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On quasimap invariants of moduli spaces
of Higgs bundles

Denis Nesterov

ABSTRACT

We compute odd-degree genus 1 quasimap and Gromov—Witten invariants of mod-
uli spaces of Higgs SLo-bundles on a curve of genus g > 2. We also compute certain
invariants for all prime ranks. This proves some parts of the author’s conjectures on
quasimap invariants of moduli spaces of Higgs bundles. More generally, our methods
provide a computation scheme for genus 1 quasimap and Gromov—Witten invariants
in the case when degrees of maps are coprime to the rank. This requires an analysis of
the localisation formula for certain Quot schemes parametrising higher-rank quotients
on an elliptic curve. Invariants for degrees that are not coprime to the rank exhibit a
very different structure for a reason that we explain.
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1. Introduction

1.1 Quasimaps

Let M (d) be a moduli space of semistable Higgs SLa-bundles of degree d on a curve C' of genus
g = 2. In this work, we consider quasimaps from a fixed elliptic curve F to M (d). These are maps
from E to the stack of all Higgs sheaves mapping generically to M (d).

The (reduced) expected dimension of a moduli space of quasimaps up to translations by E
is 0, hence by [Nes23|, it produces an invariant

QMg € Q,

where w € Z is the degree of quasimaps. The Picard rank of M (d) is 1, and the degree is taken
with respect to the ample generator of Pic(M(d)). Assuming d =1 or, equivalently, that d is
odd, we determine these invariants for odd degrees w. Let

U(q) :=1log ( [1a —qk)>-

k>0
THEOREM 1.1. We have
> QM g% =(2-2¢)2%" (U(q) — U(—q)).
odd w

By [Nes23, Corollary 10.12], this also determines genus 1 Gromov-Witten invariant GW?Y ,

of M (1) since
QMY , = GWi

if w is odd. The invariant GW?Y ,, is defined analogously but via the moduli space of stable maps

from E. Moreover, by Corollary 3.7, these quasimap invariants determine certain Vafa—Witten
invariants with insertions on the product C' x E.
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1.2 Degree 0 Higgs bundles

In [Nes23], a notion of extended degree (w,a) € Z @ Zy of quasimaps to M(d) was defined (see
Definition 2.5) as were the associated invariants for an arbitrary d,

€ Q.

If d =1, the extended degree is determined by the parity of w; that is, (w,a) = (w, [w]z), where
[w]z :=w mod 2. In particular, for odd w we have

QMyy, =QMms

In this article, we also determine the quasimap invariants QM(I):;V associated to a moduli space
of degree 0 Higgs SLo-bundles M (0).

THEOREM 1.2. We have
ZQMéLqW (2-2¢)2%7" (U(g) + U(—q)) -

As it was argued in [Nes23], these invariants can be seen as Gromov—Witten—type invariants of
the stack M (0). Moreover, we compute certain invariants for w =0 in Corollary 3.9. Theorems 1.1
and 1.2, with Corollary 3.9, confirm parts of [Nes23, Conjecture A, B], thus providing evidence
for [Nes23, Conjecture A, B, C].

We want to draw the reader’s attention to a peculiar coincidence: Genus 1 positive-degree
Gromov—Witten invariants of an elliptic curve E are given by the following generating series:

Ute) = tog ( [T -4).

k>0

as is shown in [Dij95]. Our methods make this coincidence in some sense less surprising,2 because
in fact, the roles of C' and E can be exchanged, allowing us to treat invariants QM w D terms
of other invariants that are expressible via E alone. We now explain how this is done (see also
Remark 4.15).

1.3 Methods

The correspondence between quasimap invariants of M (d) and Vafa—Witten invariants of C' x E,
discussed in [Nes23|, is essential. Our argument uses a combination of

« wall-crossing for Vafa—Witten invariants and

« quasimap wall-crossing of [Nes21].

The wall-crossing for Vafa—Witten invariants is conjectured to be trivial for a complex surface
S with py(S) >0 or, equivalently, with by (S) > 1. We will sketch an argument for its triviality
by assembling various results from the existing literature. However, these results usually assume
that b1(S) =0, mainly in order to simplify the exposition. In our case, S is a product of two
non-rational curves; hence, b1(S) # 0. We therefore make the assumption that existing results
extend to the case of S with b1(S) # 0. See Section 2.1 for more details.

!The extended degree aims to capture the presence of torsion classes in the cohomology of moduli spaces of
PGL,-bundles. It is essential for the formulation of enumerative mirror symmetry.

2However, we do not claim that we can fully explain this coincidence, so we urge the reader to treat this sentence
as mostly rhetorical.
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|#vir{E ——> M(d)} ~ #vir{c N M’(a)} ~ #vir{G — @ on E'}|

FIGURE 1. Summary.

Changing stability on C' x F from the one that has a high degree on E to the one that has a
high degree on C' corresponds to passing from quasimaps E --+ M (d) to quasimaps C --+» M'(a),
where M'(a) is a moduli space of Higgs SLe-bundles on E. Since the wall-crossing for Vafa—Witten
invariants is trivial, this gives rise to an equivalence of associated invariants: Corollaries 2.12
and 3.7.

In this way, invariants QMé:;V correspond to quasimap invariants of M’(1). This makes compu-
tation more accessible because M’(1) is just a point, as there is a unique stable Higgs SLo-bundle
of degree 1 on E. Hence, the corresponding quasimap invariants can be effectively computed by
the quasimap wall-crossing: They will be equal to the wall-crossing invariants of the quasimap
wall-crossing formula, which are just Euler characteristics of certain Quot schemes on E (which
are quotiented by the action of F). A summary of the preceding discussion is depicted in Figure 1.

Complications arise due to the fact that in reality, one needs to consider quasisections of C
to M'(a) instead of quasimaps. This is a reason we did not put signs of equality in Figure 1
(another reason is that we have to find the quotient using F). Moduli spaces of quasisections
and quasimaps are essentially isomorphic in this case, but the obstruction theories are not.
This is the main source of technicalities in our calculations: The cosection of the obstruction
theory of quasisections takes values in the canonical bundle of the curve C, as is explained in
Section 4.4. Nevertheless, we obtain the same vanishing results as in the case of an obstruction
theory with a standard surjective cosection, Theorem 4.10. We refer to Section 2.3 for more
on quasisections in our context. Quasisections are treated in greater detail for more general
fibrations in [LW23].

1.4 Higher rank

Almost everything presented in this article applies to an arbitrary rank r, except for the following
two results. Firstly, Claim 2.3 is stated for a prime rank r because of Thomas’ vanishing result
[Tho20, Corollary 5.30]. Secondly, the analysis of the wall-crossing Quot schemes in Section 5 is
done only for r=2.

The case of r > 2 requires Quot schemes to parametrise quotients of higher rank on E. One
can always deform to a sum of line bundle and use torus-localisations. However, since a sum of
line bundles is not stable and since we consider higher-rank quotients, the resulting Quot schemes
have non-trivial obstruction theories. This slightly obscures localisation formulas; hence, it will
be addressed elsewhere. To this end, we conjecture an expression for higher-rank invariants in
Conjecture 4.17 and provide a basic check of the conjecture, Proposition 4.16.

1.5 Even degrees

There is a good reason we cannot compute invariants for even degrees w (or, more generally,
for degrees coprime to the rank) using the same methods. This case corresponds to the moduli
space of degree 0 Higgs SLa-bundles M’(0) on E. The space M’(0) is no longer a point. In fact,
all Higgs bundles of degree 0 on E are strictly semistable and are given by direct sums of degree
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0 line bundles. As such, the moduli space M’(0) is not complicated, but since it is a stack, its
moduli spaces of quasimaps are not easily accessible.

Quasimap invariants of even degrees are in some sense more appealing. For example, if w =0,
then the corresponding invariants give Euler characteristics of moduli spaces of Higgs bundles.
If w>0, then by [Nes23, Section 7.2], they determine quasimap invariants of the gerbe given
by the class a.. Moreover, K-theoretic invariants should give more refined topological invariants.
In particular, one could potentially compute these topological invariants via the moduli space
of degree 0 Higgs bundles on E by using Vafa—Witten wall-crossing, once quasimaps to moduli
space of degree 0 Higgs bundles on FE is better understood.

1.6 Notation and conventions

We denote the torus that scales Higgs fields by C;, while the torus that scales P! (with weight
1 at 0 € P1) by C:. We also denote

t := weight 1 representation of C,on C;

z := weight 1 representation of C7 onC,

such that t:=ec, (t) and z:=ec_(z) are the associated classes in the equivariant cohomology of
a point.

Moduli spaces of Higgs sheaves are not proper; hence, we will always use the virtual
localisation to define invariants. In order to make the notation less complicated, we denote

Jo ™= fo vy

Finally, we will frequently use the fact that an obstruction theory of some space M descends to
the quotient [M/G]. That this is indeed true can be seen either by taking quotients in the category
of derived stacks, since our group actions preserve the naturally defined derived enhancements,
or by viewing the descent of an obstruction theory of M to [M/G] as an obstruction theory
of [M/G] relative to [pt/G], which requires certain compatibility of the corresponding moduli
problems, which also holds in our case.

2. Vafa—Witten and quasimap invariants

2.1 Preliminaries

Throughout the present article, we fix a rank r > 2. Only in the very end of Section 4 will we
restrict to r =2. We need r =2 for the analysis of Quot schemes in Section 5.
Let C and C’ be smooth, non-rational projective curves, and let

Ls:= Oc(l) X OC/(5), o€ Q>0

be an ample Q-line bundle on the product C' x C’. For the extremal values of §, we introduce
the following notation:

o=+ if 6> 1;
§=—if s<1. (1)

Throughout this article, we will be using the identification

H?(Cx(C'\Z)2ZeH'(C,Z)® H'(C',Z) & Z,

Downloaded from https://www.cambridge.org/core. DESY Zentralbibliothek, on 31 Mar 2025 at 13:10:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/mod.2024.5


https://doi.org/10.1112/mod.2024.5
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

DENIS NESTEROV

as provided by the Kunneth’s decomposition theorem. We define
Lo = Jac(C)][r]
to be a group of r-torsion lines bundles on C.

DEFINITION 2.1. Let d and a be integers such that 0 <d,a <r. We define
M°(C'x C',d,a,w)

to be a moduli space of Higgs sheaves (F, ¢), with a fixed determinant and traceless Higgs field
¢ € Hom(F, F @ woxcr) on C x C', which are Gieseker-stable with respect to Ls. The class of F'
is given as follows:

rk(F) =r;
c1(F) = (d,0,a)
A(F) :=c1(F)? = 2rchy(F) = 2w.
Throughout this article, we assume
ged(r,d,a) =1,
which implies that there are no strictly semistable Higgs sheaves.

Remark 2.2. The assumption on the middle component of ¢; (F') being 0 is not restrictive because
if C' and C’ are chosen in the same way that, as the Jacobian of one curve is not an isogenous
component of another, then H'(C) ® H'(C") does not contain algebraic classes. The curves C’
and C' can always be deformed to such a setup. By the deformation invariance of Vafa—Witten
invariants, we can therefore assume that the middle component is zero.

2.2 Vafa—Witten wall-crossing

Conjecturally, Vafa-Witten invariants are independent of stabilities for surfaces with py(S) > 1.
Let us present some evidences of this: By [MM21], (physically derived) formulas for Vafa—Witten
invariants for a surface S with b1(S) =0 and py(S) > 1 are independent of stabilities (see also
the discussion in [TT20, Section 1.6]). By [DPS98], the same holds for Donaldson invariants for
a surface with b1(S5)#0 and py(S) > 1. It is therefore reasonable to expect that Vafa-Witten
invariants (with even insertions) for a surface with b1(S) # 0 and py(S) > 1 are also independent
of stabilities. Products of non-rational curves are among such surfaces. We now derive a proof
for this claim.

Claim 2.3. Assume py(S) > 0. If r is prime and there are no strictly semistable sheaves, then
Vafa—Witten invariants with even p-insertions are independent of stability.

Derivation of proof: Vafa—Witten invariants consist of instanton and monopole contributions.
The instanton contributions are integrals on moduli spaces of stable sheaves on the surface
(descendent Donaldson invariants). On the other hand, the monopole contributions are given by
integrals on moduli spaces of flags of sheaves. See [T'T20] for more details.

The claim can therefore be proven by assembling the following results from the literature:

« Mochizuki’s universal expressions for descendent invariants on moduli spaces of sheaves
on surfaces [Moc09]. To express instanton contributions via descendent invariants, we use
Gottsche—Kool’s expressions of the virtual equivariant Euler class in terms of descendent
invariants [CY22];
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« Thomas’ double-cosection argument, which shows that only vertical components contribute
to the monopole branch [Tho20, Corollary 5.30];

« Laarakker’s expressions of vertical contributions in terms of integrals on nested Hilbert
schemes [Laa20, Theorem A] (see also [GSY20, Theorem 3| for the rank 2 case). Laarakker’s
analysis extends to invariants with insertions.

It can be readily checked that Thomas’ and Laarakker’s results are independent of the
assumption on by (S). On the other hand, Mochizuki’s result is more involved.

More conceptually, the independence of stability for Vafa—Witten invariants should be studied
within the framework of Joyce’s wall-crossing [Joy21]. O

DEFINITION 2.4. Following [TT20], we define Vafa-Witten invariants associated to a moduli
space M°(C x C',d,a,w) by the C}-localisation,

1
VW2 (C x ") ::/ 4
d [M‘F(CXC’,d,a,W)CZ]V“' G(Nwr)

€ Q.

By Claim 2.3, they are independent of §. For short, we will write
1

1::/ —,
/[M“(C’xC’,d, aw)]vie (M3 (CxC7, dyaw)Si vie €(NVIT)

the same notation of which applies to all integrals that require Cj-localisations.

2.3 Quasisection invariants

The importance of quasisections was already observed in [Oko19, Section 7]|. Here we apply them
in the context of a relative moduli space of Higgs bundles.

Let Koxor be the total space of the canonical bundle woxc on C' x C’. The variety Koy or
admits projections both to C' and to C:

!
TC - KCXC’ —)C’, T 5KC><C’ —C".

We will consider various moduli spaces (that is, Quot schemes and moduli spaces of Higgs
sheaves) relative to these projections.

DEFINITION 2.5. We define MM !(d) — C” to be a relative moduli space of 1-dimensional com-
pactly supported sheaves on 7o : Koxor — C' whose associated Higgs sheaves are of rank r,
degree d and with a fixed determinant and a traceless Higgs field. We refer to this moduli space
as a relative moduli space of Higgs sheaves. By Mé?l(d) — C’, we denote its semistable locus.

Let us denote
v=(r,d) e H*(C, Z).
As in the absolute case, we have a determinant-line-bundle map
A: H®(C, Z) — Pic(MES(d)),
such that a class u € H®(C,Z) that satisfies
X(v'u):/Cv-u-tdczr~W—|—d-u1+r-u1(1—g):1

gives a trivilisation of the C*-gerbe

M (d) — Mg o (d) = Mes' (d) / C*
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or, in other words, a universal family on Smigl’c(d). For a class w € H®V(C, Z) such that x(v-u) =
0, the line bundle A(u) descends to Emigl’o(d).

We define the theta line bundle © € Pic (sm;glc(d)) as follows:
0= (-r,d=r(g—1));
© = \(0).
We also define the class of SL-trivialisations of the universal family of M!(d) :
ac H? (zmgel(d), Zr).

Equivalently, a is the Kunneth component of the first Chern class of the universal family modulo
r. The class « is the gerbe class of [HT03]. The classes © and « will be used to define degrees of
quasisections.

Remark 2.6. If ged(r,d)=1, then « is a multiple of ® modulo r. However, this is not the
case otherwise. It is useful to keep a for notational purposes, however, because even in the
case when ged(r, d)=1, invariants behave very differently depending on the degree with respect
to .

DEFINITION 2.7. A quasisection of Mgl(d) is a section of the projection p¢ : mt;‘;{o(d) -,
f:C" =ML (), poro f=ide,
which maps generically to ME?l(d). A quasisection is of degree (w,a) EZ® Z, :=Z® LJrZ, if
deg(f*®)=w, ffa=a.
We denote the moduli space of quasisections of M{!(d) of degree (w,a) by Q (M (d),a, w).

The moduli spaces Q(Mgsl(d), a, W) inherit Cj-actions from 995! (d). The properness of qua-
sisections and the existence of a perfect obstruction theory is proven in the same way as in
[Nes21, Nes23]; see also [LW23].

DEFINITION 2.8. If ged(r,d) =1, we define

QM3 (C) = / 1€Q
[Q(ME(d),a,w)]vir

to be quasisection invariants associated to a moduli space Q(Méel(d), a, W).
Note that by the definition of a relative moduli of sheaves, a section
f:C"' = Mg (d)
is given by a sheaf on
KeoxorxeC'=Koxcr.

Hence by [Nes23, Proposition 5.10], a moduli space of L. -stable Higgs sheaves on C' x C’ is
naturally a I'cr-torsor over the moduli space of quasisections of Méel(d). On the other hand,
the moduli space of L_-stable Higgs sheaves on C' x C” is naturally a I'c-torsor over the moduli
space of quasisections of M (d). Moreover, the corresponding obstruction theories match. This

is summarised in the following proposition:
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PROPOSITION 2.9. If ged(r,d) =1, we have
Q( el (), a,w) ~ [M~(C x C',d,a,w)T¢]
Q(Mg’l(d), a, w) ~ [M+(C x C',d,a,w)/Ter]

such that the naturally defined obstruction theories on both sides match.

Proof. Similar to [Nes23, Proposition 5.10], see also [LW23]. O
We use Proposition 2.9 as a justification for the following definition of invariants in the case of
ged(r,d) #1:

DEFINITION 2.10. If ged(r,d) # 1, we define

QM3 (C) ::/ 1€Q.

[M+(CxC",d,aw)/Der]vie
If ged(r, a) # 1, we define
ame,, ()= [ 10
[]\47(C'X61/7‘:17avw)/1_‘c]vir

Remark 2.11. Proposition 2.9 implicitly depends on the choice of the universal family on the

rigidified stack S)ﬁigc. We return to this point in Section 3.2 for an elliptic curve.

Using Claim 2.3 and Proposition 2.9, we obtain a curious correspondence between quasisec-
tion invariants of Mgl (d) and ME(a).

COROLLARY 2.12. If r is prime, we have
PACIQM, (C) = VW3, (C x C7) = r9©IQme, () .

3. Genus 1 invariants
3.1 Group actions
For the rest of this article we assume that C’ is an elliptic curve,
C'=E.
Since g : Koxg — F is a trivial fibration, the moduli space of quasisections to Mé?l(d) is canon-

ically isomorphic to a moduli space of quasimaps from E to an absolute moduli space of Higgs
bundles M¢c(d) on C:

Q(ME'(d), 3, w) = Qp(Mc(d), a,w)
In fact, our primary interest is in quasimaps up to translations of F; that is, in the quotient

[QE(M(d)7 a, W)/E] )

where E acts on Qg (M (d),a,w) by precomposition with a translation. A similar action exists
on the level of moduli spaces M%(C x E,d,a, w), which we now explain.
The group

E x Jac(E)
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naturally acts on sheaves. Here, E acts by pulling back a sheaf with respect to a translation 7,
by a point p € E, while Jac(FE) acts by tensoring a sheaf with a line bundle L. These operations
commute. Overall,

Fer FeL.
Let
®(L) C E x Jac(E)

be the subgroup that fixes the determinant line bundle £ of sheaves in a moduli space
M(C x E,d,a,w). We define
B, = (id,1) 1 (L) (2)
The group ®, preserves rank r sheaves with determinant £. The action of ®, on sheaves therefore
restricts to an action on M%(C x E,d,a,w).
By our assumption on the classes in Definition 2.1, the line bundle £ is of the form L X L’.

Hence, ®(£) and therefore ®, depend only on the degree of a. The group ®, also acts on M (a).
In the case of

Q(Mg'(2),d,w) = [M~(C x E,d,a,w) /Tc]
the action of ®, on Q(M}”Eel(a), d, w) can be seen as identification of maps by the automorphisms
of the target. The importance of this action is due to the next two lemmas:
LEMMA 3.1. There is a canonical identification
[Qe(Mc(d), a,w) /E] = [M™*(C x E,d,a,w) /®,]

such that the naturally defined obstruction theories on both sides match.
Proof. There exists a natural map

MT(C x E,d,a,w) = Qg(Mc(d),a,w) (3)
that is a I'g-torsor. There also exists a natural projection

o, > E (4)

that is also a I'g-torsor. The map (3) is equivariant with respect to (4) and the corresponding
actions of ®, and E on the source and the target. It is not difficult to check that we obtain
the desired identification after taking quotients. The rest follows from the same arguments as in
[Nes23, Section 5.5]. O

The action of ®, can be exchanged for an insertion. We are interested in p-insertions, which
are defined as follows:

i H*(C x E,Q) — H. (Mé(c x B,d,a,w) ,Q) :
B mar (A(F) /20 mxwpB)
where J is the universal sheaf on M?(C x E, d, a, w). Consider now the class

_ 1 X [pt]

I'w

Bu: € H*(C x E,Q) .

10
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LEMMA 3.2. We have

VWS (C x B) = / 1= / 1(Ba).
[M$(CxE,d,a,w)/P,]vi [M$(CxE,d,a,w)]vir
Proof. Similar to [Nes23, Proposition 5.26], O

by Lemma 3.2 and Claim 2.3, invariants associated to a moduli space [M‘s(C x E,d,a, W)/q)a]
are independent of §.

DEFINITION 3.3. If ged(r,d) =1, we define
QMZL(O) :/ 1eQt

[QE(M(d)vavw)/E]Vir
to be invariants associated with quotient moduli spaces [Qg(M(d),a,w) /E]. If ged(r,a) =1, we
also define

QMds, (B) = 1eqt

/[Q(Mée‘(d)yaw)/‘ba]“r
to be invariants associated with the quotient moduli space [Q (Mj{;el(a), d, W) /@a].

We use Lemma 3.1 as a justification for the following definition of invariants in the case of
ged(r,d) #1 and ged(r, a).

DEFINITION 3.4. If ged(r,d) # 1, we define

QML (C) :/ 1eQt.

[M+(CxE,d,a,w)/®,]vir
If ged(r, a) # 1, we define

ams(e) = | 1eqt
[M-(CxE,d,aw)/®,]vir
Remark 3.5. Note the presence of the equivariant parameter ¢. This is due to the existence of
Cf-equivariant cosections, which map to a line bundle of C;-weight 1 and are constructed in
[Nes23, Proposition 3.15]. We can divide by t, thereby obtaining Q-valued invariants. This also
corresponds to reducing the obstruction theory. However, the reduction of the obstruction theory
is not necessary, as the cosection is equivariant and therefore does not lead to the vanishing of
the virtual fundamental class; rather, it becomes a multiple of the equivariant parameter.

Remark 3.6. In the case of invariants up to translation by E, the role of the F-action is exchanged
after passing from quasimaps of M¢(d) to quasisections of Mg(a). For [Qg(M(d),a,w) /E],
taking the quotient is an identification of maps by translations of the source curve E. On the other
hand, for [Q (Mgl(a), d, W) / <I>a] , taking quotient can be seen as identification of quasisections
by automorphisms of the target M!(d).

Using Claim 2.3 and Lemma 3.2, we obtain the following result:
COROLLARY 3.7. If r is prime, we have
QM3 (C) = VW3, (C x E) = r*9(©)QMes,(E).

Remark 3.8. Note that unlike in Corollary 2.12, we do not have the factor r29(%) on the left-hand
side. This is because the group ®, contains I'g.
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3.2 Moduli spaces of Higgs sheaves and sheaves

From now on, we will assume that ged(r,a) = 1, unless stated otherwise. A moduli space of rank
r and degree a stable Higgs GL,-bundles on F, denoted by MgL(a), is isomorphic to Kg via the
determinant-trace map,

(det, tr) : MEL(a) 5 Kg.
Hence, a moduli space of stable Higgs sheaves on E with a fixed determinant and a traceless

Higgs field is a point,

Mg(a) ={(G,0)} =pt,
where G is the unique stable sheaf with the given determinant. This is also holds relatively for
the projection 7o : Koxg — C,

Mg (a) = {(G, 0)} x C=C.
Using Corollary 2.12, we obtain an immediate consequence for quasimaps of degree w = 0, which
confirms a part of [Nes23, Conjecture BJ.
COROLLARY 3.9. If r is prime and a # 0, then
QMG ((C) = r29-2,

Let us now consider quasimaps of degree w # 0. Since the unique Higgs sheaf in M?E‘ﬂ(a) has a
zero Higgs field, a quasisection to MfEel(a) must factor through the moduli stack of Higgs sheaves
with zero Higgs fields. The latter is just a moduli stack of sheaves on FE,

N (a) < M (a). (5)
Since J¢!(a) is a relative moduli space of sheaves associated to a trivial fibration C' x E — C,
it trivialises canonically,
oel(a) =Np(a) x C. (6)
The same applies for rigidified stacks.

The obstruction theory of zm;g p(a) is constructed as follows: Let

Ge Coh(KCXE X mgl(a)) and 7: Koy p xo O (a) — 9008 (a)
be the universal C-relative 1-dimensional sheaf and the canonical projection. The complex
RHom(9,3) descends to ﬁﬁigl p(a). The obstruction theory for Higgs sheaves on a surface is
constructed in [TT20, Section 6], and the construction applies to Higgs sheaves on a curve. The
spectral-curve construction identifies C-relative 1-dimensional sheaves on K¢y g with C-relative

Higgs sheaves on C' x E with Higgs fields valued in woxg. Hence, the C-relative obstruction
theory of MM (a) is given by the complex

rg, B
S = ROOma(5, 9o [1]
where RHom (G, 9)o is defined to be the cone
Cone(RHomx(5,9) = (H* " (wg) ® H*(0p)) @ we) [—1].

Note that Tg{rel (a) does not restrict to the virtual tangent complex of the stack *ﬁ;glE(a).
rg, E )
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3.3 Chern characters

For the purposes of wall-crossing, one needs to make a choice for a universal family on the rigid-
ified stack zm;g (a). As explained in [Nes23, Section 3|, this amounts to choosing u € H*V(E,Z)
such that x(u-v) = 1. For a choice of such class u= (uy, uz), the sheaf F' on C' x E associated to
a quasisection f:C — int;g p(a) of degree w has the following Chern character,

ch(F)=(v,w) € HY(E,Z)® H" (E,Z)(—1),
where w is defined by the following system of equations:
W1 - Ug +Ws - up =0,
Wi-a—Wa-r=w. (7)
For example, if (r,a) = (r, 1), then u=(1,0) clearly satisfies
x(v-u)=1.
Using (7), we deduce that in this case,
w = (w,0).

4. Wall-crossing

4.1 e-stable quasisections

We will use Corollary 3.7 to compute genus 1 quasimap invariants of moduli spaces of Higgs
bundles on C. If ged(r,a) =1, then

Mp(a) ={(G,0)};

hence, there are no sections of nonzero degree, and there is a unique section of degree zero.
The quasimap wall-crossing for w > 0 is therefore particularly simple here, as it gives equality
of invariants associated to € =07 and to the wall-crossing invariants. However, there are two
complications:

« the action of ®, on Ml (a) and

« (C-relative setup,
which obscure otherwise-simple computations.

Let us start with defining e-stable quasisections. From now on, we simplify the notation in
the following way:

Qa,w) = Q (Ms'(a),w)
Qa,w)* = [Q (M (@), w) e, ;

the same applies to other related spaces.

!

DEFINITION 4.1. A marked bubbling of C is a pair (C', p,¢), where (C
marked nodal curve of genus equal to g(C') and where

1:C—=C’

is a closed immersion. In other words, C” is an isotrivial, semistable degeneration of C.

,P) is a connected,

13
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DEFINITION 4.2. Given € € Qs¢, we define @ (a,w) to be the moduli space of quasimaps of
degree w,

VK (C ) ‘ﬁiglE( ) =N r(a) x C,
such that
« fog) : (C', p) = Mg p(a) is e-stable [Nes23, Definition 3.5];
+ (C’,p) is a marked bubbling of C with & markings;
o [fcou:C—Cl=idc.

Since quasisections to Sﬁig p(a) factor through ‘ﬁig g(a), a moduli space Q4 (a, w) should be

viewed as a moduli space of e-stable quasisections to Sﬁrel( ). The fact that these moduli spaces
are proper follows from the arguments of [Nes21, Nes23]. Recall the embedding (5), which also
holds for rigidified stacks,

Mg p(a) = Mg p(a);
we thus endow Qj(a, w) with the obstruction theory given by the complex

&) = ™S T o) (®)
Its perfectness is proven in the same vein as in [Nes21, Nes23].

Let us indicate what moduli spaces Qf,(a, w) are for the extremal values of €. Using the same
notation as in (1), if e=—, we get

Q, (a,w) = Q(a, w).
If e=+, then
Qi (a,w) =pt if w=0;
Qf(a,w)=0 if w#£0.
We now discuss the wall-crossing between invariants associated to different values of e.
DEFINITION 4.3. Let GQ(a,w) be a moduli space of prestable quasimaps of degree w,
fPt = p(a) =My p(a) x C,

such that oo € P! is mapped to the stable locus. Consider a C*-action on the source P! with
weight 1 at 0 € PL. It thus induces a CZ-action on GQ(a,w). We define

wrel(a,w) C GQ(a, w)
to be the C}-fixed locus.
As in the case of Qf(a,w), we endow GQ(a,w) with the obstruction theory given by the
complex
VGlrQ(aW . 7T*f ;}{rel a 7

using the embedding ‘ﬁig pla) = imgg 2(a). The space W'!(a, w) inherits the obstruction theory
defined by the fixed part of the obstruction theory of GQ(a,w), as well as the virtual normal
bundle NV defined by the moving part of the obstruction theory.

14
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4.2 Moduli spaces of flags

As before, there exists a canonical identification of moduli spaces
Wrel(a,w) =W (a,w) x C, 9)

where W (a, w) is the analogous space defined via quasimaps to Mg(a). By [Obe21, Section 4],
the space W (a, w) admits a description in terms of moduli spaces of flags, which we now recall.
In what follows, by G we denote the unique stable sheaf of degree a with a fixed determinant
supported on the zero section in Kg. We also define

z := weight 1 representation of C; on C.
Let
Fl(a):{F1 CkhC...CF._4 QFT:G}

be a moduli space of flags such that consecutive terms are allowed to be equal. To each F,
and a choice of an integer k € Z, we can associated a C*-equivariant, torsion-free sheaf F on
KE X Al,

F=FRz"""e R e . F_ 17" e GEFTT e G2 L (10)

In fact, for torsion-free sheaves (G, such association is an equivalence between C*-fixed torsion-
free sheaves on K x A! and weighted flags (up to a choice of k). Moreover, each C*-fixed sheaf
in W(a, w) is canonically C*-equivariant. Let us denote by

Fl(a,w) C Fl(a)
the locus of flags that correspond to sheaves in W (a, w). By construction, we have
W(a,w) = Fl(a,w). (11)

Analogously, let FI'®!(a, w) be the relative moduli space of flags of (m5G)|ox e on the relative
surface no : Koxgp — C. Viewing quotients of G as quotients of a sheaf on F, on Kg or C-
relatively on Ko g is equivalent. Hence, identification (11) also holds relatively:

Wrel(a,w) = FI**!(a, w) = Fl(a,w) x C. (12)
Let
Quot™®(a, w) C FI*'(a, w)
be the connected component corresponding to Quot schemes; that is, flags with » =2. By
Quot™(a, w)¢ C FI'(a, w),
we denote its complement. We define
Q. =, /F, and K=,

to be the universal quotient and the universal kernel of Quot™!(a, w), respectively. Quot schemes
of stable sheaves on smooth curves are smooth; hence, so are Quot™!(a, w) by (12).

4.3 Obstruction theory of flags

By [Obe21, Section 4], obstruction theories of moduli spaces W*!(a, w) and F1'!(a, w) also agree.
We now describe the obstruction theory of F1*®!(a, w) and the associated virtual normal bundle
NV, Let

F1CFC...CT =G

15
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be the universal flag on Koy g xc FI'®'(a, w), and let
7 Koxp xc FI¥(a, w) = FI'(a, w)
be the natural projection.

THEOREM 4.4 The C-relative obstruction theory of FI*\(a, w) is given by the complex

. 1=r—1 1=r—1
’]I“Pillr(a Wyl = Cone< ® RHom (F;,Fi))— @& RHom.(F;, Cﬂ-ﬂ)) _
’ i=1 i=1

The K-class of NI is
N = =N ST RHoma(Fig i/ Fivnot, Fi)2"

i>1 k>1

+ 33" R¥Homa(Fipnsr /Tisw Ti) V2.

i1 k>1

Proof. See [Obe21, Section 4]. Note the sign difference in z-weights; this occurs because 0 € P!
has weight z in contrast with [Obe21], where its weight is equal to —z. ]

The next lemmas will be useful for the analysis presented in Section 4.6 and in Section 5.
LEMMA 4.5. We have the following identity in the K-group,
RHomx(F4+1/F;,Fi) =K(1 —wct),
for some K-class K.

Proof. Let us denote A :=5%;,1/F; and B:=5;. Both A and B are scheme-theoretically sup-
ported on the zero section C' X E C Koy g; they can therefore be extended to the entire Ko« E
by pulling them back by the projection Koxgp— C x E. We denote these extensions by A
and B.

Consider now the sequence on Koy g,
0—=+0(—CxFE)—=O0k,,, = Ocxr—0.
We tensor it with A,
0=+ A(-CxE)—=>A—->A—0,
and then we apply RHom,(—, B) to obtain the distinguished triangle
RHom (A, B) — RHom (A, B) = RHom(A(—C x E) , B) — . (13)

There is a natural Cj-equivariant identification

Okoup(—C X E)joxp Zwinpt " Zwit™, (14)
which gives us that

RHom(A(—C x E),B) = RHom(A, B) Ruwct.

Passing to the K-group, the distinguished triangle (13) therefore gives us that

RHom, (A, B) = RHom; (fl, ‘B) (1 —wcet).
This proves the claim. O
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LEMMA 4.6. With respect to the identification (12), the obstruction bundle of a Quot scheme
Quot™(a, w) leads to the following expression:

ObQuotml(a,w) = TQuot;(a7w) X wct.

Proof. Assume r = 2; then
Emotrei (aw) = RFHom (K7, Q™).

Using the same distinguished triangle (13) and passing to the associated long exact sequence,
we obtain

0 — FHom, (K, Q™) — Hom, (K™, Q™) — Hom, (K™ (~C x E), Q™) —
— Extl (el Qrely 5 et (K, Q) - gt (KN (—C x E), Q") — .. ..
Since @ is scheme-theoretically supported on the zero section, the map Hom, (K", Qrel) —
Hom (K (~C x E), Q") is zero; hence, the map
Homq (K™, Q™) — Hom,, (K*, Qreh)
is an isomorphism. This also implies that
Homy (K*(—C x E), Q) — xtl (K™, Qrel
is injective. Since we are considering quotients of the stable sheaf ext? (K, Q) =0, hence
ext! (K, Q) —ext' (K, Q) =ch(K") - ch(Q) =0,
we conclude that Hom, (K™ (—C x E), Q™) — Extl (K™, Q™) is in fact an isomorphism. Using
the Cj-equivariant identification (14), we obtain that
Exth (K™, Q") = Hom, (K™ (-C x E), Q™)
>~ Hom (K™, Q™) K wet = Homy, (K, Q™) K wet.
The sheaf Hom, (K™, Q™) is the C-relative tangent bundle of Quot™(a,w), and due to the

decomposition (12), its C-relative tangent bundle is exactly the pull-back of the tangent bundle
of Quot(a, w). O

4.4 Cosections

Cosections of the obstruction theory of Fl(a, w)™! are constructed in exactly the same way as in

[PT16, Section 5.4] (see also [Obe21, Section 4] and [Nes21, Section 10.2]). However, since we
work relative to C', the cosections map is not to a trivial line bundle but to w¢. For example,
this can already be seen in Lemma 4.6. This is because the relative canonical sheaf of

is the pull-back of w. By the argument from [Nes21, Section 10.2], which uses Serre’s duality,
we therefore get a C-relative cosection to wg2 instead of the trivial bundle O%2? (here, we use
the identification (9)):

o= (o1, 0) bt (TR, o) = w2,
where

t := weight 1 representation of C; on C.

17
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Remark 4.7. By (12), the absolute obstruction theory of FI"®'(a, w) is a direct sum of the relative
obstruction theory of FI*(a,w) and T¢. Hence, the cosection constructed above extends to a
cosection of the absolute obstruction theory. However, since we are working C;-equivariantly, we
do not need to reduce our obstruction theory, as the cosections will manifest themselves only in
terms of equivariant parameters in the expressions of virtual fundamental cycles.

As in [Nes21, Proposition 10.6], we have the following result:

PROPOSITION 4.8. The cosection o is surjective on Quot™ (a, w)® in W (a, w). On Quot*®!(a, w),
only the component oy is surjective.

Proof. Similar to [PT16, Proposition 12]. O

By the description of the obstruction theory of W™!(a,w) in terms of flags from [Obe21,
Section 4], we can compute its virtual dimension. Indeed, for any two sheaves F; and F» supported
on the zero section of K, we have

D (—1)ext!(Fy, Fy) = ch(F) - ch(Fy) =0, (15)
i

and the C-relative virtual dimension of F1"(a,w) is therefore 0. Hence the absolute virtual
dimension of FI'®(a, w) is 1.

Both the virtual normal bundle and the cosections are ®,-equivariant by the construction;
hence, they descend to the quotients

[F1*Y(a, w)/®,].

This, in conjunction with Proposition 4.8, implies that the virtual fundamental cycles of quotients
[Flr61(a, w)/ CI)a] , when restricted to Quot schemes and to their complements, are of the following
corollary:

COROLLARY 4.9. We have
[Quot™!(a, w)/®,
[Quot™(a, w)¢/®,

} vir

= BX [pt] € Ho(W(a,w) x C,Q) [t],
"' =1B' K [pt] € Hy(W(a,w) x C, Q) [t],

4.5 Master space

Let €p € Qsg be a wall of e-stabilities for quasisections, and let et and e~ be the values close
to the wall ¢y from the right-hand side and from the left-hand side, respectively. Consider the
master space MQ (a,w) for the wall-crossing around the wall €y; we refer to [Zho22, Section 4]
for the construction of the master space. Let wg = 1/€g. By construction, there is a C}-action on
M@ (a,w). In what follows, we use the identification

M3 () = {(G,0)} x C=C
Following the terminology of [Zho22], we define Q¢ (a,w) to be the pull-back of Q? (a,w)

to the moduli space of entangled semistable degenerations 9M¢ j w, which are constructed in
[Zho22, Section 2.2] as a blow-up of the moduli space of weighted semistable degenerations

SInC’,k,w7

Q5 (a,w) == Q% (3, W) Xate . M-

18
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We also define Q5 (a, w)’ to be a k-root stack of Q" (a, w) associated to the calibration bundle M
of Q¢ (a,w), defined in [Zho22, Section 2.8]. By the analysis of [Zho22, Section 6], the C%-fixed
locus of MQ(a,w) then has the following form,

MQ“(a,w)™ =Q (a,w) UQ® (a,w)U H <@f€+ (a,wy) xcr WH(a, W())k> : (16)
k
such that w=wy + kwg.
The group ®, acts on the master space MQ“(a,w). Since the action of &, and C} on
MQ*(a,w) commute, the operations of taking the quotient by ®, and taking the C}-fixed locus
also commute. We therefore obtain

[MQ% (@, w)% /@,] = Q7 (a,w)* UQ (a,w)* UTT(|@F (2. wa) xex W™ (a,w0)*/@,] ), (17)
k

such that the action on the wall-crossing components (the components on the right-hand side
in the expression above) is given by the diagonal action of ®,. By [Zho22, Section 6], the wall-
crossing formula is obtained by taking residues of the localisation formula associated with (17).
Let NVI* be the virtual normal bundle of wall-crossing components. The wall-crossing invariants
are therefore given by the following residues:

Vir

Q5 (awn) o W (a,wo)" /2,
ec:, (Nvir)

Res.—g

We now show that most of the wall-crossing invariants essentially vanish by the second-
cosection argument, except that our cosections are twisted, as explained in Section 4.4, which
forces us to work a bit harder to obtain the vanishing.

THEOREM 4.10. If €9 =1/w, then

vir - i rel vir
deg [QH (a, W)'] — deg[Qf (37 W)O]wr = deg Res,_o ( [Quozczia(’;f\?ir/)@a] ) |

Otherwise,

deg @ (o, w] " = degl@” (2w

4.6 Proof of Theorem 4.10

By [Zho22, Section 6], we have to analyse the wall-crossing components in the decomposition
(21); see also [Nes21, Section 6], [Nes23, Section 10] and [LW23].
Assuming that k> 2 or wy # 0, then the space

X = [Qf(a,wl)/ X ok Wrel(a,wo) k/@a

has an additional action of ®, coming from any of the components of the product. To distinguish
it from the diagonal action of ®,, we denote it by ®,. The obstruction theory of the quotient
[X /@] is compatible with the obstruction theory of X; hence,

o [X/(I);]Vir — [X}Vil‘
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for the quotient map m:X — [X/®,]. Moreover, the virtual normal bundles from [Zho22,
Section 6] are ®)-equivariant; hence, they descend to the quotient [X/®.]. Overall, we obtain
that the wall-crossing class is a pull-back of some class A from the quotient [X/®}],

{Qgr (a, Wl)/ Xk Wrel(a, Wo)k/q)a]
e(C;‘,t (Nvir)
that its degree is therefore 0 and that it does not contribute to the wall-crossing formula,

[ng (a,w1)’ X Wrel(a,wo)’f/@a}
deg Res,_ . —o.
eg hes;=o ec:, (Nwr) 0

=7"A;

It remains for us to determine the contribution of terms
[QF (2,0 < W™l(a, w)/®,] = @ (2,0) x W™ (2, W)/,
Since Q7 (a,0) = C, we obtain that
[Qf(a, 0) xc W™(a, w) /@a} = (W (a, w)/®.].

We will now show that the complement of Quot™(a, w) C W*!(a, w) does not contribute. Ideally,
one would say that this statement follows from the double cosection argument. However, in this
case, the cosections are twisted due to the relative setup; hence, one has to do a little bit of
additional work. By [Zho22, Lemma 6.5.6] and the dimension constraint, degrees of the following
residues are equal,

(Wl @, w) /@] (Wl (a, w) /@]
deg Res,— - =deg Res,— - , 18
g 0 < GC;,, (NVII‘) g 0 e(C;’t (NVH) ( )

where NV is the normal bundle of W™ (a, w) inside GQ(a,w), whose expression is given in
Theorem 4.4.

We argue that Quot™(a,w)®C W™ (a,w) does not contribute because the quantity (18)
is a multiple of t2. As taking quotient by ®, can be exchanged with taking an insertion, it
is enough to show that (18) is a multiple of #?> before taking quotient. By Corollary 4.6, we
know that [Quot™! (a, w)°]*!* is a multiple of ¢, and we therefore have to show that the residue of
ecs, (NYI")~1is a multiple of ¢, too. By Theorem 4.4, the class ec: ,(N¥")~! leads to the following
expression:

ec: ,(RHoma(Fitk/Fivn—1, Fi)z")

. Nvir -1 _ )
e(cz”’( ) i>}_;c[>1 ecz,t(RJ‘fomﬂ(gji_;_k_H/g‘ui_kk, .rfi)vz_k)

(19)

According to (15), the rank of RHom(Fitx/Firr—1,Fi) is 0; hence,
ec:  (RHoma(Fitr/Firr-1,F1) ©2%) = " (kz) I cj(RHomz(Firx/Firr-1, 1)

320
=1— (k2) ter (RHomay (Fisns1/Fivw, Fi)) + O(z72),
the same applies to the denominator of (19). We therefore obtain that
ec: (NY) =1 "(k2) 'L (RHoma(Fiyk/Fisr-1, Fi))
ik
=D (k2) et (RHoma (Fosps1 /Fivn, )Y +0(272). (20)
ik
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By Lemma 4.5, we obtain that
c1(RHomq(F;/Fj1,Fi) = At + A - c1(we) € H? (Quot®, Q)

for some class A of cohomological degree 0. Using Corollary 4.6 and (20), we conclude that

rel cvir
Res.—o <[Qu§;t<(fv’vwir>)] ) — N2 € Hy(Quott, Q) 1],

for some class A’ of homological degree 2. Taking the degree of the class above, we obtain 0.
This finishes the proof of Theorem 4.10.

4.7 Contributions from Quot schemes

We now have to determine the contributions of Quot™!(a,w) C W (a, w). Firstly, by [Obe21,
Section 4], the component Quot™!(a,w) C W™ (a, w) is composed of the following Quot schemes

Quot™®(a, w) H Quot™(a, uny), (21)

m|w

and the classes u,, are defined as follows:

W
Um = hmv — —,
m

where w is given by (7) and Ay, is the unique integer such that
w
At — — € [0,r —1].
m
We therefore obtain the following proposition:

PROPOSITION 4.11. We have

[Quot™(a, w) /P, = Z[Quotrel(a, Um)/®a]".

m|w

Proof. See [Obe21, Section 4]. O

Let us analyse NV' over each component [Quotrel(a, Up )/ <I>a}. In what follows, we use the
notation from Section 5. By [Obe21, Section 4.4], the equivariant Euler class of the virtual normal
bundle NV can be expressed as follows:

e(C;t(]\/vir)fl _ e(C;t(Rj_fomﬂ(Qrel’ Krel)zm)
=ec:, (Rﬂ-fom (el Qrel)Viz™)

—Z mz) Fep(RHom, (K, Q') V),
keZ

where K™ and Q™! are as in Section 4.2. We are interested in the residue of e(c;t( AL I
Res.—o(ec: , (NY")71) = m™ley (RHomq (K™, Q) Vt)
= m~ ek (Fom, (K™, Q"N (¢ (we) + t)
=m~" dim(Quot(a, um)) (c1(we) +1) .

21

Downloaded from https://www.cambridge.org/core. DESY Zentralbibliothek, on 31 Mar 2025 at 13:10:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/mod.2024.5


https://doi.org/10.1112/mod.2024.5
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

DENIS NESTEROV

Using Corollary 4.9, the total residue then takes the following form:
Res,_ ([Quotrd(a, Um)/Pa)

vir
ecx  (NVir) ) =m~ dim(Quot(a, um)) [QUOtrel(aa um)/q)a]Virt-
Assume that (r,a) = (2, 1); using the analysis from Corollaries 5.3 and 5.4, we get
[Quot™!(a, um)/<I>a]Vir _1
deg Res.— ( oo () =(29—2)m 't

Now, applying Theorem 4.10 repeatedly and using the fact that Q*(a, w) is empty for w # 0, we
obtain the following result (for how d and w are related, see (7)):

THEOREM 4.12. If (r,a)=(2,1), then

(29 =2) > impw m~!t, if w=d mod 2
0, otherwise.

QM(E){s, = {

Using Corollary 3.7, we obtain the desired quasimap invariants.
THEOREM 4.13. If (r,a)=(2,1), then
(29 — 2)22%9 > mlw m~1t, if w=d mod 2

0, otherwise.

QM(C)ye = {

This gives us Theorems 1.1 and 1.2 (after passing to reduced invariants; that is, after dividing
by t).

Remark 4.14. Since Mg(1)={(G,0)}, invariants QM(C)clj’;V have only instanton contributions;
that is, on C they correspond to invariants of moduli spaceé of stable bundles T* N¢(d) C M¢(d).
On the other hand, the even-degree invariants are completely monopole; that is, they correspond
to invariants of the complement of N¢(d) in the nilpotent cone. This was expected from [MM21];
see also [Nes23, Remark 7.2].

Remark 4.15. Let us now comment on the fact that genus 1 Gromov—Witten invariants of F have
very similar expressions, as was mentioned in the introduction. If ged(r,d) =1, then a moduli
space of stable sheaves on F is naturally isomorphic to E via the determinant map. Hence,
Gromov—Witten theory of F is equivalent to one of its moduli spaces of sheaves. Here, we study
a kind of twisted Gromov-Witten theory of moduli spaces of sheaves on E. Hence, (posteriori)
it is not so unexpected that we get similar answers. Perhaps this phenomenon can be made even
precise.

4.8 Higher rank

By (7), if we assume that all divisors m of w are congruent to 0 or a modulo r, then
um = (0,k) or (r—1,k);

therefore, using the arguments of the previous section, the analysis of Section 5.2 is enough to
conclude the following:

22
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PROPOSITION 4.16. If r is prime, a # 0 and all divisors m of w satisfy
m=0 or a mod r,

then

(2g — 2)r?9 2 mlw m~lt, ifw=d-amodr

0, otherwise.

QM(C)gs, = {

This agrees with [Nes23, Conjecture E]. Our methods involving Quot schemes lead to an
obvious conjectural extension of Proposition 4.16:

CONJECTURE 4.17. If ged(r,a) =1, then
{(2g — 2)r?9 2w m~!t, ifw=d-amodr

QM(C)3n =
( )a’w 0, otherwise.

5. Quot schemes

5.1 Group actions on Quot schemes

The group ®, acts naturally on Quot schemes Quot(a, w). The stabilisers of the action are finite,
as long as w#0. The quotient stack [Quot(a,w)/®,] is therefore a Deligne-Mumford stack.
Taking the quotient respects the identification (12),

[Quot™(a, w)/®,] = [Quot (a, w)/®,] x C.

The obstruction theory of [Quotrel(a,w)/q)a} is a descent of the obstruction theory of
[Quot“’l(a, w)} By Lemma 4.6, the C-relative obstruction bundle of the quotient is therefore
given by the descent of Tqyyot(a,w) Kwet. More precisely, let

¢ : Quot™(a, w) — [Quot™!(a, w)/®,]
be the quotient map; then we have the ®,-equivariant identification

7" Objquot=i(aw)/@,] = Obquotre! (a,w)s
such that Obquegrei(aw) 18 Pa-equivariantly isomorphic to Tuet(aw) Xwet. We will denote the
descent of Tyuet(a,w) t0 [Quot(a, w)/®,] by the same symbol. Hence, by Lemma 4.6, we obtain
the following corollary:

COROLLARY 5.1. There is a natural identification on [Quotrd(a, w)/®,],

Ob[Quot"el(a,w)/@a] = TQuot(a,W) Mwct.

We are now ready to determine the virtual degree.

ProPOSITION 5.2. For any r and a, we have
deg[Quot™(a, w) /®a]™ = (29 — 2)e(Tiquot(aw)/a.)) -

Proof. Considering the map
[Quot(a, w)/®,] — [pt/Pa],

23
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the associated sequence of tangent complexes takes the following form:
0—=Te, — TQuot(a,w) - T[Quot(a,w)/(ba} — 0.
Since Ty, is trivial, we obtain that
(T[Quot(a W)]) 07
Crk—1 (T[Quot (a W)]) (ﬂQuot (a,w)/®, ])
Using Corollary 5.1, we therefore obtain
[Quot™®!(a, ) /®,]" = ec: (Objquotei(asw) /5,))

= e(Tquot(am)) + Crk—1 (T]quot(aw))) * (c1(we) — 1) + ...

= e(T[Quot(a,w)/%]) . (cl(wo) — t) +....
Taking the degree, we arrive at the statement of the proposition,

deg[Quotrel(a, w)/ 0,V = (29 — 2)€(T[Quot(a,w)/<1>a]) : 0

We now have to compute e(T[Quot(aw) /@a]). The analysis might be split, depending on the
Chern character of quotients in the decomposition (21).

5.2 Relevant Quot schemes
For this section we assume that a # 0. Consider firstly the class
=(r—1,k).
Let
dim :=dim(Quot(a, u)) =r- (k —a) + a;
then Quot(a, ) is a P4M~1-bundle over Jac(E) given by the natural projection
Quot(a, u) — Pic(E)
[K—>G—>Q]— K.

A fiber

PAm=1 — Quot(a, u)

is a slice of the ®,-action on Quot(a, ). In other words, let I'y C &, be a finite subgroup that
fixes PYM=1 then we have the following diagram:

Pdim=1 < Quot(a,u)
I I
[PAm=1/0, | =5 [Quot(a, u) /®,]
The diagram above gives us that

e(Tiquot(au)/@.)) = TR (22)

24
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It therefore remains to determine I'y. The subgroup 'y C @, that fixes the slice is exactly the
subgroup that fixes a line bundle O(a — k) of degree a — k. A translation of O(a — k) by 7, that
is associated to a point p € E' can be described as follows:

Tr0(a—k)=0(a—k) @ L3K,

where L, is line bundle corresponding to p under the natural identification

E S Jac(E)
p—=0(0g)®0(p) ' =L,

By the definition of ®, from (2), determining the stabiliser of O(a — k) in ®, therefore amounts
to finding pairs

(p.L5) € B x Jac(E)
such that
e L, =0g (23)

Raising the expression to the power of r, we conclude that Lf,im = Opg. As a group, F is isomorphic
to R/Z x R/Z; hence, with respect to the identification F =R /Z x R/Z, we obtain that

ny  ng
L :(——) R/Z x R/Z,
P dim’ dim €R/ZxR/
and that r-roots of a; = i are given by the following elements:
Loni+ hdim

r
a;

, he{0,...,r—1}.

rdim
However, only one satisfies the equation

(a—k)n; a(n; + hdim) _oc R
dim rdim 7’
more specifically, h is uniquely defined by the following equation:
(n; + ha) dim
rdim

=0€R/Z.
We therefore conclude that for all p € E, there exists a unique root L; that satisfies the equation
(23) and that it must be dim-torsion; hence p is also dim-torsion. We therefore obtain that

Iy = E[dim] = Z§?,,
or, in particular, that

Ty | = dim?.

Proposition 5.2 and (22) give us the following:
COROLLARY 5.3. If u=(r—1,k), then

deg([Quot(a, u)rel/q)a]"ir) = (29 — 2)dim(Quot(a, u))_l.
Consider now the class

u=(0, k).

25
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In this case,
dim(Quot(a,u)) =r -k,

and Quot(a, u) admits the natural projection

Quot(a, u) — Pic(F)

(G — Q] = det(Q),
which provides a slice of the action of ®, on Quot(a, u). More specifically, let
Quot(a, u)p — Quot(a, u)

be the fibre of the projection, and let I'y C ®, be the stabiliser of Quot(a, u)y. We obtain that

x(Quot(a, u)g

e(Tiquot(am/e,)) = x{Quot(a, t)o), (24)
Tkl

The subgroup 'y € &, that fixes the slice is exactly the subgroup that fixes the determinant

of a O-dimension sheaf of degree k; this means that it consists of pairs

(p, Lp> € E x Jac(E),
such that
Ly=0g,
hence,
Ty =r? - k2.

Let us now determine the Euler characteristics of Quot(a, u)g. Firstly, any vector bundle on
a curve can be deformed to a direct sum of line bundles. By the deformation invariance of the
(virtual) Euler characteristics, we can assume that G = @®!=/ L;. In this case, Quot(a, u)g admits
a torus-action of T'= H;Z C* acting by scaling line bundles. The associated fixed locus has the
following description:

Quot(a,u) = H <1:[ Quot(L;, uz)) ;
0

ur+-Fur=u \i=1
we refer to [MR22, Section 3| for more details in case of usual Quot schemes, which extend in
a straightforward manner to our slices. Let us now analyse Euler characteristics of the com-
ponents in the decomposition above. Firstly, if at least two class uj, and u; are nonzero, then
(I'; Quot(L;, u;)), admits an extra fixed-point-free action of E; therefore,

x((ﬁ Quot(L;, u1)> ) =0, ifu,#0and u; #0.
0

i=1

If only one class u; is nonzero, then

(H Quot(L;, u,)) = Quot(L;, uj)o =P
=1 0
We therefore obtain

X ( (H Quot(L;, ul)> ) =k, if only one u; #0.
0

=1
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Overall,
x(Quot(a, u)o) = e(Quot (a, u)g) =r-k (25)
Combining Proposition 5.2, (24) and (25), we obtain the following:
COROLLARY 5.4. If w=(0,k), then

deg([Quot(a, u)™ /®,]¥") = (2g — 2)dim(Quot (a, u)) .

ACKNOWLEDGEMENTS

I am grateful to Sanghyeon Lee and Yaoxiong Wen for useful discussions on related topics, during
which the idea of using quasisections was conceived, and to Martijn Kool and Richard Thomas
for answering various questions on Vafa—Witten theory. I also thank the anonymous referee for
their helpful comments.

CONFLICTS OF INTEREST

None.

FUNDING STATEMENT

This work is a part of a project that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 101001159).

JOURNAL INFORMATION

Moduli is published as a joint venture of the Foundation Compositio Mathematica and the
London Mathematical Society. As not-for-profit organisations, the Foundation and Society
reinvest 100% of any surplus generated from their publications back into mathematics through
their charitable activities.

REFERENCES

[CY22] H.-D. Cao and S.-T. Yau (eds.), Differential geometry, Calabi-Yau theory, and general relativ-
ity. Part 2. Lectures and articles celebrating the 70th birthday of Shing-Tung Yau, (Harvard
University, Cambridge, MA, USA, May 2019); Surv. Differ. Geom., 24, (Somerville, MA:
International Press, 2022).

[Dij95] R. Dijkgraaf, Mirror symmetry and elliptic curves, in The moduli space of curves. Proceedings
of the conference held on Texel Island, Netherlands during the last week of April 1994
(Birkhéduser, Basel, 1995), 149-163.

[DPS98]  R. Dijkgraaf, J.-S. Park and B. Schroers, N=4 Supersymmetric Yang-Mills theory on a Kdhler
surface (1998), arXiv:hep-th/9801066.

[GSY20] A. Gholampour, A. Sheshmani and S.-T. Yau, Localized Donaldson—Thomas theory of surfaces,
Am. J. Math. 142 (2020), 405-442.

[HT03] T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system,
Invent. Math. 153 (2003), 197-229.

[Joy21] D. Joyce, Enumerative invariants and wall-crossing formulae in abelian categories (2021),
arXiv:2111.04694.

27

Downloaded from https://www.cambridge.org/core. DESY Zentralbibliothek, on 31 Mar 2025 at 13:10:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/mod.2024.5


https://doi.org/10.1112/mod.2024.5
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

DENIS NESTEROV

[Laa20] T. Laarakker, Monopole contributions to refined Vafa—Witten invariants, Geom. Topol. 24
(2020), 2781-2828.

[LW23] S. Lee and Y. Wen, Sheaf-quasisection correspondence and Vafa—Witten invariants for elliptic
fibrations, in preparation.

[MM21] J. Manschot and G. W. Moore, Topological correlators of SU(2),N=2* SYM on four-
manifolds (2021), arXiv:2104.06492.

[Moc09]  T. Mochizuki, Donaldson type invariants for algebraic surfaces. Transition of moduli stacks,
Lect. Notes Math., 1972 (Springer, Berlin, 2009).

[MR22]  S. Monavari and A. T. Ricolfi, On the motive of the nested Quot scheme of points on a curve,
J. Algebra 610 (2022), 99-118.

[Nes21]  D. Nesterov, Quasimaps to moduli spaces of sheaves (2021), arXiv:2111.11417.

[Nes23]  D. Nesterov, Enumerative mirror symmetry for moduli spaces of Higgs bundles and S-duality
(2023), arXiv:2302.08379.

[Obe21]  G. Oberdieck, Multiple cover formulas for K3 geometries, wallcrossing, and Quot schemes
(2021), arXiv:2111.11239.

[Okol19]  A. Okounkov, Takagi lectures on Donaldson-Thomas theory, Jpn. J. Math. (3) 14 (2019),
67-133.

[PT16] R. Pandharipande and R. P. Thomas, The Katz—Klemm—Vafa conjecture for K3 surfaces,
Forum Math. Pi 4 (2016), 111.

[Tho20] R. P. Thomas, Equivariant K-theory and refined Vafa—Witten invariants, Commun. Math.
Phys. 378 (2020), 1451-1500.

[TT20] Y. Tanaka and R. P. Thomas, Vafa-Witten invariants for projective surfaces. I: Stable case,
J. Algebr. Geom. 29 (2020), 603-668.

[Zho22] Y. Zhou, Quasimap wall-crossing for GIT quotients, Invent. Math. 227 (2022), 581-660.

Denis Nesterov  denis.nesterov@univie.ac.at
Faculty of Mathematics, University of Vienna, Vienna, Austria

28

Downloaded from https://www.cambridge.org/core. DESY Zentralbibliothek, on 31 Mar 2025 at 13:10:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/mod.2024.5


mailto:denis.nesterov@univie.ac.at
https://doi.org/10.1112/mod.2024.5
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	
	Introduction
	Quasimaps
	Degree 0 Higgs bundles
	Methods
	Higher rank
	Even degrees
	Notation and conventions

	Vafa"2013`Witten and quasimap invariants
	Preliminaries
	Vafa"2013`Witten wall-crossing
	Quasisection invariants

	Genus 1 invariants
	Group actions
	Moduli spaces of Higgs sheaves and sheaves
	Chern characters

	Wall-crossing
	"026E30F epsilon -stable quasisections
	Moduli spaces of flags
	Obstruction theory of flags
	Cosections
	Master space
	Proof of Theorem 4.5.1
	Contributions from Quot schemes
	Higher rank

	Quot schemes
	Group actions on Quot schemes
	Relevant Quot schemes



