these shifts can be removed, although the
resulting analysis will retain a O(10) shift in the magnitude and redshift dependence of the Eulerian
bias of the relevant tracers. Thus it is imperative to include these effects in order to accurately re-
cover galaxy and cosmology parameters simultaneously, or otherwise marginalize over bias redshift

dependence if the latter is prioritized.
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Figure 2.4: MCMC Posteriors for b, 7eio, and Z m,, for CMB-S4 and various LSS experiments. For each, the fiducial
cosmology has an Inverted hierarchy in the minimum-mass configuration, with total neutrino mass 98 meV.
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Figure 2.5: Posteriors for CMB-S4+Euclid with a prior on 7, with a width of 0.01, assuming degenerate hierarchy
(DH) with and without GISDB, and assuming the IH with total neutrino mass 98 meV as fiducial.



Cosmologically Measuring Ultralight
Axion Dark Matter

3.1 INTRODUCTION

Axions and, more generally, axion-like particles (ALPs) constitute an intriguing possibility for the

particle makeup of dark matter (DM), or at least a subcomponent thereof. Motivated in the QCD
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sector as a solution to the Strong-CP problem, and in the general case as a consequence of gravi-

tationally complete models of quantum mechanics *°*3*

, these particles may also produce phe-
nomenologically interesting deviations from the standard picture of cold dark matter cosmology
(ACDM). This is because independent of any couplings assumed under a specific particle model,
the axion or ALP (henceforth, simply “axion”) has a purely gravitational signature that can be de-
tected cosmologically.

Ultra-light and extremely feebly coupled axions can acquire a matter abundance via vacuum mis-
alignment, where the particle can be thought of as an initially slowly-rolling field that transitions
its equation of state when it begins oscillating at the minimum of its potential. This transition oc-
curs when the Hubble rate is of order the axion mass H(a0s.) ~ mg, occurring at later redshifts for
lighter masses. For an axion produced via the misalignment mechanism, the relic abundance today
w0 is determined by the axion mass 72, and the initial “misaligned” field value ;. For axions with
My > 10733 eV, this transition has occurred before today, and its relic abundance will contribute
to the presently observed DM abundance. Additionally, ultra-light axions impede the growth of
perturbations at small scales through an effect which has been called “quantum pressure” as a result
of their macroscopic de Broglie wavelengths, ~ 10 Mpc at My ~ 10739 eV. These two effects are
known to change the ratios of cosmological species and the rate of universe expansion throughout
cosmic history, as well as suppress the growth of matter perturbations at small scales relative to a
ACDM cosmology *'+.

Upcoming Cosmic Microwave Background (CMB) observations and galaxy surveys will offer
the ability to interrogate these processes at a much more detailed level. In order to exploit these
substantially larger data sets to search for axions, its effects on structure formation and other cos-
mological observables must be modeled to adequate precision. While the effect of ultra-light axions
on the linear theory of structure formation is well understood, less extensively studied is how these

particles influence the non-linear process of structure formation at late times. The halo bias is a
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key parameter in modeling this late-time physics, quantifying to leading order the relationship be-
tween galaxy density perturbations, which we directly observe, and the underlying (predominantly
dark) matter density perturbations, which we would like to learn about. While previous work 7# has
demonstrated how axions aftect the redshift dependence of the halo bias, this work presents the first
consideration of how ultra-light axions affect the scale dependence of the halo bias.

In this work we will specifically consider ultra-light axion dark matter with masses from m, =
1072 eV tom, ~ 107?* eV. While other thermal and non-thermal axion production channels

are possible **5

, we will only consider the vacuum misalignment production mechanism. The high
end of this mass range is best constrained by small-scale Lyman-« measurements, which rule out an
ultra-light axion composing all of the DM for masses below 2 x 10720eV 182183 For masses below
102 eV, measurements of the CMB and large-scale structure (LSS) constrains the axion to only

comprise a percent level fraction of the total CDM 198 Combined CMB and galaxy-clustering

analyses set the lowest bounds to date on the allowed fractional abundance of ultra-light axion dark

0728 * 107,170,125,114,27

matter, with the most stringent constraint set at 1.4% fora 1 eV axion
There are also a number of complementary and similarly model-independent analyses in the
literature that have leveraged other data sets to constrain axion dark matter, such as galaxy cluster

counts 7%; probes using 21cm tomography '

%132 line intensity mapping *° ; weak-lensing shear
74; kinetic Sunyaev-Zeldovich effects *5; and gravitational waves . If we also assume some axion
coupling to photons, there are a number of astrophysical and laboratory data sets that can be uti-
lized to constrain the properties of the axion '#*'#. Similarly, model-dependent cosmological probes
include modifications to the Lyman-« effective opacity '®5 and rotations of the CMB polarization
angle’*.

Nevertheless, galaxy surveys in particular provide powerful information on the large scale struc-

"It should be noted that in all these cases, a model with only a single axion is considered. It is plausible
that these constraints would change in models containing a spectrum of axions.
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ture of the universe, and a precise map of way dark matter fluctuations grow and cluster may well

be our only path to discovering these elusive axion populations. Modeling the halo bias accurately is
consequently critical to extracting this information faithfully, in order to match the increasingly pre-
cise experimental data promised by near-future surveys. To facilitate this work, we develop a modi-
fied version of the RelicFast' code, which we call RelAxiFast?. In its un-modified form, RelicFast
is able to quickly compute the halo bias to linear order in the presence of thermal relics, including
massive neutrinos. RelAxiFast extends the functionality of RelicFast to additionally compute the
linear halo bias in the presence of an ultra-light axion with time varying equation of state. We make
RelAxiFast publicly available for use, including scripts to reproduce all results presented in this
work.

We review the process of how an ultra-light axion affects the matter power spectrum in §3.2, be-
ginning with a phenomenological description of the axion in §3.2.1, and then showing how the
axion field dynamics effect the background evolution §3.2.2 and evolution of perturbations at dif-
ferent scales §3.2.3. We describe the code axionCAMB in §3.2.4, which we use to compute the back-
ground and perturbation evolution. We go on to describe how we model the axion in the non-linear
dynamics of halo collapse in §3.3. We first describe modifications to the dynamics of halo collapse in
§3.3.1 and present our calculation of the halo bias in §3.3.3. We describe the RelAxiFast code which

we use to evaluate the halo collapse process in §3.3.2. We present our results and conclude in §3.4.

fgithub.com/JulianBMunoz/RelicFast
¥ github.com/ndeporzio/RelAxiFast
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3.2  Ax1oN COSMOLOGY

3.2.1 AXION PHENOMENOLOGY

The QCD sector of the SM allows the incorporation of a CP-violating interaction, but this term,
while generically expected to be sizable, is experimentally constrained to be exceedingly small *5.
An elegant solution to this “Strong CP-Problem” is found in the introduction of a periodic scalar
known as the QCD axion, which dynamically sets the size of the CP-violation. This sets the scales
at which the QCD axion is expected to interact, and correspondingly bounds its mass at 72, 2,
6 x 107% eV, so as to avoid overclosing the Universe 193,167,202,203,172,80,5

However, periodic axion-/ike particles with analogous couplings to gauge fields are known to
arise in various string theory scenarios; for example, as Kaluza-Klein zero modes of antisymmetric
tensor fields under manifold compactification **#*°*'9*, These particles are not required to solve the
Strong CP problem, and as a result, ALPs have a less-constrained parameter space compared to the
QCD axion and broader phenomenological possibilities. Throughout this work, we will take the

“axion” to simply mean any axion-like scalar with a periodic potential.

We assume an axion @ has an effective Lagrangian of the form

L=~ (09) — MUp/f), 3.1

where U(@/f) can be any dimensionless potential minimized at @ = 0 and periodic under ¢ —
@ + 2zf. fis known as the decay constant of the field, and A is the symmetry breaking scale when
mapped onto a low energy theory.

We apply a sinusoidal approximation to the true potential,

o(§)-=(3),
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Phenomenologically, choices of potentials with an exponent greater than 1 have been considered,

17519918, b awever, axions in these

for example, in the context of early dark energy (EDE) models
scenarios ultimately do not behave as CDM at late times. In this work, we are interested in axions

that may contribute to the relic CDM density, and so restrict the analysis to the potential in Eq. 3.2.

The behavior of Eq. 3.1 expanded around the potential minimum is then described by the effective

Lagrangian
L —2(99) — 2mlg? (3.3)
2 2er
which has canonical mass term
A2
mey = 7 (3.4)

determined by the axion decay constant fand symmetry breaking scale A.

3.2.2 BACKGROUND EvOLUTION

The Klein-Gordon equation of motion corresponding to Eq. 3.3 governs the evolution of the ho-
mogeneous free-axion field

p+2MHp+myap =0, (3-5)

where overdots indicate derivatives with respect to conformal time 7, and where the conformal
Hubble parameteris H = aH. Notice in Eq. 3.5 the presence of a Hubble friction term that im-
pedes the growth of the axion field. When the ¢ and ¢ terms become similar, the field begins to

oscillate around its minimum, occurring when

mtp ~ 3H(d) ’ (36)
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with a time scale of oscillations given by

Otose N m; . (3.7)

The stress-energy tensor for an arbitrary scalar field is given by

_ w290 (1 ,0p0p
15 =22 % g (3¢ 5h ol + Ve ) (55)

Combining the free-axion potential of Eq. 3.3 and the Friedmann-Lemaitre-R obertson-Walker

metric (FLRW) with Eq. 3.8, the background energy density and pressure are then given by

1 5. 1
ﬁp(ﬂ) - _700 - Eﬂ 2¢2 + Em;¢2 9 (39)
Py(a) = T, = la_2¢2 — lngbz. (3.10)
? 2 27f

Given some initial choice of @ and @, we can use Eq. 3.5, Eq. 3.9, and Eq. 3.10 to calculate the
background values of o, (), Py(a) and the equation of state
P
wy = ~? , (3.11)
Fo
at all points in time. For the axion, we assume slowly rolling initiation conditions, ¢ ~ 0, so we have

w, ~ —1land the axion field evolves like dark energy (DE). Once the axion field begins to oscillate,

its energy density redshifts as ordinary matter 196 such that the relic density is approximately given

by

_p
2 08¢
Yo, 0 = b Q?vo = ( . ) ﬂgsm (3'12‘)

crit

where p_. = 3HM3 is the critical energy density to produce a flat background, Mp = (87G) -1/2
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is the reduced Plack mass, Hy = H(a = 1) is the value of the Hubble parameter today, and where
we have used the definitions: w; = h*Q;, Q; = p,/p ., and b = H(a = 1)/100[km/s/Mpc].

This non-thermal production mechanism is known as the vacuum misalignment mechanism -
the field being initially misaligned with the minimum of its potential evolves as to realign with, and
then oscillate about that minimum.’ In this work, we only consider the case of axions produced
by the misalignment mechanism and with a symmetry breaking scale greater than the scale corre-
sponding to the end of inflation.  The effects of other non-thermal production channels, such
as production via topological defects formed by symmetry breaking after inflation, are beyond the
scope of this work. Likewise, as we have assumed no SM couplings to the axions considered here,
any thermal production can be safely ignored.

Throughout this work, we assume a flat background cosmology with wy, o = 0.02226, w49 =
@edm,0 T @p0 = 0.1127, 7, = 0.96659, A; = 2.2321 X 1072, N = 3.046, and including three
massless neutrinos. Note that we consider the effects of introducing massive neutrinos in Appendix
§3.5. Here, wyp, 0, @cdm,0 and wy g refer to the energy density today of baryons, CDM, and axions,
respectively. The background cosmology will determine H(z), and in turn set the time 245 when
H(a) falls below 4/3 and the axion field oscillates about the minimum of its potential. Using
this cosmology, the oscillation time as a function of axion mass is numerically calculated in Fig. 3.1.
Note that these oscillation times are robust to different choices of relic axion abundances between

0% and 10% of wg 9, down to at least one part in 10°. During radiation domination, we see that

1/ —2/3

—1/2 . . . . .

dose X My and during matter domination o o< myp " in accordance with H(4) during those
epochs. Whilst disfavored cosmologically '*5, larger abundances would produce more substantial
shifts to matter-radiation equality and substantially change the o5 (72,) relationship shown in

Fig. 3.1.

SFor this reason, the “misalignment mechanism” is sometimes referred to as the “realignment mecha-
. »
nism”.
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Figure 3.1: The time when the axion field begins to oscillate, 72, = 3H(a), as a function of the axion mass Mmg. The
rate of change of the Hubble parameter during matter domination, O log H/a logd = —3/2 is shown in orange,
and during radiation domination O IogH/@ logd = —2is shown in blue. The transition between these two regimes

occurs at matter-radiation equality. The matching to the matter solution breaks downs at small redshift, when dark

energy begins to dominate. The red shaded region is bounded by the redshift of recombinationz = 1100 and the

redshift when a CMB mode of £ =2 2500 crosses the horizon. The grey shaded region is bounded by the largest redshift
of halo collapse modeled in this work z =~ 200 and today.
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Using the # = 1 result from '*5, we can map the parameters of this ultra-light axion dark matter

model (74, f; @;) to the cosmological parameters (Ho, 2osc; Q) as

Qgp(d)z;(ﬂf;?[gO) (1 - cos(g,/f) x ..

(25)° 2> do (3.13)

a

1 ya < dosc -

As shown in Fig. 3.1, the relation between a4 and 7, depends on whether the axion field begins to
oscillate while the background is radiation dominated or matter dominated. In the case of lighter,

sub-dominant axion masses, which begin oscillating during matter domination

3H, \2/?
Aosc <0> (2£2m,0)1/3 . (3-14)

Mo

Alternatively, for heavier, sub-dominant axion masses, which begin oscillating during radiation

domination

3H, \ /?
Aosc = <0> (2“Q'm,()ﬂeq)1/4 . (3-15)
e

We can identify which axion mass begins oscillating at the time of matter-radiation equality, again

assuming that the axion is a sub-dominant component of the energy density

Mpeq R (3H()\/2.Qm,0> 4;13/2 . (3.16)

So we can express Eq. 3.13 in terms of the cosmological parameter 4. instead of the axion parameter
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dOSC

Q@o =A x ..

6Qm70 ) m¢ < M¢Veq (3‘17)
3m 3/4
245 (Qmoeq) / s Mo > Mo.eq

where we have defined the following dimensionless coefficient which depends only on the axion

model parameters

A= (L) 0-costoutn) (518)

Assuming the axion field always begins in a slowly rolling configuration ¢ = 0, different choices
of the initial value of the field | will produce different values of the relic axion relic density today
wp,0- An axion described in this manner will have a mass determined by its symmetry breaking scale
and decay constant 724(f,, Ap) and a relic abundance determined by all three model parameters
wo(f; Ay, @,). Without a means of independently determining the symmetry breaking scale, we
can only assume a lower bound on A set by our choice of the Hubble expansion rate during infla-
tion and the assumption the symmetry breaking occurs before the end of inflation.

The cosmological evolution of such an axion will have an oscillation redshift set exclusively by
mg (A, f), solong as the axion abundance does not substantially change the background evolution
of H(a). In Fig. 3.2, for a single choice of 72, the transition from a DE equation of state to a CDM
equation of state always occurs at the same redshift for difterent choices of @y ¢ (all of which are
small compared to wcpm). Conversely, in Fig. 3.3 the transition occurs at later times for lighter
axion masses. Notice that if too light of a mass is chosen, the field will need to have much a much
smaller primordial abundance in order to recover reasonable relic abundances today. For this rea-
son, any axion produced through the misalignment mechanism with masses below 10733 eV will

comprise a negligible fraction of the energy density and have a similarly negligible eftect on the cos-
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Figure 3.2: The exact evolution of the axion background energy at fixed axion mass me = 10726 ev (solid line) com-
pared with a dark energy like evolution with matching early universe abundance (dashed) and dark matter like evolution
with matching relic abundance (dotted). The time of the transition from wy = —1to wy = 0 at a4 is negligibly
changed for different choices of the relic axion abundance. The exact solution is evaluated until 2, = 3H(a), at

which point the dark matter like evolution is assumed for the axion field.

mology. In other words, axions with masses below 10733 eVand significant relic abundances cannot

be produced by the misalignment mechanism.
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Figure 3.3:  The exact evolution of the axion background energy at fixed axion relic abundance wg. Note that 2

occurs at later times for lighter axion masses - /1 needs more time to evolve to a lower value before lighter fields begin

to oscillate. For extremely light masses of My 5 1073 eV (the energy scale of H), the axion field does not begin
oscillating before today and its background energy density is not able to decay to the desired relic abundance.

For the lightest mass in Fig. 3.3, m, = 10732 eV, notice that the transition of equation of
state can occur deep within the redshift regime of halo collapse. This suggests that axions of such

masses can leave unique imprints in the halo collapse process, which may have a different sensitivity
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to the presence and redshift behaviors of the cosmological species than the evolution of the matter

perturbations alone.

3.2.3 PERTURBATION EVOLUTION

To fully utilize cosmological data sets, we are also interested in the evolution of the perturbed (isotropic)

axion field around its background value Po-

P(7.k) = y(7) + (7. k) . (3.19)

In Synchronous gauge, the perturbed field equation of motion corresponding to Eq. 3.5 for the

background field becomes
. . 1. .
&+ 2Hp + (mpa® + K)p, = —Egpoﬁ , (3.20)

where 4 is the trace of the scalar metric perturbation. Likewise, the perturbed stress-energy tensor
defines the energy density and pressure of the perturbed field. This system of equations defining the
evolution of ¢ can be expressed equivalently  as a generalized dark matter (GDM) fluid with the
following equations of motion for the fluid density perturbation d, and velocity perturbation #, in

Synchronous gauge'**:

3p = — kg — (1 — wp)(8/2) — 3H(1 — w,)d,

— 91— &) (up /H)

) (3'2'1)

it = 2Huy + kdp + 3H (wy — )ty , (3.22)
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where the the adiabatic sound speed is defined in the GDM formalism to be

Wo

u 3HA+w,)

- | S

= wp - (3.23)

The same physics is determined by either the second order field equation of motion Eq. 3.20 or

the set of first order GDM equations of motion Eq. 3.21 and Eq. 3.22. The motivation for work-
ing with the GDM equations of motion is to take advantage of approximation schemes developed
for the GDM fluid in the fast oscillation regime 70141071 14:116:141,166,158, 115,163,113 R eca]] from
Eq. 3.7 that the axion field oscillates on a time scale inversely proportional to its mass 72,. As H
drops below the axion mass, it becomes computationally difficult to evaluate Eq. 3.21 and Eq. 3.22.
This is overcome by using the WKB method to find the evolution of the average fluid variables over

the oscillation time scale when 2 >> 44

é\p = —kup — é — 3Hf§ff§¢ — 97‘[255ff%¢/k, (3'24)
ity = — Mg + Cekdy + 3 Huy (3.25)

where the effective sound speed of the fluid is

P (kfkn)?

‘i P 1+ (kfky)*

(3.26)

An additional benefit of this formulation is that the effective sound speed c%; is a gauge invariant de-
scription of perturbation growth, unlike the adiabatic sound speed ¢, which encodes both spatial
and time variations in the equation of state.

To understand the physics described by the eftective sound speed of the generalized axion fluid,

we first review several relevant scales that are introduced to our cosmology by the presence of a sub-
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Figure 3.4: Evolution of different physical momentum scales in units of the axion mass as a function of the scale factor

for an axion oscillating before matter-radiation equality (top panel, my = 10722 eV) and for an axion oscillating after

matter-radiation equality (bottom panel, mey = 1073 eV). Grey lines indicate constant comoving modes, arbitrarily

chosen. When the axion field begins to oscillate 2., the Hubble parameter H (we use me = H(d) as the oscillation

condition here), axion Jeans Scale kJ and axion mass scale £, are all equal, by definition. At all times, comoving modes

smaller than the axion Jeans scale (grey lines above the /eJ lines) will be suppressed. Note a slight shift in the location of
matter-radiation equality, despite both axions having the same relic abundance.
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dominant ultra-light axion. First, the time when a given perturbation mode crosses the horizon 4.

is set by the evolution of the Hubble parameter. Modes that cross the horizon during different cos-
mological epochs (e.g. matter domination versus radiation domination) will evolve at different rates.
This behavior is largely independent of the physics specific to axions. Each comoving momentum

mode £ of the axion field will cross the horizon at a different time 4. determined by

= H(a.) . (3.27)

However, such a mode can be either relativistic or non-relativistic at the crossing time «. dependent
upon the mass of the axion. A given mode will be relativistic in the case where its physical momen-
tum is greater than the axion mass. The time when a mode transitions from being relativistic to
being non-relativistic is determined by the condition

k(anr)

ﬂnr

= mygp . (3.28)

So we see that a mode which is relativistic at horizon crossing satisfies

ket > Mmedc . (3.29)

whereas a mode that is non-relativistic at horizon crossing satisfies

Rnon—rel < Mmedc . (3-30)

Only in the case where a mode is non-relativistic will it contribute to the the CDM perturbations at
that particular scale. So we should expect suppression to the matter power spectrum at those modes

which are relativistic. In Fig. 3.4, we show two examples of the mode evolution for different axion
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masses - a heavy mass beginning to oscillate before matter-radiation equality, and a lighter mass be-
ginning to oscillate after. At the level of the background cosmology, the lighter mass will slightly re-
duce the amount of CDM around the time of matter-radiation equality and thus push . to larger
values. In Fig. 3.4, this is evidenced by the slight mismatch in the position of the vertical dashed line
indicating 2.q. In each mass case, the axion mass is indicated by the horizontal dot-dashed line. Con-
stant comoving modes are arbitrarily chosen to guide the eye and are indicated by grey lines. In both
cases, we see that the largest comoving £ mode (highest grey band) first intersects the evolution of
the Hubble parameter (orange line) before intersecting the horizontal axion mass line, meaning the
mode crosses the horizon while relativistic before becoming non-relativistic. The smallest comoving
k mode (lowest grey band) is an example of the opposite - the mode first becomes non-relativistic
before crossing the horizon. Those modes which become non-relativistic before crossing the hori-
zon will evolve identically to CDM. We can infer precisely which modes satisfy this condition, and
define a corresponding mode k., above which this condition no longer holds. As an example, in the
case where we assume the axion begins oscillating well within radiation domination, the time of

oscillation is given by

Hy 1/4
Aosc ~ - (Qmﬂeq) / (331)
Mo
so that the modes which are non-relativistic at the time of oscillation are given by
1/4
knonfrel < km = m¢ﬂosc =V m;z)HO (Qmﬂeq) / . (332)

The final relevant scale is the Jeans scale £; - it is the physical scale corresponding to the de Broglie
wavelength of axions moving with the Hubble flow. Momentum modes of the axion field become

equal with the Jeans momentum of the field when
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;J = \/mpH(a). (3.33)

The Jeans scale characterizes the scale where the axion field pressure matches the competing po-
tential of gravitational collapse, to linear order. Perturbations at length scales greater than the Jeans
length will be dominated by gravitational collapse and continue to grow into the non-linear regime
and perturbations at smaller lengths will be dominated by the field’s quantum pressure and oscillate
between collapse and expansion ''#. The physical effect of £ is encoded in the field (or equivalent
GDM fluid) equations of motion, and dynamically manifests the transition in the effective sound
speed % of the axion. In other words, it determines when the sound speed terms become relevant
in the evolution of the perturbations.

Returning to Fig. 3.4, we can see how the evolution of the Jeans scale (red line) has a differing
affect on large £ modes versus small £ modes. First, let’s consider the case of a large axion mass such
that the field begins to oscillate before matter radiation equality .q. We see thatallk < &y, are
non-relativistic when crossing the horizon, and are always smaller than £j, thus they act identically
to CDM. However, for those modes £ > £y, they become non-relativistic after horizon crossing,
but remain larger than ; until the scaling relation of H(4) changes after matter-radiation equality.
These large £ modes will be suppressed relative to the small # modes until they cross ;. If we con-
sider axion masses sufficiently small such that the axion begins oscillating after zq (bottom panel),
an additional possibility emerges - the possibility foramode k; < k < kp, before zeq. In this
situation we can have a mode that is suppressed by the sound speed while the background is still ra-
diation dominated. However, this situation likely is not of much interest because we note that this
situation can only occur before the axion field begins to oscillate. In such a regime, the axion still
possesses the equation of state of dark energy and we can exactly evaluate the evolution of the field.

We now know the relevant scales needed to determine when the axion behaves differently from
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regular CDM. We can use these scales to infer the shapes and sizes of particular features of the mat-
ter power spectrum. In the case of ultra-light axions with 7, < m.q eV such that they oscillate after
matter-radiation equality, we expect a suppression to small scales beginning at £, and suppression
factor that grows with the time between matter-radiation equality and the mode becoming larger

than k]

~1— log [ =+ (3-34)
Py rcom by 2 deq

where 4} is the scale factor when the mode crosses £;>*.  We expect this suppression factor to man-
ifest as a step-like feature in the matter power spectrum and see that it appears when we compute

P for various cases? in the next section.

3.2.4 COMPUTATION WITH THE axionCAMB CODE

To compute the transfer functions and background evolution of a cosmology consisting of the stan-
dard ACDM species with an additional (single) axion fluid produced via the Misalignment Mech-
anism, we use the modified version of the CAMB Boltzmann solver known as axionCAMB '°7. For a
given cosmology and axion mass, the exact field-level equations are used by axionCAMB to track the
background evolution of cff s Po, p 0 and wp at all times. Additionally, when 2 < 4, the exact
GDM fluid equations of motions are used to track the evolution of dp, dp, #, and 0. Whena > a,,
the time averaged GDM fluid equations of motion are used instead, and the background equation
of state for the axion is assumed to be exactly w, = 0. We restrict our analysis to masses which have
aose < 1, roughly corresponding to 72, > 1033 eV. We assume that the symmetry breaking scale
for the axion field must be higher than that of the end of inflation, which we set to Hips = 10137

GeV. Eq. 3.9 is used to exactly calculate p ¢(ﬂ) until the point where m, = 3H(a), after which

wp = 0 and the axion energy density exactly scales like matter p o X 473, The axionCAMB code

Iwe also consider cases of early time oscillation. Need to derive results for those cases as well.
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iterates the initial field value ¢ ¢(z > 0) until the requested relic density is recovered to precision
of 10™*. Because the axion relic always behaves as CDM today, we subtract the axion relic density
from the CDM relic density when running axionCAMB so that the quantity wy, + wcpym is constant
throughout this work.

Using axionCAMB we calculate Py, for various axion parameter choices, and identify the mass
and abundance dependent suppression to the matter power spectrum matching results previously

recovered in the literature '*5

, as shown in Fig. 3.5. We can also look for the redshift dependent fea-
tures in the axion suppression to Py in Fig. 3.6. First, notice that only those masses which begin
to oscillate after equality introduce a BAO phase shift, apparent in the appearance of oscillations
around BAO scales for those masses. We see that the heaviest mass, which oscillates well before
equality, always introduces a step like suppression to the matter power spectrum due to its Jeans
Length. Also, that suppression grows with the time since equality. For the lightest masses, these
fields will not transition before the onset of matter-radiation equality and so there is an additional
effect set by the scale entering the horizon when the field begins to oscillate, £p,,. Scales larger than
km will be outside the horizon at equality. In this case, part of the CDM which would normally be
present during matter dominated perturbation evolution is not. We should expect that anytime os-

cillation occurs at low redshifts where non-linear structure collapse is occurring, there should be a

distinct signature in the structure formation observables, which we consider next.

3.3 STRUCTURE FORMATION WITH ULTRA-LIGHT AXIONS

The presence of an ultra-light axion modifies the process of structure formation throughout cosmic
history. These changes can be summarized through three effects. First, the axion modifies the ratios
of standard cosmological species to each other. Shifting these abundances presents a new expansion

history H(z), changes when periods of equality occur and alters the speed and extent to which over-
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Figure 3.5: The matter power spectrum for three choices of axion abundance normalized to the ACDM value. Two

choices of axion mass My = 1072° eV (dashed line) and mey = 10730 eV (solid line) are shown with the corresponding

Jeans scales indicated by black lines. In the case of the lighter axion mass, the field does not begin oscillating until after

matter-radiation equality, so a redshift of matter-radiation equality is slightly shifted in this case, with a corresponding

phase shift introduced to the BAO. This shift in the BAO phase is evidenced by the presence of oscillations around BAO
scales in the relative matter power spectrum for the lighter axion mass, but not the heavier.

densities and perturbations evolve. These effects were reviewed in §3.2 and are calculated using the

axionCAMB code. Second, the presence of an axion modifies the non-linear dynamics of halo collapse
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Figure 3.6: The matter power spectrum normalized to the ACDM value with Q¢/QCDM = 0.05 for three choices

of redshift. In each case, the Jeans scale for a given axion mass is indicated by a circle. In the high-mass limit, the axion

Jeans length becomes cosmologically small and it behaves identically to CDM. At the lowest masses, the Jeans length

approaches the horizon size and acts identically to DE. For the three axion masses above, the field begins to oscillate at
Zosc (Mg = 10726 V) & 17,800, 25 (1 = 1072 V) & 321, 205 (mp = 107 eV) & 2.
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Figure 3.7: The Lagrangian bias normalized to the ACDM value for various choices of axion mass. The Jeans scale at

z = 0.65 is indicated for a given axion mass by a circle. A halo mass of 1013M@ is assumed. Note the presence of the

percent level ACDM step in the bias at scales smaller than keq along with a second, larger step at scales set by the axion

mass. In the case of the lightest masses, an apparent attenuation in the step height occurs due to the late oscillation
time of the field.

at late times. One driver of this change is the difference in the ratio of clustering to non-clustering

matter during collapse. We consider this effect in §3.3.1. Third, an axion will change the critical
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overdensity necessary for a halo to collapse at a given scale. Along with axion-induced changes to
the Halo Mass Function (HMF), this manifests a scale-dependent modification to the halo bias. We
explore the axion modifications to the bias in §3.3.3. In all these cases, note that care must be taken
when introducing the axion as the expression of the sound speed at the time of field oscillation will
depart from approximations which match in the far from oscillation regimes. At the time of this
dissertation, the proper method of incorporating this effect is still being considered. As such, re-
sults for axion fields which begin oscillating around the redshift at which we initialize the collapse

procedure should be considered with limited confidence.

3.3.1 HarLo COLLAPSE

To model how the presence of an ultra-light axion affects the structure collapse process, our goal is
to parameterize how the halo radius as a function of time R(#) is modified by an ultra-light axion. A
complete consideration of the spherical collapse process in the presence of a GDM model is consid-

ered in '®*. Under standard spherical collapse, the evolution of a halo is given by

R() = —RGZJ(IZI) - 47IG3R(t) > (ﬁl-(f) + 3Pz'(f)) : (3.35)

z

Here, the index summation over 7 includes all species besides CDM and baryons. For the axion, this
means an additional contribution ofﬁp + 3w¢ﬁ¢ to Eq. (3.35). Atvery early times, 2 < a5, be-
fore the axion has started to oscillate, the axion will generate a contribution of —2p o At late times,
a4 > dgs, for the n = 1 axion, this contribution will instead be simply o o If the axion transitions
its equation of state during spherical collapse, it will leave a distinct impression on R(#) that cannot
be exactly duplicated by the standard cosmological fields. Even in the case of generic Light but Mas-
sive Relics (LiMRs), amongst which massive neutrinos are a special case, which are known to free

stream, the early universe equation of state will look like radiation, not dark energy. At all times, the
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exact expression for Eq. (3.35) used in calculations is given by

k() = —]fj(‘f) - IEORO (42,0

(3.36)
2, (8) + 3,00, (1) + (1) + 3w (0)p, (1))

Note we include dependence on w,(#) only when we include massive neutrinos in our cosmology.
However, in the main text of this work, we only consider the massless neutrino case, in which case
the neutrino terms in Eq. 3.36 are set to zero. We consider the case of massive neutrinos, including
degeneracies with ultra-light axions, in Appendix §3.5.

At the level of perturbations, the energy densities and pressures are modified to *5*

£i(2) = p,(2)(1+ 9:(2)) , (337)

Pi(z) = Pi(z) (1 N Gra®)

where overbars denote the background value.

In this work, the conditions for determining whether a halo collapses are as set in the peak-
background split °**" model of halo collapse. In this framework, 9, can be expressed in terms of
some long d; wavelength perturbations we introduce into the system

Tik, z)

0, =0 —"—, .
Lﬁ(k,zim) (3.39)

where 7;(k, zini) is the CDM+B transfer function. The evolution of this long wavelength mode
throughout collapse is set by ratios of transfer functions between some initial redshift where the

collapse process is chosen to begin, zi,; and some redshift we chose for collapse z.,). Additionally,
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a short wavelength perturbation ds is introduced at zin; and we are interested in the magnitude of
short wavelength perturbation, at a chosen scale, is necessary to produce collapse by zoj1. We will
call the minimum satisfactory small wavelength perturbation, evaluated at the collapse redshift, the
critical overdensity dric. Likewise, dr, evaluated at the collapse redshift, will be d; coi1. To determine
these quantities, the halo collapse R(#) is computed between zin; and 2.1 in the presence of these
long and short wavelength perturbations using the specially developed code Re1AxiFAST. This code
is used to compute the value of the critical overdensity for collapse d.yic(k) at some redshift of col-
lapse zo) in the presence of long 7 and short ds wavelength perturbations at some initial redshift of

collapse zip;.

3.3.2 COMPUTATION WITH THE RelAxiFast CODE

To track the evolution of CDM-+baryon halos in the presence of background overdensities of long
and short wavelengths, we will use a modified version of the RelicFast code. The dynamics of the
halo evolution computed by the RelicFast code and the initial conditions used for halo evolution

152

are described in detail in '5*. The RelAxiFast execution is equivalent up to the following modifica-

tions:

1. The background energy densities are modified by the presence of an ultra-light axion with
time varying equation of state. This modifies all background quantities, including the energy
densities p (), the scale factor 4(), Hubble parameter H(4), and the transfer functions 7;.
The full background cosmology in the presence of an ultralight axion is computed by the
axionCAMB code at RelAxiFast run time and collected for use in the bias calculation. In this

sense, axionCAMB replaces the role of CLASS in the original Re1icFAST implementation.

2. The perturbation evolution is also modified in the presence of an ultra-light axion. The ax-

ion fluid pressure Py, effective sound speed cgff and oscillation redshift 2 are also calculated
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by axionCAMB at run time and used by RelAxiFast to compute the evolution of the axion

fluid perturbations.

3. RelAxiFast evaluates Eq. 3.36, a modified version of the spherical collapse equation of mo-
tion to account for the presence of a time varying axion fluid. Qualitative changes which

occur when the axion field begins to oscillate are accounted for.

With these modifications, RelAxiFast quickly (O(10) seconds) calculates the critical overden-
sity for collapse, including calculation of the axion fluid background. If the axion background is
pre-generated, the bias calculation is much faster (< 1 second). Because of the highly non-linear na-
ture of the collapse, the critical overdensity of collapse is calculated via a shooting method. As input,
a collapse redshift is specified by which an initial matter density should form a halo by. Then, for
many long wavelength perturbations 41, RelAxiFast calculates the critical overdensity of collapse
eric (BL, IL, Zcollapse) by varying an initial short wavelength overdensity ds at an initial redshift of
collapse of zin; = 200, evolving the system forward in time, and varying Js until the collapse condi-
tion s satisfied at 2eolapse- The solutions for Jeic are then used to compute the halo power spectrum
Pin (), which (at a single redshift) relates to the matter power spectrum Py, (k) through the scale

dependent bias function

Pon(k) = 07 () P (k) - (3.40)

3.3.3 THE ScaLE DEPENDENT HaLo Bias

The halo bias provides a functional description of the likelihood of a halo to collapse in a back-
ground matter field. Particularly, it is a measure of the dependence of the halo formation process

'5* to develop a scale dependence in re-

on different perturbation modes. The halo bias is known
sponse to different modes growing at different rates (e.g. a step due to the transition from radiation

to matter domination in ACDM) and we will see similar scale dependencies develop due to late-
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time transitions in the axion equation of state which we can search for in cosmological data sets. In
Fig. 3.8, we see an example of how the matter and halo power spectra, here represented by a suppres-

sion factor relative to an equivalent ACDM cosmology, can evolve to different values.
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Figure 3.8: Suppression factor normalized at £ = 104 Mpc_1 for matter (dashed) and halo (solid) power spectra. This
is for halo masses M = 1013M® collapsing at z = 0.65.

Prior work has shown that the introduction of light relics to the cosmology introduces a scale-
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dependence in the halo bias due to their free streaming** 516575 Scale dependence emerges in the
halo bias as a reflection of different perturbation modes evolving at different rates over cosmic his-

62,187 While different in nature, the axion introduces a qualitatively similar suppression to the

tory
matter power spectrum as do free-streaming relics, and it also introduces distinct scales 4; and £y,
which modify the evolution of perturbation modes, so it is reasonable to consider how they might

manifest a scale dependence in the halo bias as well.

At linear order, the Lagrangian bias is defined by

Ologn ddes
L _ g crit
bl (k) - < 8§crit > ‘SL,coII:() (da\[,,collo (/6)) ’ (341)

where the first term is the Halo Mass Function (HMF) and the second term is calculated by solving
for spherical collapse R(#) assuming the peak-background split model. This work is primarily con-
cerned with calculating the scale dependence of the second term using the combined axionCAMB +
RelAxiFast codes. There are few points to mention concerning the first term, the HMF function.
The halo mass function in the CDM paradigm has been extensively modeled and tested to great
success leading to various calibrations to the Press-Schechter HMF 173,189,118,195,77 Tp contrast,
much fewer work has been done to study the HMF for the FDM case ' +3:124145:59:18¢ T particu-
lar, '8¢ demonstrated a substantial reduction in the number of low mass halos at late redshifts in
comparison to standard CDM HMEF realizations, while agreeing with the CDM HMF for high
masses. With that said, these studies have only modeled ultra-light axions in the realization where
they compose all of the CDM. As such, they tend to only consider masses at the higher end of the

range we consider here M, > 1072

eV. For these reasons, we avoid using a special HMF derived
from axion simulation. In this work, we use the HMF derived from the MICE simulation®. Alterna-
tively, there is the possibility of modifying an eftective field theory prescription for generalized DM

asin'® or'**. We do not consider effective descriptions of the ultra-light axion HMF here. In any
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case, Fig. 3.9 demonstrates that while the Eulerian bias is quite sensitive to different halo masses, the

Lagrangian bias, which is the quantity studied throughout this work, is affected relatively little.
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Figure 3.9: The Eulerian bias (top panel) and Lagrangian bias (bottom panel) normalized to the ACDM value for various
axion mass and halo mass choices. Note that the effect of varying the halo mass is nearly indistinguishable in the
Lagrangian bias.

It is known that the ACDM cosmology introduces a step-like enhancement to the Lagrangian
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bias of the form

blL,ACDM (k)

RACDM
= 7I,ACDM
by (hrer)

(3-42)
=1+ Apcpwm tanh (ak//eeq)

with Apcpm = 4.8 X 1073 and 2 = 4. Similarly, light massive thermal relics (LiMRs) - including
massive neutrinos - with temperature today Tg?) produce a similar step-like feature in the bias at the

relic’s free streaming scale kg, given during matter domination by

—1
008 [ omy [T »
Y (o.1ev) (7450) PMpe G43)

and with an amplitude set by the relic’s abundance fx

A |
Ri( =1+ 7X (tanh ( (qu> + 1> (3.44)
q

with Ay = 0.6fx, ¢ = Sk/ks and A, =16%"1Ina similar manner, we provide the following fit to

the Lagrangian bias response in the presence of ultra-light axions

k
R} =1+ Ay tanh (/q)’ (3.45)

Ap=a (zj) tanh ((::i) (1- dosc)) . (3.46)

Eq. 3.46 represents the amplitude of the bias step induced by the relic, which is proportional to its
fractional abundance (the first term) and is attenuated if a mode enters the horizon after z.q due
to late oscillation of the axion (the second term). In the large mass limit, Eq. 3.45 should resemble

an unattenuated step at the free streaming scale akin to thermal relic dark matter. So we see that

I0I



the qualitative behavior of ultra-light axions resembles that of thermal relic dark matter up to an

additional redshift dependence in the amplitude.

3.4 RESULTS AND DiscussioN

The RelAxiFast procedure, combined with the MICE HMF prescription provides a computation
of the linear Lagrangian bias. In Fig. 3.7, we compute the Lagrangian bias for various choices of
axion mass at g,o] = 0.65. We observe the presence of a percent level enhancement to the scale
dependent halo bias which, appearing at a scale set by the axion mass through the axion Jeans scale,
ky. Additionally, a redshift dependence to the halo bias is manifest as a result of the ultra-light axion
transitioning its equation of state when the axion field begins to oscillate. The effects of the axion
beginning to oscillate at time a4 are two-fold. First, this oscillation can happen before or after mat-
ter radiation equality 2.q. Large masses which oscillate before z.q are growth suppressed until the
time of matter domination. However, for lighter masses with 25 > g, modes which enter the
horizon before the field begins to oscillate are additionally suppressed. The second consequence is
that this redshift dependent suppression is 7z addition to the suppression to modes which are below
the Jeans scale of the axion.

In the case of the largest mass axions, the behavior closely resembles that of CDM as they begin
oscillating long before structure formation. In this case, each perturbation mode will evolve identi-
cally up to a modification to modes entering the horizon before or after matter-radiation equality,
which is a purely ACDM effect. So we expect no additional step due to the axion Jeans length, for
heavy masses, because we are not sensitive to the very small modes effected by the axion field transi-
tion. In the case of very light masses, the Jeans wavelength approaches the Hubble scale today and
will only affect modes just entering the horizon. Qualitatively, we expect all but the largest modes

to evolve similarly to a cosmology which is ACDM with a slightly enhanced amount of dark energy
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and reduced amount of CDM. Again, since nearly all modes are aftected identically, we expect no
scale dependent effect to emerge in this case either (apart from the ACDM step). Another way to
realize this is to consider that the only modes affected by very light masses will have only just entered
the horizon. As such, there has not been much time for the integrated effect on R(z) to become sig-
nificant. This offers an explanation for the gradual suppression in the bias amplitude as you move
towards the lightest masses.

In Fig. 3.10 we consider the redshift dependence of the bias for choices of the ultra-light axion
mass at representative locations in the mass range we consider. Here we see the interactions of the
various scales relevant to the axion’s quantum pressure and how they are modified by the times of
oscillation and mode crossing.

Previous literature has demonstrated that introducing an ultra-light axion field into the \CDM
cosmology will generate a suppression in P,,,, due to the macroscopic wavelength of the fundamen-
tal axion field. In §3.2.2 and §3.2.3 we reviewed how this signature manifests in cosmological observ-
ables. While modeling the axion in the linearly perturbed universe is a critical first step towards mea-
suring axion signatures in cosmological data sets, it is also important to model the non-perturbative
effects of an ultra-light axion in the non-linear structure formation process.

In this work, we presented the first characterization of the ultra-light axion’s effect on the lin-
ear halo bias. We demonstrated a unique signature in the bias which partially compensates for the
suppression in the matter power spectrum at the percent level. The unique relationship between
the mass of an ultra-light axion and various factors of suppression to its perturbative modes is not
obviously replicated in other cosmological models of physics beyond the Standard Model, making
the halo bias a rich source of information for constraining such models. It should be emphasized
that the non-linear process of structure formation is distinct from the evolution of the linear cosmo-
logical background; structure formation is sensitive to the presence of an ultra-light axion in ways

different from the background cosmology and therefore provides information in addition to the
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Figure 3.10: Lagrangian bias at various collapse redshifts normalized at 4 = 10~% Mpc_l‘ Redshifts linearly span
fromz =~ 0Otoz = 10. Red (blue) colors are redshifts before (after) oscillation occurs for given mass. The color scale

progresses from red (small redshift) to black to blue (high redshifts). Circles indicate kj. Note that in the lightest mass
cases, the enhancement to the bias at the expected Jean's scale is suppressed relative to the heavier mass cases. This
is because even those modes which enter the horizon during matter remain suppressed until the axion field begins
oscillating. So only those modes which are larger than the size of the horizon when the field begins oscillating will be
enhanced. That is to say, late time oscillation “cools” the size of the bias steps introduced by the axion field.
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Figure 3.11: The amplitude at 4 = 107 %5 Mpc ™! of the Lagrangian bias normalized at k.. = 107* Mpc~! for

various axion masses and abundances. Percent level contours are in white. At the time of writing of this dissertation, the

origin of the jump corresponding to me = 107225 ev (the mass beginning to oscillate at the initialization redshift of

collapse) is still being explored. Note, for example, that care must be taken with approximate expressions for the sound
speed of axion fields which begin oscillating around the redshift at which we begin analyzing collapse.

cosmological signature. Further, modeling ultra-light axions into the structure collapse evolution is

a more accurate model even if it does not provide enough distinguishing power to better constrain
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the ultra-light axion model parameters. This may manifest, for example, as a shift in the reported
maximum likelihood values reported by analyses with and without ultra-light axions modeled in

the collapse functions. While not pursued in this work, it is interesting to consider the possibility

of modeling the clustering of ultra-light axions in spherical collapse processes in future work. Up-
coming cosmological probes will reach into higher redshifts where perturbations at smaller scales are
still small enough to be linear - the prospect of such probes investigating the scale dependent effects
in the halo bias introduced by the lightest axion masses is exciting . In light of previous work on
massive neutrinos, and light but massive relics, which share some qualitatively similar effects as the
axion but with different fundamental origin, we expect that proper consideration of the axion bias is
critical in any constraint of ultra-light axions using galaxy surveys at the risk of mischaracterizing the

axion mass otherwise.

3.5 COMPARING MASSIVE NEUTRINOS

Thermal relics are known to introduce a suppression to the matter power spectrum and scale de-
pendent effects in the halo bias as a consequence of their free-streaming while relativistic. As an
example, massive neutrinos will have an equation of state that transitions fromw = 1/3tow = 0
when m, = T,. While relativistic, neutrinos will free stream and are known to suppress the matter

power spectrum below their corresponding free-streaming scale

b = 208 ( Py.i >hM -1 (3-47)
5= Trz \100mev/ P 347

We would like to qualitatively understand how degenerate the imprint on the scale dependent bias is
between ultra-light axions and thermal relics such as massive neutrinos. To test this, we compare one
cosmology with massive neutrinos and a second cosmology where the neutrinos are made massless,

but an axion is introduced with the same relic abundance and axion mass chosen such that &; equals
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Figure 3.12: Lagrangian bias normalized at £ = 1074 Mpc_1 for a cosmology with three, degenerate, massive neutrinos
with 2, = 60 meV (solid) and X7z, = 1 eV (dashed). We compare (in black) with an identical cosmology where the
neutrinos are made massless and an axion with the same abundance and kJ equal to the neutrino free-streaming scale.

the free-streaming scale of the neutrinos from the first scenario. As an approximation to using either

the inverted or normal neutrino hierarchy, we consider a three neutrino degenerate hierarchy with

107



¢ + Massless Neutrinos

—— ¢ + Massive Neutrinos

1.012-

1.010—-

1.008-

1.006—

by (k) /by (xer)

1.004-

1.002—

1.000
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In Fig. 3.12, we sce that these two signals are not fully degenerate. While the normalized (and ab-
solute) bias is overall larger for the cosmology with an equivalent axion at large £, there is a crossing
that occurs at smaller scales for larger neutrino masses. This suggests that scale dependent measure-
ments of the halo bias have the potential to discriminate these two scenarios, and perhaps for more
generic light but massive thermal relics (LiMRs). In both cases, a statistical analysis is necessary to
determine whether near term surveys would be sensitive to these difterences. We also want to verify
whether the enhancement to the scale dependent bias introduced individually by massive neutri-
nos and ultra-light axions combines independently of each other. In Fig. 3.13, we show the case of
a cosmology possessing both an ultra-light axion and massive neutrinos, each sector composing 1%
of the CDM, and having k¢ = k;. Note that the presence of both sectors increases the overall bias
enhancement, allowing measurements of the halo bias to jointly constrain these two sectors. While
axions may possess a wide range of 4j, laboratory measurements of neutrino masses will set bound
their corresponding range of kg, introducing another mechanism by which bias measurements may

differentiate these two species.
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Inferring Black Hole Formation Channels

with Eccentricity

4.1  INTRODUCTION

The initial detection of binary black hole pair (BBH) mergers by LIGO/VIRGO *#, have since been

complemented by a host of similar detections *7 ushering in an era of gravitational wave astronomy



and suggesting the existence of a sizeable BBH abundance. The development of our understanding
of early Universe physics, the nature of dark matter, and astrophysical black hole production not
only stand to benefit from this data, but are challenged by such findings as the existence of black
holes of anomalous mass °. For these reasons, it is both timely and compelling to consider how we
might better infer the formation channels of the black holes we observe in our detectors.

Various properties have been proposed as useful probes of the formation mechanisms of black
holes, including black hole spin and mass *5*°>'47. This work is concerned with how the orbital
eccentricity of BBHs may offer insight into black hole formation. Prior work has demonstrated how
various static and dynamic processs can lead to populations of black holes with different distribu-
tions in their orbital eccentricity 157180177 - Asa BBH approaches merger, orbital eccentricity will
be quickly attenuated through the radiation of gravitational waves. While this means we should ex-
pect little residual eccentricity at Hz frequencies for stellar mass black holes typical to the detection
bands of experiments like LIGO/VIRGO, it allows for considerable eccentricity at lower frequen-
cies further from merger. Planned and proposed experiments in this frequency regime (e.g. LIGO,
DECIGO) are well-positioned to measure this eccentricity and potentially lend insight into BBH
formation mechanics.

Prior work has considered the observable consequences of eccentricity in mHz frequency de-
tectors '7%'79. Amongst such effects are an increase in the perceived number of events in a given
frequency window, and a suppression to the detector Signal-to-Noise Ratio (SNR). While these
works have demonstrated the detection response for any single eccentricity of BBH, the effects of a
BBH population possessing a distribution in eccentricity have not yet been studied. In this work, we
consider the observational consequences of introducing a distribution in eccentricity to a BBH pop-
ulation. We will limit the eccentricity distributions studied to the case single-peaked distributions.
For such cases, there are two qualitative changes which occur with respect to a population of fixed

eccentricity: a widening about some peak value of eccentricity, and a shifting of the location of the



peak value of eccentricity. The result of each effect is studied.

In Section 4.2, we introduce the dynamics of an eccentric BBH. In Section 4.4, we forecast the
sensitivity of a LISA-like detector to the presence of particular populations of eccentric BBHs. In
Section 4.5, we estimate the extent to which a LISA-like detector can discern populations of BBHs
characterized by their eccentricity distributions. We conclude in Section 4.6 and offer on outlook

for how gravitational wave detectors in other frequency bands might offer complimentary findings.

4.2 EcceENnTRrIC BINARY DyNnaMICS AND EvOoLUTION

Only for sufficiently large metric perturbations is a higher-order general relativistic description nec-
essary to model the gravitational signature of binaries in the detectors we consider. For mHz range
gravitational wave signals, typical binary systems are far from merger and such considerations are not
necessary. To this effect, we shall only consider the quadrupole gravitational wave emission of the
signal, modeled to the post-Newtonian order in General Relativity.

We describe a BBH, composed of masses 721 and #2,, in terms of its total mass

m = my + mo, (4.1)
its reduced mass
mym;
= (4.2)
its chirp mass
3/5
_ K
mC - mz/s? (4'3)

the semi-major axis of its orbit, 2, and the orbital eccentricity, e. A non-circular binary withe > 0



will tend to circularize through emission of higher harmonic quadrupole radiation. As the circular
orbit is the lowest energy configuration given some , eccentric binaries will take a longer amount
of time to merge in comparison to their circular counterparts. To the post-Newtonian level, these

dynamics are described by the Peters’ equations '

da 64 Gum® 1+ & + e ()
dt 5 S48 (1—e2)7/2 7 4

de _ 304 Gum® el + 55;¢) (45)
dt ~ 15 o4t (1P 3

This set of equations fixes the relationship «(e) in the evolution of a binary system. Ignoring correc-
tions which occur near the merger, they can be used to estimate the time to merger by evolving until
a is of order the black hole radius

~ 5 o
tmerge ~ ﬁ‘umZG3

A2/3G31/3\ 4
(“ZL%(ZW ) (1=

(4.6)

Observing that the ¢ dependent term, and hence the lifetime, in Eq. 4.6 grows monotonically with ¢

and, as noted earlier. Further, we can describe the peak frequency of quadrupole emission by 178,176

_ VGm(1+e)y
o - 7

with y = 1.1954, which departs from the ¢ = 0 relationship f, = 2f.y, as eccentricity grows. While
emission also occurs at higher harmonics of this frequency, in this work we only consider the signal

of a single BBH to be comprised of the emission at f, - a more sophisticated analysis might consider
the expected enhancement due to simultaneous observation of the emission at multiple frequen-

cies. Combining Eq. 4.4 and Eq. 4.5 with Eq. 4.7, we see that specifying the mass, frequency, and
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Figure 4.1: Evolution of black hole binary eccentricity as a function of peak quadrupole emission frequency. The evo-

lution for several choices of e, = 6’(]‘}, = 10 Hz) is shown - for each, the lower limit offj, is indicated by a circle.

Points to the right of the shown magenta lines will merge within the indicated time period. Along the right edge, drawn
atf}) = 10 Hz, are the ¢, distributions corresponding to four different formation channels.

eccentricity of a binary at a fixed point in time determines the evolution of all physical properties
at all times. Alternatively, we can use these same relations to describe the frequency evolution (i.e.

chirping) of the BBH with time

wn

dt S¢

&, " %658 Gmc)fmf;lm}-(e), (4.8)

—~

0)8/3-1/2
Flo= Sl (+a0+32)
. (4.9)

— 5456(304 +121%))

Noting that F(e) — lase — 0, we see that the F(¢) acts as a suppression to the chirping (df,/dr)
of a circular BBH pair.
In Fig. 4.1 we demonstrate the evolution of ¢(f;) for various choices of e = ¢(f, = 10 Hz).

Note that for any choice of ¢, there will exist a lower bound on f,, correspondingtoe = 1. Asan
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example, it is worth noting that sufficiently eccentric BBHs with e, 2 1073 will never radiate in the
LISA window but will still merge in the LIGO window; in such a situation, the difference on BBH
counts in LISA versus LIGO could be used to infer the presence of a population of highly eccentric

binaries. Likewise, while all BBHs with ¢, <

~

103 will produce a signal in LISA and eventually
enter the LIGO band, only those which initially appear in the LISA band with sufficiently high
frequency will make this transition in a period of time reasonable for a follow up observation in
LIGO. The magenta bands in Fig. 4.1 indicate this lower bound on £, for various choices of follow-
up time.

In this work, we are not concerned with the evolution of BBHs at a single ¢, but rather for a pop-
ulation distributed at ¢,. In Fig. 4.1, the upper limit of ﬁ; is drawn at 10 Hz, the same frequency at
which e, is defined. So we can gain a qualitative understanding of how various ¢, populations evolve
through a potential detector landscape by drawing the ¢, distribution at 10 Hz and tracing lines of
constant ¢, to the left of the distribution. We show predictions for the ¢, distributions generated via
different astrophysical mechanisms (Isolated, Ejected, In-Cluster, Galactic Center) 157185177 - Asan
example, we consider the evolution of an Isolated distributions, such as might describe a primordial
black hole population existing in a void of large scale structure. In this case, we see that the majority
of the population will possess an ¢, ~ 107¢; will appear in both LISA and LIGO; and will merge

within 1o years for binaries appearing in LISA with £, 2 0.02 Hz.

4.3 OBSERVING ECCENTRIC BINARIES

We wish to consider the role that eccentricity plays in modifying the signal entering a gravitational
wave detector, as well as in the noise response of the detector to such a signal. We begin by noting
there are a number of population characteristics which we assume are independent of the ¢, distri-

bution. In the case of a static Universe, we assume that the distribution in spatial position and mass
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Figure 4.2: The effect on number density and signal-to-noise ratio in LISA as a function of binary eccentricity at fixed

frequency. Shown in blue is the enhancement to the observed number density of binaries in LISA relative to circular

binaries. Shown in yellow (dashed) is the suppression to the LISA (DECIGO) SNR relative to circular binaries. The

nearly identical effect on SNR in LISA/DECIGO indicates that suppression is driven by the change in signal rather than
difference in the detector noise strains.

do not correlate with the eccentricity distribution of the population. To this end, we utilize the mass

distribution inferred by LIGO to describe BBH populations of any eccentricity *

2.3

p(m1) o< my (4.10)
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Likewise, we assume that binaries are uniformly distributed spatially

p(r) o 4mr? (4.11)
and that the local merger rate is a constant
dn ant ( )
= — = constan 4.12
dt

We note, however, that the same mechanisms which generate the eccentricity distributions of in-
terest may also modify these distributions. For example, we do not expect populations produced
by astrophysical processes near the galactic center to populate many BBH pairs at extragalactic dis-
tances. Such considerations would certainly be necessary to draw conclusions about the underlying
formation channels, but as a stepping stone we only consider here the modifications to the signal
and noise that eccentricity introduces.

The first place that eccentricity enters the signal is in the f;, distribution of binaries. As we are
always concerned with the number of binaries observed over fixed time intervals, the likelihood of a

BBH possessing a particular f, is given by Eq. 4.8

dt
P(fp) o 7 (4.13)

The only remaining population parameter is ¢,, whose distribution p(e,) will be provided by one of
the underlying formation mechanisms shown in Fig. 4.1.
Combining these distributions provides a measure of the expected number of events in a given

time interval

Nevents = /Rp(mc),b(i’)p(]fg,e(ﬁ))p(e*)dmcdrdﬁde* (4,14)

So we see that eccentricity affects our signal - the event count - in three ways: (1) dz/df, sees an en-
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hancement due to eccentricity given by Eq. 4.9, (2) the f;(¢) evolution is set by the value of ¢, and
(3) the likelihood of a particular ¢, is weighted by p(ex).

We adopt a simplified model for the SNR in the presence of chirping binaries

b e=
e(fy0)* = 4/611‘%@0)(1 — (1)) (4.15)

shown to be a good approximation '7? to the true SNR

2 _ LAG)
P —4;/dtw (4.16)

which involves a summation over the 7z harmonic components of the gravitational wave emission.
Here, Sn(f) is the noise strain and #> = Zh? is the signal strain averaged over an orbital period.
Noting thatp o (1 — ¢)3/* and that N oc 7%, we see that there should be an suppression to the
expected number of counts with respect to the circular case given by (1 — ¢)*/%. Combining this
suppresion term with the enhancement given by F (¢), in Fig. 4.2 we demonstrate the overall effect
to the event count with respect to circular BBHs that results from introducing eccentricity to non-
chirping BBHs. We also show the suppression to the SNR for the cases of both LISA and DECIGO
to demonstrate that this effect is driven by the f;(¢) dynamics rather than the specific shape of the
detector noise curve.

The competition of these two effects will depend on which eccentricities we assume our detectors
are able to observe, which is driven by the availability of gravitational wave templates necessary to

detect eccentric BBH gravitational waves. This will introduce a cut into our event count over the

parameter space wherever the eccentricity is larger than is observationally possible
Oy (€) = Oecur —¢) - (4.17)
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Figure 4.3: Number of observed counts in LISA for fixed, Isolated, Ejected, In-Cluster, and Galactic Center ¢, distribu-

tions. Dashed line indicates expected counts for a perfectly circular distribution. While a fixed ¢, distribution would

exhibit a lower bound inf}), distributions in ¢, distribute counts across all frequency bins for all choices of ¢,;. Magenta

lines indicate events which will merge within 10 years and have ¢, = 0.9 - suggesting events which can have an
observable Hz range terrestrial observation follow-up.

Likewise, the calculated SNR will determine whether a signal is observationally viable. We impose

SNR > 8 over 10 years of LISA observation as the criteria by which to consider events observable

OsNR (7, fp, ey e5) = O(p(7, f, mcye) — 8) . (4.18)

Combining these terms, the observable number count is given by

Nevents = fRP(mf)P(V)P%>E%))P(€*)
X OsNR O, dm.drdfydes .

(4.19)

In Fig. 4.3 we show the expected number of observable events in LISA over a 10 year observation
period for five choices of the BBH eccentricity distribution. In each case, we also highlight the sub-
set of events which will merge within 10 years as an example of candidates that could potentially be
followed-up with a LIGO-like detection. For reference, we compare with what the expected number
of counts would be assuming a BBH population of only circular binaries, demarked by the black

dashed line. In the leftmost panel, we show the result for a fixed - and relatively small - eccentricity
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to indicate the close matching the circular case. Progressing to the right, we consider the Isolated
distribution, which is peaked at e, ~ 10~° but extends to both higher and lower eccentricities. As
indicated by the four different colored histograms, we begin to lose sensitivity to events as we im-
pose progressively lower bounds on ey, to the point that no events would be observed in the case
of a Galactic Center distribution without eccentricity templates of ey = 0.01. Interestingly, in
this situation, a mismatch between the LIGO merger event rate and LISA merger event rate would
indicate the existence of an eccentric sub-population, despite having no direct observations in the
LISA detector.

Another important consequence of transitioning from fixed ¢ to a distribution is that there is no
longer a single lower bound on fp as each choice of ¢, will produce a different bound. Sensitivity to
the shape of the ¢, distribution is contained in how the counts per frequency bin shift as we move
écur» most notably evidenced by the shifting the Galactic Center distribution counts. In general, we
see that the overall counts give an indication of where the peak of the distribution sits, the difference
between successive ecyes indicating how far the distribution extends to higher eccentricities. While
the difference between successive ey grows larger for more eccentric distributions, the overall num-
ber of counts is lower. So we see that there is a tradeoff between the signal uniqueness and statistical

significance of the signal which will be expanded on in the next section.

4.4 ECCENTRICITY BREAKING OF OBSERVATIONAL DEGENERACY

Considering the Isolated and Ejected panels of Fig. 4.3, we notice that there is a very similar number
of events at each frequency bin. In this case, we expect there to be a significant amount of degener-

acy between these two models in the dataset. Glancing at the shape of these distributions in Fig. 4.1,
this should not be surprising due to the similarity in distribution shape. It is useful to ask how such

degeneracies in the LISA dataset can be broken through the use of choices in ecy. To answer this
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question, we consider a model for the distribution of ¢, given by

fle) = Aifie) + Afie.), (4.20)

such that

Ai+4;=1. (4.21)

To quantify the observational degeneracy between models in our dataset, we proceed to con-
struct a Fisher information matrix for the two parameter model 4;, 4; where 7, j correspond to the
Isolated, Ejected, In-Cluster, and Galactic Center distributions ?*. The elements of the Fisher ma-

trix are defined by
ON}, ON,,
Fy = Z vV Nk@@a (4.22)
ook

where the index & runs across each of the f, bins. We derive three separate £y, one for each of ey =

1.0, 0.4, 0.1. For each of these, we consider three different fiducial choices of the ratio

R

4 (4.23)
4 . 23
So that in total, there are nine versions Fy. Asa base case, we will consider how the Isolated distri-
bution is degenerate with the other, more eccentric distributions. We show the resulting covariance
contours between Arglated and 4; in Fig. 4.4.

Considering each e, as an independent dataset, we generally expect that e., = 1, containing the
must counts, would always ofter the greatest constraining power. Indeed, when compared to distri-
butions of substantially higher eccentricity than the Isolated channel this is the case for choices of
R. However, the constraint between the relatively similar Ejected and Isolated distributions exhibit

the opposite behavior in the case where R takes on larger values.
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Figure 4.4: Forecasted 3¢ constraint contours on coefficients of binary ¢, distributions for a LISA-like experiment. A;

represents the abundance of e, distribution 7. In all cases, only two e, distributions l',j are considered at a time such

that 4; + A; = 1. Three different abundance ratios R = A[/Aj are considered, as well as three choices of maximum

observable eccentricity e.,; = 0.1 (black), 0.4 (dark red), and 1.0 (light red). All panels span 4-0.1 from the center

point. Generally, ellipse size indicates constraining power, while ellipse angle indicates parameter degeneracy (e.g. the
Isolated and Ejected distributions are highly degenerate).
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Ejected In—Cluster Galaxy Center

Figure 4.5: The;[2 measured by LISA assuming a true model corresponding to the Isolated e, distribution, but measur-
ing the Ejected, In-Cluster, Galaxy Center ¢, distributions, and assuming constraining power is systematically limited

over 12 independent frequency bins. Shown are four choices of ¢.. = 0.9 (dark red), 0.4 (light red), 0.1 (light
blue), 0.01 (dark blue). The black dashed line indicates the;{2 value corresponding to a p-value of 0.05. Plotted for
R € [0.125,5.0].

Of most interest here are cases where we see that different choices of ¢c,¢ provide powerful break-
ing of the dataset degeneracy. In the case of the Isolated and Ejected channels, the similarity of these
two distributions ensures that they are highly degenerate - evidenced by the &~ —45° angle of every
contour. This suggests, in the such cases, there is little information gained by pursuing higher ., in
the data. This is sharply contrasted by the cases of the In-Cluster and Galactic Center. Here, we see
substantial amounts of orthogonality in the contours - suggesting a combined constraint using data

from both e, would provide a dramatic improvement over a single cut dataset.

4.5 DISTINGUISHING PoruLATIONS WITH LISA

We now wish to consider how the dataset sensitivity to the population coefficients explored in Sec.
4.4 translates to the significance to which an experiment like LISA might be able to distinguish the
proportion of a BBH population deriving from different eccentricity distributions. As in Sec. 4.4,
we consider the Isolated distribution as a base case. We then ask the question - how much of the
BBH population needs to be derived from a different eccentricity distribution before LISA can

rule out the presence of an entirely Isolated distribution with statistical significance. We will again
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quantify the portion of the population derived from a non-Isolated distribution by the parameter

‘R. We then construct a simple chi-square statistic for the dataset:

){2 _ Z (]\]Isolated - ]\[observed)2

(4.24)
Fok ]\[Isolated .

For each choice of ecyc, we construct y* as a function of R as shown in Fig. 4.5. We then calculate
the ;(2 corresponding to a p-value of 0.0 for this data, indicated by the dashed line, with value of
x> above this threshold denoting regimes where LISA can significantly claim the presence of an
eccentricity distribution that is not just Isolated. We see that in all cases, the most efficient metric
for significantly distinguishing different populations remains the lowest ¢cye = 0.01 but that O(1)

improvements can be had by considering joint ecy, constraints.

4.6 CONCLUSIONS

We have shown how different choices of eccentricity distribution for a population of BBHs can
produce substantially different numbers of counts per frequency bin in a gravitational wave detector
like LISA. While the ability to observe mergers of higher max eccentricity is capable of strongly
breaking dataset degeneracies between models of mixed distributions, the distinguishing power of

detectors like LISA is still driven by data from of low eccentricity events.
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Conclusion

This dissertation details several methods by which to infer the properties of dark sector physics ex-
clusively through the gravitational interaction of those sectors with the rest of the Standard Model.
We have shown that phenomenological models of Dark Matter which comprise a massive particle
in contact with the SM at early times manifests a distinct energy scale in the cosmology known as
the free streaming scale. Such Light but Massive Relic particles not only introduce a suppression to

the linear matter perturbations below their free streaming scale, but additionally introduce a scale
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dependent feature in the non-linear growth of structure due to spherical gravitational collapse. To
take advantage of the plethora of upcoming galaxy survey datasets to study DM, it is requisite that
models describe the influence of DM on the relationship between halo overdensities and the linear
cosmological perturbations - a relation known as the galaxy bias. We have shown that LIMR DM
introduces a step like enhancement to the scale dependent halo bias which partially compensates for
the suppression introduced to the linear matter power spectrum. Due to the non-linearities of struc-
ture collapse, this Growth-Induced Scale Dependent Bias feature is non-degenerate with the DM
effect on the matter power spectrum. Therefore, we both learn additional information about DM
by measuring the halo bias as well as infer more accurate constraints on DM properties. We demon-
strate through forecasting how well the SDSS-BOSS, DESI, and Euclid galaxy surveys combined
with the Planck 2018 and CMB-S4 CMB surveys will be able to constrain the mass, temperature
and effective internal degrees of freedom (which can be recast as a constraint on the relic abundance)
of LiMRs. Over the region which is physically allowable, we find that most masses above ~1 eV

are excluded at the 3¢ significance. As a specific example, we then applied the LiMR analysis to the
case of massive neutrinos. While we found that accounting for the GISDB for massive neutrinos
induced a 10 shift in the inferred maximum likelihood of the neutrino mass, this shift vanishes if

we marginalize over the redshift dependence of the halo bias, which must be done if we do not have
good information constraining this dependence. The addition of the GISDB to the case of massive
neutrinos provided negligible enhancement to how well constrained the neutrino mass is about its
maximum likelihood value. We then considered the case of an alternative DM phenomenology com-
prised of an ultralight axion field. We demonstrated that, like in the case of a LiMR, and ULA in-
troduces an energy scale into the cosmology which is determined by its mass. In this case, the ULA
sets when the field begins to oscillate about the minimum of its potential. Unlike the LIMR case,
the ULA introduces a second scale which is set by is macroscopic wavelength called the Jeans Scale.

These two effects combine to produce a distinct feature of ULA physics in both the linear cosmol-
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ogy as well as the non-linear halo bias of the same scale as the degree to which the comprise the relic
DM fraction of the Universe today ~ 1% level.

It is known that different dark sector theories aftect the evolution and characteristics of astro-
physical objects today. It is then reasonable to assume that astrophysical processes dependent on
galaxy dynamics may be directly or indirectly affected by dark sector physics. One such process is the
production of black holes. It is then relevant to ask to what degree we may be able to distinguish the
formation channel of black holes. It is even more relevant due to the possibility of the primordial
black hole production that could account for a portion of the relic dark matter. In this dissertation,
we considered how different populations of black holes might be distinguished from each other us-
ing the persistent orbital eccentricity of Binary Black Hole pairs that form within the population.
We demonstrated that a mHz frequency detector like LISA can strongly break degeneracies between
population statistics with access to (0(0.1) level eccentricity templates for gravitational waveforms.
Though we show that the constraining power of such observations is still driven by higher sensi-
tivity to low eccentricity events, combining observations across gravitational wave experiments of
different frequency regimes enables inference of population eccentricity without having access to
high eccentricity templates. In all these inquiries, we find that competitive bounds on a wide array
of DM phenomenologies can be set by gravitational interactions alone and that such gravitational
constraints may be sufficient to test BSM physics without analyzing the consequences of other inter-

action pathways.
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