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We present a graviatom with de Sitter interior as a new candidate to atomic dark matter generically related to a vacuum dark
energy through its de Sitter vacuum interior. It is a gravitationally bound quantum system consisting of a nucleus represented by
a regular primordial black hole (RPBH), its remnant or gravitational vacuum soliton G-lump, and a charged particle. We estimate
probability of formation of RPBHs and G-lumps in the early Universe and evaluate energy spectrum and electromagnetic radiation
of graviatom which can in principle bear information about a fundamental symmetry scale responsible for de Sitter interior and
serve as its observational signatures.

1. Introduction

Nonluminous atomic dark matter includes a wide range of
candidates starting from the historically first mirror dark
matter [1–3]. Presented here is graviatom, a gravitationally
bound quantum system consisting of a regular black hole
or gravitational soliton G-lump and a captured charged
particle, which can be formally classified as atomic dark
matter with an additional intrinsic dark feature presented
by dark energy interior of a certain fundamental scale of
de Sitter vacuum. Electromagnetic radiation of a graviatom
bearing information on this scale fits in the ultrahigh gamma
range and can be regarded as its independent observational
signature.

The idea of an atom with a black hole as a nucleus
goes back to 1971 when Hawking put forward the idea that
primordial charged black holes could capture free charged
particle forming neutral and nonrelativistic ultraheavy black
hole atoms [4]. The minimal mass of a primordial black hole
that would not have evaporated entirely by now is 𝑀 ∼

5 × 10
14 g [5]. The term gravitational atom was introduced

in [6] for gravitationally bound neutral black hole and a
charged particle. Similar quantum system called a hypoth-
esized gravitational atom was considered in [7] by solving

the Schrödinger equation with the Newtonian gravitational
potential of a point-like mass modified by the presence of
extra compactified dimensions and a captured neutron [7].

Quantum levels in the field of a black hole have been
studied in detail starting from 1987 [8–10]. The gravitational
analogue of the hydrogen atom orbitals was considered in [11]
where the spectrum of normalizable fermion bound states
was calculated in the Schwarzschild background. Perturba-
tive modification of electronic orbitals around charged black
holes was proposed in [12]. It is clear that a particle under-
going transitions between quantum levels should radiate.
However, this question has been much less studied in the
literature than the question of quantum spectrum of a black
hole.

Quantum radiation of a charged nonrelativistic particle in
the Schwarzschild field was first studied in 1990 in [13] with
taking into account the DeWitt conservative self-force whose
origin is interaction of an electrostatic field of a charged
particle with a gravitational field of a source [14]. It was
shown that in this case the DeWitt self-force always exceeds
the nonconservative radiation damping force; the energy
spectrum and intensity of the electric dipole radiation were
calculated for the case of black hole withmasses ranging from
10−5 g to 1014 g [13] (see also [15]).The conditions of existence
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of a gravitationally bound quantum system with a neutral
black hole as a nucleus were formulated in [16, 17] where it
was called graviatom.

In this paper we study graviatoms with regular black
holes with de Sitter interior [18], their remnants [19, 20], and
vacuum gravitational solitons G-lumps [19, 21] as nuclei.

Primordial black hole remnants left after the Hawking
evaporation have been considered as a source of dark matter
for more than two decades [22–29] (for a review see [30–
32]). They could also be a source of additional information
about the primordial power spectrum [29, 33, 34] and about
their effect on big bang nucleosynthesis [29, 35]. However,
the question whether some remnants leave after the Hawking
evaporation of a singular black hole still remains open. The
generalized uncertainty principle requires existence of a black
hole remnant as a Planck size black hole [25]. On the other
hand, no evident symmetry or quantum number was found
which would prevent a complete evaporation [36]. Another
question in the case of a singular black hole is how to
evaporate a singularity? The complete evaporation would
involve a serious and unclear change in spacetime structure
which would have to evolve from a singularity to amaximally
symmetric Minkowski (or de Sitter) space [37].

These problems do not arise in the case of a regular black
hole with de Sitter centre instead of a singularity which leaves
behind a thermodynamically stable double-horizon remnant
[20] and does not involve a dramatic change in spacetime
structure [37].

The idea of de Sitter interior goes back to the heuristic
hypothesis that de Sitter vacuum could be a final state in
a collapse [38], to the idea of a self-regulatory behavior of
space-time geometry at achieving the Planckian densities
[39], and to the idea of the existence of the limiting curvature
of the Planck scale [40]. Second-order phase transition
during evaporation of a black hole with de Sitter interior
[19, 20] suggests possibility for a phase transition to de Sitter
vacuum in the origin [41].

Arguments in favour of a regular black hole are provided
by a loop quantum gravity [42, 43]. The “renormalization
group improving” approach based on the running Newton
constant, applied to the Schwarzschild spacetime, predicts an
appearance of a smooth de Sitter core replacing a singularity
[44]. The noncommutative geometry approach (for a review
see [45]) applied to the Schwarzschild black hole leads to
a regular de Sitter core at short distances from the origin
[46]. Appearance of de Sitter core was found also for a
cosmological noncommutative black hole of positive mass
with the Gaussian density profile [47].

The Einstein equations admit the class of regular spheri-
cally symmetric solutions asymptotically de Sitter as 𝑟 → 0

with Λ = 8𝜋𝐺𝜌int, 𝜌int = 𝜌(𝑟 → 0) of a certain fundamental
scale and at infinity [21, 48, 49]. A source term for this class
is specified by 𝑇

0

0
= 𝑇
1

1
and provides a unified model-

independent description of dark ingredients in the Universe
by a vacuum dark fluid [50, 51]. In this approach a vacuum
dark energy is described by a time evolving and spatially
inhomogeneous cosmological term [48], while dark matter is
represented by compact objects generically related to vacuum
dark energy through de Sitter vacuum interior. They include
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Figure 1: The metric function 𝑔(𝑟) for de Sitter-Schwarzschild
spacetime;𝑚 = 𝑀/𝑀crit.

regular black holes [18, 52, 53], their remnants [20], and
gravitationally bound vacuum structures without black hole
horizon (dark particles or dark stars, dependently on a mass)
[19, 21], called G-lumps, since they hold themselves together
by their own gravity [21]. For this class a static metric is
described by the line element:

𝑑𝑠
2
= 𝑔 (𝑟) 𝑑𝑡

2
−

𝑑𝑟
2

𝑔 (𝑟)
− 𝑟
2
𝑑Ω
2
. (1)

In the asymptotically flat case to be studied in this paper, the
metric function reads

𝑔 (𝑟) = 1 −

R
𝑔
(𝑟)

𝑟
, R

𝑔
(𝑟) = 2𝐺M (𝑟) ,

M (𝑟) = 4𝜋∫

𝑟

0

𝜌 (𝑥) 𝑥
2
𝑑𝑥.

(2)

Ametric function 𝑔(𝑟) is asymptotically Schwarzschild at
𝑟 ≫ 𝑟

∗
, where 𝑟

∗
= (𝑟
2

int𝑟𝑔)
1/3 is the characteristic length of

de Sitter-Schwarzschild spacetime [18, 19], 𝑟
𝑔
= 2𝐺𝑀𝑐

−2, and
𝑟int is characteristic scale for the interior de Sitter vacuum
related to its density by 𝑟

2

int = 3𝑐
2
/8𝜋𝐺𝜌int. (Characteristic

length scales essential for graviatom are summarized in the
Appendix.) The scale 𝑟

∗
comes as the radius of the direct

matching of the de Sitter and Schwarzschild metrics, 𝑔deS =

𝑔Schw; that is, 1 − 𝑟
2

∗
/𝑟
2

int = 1 − 𝑟
𝑔
/𝑟
∗
[39]. It is also the scale

at which the scalar curvature 𝑅 changes sign [19]. The mass
𝑀 = 4𝜋∫

∞

0
𝜌(𝑟)𝑟
2
𝑑𝑟 is related to interior de Sitter vacuum

and to breaking of spacetime symmetry from the de Sitter
group at 𝑟 = 0 [21, 54, 55].

Regular black hole with de Sitter centre has two horizons
[19, 21] which coalesce in the course of evaporation at a cer-
tain mass 𝑀cr corresponding to a thermodynamically stable
double-horizon remnant [19–21, 46, 56, 57]. For 𝑀 < 𝑀cr,
the metric (1)-(2) describe G-lumps.The typical behaviour of
the metric function [21] is shown in Figure 1.

Primordial black holes can be formed by various mech-
anisms (for a review see [35, 58]). Most general possibility
involves primordial density inhomogeneities forming over-
dense regions which can stop expanding and collapse [4, 59].
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The particular origin of inhomogeneities can be quantum
fluctuations arising in various inflationary scenarios [35].
PBH formation would be enhanced if inflation is followed by
a dust-like stage dominated by nonrelativistic particles [58].
This point is of special interest in the context of graviatoms.
As we will see below, the case of graviatom with RPBH
remnant or G-lump and captured GUT particles,𝑀 ∼ 10

14
−

10
16 GeV, which are considered as superheavy dark matter, is

the most promising [60–64].
In the literature two mechanisms of producing such par-

ticles have been considered. One is gravitational production
towards the end of inflation [60–62, 65, 66]. The other is
decay of the inflationary de Sitter vacuum during symmetry-
breaking phase transitions at the GUT scale: statistical
mechanics approach with model-independent description of
cosmological background shows that appearance of GUT
particles from the GUT scale de Sitter vacuum looks like
evaporation of Bose-condensate: particles satisfy the equation
of state of an ideal quantum degenerate Bose gas with
the Gibbons-Hawking temperature related to the de Sitter
Horizon [67–71]. GUT particles could be captured by RPBH
remnants or G-lumps and survive to the present epoch as
constituents of graviatoms.

The main goal of this paper is to study typical features
of graviatoms radiation which could result in their observa-
tional signatures as dark matter candidates.

In Section 2 we estimate the probability of formation of
a RPBH and G-lump in a quantum collapse of a primordial
fluctuation. In Section 3 we introduce the Schrödinger equa-
tion for graviatomand study typical behaviour of its potential.
Section 4 is devoted to quantum spectra and mechanisms of
graviatom radiation. In Section 5 we summarize the results.

2. Formation of the Regular Primordial Black
Holes and G-Lumps with de Sitter Interior

In the classical approach geometry of a collapsing body in
the comoving coordinates can be presented by the FRW
spacetime with the positive curvature [72]. In quantum
cosmology the wave function is defined on a superspace
which is the space of all 3-dimensional geometries 𝑔

𝑖𝑗
(𝑥⃗) and

matter field configuration 𝜑
𝑚
(𝑥⃗), Ψ = Ψ[𝑔

𝑖𝑗
(𝑥⃗), 𝜑
𝑚
(𝑥⃗)]. It

satisfies the Wheeler-DeWitt equation 𝐻̂Ψ = 0. In the case
of the FRW cosmology with the only dynamical variable, the
scale factor 𝑎(𝑡), theWheeler-DeWitt equation reduces to the
simple case called minisuperspace model. For the Friedmann
closed model it reads [73]

𝑑
2
Ψ

𝑑𝑎2
− 𝑉 (𝑎)Ψ = 0, (3)

where

𝑉 (𝑎) =
1

𝑙
4
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(𝑘𝑎
2
−
8𝜋𝐺

3𝑐4
𝜀𝑎
4
) , 𝑘 = 1. (4)

In general case a collapsing quantum fluctuation can be
described as a superposition of partial energy densities of
possible matter contributions [74]:

𝜀 = 𝜀
𝑝𝑙

6

∑

0

𝐴
𝑛
(

𝑙
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𝑎
)

𝑛

. (5)

The parameter 𝑛 is related to the parameter𝑤 in the equation
of state 𝑝 = 𝑤𝜀, as 𝑛 = 3(1 + 𝑤). Contributions to density (5)
include an inflationary vacuum (𝑛 = 0), ensembles of domain
walls (𝑛 = 1) and strings (𝑛 = 2), nonrelativistic matter (dust
with 𝑛 = 3), ultrarelativistic gas (𝑛 = 4), perfect gas (𝑛 = 5),
and ultrastiff matter (𝑛 = 6).

TheWheeler-DeWitt equation (3) reduces to

−
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where the potential 𝑈(𝑎) expressed in terms of the dimen-
sionless variable 𝛾 ≡ 𝑎/𝑙

𝑝𝑙
has the form [75]

𝑈(𝛾) =

𝐸
𝑝𝑙

2
(𝑘𝛾
2
− 𝐵
0
𝛾
4
− 𝐵
1
𝛾
3
− 𝐵
2
𝛾
2
− 𝐵
3
𝛾 −

𝐵
5

𝛾
−
𝐵
6

𝛾2
) .

(7)

Energy of a fluctuation in (6) is

𝐸 =

𝐸
𝑝𝑙

2
𝐵
4
. (8)

Coefficients𝐵
𝑛
are related to the coefficients𝐴

𝑛
in (5) by𝐵

𝑛
=

(8𝜋𝐺/3𝑐
2
)𝐴
𝑛
.

To model a collapse to a compact object with the de Sitter
interior, we modify the potential (7) by introducing a cutoff
related to characteristic scale for an interior de Sitter vacuum
𝛾int in the terms of the negative powers of 𝛾 corresponding
to high density contributions to (5), in accordance with the
underlying hypothesis [38–40] that transition to interior de
Sitter vacuum may occur at achieving a certain high density
during contraction. Modified potential has the form

𝑈(𝛾) =

𝐸
𝑝𝑙

2
(𝑘𝛾
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2
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(9)

The potential (9) tends to minus infinity for 𝛾 → ∞ and
𝛾 → 𝛾int. Near 𝛾 > 𝛾int, the potential (9) has a maximum
𝑈
𝑚

> 0, and the process of a quantum collapse involves
tunnelling through the potential barrier.

For big values of the variable 𝛾, in the limit 𝛾 ≫ |𝐵
4
|
1/4,

the Schrödinger equation (6) reduces to

𝑑
2
Ψ

𝑑𝛾2
+ 𝐵
0
𝛾
4
Ψ = 0, (10)

which has the solution [76]:

Ψ = √𝛾𝑍
1/6

(
√𝐵
0

3
𝛾
3
) , (11)
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with the asymptotics [75]:

Ψ = 𝐶
1
exp(

𝑖𝐵
0
𝛾
3

3
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2
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𝑖𝐵
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𝛾
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3
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Choosing integration constant proper for a collapse, we get
the WKB wave function corresponding to deflation. Indeed,
in the limits 𝐵

0
𝛾
4
≫ 𝐵
4
and 𝛾 ≫ 𝛾int, the action 𝑆 = ∫ 𝐿 𝑑𝑎 ∝
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𝐻 = ± ̇𝑎/𝑎 [75]. The classical solutions are 𝑎 ∝ 𝑒
𝐻𝑡 (inflation)

and 𝑎 ∝ 𝑒
−𝐻𝑡 (deflation).

For 𝛾 very close to 𝛾int, 0 < 𝛾 − 𝛾int ≪ √𝐵
6
/𝐵
4
, the

Schrödinger equation takes the form

𝑑
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+

𝐵
6
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2
Ψ = 0. (13)

Its solution, satisfying the boundary condition Ψ(𝛾int) = 0, is
given by
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2
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1

4
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After tunnelling through the barrier, a collapsing object
appears in the potential well. In this region, for 𝛾 − 𝛾int ≪ 1

the Schrödinger equation (6) reduces to [75]

𝑑
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whose solution, satisfying the boundary condition Ψ(𝛾int) =
0, reads

Ψ = 𝐶𝜌
𝑠+1

𝑒
−𝜌/2

𝐹 (−𝑝, 2𝑠 + 2, 𝜌) , (16)

where 𝐹(−𝑝, 2𝑠 + 2, 𝜌) is the degenerate hypergeomet-
ric function, 𝑠 = −(1/2) + √(1/4) − 𝐵

6
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The energy spectrum is given by
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The discrete spectrum does exist only if the following
condition is satisfied:

2 |𝐸|
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󵄨󵄨󵄨󵄨𝐵4
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0
𝛾
4
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This allows one to estimate the probability of tunnelling
through the barrier and range of masses 𝑀 of a collapsing
object. The tunnelling probability is determined by the WKB
penetration factor:
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The factor Γ is estimated as Γ < 2|𝐵
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The Schrödinger equation (6) describes the planckeon on
the energy level given by (17); 𝐸 = −(|𝐵

4
|/2)𝐸
𝑝𝑙
. Its total

energy includes the rest mass,𝑀𝑐
2
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, so the mass of

an object is given by𝑀/𝑚
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)
4, we estimate the

probability of the tunnelling for the compact object with the
mass𝑀:

𝐷 > exp[−4( 𝑀

𝑚
𝑝𝑙

)

3/4

(

𝐸
𝑝𝑙

𝐸
0

)] . (20)

It seems for the first sight that smaller objects collapse with
bigger probability. However, this estimate does not involve
the scale for de Sitter interior 𝐸int. General constraint on the
mass involving 𝐸int is obtained from (18). It gives 𝑀/𝑚

𝑝𝑙
>

|𝐵
4
| > 𝐵
0
𝛾
4

int where 𝛾int = 𝑟int/𝑙𝑝𝑙 = (𝐸
𝑝𝑙
/𝐸int)
2. Ultimately we

get

𝑀

𝑚
𝑝𝑙

> (
𝐸
0

𝐸
𝑝𝑙

)

4

(

𝐸
𝑝𝑙

𝐸int
)

8

. (21)

As we see, possibilities of formation of compact objects
with the de Sitter interior depend on the scales of the interior
vacuum 𝐸int and of the inflationary vacuum 𝐸

0
. The scale of

inflationary vacuum can be adopted as the GUT scale 𝐸
0
≃

10
15 GeV. In the frame of the hypothesis of arising of interior

de Sitter vacuum due to the phase transition at the GUT scale
[41], constraint on the mass is 𝑀 > 10

11 g. In this case only
regular primordial black holes can be formed in a collapse
of primordial fluctuations. In the frame of hypothesis of self-
regulation of geometry near the Planck scale [39] or existence
of limiting curvature of the Planck scale [40], mass range
for collapsing objects admits G-lumps and RPBH including
those withmasses sufficiently small to evaporate and produce
remnants to the end of inflation. Objects with small masses
are produced with the bigger probability (20).

One more possibility for a wide range of masses is related
to production of compact objects with de Sitter interior
during later stages of the early Universe. The standard model
of particle physics predicts a phase transition at the QCD
scale of 100–200MeV (see [77] and references therein) which
can lead to a second inflationary stage with duration of about
7–10 e-foldings [78–80]. In this case the formation constraint
(21) admits any mass.

We conclude that regular primordial black holes, their
remnants, andG-lumps can arise in the earlyUniverse during
first and second inflationary stages, so that they can capture
available particles and form graviatoms.
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3. The Schrödinger Equation for Graviatom
and Conditions of Its Existence

The problem of a motion of a nonrelativistic charged particle
in a curved spherically symmetric spacetime reduces to the
Schrödinger equation [81]:

−
ℏ
2

2𝑚
Δ𝜓 + 𝑈 (𝑟) 𝜓 = 𝐸𝜓, (22)

where𝑚 is the mass of a particle. The potential𝑈(𝑟) includes
contribution of gravity and of the DeWitt conservative self-
force acting on a charged particle with the mass 𝑚 and the
charge 𝑞. It is given by [14]

𝑓
𝑠
= 𝑚𝑐
2
𝑟
𝑞
𝑟
𝑔

2𝑟3
, (23)

and directed outward the field centre. Here 𝑟
𝑞

= 𝑞
2
/𝑚𝑐
2

is a classical electromagnetic radius of a particle. In a
weak gravitational field the conservative self-force 𝑓

𝑠
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exceeds the nonconservative radiation damping force 𝑓
𝑟
=

2𝑞
2V̈/3𝑐3, where V is the particle velocity [13]. In this approx-

imation the gravitational part of the potential is given by
𝑚𝜑(𝑟) = (𝑚𝑐

2
/2)[𝑔
𝑡𝑡
(𝑟) − 1]. For a metric of the class (1) the

gravitational potential reads𝑚𝜑 = −(𝑚𝑐
2
/2)(R

𝑔
(𝑟)/𝑟).

This approach corresponds to the Pauli approximation to
theDirac equation [16, 17]. Aswewill see below, characteristic
orbits of particles in the field of graviatom are in most cases
located far from the characteristic Schwarzschild-de Sitter
radius 𝑟

∗
= (𝑟
2

int𝑟𝑔)
1/3 which justifies application of the Pauli

approximation for analysis of basic properties of graviatom.
In what follows we will consider the range of frequencies
ℏ𝜔 < 𝑚𝑐

2 relevant for this approximation.
With taking into account the DeWitt self-force we have

for the potential

𝑈 (𝑟) =
𝑚𝑐
2

2
(−

R
𝑔
(𝑟)

𝑟
+

𝑟
𝑔
𝑟
𝑞

2𝑟2
) . (24)

The behaviour of the potential (24) is determined by
typical behaviour of the metric function 𝑔(𝑟): in the asymp-
totically flat case it has not more than two zeros, one
maximum at 𝑟 = 0 where 𝑔(𝑟) = 1 and one minimum [21].
This follows directly from the Einstein equation for themetric
(1) which reads

𝑔
󸀠󸀠
+
2𝑔
󸀠

𝑟
= 16𝜋𝐺𝑝

⊥
. (25)

The pressures are given by

𝑝
𝑟
= −𝜌, 𝑝

⊥
= −𝜌 −

𝑟

2
𝜌
󸀠
. (26)

For the solutions satisfying the weak energy condition (non-
negative density for an observer on a timelike curve), 𝜌󸀠 ≤ 0

[21]. In the extremum of the metric function, 𝑔󸀠 = 0, and the
type of extremum is determined by the sign of the tangential
pressure𝑝

⊥
. In the asymptotically flat spacetimewith de Sitter

centre there is one scale of a vacuum energy, 𝑝
𝑟
= 𝑝
⊥

=

−𝜌int at 𝑟 = 0, and at this point 𝑔(𝑟) has a maximum. The
next extremum is a minimum [21], in the region where 𝑝

⊥

is already positive (since 𝑔󸀠󸀠 > 0 and 𝑔
󸀠
= 0 there). In an

extremumof the potential (24) the condition𝑈󸀠(𝑟
𝑚
) = 0 gives

𝑔
󸀠
(𝑟
𝑚
) =

𝑟
𝑔
𝑟
𝑞

𝑟3
𝑚

. (27)

It follows that 𝑈(𝑟) has an extremum in the region where
𝑔
󸀠
(𝑟) > 0 and the metric function is growing. In particular,

the extremumof𝑈(𝑟) is always outside the double horizon on
which 𝑔

󸀠
= 0. The second derivative is given by, with taking

into account (25) and (27),

𝑈
󸀠󸀠
=
𝑚𝑐
2

2
(𝑔
󸀠󸀠
+

3𝑟
𝑔
𝑟
𝑞

𝑟4
) = 16𝜋𝐺𝑝

⊥
+
𝑔
󸀠
(𝑟
𝑚
)

𝑟
𝑚

. (28)

According to (27), 𝑔󸀠 > 0 at the extremum of 𝑈(𝑟),
and also 𝑝

⊥
> 0 there; hence, the second derivative of

the potential 𝑈(𝑟) is always positive in its extremum and
the potential 𝑈(𝑟) can thus have only one minimum. For
𝑟 → 0, the potential 𝑈(𝑟) goes to infinity. For 𝑟 →

∞, the metric function 𝑔(𝑟) goes asymptotically to the
Schwarzschild metric, so that the potential for 𝑟 → ∞ goes
to

𝑈 (𝑟) 󳨀→
𝑚𝑐
2

2
(−

𝑟
𝑔

𝑟
+

𝑟
𝑔
𝑟
𝑞

2𝑟2
) , (29)

and therefore 𝑈(𝑟) → −0 as 𝑟 → ∞. The only minimum,
𝑈(𝑟
𝑚
), is thus always negative.

The radialwave function𝑅(𝑟) in (22) satisfies the equation

1

𝑟2

𝑑

𝑑𝑟
(𝑟
2
(
𝑑𝑅

𝑑𝑟
)) −

𝑙 (𝑙 + 1)

𝑟2
𝑅 +

2𝑚

ℏ2
(𝐸 − 𝑈 (𝑟)) 𝑅 = 0.

(30)

The potential 𝑈(𝑟) can be presented as

𝑈 (𝑟) = −
𝐺𝑀𝑚𝑐

2

𝑟
(1 − 𝑓

𝑔
(𝑟)) +

𝑚𝑐
2

2

𝑟
𝑞
𝑟
𝑔

2𝑟2
,

𝑓
𝑔
(𝑟) =

8𝜋𝐺

𝑟
𝑔
𝑐2

∫

∞

𝑟

𝜌 (𝑥) 𝑥
2
𝑑𝑥 < 1.

(31)

Equation (30) describes a captured particle in the effective
potential:

𝑈eff = −
𝐺𝑀𝑚𝑐

2

𝑟
(1 − 𝑓

𝑔
(𝑟)) +

𝑚𝑐
2

2

𝑟
𝑞
𝑟
𝑔

2𝑟2
+
ℏ
2
𝑙 (𝑙 + 1)

2𝑚𝑟2
.

(32)

In the Schwarzschild limit,

𝑈eff = −
𝐺𝑀𝑚𝑐

2

𝑟
+
𝑚𝑐
2

2

𝑟
𝑞
𝑟
𝑔

2𝑟2
+
ℏ
2
𝑙 (𝑙 + 1)

2𝑚𝑟2
. (33)

In this limit we see clearly that in the case of a graviatom
the fine structure constant is replaced with the effective
gravitational fine structure constant [13]:

𝛼
𝐺
=
𝐺𝑀𝑚

ℏ𝑐
. (34)
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The corresponding Bohr radius for the graviatom with the
potential (33) is given by [16, 17]

𝑟
𝑏
=

ℏ
2

𝐺𝑀𝑚2
=
2𝜆
2

𝑟
𝑔

, (35)

where 𝜆 = ℏ/𝑚𝑐 is the Compton wavelength of a captured
particle.

The condition 𝑟
𝑔

< 𝑟
𝑏
(the Bohr orbit in the R-region

outside the horizon) gives

𝑟
𝑔
< 𝑟
𝑏
󳨀→ 𝑟
2

𝑔
< 2𝜆
2
. (36)

Equation (36) gives the constraint on the mass of the gravi-
atom nucleus:

𝑀 < 2 × 10
17
(
𝑚
𝑒

𝑚
) grams, (37)

where𝑚
𝑒
is the mass of the electron.

Themain condition for the existence of a graviatom is the
geometrical condition:

𝐿 > 𝑟
𝑛
+ 𝑟
𝑝
. (38)

Here 𝐿 is the characteristic size of a graviatom, 𝑟
𝑛
is the size of

its nucleus, and 𝑟
𝑝
of a captured particle. For a hydrogen-like

graviatom, it reads 𝑟
𝑏
> 𝑟
𝑛
+ 𝜆.

For the metric function (2), the black hole horizon, 𝑟
+
=

2𝐺M(𝑟
+
), satisfies 𝑟

+
< 𝑟
𝑔
since, for any density profile

satisfying the weak energy condition 𝜌
󸀠
(𝑟) ≤ 0, M(𝑟) is

monotonically growing, and M(𝑟
+
) < 𝑀. The restriction

following from 𝑟
𝑔

< 𝑟
𝑏
will also hold for 𝑟

+
to guarantee

𝑟
𝑏

> 𝑟
+
, so we can take 𝑟

𝑛
= 𝑟
𝑔
. The condition (38) in

this case, 𝑟
𝑏
> 𝑟
𝑔
+ 𝜆, with taking into account (35), gives

𝑟
2

𝑔
+ 𝑟
𝑔
𝜆 − 2𝜆

2
= (𝑟
𝑔
− 𝜆)(𝑟

𝑔
+ 2𝜆) < 0 which follows in the

constraint:

𝑟
𝑔
< 𝜆. (39)

Fulfillment of the conditions (39) guarantees fulfillment
of the constraint (36).

In the case of G-lump, its characteristic size is of the
order of 𝑟

∗
[19, 21], and the condition of the existence of the

hydrogen-like graviatom reads

𝑟
𝑏
> 𝑟
∗
+ 𝜆. (40)

Introducing the dimensionless quantities 𝑥
𝑔

= 𝑟
𝑔
/𝑟int and

𝜂 = 𝜆/𝑟int, we get the inequality 𝑥
4/3

𝑔
+ 𝜂𝑥
𝑔
− 2𝜂
2
< 0. With

the new variable 𝑥 = 𝑥
1/3

𝑔
, it reduces to 𝑥

4
+ 𝜂𝑥
3
− 2𝜂 =

(𝑥 − 𝑥
1
)(𝑥 − 𝑥

2
)(𝑥 − 𝑥

3
)(𝑥 − 𝑥

4
) < 0. This is the 4th order

polynomial; complex conjugate roots come in pairs andmake
this polynomial positive, so that it can be negative only if real
roots exist.The condition of their existence, 𝜂 ≥ 0.124, results
in the following constraint:

𝜆 > 0.124𝑟int. (41)

This is the important constraint; only when (41) is satisfied,
the geometric condition (40) holds. In this case the above

polynomial has three negative and one positive root.The only
possibility to satisfy (40) results in the second constraint:

𝑟
𝑔
< 1.66𝜆. (42)

With these two constraints we estimate
𝑟
𝑏

𝑟
∗

> 1.21. (43)

For further analysis we adopt some slowly falling density
profile 𝜌(𝑟) which should vanish for large 𝑟 faster than 𝑟

−3 to
guarantee finiteness of the mass 𝑀 [21]. If we choose 𝜌(𝑟) =
𝜌int(𝑟int/𝑟)

4, we obtain

𝑓
𝑔
(𝑟) =

3𝑟
2

int
𝑟
𝑔
𝑟
. (44)

The requirement for the Bohr orbit (35) to be outside the
horizon, 𝑟

±
< 𝑟
𝑔
< 𝑟
𝑏
, results in

𝑓
𝑔
(𝑟
𝑏
) < 𝑓
𝑔
(𝑟
𝑔
) ,

3𝑟
2

int
2𝜆2

< 𝑓
𝑔
(𝑟
𝑔
) <

3𝑟
2

int
𝑟2
±

, (45)

where 𝑟
±
is the double horizon radius. It is calculated from

𝑔(𝑟
±
) = 0, 𝑔

󸀠
(𝑟
±
) = 0 which gives

𝑟
±
= 2𝐺M (𝑟

±
) , 𝑟

2

±
=

𝑐
2

8𝜋𝐺𝜌 (𝑟
±
)
. (46)

Thefirst inequality in (45) gives, with taking into account (31),
the constraint

3

2
(

𝑙
𝑝𝑙

𝜆
𝑒

)

2

(

𝐸
𝑝𝑙

𝐸int
)

4

(
𝑚

𝑚
𝑒

)

2

< 𝑓
𝑔
(𝑟
𝑔
) , (47)

where 𝑚
𝑒
is the mass of the electron and 𝜆

𝑒
is its Compton

wavelength.
For the GUT scale interior 𝐸int ≃ 10

15 GeV, this gives for
the mass of the captured particle 𝑚 < 10

11 GeV and for the
Planck scale interior𝑚 < 𝑚

𝑝𝑙
.

The second inequality in (45) gives, with taking into
account (46), the constraint

𝑓
𝑔
(𝑟
𝑔
) < 9

𝜌
±

𝜌int
=

9𝑐
2

32𝜋𝐺3M2 (𝑟
±
)
< 1. (48)

It follows that the more the mass contained under the double
horizon is, the better graviatom with a regular black hole
can be approximated by the Schwarzschild potential (33). It
suggests also that more quickly falling density profile would
be more favorable for the existence of the Bohr orbits in the
R-region outside the horizon.

For detailed estimates we adopt the density profile [18]:

𝜌 (𝑟) = 𝜌int𝑒
−𝑟
3
/𝑟
3

∗ , 𝑟
∗
=
3
√𝑟
2

int𝑟𝑔,

𝑟
2

int =
3

8𝜋𝐺𝜌int
, 𝜌int = 𝜌 (𝑟 󳨀→ 0) ,

(49)
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which describes vacuum polarization effects leading to de
Sitter interior [39] in the semiclassical model for vacuum
polarization in the gravitational field [19]. The metric func-
tion is given by

𝑔 (𝑟) = 1 −

𝑟
𝑔

𝑟
(1 − exp(−𝑟

3

𝑟3
∗

)) . (50)

A black hole exists for 𝑟
𝑔

≥ 𝑟
𝑔(cr) = 1.7576𝑟int [19]. The

boundary value corresponds to the mass 𝑀cr ≃ 10
3
(𝐸GUT/

𝐸int)
2 g. With using (50) we get for the horizon 𝑟

+

𝑟
𝑔

𝑟
+

(1 − exp(−
𝑟
3

+

𝑟3
∗

)) = 1. (51)

The most essential difference between a graviatom and
the hydrogen atom is that, in the graviatom, due to the
presence of the DeWitt force and modification of the
Coulomb-like part of the potential, the effective potential
has the minimum. This leads to an appearance of oscillatory
spectrum and radiation from oscillatory levels.

With the density profile (49) the effective potential (32)
takes the form

𝑈eff = −
𝐺𝑀𝑚𝑐

2

𝑟
(1 − exp(−𝑟

3

𝑟3
∗

)) +

𝑚𝑐
2
𝑟
𝑔
𝑟
𝑞

4𝑟2

+
ℏ
2
𝑙 (𝑙 + 1)

2𝑚𝑟2
.

(52)

The condition for a minimum of the function (52), 𝑈󸀠(𝑟
𝑚
) =

0, gives the relation

𝑒
−𝑥

= (1 −

𝑟
𝑞

𝑟
∗

3
√𝑥

) (1 + 3𝑥)
−1
, (53)

where 𝑥 = 𝑟
3

𝑚
/𝑟
3

∗
and

𝑟
𝑞
= 𝑟
𝑞
+
2𝜆
2

𝑟
𝑔

𝑙 (𝑙 + 1) . (54)

Equation (53) can be written as

𝑟
𝑞

𝑟
∗

= [1 − (1 + 3𝑥) 𝑒
−𝑥
]
3
√𝑥. (55)

For 𝑟
𝑞
/𝑟
∗
≫ 1 we have 3√𝑥 = 𝑟

𝑞
/ 3√𝑟
2

int𝑟𝑔 and 𝑟
𝑚

= 𝑟
𝑞
.

For 𝑟
𝑞
𝑟
𝑔
≫ 2𝜆

2, 𝑟
𝑞
= 𝑟
𝑞
, oscillatory levels are determined

by the effective classical electromagnetic radius 𝑟
𝑞
, and the

second term in (54) would provide quantum corrections to
oscillatory levels.

For 𝑟
𝑞
/𝑟
∗
≪ 1 we have 𝑥 = 1.9 and

𝑟
𝑚
=
3
√1.9𝑟

2

int𝑟𝑔. (56)

This is the most promising case since quantum radiation
which we present in the next section carries information
about de Sitter interior of the graviatom nucleus.

In the general case the position of the minimum 𝑟
𝑚
is

determined by the interpolation formula:

𝑟
𝑚
= 𝑟
𝑞
(1 − exp(−

𝑟
𝑞

3
√1.9𝑟

2

int𝑟𝑔

))

−1

. (57)

The hydrogen-like radiation dominates when the effect
of the DeWitt contribution is less that of the Coulomb-like
term in (33), 𝑟

𝑔
𝑟
𝑞
≪ 𝜆
2. Radiation from the oscillatory levels

dominates in the opposite case, 𝑟
𝑔
𝑟
𝑞
≫ 𝜆
2.

4. Graviatom Radiation

4.1. Hydrogen-Like Spectrum and Radiation. The constraint
(38) leads, with taking (35) into account, to 𝑟3

𝑏
/𝑟
3

∗
> 8𝑟
2

𝑔
/𝑟
2

int.
For the density profile (49) 8𝑟

2

𝑔(cr)/𝑟
2

int ≃ 24.7(𝐸int/

𝐸GUT)
4; as a result 𝑓

𝑔
(𝑟
𝑏
) ≪ 1 for the graviatom with a

regular black hole and its remnant, and spectrum of radiation
can be approximated with the high accuracy by that for the
Schwarzschild potential.

In this case the energy spectrum is given by [16, 17]

𝐸 = −2𝛼
2

𝐺
𝑚𝑐
2 1

[2𝑝 + 1 + √(2𝑙 + 1)
2
+
8𝑚𝐴

ℏ2
]

2
,

(58)

where

𝐴 =

𝑚𝑐
2
𝑟
𝑞
𝑟
𝑔

4
, 𝑝 = 𝑛 − 𝑠 − 1,

𝑠 (𝑠 + 1) =
2𝑚𝐴

ℏ2
+ 𝑙 (𝑙 + 1) ,

(59)

𝑝 = 0, 1, 2, . . ., 𝑙 ≤ 𝑛, 𝑛 = 1, 2, 3, . . .. Here 𝑛 and 𝑙 are
the principal and orbital quantum numbers, respectively.
This is general formula including both the Bohr levels and
oscillatory levels.

The radiation from transitions between the Bohr levels
dominates when 8𝑚𝐴/ℏ

2
≪ (2𝑙 + 1)

2. The condition of its
domination,

(𝑙 +
1

2
)

2

𝜆
2
≫ 𝑟
𝑔
𝑟
𝑞
, (60)

gives the constraint𝑀 ≪ 3 × 10
19
(𝑚
𝑒
/𝑚) g.

In the case of a black hole, the requirement 𝑟
𝑔
≥ 𝑟
𝑔(cr)

(𝑀 ≥ 𝑀cr) results in the estimate:

𝑟
3

𝑏
> 8𝑟
2

𝑔(cr)𝑟𝑔. (61)

In the limit (60) the energy spectrum reduces to

𝐸
𝐵
= −

𝑚𝑐
2

2𝑛2
𝛼
2

𝐺
. (62)

In this case we have the dipole electromagnetic radiation
of graviatom (dominating for the Bohr levels) similar to that
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for a hydrogen-like atom. Frequencies for the transitions
2𝑝 → 1𝑠 and 3𝑝 → 1𝑠 are given by

ℏ𝜔
21

=
3

8
𝛼
2

𝐺
𝑚𝑐
2
, ℏ𝜔

31
=
4

9
𝛼
2

𝐺
𝑚𝑐
2
, (63)

and intensities are related by 𝐼
21
/𝐼
31

= 3.161 [16, 17].
For the case of a black hole there is the natural stability

condition [16, 17]: 𝜏gr < 𝜏
𝐻
and 𝜏gr < 𝜏

𝑝
where 𝜏gr is the

graviatom lifetime, 𝜏
𝐻
is the black hole lifetime, and 𝜏

𝑝
is the

particle lifetime. The condition of indestructibility, 𝐸
𝑑
< 𝐸
𝑏
,

where 𝐸
𝑑
is the destructive energy (due to tidal forces, the

Hawking radiation and “ionization”-eventual removing of a
charged captured particle) and 𝐸

𝑏
is the binding energy, was

thoroughly studied in [16, 17]. For the case of the hydrogen-
like graviatom with the Schwarzschild potential (𝑓(𝑔) ≪

1), conditions of stability and indestructibility constrain the
gravitational fine structure constant within the narrow range
[16, 17] 0.512 < 𝛼

𝐺
< 0.625. For this range of the coupling 𝛼

𝐺

the applied Pauli approximation holds for the frequencies of
the hydrogen-like radiation (63).

In the case of G-lump the estimate (43) restricts the
correction to the potential for the density profile (49),

𝑓
𝑔
(𝑟
𝑏
) = exp(−

𝑟
3

𝑏

𝑟3
∗

) < 0.17. (64)

However, we cannot approximate the radiation spectrum by
that for the Schwarzschild case with this accuracy since the
energy is proportional to 𝛼2

𝐺
and thus to𝑀2.

In the case of G-lump we should have to solve a separate
problem with the potential (32). Preliminary consideration
can be made by replacing the mass 𝑀 in (62) with 𝑀(1 −

exp(−𝑟3/𝑟3
∗
)). The rough estimate with

𝐸
𝐵
= −

𝑚𝑐
2

2𝑛2
𝛼
2

𝐺
(1 − 2 exp(−

𝑟
3

𝑏

𝑟3
∗

))

= −
𝑚𝑐
2

2𝑛2
𝛼
2

𝐺
(1 − 2 exp[(−

𝑟
3

𝑏

𝑟
𝑔

)(
8𝜋𝐺𝜌int

3
)])

(65)

gives the correction of the order of 0.34. This estimate is
relevant also for a remnant since its characteristic size, 𝑟

±
=

1.414𝑟int, is close to 𝑟∗ = 1.207𝑟int. This allows us to conclude
that radiation from the Bohr levels in the case of G-lump and
remnant will depend on the density of the interior de Sitter
vacuum 𝜌int and would result in observational signatures for
them as dark matter candidates.

4.2. Oscillatory Spectrum and Radiation. In the case when

(𝑙 +
1

2
)

2

𝜆
2
≪ 𝑟
𝑔
𝑟
𝑞
, (66)

the DeWitt force is dominating, and we deal with an oscilla-
tory spectrum and radiation.

Near the minimum, the potential reduces to

𝑈eff (𝑟) ≃ 𝑈eff (𝑟𝑚) +
1

2

𝑑
2
𝑈eff
𝑑𝑟2

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟
𝑚

(𝑟 − 𝑟
𝑚
)
2

. (67)

Introducing in (30) with the effective potential (67) the
new variables

𝜒 (𝑟) = 𝑅 (𝑟) 𝑟, 𝑦 = 𝑟 − 𝑟
𝑚
, (68)

we obtain the equation of a harmonic oscillator in one
dimension:

𝑑
2
𝜒

𝑑𝑦2
+
2𝑚

ℏ2
(𝐸 −

𝑚𝜔
2
𝑦
2

2
)𝜒 = 0, (69)

The energy spectrum is given by

𝐸
𝑝
= −𝑈 (𝑟

𝑚
) + ℏ𝜔(𝑝 +

1

2
) ,

𝑝 = 0, 1, 2, . . . ; 𝜔 = √
1

𝑚

𝑑
2
𝑈

𝑑𝑟2

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟
𝑚

.

(70)

The wave function being a solution to (69) has the form [82]:

𝜒
𝑛
(𝑦) = (

𝑚𝜔

𝜋ℏ
)

1/4
1

√2𝑛𝑛!

exp(−𝑚𝜔

2ℏ2
𝑦
2
)𝐻
𝑛
(𝑦√

𝑚𝜔

ℏ
)

(71)

and satisfies the normalization condition:

∫

∞

−∞

𝜒
2

𝑛
(𝑦) 𝑑𝑦 = 1. (72)

Matrix elements of the coordinate 𝑦 are

𝑦
𝑛,𝑛−1

= ∫

∞

−∞

𝜒
𝑛
𝜒
𝑛−1

𝑦𝑑𝑦 = √
𝑛ℏ

2𝑚𝜔
. (73)

The intensity of an electric dipole radiation has the form [83]:

𝑃
𝑖𝑓
=

4𝑞
2
𝜔
4

𝑖𝑓

3𝑐3

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑖𝑓

󵄨󵄨󵄨󵄨󵄨

2

, (74)

where𝜔
𝑖𝑓
= (1/ℏ)(𝐸

𝑖
−𝐸
𝑓
) is the frequency of a transition 𝑖 →

𝑓 and 𝑦
𝑖𝑓
are the matrix elements of the charge coordinate 𝑦

in the transition from the state 𝑖 to the state 𝑓.
Using (73), we obtain, for 𝑖 = 𝑛 and 𝑓 = 𝑛 − 1, the

expression

𝑃
𝑛,𝑛−1

=
2𝑞
2
𝜔
3
𝑛ℏ

3𝑚𝑐3
. (75)

For the graviatom with the de Sitter interior in the
limit (66), there are two possibilities. For 𝑟

𝑞
/𝑟
∗

≫ 1, the
correction to the Coulomb part potential in (32) satisfies
𝑓
𝑔
(𝑟
𝑚
) ≪ 3𝑟

2

int/𝜆
2 by virtue of 𝑟

𝑔
𝑟
𝑞
≫ 𝜆
2. The graviatom

can be described with the high accuracy by the Schwarzschild
potential (33) which does not provide information about
internal structure of the graviatom nucleus. The minimum
of the potential (33) is located at 𝑟

𝑚
= 𝑟
𝑞
. The series in

𝜆/√𝑟
𝑞
𝑟
𝑔
≪ 1 gives the oscillatory spectrum:

𝐸 = −

𝑚𝑐
2
𝑟
𝑔

4𝑟
𝑞

+
ℏ𝑐

𝑟
𝑞

(𝑝 +
1

2
)√

𝑟
𝑔

2𝑟
𝑞

, (76)

where 𝑝 = 0, 1, 2, . . ..



Advances in High Energy Physics 9

For a black hole as a nucleus, the condition for the
minimum outside of horizon, 𝑟

𝑞
> 𝑟
𝑔
, leads to the constrain

𝑀 < 2 × 10
15
(𝑚
𝑒
/𝑚) g. The condition (66) gives the restric-

tion 𝜆 ≪ 𝑟
𝑞
which results in𝑍 ≫ 11 for particles captured by

a black hole. Only atomic nuclei can be captured with 𝑍 ≫

√ℏ𝑐/𝑒2 [13]. However, the captured nuclei with 𝑍 ≫ 11 are
quickly destroyed by the Hawking radiation from the black
hole horizon.The condition for existence of such a graviatom,
𝑘𝑇
𝐻

< 𝐸
𝑏
where 𝐸

𝑏
is a binding energy, is not satisfied for

𝑍 ≫ 11 [16, 17].
In the case of a G-lump or remnant as a graviatom

nucleus, the condition (66) of capture of a particle on a level
near the minimum 𝑟

𝑚
= 𝑟
𝑞
leads to the constraint 𝑟

𝑔
≫

𝜆
2
/𝑟
𝑞
which excludes a nucleus with 𝑀 ≤ 𝑀cr. This is not

a big disaster since a spectrum in this case does not carry
information about an internal structure. From this point of
view, the most interesting is the case (56) when 𝑟

𝑚
and thus

frequency depend on the interior vacuum scale 𝜌int.
The second possibility is specified by

𝑟
𝑞

𝑟
∗

≪ 1. (77)

For the case of the density profile (49) the minimum of the
effective potential (52) in the limit (66) is given by (56), and
the oscillatory spectrum

𝐸 =≃ −

0.425𝑚𝑐
2
𝑟
𝑔

(1.9𝑟
2

int𝑟𝑔)
1/3

+
0.678ℏ𝑐

𝑟int
(𝑝 +

1

2
) , 𝑝 = 0, 1, 2, . . . ,

(78)

the intensity of the dipole radiation

𝑃
𝑛,𝑛−1

=
0.416𝑞

2
𝑛ℏ

𝑚𝑟
3

int
, (79)

and the frequency

ℏ𝜔 =
0.678ℏ𝑐

𝑟int
(80)

depend on 𝑟int and hence on 𝜌int.
The geometrical condition requires 𝜆 < 𝑟

𝑚
. It gives us the

upper limit for the intensity

𝑃
10

< 𝜉(

𝑙
𝑝𝑙

𝑟int
)

2

3
√

𝑟
𝑔

𝑟int

𝑐
5

𝐺
, (81)

where 𝜉 = 0.111(𝑒
2
/ℏ𝑐) and 𝑐

5
/𝐺 = 3.63 ⋅ 10

59 erg s−1. In
the case of G-lump with 𝑟

𝑔
∼ 𝑟int ∼ 10

−25 cm we have 𝑃
10

<

4⋅10
40 erg s−1, and for a remnant and near extremal black hole

𝑃
10
is bigger. Formula (81) is valid for particles with the mass

𝑚 > ℏ/𝑐𝑟int which follows from the restriction ℏ𝜔 < 𝑚𝑐
2 of

applicability of nonrelativistic quantum mechanics.
The energy of radiated quanta exceeds the average energy

𝑘𝑇
𝐻

= ℏ𝑐
3
/8𝜋𝐺𝑀 of the quantum radiation from the

Schwarzschild black hole and the average energy 𝑘𝑇
𝐻

=

ℏ𝑐/4𝜋𝑟int from the de Sitter horizon of the interior scale 𝜌vac.

The ratio of the intensity of radiated quanta in our case
to the Hawking radiation of the Schwarzschild black hole is
estimated as

𝑃
10

𝑃
𝐻(Sch)

≤ 960 × 4𝜋 × 𝛽 × (

𝑟
𝑔

𝑟int
)

7/3

≃ 9.68(

𝑟
𝑔

𝑟int
)

7/3

.

(82)

The ratio of our intensity to intensity of the Hawking radi-
ation of the de Sitter horizon is

𝑃
10

𝑃
𝐻(de Sitter)

≤ 960𝜋𝛽(

𝑟
𝑔

𝑟int
)

1/3

≃ 38.7(

𝑟
𝑔

𝑟int
)

1/3

. (83)

4.3. Availability of Information on Graviatom Interior. The
most promising case is when the frequency of oscillatory
transitions (80) depends on the scale of the interior de Sitter
vacuum. It could be an observational signature of a graviatom
with de Sitter interior as a dark matter candidate. In this case
we can estimate frequency as

ℏ𝜔 =
0.678ℏ𝑐

𝑟int
= 0.678 × 10

11 GeV(
𝐸int
𝐸GUT

)

2

. (84)

Photons with frequencies of order 10
11 GeV were first

observed in ultra-high-energy cosmic rays in 1962 [84]. Cur-
rent experiments allow detection of photons up to 1011.5 GeV
(see [85] and references therein). Present observational pos-
sibilities prefer thus graviatoms with the GUT scale interior
although those with the Planck scale interior can exist in
principle, and probabilities of their production in a collapse
are bigger, but their typical frequency, ℏ𝜔 ≃ 0.7 × 10

19 GeV, is
far from the today observational range.

The most promising case can be realized when two con-
ditions are satisfied: the condition (66) of dominance of the
oscillatory levels and the condition (77) defining appropriate
location of the minimum of the effective potential.

To tell something about a graviatom nucleus, we can take
roughly 𝑟

+
= 𝑟
𝑔
and apply the requirement that theminimum

of potential must be located in the R-region outside the event
horizon.The requirement 𝑟

𝑔
< 𝑟
𝑚
leads for the density profile

(49) to 𝑥
𝑔
< 1.38. This means that the most favorite situation

can take place for G-lump.
Precise estimate gives 𝑥

𝑔
= 1.7576, 𝑥

𝑚
= 2.284, 𝑥

±
=

1.414 for a double-horizon remnant with the density profile
(49). The minimum of the potential is outside of the double
horizon.TheHawking temperature is zero, so that it does not
disturb the oscillatory radiation of the graviatom. The case
of almost extremal black hole is also possible, until 𝑟

𝑚
>

𝑟
+
, in such a case temperature is quickly going to zero, and

oscillatory spectrum cannot be destroyed by the Hawking
radiation.

Our predictions concerning captured particles are
restricted here by the applied approach. The basic
requirement of applicability of the Pauli approximation

ℏ𝜔 < 𝑚𝑐
2
󳨀→ 𝑚 >

ℏ

𝑐𝑟int
(85)
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gives immediately in (84) the constraint on the mass of a
captured particle 𝑚 > 5 × 10

10 GeV for the GUT scale
of the interior de Sitter vacuum, so we can trust the above
conclusions made in the frame of nonrelativistic quantum
mechanics but cannot exclude that a more precise approach
would open additional possibilities.

To evaluate which particle can be a captured, we apply
the constraint 𝑥

𝑔
≤ 1.7576. The condition of the proper

location of the minimum (77) requires 𝑟
𝑞
≪ (1.7576)

1/3
𝑟int.

This gives 𝑟
𝑞
≪≃1.21 × 10

−25 cm for the GUT scale of the
interior de Sitter vacuum.What a particle it can be? From 𝑟

𝑞
=

𝑒
2
/𝑁𝑚
𝑒
𝑐
2
= 𝑟
𝑒
/𝑁 ≪ 1.21 × 10

−25 cm, we get 𝑁 ≫ 2 × 10
12

which means𝑚 = 𝑁𝑚
𝑒
≫ 10
9 GeV.

This range admits GUT particles with masses 1014 GeV <

𝐸GUT < 10
16 GeV which could be captured by RPBH at the

end of inflation.However, here the problem arises. Formation
constraint restricts masses of RPBH with GUT scale interior
by𝑀 > 10

11 g. For such a black hole, even with very quickly
falling density profile (49), proper for the frequency (84),
minimum (56) is located deeply inside T-region, so a particle
would not be captured on an orbit but would be swallowed by
a black hole. G-lumps and remnants which do not encounter
this problem can be formed at the first inflationary stage only
with Planck scale interior. They can capture GUT particles,
but their radiation would be then in the range unavailable for
near future observations.

Question arises where regular black hole remnants with
GUT scale interior produced in evaporation, as well as
remnants and G-lumps produced at the second inflationary
stage, can capture particles with masses of the order of the
GUT mass.

Speaking about RPBH produced during first inflation,
one can imagine a situation when it would capture a GUT
particle on some higher oscillatory level. Simple estimate
𝑟−𝑟
𝑚
> 𝑟
𝑔
with the spectrum (78) shows that it is possible, but

lifetime of such a level should have to be comparable to the
evaporation time 𝜏 ≃ (𝑀/𝑚

𝑝𝑙
)
3
𝜏
𝑝𝑙
[35]. In our case it gives

𝜏 > 6.75 × 10
3 s.

Such a case could be realized if some metastable level(s)
with appropriate quantum number(s) 𝑝 would exist in the
oscillatory spectrum, which cannot be excluded a priori.

Good news is that the level with energy 𝐸
𝑝

> 0.678 ×

10
11 GeV would not be destroyed by the Hawking radiation.

Spherically symmetric regular black hole with de Sitter
interior evolves during evaporation to the double-horizon
remnant with zero temperature, while its maximal temper-
ature is given by 𝑘𝑇max = 0.2 × 10

11 GeV [19, 37, 41].
Another channel is related to leptoquarks which can

survive in galactic halos [86]. The leptoquarks arising at
the GUT epoch are decayed into quarks and leptons. The
quarks form nucleons in three minutes after the Big Bang.
However, a part of leptoquarks survives and is accumulated
in the galactic halos contributing to a dark matter [86]. The
leptoquarks in the galactic halos can be captured by any of
the considered here objects with de Sitter interior: by near
extreme primordial black holes, by remnants, and by G-
lumps.

5. Summary

General constraint on formation of a compact object with the
de Sitter interior results in the following options: at the first
inflationary stage at the GUT scale, regular black holes with
masses𝑀 > 10

11 g can be formedwith theGUT scale interior
and any objects with the Planck scale interior including G-
lumps. There are no constraints on formation of RPBH and
G-lumps during the second inflationary stage at the QCD
scale.

Spectra and radiation of graviatoms are studied in the
Pauli approximation to the Dirac equation. The gravitational
coupling 𝛼

𝐺
∼ 0.5 is much bigger than the fine structure

constant 𝛼 = 𝑒
2
/ℏ𝑐 = 1/137. The energy levels in a graviatom

are determined by𝛼
𝐺
, and relativistic correctionwhichwould

allow for a particle spin is of the order of 𝛼/𝛼
𝐺

≪ 1. The
condition of the particle localization dimension exceeding
the Compton wavelength is valid all over the paper. This
means that the problem is solvable in the framework of
nonrelativistic quantum mechanics, although it gives the
restriction on the mass of a captured particle,𝑚 > ℏ𝜔/𝑐

2.
The electromagnetic radiation of charged particles in the

field of a regular black hole exceeds the Hawking radiation
fromSchwarzschild black hole of the samemass.The essential
difference is that a graviatom emits spectral lines which can
bear information on its de Sitter interior.

Hydrogen-like spectrum and radiation of graviatom with
RPBH as a nucleus is described with the high accuracy
by those for the Schwarzschild black hole. Requirements of
stability of graviatomwith respect to tidal forces andHawking
radiation constraint the gravitational coupling within the
narrow range 0.512 < 𝛼

𝐺
< 0.625. Dominating is the

dipole radiation which does not carry information about
de Sitter interior of graviatom. In the case of G-lump
and RPBH remnant, approximation of the potential by the
corrected Schwarzschild potential suggests that hydrogen-
like radiation will depend on the density of the interior de
Sitter vacuum 𝜌int and result in observational signatures for
G-lump and remnant as dark matter candidates. This case
needs further detailed investigation.

The oscillatory radiation can depend essentially on the
interior vacuum scale and gets in the range of ultrahigh
cosmic ray energies.

Typical features of graviatoms radiation can result in
observational signatures for G-lumps and RPBH remnants as
dark matter candidates, as well as provide information about
their interior de Sitter vacuum.

Let us note that regular primordial black holes, their
remnants, and G-lumps can also serve as a very sensitive
universal probe for a scale of inhomogeneities in the very
early Universe being in this context the most elusive among
dark matter candidates [87].

Appendix

Characteristic Length Scales of Graviatoms

Graviatoms have rich internal structure, characterized by
several essential length scales which we summarize below.
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Characteristic size of a graviatom 𝐿 satisfies the geometrical
condition 𝐿 > 𝑟

𝑛
+ 𝑟
𝑝
where 𝑟

𝑛
is the size of the nucleus and

𝑟
𝑝
is the size of a captured particle.
The characteristic length of any de Sitter-Schwarzschild

spacetime 𝑟
∗
= (𝑟
2

int𝑟𝑔)
1/3 comes as the radius of the direct

matching of the de Sitter and Schwarzschild metrics, 1 −

𝑟
2

∗
/𝑟
2

int = 1 − 𝑟
𝑔
/𝑟
∗
. It depends on both gravitational radius

𝑟
𝑔
= 2𝐺𝑀𝑐

−2 and characteristic scale of the interior de Sitter
vacuum 𝑟int related to its density by 𝑟2int = 3𝑐

2
/8𝜋𝐺𝜌int. For

the GUT scale ≃1015 GeV interior, 𝑟int ≃ 2.4 × 10
−25 cm.

For the Planck scale, 𝑟int = 𝑟
𝑝𝑙
. Characteristic scale 𝑟

∗
gives

rough estimate for the size of aG-lump.More precise estimate
involves critical gravitational radius 𝑟

𝑔(cr), related to critical
mass 𝑀cr, actually mass of the remnant which gives the
boundary between black holes (𝑀 > 𝑀cr) and G-lumps
(𝑀 < 𝑀cr). It is given by 𝑀cr = 𝛽𝑚

𝑝𝑙√𝜌
𝑝𝑙
/𝜌int where the

numerical coefficient𝛽depends on themodel. For the density
profile (49),𝑀cr ≃ 0.3𝑚

𝑝𝑙√𝜌
𝑝𝑙
/𝜌int and 𝑟

𝑔(cr) = 1.7576𝑟int. In
this case, 𝑟

∗
> 0.69𝑟

𝑔
for a G-lump, and 𝑟

∗
< 0.69𝑟

𝑔
for a

black hole.
The black hole horizon 𝑟

+
= 2𝐺M(𝑟

+
) satisfies always

𝑟
+
< 𝑟
𝑔
. Double horizon 𝑟

±
= 2𝐺M(𝑟

±
) gives roughly a size

of RBH remnant. Masses of remnants (𝑟
𝑔
= 𝑟
𝑔(cr)) range from

𝑚
𝑝𝑙
for the Planck scale interior, through ∼103 g for the GUT

scale interior, up to ∼1032 g (𝑟
𝑔
∼ 10
4 cm) for the QCD scale

interior. Regular remnants are stable, and their population
includes all remnants of RPBH evaporated till now.

The gravitational analogue of the Bohr radius is given
by 𝑟
𝑏

= ℏ
2
/𝐺𝑀𝑚

2
= 2𝜆

2
/𝑟
𝑔
, where 𝜆 = ℏ/𝑚𝑐 is the

Compton wavelength of a captured particle. The hydrogen-
like radiation dominates in the case when 𝑟

𝑔
𝑟
𝑞
≪ 𝜆
2, where

𝑟
𝑞
= 𝑞
2
/𝑚𝑐
2 is electromagnetic radius of a captured particle.

In the case 𝑟
𝑔
𝑟
𝑞
≫ 𝜆
2, the oscillatory radiation is domi-

nating. Minimum of the graviatom potential 𝑟
𝑚
, responsible

for its existence, is always outside the double horizon. For
the case 𝑟

𝑞
≫ 𝑟
∗
, oscillatory levels are determined by 𝑟

𝑞
,

with quantum corrections depending on 𝑟
𝑔
; in this case, 𝑟

𝑚
=

𝑟
𝑞
+2𝜆
2
𝑙(𝑙+1)/𝑟

𝑔
. In themost promising for the observational

manifestations case, when 𝑟
𝑞
≪ 𝑟
∗
, location of the minimum

𝑟
𝑚
depends directly on 𝑟int and thus on the interior vacuum

density, 𝑟
𝑚

= 3
√1.9𝑟

2

int𝑟𝑔 for the density profile (49). For a
remnant with the density profile (49), 𝑟

𝑔
= 1.7576𝑟int, 𝑟𝑚 =

2.284𝑟int, 𝑟± = 1.414𝑟int, and 𝑟
∗
= 1.207𝑟int.
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