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Chapter 1

Introduction

1.1 String theory

Unification

One of the most important concepts in the development of theoretical physics

is the search for unification. The unified description of diverse physical phe-

nomena in a single theory has in many cases proven to be more than just

aesthetically appealing: it has often led to deep new insights in the funda-

mentals of physics. For example, Maxwell’s unified description of electric and

magnetic phenomena in the theory of electromagnetism lay at the heart of

Einstein’s formulation of the special theory of relativity in the beginning of

the previous century.

This search for unification culminated in the formulation of the Standard

Model of elementary particles and interactions in the seventies. This model

successfully describes the known elementary particles as well as their inter-

actions due to electromagnetic as well as weak and strong nuclear forces.

Moreover, the model offers a microscopic description in accordance with the

laws of quantum mechanics and has been verified in a huge number of exper-

iments.

The main obstacle to the continuation of the ambitious project of unifying

all known particles and forces into a single theory was the incorporation of

the gravitational force. This force is described very elegantly by Einstein’s the-

ory of general relativity which has also been confirmed experimentally. This

1
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Figure 1.1: (a) A weak interaction process in the original four-fermi descrip-

tion. (b) The same process as described by the Standard Model: the interac-

tion is ‘smeared out’ by the exchange of a W-boson.

theory, however, is in essence a classical theory, and is reliable only for the de-

scription of phenomena on a macroscopic scale. Fundamental problems arise

when one attempts to apply the laws of quantum mechanics to the theory of

general relativity: in technical terms, general relativity is a non-renormalisable

theory, which means that applying quantum-mechanical perturbation theory

leads to uncontrolled divergences in scattering amplitudes.

Non-renormalisability and effective theories

Let us illustrate the problem of non-renormalisability in a different example,

the four-fermi theory of weak interactions. The weak interaction was origi-

nally described as an interaction of four fermionic fields at a spacetime point

as depicted in figure 1.1(a). The strength of this interaction is determined by

a coupling constant GF which has the dimension1 of [energy]−2. This means

that, in a process with characteristic energy E, the effective dimensionless

coupling is of order GFE
2. This coupling becomes arbitrarily large at high en-

ergies and leads to divergences in loop amplitudes which, in contrast to the

infinities arising in renormalisable theories, cannot be absorbed in a redefini-

tion of the physical parameters of the theory2.

1We are working in units with c = � = 1.
2More correctly, the removal of infinities in a nonrenormalisable theory would require the

introduction of an infinite number of physical parameters whose values would have to be deter-
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We have already mentioned that the Standard Model does give a good

quantummechanical description of the weak interaction, and it is worthwhile

to reflect on how the problem of nonrenormalisability in the four-fermi model

is solved there. In figure 1.1(b) we depicted the same process as described by

the Standard Model. Here we notice that, when we look at the process at a

sufficiently small scale, the four-fermion interaction actually involves the ex-

change of a new particle, the W-boson. In this way, the interaction of the orig-

inal theory is smeared out and the high energy (= small distance) divergences

of the four-fermi model are absent. The original four-fermi model does how-

ever give a good approximation at sufficiently small energies (= sufficiently

large distances). This is summarised in the statement that the four-fermi

theory gives an effective description of the physics at low energies.

This example illustrates how non-renormalisable theories have come to

be regarded in recent times: non-renormalisability is interpreted as a signal

that the theory in question provides an effective description of a more fun-

damental theory. The latter theory should contain new degrees of freedom

(such as the W-boson in our example) which come into play at sufficiently

high energies and whose presence ‘smears out’ the interactions that gave rise

to high-energy divergences.

String theory: a fundamental description of gravity

We return now to the case of general relativity. Here as well, the coupling con-

stant of the theory, Newton’s constant GN , has the dimension of [energy]−2.

The same problems of non-renormalisability arise here and one expects that,

here as well, one has to do with an effective description of a more fundamen-

tal theory. The search for a fundamental description of gravity in terms of

a ‘traditional’ theory of interacting particles has failed, however. It therefore

seemed likely that such a description would require a radical new approach.

Such a radical new idea, and still the only known one that solves the afore-

mentioned problems, came, now more than thirty years ago, to the attention

of the scientific community in the form of string theory3.

The fundamental objects in string theory are not particles, but submicro-

scopic vibrating strings. Seen from a sufficiently large distance, these vibrat-

mined experimentally. This of course severely restricts the predictive power of such theories.
3Although string theory was originally proposed as a model for the strong interaction, it

was soon realised that its true promise lay elsewhere, as a candidate for the fundamental
description of gravity.
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graviton

a) b)

Figure 1.2: (a) A scattering process involving the exchange of a graviton. (b)

The same process as described in string theory: the interaction is ‘smeared

out’ as a consequence of replacing particles by strings.

ing strings look like particles, and each vibrational mode of the string corre-

sponds to a particle with definite physical properties. Many particle theories

can in this way be regarded as effective descriptions of a more fundamental

theory of strings. One of the most important results in string theory is that

one of the vibrational modes of the string has exactly the right properties to

be identified as the particle which carries the gravitational force, the gravi-

ton. Hence string theory became a candidate for the fundamental theory for

which general relativity provides an effective description (see figure 1.2) and,

as it turned out, string theory does satisfy the main requirement for such a

theory: it provides a perturbation expansion which is finite order by order.

String theory and unification

Besides gravity, string theory also contains a number of other ingredients

which were proposed during the course of the twentieth century in the search

for a unified description of nature. Here we just list the most prominent ones:

• String theory contains many other excitations besides the graviton, and

some of those have the right properties to be identified as the matter

particles and gauge bosons (which can be seen as the carriers of the

various forces) of the Standard Model. In string models (see e.g. [1]), the
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Standard Model symmetry group, SU(3)×SU(2)×U(1) [2, 3], is typically

embedded in a larger symmetry group such as SU(5) or SO(10). In this

way, string theory unifies gravity with the Grand Unified Theory (GUT)

extensions of the Standard Model proposed in the seventies.

• String theory also incorporates the concept of extra spatial dimensions.

Indeed, the known consistent string theories require the presence of 9

spatial dimensions. This idea is not in contradiction with experimental

data as long as 6 of these dimensions are ‘curled up’ to a sufficiently

small size, and, in fact, this mechanism was proposed by Kaluza and

Klein [4] as a mechanism for unification of gravity and electromagnetism

as early as the 1920’s. Traditionally, it was assumed that these extra

dimensions would be of the size of the Planck length, lP = G−1/2
N = 1.6×

10−33 cm. Recently, it has been realized that dimensions can be much

larger, up to the order of 1 mm, without conflicting with observations

[5].

• A third important ingredient in string theory is supersymmetry, a sym-

metry which exchanges bosonic and fermionic degrees of freedom and

which is present in all known consistent string theories. Supersymme-

try was also proposed before as a possible extension of the Standard

Model, amongst other reasons because it gives a natural explanation for

difference in magnitude between the typical scales of Standard Model

physics and the Planck scale lP (see e.g. [6] for a recent discussion).

1.2 Why string field theory?

In the previous section we saw that string theory, in its conventional formula-

tion, provides a formalism in which scattering amplitudes involving gravitons

and and other string excitations can be calculated perturbatively. We there-

fore denote this conventional formulation of the theory, which has been ex-

tensively studied in the literature, by string perturbation theory. A number of

applications however, one of which is the main subject of this thesis, require

a more extensive formalism, that of string field theory. In order to understand

the reasons for introducing such a formulation, we should first reflect on the

limitations inherent in the formulation of perturbative string theory. Here

too, we can gain some insight by comparing with the situation in elementary

particle physics.
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Field theory versus S-matrix theory

The natural framework for the description of interactions between elemen-

tary particles is quantum field theory, where particles are described as fluctu-

ations of a quantum field. Quantum field theory gives a description of particle

interactions, including those in which particles are created or annihilated, in

a manner which is consistent with the requirements of quantum mechanics

and special relativity. In particular, the formalism leads to a perturbative

method for calculating transition amplitudes between initial and final states,

each containing a definite number of particles. Such transition amplitudes

are called S-matrix4 elements and form the basis for the calculation of mea-

surable quantities such as decay rates and cross-sections.

In this perturbative framework, S-matrix elements are approximated by

a sum of contributions, each of which can be represented by a Feynman di-

agram (examples of such diagrams were already encountered in figures 1.1

and 1.2). These diagrams are built up according to a set of Feynman rules

which can be read off in a straightforward manner from the quantum field

theory action. We give a simple example: the theory of a scalar field φ with

the action:

S[φ] =
∫
d4x[

1

2
φ(∂µ∂

µ −m2)φ+ g
3!
φ3]. (1.2.1)

The first term in the action gives rise to the propagator, which represents

free propagation of the particle and is represented in Feynman diagrams by

a straight line (figure 1.3(a)), while the second term describes interactions in

which two particles annihilate and a third particle is created. This interaction

is represented in Feynman diagrams by a three-point interaction vertex (figure

1.3(b)). Hence, in elementary particle theory, the perturbative S-matrix expan-

sion follows naturally from the field theory description. In perturbative string

theory, the situation is more or less the reverse: here one has at one’s disposal

a perturbative expansion for the S-matrix but it is not a priori clear whether

this expansion has a field-theoretic origin. The goal of string field theory is to

provide this field-theoretic framework by introducing string fields, whose fluc-

tuations correspond to strings, and by proposing a string field theory action

for these fields which, through the resulting set of Feynman rules, generates

the string theory S-matrix expansion.

4In fact, the physical restrictions on S-matrix elements, such as Lorentz invariance , unitarity
and causality, are so stringent that they naturally lead to the introduction of quantum fields
[18].
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(a) (b)

Figure 1.3: Feynman diagrams in scalar φ3 theory are built up out of the ele-

mentary building blocks of (a) the propagator and (b) a three-point interaction

vertex.

The advantages of a field theory description

A natural question to ask in this context is whether we can learn anything

new from such a description. If all physically relevant questions could be

answered within the framework of perturbative string theory, the introduc-

tion of string field theory would not be a necessity but merely amount to an

alternative description of the same phenomena.

In particle theory, many applications are known for which the perturbative

S-matrix description is insufficient but which can adequately be described by

quantum field theory. We give a few examples:

• First of all, a perturbation expansion is an expansion in a coupling con-

stant like the parameter g in the example 1.2.1, which is supposed to be

small. To make matters worse, such perturbation expansions are generi-

cally (and, presumably, in the case of string perturbation theory as well),

not convergent, but rather asymptotic series for small g. Such asymp-

totic series can give a very good approximation for small values of g,

but can, for larger values of g, miss important aspects of the physics of

the model. Examples include the description of solitonic objects, such as

magnetic monopoles in gauge theories, which typically have a mass in-

versely proportional to g. Another example are the instanton corrections

to certain processes, who are typically of order e−1/g .
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• For the description of processes in the presence of background fields as

well as for the calculation of quantum corrections to the classical action,

one needs to be able to calculate more general amplitudes than the ones

incorporated in the S-matrix, the so-called off-shell amplitudes.

• The S-matrix approach also fails in the description of collective phenom-

ena which involve large numbers of particles. An example of such a phe-

nomenon, which plays a crucial role in the formulation of the Standard

Model, is the Brout-Englert-Higgs-Kibble effect, in which a condensate

of scalar particles is formed that is responsible for the generation of

particle masses in the Standard Model.

The ambition of string field theory is to provide a framework to describe

similar effects in string theory. Remarkably, in string theory, a number of

of nonperturbative issues have found a description in string theory without

going beyond perturbation theory. What happens here is that string theory

at large coupling g is equivalent or dual to a different string theory at small

coupling g′ proportional to 1/g5. By this mechanism, it becomes possible to

study the strong coupling physics of a given string theory by doing perturba-

tion theory in the dual theory.

Although string field theory has played little or no role in the discovery of

these aspects of nonperturbative string theory, it has proven a necessary tool

in a number of applications. One of these applications, tachyon condensation,

will be the main subject of this thesis.

Witten’s string field theory

The most successful string field theory to date was proposed by Witten in

1986 [8] and describes the interactions between open strings. The action has

the following form:

S[Ψ] =
∫
• [1

2
Ψ ⋆QΨ + g

3
Ψ ⋆ Ψ ⋆ Ψ] (1.2.2)

Without going into the precise meaning of all the symbols (this will be the

subject of chapter 3), we would like to discuss briefly the physical meaning

of the two terms in the action. Comparing to the action (1.2.1) for the scalar

5This type of duality goes under the name of S-duality A different type of duality relation in
string theory, called T-duality, was studied in our paper [76].
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(a) (b)

Figure 1.4: Feynman diagrams in open string theory are built up out of (a) a

propagator and (b) a three-string interaction vertex.

field, we notice a number of similarities: the scalar field φ is replaced by the

string field Ψ , the kinetic energy operator by the as yet undefined operator Q,

and the multiplication and integration operations are by similar operations ⋆

and
∫
• on string fields. The meaning of both terms in the action 1.2.2 is also

comparable to the meaning of the terms in (1.2.1): the first term describes free

string propagation (figure 1.4(a)) while the second term describes interactions

in which two strings join to form a third string (figure 1.4(b)).

1.3 Unstable objects in string theory

D-branes

Of great importance in the recent developments in string theory has been

the realization that string theory is more than a theory of strings alone: it

also contains other extended objects, the so-called D-branes. These D-branes

can come in various dimensionalities, and one distinguishes between the D-

particle, the D-string, the D-membrane, D-3-brane and so on.

Despite the fact that D-branes are essentially a part of closed string theory,

open strings play an important role in their description, for a D-brane can be

seen as a hypersurface on which open strings can end. These open strings

correspond to fluctuations of the D-brane.

The D-branes in closed superstring theory have an important physical

property: they carry a certain type of charge, called Ramond-Ramond charge.
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This property is closely related to the presence of supersymmetry: the fact

that D-branes carry such charge identifies them as objects in whose presence

the theory remains invariant under a number of supersymmetries. Such ob-

jects are also called BPS-objects. An important consequence of the BPS prop-

erty is that D-branes are stable objects that cannot decay into lighter states.

Tachyons and instabilities in field theory

Before we turn to the discussion of unstable objects in string theory, we

briefly mention some facts concerning instabilities in quantum field theory.

In quantum field theory, instabilities of the system are signalled by the

presence of tachyons in the perturbative spectrum of the theory. By the term

tachyon we mean a fluctuation of the field which, should one insist on giv-

ing it a particle interpretation, would represent a particle with imaginary rest

mass (and, hence, moving at a speed greater than the speed of light). A small

perturbation of such a system initiates a decay process to a stable configu-

ration. This process is called tachyon condensation because, in the course of

this process, a condensate of scalar particles is formed. The presence of such

a condensate has important consequences for the physics of the model; we

already mentioned in the previous section that such a condensate is respon-

sible for the generation of particle masses in the Standard Model.

Unstable branes and Sen’s conjecture

Besides the aforementioned stable branes, string theory contains unstable

branes as well. Their existence was first established by Sen. The instability of

these objects is, just as in field theory, signalled by the fact that the spectrum

of fluctuations contains a tachyon. Here too, the system will decay to a stable

configuration under tachyon condensation. An important question concerns

the nature of the final state in this decay process.

Based on a number of arguments involving string dualities, Sen has pro-

posed a hypothesis which provides the motivation for the work presented in

this thesis. According to Sen’s conjecture, the end product of tachyon conden-

sation is the vacuum of closed string theory, or, in other words, the unstable

brane ‘decays to empty space’.

If this hypothesis is true, then all the energy contained in the mass of the

unstable brane is used up in the process of tachyon condensation. This can
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be the case only if the potential for the tachyon satisfies the following require-

ment: the difference between the value of the potential at its maximum (which

corresponds to the unstable brane) and the value at its minimum (which de-

scribes the stable configuration) should be precisely equal to the tension of

the unstable brane.

The determination of the tachyon potential in string theory hence provides

a concrete test of Sen’s conjecture. Furthermore, such a calculation is out of

reach for string perturbation theory and it has to be performed in the formal-

ism of string field theory. This provides us with an excellent opportunity to

test string field theory in a concrete application. Indeed, before string field

theory was used to verify Sen’s conjecture, it was widely believed that it had

failed to achieve its goals because of its inability to produce results that were

not already obtained in string perturbation theory. The study of the tachyon

potential in string field theory, which is the subject of the present work, has,

in our opinion, to a certain extent invalidated this point of view.

1.4 Outline of the thesis

Having provided the general context in which our work is situated, we now

give an outline of the topics studied in the thesis.

Chapter 2 is devoted to perturbative string theory. A first purpose of

this chapter is to familiarise the non-expert reader with the basic setup of

string perturbation theory. For this reason, we have included a discussion

of the Polyakov action in section 2.1 and of the construction of the string

theory S-matrix in section 2.2 . Section 2.4 treats the physical spectrum of the

bosonic string in the formalism of BRST-quantisation. Section 2.5 discusses

the extension to superstrings, leading to the analysis of the physical spectrum

in 2.5.5. We end by giving an overview of the known consistent string theories

in 2.5.6.

We have also included in chapter 2 a number of technical developments

that are necessary for a complete understanding of the technical aspects of

chapters 3–7. These include the discussion of some tools in two-dimensional

conformal field theory in section 2.3 and the treatment of some technicalities

involving the ghosts in superstring theory in 2.5.4 and 2.5.5.

Chapter 3 deals with the formulation of string field theory. After intro-

ducing the concept of a string field in 3.1.1, we turn to a discussion of string
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field theory in Witten’s original formulation, which makes contact with the

intuitive notion that string interactions arise from the splitting and joining of

strings, in sections 3.1.2 and 3.1.3. In section 3.1.4 we derive an equivalent

formulation of string field theory in terms of conformal field theory corre-

lators, which is more suited for performing concrete calculations and which

will be used extensively in chapters 5 and 7. The derivation in 3.1.4 is based

on the path-integral representation of the string field and has not appeared

before in the literature. Although, in this thesis, we will be concerned with

the classical aspects of string field theory, we comment on the quantisation of

the theory in 3.1.7. In section 3.2, we discuss superstring field theory. Three

different proposals for such a theory have been made in the literature, all of

which are reviewed in this section. We conclude the chapter by listing some

imperfections and open problems in the current formulation of string field

theory (section 3.3).

In chapter 4, we provide the motivation for our work on the subject of

tachyon condensation and place it in a broader context.

In section 4.1, we give some important examples of tachyon condensation

in quantum field theory. Sections 4.2-4.4.2 give an overview of stable and

unstable D-branes in string theory and their role in the context of string du-

alities. In sections 4.4.3 and 4.4.4, we formulate Sen’s conjecture concerning

the tachyon potential on unstable D-branes, and argue that the verification of

this conjecture should take place in string field theory.

In chapter 5, we discuss tachyon condensation in bosonic string field the-

ory. Although this chapter does not contain new results, we do make an

effort to tie up some loose ends in the existing literature. At the same time,

the bosonic model provides an ideal setting to illustrate some basic principles

in a relatively simple context, which can later be transferred to the technically

more involved case of superstrings.

In sections 5.1 and 5.2, we argue that the tachyon potential is a universal

function independent of certain details of the model. Section 5.3. introduces

the calculational method that will be used in all calculations in this thesis and

goes under the name of level truncation. In sections 5.5 and 5.6, we review

the calculation of the tachyon potential in the level (4,8) approximation, and

find that the behaviour of the potential is in very good agreement with the

predictions of Sen’s conjecture. We end the chapter with a discussion of the

physics described by the model after tachyon condensation in section 5.7,

including the hypothesis that the model could give a description of closed
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strings. We consider this speculative idea to be one of the most promising

directions for future research in this field.

In chapter 6, we make an effort to put the level truncation method, which

is used in most string field theory calculations, on a sounder footing. This

method gives a series of successive approximations that, in practice, has

turned out to converge rapidly to the exact result, but a priori arguments

for this fact are largely nonexistent. Therefore, we consider level truncation

in a simplified model that is inspired by the full string field theory, where we

are able to obtain exact results. These results have not appeared before in the

literature.

In sections 6.1 and 6.2, we introduce the model and derive the resulting

equations for the condensate. In section 6.3, we obtain an exact solution to

the problem for a specific choice of the parameters of the model. In section

6.4, this exact solution is compared to the level truncation approximation,

and it is shown that this approximation provides an algorithm that converges

to the exact result in a manner which is exponential as a function of the level.

This behaviour is in agreement with the one found ‘experimentally’ in the full

string field theory.

In chapter 7, we present our results concerning the study of the tachyon

potential in superstring field theory. We have already seen that there exist

three different proposals for superstring field theory in the literature. The

study of the tachyon potential in these theories should be seen in a different

light from the analogous study in the bosonic model: in the superstring case,

Sen’s conjecture has been put on a firmer basis while it is less clear a priori

which string field theory description is the correct one. The study of the

tachyon potential should here be seen as a test of the string field theory

description, rather than a test of Sen’s conjecture.

In section 7.1, we discuss the behaviour of the tachyon potential in Wit-

ten’s string field theory. These results have appeared in our paper [115]. We

find that the tachyon potential in this theory has no minimum and conclude

that there is no agreement with the behaviour predicted by Sen’s conjecture.

Section 7.2 treats the tachyon potential in modified cubic string field theory.

Here too, our results force us to the conclusion that there is no agreement

with the expected behaviour. In section 7.3, which collects the results of

our paper [118], we study the tachyon potential in the theory proposed by

Berkovits. The results in this theory turn out to be in good agreement with

the predictions from Sen’s conjecture.
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Chapter 2

String perturbation theory

In this chapter, we will attempt to give an overview of string perturbation

theory. The treatment will be rather sketchy at times, the main objective is

to establish notation and emphasise those results that are needed for the dis-

cussion of our own work in the next chapters. As in most modern texts on the

subject, our approach will rely heavily on the pioneering work [13] stressing

the role of two-dimensional conformal field theories as the building blocks

of string theory. The reader interested in studying a more self-contained in-

troduction to the subject is referred to the textbooks by Polchinski [9], from

which most of our conventions and notations are taken. Other good introduc-

tions to the subject are [10, 11, 12]. Good reviews of conformal field theory

in two dimensions can be found in [14, 15].

In the following chapters, extensive use will be made of some technical

aspects of conformal field theory presented in this chapter. The most im-

portant ones are: the state-operator mapping and the behaviour of vertex

operators under finite conformal transformations (section 2.3.2), the state-

operator mapping (section 2.3.3), the BPZ inner product (section 2.3.5), and

the discussion of bosonised superghosts and pictures in (section 2.5.4).

2.1 Polyakov action

We want to describe the classical dynamics of a string moving in a space-time

which we take to be D-dimensional. The motion of the string in space and

time traces out a 1+ 1 dimensional volume called the world-sheet. A natural

15
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action principle, that goes under the name of the Nambu-Goto action, is ob-

tained by requiring that the motion is such that the world-sheet has minimal

surface; this generalises the action principle for a massive point particle. De-

noting the coordinates on the worldvolumeM by σa, a = 0,1, the coordinates

of space-time by Xµ, µ = 0 . . .D − 1 and the space-time metric (of signature

(−++ . . .+)) by Gµν the action takes the form:

Sp[X
µ] = −T

∫

M
d2σ

√
−det(∂aXµ∂bXνGµν). (2.1.1)

The parameter T , which generalises the point-particle mass, is the string ten-

sion. The Nambu-Goto action has a global invariance under the isometries of

space-time and is also invariant under local reparametrisations of the world-

sheet.

Although it has a very simple physical interpretation, the fact that the

action (2.1.1) is nonpolynomial in the fundamental variables makes it very

hard to use as a starting point for constructing a quantum theory of strings.

It is possible to write down an action which is classically equivalent to

(2.1.1) and which is quadratic in the embedding coordinates Xµ at the cost

of introducing an auxiliary field. This field has the interpretation of a metric

tensor on the world-volume and will be denoted by gab. The resulting action

is the so-called Polyakov action:

S[Xµ, gab] = −1

2
T

∫

M
d2σ

√−ggab∂aXµ∂bXνGµν (2.1.2)

Upon the elimination of gab through its algebraic field equation one recovers

(2.1.1). By introducing an auxiliary world-sheet metric, one has also intro-

duced a new local symmetry: apart from invariance under global space-time

isometries and local world-sheet reparametrisations, the action (2.1.2) is now

also invariant under local rescalings of the metric; this symmetry is called

Weyl invariance. The fact that there are as many independent local symme-

tries as there are independent components in gab means that, at least locally,

gauge invariance can be used to bring gab into any preferred form. This will

be important when we discuss gauge-fixing in section 2.2.2. It will not be

possible to preserve both diffeomorphism and Weyl invariance in a quantum

theory based on (2.1.2) in a general background. In particular, the preserva-

tion of these symmetries will put a restriction on the number of space-time

dimensions. We will come back to this point in section 2.4.
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2.2 String perturbation theory

2.2.1 Sum over histories

In the quantum mechanics of particles, it is possible to represent the propa-

gator, i.e., the amplitude for the transition from one position to another, by a

sum over particle histories that interpolate between the initial and final posi-

tions [16]. Each history is weighed by a factor eiScl where Scl is the classical

action for the history. Analogously, in string theory, one can represent tran-

sition amplitudes as a sum over string world-sheets. The sum-over-histories

approach to string theory has the advantage that it naturally allows for the in-

clusion of interactions. This procedure leads to a perturbation expansion for

scattering amplitudes between physical states; this expansion forms the basis

of string perturbation theory. String perturbation theory does have its limi-

tations however. In the theory of relativistic particles, the natural framework

for the description of particle interactions is quantum field theory, which con-

tains much more information than the perturbation expansion for S-matrix el-

ements. A similar attempt to overcome the restrictions of string perturbation

theory is provided by string field theory. In chapter 3, we will discuss classi-

cal string field theory, while in chapters 4, 5 and 7, we will discuss how string

field theory can be used to obtain certain results that cannot be calculated in

the framework of string perturbation theory.

We will now take a look at the quantisation of strings in a D-dimensional

Minkowski space-time by summing over string world-sheets. Therefore, we

take Gµν = ηµν = diag(− + . . .+). The global symmetries of the action form

the Poincaré group in D dimensions. It is also customary to analytically con-

tinue the world-sheet metric to Euclidean signature (+,+). Contrary to the

analytical continuations performed in quantum field theory, this step is hard

to justify rigorously in the context of string theory1, and the Euclidean theory

is taken here simply as a starting point. Additional confidence is gained from

the fact that this starting point leads to consistent quantum theory with tran-

sition amplitudes satisfying necessary physical properties such as unitarity.

In the path-integral approach to string theory, amplitudes for string prop-

agation can be represented by a sum over all world-sheets interpolating be-

tween the initial and final string configurations. In the Euclidean theory, each

1The main problem in providing such a justification is that a Minkowski metric on a world-
sheet with holes is necessarily singular and it is not known how to handle the integration over
such singular metrics.
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Figure 2.1: Tree level (upper figure) and 1-loop (lower figure) contributions to

a closed string scattering amplitude.

world-sheet is weighed by a factor e−SP with the Polyakov action SP given by:

SP[X
µ, gab] = 1

4πα′

∫

M
d2σ

√
g
[
gab∂aX

µ∂bX
νηµν

]
, (2.2.1)

where, in keeping with tradition, we have written the string tension as T ≡
1

2πα′ . Scattering amplitudes between general string states are represented

by a path integral with wave-function insertions for the asymptotic incoming

and outgoing states.

As an example, consider the scattering amplitude for a process in which

two closed strings join and split again into three strings in the final state.

Figure 2.1 shows two such contributions to this process: Figure (2.1 (a)) rep-

resents a tree diagram and figure (2.1 (b)), where the world-volume has a

hole, represents a 1-loop contribution to this process. Using the diffeomor-

phism and Weyl invariance of the theory, it is possible to deform these world-

sheets into the equivalent representation of a sphere and a torus respectively

where the external string states are reduced to marked points or punctures

represented by a ⊗ in figure 2.1. After performing this transformation, the
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Figure 2.2: Tree level (upper figure) and 1-loop (lower figure) contributions to

an open string scattering amplitude.

wave-function insertions representing the asymptotic states have become in-

sertions of local operators at the marked points. These local operators rep-

resenting asymptotic string states are called vertex operators. The marked

points can occur at any point of the world-sheet, so the vertex operators

should be integrated over the world-sheet.

A similar reasoning applies to open string amplitudes as well. This is

illustrated in figure 2.2. Suitably chosen Weyl transformations reduce the

world-sheet to a disc (at tree level) or an annulus (at 1-loop level) with ver-

tex operators inserted on the boundary. These vertex operators should be

integrated over the boundary.

Since a closed world-sheet containing h holes (h is called the genus) rep-

resents a closed string diagram with h loops, we see that the sum over world-

sheets naturally represents an expansion in string loops, the sum over all

world-sheets of genus h representing the contribution of diagrams with h

loops. To interpret this series as a perturbation series, higher loop contri-

butions should be accompanied by increasing powers of a (preferably small)

coupling constant. In string theory, this is accomplished by adding an extra



20 Chapter 2. String perturbation theory

renormalisable term to the action:

S = SP + Φ0χ (2.2.2)

Φ0 is a constant parameter and the quantity χ is the Euler number:

χ = 1

4π

∫

M
d2σ

√
gR + 1

2π

∫

∂M
ds k. (2.2.3)

where k denotes the geodesic curvature of the boundary. The Euler number

is a topological invariant so the extra term in the action respects diffeomor-

phism and Weyl invariance. For a compact surface obtained from the sphere

by adding h handles and b boundaries the Euler number equals 2−2h−b. By

adding a loop to a closed string diagram, the path-integral weight factor e−Φ0χ

changes by e2Φ0 , so the closed string coupling constant gc should be propor-

tional to eΦ0 . For open strings, adding a loop means adding a boundary so the

open string coupling go is proportional to eΦ0/2.

Summarising, we can now tentatively write an expression for the scattering

amplitude for a process involving n external string states:

S(1; . . . ;n) =
∑

compact topologies

∫
[dg][dX]

VoldiffxWeyl
e−S[X,g]

n∏

i=1

Vi, (2.2.4)

where we have denoted the vertex operator, (integrated over the world-sheet)

corresponding to the ith external state by Vi. We have included a formal

division by VoldiffxWeyl to indicate that we still have to make up for the over-

counting of configurations (X,g) and (X′, g′) related by local diffeomorphism

and Weyl transformations. This will be made more concrete in the following

subsection.

2.2.2 Gauge-fixing

The standard way to deal with the overcounting of gauge equivalent configu-

rations is by the introduction of Fadeev-Popov ghosts. We will use the gauge

freedom to bring the world-sheet metric into a preferred form referred to as

the conformal gauge; other gauge-fixings are of course possible and are some-

times used in the literature.2 We will discuss the procedure for the tree-level

2For example the light-cone gauge where one fixes the form of one of the embedding coor-
dinates.
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contribution to the string S-matrix and then briefly touch upon the generali-

sation to higher loop diagrams. For closed strings the tree level contribution

comes from surfaces with the topology of a sphere (χ = 2). We have already

remarked that the number of independent gauge transformations equals the

number of independent components of the metric. This allows us to bring the

metric locally into any preferred form; for example, one could locally choose

a flat metric.

This is not possible globally, however: indeed, substituting a globally flat

metric in (2.2.3) would give χ = 0 which is incorrect. The closest we can

come to a flat metric by using globally defined diffeomorphism and Weyl

transformations is the standard Poincaré metric on the sphere (see e.g. [17],

chapter IV) which is of the conformally flat form

ds2 = dzdz̄

(1+ |z|2)2 , (2.2.5)

where the complex coordinates z = σ 1+ iσ 2, z̄ = σ 1− iσ 2 run over the com-

plex plane C̄ with the point at infinity included. In this gauge, the Polyakov

action simplifies to

SP = 1

2πα′

∫
d2z ∂Xµ ∂̄Xνηµν . (2.2.6)

A straightforward application of the Fadeev-Popov procedure (see e.g [18])

leads to the introduction of anticommuting ghost fields: a traceless symmet-

ric 2-tensor bab and a vector ca 3 . The action for the ghosts takes the form

Sgh = 1

2π

∫
d2z

[
b∂̄c + b̃∂c̃

]
, (2.2.7)

where we have used the abbreviations b ≡ bzz; c ≡ cz and b̄ ≡ bz̄z̄; c̄ ≡ cz̄.
The choice of gauge (2.2.5) does not fix the gauge freedom completely;

indeed, the coordinate transformations acting as

z → f (z) = az + b
cz + d , z̄ → f̄ (z̄) = āz̄ + b̄

c̄z̄ + d̄ ; (2.2.8)

3Actually, one should also introduce a ghost field for the Weyl transformations; it couples
to the trace part of bab . These fields turn out to be auxiliary (no derivatives acting on them)
and can be eliminated (see e.g. [19]).
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have the effect of rescaling the metric (2.2.5) and can be compensated by a

Weyl transformation. The parameters a,b, c, d are complex numbers satisfy-

ing ad− bc = 1. These transformations form a group, the conformal Killing

group, isomorphic to SL(2,C)/Z2. The overcounting due to these remaining

symmetries can be remedied by using them to fix the position of three of the

vertex operators in (2.2.4).

The result for the closed string tree level amplitudes is:

Stree(1; . . . ;n) = g−2
c

n∏

i=4

∫
d2zi

∫
[dXdbdc]e−SP−Sgh

n∏

j=1

Vj(zj , z̄j)

≡ g−2
c

n∏

i=4

∫
d2zi

〈 n∏

j=1

Vj(zj , z̄j)
〉
. (2.2.9)

For open string tree amplitudes, the same discussion applies with the re-

striction that the complex coordinates now range over the upper half plane

(which is conformally equivalent to the disc, the boundary of the disc being

mapped to the real line) only. The conformal Killing group acts as in (2.2.8),

but the a,b, c, d are now restricted to be real. Fixing these symmetries can be

accomplished by fixing the position of three vertex operators on the real line.

For loop diagrams, there is an additional complication: the gauge re-

dundancy is not sufficient to eliminate the path integral over the metrics

completely. What remains is a finite dimensional integral over parameters

parametrising what is called the moduli space. The number of these parame-

ters depends on the world-sheet topology. For example, a closed string 1-loop

amplitude involves an integration over the moduli space of the torus, which

is parametrised by a single complex parameter τ. The geometrical meaning

of τ is the following: the torus with modulus τ can be represented as the

complex plane with the identifications

z ≅ z + 2π(m+nτ),

with m, n in Z. The moduli space of the annulus, which represents an open

string 1-loop diagram, consists of a real parameter, the difference of the radii

of the outer and inner circles. Also, for string loop diagrams, the conformal

Killing group will be different from the tree-level case.

We will not discuss in this thesis the resulting modifications for the S-

matrix expression for loop amplitudes; more details can be found e.g. in [9],

chapter 5. Suffice it to say at this point that the final result for the S-matrix
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satisfies the necessary physical requirements such as finiteness and unitarity.

At first sight, this might not seem a spectacular result. What makes it so is

the fact that, as we will see in section 2.4.2, one of the string excitations that

can appear as an external state in the S-matrix can be identified as a graviton.

So far, string theory is still the only known theory that provides a consistent

framework for the quantum theory of gravitational interactions.

Summarising, we have seen that the calculation of string scattering am-

plitudes reduces to the evaluation of correlators of local operators in the 2-

dimensional field theories of the Xµ and the ghosts b, c. These 2-dimensional

theories are examples of conformal field theories [22] which we will now study

in more detail.

2.3 Conformal field theory

2.3.1 Operator Product Expansions

As a first example of a conformal field theory (CFT) in 2 dimensions we will

consider the the theory based on the gauge-fixed action for the Xµ obtained

in (2.2.6). We will use this theory to illustrate some key concepts in conformal

field theory that will be relevant in the discussion of our own work.

The action (2.2.6) describes D free massless fields propagating in a two

dimensional space parametrised by (z, z̄). We will, for the moment, consider

the theory defined on C̄ as required for the discussion of closed strings, and

come back to the theory on the upper half plane (open strings) later on. The

classical equations of motion following from (2.2.6) are

∂∂̄Xµ(z, z̄) = 0. (2.3.1)

These equations state that the functions ∂Xµ and ∂̄Xµ are holomorphic and

anti-holomorphic respectively.

Expectation values are defined by the functional integral

〈
F[X]

〉
=
∫
[dX]e−SPF[X],

where F[X] is any functional of the Xµ . The equations of motion (2.3.1)

no longer hold for the Xµ insertions in the path integral, i.e. they do not

hold as operator equations. For example, the 2-point function or propagator
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following from (2.2.6) satisfies:

1

πα′
∂∂̄

〈
Xµ(z, z̄)Xν(z′, z̄′)

〉
= −ηµνδ(z − z′, z̄ − z̄′), (2.3.2)

The solution to this equation is:

〈
Xµ(z, z̄)Xν(z′, z̄′)

〉
= −α

′

2
ηµν ln |z − z′|2. (2.3.3)

Other correlation functions can be calculated using Wick’s theorem by sum-

ming over all possible contractions with the propagator (2.3.3).

When dealing with composite operators, some form of ordering prescrip-

tion is required. A convenient prescription is the so-called conformal normal

ordering. Normal ordered operators will be denoted by : F[X] :. Simply

put, the ordering prescription states that, when encountering a normal or-

dered operator : F : in a correlation function, no contractions are to be made

among the operators appearing in F[X] themselves. This means that the

normal ordered operator : F[X] : is obtained from F[X] by subtracting all

self-contractions. This can be summarised in a formal expression:

:F[X] : = F −
∑
(self− contractions)

= exp

{
α′

4

∫
d2zd2z′ ln |z − z′|2 δ

δX(z, z̄)

δ

δX(z′, z̄′)

}
F[X].

Similarly, for a pair of normal ordered operators, the prescription implies:

:F[X]G[X] :=:F[X] : :G[X] : −
∑
(cross− contractions)

= exp

{
α′

2

∫
d2z′ d2z′′ ln |z′ − z′′|2 δF

δX(z′, z̄′)
δG

δX(z′′, z̄′′)

}
:F[X] : :G[X] :

(2.3.4)

A simple example is provided by:

:Xµ(z, z̄)Xν(z′, z̄′) := Xµ(z, z̄)Xν(z′, z̄′)+ α
′

2
ηµν ln |z − z′|2. (2.3.5)

From this formula, we see that Xµ insertions inside the normal ordering sym-

bol do obey the classical equations of motion:

∂∂̄ :Xµ(z, z̄)Xν(z′, z̄′) := 0 (2.3.6)
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The previous considerations provide a framework for calculating an im-

portant set of operator relations known as the operator product expansion

(OPE). The idea is to expand a product of two local operators close to each

other as a linear combination of local operators:

Ai(z, z̄)Aj(0,0) =
∑

k

ckij(z, z̄)Ak(0,0). (2.3.7)

The indices i, j, k label basis elements in the space of local operators. The ex-

pansion coefficients ckij(z, z̄) are functions of (z, z̄), usually they are simple

powers of z and z̄. For example, using (2.3.5) and (2.3.6) one derives

Xµ(z, z̄)Xν(0,0) = −α
′

2
ln |z|2

+
∞∑

k=1

1

k!

[
zk :Xν∂kXµ(0,0) : +z̄k :Xν ∂̄kXµ(0,0) :

]

2.3.2 Ward identities and conformal transformations

We have already mentioned that the global symmetry group of the action

(2.2.6) consists of the conformal isometries that map the complex plane into

itself:

z → f (z) = az + b
cz + d , z̄ → f̄ (z̄) = āz̄ + b̄

c̄z̄ + d̄ ; (2.3.8)

A central role is played by the local operators A that have simple transfor-

mation properties under the symmetry transformations (2.3.8):

A(z, z̄)→
(
∂f

∂z

)h (
∂f̄

∂z̄

)h̄
A
(
f (z), f̄ (z̄)

)
.

An operator transforming in this way is called a quasi-primary operator and

the numbers (h, h̄) are called conformal weights.

When we drop the requirement that transformations should be well-defined

on the extended complex plane, the action becomes invariant under a larger

set of transformations. Indeed, any holomorphic reparametrisation

z → f (z), z̄ → f̄ (z̄) (2.3.9)
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leaves the action invariant. These transformations are referred to as con-

formal transformations and theory with this invariance is termed a conformal

field theory (CFT). Only the subset of transformations (2.3.8) is well-defined on

the whole extended complex plane. Nevertheless the transformations (2.3.9)

play a very important role because they reflect the existence of an infinite

number of conserved currents. The components of the energy-momentum

tensor are given by

T(z) ≡ Tzz = − 1

α′
:∂Xµ∂Xµ :, T̃ (z̄) = Tz̄z̄ = − 1

α′
: ∂̄X∂̄X :, Tzz̄ = Tz̄z = 0.

(2.3.10)

The components T(z) and T̃ (z̄) are separately conserved: ∂̄T (z) = 0, ∂T̃ (z̄) =
0. This implies the existence of an infinite number of conserved currents

j(z) = iε(z)T(z), j̄(z̄) = iε̄(z̄)T̃ (z̄). (2.3.11)

for arbitrary holomorphic functions ε(z). These currents are the Noether

currents corresponding to infinitesimal conformal transformations z → z +
ε(z), z̄ → z̄ + ε̄(z̄). The infinitesimal version of the global transformations

(2.3.8) corresponds to taking

ε(z) = ε−1 + ε0z + ε1z
2 ε̄(z̄) = ε̄−1 + ε̄0z̄ + ε̄1z̄

2.

Local operators O that transform as

O(z, z̄)→
(
∂f

∂z

)h (
∂f̄

∂z̄

)h̄
O
(
f (z), f̄ (z̄)

)
(2.3.12)

under the full set of conformal transformations are called primary fields of

weight (h, h̄).

We will now discuss a method to calculate the conformal transformation

properties of local operators. In field theory, the transformation properties of

operators under symmetry transformations are encoded in Ward identities. In

two dimensions, the Ward identity for the transformation of a local operator

A under a general symmetry of the theory takes the form4 (see e.g [9], chapter

2):

δA(z0, z̄0) = 1

2πi

∮

C
(dz j − dz̄ j̃)A(z0, z̄0), (2.3.13)

4We are assuming here that the symmetry transformation in question is a symmetry of the
full quantum theory, i.e. that it is nonanomalous.



2.3. Conformal field theory 27

where j and j̃ denote the components of the Noether current associated with

that symmetry. The contour C runs around the point z0 in counterclockwise

direction. The contour integral picks out the residues as z → z0 and z̄ → z̄0

in the OPE’s of j and j̃ with A respectively. So in order to calculate the

transformation properties of a certain operator it suffices to calculate singular

terms in the relevant OPE’s.

Applying the Ward identity (2.3.13) one finds that a quasi-primary opera-

tor A is characterised by an OPE of the form

T(z)A(0,0) = . . .+ h

z2
A(0,0)+ 1

z
∂A(0,0)+ . . . (2.3.14)

while a primary field O satisfies

T(z)O(0,0) = h

z2
O(0,0)+ 1

z
∂O(0,0)+ . . . , (2.3.15)

(and similarly for T̃ (z̄)).

For example, the operators ∂Xµ and : eik·X : are primary fields of weight

(1,0) and
(
α′k2

4 ,
α′k2

4

)
respectively. The OPE of the energy-momentum tensor

with itself turns out to be:

T(z)T(0) ∼ D

2z4
+ 2

z2
T(0)+ 1

z
∂T(0), (2.3.16)

where the symbol ∼ denotes that we have only displayed the singular part of

the OPE as z → 0.

This shows that the energy-momentum tensor T is a quasi-primary field

of weight (2,0) but not a primary field. Instead, the OPE (2.3.19) implies the

infinitesimal transformation law

δT(z) = D

12
∂3ε(z)+ 2∂ε(z)T(z) + ε(z)∂T(z). (2.3.17)

Later on, we will also need the transformation law of T under finite transfor-

mations z → f (z) for which we will adopt the notation f ◦ T(z). One way to

derive this is by using the definition of the normal ordered product:

T(z) = lim
ε→0

[
− 1

α′
∂Xµ(z + ε)∂Xµ(z)− D

2ε2

]

and the fact that ∂Xµ is a (1,0) primary field:

f ◦ T(z) = lim
ε→0

[
− 1

α′
f ′(z + ε)f ′(z)∂Xµ(z + ε)∂Xµ(z)− D

2ε2

]

= (f ′)2T(f (z))+ D
12


f

′′′f ′ − 3
2(f

′′)2

(f ′)2


 . (2.3.18)
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The second term in this expression arises from normal ordering and goes

under the name of the Schwarzian derivative of f with respect to z.

For a general CFT, the TT OPE will take the form

T(z)T(0) ∼ c

2z4
+ 2

z2
T(0)+ 1

z
∂T(0), (2.3.19)

with c a constant parameter known as the central charge. The transformation

law will also remain of the form (2.3.18) with D replaced with c. A similar set

of relations holds for the antiholomorphic component T̃ with, for general

CFT’s, a possibly different central charge parameter c̃.

2.3.3 Mode expansions and vertex operators

So far, we have not specified which directions in the complex plane we con-

sider to be the time and space directions respectively. Since for closed strings

the space direction should be compact it is a natural choice to take the time

to run radially so that the curves of constant time are circles around the ori-

gin. The origin corresponds to the infinite past while the point at infinity

corresponds to the infinite future. Usually, once a time direction is chosen,

quantisation proceeds by imposing canonical equal-time commutation rela-

tions on the Fourier modes of the fields. This leads to the construction of an

abstract space called the Fock space F . In conformal field theory, F has a

concrete representation: to every state in F corresponds a local operator, the

vertex operator corresponding to that particular state. This correspondence

is called the state-operator correspondence and will be emphasised in the ap-

proach we will follow. The vertex operators are precisely the wave-function

insertions representing asymptotic string states that enter in the S-matrix ex-

pression (2.2.9).

A holomorphic or anti-holomorphic quasi-primary field of weight h or h̄

can be expanded in a Laurent series around the origin:

A(z) =
∑

m∈Z

Am

zm+h
Ã(z̄) =

∑

m∈Z

Ãm

z̄m+h̄
.

Conversely, the coefficients or modes are obtained from

Am = 1

2πi

∮

C
dz zm+h−1A(z), Ãm = − 1

2πi

∮

C
dz̄ z̄m+h−1Ã(z).
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Figure 2.3: Contour deformation leading to formula (2.3.21).

By taking the contour C to be a circle centered around the origin, each mode

Am can be seen as a conserved charge Q corresponding to the conserved

current j = zm+h−1A(z) (compare (2.3.11)).

Any conserved charge Q acts in a natural way on the space of local oper-

ators as the infinitesimal generator of the corresponding symmetry transfor-

mation. Using the Ward identity (2.3.13) we can express the action Q ·Φ of Q

on a local operator Φ(z) as

Q ·Φ(0) ≡ δΦ(z)

= 1

2πi

∮

C
dz j(z)Φ(0). (2.3.20)

The contour integral picks out the coefficient of the pole term in the OPE of j

with Φ. The resulting operation · is associative as a result of the associativity

of the OPE.

Using a contour argument (see figure (2.3), the commutator of two charges

can be expressed as:

[Q1,Q2] =
1

2πi

∮

C2

dz2 Resz→z2j1(z)j2(z2). (2.3.21)

This can be calculated from the OPE between the currents.

As an example, consider the modes of the holomorphic component of the
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energy-momentum tensor:

T(z) =
∞∑

m=−∞

Lm

zm+2
, T̃ (z̄) =

∞∑
m=−∞

L̃m

z̄m+2
. (2.3.22)

Using the formula (2.3.21) and the TT OPE to calculate the commutation re-

lations yields the Virasoro algebra,

[Lm, Ln] = (m−n)Lm+n + c

12
(m3 −m)δm+n,0. (2.3.23)

The mode L0 is the generator of time translations and can be interpreted as

the Hamiltonian of the system. The modes of the anti-holomorphic compo-

nent T̃ (z̄) form a second copy of the Virasoro algebra.

As a second example, consider the modes of the primary fields ∂Xµ and

∂̄Xµ:

∂Xµ(z) = −i
√
α′

2

∞∑
m=−∞

α
µ
m

zm+1
, ∂̄Xµ(z̄) = −i

√
α′

2

∞∑
m=−∞

α̃
µ
m

z̄m+1
. (2.3.24)

These can be integrated to give a mode expansion for Xµ(z, z̄), which we split

into a sum of holomorphic and anti-holomorphic parts:

Xµ(z, z̄) = Xµ(z)+ X̃µ(z̄)

with

Xµ(z) = x
µ

2
− iα

′

2
pµ lnz + i

√
α′

2

∞∑
m=−∞
m≠0

1

m
α
µ
mz

−m

X̃µ(z̄) = x
µ

2
− iα

′

2
pµ ln z̄ + i

√
α′

2

∞∑
m=−∞
m≠0

1

m
α̃
µ
mz̄

−m

where pµ ≡
√

2
a′α0 ≡

√
2
α′ α̃0. From (2.3.21) and the XX OPE the commutation

relations can be calculated:

[
α
µ
m, α

ν
n

]
=

[
α̃
µ
m, α̃

ν
n

]
=mδm,−nηµν[

xµ, pν
] = iηµν . (2.3.25)

The operators xµandpν represent the center-of-mass position and momen-

tum of the string while the α
µ
m form an infinite set of harmonic oscillators

representing all possible vibrational modes. A representation for the algebra
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(2.3.25) can be constructed by starting from states |0, k> that have momen-

tum kµ and are annihilated by all the lowering operators α
µ
m withm> 0. The

states obtained by acting with raising operators form a vector space, the Fock

space F .

We will now discuss the correspondence between Fock space states and lo-

cal operators. Consider first the Fock vacuum |0,0>. By definition, this is the

state that is annihilated by pµ and all α
µ
m with m > 0. It can be represented

by the local operator 1. Indeed, applying the definition (2.3.20) one finds:

pµ · 1 = 0; α
µ
m · 1 = 0 for m> 0

so we find the state-operator correspondence

|0,0 > ↔ 1.

Similarly, one can check that

|0, k > ↔ :eik·X(0) : .

The other states can be found by acting with the raising operators; for exam-

ple

α
µ
−m|0, k > ↔

√
2

α′
i

(m − 1)!
:∂mXµeik·X(0) : .

We can also express the Virasoro generators in terms of the modes of Xµ

by inserting the Laurent expansion (2.3.24) into the energy-momentum tensor

and collecting the terms with the appropriate power of z. For example, the

Virasoro generator L0 can be expressed as

L0 =
α′p2

4
+

∞∑

n=1

(α
µ
−nαµn)+ aX . (2.3.26)

Since, in this expression, we have moved the lowering operators to the left of

the raising operators (also called creation-annihilation normal ordering), we

have introduced a normal ordering constant aX . It can be determined from

the action of L0 on the states, for instance from the action on the ground

state L0 · 1 = 0 one sees that aX = 0. Although creation-annihilation normal

ordering coincides with conformal normal ordering in the free scalar theory

we are presently considering, this will no longer be the case in general CFT’s.
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2.3.4 CFT on the upper half plane

As promised, we will give some comments on CFT on the upper half plane

relevant for the description of open strings. First we need to specify boundary

conditions; the appropriate choice consistent with translational invariance in

the D-dimensional target space is for the fields to obey Neumann boundary

conditions5:

Xµ(z) = X̃µ(z̄) at z = z̄.
A convenient way to implement this boundary condition is to use the doubling

trick: one can combine the holomorphic and anti-holomorphic fields Xµ(z)

and X̃µ(z̄) on the upper half plane into a single holomorphic field defined on

the whole complex plane by defining, for Im z ≤ 0 :

Xµ(z) ≡ X̃µ(z̄).

In this way, the Neumann boundary condition is automatically satisfied. So

the CFT on the upper half plane can be reduced to the holomorphic sector of

the CFT on the complex plane. The mode expansion for Xµ(z) takes the form

Xµ(z) = x
µ

2
− iα′pµ lnz + i

√
α′

2

∞∑
m=−∞
m≠0

1

m
α
µ
mz

−m (2.3.27)

and the Virasoro generator L0 can be expressed as

L0 = α′p2 +
∞∑

n=1

(α
µ
−nαµn). (2.3.28)

2.3.5 Inner products

So far, we have looked at the Fock space F as a vector space over the complex

numbers whose elements are denoted by ‘kets’ |A >. For the CFT we are

considering (and for other CFT’s as well), there are two inner products worth

mentioning (for more details, see e.g. [20, 21]). They will both play a role in

the discussion of the reality condition in string field theory in chapter 3.

5Another choice, one that breaks space-time translation invariance, would be to take the
some of the fields Xµ to satisfy Dirichlet boundary conditions. This choice is relevant for the
description of D-branes and will be discussed in section 4.2.
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The vector space F is naturally equipped with a nondegenerate bilinear

inner product that was first introduced in [22] and goes under the name of

BPZ inner product. Given two Fock-space states |A > , |B >∈ F with vertex

operators VA and VB , their BPZ inner product is defined as the following

correlation function on the sphere:

(|A>, |B>)bpz ≡ 〈I ◦ VA(0) VB(0)〉

where I is the conformal transformation I(z) ≡ −1/z. This inner product

is linear in both arguments because the conformal mapping I doesn’t act on

the c-number coefficients of the operators. The BPZ inner product of two

primary fields can also be extracted from their OPE. If O1 and O2 are primary

operators of weight h1 and h2 respectively, their OPE takes the form

O1(z)O2(0) =
(|O1>, |O2>)bpz

zh1+h2
.

For example, one has6

(|0, k >, |0, k′ >)bpz = (2π)dδ(k+ k′).

The BPZ inner product associates to any operator O a conjugate operator,

denoted by bpz(O), through the relation

(|A>,O|B>)bpz = (bpz(O)|A>, |B>)bpz.

for any |A>, |B>∈ F . For example, one has7

bpz(α
µ
n) = (−1)−n+1α

µ
−n (2.3.29)

and, for modes On of a primary field O of weight h, one finds

bpz(On) = (−1)−n+hO−n. (2.3.30)

For any state |A>∈ F , there is an associated linear mapping (|A>, · )bpz, an

element of the dual vector space. This element is called the BPZ conjugate of

|A> and we will often write it as a ‘ket’ ≪A|:

≪A| : F → C : |B>∈ F ֏ (|A>, |B>)bpz.

6Of course, the normalisation factor in this expression is a matter of convention
7Another feature, which is important when considering CFT’s with Grassmann-valued ob-

jects, is that the conformal mapping I, and hence the BPZ conjugation as well, does not change
the order of the oscillator modes [33].
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Henceforth, we will also use a ‘bracket’ notation for the BPZ inner product:

≪A|B>≡ (|A>, |B>)bpz.

Although the BPZ inner product arises naturally in conformal field theory,

some of its properties are undesirable for certain purposes. First of all, we

would like to have an inner product which is antilinear in the first argument

and linear in the second. Also, in analogy with action Hermitean conjugation

for the quantum-mechanical harmonic oscillator, we would like the raising

operators α
µ
−n and lowering operators α

µ
n to be conjugate to each other with-

out the sign factor in (2.3.29). One therefore introduces another inner product

called the Hermitean inner product, which does have the desired properties.

On momentum states, it is defined by

(|0, k>, |0, k′>)h = (2π)dδ(k− k′).

The action is extended to the whole Fock space by requiring antilinearity in

the first argument and linearity in the second, and by requiring that it defines

a conjugation operation, called Hermitean conjugation and denoted by hc,

which acts on on the oscillator modes as

hc(α
µ
n) = αµ−n.

The Hermitean inner product associates to every state |A> a conjugate linear

functional, also called the Hermitean conjugate of |A>, for which we will use

the ‘bra’ notation <A|:

<A| : F → C : |B>∈ F ֏ (|A>, |B>)h.

We will also use the following bracket notation for the Hermitean inner prod-

uct:

<A|B>≡ (|A>, |B>)h.

2.3.6 Ghost CFT

The gauge-fixing procedure for the bosonic string led to the introduction of

anticommuting ghost fields (b, c) and (b̃, c̃). This system is a conformal field

theory in itself and can be treated with the methods outlined in the previous

subsection.
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The equations of motion following from the ghost action

Sgh = 1

2π

∫
d2z[b∂̄c + b̃∂c̃]. (2.3.31)

state that (b, c) are holomorphic fields while (b̃, c̃) are anti-holomorphic.

Once again we restrict attention to the holomorphic sector, the anti-holomorphic

case proceeding analogously. OPE’s can be calculated using the propagator:

〈
c(z)b(w)

〉
= 1

z −w
The energy-momentum tensor is given by:

T(z) =: (∂b)c : −2∂(: bc :). (2.3.32)

From the Tb and Tc OPE’s it follows that b and c are primary fields of weight

(2,0) and (−1,0) respectively. The central charge turns out to be

c = −26

The fields can be expanded in a Laurent series:

b(z) =
∑
n

bn

zn+2
; c(z) =

∑
n

cn

zn−1
.

The modes satisfy the anticommutation relations

{bm, cn} = δm,−n. (2.3.33)

These represent an infinite number of fermionic harmonic oscillators, where

the n > 0 modes can be seen as lowering operators and the n < 0 mode as

raising operators. A Fock space can be built up by acting acting with raising

modes on a ground state that is annihilated by all the lowering operators. In

this case, there are two such ground states |↑> and |↓> satisfying

b0|↓>= 0, c0|↑>= 0. (2.3.34)

They are related by the action of the zero modes b0 and c0: | ↑>= c0| ↓>,

|↓>= b0|↑>.
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We can now work out the state-operator mapping. Consider the vertex

operator 1. Using the definition (2.3.20), we find that it has the properties

bm · 1 = 0, m ≥ −1, cm · 1 = 0, m ≥ 2.

So we see that the vertex operator 1 doesn’t map to one of the ground states,

but instead represents the state

b−1|↓> ↔ 1.

So the ground states are represented by

|↓> ↔ c, |↑> ↔ ∂c c. (2.3.35)

We will follow the generally adopted convention to consider b0 to be a low-

ering operator and c0 to be a raising operator, which singles out | ↓〉 as the

ghost vacuum. For the other raising operators, we have the dictionary

b−m ↔ 1

(m− 2)!
∂m−2b, c−m ↔ 1

(m+ 1)!
∂m+1c. (2.3.36)

The mode expansion can be used to express the Virasoro generators in

terms of the oscillator modes, for instance one finds:

L0 =
∞∑

n=1

n(b−ncn + c−nbn)− 1. (2.3.37)

The last term in this expression is the normal ordering constant.

The action (2.3.31) has a global U(1) symmetry under which the fields

transform by a phase factor b → eiθb, c → e−iθc. The corresponding Noether

current is

jgh(z) = − :bc :

and the associated charge, the ghost number Qgh, counts the number of c

fields minus the number of b fields. From the Tj OPE it follows that j is not

a quasi-primary operator:

T(z)j(0) ∼ − 3

z3
+ j(0)
z2

+ ∂j(0)
z
.

It transforms covariantly under rescalings and translations, but the presence

of the − 3
z3 term means that the transformation under z → f (z) = 1/z is
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anomalous. A calculation similar to the one performed in (2.3.18) shows

that, under finite conformal transformations, the ghost number current trans-

forms as

f ◦ j(z) = f ′(z)j(f (z)) − 3

2

f ′′

f ′
. (2.3.38)

This has an important consequence for the correlation functions: the only

non-vanishing expectation values are the ones where the total ghost number

equals 3. One way to see this is by inserting into any amplitude a contour

integral
1

2πi

∮
C jgh where C encircles all the vertex operators. One can calcu-

late this quantity in two coordinate frames z and u related by the conformal

transformation u = 1/z. In the first frame, the result is the original ampli-

tude times the total ghost number. Due to the transformation law (2.3.38),

the result in the u frame is three times the original amplitude. These results

should be equal, from which one finds that the total ghost number should

equal three for the amplitude to be nonvanishing.

The fact that we need the (b, c) ghost number (and, for the antiholomor-

phic sector, the (b̃, c̃) ghost number as well) to be equal to three in order for

amplitudes to be nonvanishing can be combined with the requirement that

three of the vertex operators in the S-matrix expression (2.2.9) need to be

fixed 8. We define fixed and integrated vertex operators to be of the form:

Vfixed(z, z̄) = c(z)c̃(z̄)V (z, z̄)
Vintegrated =

∫
d2zV (z, z̄)

where V (z, z̄) represents a local operator of ghost number zero. The deter-

mination of the precise form of the operators V (z, z̄) will be the subject of

the next section.

2.4 Physical states

So far, we have described how the procedure of gauge-fixing has nicely re-

duced our initial system to a theory consisting of conformal building blocks

for the matter fields and the ghosts. However, we expect that the physics

does not depend on the gauge we have chosen. In particular, the physical

spectrum of the quantised string theory should not depend on the details of

8In fact, the two requirements are related [23].
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the gauge-fixing procedure. By going deeper into this question, we will also be

able to fill in an important ingredient in our previous discussion: we have not

yet specified which local operators V (z, z̄) in the CFT are suited to represent

the asymptotic string states in the the S-matrix expression (2.2.9).

2.4.1 BRST formalism

These ideas can be made more precise in the formalism of BRST quantisa-

tion. For general systems possessing gauge symmetries, the gauge-fixed La-

grangian (including the Fadeev-Popov ghosts) will be invariant under a set

of anticommuting BRST transformations representing small changes in the

gauge-fixing conditions. The associated conserved charge is called the BRST

charge QB . It has the property of being nilpotent:

QB ·QB = 0.

Physical states of the theory are characterised by the requirement that they

are “BRST closed”, i.e. annihilated by the BRST charge

QB · V = 0. (2.4.1)

This is trivially true for the “BRST exact” states V of the form

V = QB · χ.

However, when such a state is present in an amplitude involving only physical

states, this amplitude is constrained to vanish. Hence two physical states

which differ by a BRST exact state will yield the same amplitudes and are

physically equivalent.

Summarised, the physical states of the theory can be represented by the

equivalence classes of BRST closed states modulo BRST exact states. The vec-

tor space formed by these equivalence classes is also called the BRST coho-

mology. We will now discuss the BRST cohomology for bosonic string theory

[23].

BRST invariance leads to a conserved BRST current jB , a primary field of

weight (1,0):

jB = cTm + 1

2
: cTgh : +3

2
∂2c.
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and correspondingly for j̃B . Tm and Tgh are the energy-momentum tensors

of the matter and ghost theory given in (2.3.10) and (2.3.32) respectively. The

BRST operator is

QB =
1

2πi

∮
(dzjB − dz̄j̃B).

As we mentioned in section (2.1), it is not possible to preserve both diffeomor-

phism and Weyl symmetries in the quantum theory outside a critical dimen-

sion D. This anomaly in the gauge symmetry shows up in the BRST formalism

in the failure of QB to be nilpotent. Indeed, from the jBjB OPE

jB(z)jB(0) ∼ −D − 18

2z3
c∂c(0) − D − 18

4z2
c∂2c(0)− D − 26

12z
c∂3c(0).

and equation (2.3.21), one sees that QB is nilpotent only in the critical dimen-

sion D = 26. Another useful relation is

{QB, b0} = L0, (2.4.2)

where L0 denotes the zero-mode of the total (matter + ghost) energy-momentum

tensor.

2.4.2 Physical vertex operators

We are now ready to take a look at the physical states of the theory. Let’s

start with open string theory.

Apart from the the BRST condition (2.4.1) there is another condition that

can be imposed on physical states (see e.g. [9], chapter 4):

b0 · V = 0. (2.4.3)

Due to the relation (2.4.2), the equations (2.4.1) and (2.4.3) imply L0 · V =
0. Using the mode expansions (2.3.28) and (2.3.37), we find the mass-shell

condition restricting the masses of physical states:

m2 = 1

α′
(Ntot − 1), (2.4.4)

where Ntot denotes the total (matter + ghost) excitation number or level.
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At the lowest level, Ntot = 0, the physical state is a tachyon with vertex

operator

V =: eik·X :, k2 = 1

α′
. (2.4.5)

At Ntot = 1, the physical states are massless spacetime vectors:

V = eµ : ∂Xµeik·X :, k2 = 0, k · e = 0. (2.4.6)

The vector eµ plays the role of the polarisation and adding a BRST exact part

amounts to the equivalence

eµ ∼ eµ + kµ Λ(k).

This is the momentum-space form of the gauge transformation of a massless

U(1) field in 26 dimensions.

The discussion of the physical spectrum of the closed string can be re-

duced to combining two copies of the open string spectrum. As in (2.4.3), one

can restrict attention to the states V satisfying

b0 · V = b̃0 · V = 0

so that

L0 · V = L̃0 · V = 0.

These relations determine the mass-shell condition

m2 = 2

α′
(Ntot + Ñtot)− 4

α′

as well as the level matching condition

Ntot = Ñtot

where Ntot and Ñtot represent the total excitation numbers of the holomor-

phic and anti-holomorphic sector respectively.

At the lowest level, the spectrum again consists of a tachyon

V =: eik·X :, k2 = 4

α′

while at the next level one finds massless states:

V = eµν : ∂Xµ ∂̄Xνeik·X :, k2 = 0, kµeµν = kνeµν = 0.
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and BRST-equivalence reduces to

eµν ∼ eµν + aµkν + kµbν , a · k = b · k = 0. (2.4.7)

In terms of transformation properties under theD-dimensional Lorentz-group,

these states fall into three irreducible representations: the symmetric, trace-

less part of eµν corresponds to a massless spin-2 particle or graviton, the

antisymmetric part corresponds to a massless 2-form referred to as the B-

field, and the trace of eµν represents a massless Lorentz scalar called the dila-

ton. The equivalences (2.4.7) correspond to the appropriate gauge transfor-

mations of these massless fields. The massless spin-2 field can be identified

as the graviton, the quantum that corresponds to fluctuations of the grav-

itational field. which represents fluctuations of the gravitational field. The

appearance of this state in the physical spectrum of closed string theory and

the fact that string perturbation theory provides a consistent framework for

the calculation of S-matrix elements involving gravitons still constitutes one

of the main triumphs of string theory. So far, no other framework is known

in which quantum-mechanical gravitational interactions can be consistently

described.

2.5 Superstrings

The bosonic string theories of the previous section are, despite having some

favourable characteristics such as the consistent quantum description of grav-

itational interactions, rather flawed as theories of the real world.

First of all, both the closed and open string theories contain a tachyonic

state in the perturbative spectrum. This is not a catastrophe in itself; in fact

a lot of theories (including the standard model) appear to contain a tachyonic

scalar field when perturbation theory is set up around a local maximum of

the potential energy of this scalar field. We shall come back to this point in

section 4.1. The tachyonic mode is absent when one considers fluctuations

around a local minimum of the potential energy. The question whether such a

local minimum exists in string theory as well is a central theme in the present

work. For open strings, there is good evidence that this is indeed the case, as

we will show in chapters 5 and 7.

For closed bosonic strings however, the question whether the tachyon po-

tential has a minimum is still an open problem.
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Another shortcoming of bosonic strings is the fact that the spectrum

doesn’t contain space-time fermions while, in the real world, most matter

is made up out of fermions.

Both objections can be remedied in the theory of superstrings. The su-

perstring action is obtained from the Polyakov action (2.2.1) by incorporat-

ing local supersymmetry. As a consequence, the embedding coordinates Xµ

acquire fermionic partners ψµ and the world-sheet metric gets a supersym-

metric partner as well, the gravitino. The resulting action, which we will not

display here, is invariant under supersymmetric generalisations of diffeomor-

phism and Weyl transformations.

2.5.1 Gauge-fixed action

As in the bosonic case, the integral over metric and gravitino can be taken

care of (again modulo global issues) by making a special gauge choice called

the superconformal gauge. In this gauge, tree level scattering amplitudes can

again be obtained by calculating correlation functions in the conformal field

theory of matter and ghost fields.

In the matter sector, the gauge-fixed action reduces to

S[Xµ,ψµ] = 1

4π

∫
d2z

[
2

α′
∂Xµ ∂̄Xµ +ψµ ∂̄ψµ + ψ̃µ∂ψ̃µ

]
(2.5.1)

where the ψµ are two dimensional Majorana-Weyl fermions. Just as the Xµ

theory, the ψµ theory is a CFT in itself. We will presently discuss some of its

properties.

2.5.2 Fermionic CFT

The equations of motion following from the fermionic action

S = 1

4π

∫
d2z[ψµ ∂̄ψµ + ψ̃µ∂ψ̃µ] (2.5.2)

state that the ψµ are holomorphic fields while the ψ̃µ are anti-holomorphic.

The OPE’s between the spinor fields are:

ψµ(z)ψν(w) ∼ ηµν

z −w , (2.5.3)
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and the energy-momentum tensor reads:

T(z) = −1

2
:ψµ∂ψµ : .

From the Tψ OPE one infers that the ψµ are primary fields of weight (
1
2 ,0)

and from the TT OPE one finds that this system has central charge

c = D
2
.

For fermions on the complex plane, there are two possible choices (also

called spin structures) for the transformation under rotations over an angle

2π : they can be either periodic or anti-periodic. These possibilities go un-

der the name of Neveu-Schwarz (NS) and Ramond (R) boundary conditions

respectively:

NS : ψµ(e2πiz) = ψµ(z),
R : ψµ(e2πiz) = −ψµ(z).

Correspondingly, there are two sets of mode expansions:

NS : ψµ(z) =
∑

r∈Z+ 1
2

ψ
µ
r

zr+
1
2

,

R : ψµ(z) =
∑

r∈Z

ψ
µ
r

zr+
1
2

.

From theψψ OPE one learns that the modes form an infinite set of fermionic

harmonic oscillator algebras:

{ψµr ,ψνs } = ηµνδr ,−s . (2.5.4)

The construction of the Fock space again proceeds by acting with raising oper-

ators on a suitably chosen vacuum state that is annihilated by all the lowering

operators ψ
µ
r with r > 0.

In the NS sector, the Fock vacuum can again be represented by the opera-

tor 1

|0>NS ↔ 1

and the remaining state-operator correspondence can be worked out just as

in the bosonic case.
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In the R sector however, the ground state is degenerate due to the zero

modes ψ
µ
0 which map ground states into ground states. The zero modes

themselves form a D-dimensional Clifford algebra and the degenerate ground

states will form a representation space for this algebra. We will denote these

degenerate ground states by |0, α >R. Under spacetime Lorentz transforma-

tions, these states transform as a Dirac spinor. The Fock space is now built

up by acting with raising operators on the ground states |0, α>R (with α an

index in the representation space of the Clifford algebra). The operators Sα
corresponding to the R ground states |0, α>R

|0, α>R ↔ Sα

are called spin fields. They can’t be expressed as local operators in terms of

the ψµ but there exists an alternative representation of the fermionic system

(called bosonisation) where the spin fields can be represented by local opera-

tors. We will not go into the details of this construction in this thesis9 , we

just mention that the conformal weight of the R ground states Sα turns out

to be
D
16 . This gives the normal ordering constant in the mode expression of

L0:

L0 =
∑

r∈N+ν
ψ
µ
−rψr µ + aψ,

where we have defined ν to take the value
1
2 in the NS sector and 0 in the R

sector.

aψ = 0 NS sector, aψ = D

16
R sector.

2.5.3 Superconformal symmetry

As we have seen, the X andψ theories are CFT’s by themselves. The combined

theory, however, has an even larger set of symmetries called superconformal

symmetries. As in the bosonic case, these can be seen as the combined super-

diffeomorphism and super-Weyl transformations that remain after fixing the

superconformal gauge. The extended symmetry is reflected in the existence

of extra conserved currents G(z) and G̃(z̄) called the world-sheet supercur-

rents:

G(z) = i(2/α′) 1
2ψµ∂Xµ ; G̃(z̄) = i(2/α′) 1

2 ψ̃µ ∂̄Xµ. (2.5.5)

9We will, however, discuss the bosonisation procedure for the ghost fields of the superstring
in section 2.5.4.
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The OPE ofG(z) with the holomorphic component T(z) of the energy-momentum

tensor

T(z) =:
1

α′
∂Xµ∂Xµ − 1

2
ψµψµ :

is of the form

T(z)T(0) ∼ c

2z4
+ 2

z2
T(0)+ 1

z
∂T(0)

T(z)G(0) ∼ 3

2z2
TF(0)+ 1

z
∂TF(0)

G(z)G(0) ∼ 2c

3z3
+ 2

z
TB(0) (2.5.6)

where c is the central charge of the combined system

c = 3D

2
.

It follows that the operator G(z) is a (3
2
,0) primary field. Its mode expansion

is given by

G(z) =
∑

r∈Z+ν

Gr

zr+3/2

where the parameter ν is 0 in the R sector and
1
2

in the NS sector. The OPE

(2.5.6) implies that the modes of T and G form the superconformal algebra

[Lm, Ln] = (m−n)Lm+n + c

12
(m3 −m)δm+n,0

[Lm, Gr ] = m − 2r

2
Gm+r

{Gr , Gs} = 2Lr+s +
c

12
(4r 2 − 1)δr+s,0. (2.5.7)

The modes of the anti-holomorphic components T̃ and G̃ generate a second

copy of the algebra (2.5.7). This is summarised in the statement that the

theory is a (N, Ñ) = (1,1) superconformal field theory.

2.5.4 Superghosts

Linear dilaton CFT

Before turning to the description of the ghost sector of the superstring, we

will discuss a slight modification of the scalar field CFT that will be of use
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later on. It arises from starting with the action for a single massless scalar

field ϕ

S = − ǫ

4π

∫
d2z∂ϕ∂̄ϕ (2.5.8)

(where ǫ = ±1) with an extra term added to the energy-momentum tensor

T(z) =:
1

2
[ǫ(∂ϕ)2 −Q∂2ϕ] :; T̃ (z̄) =:

1

2
[ǫ(∂̄ϕ)2 −Q∂̄2ϕ] : (2.5.9)

The central charge is equal to

c = c̃ = 1− 3ǫQ2.

The extra term in the energy-momentum tensor modifies the conformal trans-

formation properties of the fields. For example, the field j(z) ≡ ǫ∂ϕ gets an

extra term in the transformation law

f ◦ j(z) = f ′(z)j(f (z))− ǫQ
2

f ′′

f ′
(2.5.10)

and is therefore no longer a primary field. On the other hand, the operators

: eqϕ : remain primary fields, albeit with modified weight
1
2ǫq(q +Q).

Ghost sector for the superstring

As was the case for the bosonic string, the gauge-fixing procedure for the

superstring leads to the introduction of ghost fields. These consist of the

anticommuting (b, c), (b̃, c̃) ghost theory already discussed in section 2.3.6

and a system of commuting superghosts (β, γ) and (β̃, γ̃) arising from gauge-

fixing the fermionic reparametrisations:

S = 1

2π

∫
d2z[β∂̄γ + β̃∂γ̃]. (2.5.11)

The equations of motion state that (β, γ) are holomorphic fields while (β̃, γ̃)

are anti-holomorphic. Once again we restrict attention to the holomorphic

sector, the anti-holomorphic case proceeding analogously. Under conformal

transformations, the fields β and γ transform as (3
2
,0) and (−1

2
,0) primary



2.5. Superstrings 47

fields respectively and the action is conformally invariant. The fundamental

fields obey the OPE

β(z)γ(w) = 1

z −w .
The energy-momentum tensor is taken to be

T(z) =:(∂β)γ : −3

2
∂(:βγ :). (2.5.12)

This choice is consistent with the fact that β and γ are primary fields of

weight (
3
2 ,0) and (

1
2 ,0). The central charge turns out to be

c = c̃ = 11.

As was the case for the fermionic matter system, the superghosts can obey

either Neveu-Schwarz (periodic) or Ramond (anti-periodic) boundary condi-

tions. This leads to the Laurent expansions:

β(z) =
∑

n∈Z+ν

βn

zn+
3
2

; γ(z) =
∑

n∈Z+ν

γn

zn−
1
2

.

where ν = 1
2 in the NS sector and ν = 0 in the R sector. These modes satisfy

the commutation relations

[γn, βm] = δn,−m. (2.5.13)

The action (2.5.11) has a global U(1) symmetry under which the fields

transform by phase factor β → eiθβ, γ → e−iθγ. The corresponding Noether

current is

jβγ(z) = − :βγ :

and the associated charge, the superghost number Qβγ , counts the number of

γ fields minus the number of β fields. As was the case for the (b, c) ghost

system, the number current has an anomalous transformation law:

f ◦ j(z) = f ′(z)j(f (z)) − f
′′

f ′
. (2.5.14)

An argument similar to the one following (2.3.38) shows that the only non-

vanishing amplitudes in the (β, γ) are the ones where the total superghost

number is equal to −2.
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One can now build up the Fock space by acting with raising operators on

a vacuum state annihilated by the lowering operators. In fact, depending on

how we split up the modes into creation and annihilation operators, we can

define a whole family of vacuum states |q> satisfying:

βn|q> = 0, n > −q − 3

2

γn|q> = 0, n ≥ q + 3

2
.

In the NS sector, q can take on integer values while in the R sector q is a

half-integer number.

The vacuum states |q > have a simple operator representation in terms

of an equivalent formulation of the (β, γ) system known as ‘bosonisation’.

Indeed, the system can be equivalently represented by a single linear dilaton

field ϕ with ǫ = −1 and Q = −2 and anticommuting ghost fields (η, ξ) with

conformal weights (1,0) and (0,0) respectively:

β =:∂ξe−ϕ :, γ =:ηeϕ : .

From these equivalences we see that, in order to describe the (β, γ) system,

we do not really need the ξ zero-mode: we can construct the whole Fock

space with the modes of ρ ≡ ∂ξ. This is called working in the small Hilbert

space. However, for some applications, it is useful to keep the ξ zero mode

and work in the large Hilbert space.

The superghost number current can be represented by

jβγ = −∂ϕ.

This has the correct transformation law as one can see by comparing (2.5.14)

with (2.5.10). The vacuum states |q > can now be explicitly represented by

|q> ↔ :eqϕ : .

The different vacua are distinguished by the fact that they have different

superghost numbers and conformal weights:

Qβγ|q> = q|q>

L0|q> = −1

2
q(q + 2)|q> .

For example, the operator 1 corresponds to the |q = 0 > vacuum in the

NS sector and has superghost number and conformal weight zero. It is left
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invariant by the global symmetry group of SL(2,C) transformations. On the

other hand, the ’canonical’ choice of vacuum, annihilated by all the positive

modes, is

|q = −1> ↔ : e−ϕ : NS sector (2.5.15)

|q = −1

2
> ↔ : e−

1
2ϕ : R sector. (2.5.16)

With respect to these canonical vacuum states, the expression for the Virasoro

generator L0 reads:

L0 =
∑

r∈N+ν
[β−nγn + γ−nβn]+ aβγ

where the normal ordering constant aβγ is determined by the conformal

weight of the vacuum state:

aβγ = 1

2
NS sector

aβγ = 3

8
R sector.

The arbitrariness in the choice of ground state for the (β, γ) ghost leads

to the concept of pictures. The picture P of a vertex operator in bosonised

form is defined as the ϕ charge plus the number of ξ’s minus the number of

η’s, as measured by the operator

P = 1

2πi

∮
dz(−∂ϕ− : ηξ :).

We will see in the next section that a physical state can be represented by

vertex operators in different pictures. By acting with the (β, γ) modes on the

canonical vacua (2.5.15, 2.5.16), one obtains vertex operators in the canonical

picture which is −1 in the NS sector and −1
2

in the R sector.

The combined (b, c) and (β, γ) theories and their anti-holomorphic coun-

terparts are again invariant under a larger set of symmetries than just the

conformal transformations: they form a (1,1) superconformal field theory

with c = c̃ = −15. The energy-momentum tensor and supercurrent are given

by:

T(z) = Tbc + Tηξ + Tϕ
= : (∂b)c − 2∂(bc) + ∂ξη− 1

2
∂ϕ∂ϕ − ∂2ϕ :

G(z) = : ∂2ξe−ϕ − ∂ξ∂ϕe−ϕ + 3

2
∂c∂ξe−ϕ − 2bηeϕ :
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where we have given the expressions in their bosonised form as we will con-

sequently do from now on.

2.5.5 Physical states

In this section we will discuss the BRST cohomology for the superstring for

both the NS and R sectors. Later, in the next section, we will discuss which

of these sectors should be kept in order to obtain a consistent string theory.

The BRST charge is given by

QB = 1

2πi

∮
(dzjB − dz̄j̃B). (2.5.17)

where

jB = : cTm + γGm + 1

2
(cTg + γGg)− ∂(cγβ) :

= : c(Tm + Tϕ + Tηξ + ∂cb) + γGm − η∂ηe2ϕ : (2.5.18)

and similarly for j̃B . As was the case for the bosonic string, the BRST charge

is nilpotent only if the total (matter and ghost) central charge vanishes: c =
c̃ = 0. This happens in the critical dimension D = 10.

There is another important operator, denoted by eiπF , which anticom-

mutes with all world-sheet spinors (including the superghosts (β, γ). This

operator also commutes with the BRST charge and will play an important role

when considering consistent truncations of the string spectrum. It is defined

as follows. The world-sheet fermion number F counts the number of world-

sheet spinor operators. The action of eiπF on the various ground states is de-

fined as follows: on the spin fields Sα, it acts as the chirality Γ 11 ≡ 1
25

∏9
µ=0ψ

µ
0 ,

while on the superghost ground states :eqϕ : it acts by a phase eiπq.

Open strings

As for the bosonic string, one chooses, in each cohomology class, representa-

tives satisfying extra conditions:

b0Φ = 0 ⇒ L0Φ = 0

β0Φ = 0 ⇒ G0Φ = 0 (R sector). (2.5.19)



2.5. Superstrings 51

The first condition determines the mass spectrum:

m2 = 1

α′
Ntot − ν

α′

We will now discuss the lowest lying physical states. In the NS sector,

there is a tachyon with vertex operator

V =: eik·Xe−ϕ :, k2 = 1

2α′

transforming as a scalar under the spacetime Lorentz group SO(9,1). At the

next level, one finds the massless states

V = eµ : ψµeik·Xe−ϕ :, k2 = 0; e · k = 0

with BRST equivalence eµ ∼ eµ+kµ . These states form a massless vector with

U(1) gauge invariance .

In the R sector, the level zero states are massless:

V = uα : Saeik·Xe−ϕ/2 :, k2 = 0, kµΓ
µu = 0.

They form a massless Dirac spinor and can be decomposed into two Weyl

spinors with chirality eiπF equal to plus or minus one.

These states are summarised in table (2.1). The different sectors are de-

noted by NS or R and by + or - for eiπF equal to plus or minus one. Their

properties under Lorentz transformations are summed up by giving the irre-

ducible representation of the little group SO(8).

sector SO(8) representation m2

NS- 1 − 1
2α′

NS+ 8v 0

R+ 8 0

R- 8′ 0

Table 2.1: The lowest level physical states of the open superstring.

The labels 8v , 8, 8′ denote the 8-dimensional vector, chiral spinor and

antichiral spinor representations of SO(8) respectively.

The vertex operators we constructed here were in the canonical picture.

Vertex operators in different pictures can be obtained by applying the picture-

changing operator Z:

Z(z) = QB · ξ(z)
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Since Z commutes with the BRST charge QB , applying Z on a physical state

yields another physical state with picture number raised by 1. There also ex-

ists a so-called inverse picture-changing operator Y [24] with picture number

−1 that commutes with QB and satisfies

lim
ε→0
Y(z + ε)Z(z) = 1.

The explicit form of these operators is

Z = :−∂ξc + eφGm − ∂η be2φ − ∂
(
ηbe2φ

)
:, (2.5.20)

Y = :−∂ξce−2φ : . (2.5.21)

Closed strings

For closed strings, the conditions (2.5.19) are enforced on both the holomor-

phic and antiholomorphic side of the spectrum, leading to the mass shell

conditions

m2 = 4

α′
(Ntot − ν) = 4

α′
(Ñtot − ν̃)

The closed string spectrum can be obtained by tensoring two copies of the

open string spectrum. On the anti-holomorphic side, one defines an operator

eiπF̃ with eigenvalues ±1 analogous to the one on the holomorphic side.

In the (NS−, NS−) sector, the level 0 state is a tachyon with mass − 2
α′ .

The massless spectrum is summarised in table 2.2.

sector SO(8) representation dimensions

(NS+,NS+) 8v × 8v = 1+ 28+ 35

(R+,R+) 8× 8 = 1+ 28+ 35+
(R+,R-) 8× 8′ = 8v + 56t
(R-,R-) 8′ × 8′ = 1+ 28+ 35−

(NS+,R+) 8v × 8 = 8′ + 56

(NS+,R-) 8v × 8′ = 8+ 56′

Table 2.2: The massless physical states of the closed superstring.

Inequivalent representations with the same dimension are distinguished

by a subscript: 35 is a traceless symmetric 2-tensor, 35+ and 35− denote self-

dual and anti self-dual 4-forms, 56t is a 3-form while 56 and 56′ are vector-

spinors of opposite chirality. The states coming from the (NS,R) sector are

spacetime fermions while the other sectors contain space-time bosons.
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Type II string theories

Not all of the states listed in table (2.2) can be present together in a consistent

string theory (for a more precise definition of the term ’consistent’ we refer to

[9], chapter 10). Consistent theories are obtained by projecting the full spec-

trum down to eigenspaces of the operators eiπF and eiπF̃ . Such a projection

is known as a Gliozzi- Scherk - Olive (GSO) projection.

One of the possible consistent truncations of the spectrum is obtained by

keeping only the + sectors on the holomorphic and anti-holomorphic sides.

The resulting theory is called the type IIB superstring and the remaining mass-

less spectrum is

IIB : (NS+,NS+), (R+,NS+), (NS+,R+), (R+,R+)

1 +28+35 8’ +56 8’ +56 1 +28+35+
Another possibility is to keep the + sectors on the holomorphic side and

the NS+ and R− sectors on the anti-holomorphic side. This theory is called

the type IIA superstring. The resulting massless spectrum is

IIA : (NS+,NS+), (R+,NS+), (NS+,R-), (R+,R-)

1 +28+35 8’ +56 8 +56’ 8v + 56t

Both theories have the appealing property that the tachyon is projected

out. Also, the number of space-time bosons in the spectrum matches the

number of space-time fermions. This is an indication that the theory pos-

sesses space-time supersymmetry. In fact, the presence of two spin-
3
2 fields

or gravitini in the spectrum reflects the fact that the type II string theories

possess two local spacetime supersymmetries.

2.5.6 Other consistent string theories

Apart from the type II closed string theories in flat 9 + 1 dimensional space-

time, many other consistent string theories can be constructed. First of all,

one can replace the flat Minkowski space by a different background, as long

as the matter sector of the theory remains a (1,1) superconformal field the-

ory with central charge 15. This includes the possibility to take 6 of spatial

directions to parametrise a compact manifold and end up with a theory in

3+ 1 noncompact dimensions.

It is also possible to ‘mod out’ a discrete symmetry, a procedure which

goes under the name of orbifolding, and end up with a new consistent string

theory. For example, one can start with the type IIB theory and mod out by a
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world-sheet parity transformation to obtain the type I theory which contains

both open and closed unoriented strings. The open string sector contains

a gauge field for the gauge group SO(32). Other consistent string theories

have been obtained by combining the holomorphic side of the bosonic string

with the anti-holomorphic side of the superstring. These are the so-called

heterotic string theories. There are only two such theories that are space-

time supersymmetric: one of them contains a gauge field for the gauge group

SO(32), the other one has an E8 × E8 gauge group.

2.6 Summary

In this chapter we have only been able to give a very brief outline of the vast

subject of string perturbation theory. We pause for a moment to highlight

those developments that will play a crucial role in the rest of the thesis.

• The determination of the conformal transformation properties of local

operators using the OPE (section 2.3.2), will play a central role in the

formulation of the string field theory action (section 3.1.4).

• The relation between Fock space states and local operators (section

2.3.3) is important to understand the relation between different formu-

lations of string field theory (section 3.1.1).

• The inner products on the CFT Fock space (section 2.3.5) will play a role

in defining a reality condition on string fields in section 3.1.5.

• The BRST operator in bosonic string theory (section 2.4) and well as for

superstrings (section 2.5.5), is the object that governs the dynamics and

gauge symmetries in covariant bosonic and supersymmetric string field

theories (sections 3.1 and 3.2).

• The representation of the superghosts in bosonised form (section 2.5.4),

as well as the picture-changing operations (2.5.20, 2.5.21) are necessary

ingredients in the formulation of superstring field theory (section 3.2).

All these developments are indispensable for the concrete calculations in

chapters 5 and 7.



Chapter 3

Open string field theory

In the previous chapter, we have given an outline of perturbative string the-

ory, where amplitudes are represented by path-integrals over string world-

sheets. This framework leads to a perturbative expansion for the scatter-

ing amplitudes between on-shell string states. Although this accomplishment

should not be underestimated, especially since it provides a consistent frame-

work for calculating graviton scattering amplitudes, it is still too restrictive

for some purposes. As we have already mentioned in the Introduction, in

the description of particle interactions, the formalism of quantum field the-

ory provides more information than just the Feynman rules for calculating

on-shell S-matrix elements. For many applications, such as the calculation of

low-energy effective actions, one needs to be able to calculate off-shell matrix

elements as well. Also, quantum field theory can provide information beyond

perturbation theory.

Ideally, one would like to have a string field theory description that repro-

duces the perturbative S-matrix expansion. In such a description, the basic

object is a ‘string wavefunctional’ or string field, whose fluctuations corre-

spond to string states.

There have been many approaches to string field theory, essentially dif-

fering in the definition of the string wave-functional Ψ . As a first attempt,

one could take Ψ to be a functional on the configuration space of the original

Polyakov action, Ψ[Xµ, gab]. This approach has not been very fruitful, mainly

due to difficulties in implementing the gauge invariances of the Polyakov ac-

tion. More successful have been the approaches that take as a starting point

some gauge-fixed form of the Polyakov action. Light-cone string field theory is

55
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based on string wave-functionals on the configuration space of the Polyakov

action in the light-cone gauge (see e.g. [25] and references therein). This

approach has the advantage that it dispenses with the Fadeev-Popov ghosts

(there are no propagating ghosts in this particular gauge), but the main draw-

back is that space-time covariance is lost. In this chapter, we will restrict our

attention to the space-time covariant approach pioneered in [26, 27], where

the starting point is the gauge-fixed action in the conformal gauge discussed

in the previous chapter. The string field will now be a functional of the matter

fields and the Fadeev-Popov ghosts, Ψ[Xµ, b, c]. In this approach, the gauge

invariances of the original Polyakov action show up in the form of BRST in-

variance, and it is this invariance which has been the guiding principle for

Witten’s proposal for an interacting open string field theory [8].

We will start this chapter by giving the definition of a string field and

reviewing various different representations of this object. We then proceed

to construct the string field theory action in the representation which was

used in the original formulation by Witten and which makes clear the fact

that string interactions arise from the splitting and joining of strings. We

then proceed to reformulate the theory in a language which is more practical

for concrete calculations such as the ones that will be performed in chapters

5 and 7. In this representation, the string field theory action can be evaluated

by computing CFT correlation functions. Our derivation of the string field

theory action in the CFT representation, given in section 3.1.4, has, to our

knowledge, not appeared in the existing literature.

In this and the following chapters, we will take

α′ = 1

3.1 Bosonic open strings

3.1.1 The classical string field in various representations

The fundamental variables appearing in the classical string field theory action

are classical string fields. To begin with, we will focus on their definition and

discuss some of their representations. The defining characteristic of a classi-

cal string field Ψ is that it is a state in the Fock space of first-quantised string

theory. We stress at this point that the string field can be any state in the

first-quantised Fock space, i.e. it is not restricted to belong to the subspace
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of physical states satisfying (2.4.1). In the specific string field theories that

will be discussed below, further restrictions are placed on the string field in

the form of a restriction on the ghost number, the picture number (for super-

strings) and a reality condition to ensure that the string field theory action is

real. We presently discuss the various representations of the string field com-

mon in the literature. For simplicity, we restrict our attention to the matter

sector of the bosonic string. We will comment on the inclusion of the ghost

sector on p. 66.

In the Xµ sector of the bosonic string, a general Fock space state can be

represented in a variety of ways:

1. as a Schrödinger wave-functional Ψ[Xµ], a mapping from the space of

string configurations to the complex numbers;

2. as a vector |Ψ> in Fock space;

3. as a local vertex operator VΨ in the CFT of matter and ghost fields.

We have already discussed the last two representations in chapter 2 and will

now comment on their relation with the first, perhaps less familiar, represen-

tation.

As discussed in section 2.3.4, it is convenient to represent the open string

world-sheet as the upper half plane. The original world-sheet, an infinite

strip, is parametrised by (τ,σ) with −∞ < τ < ∞, 0 ≤ σ ≤ π . We use the

conformal mapping z = −eτ−iσ to map the strip onto the complex plane (the

phase factor is introduced here for later convenience). Time runs radially in

the new parametrisation (see figure 3.1).

On the real axis, the fields should obey Neumann boundary conditions.

This is taken care of by using the doubling trick to extend all the fields to

the whole complex plane as explained in section 2.3.4. We will restrict our

attention the Xµ sector at first and comment on the extension to the ghost

sector later.

We can now consider the position operator X̂µ (the hat symbol is intro-

duced to distinguish the operator from its classical counterpart) on the con-

stant time slice |z| = 1 (τ = 0). To avoid later confusion, we introduce the

parameter ζ ≡ −e−iσ on the unit circle. Formula (2.3.27) gives the mode

expansion of X̂µ(ζ) as:

X̂µ(ζ) = x̂µ +
∞∑

n=1

X̂
µ
n(ζ

n + ζ̄n)
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0 π
σ

τ
z

Figure 3.1: Relation between the coordinates (τ, σ) on the strip and the

complex coordinate z.

= x̂µ + 2

∞∑

n=1

(−1)nX̂
µ
n cosnσ,

where the operators X̂
µ
n, which are self-conjugate with respect to the Her-

mitean inner product defined in section 2.3.5, are given in terms of the previ-

ously defined oscillator modes as

X̂
µ
n = i√

2n
(α
µ
n −αµ−n).

We can now consider a complete basis of ‘position eigenstates’ |Xµ(ζ)> sat-

isfying

X̂µ(ζ)|Xµ(ζ)>= Xµ(ζ)|Xµ(ζ)> .
These eigenstates can be expressed explicitly in the oscillator basis ([28]). The

result is (up to an overall normalisation factor)

|Xµ(ζ)>= exp

∞∑

n=1

[−n
2
XνnXνn + i

√
2Xνnαν−n +

1

2n
αν−nαν−n]|xµ >, (3.1.1)

where |xµ> stands for an eigenstate of the center-of mass position x̂µ .

Any state |Ψ > can now be represented as a Schrödinger wave-functional
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Ψ[Xµ(ζ)] by expanding it in the basis of position eigenstates:

|Ψ>=
∫

C
[DX] Ψ[Xµ(ζ)] |Xµ(ζ)> .

with Ψ[Xµ(ζ)] =<Xµ(ζ)|Ψ >. The subscript C means that the functional in-

tegral runs over fields defined on the unit circle. This establishes the relation

between the representations 2 and 1.

In chapter 2, we have argued that a local operator VΨ(0) can be seen as

a Schrödinger wave-functional obtained by expanding |Ψ > in eigenstates of

the position operator in the limit τ → −∞, in which the circle of constant τ

shrinks to a single point (i.e. the origin). This provides the link between the

representations 2 and 3.

We can also work out a direct relation between the representations 3 and 1

which will be of use to us in section 3.1.4. From the foregoing, it is clear that

the wave-functional Ψ[Xµ(ζ)] arises from the vertex operator VΨ(0) under

time evolution from τ = −∞ to τ = 0. In path-integral language, this means

that Ψ[Xµ(ζ)] can be written as a functional integral on the unit disc D with

VΨ inserted at the origin:

Ψ[Xµ(ζ)] =
∫

D
[DX̃]|Xµe−S[X̃

µ]VΨ (0). (3.1.2)

where the integral is subject to the boundary condition X̃µ(ζ) = Xµ(ζ) on

the unit circle.

As an example, we will now work out the various representations of the

Fock vacuum state |0>. By expanding into position eigenstates at τ = 0 using

(3.1.1), one gets the Schrödinger representation which is of the Gaussian form:

Ψ0[X
µ(ζ)] = e− 1

2

∑∞
n=1 nX

µ
nXnµ . (3.1.3)

We have argued in section 2.3.3 that |0> is represented by the vertex operator

1. We can now explicitly verify this by showing that under time evolution

to τ = 0 it reproduces the wave-functional (3.1.3). To do this, we have to

calculate the path-integral (3.1.2) with an insertion of the operator 1. The

result is, up to a normalisation factor, given by the contribution from the

action of the classical solution X̃µ(z, z̄) on the disc that obeys the boundary

condition X̃µ(ζ) = Xµ(ζ) on the boundary:

Ψ0[X
µ(ζ)] = e−S[X̃µ(z,z̄)]
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where

S[X̃µ(z, z̄)] = 1

4π

∞∑

m,n=1

mn X
µ
mXnµ

∫

D
d2zzm−1z̄n−1

= 1

2

∞∑

n=1

nX
µ
nXnµ

in agreement with (3.1.3).

The Fock-space raising and lowering operators act in the Schrödinger basis

as:

α
µ
n = − i√

2
(
∂

∂Xnµ
+nXµn) n > 0

α
µ
−n = i√

2
(− ∂

∂Xnµ
+nXµn) n > 0

This follows from the commutation relations (2.3.25). Using this representa-

tion, the Schrödinger representation of an arbitrary string field can be con-

structed from the vacuum wave-functional as

Ψ[Xµ(ζ)]

=
[
φ(x)+Aµ(x)αµ−1 + Bµ(x)αµ−2 + . . .+Aµν(x)αµ−1α

µ
−1 + . . .

]
Ψ0[X

µ(ζ)]

The component fields φ, Aµ, Bµ, . . . in this expansion depend only on the

center-of-mass coordinate x and can be interpreted as ordinary space-time

fields. From this fact we see that any string field theory is, from the space-

time point of view, a field theory with an infinite number of fields, one for

every vibrational mode of the string.

The three representations of a string field give rise to three equivalent for-

mulations of string field theory. Witten’s covariant string field theory, which

will be described in the next sections, was originally written in terms of the

Schrödinger wave-functional Ψ[Xµ(ζ)]. Various authors worked out the two

other representations in the following order:

Schrödinger wavefunctionals Ψ[Xµ(ζ)] [8]

↓
Fock space states |Ψ> [28, 29, 30, 31]

↓
vertex operators VΨ [33, 34]
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In section 3.1.3, we will review string field theory in the first representa-

tion, where the intuitive notion that string interactions arise from the splitting

and joining of strings is most apparent. This representation is however not

the one that is best suited for doing concrete calculations such as the ones we

will perform in chapters 5 and 7. Therefore we will, in section 3.1.4, using the

relations we have just derived, pass to the third representation of the string

field, in which the string field theory action is conveniently represented in

terms of CFT correlators. For a discussion of string field theory in the second

representation, which uses to the so-called Neumann coefficients, we refer to

the Ph.D. thesis of Pieter-Jan De Smet [35].

Before turning to the explicit form of the string field theory action, we first

collect some facts about the algebraic structure that underlies it.

3.1.2 Formal algebraic structure

Witten’s proposal for an interacting open string field theory [8] takes the form

of a generalisation of Chern-Simons gauge field theory. We will first discuss

the algebraic framework that underlies this type of theory and later realize

and interpret the various quantities and operations in the specific context of

string field theory.

Consider an algebra over the complex numbers whose elements we will

call ‘fields’ A and where the multiplication operation will be denoted by ⋆.

We suppose that the algebra comes equipped with a Z2 grading so that to

every field A is associated a degree (−1)A which is ±1. We further assume

the existence of an ‘integration’
∫
• and an operationQ on the algebra satisfying

the following axioms:

• The ⋆ product is associative and the degree (−1)A is multiplicative un-

der the ⋆ operation:

(A ⋆ B) ⋆ C = A⋆ (B ⋆ C) (3.1.4)

(−1)A⋆B = (−1)A · (−1)B (3.1.5)

• The operation Q is nilpotent, has degree −1 and is a derivation of the ⋆

algebra:

Q2A = 0 (3.1.6)

(−1)QA = −(−1)A (3.1.7)

Q(A⋆ B) = (QA) ⋆ B + (−1)AA⋆QB (3.1.8)
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• The integration
∫
• is a linear functional on the algebra of fields and has

the properties

∫
•QA = 0 (3.1.9)

∫
•A⋆ B = (−1)AB

∫
•B ⋆A (3.1.10)

These axioms guarantee that one can write down a Chern-Simons-type action

functional of the fields A

S[A] =
∫
•(1

2
A⋆QA+ g

3
A⋆A⋆A) (3.1.11)

which is invariant under ‘gauge transformations’ under which A transforms

as

δA = Qε + g A⋆ ε − g ε ⋆ A (3.1.12)

where ε is another field and where, in order for all terms in (3.1.12) to have the

same degree, we will require A and ε to have degree −1 and +1 respectively.

The parameter g plays the role of a coupling constant. The field equations

following from (3.1.11) state that the ‘field strength’ F vanishes:

F ≡ QA+ gA⋆A = 0.

An important feature of this construction is that the ⋆ product is not required

to be commutative.

An example in which all the axioms are satisfied is in the theory of gauge

fields. In this case, the fields A are taken to be matrix-valued differential

forms on a manifold, the degree of a k-form to be (−1)k, the operator Q

to be de Rham operator, ⋆ to be the wedge product combined with matrix

multiplication and
∫
• to be a combination of ordinary integration and matrix

trace. On a three-dimensional manifold, the only fields contributing to the

action are the 1-forms, while the gauge parameters are 0-forms and form a

closed subalgebra under the ⋆-product. The action (3.1.11) is then the Chern-

Simons action.

Although the properties (3.1.4-3.1.10) represent the actual algebraic struc-

ture underlying Witten’s string field theory, we will not give a complete proof

of them in this thesis. One can remark however that, in order to prove gauge
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invariance of the action (3.1.11), one only needs a weaker set of properties. In

particular, it is sufficient for this purpose that the properties (3.1.4-3.1.8) hold

within the integration
∫
•. We will use this fact in section 3.1.4 when discussing

gauge invariance in string field theory.

3.1.3 The ⋆ product and midpoint interactions

For string theory, in view of (3.1.6-3.1.8), a natural candidate for the nilpotent

operator Q is the BRST charge QB , while a natural grading is provided by

(−1)Qgh where Qgh is the ghost number. As in the example above, it will turn

out that only the fields of ghost number 1 contribute to the action, while the

gauge parameters will have ghost number 0 and form a closed algebra under

the ⋆-product.

We will now go into the definition of the ⋆ and
∫
• operations as formulated

in [8]. The intuitive picture underlying these definitions is the idea that the

⋆ operation should describe a joining of two strings into one, so that the

cubic term in the action (3.1.11) can be interpreted as describing a three-string

interaction vertex, similar to the situation in quantum field theory, where a

cubic interaction term describes processes where two particles annihilate and

a third particle is created (see the Introduction). Let’s suppress the ghosts for

the moment and try to find suitable ⋆ and
∫
• operations in the Xµ sector.

⋆ product

We can start by looking for an associative ⋆ operation on the position eigen-

states |Xµ(ζ) >. This operation should combine two position eigenstates

|Xµ1 (ζ)> and |Xµ2 (ζ)> into a new state |Xµ1 (ζ)>⋆|Xµ2 (ζ)>.

A first attempt at defining a ⋆ product would be to take the operation

of joining strings at their endpoints: the ⋆ product is zero unless the end-

point of the X1 configuration coincides with the starting point of X2, in which

case the ⋆ product yields a new position eigenstate obtained by joining the

two strings together (figure 3.2(a)). The resulting operation is almost, but not

quite, associative (see figure 3.2(b)): if one compares the configurations cor-

responding to (|X1 > ⋆|X2 >) ⋆ |X3 > and |X1 > ⋆(|X2 > ⋆|X3 >) one sees

that they are parametrised differently. Since we are working in a gauge-fixed

formalism in which the reparametrisation freedom is no longer present, these

configurations are not equivalent.
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X1*X2X1 X2

X1*X2
( ) *X3 X1* X2

( )*X3

σ=0 π/4 π/2
π

σ=0 π/2 3π/4
π

(a)

(b)

Figure 3.2: (a) A ⋆ product operation defined by joining strings at their end-

points. (b) The resulting operation is not quite associative since (X1⋆X2)⋆X3

and X1 ⋆ (X2 ⋆X3) are parametrised differently.

A proposal which leads to a truly associative ⋆ operation is the joining of

strings at their mid-points. The mid-point of a string configuration is defined

to be the space-time point corresponding to σ = π/2 or ζ = i. Witten’s

definition of the ⋆ product is as follows (see figure 3.3(a)): the strings |X1 >

and |X2> can join only if the right part of |X1> (the image of the points ζ on

the unit circle with Re (ζ) ≥ 0) coincides with the left part of |X2> (the image

of the points on the unit circle with Re (ζ) ≤ 0). The result is a new position

eigenstate |X1>⋆|X2> obtained by joining the left part of |X1> to the right

part of |X2>. Denoting the left and right parts of a string configuration by XL
and XR respectively, the definition of the ⋆ product can be written as:

|(X1L, X1R)>⋆|(X2L, X2R)>= |(X1L, X2R)> δ(X1R − X2L), (3.1.13)

where δ(X1R − X2L) stands for
∏
µ

∏
ζ,Re (ζ)≤0 δ

(
X
µ
1 (−1/ζ)− Xµ2 (ζ)

)
. The ⋆

operation defined in this way is associative as illustrated in figure 3.3(b).

Integration

We now turn to the definition of the
∫
• operation. From formula (3.1.10) and

associativity,
∫
• should satisfy

∫
•(|X1 > ⋆|X2 > ⋆|X3 >) =

∫
•(|X3 > ⋆|X1 >
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X X1 2

X1 X2* X1 X2*

X1

X2

X3

X3*

(a) (b)

Figure 3.3: (a) In Witten’s ⋆ operation, strings X1 and X2 can join only if the

right part of X1 coincides with the left part of X2. (b) The resulting operation

is associative.

⋆|X2 >). The way to accomplish this is by defining the integral of a posi-

tion eigenstate |X > to be 0 unless the left part XL coincides with the right

part XR :

∫
•|Xµ(z)>= δ(XL − XR) (3.1.14)

as illustrated in figure (3.4).

From the definitions of the ⋆ and
∫
• operations on position states (3.1.13,

3.1.14) we immediately deduce their action on general string fields in the

X
X

L
R

Figure 3.4: The integration operation identifies the left- and right halves of

the string.
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Schrödinger representation Ψ[Xµ(ζ)]:

Ψ1 ⋆ Ψ2[(XL, XR)] =
∫

C
[DX̃]Ψ1[(XL, X̃R)]Ψ2[(X̃L, XR)]δ(X̃R − X̃L)

∫
•Ψ[(XL, XR)] =

∫

C
[DX]Ψ[(XL, XR)]δ(XL −XR). (3.1.15)

Extension to the ghost sector

The definition of the ⋆ and
∫
• operations can be generalised in a straightfor-

ward manner to include the ghost fields (b, c). This is most easily done[8, 28]

by using the bosonised form of the ghost system in which the (b, c) fields are

represented by a single linear dilaton field (see section 2.5.4) ϕ with ε = 1

and Q = −3:

b =:e−ϕ : c =:eϕ : .

The extension of ⋆ and
∫

to the ghost system now follows by treating the ϕ

field as an extra scalar field in addition to the Xµ . For example, the string

field in the Schrödinger representation becomes a functional Ψ[Xµ(ζ),ϕ(ζ)]

of the Xµ fields as well as the the bosonised ghost ϕ. In the following, we will

suppress the dependence on the ϕ field for notational simplicity.

Reality condition

The above definitions allow us to write down an action of the form (3.1.11)

for the string field Ψ[X]:

S[Ψ] =
∫
•(1

2
Ψ ⋆QΨ + g

3
Ψ ⋆ Ψ ⋆ Ψ). (3.1.16)

This action will not be real for a generic complex-valued string field Ψ[X]. To

make it so, an extra reality condition on the fields is required. This condition

is taken to be [36]

Ψ[Xµ(ζ)] = Ψ∗[Xµ(−1/ζ)]. (3.1.17)

If this condition is satisfied, the integral of a star product of fields
∫
•Ψ1⋆ Ψ2 re-

duces to an inner product for wave-functionals reminiscent of ordinary quan-

tum mechanics: ∫
•Ψ1 ⋆ Ψ2 =

∫

C
[DX] Ψ∗1 [X]Ψ2[X].

We will come back to the issue of reality of the action in the next section.
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3.1.4 String field theory in the vertex operator representation

In order to make concrete calculations in string field theory, we need to make

the operations defined in the previous section a bit more explicit. This will

also be required to give a complete proof of invariance of the action (3.1.11)

under the gauge transformation (3.1.12). In particular, we have not yet estab-

lished the derivative property (3.1.8). For this purpose, we will use the vertex

operator representation of the string field. This will allow us to express inte-

grals of ⋆ products of an arbitrary number of fields as CFT correlators on the

sphere. Gauge invariance of the action will then follow from the properties of

those CFT correlators. We will also be able to translate the reality condition

(3.1.17) into conformal field theory language.

Relation with CFT correlators

Consider first an integral of a product of two string fields
∫
•Ψ1 ⋆ Ψ2. For nota-

tional simplicity, we will display only the dependence on the Xµ , the extension

to the ghost sector being straightforward. As discussed in section 3.1.1, Ψ1

and Ψ2 can be represented as path-integrals on unit discs D1 and D2 with ver-

tex operator insertions VΨ1 and VΨ2 respectively. We denote the coordinates

on the discsD1 andD2 byw1 andw2 respectively. Combining the expressions

(3.1.15) with the representation (3.1.2) gives

∫
•Ψ1 ⋆ Ψ2 =

∫

D1

[DX1]

∫

D2

[DX2] e
−S[X1]−S[X2]

∏

ζ∈C
δ(X1(−1/ζ)−X2(ζ))

×VΨ1(X1(0))VΨ2(X2(0)) (3.1.18)

The delta-function implies that the discs D1 and D2 should be glued together

along their boundaries with the identification

w1w2 = −1, |w1| = |w2| = 1. (3.1.19)

The resulting manifold is a sphere where the coordinate patches w1 and w2

each cover a hemisphere, the identification (3.1.19) providing the transition

function on the equator where the patches overlap. Things become much

simpler when written in terms of a coordinate z ∈ C̄ which is well-defined in
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the neighbourhood of the equator. The coordinate z is related to w1 and w2

by holomorphic transition functions

z = t1(w1) in patch 1,

z = t2(w2) in patch 2.

In order for z to be well-defined, these should satisfy

t1(w) = t2(−1/w) for|w| = 1.

In terms of the new coordinate z, the path integral (3.1.18) becomes a CFT

correlator on the 2-sphere:
∫
•Ψ1 ⋆ Ψ2 =

∫

S2

[DX] e−S[X] t1 ◦VΨ1(0) t2 ◦ VΨ2(0)

=
〈
t1 ◦ VΨ1(0)t2 ◦VΨ2(0)

〉
. (3.1.20)

Various choices for the functions t1 and t2 are possible, related by global

conformal transformations. The result is independent of the specific choice

due to conformal invariance of the correlator (3.1.20). The simplest choice

for t1 and t2 is to take

t1(z) = −1/z ≡ I(z),
t2(z) = z.

With this choice, we see that the integral (3.1.20) reduces to the BPZ inner

product we encountered before in 2.3.5:

∫
•Ψ1 ⋆ Ψ2 =≪Ψ1|Ψ2 > . (3.1.21)

Another choice, easily generalised to integrals of star products of any number

of fields, is to take

t1(z) = f
(2)
1 (z) ≡

(
1+ iz
1− iz

)
,

t2(z) = f
(2)
2 (z) = −

(
1+ iz
1− iz

)
.

These functions map D1 and D2 to the half-planes Re z ≥ 0 and Re z ≤ 0

respectively, with the transformed vertex operators inserted at z = +1 and

z = −1 (see figure 3.5).
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(a)

f (2)

f(2)

1

2

V
V

V
V

VV

(b)

1

2

1

2

2 1

σ=π/2

σ=0 σ=π

Figure 3.5: (a) The mappings f
(2)
1 and f

(2)
1 define a well-defined coordinate z

on the sphere. (b) The integral
∫
Ψ1 ⋆ Ψ2 reduces to a correlation function on

the sphere.
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A similar procedure can be followed to work out the three-point vertex∫
•(Ψ1 ⋆ Ψ2 ⋆ Ψ3). The three string fields can be represented as path-integrals

on unit discs D1, D2 and D3 on which we choose coordinates w1, w2 and

w3. These should be glued together along their boundaries according to the

identifications:

w1w2 = −1 for |w1| = |w2| = 1; Re w1 ≥ 0; Re w2 ≤ 0,

w2w3 = −1 for |w2| = |w3| = 1; Re w2 ≥ 0; Re w3 ≤ 0,

w3w1 = −1 for |w3| = |w1| = 1; Re w3 ≥ 0; Re w1 ≤ 0.

The integral
∫
•(Ψ1 ⋆ Ψ2 ⋆ Ψ3) can once again be written as a correlator on the

the two-sphere by transforming to a suitable coordinate z that is well-defined

in the overlap region. The transition functions t1, t2, t3 should obey:

t1(−1/w) = t2(w) for |w| = 1; Re w ≥ 0,

t2(−1/w) = t3(w) for |w| = 1; Re w ≥ 0,

t3(−1/w) = t1(w) for |w| = 1; Re w ≥ 0.

The following choice does the trick:

tk(wk) = f (3)k (wk) ≡ e
2πi(k−1)

3

(
1+ iwk
1− iwk

)2/3

k = 1, . . . ,3.

The branch for the fractional power z =w2/3 is chosen to be−π/3 ≤ Arg(z) ≤
π/3. These functions map the unit discs Dk into wedge-shaped portions of

the complex plane (see figure 3.6). The three-point vertex reduces to the cor-

relator

∫
•(Ψ1 ⋆ Ψ2 ⋆ Ψ3) =

〈
f
(3)
1 ◦ VΨ1(0) f

(3)
2 ◦ VΨ2(0) f

(3)
3 ◦ VΨ3(0)

〉
.

The choice of mappings f
(3)
k is essentially unique in the sense that all other

possible choices tk are related to this one by a common conformal transfor-

mation [33]:

tk = g ◦ f (3)k .

For example, by choosing a suitable g, one obtains a representation which

more closely resembles the intuitive picture of two strings joining to form a

third.
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f (3)
1 V V1

1

V2

V3

(a) (b)

V1

π/2

σ=0 π

(c)

Figure 3.6: (a) The mappings f
(3)
k map the unit disc to wedge-shaped portions

covering the complex plane. (b) The three-point vertex reduces to a correlator

on the sphere. (c) After performing a conformal transformation, we obtain

a representation which more closely resembles the intuitive picture of two

strings joining to form a third.
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Similarly, a general integral
∫
•(Ψ1 ⋆ Ψ2 ⋆ . . .Ψn) reduces to a correlator for

which we will use the notation 〈〈 VΨ1 VΨ2 . . .VΨn 〉〉:
∫
•Ψ1 ⋆ Ψ2 ⋆ . . .Ψn = 〈〈 Ψ1 Ψ2 . . .Ψn 〉〉

=
〈
f
(n)
1 ◦ VΨ1(0) f

(n)
2 ◦ VΨ2(0) . . . f

(n)
n ◦ VΨn(0)

〉
.

The conformal transformations f
(n)
k are mappings from the unit disc to wedge-

shaped portions of the complex plane:

f
(n)
k (z) = e 2πi(k−1)

n

(
1+ iz
1− iz

)2/n

k = 1, . . . , n. (3.1.22)

The branch of z =w2/n is chosen to be −π/n ≤ Arg(z) ≤ π/n.

CFT representation of the ⋆ product

We have just presented a representation of integrals of ⋆ products in terms

of correlators between vertex operators in CFT. One might wonder whether

the ⋆ product itself can also be worked out in terms of manipulations in CFT

such as taking OPE’s and performing conformal transformations. It turns out

that an expression for the star product of two string fields, Ψ1 ⋆ Ψ2, can be

derived from the formula for the three-point vertex derived above. Indeed,

from equation (3.1.21) we know that the three-point vertex
∫
• Φ ⋆ Ψ1 ⋆ Ψ2 can

be written as the BPZ inner product ≪Φ|Ψ1 ⋆ Ψ2>. Hence we should be able

to derive an expression for Ψ1 ⋆ Ψ2 by manipulating the three-point vertex∫
• Φ ⋆ Ψ1 ⋆ Ψ2, for arbitrary Φ, until it has the form of a BPZ inner product

≪ Φ| . . . >.

We start from the previously derived expression

∫
• Φ ⋆ Ψ1 ⋆ Ψ2 =

〈
f
(3)
1 ◦ VΦ(0) f (3)2 ◦VΨ1(0) f

(3)
3 ◦VΨ2(0)

〉
.

The first insertion f
(3)
1 ◦VΦ(0) can be seen as the vertex operator representing

a state U
f
(3)
1
|Φ> where the operator U

f
(3)
1

implements the conformal transfor-

mation f
(3)
1 (z) in Fock space. U

f
(3)
1

can be written in terms of infinitesimal

generators as

U
f
(3)
1
= exp

∑

n∈Z

vnLn, (3.1.23)
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where the Ln are the modes of the total (i.e. matter and ghost) energy-

momentum tensor and the coefficients vn can be computed from the Laurent

coefficients of the function f
(3)
1 (z) through a recursive procedure [34, 37].

The next step is to perform an SL(2,C) transformation by I(z) = −1/z:

∫
•Φ ⋆ Ψ1 ⋆ Ψ2 =

〈
I ◦ VU

f
(3)
1

Φ(0) I ◦ f (3)2 ◦ VΨ1(0) I ◦ f (3)3 ◦ VΨ2(0)
〉
.

We can now use the OPE to replace the last two vertex operators by some

linear combination of vertex operators inserted at the origin. Introducing the

notation VΨ for this particular linear combination of vertex operators, we

have

I ◦ f (3)2 ◦ VΨ1(0) I ◦ f (3)3 ◦ VΨ2(0) = VΨ(0) (3.1.24)

We are now able to rewrite the three-point function as a BPZ inner product:

∫
•Φ ⋆ Ψ1 ⋆ Ψ2 =≪ Φ U

f
(3)
1
|Ψ > .

We can now use inverse BPZ conjugation to let the operator act on the ‘ket’

|Ψ>. Doing this, we obtain an expression for |Ψ1 ⋆ Ψ2>:

|Ψ1 ⋆ Ψ2>= bpz(U
f
(3)
1
)|Ψ> . (3.1.25)

Using (2.3.30) and (3.1.23), the operator bpz(U
f
(3)
1
) can be also written as

bpz(U
f
(3)
1
) = exp

∑

n∈Z

(−1)nvnLn.

The expression (3.1.25) makes it possible to calculate star products, at least in

principle. In practice, as should be clear from the procedure we have just out-

lined, calculating star products is a difficult matter and few explicit examples

are known. We will consider here only one rather trivial example.

Consider the ⋆ product of the SL(2,C) invariant vacuum |0> (correspond-

ing to the vertex operator 1) with itself. The OPE in (3.1.24) is trivial in this

case: the vertex operator VΨ on the right-hand side is again the operator 1.

The formula (3.1.25) then yields

|0> ⋆|0>= bpz(U
f
(3)
1
)|0> .
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The resulting state is completely determined by the conformal transformation

f
(3)
1 ; states with this property are also called surface states. Explicitly, the first

few components are given by [38]:

|0> ⋆|0>= exp

(
− 5

27
L−2 + 13

486
L−4 − 317

39366
L−6 + . . .

)
|0> .

More examples of star products are worked out in [38].

Gauge invariance

Since nonvanishing CFT correlators require a total ghost number of three, we

see that the string fields contributing to the action

S[Ψ] = 1

2
〈〈 VΨQBVΨ 〉〉 + g

3
〈〈 VΨ VΨ VΨ 〉〉 (3.1.26)

should have ghost number 1 (recall that this is the natural ghost number

for vertex operators obtained by acting with raising operators on the ghost

vacuum | ↓> as in section 2.3.6). This means that gauge parameters have

ghost number 0 and form a closed subalgebra under the ⋆ product.

In section 3.1.2, we summarised the algebraic structure of string field the-

ory in the properties (3.1.4-3.1.10). Although these properties can be shown

to hold (for example, we have established associativity of the ⋆ product in

3.1.3), but, for the purpose of proving gauge invariance of the action, it is

sufficient for these properties to hold within the
∫
• operation. A similar pro-

cedure will be followed when we will discuss gauge invariance in superstring

field theory in section 3.2.

Translated into CFT language, gauge invariance of the action (3.1.26) can

be established by proving the following properties of the CFT correlators

(compare p. 62)

〈〈 · · ·Q2
B(Φ1 · · ·Φn) · · · 〉〉 = 0 , (3.1.27)

〈〈QB(Φ1 · · ·Φn) 〉〉 = 0 , (3.1.28)

〈〈 · · ·QB(ΨΦ) · · · 〉〉 = 〈〈 · · · (QBΨ Φ − Ψ QBΦ) · · · 〉〉 ,
〈〈 · · ·QB(εΦ) · · · 〉〉 = 〈〈 · · · (QBε Φ + ε QBΦ) · · · 〉〉 , (3.1.29)

〈〈 Φ1 · · ·Φn−1Φn 〉〉 = 〈〈 ΦnΦ1 · · ·Φn−1 〉〉 (3.1.30)

where Ψ and ε represent the string field (ghost number 1) and the gauge

parameter (ghost number 0) respectively and the Φi represent CFT operators
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of arbitrary ghost number. The proof of the properties (3.1.27-3.1.30) goes as

follows:

• Property (3.1.27) is nothing but the statement thatQB is nilpotent, which,

as we have seen in section 2.4, is the case in the critical dimension.

• Property (3.1.28) follows from writing QB as a contour integral of jB
where the contour encircles all the vertex operators Φi. By doing an

SL(2,C) transformation to a coordinate u = 1/z and using that jB is a

weight 1 primary field, one sees that, in the u-plane, the operator jB en-

circles the origin with no vertex operator insertions inside the contour.

Hence, the result vanishes by analyticity.

• The first equality in (3.1.29) follows from writing QB as a contour inte-

gral of jB encircling the operators Ψ and Φ. The contour integral can be

written as a sum of two terms: an integral where the contour encircles

only Ψ and one where the contour encircles only Φ. The second term

comes with a minus sign since one needs to interchange jB and Ψ and

both are Grassmann odd fields. One then uses the fact that QB is a

weight 0 primary field so that applying QB commutes with applying a

conformal transformation.

The second equality in (3.1.29) is proven in the same way, using the fact

that ε is a Grassmann even field.

• To prove the property (3.1.30) we start by performing the SL(2,C) trans-

formation of rotating over an angle 2π/n. The correlator reduces to

〈f (n)2 ◦ Φ1(0) · · ·f (n)n ◦Φn−1(0) R ◦ f (n)1 ◦ Φn(0)〉 (3.1.31)

where R denotes a rotation over 2π . If Φn has conformal weight h, the

rotation R yields a phase factor:

R ◦ f (n)1 ◦ Φn(0) = e2πihf
(n)
1 ◦Φn(0).

Consider first the case that Φn has space-time momentum zero. Such a

state is constructed from the Fock vacuum by applying integer-moded

raising operators and its conformal weight h is an integer, hence e2πih =
1. We now look what happens if we move f

(n)
1 ◦Φn(0) to the front in the

correlator (3.1.31). Since a nonvanishing amplitude should have ghost

number three and hence be Grassmann odd, we see that no phase is
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picked by moving f
(n)
1 ◦ Φn(0) past the other vertex operators and the

property (3.1.30) holds.

If Φn is an operator of space-time momentum kµ , the rotation R will

yield a phase factor eπiα
′k2

. On the other hand, another phase is picked

up when moving f
(n)
1 ◦ Φn(0) to the front. Indeed, from the definition

of normal ordering (2.3.4) we have

:eik1·X(z1) : :eik2·X(z2) : = (z1 − z2)
α′k1·k2 :eik1·X(z1)e

ik2·X(z2) :

= eπiα
′k1·k2 :eik2·X(z2) : :eik1·X(z1) : .

Hence, by moving f
(n)
1 ◦Φn(0) to the front we pick up a phase eiπk·(ktot−k)

where k
µ
tot is the total momentum of the amplitude. Due to momen-

tum conservation nonvanishing amplitudes have k
µ
tot = 0 and hence the

phase picked by moving f
(n)
1 ◦ Φn(0) to the front cancels with the one

from the rotation R. This concludes the proof of property (3.1.30).

3.1.5 Reality condition

We can also work out the implications of the reality condition at the level of

Fock space states |Ψ > and their vertex operators VΨ . Again, we restrict our

attention to the Xµ sector for notational simplicity.

The reality condition (3.1.17)

Ψ[X(ζ)] = Ψ∗[X(−1/ζ)]

can be written as

<X(ζ)|Ψ>=<X(−1/ζ)|Ψ>∗ .

From the discussion in section 2.3.5 one deduces that BPZ conjugation acts

on position eigenstates as

bpz(|X(ζ)>) =<X(−1/ζ)|.

In terms of Fock space states |Ψ >, the reality condition implies invariance

under BPZ conjugation followed by the inverse of Hermitean conjugation:

hc−1 ◦ bpz|Ψ>= |Ψ> . (3.1.32)
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Indeed, expanding |Ψ> in position eigenstates one finds

hc−1 ◦ bpz(|Ψ>) =
=

∫

C
[DX(ζ)] <X(ζ)|Ψ>∗ |X(−1/ζ)>

=
∫

C
[DX(ζ)] <X(−1/ζ)|Ψ>∗ |X(ζ)>

=
∫

C
[DX(ζ)] <X(ζ)|Ψ> |X(ζ)>

= |Ψ>,

where, in the second step, we have performed a change of variables in the

functional integral.

The reality condition on the string field can be interpreted as a reality

condition on the space-time component fields. Consider a Fock space state of

the form

|Ψ>= φ(k)[oscillator modes]|0, k>,

where the coefficient φ(k) is the Fourier transform of a space-time compo-

nent field φ(x). Under combined BPZ and inverse Hermitean conjugation,

the state |0, k > goes to |0,−k > while the oscillator modes pick up a sign,

say (−1)s . The reality condition (3.1.32) then implies φ(k) = (−1)sφ∗(−k)
so that φ(x) has to be real for s = 1 and imaginary for s = −1.

It is possible to argue that the reality condition (3.1.5) on the fields leads

to a real action [21]. Here, we will restrict our attention to the kinetic term.

It is easy to see that, for real string fields, the integral Ψ1 ⋆ Ψ2 becomes equal

to the Hermitean inner product <Ψ1|Ψ2>. The first term in the action is real

because the BRST charge QB is a Hermitean operator. To prove the reality

of the cubic term one has to show that the ⋆ product preserves the reality

condition.

3.1.6 An example: the action for the lowest modes

As an example, consider a string field containing only excitations of the two

lowest levels:

|Ψ>=
∫
d26k

(2π)26

[
t(k)c1 + eµ(k)αµ−1c1 + ih(k)c0

]
|0, k> .
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The field t(k) describes the off-shell tachyon, while eµ corresponds to the

massless vector field (compare (2.4.5, 2.4.6)). The field h will turn out to be

an auxiliary field.

The reality condition (3.1.32) on these fields reads

t∗(k) = t(−k),
e∗µ (k) = eµ(−k),
h∗(k) = h(−k).

Substituting |Ψ > in the kinetic term of the action (3.1.26) and Fourier

transforming to position space gives

1

2
〈〈 VΨQBVΨ 〉〉 =

∫
d26x

[
1

2
∂µt∂

µt − 1

2
t2 + 1

4
FµνF

µν + 1

2
(h+ ∂µAµ)2

]
.

(3.1.33)

where

t(x) =
∫
d26k

(2π)26
t(k)eik·x ; Aµ(x) =

∫
d26k

(2π)26
eµ(k)e

ik·x ;

h(x) =
∫
d26k

(2π)26
h(k)eik·x .

We can also illustrate the transformation of the string field under lin-

earised gauge transformations. The gauge parameter to this level is

|ε>=
∫
d26k

(2π)26
iΛ(k)|0, k> .

and the linearised gauge transformation

δ|Ψ>= QB|ε>=
∫
d26k

(2π)26
iΛ(k)

[
k2c0 + kµc1α

µ
−1

]
|0, k> .

translates into a a gauge transformation on the space-time fields

δAµ(x) = ∂µΛ(x)

δh(x) = −∂µ∂µΛ(x).

Clearly, these transformations leave the action (3.1.33) invariant.
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3.1.7 Quantisation and modular invariance

Although in the following we will only be concerned with the evaluation of

the classical string field theory action, we feel it is nevertheless important to

say a few words about quantisation (see e.g [39] for more details). Indeed,

the primary justification for any string field theory action is its ability to re-

produce the perturbation expansion for on-shell string amplitudes given in

section 2.2.2.

Gauge-fixing

The string field theory action (3.1.16) is an infinite-component gauge field the-

ory of the cubic type. The first step towards quantisation is to deal with the

gauge freedom (3.1.12). This is traditionally done by imposing the Feynman-

Siegel gauge:

b0|Ψ>= 0. (3.1.34)

We will come back to the justification of this gauge choice in section 5.4.

For the example considered in the previous section, this gauge choice puts

the field h to zero. The resulting action for the massless field is known in

quantum field theory as the gauge-fixed action in the Feynman gauge.

Feynman rules and integration over moduli space

Any string field obeying the gauge condition (3.1.34) satisfies |Ψ>= b0c0|Ψ>.

Plugging this into the kinetic term, we get

∫
•Ψ ⋆QBΨ = <Ψ |c0b0Qbb0c0Ψ>

= <Ψ |c0L0b0c0Ψ>

= <Ψ |c0L0Ψ>

≡ <Ψ , L0Ψ>,

where we have used {QB , b0} = L0 and, in the last line, defined yet another in-

ner product <Φ,Ψ>≡<Φ|c0Ψ>. This inner product has the property that it is

positive definite when restricted to the subspace of physical states satisfying

QB|Ψ>= 0 (see e.g. [9], chapter 4).
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The kinetic energy operator, L0, can be formally inverted1 to give the prop-

agator:

1/L0 =
∫∞

0
dτe−τL0 .

Since L0 generates translations of the world-sheet time, the operator e−τL0

implements free propagation over a time τ (see also section 2.3.3): it builds

up a world-sheet which is a rectangular strip of width π and length τ in the

(σ , τ) plane (in the complex coordinate z, it generates a half disc of radius

e−τ ). The τ integral tells us to sum over all such worldsheets. The resulting

expression for the propagator is comparable to the Schwinger proper time

parametrisation for the propagator in ordinary field theory.

The cubic term in the action represents an interaction which can be viewed

as a small perturbation if the coupling g is small. As in ordinary field theory,

a perturbation expansion can be set up in terms of Feynman diagrams. A

Feynman diagram in this theory is a world-sheet made up out of propagators,

now represented by strips instead of lines, and vertices where three strips are

joined. Loop diagrams correspond to world-sheets with holes.

At tree level, ample evidence has been gathered to show that Witten’s ac-

tion indeed reproduces the on-shell scattering amplitudes of open strings

[8, 28, 30, 32].

In chapter 2, we have seen that loop diagrams in string theory require

an integration over moduli space. The main result is that the sum over Feyn-

man diagrams in string field theory exactly reproduces the correct integration

measure, where each diagram covers a small part of the moduli space so that

the sum over diagrams exactly covers the whole space [40]. The decompo-

sition of the moduli space of higher genus Riemann surfaces in terms of a

sum over Feynman graphs and integrals over strip lengths is a nontrivial re-

sult that was discovered in the mathematics literature only shortly before the

advent of string field theory.

3.2 Open superstrings

We have seen that, in the bosonic theory, Witten’s string field theory seems to

pass all the requirements for being a consistent off-shell description of open

1Obviously, we are ignoring here the possibility of string fields of weight 0. We will come
back to this subtlety in section 5.4.
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string theory. In the case of superstrings, however, the situation is not so

clear-cut. Various proposals for a field theory of open superstrings have been

put forth in the literature, and all of them are claimed to pass at least some

of the requirements for a consistent string field theory. At the moment, it

is not completely clear whether these proposals provide different, but con-

sistent, off-shell descriptions with the same on-shell behaviour, or whether

closer scrutiny will point out inconsistencies in some descriptions2. In this

section, we give an overview of the open superstring field theory actions that

have been proposed in the literature. The three actions we will discuss here

differ not only in form but also in the ghost and picture number restrictions

imposed on the string field.

We begin by recalling some definitions from section (2.5.4) regarding the

ghost system of the superstring. The superghosts are ‘bosonised’ as:

β =:∂ξe−φ : γ =:ηeφ : .

The ghost number and picture number assignments of the various fields are

summarised in table 3.1. Furthermore, we adopt the convention that, for q

field ghost number picture number

b −1 0

c 1 0

η 1 −1

ξ −1 1

:eqϕ : 0 q

Table 3.1: Ghost- and picture number assignments for the various fields.

odd, :eqϕ : is a Grassmann odd field (anticommuting with all other Grassmann

odd fields). This definition is necessary if we want the bosonised system to

reproduce the amplitudes of the original (β, γ) system [41]. As far as the

(η, ξ) system is concerned, one distinguishes between the small Hilbert space

which excludes the zero mode ξ0 of the ξ field, and the large Hilbert space

which includes ξ0. We adopt the following normalisation convention for the

elementary correlators:

〈c∂c∂2c(z1) :e−2ϕ(z2) :〉 ≡ 2 (small Hilbert space) (3.2.1)

2As we will argue in chapter 7, the calculations presented there do provide a testing ground
for these proposals and, as we will see there, not all proposals pass such a test with flying
colours.
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〈ξ(z1)c∂c∂
2c(z2) :e−2ϕ(z3) :〉 ≡ 2 (large Hilbert space) (3.2.2)

It follows that nonvanishing correlators in the small Hilbert space have an odd

total Grassmann parity, while nonvanishing correlators in the large Hilbert

space have an even total Grassmann parity.

Although we will keep using the symbol Ψ to represent the string field to

avoid unnecessary propagation of symbols, it is important to keep in mind

that the ghost and picture number assignments differ in each theory as sum-

marised in table 3.2. For the moment, we will restrict the string field to be in

the GSO+ sector containing fields with eiπF = +1. Later, in chapter 7, we will

extend the action to include fields in the GSO− sector (with eiπF = −1), such

as the tachyon state, as well.

action ghost number picture Hilbert space

Witten 1 −1 small

modified cubic 1 0 small

Berkovits 0 0 large

Table 3.2: Constraints on the NS sector string field Ψ in the various actions

proposed in the literature.

The reality condition on the string field is taken to be

hc−1 ◦ bpz(|Ψ>) = |Ψ> (3.2.3)

in all three cases.

3.2.1 Witten’s action

In [36], Witten proposed a field theory action for open superstrings of the

Chern-Simons type (3.1.11) as well but with slightly modified definitions of

the ⋆ and
∫
• operations. We will restrict our attention to the NS sector of the

theory since this is the relevant sector for the calculation of the tachyon po-

tential in the next chapter. In this theory one considers string fields of ghost

number 1 and picture number −1. Furthermore, the string field is restricted

to live in the small Hilbert space of the bosonised system.

If we are to write down an action of the form (3.1.11) for the superstring,

the operations
∫
• and ⋆ should be suitably modified. In order to ensure that
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both terms in the action (3.1.11) are non-vanishing, they should both map to

CFT correlators with total picture number−2. If we modify the ⋆ operation so

that it raises the picture by n units and the integration
∫
• to raise the picture

with m units, we find the constraints

m+n = 0

2m+n = −1

from the requirement that both terms in the action (3.1.11) are nonvanish-

ing. So we need m = 1 and n = −1. In ref. [36], this is accomplished in a

manner that preserves gauge invariance as well as conformal invariance by

modifying the ⋆ and
∫
• operations to include insertions of picture-changing

operators at the mid-point: the ⋆ operation is accompanied by an insertion

of the picture-raising operator Z (2.5.20) and
∫
• comes with an insertion of

the picture-lowering operator Y (2.5.21). Translated into CFT language, this

means that general integrals
∫
•(Ψ1 ⋆ Ψ2 ⋆ . . . ⋆ Ψn) reduce to correlators

∫
•(Ψ1 ⋆ Ψ2 ⋆ . . . ⋆ Ψn) ≡ 〈〈 VΨ1 VΨ2 . . .VΨn 〉〉

=
〈
Y(0)f

(n)
1 ◦ VΨ1(0) Z(0) f

(n)
2 ◦ VΨ2(0) Z(0) . . . Z(0) f

(n)
n ◦VΨn(0)

〉
.

(3.2.4)

The Chern-Simons action can again be written in terms of CFT correlators:

S =
∫
•(1

2
Ψ ⋆QΨ + g

3
Ψ ⋆ Ψ ⋆ Ψ) (3.2.5)

= 1

2
〈〈 VΨ QBVΨ 〉〉 + g

3
〈〈 VΨ VΨ VΨ 〉〉 . (3.2.6)

The action is invariant under the gauge transformations:

δΨ = Qε + g Ψ ⋆ ε − g ε ⋆ Ψ ,

where the gauge parameter ε is an arbitrary string field of ghost number 0

and picture number −1. A formal proof of gauge invariance relies on the

following properties of the correlator (3.2.4) (compare p. 61, 75):

〈〈QB(Φ1 · · ·Φn) 〉〉 = 0 ,

〈〈 · · ·Q2
B(Φ1 · · ·Φn) · · · 〉〉 = 0 ,
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〈〈 · · ·QB(ΨΦ) · · · 〉〉 = 〈〈 · · · (QBΨ Φ − Ψ QBΦ) · · · 〉〉 ,
〈〈 · · ·QB(εΦ) · · · 〉〉 = 〈〈 · · · (QBε Φ + ε QBΦ) · · · 〉〉 ,
〈〈 Φ1 · · ·Φn−1Φn 〉〉 = 〈〈 ΦnΦ1 · · ·Φn−1 〉〉 . (3.2.7)

where Ψ and ε represent the string field and the gauge parameter respectively

and the Φi represent arbitrary operators in the NS, GSO+ sector. These prop-

erties can be proven formally in manner very similar to the proof of gauge

invariance for the bosonic string (see p. 75). One should keep in mind that

the ghost and picture number assignments imply that the string field Ψ is

a Grassmann odd object while the gauge parameter is Grassmann even. To

prove the last property, one needs to use the fact that the total Grassmann

parity of any nonvanishing correlator is odd. Indeed, in the small Hilbert

space, nonvanishing correlators are restricted to have (b, c) ghost number 3,

(η, ξ) number 0 and ϕ charge −2 and an even number of ψµ insertions.

The properties (3.2.7) would normally suffice to prove gauge invariance of

the action. However, there is a subtlety we have overlooked so far. From

the definition (3.2.4), one sees that correlators involving more than three

string fields contain two or more insertions of the picture-changing operator

at the origin. These correlators are ill-defined because the OPE of the picture-

changing operator Z with itself has a pole term, leading to divergences in

such correlators. Hence the properties (3.2.7) also become meaningless from

the moment they involve more than three string fields. This is the case in

the proof of gauge invariance of the action which involves correlators with

four string fields. Similar problems occur when one tries to verify associa-

tivity of the ⋆ product. These problems of the action (3.2.6) were found and

addressed in [42]. A resolution of these difficulties requires dealing with the

aforementioned divergences and hence a sort of renormalisation procedure is

required, a rather dubious procedure since we are still working in a classical

theory. The procedure proposed in [42] does however seem to lead to the

correct on-shell scattering amplitudes.

3.2.2 Modified cubic actions

In answer to the difficulties with Witten’s field theory discussed above, two

groups [43, 44] have proposed a modification that does not suffer from prob-

lems with divergences already at the classical level. From the discussion in

the previous section, it is clear that the origin of these divergences was the Z

insertion in the definition of the star product. One would like a ⋆ operation
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that doesn’t involve a picture-changing operation. This is possible when the

string field is taken to be in the 0 picture instead of the canonical −1 picture

as before. The fields are still restricted to be of ghost number 1 and to live in

the small Hilbert space of the bosonised ghost system. In order to have a non-

vanishing action, the
∫
• operation should then be accompanied by an insertion

of an operator that lowers the picture by two units. This double-step picture

lowering operator, denoted by Y−2, is again required to be a BRST-invariant

primary field of weight 0. Two possible operators3 satisfying these criteria

were found. The first possibility is to take

Y−2 =
1

3
e−2φ + 1

15
∂ξcGme−3φ. (3.2.8)

Another possible choice is provided4 by

Y−2 = Y(0)Y(∞). (3.2.9)

Integrals of star products reduce to correlators:
∫
•(Ψ1 ⋆ Ψ2 ⋆ . . . ⋆ Ψn) ≡ 〈〈 VΨ1 VΨ2 . . .VΨn 〉〉 =

=
〈
Y−2(0)f

(n)
1 ◦ VΨ1(0) f

(n)
2 ◦ VΨ2(0) . . . f

(n)
n ◦ VΨn(0)

〉
.

and the action reads

S =
∫
•(1

2
Ψ ⋆QΨ + g

3
Ψ ⋆ Ψ ⋆ Ψ)

= 1

2
〈〈 VΨ QBVΨ 〉〉 + g

3
〈〈 VΨ VΨ VΨ 〉〉 . (3.2.10)

The gauge invariance

δΨ = Qε + g Ψ ⋆ ε − g ε ⋆ Ψ (3.2.11)

involves a gauge parameter of ghost and picture number 0. As was the case

for the bosonic string, the gauge parameters form a closed subalgebra of the

3That is to say, up to the addition of a BRST exact part.
4Here we give the expression relevant to the specific conformal frame we are working in:

the midpoint is at z = 0, the string boundary runs along the unit circle and z = ∞ is the point
conjugate to z = 0 with respect to the boundary. The expression in an arbitrary conformal
frame reads Y−2 = Y(z0)Y(z

∗
0 ) where z0 denotes the midpoint and z∗0 its conjugate point with

respect to the boundary.
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full ⋆ algebra. Gauge invariance follows from the properties (3.2.7) of the

correlator. The proof of these properties is analogous to the proof in the

bosonic case following (3.1.30).

In refs. [43, 44], it was verified that the modified action (3.2.10) repro-

duces the correct tree-level on-shell scattering amplitudes without suffering

from the divergences that arose in Witten’s proposal. In [45] however, it was

suggested that the insertion of Y−2 leads to problems in defining an off-shell

propagator for the theory.

Also, one might object to the appearance of picture changing operators

in off-shell string field theory actions on general grounds. It is well-known

that these operators provide a one-to-one a mapping between the BRST co-

homology classes in different pictures, but that their action on general states

is ambiguous [46]. More specifically, adding a BRST exact part to a picture

changing operator has no effect on its action on the BRST cohomology, while

it does affect its action on general states and leads to a different off-shell

string field theory action.

3.2.3 Berkovits’ action

Using the embedding of the N = 1 superstring into a critical N = 2 theory

found in [47], Berkovits proposed a superstring field theory based on a non-

commutative generalisation of the Wess-Zumino-Witten action [48, 49]. This

action describes the NS-sector of the open superstring in a space-time covari-

ant manner. The covariant extension to the R-sector fields is as yet unknown.

In Berkovits’ formalism, an NS-sector string field is represented by an

open string vertex operator Ψ of ghost number 0 and picture number 0. It is

taken to live in the large Hilbert space of the bosonised superghost system

containing the zero mode of the ξ field. In contrast to Witten’s field, Ψ is a

Grassmann even vertex operator.

The proposed action is of the Wess-Zumino-Witten type and can be formu-

lated in terms of Witten’s
∫
• and ⋆ operations:

S[Ψ] = 1

2g2

∫
•
(
(e−ΨQBeΨ)(e−Ψη0e

Ψ)

−
∫ 1

0
dt(e−tΨ∂tetΨ ){(e−tΨQBetΨ ), (e−tΨη0e

tΨ )}
)
, (3.2.12)

where the exponentials are defined by their series expansion and all prod-

ucts are to be interpreted as ⋆ products. Also, {A,B} ≡ A ⋆ B + B ⋆ A
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and e−tΨ∂tetΨ = Ψ but has been written this way to emphasise the similar-

ity with the action of the Wess-Zumino-Witten model [50]. We have denoted

by η0 = 1
2πi

∮
dzη(z) the zero mode of the field η acting on the Hilbert space

of matter and ghost CFT.

Translated into CFT language, the action reads:

S = 1

2g2
〈〈 (e−VΨQBeVΨ )(e−VΨη0e

VΨ )

−
∫ 1

0
dt(e−tVΨ ∂tetVΨ ){(e−tVΨQBetVΨ ), (e−tVΨη0e

tVΨ )} 〉〉 . (3.2.13)

To evaluate the correlators, one has to expand all exponentials in formal

Taylor series carefully preserving the order of the operators. The correlator

〈〈 · · · 〉〉 of an ordered sequence of arbitrary vertex operators V1, . . .Vn is

defined as:

〈〈 V1 . . .Vn 〉〉 =
〈
f
(n)
1 ◦ V1(0) · · · f (n)n ◦ Vn(0)

〉
. (3.2.14)

where, once more, we made use of the conformal transformations (3.1.22).

The action (3.2.12) is invariant under the gauge transformations:

δeΨ = (QBΩ)eΨ + eΨ (η0Ω
′) , (3.2.15)

where the gauge parameters Ω and Ω′ represent arbitrary independent string

fields of ghost and picture number equal to (−1,0) and (−1,1) respectively.

These assignments imply that Ω and Ω′ are Grassmann odd objects. The

proof of gauge invariance relies on the following identities:

{QB, η0} = 0, Q2
B = η2

0 = 0

〈〈QB(...) 〉〉 = 〈〈 η0(...) 〉〉 = 0

〈〈 . . .QB(Ψ1Ψ2) . . . 〉〉 = 〈〈 . . . (QBΨ1)Ψ2 + Ψ1(QBΨ2) . . . 〉〉
〈〈 . . . η0(Ψ1Ψ2) . . . 〉〉 = 〈〈 . . . (η0Ψ1)Ψ2 + Ψ1(η0Ψ2) . . . 〉〉
〈〈 Φ1 . . .Φn−1Ψ 〉〉 = 〈〈 ΨΦ1 . . .Φn−1 〉〉

〈〈 Φ1 . . .Φn−1QBΨ 〉〉 = −〈〈QBΨΦ1 . . .Φn−1 〉〉
〈〈 Φ1 . . .Φn−1η0Ψ 〉〉 = −〈〈 η0ΨΦ1 . . .Φn−1 〉〉 . (3.2.16)

The proof of these properties [51] is again analogous to the proof in the

bosonic case following (3.1.30). One should keep in mind that the field Ψ is
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Grassmann even and that nonvanishing correlators in the large Hilbert space

require the total Grassmann parity to be even as well.

We can now show that the action (3.2.12) is invariant under the gauge

transformations (3.2.15). Denoting G = eΨ , one finds that under an arbitrary

variation δG,

δS = 1

g2
〈〈 G−1δGη0(G

−1QBG) 〉〉 (3.2.17)

which can also be written as

δS = − 1

g2
〈〈 GδG−1QB(Gη0G

−1) 〉〉 . (3.2.18)

To prove invariance under δG = (QBΩ)G, we use (3.2.17) and the fact that

η0(G
−1δG) = 0. To prove the second invariance, δG = (QBΩ)G, we use

(3.2.18) and QB(GδG
−1) = −QB(δGG−1) = 0.

The equation of motion derived from (3.2.13) is:

η0(e
−ΨQBeΨ ) = 0.

In [52], it was checked that the action (3.2.12) reproduces the correct four-

point scattering amplitudes.

3.3 Open problems in present-day string field theory

A first shortcoming of string field theory is its limited success in the descrip-

tion of closed strings. A number of difficulties show up when trying to extend

string field theory to closed strings.

A first difficulty arises when trying to write down a kinetic term of the

form ≪ Ψ |QBΨ > as in the open string case. Such a term vanishes due to

ghost number conservation (the string field has ghost number (1,1) while

QB consists of a term of ghost number (1,0) and a term with ghost number

(0,1)). This can be remedied by imposing the conditions L0 − L̃0 = 0 and

b0− b̃0 = 0 on the string field Ψ as well as the gauge parameter ε. The kinetic

term is then taken to be

S0 = 1

2
≪ Ψ |(c0 − c̃0)QBΨ>
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which is invariant under δΨ = QBε.
Further complications arise when trying to describe interactions. One

would be tempted to propose an action of the cubic type as for open strings.

This would require an associative ⋆ operation, which is not known for closed

strings. Furthermore, in order to construct a theory that reproduces on-shell

amplitudes with the correct moduli space integration, a cubic interaction is

insufficient [20, 53]: one needs to add an infinite number of higher vertices.

The proposed action is nonpolynomial in the string field Ψ , making concrete

calculations, such as the ones we are about to perform in the next chapter,

rather hard (see however [54]).

Another idea regarding closed string field theory, which has been around

for a long time, is that it might be possible to extract closed string field theory

from open string field theory. The idea stems from the fact that open string

theory automatically incorporates processes in which virtual closed strings

are created. Recent developments, which we will relate in the following chap-

ters, have brought this idea a step closer to a concrete realization.

Another rather unsatisfactory feature of the both open and closed string

field theory is the background dependence. The string field theory action de-

scribes the dynamics of small fluctuations around the specific background of

9 + 1-dimensional Minkowski space. On the other hand, we know that string

perturbation theory continues to make sense if we replace the flat background

by some other manifold as long as the matter theory remains a CFT of central

charge 26. In a background-independent formulation of string field theory,

one would expect these backgrounds on which strings can propagate to arise

as classical solutions or vacua around which one can set up a perturbation

theory for small fluctuations. The string field theories we have described

should then be recovered by considering small fluctuations around the spe-

cific background of flat 9+ 1-dimensional Minkowski space.

One could compare the present state of affairs to the following hypotheti-

cal situation: suppose one had somehow guessed the gravitational action for

small perturbations hµν around the Minkowski metric ηµν , but doesn’t know

that the terms of the action can be summed to give the Einstein-Hilbert action

for the metric gµν = ηµν +hµν . One would be perfectly capable of describing

gravitational phenomena around flat space, but it would be very hard to de-

scribe the physics of the gravitational field near a star or a black hole. What

would be lacking in this description is the notion of the fundamental geomet-

ric object, i.e. the metric, and the symmetry principle, i.e. general covariance,
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which governs the theory. The object hµν on which the description is based,

is an element of the tangent space to the space of metrics at the classical

solution ηµν .

Similarly, string fields Ψ should probably be seen as elements of the tan-

gent space to a space of more fundamental objects. In [55], it was sug-

gested that this last space should be taken to be the ‘space of 2-dimensional

field theories’ (although this remains a rather abstract object) and that a

background-independent formulation should have the elements of this space

as fundamental variables. The minima of the background-independent action

should occur at conformal (matter+ghost) theories and the full gauge invari-

ance should reduce to the familiar BRST invariance in the description of small

fluctuations. A concrete proposal for a background-independent approach to

open string field theory was also put forth in [55]. Although some specific

calculations can be performed in this formalism [56]–[58], the range of appli-

cations remains rather limited (see however section 5.8).



Chapter 4

Tachyon condensation in string

theory

One of the most important advances in string theory in recent years has been

the discovery of the extended objects called D-branes. The D-branes of type

II string theory are charged under the RR fields and are BPS states, meaning

that in the presence of such a D-brane a part of the space-time supersym-

metry is preserved. The type II string theories also contain various non-BPS

branes. Generically, these are unstable and can decay into lighter states such

as BPS branes. This instability is signalled by the presence of a tachyon in the

spectrum of the open strings that describe the excitations of the brane. Such

tachyonic instabilities are common in field theory and signal the fact that the

ground state of the system is unstable and, under small fluctuations, it will

decay in a process known as tachyon condensation. The fate of an unstable

D-brane under tachyon condensation is the subject of a conjecture made by

Sen. In this chapter, we will review some background material on tachyon

condensation in string theory and Sen’s conjecture, while in the next chap-

ter we will present evidence for the validity of this conjecture. We begin by

reviewing some important examples of tachyonic instabilities in field theory.

4.1 Tachyons and field theory instabilities

It is common to characterise particles according to their transformation prop-

erties under the symmetry group of Minkowkski space-time, the Poincaré

91
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group. One of the Casimir operators of the Poincaré group is the square of

the momentum operator P2, which in our conventions equals minus the rest-

mass squared. Irreducible representations will be made up out of eigenstates

of this operator with a fixed eigenvalue. Although all known particles fall

into representations with P2 smaller than or equal to zero, one can consider

the possibility of particles with P2 > 0. Such hypothetical particles of imag-

inary rest mass are called tachyons because their velocity exceeds the speed

of light. In fact, since P2 is Lorentz invariant, it would be impossible to ‘slow

down’ a tachyon to a velocity smaller than the speed of light. However, as we

will presently argue, the existence of tachyons in the particle spectrum of a

theory points to a more fundamental problem: the system is unstable against

small fluctuations and the basic premises for setting up quantum mechanical

perturbation theory are violated. Many systems, however, do admit a sensi-

ble perturbation theory around a different, stable state, which can be seen as

the endpoint of a decay process which is termed tachyon condensation. An

overview of tachyonic instabilities in field theory and their applications can

be found, for example, in [59], chapter 1, on which this section is based.

Consider first the example of the so-called φ4 theory in 3+ 1 dimensions,

consisting of a real scalar field φ with Lagrangian density

L = −1

2
∂µφ∂

µφ− m
2

2
φ2 − λ

4
φ4 (4.1.1)

wherem2 ≥ 0. When λ≪ 1 and supposing φ is small, the last term in (4.1.1)

can be neglected and the field equation reduces to the familiar Klein-Gordon

equation (∂µ∂
µ − m2)φ = 0. Any solution can be decomposed as a linear

combination of plane wave solutions:

φ(x) = (2π)−3/2

∫
d3k√
2k0

[a(k)eik·x + a(k)∗e−ik·x], (4.1.2)

where k0 ≡
√

k2 +m2. The general solution represents fluctuations around

φ = 0, the latter configuration being the minimum of the potential energy

density (see figure (4.1(a)))

V(φ) = 1

2
(∇φ)2 + m

2

2
φ2 + λ

4
φ4.

The plane waves in the decomposition (4.1.2) are interpreted as particles of

energy-momentum kµ and, upon quantisation, the coefficients a(k)∗ and
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V(φ)

φ

(a)

V(φ)

φ

(b)

Figure 4.1: The potential energy density V(φ) in φ4 theory: (a) for positive

mass-squared; (b) for negative mass-squared.

a(k) become operators which create or annihilate these particles. The rest

mass of these particles can be read off from the quadratic term in the ac-

tion (4.1.1). Scattering processes can be calculated by treating the interaction

term in (4.1.1) as a perturbation, leading to the familiar Feynman diagram

expansion.

Now consider a theory with a Lagrangian of the form (4.1.1), but with m2

now taken to be a negative number,m2 = −µ2:

L = −1

2
∂µφ∂

µφ+ µ
2

2
φ2 − λ

4
φ4. (4.1.3)

When attempting the same analysis as in the previous paragraph, one soon

runs into trouble. Supposing again that φ is small so that interactions can be

neglected in a first approximation, one finds two types of elementary solution

to the free equation of motion. For k2 > µ2, we find plane-wave solutions

e±ik·x with k0 ≡
√

k2 − µ2. These represent particle-like excitations which are

tachyonic.

For k2 < µ2 on the other hand, we find solutions which grow exponentially

with time:

φ(x) = e±
√
µ2−k2t±ik·x.

These solutions can no longer be seen as particles propagating on the fixed

background φ = 0, rather they represent perturbations leading to a rapid

evolution away from the configuration φ = 0. The time scale for the growth

of these fluctuations is of the order of 1/µ. Hence the configuration φ = 0
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is unstable and small perturbations initiate a decay process. It is also im-

portant to note that, when describing this decay process, φ can no longer be

considered to be small and the
λ
4
φ4 interaction term in (4.1.3) can no longer

be neglected. Looking at the potential energy density, we see that φ = 0 cor-

responds to a local maximum of the potential and that local minima occur at

φ0 = ± µ√
λ

(see figure (4.1(b)). The decay process represents a transition from

φ = 0 to a stable ground state φ = ±φ0. The latter state is (classically) stable

as we can see by considering small fluctuations around φ0. Shifting variables

to φ̃ = φ−φ0, the Lagrangian density becomes:

L = −1

2
∂µφ̃∂

µφ̃− µ2φ̃2 +O(φ̃3).

The fluctuations of the new field φ̃ have positive mass-squared, equal to√
2µ2, and the general solution to the free equation of motion can be ex-

panded into plane waves as before. In terms of the original field φ:

φ(x) = φ0 + (2π)−3/2

∫
d3k√
2k0

[a(k)eik·x + a(k)∗e−ik·x]. (4.1.4)

The plane waves represent particles propagating on the φ = φ0 background

and it is now possible to set up a sensible perturbation theory. Upon quanti-

sation, the expectation value of the field is 〈φ(x)〉 = φ0 and one says that φ

has acquired a vacuum expectation value (VEV). We will refer to the process

in which one or more scalar fields undergo a transition from an unstable to

a stable vacuum where the fields have nonzero vacuum expectation values

as tachyon condensation. In many physical applications, this process also en-

tails symmetry breaking1 and is then also known as spontaneous symmetry

breaking.

We now briefly discuss two examples of tachyon condensation which play

an important role in the Standard Model of particles and interactions. First,

consider the scalar field theory (4.1.3) coupled to a massless fermion ψ with

a so-called Yukawa coupling of strength h:

L = −1

2
∂µφ∂

µφ+ µ
2

2
φ2 − λ

4
φ4 − ψ̄(iγµ∂µ + hφ)ψ.

After tachyon condensation, the fermionic field acquires a massm = h|φ0| =
hµ/

√
λ. This mechanism is responsible for the generation of fermion masses

in the Standard Model.

1In our example, the new vacuum is no longer invariant under the Z2 symmetry φ → −φ
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A second example, the Brout-Englert-Higgs-Kibble model [60], consists of

a complex scalar field χ coupled to a U(1) gauge field Aµ :

L = −1

4
FµνF

µν − (Dµχ)∗Dµχ + µ2|χ|2 − λ|χ|4,

where Fµν ≡ ∂µAν − ∂νAµ and Dµχ ≡ (∂µ − ieAµ)χ. Parametrizing the scalar

field χ as

χ(x) = 1√
2

(
φ(x)+φ0 exp (iζ(x)/φ0)

)
,

we see that the minimum of the scalar potential occurs at φ = 0, φ0 = µ/
√
λ.

Defining Ãµ = Aµ − 1
eφ0
∂µζ and expanding the action to quadratic order in

the fields, we obtain:

L = −1

4
(∂µÃν − ∂νÃµ)2 −

e2φ2
0

2
ÃµÃ

µ − 1

2
∂µφ∂

µφ− µ2φ2 + cubic terms.

We see that, after tachyon condensation, we end up with a real scalar φ with

mass
√

2µ and a massive vector field Ãµ with mass eµ/
√
λ. This last field is

made up out of the original massless vector fieldAµ and the scalar component

ζ. Also in this case, tachyon condensation goes hand in hand with symmetry

breaking, this time of a local U(1) symmetry. This example lies at the basis of

mass generation for the W± and Z vector bosons in the theory of electroweak

interactions.

In the presence of gravity, the process of tachyon condensation leads

to important gravitational effects as well. In cosmological models, tachyon

condensation induces a period in which space undergoes a rapid expansion

known as inflation. This phenomenon may well have occured in the early

stages of of the evolution of the universe [59].

4.2 D-branes in string theory

In the discussion of open string boundary conditions in (2.3.4), we have lim-

ited our attention to Neumann boundary conditions at the endpoints of the

string:

∂Xµ(z) = ∂̄X̃µ(z̄).
Because this choice preserves space-time translation invariance, it was, for

a long time, the only one that was thoroughly studied in the literature, al-

though it was known that other boundary conditions also lead to consistent
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string theories [61]. The importance of Dirichlet boundary conditions in the

description of extended objects in string theory became clear through the

ground-breaking work of Polchinski [62]. Here we will just be able to convey

some very basic notions and refer the reader to the reviews [63, 64, 65] for a

more complete discussion.

Consider the bosonic open string with a Dirichlet boundary condition in

the X25 direction (while keeping Neumann conditions along the other direc-

tions):

X25(z, z̄) = c for z = z̄.
This condition means that the endpoints of the open string are stuck on the

hyperplane X25 = c and breaks translation invariance along this direction.

The mode expansion for X25 becomes:

X25(z, z̄) = c + i
√
α′

2

∑

m≠0

α25m

m
(z−m − z̄−m).

The massless spectrum now consists of the states

V µ = :∂Xµeik·X : µ = 0 . . .24

V 25 = :∂X25eik·X :,

where kµ, µ = 0 . . .24 is a vector satisfying kµkµ = 0. The first state repre-

sents a massless vector field localized on the hyperplane, while the second

state represents a massless scalar field on the hyperplane. The existence of

this last field points toward the interpretation that the hyperplane is not a

completely rigid object, the scalar field representing small fluctuations in the

geometry of the hyperplane itself. Such massless excitations, also called mod-

uli or collective coordinates, arise also in the description of extended objects

in other theories, for example when considering monopoles in Yang-Mills-

Higgs theory [66]. Hyperplanes on which open strings end should hence be

seen as dynamical objects and are called Dirichlet-branes or D-branes. The

example we considered represents an object with 24 spatial dimensions and

is called a D24-brane. The excitations of a Dp brane are described by an

open string theory with Dirichlet boundary conditions along 25 − p direc-

tions. Apart from the open strings confined to the D-brane, we also consider

closed strings propagating in the bulk. The D-brane degrees of freedom cou-

ple to the bulk degrees of freedom, including gravity, through open-closed

string interactions. The tree-level amplitudes between the massless degrees
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of freedom can also be reproduced by a space-time effective action of the

Dirac-Born-Infeld [67] type:

Sp = −Tp
∫
dp+1ξe−φ[−det(Gab + Bab + 2πα′Fab)]

1
2 , (4.2.1)

where the ξa are coordinates on the D-brane worldvolume and the fields Gab
and Bab are the induced metric and antisymmetrc tensor on the brane. The

dilaton coupling e−φ ∼ 1/gc reflects the fact that these interactions arise

from disc amplitudes (see section 2.2.1). This also shows that D-branes are

solitonic objects in the following sense: their energy per unit volume ap-

poaches infinity as gc → 0 and they are invisible in the perturbative spectrum

of the theory.

We can also consider the presence of multiple D-branes. For example, we

can take m parallel D24 branes, labelled by an index i = 1 . . . n and located

at X25 = ci. We now also have to consider open strings running from brane i

to brane j labelled by indices2 ij. The mode expansion for strings of type ij

is given by

X25
ij = (z, z̄) = ci +

i

2π
(cj − ci) ln(z/z̄)+ i

√
α′

2

∑

m≠0

α25m

m
(z−m − z̄−m),

and the mass-shell condition (2.4.4) becomes:

m2 = −pµpµ =
(
cj − ci
2πα′

)2

+ 1

α′
(Ntot − 1).

In the first term, one recognizes the square of the length of the stretched

string times the string tension. When several D-branes approach each other,

the length of the strings stretched between them goes to zero and we get extra

massless fields. For n coinciding D-branes, there are n2 massless vectors

that can be combined into a single U(n) gauge field. Similarly, there are n2

massless scalars that can be combined into a single scalar field in the adjoint

representation of U(n). The system can be described by tensoring the open

string degrees of freedom with matrices in the Lie algebra of U(n). These

‘internal’ matrices are called Chan-Paton factors.

This story generalizes to the superstring case. Consider a type II closed

string theory supplemented with open strings whose endpoints are stuck on

2We are considering oriented open strings, so that ij strings are considered different from
ji strings for i ≠ j.
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a p+1 dimensional hyperplane. Here, one should supplement the Dirichlet

boundary conditions on the bosonic fields with suitable boundary conditions

for the fermions [65].

It is clear that, apart from translational invariance in the directions trans-

verse to the brane, space-time supersymmetry will also be broken due to the

open string boundary conditions. The remarkable feature here is that, for the

even-dimensional branes in type IIA theory as well as for the odd-dimensional

branes in type IIB, a certain amount of supersymmetry remains even when a

D-brane is present. Indeed, in the presence of a D-brane, precisely half of

the space-time supersymmetries are preserved. This identifies the D-branes

in superstring theory as BPS states. Such states generally carry conserved

charges, in this case a Dp brane carries charge under the p+1-form potential

in the RR sector [62]. This is consistent with the restriction on the dimensions

of the BPS-branes: the type IIA theory contains odd RR-forms which couple

to the even-dimensional branes, while the even RR forms of type IIB couple

to odd-dimensional branes. The effective action for the massless fields now

includes a coupling to these RR fields called the Wess-Zumino term:

Sp = −Tp
∫
dp+1ξe−φ[−det(Gab + Bab + 2πα′Fab)]

1
2

+iµp
∫

p+1
exp(B + 2πα′F)∧

∑
q

Cq, (4.2.2)

where, in the exponential, one should interpret all products as wedge prod-

ucts, the Cq denote the RR potentials and the integral picks out the p + 1

form in the expansion of the integrand. The action (4.2.2) is known to receive

further gravitational corrections as well, which we haven’t displayed here. A

more complete discussion can be found in [68].

4.3 Dualities and strings at strong coupling

D-branes have played an important role in the discovery of dualities relating

the various superstring theories. A duality is by definition an equivalence

relation between two seemingly different theories. The two theories can be

mapped into each other by using some dictionary which relates quantities on

both sides. Familiar examples of dualities in physics include electric-magnetic

duality in free Maxwell theory, in which the roles of the electric and magnetic
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fields are interchanged (see e.g. [69]), and, in statistical mechanics, Kramers-

Wannier duality [70] which relates the Ising model on a 2-dimensional lattice

to an Ising model on the dual lattice at the inverse temperature. Another

example of a duality, which relates two seemingly different 2-dimensional

field theories, is the duality between the massive Thirring model and the sine-

Gordon model ([71]).

In section 2.5.6 we saw that there exist five apparently different string

theories in 9 + 1 dimensions: the type IIA and IIB closed string theories, the

type I open-closed string theory and the heterotic string with gauge group

SO(32) or E8×E8. The answers to physical questions in each of these theories

depend on a number of parameters or moduli such as the value of the string

coupling constant g and, if one allows more general backgrounds than the

flat Minkowski space which we have considered so far, the geometry of the

target space M. A generic duality will relate theory A with moduli (g,M) to

theory B with different moduli (g′,M′). We now give some examples.

One of the best understood duality symmetries in string theory is target-

space duality or T-duality for short (for a review, see [72, 73]). As the name

suggests, it relates string theories on different target manifolds. T-duality was

first discovered in the context of toroidal compactifications [74, 75]. Consider

the type IIA theory with coupling g where one of the spatial directions, say

X9, is taken to be a circle of radius R. One then encounters an important new

ingredient: the existence of states corresponding to strings wrapped around

the compact circle. One hence distinguishes these winding modes and the

usual unwrapped states referred to as momentum modes. T-duality relates

this theory to the type IIB theory with a compact direction of radius α′/R
and coupling

√
α′
R g. Under the duality symmetry, winding and momentum get

interchanged. The duality also relates D-branes in the two theories: if we start

with a 2p-brane in type IIA which is wrapped along the compact direction, we

end up with a 2p − 1 brane in type IIB. On the other hand, if we start with

a 2p-brane which is not wrapped on the compact circle, we end up with a

wrapped 2p + 1 brane in the dual theory. The reason why T-duality is so

well-established is that it can be studied in a regime where both sides are

weakly coupled and where perturbation theory is reliable. It can be extended

to strings moving in more general backgrounds as well (see our paper [76]

and references therein).

Another type of duality, which is by now widely believed to be present in

string theory [77], is strong coupling duality or S-duality for short. S-duality

relates a strongly coupled theory to a weakly coupled theory. This makes it
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a very useful kind of duality, since it allows strong coupling calculations in

both theories, but at the same time makes it very hard to prove. A field theory

example of S-duality is electric-magnetic duality proposed by Montonen and

Olive [78]. Here the duality relates a weakly coupled supersymmetric non-

abelian gauge theory to the same theory at strong coupling, but with the role

of electric and magnetic charges interchanged. A similar situation arises in

the type IIB theory: according to S-duality, the type IIB theory at coupling g is

equivalent to type IIB at coupling 1/g, but with the roles of the fundamental

string and the D-string interchanged. The duality also interchanges the NS 5-

brane (the object which couples to the 6-form dual to Bµν ) and the D5-brane.

The D3-brane is self-dual, and S-duality reduces to Montonen-Olive duality

for the fields living on the D3-brane. Another example of S-duality in string

theory is the duality between the type I theory and the heterotic string, both

with gauge group SO(32). Here, the D-string of type I gets interchanged with

the fundamental string on the heterotic side.

Progress has also been made in the identification of the strong coupling

limit of the two remaining string theories, the type IIA theory and the het-

erotic string with gauge group E8 × E8. Both limits are related to an incom-

pletely known theory in 11 dimensions that goes under the name of M-theory.

This theory is conjectured to reduce to the type IIA string when compactified

on a circle of radius R10 = g
√
α′, so that in the limit g → ∞ an extra di-

mension appears. The E8 × E8 heterotic string is conjectured to arise from

compactifying M-theory on a Z2 orbifold of the circle. As far as the descrip-

tion of M-theory itself is concerned, the only thing that is really known is the

effective low-energy dynamics of the massless states in the theory, which is

given by 11-dimensional supergravity. A proposal for a complete quantum-

mechanical description of M-theory has been made in the form of the matrix

model [79]; this model has passed some nontrivial tests such as its ability to

describe gravitational scattering processes. On the other hand, an essential

object in M-theory, the M5-brane, seems to be incompletely described by the

matrix model.

These developments point towards the interpretation that there is a single

theory from which all known string theories arise as limits in the space of

moduli. The term M-theory, which originally stood for the specific eleven-

dimensional limit of the previous paragraph, has now come to denote the full

theory. So far, we only have an understanding of this theory in the special

corners of the moduli space where a description is possible in terms of a

weakly coupled string theory. Away from these special points, the description
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remains unknown.

4.4 Non-BPS states in string theory and Sen’s conjec-

ture

String theory also contains brane-like objects that don’t possess the BPS prop-

erty: a trivial example is provided by the D-branes of the bosonic string. The

type II string theories also contain various non-BPS branes. Generically, these

are unstable and can decay into lighter states such as BPS branes.

Sen’s conjecture, which concerns the properties of the tachyon potential

on unstable non-BPS branes, is closely related to these checks of the S-duality

conjecture. In studying the non-BPS spectra in two S-dual theories, Sen found

agreement provided that the tachyon potential on a non-BPS D-brane has a

specific form. The calculations and results presented in the next chapters

seem to confirm that the tachyon potential indeed has the required form and

can be seen as providing further evidence for S-duality.

To place the calculations of the next chapter in their context, we now give

a brief review of the properties of brane-antibrane systems and non-BPS D-

branes. More details can be found in [80, 81] and references therein.

4.4.1 Brane-antibrane systems

We discussed in section 4.2 the existence of extended objects, called D-branes.

Their defining property is that open strings can end on them. The type IIA

and IIB string theories contain 2p and 2p + 1 branes respectively and, in

their presence, half of the space-time supersymmetry transformations are

preserved. A D-p brane carries charge under the p+1-form gauge field in the

RR sector of the theory.

As can be seen from the effective action (4.2.2), D-branes are oriented ob-

jects. Depending on their orientation, D-branes fall into two classes with op-

posite RR charges, and one speaks of D-branes and anti-D-branes (D̄-branes).

Although the D-brane and D̄-brane separately preserve half of the supersym-

metries, the combined system breaks all of the space-time supersymmetry.

Consider now the situation where a D-brane and a D̄-brane coincide. In this

case there are four different types of open strings as illustrated in figure 4.2.

To label these four sectors, we introduce internal 2×2 matrices or Chan-Paton
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(a)

(b)

(c) (d)

Figure 4.2: The four open string sectors arising in the description of the DD̄

system.

(CP) factors. We assign the following CP factors to the four different sectors:

(a) :

(
0 0

0 1

)
(b) :

(
1 0

0 0

)

(c) :

(
0 0

1 0

)
(d) :

(
0 1

0 0

)
.

In sectors (a) and (b), the GSO projection keeps the states with eiπF = 1

while in the sectors (c) and (d) one should project on states with eiπF = −1

[80]. This means (see table 2.1) that the sectors (c) and (d) contain a tachyon.

These can be combined into a complex scalar field.

4.4.2 Non-BPS D-branes

The non-BPS D-branes of type II string theory can be obtained from the DD̄-

system by an orbifold projection. In the bulk, the theory contains closed

strings. In this sector, one can consider operators FL and FR which count the

space-time fermion number coming from the holomorphic and anti-holomorphic

sectors respectively. Their action on states is very simple: they give 0 in the

NS sector and 1 in the R sector. These operators should not be confused

with the operators counting the world-sheet fermion number which we de-

noted by F and F̃ . The operator eiπFL acts by changing the sign of the states

in the holomorphic R sector and is a symmetry of both type II theories when
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no D-branes are present [89]. In particular, eiπFL changes the sign of the fields

in the RR sector. Since a D-brane carries charge under the RR field it follows

that eiπFL takes a D-brane to a D̄-brane and vice-versa. So eiπFL is a symmetry

of the type II theory in the presence of the coinciding D-brane and D̄-brane

considered earlier, and we can consider the theory obtained by modding out

this symmetry in an ‘orbifold’ construction.

For definiteness, let’s start with a D2p-D̄2p brane pair in type IIA theory

and take the orbifold of this configuration by eiπFL . On the bulk fields, the

result is that type IIA becomes type IIB [89]. In the open string sector, eiπFL

acts by interchanging the D-brane with the D̄ brane, so it acts on a CP-matrix

Λ as

Λ → σ1Λ(σ1)
−1, σ1 =

(
0 1

1 0

)
.

After performing the orbifold projection, we are left with the states with CP

factors I and σ1, while those with CP factors σ3 and iσ2 are projected out.

The resulting object is a non-BPS D2p brane of the type IIB theory. It should be

seen as a single, rather than a composite, object, since the degree of freedom

for separating the branes, residing in the sector with CP factor σ3, is projected

out after orbifolding.

In an analogous manner, we can construct non-BPS (2p + 1)-branes in

type IIA string theory by starting from a brane-antibrane pair in type IIB and

orbifolding by eiπFL . Summarizing, we list some of the properties of non-BPS

D-branes that will be relevant in what follows:

• A non-BPS Dp-brane in type II theory is described by an open string sec-

tor with Dirichlet boundary conditions in 9−p directions and Neumann

boundary conditions along the p + 1 world-volume directions.

• The open strings carry Chan Paton factors I or σ1.

• The GSO projection singles out the states with eiπF = 1 in the sector

with CP factor I and the states with eiπF = −1 in the sector with CP

factor σ1.

• The non-BPS branes are unstable objects. A first indication for this

comes from the fact that the open string spectrum contains a tachyon

in the σ1 sector with massm2 = − 1
2α′ .

In a series of papers [82]-[88], Sen has shown the existence of stable non-

BPS branes as well. These are typically obtained by taking some orbifold
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such that the open string tachyon is projected out. Such states are stable

when they are the lightest states carrying some conserved charge. Stable

non-BPS states are interesting for a number of reasons: first of all, their world-

volume theories are non-supersymmetric and provide string-theoretic models

of non-supersymmetric field theory. Second, non-BPS states have played an

important role in providing checks of S-duality: if the S-duality conjecture is

correct, then also the spectrum of non-BPS states on both sides should match.

4.4.3 Sen’s conjecture

Sen’s conjecture concerns the properties of the potential for the tachyon on

unstable non-BPS branes. It originated from considering a pair of orbifolds

of type IIB theory which are conjectured to be S-dual, where it arose as a

necessary condition for the non-BPS spectrum to match on both sides [83].

It was subsequently argued to hold more generally [84]. We now proceed to

state the conjecture in its general form.

So far, we have encountered three types of branes in which the open string

spectrum contained a tachyonic mode T : the D-branes of the bosonic string

theory and the DD̄ and non-BPS branes in the type II theories. According

to Sen’s conjecture, after tachyon condensation, whereby T acquires a vac-

uum expectation value < T >= T0, the system is indistinguishable from the

closed string vacuum without any D-branes. In particular, this implies that

the energy that was contained in the mass of the unstable brane is precisely

used up in the process of tachyon condensation. This can only be the case

if the energy density V(T) for the tachyon field satisfies the following prop-

erty: the difference V(0) − V(T0) between the value at the local maximum

T = 0 (corresponding to the unstable brane) and the value at the minimum T0

(corresponding to the stable configuration) should be precisely equal to the

tension Tp of the unstable brane.

4.4.4 Tachyon condensation and string field theory

When attempting to verify Sen’s conjecture, we are immediately confronted

with the limitations of string perturbation theory. To describe tachyon con-

densation in field theory, as in the example of φ4 theory we studied in 4.1, we

looked for a scalar field configuration which is constant and which minimizes

the potential. Although this is a simple classical computation, it is also non-

perturbative: by making a perturbation expansion in the coupling constant
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λ, one would only find the unstable vacuum φ = 0 and miss the solutions

φ0 = ± µ√
λ

corresponding to the stable vacua.

This is why string perturbation theory is insufficient to describe tachyon

condensation: it can only describe interactions between on-shell states, while

we are interested in the physics around a constant tachyon which is not an on-

shell state. In order to properly describe tachyon condensation, we need an

off-shell description of string theory, including interactions. This is the realm

of string field theory. In this way, Sen’s conjecture provides an excellent

testing ground for string field theory. As Polchinski observed in 1998 [9],

string field theory had proven unsuccesful because ‘it has not allowed us

to calculate anything we did not know how to calculate already using string

perturbation theory’. The study of the tachyon potential is an ideal setting to

invalidate this point of view.
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Chapter 5

Tachyon condensation in

bosonic string field theory

In this chapter we will discuss the tachyon potential for D-branes in bosonic

string theory. This is the context in which Sen’s conjecture has been most

intensely studied. Although our own work involves the study of the tachyon

potential in supersymmetric theories, we include the bosonic case since it

provides a simple setting to discuss various aspects of the calculation which

can then be generalized to the technically more involved case of the super-

string. Most material in this section is based on [90, 94].

5.1 The tachyon potential on a D25 brane

The open bosonic string field theory discussed in 3.1 describes open strings

moving freely (i.e. with Neumann boundary conditions) in 26 flat dimensions.

Or, in more modern language, it describes the dynamics of a D25 brane in

bosonic string theory.

In this subsection, we will first discuss tachyon condensation on the D25

brane on general grounds. Not only the tachyonic component of the string

field c1|0> will get a vacuum expectation value in this process, but, in order

to satisfy the string field theory equations of motion, various other fields that

couple to the tachyon will be switched on as well. Not all string field compo-

nents will play a role in tachyon condensation however. For example, since,
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108 Chapter 5. Tachyon condensation in bosonic string field theory

according to Sen’s conjecture, the stable ground state is Lorentz invariant, we

expect only fields that transform as scalars under spacetime Lorentz trans-

formations to participate in the process of tachyon condensation. We will

presently argue that the fields that acquire a vacuum expectation value under

tachyon condensation belong to a subspace H1 (which, of course, includes

the tachyonic mode). The properties of this subspace will then be used in the

next section to show that the tachyon potential does not depend on certain

details of the model.

Indeed, if we can decompose the space of string fields of ghost number 1

(denoted byH ) into two subspaces, a subspaceH1 which contains the tachy-

onic state, and a subspaceH2 such that the component fields ofH2 couple at

least quadratically to the component fields of H1 (i.e. there are no couplings

involving just one H2 field and any number of H1 fields), we see that it is

consistent with the equations of motion to put all the H2 components of the

string field equal to zero. In other words, we obtain a consistent truncation

of the theory by restricting the string field to lie in H1.

We will now describe such a decomposition of H into H1 and H2, H1

containing the zero momentum tachyon c1|0>. In looking for the true vac-

uum of the theory, we can then restrict attention to the states in H1.

We include in H1 all the states obtained from the SL(2,C) invariant vac-

uum |0> (with vertex operator 1) by acting with the ghost modes bn, cn and

the Virasoro generators Lmn of the matter theory. In vertex operator language,

these can be obtained as products of derivatives of b(z), c(z) and the mat-

ter energy-momentum tensor Tm(z). Note that all these states are Lorentz

scalars.

The subspace H2 then contains all the states in H not included in H1.

More specifically, it consists of all states with non-zero momentum k, and the

states of momentum 0 obtained by acting with the modes bn, cn and Lmn on

primary fields of weight > 01.

We still have to show that our decomposition satisfies the requirement

formulated earlier. Consider first the kinetic term in the action. We need to

prove that there is no coupling between a H1 field and a H2 field. First of all,

the BRST chargeQB is constructed out of the ghost oscillators and the matter

Virasoro generators, hence it does not mix the states ofH1 andH2. Since the

BPZ inner product between descendants of different primaries vanishes ([9],

1Although we have worked with the modes Lmn instead of the α
µ
n, it can be shown ([9],

chapter 15) that all states can indeed be obtained this way.
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chapter 15), it follows that there is no coupling betweenH1 andH2 from the

kinetic term.

Consider now the cubic term in the action. We have to show that the

coupling between two H1 fields and one H2 field vanishes. First of all, we

note that conformal transformations take a state in H1 (H2) to a state in

H1 (H2). It then suffices to show that the H1 fields form a subalgebra of the

⋆ algebra. From the construction on p. 72 we see that this is indeed the case,

since the OPE between two H1 fields contains only states in H1.

The calculation of the tachyon potential now proceeds by substituting a

general element T (which we will call ‘tachyon field’) of H1 into the string

field theory action2:

S[T ] = − 1

g2

(
1

2
〈〈 VΨTQBVΨT 〉〉 +

1

3
〈〈 VΨT VΨT VΨT 〉〉

)
.

The result will be of the form

S[T ] = − 1

g2

∫
d26x h(T )

where h(T ) is space-time independent due to the fact that T is momentum

independent. The combination
1
g2h(T ) can hence, up to an additive constant,

be identified with the total potential energy of the configuration T . Since

h(T = 0) = 0, this additive constant should be equal to the brane tension3

T25. The coupling constant g is related to the tension of the 25 brane as [90]

T25 = 1

2π2g2
.

Defining the tachyon potential as f (T ) = 2π2h(T ), we can write the total

energy density as

V25(T ) = T25(1+ f (T )). (5.1.1)

The objective is now to find the ground state T0 for which f (T ) is minimal.

If Sen’s conjecture is correct, at the minimum one should have

f (T0) = −1. (5.1.2)

2In comparing with (3.1.26), the reader will note that we have rescaled the string field Ψ →
Ψ/g and introduced an overall minus sign. The latter step is performed in order for the kinetic
term in the action to have the correct sign for our choice of signature (compare (3.1.33) to
(4.1.3)).

3Of course, such an constant energy density has no physical meaning as long as one does
not include gravity. We have used extra input from the coupling of the brane to gravity (4.2.1):
V(T = 0) = T25
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We will discuss an approximation scheme to check the conjecture (5.1.2) in

section 5.3.

5.2 Universality

The remarks of the previous paragraph allow us to argue that the result of

the calculation for the D25 brane is universal in the sense that the form of

the tachyon potential does not depend on certain details of the theory such

as the dimension of the brane or whether the calculation is performed in a

flat background [90].

From the definition of the subspace H1 and the form of the string theory

action, it is clear that, to obtain the function f (T ), one only needs to cal-

culate correlation functions involving the ghost fields and the matter energy-

momentum tensor. This implies that f (T ) is a universal function in the sense

that it is insensitive to the details of the matter theory but depends only on

its conformal properties; these are in turn determined by the central charge

which is 26. So, if we were to replace the Xµ theory with some other CFT of

central charge 26, the form of the potential f (T ) will remain unchanged.

For instance, if we want to describe a lower-dimensional D-brane, say of

spatial dimension p, we should use a matter theory in which the Xµ obey

Dirichlet boundary conditions in the 25 − p transversal directions and Neu-

mann boundary conditions along the p+1 world-volume directions. The total

energy density will now take the form

Vp(T ) = Tp(1+ f (T ))
where Tp is the D-brane tension and f (T ) is the same function as in the

D25 brane case. The function f (T ) is also insensitive to the details of the

geometry of the background in which the string propagates as long as the

string theory remains critical (i.e. the matter central charge is 26). So the

form of the tachyon potential remains the same if we replace the 26 dimen-

sional Minkowski background by some other manifold. The matter theory

describing the dynamics of a D-brane is called a boundary conformal field

theory (BCFT); the previous properties are summarised in the statement that

the tachyon potential has a universal form, independent of the BCFT.

These properties imply that if Sen’s conjecture (5.1.2) is found to hold

for the D25 brane in Minkowski space, it will automatically hold for lower

dimensional D-branes and in general backgrounds.
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5.3 The level truncation method

We will now describe method for the calculation of f (T ) by successive ap-

proximations that was first proposed in [91]. It consists of truncating the

tachyon field T to include only components up to a certain level n. Here it

is customary to redefine the level of a state to be its eigenvalue under L0 + 1

so that the purely tachyonic state (which has L0 = −1) is of level zero. One

can also truncate the function f (T ) to include only terms up to certain level

m, where the level of a term in f (T ) is defined as the sum of the levels of

the fields appearing in this term. The resulting approximation of the function

f (T ) is called the level (n,m) approximation. Since the kinetic term in the

action is already of level 2n, it does not make much sense to take m smaller

than 2n. In the following, we will mostly consider level (n,2n) approxima-

tions to f (T ).
One can then find the configuration T0 which extremises the truncated

potential f (T ) and compute the approximate value f (T0) at the minimum.

In practice, this value turns out to approach a limiting value quite rapidly as

one includes more levels, although there doesn’t seem to exist a convincing a

priori argument that this should be the case. This is one of the issues we will

address in chapter 6, where we will study a ‘toy model’, a truncated version

of string field theory, where exact results can be derived and convergence of

the level truncation method can be established.

5.4 Gauge-fixing and twist invariance

Before we give an explicit sample calculation of the tachyon potential in the

level truncation method, we mention some facts which will allow us to further

simplify the calculation.

First of all, in section 3.1.2 we saw that the string field theory action has

a gauge invariance (3.1.12). This implies that the tachyon potential will have

many flat directions and we can limit the number of fields we have to take

into account by fixing the gauge. In our calculations, we will impose the

Feynman-Siegel gauge already encountered in 3.1.7:

b0|T >= 0. (5.4.1)

This gauge choice can be justified in perturbation theory (i.e. as long as the
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coupling g is small enough) [94].

First of all, the gauge (5.4.1) can (almost) always be reached by using a

linearised gauge transformation. Suppose we start from a string field |Tn> at

level n not satisfying (5.4.1). Consider the gauge-equivalent state

|T̃n>= |Tn> − 1

n− 1
QB(b0|Tn>).

This state does satisfy the condition (5.4.1) due to the commutation relation

{QB, b0} = L0. Clearly, the argument fails for n = 1, so we can not impose

the gauge condition (5.4.1) on these states.

Secondly, the Feynman-Siegel gauge fixes the gauge completely, i.e. there

is no residual gauge freedom left after imposing (5.4.1). Suppose that both

b0|Tn>= 0 and b0(|Tn> +QB|Λn>) = 0 with |Tn> and |Λn> states at level

n, n ≠ 1. Then QB|Λn> vanishes, since:

(n− 1)QB|Λn>= {QB, b0}QB|Λn>= 0.

The string field theory action, when restricted to string fields T in the sub-

space H1, has a global Z2 symmetry, called twist symmetry, which will allow

us to restrict our attention to states at even levels. Consider the conformal

transformation M(z) = −z. If VT is the vertex operator corresponding to

the string field T ∈ H1, we will show that the string field theory action is

invariant under the transformation VT → −(M ◦ VT ). This follows from the

following properties of the conformal transformations (3.1.22):

f
(n)
1 ◦M ◦ O = Ĩ ◦ R ◦ f (n)1 ◦ O
f
(n)
i ◦M ◦ O = Ĩ ◦ f (n)n−i+2 ◦ O for 2 ≤ i ≤ n, (5.4.2)

where R denotes a rotation over 2π and Ĩ is an SL(2,C) transformation

Ĩ(z) = 1/z.

These relations can be verified by taking O to be a primary field. The transfor-

mation R has no effect on the states inH1 since these have integer conformal

weight. Using the fact that CFT correlators are invariant under Ĩ, we see that

under VT → −(M ◦ VT ) the action transforms as

g2S[−(M ◦ T )] = 1

2
〈f (2)1 ◦VT (0)f (2)2 ◦QBVT (0)〉
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−1

3
〈f (3)1 ◦ VT (0)f (3)3 ◦VT (0)f (3)2 ◦ VT (0)

= 1

2
〈f (2)1 ◦ VT (0)f (2)1 ◦QBVT (0)〉

+1

3
〈f (3)2 ◦ VT (0)f (3)1 ◦VT (0)f (3)3 ◦ VT (0)

= g2S[T ],
where, in the last line, we have used that VT is Grassmann odd.

The twist symmetry transformation VT → −(M ◦ VT ) works on level n

states as (−1)n. Under the action of the twist symmetry, the space H1 splits

up in the twist even states (containing the pure tachyon) and the twist odd

states. Twist invariance of the action implies that there are no linear cou-

plings between twist even and twist odd states, hence it is a consistent trun-

cation to take T to be a twist even field. So we can consistently put to zero

the states at odd levels.

5.5 Level 4 string field

Combining the simplifications discussed in the previous section, one finds

the states up to level four contributing to the tachyon potential listed in table

5.1. The level four string field T is given by

T = tT +uU + vV + aA+ bB + cC + dD + eE + fF. (5.5.1)

5.6 Level (4,8) tachyon potential

In order to evaluate the tachyon potential, one first has to compute the con-

formal transformations of the vertex operators in table 5.1. As discussed in

section 2.3.2, a primary field O transforms as:

f ◦ O(z) = (f ′(z))hO(f (z)), (5.6.1)

and derivatives of primary fields transform according to:

f ◦ ∂nO(z) = ∂n

∂zn

(
(f ′(z))hO(f (z))

)
. (5.6.2)
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level state vertex operator

0 c1|0> T = c
2 c−1|0> U = 1

2∂
2c

Lm−2c1|0> V = Tmc
4 Lm−4c1|0> A = 1

2∂
2Tmc

Lm−2L
m
−2c1|0> B = TmTmc

c−3|0> C = 1
24∂

4c

b−3c−1c1|0> D = 1
2∂b∂

2cc

b−2c−2c1|0> E = 1
6
b∂3cc

Lm−2c−1|0> F = 1
2T

m∂2c

Table 5.1: States up to level four contributing to the tachyon potential. The

states at odd levels are left out due to twist invariance. States containing the

c0 mode are absent due to the Feynman-Siegel gauge condition (5.4.1). Recall

that Tm denotes the energy-momentum tensor of the matter fields.

The transformation of a normal ordered product of primary fields can give

rise to anomalous terms as was the case for the energy-momentum tensor

(2.3.18) and the ghost number current (2.3.38).

One then has to calculate the two- and three-point correlators in the ex-

pression for the string field theory action (3.1.26). The level (2,6) and (4,12)

approximations to the tachyon potential were calculated before the advent

of D-branes [91, 92]. These results were subsequently reeinterpreted in the

context of Sen’s conjecture [94]. For example, in the level (0,0) and (2,4)

approximations one finds:

f(0,0)(T ) = 2π2
(
− 1

2
t2 + 33

√
3

26
t3
)

f(2,4)(T ) = f(0,0)(T )+ 2π2
(
− 1

2
u2 + 1

2
v2 + 11 · 3

√
3

26
t2u

−5 · 3
√

39

26
t2 v + 19

26
√

3
t u2 + 7 · 83

26 · 3
√

3
t v2 − 11 · 5

√
13

25 · 3
√

3
t uv

)
.

The coefficients of the level (4,8) contribution to the tachyon potential are

also listed in [94].

In determining the extrema of the the potential in these approximations,

one finds, apart from the trivial solution with all coefficients equal to zero

(corresponding to the unstable configuration), another solution in which the



5.6. Level (4,8) tachyon potential 115

coefficients are nonzero. This is our candidate for the stable vacuum. One

finds that the values of the coefficients (denoted by a subscript 0), converge

quite rapidly as more levels are included , and that the value of the potential

at the extremum also converges rapidly to the expected answer (see table 5.2).

In the (0,0) approximation, the value of the potential at the extremum con-

level t0 u0 v0 f (T0)

(0,0) 0.456 − − −0.684

(2,4) 0.542 0.173 0.187 −0.949

(4,8) 0.548 0.204 0.205 −0.986

Table 5.2: Values of some coefficients at the extremum of the tachyon poten-

tial in the level truncation method.

tributes already 68% of the value f (T0) = −1 expected from Sen’s conjecture.

At level (2,4) and (4,8) one obtains respectively 95% and 99% of the expected

answer.

We should mention at this point that, in contrast to the field theory ex-

amples discussed in section 4.1, the extremum found here is not a local min-

imum of the potential including all the fields t,u, v, . . ., but a saddle point.

This does not necessarily imply physical instability of the new vacuum; to

decide on this point one should analyse the spectrum of physical fluctuations

around the new vacuum. Evidence for stability was provided in [93] using the

level truncation method. Also, if Sen’s conjecture holds in its most general

form, there are no physical open string fluctuations around the new vacuum

and it follows that this state is perturbatively stable. We will come back to

the implications of Sen’s conjecture for the physics around the new vacuum

in section 5.7.

The field T however is a physical tachyon and we do require that its fluctu-

ations around the new vacuum have positive mass-squared. For this reason,

it is important to consider the effective potential f (t) for the purely tachy-

onic mode by eliminating the other modes in terms of t through their field

equations. The result in the various approximations is shown in figure 5.1.

We see that the new vacuum corresponds to a local minimum of f (t) so that

the t-fluctuations around the new vacuum have positive mass-squared. At

level (2,4), the potential diverges at t ≈ −0.325. In the level (4,8) approx-

imation, the fields we integrate out have quadratic field equations, so the

tachyon potential has different branches. The branch which connects the un-
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-0.4 -0.2 0.2 0.4 0.6 0.8 1
t

-2

-1.5

-1

-0.5

0.5

1

1.5

2

f

Figure 5.1: The effective tachyon potential f (t) in the (0,0) (dotted line),

(2,4) (dashed line) and (4,8) (solid line) approximations.
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stable and and stable vacua (shown in figure 5.1) is no longer divergent but

ends at t ≈ −0.2, at which point another branch takes over.

How should we interpret these different branches? One should note that

we have been rather cavalier in our treatment of the gauge-fixing. A more

careful treatment leads to an extra constraint which remains to be imposed.

This can be seen as follows: an arbitrary string field Ψ can be written as a

sum of two pieces, a part Ψ1 that involves the zero mode b0 (Ψ1 = b0Φ for

some Φ) and a part Ψ2 that doesn’t involve b0. Fixing the Siegel gauge (5.4.1)

is equivalent to putting the Ψ2 part to zero. What we have found so far is

an approximate solution to the field equation for Ψ1. However, from varying

the action with respect to Ψ2, we obtain a second equation
δS
δΨ2 |Ψ2=0

= 0 which

should be imposed as a constraint4 if we want our solution to satisfy all the

original field equations. In [99], it was checked that this constraint is satisfied

for the unstable configuration and the stable vacuum, but not for the extrema

of the other branches of the effective tachyon potential. Hence these extrema

are unphysical.

The calculations described in the previous section have been pushed to

even greater accuracy by including higher level fields. The authors of [100]

have calculated the (10,20) approximation to the tachyon potential, obtain-

ing 99.912% of the conjectured exact value. The numerical evidence obtained

in that paper also shows that the level-truncated value of the potential at the

minimum converges to the exact value in an exponential manner: the differ-

ence between the conjectured exact minimum value and the value at level k

was found to be proportional to (1/3)k. Also, the point where the branch

that connects the stable and unstable configurations ends was found to con-

verge towards t ≈ −0.125. In chapter 6, we will consider a truncated version

of string field theory where an exact analysis is possible and where similar

properties can be proven to hold. The calculations in [100] were performed

using the method of Neumann coefficients which is more suited for auto-

mated computation. In particular, with this method, the process of finding all

states at a given level and the calculation of the conformal transformations

becomes a fully automated process. Unfortunately, as it stands, its extension

to the case of superstrings [101], loses its effectiveness due to technical dif-

ficulties in the treatment of the superghosts. This is why we will stick with

CFT methods in this thesis.

4This constraint can be restated as the requirement that the solution is BRST invariant,
where the term ‘BRST invariant’ refers here to the BRST transformation coming from fixing the
string field theory gauge invariance (3.1.12).
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In conclusion, string field theory calculations provide strong evidence for

the validity of Sen’s conjecture. The level truncation method turns out to give

an approximation scheme that, in practice, converges rapidly to the expected

answer.

5.7 Physics around the stable vacuum

So far, we have focused on one particular aspect of Sen’s conjecture, namely

the energy difference between the unstable and the stable vacuum. In its

more general form, the conjecture states that after tachyon condensation,

the system is indistinguishable from the closed string vacuum. This would

mean that physics around the stable vacuum is radically different from the

physics around the unstable vacuum and some interesting new phenomena,

are expected to arise. In particular, the conjecture implies that, after tachyon

condensation, 26-dimensional Poincaré invariance is restored and that open

string excitations have disappeared from the spectrum.

Let us first describe how these phenomena are expected to show up in

the string field theory description of the system [102]. Suppose one would

know the exact solution Ψ0 to the string field theory equations of motion

that corresponds to the stable vacuum. String field theory around the stable

vacuum is then described by performing a shift Ψ → Ψ0+Ψ in the cubic action

(3.1.11):

S[Ψ0 + Ψ] = S[Ψ0]− 1

g2

∫
•(1

2
Ψ ⋆QΨ + 1

3
Ψ ⋆ Ψ ⋆ Ψ) (5.7.1)

where we have defined a new operation Q

QΨ = QBΨ + Ψ0 ⋆ Ψ + Ψ ⋆ Ψ0.

Apart from the inconsequential constant term S[Ψ0] (which is equal to the

mass of the unstable brane), this is again a cubic action of the Chern-Simons

form with QB replaced by Q. Extending the action of Q to string fields Φ of

arbitrary ghost number by defining

QΦ = QBΦ + Ψ0 ⋆ Φ − (−)ΦΦ ⋆ Ψ0

and using the fact that Ψ0 satisfies

QBΨ0 + Ψ0 ⋆ Ψ0 = 0,
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one can easily show that Q satisfies the properties (3.1.27- 3.1.30). This im-

plies that the action (5.7.1) is invariant under the gauge transformations

δΨ = Qε + Ψ ⋆ ε − ε ⋆ Ψ .

For small fluctuations around the stable vacuum, we can neglect the inter-

action term and the field equation becomes QΨ = 0, while gauge transfor-

mations linearise to δΨ = Qε. Hence the perturbative spectrum around the

stable vacuum is given by the cohomology of the operator Q. If Sen’s con-

jecture is correct and there are no open string excitations around the stable

vacuum, we expect the operator Q to have vanishing cohomology [102, 103].

It would be a very important check of the conjecture if this turned out to be

the case. Unfortunately, despite many efforts, the exact solution Φ0 remains

elusive. Although in [104] a recursive procedure is outlined from which this

solution could be obtained, an analytic expression for Ψ0 remains unknown.

In the level truncation approximation, a study of the perturbative spectrum

around the stable vacuum has been performed in [105], supporting the ex-

pectation that Q has vanishing cohomology.

An important question is whether the theory described by (5.7.1) remains

trivial when the interactions are included. It has been suggested [106] that

the full interacting theory might be able to describe closed strings, giving a

concrete realization of the old idea of ‘closed strings from open strings’ that

we encountered in section 3.3. The intuitive picture is as follows. Suppose

we start with a configuration consisting of a non-BPS D-brane and a funda-

mental string with both ends on the brane. The endpoints of the string act as

oppositely charged sources for the electric field on the brane, so there will be

electric flux lines running from one endpoint to the other (see figure 5.2(a).

After tachyon condensation, the unstable brane has disappeared, but charge

conservation dictates that the fundamental string and the flux lines cannot

just vanish. The resulting configuration looks like a closed string where part

of the closed loop is made up out of a piece of flux tube (see figure 5.2(b),

and indeed, it has been argued that the energy density of the flux tube is the

same as the tension of the string [107]. The argument described here remains

highly speculative, but, if true, could provide a new approach to the elusive

off-shell description of closed strings.
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(a) (b)

Figure 5.2: (a) An open string with endpoints on a non-BPS D-brane before

tachyon condensation. (b) The configuration after tachyon condensation:

open string and flux tube together form a closed string.



5.8. Omissions and further developments 121

5.8 Omissions and further developments

In our discussion of tachyon condensation, we have limited our attention to

those aspects that are necessary as background for the calculations described

in the next chapter. In doing this, we have left out important related develop-

ments, on some of which we will now briefly comment. For a more complete

review of the literature on this subject, see [108].

It is believed that a bosonic D-brane with a space-dependent tachyon pro-

file in the form of a localised ‘lump’ of energy describes a D-brane of lower di-

mension [109]. The existence of lump solutions describing lower-dimensional

D-branes has been shown in the level truncation method [110]. Their tensions

have been found to agree with the known tensions of the lower-dimensional

branes. Such descent relations between D-branes are expected to be present

in superstring theory as well. There, a non-BPS Dp-brane in the presence of a

tachyon profile in the form of a ‘kink’ interpolating between the two minima

of the potential describes a stable BPS D(p − 1) brane. Existence of kink so-

lutions with the expected behaviour in superstring field theory has recently

been confirmed in [111]. These applications have also found a geometric in-

terpretation in terms of K-theory [112].

The tachyon potential has also been studied in the presence of a B-field

background. In the presence of a large, constant B-field, the tachyon potential

has been found to simplify considerably, making it possible to obtain exact

results [113].

In section 3.3, we have mentioned another approach to string field theory,

called boundary string field theory (BSFT), which is independent of the back-

ground. In this approach, it is only the purely tachyonic mode that acquires

a vacuum expectation value. This is fortunate, because in this approach it

would be very difficult to describe a condensate of non-tachyonic modes. The

BSFT approach is assumed to be related to the conventional string field theory

through a field redefinition. BSFT has been used to confirm that the energy

difference between the unstable and stable vacua is in exact agreement with

Sen’s conjecture [114]. However, it is not known at present how to give a full

description of the physics around the stable vacuum in this approach.
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Chapter 6

Toy model for tachyon

condensation

In this chapter, we will discuss a toy model for tachyon condensation in

bosonic string field theory. The full string field theory problem, which we

discussed in chapter 5, consisted of extremising a complicated functional on

the Fock space built up from an infinite number of matter and ghost oscil-

lators. As a first simplification, one can consider the variational problem in

the restricted Hilbert space of states generated by a single matter oscillator.

This problem is still rather nontrivial because the restricted Hilbert space still

contains an infinite number of states. The model we will consider here is pre-

cisely of this form and its behaviour closely resembles the one found in the

full theory with level approximation methods. The main simplification lies in

the limited number of degrees of freedom and the fact that we don’t have to

deal with the technicalities of the ghost system. Other toy models for tachyon

condensation were considered in [95].

The motivation for considering such simplified models is twofold. First of

all, the level approximation method to the full string theory problem remains

largely ‘experimental’: there doesn’t seem to be a convincing a priori reason

why the approximation converges to the exact answer, nor do we have any

information about the rate of convergence except the ‘experimental’ informa-

tion we have from considering the first few levels. Our toy model will allow

for the derivation of exact results on the convergence of the level truncation

method albeit in a not fully realistic context.

123
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The second reason for considering toy models is perhaps more fundamen-

tal: for various reasons discussed in section 5.7, it would be of considerable

interest to obtain the exact solution for the stable vacuum in the full the-

ory. However, despite many efforts, this solution is lacking at the present

time. The model we will consider is in some sense the ‘minimal’ problem one

should be able to solve if one hopes to find an analytic solution to the full

problem.

6.1 The model

In the matter sector of bosonic string theory, we have encountered an infinite

number of oscillator modes α
µ
n. Suppose we pick out one of these oscillators,

which we call a, and its Hermitean conjugate a†, and normalise them so that

the commutator has the standard form

[a,a†] = 1.

The zero momentum tachyon, which we will denote here by |0 >, is annihi-

lated by a:

a|0>= 0.

We will consider the restricted Hilbert space of states |ψ> obtained by acting

with a† on the vacuum |0>. A state in this space can be expanded as

|ψ>=
∞∑

n=0

ψn(a
†)n|0> . (6.1.1)

When restricted to this subspace, the tachyon potential takes the form [28]-

[34]:

V(ψ) = 1

2
<ψ|(L0 − 1)|ψ> +1

3
<V3|ψ>123 .

where L0 = a†a. The first term comes from the kinetic term in the string field

theory action, the −1 representing the normal ordering constant (or zero-

point energy) responsible for the negative mass-squared of the tachyon state

|0 >. In the second term, coming from the interaction term in string field

theory, we have introduced the following notation. We consider three copies

of the harmonic oscillator Hilbert space, obtained by acting with oscillator
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modes a
†
i , i = 1 . . .3 on vacuum states |0>i. The state |ψ>123 stands for the

following element in the tensor product space of these three copies:

|ψ>123=



∞∑

m=0

ψm(a
†
1)
m|0>1


⊗




∞∑

n=0

ψn(a
†
2)
n|0>2


⊗




∞∑

p=0

ψp(a
†
3)
p|0>3


 .

(6.1.2)

The three-point vertex <V3| is then defined by

<V3| = 123 <0| exp




3∑

i,j=1

Nijaiaj


 .

Where N is a 3× 3 matrix. The cyclicity property (3.1.30) translates into

<V3|ψ> |η> |ξ>=<V3|ξ> |ψ> |η>=<V3|η> |ξ> |ψ>,

which restricts the matrix N to be of the form

N =




2λ µ µ
µ 2λ µ

µ µ 2λ


 .

If one takes a to represent one of the lowest oscillator modes of the bosonic

string, the appropriate matrix elements λ and µ are tabulated in [96].

From the three-point vertex, we can derive an expression for the ⋆ product

in our restricted Hilbert space. By writing the three-point vertex as

<V3|ψ> |η> |ξ>=<ψ|(|η> ⋆|ξ>)

for general states |ψ>, |η>, |ξ> we obtain a formula for the ⋆ product:

|η> ⋆|ξ> = 23 <0| exp


1

2

3∑

i,j=2

Nijaiaj +
3∑

i=2

N1ia
†
1ai +

1

2
N11(a

†
1)

2




|0>1 |η>2 |ξ>3 . (6.1.3)

6.2 Equation for the condensate

We will look for the extrema of the potential (6.1). These occur at the solutions

of

(a†a− 1)|ψ> +|ψ> ⋆|ψ>= 0. (6.2.1)
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We will now write these equations in terms of the components ψn in the

expansion (6.1.1). Let us first take a look at the potential (6.1) in components:

V(ψ) = 1

2

∑
n

n!(n− 1)ψ2
n +

1

3

∑
m,n,p

m!n!p! Gmnpψmψnψp (6.2.2)

where the coefficients Gmnp are generated by the function:

G(z1, z2, z3) = exp(
1

2

3∑

i,j=1

ziNijzj)

≡
∑
mnp

Gmnp(z1)
m(z2)

n(z3)
p.

Due to the form of the matrix N , the Gmnp are completely symmetric and are

zero when the sum (m+n+p) is odd. This last property guarantees that the

potential possesses a Z2 twist symmetry just as in the full string field theory.

This symmetry acts on the components as ψn → (−1)nψn. As in the full

string field theory, the components that are odd under the twist symmetry

can be consistently put to zero:

ψ2n+1 = 0.

The equation 6.2.1 for the even components becomes

(2m − 1)ψ2m +
∞∑

n,p=0

(2n)!(2p)!G2m,2n,2pψ2nψ2p = 0. (6.2.3)

The trivial solution, ψ2m = 0, has V(ψ) = 0 and is the one that will corre-

spond to the unstable state. The solution we are looking for will have lower

energy and will correspond to a local minimum of the potential.

6.3 Exact solution for µ = 0

We were not able to solve the equation (6.2.3) for general values of the param-

eters λ, µ, although we did manage to obtain an exact solution for the special

case µ = 0. It is possible to show that, in this special case, the ⋆ product

defined by (6.1.3) is associative, a property which is also satisfied by the star
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product in the full string field theory. In this way, we hope that what we learn

from considering this special case will still be relevant to the full problem1.

We now construct the exact solution in the case µ = 0. The coefficients

G2m,2n,2p are particularly simple:

G2m,2n,2p = λ
m+n+p

m!n!p!
.

The equation (6.2.3) reduces to

ψ2m = λm

(1− 2m)m!
g(λ)2 (6.3.1)

where we have defined a function g(λ) by

g(λ) =
∞∑

n=0

(2n)!λn

n!
ψ2n(λ).

Multiplying equation (6.3.1) by (2m)!λm/m! and summing over m we obtain

g(λ):

g(λ) =
(∑
n

λ2n(2n)!

(n!)2(1− 2n)

)−1

= 1√
1− 4λ2

Hence our candidate for the stable vacuum |vac> is

|vac>= 1

1− 4λ2

∞∑

n=0

λn

n!(1− 2n)
(a†)2n|0>

The coefficients ψ2n can be derived from a generating function2 F(x):

F(x) = 1

1− 4λ2

(
expλx2 + i

√
πλx Erf(i

√
λx
)

≡
∑
n

ψ2nx
2n

1Another case which might prove relevant to the full string theory problem is λ = −1/6, µ =
2/3. In this case as well, the star product defined by (6.1.3) is associative and, moreover, the
matrix N satisfies N2 = 1, a property which is also obeyed by its counterpart in the full string
field theory. In this case, we have found that the equation for the condensate (6.2.1) reduces
to an ordinary differential equation when we represent the state |ψ> by its momentum-space
wavefunction ψ(p):

−ψ′′ + (p2 − 3)ψ+π 1
4

√
6ψ2 = 0

We have, however, not been able to find the solution to this nonlinear equation using standard
methods [98].

2In fact, the problem can also be recast into a differential equation for the generating func-
tion F .
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The value of the potential (6.2.2) at the stable vacuum can be expressed en-

tirely in terms of the function g(λ):

V(vac) = −1

6
g(λ)3 = −1

6
(1− 4λ2)−3/2,

which is indeed smaller than the value at the unstable vacuum V(0) = 0. It

is clear that the stable vacuum only exists for |λ| < 1
2 since the value of the

potential becomes imaginary outside this range. Also, for |λ| > 1
2 , the state

|vac> is no longer normalisable.

We can also determine the exact effective tachyon potential V(t) by solving

for the ψ2n, n > 0 in terms of t ≡ ψ0. The equation for these components

becomes:

ψ2m(λ, t) = λm

(1− 2m)m!
(t + h(λ, t))2 for m > 0 (6.3.2)

where we have defined

h(λ, t) =
∞∑

n=1

(2n)!λn

n!
ψ2n(λ, t).

Multiplying equation (6.3.2) by (2m)!λm/m! and summing over m we get a

quadratic equation for h(λ, t):

h(λ, t) = (
√

1− 4λ2 − 1)(t + h(λ, t))2.

The two solutions h±

h± =
1

2(1−
√

1− 4λ2)

(
−2t(1−

√
1− 4λ2)− 1±

√
4t(1−

√
1− 4λ2)+ 1

)

will give rise to two branches of the effective potential. When we also impose

the equation for t, we see that the unstable vacuum t = 0 and the stable

vacuum t = 1
1−4λ2 lie on the same branch (i.e. the one determined by h+) just

as in the full theory (see chapter 5 p. 117). Substituting h± in (6.3.2) to obtain

the coefficients ψ2n±(λ, t) and substituting those in (6.2.2) we find the exact

form of the two branches of the effective potential V±(t):

V± = −1

2
t2 + h2±

2(1−
√

1− 4λ2)
+ 1

3
(t + h±)3.
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Figure 6.1: The two branches of the toy model tachyon potential in rescaled

variables at λ = 0.4 (full line), as compared to the string field theory result in

the level (4,8) approximation (dashed line).

As was the case in bosonic string field theory, the branch V+(t), which links

the unstable and the stable vacuum, terminates at a finite negative value of t,

given in this case by t = − 1

4(1−
√

1−4λ2)
. At this point, the two branches meet. It

is also the only point where they intersect, since V− > V+ for all other values

of t. It is interesting to see just how close this simple toy model comes to

the real thing. Introducing a rescaled potential f (t) = 6(1 − 4λ2)3/2V(t) so

that the value at the minimum is f = −1 and a rescaled variable t in order for

the branches of the potential to meet at t = −0.125 as conjectured to be the

case in the full string field theory problem [100], we find that we should take

λ ≈ 0.399 in order for the minimum to occur at the value t ≈ 0.546 as in the

full theory. The behaviour of the effective potential is in good agreement with

the one found in the full string field theory with the level truncation method.

In figure 6.1, we have plotted both branches of the toy model potential as

compared to the string field theory potential at level (4,8).
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6.4 The level truncation method and convergence is-

sues

We can also discuss the convergence of the level truncation method in this

model. We will focus on the level (2k,6k) approximation to the tachyon po-

tential. This means that we include the fields up to level 2k and keep all the

terms in the potential. In this approximation, the equation for the extremum

is just (6.2.3) with all sums now running from 0 to k. The solution proceeds

just as in the previous section. First one solves for the function g(k)(λ):

g(k)(λ) ≡



k∑

n=0

λ2n(2n)!

(n!)2(1− 2n)



−1

=
(√

1− 4λ2 + E(λ, k)
)−1

.

The function E(λ, k), which represents the error we make by truncating at

level 2k, can be expressed in terms of special functions

E(λ, k) = 21+2kλ2(1+k)
Γ (

1
2 + k) 2F1(1,

1
2 + k,2+ k; 4λ2)√

π(k+ 1)!
.

We are mainly interested in its asymptotic behaviour for large level k [97]:

E(λ, k) ∼ 2λ2

√
π(1− 4λ2)

k−3/2(4λ2)k[1+O(k−1)] for k→∞.

The level-truncated expressions for the components of the approximate vac-

uum state |vac(k)> and the value of f(2k,6k) at the minimum are given by:

ψ
(k)
2m = λm

(1− 2m)m!
g(k)(λ)2

f(2k,6k)(vac(k)) = −(1− 4λ2)3/2g(k)(λ)3

so that the error we make in the level approximation goes like

ψ2m −ψ(k)2m ∼ 22k+2λ2k+m+2k−3/2

√
πm!(1− 2m)(1− 4λ2)5/2

f (vac)− f(2k,6k)(vac(k)) ∼ −6λ2k−3/2(4λ2)k√
π(1− 4λ2)3/2

for large level k. We see that, both for the components of the vacuum state

and the value of the potential at the minimum, the level truncation method
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Figure 6.2: The level-truncated effective potential in rescaled variables for

λ = 0.4 at level (0,0) (dotted line), level (2,6) (dashed line) and level (4,12)

(full line), as compared to the exact result (gray line).

converges to the exact answer in a manner which is exponential as a function

of the level: it goes like k−3/2e−k| ln 4λ2|.

The determination of the level-truncated effective tachyon potential also

proceeds as before. The result is

f(2k,6k)(t) = 6(1−4λ2)3/2


−1

2
t2 + h

(k)
±

2

2(1−
√

1− 4λ2 − E(λ, k)) +
1

3
(t + h(k)± )3




with

h
(k)
± = 1

2(1−
√

1− 4λ2 − E(λ, k))
(
− 2t

(
1−

√
1− 4λ2 − E(λ, k))− 1

±
√

4t(1−
√

1− 4λ2 − E(λ, k))+ 1
)
.

A plot of the + branch of the potential for k = 0, 1, 2 at λ = 0.4, as compared

to the exact result, is shown in figure 6.2.
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Summarising, we have introduced a class of toy models for tachyon con-

densation obtained by restricting the full string field theory problem to the

subspace of states generated by a single oscillator mode. For a special value of

one of the parameters of the model, we were able to obtain the exact solution

for the stable vacuum state and the value of the potential at the minimum. By

comparing with the results from the level truncation method, we showed that

the error made in this method, for the coefficients of the stable vacuum as

well as for the value of the potential at the minimum, goes like k−3/2(4λ2)k as

a function of the level k. This exponential behaviour is comparable to the one

found ‘experimentally’ in the full string field theory problem in [100]: there,

the error was found to behave like (
1
3)
k.



Chapter 7

Tachyon condensation in

superstring theory

In order to check Sen’s conjecture for the non-BPS D-branes and brane-anti-

brane systems in superstring theory, one needs an off-shell description of the

degrees of freedom living on these objects. In section 3.2 we gave an overview

of the three proposed open string field theory actions. In modern language,

these represent proposals for the off-shell description of the degrees of free-

dom on a D9-brane. We will now describe how these actions can be modified

to describe the degrees of freedom on non-BPS D-branes and brane-antibrane

systems, and discuss the tachyon potential in each of the three cases. These

calculations should be seen in a somewhat different light than the calcula-

tions in the bosonic theory. There, the string field theory description was

well-established and the calculations should be seen as a check of Sen’s con-

jecture. For superstrings, the situation is more or less the reverse: here the

conjecture can be put on a more sound footing using T-duality arguments

[84], while the correct string field theory description remains disputed. In

this case, the study of the tachyon potential should be seen as a check on

the string field theory description rather than a check on the validity of Sen’s

conjecture.

133
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7.1 The tachyon potential in Witten’s superstring field

theory

We now present our results concerning the tachyon potential in Witten’s su-

perstring field theory. This section is an expanded version of our paper [115].

7.1.1 Non-BPS D-branes in Witten’s theory

In order to describe NS excitations on a non-BPS D-brane (see section 4.4.2),

one should extend Wittens theory to include states with odd world-sheet

fermion number as well. This can be accomplished by tensoring the fields

with suitable internal Chan-Paton (CP) factors [116, 51]. The results of sec-

tion 4.4.2 imply that the GSO+ sector string field Ψ+ should be tensored with

the 2×2 unit matrix I while the GSO− field Ψ− is tensored with σ1. The fields

with CP factors attached are denoted with hats:

Ψ̂ = Ψ+ ⊗ I + Ψ− ⊗ σ1.

In order to preserve (formal) gauge invariance of the action, we associate

Chan-Paton factors with the gauge parameters ε, the BRST charge QB and the

⋆ operation. We also include a trace over the CP indices in the integration
∫
•

We take the following assignments for these internal CP factors:

ε̂ = ε+ ⊗ σ3 + ε− ⊗ iσ2 ,

Q̂B = QB ⊗ σ3 ,

⋆̂ = ⋆⊗ σ3 ,∫̂
• = 1

2
Tr

∫
• ,

(7.1.1)

We will come back to the motivation for this choice in the discussion following

(7.1.4).

The action takes the form1

g2S[Ψ̂] = −1

2

∫̂
• Ψ̂⋆̂Q̂BΨ̂ − 1

3

∫̂
• Ψ̂⋆̂Ψ̂⋆̂Ψ̂

= −1

2
〈〈 Ψ̂ Q̂BΨ̂ 〉〉 − 1

3
〈〈 Ψ̂ Ψ̂ Ψ̂ 〉〉 (7.1.2)

1Again, in comparing with (3.2.6), the reader will note that we have rescaled Ψ → Ψ/g and
adjusted the overall sign in order to give the correct kinetic term for our choice of signature.
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where the double brackets should now be interpreted as

〈〈 Φ̂1Φ̂2 · · · Φ̂n−1Φ̂n 〉〉 = 1

2
Tr
〈
Ŷ (0)fn1 ◦ Φ̂1(0)Ẑ(0)f

n
2 ◦ Φ̂2(0)Ẑ(0)

· · · Ẑ(0)fnn−1 ◦ Φ̂n−1(0)Ẑ(0)f
n
n ◦ Φ̂n(0)

〉
.

Here, the trace runs over the internal CP indices and we have defined

Ẑ = Z ⊗ σ3

Ŷ = Y ⊗ I.

Also, the definition of the conformal transformations requires a bit more care

when we include the GSO− sector. In the GSO+ sector, all states at zero mo-

mentum had integer conformal weight and so that the transformations (5.6.1)

were well-defined. The fields in the GSO− sector have half-integer conformal

weight, so we have to select a branch for the square root. Since

f
(n)
k

′(0) = 4i

n
e2πi( k−1

n ) = 4

n
e2πi( k−1

n + 1
4 ).

we make the following choice for the conformal transformation f
(n)
k ◦O(0) of

a primary field O of weight h:

f
(n)
k ◦ O(0) =

(
4

N

)h
e2πih( k−1

n + 1
4 )O

(
f
(n)
k (0)

)
(7.1.3)

Since arbitrary vertex operators can be written as products of derivatives of

primary fields, this uniquely determines the transformation f
(n)
k ◦ V (0) for

all operators V .

The gauge transformations are

δΨ̂ = Q̂B ε̂ + Ψ̂ ⋆ ε̂ − ε̂ ⋆ Ψ̂ . (7.1.4)

The CP factor assignments (7.1.1) were chosen such that gauge transforma-

tions preserve the CP structure of the string field:

δΨ̂ = δΨ+ ⊗ I + δΨ− ⊗ σ1

and such that the properties of the correlator (3.2.7) are preserved:

〈〈 Q̂B(Φ̂1 · · · Φ̂n) 〉〉 = 0 , (7.1.5)
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〈〈 · · · Q̂2
B(Φ̂1 · · · Φ̂n) · · · 〉〉 = 0 , (7.1.6)

〈〈 · · · Q̂B(ÂΦ̂) · · · 〉〉 = 〈〈 · · · (Q̂BÂ Φ̂ − Â Q̂BΦ̂) · · · 〉〉 , (7.1.7)

〈〈 · · · Q̂B(ε̂Φ̂) · · · 〉〉 = 〈〈 · · · (Q̂B ε̂ Φ̂ + ε̂ Q̂BΦ̂) · · · 〉〉 , (7.1.8)

〈〈 Φ̂1 · · · Φ̂n−1Φ̂n 〉〉 = 〈〈 Φ̂nΦ̂1 · · · Φ̂n−1 〉〉 (7.1.9)

where the Φ̂i can be arbitrary combinations of Ψ̂ , ε̂, Q̂BΨ̂ and Q̂B ε̂.

The proof of these properties goes through as before, with small modifi-

cations due to the presence of CP factors:

• Properties (7.1.5) and (7.1.6) follow directly from the properties of the

BRST charge.

• To prove properties (7.1.7) and (7.1.8), one should bear in mind that

the GSO+ field is Grassmann odd while fields in the GSO− sector are

Grassmann even and that one picks up signs when Pauli matrices are

interchanged. The Chan-Paton factor assignments ensure that the string

field Ψ̂ is odd with respect to Q̂B , while the gauge parameter ε̂ is even

with respect to Q̂B . This explains the signs in (7.1.7) and (7.1.8).

• We presently outline the proof of the cyclicity property (7.1.9) for the

case of zero momentum fields (this is the case relevant for the fields

entering in the calculation of the tachyon potential).

It is easy to see that all the fields in the GSO+ sector are tensored with

either I or σ3, and all the fields in the GSO− sector with either σ1 or

iσ2. At zero momentum, the fields in the GSO+ sector have integer

conformal weight, and the fields in the GSO− sector have half-integer

conformal weight. We compute

〈〈 Φ̂1 · · · Φ̂n 〉〉 = Tr
〈
Ŷ fn1 ◦ Φ̂1Ẑ · · · Ẑfnn−1 ◦ Φ̂n−1Ẑf

n
n ◦ Φ̂n

〉

= Tr
〈
Ŷ fn2 ◦ Φ̂1Ẑ · · · Ẑfnn ◦ Φ̂n−1Ẑ R ◦ fn1 ◦ Φ̂n

〉
,

where R is the rotation over an angle of 2π . Next we use R ◦ fn1 ◦ Φ̂n =
±fn1 ◦ Φ̂n, with a plus sign if the field has integer weight (GSO+ sector),

and a minus sign if the field has half-integer weight (GSO− sector). We

also use the cyclicity of the trace to move the field Φ̂n in front. Although

we are manipulating Grassmann objects, we do not get an additional

minus sign, due to the fact that the total amplitude is Grassmann odd.

〈〈 Φ̂1 · · · Φ̂n 〉〉 = ±Tr
〈
Ŷfn1 ◦ Φ̂nfn2 ◦ Φ̂1Ẑ · · · Ẑfnn ◦ Φ̂n−1Ẑ

〉
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= ±Tr
〈
Ŷ Ẑ ◦ fn1 ◦ Φ̂nfn2 ◦ Φ̂1Ẑ · · · Ẑfnn ◦ Φ̂n−1

〉

= Tr
〈
Ŷ fn1 ◦ Φ̂nẐfn2 ◦ Φ̂1Ẑ · · · Ẑfnn ◦ Φ̂n−1

〉

= 〈〈 Φ̂nΦ̂1 · · · Φ̂n−1 〉〉 . (7.1.10)

In the next to last line we have used that the picture changing operator

Ẑ commutes with the GSO+ fields and anticommutes with the GSO−
fields, cancelling the minus sign in front of the amplitude.

Making use of the properties (7.1.5-7.1.9), the (formal) proof of gauge in-

variance goes through as in the GSO+ sector.

An important question is whether the gauge-invariant extension to the

GSO− sector we have constructed is unique. Writing down a general cubic

action including GSO+ fields Ψ+ as well as GSO− fields Ψ− and general gauge

transformations for these fields, one finds after tedious computation a unique

nontrivial2 solution for the action and gauge transformations (modulo rescal-

ings of the fields and gauge parameters):

−g2S = 1

2
〈〈 Ψ+QBΨ+ 〉〉 + 1

3
〈〈 Ψ+Ψ+Ψ+ 〉〉 + 1

2
〈〈 Ψ−QBΨ− 〉〉 − 〈〈 Ψ+Ψ−Ψ− 〉〉

δΨ+ = QBε+ + [Ψ+, ε+]+ {Ψ−, ε−}
δΨ− = QBε− + {Ψ+, ε−} + [Ψ−, ε+] (7.1.11)

where the correlator of unhatted fields was defined in (3.2.4). When perform-

ing this calculation, one needs to use the extension of the cyclicity property

(3.2.7) to the GSO− sector:

〈〈 Φ1 · · ·ΦnΨ± 〉〉 = ±〈〈 Ψ±Φ1 · · ·Φn 〉〉 . (7.1.12)

The result (7.1.11) is precisely what one gets when working out (7.1.2) in terms

of GSO+ and GSO− components of the fields.

We can now also come back to our choice of branch (7.1.3) in the def-

inition of the conformal transformations of the fields. Had we chosen the

other branch, the property (7.1.12) would have changed to 〈〈 Φ1 · · ·ΦnΨ± 〉〉 =
〈〈 Ψ±Φ1 · · ·Φn 〉〉. A similar calculation then yields the result that, with this

cyclicity property, no nontrivial gauge-invariant extension to the GSO− sector

exists. We conclude that equations (7.1.2) define the unique, gauge-invariant

extension of Witten’s cubic theory to the GSO− sector.

2A ‘trivial’ solution would be to add just a kinetic term 〈〈 Ψ−QBΨ− 〉〉 for the GSO− field. We
discard this possibility because it doesn’t reproduce the necessary coupling between GSO+ and
GSO− fields.
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7.1.2 The fields up to level 2

As was the case for the bosonic string, we can restrict the fields in the calcula-

tion of the tachyon potential to a suitable subspace H1. An argument similar

to the one made in section 5.2 shows that it is a consistent truncation of the

string field theory equations to restrict the string field to lie in a subspaceH1

formed by acting only with modes of the stress-energy tensor, the supercur-

rent and the ghost fields b, c, η, ξ, φ. Again, the resulting tachyon potential

will be universal since it is insensitive to the precise details of the matter

theory as long as it furnishes a representation of the (1,1) superconformal

algebra with central charge 15. Also, the calculation of the tachyon potential

for the the non-BPS D-brane extends to the brane-antibrane system as well:

the only thing that changes is the overall normalisation of the potential [51].

We fix the gauge freedom (7.1.4) by imposing the Feynman-Siegel gauge

b0Ψ̂ = 0 on fields with non-zero conformal weight. The justification of this

gauge choice follows the one in the bosonic case (see section 5.4). In the

bosonic theory, we were able to further restrict the number of contributing

states by making use of a Z2 twist invariance of the action. We have not been

able to find such a symmetry for this particular action. We will, however,

encounter twist symmetry in the other two superstring field theory actions we

will consider and we will comment on the reasons for its absence in Witten’s

theory at that point.

Taking all this together we get the list of contributing fields up to level 2

shown in table 7.1. The level of a field is defined here to be the conformal

weight shifted by 1/2, so that the tachyon is a level 0 field. We use the nota-

tion |q> for the state corresponding to the operator :eqφ :.

The reality condition (3.2.3) determines whether the coefficients of these

fields are real or imaginary. The action of BPZ conjugation on various os-

cillator modes follows from the general formula (2.3.30), while Hermitean

conjugation is defined to act as:

hc(α
µ
n) = α

µ
−n

hc(ψ
µ
n) = ψ

µ
−n

hc(bn) = b−n
hc(cn) = c−n
hc(β

µ
n) = −βµ−n

hc(γ
µ
n) = γ

µ
−n. (7.1.13)
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Level GSO state vertex operator

0 − c1| − 1> T = ce−φ
1/2 + ξ−1c1c0| − 2> R = ∂ξc∂c e−2φ

1 − c1φ−1| − 1> S = c∂φ e−φ
3/2 + 2c1c−1ξ−1| − 2> A = c∂2c∂ξ e−2φ

η−1|0> E = η
c1G

m
−3/2| − 1> F = cGm e−φ

2 − c1

[
(φ−1)

2 −φ−2

] | − 1> K = c ∂2
(
e−φ

)

c1φ−2| − 1> L = c ∂2φ e−φ

c1L
m
−2| − 1> M = cTm e−φ

2c−1| − 1> N = ∂2c e−φ

ξ−1η−1c1| − 1> P = ∂ξηc e−φ

Table 7.1: The fields up to level contributing to the tachyon potential. The

field R, which contains the zero mode c0, is included because the Feynman-

Siegel gauge can only be imposed on fields with nonzero conformal weight

(see section 5.4). The level 0,1 and 2 fields should be tensored with σ1 and

the level 1/2 and 3/2 fields with I. We list the conformal transformations of

these fields in appendix A.1.

These definitions are chosen in order to meet two criteria: they are consistent

with the commutation relations (2.3.25, 2.3.33, 2.5.4, 2.5.13) and they guar-

antee that the BRST operator QB (2.5.17) is Hermitean. The latter fact can

be used to prove the reality of the quadratic term in the action. We further

define the the ground state | − 1> of the superghost system to be invariant

under the action of BPZ conjugation followed by Hermitean conjugation:

hc−1 ◦ bpz(| − 1>) ≡ | − 1> .

These rules enable us to work out the reality condition (3.2.3). We presently

give some examples.

Consider first the tachyon field |T >= c1| − 1 >. Using the definitions

(7.1.13), one finds that

hc−1 ◦ bpz(|T >) = |T >

so the tachyon comes with a real coefficient. Next we consider the state R. In

terms of (β, γ) modes, it can be written as R = c1c0β−1/2|−1>. From (7.1.13)
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we find3

hc−1 ◦ bpz(|R>) = β−1/2c0c1| − 1>

= −|R> .

Hence the state R comes with an imaginary coefficient. Similarly, one finds

that the S field comes with an imaginary coefficient, while the coefficients of

the fields at levels 3/2 and levels 2 should be real.

Summarising, we can write the tachyon string field containing states up to

level two as:

T̂ = tT̂ + ir R̂ + isŜ + aÂ+ eÊ + f F̂ + kK̂ + lL̂+mM̂ +nN̂ + pP̂. (7.1.14)

7.1.3 The tachyon potential

In [115], we calculated the level (2,4) tachyon potential in the level trunca-

tion method which we will now present. The computation was done in the

following way: the conformal transformations of the fields, which we include

for completeness in appendix A, were calculated by hand. A nontrivial check

on the computation of these conformal transformations was performed by

evaluating the action in two coordinate systems related by a global confor-

mal transformation: the results should not (and did not) change. Note that

one does not need to evaluate the operators QB · VΨ and their conformal

transformations explicitly, since:

f ◦QB · VΨ(z) = QB · (f ◦ VΨ(z))
= Resz1→f (z)jB(z1)f ◦ VΨ(z)

so it suffices to compute correlators with an insertion of the BRST current jB
and then take the residue.

The computation of the necessary CFT correlators between the transformed

fields was done with a computer program in Mathematica, written in collab-

oration with Pieter-Jan De Smet. The program applies Wick’s theorem in a

rather straightforward manner. The main technical subtleties arose from the

implementation of the normal ordering prescription, the ghost zero modes

and the treatment of the exponential operators :eqφ :.

3One should recall from section 2.3.5 that hc reverses the order of the oscillator modes
while bpz doesn’t.
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Denoting, as before, the level (m,n) approximation to the tachyon poten-

tial by f(m,n), we have obtained the following results:

f(0,0) = −t
2

2

f(1/2,1) = f(0,0) −
9

2
r t2 + 2 r 2

f(1,2) = f(1/2,1) − 8 r s + 1

2
s2

f(3/2,3) = f(1,2) + 10at2 − 2 e t2 + 20f t2 − 16

3
√

3
e r 2 − 10

3
r s2

+ 64

3
as t + 80

3
f s t + 4ae+ 10f 2 )

f(2,4) = f(3/2,3) + 64

3
√

3
ae r − 32

9
√

3
e2 r + 320

9
√

3
e f r − 320

9
√

3
f 2 r

+8kr s − 160

27
l r s + 100

9
mr s − 80

9
nr s − 152

27
p r s

− 460

27
ak t + 28

27
e k t − 280

27
f k t − 128

27
a l t − 64

27
e l t

−250

9
amt + 50

9
emt − 220

3
f mt + 104

9
ant

−40

9
ent + 880

27
f nt − 20

9
ap t + 4

9
ep t + 200

27
f p t

+6k2 − 6k l+ 3 l2 + 45

4
m2 − 6n2 − 3

2
p2. (7.1.15)

At level 1 and 2 the fields r and s can be integrated out exactly to give the

following effective potentials:

f(0,0)(t) = −t
2

2
, f(1/2,1)(t) = −t

2

2
− 81 t4

32
,

f(1,2)(t) = −t
2

2
+ 81 t4

2 (4− 64 t2)
2
− 648 t6

(4− 64 t2)
2
− 81 t4

4 (4− 64 t2)
.

The main difference with the bosonic potential is that the level 0 contribu-

tion has no minimum. We see that the inclusion of these higher modes does

not alter this fact, on the contrary, the slope of the potential becomes even

steeper and a singularity is encountered at level 2, see figure 7.1. The singu-

larity in the tachyon potential encountered here might be contrasted with the

singularities in the tachyon potential of open bosonic string theory encoun-

tered in section 5.6. In the case at hand, the potential diverges at the singular
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Figure 7.1: The tachyon potential V(t) at level 0 (dotted line), level 1 (dashed

line) and level 2 (full line).

point. Moreover, it doesn’t have the interpretation as a point where different

branches of the effective potential connect since, at level 2, the equations for

the fields that are integrated out are still linear.

Integrating out the fields numerically for the higher levels, one finds that

the more fields are included, the steeper the slope of the potential becomes.

This behaviour was anticipated in the conclusions of [51]. In conclusion,

the evidence presented here strongly suggests that Witten’s cubic superstring

field theory does not support Sen’s conjecture.

7.2 The tachyon potential in modified cubic theories

7.2.1 Non-BPS D-branes in modified cubic theories

The construction of a gauge-invariant extension of the modified cubic the-

ories to the GSO− sector proceeds exactly as in the previous section. One
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assigns CP factors to the fields and operations defining the cubic action:

Ψ̂ = Ψ+ ⊗ I + Ψ− ⊗ σ1

ε̂ = ε+ ⊗ σ3 + ε− ⊗ iσ2 ,

Q̂B = QB ⊗ σ3 ,∫̂
• = Tr

∫
,

⋆̂ = ⋆⊗ σ3. (7.2.1)

The action takes the form

g2S[Ψ̂] = −1

2

∫̂
• Ψ̂⋆̂Q̂BΨ̂ − 1

3

∫̂
•Ψ̂⋆̂Ψ̂⋆̂Ψ̂

= −1

2
〈〈 Ψ̂ Q̂BΨ̂ 〉〉 − 1

3
〈〈 Ψ̂ Ψ̂ Ψ̂ 〉〉 .

where the double brackets should now be interpreted as

〈〈 Φ̂1Φ̂2 · · · Φ̂n−1Φ̂n 〉〉 = 1

2
Tr
〈
Ŷ−2(0)f

n
1 ◦ Φ̂1(0)σ3f

n
2 ◦ Φ̂2(0)×

× σ3 · · ·σ3f
n
n−1 ◦ Φ̂n−1(0)σ3f

n
n ◦ Φ̂n(0)

〉
.

We have defined

Ŷ−2 = Y−2 ⊗ I (7.2.2)

The conformal transformations are defined as in (7.1.3) and the action is in-

variant under gauge transformations of the form (3.2.11). Again one can show

that the action and gauge invariance is unique modulo a rescaling of the fields

[117].

7.2.2 The tachyon potential

We now turn to the study of the tachyon potential in the modified cubic the-

ories. We impose the Feynman-Siegel gauge b0Ψ = 0 on states with nonzero

conformal weight and make a consistent truncation to a subspaceH1 formed

by acting only with modes of the stress-energy tensor, the supercurrent and

the ghost fields b, c, η, ξ, φ.

We have seen in section 3.2.2 that there are two proposed modifications

to Witten’s cubic theory corresponding to different choices of the double-step
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picture changing operator Y−2. The first choice (3.2.8)

Y−2 = 1

3
e−2φ + 1

15
∂ξcGme−3φ, (7.2.3)

is not suited for the extension to the GSO− sector for the following reason.

The pure tachyon in the 0-picture is given by the operator T = teφη. Substi-

tuting this field into the action, we see that the kinetic term for the tachyon

vanishes due to φ-charge conservation! Hence this theory is unable to re-

produce the correct couplings of the tachyon field. The reason can be traced

to the fact that the tachyon belongs to the kernel of the operator Y−2. The

fact that fields such as the tachyon have a vanishing kinetic term theory is

precisely what makes the propagator in this theory ill-defined, the latter fact

being the main source of criticism for this model [45].

Next, we consider the second choice for Y−2 (3.2.9)

Y−2 = Y(0)Y(∞).
With this choice, the tachyon kinetic term has the correct form. The action so

obtained possesses a Z2 twist symmetry when restricted to the fields in H1.

Under this symmetry, the fields in the GSO+ sector carry charge (−1)h+1 and

the GSO− sector fields carry charge (−1)h+
1
2 . In the calculation of the tachyon

potential, we can consistently truncate the string field to be twist even. The

proof of twist invariance of the action can be found in [117] and relies on the

same properties (5.4.2) that were used to prove twist invariance in the bosonic

theory. A crucial element in the proof is the fact that that the Y−2 insertion

is separately invariant under the conformal transformation Ĩ(z) = 1/z. This

hints at the reason why Witten’s action does not possess this twist invariance

(if it did, terms like the rt2 term in 7.1.15 would be absent): there, the cubic

term contains an Z(0) insertion which is not invariant under Ĩ(z). The same

remark applies to the theory with the other choice (7.2.3) for Y−2 considered

in the last paragraph and twist invariance is absent there as well.

We can now undertake the calculation of the tachyon potential in this

theory. We define the level of a field to be L0 + 1 so that the field of lowest

weight has level zero. In table 7.2 we list the contributing fields up to level

5/2.

It is important to note that in this theory the lowest level field, denoted

by U , is not the pure tachyon but an auxiliary field. The pure tachyon contri-

bution T comes into play at level
1
2
. For completeness, we list the conformal

transformations of these fields in A.2.
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Level GSO state

0 + U = c
1/2 - T = eφη
2 + V1 = ∂2c, V2 = cTm, V3 = cTηξ

V4 = cTφ, V5 = c∂2φ, V6 = eφηGm, V7 = bη∂ηe2φ

5/2 - W1 = c∂2c∂ξe−φ, W2 = bc∂ηeφ, W3 = c∂φGm
W4 = bc∂(ηeφ), W5 = c∂Gm, W6 = η∂2(eφ), W7 = ∂η∂(eφ)
W8 = η(∂φ)2eφ, W9 = ∂2ηeφ, W10 = ηeφTm, W11 = ∂bcηeφ

Table 7.2: States contributing to the level 5/2 tachyon string field.

We have computed the tachyon potential in the level (5/2,5) approxima-

tion. The level 5/2 string field is given by4:

T̂ = uÛ + t
2
T̂ +

7∑

i=1

viV̂i +
11∑

j=1

wjŴj .

We denote the universal tachyon potential, whose conjectured value at its

minimum is −1, by f (T̂ ). This is proportional to the action S[T̂ ] [117]:

f (T̂ ) = −π
2

2
S[T̂ ].

We denote the level (m,n) approximation to this function by f(m,n).

At level (1/2,1) we have [117]

f(1/2,1) = −π
2

2

( t2
4
+ 9 t2u

16
+u2

)
.

This result is encouraging: when solving for the u field in terms of t one finds

an effective potential for t which has a local maximum at t = 0 and two global

minima at t = ±1.257. The value at the global minima is already 97.5% of the

conjectured exact value.

At level (2,4), we have found the following result:

f(2,4) = f(1/2,1) − π
2

2

(9 t2 v1

8
+ 4uv1 + 4v1

2 − 25 t2 v2

32
+ 15v2

2

2
− 9 t2 v3

16
4It can be shown that the reality condition on the string field restricts the coefficients in this

expansion to be real.
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−2uv3 + 8v1 v3 + v3
2 − 59 t2 v4

32
− 8uv4 − 32v1 v4 − 16v3 v4

+77v4
2

2
+ 43 t2 v5

24
+ 8uv5 + 24v1 v5 + 4v3 v5 − 52v4 v5

+22v5
2 + 30v2 v6 − 30v4 v6 + 20v5 v6 + 10v6

2 + 160uv6
2

9
√

3

+2uv7 + 2
√

3u2 v7 + 8v1 v7 + 280uv1 v7

9
√

3
− 15v2 v7

−50uv2 v7

3
√

3
+ 4v3 v7 + 20uv3 v7

9
√

3
− 5v4 v7 − 386uv4 v7

9
√

3
+ 4v5 v7

+344uv5 v7

9
√

3

)
.

The level (2,4) approximation to the tachyon potential was also studied in

[117]. However, we disagree with that study on several points.

First of all, our field V7 seems to be overlooked in that paper5.

Also, it was proposed in [117] that one should discard the fields v2 and

v6 in order to obtain a potential with more pleasing properties. We strongly

object to this procedure since putting v2 and v6 to zero is not consistent with

the equations of motion, nor is their contribution to the potential at this level

negligible.

We now discuss the structure of the level (2,4) effective tachyon potential

keeping all the fields. Already at this level, the potential has a complicated

branch structure. Making use of a numerical algorithm and using the val-

ues of the fields at the minimum of the level (1/2,1) potential as starting

values, we find a branch of the potential which has the expected behaviour

(see figure 7.2). The two minima now occur at t ≈ ±1.219 and the value of

the potential is f2,4 ≈ −1.083, which exceeds the conjectured exact value by

about 8%. In analysing the other branches of the potential using numerical

methods, we have not found a branch with a better behaviour. Hence the level

(2,4) potential does not yield the expected convergence towards the conjec-

tured value. However, before drawing any definitive conclusion, we deemed it

important to study the tachyon potential including the states at the next level

as well.

Including the 11 states at level
5
2 , we obtained the following result for the

5We are indebted to Pieter-Jan De Smet for pointing this out to us.
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Figure 7.2: The level (2,4) tachyon potential (full line) as compared to the

level (1/2,1) potential (dotted line). The (2,4) branch ends at t ≈ ±1.49.
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(5/2,5) potential:

f(5/2,5) = f(2,4) − π
2

2

(256 t v7w1

81
+ 25 t v1w10

4
− 4435 t v2w10

432
− 25 t v3w10

8

−1475 t v4w10

144
+ 1075 t v5w10

108
+ 15w10

2

2
+ 4435uw10

2

432
+ 169 t v1w11

54

−275 t v2w11

72
− 11 t v3w11

4
− 649 t v4w11

72
+ 473 t v5w11

54
+ 12w1w11

+275uw10w11

36
+w11

2 + 121uw11
2

36
+ 172 t v1w2

81
− 25 t v2w2

27

+74 t v3w2

81
− 59 t v4w2

27
+ 172 t v5w2

81
+ 15w10w2 + 50uw10w2

27

+7w11w2 + 44uw11w2

27
+ 16uw2

2

9
− 30w10w3 + 50w3

2

+86 t v1w4

27
− 25 t v2w4

18
+ 47 t v3w4

81
− 467 t v4w4

162
+ 226 t v5w4

81

+15w10w4 + 25uw10w4

9
+ 7w11w4 + 22uw11w4

9
+ 80uw2w4

27

+4uw4
2

9
+ 320 t v6w5

27
− 15w10w5 + 30w5

2 − 101 t v1w6

6

+2525 t v2w6

216
+ 101 t v3w6

12
+ 719 t v4w6

24
− 511 t v5w6

18
− 72w1w6

−2525uw10w6

108
− 8w11w6 −

1111uw11w6

54
− 6w2w6 −

404uw2w6

81

−80w3w6 − 6w4w6 −
734uw4w6

81
− 120w5w6 + 20w6

2

+1361uw6
2

36
− 4 t v1w7

3
+ 25 t v2w7

27
− 74 t v3w7

81
+ 113 t v4w7

81

−4 t v5w7

3
+ 48w1w7 − 50uw10w7

27
− 8w11w7 − 44uw11w7

27

+32uw2w7

27
+ 40w3w7 + 3w4w7 + 16uw4w7

81
+ 60w5w7

+16w6w7 +
220uw6w7

27
− 4w7

2 − 80uw7
2

27
− 3 t v1w8

2

+25 t v2w8

24
+ 3 t v3w8

4
+ 59 t v4w8

24
− 259 t v5w8

162
− 48w1w8

−25uw10w8

12
− 11uw11w8

6
− 2w2w8 − 4uw2w8

9
− 60w3w8

−2w4w8 − 118uw4w8

81
− 60w5w8 + 4w6w8 + 1933uw6w8

162
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Figure 7.3: The branch of the (5/2,5) tachyon potential discussed in the text.

Here, the two minima belong to different branches of the potential, who come

to an end close to t = 0. These branches are not connected to the unstable

vacuum, contrary to the expectations from Sen’s conjecture.
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.

We have found that the behaviour of the potential at this level conflicts with

the expectations for tachyon condensation. Taking again the minima from

the previous level as starting values, we again find two minima of the effec-

tive potential, at t ≈ ±1.160, where the potential takes the value ≈ −0.915.

First of all, we notice that the value at the minimum has increased with re-

spect to the value at the previous level. However, closer scrutiny reveals that

these minima in fact lay on different branches, crossing each other at t = 0

where they both take the value ≈ −0.063 (see figure 7.3). Due to the fact that

these two minima lay on branches that are not connected to the unstable vac-
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uum, the potential at this level no longer satisfies the basic requirements for

tachyon condensation. Furthermore, in analysing the other branches of the

potential found by numerical methods, we have not found any branch which

does display the expected behaviour. Therefore, we tentatively conclude that

the behaviour of the tachyon potential in modified cubic string field theory

conflicts with the predictions from Sen’s conjecture.

7.3 Tachyon condensation in Berkovits’ theory

We now present our results concerning tachyon condensation in Berkovits’

superstring field theory. The results in this section were obtained in our

paper [118].

7.3.1 Non-BPS D-branes in Berkovits’ theory

We first extend Berkovits’ action to the GSO− sector as required for the de-

scription of a non-BPS D-brane. This is done once more by tensoring the string

fields with the appropriate CP factors:

Ψ̂ = Ψ+ ⊗ I + Ψ− ⊗ σ1

One further associates CP factors with the BRST charge and the η0 field:

Q̂B = QB ⊗ σ3

η̂0 = η0 ⊗ σ3.

In contrast to the previously discussed theories, we don’t need to extend

the ⋆ operation to include multiplication by a Pauli-matrix in order to pre-

serve gauge invariance. The string field theory action for the non-BPS D-brane

takes the following form:

S[Ψ̂] = 1

4g2

〈〈
(e−Ψ̂ Q̂BeΨ̂ )(e−Ψ̂ η̂0e

Ψ̂ )

−
∫ 1

0
dt(e−tΨ̂∂tetΨ̂){(e−tΨ̂ Q̂BetΨ̂), (e−tΨ̂ η̂0e

tΨ̂ )}
〉〉
. (7.3.1)

Here the double brackets mean the following:

〈〈 Ψ̂1 · · · Ψ̂n 〉〉 = Tr
〈
f
(n)
1 ◦ V̂Ψ1(0) · · · f (n)n ◦ V̂Ψn(0)

〉
.
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The action (7.3.1) is invariant under the gauge transformations

δeΨ̂ =
(
Q̂BΩ̂

)
eΨ̂ + eΨ̂

(
η̂0Ω̂

′
)
,

where Ω̂ and Ω̂′ are independent gauge parameters. The proof is similar to

the one in the GSO+ sector and relies on the properties (compare 3.2.16)

{Q̂B, η̂0} = 0, Q̂2
B = η̂2

0 = 0 (7.3.2)

〈〈 Q̂B(...) 〉〉 = 〈〈 η̂0(...) 〉〉 = 0

〈〈 . . . Q̂B(Ψ̂1Ψ̂2) . . . 〉〉 = 〈〈 . . . (Q̂BΨ̂1)Ψ̂2 + Ψ̂1(Q̂BΨ̂2) . . . 〉〉
〈〈 . . . η̂0(Ψ̂1Ψ̂2) . . . 〉〉 = 〈〈 . . . (η̂0Ψ̂1)Ψ̂2 + Ψ̂1(η̂0Ψ̂2) . . . 〉〉
〈〈 Φ̂1 . . . Φ̂n−1Ψ̂ 〉〉 = 〈〈 Ψ̂Φ̂1 . . . Φ̂n−1 〉〉

〈〈 Φ̂1 . . . Φ̂n−1Q̂BΨ̂ 〉〉 = −〈〈 Q̂BΨ̂ Φ̂1 . . . Φ̂n−1 〉〉
〈〈 Φ̂1 . . . Φ̂n−1η̂0Ψ̂ 〉〉 = −〈〈 η̂0Ψ̂Φ̂1 . . . Φ̂n−1 〉〉 (7.3.3)

The gauge invariance can be fixed6 by imposing

b0|Ψ̂>= 0 and ξ0|Ψ̂>= 0 . (7.3.4)

In the calculation of the tachyon potential, we can restrict the string field

to lie in a subspaceH1 formed by acting only with modes of the stress-energy

tensor, the supercurrent and the ghost fields b, c, η, ξ, φ, since the other

excitations can be consistently put to zero. Furthermore, when restricted to

fields lying in H1 the action has a Z2 twist invariance under which the fields

in the GSO+ sector carry charge (−)h+1 and the fields in the GSO− sector

carry charge (−)h+1/2 (h is the conformal weight). The proof of this property,

which can be found in appendix B of [51], relies on the properties (5.4.2) of the

conformal transformations f
(n)
k . In the computation of the tachyon potential

we can therefore further restrict ourselves to the twist even fields.7

The non-polynomial action (7.3.1) should be formally expanded in the

string field Ψ̂ , and each term should be accompanied by the appropriate con-

formal transformations. However, because we will only compute the inter-

actions between a finite number of fields, it is easy to see that one does not

need all the terms in the action. The conformal field theory correlators in the

action (7.3.1) are nonvanishing only if the total (b, c) number is 3, the (η, ξ)

6This is a reachable gauge choice for states with L0 ≠ 0 but we have not been able to prove
that it fixes the gauge freedom completely.

7This restriction projects out the only state with L0 = 0, namely ξ∂ξ c∂c e−2φ.
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number is 1 and the total φ-charge is −2. In the following we will need only

the terms in the action involving up to 6 string fields.

Making use of the properties (7.3.3)), the action to this order can be written

as [51]

S = 1

2g2
〈〈 1

2
(Q̂BΨ̂)(η̂0Ψ̂)+ 1

3
(Q̂BΨ̂)Ψ̂(η̂0Ψ̂)

+ 1

12
(Q̂BΨ̂)

(
Ψ̂

2(η̂0Ψ̂)− Ψ̂(η̂0Ψ̂)Ψ̂
)
+ 1

60
(Q̂BΨ̂)

(
Ψ̂

3(η̂0Ψ̂)− 3Ψ̂2(η̂0Ψ̂)Ψ̂
)
+

+ 1

360
(Q̂BΨ̂)

(
Ψ̂

4(η̂0Ψ̂)− 4Ψ̂3(η̂0Ψ̂)Ψ̂ + 3Ψ̂2(η̂0Ψ̂)Ψ̂
2
)
〉〉 .

7.3.2 The fields up to level 2

Taking all this together we get the list of contributing fields up to level 2

(table 7.3). The level of a field is here defined to be the conformal weight

shifted by 1/2. In this way the tachyon is a level 0 field. We use the notation

|q> for the state corresponding with the operator :eqφ :. The level 0 and level

2 fields should be tensored with σ1 and the level 3/2 fields with I. We list the

conformal transformations of these fields in A.3.

Level state vertex operator

0 ξ0c1| − 1> T = ξce−φ
3/2 2c1c−1ξ0ξ−1| − 2> A = c∂2cξ∂ξ e−2φ

ξ0η−1|0> E = ξη
ξ0c1G

m
−3/2| − 1> F = ξcGm e−φ

2 ξ0c1

[
(φ−1)

2 −φ−2

] | − 1> K = ξc ∂2
(
e−φ

)

ξ0c1φ−2| − 1> L = ξc ∂2φ e−φ

ξ0c1L
m
−2| − 1> M = ξcTm e−φ

2ξ0c−1| − 1> N = ξ∂2c e−φ

ξ0ξ−1η−1c1| − 1> P = ξ∂ξηc e−φ

Table 7.3: The contributing states up to level two and the corresponding

vertex operators.

The resulting level 2 tachyon string field is then given by

T̂ = tT̂ + aÂ+ eÊ + f F̂ + kK̂ + lL̂+mM̂ +nN̂ + pP̂. (7.3.5)
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7.3.3 The tachyon potential

In [118], we have calculated the tachyon potential in the level (2,4) approxi-

mation using the Mathematica program that was also used for the calculations

in sections 7.1 and 7.2. An extra check on the calculations was performed by

calculating some of the correlators on the upper half plane instead of the

disc. As before, the universal tachyon potential f (T̂ ) is equal to the action

S[T̂ ] divided by the brane tension. The latter was calculated in [51] and is

equal to 1/2π2g2, so we have

f (T̂ ) = −2π2S[T̂ ].

We now give the result for the tachyon potential with coefficients evalu-

ated numerically up to 6 significant digits:

f(0,0) = 2π2
(
− 0.25t2 + 0.5t4

)

f(3/2,3) = f(0,0) + 2π2
(
− at2 − 0.25et2 − 0.518729et4

2ae+ 5f 2 + 4.96405aet2 − 0.66544e2t2

+5.47589ef t2 + 5.82107f 2t2 + 0.277778e2t4
)

f(2,4) = f(3/2,2) + 2π2
(
− 3.03704akt − 7.11111alt + 2.77778amt

−1.62963ant − 1.55556apt + 0.12963ekt − 0.296296elt

+0.694444emt − 1.2963ent + 0.944444ept − 11.8519f lt

−8.88889fmt − 2.96296fpt − 2.87299ekt3 − 1.94348elt3

+4.35732emt3 −−4.77364ent3 + 0.605194ept3

+3k2 − 3kl+ 1.5l2 + 5.625m2 − 3n2 − 0.75p2 + 10.3958k2t2 +
+0.791667klt2 − 1.875kmt2 + 5.54167knt2 − 1.4375kpt2 +
+6.70833l2t2 − 10.3125lmt2 + 11.9167lnt2 − 0.875lpt2 +
+14.7656m2t2 − 15.9375mnt2 − 1.40625mpt2 +
+5.83333n2t2 − 0.5npt2 − 1.5p2t2

)
.

The level (0,0) and (3/2,3) contributions to the potential were already

calculated in [116, 51] and our results agree with the ones displayed there8.

At the lowest level, the potential f(0,0) has two minima at t0 = ±0.5, where

the potential takes the value f(0,0) = −0.61685. Hence this level already ac-

counts for about 62% of the conjectured exact value f = −1.

8Note that our field F is defined with a different sign from the one in [51].



154 Chapter 7. Tachyon condensation in superstring theory

At the next level, the two extrema of the potential f(3/2,3) occur at

t0 = ±0.588823, a0 = 0.056363, e0 = 0.093175, f0 = 0.012603

where the potential takes the value f(3/2,3) = −0.854458 and accounts for 85%

of the conjectured exact value.

In the level (2,4) approximation, the potential has extrema at

t0 = ±0.602101

a0 = 0.052193 , e0 = 0.043037 , f0 = −0.013816 ,
k0 = ∓0.010190 , l0 = ∓0.045043 , m0 = ±0.032213 ,

n0 = ±0.047311 , p0 = ±0.021291 .

At these extrema

f(2,4) = −0.891287

so we see that in the level (2,4) approximation we obtain 89% of the conjec-

tured exact value.

One can also obtain the effective potential f (t) for the tachyon by solving

for the other field in terms of t. To this order at least, this does not lead to

different branches of the potential since the fields we integrate out appear at

most quadratically in the potential. The result in the different approximations

is shown in figure 7.4. The extrema of the full potential correspond to minima

of the effective potential.

In conclusion, the results presented in this section show that the version

of superstring field theory proposed by Berkovits yields sensible results for

the tachyon potential in good agreement with the behaviour predicted by

Sen’s conjecture. It would be nice, however, to establish agreement beyond

a shadow of a doubt, as has been done for the bosonic string, by including

more fields. The next contribution to the potential comes at level 7/2, which

contains 23 fields. To perform calculations involving such a large number of

fields, a new calculational approach is probably required, perhaps some ex-

tension of the Neumann coefficient method which has proven fruitful in the

bosonic analysis.

7.4 Conclusions

In this chapter, we have analysed the tachyon potential in the three different

versions of superstring field theory proposed in the literature. The analysis
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Figure 7.4: The tachyon potential f (t) in the level (0,0) (dotted line), level

(3/2,3) (dashed line) and level (2,4) (full line) approximations.

was done in the level truncation scheme. As mentioned in the introduction to

this chapter, evidence for the validity of Sen’s conjecture for the superstring

has been provided by arguments using a well-established duality symmetry

(T-duality), and it is a more or less common belief that a sensible string field

theory should produce results in agreement with the conjecture.

Since there exist three inequivalent proposals for open string field theory,

we see that Sen’s conjecture provides an opportunity to put these different

theories to the test in a reasonably straightforward classical computation.

Our analysis showed that the behaviour of the tachyon potential in Witten’s

theory and in the modified cubic string field theories conflicts with the expec-

tations from Sen’s conjecture. On the other hand, our results for the tachyon

potential in Berkovits’ theory showed good agreement with Sen’s conjecture.

In retrospect, the fact that we found agreement with the predictions of

Sen’s conjecture only in Berkovits’ formulation is perhaps not so surprising.

Indeed, the two other theories had received some criticism in the literature.

In the case of Witten’s proposal, it has been known for some time that the

theory suffers from contact term divergences which spoil the required gauge

invariance [42]. The modified cubic theories, which don’t suffer from these
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divergences, have been criticised for a different reason [45]: the presence of

the double-step picture changing operator leads to a kinetic operator that

is not invertible even after gauge-fixing, so that one runs into trouble when

trying to extract an off-shell propagator for the theory (recall that, in the

other string field theories, it was possible to fix a gauge in which the kinetic

operator reduces to L0, the natural propagator in conformal field theories

encountered in section 2.3.3). So far, Berkovits’ theory is the only candidate

which is gauge-invariant and leads to a sensible off-shell propagator.



Appendix A

Conformal transformations of

the fields

A.1 Witten’s action

Here we list the conformal transformations of the fields necessary for the

computation of the level (2,4) approximation to the tachyon potential in sec-

tion in Witten’s theory. To shorten the notation we denote w = f (z).

f ◦ T(z) = (f ′(z))−1/2T(w) ,

f ◦R(z) = R(w) ,

f ◦ S(z) = (f ′(z))1/2S(w)− 1

2

f ′′(z)
f ′(z)

(f ′(z))−1/2ce−φ(w) ,

f ◦A(z) = f ′(z)A(w) − f
′′(z)
f ′(z)

c∂c ∂ξ e−2φ(w) ,

f ◦ E(z) = f ′(z)E(w) ,

f ◦ F(z) = f ′(z)F(w) ,

f ◦K(z) = (f ′(z))3/2K(w)+ 2
f ′′(z)
f ′(z)

(f ′(z))1/2c∂
(
e−φ

)
(w)+

+

1

2

f ′′′

f ′
− 1

4

(
f ′′

f ′

)2

 (f ′(z))−1/2ce−φ(w) ,

f ◦ L(z) = (f ′(z))3/2L(w)+ f
′′(z)
f ′(z)

(f ′(z))1/2c∂φe−φ(w)+

157



158 Appendix A. Conformal transformations of the fields

+

3

4

(
f ′′

f ′

)2

− 2

3

f ′′′

f ′


 (f ′(z))−1/2ce−φ(w) ,

f ◦M(z) = (f ′(z))3/2M(w)+ 15

12


f ′′′
f ′

− 3

2

(
f ′′

f ′

)2

 (f ′(z))−1/2ce−φ(w) ,

f ◦N(z) = (f ′(z))3/2N(w)− f
′′(z)
f ′(z)

(f ′(z))1/2∂c e−φ(w) +

+

2

(
f ′′

f ′

)2

− f
′′′

f ′


 (f ′(z))−1/2c e−φ(w) ,

f ◦ P(z) = (f ′(z))3/2P(w) +

+

1

4

(
f ′′

f ′

)2

− 1

6

f ′′′

f ′


 (f ′(z))−1/2ce−φ(w) .

A.2 Modified cubic string field theory

Here we list the conformal transformations of the fields necessary for the

computation of the level (5/2,5) approximation to the tachyon potential in

modified cubic string field theory (w ≡ f (z)).

f ◦U(z) = (f ′(z))−1U(w)

f ◦ T(z) = (f ′(z))−1/2T(w)

f ◦ V1(z) = f ′(z)V1(w)− f
′′(z)
f ′(z)

∂c(w)

−

f ′′′
f ′

− 2

(
f ′′

f ′

)2

 (f ′(z))−1c(w)

f ◦ V2(z) = f ′(z)V2(w)+ 15

12


f ′′′
f ′

− 3

2

(
f ′′

f ′

)2

 (f ′(z))−1c(w)

f ◦ V3(z) = f ′(z)V3(w)− 1

6


f ′′′
f ′

− 3

2

(
f ′′

f ′

)2

 (f ′(z))−1c(w)

f ◦ V4(z) = f ′(z)V4(w)+ 13

12


f ′′′
f ′

− 3

2

(
f ′′

f ′

)2

 (f ′(z))−1c(w)

f ◦ V5(z) = f ′(z)V5(w)+
f ′′(z)
f ′(z)

c∂φ(w)
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−

f ′′′
f ′

−
(
f ′′

f ′

)2

 (f ′(z))−1c(w)

f ◦ V6(z) = f ′(z)V6(w)

f ◦ V7(z) = f ′(z)V7(w)

f ◦W1(z) = (f ′(z))3/2W1(w)− f
′′(z)
f ′(z)

(f ′(z))
1
2 c∂c∂ξe−φ

f ◦W2(z) = (f ′(z))3/2W2(w)+ f
′′(z)
f ′(z)

(f ′(z))
1
2

(
bcηeφ(w)+ 3

2
∂ηeφ(w)

)

+3

2

(
f ′′

f ′

)2

(f ′(z))−
1
2ηeφ(w)

f ◦W3(z) = (f ′(z))3/2W3(w)− f
′′(z)
f ′(z)

(f ′(z))
1
2 cGm(w)

f ◦W4(z) = (f ′(z))3/2W4(w)− f
′′(z)
f ′(z)

(f ′(z))
1
2

(1

2
bcηeφ(w)

−3

2
∂(ηeφ)(w)

)
− 3

4

(
f ′′

f ′

)2

(f ′(z))−
1
2ηeφ(w)

f ◦W5(z) = (f ′(z))3/2W5(w)+
3

2

f ′′(z)
f ′(z)

(f ′(z))
1
2 cGm(w)

f ◦W6(z) = (f ′(z))3/2W6(w)− 2
f ′′(z)
f ′(z)

(f ′(z))
1
2η∂(eφ)(w)

−

3

2

f ′′′

f ′
− 15

4

(
f ′′

f ′

)2

 (f ′(z))− 1

2ηeφ(w)

f ◦W7(z) = (f ′(z))3/2W7(w)− f
′′(z)
f ′(z)

(f ′(z))
1
2

(
3

2
∂ηeφ(w)− η∂(eφ)(w)

)

−3

2

(
f ′′

f ′

)2

(f ′(z))−
1
2ηeφ(w)

f ◦W8(z) = (f ′(z))3/2W8(w)− 3
f ′′(z)
f ′(z)

(f ′(z))
1
2η∂(eφ)(w)

−

1

6

f ′′′

f ′
− 5

2

(
f ′′

f ′

)2

 (f ′(z))− 1

2ηef (w)

f ◦W9(z) = (f ′(z))3/2W9(w)+ 3
f ′′(z)
f ′(z)

(f ′(z))
1
2 ∂ηeφ(w)

+f
′′′

f ′
(f ′(z))−

1
2ηeφ(w)
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f ◦W10(z) = (f ′(z))3/2W10(w)+ 15

12


f ′′′
f ′

− 3

2

(
f ′′

f ′

)2

 (f ′(z))− 1

2ηef (w)

f ◦W11(z) = (f ′(z))3/2W11(w)+ 2
f ′′(z)
f ′(z)

(f ′(z))
1
2bcηeφ

+

5

6

f ′′′

f ′
+ 1

4

(
f ′′

f ′

)2

 (f ′(z))− 1

2ηeφ(w)

A.3 Berkovits’ theory

Here we list the conformal transformations of the fields necessary for the

computation of the level (2,4) approximation to the tachyon potential in

Berkovits’ theory (w ≡ f (z)).

f ◦ T(z) = (f ′(z))−1/2T(w)

f ◦A(z) = f ′(z)A(w) − f
′′(z)
f ′(z)

c∂c ξ∂ξ e−2φ(w)

f ◦ E(z) = f ′(z)E(w) − f
′′(z)

2f ′(z)
f ◦ F(z) = f ′(z)F(w)

f ◦ K(z) = (f ′(z))3/2K(w) + 2
f ′′(z)
f ′(z)

(f ′(z))1/2ξc∂
(
e−φ

)
(w)+

+

1

2

f ′′′

f ′
− 1

4

(
f ′′

f ′

)2

 (f ′(z))−1/2ξce−φ(w)

f ◦ L(z) = (f ′(z))3/2L(w)+ f
′′(z)
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Bijlage B

Samenvatting

B.1 Situering van het onderzoek

Vooraleer we een overzicht geven van de resultaten die naar voor gebracht

worden in deze thesis, willen we aangeven waar ons onderzoek zich situeert

in het breder kader van de snaartheorie.

B.1.1 Snaartheorie

Unificatie

Een van de belangrijkste concepten in de ontwikkeling van de theoretische

natuurkunde is het streven naar unificatie. De geünificeerde beschrijving van

verscheiden fysische fenomenen in een enkele theorie is in vele gevallen niet

alleen esthetisch aantrekkelijk gebleken, vaak heeft ze ook geleid tot het ver-

werven van diepe inzichten in de grondslagen van de natuurkunde. Zo lag

Maxwells unificatie van de elektrische en magnetische krachten in de theo-

rie van het elektromagnetisme aan de basis van Einsteins formulering van de

speciale relativiteitstheorie in het begin van de vorige eeuw.

Dit streven naar unificatie vond zijn voorlopig eindpunt in de jaren ’70 in

de formulering van het Standaardmodel van elementaire deeltjes en interac-

ties. Dit model beschrijft de geobserveerde elementaire deeltjes en de manier

waarop zij interageren tengevolge van elektromagnetische wisselwerkingen

en zwakke en sterke kernkrachten. Bovendien biedt het model een microsco-

163
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pische beschrijving in overeenstemming met de wetten van de kwantumme-

chanica en is het ondertussen op talloze manieren experimenteel geverifieerd.

Het grote obstakel in het verderzetten van het ambitieuze project van de

unificatie van alle gekende deeltjes en interacties was het incorporeren van de

zwaartekracht. Deze kracht kreeg een zeer elegante beschrijving in de vorm

van Einsteins algemene relativiteitstheorie, die ook experimenteel bevestigd

werd. Deze theorie is echter een klassieke theorie, die slechts betrouwbaar is

voor de beschrijving van fenomenen op macroscopische schaal. Fundamen-

tele problemen treden op wanneer men tracht de algemene relativiteitstheorie

in overeenstemming te brengen met de microscopische wetten van de kwan-

tummechanica: algemene relativiteitstheorie is een niet-renormaliseerbare

theorie, hetgeen erop neerkomt dat het toepassen van kwantummechanische

stoornisrekening op deze theorie leidt tot onoverkomelijke oneindigheden in

verstrooiingsamplitudes.

Niet-renormaliseerbaarheid en effectieve theorieën

Laten we het probleem van de niet-renormaliseerbaarheid even illustreren aan

de hand van een ander voorbeeld, de vier-fermion theorie van de zwakke in-

teracties. In deze theorie worden zwakke interacties beschreven als inter-

acties van vier fermionen in eenzelfde punt van de ruimte-tijd zoals gëıllu-

streerd in figuur B.1(a). De sterkte van deze interactie is vervat in een koppe-

lingsconstante GF die de dimensies1 heeft van [energie]−2
. Dit betekent dat,

in een proces bij karakteristieke energie E, de effectieve dimensieloze koppe-

ling evenredig is met GFE
2. Deze koppeling wordt willekeurig groot bij hoge

energieën en leidt tot oneindigheden in verstrooiingsamplitudes die, in tegen-

stelling tot de oneindigheden die voorkomen in renormaliseerbare theorieën,

niet kunnen geabsorbeerd worden in herdefinitie van de fysische parameters

van de theorie2.

We hebben reeds vermeld dat het Standaardmodel wel een goede kwan-

tummechanische beschrijving geeft van de zwakke interacties, en het loont

de moeite om even stil te staan bij de manier waarop het probleem van de

niet-renormaliseerbaarheid van het oorspronkelijke vier-fermion model hier

een oplossing kreeg. In figuur B.1(b) hebben we hetzelfde proces als in fi-

1We werken hier in eenheden waarin c = � = 1.
2Juister gezegd, het wegwerken van de oneindigheden in een niet-renormaliseerbare theorie

zou de introductie van oneindig veel experimenteel te bepalen fysische parameters vergen,
hetgeen uiteraard nefast is voor de voorspellende kracht van de theorie.
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Figuur B.1: (a) Een vier fermion-interactie in de oorspronkelijke vier-fermi

beschrijving. (b) Hetzelfde proces in de Standaard Model-beschrijving: de

interactie wordt ‘uitgesmeerd’ door de uitwisseling van een W-boson.

guur B.1(a) voorgesteld, maar dan in de Standaard model beschrijving. We

zien dat, wanneer men het proces op voldoende kleine schaal bekijkt, de vier-

fermion interactie blijkt te ontstaan tengevolge van de uitwisseling van een

nieuw deeltje, het W-boson. Op die manier is de interactie ‘uitgespreid’ en

zijn de hoge-energie (kleine afstand) divergenties van het vier-fermion model

afwezig. De oorspronkelijke vier-fermion beschrijving geeft echter wel een

goede benadering bij voldoende lage energieën. Men zegt dat de vier-fermion

theorie een effectieve beschrijving is.

Dit voorbeeld illustreert de historisch gegroeide interpretatie van niet-

renormaliseerbare theorieën: niet-renormaliseerbaarheid wijst erop dat de

theorie in kwestie slechts een effectieve beschrijving levert van een meer fun-

damentele theorie. Deze laatste theorie bevat nieuwe vrijheidsgraden (zoals

het W-boson in ons voorbeeld) die ervoor zorgen dat de interacties worden

uitgesmeerd en het probleem van de hoge-energie divergenties oplossen.

Snaartheorie: een fundamentele beschrijving van de zwaartekracht

Keren we nu terug naar de algemene relativiteitstheorie. Ook hier heeft de

koppelingsconstante, de konstante van Newton GN , de dimensie van

[energie]−2
. Dezelfde problemen van niet-renormaliseerbaarheid treden ook

hier op, en men verwacht dan ook te maken te hebben met een effectieve
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graviton

a) b)

Figuur B.2: (a) Een verstrooiingsamplitude met uitwisseling van een graviton.

(b) Hetzelfde proces in snaartheorie: het vervangen van deeltjes door snaren

heeft tot gevolg dat de interactie wordt ‘uitgesmeerd’.

beschrijving van een meer fundamentele theorie. De zoektocht naar een fun-

damentele beschrijving van de zwaartekracht in termen van een ‘traditionele’

deeltjestheorie heeft evenwel niets opgeleverd. Het leek er dan ook op dat

zo’n beschrijving een radicaal nieuwe aanpak zou vereisen. Zulk een radicaal

nieuw idee, en voorlopig nog steeds het enige gekende idee dat de zojuist

beschreven problemen oplost, kwam, nu ongeveer dertig jaar geleden, in de

belangstelling in de vorm van snaartheorie.

In de snaartheorie zijn de fundamentele objecten geen deeltjes, maar sub-

microscopisch kleine, trillende, snaren. Van op voldoende grote afstand beke-

ken zien deze trillende snaartjes eruit als deeltjes, en elke trillingswijze van

de snaar komt overeen met een deeltje met bepaalde fysische kenmerken.

Op die manier kunnen vele theorieën van elementaire deeltjes gezien worden

als effectieve beschrijvingen van een onderliggende theorie van snaren. Het

mooie is nu dat één van deze trillingswijzen van de snaar kan gëıdentificeerd

worden als het deeltje dat verantwoordelijk is voor het overbrengen van de

zwaartekracht, het graviton. Snaartheorie is dus een kandidaat voor de meer

fundamentele theorie waarvan de algemene relativiteitstheorie een effectieve

beschrijving geeft (zie figuur B.2), en het is inderdaad gebleken dat snaarthe-

orie voldoet aan het voornaamste criterium dat men aan zo’n fundamentele

theorie stelt, namelijk eindigheid van de stoornisrekening.
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Snaartheorie en unificatie

Naast het incorporeren van gravitatie bevat snaartheorie nog een aantal an-

dere ingrediënten die in de loop van de twintigste eeuw zijn voorgesteld in

de zoektocht naar een geünificeerde beschrijving van de natuur. We pikken

er hier slechts de meest prominente uit.

• Naast de hoger vermelde graviton-excitatie bevat de snaartheorie nog

vele andere excitaties, en sommige hiervan dragen de juiste kenmerken

om gëıdentificeerd te worden als de elementaire deeltjes en dragers van

krachten uit het Standaardmodel. In snaarmodellen (zie bv. [1]) is de

symmetriegroep van het Standaardmodel typisch ingebed in een grotere

symmetriegroep. Hierdoor verenigt snaartheorie gravitatie met het idee

van de Grote Geünificeerde Theorieën (GUT’s) voorgesteld in de jaren

’70.

• Snaartheorie realiseert ook het concept van extra ruimtelijke dimensies.

Inderdaad, de gekende consistente snaartheorieën vereisen maar liefst 9

ruimtelijke dimensies. Dit idee is niet in strijd met experimentele waar-

nemingen zolang 6 van deze dimensies maar voldoende klein of ‘opge-

rold’ zijn, en werd reeds in de twintiger jaren voorgesteld door Kaluza

en Klein als een mogelijk mechanisme voor de unificatie van zwaarte-

kracht en elektromagnetisme [4]. Traditioneel werd vermoed dat deze

extra dimensies zich zouden uitstrekken over een grootte van de orde

van de Planck-lengte, lp = G−1/2
N = 1.6 × 10−33 cm. De laatste jaren

wordt ook terdege rekening gehouden met de mogelijkheid van grotere

extra dimensies, tot zelfs van de grootte orde van 1 mm [5]!

• Een derde belangrijk ingrediënt in snaartheorie is supersymmetrie, een

symmetrie tussen bosonische en fermionische vrijheidsgraden, die deel

uitmaakt van alle gekende consistente snaartheorieën. Ook supersym-

metrie was reeds voorgesteld als een onderdeel van een mogelijke uit-

breiding van het Standaardmodel (zie bv. [6] voor een recent over-

zicht), onder meer omdat het een natuurlijke verklaring geeft voor de

hiërarchie van de grootte-orden van fysische parameters in het Stan-

daardmodel.
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B.1.2 Waarom snaarveldentheorie?

In de vorige paragraaf zagen we dat snaartheorie, in de vorm waarin zij con-

ventioneel wordt geformuleerd, een formalisme geeft waarin verstrooiings-

processen, onder andere tussen gravitonen, perturbatief kunnen berekend

worden. We duiden deze conventionele en zeer uitvoerig bestudeerde for-

mulering dan ook aan met de term perturbatieve snarentheorie. Voor een

aantal toepassingen, waarvan een specifiek voorbeeld uitvoerig aan bod komt

in deze thesis, is het echter noodzakelijk gebruik te maken van een meer

uitgebreid formalisme, dat van de snaarveldentheorie. Om een idee te krij-

gen van de bestaansredenen van de snaarveldentheorie dienen we even stil

te staan bij de beperkingen inherent in de formulering van de perturbatieve

snaartheorie. Weerom loont het de moeite de situatie te vergelijken met deze

in de elementaire deeltjesfysica.

Veldentheorie versus S-matrix theorie

Het natuurlijke kader voor de beschrijving van interacties tussen relativisti-

sche deeltjes is de kwantumveldentheorie, waarin deeltjes beschreven worden

als fluctuaties van een kwantumveld. De kwantumveldentheorie beschrijft de

interacties tussen deeltjes (waarbij ook deeltjes kunnen worden gecreëerd

of geannihileerd) op een manier die in overeenstemming is met de vereisten

van de kwantummechanica en de speciale relativiteitstheorie. In het bijzon-

der leidt kwantumveldentheorie tot een perturbatieve methode voor het be-

rekenen van overgangsamplitudes tussen initiële en finale toestanden die elk

een vast aantal deeltjes bevatten. Zulke overgangsamplitudes noemt men S-

matrix3 elementen en deze vormen de basis voor de berekening van meetbare

grootheden zoals vervaltijden en werkzame doorsneden.

S-matrix elementen worden hier benaderd door een som van bijdragen,

waarbij elke afzonderlijke contributie kan worden voorgesteld door een Feyn-

man diagram (enkele voorbeelden van Feynman diagrammen zagen we reeds

in de figuren B.1, B.2). Deze diagrammen zijn opgebouwd volgens een set van

Feynman regels die men op een eenvoudige manier kan aflezen uit de actie

voor het kwantumveld. We geven een eenvoudig voorbeeld: de theorie van

3De fysische beperkingen op de S-matrix, zoals Lorentz-invariantie, unitariteit en causaliteit
zijn zelfs zodanig restrictief dat ze op een natuurlijke manier leiden tot het invoeren van
kwantumvelden [7].
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(a) (b)

Figuur B.3: Feynman diagrammen in scalaire φ3 theorie worden opgebouwd

met behulp van (a) een propagator en (b) een drie-punts interactie vertex.

een scalair veld φ met de volgende actie:

S[φ] =
∫
d4x[

1

2
φ(∂µ∂

µ −m2)φ+ g
3!
φ3].

In termen van Feynman diagrammen geeft de eerste term aanleiding tot de

propagator (figuur 1.3(a)), die vrije propagatie van het deeltje voorstelt, ter-

wijl de tweede term aanleiding geeft tot interacties waarbij twee deeltjes an-

nihileren en een derde deeltje wordt gecreëerd. Deze interactie wordt dan

voorgesteld door een drie-punts interactie vertex (figuur 1.3(b)).

In de perturbatieve snaartheorie is de situatie in zekere zin omgekeerd:

hier beschikt men over een perturbatieve expansie van de S-matrix, maar is

het niet a priori duidelijk of deze expansie ook een veldentheoretische oor-

sprong heeft. De doelstelling van de snaarveldentheorie is dan ook het intro-

duceren van snaarvelden, waarvan de fluctuaties overeenkomen met snaren,

en het opstellen van een actie voor deze velden die, via een bijhorende set

van Feynman regels, de perturbatieve S-matrix expansie van de snaartheorie

genereert.

De voordelen van een veldentheorie-beschrijving

Een eerste vraag die men zich dient te stellen is uiteraard: is zo’n aanpak wel

echt noodzakelijk voor de beschrijving van snaren? Indien immers alle fy-

sisch relevante vragen zouden kunnen beantwoord worden met behulp van

perturbatieve snaartheorie, zou het invoeren van snaarveldentheorie geen

noodzaak zijn maar hoogstens kunnen leiden tot een alternatieve beschrij-

ving van dezelfde fenomenen.
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In de theorie van deeltjes zijn er vele toepassingen te vinden waarvoor de

perturbatieve S-matrix expansie te kort schiet, maar die wel adequaat kunnen

beschreven worden in de veldentheorie. We geven een paar voorbeelden.

• Allereerst is deze aanpak, zoals de naam reeds suggereert, perturbatief

van aard in de zin dat er een expansie gemaakt wordt in machten van

een koppelingsconstante, zoals de parameter g in het voorbeeld (1.2.1),

die klein verondersteld wordt. Sterker nog, in het algemeen (en dit geldt

waarschijnlijk ook voor de perturbatieve snaartheorie) is deze reeks niet

convergent, doch eerder een asymptotische ontwikkeling voor kleine g.

Zo’n asymptotische reeks kan weliswaar een zeer goede benadering ge-

ven voor voldoende kleine waarden van g, maar kan, voor grotere waar-

den van g, belangrijke aspecten van de fysica van het model missen.

Dit is bijvoorbeeld het geval voor de beschrijving van solitonische ob-

jecten, zoals monopolen in ijktheorieën, die typisch een massa hebben

evenredig met 1/g. Een ander voorbeeld zijn de zogenaamde instan-

ton correcties op verstrooiingsamplitudes, die typisch van de orde e−1/g

zijn.

• Voor de beschrijving van processen in aanwezigheid van achtergrond-

velden en voor het berekenen van kwantum correcties op de klassieke

actie dient men te beschikken over meer algemene amplitudes dan de-

gene die vervat zijn in de elementen van de S-matrix: deze worden off-

shell amplitudes genoemd.

• De S-matrix aanpak schiet ook tekort in de beschrijving van collectieve

fenomenen waarbij grote aantallen deeltjes betrokken zijn. Een voor-

beeld van zo’n fenomeen, dat een cruciale rol speelt in de formulering

van het Standaardmodel, is het Brout-Englert-Higgs-Kibble-effect, waar-

bij er een condensaat van scalaire deeltjes wordt gevormd dat onder

meer verantwoordelijk is voor het genereren van massa’s van deeltjes in

het Standaard Model.

De ambitie van snaarveldentheorie is om een kader te bieden waarin ge-

lijkaardige toepassingen in de snaartheorie kunnen worden behandeld. Merk-

waardig genoeg is het hier mogelijk gebleken een aantal niet-perturbatieve

effecten te beschrijven enkel gebruik makend van technieken uit de perturba-

tieve snaartheorie. Het is namelijk gebleken dat, in vele gevallen, een snaar-

theorie bij hoge waarde van de koppeling g equivalent (‘duaal’) is met een
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andere snaartheorie bij een kleine koppeling g′ evenredig4 met 1/g. Op deze

manier is het mogelijk het gedrag van een snaartheorie bij sterke koppeling te

bestuderen aan de hand van perturbatieve berekeningen in de duale theorie.

Ofschoon snaarveldentheorie weinig of geen rol heeft gespeeld bij de ont-

dekking van dit soort dualiteitsrelaties, is het toch een noodzakelijk hulpmid-

del gebleken in een aantal toepassingen. Eén van deze toepassingen, tachyon

condensatie, vormt het hoofdonderwerp van deze thesis.

Wittens snaarveldentheorie

De hoop en ambitie van de snaarveldentheorie is dus om een beschrijving te

kunnen geven van aspecten van snaartheorie waarvoor de perturbatieve aan-

pak tekort schiet. De tot nu toe meest succesvolle snaarveldentheorie werd

voorgesteld door Witten in 1986 en beschrijft de interacties tussen bosoni-

sche open snaren.

De actie ziet eruit als volgt:

S[Ψ] =
∫
• [1

2
Ψ ⋆QΨ + g

3
Ψ ⋆ Ψ ⋆ Ψ]. (B.1.1)

Zonder hier in te gaan op de precieze betekenis van alle symbolen (dit ge-

beurt in hoofdstuk 3), wensen we toch kort de fysische betekenis van de twee

termen in deze actie te bespreken. Wanneer we de actie vergelijken met de

actie voor het scalaire veld, zien we een aantal gelijkenissen: het scalaire veld

φ is vervangen door het snaarveld Ψ , de kinetische energie operator door een

nog mysterieuze operator Q, de operaties van vermenigvuldiging en integra-

tie zijn vervangen door analoge operaties ⋆ en
∫
• op snaarvelden. De betekenis

van de twee termen in (B.1.1) is dan ook vergelijkbaar met met deze van de

twee termen in (1.2.1): de eerste term beschrijft vrije propagatie van sna-

ren (figuur B.4(a)) terwijl de tweede term snaarinteracties beschrijft waarbij

twee snaren aaneengehecht worden ter vorming van een nieuwe snaar (figuur

B.4(b)).

4Dit type dualiteit staat bekend onder de naam S-dualiteit. Een ander soort dualiteitsrelaties
aanwezig in de snaartheorie zijn de zogenaamde T-dualiteiten, die we bestudeerden in ons
artikel [76].



172 Bijlage B. Samenvatting

(a) (b)

Figuur B.4: Feynman diagrammen in open snaartheorie worden opgebouwd

met behulp van (a) een propagator en (b) een drie-snaar interactie vertex.

B.1.3 Onstabiele objecten in snaartheorie

D-branen

Van groot belang in de recente ontwikkelingen in de snaartheorie is de vast-

stelling dat gesloten snaartheorie meer is dan een theorie van snaren alleen:

ze bevat ook andere objecten, die D-branen worden genoemd. D-branen zijn

objecten die zich kunnen uitstrekken over meerdere ruimtelijke dimensies:

zo spreekt men van het D-deeltje, de D-snaar, het D-membraan enzoverder.

Ofschoon D-branen uitgebreide objecten zijn die deel uitmaken van ge-

sloten snaartheorie, spelen open snaren een belangrijke rol in de beschrij-

ving ervan. Een D-braan kan immers gezien worden als een hyperoppervlak

waarop open snaren kunnen eindigen. Deze open snaren komen overeen met

fluctuaties van het D-braan.

De D-branen in gesloten supersnaartheorieën hebben een belangrijke fy-

sische eigenschap: zij dragen een bepaald soort lading, die Ramond-Ramond

lading genoemd wordt. Deze eigenschap hangt nauw samen met supersym-

metrie: het feit dat D-branen deze lading dragen identificeert hen als objecten

in wier aanwezigheid de theorie invariant blijft onder een aantal supersym-

metrieën. Zulke objecten worden ook BPS-objecten genoemd. Een belangrijk

gevolg van de BPS-eigenschap is dat D-branen stabiel zijn en niet kunnen ver-

vallen naar lichtere objecten.
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Tachyonen en instabiliteiten in veldentheorie

Vooraleer we overgaan tot de bespreking van onstabiele branen in snaartheo-

rie, zeggen we eerst iets over instabiliteiten in kwantumveldentheorie.

In de kwantumveldentheorie worden instabiliteiten van het systeem gesig-

naleerd door de aanwezigheid van tachyonen in het perturbatieve spectrum

van de theorie. Met de term tachyon bedoelen we een fluctuatie van het veld

die, indien men zou insisteren op een deeltjesinterpretatie, een deeltje met

een imaginaire rustmassa (en bijgevolg, een snelheid groter dan de lichtsnel-

heid) zou beschrijven. Een kleine verstoring van zo’n systeem geeft aanleiding

tot een vervalproces naar een stabiele configuratie. Dit proces wordt tachyon

condensatie genoemd omdat, in de stabiele toestand, er zich een condensaat

van scalaire deeltjes heeft gevormd. De aanwezigheid van dit condensaat

heeft belangrijke gevolgen voor de fysica van het model; zo bëınvloedt het de

massa’s van de andere deeltjes in het model. Dit mechanisme speelt een zeer

belangrijke rol in het Standaardmodel, waar het verantwoordelijk is voor het

genereren van de massa’s van materiedeeltjes en van deze van de dragers van

de zwakke kernkracht.

Onstabiele branen en Sens conjectuur

Naast de zojuist besproken stabiele branen, bestaan er in de snaartheorie ook

onstabiele branen, die de BPS-eigenschap niet bezitten. Hun bestaan werd

voor het eerst aangetoond door Sen.

Net als in veldentheorie wordt de instabiliteit van deze objecten ook hier

gesignaleerd door de aanwezigheid van een tachyon in het fluctuatiespec-

trum. Ook hier zal het systeem vervallen naar een stabiele configuratie en zal

er tachyon condensatie plaatsvinden. Een belangrijke vraag betreft hier de

aard van het eindstadium van dit proces.

In deze context heeft Sen, op basis van een aantal argumenten gebaseerd

op string dualiteiten, een hypothese voorgesteld die de motivatie vormt voor

het onderzoek gepresenteerd in deze thesis. Volgens Sens conjectuur is het

eindproduct van tachyon condensatie op onstabiele branen niets anders dan

de grondtoestand van gesloten snaartheorie, of anders gezegd: het onstabiele

braan vervalt naar de lege ruimte onder tachyon condensatie.

Indien de hypothese waar is, moet alle energie die vervat zit in de massa

van het onstabiele braan opgebruikt worden in het proces van tachyon con-

densatie. Dit kan alleen maar als de potentiaal voor het tachyon aan volgende
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voorwaarde voldoet: het verschil tussen de waarde van de potentiaal op zijn

maximum (dat overeenkomt met het onstabiele braan) en de waarde op het

minimum (dat de stabiele eindtoestand voorstelt) moet precies gelijk zijn aan

de spanning van het onstabiele braan.

Het berekenen van de tachyon potentiaal vormt dus een concrete test van

Sens conjectuur. Bovendien is dit een berekening waarvoor de perturbatieve

snaartheorie tekort schiet en die dus thuishoort in het formalisme van de

snaarveldentheorie. We zien hier een ideale gelegenheid om snaarveldenthe-

orie te testen in een concrete toepassing. Inderdaad, voor de snaarveldenthe-

orie werd gebruikt om Sens conjectuur te testen, was het een wijdverspreide

opvatting dat stringveldentheorie gefaald had omdat ze nog geen resultaten

had opgeleverd die niet konden verkregen worden met behulp van de per-

turbatieve snaartheorie. We zijn dan ook van mening dat de studie van de

tachyon potentiaal in snaarveldentheorie, waar ons onderzoek deel van uit-

maakt, deze visie heeft ontkracht.

B.2 Overzicht van de thesis

Hoofdstuk 2: perturbatieve snaartheorie

In hoofdstuk 2 geven we een overzicht van de perturbatieve snaartheorie.

Zo’n kort overzicht is uiteraard verre van volledig, en de hier gegeven selectie

van topics is gemaakt met twee doelstellingen voor ogen.

Enerzijds willen we voor de gëınteresseerde niet-expert een aantal basis-

resultaten in de perturbatieve snaartheorie vermelden, waarvan we er reeds

enkele aanstipten in de vorige paragraaf. In sectie 2.1 bespreken we de Poly-

akov actie, die aan de basis ligt van de perturbatieve snaartheorie. In sectie

2.2 geven we aan hoe Feynmans padintegraalformalisme leidt tot de perturba-

tieve expansie van de S-matrix in snaartheorie, en bespreken we hoe het fixen

van de lokale symmetrieën in snaartheorie aanleiding geeft tot de introductie

van ‘spoken’. Sectie 2.4 behandelt het fysische spectrum van de bosonische

snaar in het formalisme van de BRST-kwantisatie. Hier stellen we vast dat het

fysische spectrum van de gesloten snaar onder meer een graviton bevat. In

sectie 2.5 bespreken we de uitbreiding naar supersnarentheorie. Het fysische

spectrum van de supersnaar wordt behandeld in paragraaf 2.5.5. Tenslotte

geven we in paragraaf 2.5.6 een overzicht van de gekende consistente super-

snaartheorieëen.
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Anderzijds willen we van de gelegenheid gebruik maken om een aantal

technische aspecten uit te werken die nodig zijn voor een grondig begrip

van de technische kanten van hoofdstukken 3-7. In deze categorie valt para-

graaf 2.3 waarin we tweedimensionale conforme veldentheorieën bespreken,

die kunnen gezien worden als de bouwstenen van de snaartheorie. In latere

hoofdstukken zullen we regelmatig gebruik maken van volgende resultaten:

het bepalen van het gedrag van lokale operatoren onder conforme afbeeldin-

gen (paragraaf 2.3.2), het verband tussen Fock-ruimte toestanden en lokale

operatoren (paragraaf 2.3.3), en de inwendige producten in de Fock-ruimte

van conforme veldentheorieën (paragraaf 2.3.5). In paragrafen 2.5.4 en 2.5.5

komen enkele technische details aan bod in verband met de spoken in super-

snaartheorie. Deze spelen een belangrijke rol in sectie 3.2 en hoofdstuk 7.

Hoofdstuk 3: snaarveldentheorie

In dit hoofdstuk voeren we het formalisme van de snaarveldentheorie in. We

introduceren het formalisme in de oorspronkelijke formulering van Witten,

die het nauwst aansluit bij het intüıtieve beeld dat snaarinteracties hun oor-

sprong vinden in het opsplitsen en aaneenhechten van snaren, en maken dan

de overstap naar de equivalente formulering in termen van correlatoren in

conforme veldentheorie. Deze laatste formulering zullen we uitvoerig gebrui-

ken in de concrete berekeningen van hoofdstukken 5 en 7.

In paragraaf 3.1.1 introduceren we snaarvelden en overlopen we de ver-

schillende voorstellingen van deze objecten die gangbaar zijn in de litera-

tuur. In paragrafen 3.1.2 en 3.1.3 gaan we in op de structuur en de betekenis

van de symbolen in Wittens actie (B.1.1) voor open snaarveldentheorie. In

paragraaf 3.1.4 leiden we de equivalente formulering af in termen van corre-

latoren in conforme veldentheorie. Onze afleiding, die gebruik maakt van de

padintegraal voorstelling van het stringveld, is nog niet eerder in de litera-

tuur verschenen. In 3.1.6 illustreren we het voorgaande aan de hand van een

eenvoudig voorbeeld. Ofschoon we in deze thesis enkel klassieke aspecten

van de snaarveldenheorie bestuderen, staan we in paragraaf 3.1.7 toch even

stil bij de kwantisatie van de theorie, die de gekende S-matrix expansie van

perturbatieve snaartheorie reproduceert.

Sectie 3.2 is gewijd aan de veldentheorie beschrijving van open supersna-

ren. In de literatuur zijn er drie verschillende concrete voorstellen gedaan

voor zo’n beschrijving, die we een voor een overlopen. Het eerste voorstel

werd gedaan door Witten en is terug te vinden in paragraaf 3.2.1. Het is een
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vrij directe veralgemening van de bosonische snaarveldentheorie. Deze the-

orie bleek echter niet vrij van problemen te zijn, en in een poging om deze

problemen op te lossen, werd in de literatuur een licht gewijzigde theorie

voorgesteld die besproken wordt in paragraaf 3.2.2. Een derde actie voor su-

persnaar veldentheorie werd voorgesteld door Berkovits. Deze theorie, die

we bespreken in paragraaf 3.2.3, heeft een drastisch gewijzigde structuur ten

opzichte van de twee andere voorstellen.

Tenslotte staan we in sectie 3.3 even stil bij de onvolmaaktheden en open

problemen in de snaarveldentheorie anno 2001.

Hoofdstuk 4: tachyon condensatie

In hoofdstuk 4 geven we de motivatie voor ons onderzoek inzake tachyon

condensatie in snaartheorie en plaatsen we het in een ruimer kader.

In sectie 4.1 geven we voorbeelden van tachyon condensatie in veldenthe-

orie waar zij een belangrijk ingrediënt vormt van het Standaardmodel. In

secties 4.2 en 4.3 bespreken we het bestaan van BPS D-branen in snaartheorie

en hun rol in de ontdekking van dualiteitsrelaties tussen op het eerste gezicht

verschillende snaartheorieën. In sectie 4.4.2 behandelen we Sens constructie

van onstabiele branen in snaartheorie, en stellen we vast dat de instabiliteit

ook hier gesignaleerd wordt door de aanwezigheid van een tachyon in het

spectrum van fluctuaties van het braan. In secties 4.4.3 en 4.4.4 formuleren

we Sens conjectuur in verband met de potentiaal van het tachyon en geven we

aan waarom de verificatie van deze conjectuur thuishoort in het formalisme

van de snaarveldentheorie.

Hoofdstuk 5: tachyon condensatie in bosonische snaartheorie

In dit hoofdstuk bespreken we het fenomeen van tachyon condensatie in bo-

sonische snaartheorie. Ofschoon het grootste deel van de resultaten in dit

hoofdstuk te vinden is in de literatuur, proberen we hier toch enkele losse

eindjes aan elkaar te knopen. Tevens is het bosonische model een ideale gele-

genheid om een aantal basisprincipes te illustreren in een relatief eenvoudige

context, die we dan in hoofdstuk 7 gemakkelijk kunnen vergalgemenen naar

het technisch meer veeleisende kader van de supersnaren.

In secties 5.1 en 5.2 geven we aan welke componenten van het snaarveld

betrokken zijn bij tachyon condensatie en tonen we aan dat de tachyon po-

tentiaal een universele functie is die niet afhangt van specifieke details van
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het model. In sectie 5.3 bespreken we de benaderingsmethode die we gebrui-

ken in alle berekeningen in deze thesis. Deze methode is bekend als de level

truncatie methode en blijkt in de praktijk een reeks van opeenvolgende bena-

deringen te geven die snel convergeert naar het exacte resultaat. Secties 5.5

en 5.6 behandelen dan de berekening van de tachyon potentiaal in de zoge-

naamde level (4,8) benadering. Het resultaat is in zeer goede overeenstem-

ming met de voorspellingen van Sens conjectuur. Tenslotte bespreken we in

5.7 een interessante hypothese omtrent de fysica van het model na tachyon

condensatie. Er wordt geopperd dat het model hier een beschrijving zou kun-

nen geven van gesloten snaren en hiermee het oude idee van ‘gesloten snaren

uit open snaren’ concreet zou kunnen realiseren. Dit laatste idee, ofschoon

zeer speculatief, vormt ons inziens één van de meestbelovende richtingen

voor verder onderzoek in het domein.

Hoofdstuk 6: vereenvoudigd model voor tachyon condensatie in bosoni-

sche snaartheorie

In dit hoofdstuk willen we een belangrijk aspect van de berekening van de

tachyon potentiaal, namelijk de level truncatie methode, op een iets steviger

basis plaatsen. Deze methode is immers grotendeels ‘experimenteel’ in de

zin dat zij in de praktijk goed blijkt te convergeren maar dat hier weinig a-

priori argumenten voor bestaan. Daarom bekijken we in dit hoofdstuk deze

methode in een vereenvoudigd model dat gëınspireerd is op het volledige

probleem in snaarveldentheorie.

In secties 6.1 en 6.2 stellen we het model voor, geven we aan hoe het gere-

lateerd is tot bosonische snaarveldentheorie, en leiden we de vergelijkingen

voor het condensaat af. In sectie 6.3 construeren we de exacte oplossing voor

een specifieke waarde van de parameters van het model. In sectie 6.4 maken

we de vergelijking met de resultaten bekomen in de level truncatie methode.

We kunnen hier aantonen dat de level truncatie methode, in functie van het

level, op exponentiële wijze convergeert naar het exacte resultaat. Dit gedrag

stemt overeen met de ‘experimentele’ bevindingen in de volledige snaarvel-

dentheorie.

Hoofdstuk 7: tachyon condensatie in supersnaartheorie

In hoofdstuk 7 presenteren we onze resultaten omtrent de studie van de ta-

chyon potentiaal in supersnaartheorie. Zoals we reeds vermeldden, bestaan
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er in de literatuur drie verschillende voorstellen voor de veldentheorie van

open supersnaren; in dit hoofdstuk bestuderen we de tachyon potentiaal in

elk van deze theorieën. De analyse gebeurt, net zoals voor de bosonische

snaar, met de methode van level truncatie.

De studie van tachyon potentiaal in supersnaartheorie moet in een ander

licht gezien worden dan de gelijkaardige studie voor de bosonische snaar:

daar waar, voor de bosonische snaar, de snaarveldentheorie beschrijving bui-

ten kijf stond en Sens conjectuur onzeker was, is in de supersnaartheorie

Sens conjectuur beter geargumenteerd terwijl de correcte veldentheorie be-

schrijving onzeker is. Daarom dient de berekening van de tachyon potentiaal

hier eerder beschouwd te worden als een test om te zien of de veldentheorie

beschrijving de verwachte resultaten kan reproduceren.

In sectie 7.1 bespreken we de tachyon potentiaal in Wittens supersnaar

veldentheorie. Deze resultaten zijn verschenen in ons artikel [115]. We be-

spreken eerst hoe de theorie dient uitgebreid te worden om de fluctuaties van

een onstabiel braan te beschrijven, en gaan dan over tot de concrete bereke-

ning van de tachyon potentiaal in de level (2,4) benadering. We stellen vast

dat de tachyon potentiaal in de eerste benadering geen minimum vertoont, en

dat dit het geval blijft wanneer men de invloed van hogere levels in rekening

brengt. De potentiaal vertoont dan zelfs een singulier gedrag. We besluiten

dan ook dat deze theorie resultaten oplevert die in strijd zijn met het door

Sens conjectuur voorspelde gedrag.

In sectie 7.2 bestuderen we het gedrag van de tachyon potentiaal in de

gewijzigde kubische snaarveldentheorie. In een eerste benadering vertoont

de potentiaal een minimum, en de waarde van de potentiaal in dit minimum

bedraagt 97% van de voorspelde exacte waarde. Wanneer we ook een volgend

level in rekening nemen, stellen we vast dat dat de waarde in het minimum

de voorspelde waarde overschrijdt: zij bedraagt hier 108% van de verwachte

waarde. Om uitsluitsel te geven, bestuderen we de potentiaal ook in de vol-

gende benadering, namelijk op level (5/2,5). Hier vinden we een gedrag dat

manifest in tegenspraak is met Sens conjectuur. We zien ons dus genood-

zaakt het optimisme van sommige auteurs omtrent het gedrag van de tachyon

potentiaal in deze theorie enigszins te temperen en concluderen dat er ook

hier geen overeenstemming is met Sens conjectuur.

Tenslotte richten we in sectie 7.3 onze aandacht op de tachyon potentiaal

in de theorie die werd voorgesteld door Berkovits. De resultaten, die ook te

vinden zijn in ons artikel [118], blijken hier wel in goede overeenstemming te
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Figuur B.5: De tachyon potentiaal f in Berkovits’ snaarveldentheorie in drie

opeenvolgende benaderingen in de level truncatiemethode. De door Sen voor-

spelde waarde van f in de minima is f = −1.

zijn met de voorspellingen van Sens conjectuur: in de eerste benadering vindt

men een minimum waar de waarde van de potentiaal 62% van de voorspelde

exacte waarde bedraagt, op level (3/2,3) vindt men 85% van de voorspelde

waarde, en de level (2,4) benadering levert 89% van de voorspelde waarde

(zie figuur B.5).

B.3 Samenvatting van de resultaten

De belangrijkste nieuwe resultaten die in deze thesis naar voor worden ge-

bracht, zijn:

• De afleiding van snaarveldentheorie in de conforme veldentheorie re-

presentatie (sectie 3.1.4), waarbij we gebruik maken van de padintegraal

voorstelling van het snaarveld.

• De studie van de level truncatie methode in een vereenvoudigd model

(hoofdstuk 6), waar we kunnen aantonen dat deze methode een algo-
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ritme levert dat, als functie van het level, exponentieel convergeert naar

het exacte resultaat.

• De studie van de tachyon potentiaal op level (2,4) in Wittens supersnaar

veldentheorie, waar we vaststellen dat het gedrag van de potentiaal niet

overeenstemt met de voorspellingen van Sens conjectuur.

• De studie van de tachyon potentiaal op level (5/2,5) in de gewijzigde ku-

bische snaarveldentheorie, waar we eveneens vaststellen dat het gedrag

van de potentiaal niet overeenstemt met de voorspellingen van Sens con-

jectuur.

• De studie van de tachyon potentiaal op level (2,4) in de snaarvelden-

theorie van Berkovits, waar we kunnen vaststellen dat het gedrag van

de potentiaal in goede overeenkomst is met de voorspellingen van Sens

conjectuur.
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