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Abstract

Future y-ray survey instruments, such as COSI, newASTROGAM and AMEGO-X, will sig-
nificantly improve previous and current all-sky surveys at MeV energies. In this paper we
discuss the continuum emission from the Milky Way, two prominent large extended sources,
the Fermi bubbles and Loop I, and the extragalactic y-ray background. We highlight the im-
portance of measurements in the MeV to GeV energy range for understanding CR produc-
tion and propagation in the Galaxy, for the determination of the nature of the Fermi bubbles
and Loop I, and for exploring the origin of the extragalactic y -ray background.

Keywords Diffuse gamma-ray emission - MeV gamma rays

1 Introduction

Diffuse y-ray emission arises from various origins and on vastly different scales. It domi-
nates the total integrated y -ray flux in the MeV and GeV range. In contrast to line emission
from positron annihilation (Johnson and Haymes 1973; Leventhal et al. 1978; Weidens-
pointner et al. 2008; Siegert et al. 2020) and the decay of radioisotopes, such as 2°Al (Diehl
et al. 1995; Bouchet et al. 2015) and Fe (Wang et al. 2007, 2020), which are also impor-
tant sources of diffuse emission in our Galaxy, diffuse continuum emission arises from the
interactions of non-thermal particles with radiation and matter. We focus on this continuum
emission below rather than the line emission, which is discussed elsewhere in this edition.
The diffuse y-ray emission has its origins in the solar system, the Milky Way, and the
Universe beyond. Within the solar system, the most prominent sources of diffuse radiation

B<] M. Ackermann
markus.ackermann @desy.de

D. Malyshev
denys.malyshev @astro.uni-tuebingen.de

D.V. Malyshev
dmitry.malyshev @fau.de
Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany

Institut fiir Astronomie und Astrophysik Tiibingen, Universitét Tiibingen, Sand 1, 72076 Tiibingen,
Germany

Erlangen Centre for Astroparticle Physics, Nikolaus-Fiebiger-Str. 2, 91058 Erlangen, Germany

Published online: 03 October 2025 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11214-025-01215-0&domain=pdf
http://orcid.org/0000-0001-8952-588X
mailto:markus.ackermann@desy.de
mailto:denys.malyshev@astro.uni-tuebingen.de
mailto:dmitry.malyshev@fau.de

92  Page2o0f20 M. Ackermann et al.

are cosmic-ray (CR) interactions with the Earth atmosphere (e.g., Kraushaar et al. 1972;
Abdo et al. 2009) and the radiation field of the sun (Orlando and Strong 2008; Abdo et al.
2011). The Galactic diffuse emission is produced by the interactions of CRs with the inter-
stellar gas (ISG) and interstellar radiation fields (ISRF). It is customary to distinguish the
bulk diffuse Galactic emission (DGE) that is fueled by quasi-continuous CR production,
propagtion and escape on the scale of the entire Milky Way from individual, large-scale
structures that arise from transient and/or localized CR injection events (e.g., Loop I and
Fermi Bubbles, see below).

The extragalactic diffuse emission, also called the extragalactic y -ray background (EGB)
is dominantly produced by faint or distant y-ray sources that are unresolved by current in-
struments. Known populations of extragalactic y-ray sources include active galactic nuclei
(AGN) (Inoue et al. 2008), star-forming galaxies (Lacki et al. 2014), but also transients such
as supernovae (SN), dominated by SN Type Ia (SNIa) (Clayton and Ward 1975; Watan-
abe et al. 1999a; Ruiz-Lapuente et al. 2016), and gamma-ray bursts (GRB) (Ajello et al.
2019). Other potential contributions to the EGB arise from CR interactions with the cosmic
microwave background (CMB) (Berezinskii and Smirnov 1975) and beyond-the-standard-
model (BSM) physics processes (Bergstrom et al. 2001; Carr et al. 2021). Due to its predom-
inant origin from unresolved sources, the measured diffuse extragalactic emission depends
on the sensitivity and angular resolution of the instrument used. We therefore use a conven-
tion here introduced in Ackermann et al. (2015a) to distinguish between the isotropic y-ray
background (IGRB) that encompasses only the diffuse extragalactic emission and the rotal
EGB that includes the IGRB and all resolved extragalactic sources. The latter is indepen-
dent of the instrument used to measure it and encompasses the entire extragalactic y-ray
emission from astrophysical sources.

This manuscript summarizes the current knowledge and open science questions related
to the diffuse y-ray emission in the MeV range, focusing on the Galactic and extragalactic
components. Section 2 discusses the DGE. Section 3 focuses on the largest extended features
of the Galactic y -ray sky, the Fermi bubbles and Loop I. Section 4 discusses the extragalactic
diffuse background, what is known about its origin, and the prospects for future missions to
constrain the contributions of various source populations and new physics.

2 Diffuse Galactic Emission

The DGE arises from the interactions of CRs with the ISG and the ISRF via various pro-
cesses, such as bremsstrahlung, inverse Compton (IC) scattering, and pion decay. Observa-
tions of the DGE play a crucial role in understanding CR propagation in the Milky Way and
the interstellar medium (ISM) properties of our Galaxy. It has been observed by several gen-
erations of y-ray telescopes, including the OSO-3 (Kraushaar et al. 1972), SAS-2 (Fichtel
et al. 1975), COS-B (Bignami et al. 1975), EGRET (Hunter et al. 1997) and the Fermi-
LAT (Ackermann et al. 2012c) instruments at energies above few tens of MeV. COMP-
TEL (Strong et al. 1994), OSSE (Skibo et al. 1997) INTEGRAL/SPI (Bouchet et al. 2008)
and, recently, COSI (Karwin et al. 2023) provide measurements of the DGE in the energy
range from 20 keV to few tens of MeV.

Figure 1 shows the DGE in the direction of the inner Galaxy as measured during the 2016
COSI balloon flight, by the COMPTEL instrument on the Compton Gamma-Ray Observa-
tory (CGRO), and the Spectrometer on INTEGRAL (SPI) in the energy range between 50 keV
and 30 MeV in comparison to expectations. A common method for studying the DGE in the
MeV and GeV energy regimes involves modeling the CR production and propagation in
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Fig. 1 Measurements of the DGE in the direction of the inner Galaxy during the 2016 COSI balloon
flight (Karwin et al. 2023), by COMPTEL (Strong et al. 1994, 1999), and SPI (Siegert et al. 2022; Berteaud
et al. 2022) in comparison to expectations (Porter et al. 2022; Siegert et al. 2022). The models do not include
line emission visible in the data at 511 keV (e /e~ annihilation) and 1.81 MeV (26Al decay). Image repro-
duced with permission from Karwin et al. (2023), copyright by the author(s)

the Milky Way, as well as the emission of y rays from CR interactions with the ISG and
ISRF via a propagation code, such as GALPROP (Vladimirov et al. 2011), DRAGON (Evoli
et al. 2017), or PICARD (Kissmann 2014). Comparison of the model predictions with the
observed DGE and local observations of primary and secondary CRs allow one to study and
constrain the parameters that enter the model, such as the CR source distribution, diffusion
coefficients, the roles of convection and/or re-acceleration of CRs in the interstellar medium,
CR halo size (e.g., Ackermann et al. 2012c¢). In addition, the DGE can be used to study ISM
properties, such as the ISG and ISRF distribution, and the Galactic magnetic field structure.
The excess of the observed continuum DGE over predictions from CR propagation models
above few hundred keV that is visible in Fig. 1 is generally attributed to contributions from
unresolved y-ray sources (Tsuji et al. 2023). However, also other contributions are possi-
ble, such as a more intense radiation field in the Galactic bulge (Porter et al. 2008; Bouchet
et al. 2011) or a contribution from the annihilation of dark matter particles in the MeV mass
range (Luque et al. 2025).

Figure 2 demonstrates the importance of the MeV window for constraining CR propa-
gation. The figure shows two different models of the Galactic diffuse emission computed
with GALPROP(v57) (Porter et al. 2022) in comparison to the MeV measurements of the
DGE featured in Fig. 1, and measurements above 200 MeV obtained from the Fermi-LAT
data for a different region of the sky (Ackermann et al. 2012c). Both models use the same
distribution of CR sources for injecting CR (Galactic Pulsar distribution, Yusifov and Kiigiik
2004), and are tuned to the same set of CR observations. For CR electrons—+positrons, these
are the low-energy (< 50 MeV) measurements by Voyager I in interstellar space (Cum-
mings et al. 2016), and high-energy measurements by AMS-02 (Aguilar et al. 2014) and
HESS (Aharonian et al. 2008), both performed at or near Earth.

The first model assumes plain CR diffusion with a break in the rigidity dependence of
the diffusion coefficient at 4 GV. In addition, convection of CRs is modeled with a con-
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Fig.2 Upper panel: Comparison of the locally observed primary CR electron + positron spectra by AMS-
02 (Aguilar et al. 2014) and HESS (Aharonian et al. 2008) and the spectrum observed by Voyager-1 in
interstellar space (Cummings et al. 2016) (denoted as “LIS” in panel legend) to expectations from two dif-
ferent models of CR propagation. Both models were computed with GALPROP (Porter et al. 2022), assuming
plain diffusion + convection of CR in the ISM in one case (black), and diffusion with re-acceleration of CR
in the ISM (pink) in the other case. Lower panel: Expected DGE emission in the MeV and GeV bands from
the two CR propagation models shown in the upper panel. The expected emission (black/pink solid lines)
is compared to the MeV observations displayed in Fig. 1, and to the measurement of the diffuse emission
by Fermi LAT in Ackermann et al. (2012c) (red bars, right panel). Fermi-LAT measurements have been pub-
lished for a different region of the sky than the MeV measurements in the left panel. The corresponding region
is indicated above the respective panel. Individual contributions from various interaction processes are shown
as dashed/dotted lines (see legend)

vection speed increasing with distance from the Galactic plane (vo = 0 kms™!, dv/dz =
10 km s~! kpc™!). Plain diffusion has been shown to describe the Galactic synchrotron emis-
sion spectrum in the radio band better than models which assume (strong) re-acceleration
of CR in the interstellar medium (Strong et al. 2011). The second model shown is one with
moderate re-acceleration. Such models describe the light element (p, He) CR spectra best,
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according to an extensive study of propagation parameters in Jéhannesson et al. (2016). Re-
acceleration of CR in the ISM typically removes the necessity for a break in the rigidity
dependence of the diffusion coefficient. Moderate re-acceleration also remains consistent
with synchrotron observations (Orlando 2018). GALPROP configuration files for the two
models shown in Fig. 2 can be found in Ackermann (2025).

Below few tens of MeV, the DGE is almost entirely produced from IC scattering of CR
electrons and positrons with the ISRF. The strongest variations of the intensity of the DGE
between the two propagation scenarios depicted in Fig. 2 are visible in this energy range. At
higher energies, interactions of CR nuclei with the ISG resulting in the production of 7° —
yy strongly dominate the DGE. Bremsstrahlung from the interactions of CR electrons with
the ISG remains subdominant in the entire MeV energy range, but contributes significantly
to the total DGE from few MeV to few hundreds of MeV. The bremsstrahlung and pion-
decay components are strongly correlated to the distribution of the ISG column density
and, correspondingly, their intensity exhibits strong intensity variations over the sky on all
scales. In contrast, the IC component shows smooth variations over the sky, determined
by CR electron and radiation field densities along each line of sight (see, e.g., Orlando
2019). The kinematics of the pion decay lead to a characteristic steep spectrum for the pion-
decay component below %mﬂo ~ 67.5 MeV (Stecker 1971), allowing to distinguish it from
bremsstrahlung based on its spectral shape.

A precise measurement of the spectrum and spatial distribution of the DGE in the transi-
tion region between 10 MeV and 100 MeV is therefore crucial to disentangle the contribu-
tions from the different processes. The CR energies that are responsible for the DGE in this
energy range are typically around few tens of MeV to few GeV, a range where local mea-
surements of CR spectra do not reflect their local interstellar spectrum (LIS) due to strong
and time-dependent solar modulation effects (Potgieter 2013). The Voyager measurements
of LIS spectra are limited to < 50 MeV for electrons and < 350 MeV for protons (Cum-
mings et al. 2016). Precise y-ray measurements of the DGE can indirectly probe the LIS
CR spectrum above this energy range, and therefore, as discussed above, provide important
constraints on CR propagation models. This can also be seen in the upper panel of Fig. 2
where the two models displayed exhibit clear differences in the electron + positron spec-
trum in the range between few tens of MeV and few GeV, where solar modulation effects
are strong and no direct LIS measurements are available. In addition, the strong dominance
of IC scattering and pion decay at low and high energies, respectively, unlocks the potential
to improve our understanding of the ISRF and ISG distributions based on measurements of
the spatial distributions of the y-ray emission.

The measurement itself, however, is challenging for various reasons. The key energy
range between 10 MeV and 100 MeV needs hybrid instruments that combine a Compton
telescope with a pair detection instrument, such as the proposed newASTROGAM (Berge
et al. 2025) and AMEGO-X (Caputo et al. 2022) concepts. At energies above 10 MeV the ef-
fective area of typical Compton telescopes decreases rapidly due to the decreasing Compton
cross section and increasing leakage of Compton photons, while maintaining an O(1°) angu-
lar resolution (Caputo et al. 2022). The effective area of pair creation instruments increases
with energy, but their angular resolution deteriorates quickly for energies below 100 MeV
due to the increasing effects of multiple scattering of the electron-positron pairs in the de-
tector material. Their angular resolution reaches O(10°) below few tens of MeV (de Angelis
et al. 2018).

However, good angular resolution is crucial for disentangling the DGE from the fore-
ground of unresolved Galactic and background of extragalactic sources, as well as extended
diffuse structures such as the Fermi Bubbles and Loop I discussed in Sect. 3. The upcom-
ing COSI Compton telescope (Tomsick et al. 2023) will be an important first step forward.
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COSI will allow to resolve fainter foreground sources with its unprecedented continuum
sensitivity around 1 MeV in energy, yielding a higher accuracy estimate of the contribution
of unresolved sources to the DGE. It will also improve the resolution of spatial variations
in the continuum DGE in this energy range. A future hybrid Compton/Pair instrument with
an energy range from sub-MeV to multiple GeV allows to study these sources and extended
foregrounds over a wide energy range with good angular resolution and sensitivity below
10 MeV and above 100 MeV. These measurements will facilitate a high-confidence estima-
tion of the foreground/background source contribution to the DGE also in the energy range
between 10 MeV and 100 MeV, where it is hard to achieve both, good angular resolution
and sensitivity, simultaneously.

Other important foregrounds and backgrounds comprise the IGRB (see also Sect. 4) and
y-rays from the Earth’s atmosphere. The IGRB intensity can be distinguished from the DGE
by its isotropic distribution over the sky, while the Earth’s y-ray emission is predominantly
an issue in the Compton regime, since the Compton scattering angle can be large. Additional
shielding by a thick active veto system or the rejection of large scattering angles can help to
suppress the Earth’s y -ray background.

Exploring the spatial distribution of the DGE and correlations to ISRF and ISG requires
an instrument with significantly higher effective areas in the MeV range than that of past
and current generations of instruments. Around 100 MeV, the expected DGE intensity from
pion decay and IC scattering towards the inner Galaxy is similar for both components,
~2 x 1073 MeVem~2s~!sr™!, according to the model shown in Fig. 2. However, at the
Galactic poles the DGE intensity is more than an order of magnitude lower for IC scatter-
ing (Orlando 2019) and for the pion decay component (Ackermann et al. 2012c). Therefore,
an instrument with an extended source sensitivity of < 107* MeV cm™2s~! sr~! in the en-
ergy range between 10 MeV and 100 MeV, such as newASTROGAM (Berge et al. 2025) or
other proposed instruments, is required to study the DGE variations over the entire sky.

3 FermiBubbles and Loop |

Fermi bubbles (FBs) (Su et al. 2010; Su and Finkbeiner 2012; Ackermann et al. 2014,
Narayanan and Slatyer 2017; Herold and Malyshev 2019) and Loop I (Berkhuijsen et al.
1971; Wolleben 2007; Vidal et al. 2015; Ade et al. 2016; Shchekinov 2018; Dickinson
2018; Kataoka et al. 2018; Schulreich et al. 2018; Lallement 2023) are the largest extended
sources in the y-ray sky (apart from the Milky Way Galaxy itself and the isotropic y-ray
background). In spite of many multi-wavelength observations of these objects and a signif-
icant modeling effort for FBs (Zubovas et al. 2011; Cheng et al. 2011; Crocker and Aha-
ronian 2011; Guo and Mathews 2012; Yang et al. 2013; Crocker et al. 2015; Yang et al.
2022) and Loop I (Berkhuijsen et al. 1971; Wolleben 2007; Vidal et al. 2015; Ade et al.
2016; Shchekinov 2018; Dickinson 2018; Kataoka et al. 2018; Schulreich et al. 2018) their
origin is still under debate. In particular, Loop I was originally discovered in radio observa-
tions (Berkhuijsen et al. 1971). Models based on the radio data include a nearby supernova
remnant (Berkhuijsen et al. 1971) or superbubbles (supershells) created by stellar winds and
supernovae of the local Scorpio-Centaurus OB association (Wolleben 2007). The large size
of Loop I on the sky is explained because the distance to the edges of the superbubble is
comparable to the size of the superbubble itself. One of the main arguments in favor of a
local origin of Loop I is the polarization of light from stars behind a synchrotron emitting
region (Vidal et al. 2015; Dickinson 2018). A structure similar to the radio Loop [ is also vis-
ible in the X-ray data, where it is often referred to as the North polar spur or, more recently,
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the eROSITA bubbles (Predehl et al. 2020). The X-ray observations suggest, however, that
the corresponding structure is located at a much larger distance than the local superbubble
due to absorption of soft X-rays by the interstellar gas (Kataoka et al. 2013; Lallement et al.
2016; Gu et al. 2016; Lallement 2023). Another argument in favor of the GC origin of Loop
I is depolarization of low-frequency WMAP and Planck maps close to the Galactic plane
(Carretti et al. 2013; Vidal et al. 2015; Ade et al. 2016).

The FBs were discovered (Su et al. 2010) in the Fermi-LAT data after about a year and a
half of operations of the Fermi satellite (Atwood et al. 2009). Their symmetrical distribution
above and below the GC region suggests that the FBs are created by an activity in that re-
gion, such as a jet or an outflow from the supermassive black hole Sgr A*, the AGN scenario
(Zubovas et al. 2011; Cheng et al. 2011; Guo and Mathews 2012; Yang et al. 2013; Sarkar
et al. 2017; Yang et al. 2022; Sarkar et al. 2023), a star-burst activity near the GC (Lacki
2014), or regular star formation and supernovae explosions (Crocker and Aharonian 2011;
Crocker et al. 2015; Sarkar et al. 2017). In the AGN outflow or starburst scenarios the FBs
are inflated on the timescale of millions to tens of millions of years. In this case, the y-ray
emission is explained by inverse Compton scattering of high energy electrons with the ISRF.
Provided that the y-ray emission from the FBs is observed above 100 GeV, the required en-
ergy of electrons is about 1 TeV (Ackermann et al. 2014). These electrons have a cooling
time of 1 Myr or less (Ackermann et al. 2014), which is much shorter than the timescale of
formation of the FBs. In order to explain the y -ray emission from the FBs, a re-acceleration
of electrons is necessary (Mertsch and Sarkar 2011). The FBs can also be modeled as a per-
sistent structure in the Galaxy supported by the star formation and supernovae explosions
near the GC. In this case the y-ray emission mechanism is typically attributed to interac-
tions of hadronic CRs with gas, where the required density of CRs can be accumulated
on timescales of hundreds of millions to billions of years (Crocker and Aharonian 2011;
Crocker et al. 2015; Shimoda and Asano 2024). Related features in microwave (Finkbeiner
2004; Pietrobon et al. 2012; Ade et al. 2013) and radio (Carretti et al. 2013) wavelengths are
explained due to the presence of (re-accelerated) secondary leptons (Crocker et al. 2015).
For recent reviews of the FBs and the eROSITA bubbles/Loop I see Lallement (2023), Sarkar
(2024).

Extrapolations to MeV energies of leptonic and hadronic models of y-ray emission mea-
sured by the Fermi LAT (Ackermann et al. 2014) for the high-latitude FBs and Loop I are
presented in Fig. 3. Both for the FBs and Loop I we exclude the Galactic plane within
|b] < 10°. The corresponding CR proton and electron populations are modeled by power-
law with exponential cutoff functions. The parameters of the models are presented in Ta-
ble 1. The upper left plot shows models of the FBs assuming a magnetic field of 10 uG,
which is similar to the magnetic field in the models that can explain both the y-ray and mi-
crowave haze emissions (Ackermann et al. 2014). For comparison, we also show the models
with a much smaller magnetic field of 2 uG. The dashed purple line shows the leptonic
model of the y-ray emission. In the leptonic model we do not take the energy loss into ac-
count, i.e., we model directly the spectrum of CR electrons inside the FBs. The band shows
the 68% containment of the models taking into account statistical and systematic (added
in quadrature) uncertainties of the measured FB spectrum (Ackermann et al. 2014). In the
hadronic model (solid blue line) we take into account the y-ray emission from the primary
interactions of the CR protons with the ISG (orange dash dotted) and the IC (green sparse
dash-dotted line) and bremsstrahlung (red dotted line) emission of the secondary leptons
interacting with the ISRF and ISG, respectively. For the ISRF we use a volume averaged
model from GALPROP (Porter et al. 2008; Vladimirov et al. 2011; Porter et al. 2017) based
on Ref. (Freudenreich 1998). We assume an ISG density of 0.01 cm~ (Ferriere et al. 2007).
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Fig. 3 Intensity of emission of the FBs (red circles, left panel) and Loop I (red circles, right panel) at lati-
tudes |b| > 10° (Ackermann et al. 2014). Blue solid line shows the hadronic model of the y-ray emission.
Dashed orange line, green sparse dash-dotted line, and dotted red line show the primary 7Y, secondary IC,
and secondary bremsstrahlung components in the hadronic scenario respectively. Dashed purple line - lep-
tonic scenario of y-ray emission (dominated by IC emission). Bands show the 1 sigma model uncertainty
ranges for statistical plus 10% systematic uncertainties in the data. Pink diamonds, brown squares, and grey
upward triangles show the extragalactic diffuse y-ray background measured by COMPTEL (Weidenspoint-
ner et al. 2000), EGRET (Strong et al. 2004), and Fermi LAT (Ackermann et al. 2015a) respectively. Yellow
sparse dashed lines show expected COSI sensitivity after 2 years of observations (Tomsick et al. 2023) for an
extended source with the area of the high-latitude FBs 2 ~ 1 sr and Loop I 2 ~ 3 sr respectively. Expected
AMEGO-X (Caputo et al. 2022) and newASTROGAM (Berge et al. 2025) sensitivities for high-latitude FBs
and Loop I after 3 years of observations are shown by blue dash-dot-dotted and cyan long-dashed lines re-
spectively

With the 10 G magnetic field and such an ISG density, the dominant energy loss for the
secondary leptons is synchrotron radiation. As a result, one should expect the characteris-
tic drop in the total y-ray emission in the hadronic model below about 100 MeV (due to
the mass of the 7° meson). In the leptonic model, on the other hand, one can expect ap-
proximately a power-law extrapolation of the emission below 100 MeV. Consequently, the
expected y-ray emission between about 1 MeV and 100 MeV is lower in the hadronic model
compared to the leptonic one. The derived predictions are generally consistent with previ-
ous estimates of the y-ray emission from the FBs at MeV energies (de Angelis et al. 2018;
Negro et al. 2022).

We show the expected sensitivity of COSI after 2 years of observations (Tomsick et al.
2023), AMEGO-X after 3 years (Kierans 2020), and newASTROGAM after 3 years (Berge
et al. 2025) by yellow dashed, blue dash-dot-doted, and cyan long dashed lines respectively.
The sensitivity for intensity of emission from an extended source is estimated from the point
source (PS) flux sensitivity as follows. We assume that the PS flux sensitivity is dominated
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Table 1 Parameters of the

best-fit leptonic and hadronic Model B (nG) Index Ecur (GeV)

models of the FBs and Loop I at

|b| > 10° assuming two different ~ FB hadronic 2,10 2.06 £0.04 QZOOf%go

values for the magnetic field . 1320

B =2, 10 uG. The magnetic FB leptonic 2,10 2.06+0.18 9707240

field only affects the secondary . +980

population of leptons in the Loop I hadronic 2 2.60 +£0.15 3507560

hadronic model Loop I hadronic 10 2.65+0.13 46011700
Loop 1 leptonic 2,10 2.39+£0.28 211!

by a solid angle Qps = 7 R?, where we use either 68% containment radius or the half maxi-
mum radius depending on the availability of the corresponding radii in the literature. We also
assume that the background is proportional to the solid angle and that the statistical fluctua-
tions in the background are proportional to the square root of the background, i.e., that the
fluctuations satisfy Poisson statistics. Thus, we estimate the flux sensitivity for an extended
source subtending a solid angle Qex as Fexy = Fpsa/S2ext/ S2ps. The corresponding sensitiv-
ity for intensity of emission is then l.xy = Fext/ Qext = Fps/ v/ QextS2ps. We note that since
Fps o< 4/S2ps in the regime where the sensitivity is dominated by the background, I, does
not depend on Qpg as long as the size of the extended source is much larger than the PSF ra-
dius. For newASTROGAM and AMEGO-X we take Qps =1 Rég% . For newASTROGAM, we
use a characteristic value of the 68% containment radius at 50 MeV of 4°, which is slightly
larger than the corresponding radius for the e-ASTROGAM configuration (de Angelis et al.
2018). For AMEGO-X, we use the 68% containment radius of 5° at 50 MeV (Kierans 2020).
For COSI, we use the half-width half-maximum radius of 2° (Tomsick et al. 2023). We find
that for the 10 G magnetic field, the difference between the leptonic and hadronic models
can be detected by the newASTROGAM and AMEGO-X experiments in the energy range
between about 20 and 100 MeV. This conclusion strongly depends on the assumption about
the magnetic field. For a much smaller magnetic field of, e.g., 2 uG the hadronic model is
practically indistinguishable from the leptonic model down to hundreds of keV, where the
difference is at a sub-percent level compared to the isotropic diffuse background (cf. Fig. 4).
Thus, a presence of a break in the spectrum below about 100 MeV is a strong support for
the hadronic origin of the y-ray emission. In the absence of a break below 100 MeV, an
independent assessment of the magnetic field is necessary: for the magnetic fields on the
order of 10 uG or above the leptonic model is preferred, while for much smaller magnetic
fields than 10 uG both leptonic and hadronic models are possible.

The corresponding models for Loop I are shown in Fig. 3 on the right panels. The 10
uG and 2 G cases are on the upper and lower panels, respectively. There is a break in the
spectrum of the hadronic model below 100 MeV both for low and for high magnetic fields.
The main reason is that the spectrum of the primary protons is softer in the Loop I case
compared to the FBs (cf. Table 1), which results in a much smaller injected energy density
of the secondary leptons in the Loop I case. As a result, even for the 2 G magnetic field,
the hadronic model is significantly below the extrapolation of the leptonic model at ener-
gies E < 100 MeV. Although leptonic models of y-ray emission from Loop I are generally
preferred, especially in the GC outflow models of Loop I, there is still a possibility that
the y-ray emission has hadronic origin (Kataoka et al. 2018), e.g., in the superbubble sce-
nario (Wolleben 2007; Shchekinov 2018). In this case, the situation is similar to supernova
remnants, where the protons and nuclei can be responsible for the majority of the y-ray pro-
duction, while electrons are responsible for the synchrotron radio emission. An observation
of a drop in the y -ray emission below 100 MeV would be a signature of a hadronic origin of
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Fig.4 Measurements of the extragalactic X-ray and y-ray background from 1 keV to 820 GeV. The energy
ranges of the upcoming COSI satellite and other proposed future y-ray space missions are indicted by the
arrows above the figure. Image reproduced with permission from Ackermann et al. (2015a), copyright by
AAS

y-ray emission from Loop I and an argument in favor of their local origin, although hadronic
emission in Loop I in the GC outflow is also possible, e.g., (Kataoka et al. 2018). A flat SED
below 100 MeV, on the other hand, would point to a leptonic origin of the y-ray emission.
In this case, both local and GC outflow models of Loop I are possible. Apart from Loop I,
there are several other loops and spurs observed in radio data (Berkhuijsen et al. 1971; Vidal
et al. 2015; Ade et al. 2016). At least one of these loops (Loop IV) is also detected in the
y-ray data (Johannesson and Porter 2021). Comparison of Loop I with the other loops may
shed light on whether Loop I is a special feature or all loops have similar origin.

4 Extragalactic Diffuse Background

The first measurement of the MeV extragalactic background reaches all the way back to the
Apollo missions (Trombka et al. 1977), which detected a diffuse emission component in the
0.3-10 MeV range with a high degree of isotropy. The existence of this cosmic radiation
background was confirmed by HEAO-1 (Kinzer et al. 1997), SMM (Watanabe et al. 1999b),
COMPTEL (Weidenspointner et al. 2000), and other measurements in the MeV band. It
was extended to GeV energies by EGRET (Sreekumar et al. 1998), and the most recent
measurement above 100 MeV up to a maximum energy of 820 GeV was provided by the
Fermi LAT (Ackermann et al. 2015a). Figure 4 provides a selection of measurements of the
extragalactic X-ray and y-ray background from 1 keV to 1 TeV.

A substantial fraction — if not all — of the IGRB emission is customarily attributed to
unresolved sources from the various extragalactic y-ray source populations. In the MeV to
GeV energy range, emission from star-forming galaxies (SFGs) (Lacki et al. 2014), jetted
and non-jetted active galactic nuclei (AGN), such as Seyfert galaxies (Inoue et al. 2008),
radio galaxies (Inoue 2011), and blazars (Ajello et al. 2009), as well as the y-ray emission
from nuclear decays in cosmic supernovae, in particular SN Ia (Clayton and Ward 1975;
Ruiz-Lapuente et al. 2016), all contribute to the IGRB.
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Fig. 5 Overview of the contributions of various source populations to the total EGB. The shaded areas rep-
resent the uncertainties in the contributions according to the calculations in the respective publications. The
magenta line demonstrates how a potential y-ray signal from dark matter annihilation would lead to features
in the spectrum. Non-observation of such features allows to constrain the dark matter annihilation cross sec-
tion. Image reproduced with permission from Ajello et al. (2015), copyright by AAS

While non-jetted AGN dominate the IGRB in the soft and hard X-ray range (Hasinger
2004), blazar emission is the dominant source of the IGRB above few tens of GeV (Acker-
mann et al. 2016). The fractional contributions of the various populations in the MeV and
low GeV range is still under debate and one of the prime open questions of y-ray astronomy.
The energy range between few hundred keV and few tens of MeV might be dominated by
Seyfert galaxies (Ananna et al. 2019) or blazars (Ajello et al. 2009), with unknown contribu-
tions from supernovae and jetted AGN (Ruiz-Lapuente et al. 2016). Apparent breaks in the
IGRB spectrum at few MeV and few tens of MeV could be interpreted as an indication for
the relevance of multiple source populations in this energy range. Existing measurements
by SMM and COMPTEL do not constrain the IGRB spectrum enough to identify individual
contributions based on their characteristic spectral shapes. However, the upcoming COSI
satellite mission is expected to improve the precision of the spectral measurement signifi-
cantly in the energy range between few hundred keV and few MeV. Starforming galaxies are
expected to contribute significantly to the IGRB above few tens of MeV with widely vary-
ing predictions (e.g., Tamborra et al. 2014; Linden 2017; Ajello et al. 2020). A similar large
range of predictions exists for the contribution of radio galaxies to the IGRB (e.g., Inoue
2011; Di Mauro et al. 2014; Hooper et al. 2016). Figure 5 shows a schematic overview of
the contributions of various source populations to the EGB, based on calculations in Inoue
(2011), Ackermann et al. (2012b), Ajello et al. (2015) and their quoted uncertainties.

Disentangling the various contributions depends on modeling of the y-ray luminosity
functions of the various populations and their spectral shapes in the energy range of in-
terest. The obtained intensity can then be compared to the intensity of the total EGB. For
most populations only few sources were detected with past and current instruments in the
MeV range, too few to derive their luminosity functions directly. Consequently, observed
or expected correlations between y-ray luminosities and luminosities in other bands of the
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electromagnetic spectrum are used to estimate the y-ray luminosity functions, leading to
a substantial statistical and systematic uncertainty (see, e.g., [noue 2011; Ackermann et al.
2012b). Similarly, the spectral shape of sources is often interpolated from X rays and high-
energy y rays due to a lack of data in the MeV range.

Future y-ray telescopes with improved sensitivity and angular resolution in the MeV
range, will be able to advance our understanding of the IGRB in two ways. First, they will
provide a more precise measurement of the IGRB and its spectral shape, due to their higher
collection area and larger field-of-view. Second, they will allow to resolve a larger fraction
of the total EGB into its individual source populations, providing a more direct measurement
of their luminosity functions and spectral shapes.

The IGRB and total EGB are also of fundamental importance for searches for BSM
physics. Since our Universe is transparent to y rays, in particular in the MeV and low-GeV
regimes, the y-ray background provides strict constraints on the cumulative y -ray emission
from the observable Universe. This can be used to test, e.g., models of dark matter anni-
hilation or decay (Ackermann et al. 2015b), or constrain the density of primordial black
holes (Carr et al. 2010). Precise measurements and a detailed understanding of the IGRB
are crucial to unleash the full potential of these searches that need to disentangle astrophys-
ical contributions from unresolved sources and potential y -ray emission from non-standard
model particles and/or primordial black holes.

In multi-messenger astronomy, the EGB at MeV and GeV energies is a key observable
due to is intrinsic connection to the extragalactic neutrino background (ENB) at TeV and
PeV energies (Aartsen et al. 2020; Abbasi et al. 2022a) measured by the IceCube neutrino
telescope (Aartsen et al. 2017). The ENB, much like the EGB, is considered to arise from
unresolved neutrino sources.

The standard neutrino production process in astrophysical sources is the decay of charged
pions produced in the interactions of nucleons with gas and photon targets in the local source
environments. This process inevitably leads to the simultaneous production of high-energy
photons (with similar energies as the neutrinos) from the decay of neutral pions generated
in the same interactions. In contrast to neutrinos, TeV and PeV photons cannot propagate
over cosmological distances, but interact with the extragalactic background light (EBL,
e.g., Franceschini and Rodighiero 2017). Repeated pair production and IC interactions result
in a cascading of the initial photons to GeV energies, at which the Universe is transparent
for y rays even at cosmological distances. This cascading in the EBL links the TeV/PeV
neutrino background to the GeV y-ray background and has been used to constrain proper-
ties of the neutrino sources and the neutrino spectrum below the energy range observable by
IceCube (Murase and Waxman 2016).

Even more extreme cascading processes can alter the y -ray spectra within the source en-
vironments close to the interaction region, e.g., within the photon targets that are producing
the charged and neutral pions. In this case, intense UV to X-ray target photon fields would
lead to a cascading even of GeV photons, which would finally escape at MeV energies. Such
sources have been named “hidden” CR accelerators in Murase et al. (2016) since they might
be invisible in the GeV band, and unobserved in the MeV band, where the sensitivity of
current instruments trails sensitivities achieved for GeV y rays. Remarkably, the first obser-
vation of a neutrino source, the Seyfert galaxy NGC 1068, shows a y-ray luminosity in the
GeV band that is more than an order of magnitude lower than its neutrino luminosity (Abbasi
et al. 2022b), pointing to the described cascading in this source.

Models, such as (Murase 2022), of the broad-band emission of NGC 1068 consequently
predict a strong emission in the MeV band, where the source becomes transparent to pho-
tons. The MeV y -ray background holds the imprint of all such sources in the Universe and
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can be used to constrain the population properties of “hidden” accelerators; in particular,
in conjunction with the improved sensitivity of future MeV instruments and future neutrino
telescopes that will allow to also individually detect the brightest of theses sources in y rays
and neutrinos.

The measurement of the isotropic y-ray background is challenging for various reasons.
Strong Galactic foregrounds lead to large systematic uncertainties in the determination of the
IGRB in the GeV band (see Fig. 4). In the MeV band, the signal-to-noise between isotropic
and Galactic gamma-ray emission improves significantly, however, new challenges arise:
Secondary charged particles and y rays produced by CRs in the Earth’s atmosphere can
mimic the isotropic y-ray background. While a part of the background can be suppressed
by active veto systems, some background remains irreducible, such as y rays produced
in secondary positron annihilation in passive material that inevitably surrounds any active
shielding.

This secondary cosmic-ray contamination dominates the instrumental background for
the IGRB measurement at few hundred MeV (Ackermann et al. 2012a). In addition, the
fluxes of secondary charged particles with energies below few GeV in low-Earth orbit (LEO)
are poorly measured (Mizuno et al. 2004; Cumani et al. 2019), leading to large systematic
uncertainties in modeling the expected background. Future mission concepts should keep
these challenges in mind when optimizing the design of the instrument and the orbit, e.g.,
by minimizing passive material outside of active veto systems and/or devising strategies to
measure the secondary charged particle flux in-situ.

At tens of MeV, the Earth’s albedo y-ray emission and unresolved Galactic sources can
become a significant background for the IGRB measurement. The quickly deteriorating PSF
in pair-conversion telescopes (Ackermann et al. 2012a; de Angelis et al. 2018) at these en-
ergies leads to source confusion and makes it increasingly hard to reject the Earth emission.
Below few MeV, a new background arises from the activation of spacecraft material due
to CRs and trapped particles in orbit, leading to a significant increase in the instrumental
background over time (Weidenspointner et al. 2001). Careful monitoring and modeling of
this background is required to subtract it from the measured data. Again, choice of orbit, in
particular avoiding the trapped particle populations in the South Atlantic Anomaly, and the
design of the instrument can help to minimize this background.

5 Conclusions

Continuum diffuse y-ray emission has been observed and studied since the early days of
spaceflight that made their detection possible. Their main contributions, the DGE and the
EGB are very different in nature. However, both contain essential clues for fundamental
questions of physics and astronomy, such as the propagation of CRs in our Galaxy, or the
nature of the non-baryonic matter in our Universe. Closely connected are large extended
sources in the Milky Way, such as the FBs and Loop I, which have been observed from
radio to GeV energies and provide unique information about the history of CR injection and
high-power outflows in the Galaxy.

In this article we have demonstrated that a precise measurement of the spectrum and
spatial distribution of the diffuse y-ray emission in the MeV range is crucial for our ability
to understand the origin of the emission. In the case of the DGE, this will allow us to separate
the components that arise from interactions of CRs with the ISG and ISRF. It also will give
us an independent handle on the LIS spectrum of CR electrons in an energy range where
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local observations are dominated by solar modulation effects, but which is critical for testing
different CR propagation scenarios.

In the case of the EGB, a precise measurement of its spectrum will help us to identify and
quantify the contributions of the various source populations in the y-ray sky, and constrain
potential additional contributions, e.g., from the annihilation of dark matter particles or the
evaporation of primordial black holes. In a multi-messenger approach it will also connect
neutrino and y-ray observations, and help in understanding the properties of high-energy
neutrino sources.

In the case of extended sources, such as FBs and Loop I, high sensitivity in the MeV to
hundred MeV range will allow one to distinguish in many scenarios leptonic and hadronic
models of y-ray production, which in turn will put constraints on the origin of these struc-
tures. In particular, leptonic models are favored in the AGN scenario of FB formation, while
hadronic emission is generally preferred in scenarios involving star formation and super-
novae.

The upcoming COSI satellite mission, covering the energy range from few hundred keV
to few MeV with unprecedented sensitivity, is a crucial first step towards achieving the de-
scribed advancements in our understanding of the origin of diffuse y-ray emission and large
extended structures in the y-ray sky. Ultimately, it will, however, require a new generation
of MeV telescopes, such as newASTROGAM or AMEGO-X, which are one to two orders of
magnitude more sensitive than past and current instruments and cover a wide energy range
from sub-MeV to low-GeV energies.
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