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Abstract. Following [1] we discuss the predictions of Starobinsky model of
f(R)-gravity with vanishing cosmological constant at galaxy and galaxy clus-
ters scales. As a result we demonstrate that at the current observational accu-
racy level there is no significant difference in cut-off radius values for Starobin-
sky model and general relativity (GR) in the mass range from 10° Mg, till
galaxy clusters ones (108 My,,,,) that shows the good applicability of GR at these
ranges.

1 Introduction

The general relativity (GR) successfully describes all observable gravitational phenomena
on the scales of the solar system [2]. The discovery of gravitational waves [3] confirmed
the applicability of GR for the description the gravitational interaction [4] over a wide range
of distances. Nevertheless, there is reason to believe that GR is not able to provide a fully
correct description of gravity on large scales and in the regime of huge energies. The Uni-
verse accelerated expansion [5] could serve as an indication of the incomplete astrophysical
applicability of GR. This accelerated expansion most accurately is described by adding a cos-
mological constant. As a consequence, the introduction of an additional constant term to the
action causes difficulties in matching with the quantum theory [6, 7]. The limited applicabil-
ity of GR in the high-energy regime can be proved by several phenomena. Firstly, GR is not
renormalizable [8], so, in the quantum regime it could be only an effective theory [9]. Fur-
ther, self-consistent cosmological models require the presence of an inflationary stage [10].
To resolve these problems the gravity was extended by additional fields and curvature expan-
sions [11-13]. We discuss scalar-tensor extension of GR and its particular case: f(R)-gravity
[14]. The choice of function f is not arbitrary [15, 16]. Lagrangians of such type appear
also during taking into account the radiative corrections of quantum field theory in curved
space-time [17].
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It is interesting that as the Newtonian gravity can be treated as asymptotes of a more
general theory of gravity (GR) in weak gravitational fields we can assume that GR itself is
an approximation of a more general theory at solar system scales. Such approach allows to
introduce the different extended gravity for the description of dark matter and dark energy.
Some models treat dark energy as space-time geometry: massive gravity, theories with vi-
olation of Lorentz invariance (under extreme conditions), or, theories with additional fields
or space-time dimensions [11, 18]. Keeping in mind the relationship between f(R) gravity
and scalar-tensor ones [19], as a first step we consider the model proposed in [16]. At this
model the function f(R) must be regular and vanishes for R = 0. Models where the function
f diverges in the small curvature region are indistinguishable from GR or can not give a de-
scription of the existing data [16]. In addition, the scale of the curvature A is interpreted as
the magnitude of the effective cosmological constant. When R >> A, the function f tends to
R — 2A. Following [1], we refer the considered as Starobinsky one.

In [16] the function f is suggested as:

R2\™"
f(R)=R+/lR0((1+ﬁ] —1], (D

0

where R is the scalar curvature, 4, Ry and n are the model specific parameters. The case
A > 0, and Ry coincides with the cosmological constant in order of magnitude. As shown in
[16] for large values of curvature (effective) the cosmological constant is expressed as:

A 1 R
=5k @)
Therefore we fix 1 = 2 and Ry = A.

According to [16], in the intermediate mode (0 < R < A) the Starobinsky model differs
from GR and can describe the dark energy effects. Laboratory tests and observations in the
solar system provide the following limitation: n > 2. The model should describe gravitational
phenomena on all scales; therefore we study its manifestations on the scales of galaxies and
clusters of galaxies. In order to check the model, it is necessary to use values obtained with
the help of real observational data. At this level, the Universe expansion manifests itself as a
force acting equally on all bodies and preventing their gravitational connection. The balance
of the force of gravitational attraction and the force associated with the accelerated expansion
defines a specific scale called as “the turning radius”. It determines the maximum size of
the gravitational bound system [20, 21]. Thus, it is interesting to compare the turning radii
predicted by GR and Starobinsky model and with the observed spatial scales of galaxies and
galaxy clusters.

2 Turning radius calculation

The spheroidal and some elliptical galaxies, as well as the so-called regular clusters of galax-
ies, have a close to spherical shape, small rotational velocities (in comparison with the disper-
sion of ones), and a central part [22—-24]. Therefore, as a first approximation step to describe
the gravitational field in the galaxy, one can start from a spherically symmetric geometry, as-
suming that the most part of the mass is concentrated in the center. So, we use Schwarzschild
coordinates represented in the form:

ds® = Adi* — e7Adr* - r2dQ, 3)

where A = A(r) is unknown function.
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Field equations in f(R)-gravity are [14, 16]:

1
P ®RRyy = 5 fRYGr = (V¥ = g00) ' (R) = 0, “)

where f'(R) = df(R)/dR, V, is covariant divergence, O = V,V# is d’ Alambert operator. Eqgs
((4)) represent nonlinear second order system. We solve it numerically. As a first step we
decrease the equations order by a new variable a:
dA
a = E .

Similarly we assume the scalar curvature as the independent variable. In the role of coupling
equation for A and a we use its explicit form:

&)

4a 2). ©)

2 da
R=-ZS+e'|—+d+—+ =
r dr r r

From (1, 1)-component of Eqgs ((4)) it is possible to extract d>f/dr? and with (0,0)-
component of ((4)), to show that:

dR _ ['(R)-Roo/goo — [(R)/2

- - X 7
dr  (e*(a+2/r)+a/2)f"(R) @)
So, we work with the equations ((5)), ((6)) and (7) together:
dA
ar -
da (g 2 5 4a 2 o
A U IR ®)

d_R _ f'(B®) - Roo/goo — f(R)/2
dr — (eAla+2/r)+a/2)f"(R)’

where f is defined in ((1)) and Ricci tensor components are calculated using the metrics ((3)).
The system ((8)) is solved with the help of the modified Runge-Kutta method (TR-BDF2,
[25]). The mass spectrum begins at 10°Ms,, and lied till 10'8 My, as these values that are
typical for individual galaxies (Mass of the Milky Way Galaxy — 4 times10"' My, [26]) and
for clusters (the characteristic masses of the clusters are ~ 105 My, [27-29]) respectively.
We checked n range from 1 to 9 using the following definition of the gravitational potential:

C2

2
c
= —(goo—-1) = =(* - 1), 9
é 5 (goo— 1) 2 (e ) )
as well as its dimensionless version:
et -1
2

The turning radius is located at the point where the force of gravitational attraction is
equal to the one coming from the Universe accelerated expansion. At this point the gravita-
tional potential must vanish:

¢/* = (10)

d¢

— =0. 11

dr an
Since a is an independent variable, one can search r; and r, for which a(r;) > 0 and a(r;) < 0,

respectively. Next step is to calculate the desired value of the turning radius using the linear
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interpolation. The dependence of the radius against the object mass for Starobinsky’s model
with various n values and GR is shown in Fig. 1. The dependencies are very close to the
power law, so, on a logarithmic scale they are linear. We approximate the dependence of the
radius Ry of the turning one by:

Rrar = M X Rrar(Ms 1), (12)

where Ry g is measured in kiloparsecs (kpc) and the mass of the object M is expressed in the
Sun ones (Ms,,). In this logarithmic form:

logl()(RTAR) = CYlOgl()(M) +ﬂ. (13)

We present the values of the ratio of the rotation radii for the Starobinsky model and
GR against the mass in Fig. 2. In the complete range of considered masses, the Starobinsky
models with n = 1 and n = 2 have the least radii of zero mass, and so they should be compared
with observations first of all.

3 Comparing with observational data

Direct measurements of the turning radius are impossible yet. To proceed this it requires
to observe directly the motion of a test body (a star) in a distant galaxy. Such observations
are still unreal. To avoid this problem it is possible to take the density profile obtained from
gravitational lensing. One can use it as an infinum value of the object size. The turning radius
limits the maximum object size. It cannot be less than the density profile size. Similar profiles
were obtained from the analysis of CLASH [27, 28] and other clusters of galaxies [29]. All
this is comparable with n = 1 and n = 2 Starobinsky models and also with GR.

Despite significant differences, none of the discussed models (even with n = 1 that can
not pass solar system tests [16]) deviate more than by 20% from the radius determined by GR
and fixed by the observational data. Thus, the current level of observational accuracy does
not allow strengthening or confirming the earlier limitations on the Starobinsky model.

4 Discussion and Conclusions

We considered the f(R) - gravity with vanishing cosmological constant (the Starobinsky
model) on scales of galaxies and their clusters. Turning radius values for masses of galaxy
clusters are obtained, as a strict upper bound on the size of the clusters. It was found that
the dependence of the turning radius against the mass of the object for the Starobinsky model
differs from that obtained in GR very little. The turning radius increases with increasing of n
in all mass ranges. Despite the fact that some models give smaller turning radius than GR, no
model exceeded the limits set by observational data: 20% of the radius given by GR.

Concluding we see that the achieved level of accuracy does not allow obtaining additional
restrictions on the Starobinsky model with a vanishing cosmological constant on the scales
of clusters of galaxies. Thus, at the existing level of accuracy, the Starobinsky model and,
consequently, the scalar-tensor models associated with this one by the transformations do not
contradict the astronomical data on the scales of galaxies and their clusters. We also want
to emphasize the perspectives of the proposed method in increasing its own accuracy and its
usage for testing other extended gravity models.
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Figure 1. Dependence of the radius against the mass for the Starobinsky models with n = 1..9 (from
the bottom to the top), as well as GR (direct line) in the logarithmic scale

Figure 2. The ratio of the rotation radius of the Starobinsky model to the same value in GR against the
mass. Here the points represent the results of numerical calculations; the dashed lines are approxima-
tions by linear dependencies. For large n, nonlinear effects begin to appear.
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Figure 3. Comparison of the theoretical values of the turning radius with those obtained from obser-
vations of masses of clusters. The line denotes the values given by GR. The values for the Starobinsky
models with n = 1 and n = 2 are denoted by round points, the values for n = 2 are above. Real data

values are indicated by triangles.
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