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Abstract

Detailed measurements and simulations have been performed, investigating the proper-
ties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements
and compares them to other drift gases that have been simulated using GARFIELD [1],
HEED [2] and MAGBOLTZ [3].
This note also describes systematic errors to be considered in the operation of precision
drift chambers using such gases. In particular we analyze effects of background rate vari-
ations, gas-density changes, variations of the gas composition, autocalibration, magnetic
field differences and non-concentricity of the wire. Their impact on the reconstructed
muon momentum resolution was simulated with DICE/ATRECON [4]. The different
properties of linear and non-linear drift gases and their relative advantages and disadvan-
tages are discussed in detail.
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1 Introduction

The gas choice is one of the most critical issues for the muon MDT system. Many different
aspects have to be considered. All gases have to fulfil the requirements listed below (see
for example [5]):

• Resolution:
The resolution of one single MDT has to be better than 80µm. This upper limit is
necessary to achieve a muon momentum resolution of ∼ 10% for muons with a trans-
verse momentum of pT = 1TeV/c. It is shown in this note, that Ar/CO2 mixtures
have an average resolution of ∼ 50 µm without background rate (with time slewing
correction) and stay below the 80 µm-limit for the highest expected background rates
(1500Hz/cm including an uncertainty factor of 5 for safety).

• Efficiency:
The efficiency of one MDT without background rate has to be at least 99%. This
requirement is fulfilled by most of the drift gases at a gas pressure of 3 bar and a
threshold of ∼ 20 primary ionization electrons. For high background rates – we
expect count rates of up to 300 kHz per tube (including an uncertainty factor of 5
for safety) – the occupation time of the drift tubes becomes important. A maximum
drift time of tmax ≈ 700 ns (baseline gas Ar/CO2 93/7) translates into an occupancy
of 15%. This is the main reason why fast drift gases are preferred. Measurements
and simulations determining the maximum drift time are presented in this note.

• Aging, linearity of the rt-relation:

Operating at a gas gain of G0 = 2 ·104 (baseline) the charge deposit will be 0.6C/cm
in 10 years ATLAS operation. Many drift gases show aging (decrease of the pulse
height, high count rates) when being exposed to such conditions. It has been found in
extensive aging studies that gas mixtures containing organic compounds (e.g. CH4)
produce thin deposits on the wire and on the cathode which affect the performance
(aging). Up to now no linear drift gas (the drift velocity depends only weakly on
the electric field) without organic compounds has been found, although some gases
with CF4 come close. The baseline gas (Ar/CO2 93/7) shows no aging but is rather
non-linear. In this note consequences of this non-linearity are investigated and the
influence on the spectrometer performance is studied in detail.

• B-field dependence:
The B-field dependence of the rt-relation should be as small as possible (i.e. small
Lorentz angle). In this respect slower drift gases (small Lorentz angle) are preferred.
This note shows simulations of the resolution and the systematic error to the rt-
relation for the baseline gas (Ar/CO2 93/7).

• Afterpulsing behavior:
Afterpulses are a sign for incomplete quenching behavior of the considered gas. There-
fore the afterpulsing rate has to be as low as possible. The afterpulsing behavior for
several Ar/CO2 mixtures was measured and is presented in this note.

• Streamer rate:
The streamer rate has to be smaller than 1%. Measurements for Ar/CO2 80/20
showed that it is smaller than 0.5% for gas gains up to 4 · 104. For Ar/CO2 93/7 it
has not been measured yet.

This note discusses measurements from the testbeam and simulations for several Ar/CO2

mixtures and compares them to simulations of other drift gases. It analyzes the systematic
errors to the rt-relation, and shows an analytical model which can predict these errors.
Hence corrections are introduced and tested on testbeam measurements.
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2 Working Point Measurements and Simulations

The measurements described in this chapter were performed in the Gamma Irradiation
Facility (GIF) in the SPS beam line X5.

They were compared to simulations performed with GARFIELD1 [1] which is interfaced
to HEED2 [2] and MAGBOLTZ3 [3].

2.1 Experimental Setup and Rate Environment

The common gamma irradiation test facility of the ATLAS and CMS groups has a 100GeV
muon beam and a 137Cs source with an activity of 740GBq emitting 662 keV Gammas,
which deposit on average an energy of about 36 keV in our MDT’s, simulating well the
photon background in ATLAS. The actual gamma rate can be adjusted by choosing an
appropriate combination of several lead filters.

These measurements were designed to show the gas properties of Ar/CO2 mixtures, hence
only the space charge effects of resolution deterioration (gain drop and field variations,
see [6]) were investigated. In order to minimize the electronics effects of resolution dete-
rioration (baseline shift and baseline fluctuations, see [6]) the total count rate per tube
was kept low by shielding the entire tube with lead blocks apart from ∼ 10 cm around the
beam line.

For our investigations the BNL tubes equipped with BNL preamplifiers and shaping am-
plifiers [7] were used. The shaping amplifiers were adjusted to give maximum undershoot
in order to minimize baseline fluctuations. This shaping scheme was discussed as unipolar
shaping with undershoot in [6]. Figure 1 shows the readout chain. A FADC and a TDC
were read out for each tube. The discriminator threshold was set to 20 electrons.

Discriminator

BNL
preamp

20 e TDC

FADC

Shaper

Figure 1: The readout chain of the tubes analysed in this study.

The tubes were operated with different Ar/CO2 mixtures (Ar/CO2 90/10, Ar/CO2 92/8,
Ar/CO2 93/7, Ar/CO2 94/6). The gas mixing facility used digital flow meters with an
error of ∼ 0.5%. This corresponds to an error of smaller than 0.1% absolute in the final

1Program for simulation of two and three dimensional drift chambers.
2Computes in detail the energy loss of fast charged particles in gases.
3Computes electron transport parameters for a large variety of gases.
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gas mixture (Ar/CO2 93/7 → Ar/CO2 93.07/6.93 or Ar/CO2 92.93/7.07). A pressure of
3 bar was applied and gas gains of 2 · 104 and 4 · 104 were used.

The external reference system was ODYSSEUS [8], a beam telescope consisting of 6 Silicon
micro-strip detectors with 7 µm resolution each. 4 out of the 6 planes measure the precision
coordinate perpendicular to the MDT wires, the other 2 detectors give us the second
coordinate parallel to the wires. By extrapolation of the silicon telescope track to the tube
position we get a prediction accuracy of 10µm.

The rates per unit tube length for different lead filters are listed in the table below:

nominal filter factor rate per unit tube length (Hz/cm)
2 3060
5 1400

10 810

Measurements without background rate and with the rates mentioned above have been
performed.

2.2 Gas Gain Measurement

This section shows briefly the results of the gas gain measurements. Only a relative mea-
surement was performed, therefore the systematic error of the gas gain is estimated to be
about 20%. As a reference gas Ar/N2/CH4 91/4/5 was used (see [9]). The spectra of a
55Fe source, emitting 5.9 keV photons, were compared and hence the gas gain calibrated.

Figure 2 shows the gas gains for different Ar/CO2 mixtures at 3 bar gas pressure, a tem-
perature of ∼ 295K, a wire radius a = 25 µm and a tube radius b = 1.46 cm. Using
Diethorn’s formula [10] the gas gains for other gas pressures or even other geometries can
be calculated (E(a) is the electrical field on the wire, Emin(ρ0) and ∆V are the Diethorn
parameters, see table 1):

G =

[
E(a)ρ0

Emin(ρ0)ρgas

] aE(a) log 2
∆V

(1)

Emin(1 bar) ∆V
gas mixture

(kV/cm) (V)
Ar/CO2 80/20 22 49
Ar/CO2 90/10 20 43
Ar/CO2 92/8 19 42
Ar/CO2 93/7 24 34
Ar/CO2 94/6 23 34

Table 1: Diethorn parameters Emin and ∆V for different Ar/CO2 mixtures.
The errors are about 10%.
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Figure 2: Gas gains for different Ar/CO2 mixtures. The Diethorn parameters
resulting from the fits are listed in table 1. Note that the plot shows only the
statistical errors, the systematic errors due to the relative measurement are
estimated to be about 20%.

2.3 Afterpulsing

In the avalanche process next to the wire surface UV photons are generated. If such
photons reach the conducting cathode free electrons can be created by the photoelectric
effect. These electrons will drift towards the wire, multiply and induce a – usually small
– signal, which we call afterpulse. Hence these signals are expected to be separated in
time from the first avalanche by at least the maximum drift time. Organic molecules,
with their many degrees of freedom, have large photo-absorption coefficients over a range
of wavelengths that is wider than that for noble gases. Thus they can be used as quench
gases. Common quench gases are CH4 and other hydrocarbons but also inorganic molecules
like CO2.

The afterpulsing rate is a number which quantifies whether a drift gas has a sufficient
amount of quenching molecules. In order to distinguish between multiple hits and real
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afterpulses only signal pulses were taken into account which showed no hit between the
first threshold-crossing time and the time where afterpulses were expected. Figure 3 (a)
shows the principle. Dividing the number of entries around the maximum drift time by
the number of first threshold crossings yields the afterpulsing rate which is plotted in
figure 3 (b) for different CO2 contents in Ar/CO2 mixtures.
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Figure 3: Afterpulsing rate. (a) shows how the afterpulsing rate was deter-
mined: All hits around and after the maximum drift time (3400 ns – 4200 ns,
20 electron threshold) were divided by the number of first threshold crossings.
Plot (b) shows the dependence of the afterpulsing rate on the CO2 content in
Ar/CO2 mixtures. With the same method we got 0.25% afterpulsing rate for
Ar/N2/CH4 91/4/5 at a gas gain of G = 2 · 10 4 .

Afterpulses produce additional hits but compared to the large uncertainties of the back-
ground rate (safety factor 5), they are negligible. Furthermore afterpulses hardly con-
tribute to the occupancy, because they are very short. However, afterpulses are a sign for
incomplete quenching properties of a gas which might cause other problems (e.g. higher
probability of discharges on damaged wires). The ATLAS muon system will be able to
cope with an afterpulsing rate of a few percent. Consequently afterpulses themselves in
Ar/CO2 are no problem at a gas gain of G = 2 · 104. Nevertheless, for running with higher
gas gains additional quench gases will have to be added.

2.4 Hit Multiplicity

Multiple hits per signal can cause readout occupancy and tracking4 problems. Since the hit
multiplicity strongly depends on the drift gas, it is necessary to check how the electronics
shaping scheme has to be adjusted to deliver only one hit per signal. This has been studied
extensively and is described in [11].

4The information whether a hit corresponds to a leading edge of a muon signal is lost.
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Due to the longer drift time (Ar/CO2 93/7: tmax ≈ 700 ns) and the non-linearity of the
rt-relation the hit multiplicity in Ar/CO2 increases compared to faster, linear gases (e.g.
Ar/N2/CH4 91/4/5: tmax ≈ 485 ns).

To compensate this behaviour and to achieve only one hit per signal for gases like Ar/CO2

93/7, the tail cancellation has to be “soft”5. Consequently the trailing edge resolution
deteriorates significantly and the dead-time increases slightly. Furthermore a big hysteresis
is needed to achieve one single hit per signal. Figure 4 shows the hit multiplicity for two
gases as a function of the threshold and the shaping. It can be seen that “soft” tail
cancellation and large hysteresis results in 1 hit per signal.
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Figure 4: Hit multiplicity as a function of the threshold for unipolar shap-
ing [11]. The figure compares Ar/CO2 93/7 with Ar/N2/CH4 91/4/5. Shown
are GARFIELD simulations for a tube length of l = 5 m. Plots (a) and (b)
show the hit multiplicity for the standard unipolar shaping, (c) and (d) for
unipolar shaping with a “soft” tail cancellation. We see that “soft” tail can-
cellation and large hysteresis result in a single hit per signal.

5I.e. the long ion tail of the signal is not cancelled entirely.
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2.5 Space-Time Relation

Figure 5 shows the rt-relations for several gas mixtures. The Ar/CO2 mixtures are non-
linear, i.e. the drift velocity changes with different electric fields (E(r) ∝ 1

r
). Those gases

are therefore far more sensitive to variations of the environmental parameters and hence
cause systematic errors in the track position (see section 3). For gas mixtures containing
CH4 the drift velocity is almost independent of the electric field. Changes of the drift field
due to space charge have hardly any impact, hence the resolution stays unchanged even
for high background rates (see section 2.6). So far, no linear gas without CH4 has been
found, although some gases containing CF4 come close.

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14

rt - relation
r (mm)

t (
ns

)

Figure 5: Space-time relations for different gas mixtures at a gas gain of
G = 2 · 10 4 and a gas pressure of 3 bar.

2.6 Resolution Studies

The spatial resolution as a function of the drift distance r is defined as the width of the
residual distribution as a function of r, which is obtained by comparing the track position
r predicted by the reference system (ODYSSEUS) and the track position measured with
the drift tube.

The spatial resolution was measured for Ar/CO2 92/8, Ar/CO2 93/7 and Ar/CO2 94/6.
The σnoise was 3.8 primary ionization electrons, the threshold was 20 primary ionization
electrons, which was approximately 5 times noise. Figure 6 compares the drift-radius de-
pendence of the spatial resolution with GARFIELD simulations [1]. A detailed description
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of the way these simulations were done can be found in [6]. Simulations and measurements
show excellent agreement. The main effect of resolution deterioration for Ar/CO2 mixtures
– and for other non-linear gases – are the field variations (see [6]). Plot 6 (b) shows the
simulated resolution for Ar/N2/CH4 91/4/5. This linear drift gas shows only a very small
resolution deterioration even at high background rates; the deterioration is mainly caused
by the gain drop.
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Figure 6: Spatial resolution as a function of the drift distance (G0 = 2 · 10 4 ).
Plot (a) shows the measurement for the Ar/CO2 93/7 mixture. The shape
of the resolution curve is very similar for all Ar/CO2 mixtures. Plot (b)
shows GARFIELD simulations [1] for Ar/N2/CH4 91/4/5 (see also [6]) and
Ar/N2/CO2 90/5/5. The rate effect for the linear gas in (b) (Ar/N2/CH4

91/4/5) is much smaller, nevertheless the resolution ends up at approximately
the same level at 1400Hz/cm (see table 2).

The average tube resolution is given by quadratically averaging the resolution as a function
of r. However, we are more interested in the resolution for a track fit, for which hits are
weighted by 1

σ(r)2
. Hence a better figure of merit for our purposes is σ̄, the inverse quadratic

average (IQA), defined by (b is the inner tube radius):

σ̄ =
1√〈

1
σ2

〉 with

〈
1

σ2

〉
=

1

b

b∫
0

1

σ2(r)
dr . (2)

Figure 7 shows σ̄ as a function of rate for different Ar/CO2 mixtures. The highest expected
background rates in ATLAS including a safety factor 5 are 1500Hz/cm. The measurements
presented in the plots go far beyond this rate. Figure 7 (d) gives evidence that the resolution
deterioration at a gas gain of 4 · 104 is more severe than for the lower gas gain because
of almost twice the amount of space charge6 being produced in the drift volume. For

6Because of the higher gain drop for higher gas gains the amount of space charge does not increase
linearly.
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the higher gas gain the time slewing correction is rather ineffective since the time slewing
contribution to the resolution is already quite small.

The squares in (a), (b), and (c) are resolution measurements using leading edge charge
corrections. The integral over the first 20 ns of the signal (i.e. the leading edge) was used
to correct for time slewing (see [6] for more details). As expected the method has the bigger
effect the faster the gas is: Time slewing introduces a jitter on the threshold crossing time,
which has a bigger effect for faster gases. Thus the correction becomes more effective with
faster gas mixtures. It can be seen that the small resolution deterioration due to the lower
gas gain is completely compensated by the time slewing correction.

In table 2 the values of σ̄ for different gas mixtures are listed. For low background rates
the Ar/CO2 mixtures have a very much better resolution than linear gases. Even at the
highest background rates Ar/CO2 mixtures still have better resolution.
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Figure 7: Spatial resolution (IQA) as a function of rate. The lines are plotted
to guide the eyes. Plots (a), (b) and (c) show the spatial resolution of three
different Ar/CO2 mixtures at a gas gain of G0 = 2 ·10 4 . The squares show the
resolution with leading edge charge correction. Plot (d) shows the resolution
versus rate of all three mixtures at a gas gain of G0 = 4 · 10 4 .
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σ̄(0Hz/cm) σ̄(1400Hz/cm) tmaxgas mixture
(µm) (µm) (ns)

Ar/N2/CH4 91/4/5 ∗ 85.6 87.7 485
Ar/N2/CO2 90/5/5 ∗ 69.0 93.3 560
Ar/CH4/N2/CO2 94/3/2/1 ∗ 91.9 94.5 440
Ar/CO2 90/10 ∗ 48.3 78.6 950
Ar/CO2 92/8 53.7 78.5 770
Ar/CO2 93/7 57.8 84.3 700
Ar/CO2 94/6 63.5 85.1 630

Table 2: Resolution σ̄ (IQA) and maximum drift time tmax for different gas
mixtures. The gases marked with ∗ were only simulated. For all measurements
and simulations the σnoise was 3.8 primary ionization electrons, the threshold
was at 20 primary ionization electrons and the gas gain was G0 = 2 · 10 4 .
The time slewing correction was not applied.

2.7 Impact of a Magnetic Field

With a magnetic field B parallel to the wire, the electrons do not travel on radial approach
lines towards the wire, but under an angle Ψ (i.e. the Lorentz angle) which is approximately
given by

tan Ψ =
eB

m
τ, (3)

where eB
m

is the cyclotron frequency and τ is the mean time between collisions of the
electrons with the gas molecules. Consequently the drift time t for a certain drift distance
r will increase.

In order to understand the properties of Ar/CO2 93/7 in the presence of a magnetic
field parallel to the wire, GARFIELD simulations7 with a magnetic field of B = 0.5T
(G = 2 · 104, p = 3bar) have been done. Figure 8 (a) shows measurements [12] and
MAGBOLTZ [3] simulations of the Lorentz angle Ψ for Ar/CO2 90/10 at a pressure p =
1.02 atm in order to evaluate the validity of the simulations. It can be seen that the
simulation yields a very good estimate of the effect of the magnetic field B. Plot 8 (b)
presents simulations of the Lorentz angle Ψ for several gases as a function of the radius r.

The following points have been found for Ar/CO2 93/7:

• the Lorentz angle is 〈Ψ0.5T〉 = 9.3 ◦ which is small compared to other gases,

• the maximum drift time tmax increases only slightly to t0.5 T
max ≈ 720 ns (t0 T

max ≈ 700 ns
without magnetic field),

• the resolution without background rate remains almost unchanged or improves
slightly due to the decreased drift velocity (σ̄0.5 T = 56.9 µm instead of σ̄0 T = 57.8 µm
without magnetic field, both values without time slewing correction,

7The transport properties in the presence of a magnetic field B were simulated with MAGBOLTZ [3]

11



0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
E-field (V/cm)

L
o

re
n

tz
 a

n
g

le
 Ψ
 (

d
e

g
re

e
s)

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14
r (mm)

L
o

re
n

tz
 a

n
g

le
 Ψ
 (

d
e

g
re

e
s)

Figure 8: Lorentz angle. Plot (a) compares MAGBOLTZ [3] simulations with
measurements [12]. Plot (b) shows simulations of Ψ as a function of the drift
radius r for three different drift gases.

• The high rate behaviour is not influenced by a magnetic field of this strength; i.e.
the high rate deterioration of the resolution stays the same (σ̄0.5 T = 83.8 µm for
1400Hz/cm without time slewing correction).

For the other simulated gases the impact of a magnetic field was higher (see figure 8 (b)).
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3 Systematic Errors to the Space-Time Relation

The drift velocity vD is a function of E
ρ
. Hence environmental changes which influence either

the electric field E or the gas density ρ affect the drift velocity in a tube and consequently
the rt-relation. However this effect is negligible for linear gas mixtures (e.g. Ar/N2/CH4

91/4/5) because their drift velocity depends only weakly on the ratio of E
ρ
. For non-linear

gas mixtures (e.g. Ar/CO2 mixtures) these effects become more important. This chapter
describes in detail all different effects contributing to systematic errors to the rt-relation.

Variations of the rt-relation during autocalibration will show up as a single tube resolu-
tion deterioration and produce perhaps non-Gaussian tails. Changes in the environmental
parameters after autocalibration will distort the rt-relation systematically resulting in a
wrong prediction of the radius r at a given drift time t. Therefore this chapter deals
with the stability of the important parameters. Only considerable changes in time will
cause a systematic error to the rt-relation and hence deteriorate the reconstructed muon
momentum resolution.

This chapter will describe all effects causing systematic errors to the rt-relation, estimate its
influences on the reconstructed muon momentum resolution and finally introduce possible
first order corrections to systematic effects.

Different effects will cause deviations from the original rt-relation r0(t), resulting in

r(t) = r0(t) + δr(t). (4)

The deviation δr(t) and hence r(t) will be functions of the background rate, the gas gain,
the gas density, the gas composition, the non-concentricity of the anode wire and the
magnetic field. In addition we expect a rather small contribution from the autocalibration
itself. Thus we will decompose δr(t) into

δr(t) = δrF (t) + δrG(t) + δrD(t) + δrgas comp(t) + δrC(t) + δrM(t) + δrautocal(t), (5)

where δrF (t) is the error due to high background rate induced changes of the drift field
(space charge effect), δrG(t) the contribution of the gain drop (space charge effect and
temperature effect), δrD(t) the gas density effect (e.g. due to temperature changes),
δrgas comp(t) the expected effect as a consequence of variations in the gas composition,
δrC(t) the error due to a non-concentricity of the anode wire, δrM(t) the systematics due
to differences in the magnetic field and δrautocal(t) the systematic error of the rt-relation
obtained by autocalibration.

In the following we will quantify the systematic error to the rt-relation with the root mean
square of the difference δrr.m.s. between the original and the distorted rt-relation (a and b
are the wire respectively the tube radius):

δrr.m.s. =

√
1

b

∫ b

0

δr(r)2 dr. (6)
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3.1 ATLAS Environment

This chapter describes the environment in which the ATLAS muon system is expected to
work. Varying background rate, gas density or gas composition cause systematic errors
to the rt-relation. Furthermore systematic errors of the rt-relation due to autocalibration,
magnetic field differences and non-concentricity of the wire are considered.

3.1.1 Rate Environment
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Figure 9: Pseudo-rapidity dependence of the total counting rate in the three
precision-chamber stations at nominal luminosity [15].

Figure 9 shows the background environment of the ATLAS muon system. The impact of
the background rate on the single tube spatial resolution was already discussed in detail
in [6].

The background rates will not be constant. This effects the rt-relation in two different
ways: Because of ions drifting back to the cathode space charge in the drift region builds
up and causes a drift field change and a gain drop.

• Gain drop:
Since the electric field on the wire becomes smaller in the presence of space charge,
the gain drops. Measurements and simulations of the gain drop are described in [6].
We expect a gain drop of G/G0 ≈ 0.87 at a background rate of 1500Hz/cm and
G0 = 2 · 104. Figure 10 illustrates the reason for the systematic error. The average
signal maximum for muons is h ≈ 150 primary ionization electrons. Assuming a
linear signal rising edge yields a shift of the threshold crossing time ∆tthr of ∼ 0.4 ns
(peaking time tp = 15ns, 20 electron threshold at a gain drop of G/G0 = 0.87). With
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a drift velocity ∼ 30 µm/ns we get an average systematic error of the predicted drift
radius r of ∼ 12 µm. This value is almost independent of the drift gas. Thus the
systematic error to the rt-relation due to gain drop is a very small effect and can be
neglected even for bigger gain drops8.
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pt∆ t thr

hG/G

h~150electr.
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Figure 10: At a given gain drop G/G0 the threshold crossing time shifts to later
times, consequently the drift radius is overestimated if the rt-relation without
gain drop is used.

• Drift field change:
The ions which are drifting back from the wire to the cathode surface produce a
charge density changing the drift field (see [6]). For non-linear gas mixtures like
Ar/CO2 this is the dominating systematic error to the rt-relation. Applying equa-
tion (7) the effect can be quantified and shows an error of δrr.m.s.

F = 120 µm for
a rate difference of 1500Hz/cm with Ar/CO2 93/7 (Ar/N2/CH4 91/4/5 gives only
18 µm). Figure 18 (a) shows that the systematic error to the rt-relation induced by
high rate drift field changes is not linear with r, nevertheless the root mean square
as described in equation (6) represents a very good figure of merit for the impact on
the reconstructed muon momentum resolution.

In the appendix the derivation for a correction of the systematic error due to a drift field
change is presented. The product of the background rate Nc, the gas gain G and the charge
deposit Q can be extracted from the monitored chamber current (Ich = f(NcGQ)):

δrF (t) =
NcGQb2 log b

a

8πε0µV 2
0

tr′0(t)− r0(t) +
6 log b

a

b2
r′0(t)

t∫
0

(
r′0(t

′)
r′0(t)

− 1

)
r0(t

′)2 dt′

 , (7)

where µ is the ion mobility, V0 the wire potential and r′0(t) = ∂r0(t)
∂t

the first deviation of
r0(t) (see appendix for a more detailed description).

Figure 11 shows the measurement, the simulation and the calculation of the systematic
error δrF (t). The correction reduces the systematic error δrr.m.s.

F from 120µm to < 30 µm.

8The effect scales with
(

G0
G − 1

)
.
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Figure 11: The systematic error δrF (t) to the rt-relation due to rate varia-
tions δrF (t) as a function of the drift time t. The plot compares measurements
with GARFIELD simulations and the calculation of δrF (t) according to equa-
tion (7).

3.1.2 Temperature Effects

Various heat sources and sinks in the muon spectrometer will result in temperature gradi-
ents. Temperature differences in the muon spectrometer are estimated to be at the level
of 3K (see [15]).

The diurnal temperature variations in the cavern will be significantly smaller at the level
of ∆T = ±1K.

Assuming constant pressure the following contributions have to be considered:

• Gas gain stability:
Temperature related density variations induce gain variations. According to Di-
ethorn’s formula [10] (ρ(T0)

ρ(T )
= T

T0
, T = T0 + ∆T )

G(T ) =

[
E(a)ρ(T0)

Emin(ρ(T0))ρ(T )

] aE(a)
∆V

log 2

→ G(T )

G(T0)
=

[
T

T0

] V0 log 2

∆V log b
a

, (8)

where E(a) is the electric field on the wire surface and Emin and ∆V are the Diethorn
parameters (see table 1 for Ar/CO2 mixtures) a temperature change of ∆T = −5K
translates into a gain drop of G(T )/G(T0) = 0.9. The impact of a gain drop has
already been discussed in section 3.1.1. The systematic error to the rt-relation caused
by this effect is negligible.

16



• Stability of the drift velocity:

The drift velocity vD is a function of E
ρ
. Thus a change of the gas density will influence

the drift time t at a given drift distance r. This systematic error to the rt-relation can
be calculated (see equation (9) and the appendix). For Ar/CO2 93/7 a temperature
change of ∆T = 2K results in an error of δrr.m.s.

D = 27 µm (for Ar/N2/CH4 91/4/5
δrr.m.s.

D = 4 µm).

In the ATLAS gas distribution the gas density will be controlled by keeping the ratio
of pressure

temperature
∝ ρ constant (see also [13]). However, the gas density will perform small

variations since the pressure equalizes in the gas volume. Nevertheless the control of the
gas density in the gas distribution will further reduce temperature effects. We estimate
the residual variations to be at the level of |1− ρ/ρ0| < 0.4% (see appendix), which cause
a systematic error of δrr.m.s.

D = 15 µm.

In the appendix the impact of a gas density change on the rt-relation – e.g. as a consequence
of temperature variations – is described in an analytical model. This model can predict
the systematic error with high accuracy and hence makes a correction possible:

δrD(t) =

(
ρ0

ρ
− 1

)
(r0(t)− t · r′0(t)). (9)

Figure 12 compares GARFIELD simulations and calculations of the systematic error due
to large gas-density variations and shows excellent agreement.

Applying the density correction presented in equation (9) we can reduce the systematic
error δrr.m.s.

D to smaller than 10µm provided the temperature of the gas is known with an
accuracy of 0.2%.
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Figure 12: The systematic error to the rt-relation δrD(t) due to density varia-
tion as a function of the drift time t. The plot compares GARFIELD simula-
tions with the calculation of δrD(t) as described above and in the appendix.
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3.1.3 Gas Composition

The drift properties of Ar/CO2 mixtures depend crucially on the exact CO2 content. Ta-
ble 2 points out the vast differences of the maximum drift time tmax for a change of the
CO2 content of only one percentage point. It is not the absolute value of the gas composi-
tion, but the stability in time, that will be crucial for the performance of our spectrometer.
Another important aspect is the stability of the water content.

Figure 13 demonstrates the change of the drift properties in terms of a distortion of the
rt-relation δrgas comp. In order to restrict δrr.m.s.

gas comp to a maximum of 40µm, the absolute
composition variation has to stay below 0.1% absolute.
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Figure 13: Systematic error to the rt-relation due to changes of the gas com-
position. GARFIELD simulation, calculation of the gas properties with MAG-
BOLTZ.

Because of the very small flow rate (1 volume exchange per 10 h) such variations in the
gas composition will distribute very slowly over the whole muon system. Thus even with
exact monitoring after the mixer it is very difficult to know the actual gas composition in
the chambers. A correction for this effect is therefore hardly possible.

The water content of the MDT drift gas is not decided yet. Its value will be determined
with regard to a maximum stability of the drift properties9. Figure 14 shows GARFIELD
simulations of the systematic error due to variations of the water content. The nominal
water content is 1000 ppm. As described in [14] the impact of water on the rt-relation is

9Usually the maximum drift time shows a minimum at a few thousand ppm depending on the drift gas.
There the highest stability of the drift properties is guarantied (see [14]). This optimal water content has
to be determined by measurements.
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usually not very well predicted by GARFIELD. Nevertheless figure 14 gives us an estimate
of the magnitude of the effect. If we estimate the stability of the water content to be
3% the systematic error will be smaller than 10 µm. This value has to be confirmed by
measurements.
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Figure 14: Systematic error to the rt-relation due to changes of the water
content. GARFIELD simulation, calculation of the gas properties with MAG-
BOLTZ.

3.1.4 Concentricity of the Anode Wire

Temperature differences between MDT multilayers deform the chamber. The in-plane
alignment will measure the fundamental mode of such deformations, but cannot prevent
loss of concentricity of the anode wires relative to the tubes, which is required not to
exceed 100µm10 [15]. Measurements on MDT prototypes, confirmed by finite-element
calculations, show that gradients of ∆T = 3K are tolerable for chambers with tube length
below 3m [16]. Such a non-concentricity of the wire translates into a rt-relation with two
different branches, one for each side of the wire. Let be s the distance between the tube
axis and the wire and the angle ϕ the polar angle, then the first order approximation (all

10I.e. the distance between the anode wire and the tube axis is not allowed to exceed 100 µm. Note that
engineers define concentricity as the whole window of possible wire positions, according to this definition
our tubes will have a concentricity of 200µm.
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terms with O[(s/b)2] neglected) of the new drift field | ~E(r, ϕ)| is

| ~E(r, ϕ)| = V0

r log b
a

(
1 +

rs

b2
cos ϕ

) tube

s
tube
center

ϕ
wire (10)

ϕ = 0 is fixed in the direction of the nearest distance between the non-concentric wire and
the tube wall. Using equation (10) we can calculate the systematic error to the rt-relation
δrC as a function of s and ϕ – the derivation is shown in the appendix – (r0(t) is the
rt-relation for s = 0):

δrC(t) = 2
s

b2
cos(ϕ)r′0(t)

t∫
0

(
r′0(t

′)
r′0(t)

− 1

)
r0(t

′) dt′. (11)

Figure 15 shows a measurement of a wire being 500 µm out of center and a calculation
of δrC(t). For s = 100 µm the r.m.s. of the difference between one branch and the rt-
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Figure 15: Two branches of the rt-relation at a non-concentricity of 500µm.
The calculation of δrC(t) according to equation (11) fits very well to the mea-
surement. The two branches are at ϕ = 0 and ϕ = π. The plot shows the
residuals of single events (i.e. the position obtained with the branch of the
rt-relation at ϕ = π minus the position predicted by ODYSSEUS).

relation for s = 0 is in the order of 15 µm for mixtures like Ar/CO2. For linear gases
such as Ar/N2/CH4 91/4/5 the effect is negligible (δrr.m.s.

C = 2 µm). Autocalibration would
deliver the mean between the two branches as rt-relation, the residual distribution will
show non-Gaussian tails. However, the reconstructed muon momentum resolution stays
almost unchanged (see section 3.3). Furthermore the effect will be even smaller in ATLAS
because due to geometrical considerations the shortest line from the wire to the muon track
will be most likely at ϕ = ±π

2
.
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3.1.5 Differences of the Magnetic Field

The rt-relation depends on the magnetic field11 B. Since the magnetic field will vary
throughout the spectrometer autocalibration zones are restricted in its size. However, we
have to expect differences in the magnetic field of ∆B ≈ 100G (∆B/B ≈ 2%) within one
autocalibration zone. Hence we will obtain an average rt-relation within one zone, which
will differ slightly from the local rt-relations.

Figure 16 presents GARFIELD simulations of the systematic error to the rt-relation due
to differences of the magnetic field in one autocalibration zone. It shows a systematic
error δrr.m.s.

M of 8µm for differences in the magnetic field of 2%. The systematic error due
to differences of the magnetic field in one autocalibration zone is therefore a very small
effect12.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600 700
t (ns)

δr
M

 (
m

m
)

Figure 16: Systematic Error δrM due to differences in the magnetic field (B =
0 .5 T parallel to the wire, ∆B = 50 G and 100G, G = 2 · 10 4 , p = 3 bar).

3.1.6 Systematics of Autocalibration

The ATLAS Muon Spectrometer will assume the same Space-Time relation for certain
areas of limited size. Within such areas the rt-relation will be obtained by autocalibration.
The size of autocalibration zones will be determined by the necessary angular spread of
the muon tracks (αr.m.s.

tracks ≈ 2 ◦), statistical considerations and the non-uniformity of the
magnetic field.

11We consider only the influence of magnetic fields parallel to the wire (wire ‖ z) ~B = Bz ~ez like it will
be to a first approximation in the ATLAS muon spectrometer.

12For larger Lorentz angles (see section 2.7) than the one of Ar/CO2 93/7 the effect will increase slightly
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The autocalibration method was developed and tested with testbeam measurements [17]
and typically yields the rt-relation with an accuracy of δr.m.s.

autocal < 20 µm.

Compared to other sources of systematic errors to the rt-relation δr.m.s.
autocal is rather small,

but it depends strongly on the angular spread of the muon tracks used.

Figure 17 shows measurements of the dependence of the systematic error δr.m.s.
autocal on the

angular spread of the muon tracks αr.m.s.
tracks (measurements with the Calypso MDT cham-

ber [17]). It points out that for an angular spread of αr.m.s.
tracks > 1.5 ◦ the systematic error

due to autocalibration δr.m.s.
autocal is smaller than 20 µm.
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Figure 17: The systematic error to the rt-relation due to autocalibration δr.m.s.
autocal

as a function of the angular spread of the muon tracks αr.m.s.
tracks (measurements

from the H8 testbeam [17]).

3.2 Systematic Errors with Linear and Non-Linear Drift Gases

Figure 18 summarizes the stability of the rt-relation for non-linear drift gases like Ar/CO2

mixtures and linear gases such as Ar/N2/CH4 91/4/5. Only the systematic errors due to
a gain drop and due to autocalibration are gas independent. The plots are calculations
performed according to the way introduced in the appendix. The magnitude of systematic
errors is a direct measure for the linearity of a drift gas (the values for δrr.m.s. are listed in
the plots and in table 3 for many different drift gases).

As expected we find big systematic errors to the rt-relation for non-linear gas mixtures,
which might need a correction.
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Figure 18: Systematic errors to the rt-relations δr(t) = r(t) − r0(t) due to
changes of the environmental parameters. The values for δrr.m.s. are listed in
the plots.

3.3 Impact of Systematic Errors to the Space-Time Relation on
the Reconstructed Muon Momentum Resolution

In this chapter the systematic errors to the rt-relation have been discussed in detail up
to now. In this chapter we want to study their influences on the reconstructed muon
momentum resolution.

Figure 19 illustrates that the error on the reconstructed track position in one superlayer
depends strongly on the angle and the position of the muon track. Therefore a correct
simulation of the impact on the reconstructed muon momentum resolution has to involve
the geometry of the whole spectrometer and the magnetic field. Such simulations have been
performed with DICE/ATRECON. DICE [4] is a program based on GEANT calculating the
output of all detector systems in ATLAS for real physics events using the exact geometry
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δrr.m.s.
F δrr.m.s.

D δrr.m.s.
C δrr.m.s.

G δrr.m.s.
autocal

(µm) (µm) (µm) (µm) (µm)
gas mixture

∆Rate = ρ/ρ0 = 0.993 s = 100 µm G/G0 = 0.9

= 1500 Hz/cm (∆T = 2 K isobar)

Ar/N2/CH4 91/4/5 18 4 2 10 < 20
Ar/N2/CO2 90/5/5 94 21 14 10 < 20
Ar/CH4/N2/CO2 94/3/2/1 14 3 2 10 < 20
Ar/CO2 90/10 123 28 18 10 < 20
Ar/CO2 92/8 113 28 16 10 < 20
Ar/CO2 93/7 120 27 17 10 < 20
Ar/CO2 94/6 123 25 16 10 < 20

Table 3: Values for the biggest expected errors δrr.m.s. to the rt-relation. The
calculations have been done according to the method described in the appendix.
The systematic errors due to variations of the gas composition and due to
magnetic field differences have only been simulated for Ar/CO2 93/7 and are
therefore not included in the table (see sections 3.1.3 and 3.1.5).

reconstructed muon track B

muon track A

muon track B

wrongly predcited
drift radius

Figure 19: The sketch shows the impact of systematic errors to the rt-relation
on a reconstructed muon track in one super layer. Muon track A is recon-
structed almost correctly despite the systematic error whereas the reconstructed
muon track B shows a big deviation from the original position.

of the detector. ATRECON is a program which reconstructs the momenta and energies of
the particles by using the output of DICE.

In the simulations described here a perfect calibration of the magnetic field and a perfect
chamber alignment was assumed

Figure 20 shows the results of the simulations. Only muons with a transverse momen-
tum of pT = 1TeV/c were considered since errors in the position measurement have its
biggest impact on the reconstruction of muon tracks with high momenta. For smaller muon
momenta the resolution is dominated by multiple scattering.

Plot 20 (a) shows the contribution of systematic errors to the reconstructed muon mo-
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Figure 20: DICE [4] simulations of the impact of a systematic error to the
rt-relation on the reconstructed muon momentum resolution for muons with
pT = 1 TeV/c. Plot (a) shows the quadratic deterioration of the reconstructed
muon momentum resolution with a distorted rt-relation in all chambers. The
values for a systematic error only in the inner station have been obtained by
scaling the deterioration with 1√

3
. Plot (b) illustrates the muon momentum

resolution in %. The squares are simulations with a linear distortion (δr(r) =
δrr.m.s.

√
3

b
· r), the triangles show a simulation with a real distortion δrF like

shown in figure 18.

mentum (quadratic difference to the value without systematic error). As expected a linear
increase of the deterioration with δrr.m.s. can be seen. In order to obtain an estimate of the
effect having a systematic error δrr.m.s. only in the inner station of the spectrometer, the
contribution was scaled with 1√

3
.

Plot 20 (b) presents the relation between the reconstructed muon momentum and the
systematic error δrr.m.s.. It indicates that up to a systematic error of δrr.m.s. ≤ 50 µm in
all tubes of the detector the reconstructed momentum resolution stays almost unchanged
(∆pT /pT = 7–7.5%). For bigger systematic errors the resolution degrades quickly. Consid-
ering a systematic error only in the inner muon station (e.g. systematic error due to rate
effects) the deterioration of the resolution is less (white squares in the plot). The squares

have been calculated using a linear distortion of the rt-relation (δr(r) = δrr.m.s.
√

3
b

· r),
whereas for the triangles a real systematic error δrF (r) like in figure 18 (a) was applied.

Since we expect much larger systematic errors δrr.m.s. than 50µm for non-linear gas mix-
tures like Ar/CO2, the appendix deals with possible corrections.
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4 Conclusion

This note presents the operating point and systematic errors of the baseline gas Ar/CO2

93/7. Furthermore it compares different drift gases in terms of resolution, and stability of
the rt-relation.

Measurements and GARFIELD simulations agree on a resolution of ∼ 58 µm without
background (∼ 54 µm with time slewing correction) and ∼ 84 µm with a background rate
of 1400Hz/cm (∼ 79 µm with time slewing correction) for the baseline gas Ar/CO2 93/7
at a gas gain of G0 = 2 · 104. For higher gas gains the resolution without time slewing
correction improves slightly with no background. But higher gain hardly improves the
resolution with correction and rate effects become worse.

The afterpulsing rate was measured and was found to be 3% (Ar/CO2 93/7, G = 2 · 104).
Afterpulses themselves do not cause big problems (very small pulses) but are a sign of
incomplete quenching properties of the considered drift gas.

baseline gas Ar/CO2 93/7
gas pressure p 3 bar
gas gain G0 2 · 104

operating voltage 3080V
peaking time tp 10–15 ns
noise σnoise < 4 e−

threshold 5× noise (∼ 20 e−)
afterpulsing rate 3%
maximum drift time
no B-field t0T

max ∼ 700 ns
B-field of 0.5T t0.5T

max ∼ 720 ns
Lorentz angle 〈Ψ〉 9.3 ◦

resolution σ̄
no rate 58µm
rate of 1400Hz/cm 84µm

σ̄ time slew. corrected
no rate 54µm
rate of 1400Hz/cm 79µm

maximum occupancy
Rate = 300 kHz/tube ∼ 15 %

δrr.m.s.

effect
(µm)

background rate
∆Rate = 1500Hz/cm 120
with correction < 30

gas density
ρ/ρ0 = 0.993 27
with correction < 10

gas composition
∆composition = 0.1% 44

non-concentricity
s = 100 µm 17

gain drop
G/G0 = 0.9 10

B-field difference
∆B = 100G 8

autocalibration < 20
total (quadratic sum)
without correction < 135
with correction < 65

Table 4: Summary: Working point for
the MDT’s.

Table 5: Summary: Systematic errors
for the baseline gas.

Table 4 summarizes the working point for our MDT system, in table 5 the systematic
errors to the rt-relation (1-σ values) are listed. Adding all systematic errors (quadratic
sum) results in δrr.m.s.

total < 135 µm respectively in δrr.m.s.
total < 65 µm if the corrections are

applied. The systematic error with the corrections is dominated by the systematic error
due to variations of the gas composition.

The different reasons for systematic errors to the rt-relation were discussed in detail. The
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biggest effect is the background rate variation which will introduce a systematic error
to the rt-relation of δrr.m.s.

F = 120 µm (∆Rate = 1500Hz/cm for the baseline mixture).
Simulations of the impact of such systematic errors on the reconstructed muon momentum
have been performed. They show that up to a systematic error of δrr.m.s. ≤ 50 µm the
reconstructed momentum resolution stays almost unaffected (∆pT /pT ≈ 7–7.5% for a
pT = 1TeV/c, perfect chamber alignment and magnetic field calibration assumed). For
bigger systematic errors (δrr.m.s. > 50 µm) a rapid resolution deterioration was observed
(see figure 20).

Two of the biggest systematic errors (i.e. the systematic error due to rate variations and due
to density variations) can be predicted by analytical models. Corrections are introduced

which can reduce the systematic error to a large extent (e.g. δrr.m.s.
F = 120 µm

correction−→
δrr.m.s.

F < 30 µm).

Measurements and GARFIELD simulations show very good agreement for a lot of the
considered effects. The analytical model developed for corrections predicts the changes of
the rt-relation with high accuracy.

In summary Ar/CO2 has good aging properties, whereas linear gases with hydrocarbons
tend to age. However, the non-linearity of Ar/CO2 makes the rt-relationship much less
stable with respect to changes in operating conditions. The effect of this has been quantified
and is acceptable even in the regions of the spectrometer with highest background and even
if the rate is five times what we expect.
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Appendix

First Order Corrections

This chapter describes first order corrections to the rt-relation if the parameters, causing
a systematic error are known. This will be the case for the gas density change, which can
be calculated from the temperature measurements, and the background rate, which can be
extracted from the current measurement.

In the following corrections to the rt-relation r0(t) at a gas density ρ0 without background
rate (Nc = 0) will be introduced. Thus the rt-relation becomes a function of ρ

ρ0
and Nc ·G

where Nc is the background rate per unit length and G the gas gain:

r(t,
ρ

ρ0
, Nc ·G) = r0(t) + δrD(t,

ρ

ρ0
) + δrF (t, Nc ·G) =

= r0(t) +

(
ρ0

ρ
− 1

)
Dcorr(t) + ν(Nc ·G)Fcorr(t). (12)

The dimensionless parameter ν which contains the background rate Nc, the gas gain G and
the average charge deposit Q and the two r0(t)-dependent functions Dcorr(t) and Fcorr(t)
will be discussed later. Because of

r(t) =

t∫
0

v(t′) dt′ → r0(t) + δr(t) =

t∫
0

v0(t
′) dt′ +

t∫
0

δv(t′) dt′ (13)

we obtain

δr(t) =

t∫
0

δv(t′) dt′ =

t∫
0

(

r′′
0 (t′)︷ ︸︸ ︷

v′0(t
′)∆t(t′) +O[∆t(t′)2]) dt′, (14)

where ∆t(t) is defined by

E0(r0(t
′ + ∆t(t′))) ≡ Enew(r(t′)). (15)

In equation (15) E0(r) stands for E0(r)
ρ0

, where E0(r) is the drift field without background rate

and ρ0 the gas density when r0(t) was autocalibrated. Enew(r) is the new drift field divided

by the new gas density Enew(r)
ρ

. The drift velocity v(t) is a function of E
ρ

and therefore

of E , therefore v′0(t
′)∆t(t′) represents the first order correction of the drift velocity (see

figure 21).

In the following we want to separate the two effects, thus either the drift field changes
(E0 → Enew and r(t) = r0(t) + δrF (t)) or the gas density changes (ρ0 → ρ and r(t) =
r0(t) + δrD(t)). Taylor expansion of the left side of equation (15) yields (terms with
O[∆t(t′)2] or higher are neglected):

E0(r0(t
′)) +

∂E0(r0(t
′))

∂t′
∆t(t′) = Enew(r(t′)),

− V0r
′
0(t

′)
ρ0r0(t′)2 log b

a

∆t(t′) = Enew(r(t′))− E0(r0(t
′)), (16)
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Figure 21: Sketch illustrating equation (15). v′0(t
′)∆t(t′) is the necessary cor-

rection to the drift velocity (δv(t′)) for the time t′.

where E0(r) = V0

ρ0r log b
a

was used (a is the wire radius and b is the inner tube radius, here

a = 25 µm and b = 1.46 cm). In the following the calculation of Enew(r(t′))− E0(r0(t
′)) for

the different effects will be discussed.

Gas Density Correction δrD(t)

The gas density will be controlled in the gas distribution. Still, different gas temperatures
in the gas volume will cause density variations. These density variations will be rather
difficult to predict but in principle we can calculate the gas density ρ in a chamber part
by using the monitored temperature T on the chamber, the gas density ρrack and the
temperature Track in the gas distribution and take advantage of the fact, that the pressure
will equalize in the gas volume (the gravitational pressure drop13 is ξ = 0.53mbar/m).

We can consider our drift gas to obey the ideal gas equation:

ρ · R · T = p → ρ =
ρrackRTrack −∆hξ

RT
, (17)

where ρ is the gas density in the considered chamber, R the gas constant (e.g. RAr =
208 J kg−1K−1, RCO2 = 188 J kg−1K−1), T the gas temperature in the chamber, ∆h the
altitude difference between the gas distribution and the considered chamber and p the gas
pressure. Equation (17) yields for ∆h = 5m and a difference between the temperature
variation in the chamber (∆T ) and the temperature variation in the gas distribution14

13Only chambers in approximately the same altitude will be connected to reduce pressure differences
induced by gravitation.

14Both (∆T and ∆Track) with respect to the temperature during autocalibration.
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(∆Track) of ∆T −∆Track = 1K a density decrease of ρ/ρ0 = 0.9957.

As described in section 3.1.2 the gas density ρrack will be kept constant.

With equation (17) we obtain by applying Taylor expansion (r(t) = r0(t)+δrD(t), δrD(t) �
r0(t) ∀ t):

Enew(r(t))− E0(r0(t)) =
ρ0

ρ

V0

ρ0r0(t) log b
a

(
1− δrD(t)

r0(t)

)
− V0

ρ0r0(t) log b
a

=

=
V0

ρ0r0(t) log b
a

(
ρ0

ρ
− 1− ρ0

ρ

δrD(t)

r0(t)

)
(18)

Using equations (16) and (14) we get:

δrD(t) =

t∫
0

r′′0(t
′)

r′0(t′)

[(
ρ0

ρ
− 1

)
r0(t

′) +
ρ0

ρ
δrD(t′)

]
dt′. (19)

Differentiation on both sides yields a differential equation with the solution

δrD(t) = −
(

ρ0

ρ
− 1

)
r′0(t)

ρ0
ρ

t∫
0

r′′0(t
′)

r′0(t′)
(1+ ρ0

ρ )
r′0(t

′) dt′. (20)

For real rt-relations (r′0(t) varies less than a factor 5 over the whole drift time t) and density
changes less then 1% (|ρ0

ρ
−1| < 0.01, this corresponds to an isobar temperature change of

|∆T | < 3K) we can regard r′0(t)
−( ρ0

ρ
−1) as constant, put it out of the integral and cancel

it down (error less than 2%):

δrD(t) = −
(

ρ0

ρ
− 1

)
r′0(t)

t∫
0

r′′0(t
′)

r′0(t′)2
r′0(t

′) dt′. (21)

The remaining integral can be solved:

δrD(t) =

(
ρ0

ρ
− 1

)
(r0(t)− t · r′0(t)) =

(
ρ0

ρ
− 1

)
Dcorr(t). (22)

The obtained correction was compared to GARFIELD15 simulations and shows excellent
agreement (see figure 12).

Rate Correction δrF (t)

As described in section 3.1.1 the ATLAS muon system will have to cope with rate differences
of up to 1500Hz/cm. Section 3.3 shows the big impact of systematic errors to the rt-relation
on the reconstructed muon momentum resolution.

15GARFIELD [1] is interfaced to MAGBOLTZ [3] which calculates the drift properties of gas mixtures
at given temperatures.
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The rate correction δrF (t) is a function of the product Nc ·G, where Nc is the background
count rate per unit length along the wire and G the effective gas gain including the gain
drop. Furthermore the average charge deposit per background event Q has to be known16.
The value of the product Nc · G · Q can be derived from the current Ich in the operating
chamber. This current Ich will be monitored.

Nc ·G ·Q =
Ich

Lch

, (23)

where Lch is the total tube length of the considered chamber. In equation (23) a homoge-
neous irradiation of the chamber was assumed.

In [6] a first order approximation of the field change as a consequence of space charge was
introduced. Using the dimensionless parameter ν

ν ≡ NcGQb2 log b
a

8πε0µV 2
0

=
Ichb

2 log b
a

8πε0µLchV
2
0

, (24)

where µ is the ion mobility (e.g. µAr+ inAr(1 bar) = 1.535 cm2V−1s−1 [19]) and a and b the
wire and tube radius, we get:

E(r(t)) =
V0

ρ0r(t) log b
a

(1− ν) +
2νV0

ρ0b2
r(t). (25)

Applying Taylor expansion (r(t) = r0(t) + δrD(t), δrD(t) � r0(t) ∀ t) and using equa-
tion (16) we obtain

∆t(t) =
1

r′0(t)

[
νr0(t)−

2ν log b
a

b2
r0(t)

3 + δrF (t)

(
1− ν − 2ν log b

a

b2
r0(t)

2

)]
. (26)

Inserting in equation (14) and differentiating on both sides yields a differential equation

δrF (t)
r′′0(t)
r′0(t)

(
1− ν − 2ν log b

a

b2
r0(t)

2

)
− ∂δrF (t)

∂t
=

r′′0(t)
r′0(t)

(
2ν log b

a

b2
r0(t)

3 − νr0(t)

)
(27)

with the solution

δrF (t) = νr′0(t)
(1−ν)e−g(t)

t∫
0

eg(t′) r′′0(t
′)

r′0(t′)(2−ν)

(
r0(t

′)− 2 log b
a

b2
r0(t

′)3

)
dt′. (28)

The function g(t) in equation (28) is defined as

g(t) ≡ 2ν log b
a

b2

t∫
0

r′′0(t
′)

r′0(t′)
r0(t

′)2 dt′ (29)

and has values for mixtures like Ar/CO2 between g(0) ≈ 10−4 and g(tmax) ≈ 6 · 10−2, and
even smaller values for less non-linear gas mixtures. Hence the exponential function in

16Simulations determined the average energy deposit of a background photon to be ∼ 36 keV at a
magnetic field of 0.6T [18]
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the integral can be regarded as constant, be written out of the integral and be cancelled
down (error less than 6%). The same applies for the r′0(t)

−ν-terms (even for the highest
considered background rates ν is smaller than 10−2 and r′0(t) usually varies less than a
factor 5 over the whole drift time t → error less than 2%). Simplifying the integrals leads
to

δrF (t) = ν

tr′0(t)− r0(t) +
6 log b

a

b2
r′0(t)

t∫
0

(
r′0(t

′)
r′0(t)

− 1

)
r0(t

′)2 dt′

 = νFcorr(t). (30)

Figure 11 compares measurements with GARFIELD simulations and the calculation of
δrF (t) according to equation (30) and shows a good agreement. The correction reduces
δrr.m.s.

F from 120µm to < 30 µm. Note, that Equation (30) overestimates the rate effect at
high rates (see Figure 11) since a first order approximation for the field change was used
in Equation (25), which overestimates the rate effect for high rates at big radii.

Non-Concentricity Correction δrC(t)

In this section we want to derive equation (11). As a starting point we want to use
equation (10), which was obtained by calculating the electric field for a small deviation s
of the wire out of the tube center by means of mirror charges17: The line charge on the
wire was found to be

γ =
2πε0V0

log b2−s2

ab

=
2πε0V0

log b
a

·
[
1 +

s2

b2 log b
a

+O[(s/b)4]

]
. (31)

Writing down the whole expression for the electric field

~E(x, y) =
V0

log b2−s2

ab

·


(

x− s
y

)
(x− s)2 + y2

−

(
x− b2

s

y

)
(x− b2

s
)2 + y2

 , (32)

transforming it into polar coordinates (x = r cos ϕ + s and y = r sin ϕ) and performing a
Taylor expansion for s � b leads to

| ~E(r, ϕ)| = V0

r log b
a

(
1 +

rs

b2
cos ϕ +O[(s/b)2]

)
, (33)

which is identical with equation (10). Following the way which was used for the other
corrections we start with

Enew(r(t))− E0(r0(t)) =
V0

ρ0 log b
a

(
s

b2
cos ϕ− δrC

r0(t)2

)
, (34)

17The line charge γ at the distance s from the tube center produces a mirror line charge γ̃ = −γ at the
distance b2

s from the tube center, which lies outside the tube.
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where Taylor expansion was used (r(t) = r0(t)+δrC(t), δrC(t) � r0(t) ∀ t → 1
r0(t)+δrC (t)

=
1

r0(t)
− δrC(t)

r0(t)2
+O[δrC(t)2]). Using equation (14) and differentiating on both sides yields a

differential equation

∂δrC(t)

∂t
− r′′0(t)

r′0(t)
δrC(t) = −r′′0(t)

r′0(t)
· sr0(t)

2

b2
cos ϕ, (35)

with the solution already shown in equation (11)

δrC(t) = − s

b2
cos(ϕ)r′0(t)

t∫
0

r′′0(t
′)

r′0(t′)2
r0(t

′)2 dt′ = 2
s

b2
cos(ϕ)r′0(t)

t∫
0

(
r′0(t

′)
r′0(t)

− 1

)
r0(t

′) dt′.

(36)
Figure 15 compares the measurement of the two branches of the rt-relation for ϕ = 0 and
ϕ = π with the prediction of the effect using equation (36) and shows very good agreement.
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