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Ciudad de México 04510, Mexico

4Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47403, USA
5Physics Department, Indiana University, Bloomington, Indiana 47405, USA

6CERN, 1211 Geneva 23, Switzerland
7European Centre for Theoretical Studies in Nuclear Physics and related Areas (ECT*) and Fondazione

Bruno Kessler, Villazzano (Trento), I-38123, Italy
8INFN Sezione di Genova, Genova, I-16146, Italy

(Received 22 July 2019; published 17 September 2019)

In the search for exotic mesons, the GlueX Collaboration will soon extract moments of the ηπ0 angular
distribution. In the perspective of these results, we generalize the formalism of moment extraction to the
case in which the two mesons are produced with a linearly polarized beam and build a model for the
reaction γ⃗p → ηπ0p. The model includes resonant S, P, and D waves in ηπ0, produced by natural
exchanges. Moments of the ηπ0 angular distribution are computed with and without the Pwave, to illustrate
the sensitivity to exotic resonances. Although little sensitivity to the P wave is found in moments of even
angular momentum, moments of odd angular momentum are proportional to the interference between the P
wave and the dominant S and D waves. We also generalize the definition of the beam asymmetry for two
mesons photoproduction and show that, when the meson momenta are perpendicular to the reaction plane,
the beam asymmetry enhances the sensitivity to the exotic P wave.
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I. INTRODUCTION

The recent 12 GeVupgrade of continuous electron beam
accelerator facility at the Jefferson Lab (JLab) opens a new
area inmeson spectroscopy studies, especially in addressing
the role of gluons in forming exotic hybrid mesons [1]. The
golden channel for the discovery of the exotic hybrid(s) is
through its decay to ηð0Þπ final states. In these final states, the
odd waves have exotic quantum numbers, and the lowest of
them, the P wave, is expected to resonate due to the exotic
π1ð1400=1600Þ state. Properties of this resonance were

recently determined using data collected by the
COMPASS experiment [2]. According to theoretical pre-
dictions [3–5], the production of the exotic meson
π1ð1400=1600Þ with photons could lead to sizable cross
sections measurable at JLab.
In the present paper, we focus on the reaction γ⃗p →

ηπ0p, which is currently under study by the GlueX
Collaboration. The GlueX experiment [6] uses linearly
polarized photons with energy Eγ ∼ 9 GeV. Observables
directly related to the spin of the resonance in the dimeson
spectrum are moments of the angular distribution. For
example, recent analysis of moments in πþπ− [7–9] and
KþK− photoproduction [10] were used to constrain proper-
ties of the lightS-,P-, andD-wave resonances. Our goal is to
investigate the sensitivity of these observables to the
presence of an exotic meson and to guide future exper-
imental analysis by identifying which combinations of
moments are most relevant for the identification of this
resonance. To illustrate the sensitivity of the moments to
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exotic contributions, we discuss production of resonantS,P,
and D waves in the forward direction, which are produced
dominantly by natural exchanges in the t channel [11,12].
We consider two cases. In one, we use the complete wave

set (S, P, and D waves), and in the other, we remove the P
wave. By comparing the moments obtained in these two
cases, we can assess the sensitivity to the presence of the
exotic meson.
The photon beam asymmetry corresponds to the dif-

ference in the cross sections for beams polarized parallel
and perpendicular to the reaction plane, spanned by the
momenta of the beam and the recoiling proton. In the
production of meson pairs, there is an additional depend-
ence on the direction of the relative momentum between the
two mesons.
It is thus possible to give different definitions of the

photon polarization asymmetry. Specifically, we consider
the case in which the decay angles are integrated over their
whole domain and when the relative momentum is fixed in
the direction perpendicular to the reaction plane. We find
that the maximal sensitivity of the beam asymmetry to the
P wave is obtained in the latter case.
The paper is organized as follows. In Sec. II, we describe

the reaction model for the ηπ0 photoproduction. In Sec. III,
we calculate moments of the dimeson angular distribution,
and in Sec. IV, we discuss the beam asymmetries. Our
conclusions are presented in Sec. V.
For clarity of presentation, all technical details are sum-

marized in the Appendixes. Specifically, in Appendix A, we
describe the kinematics of ηπ0 photoproduction and review
the definition of the angular moments. In Appendix B, we
derive formulas of the differential cross section in the case of
the linearly polarized beam. The relation between helicity
amplitudes at high energy for a given naturality exchange is
reviewed in Appendix C. In Appendix D, we extend the
reflectivity basis to reactions with a photon beam. Finally,
the relations between the moments and the partial waves are
summarized in Appendix E.

II. MODEL

We consider the reaction

γ⃗ðλ; pγÞpðλ1; pNÞ → π0ðpπÞηðpηÞpðλ2; p0
NÞ: ð1Þ

The helicities of the particles are defined in the helicity
frame, the rest frame of the ηπ0 with the direction opposite
to the recoil nucleon defining the z axis (see Fig. 1). The
amplitude for the reaction in (1) is denoted by Aλ;λ1λ2ðΩÞ,
with Ω being the spherical angle determining the direction
of the η in this frame. The dependence on the remaining
kinematical variables, i.e., the total energy squared
s ¼ ðpγ þ pNÞ2, the momentum transferred between the
nucleons t ¼ ðpN − p0

NÞ2, and the ηπ0 invariant mass
squared m2

ηπ0
¼ ðpη þ pπÞ2, is implicit. The direction of

photon linear polarization is determined by the angle Φ,
which is measured with respect to the ηπ production plane.
All the details and formulas are given in Appendix A.
Below, we summarize the key relations. In terms of the
reaction amplitude T, the differential cross section is
given by

IðΩ;ΦÞ≡ dσ
dtdmηπ0dΩdΦ

¼ κ
X
λ;λ0
λ1 ;λ2

Aλ;λ1λ2ðΩÞργλλ0 ðΦÞA�
λ0;λ1λ2

ðΩÞ; ð2Þ

with κ containing all kinematical factors, cf. Eq. (A4). The
photon spin density matrix ργ encodes the dependence on
the polarization direction [13]. Explicitly,

IðΩ;ΦÞ ¼ I0ðΩÞ − PγI1ðΩÞ cos 2Φ − PγI2ðΩÞ sin 2Φ; ð3Þ

with 0 < Pγ < 1 being the degree of linear polarization and

I0ðΩÞ ¼ κ

2

X
λ;λ1;λ2

Aλ;λ1λ2ðΩÞA�
λ;λ1λ2

ðΩÞ; ð4aÞ

I1ðΩÞ ¼ κ

2

X
λ;λ1;λ2

A−λ;λ1λ2ðΩÞA�
λ;λ1λ2

ðΩÞ; ð4bÞ

I2ðΩÞ ¼ i
κ

2

X
λ;λ1;λ2

λA−λ;λ1λ2ðΩÞA�
λ;λ1λ2

ðΩÞ: ð4cÞ

The partial wave amplitudes Tl are defined by

Aλ;λ1λ2ðΩÞ ¼
X
lm

Tl
λm;λ1λ2

Ym
l ðΩÞ: ð5Þ

Furthermore, it is convenient to work in the so-called
reflectivity basis, which uses the linear combination of the
two, λγ ¼ �1, photon helicities

ðϵÞTl
m;λ1λ2

≡ 1

2
½Tl

þ1m;λ1λ2
− ϵð−1ÞmTl

−1−m;λ1λ2
�; ð6Þ

FIG. 1. Left: the helicity frame, in which XJ , the ηπ0 resonance
of spin J, is at rest and quantized along the opposite direction of
the recoil nucleon. Right: the s-channel frame, the center-of-mass
frame of the reaction γp → XJp. The s channel is obtained from
the helicity frame by a boost along the z axis. The boost leaves the
helicity of XJ unchanged. The labels γ, p, and p0 stand for the
beam, the nucleon target, and the recoiling nucleon, respectively.
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with m ¼ −l;…;l. As shown in Appendix C, in the high-
energy limit, the amplitudes with ϵ ¼ þ1ð−1Þ are domi-
nated by t-channel exchanges with naturality, η ¼ þ1ð−1Þ,
respectively.1 Parity invariance implies

ðϵÞTl
m;−λ1−λ2 ¼ ϵð−1Þλ1−λ2 ðϵÞTl

m;λ1λ2
; ð7Þ

and we take advantage of this constraint to define two sets
of partial waves,

½l�ðϵÞm;0 ¼ ðϵÞTl
m;þþ; ½l�ðϵÞm;1 ¼ ðϵÞTl

m;þ−; ð8Þ

corresponding to nucleon helicity nonflip and flip, respec-
tively. Here, ½l� ¼ S, P,D for l ¼ 0, 1, 2 is the total spin of
the ηπ system. To summarize, in this basis for each l, there
are 2 × ð2lþ 1Þ complex partial waves for nucleon hel-
icity nonflip and independently 2 × ð2lþ 1Þ amplitudes
describing nucleon helicity flip. We note that in photo-
production the reflectivity basis involves all values of m,
while in the case of spinless beams, only the m ≥ 0 spin
projections enter [14].
In the following, we construct a model for ηπ0 partial

waves. Specifically, given the experimentally accessible
mass range mηπ0 < 2 GeV, we consider only the lowest
three waves, l ¼ 0, 1, 2 [15]. Moreover, we assume that the
helicity-nonflip amplitudes dominate and set the helicity-
flip amplitudes to zero. This is not restrictive, as the target is
not polarized in GlueX, and the measured intensities are not
sensitive to the details of the nucleon helicity structure.
Finally, we consider only the amplitudes with ϵ ¼ þ based
on the observation that natural parity exchanges are
dominant in the energy range of interest [12,16].
The model is fully determined by the knowledge of

the 2lþ 1 projections of each spin l wave. To reduce
the number of projections, we can use the empirical
observation of s-channel helicity conservation [11,17].2

Fortunately, observables (moments and beam asymmetries)
extracted in the helicity frame can be computed in the
s-channel frame. As illustrated in Fig. 1, the s-channel
frame is related to the helicity frame by a boost along the ηπ
momenta. The boost leaves the helicities of the photon, of
the ηπ resonance, and of the target proton invariant. On the
contrary, the recoil proton helicity changes under this boost,
but since this helicity is summed over when computing the
moments and the beam asymmetries, the observables are
invariant under this boost. Consequently, the moments and
the beam asymmetries in the s-channel frame and the
helicity frame are identical. In the following, we take

advantage of this equivalence and treat m in ½l�ðϵÞm;k as the

spin projection of the ηπ0 resonance of angular momentum
l in the s-channel frame.
The dominant s-channel helicity-conserving amplitudes

correspond to m ¼ 1. Therefore, requiring strict s-channel
helicity conservation would remove the Swave completely.
We thus include them ¼ 0 andm ¼ 2 contributions, which
correspond to one unit of helicity flip at the photon
vertex, and neglect the m ¼ −1 and m ¼ −2 projections.
Consequently, our basis is limited to the following waves:

½l�ðϵÞm;k ¼ fSðþÞ
0 ; PðþÞ

0;1 ; D
ðþÞ
0;1;2gk¼0

: ð9Þ

We now specify the dynamics of our model. We include
the a0ð980Þ, π1ð1600Þ, a2ð1320Þ, and a02ð1700Þ resonan-
ces. We parametrize each resonance with a Breit-Wigner
line shape,

ΔRðmηπÞ ¼
mRΓR

m2
R −m2

ηπ − imRΓR
: ð10Þ

mR and ΓR are the masses and total widths of the resonance
R, respectively. For the π1ð1600Þ, a2ð1320Þ and a02ð1700Þ
resonances, we use the mass and width obtained from a
recent fit to the π−p → ηð0Þπ−p COMPASS data [2]. For the
a0, we use the average mass and width quoted in the
Review of Particle Physics [18]. The model parameters are
summarized in Table I.
We assume factorization of the production amplitude and

include the high-energy limit of the angular momentum
conservation factor ð ffiffiffiffiffi

−t
p Þjm−1j at the photon-resonance

vertex. The contribution of the resonance R to the wave l
reads

½l�ðþÞ
m;0 ¼ N0NR

�
δR

ffiffiffiffiffi
−t

p
mR

�jm−1j
ΔRðmηπÞPVðs; tÞ: ð11Þ

N0 is an arbitrary overall normalization, while NR is the
normalization of each resonance relative to the a0ð980Þ,
and δR is the helicity-flip coupling. For the S wave, we set
Na0 ¼ δa0 ¼ 1. The remaining parameters NR and δR for
the P and D waves in Eq. (11) are chosen to roughly
reproduce the signs and the magnitude of the GlueX
preliminary results [19].

TABLE I. Model parameters. The label R stands for the
resonance. The mass (mR) and width (ΓR) of the resonances
are given in giga-electron-volts. The normalization (NR) and the
spin-flip coupling (δR) are dimensionless.

R mR ΓR NR δR

a0ð980Þ 0.980 0.075 1.000 1.0
π1ð1600Þ 1.564 0.492 −0.030 −5.0
a2ð1320Þ 1.306 0.114 −0.109 −2.0
a2ð1700Þ 1.722 0.247 −0.036 −2.0

1The naturality is defined by η ¼ Pð−1ÞJ for the exchange of
spin J and parity P. The reflectivity ϵ is the eigenvalue of the
reflectivity operator, the symmetry through the reaction plane.

2The s channel is the center-of-mass frame of the reaction (1).
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The Regge propagator for the natural exchange takes the
form

PVðs; tÞ ¼ Γ½1 − αðtÞ�ð1 − e−iπαðtÞÞsαðtÞ; ð12Þ

with αðtÞ ¼ 0.5þ 0.9t and with s and t expressed in giga-
electron-volts squared in PVðs; tÞ. The moments are calcu-
lated at s ¼ m2

p þ 2mpEγ with Eγ ¼ 9 GeV and are inte-
grated in the whole t range. The Regge factor PVðs; tÞ
provides an exponential suppression at large jtj. Since this
factor is common to all waves, it contributes to the overall
normalization for fixed t. The only t dependence not
common to all waves is due to the barrier factor ð ffiffiffiffiffi

−t
p Þjm−1j.

III. MOMENTS

From the intensities in Eqs. (4), one computes the
moments

H0ðLMÞ ¼ Pγ

2

Z
∘
IðΩ;ΦÞdLM0ðθÞ cosMϕ;

H1ðLMÞ ¼
Z
∘
IðΩ;ΦÞdLM0ðθÞ cosMϕ cos 2Φ;

ImH2ðLMÞ ¼ −
Z
∘
IðΩ;ΦÞdLM0ðθÞ sinMϕ sin 2Φ; ð13Þ

with
R
∘ ¼ ð1=πPγÞ

R
π
0 sin θdθ

R
2π
0 dϕ

R
2π
0 dΦ. Using the

wave set in (9), one can extract the moments up to

L ¼ 4. In addition, since there are only waves with positive
m components (proved in Appendix D), the moments fulfill
the following relation:

ImH2ðLMÞ ¼ −H1ðLMÞ; for M ≥ 1: ð14Þ
Therefore, we only consider the moments H0ðLMÞ and
H1ðLMÞ with 0 ≤ L ≤ 4 and 0 ≤ M ≤ L. The relations
between the relevant moments and the partial waves
restricted to the set (9) are provided in Appendix E. The
relations (E1) show that it is advantageous to compare
H1ðLMÞ to H0ðLMÞ. Indeed, the difference H0ðLMÞ −
H1ðLMÞ is, in many cases, proportional to small partial
wave interferences. Accordingly, the moments H0ðLMÞ
and H1ðLMÞ for L ¼ 0, 1, and 2 are shown in Fig. 2, and
those for L ¼ 3 and 4 are shown in Fig. 3. In both figures,
the moments are computed with the S, P, and D waves but
also with without the P wave. The difference between the
two models displays the sensitivity of the observables to the
exotic wave.
Let us make some observations about Figs. 2 and 3.

From Eq. (E1), we deduce the relation

0 ≤ H1ð00Þ ≤ H0ð00Þ: ð15Þ
It is worth pointing out that, although the condition
0 ≤ H0ð00Þ is always true since H0ð00Þ is proportional
to the unpolarized cross section, the condition 0 ≤ H1ð00Þ
is valid only in the absence of negative reflectivity
components.

FIG. 2. Unpolarized H0ðLMÞ moments (blue lines) compared to the polarized H1ðLMÞ moments (red lines) for L ¼ 0, 1, 2, in the
helicity frame, calculated with the models described in the text. The solid lines represent the complete model, and the dashed lines
represent the model without the P wave. The moments are evaluated at Eγ ¼ 9 GeV and integrated in t.
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The difference H0ð00Þ −H1ð00Þ, being proportional to
the m ≠ 0 components, vanishes when the S wave domi-
nates. From Fig. 2, we see that the S wave describes the
region mηπ0 ≤ 1.1 GeV as expected from the resonance
content of the model.
The strong a2ð1320Þ peak in H0ð00Þ is created by the

dominance of the m ¼ 1 component of the D waves. The
componentsm ≠ 1 are suppressed by the kinematical factor
ð ffiffiffiffiffi

−t
p

=ma2Þjm−1j. Let us also remark that H1ð00Þ is propor-
tional to the magnitude of the m ¼ 0 components.
Interestingly, we note from Eqs. (E1) that the difference

H0ðL1Þ −H1ðL1Þ with L ≤ 4 is proportional to the DðþÞ
2

wave. For instance, the moments H0ð31Þ and H1ð31Þ are
very close since their difference is proportional to the

interference of small waves ReðPðþÞ
1 DðþÞ�

2 Þ. In addition, the
magnitude of the wave DðþÞ

2 is directly measurable from

the momentH1ð44Þ ∝ jDðþÞ
2 j2, and its interference with the

SðþÞ
0 , PðþÞ

0 , DðþÞ
0 , PðþÞ

1 , and DðþÞ
1 waves is accessible

with the moments H0ð22Þ, H0ð32Þ, H0ð42Þ, H1ð33Þ, and
H1ð43Þ, respectively. From Eqs. (E1), we deduce the
following relations between moments:

H0ð11Þ −H1ð11Þ ¼ 7

15

ffiffiffiffiffi
10

p
H1ð33Þ ð16aÞ

H0ð21Þ −H1ð21Þ ¼ 3

ffiffiffiffiffi
6

35

r
H1ð43Þ ð16bÞ

H0ð31Þ −H1ð31Þ ¼ −
1ffiffiffiffiffi
15

p H1ð33Þ: ð16cÞ

Experimental deviations from these relations would imply
that additional waves not included in the set (9) are needed
to describe the ηπ0 system.

FIG. 3. UnpolarizedH0ðLMÞmoments (blue lines) compared to the polarizedH1ðLMÞmoments (red lines) for L ¼ 3, 4 calculated, in
the helicity frame, with the models described in the text. The solid lines represent the complete model, and the dashed lines represent the
model without the Pwave. The L ¼ 3 moments derived from the model without the Pwave are zero. The L ¼ 4 moments depend only
on the D wave and are therefore identical in both models; i.e., no sign of the exotic P wave is to be expected in those moments. The
moments are evaluated at Eγ ¼ 9 GeV and are integrated in t.
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The presence of a P wave is not clearly apparent in the
leading moment H0ð00Þ, nor in any even moments.
However, the odd L moments are proportional to the
interference between the P wave and the S and D waves
since Lþ lþ l0 must be even in the sum (A9). Nonzero
odd L moments thus indicate the presence of the exotic
wave. Interestingly, we note that the a02ð1700Þ is also more
apparent in odd moments due to its interference with
the π1ð1600Þ.
The observation of the P wave in odd moments can still

be checked with the even moments. In the case in which the
ηπ0 system is described with the waves in Eq. (9), it is

straightforward to isolate the amplitude jPðþÞ
1 j2 with spe-

cific linear combinations of even moments. With the
definition ΔðLMÞ ¼ H0ðLMÞ −H1ðLMÞ, we obtain

jPðþÞ
1 j2 ¼ 1

2
Δð00Þ þ 21

8
Δð40Þ þ 3

4

ffiffiffiffiffi
35

2

r
Δð44Þ ð17aÞ

¼−
5ffiffiffi
6

p Δð22Þþ15

8
Δð40Þþ3

4

ffiffiffiffiffi
5

14

r
Δð44Þ ð17bÞ

¼ −
5

2
Δð20Þ − 15

8
Δð40Þ þ 3

4

ffiffiffiffiffi
35

2

r
Δð44Þ ð17cÞ

¼ −
5

18
Δð00Þ − 35

36
Δð20Þ − 35

6
ffiffiffi
6

p Δð22Þ: ð17dÞ

If more waves than those in Eq. (9) are needed to describe
the system, then the linear combinations above would
receive contributions from F and higher waves. The first
three relations are linearly independent and can be used to
address systematic uncertainty related to the extraction of
the moments. The fourth relation is a linear combination of
the ones above but can be convenient to use, as it does not
contain moments higher than L ¼ 2.
From our moments analysis, we can conclude that

polarized moments H1;2ðLMÞ provide additional con-
straints, allowing us to better identify the wave content
of the ηπ0 system. In particular, we have seen that the
restriction m ≥ 0 implies relations between moments that
be checked experimentally. Moreover, the presence of an
exotic wave could be directly identified from its interfer-
ence with even waves in odd moments.

IV. BEAM ASYMMETRY

A. General definition

The beam asymmetry is defined as the difference in the
intensity between polarization parallel Φ ¼ 0 and
perpendicular Φ ¼ π

2
to the reaction plane, normalized to

their sum. When two mesons are produced, the decay
angles of one of the mesons Ω ¼ ðθ;ϕÞ have to be

specified. A general definition of the beam asymmetry is
thus

ΣD ¼ 1

Pγ

R
D ½IðΩ; 0Þ − IðΩ; π

2
Þ�dΩR

D ½IðΩ; 0Þ þ IðΩ; π
2
Þ�dΩ : ð18Þ

In Eq. (18), D is the domain of integration of the angular
variables. The subscript D indicates the dependence of the
domain of integration in the definition of the beam
asymmetry ΣD.

B. 4π integrated beam asymmetry

A standard choice is to integrate over the full kinematical
range cos θ ∈ ½−1; 1� and ϕ ∈ ½0; 2π½, or in short D ¼ 4π.
The 4π-integrated beam asymmetry Σ4π can equivalently be
defined by

Z
4π
IðΩ;ΦÞdΩ ¼ σ0ð1þ PγΣ4π cos 2ΦÞ; ð19Þ

where the unpolarized integrated cross section is
σ0 ¼ H0ð00Þ. Note that the term proportional to sinð2ΦÞ
in Eq. (3) vanishes under the integration in Eq. (19). The sign
in front of PγΣ4π is consistent with Eq. (18) and is such that
natural (unnatural) exchanges contribute positively (nega-
tively) to the beam asymmetry. This convention matches the
convention of the CBELSA/TAPS Collaboration, which
extracted the ηπ0 beam asymmetry for photon energies
between 970 and 1650MeV [20]. The ηπ0 beam asymmetry
Σ4π has also beenmeasured by theGRAALexperiment up to
1500 MeV [21] and compared to the theoretical prediction
based on the chiral unitary framework of Ref. [22]. The
definition in Eq. (19) is similar to the one used in single
pseudoscalar photoproduction [12,23],with the exception of
the sign difference in front of PγΣ4π . The latter keeps the
natural vs unnatural exchange interpretation. The additional
sign in single pseudoscalar photoproduction originates from
the odd number of pseudoscalars in the final state.
The 4π-integrated beam asymmetry can be extracted

directly from the moments:

Σ4π ¼
−1
Pγ

R
4π I

1ðΩÞdΩR
4π I

0ðΩÞdΩ ¼ H1ð00Þ
H0ð00Þ : ð20Þ

As in the case of single pseudoscalar photoproduction, the
production mechanism via natural and unnatural exchanges
contributes with opposite sign to Σ4π . Explicitly, its
expression in terms of partial waves reads

Σ4π¼
P

k;l;mð−1ÞmReð½l�ðþÞ
m;k½l�ðþÞ�

−m;k− ½l�ð−Þm;k½l�ð−Þ�−m;kÞP
k;l;mðj½l�ðþÞ

m;kj2þj½l�ð−Þm;kj2Þ
: ð21Þ

Equation (21) can be understood as follows. The beam
asymmetry represents the effect of the reflectivity operator,
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the reflection through the reaction plane. By construction,
the partial waves in the reflectivity basis are invariant
by reflection with ϵ being the eigenvalue of this operator.
However, the decay function Ym

l ðΩÞ is in general
not invariant and undergoes the change Ym

l ðΩÞ →
ð−1ÞmY−m

l ðΩÞ under reflection. Therefore, only the com-

binations 1ffiffi
2

p ð½l�ðϵÞm;k � ð−1Þm½l�ðϵÞ−m;kÞYm
l ðΩÞ are invariant

under reflection with the eigenvalue �ϵ. The integration
over the decay angles suppresses the interference between
waves with different angular momenta by orthogonality of
the Ym

l ðΩÞ, and the numerator of Σ4π is thus simply the
difference

σ0Σ4π ¼
κ

2

X
ϵ;k;l;m

ϵ½j½l�ðϵÞm;k þ ð−1Þm½l�ðϵÞ−m;kj2

− j½l�ðϵÞm;k − ð−1Þm½l�ðϵÞ−m;kj2�: ð22Þ

From Eq. (22), it is straightforward to find the range
−1 ≤ Σ4π ≤ 1.

C. Beam asymmetry along the y axis

The beam asymmetry in which the two meson momenta
were perpendicular to the reaction plane was introduced in
Ref. [24]. With the momentum of either meson having the
angle Ωy ¼ ðπ

2
; π
2
Þ along the y axis, the definition of the

beam asymmetry in Eq. (18) reduces to

Σy ¼
1

Pγ

IðΩy; 0Þ − IðΩy;
π
2
Þ

IðΩy; 0Þ þ IðΩy; π2Þ
¼ −

I1ðΩyÞ
I0ðΩyÞ

: ð23Þ

The expression of intensities IαðΩyÞ with α ¼ 0, 1 in terms
of moments, truncated to L ¼ 4, is

�4πIαðΩyÞ¼Hαð00Þ−5

2
Hαð20Þ−5

ffiffiffi
3

2

r
Hαð22Þ

þ27

8
Hαð40Þþ9

2

ffiffiffi
5

2

r
Hαð42Þþ9

4

ffiffiffiffiffi
35

2

r
Hαð44Þ:

ð24Þ

It was shown in the Appendix of Ref. [25] that this
definition leads to Σy ¼ �1, where a ρ meson is produced
via only natural or only unnatural exchanges in the process
γ⃗p → ππp.3 We will now derive expression for Σy when
more than one wave populates the two-meson system.
When the meson momenta are aligned with the y axis, it

is clear that the reflection through the reaction plane is

equivalent to the parity transformation on the decay
function Ym

l ðΩyÞ → ð−1ÞlYm
l ðΩyÞ. From this observation,

we directly deduce that the result of the beam asymmetry
along the y axis for a system composed with a single wave
½l�ϵm;k is

Σy ¼ ϵð−1Þl; ð25Þ

since ½l�ϵm;kY
m
l ðΩyÞ is invariant by reflection with the

eigenvalue ϵð−1Þl.
We can generalize this statement when the system is

described by multiple waves by starting with the definition
of the intensities

IαðΩyÞ ¼
X
l;l0

X
m;m0

ρα;ll
0

mm0 Ym
l ðΩyÞYm0�

l0 ðΩyÞ: ð26Þ

We then note that Y−m
l ðΩyÞ ¼ Ym

l ðΩyÞ. Moreover,
Ym
l ðΩyÞ ≠ 0 only when m and l have the same parity,

i.e., ð−1Þm ¼ ð−1Þl.4 Using the parity relation (A15), we
can rewrite the intensities with α ¼ 0, 1 as

IαðΩyÞ ¼
X
l;l0

X
m;m0

ð−1Þm−m0
ρα;ll

0
mm0 Ym

l ðΩyÞYm0�
l0 ðΩyÞ: ð27Þ

Comparing Eqs. (26) and (27), we see that the summation is
restricted to m, m0, l, and l0 having the same parity. These
restrictions and the relations (D8) lead to the results

I0ðΩyÞ¼2κ
X

ϵ;k;l;l0

X
m;m0

½l�ðϵÞm;k½l0�ðϵÞ�m0;kY
m
l ðΩyÞYm0�

l0 ðΩyÞ; ð28aÞ

I1ðΩyÞ ¼ −2κ
X

ϵ;k;l;l0
ϵð−1Þl

×
X
m;m0

½l�ðϵÞm;k½l0�ðϵÞ�m0;kY
m
l ðΩyÞYm0�

l0 ðΩyÞ; ð28bÞ

where the summations are restricted to values of l, l0, m,
and m0 having the same parity. From Eqs. (28), we see that
0 ≤ jI1ðΩyÞj ≤ I0ðΩyÞ, which yields −1 ≤ Σy ≤ 1.
At high energies, natural exchanges contribute only to

waves with positive reflectivity, ϵ ¼ þ, as demonstrated in
Appendixes C and D. At GlueX, natural exchanges are
expected to dominate [12]. In the scenario in which only
natural exchanges contribute to the production of the ηπ0,
the beam asymmetry along the y axis is Σy ≃ ð−1Þl in the
mass region where the wave of spin l dominates. Σy thus
changes sign where an exotic (odd spin) wave dominates.3It is worth noting that the convention adopted in

Refs. [24,13,25] differs by a minus sign from the definition
(23) since the authors focused only on the P-wave decay ρ → ππ.
Their sign was consistent with a beam asymmetry Σy ¼ 1 for a P
wave produced by naturality exchange, cf. Eq. (25).

4For completeness, wemention thatYm
l ðΩyÞ¼ il

ffiffiffiffiffiffiffiffi
2lþ1
4π

q ffiffiffiffiffiffiffiffiffiffiffi
ðl−mÞ!
ðlþmÞ!

q
ðlþm−1Þ!!
ðl−mÞ!! , being lþm being even.
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Σy is thus an interesting observable directly sensitive to
exotic waves production in ηπ photoproduction.

D. Illustration of beam asymmetries

In this section, we illustrate the differences between the
beam asymmetries Σ4π and Σy using our model described in
Sec. II. To observe the impact of an exotic wave on the
beam asymmetry, we compare results in the complete
model with the one without the P wave.
In terms of our wave set (9), the 4π-integrated beam

asymmetry reads

Σ4π ¼
r

1þ r
r ¼ jSðþÞ

0 j2 þ jPðþÞ
0 j2 þ jDðþÞ

0 j2
jPðþÞ

1 j2 þ jDðþÞ
1 j2 þ jDðþÞ

2 j2
; ð29Þ

In our model, because it includes only positive reflectivity
components, Σ4π is always positive. The beam asymmetry
is represented in Fig. 4 for the model with and without
the P wave. The intensity is integrated over t between
tmaxðmηπ0Þ and tminðmηπ0Þ. The t dependence does not
cancel in the ratio of the beam asymmetry since the t
dependence depends on the m projection.
We observe in Fig. 4 that the model without the P wave

leads to a Σ4π very similar to the complete model. The
reason is that the impact of the small m ¼ 0 P-wave
component is overcome by the other waves, both in the
numerator and denominator. We can conclude that
the observable Σ4π is not sensitive to small exotic waves.
In the ηπ0 mass region close to the a0ð980Þ peak, where the

S wave dominates, Σ4π ∼ 1 due to the dominance of
positive naturality exchanges in the production.
In terms of our waves, the beam asymmetry Σy is

given by

Σy ¼ 1 −
2jPðþÞ

1 j2
jPðþÞ

1 j2 þR
¼ R − jPðþÞ

1 j2
Rþ jPðþÞ

1 j2
; ð30aÞ

R ¼ 2

3
jSðþÞ

0 j2 þ 5

6
jDðþÞ

0 j2 þ 5

4
jDðþÞ

2 j2

−
2

ffiffiffi
5

p

3
ReðSðþÞ

0 DðþÞ
0

�Þ −
ffiffiffiffiffi
10

3

r
ReðSðþÞ

0 DðþÞ
2

�Þ

þ 5ffiffiffi
6

p ReðDðþÞ
0 DðþÞ

2

�Þ: ð30bÞ

The beam asymmetry along the y axis, Σy, is illustrated in
Fig. 5. As expected, the model without the Pwaves leads to
Σy ¼ 1 in the whole range of ηπ0 mass. However, Σy

computed with the complete model presents a significant
depletion around 1.5 GeV produced by the enhancement of
the P wave in this observable. The beam asymmetry does
not reach Σy ¼ −1 at the peak since the nearby a2ð1320Þ
and a2ð1700Þ contribute to Σy in the mass region of the
π1ð1600Þ. However, although the small π1ð1600Þ is not
really apparent in the differential cross section, its effect is
enhanced in Σy. The depletion produced by the odd wave is
sharp and significant, suggesting that Σy is an observable
highly sensitive to exotic waves.
From an experimental point of view, the meson momen-

tum is never exactly aligned with the y axis. Σy can be

FIG. 4. Beam asymmetry Σ4π evaluated with the model
described in the text at Eγ ¼ 9 GeV and integrated in t. The
solid blue line represents the complete model described in Sec. II.
The dashed-dotted red line is the model without the exotic
P wave.

FIG. 5. Beam asymmetry Σy evaluated with the model de-
scribed in the text at Eγ ¼ 9 GeV and integrated in t. The dashed-
dotted red line is the model without the exotic P wave. The
presence of the P wave around mηπ0 ∼ 1.5 GeV is manifest in the
full model.

V. MATHIEU et al. PHYS. REV. D 100, 054017 (2019)

054017-8



computed from the moments thanks to Eq. (24).
Alternatively, Σy can be approximated by the beam
asymmetry binned around the y axis. We will denote the
quantity Σy�τ, the beam asymmetry (18) with the integra-
tion domain θ ∈ ½π

2
− τ; π

2
þ τ� and ϕ ∈ ½π

2
− τ; π

2
þ τ�. Let us

point out that the properties of Σy hold when the meson
momenta are along the y axis in either direction. In other
words, one can experimentally measure Σy�τ by combining
the data binned in ϕ ∈ ½π

2
− τ; π

2
þ τ� ∪ ½3π

2
− τ; 3π

2
þ τ� and

θ ∈ ½π
2
− τ; π

2
þ τ�.

As the opening angle τ increases, Σy�τ should approach
the 4π-integrated beam asymmetry since Σy�90° ¼ Σ4π .
Figure 6 illustrates how the observable Σy�τ varies as τ
increases. Σy�τ is computed with our complete model and
with the model without the P wave. We note that the
complete model is almost not sensitive to τ as long as
τ ≤ 10°. However, the model featuring only even waves
displays a bigger sensitivity to τ. The reason is that, without
the P wave, Σy�τ is the ratio of small intensities and both
the numerator and denominator are sensitive to variation of
the opening angle. On the contrary, in the presence of a P
wave, both the numerator and denominator of Σy�τ are
large and are less sensitive to variation in the parameter τ.

This conclusion is valid as long as the opening angle
remains small. For larger values τ > 30°, the observable is
no longer sensitive to the P wave, as can be seen on Fig. 6.
At this point, it is worth stressing that the asymmetry Σy can
also be computed from the measured intensities, Eq. (23).

V. CONCLUSIONS

The paper presents a simple model to illustrate moments
of the angular distribution of the ηπ0 photoproduction
with a linearly polarized beam. The model features S, P,
andDwaves produced by natural exchanges, the parameters
of which were guided by s-channel helicity conservation.
Themainmotivation behind the ηπ0 channel is the studies of
exotic mesons, the lightest candidate of which is expected in
the P wave. We showed that a nonzero P wave would be
directly observable from its interference with even waves in
moments with odd angular momenta. It was also shown that
some specific linear combination ofmoments, depending on
the maximum angular momentumwaves contributing to the
ηπ0 system, allow us to isolate the P wave.
For a given wave content, kinematical relations between

the moments are derived. For instance, we demonstrated
the relation ImH2ðLMÞ ¼ −H1ðLMÞ for M ≥ 1, when the

FIG. 6. Evolution of the beam asymmetry Σy�τ for τ between 0° and 90°. The model including S, P, and D waves is shown in solid
blue lines. The model including only S and D waves is shown in dashed-dotted red lines. The models are evaluated at Eγ ¼ 9 GeV and
integrated in t.
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wave set contained only positive m components. We
demonstrated how the relations between the partial waves
and the moments can be read out directly from the moments.
By comparing the experimental moments with their expres-
sion in terms of partial waves, it will be possible to deduce
the dominant waves needed to describe the ηπ0 system.
Another set of observables currently under extraction by

the GlueX Collaboration is the beam asymmetries. We
proposed a definition of the beam asymmetry, ΣD, in which
the decay angles of the meson are integrated over a regionD
of the sphere. We show that when the decay angles are
integrated over the whole sphere, the resulting beam asym-
metry Σ4π is not very sensitive to the presence of a P wave.
However, when the mesonmomenta are perpendicular to the
reaction plane, the beam asymmetry, calledΣy, is sensitive to
the parity of the wave. In particular, in the mass region
dominated by a wave of angular momentum l produced by
natural exchange, the beam asymmetry is Σy ¼ ð−1Þl, at
high energy. We concluded that the beam asymmetry along
the y axis is an important observable in the search for exotic
mesons with the GlueX experiment. Finally, we tested the
sensitivity of Σy�τ, in which the decay angles are binned
within an opening angle of τ around the y axis. We showed
that the models with and without the P wave are clearly
distinguishable with an opening angle up to τ ¼ 10°. But for
large opening angle τ > 30°, the beam asymmetryΣy�τ is no
longer sensitive to the P wave.
The illustration of the observables depends on the model

presented in Sec. II. The interested reader has the possibility
of changing the model parameters and the kinematical
variables in the online version of the model [26,27]. The
online version also offers the possibility to calculate the
moments at a specific t, instead of integrating over t.
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APPENDIX A: ANGULAR DISTRIBUTIONS

We consider the reaction

γ⃗ðλ; pγÞpðλ1; pNÞ → π0ðpπÞηðpηÞpðλ2; p0
NÞ: ðA1Þ

The photon beam is linearly polarized with an angleΦwith
respect to the reaction plane xz, the plane formed by the
beam, the target, and the recoiling nucleon in the center of
mass of the ηπ system. As illustrated in Fig. 7, the z axis is
defined as the opposite direction of the recoiling nucleon.
The normal to the reaction plane is y ¼ p0N × pγ=jp0N × pγj,
and the x axis is given by right-hand rule, x ¼ y × z.5 With
this choice of axes, Ω ¼ ðθ;ϕÞ are the angles of the η. This
convention for the axes corresponds to the helicity frame.
In Eq. (A1), λ, λ1, and λ2 are the helicities of the beam,
target, and recoiling nucleon, respectively.
The Mandelstam variables are the total energy squared

s ¼ ðpγ þ pNÞ2, the momentum transferred between the
nucleons t ¼ ðpN − p0

NÞ2, and the ηπ0 invariant mass
squared m2

ηπ0
¼ ðpη þ pπÞ2. The dependence in the

Mandelstam variables s, t, and mηπ0 will be implicit
thorough the paper as we are mainly focusing on the
angular dependence. The amplitude for the reaction (A1) is
Aλ;λ1λ2ðΩÞ. TheΦ dependence of the intensity is encoded in
the density matrix of the photon ργ [13], and the differential
cross section in photoproduction is, with the flux
FI ¼ 2ðs −m2

NÞ,

dσ ¼ ð2πÞ4δ4ðΣpÞ 1

FI

1

ð2πÞ9
d3pπ
2Eπ

d3pη
2Eη

d3pN
2EN

1

2

×
X
λ;λ0
λ1 ;λ2

Aλ;λ1λ2ðΩÞργλλ0 ðΦÞA�
λ0;λ1λ2

ðΩÞ: ðA2Þ

In the rest frame of ηπ0, the measured intensity becomes

FIG. 7. Definition of the angles in the helicity frame. The
reaction plane xz, containing the momenta of the photon beam
(γ), the nucleon target (p), and recoiling nucleon (p0), is in blue. θ
and ϕ are the polar and azimuthal angles of the η. The
polarization vector of the photon forms an angle Φ with the
reaction plane.

5We use the boldface font to indicate spatial 3-vectors.
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IðΩ;ΦÞ ¼ dσ
dtdmηπ0dΩdΦ

¼ κ
X
λ;λ0
λ1 ;λ2

Aλ;λ1λ2ðΩÞργλλ0 ðΦÞA�
λ0;λ1λ2

ðΩÞ: ðA3Þ

We include all numerical factors in the phase space factor
(mx is the mass of particle x),6

κ ¼ 1

ð2πÞ3
1

4π

1

2π

λ1=2ðm2
ηπ0

; m2
π; m2

ηÞ
16mηπ0ðs −m2

NÞ2
1

2
: ðA4Þ

The triangle function is λða;b;cÞ¼a2þb2þc2−2ðabþ
bcþcaÞ.
We next expand the amplitude in ηπ0 partial waves:

Aλ;λ1λ2ðΩÞ ¼
X
lm

Tl
λm;λ1λ2

Ym
l ðΩÞ: ðA5Þ

We can further make the Φ dependence explicit by
decomposing the spin density matrix of the photon.
Using a matrix notation ργλλ0 ≡ ðργÞλλ0 , we expand it in a
base of Hermitian 2 × 2 matrices composed of the unity
matrix I and the Pauli matrices σ:

ργðΦÞ ¼ 1

2
I þ 1

2
PγðΦÞ · σ: ðA6Þ

The vector Pγ encodes the information about the polariza-
tion of the beam [13]. Similarly, one defines

IðΩ;ΦÞ ¼ I0ðΩÞ þ IðΩÞ · PγðΦÞ; ðA7Þ

with the vector of polarized intensities I ¼ ðI1; I2; I3Þ. The
angular distribution can be expanded in unpolarized
moment H0 and polarized moments H ¼ ðH1; H2; H3Þ via

I0ðΩÞ ¼
X
LM

�
2Lþ 1

4π

�
H0ðLMÞDL�

M0ðϕ; θ; 0Þ; ðA8aÞ

IðΩÞ ¼ −
X
LM

�
2Lþ 1

4π

�
HðLMÞDL�

M0ðϕ; θ; 0Þ: ðA8bÞ

The extra minus sign in the definition of H ensures that
H1ð00Þ is positive for positive reflectivity waves,
cf. Appendix D. The moments are expressed in terms of
the ηπ0 spin density matrix elements (SDMEs),

H0ðLMÞ ¼
X
ll0
mm0

�
2l0 þ 1

2lþ 1

�
1=2

Cl0
l00L0C

lm
l0m0LMρ

α;ll0
mm0 ; ðA9aÞ

HðLMÞ ¼ −
X
ll0
mm0

�
2l0 þ 1

2lþ 1

�
1=2

Cl0
l00L0C

lm
l0m0LMρ

ll0
mm0 ; ðA9bÞ

where the Cl0
l00L0 and Clm

l0m0LM are the Clebsch-Gordan
coefficients. They impose that Lþ lþ l0 is an even
integer and restrict the summation to M þm0 ¼ m. The
spin density matrices ρα;ll

0
mm0 ¼ ðρ0; ρÞll0mm0 are given by

ρα;ll
0

mm0 ¼ κ

2

X
λ;λ1;λ2

Tl
λm;λ1λ2

σαλλ0T
l0�
λ0m0;λ1λ2

; ðA10Þ

with σα ¼ ðI; σÞ. More explicitly, the SDME read

ρ0;ll
0

mm0 ¼ κ

2

X
λ;λ1;λ2

Tl
λm;λ1λ2

Tl0�
λm0;λ1λ2

; ðA11aÞ

ρ1;ll
0

mm0 ¼ κ

2

X
λ;λ1;λ2

Tl
−λm;λ1λ2

Tl0�
λm0;λ1λ2

ðA11bÞ

ρ2;ll
0

mm0 ¼ i
κ

2

X
λ;λ1;λ2

λTl
−λm;λ1λ2

Tl0�
λm0;λ1λ2

; ðA11cÞ

ρ3;ll
0

mm0 ¼ κ

2

X
λ;λ1;λ2

λTl
λm;λ1λ2

Tl0�
λm0;λ1λ2

: ðA11dÞ

The amplitudes Tl
λm;λ1λ2

, and thus the SDME ρα;ll
0

mm0 ,
depend on the frame. For completeness, we mention that
the formalism of this section, although derived in the
helicity frame, equally applies to any other ηπ0 rest frame.
In practice, the SDME are extracted experimentally in a ηπ0

rest frame, either the Gottfried-Jackson (GJ) frame or the
helicity frame, and the theoretical models are built in either
the s-channel or the t-channel frame.7 The s-channel
(t-channel) frame and the helicity (GJ) frame lead to the
same SDME as demonstrated in the Appendix of Ref. [28].
The moments built in the s channel can thus be compared to
the ones extracted in the helicity frame. The relation
between the helicity and GJ frames is a rotation around
the y axis (with α ¼ 0; 1; 2; 3),

ρα;ll
0

mm0 jGJ ¼
X
λλ0

dlmλðθqÞρα;ll
0

λλ0 jheldl0m0λ0 ðθqÞ; ðA12Þ

HαðLMÞjGJ ¼
X
M0

HαðLM0ÞjheldLMM0 ðθqÞ; ðA13Þ

with cos θq ¼ ðβ − zsÞ=ðβzs − 1Þ, β ¼ λ1=2ðs;m2
N;m

2
ηπ0

Þ=
ðs −m2

N þm2
ηπ0

Þ, and zs ¼ cos θs being the cosine of the

6The phase space factor is often absorbed in a redefinition of
the amplitudes T̂ ≡ ffiffiffi

κ
p

T since it is numerically more stable to
extract T̂ from data near the ηπ0 threshold, where κ → 0.

7The s-channel frame is the center-of-mass frame of the
reaction γp → ηπ0p. The t-channel frame is the center-of-mass
frame of the reaction p̄p → γηπ0.
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scattering angle between the target and recoiling nucleon in
the center-of-mass frame. The angles θq and θs are
indicated in Fig. 1.
The spin density matrix is Hermitian ½ρα;l0lm0m �� ¼ ρα;ll

0
mm0 ,

and so ½HαðLMÞ�� ¼ ð−1ÞMHαðL −MÞ. Under a parity
transformation, the decay angles transform as ðθ;ϕÞ →
ðπ − θ; π þ ϕÞ, which induces the transformation Ym

l ðΩÞ→
ð−1ÞlYm

l ðΩÞ. Taking into account the intrinsic parity of the
particles, the invariance under parity implies the relation
(since jλj ¼ 1)

Tl
−λ−m;−λ1−λ2 ¼ −ð−1Þmþλ1−λ2Tl

λm;λ1λ2
: ðA14Þ

The parity relations and the properties of the Clebsch-
Gordan coefficients lead to the relations for the SDME

ρ0;ll
0

mm0 ¼ ð−1Þm−m0
ρ0;ll

0
−m−m0 ; ðA15aÞ

ρ1;ll
0

mm0 ¼ ð−1Þm−m0
ρ1;ll

0
−m−m0 ; ðA15bÞ

ρ2;ll
0

mm0 ¼ −ð−1Þm−m0
ρ2;ll

0
−m−m0 ; ðA15cÞ

ρ3;ll
0

mm0 ¼ −ð−1Þm−m0
ρ3;ll

0
−m−m0 ; ðA15dÞ

and similarly for the moments

H0ðLMÞ ¼ ð−1ÞMH0ðL −MÞ; ðA16aÞ

H1ðLMÞ ¼ ð−1ÞMH1ðL −MÞ; ðA16bÞ

H2ðLMÞ ¼ −ð−1ÞMH2ðL −MÞ; ðA16cÞ

H3ðLMÞ ¼ −ð−1ÞMH3ðL −MÞ: ðA16dÞ

It follows that the moments HαðLMÞ are purely real for
α ¼ 0, 1 and purely imaginary for α ¼ 2, 3. Using these
relations, one can write the intensity as

I0ðΩÞ ¼
X
L;M≥0

�
2Lþ 1

4π

�
τðMÞH0ðLMÞdLM0ðθÞ cosMϕ;

I1ðΩÞ ¼ −
X
L;M≥0

�
2Lþ 1

4π

�
τðMÞH1ðLMÞdLM0ðθÞ cosMϕ;

I2ðΩÞ ¼ 2
X

L;M>0

�
2Lþ 1

4π

�
ImH2ðLMÞdLM0ðθÞ sinMϕ;

I3ðΩÞ ¼ 2
X

L;M>0

�
2Lþ 1

4π

�
ImH3ðLMÞdLM0ðθÞ sinMϕ;

ðA17Þ

with the definition τðMÞ ¼ ð2 − δM;0Þ.

APPENDIX B: LINEARLY POLARIZED BEAM

In this section, we particularize our formulas for the
case of a linearly polarized beam. In the GJ frame,
the polarization vector of the photon is εðΦÞ ¼ ðcosΦ;
sinΦ; 0Þ, which leads to the pure photon state [13]

jΦi ¼ −
1ffiffiffi
2

p ½e−iΦjþi − eiΦj−i�: ðB1Þ

The helicity states j�i≡ jλ ¼ �1i are defined in the
Cartesian basis by εðλ ¼ �1Þ ¼ ð∓1;−i; 0Þ= ffiffiffi

2
p

[29].
Equation (B1) is independent of the z axis. Therefore,
Eq. (B1) and subsequent equations in this section are valid
in both the helicity and the GJ frame. The density matrix for
the pure photon state in Eq. (B1) is thus

ργ;pureðΦÞ ¼ jΦihΦj ¼ 1

2

�
1 −e−2iΦ

−e2iΦ 1

�
: ðB2Þ

To describe a partially linearly polarized beam, we consider
a statistical mixture of the pure states j�i and jΦi. The
degree of polarization Pγ is the probability (0 ≤ Pγ ≤ 1) of
finding the state jΦi in the statistical ensemble. The density
matrix is thus

ργðΦÞ ¼ 1 − Pγ

2
ðjþihþj þ j−ih−jÞ þ PγjΦihΦj

¼ 1

2
ðI þ PγðΦÞ · σÞ; ðB3Þ

where the vector PγðΦÞ depends on Pγ and Φ,
Pγ ¼ −Pγðcos 2Φ; sin 2Φ; 0Þ. The intensity becomes

IðΩ;ΦÞ ¼ I0ðΩÞ − PγI1ðΩÞ cos 2Φ − PγI2ðΩÞ sin 2Φ
ðB4Þ

or, equivalently, in the notation of Ref. [30],

IðΩ;ΦÞ ¼ I0ðΩÞf1þ Pγ½IcðΩÞ cos 2Φþ IsðΩÞ sin 2Φ�g;
ðB5Þ

with the obvious identification Ic;s ¼ −I1;2=I0.
With a linearly polarized beam, the accessible moments

H0;1;2 are thus extracted from

H0ðLMÞ ¼ Pγ

2

Z
∘
IðΩ;ΦÞdLM0ðθÞ cosMϕ;

H1ðLMÞ ¼
Z
∘
IðΩ;ΦÞdLM0ðθÞ cosMϕ cos 2Φ;

ImH2ðLMÞ ¼ −
Z
∘
IðΩ;ΦÞdLM0ðθÞ sinMϕ sin 2Φ; ðB6Þ

with
R
∘ ¼ ð1=πPγÞ

R
π
0 sin θdθ

R
2π
0 dϕ

R
2π
0 dΦ.
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APPENDIX C: PARITY RELATIONS
AT HIGH ENERGIES

In this section, we consider exchanges with spin-parity
JP, where the exchange is either natural, Pð−1ÞJ ¼ þ1, or
unnatural, Pð−1ÞJ ¼ −1. The properties of a particle are
defined in its rest frame. To use the property of the
exchange particle, we will use the t-channel frame, the
rest frame of the reaction pp̄ → γ½l�, where ½l� is the ηπ0
resonance with spin l. The t-channel partial wave expan-
sion reads

Tl;t
μγμl;μ1μ2 ¼

X
J

ð2J þ 1ÞatJμγμl;μ1μ2ðtÞdJμμ0 ðθtÞ; ðC1Þ

withμ ¼ μγ − μl,μ0 ¼ μ1 − μ2, andθt, the scattering angle in
the t channel. The t-channel partial waves are atJμγμl;μ1μ2ðtÞ ¼
hJMμγμljTjJMμ1μ2i. Parity imposes the relation

atJ−μγ−μl;μ1μ2ðtÞ ¼ Pð−1ÞJatJμγμl;μ1μ2ðtÞ: ðC2Þ

At high energies, cos θt ∝ s becomes very large, and the
rotation function obeys the relation

dJ−μμ0 ðθtÞ ≃ ð−1ÞμdJμμ0 ðθtÞ; ðC3Þ

where the symbol≃means that the relation is valid only for the
leading term in s. ToderiveEq. (C3),weuse the representation
of the Wigner d function [31]

dJμμ0 ðθÞ ¼ ξμμ0

�
s!ðsþmþm0Þ!
ðsþmÞ!ðsþm0Þ!

�
1=2

×

�
sin

θ

2

�
m
�
cos

θ

2

�
m0

Pðm;m0Þ
s ðcos θÞ; ðC4Þ

withm ¼ jμ − μ0j,m0 ¼ jμþ μ0j, s ¼ J − ðmþm0Þ=2, and
ξμμ0 ¼ ð−1Þðμ0−μ−jμ−μ0jÞ=2. For large value of cos θ, the leading
term of the Jacobi polynomial Pðm;m0Þ

s ðcos θÞ leads to

dJμμ0 ðθÞ ≃ ð−1Þjμ−μ0j=2ξμμ0
�
s!ðsþmþm0Þ!
ðsþmÞ!ðsþm0Þ!

�
1=2

×
Γð2sþmþm0 þ 1Þ
s!Γðsþmþm0 þ 1Þ

�
cos θ
2

�
J
: ðC5Þ

Under the change μ → −μ, m and m0 are interchanged, and
only the first two factors of Eq. (C5) change, yielding
Eq. (C3). It is worth noting that the coefficient of the next-
to-leading term of the Jacobi polynomial is not symmetry
under the exchangeμ → −μ. The relation (C3) thus holdsonly
for the leading term.
Combining the results of Eqs. (C2) and (C3), we obtain

the relation

Tl;t
μγμl;μ1μ2 ≃ Pð−1ÞJð−1Þμγ−μlTl;t

−μγ−μl;μ1μ2 : ðC6Þ

A similar relation can be derived for the amplitudes of the
reaction γp → ½l�p, by performing the boost from the t
channel to the helicity frame

Tl
λm;λ1λ2

¼eiϕ
X
μi

dlμlmðχlÞd1=2μ1λ1
ðχ1Þd1=2μ2λ2

ðχ2ÞTl;t
λμl;μ1μ2

: ðC7Þ

The phase eiϕ and the crossing angles can be found
elsewhere [32–34] and do not need to be specified.
Thanks to the property ds−μ−λðχÞ ¼ ð−1Þμ−λdsμλðχÞ and
taking into account that for a real photon λ ¼ �1, we
obtain [35]

Tl
λm;λ1λ2

≃ −Pð−1ÞJð−1ÞmTl;s
−λ−m;λ1λ2

; ðC8Þ

for the helicity amplitude in the helicity frame at leading
order in the energy for the exchange of particle with spin
parity JP. The transformation in Eq. (C7) being general, the
relation (C8) holds also in every frame in which xz is the
reaction plane.

APPENDIX D: THE REFLECTIVITY BASIS

We now introduce the reflectivity basis, in analogy with
Ref. [14], by defining the amplitudes

ðϵÞTl
m;λ1λ2

¼ 1

2
½Tl

þ1m;λ1λ2
− ϵð−1ÞmTl

−1−m;λ1λ2
�; ðD1Þ

where, in terms of degrees of freedom, the photon helicity λ
has been traded for the reflectivity index ϵ ¼ �. The
inverse relations are simply

Tl
−1m;λ1λ2

¼ ð−1Þm½ð−ÞTl
−m;λ1λ2

− ðþÞTl
−m;λ1λ2

�;
Tl
þ1m;λ1λ2

¼ ð−ÞTl
m;λ1λ2

þ ðþÞTl
m;λ1λ2

: ðD2Þ

The relation (C8) implies that, at high energies, natural
(unnatural) exchanges contributes only to the ϵ ¼ þ
(ϵ ¼ −) components in the reflectivity basis. The relation
between the reflectivity basis and the naturality of the
exchange at high energy is the main motivation to introduce
the combinations (D1).
Parity invariance implies

ðϵÞTl
m;−λ1−λ2 ¼ ϵð−1Þλ1−λ2 ðϵÞTl

m;λ1λ2
: ðD3Þ

We take advantage of this constraint to define

½l�ðϵÞm;0 ¼ ðϵÞTl
m;þþ; ½l�ðϵÞm;1 ¼ ðϵÞTl

m;þ−; ðD4Þ

with ½l� ¼ S; P;D;… for l ¼ 0, 1, 2, etc. In this new basis,
for each l, there are 2 × 2 × ð2lþ 1Þ complex partial

waves ½l�ðϵÞm;k with ϵ ¼ �, k ¼ 0, 1 and m ¼ −l;…;l. It is
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worth noticing that, in the reflectivity basis for photo-
production, m takes positive and negative values. A contra-
rio, in the reflectivity basis for spinless beam, m is only
positive [14].
Another advantage of this basis is to diagonalize the spin

density matrix element in the ϵ space. To obtain this result,
we first perform the summation over the photon helicities
λ ¼ �1 in the definitions of the spin density matrices,
Eqs. (A10). Then, we substitute the amplitudes with photon
helicities by the reflectivity basis using the definitions in
Eqs. (D2). We finally use to the parity relation in Eq. (D3)
to recast the interference terms as

X
λ1λ2

ðϵÞTl
m;λ1λ2

ðϵ0ÞTl0�
m0;λ1λ2

¼ 2δϵ;ϵ0
X
k

½l�ðϵÞm;k½l0�ðϵÞ�m0;k: ðD5Þ

The interference between different ϵ thus vanishes, and the
intensities, moments, and SDME are split into an incoher-
ent sum over the different reflectivity components. For the
moments, we write

HαðLMÞ ¼ ðþÞHαðLMÞ þ ð−ÞHαðLMÞ; ðD6Þ

and similarly for the density matrices

ρα;ll
0

mm0 ¼ ðþÞρα;ll
0

mm0 þ ð−Þρα;ll
0

mm0 : ðD7Þ

With this convention, the explicit expressions for the spin
density matrices in terms of partial waves read

ðϵÞρ0;ll
0

mm0 ¼ κ
X
k

ð½l�ðϵÞm;k½l0�ðϵÞ�m0;k

þ ð−1Þm−m0 ½l�ðϵÞ−m;k½l0�ðϵÞ�−m0;kÞ; ðD8aÞ

ðϵÞρ1;ll
0

mm0 ¼ −ϵκ
X
k

ðð−1Þm½l�ðϵÞ−m;k½l0�ðϵÞ�m0;k

þ ð−1Þm0 ½l�ðϵÞm;k½l0�ðϵÞ�−m0;kÞ; ðD8bÞ

ðϵÞρ2;ll
0

mm0 ¼ −iϵκ
X
k

ðð−1Þm½l�ðϵÞ−m;k½l0�ðϵÞ�m0;k

− ð−1Þm0 ½l�ðϵÞm;k½l0�ðϵÞ�−m0;kÞ; ðD8cÞ

ðϵÞρ3;ll
0

mm0 ¼ κ
X
k

ð½l�ðϵÞm;k½l0�ðϵÞ�m0;k

− ð−1Þm−m0 ½l�ðϵÞ−m;k½l0�ðϵÞ�−m0;kÞ: ðD8dÞ

Equations (D8) are useful to express moments HαðLMÞ in
terms of partial waves. From Eqs. (D8), we can also extract
the relations

ðϵÞρ1;ll
0

mm0 ¼ −ϵð−1ÞmðϵÞρ0;ll
0

−mm0 ; ðD9aÞ

ðϵÞρ3;ll
0

mm0 ¼ iϵð−1ÞmðϵÞρ2;ll
0

−mm0 : ðD9bÞ

From the knowledge of the spin density matrix elements
ρα;ll

0
mm0 , one can reconstruct the good reflectivity elements via

ðϵÞρ0;ll
0

mm0 ¼ 1

2
ðρ0;ll0mm0 − ϵð−1Þmρ1;ll0−mm0 Þ; ðD10aÞ

ðϵÞρ3;ll
0

mm0 ¼ 1

2
ðρ3;ll0mm0 þ iϵð−1Þmρ2;ll0−mm0 Þ: ðD10bÞ

In the case of the dominance of a single partial wave,
SDME can be extracted from the angular distribution of the
data, and the formalism presented is equivalent to the one
introduced in Ref. [13]. When more than one wave
contributes to the partial wave expansion, SDME cannot
be isolated, and only moments can be extracted.
The intensities are also an incoherent sum over

the reflectivities. To express the intensities in terms of
the partial waves in the reflectivity basis, we introduce the
quantities

UðϵÞ
k ðΩÞ ¼

X
l;m

½l�ðϵÞm;kY
m
l ðΩÞ; ðD11aÞ

ŨðϵÞ
k ðΩÞ ¼

X
l;m

½l�ðϵÞm;k½Ym
l ðΩÞ��: ðD11bÞ

The quantities UðϵÞ
k ðΩÞ and ŨðϵÞ

k ðΩÞ are not helicity
amplitudes. They arise when the parity relations are used
to replace the sum over nucleon helicities by the sum over
k, as in Eq. (D5). The intensities can be expressed by

I0ðΩÞ ¼ κ
X
ϵ;k

jUðϵÞ
k ðΩÞj2 þ jŨðϵÞ

k ðΩÞj2; ðD12aÞ

I1ðΩÞ ¼ −κ
X
ϵ;k

2ϵReðUðϵÞ
k ðΩÞ½ŨðϵÞ

k ðΩÞ��Þ; ðD12bÞ

I2ðΩÞ ¼ −κ
X
ϵ;k

2ϵImðUðϵÞ
k ðΩÞ½ŨðϵÞ

k ðΩÞ��Þ; ðD12cÞ

I3ðΩÞ ¼ κ
X
ϵ;k

jUðϵÞ
k ðΩÞj2 − jŨðϵÞ

k ðΩÞj2: ðD12dÞ

For a linearly polarized beam, one can write the full
intensity as

IðΩ;ΦÞ ¼ 2κ
X
k

ð1þ PγÞj½l�ðþÞ
m;kReZ

m
l ðΩ;ΦÞj2

þ ð1 − PγÞj½l�ðþÞ
m;kImZm

l ðΩ;ΦÞj2

þ ð1 − PγÞj½l�ð−Þm;kReZ
m
l ðΩ;ΦÞj2

þ ð1þ PγÞj½l�ð−Þm;kImZm
l ðΩ;ΦÞj2: ðD13Þ
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In Eq. (D13), we have defined the quantity Zm
l ðΩ;ΦÞ ¼

Ym
l ðΩÞe−iΦ, such that

ReZm
l ðΩ;ΦÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm0ðθÞ cosðmϕ −ΦÞ; ðD14aÞ

ImZm
l ðΩ;ΦÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm0ðθÞ sinðmϕ −ΦÞ: ðD14bÞ

Finally let us prove (14). We use Eqs. (D8) to express the
difference Δ≡ ImH2ðLMÞ þH1ðLMÞ, as

Δ ¼ 2κ
X
k;ϵ

X
ll0
mm0

�
2l0 þ 1

2lþ 1

�
1=2

Cl0
l00L0C

lm
l0m0LM

× ϵð−1Þm½l�ðϵÞ−m;k½l0�ðϵÞ�m0;k: ðD15Þ

Since the basis includes only positive spin projection
components, Δ vanishes unless the summation indices
satisfy m ≤ 0 and m0 ¼ m −M ≥ 0. These conditions
are incompatible with M ≥ 1. Consequently, we obtain the
condition

ImH2ðLMÞ ¼ −H1ðLMÞ; for M ≥ 1; ðD16Þ

for any wave set restricted to only positive m, and thus for
our wave set (9).
From an experimental perspective, the moments are

extracted from the angular distribution, cf. Eqs. (B6),
without assuming a particular wave content. If the exper-
imentally extracted moments were to not satisfy the
condition in Eq. (14), it would indicate that negative m
components (in the reflectivity basis) are required for a
proper description of the two-meson system.

APPENDIX E: MOMENTS WITH
S, P, AND D WAVES

We restrict the wave set to only S, P, and D waves with
only positivem components. The momentsH3ðLMÞ are not
accessible with a linearly polarized beam, and we have
already proven that ImH2ðLMÞ ¼ −H1ðLMÞ, cf. Eq. (D15).
Our basis (9) includes only positive reflectivity components;
the relevant moments are thus H0;1ðLMÞ ¼ ðþÞH0;1ðLMÞ.
We do not include the phase space factor κ to simplify the
equations. In terms of partial waves, the moments forL ¼ 0,
1, 2 are

H0ð00Þ ¼ H1ð00Þ þ 2½jPðþÞ
1 j2 þ jDðþÞ

1 j2 þ jDðþÞ
2 j2�; ðE1aÞ

H1ð00Þ ¼ 2½jSðþÞ
0 j2 þ jPðþÞ

0 j2 þ jDðþÞ
0 j2�; ðE1bÞ

H0ð10Þ ¼ H1ð10Þ þ 4ffiffiffi
5

p ReðPðþÞ
1 DðþÞ�

1 Þ; ðE1cÞ

H1ð10Þ¼ 8ffiffiffiffiffi
15

p ReðPðþÞ
0 DðþÞ�

0 Þþ 4ffiffiffi
3

p ReðSðþÞ
0 PðþÞ�

0 Þ; ðE1dÞ

H0ð11Þ ¼ H1ð11Þ þ 2

ffiffiffi
2

5

r
ReðPðþÞ

1 DðþÞ�
2 Þ; ðE1eÞ

H1ð11Þ ¼ 2ffiffiffi
5

p ReðPðþÞ
0 DðþÞ�

1 Þ − 2ffiffiffiffiffi
15

p ReðPðþÞ
1 DðþÞ�

0 Þ

þ 2ffiffiffi
3

p ReðSðþÞ
0 PðþÞ�

1 Þ; ðE1fÞ

H0ð20Þ¼H1ð20Þ−2

5
jPðþÞ

1 j2þ2

7
jDðþÞ

1 j2−4

7
jDðþÞ

2 j2; ðE1gÞ

H1ð20Þ¼4

5
jPðþÞ

0 j2þ4

7
jDðþÞ

0 j2þ 4ffiffiffi
5

p ReðSðþÞ
0 DðþÞ�

0 Þ; ðE1hÞ

H0ð21Þ ¼ H1ð21Þ þ 2

7

ffiffiffi
6

p
ReðDðþÞ

1 DðþÞ�
2 Þ; ðE1iÞ

H1ð21Þ ¼ 2ffiffiffi
5

p ReðSðþÞ
0 DðþÞ�

1 Þ þ 2
ffiffiffi
3

p

5
ReðPðþÞ

0 PðþÞ�
1 Þ

þ 2

7
ReðDðþÞ

0 DðþÞ�
1 Þ; ðE1jÞ

H0ð22Þ ¼ 2ffiffiffi
5

p ReðSðþÞ
0 DðþÞ�

2 Þ − 4

7
ReðDðþÞ

0 DðþÞ�
2 Þ; ðE1kÞ

H1ð22Þ ¼ H0ð22Þ þ
ffiffiffi
6

p

7
jDðþÞ

1 j2 þ
ffiffiffi
6

p

5
jPðþÞ

1 j2; ðE1lÞ

and for L ¼ 3, 4,

H0ð30Þ ¼ H1ð30Þ − 12

7
ffiffiffi
5

p ReðPðþÞ
1 DðþÞ�

1 Þ; ðE2aÞ

H1ð30Þ ¼ 12

7

ffiffiffi
3

5

r
ReðPðþÞ

0 DðþÞ�
0 Þ; ðE2bÞ

H0ð31Þ ¼ H1ð31Þ − 2

7

ffiffiffi
3

5

r
ReðPðþÞ

1 DðþÞ�
2 Þ; ðE2cÞ

H1ð31Þ ¼ 4

7

ffiffiffi
6

5

r
ReðPðþÞ

0 DðþÞ�
1 Þ þ 6

7

ffiffiffi
2

p

5
ReðPðþÞ

1 DðþÞ�
0 Þ;

ðE2dÞ

H0ð32Þ ¼ H1ð32Þ − 2

7

ffiffiffi
6

p
½ReðPðþÞ

1 DðþÞ�
1 Þ�; ðE2eÞ

H1ð32Þ ¼ 2

7

ffiffiffi
3

p
½ReðPðþÞ

0 DðþÞ�
2 Þ þ

ffiffiffi
2

p
ReðPðþÞ

1 DðþÞ�
1 Þ�;

ðE2fÞ

H0ð33Þ ¼ 0; ðE2gÞ
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H1ð33Þ ¼ 6

7
ReðPðþÞ

1 DðþÞ�
2 Þ; ðE2hÞ

H0ð40Þ ¼ H1ð40Þ − 2

21
½4jDðþÞ

1 j2 − jDðþÞ
2 j2�; ðE2iÞ

H1ð40Þ ¼ 4

7
jDðþÞ

0 j2; ðE2jÞ

H0ð41Þ ¼ H1ð41Þ − 2

21

ffiffiffi
5

p
ReðDðþÞ

1 DðþÞ�
2 Þ; ðE2kÞ

H1ð41Þ ¼ 2

7

ffiffiffiffiffi
10

3

r
ReðDðþÞ

0 DðþÞ�
1 Þ; ðE2lÞ

H0ð42Þ ¼ −
2

7

ffiffiffi
5

3

r
ReðDðþÞ

0 DðþÞ�
2 Þ; ðE2mÞ

H1ð42Þ ¼ H0ð42Þ þ 2
ffiffiffiffiffi
10

p

21
jDðþÞ

1 j2; ðE2nÞ

H0ð43Þ ¼ Hð0Þð44Þ ¼ 0; ðE2oÞ

H1ð43Þ ¼ 2

3

ffiffiffi
5

7

r
ReðDðþÞ

1 DðþÞ�
2 Þ; ðE2pÞ

H1ð44Þ ¼ 1

3

ffiffiffiffiffi
10

7

r
jDðþÞ

2 j2: ðE2qÞ
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