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Abstract: We update and summarize the present status of our understanding of the reparametrization
symmetry with an i < j state exchange in neutrino oscillation in matter. We introduce a systematic
method called “Symmetry Finder” (SF) to uncover such symmetries, demonstrate its efficient hunting
capability, and examine their characteristic features. Apparently they have a local nature: the 1-2 and
1-3 state exchange symmetries exist at around the solar and atmospheric resonances, respectively,
with the level-crossing states exchanged. However, this view is not supported, to date, in the globally
valid Denton et al. (DMP) perturbation theory, which possesses the 1-2, but not the 1-3, exchange
symmetry. This is probably due to our lack of understanding, and we find a clue for a larger symmetry
structure than we know of. In the latter part of this article, we introduce non-unitarity, or unitarity
violation (UV), into the vYSM neutrino paradigm, a low-energy description of beyond vSM new physics
at a high (or low) scale. Based on the analyses of UV extended versions of the atmospheric resonance
and the DMP perturbation theories, we argue that the reparametrization symmetry has a diagnostic
capability for the theory with the vSM and UV sectors. Speculation is given on the topological nature
of the identity, which determines the transformation property of the UV « parameters.

Keywords: reparametrization symmetry; neutrino oscillation; non-unitarity

1. Introduction

Symmetry is one of the deepest subjects in physics. When one picks up a field theory
textbook from bookshelf, say, ref. [1], one finds the description of various symmetries,
space-time symmetries, internal symmetries, CP, T, and CPT, discrete symmetries, sym-
metry in the hadron spectrum, and O(4) in the Coulomb problem, not to mention gauge
symmetry for constructing the Standard Model (SM). Most likely, even the several big
monographs would not be sufficient for full coverage of the subjects because of its profound
consequences and evolving nature. Fortunately, a set of beautiful lectures on symmetry in
particle physics delivered in the last decades in the 20th century is left for us [2].

In this paper, we discuss the reparametrization symmetry in neutrino oscillation in
matter. It indeed has quite different character from those described in refs. [1,2]. Invari-
ance under reparametrization merely implies that there is another way of parametrizing
the equivalent solution of the theory. Consequently, a general view on such symmetry
would be that it might be useful, but no conceptually deep notion is likely to be involved.
Recently, however, we have been accumulating new experiences about the reparametriza-
tion symmetry [3-5], which may introduce a new perspective on this view. Therefore,
in this paper, we present our self-contained global picture of the symmetry in neutrino
oscillation in matter with the hope of bringing the subject to the readers’ attention and
for a new judgement. If successful, we could possibly overturn the above prejudice about
reparametrization symmetry.

What does symmetry look like in neutrino oscillation in matter? Let us give a simple and
concrete example. In a perturbative framework valid at around the atmospheric resonance [6],
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which will be dubbed as the “helio-perturbation theory” in this paper, it is noticed [7] that the
expression of the oscillation probability is invariant under the transformations

Al < Az, cos ¢ — Fsing, sin¢g — + cos ¢. (1)

The notations are such that ¢ is the ;3 in matter, and A1 > A3 denote the two eigen-
values which participate in the level crossing at around the atmospheric resonance in the
inverted mass ordering [6]; see Section 6.2. (In normal mass ordering, A3 > A, are the
two eigenvalues which have the level crossing [6].) A similar symmetry as in Equation (1)
but replacing the 1-3 exchange by the 1-2 exchange using i as the matter-dressed 61, (612
in matter) was observed earlier in the Denton et al. (DMP) perturbation theory [8]. The
precise meaning of the term “matter-dressed 61,” is explained after Equation (19), and
similarly for 613 in matter by Equation (44).

Recently, we have developed a systematic method of finding the reparametrization
symmetry in neutrino oscillation in matter, termed “Symmetry Finder” (SF) [3-5]. We will
review this machinery and its powerfulness and try to show the readers where we are in our
journey of uncovering and understanding this symmetry. It is interesting in its own right,
serving, for example, to keep the consistency of the calculations of the observables, a “bread
and butter” item but an important task for the theorists. Eventually, we are going to suggest,
in the active three neutrino framework extended to include unitarity violation (UV) that the
reparametrization symmetry distinguishes between the vSM (neutrino-mass-embedded
SM) and the UV sectors of the theory, offering a useful tool for diagnosing such theories [5].
We are aware that in the physics literature, UV usually means “ultraviolet”. However, in
this paper, UV is used as an abbreviation for “unitarity violation” or “unitarity violating”.
We hope that SF, a systematic approach, provides an efficient digging-out machinery for
the symmetries in neutrino oscillation in matter and their deeper understanding. We
believe that it follows the spirit of the early analyses on symmetries and strengthens their
impacts [9-18].

1.1. Local Character of the Reparametrization Symmetry

To our current understanding, the reparametrization symmetry of neutrino oscillation
takes different forms depending upon where we are, i.e., which regions of neutrino energy
E, baseline L, and the matter density p are along the neutrino trajectory in the kinematical
phase space. Therefore, let us first introduce the matter effect [19] and draw a global picture
of neutrino oscillation in the earth matter environment. The matter potential will be defined
in Equation (13) in Section 3.1. In Figure 1, the equi-probability contour of P(v, — v,) is
presented [20] in the region of the energy baseline that roughly covers Super-Kamiokande’s
atmospheric neutrino observation 0.1 GeV< E < 10 GeV; see Figure 3 in ref. [21]. It also
overlaps with the regions for all the ongoing and planned long-baseline accelerator neutrino
experiments. Two peaks are visible: the solar scale (E ~ 200 MeV, L ~ 2000 km) and the
atmospheric scale (E ~ 8 GeV, L ~ 10* km) enhanced oscillations. For brevity, we refer
to these respective regions as the solar resonance and the atmospheric resonance regions
hereafter. In this article, the term “resonance” should be understood in this less strict sense
than usual; see refs. [19,22-24].

Now, what we are telling the readers is that the reparametrization symmetry takes
different form around each peak. That is,

* In the solar resonance region, the reparametrization symmetry of the 1-2 state ex-
change type exists, to be discussed in Section 4;

e In the atmospheric resonance region, the reparametrization symmetry of the 1-3 state
exchange type exists [4].
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Figure 1. The equi-probability contour of P(v;, — 1) is presented [20] in region of energy-baseline
that covers the atmospheric neutrino observation by Super-Kamiokande. Two peaks are visible: the
solar scale (E ~ 200 MeV, L ~ 2000 km) and the atmospheric scale (E ~ 8 GeV, L ~ 10* km) enhanced
oscillations. The matter density is taken to be a constant, p = 4.0 g/cm?, which gives only a bold
approximation to the Earth matter density.

Since the symmetry in the framework with local validity in the solar resonance re-
gion [7] has never been investigated in the literature, we will fill the gap in this article.

In fact, the features described in the above-itemized statements appeal to our intuition.
The 1-2 and 1-3 state level crossings, respectively, are the key to the solar-scale and the
atmospheric-scale resonances, and they are the dominant players in these respective regions.
The symmetry type specified by the exchanged states mentioned above just reflects the
main players in each region; see, e.g., refs. [25-28] for the earlier versions of the atmospheric
resonance perturbation theory. Given the existence of the various versions, not to trigger
any confusion, we discuss in this paper the particular version in ref. [6] under the name of
“helio-perturbation theory” to discuss the reparametrization symmetry in the atmospheric
resonance region. The term “helio-perturbation”, shorthand of the “helio-terrestrial-ratio
perturbation”, is invented because it perturbs the dominant effect of the atmospheric
resonance by the small solar-scale effect of order ~ Am3,/Am3; ~ 0.03.

1.2. Globally Valid vs. Locally Valid Frameworks

However, it turned out that the things are not so simple. Progress in the perturbative
treatment of neutrino oscillations in matter now allows us to have a limited number of
“globally valid” frameworks, the DMP [8] and Agarwalla et al. (AKT) [29] theories. By
“globally valid”, we mean that the framework is valid throughout the terrestrial region
depicted in Figure 1. In fact, the region of validity of the globally valid frameworks is
likely to extend to much higher energies, which is explored, e.g., by IceCube-DeepCore [30].
See the related discussions in ref. [31]. As opposed to the above-mentioned “locally
valid” theories, a globally valid theory is able to describe the both solar and atmospheric
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resonances. The secret for such greater capability is in the usage of the Jacobi method; see
ref. [29] for a concise exposition of the Jacobi method.

Does the globally valid framework allow us to formulate the reparametrization sym-
metry in both the solar and atmospheric resonance regions? Thus far, the answer is no.
According to the result of ref. [3], only the reparametrization symmetry of the 1-2 state
exchange type is obtained, or, in other words, the better way of formulating SF such that
the potential of the globally valid frameworks is fully utilized remains to be discovered.
Remember, however, that the problem has been examined only in the DMP theory so far,
and it is interesting to know how the problem looks like in the AKT perturbation theory [29].
While the present author is suspicious about the above conclusion, it is the current status of
our understanding of the reparametrization symmetry in neutrino oscillation in matter. In
close relationship to this point, a conjecture is given toward the generalization of the SF
formalism to accommodate much more generic reparametrization symmetry [5].

Here are additional (not so pedagogical) comments on the globally valid vs. locally
valid frameworks of neutrino oscillation. One may argue that the wider coverage indicates
the superiority of the globally valid framework over the local frameworks. Moreover, one
can show that the DMP preserves the Naumov identity [32], at least approximately [4]. This
is a necessary condition that has to be satisfied for the globally valid framework, while the
helio-perturbation theory does not support this property for a good reason [4]. Nonetheless,
we would like to emphasize that it is only one side of the coin. From the viewpoint of our
symmetry discussion, a one-to-one correspondence between the crossing of the resonant
level and the existing symmetry type is revealing and looks physically appealing.

1.3. Paper Plan: Part I and II

This paper has the two parts. Part I spans from Sections 1-4, and Part II spans from
Sections 5-9. In Part I, we define the target of our discussion, the reparametrization
symmetry of the state exchange type, and introduce the concept of “Symmetry Finder” (SF),
a systematic way of hunting the reparametrization symmetry; see Section 2. We briefly
describe the 1-2 state exchange symmetry in the DMP perturbation theory [3] as a prototype
of such symmetry we discuss in this article. In Section 3, we review the solar resonance
perturbation (SRP) theory [7] and introduce the V matrix method [33]. In Section 4, we
formulate SF for the SRP theory and analyze the SF equation to obtain the 1-2 exchange
symmetry. The SF treatment of the SRP theory has not been done before, so we are going
to add something new in this subject. Our discussion will be pedagogical in most part of
Part I, aiming at facilitating the readers’ understanding of the subject. For this purpose, we
restrict ourselves to vYSM symmetry in Part I.

In Part II, we focus on the reparametrization symmetry in the theory with the non-
unitary flavor mixing matrix, or UV; see refs. [34-38], for example, with more references
coming later. As overviewed in Section 5, looking for new physics beyond the vSM is
a vigorously pursued subject in particle physics, and non-unitarity is one of the promis-
ing ways for its low-energy description. We are interested in such a possibility that the
symmetry can be used as a diagnostics tool for the theory with the vYSM and UV sectors.
For this purpose, we feel, non-unitarity would provide a useful testing ground for such a
possibility because its principle and the relation to the high- or low-energy new physics is
relatively well defined [34-38]. In Sections 6-9, we give a self-contained treatment of the 1-3
state exchange symmetry in the helio-UV perturbation theory [39], a UV extension of the
helio-perturbation theory [6]. Since the SF treatment of the helio-UV perturbation theory
has never been done in the literature, the derivation and discussion of such symmetry in
this theory is all new.

In summary, our goals and the motivating force in this paper are:

*  PartI: We summarize the current status of our understanding of the reparametrization
symmetry of the state exchange type in neutrino oscillation in matter. To the best of
our knowledge, no one expected that so many symmetries are hidden in the DMP and
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the helio-perturbation theories [3,4]. A tantalizing question is: what are the nature
and implications of the symmetry?

e Part II: We introduce non-unitarity and analyze the symmetry in the UV-extended
frameworks of neutrino evolution. We realize the possible utility of the symmetry as a
diagnostics tool for theories with the vSM and UV sectors. A part of the reparametriza-
tion symmetry acts only on the vSM variables, not UV ones, distinguishing between
the two sectors of the theory [5]. Can we observe the whole picture of this?

2. Introducing Symmetry Finder

Is there a systematic way of uncovering reparametrization symmetry in neutrino
oscillation? Our answer is yes: Symmetry Finder (SF) does the job in a vacuum [40] and in
matter [3-5]".

Let us consider that the expression of the flavor basis state (i.e., wave function) v in
terms of the mass eigenstate ¥ in a vacuum or in matter in the following two different ways,

V= u(623/ 013/ 912/ 5)17 = U(Gé:’)/ 13/ :/[2/ 5/)17// (2)

where the quantities with “prime” imply the transformed ones, and 7" may involve eigen-
state exchanges and/or rephasing of the wave functions. If it is in matter, the mixing angles
and the CP phase can be elevated to the matter-dressed variables. Since the SF equation
represents the same flavor state by the two different sets of the physical parameters, it
implies symmetry.

2.1. The PDG and SOL Conventions of the Flavor Mixing Matrix

To discuss the 1-2 state exchange symmetries in a vacuum and in matter, which we
will do in Part ], it is convenient to introduce the flavor mixing matrix U = Uy [41]ina
convention called “SOL” [39,40], which is slightly different from the usual particle data
group (PDG) convention [42],

1 0 1 0 0 1 0 0 C13 0 513 C12 Slzeié 0
Uso, = 0 e @ U | O e 0 = 0 3 523 0 1 0 —S12€_i5 C12 0
0 0 0 0 ¢ 0 —sp3 cCp3 —s13 0 c13 0 0 1

= Uxs(023)Un3(613)Un2 (612, 9). ®)

In this paper, hereafter, we use the abbreviated notations c; j = Cos Gij, Sij = sin Gij, etc.,
where ij = 12,13,23. In Equation (3), § denotes the lepton analogue of the quark Kobayashi-
Maskawa (KM) CP-violating phase [43], and the second line defines the notations for the
three rotation matrices in the SOL convention. U,; denotes the U matrix in the PDG
convention [42]

1 0 0 C13 0 513€7i§ cp s12 O

U = 0 c3 23 0 1 0 —s12 c12 0

0 —S23 (23 —513615 0 C13 0 0 1
= Uz3(023)Un3(613,0)Un2(612), (4)
with the second line being the rotation matrices in the PDG convention. The reason for
our terminology of Us, in Equation (3) is because the CP phase factor e is attached to

(the sine of) the “solar angle” 01, in Uy, whereas in Uppg, et is attached to s13. Notice
that the convention change from the PDG to SOL conventions does not alter the oscillation
probability because the rephasing factors in Equation (3) can be absorbed into the neutrino
wave functions, leaving no effect in the observables. In Part II, we will use the PDG
convention for convenience to treat the 1-3 exchange symmetry in the helio-perturbation

theory [4] and its UV extension.
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2.2. Symmetry Finder (SF) in Vacuum

The idea of SF has a simple realization in a vacuum where the flavor eigenstate v is
related to the mass eigenstate 7 using the SOL convention U matrix (3)

v = U¥ = Ups(623)U13(613)U12(612,6)7. @)
Then, one can easily prove the relation

i0 i0

Up(612,9) | v | = Upz (912 + 5,5) e Py | =Up (E —012,0 + 77) —e "0y . (6)
V3 V3 V3

Hereafter, the state v; denotes the one with the largest v, component. The state v is
the one that is separated from the state v; by the mass squared difference
m3—m? =Am2 ~75x107°eV? > 0.

As we stated above, the relation (6) implies symmetry [40]. The first equality means
that the use of 6], = 612 + 7 and the exchanged (and rephased) mass eigenstates 1 < 2
produces the same oscillation probability. Since rephasing does not affect the observables,

the first equality in Equation (6) implies 1-2 exchange symmetry under the transformation
Symmetry [A-vacuum: m% — m%, C12 — —S12, S12 — C12- (7)

The existence of an alternative choice, cjp — s1 and sjp — —c12 (612 — 612 — 5),
should be understood. Similarly, the second equality in (6) implies the symmetry of the
probability under the transformation

Symmetry IB-vacuum:  m? < m3, C12 <> S12, 6—o+mm 8)

2.3. Symmetry Finder in Matter

In the exact diagonalization scheme of Zaglauer and Schwarzer (ZS) [44], the Hamilto-
nian is formally identical to that in a vacuum apart from the replacements of the mixing
angles 91']- to the matter-dressed ones 91']'/ 6 — 6, and the eigenvalues ml2 —Ai(4,j=1,2,3).
Therefore, the symmetries (7) and (8) are easily elevated to Symmetry IA-ZS and IB-ZS
with the fully matter-dressed variables [3,40].

Let us move into the more manageable approximate frameworks. Within the vSM, so
far, the following two types of the reparametrization symmetry are identified and analyzed.

¢  Eight reparametrization symmetries of the 1-2 state exchange type in DMP [3].
*  Sixteen reparametrization symmetries of the 1-3 state exchange type in the helio-
perturbation theory [4].

The list will be enriched after Section 4 below by

¢  Eight reparametrization symmetries of the 1-2 state exchange type in the solar reso-
nance perturbation (SRP) theory.

Notice that the obtained symmetries are so numerous, including the ZS symmetries
above, that they cannot occur by accident. A certain nontrivial structure must be be-
hind the appearance of so many symmetries. This then suggests that the existence of
the reparametrization symmetry is universal in neutrino oscillation in matter. We shall
introduce the various symmetries that appear in several different theories in a step-by-step
manner and try to understand their structure in this article.

2.4. Reparametrization Symmetry in DMP

To formulate SF in matter, we need the expression of the flavor basis state v in terms of
the mass eigenstate 7 analogous to Equation (5) in a vacuum. This can be computed with
the V matrix method [33], which will be explained in Section 3.4 for the SRP theory. Here,
we simply want to show the “atmosphere” of how SF works to find symmetry in matter.
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Hence, we quote the expression of the flavor basis state in terms of the mass eigenstate to
the first order in the DMP perturbation theory computed in ref. [3]:

Uns(623)Un3 () U2 (1, 0)

Ay
0 0 _Sl,lJ /\3_;\21 n
. _is A
1+ ecqp512 sin(¢p — 613) 0 0 cye Z‘Sﬁ vy |, )
Ame, i Al 3
Sp—A, TS x—a, 0

where ¢ and ¢ denote, respectively, 615 and 613 in matter. ¢y and sy are shorthand nota-
tions for cos ¢ and sin ¢, respectively. € is the unique expansion parameter in the DMP
perturbation theory and is defined as

_Am%l A2 = Am2 2 A2 10
= A2 Myen = AM3) — S1p ANy, (10)
ren

where Am?2,, is the “renormalized” atmospheric Am? used in ref. [6]. The same quantity is
known as the effective Am?2, in the v, — v, channel in vacuum [45]. While we prefer the
usage of Am2,, in the context of the present paper, the question of which symbol should
be appropriate to use here is under debate [6]. The authors of ref. [46] make the choice
alternative to ours.

With Equation (9), we write down the equation similar to Equation (6) in a vacuum.
The added first-order structure in Equation (9) leads to a proliferation of the reparametriza-
tion symmetries, the eight DMP symmetries [3], as tabulated in Table 1. To see how the SF
equation is actually formulated and solved, please wait until Sections 4.1 and 4.2, in which
the SRP theory is treated.

Table 1 must be used with care. Here, we must focus on the first three columns of
Table 1, in which the informations of the vYSM DMP symmetry are tabulated [3]. The fourth
column is added to display the & parameter transformation property for the DMP-UV
perturbation theory [5], a UV-extended version of the DMP theory [31] to be discussed
later. The a parametrization [35] will be used to describe the non-unitary mixing matrix,
as defined in Equation (37) in Section 6.1, and & denotes the & parameters in the SOL
convention. For the definition of &, see Equation (A3) in Appendix A. The fourth column
will be useful for a comparison with the case of the UV extended helio-perturbation theory,
which will be discussed in Sections 7 and 8.

Readers may be anxious to know how Table 1 is obtained. If it is a burning question
for a reader, he/she can turn to ref. [3] to reproduce the results in the first three columns or
ref. [5] for all the four columns. However, instead, we move on to the SRP theory to see the
new symmetry results, where we meet a very similar structure to DMP. As our intuition
told us in Section 1, the theory will have the symmetries of the 1-2 state exchange type.
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Table 1. Summary of the reparametrization symmetries of the 1-2 state exchange type in the DMP
and DMP-UV perturbation theories. The column “Type” shows the symmetry type. For the vSM
DMP, look at the first three columns only: the symmetry denoted as “X” in the Type column is referred
to as “Symmetry X-DMP” in the text. For the DMP-UV perturbation theory, the fourth column must
be included in addition to the first three columns to show the & parameters’ transformation, and the
symmetry is denoted as “Symmetry X-DMP-UV”.

Type Vacuum Parameter Transf. Matter Parameter Transf. UV Parameter Transf.
1A none A1 < A, ¢y — Fsy, Sy — Ly none
1B O1p > —01p, 6 - 6+ . A o Ay, Cy — ESy, Sp — LCy none
IIA 03 — —023, 010 — —b12. A= Ay, Cy — islpr Sy — iclp &‘ue - _&ye/ &T}l - _&T}l
1IB 03 — —0p3,0 — 0 + 1. Ao Ay, Cy = FSy, Sy — LCy same as IIA
A 013 > =013, 0120 — —b1o. AM oAy p——¢ &He e —&He/ fre — —lge
Cy — islpl Sy — iClp
I11B 013 —> —013,0 = 6 + 1. AMeoAy¢p——¢ same as IITA
Cy — $s¢, Sp — iClp
IVA 923 - *923/ 913 - *913- /\1 < Ay, (P g *(P &TE g *&Te/ ;‘T}l g *E‘Ty
Cp = TSy Sy = ey
1IVB 0r3 — —bh3, 613 > —613, MoeAy¢p——¢ same as IVA

01p > —01p,6 —> 6+ 7.

Clp - i—s¢, Sq] - iClp

3. Solar Resonance Perturbation Theory

The solar resonance perturbation (SRP) theory [7], one of the locally valid theories,
aims at describing physics around the solar-scale resonance. In this section, we briefly re-
view the SRP theory toward investigation of the reparametrization symmetry in the theory.

3.1. Three Active-Neutrino System with Unitary Flavor Mixing Matrix

We start by defining the standard three neutrino evolution system in matter. It is
defined by the Schrodinger equation in the vacuum mass eigenstate basis, the “check basis”,

p L ([0 o 0 a-b 0 0
iU=omd | 0 Amg 0|+ u'f o —b 0 |Upv=H (11)
* 0 0 Amd 0 0 —b

In Equation (11), which defines the check basis Hamiltonian H, U denotes the 3 x 3
unitary flavor mixing matrix, which relates the flavor basis neutrino state v to the vacuum
mass eigenstates as

Vg = Um'fji. (12)

Hereafter, the subscript Greek indices «, B, or y run over e, j, T, and the Latin indices
i, j run over the mass eigenstate indices 1,2, and 3. E is the neutrino energy, and Am]%- =

m? — ml2 The usual phase redefinition of neutrino wave function is carried out to leave

]
only the mass squared differences. Notice, however, that doing or undoing this phase
redefinition does not affect our symmetry discussion in this article.
The functions a(x) and b(x) in Equation (11) denote the Wolfenstein matter poten-

tials [19] due to charged current (CC) and neutral current (NC) reactions, respectively,

_ Y0 E
_ ~ 4 e 2
a(x) = 2v2GpN.E ~1.52 x 10 (gcm_3)<GeV> V2,
1/Ny,
e



Symmetry 2022, 14, 2581

9 of 36

H =

where Gr is the Fermi constant. N, and N,, are the electron and neutron number densities
in matter. p and Y, denote, respectively, the matter density and number of electrons per
nucleon in matter. These quantities, except for Gr, are, in principle, position dependent.
Until reaching Section 9, however, we take the uniform matter density approximation.

In the vSM unitary three-neutrino system, the NC potential b(x) does not affect the
neutrino flavor change, because it comes as the unit matrix in flavor space. However,
it is included in Equation (11) for use in our discussion of the system with non-unitary
in Section 6 in Part II and to show the relationship between the NC and the CC matter
potentials. In discussions in Part I, we simply set b(x) = 0.

3.2. Region of Validity of the Solar Resonance Perturbation (SRP) Theory

The SRP theory [7] aims at describing physics around the solar-scale enhancement,
or the resonance; see, e.g., refs. [47-50] for the pioneering discussions on physics in this
region. Given the formula

2 2 —1
Amanl_ ggs3( A L £ , (14)
4E 75 x 10—-5eV2 | \ 1000km / \ 100MeV

the SRP theory will be valid in a region around neutrino energy E = (1 —5) x 100 MeV and
baseline L = (1 — 10) x 1000 km; see Figure 1. In this region, the matter potential a defined
in Equation (13) is comparable in size to the vacuum effect represented by Am3,,

—1
a Amz 0 E
=7 — 0609 -2 ( >~01. 15
= A, <7.5 X105 eV2> (3.0 g/cm3> a00Mev ) ~ O (19

Therefore, this perturbative framework must be able to describe the solar-scale reso-
nance [19,22,23].

3.3. Solar-Resonance Perturbation Theory in Brief

For convenience in discussion of the 1-2 exchange symmetry, we use the SOL con-
vention of the U matrix (3) to construct the SRP theory, as in ref. [51]. We transform to the
tilde basis V = Uy (612, 0)V = UIB(QB) u;s (923)1/ with the Hamiltonian H-= Upp (912, 5)HUIZ
(612,9). We decompose H as

S%ZAmgl + c%rja clzslzei‘sAmil 0 1 0 0 cy35134
clzslze’l‘sAmgl c%zAmgl 0 + — 0 0 0
0 0 Am%l + 5%351 c13s13a 0 0
Hy + Hy, (16)

where we have defined Hy (H;) as the first (second) term in Equation (16). We then
transform to the “hat basis”

0= Ul (9,0)7 = Ul,(9,8)Ul,(813) ULy (623)v, (17)
where Uiy (¢, 6) is parametrized as
Cos @ esing 0

U (g, 6) = —e_i‘ssinfp cosg 0 |, (18)
0 0 1
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P(vg — vg) = ‘ Z VMVEZ- el
i

= Oup—4 ) Re[V, VEVEVg] sin® ————

and is determined so that Fy = U1T2(go, 8)Hy Upz(¢, 0) is diagonal. The condition entails

2
cos 261 — c137a

\/ (cos 20, — c%gra)2 + sin® 2604,

sin2¢ = sin 2612 (19)

\/ (cos 261 — c%g)ra)2 + sin® 265,

cos2¢p =

where 7, is defined in Equation (15). This equation defines the matter-dressed 61,, the
effective mixing angle which governs the 1-2 space rotation in matter.

To organize the perturbative expansion in an intelligent way, we decompose the hat-
basis Hamiltonian H into the zeroth-order and the first-order terms, HO and Hl, respectively,
as H = Hy + H;, where

)\1 0 0 1 0 0 C¢C13513q

0 Ay 0 |, A == 0 0 sq,clg,slge*”sa , (20)
2E i

0 0 )\3 CpC135134 S¢C13513€ 4 0

where ¢, = cos ¢ and s, = sin ¢. The zeroth-order eigenvalues are given by

A = sinz((p — Glz)Amgl + cos? (pc%ga,
Ay = cos?(@ — 612)Am3; + sin? pciaa,
Ay = Amdy + st (21)

The SRP theory is defined as the perturbation theory with the unperturbed Hamilto-
nian Fly, which is perturbed by the first-order Hamiltonian F;. For more about the unique
feature of the SRP theory, see Section 3.5.

3.4. V Matrix Method

The formulation of Symmetry Finder (SF) [3-5] heavily relies on the V matrix method [33].
Therefore, we start from the exposition of the method. The V matrix method is also one
of the ways of computing the oscillation probability; see, for example, refs. [6,8]. Once we
have the expression of the flavor eigenstate v, in terms of the mass eigenstate basis 7; in
matter as

Vo = Vil (22)

the oscillation probability can readily be calculated in complete parallelism with the case in
a vacuum by replacing the U matrix by the V matrix as

2

Asx

(/\'_Ai) (/\j—)\i)x

x .
=23 Im[Vig ViV Vil sin

23

—~ 4E —~ @)

J=>t j>i

assuming the adiabaticity of the neutrino evolution in matter, where x denotes the baseline.
Let us compute the V matrix elements to the first order in the SRP theory. In per-

turbation theory to the first order in H,, the mass eigenstate in matter can be written as
N (V)] 1) (0)

v =10, +7;’,and hence 7; = 9; " in the lowest order. Inverting the state relationship in
Equation (17), we obtain at the zeroth order

v = Ups(823)Us3(613) Una (9, 8)0 ) = v0p(0), (24)
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which defines the zeroth-order V matrix.
We calculate the first-order correction to the hat basis wave functions. Using the
familiar perturbative formula for the wave functions, we have

2E(H)*
51 _ Ji 5(0)
=Tl @5

with A in (20), and the A; are the eigenvalues of 2EH); see (21). See also ref. [5] for a
(1)

clarifying remark on this computation. Using the result of 7,

eigenstate is given to the first order in SRP theory as

from Equation (25), the mass

N _ CpC135134 ~(0)
V1 ! 0 wolh "
172 - c cos a SeC s1 a B ‘§‘3_/\2 e_l(s ﬁé)
0 13°13 13°13 10 ~
v p ey vl v vl 1 véo)
CpC135134
1 0 s_ctg‘gﬁﬁ ‘ Ve Ve
0 1 - (f\;i,{z e | [Una(623)Un3(613) Una (@, 0)] v | =V v |,
o g el L
using Equation (24) in the second line. Inverting this relation, we obtain
Ve Uy 7y
vy | = U (023)U13(013) U2 (g, 5){1 +Wl(g,6; /\1,)\2)} 0 | =V| 7 |, (26)
Ve 73 73
where W(013, ¢,6; A1, Ay) is defined by
Copl
0 0 S/\%f ol
W(b13, ¢,0; M, A2) = c13513 0 0 A33A2€_"5 . (27)

A=A A=Ay

Col Spd
4 [ ez& 0

Equation (26) defines the V matrix to the first order in expansion.

Notice the remarkable similarity between the V matrix expressions of the flavor state
in Equation (9) (DMP) and Equation (26) (SRP). Not so surprisingly, the symmetry structure
of the SRP theory is akin to that of DMP, as shown in Table 3. In fact, the DMP and SRP are
essentially identical in their leading order apart from yes/no of the matter dressing of 013,
and we have no surprises on the very similar symmetry structures, apart from a difference
regarding the presence or absence of the ¢ transformations. However, it is automatically
enforced in DMP because sin 2¢oc sin 2613 [8].

We have computed the oscillation probability by inserting the V matrix elements ob-
tained by using Equations (26) and (27) into Equation (23). The calculated results reproduce
the formulas obtained by using the S matrix method to the first order in the SRP theory [7].

3.5. Framework-Generated Effective Expansion Parameter

We remark that the SRP theory has an exceptional feature as a perturbation theory.
Look at the hat basis Hamiltonian, Equation (20). What is peculiar is that the 3-3 element
of H is of order A3 ~ Am%l, whereas all the other elements, the eigenvalues A1 and A,
as well as the only non-vanishing off-diagonal elements in Hj, are of order Am3; ~ a.
Therefore, the perturbative Hamiltonian is not small compared to the first 2 x 2 block of the
unperturbed Hamiltonian, both in H and H.

Then, the question is: How does the SRP work as the perturbation theory? The answer
is that it works because of the new effective expansion parameter, which emerges from
the framework itself. Recall the V matrix computation in Section 3.4. All the first-order
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A exp

C13513

correction terms are inversely proportional to A3 — A1 or A3 — Ay. The feature stems from the
special structure of F;, whose non-vanishing elements exist only in the 3-i and i-3 (i = 1,2)
elements, as seen in Equation (20). Then, the large denominator with A3 ~ Am3%; » a acts
as a suppression factor, the propagator suppression. The suppression factor can be read off
from the first-order V matrix as

—1
Am3 E
—278x1072 31 P , 2
810 (2.4 x 1073 eV2> <3.o g/cm® | \ 200 MeV (28)

Aexp acts as an effective expansion parameter, which is a factor of 10 smaller than
Am3, /Am3; ~ 0.03. As a consequence, the agreement with only the leading-order term in
the probability is shown to be quite good [7].

a
2
mz

4. Symmetry in the Solar-Resonance Perturbation Theory

We investigate the reparametrization symmetry in the SRP theory. We derive the SF
equation, a powerful machinery to identify the symmetries, and obtain the solutions given
in Table 3. What we do first is to embody the general statement of symmetry in Equation (2)
in the SRP theory.

4.1. Symmetry Finder Equation in the SRP Theory

To prepare the first state in the right-hand side of Equation (2), we define an alternative
but physically equivalent state to that in Equation (26),

Ve 1
Fl v | = FU23(923)U13(913)U12(4’,5)RTR{1 +W(b13, ¢, 6; Al,Az)}RTR vy |, (29)
Vr V3

where W(613, ¢, 6; A1, Ay) is defined in Equation (27). In Equation (29), we have introduced
the flavor-state rephasing matrix F and the generalized 1-2 state exchange matrix R, which
are defined by

eiT 0 0 0 _ei(¢5+tx) 0
F=| 0 €7 0 |, R=| ¢ i0+p) 0 0 |. (30)
0o 0 1 0 0 1

The flavor-state rephasing F does not affect the observables because it can be absorbed
by the neutrino states, and inserting unity, RTR = 1, is of course harmless. However, in
fact, the F matrix actually plays a role: without it, we would miss several symmetries we
are going to uncover with F [3-5]. Moreover, the state exchange matrix R and F form a
complex system composed of the phases 7, 7, &, and 8, and they come in to the SF equation
to produce the coupled nontrivial solutions. Notice that the rephasing matrices, both F
and R in Equation (30), take the nonvanishing, nontrivial (not unity) elements in the 1-2
sub-sector because we restrict ourselves into the 1-2 state exchange symmetry in this theory.

Now, we demand that the state defined in Equation (29) must be written by the flavor
state, but with the transformed parameters, which are denoted with the primed symbol.
That is, the transformations are such that ¢ — ¢’, 623 — 633, 013 — 65, and § — &', which
becomes symmetry transformations if the SF equation has a solution. This is equivalent
to preparing the second state in the right-hand side of Equation (2). Using the notation
0" = 6 4+, and the abbreviated notations s} = sin 6, and ¢} = cos 6, and the same for
63, and ¢ for later use, the SF equation in the SRP theory reads:
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0 Ve
0 €7 0 vy
0 0 1 Vg
1 0 0 ' C13 0 Sl3eiT 151
= 0 23 Spze'? 0 1 0 Fulz(q),é)RTR{l + W(913, @,5,’)\1,}\2)}RTR %)
0 —spe™ ™ o3 —sp3e” T 0 cp3 U3
1 0 0 iz 0 s, —el(0+a)y,
= 0 cleg ség, o/ 1 9 U (¢',6 + (’,‘){1 +W(015, ¢, 8 + & A, Al)} e—i0+B)y, |, (31)
0 —sp3 3 —s13 0 i3 V3

As became explicit in Equation (31), the vacuum angles 6,3 and 613, in general, trans-
form under the symmetry transformations after the phase redefinition F in the flavor
eigenstate is introduced. It is one of the most interesting features of the SF equation in
matter [3-5].

4.2. The First and the Second Conditions and Their Solutions

We look for the solution of the SF equation under the ansatz Sp3e'7 = shy and s13€'T =
s}5, because apparently we have no other choice within the present SF formalism. The
ansatz leads to the two consequences: (1) the possible values of T and ¢ are restricted to
integer multiples of 7t; (2) the SF Equation (31) can be decomposed into the following first
(first line) and the second (second line) conditions:

FUp(g,6)RT = Up(¢,é6+8),
RW(613, 9,0, A1, M)RT = W(013, 9,0 + & Ay, M), (32)

One can show that the first condition can be reduced to

Cp = —Sge D) = 5, (FH), sg = Cge! PHT8) = e7i(0=0=0)  (33)

We note that under the above restriction of T and ¢ being integer multiples of 7,
Equation (33) implies that all the rest of the phase parameters, ¢, «, and , must also be
integer multiples of 7t [3]. This is the key property that emerges from the first condition,
which restricts the solution space in the SF framework in its current form. The solutions of
the first condition (33) are summarized in Table 2.

The readers might be puzzled by “Symmetry Xt” in the first column, in which “f”
implies flipping the sign of s1 because it was absent in the DMP symmetries in Table 1. It
is a characteristically new feature of the 1-3 exchange symmetry in the helio-perturbation
theory [4], as will be explained in Section 8.

Table 2. The universal solution of the first conditions, which are common to the SRP (Section 4.2),
DMP [3], and the helio- and helio-UV perturbation theories (Section 7.2). For the former two
symmetries, the symmetry symbols with “f” (s1, sign flip), such as Symmetry Xf, must be ignored in
the first column.

Symmetry T,0, g &, ﬁ
IA, IAf T=0=0,{=0 « = B = 0 (upper)
a =1, 3 = —m (lower)
IB, IBf T=0=0,{=m « = 11, p = —7 (upper)

« = 5 =0 (lower)
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Table 2. Cont.

Symmetry T,0,¢ w, B

IIA, TIAf T=00=-m1,¢=0 a =1, = 0 (upper)
o« =0,B = 7 (lower)

IIB, IIBf T=00=-m,{=m « = 0,8 = 7 (upper)
o =71, =0 (lower)
IITA, IIIAf T=m0=0,=0 « =0, = 7 (upper)
o =1, 5 =0 (lower)
IIIB, I1IBf T=m0=0,=m « =1, B = 0 (upper)
o« =0,B = 7 (lower)
IVA, IVAf T=0=m(=0 « = 11, f = —7 (upper)
« = 5 =0 (lower)
IVB, IVBf T=0=m=mn « = B = 0 (upper)
o =1, = —m (lower)

In fact, the solutions of the first condition possess interesting universal properties.
Because only the vSM part of the theory comes in to the first condition, the solution is
universal in the SRP, DMP [3], and the helio-perturbation theories [4]. The property holds
also in the DMP-UV [5] and the helio-UV perturbation theories, the latter of which is
to be discussed in Sections 6-8. The fact that the universal solution applies to the helio-
and the helio-UV perturbation theories is nontrivial because the 1-3 exchange is involved.
However, via a smart choice of the R matrix, etc., one can make the solutions identical
among these theories [4]. Thus, Table 2 serves not only for the SRP but also for the DMP
and helio-perturbation theories, including their UV extensions. The symmetry with symbol
“£” (s12 sign flip) applies only to the one in the helio- and helio-UV perturbation theories.

The second condition in Equation (32) reads:

0 0 —ei"‘sq,ﬁ
13513 0 0 e 0P, ey
e s prer —el0thle,, T 0
0 0 CiP Aszflz
= i385 0 0 e_i(‘5+5)s’¢ﬁ . (3%
_Clq) /\3i)tz _S,q’ei(é—’_g) /\3z/\1 0

One can examine the solutions of Equation (34) one-by-one for the given solutions
of the first condition in Table 2. This straightforward calculation is left for the interested
readers. The solutions obtained in such an exercise consist of the symmetries tabulated in
Table 3.

Table 3. All the reparametrization symmetries of the 1-2 state exchange type found in the solar-
resonance perturbation theory are tabulated as “Symmetry X”, a shorthand of “Symmetry X-SRP”. In
this table, the notations are such that /\j (j = 1,2) are the first two eigenvalues of 2EH, and ¢ denotes
012 in matter.

SRP Symmetry Vacuum Parameter Transformations Matter Parameter Transformations
Symmetry IA none AL < Ap, 09 = FSg, 89 — L.
Symmetry IB 01p > —012,6 — 6 + 1. A < A, Cp — ESg, 89 — LCp.
Symmetry IIA 023 — —bh3, 610 — —0617. AL < A, cp — ESp, Sp — LCp.
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Table 3. Cont.

SRP Symmetry Vacuum Parameter Transformations Matter Parameter Transformations
Symmetry IIB 03 — —013,0 — 0 + 1. A < A, Cp = FSg, 89 — LCp.
Symmetry IITA 013 — —b13, 610 — —0612. AL < A, cp = ESp, Sp — LCp.
Symmetry IIIB 013 > —b13,6 — J + . Al <> A, Cp — FSg, 89 — LCp.
Symmetry IVA 0r3 — —0y3, 613 — —0613 AL < A, Cp = FSg, 89 — LCp.
Symmetry IVB 03 — —bh3, 015 — —b13, Al < Ay,

010 = —012,0 = 6+ . Cp — £5¢, 89 — Ly

4.3. Symmetries of the 1-2 and 1-3 State Exchange Types in vSM

Together with the results obtained in ref. [4], we have confirmed our physical picture
that the symmetries of the 1-2 and 1-3 state exchange types exist in the solar and atmo-
spheric resonance regions, respectively. Notice that ref. [4] is, so far, the unique case in
which the 1-3 state exchange symmetry is found and discussed.

What is the relationship between the 1-2 symmetry in DMP and the 1-3 symmetry
in the helio-perturbation theory? It is shown that there exists a limiting procedure, the
ATM limit, by which DMP approaches to the helio-perturbation theory [52]. Then, the
natural question would be: what happens in the 1-2 exchange symmetry under such
a limit in DMP? Does it have something to do with the 1-3 exchange symmetry in the
helio-perturbation theory? The answer is no, to our understanding. In taking such a limit
in DMP, we enter into the regions ¢y — 0 (sy — 0) for the normal mass ordering (inverted
mass ordering). In both cases, sin2¢ — 0, and i degrees of freedom are frozen. Therefore,
by the ATM limit, the whole DMP theory turns into the helio-perturbation theory, and no
remnant of the i symmetry is left. This is related to the fact that the ATM limit is called the
“operational limit” in ref. [31].

After the comparative treatment of the 1-2 exchange symmetries in the DMP and SRP
theories, whose symmetry results are summarized in Tables 1 and 3, respectively, we must
go on to discuss the 1-3 symmetry in the helio-perturbation theory. However, we will
do it in an extended framework, which includes non-unitarity, a promising method for
discussing physics beyond the vSM at high or low scales.

5. Symmetry in Three-Neutrino System with Non-Unitarity

Now, we enter into Part II, in which we change gears. Thus far, we have discussed the
reparametrization symmetry within the vSM frameworks. From now on, we jump into the
theory of neutrino oscillation in matter with a non-unitary flavor mixing matrix.

Itis a very popular idea that the vYSM provides only an incomplete picture of our world.
A well-known concrete model describing the departure from the vSM is the existence of
low-mass neutral leptons, the sterile neutrinos; see, e.g., refs. [53-55]. In a more generic
context, possible deviation from vSM is extensively discussed in the framework called
non-standard interactions (NSI) [19,56-61], and non-unitarity, neutrino evolution with
non-unitary flavor mixing matrix [34,35,37,38]; see, e.g., refs. [62-65] for reviews of NSI,
refs. [66—69] for constraints on NSI, and refs. [39,51,70-80] for a limited list of the remaining
articles on non-unitarity.

In this paper, we focus on a non-unitarity approach to new physics beyond vSM. For
our purpose of understanding the implications of the symmetry in neutrino oscillation, we
feel that non-unitarity is a better framework to try first. This is because the generic NSI
are much less constrained frameworks than non-unitarity. It typically has 25 parameters
in addition to the ¥SM ones by including the production, propagation, and detection NSIL
(The precise number of degrees of freedom is model-dependent, such as doing independent
counting of neutron and proton NSI or not, and is not the real concern here. The one given
above for NSI is based on 8 from propagation and 9 + 9 — 1 (overall phase) from production
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and detection.) Conversely, non-unitarity has only 9, see Section 6.1. By construction, the
method of modification of the active three-flavor neutrino sector due to new physics at
high or low scales is not arbitrary, but determined by a UV-producing new physics sector;
see discussions in, e.g., refs. [34,38].

An interesting question would then be whether consideration of the reparametrization
symmetry affects our understanding of the theory with non-unitarity. To address such a
question in a reliable manner, we must: (1) establish the theoretical framework of neutrino
oscillation in matter to include the effect of UV, and (2) perform the SF analysis in such
a way that the internal consistency between the constraints coming from the “genuine
non-unitary” and “unitary evolution” parts is met [39]; see Section 8. The first task is
carried out by formulating the “DMP-UV” perturbation theory [31] and the “helio-UV”
perturbation theory [39] corresponding to their vSM versions. Moreover, the consistent
SF analysis for the symmetry in the DMP-UV perturbation theory is carried out, and the
results are reported in ref. [5]. The resulting eight symmetries, Symmetry X-DMP-UV (X =
IA,IB, - - -, IVB), are copied from this reference to Table 1.

A remark on the DMP-UV perturbation theory: In the sterile neutrino model, it does
not necessarily provide an adequate description of such models in the whole kinematical
region. For example, if the sterile mass is the ~ eV scale, there exist resonances at an energy
of O(1) TeV [81,82], which are outside the validity of the framework. This problem can be
avoided if we remain in |oE| < 100 (g/cm?®) GeV, as discussed in ref. [31]. In a related but
different approach, an extended DMP-like theory with a sterile neutrino is formulated in
ref. [83], but the O(1) TeV resonance is not covered in its current treatment.

Therefore, what is lacking in symmetry discussion in the UV-extended theories, within
our present scope of SF, is to analyze the reparametrization symmetry in the helio-UV
perturbation theory. This will be the remaining goal in this article, to which we will devote
the rest of this paper.

Since the symmetry structure of the SPR theory is so akin to the one in DMP, we do
not try to extend our study to the SRP-UV theory. However, since such a UV extended
SRP theory is formulated in ref. [51], one can easily proceed toward the task whenever the
demand exists.

6. The Helio-UV Perturbation Theory

This section is meant to be a brief review of the helio-UV perturbation theory with a
non-unitary flavor mixing matrix [39], a UV extended version of the helio-perturbation
theory [6]. Throughout Part II, we use the PDG convention [42] for the U matrix because
we are going to discuss the 1-3 exchange symmetry [4].

Despite the difference in the theory-treated and the state exchange types in the sym-
metries, many of the features of the discussions from Section 6 through Section 9 are very
similar to the ones in ref. [5], in which the symmetry of the DMP-UV-perturbation theory is
discussed. (The merit of such similarity is that by going through Section 6 through Section 9
in this paper, the readers not only understand symmetry in the helio-UV perturbation
theory but also can have a very good idea on what DMP-UV symmetry is, and vice versa.)
Nonetheless, we go through the whole SF formulation in the helio-UV perturbation theory
because a factor of two larger number of symmetries necessitates an independent SF analy-
sis, and the detailed differences often matter. This entails the intriguing differences between
the helioP-UV and DMP-UV symmetries in the a and the & transformation properties and
the structure of the rephasing matrices; see Tables 1 and 4 and Appendix B.

6.1. Three-Active-Neutrino System with Non-Unitary Flavor Mixing Matrix

While discussion of the theoretical basis of the system of three active neutrinos prop-
agating under the influence of a non-unitary flavor mixing matrix is highly nontrivial,
we believe that by now, there is a standard method [36,38]. That is, we start from the
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T

vSM = T

Schrodinger equation in the vacuum mass eigenstate basis, the “check basis”, i %17 = Hp,
where H is given by replacing the U matrix in Equation (11) by the non-unitary N matrix,

Lo o 0 a-b 0 0
H=5z410 Amy 0 [+N'| 0 b 0 [N (35)
0 0 Amj 0 0 -b

N is the 3 x 3 non-unitary flavor mixing matrix, which relates the flavor neutrino
states to the vacuum mass eigenstates as

Vo = Ny (36)

The properties of the Greek and Latin indices are as before. The CC and NC matter
potentials [19] a(x) and b(x), respectively, are defined in Equation (13). We use the uniform
matter density approximation until reaching Section 9.

To parametrize the non-unitarity mixing matrix N, we use the « parametrization [35,84]:

e O 0
N = (1 — DC)UPDG =<1- Xpe  Oyy 0 Urpe, (37)
Xre Xty Orr

where Uy denotes the PDG convention U matrix defined in Equation (4). Notice that the
« matrix defined as in Equation (37) is U matrix convention-dependent [39], and hence, the
one in Equation (37) is defined under the PDG convention. See Appendix A. The diagonal
app parameters are real, and the off-diagonal ones ag., (8 # 7) are complex, so that the «
matrix brings in the nine degrees of freedom in addition to the vSM ones.

6.2. Formulating the Helio-UV Perturbation Theory

The renormalized helio-UV perturbation theory has two kind of expansion parameters,
€ and UV a parameters. € = Am2,/Am?,, is the one used in the helio-perturbation theory [6],
as well as in the DMP perturbation theory as in Equation (10). The other expansion
parameters are the a matrix elements ag,, in Equation (37), which represent the UV effect.

We start our formulation by transforming to the tilde basis with the Hamiltonian
~ v & ~(1 N2
H = (Unali) H(thalo)' = Hosw + B, + A, (38)

where Uj3 and U, without arguments imply the rotation matrices in a vacuum (4), and

A”r(r;) + 5%3 + es%2 0 cizsize ™ 0 c13 0
- 0 ec%2 0 +€eC12812| C13 0 —s13e %0 . (39)
1) 10
C13513€" 0 C%3 + 65%2 0 —sp3e 0

In H,gy in Equation (39), the rephasing to remove the NC potential is understood [39].

We call the first and second terms in Equation (39) I’:Il(/(s)%\/[ and Iq,%%v[, respectively.

Here is an important note for our nomenclature of the various bases. In both the SRP
and helio-UV perturbation theories, we use the notation “hat basis” for the one with the
diagonalized unperturbed Hamiltonian; see { in Equation (20) for the SRP and the one in
Equation (48) for the helio-UV perturbation theory. The basis that is one step before the
hat basis, i.e., the one to be diagonalized by a single rotation, is termed the “tilde basis” in
both theories. Therefore, the definition of the tilde basis Hamiltonian differs between the
SRP and helio-UV perturbation theories. The former is defined as H= U H UIZ and given
in Equation (16), and the latter is given in Equations (38) and (39). Notice that the check
basis is the vacuum mass eigenstate basis, which is common to both theories apart from
the difference of with and without the UV effects.
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The UV part in Equation (38) has the first- and second-order terms in the a parameters

F) bt @ _ bt e
Hyy = gplnAls,  Hiy = —5zUpAP Uy, (40)
where
20ee (1 — %) Mo A
A = Qe 2o, aF, |
L Xre Ky 2007
a§g< _ %) + e + |ove | a;’;gtxw + ok ey 0k
AP = 2 x (41)
Kpelyy + AreldTy W + |yl AT ArT
| KrelrT Krplrr ‘X%’T

For consistent nomenclature, A must carry the superscript as A(), but for the sim-
plicity of the expressions, we omit it throughout this paper. In what follows, we continue
omitting the superscript (1) for many of the quantities in the first order in the  parameters
because our treatment will be free from the second-order terms apart from in Section 9.

Then, we use Ui3(¢, §) rotation to diagonalize ﬁfg%v[ in Equation (39):

s (9,6)" iy Lha(9,6) = —Ediag<AV_SM, AGM, AZEM). (42)
where ¢ denotes the matter-dressed 63, and the eigenvalues A_, Ag, A are given by

/\VSM sin (4) 913) ren + C([zJa + GS%ZAm%en/

vSM
A7V = eclemren,

/\ZFSM = cos?(¢p — 013) Atttz + 530 + €5, Aty (43)

In the helio-perturbation theory [6], A; and A_ are always the two states that partici-
pate in the atmospheric level crossing, and A1 = Azand A_ = Ay (A_ = Ap) are around the
level crossing in the normal (inverted) mass ordering; see Figure 3 in ref. [6]. Through the
diagonalization procedure, the matter-mixing angle ¢ is determined as

 c082013Am2,, —a

cos2¢ = ATV SV
. sin 26,3 Am>
sin 2¢ = AVSM _ /\VSTK/? (44)
+ p—

We call the basis with the diagonalized zeroth-order term the hat basis. The first-order
UV term has the form

~(1 b b
Ay = 55Uis(9,0) U Azl (9,0) = 52C. (45)

For later convenience, we parametrize the G matrix elements by factoring out the %%
factors as

Hyp e ®Hyy e ¥Hyp
¢®Hy  Hp Hy . (46)
¢°Hy;  Hxp Hz3

G

The explicit expressions of H;; are presented in Appendix C.
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6.3. Renormalized Eigenvalue Basis

As in ref. [5], we move to the “renormalized” hat basis, in which the eigenvalues
absorb the diagonal Hj; elements

A_ =AM ppy — pH®

11 7
Ag = )\SSM + bHy — ng),
Ay =AMy pHg — bHE), (47)

2) . . . . 2) . .
where H; ;s defined by Equation (46) but by replacing A by A in Equation (45). For an
explicit form, see Equation (87). Restricting to the first-order YSM and UV terms, the hat
basis Hamiltonian takes the form, using the notation s(;_g,,) = sin(¢ — 613) etc., of

(A~ 0 0 A2 0 Cg-on) o

0 A O + €C12512 Zfr:en Clp—b13) 0 ' s(q,,g]a)e_”s

0 0 )\+ 0 S(¢*913)el§ 0
[ 0 €7i5H12 €7i5H13

¢ Hy 0 Hy i (48)
| ¢®Hy  Hp 0

6.4. Computation of the V Matrix: Zeroth Order

We calculate the V matrix to formulate the SF equation. At the zeroth order, it is easy
to obtain using the knowledge obtained above. The only point we have to pay attention to
is how non-unitarity affects the V matrix. The relationship between the hat (zeroth-order
eigenstate in matter) and the check basis (vacuum mass eigenstate) Hamiltonian is given by

H = U13(4’,5)TﬁU13(<P15)=U13(<P/5)TU13U12HU12U13U13(4’/5)r (49)

with Uj3 and Upp without arguments implying the ones in vacuum. This means, in terms
of the states, 7; = [U13(¢)TU13 Uqp )iV, or U; = [LII2 UI3 Uis(¢,0)]ij0;. Then, the flavor state
is connected to the hat-basis state as

vy = {(1 —a)U}, Vi = [(1 — a)UzUizU12],,V;

= [(1—a)Uss(623)Uhs(¢, )]0 = [V(O) + V[(jl\;]ajﬁj (50)

where we have recovered the vacuum rotation angle 6,3 for clarity. Equation (50) reveals
the V matrix in the leading and first orders in the helio-UV perturbation theory. In DMP the
formula corresponding to Equation (50) is: v, = [(1 — &)Ua3(023)Ur3(¢p) U2 (1P, 6)]4,7; [5]-
We shall treat the « term in (50) as the first-order genuine UV term, so that the V matrix is
given at the zeroth and the first-order UV terms as

VO = U () Uns(9,9),
VI(Jl\; = —allxs(0x3)Us3(¢,6) = —aV©). (51)

6.5. First-Order Correction to the V Matrix
1)

In addition to the a-matrix-origin first-order term VL(JV as given above, the other first-
order correction arises from perturbative corrections due to H(1). We call the former the
genuine UV part, as in the subscript, and the latter the unitary evolution part, the EV part.
See ref. [39] for these concepts.

Since the computation for the first-order V matrix is exactly parallel to the one in
Section 3.4, we only give the result, leaving the interested readers to follow the steps
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described there. The V matrix representation of the flavor state in the form of Equation (22)
to the first order in the helio-UV perturbation theory is given as

i<>

Ve

1 1 1 A
e | = U@, {1+ W&+ W - 2001 | oo 62)
Vr 17+
These first-order terms in Equation (52) are given by
A %en
1) N e )
. — A ren —i A ren
Wism (013, 012,0, 93 Ai) = €ciosn (9p—b13) /\—m—/\o 0 ) 5(9p—613)¢ ° /\+m—AO !
5 Aml‘en
0 _5(45—913)61 A —Ao 0
0 _e_i(SHlZ A_b_/\o e_i§H13 Ay E/\_
1 ‘
Wév)(923, 5, ¢; Ai, Hij) = eléfIZl Lb_AO 0 H23ﬁh_;\0 ,
_eloH31/\+E)L_ _H32/\+b,)\0 0
1 T
2N (023,5, pia,) = (V<0>) wv(©, (53)

The last term, the genuine UV term, may require a comment. It was originally the
—aV(© term in Equation (51), but we have defined ZS& such that

Vi) = —av©@ — _y©@zl) (54)

to make the expression of the V matrix coherent. The ZS\), term in Equation (53) is a simple
solution of Equation (54).

6.6. Computation of the Probability with the V Matrix Method

We calculate the oscillation probability with the use of the V matrix method by utilizing
Equation (23). However, since the probability in the vSM part is fully computed in ref. [6],
here we concentrate on the UV-related parts only, the genuine non-unitary (UV) part,
and the unitary evolution (EV) part. See Appendix B in ref. [6] for the expressions of the
probability in the vSM part.

Notice that the calculation in ref. [6] is carried out using the ATM convention (see
Appendix A) of the U matrix. In general, care is needed to translate it to the V matrix
under the present PDG convention. However, the change in convention does not alter the
expression of the oscillation probability in the vSM part, because the rephasing cannot
affect the observables. This statement is true for the UV part as well, but the & parameters
must transform accordingly, as explained in Appendix A.

We restrict ourselves to the v, — v, channel. This is because we give in Section 9
an all-order proof of the reparametrization symmetry we derive, which is valid in all the

flavor oscillation channels. The genuine non-unitary part P(v, — VE)S\)] at the first order is

given by
1
P(v, — VE)I(j\)/
; Ay — A

= 2sp3sin2¢ [cos 2¢Re (awe*"s) — (@ee + apy)s23 sin2¢] sin? %
B : —i5) s (A —A)x

523 sin 2¢pIm (zxme ) sin —p (55)

For this computation, the use of the original form VI(Jl\; — —aV(® is more profitable.

The unitary evolution part P(v, — Vg)g\z reads
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1
P(vy — 1/6)1(5\;
. : b o (Ao—A)x o (Ar—A)x o (Ap —Ag)x
= sin260»3sin 2¢C¢RG<H21>A_A0{_ sin” ~———— —sin iE + sin iE
. . b . 2()\0_)\7)35 . 2()\+_)\7)x . 2( +_)\0)x
+ sin26,3sin 2¢S¢Re(H23)m { —sin iF + sin iE + sin iE
. b oAy —A)x
+  4s3;cos2¢ 51r12¢>Re(H13))ur - sin? -+ iE
—  2sin260p3 sin 2¢< cpIm(Hp1) b + spIm(H. )L
23 SIN 21 Cp 2) 55 T BT,
x  sin (o ;E)L_)x sin (A+ ;E/\_)x sin A+ ;EAO)x. (56)

These results agree with those obtained in ref. [39].

7. Symmetry Finder for the Helio-UV Perturbation Theory

We follow the SF method [3-5], which is introduced in Sections 2 and 4, and utilize
the formalism to extract the symmetries from the helio-UV perturbation theory. For the
convenience of the readers who want to compare the outcome of our analysis to the one
obtained for the DMP-UV-perturbation theory, we have prepared Appendix B and Table 1
for the DMP-UYV, which is to be compared with Table 4 for the helio-UV.

7.1. Symmetry Finder (SF) Equation

For clarity, we restrict ourselves to the reparametrization symmetry of the 1-3 (in our
case v_ < v, ) state exchange type. We start from the state which is physically equivalent
with the one in Equation (52):

Ve v_
F{ vy ] — Fls(023)Uns (¢, 5)RTR{1 + W Wl - Z[(}\),}RTR[ Vo ] (57)
VT V+

In Equation (57), we have introduced the flavor-state rephasing matrix F defined by

et 0 0
01 0 |,
0 0 €7

(58)
and a generalized v_ < v, state exchange matrix R

0 0 —eilo—a) 0 0 e—i(0—P)
0 1 0 , Rl = 0 1 0 , (59)
¢0=F) 0 0 —ei(0=2) 0

where T, 0, «, and B denote the arbitrary phases. As we discuss the v_ < v, exchange
symmetry, both the F and R matrices in Equations (58) and (59) take the nonvanishing,
nontrivial (not unity) elements in the v_ — v sub-sector.

The SF equation, the statement that the generic flavor state Equation (57) should be
written as a transformed state, is given with the use of ®, a collective representation of all
the parameters involved and @’ their transformed ones, by

F=
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et 0 0 Ve 10 0
0 1 0 Vy =10 €23 Spze” 17 FU13((P, 5)RT
0 0 ev Vr 0 —523610 Co3
v_
x R{l + W (@ A1, ) + W (@, 0574, ) — zgg@,a)}m Vo
V4
1 0 0 ) _e_i(‘s_"‘)y_i_
S A u13(¢’,5+g){1+w(5§4(q>’ Ao, Ar) + W@, o3 Ag, Ay) —zlg\}(cpf,a’)} R (60)
0 —shy chy el(0=B)y_

€C12512

/ /
€C12512

7.2. The First and Second Conditions: vSM Part

We solve the SF Equation (60) with the ansatz s}, = sp3e”'7, which enforces integral
multiples of 77. However, the corresponding condition for s13 is missing. Though the ansatz
for sp3 is sufficient for the decomposability of the SF equation into the first and second
conditions, the restriction on 7 of being integral multiples of 7t is not imposed at this stage.

The first and second conditions, the zeroth-order term and the vSM first-order term in
Equation (60) reads

Flis(¢,6)RT = Una(¢/,6+0),
R, (013, 002,8,9: M)RT = WGy (05, 005,0 +8,9/3 ) 61
The first condition can be boiled down to the compact form as
Cpr = —s¢e_i(“_T) = —s¢ei(/5+”), Syt = Cpe i(p+7+0) = c¢e_i(“_”+§), (62)
and the consistency conditions for the phases result.
x+p—1+0=0 (mod.2m), T—0+¢=0, £ (63)

The first condition (62) is identical to the one in Equation (33) in the SRP theory. The
explicit form of the second condition on the vSM part reads:

_ 0 S(p—or) € i 0
~S(p-0r)® " 0 Clptng)e P i
i 0 _c((pfew)ei(é—ﬁ)f_mi_%anﬁ 0
0 , —Cg—0 ’)Amfei‘o 0
C(pr—o1) T 0 o100 o |, ”
i 0 —S(¢/—01,)C (Hg)ﬁ 0

where the notation is such that ¢}, = cos 6/,, and Clpr—oy,) = cos(¢’ — 0]5), etc.

Here is an important note for 7, 0, «, B, and ¢ and their solutions. Equation (62) tells us
that « — T and 8 + o must be integers, where we abbreviate “in units of 77" for the moment.
Then, f must be an integer as well. Now, the second condition (64) requires that « must be
an integer, which implies that T must be an integer. Look at the 1-2 or 2-1 elements. Then,
by comparing the 2-3 elements at the both sides of Equation (64), we know that ¢ is an
integer. Thus, we have shown that 7, ¢, «, 8, and ¢ are all integers in units of 7z [4]. The
resultant solutions of the first condition are tabulated in Table 2, showing the universal
feature of the solutions as we mentioned in the SRP analysis.

The vSM part of the first and second conditions in Equations (62) and (64) with W(l)
given in Equation (53) is fully analyzed in ref. [4]. It resulted in the sixteen reparametrlzatlon
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symmetries of the 1-3 state exchange type in the helio-perturbation theory. They are
denoted as “Symmetry X-helioP”, where X = IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB, which
are duplicated with “non-f” and “f” types, where the latter means that the flipping of s,
is involved. See the first three columns of Table 4. Notice that for the 6,3 transformations,
either the sign flip, or 613 — 613 + 7, or their combinations are involved in some of them.
They arise as the solution of the second condition, as no 63 is involved in the first condition.

The decomposability of the second condition implies that the symmetries of the helio-
UV theory cannot be larger than the sixteen symmetries. The question is whether all of
them survive in the UV extension.

Table 4. Summary of the reparametrization symmetries in the helio-UV perturbation theory [39].
The first column is for the symmetry type denoted as “X” where X =IA, IB, IIA, IIB, IIIA, I1IB, IVA,
and IVB. Each X is duplicated with and without “f”, where “f” implies a s1, sign flip. The first to
third columns are identical to the ones in ref. [4]. The fourth column provides information of the «
parameter transformation in the X row and the rephasing matrix Rep(X), ., in the Xf row. They are
both determined by the symmetry type and common to the symmetries XA, XAf, XB, and XBf (four

rows).
Type Vacuum Parameter Transf. Matter Parameter Transf. « Transf./Rep(X)
1A none A_ o Ay, cp — FSp, 89 — ECp none
Clp—013) — F5(p—013)7 S(p—013) ~ TC(p—013)
IAf 013 — b13 £ 71, 610 > —01p Ao e Ay, cp — F8p, 89 — £Cp diag(1,1,1)
Clp—013) ~ F5(p—013)7 S(p—013) ~ FC(p—013)
1B 013 —> —013,0 — 0 + 1. Ao Ay, cp — £8y, Sp — Ty same as IA, IAf
Clp—013) ~ F5(p—013)7 S(9—013) ~ TC(p—013)
IBf 013 — —013 = 71, 010 — —012, Ao Ay, cp — £8y, Sp — Ty same as IA, IAf
0—>0+TT Clp—b13) ~ TS(p—013)7 S(¢p—b13) ~ TC(9p—013)
ITA 923 — —923, 913 — —913 Ao )\+, Cp — iS(p, Sp — iC(p Nre — —Ure,
Clp—013) ~ L5(9—013)7 S(9—613) = TC(p—013) by = —lry
IIAf 03 — —0p3,6013 > —613t 7 Ao Ay, Cp — E5¢, Sp — tCg diag(1,1,-1)
012 — —br C(p—613) ~ F5(p—613)r S(9p—13) ~ TC(p—613)
IIB O3 > —03,0 >0+ Ao o Ay, cp — FSp, Sp — Ecg same as IIA, IIAf
Clp—013) ~ F5(p—013)7 S(p—613) ~ TC(p—013)
IIBf 03 — —0p3, 6013 — 013+ 71, Ao Ay, Cp = Fs¢, Sp — tC¢ same as IIA, IIAf
bp > —61p 0~ o+ Cg=t13) = F8(p=013)7 S(9=013) = FC(p—b13)-
IITA 013 > —013 £ 7, Ao Ay, Cp — E5¢, 59 — tCg Ko = —Qye
Clp—b13) > FS(9p—b13) S(9—b15) > TC(gp—b15) fre = —lre
IIIAf 013 — —013, 010 — —015. Ao o Ay, cp — £8p, 89 — £Cp diag(-1,1,1)
Clp—013) ~ F5(p—013)7 S(p—013) ~ TC(p—013)
I11B 013 > 013t m,é— 9+ m. Ao Ay, cp — FSp, 89 — ECp same as [ITA, IITAf
Cp—013) ~ F5(p—013)7 S(p—013) ~ FC(p—013)
I11Bf 01p > —01p,6 — 6 + 1. Ao o Ay, cp — FSp, 89 — ECp same as IITA, IITAf
Clp—013) — F5(p—013)7 S(p—013) ~ TC(p—013)
IVA 03 —> —bp3,013 > 013+ 7 Ao Ay, Cp — +Sp, Sp — iC(p Kye = —Qye
Clp—013) — F5(p—013)7 S(p—013) ~ FC(p—013) Xy = Oy
IVAf 0r3 — —bh3, 610 — —0615 Ao Ay, Cp — +Sp, 8¢ — iC(p diag(—l,l,—l)

Clp—b13) > TS(p—013)7 S(p—613) ~ TC(p—013)
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Table 4. Cont.

Type Vacuum Parameter Transf. Matter Parameter Transf. « Transf./Rep(X)

IVB 0r3 — —0p3, 613 > —013 £ 71, Ao Ay, Cp — ES¢, Sp — tC¢ same as IVA, IVAf
o—otm Cg=t13) = TS(o=013)7 S(0=613) = FC(p—013)

IVBf 03 — —bh3, 613 — —013, Ao Ay, cp — E8p, Sp — Ecp same as IVA, IVAf
O > —bp, 0 =0+ C9—t13) ~ F5(0—013)7 S(0=013) ~ FC(p—b13)

7.3. The Second Condition: Genuine Non-Unitary and Unitary Evolution Parts

The first-order terms in the SF Equation (60) constitute the second condition, which
can be decomposed into the vSM, EV, and the UV parts. The first one is already analyzed
in Section 7.2. The latter two take the forms of

RWE) (623, 6, 3 A, Hy)R! Wi (04,6 + &, ¢/ A, HY),

RZ()(623,6,¢; 5, R 206, 6+ E ¢ o, ). (65)

We analyze the genuine non-unitary and unitary evolution parts, the second and first lines
in Equation (65), so that they are cast into forms which are ready to solve.

Now, we address the genuine non-unitary part first. It is useful to use the notation
for the zeroth-order V matrix as V() = Up3(623)Uq3(¢p, 6) as in Equation (51) to make the
equations compact. Using Equation (53), the second condition with Z[(Jl\z in Equation (65)
takes the form

R[VO) (023,9,0)|'av® (62,0, 0)RT = [VO(8hs,¢/,5 + 8)] ' VO b, 97,0+ 0). (66)

Then, the transformed & can be written in a closed form as

W = VO (8,9/,0+ OR[VO) (02,,0) | 'av® (0, ¢, ORI [V (845,9/,5+ )] (67)

The right-hand side of this equation will be analyzed in the next Section 8.1.
Next, we move to the second condition for the EV part. The first line in Equation (65)
can be written as
| 0 e—i(0—a) Hs, /\+b_/\0 ei(“+é)6_i5H31
—€l0=%) Hy, /\+b—A0 0 e'f Hyy /\_b_;m
*eil(lxﬂs)eléHB )\+E/\7 *eilﬁHu )\,b—)\o 0

—i b —i(6 b
0 , —e l(Hg)H{zM—AO —¢ 1(6+5)Hi3/\+—)x_
j b
éw+@HﬁA+—M 0 H%A,—M . (68)

i(0+ / b / b
el @f%1A+—A, —Hz =7, 0

b
Ar—A_

One can show, by using the hermiticity of the H matrix, that it can be written in a
reduced form as

Hjy = —e~ (") Fy
Hj; = —el TP
Hby = ePHy. (69)

Notice the vastly different features of the second condition on Zl(jl\), in Equation (67)
(1)

and the one on Wy in Equation (69). It makes consistency between them highly nontrivial.
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8. Solution of the SF Equation in the Helio-UV Perturbation Theory
8.1. Solution of the Second Condition: Genuine Non-Unitary Part

We discuss first the genuine non-unitary part because we encounter an important
concept, which will be denoted as the “key identity”, as below. If we use the simplified

notation [VRV] = v (923,47 d+ &R [ 0)(923,47 5)]T, Equation (67) can be written as

o« = [VRVT|a[VRVT]T. Therefore, we first calculate the block [VRV] in two steps. We
define C[13] as:

C[13] = Us3(¢', 6 + &) RUas( ,5
A 0 sfpe_’ (+8) —e—i(0—a) cp 0 —spe i
- 0 1 0 0 1 0 , (70)
—sﬁpe"(“é) 0 c¢ ‘5 p) 0 0 spe® 0 o
so that
; 1 0 0 1 0 0
[VRVT]EV<0>(9§3,4>’,5+C)R[v<°>(923,¢,5)] —| 0 s sk |CH3]| 0 3 —sp5 | (71)
0 —shy Chy 0 s o3

We simply calculate C[13] and [VRV ] by inserting each solution of the SF equation
in Table 4 one-by-one with the values of the phase parameters «, g, etc., corresponding to
each solution as given in Table 2. To our surprise, computation with all the solutions in
Table 4 entails an extremely simple result:

C13] = VO (Bhs,¢/,5+ OR[ VO (625,9,0)]|' = Rep(¥),... (72)

which is a mixing-parameter independent constant despite the profound dependencies on
the vSM variables in [VRV] in the left-hand side. That is, Rep(X), , , denotes the rephasing
matrix, which is necessary for the Hamiltonian proof of the symmetry [4], and is given by

10 0
Rep(), . =| 0 1 0 | for IIA, IIAf, IIB, IIBf,
00 -1
[ -1 0 0
Rep(Ill),,,=| 0 1 0 | for IA, IIIAf, INIB, INIBf,
0 01
-1 .0 0
Rep(IV),,,=| 0 1 0 | for IVA, IVAf, IVB, IVBf, (73)
0 0 -1

and Rep(l), . , = diag(1,1,1) for IA, IAf, IB, IBf.

The feature of this result is in complete parallelism with the DMP-UV theory [5],
but the DMP-UV results are not exactly the same as the helio-UV results. To distinguish
our result from the DMPs, we have introduced the notation Rep(X), , , with the index
showing the theory dependence. See Equation (A6) in Appendix B for the expressions of
Rep(X),,,,» which can be compared to Rep(X), . .- Roughly speaking, the relation between
the rephasing matrices of the DMP-UV and helio-UV perturbation theories is Rep(Il) <
Rep(IV). Notice that our classification scheme of Symmetry X is based on the solutions of
the first condition, and we do not arbitrarily alter the definitions of the symmetries in each
theory.

It appears that the result (72), in particular the second equality, implies the existence
of extremely interesting identities, which we call the “key identity” hereafter.
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Then, the second condition on Z[(jl\),, written as the equation on the a matrix, Equa-

tion (67), can readily be written as

«' = Rep(X). . a Rep(X)! (74)

helioP helioP”

which implies that ' = a for Symmetry X = I, and

Kee 0 0 Xee 0 0 Kee 0 0
’
n = Qe Xy 0 |, —aye auy 0 , —pe  Qpuy 0 |, (75)
—lre —l&ty  Krt —lre Xy QT Xre  —Qgy Q7T

for X =11, III, and IV, in order. As in the case of DMP-UV symmetries, no UV « parameters’
transformation is present in Symmetry X = IA, IB, and their sy, flipped counterpart.

The resulting transformation properties of the « parameters and Rep(X), . , are summa-
rized in Table 4. The corresponding informations in DMP, Rep(X),,,,,, and the & parameters’
transformation are given in Equation (A6) and Table 1, respectively. Notice that Rep(X), .. .,
and hence, the « parameters’ transformation properties depend only on the symmetry type

X =1 1I, III, and IV, but not on the types A, Af, B, and Bf.

8.2. Solution of the Second Condition: Unitary Evolution Part

The solutions of the first condition depend not only on the symmetry types denoted
generically as XA and XB but also on the upper and lower signs of the phase parameters
«, B, etc., as summarized in Table 2. Using the phase parameters, one can show that the
second condition (69) implies that H;; transforms under Symmetry X as:

Symmetry IA, TAf, IIIB, IIBf :  Hj; = —Hzy, Hjy = FHas, Hjy = +Hyy,

Symmetry IB, IBf, IIIA, IIIAf :  Hj; = H3y, H)y = FHas, Hls = FHy,

Symmetry IIA, IIAf, IVB, IVBf :  Hj; = Hjy, Hj, = +Hys, Hjy = +Hyy,

Symmetry IIB, IIBf, IVA, IVAf: Hj; = —Hz, Hjy = +Hys, Hjs = FHyy, (76)

where the + (or T) sign refers to the upper and lower signs in Table 2 and Table 4, which
are synchronized between them. Notice that the transformation property of Hj; can be
obtained from the transformation property of H;; by using the hermiticity H;; = (H;;)*.

Here is a comment on the exchange transformations of the eigenvalues. Since we have
renormalized the eigenvalues such that the diagonal H;; elements are absorbed into the
eigenvalues (see Equation (47)), the second condition (69) does not contain the information
on the H;; transformations. Hence, it must be determined by the consistency with the
eigenvalue exchange A_ <> A, . That s,

Hyp < Hz, (77)
and Hpy; is invariant.

8.3. Consistency between the UV and EV Solutions and Invariance of the Oscillation Probability

The next crucial step is to verify the consistency between the solutions of the SF
equation obtained from its genuine non-unitary part given in Equation (74) and the H;;
transformations given in Equations (76) and (77). Using the explicit expressions of H;; in
Appendix C, the consistency can be shown to hold for all the Symmetry X-helioP-UV in
Table 4. Though this is a crucially important step, we would like to leave this exercise to
the interested readers because it can be done straightforwardly.

The remaining task is to verify the invariance of the oscillation probabilities P(v;, — 1/6)1(31\;

(1)

in Equation (56) and P(v;, — v.);y in Equation (55). The former is written in terms of the
vSM and H;; parameters without any naked a parameters. Therefore, showing the invari-
ance under Symmetry X can be carried out straightforwardly for all sixteen symmetries,
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with the transformation properties of these parameters given in Table 4 and Equation (76).

On the other hand, P(v, — 1/5)8\)/ consists of the vSM and the naked a parameters. We can
use the transformation properties of these variables summarized in Table 4 to prove the
invariance under all the Symmetry X. These exercises for invariance proof are again left for
the interested readers.

In this paper, we do not discuss the other oscillation channels explicitly, apart from
the v, — v, as in the above, because we will prove the Hamiltonian invariance in Section 9,
which automatically applies to all the oscillation channels.

9. The Heliop-UV Symmetry as a Hamiltonian Symmetry

In this section, we show that all the helioP-UV symmetries summarized in Table 4
leave the flavor basis Hamiltonian invariant up to the rephasing factor. This implies that all
the helioP-UV symmetries hold in all orders in the helio-UV perturbation theory. Therefore,
our discussion in this section will include the full Hamiltonian, including the second-order
UV terms A®@ in Equation (41).

We have the following two ways to construct the flavor basis Hamiltonian, H,y
and Hp,,. (In refs. [3,4] and arXiv v1 of this article, H,, and H,,, are denoted as H,xs
and Hys, respectively.) For H,,, its subscript implies “vacuum-matter”, which means
that it is composed of the vacuum and matter terms. In the unitary case in a vacuum,
Hpavor = UHUT, where H is the vacuum mass eigenstate basis Hamiltonian, and U the vSM
flavor mixing matrix; see Equation (4). In the non-unitary case in matter, since the flavor
basis v is related to the mass eigenstate basis 7 as v = N7, the flavor-basis Hamiltonian,
which we call H,,, can be written as Hy,, = NHNT, where the check basis Hamiltonian H
is given in Equation (35). For Hy,,, the subscript implies that it is “diagonalized”, which
means that it exhibits the feature that it is the Hamiltonian obtained by rotation back
from the diagonalized hat-basis to the flavor basis. The way that H,,,, is obtained will be
explained in Section 9.2. Of course, they are equal to each other; Hyy = Hp,,.

9.1. Transformation Property of Hyy,
Using N = (1—a)U and NNT = (1—a)(1 —zx)T, 2F times H,, = NHNT can be

written as
m; 0 0 a-b 0 0
2EHyy = (1-a)3U@E)| 0 m3 o0 |[uE'+a-a)f-| 0 —b 0 |-1-a)p1-af, (@8)
0 0 mj 0 0 -—b

where we have used a collective notation & for all the vacuum parameters involved. Here,
we have used a slightly different phase-redefined basis from the one in Equation (35) to
make the vacuum Hamiltonian oc diag(m%, m%, m%), making it more symmetric, but it does
not affect our symmetry discussion.

We have shown in ref. [4] that the vacuum term transforms under Symmetry X as

md 0 0 md 0 0

u@ | o m3 0 [U@E"} >Rep(X),,,JUE)| 0 m3 0 |[UE)T Rep(X),,. (79)
0 0 mj 0 0 mj

where Rep(X), ., is the rephasing matrix defined in Equation (73). Using the transformation

property o’ = Rep(X)MM,DcRep(X):elioP in Equation (74), the matter term in Equation (78),

which originates from the vSM and the UV sectors of the theory, obeys the same transfor-
mation property as in the vacuum term. Then, the whole H,,, transforms under Symmetry
X as

Hyy — Rep(X), . HyyRep(X)! (80)

helioP helioP”
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which means that Hy,, is invariant under Symmetry X up to the rephasing factor Rep(X), . ..
By being the real diagonal matrix with unit elements +1, Rep(X), . ., does not affect physical
observables, as it can be absorbed into the neutrino wave functions.

We note that the vacuum and matter terms of H,, in Equation (78) have quadratic and
quartic dependences on (1 — &), respectively. The fact that they have the same transforma-
tion property as Rep(X), , , under Symmetry X solely relies on the a matrix transformation
property in Equation (74). On the other hand, Rep(X), , . is inherently the vSM concept;
see Equation (72). Therefore, there is no a priori reason why a must transform by it and
only by it. With the “Columbus’ egg” view, one might argue that of course it must be the
case because invariance under the symmetry requires it. Yet, it is remarkable to see that
it indeed emerges from the theory via the genuine UV part of the SF Equation (67). This
indicates an intriguing interplay between the vSM and the UV sectors in the theory.

In passing, we note that we do not use the property that the matter density is uniform
to obtain the invariance proof, the feature which prevails in the proof of invariance of H,
in Section 9.2.

iag

9.2. Transformation Property of Hp,,

In this section, we discuss Hy,, to show that it is invariant under Symmetry X-helioP-
UV with the same rephasing matrix as needed for H,,. We first construct H,,,. By using
the state relation in Equation (50), Hy,, is given by the hat-basis Hamiltonian H as

Hoo = (1—a)UxsUis(¢,6)HUL (00Ul (1 —a)l. (81)

The expression of H is given in Equation (48) to the first order in the helio-UV pertur-
bation. In this section, we proceed with this first-order Hamiltonian to prove the invariance
of Hp,, under Symmetry X. In Section 9.4, we will present a simple argument to show that
our proof of invariance prevails even after we include the second-order effect.

Since we innovate the way to prove the invariance Hy,,, we include the vSM part as
well, though it has been fully treated in ref. [4]. From the identity (72), one obtains

VO (ghs,¢',8") = Rep(X),,.,V? (623, ¢, 6)RT. (82)

Then, H,,, in Equation (81) with the use of Equation (51) transforms under Symmetry
X as

T
Houg = (1= )V (62,6, ) A (823, 012, 9, 838y, A1) [ VO (623,9,0) | (1 — )

i
o i (L= €)WV (B, ¢ ) A8, B, ¢ 053, AD[ VO 0, 97,8)] (1 - '

= Rep(X),,

t
— )V (623,¢, )R A0, 015, 9", 8, ADR| V) (623,,6)] (1 — @) TRepOQL,,. (83)
Note that R is the “untransformed” matrix.

9.3. Symmetry I1IB as an Example

What we should do now is to verify that the relation
RYF (653,01, ¢',0"; g, ADR = (623,012, 9, 5 gy, Ay) (84)

holds for all the sixteen symmetries, Symmetry X-helioP-UV where X = IA, IAf, - - -, IVBf.
This proves the invariance of Hy,, up to the rephasing factor Rep(X), .. .-

To give the readers some feeling, let us examine one example, the case of Symmetry
IIIB, to show how the job is done. We restrict to the first-order vYSM and UV parts, as the
proof for the H©) part can be done trivially. Using the solutions of the first condition in
Table 2 and the transformation property of the vSM variables given in Table 4, the left-hand
side of Equation (84) can be written as
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L
2

0 0 +e "2 0 S (p—013) 0 .
0‘ 1 0 {eclzsu ZEren iS(q,,ng) 0 ‘ iC((P,GB)e_l&
+e® 0 0 0 +C(p—py5)€° 0
0 +e Hzy e "Hjz 0 0 +e ™
+e' Hy3 0 +Hy, } 0 1 0 (85)
ei‘5H13 ile 0 i(i‘i& 0 0

The Hj; transformation property in Equation (76) is used for the second (EV) term. It is
easy to calculate the entity in Equation (85) to show that it is identical to the first-order term
in H given in Equation (48). Therefore, Equation (84) holds for Symmetry ITIB-helioP-UV.

What is remarkable is that the equality in Equation (84) can be shown to hold for all
Symmetry X-helioP-UV, where X=IA, IAf, - - -, IVBf. This means that H,,, transforms under
Symmetry X as
HiwRep(X)] (86)

helioP *

HDiag - Rep (X)

helioP

and Rep(X)T

helioP helioP *

is rooted in the vSM (see Equation (72)) but also governs the

That is, Hy,, is invariant apart from the rephasing factors Rep(X)
Notice again that Rep(X)
UV part of the theory.

helioP

9.4. Including the Second-Order UV Effect

Now let us include the second-order UV effect into our proof of invariance. Let us
define the second-order G matrix as in Equation (45),

. b .
H(éif = 2p (¢, 5) UL, AP Unslis(¢, 6) = EGQ), (87)

and define H® matrix to parametrize the G(2) matrix by replacing Hijby H, 1.(].2) in (46). One
can easily show by using the UV « parameter transformation property given in Table 4
that the transformation property, i.e., the sign-flipping pattern, of the A(?) matrix is exactly

identical to that of A. This means that the transformation property of H l-(].z) is the same as
that of H;; given in Equation (76). Since the inclusion of the second-order UV term merely

changes H;j to H;j — H, Z.(jz) in Equation (84), and their transformation properties are the same,
the invariance proof given in Section 9.3 remains valid with the inclusion of the second
order UV effect.

To summarize, we have shown in this section that the flavor basis Hamiltonian Hg,,
both H,y and H,,,, transforms as Hgayor — Rep(X)heuopHﬂ&worRep(X)LioP under Symmetry
X-helioP-UV, where X=IA, IAf, IB, - - -, IVB{. This establishes the property of Symmetry X as
the Hamiltonian symmetry which holds in all orders in the helioP-UV perturbation theory
in all the oscillation channels.

10. Conclusion and Discussions

In this paper, we tried to update and summarize the present status of our knowledge
and understanding of the reparametrization symmetry in neutrino oscillation in matter.
We have introduced and used a systematic method called Symmetry Finder (SF) [3-5] to
identify the symmetries and investigate their characteristic features in several theories. A
“success and failure” record in our symmetry search may be summarized as follows:

* In the vSM: The eight 1-2 state exchange symmetries are uncovered both in the
SRP (solar resonance perturbation) theory (see Table 3 in Section 4) and the DMP
perturbation theory (see Table 1 and ref. [3]). Similarly, the sixteen 1-3 state exchange
symmetries are identified in the helio-perturbation theory [4]. In spite of the “globally
valid” nature of the framework, no 1-3 exchange symmetry is identified in DMP.
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¢ In UV(unitarity violation)-extended theories of the vYSM: In the helio-UV and DMP-
UV perturbation theories, the vYSM symmetry in each theory is elevated to the UV-
extended one with the additional transformations on the UV sector & matrix, & —
Rep(X)ocRep(X)T, where Rep(X) denotes the rephasing matrix. The number and the
state exchange type of the symmetry are kept the same as those of the corresponding
vSM theory. For the procedures and results, see Sections 6 to 9 and Table 4 for the
helio-UV symmetries and ref. [5] and Table 1 for the DMP-UV symmetries.

We note that the picture of the reparametrization symmetry is transparent in the locally
valid theories. The regions of validity of SRP and the helio-perturbation theories are around
the solar and atmospheric resonances, respectively. Correspondingly, they have the 1-2
and 1-3 state exchange symmetries, respectively, reflecting the main players in each region.
However, it appears that this simple picture does not apply to the globally valid DMP
perturbation theory. Though the framework can describe both the solar and atmospheric
resonances and the 1-2 state exchange symmetry is identified [3], we were not able to pin
down where the 1-3 state exchange symmetry is in DMP.

As it stands, the field of reparametrization symmetry in neutrino oscillation is still in
its infancy, with only less than two years of the SF search. Reflecting this status, our current
understanding of the symmetry is immature in many ways. At this moment, the symmetry
can be discussed for a given particular neutrino oscillation framework. That is, we cannot
identify “general symmetry” for the generic flavor-basis, or mass-basis, Hamiltonian in
matter. See, however, ref. [46] for an alternative approach with possible relevance to this
point. We must keep in mind that the development of the field in the future may bring us
to a new unexpected regime of understanding of neutrino oscillation physics. Certainly, it
is still too premature to ask what the ultimate goal is of the symmetry approach.

What is new in this paper? In Part I, the SF analysis of the SRP theory with the
self-contained V matrix treatment is new. In Part II, the symmetry analysis in the helio-UV
perturbation theory using the SF framework and the recognition of the “key identity” are
all new. Together with the similar analysis in ref. [5] for the DMP-UV perturbation theory,
each exercise offers an important consistency check to each other for everything we have
learnt from both theories, and hence it is important to carry through.

Yet, the penetrating theme throughout this paper is to convey to the readers our
state-of-the-art understanding of the symmetry in neutrino oscillation. The summary of
the obtained reparametrization symmetry so far can be found in Table 1 for the DMP and
DMP-UV perturbation theories, Table 3 for the SRP theory, and Table 4 for the helio- and
helio-UV perturbation theories.

10.1. The Reparametrization Symmetry as a Diagnostics Tool

In Part IT of this article and in ref. [5], we have made an intriguing proposal: reparametriza-
tion symmetry can be used for diagnosing neutrino theory with non-unitarity. There is a
clear indication for such a possibility. We have observed in ref. [31], but not mentioned for
reasons explained in ref. [5], that the oscillation probability given in the UV extended DMP
theory possesses the vSM symmetries called Symmetry IA- and IB-DMP; see Table 1. Im-
portantly, these symmetries are not accompanied by the UV & parameters’ transformation,
which implies that a part of the reparametrization symmetries distinguishes between the
vSM and UV variables.

By performing the SF analyses of the DMP-UV perturbation theory in ref. [5] and the
helio-UV theory in this paper, we have confirmed that (1) the above-mentioned property
of Symmetry IA and IB is reproduced by the SF formalism, and (2) the remaining six
symmetries IIA, IIB, - - -, IVB in the DMP-UV theory, and the similar twelve symmetries in
the helio-UV theory, do have the associated « transformations, respectively, as reported in
ref. [5] and Section 8. Therefore, the reparametrization symmetry as a whole can recognize
and distinguish the vSM and the UV sectors of the theory.

In fact, the & parameters’ transformation under Symmetry X has quite interesting
features. It is governed solely by the rephasing matrix, &’ = Rep(X) ﬁRep(X)T in DMP,

DMP DMP
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and o’ = Rep(X)heMocRep(X)IelioP in the helio-UV theories. Here, & denotes the & matrix in the
SOL convention; see Section 2.1. Rep(X), . ., differs from Rep(X),, . only by the reshuffling
of Rep(X), Rep(Il) < Rep(IV) between helioP and DMP; see Equations (73) and (A6). In
both the DMP and the helio-perturbation theories, Rep(X) is the diagonal matrix with
elements e/, the constant matrices. This is a very different transformation property from

the ones of the ¥SM variables, which can be described as the “discrete rotations”.

10.2. A Conjecture for the Larger Symmetries

Most probably, the most important outcome in the symmetry discussion in the vSM
and its UV extension is the key identity VO (@)R[VO) (®)]T = Rep(X), the helioP version
in Equation (72) and the DMP version in Equation (88) (see below), where V(©) denotes the
zeroth-order V matrix with ® as its arguments in the collective notation. Remember that
the identity plays several key roles, which include determining the « parameters’ transfor-
mation properties and offering a new path for the Hamiltonian proof of the symmetry.

We have conjectured in ref. [5] that the whole body of the reparametrization symmetry
is much larger than what we saw in the above summary. Notice that the left-hand side of
the identity involves V(0)(®) before and after the transformation, the generic quantity in
a given theory. We see no obvious dependencies on the types of the state exchange in it
apart from the particular form of R specific to our case. The right-hand side of the identity
is a constant. It naturally leads to the conjecture that by generalizing the R choice, the key
identity accommodates a generic class of discrete rotations of the vSM variables. If true, it
would solve the issue of the missing 13 exchange symmetry when applied to DMP.

10.3. The Key Identity and Its Possible Topological Nature

Now, the remaining important question is the interpretation of the constant and phase-
sensitive nature of Rep(X). For this purpose, let us go to the identity (its complex conjugate)
in DMP [5] for definiteness,

VOO, 9,9, RV (833, 4,9/,6 + &)1 = Rep(X). (88)
where R denotes the R matrix in DMP, and v () (623, 9, ¢,6) denote the zeroth-order V
matrix. While we discuss here Equation (88) in DMP, a similar identity exists in the helio-
UV theory, Equation (72), and our consideration below must apply to it as well.

The identity indeed reveals a quite interesting feature, as noticed above. Despite
the fact that the left-hand side displays rich dependencies of the untransformed and
transformed vSM variables, the right-hand side consists of the constant elements +1 =
et whose character may suggest a topological origin of the identity. Since the way we
understand it could affect our interpretation of the reparametrization symmetry, let us
address this issue. We try to argue below that the left-hand side of Equation (88) can be
regarded as the symmetry charge. Nonetheless, we must say that our consideration below
may still be at a speculative level.

In U(1) gauge theory with a complex scalar field ¢, the symmetry charge can be
calculated as Q = {d®x7tép, where d¢ denotes a variation of the field under an infinitesimal
U(1) transformation, ¢ — ¢ —iep, and 7 is the canonical conjugate of ¢ [1]. € displays
an infinitesimal nature of the transformation and is to be removed when we define J¢.
While there is no reason to expect the U(1) charge to be quantized, if one calculates Q
around the vortex solution, it indeed is quantized to an integer times the unit of charge, the
Nielsen—-Olesen vortex [85]. The quantization of the scalar charge around the vortex comes
from the nontrivial homotopy 711 (S') = Z [2].

Now, we try to interpret the identity (88) along a similar line of thought. We consider
that the basic elements of the transformation are given by [V(©) (63,1, ¢,6)]". Then, the
quantity corresponding to d¢ in the scalar field case is RTV(©) (03, 9',¢',6 + &)1 because the
subtracted untransformed part RTV(©) (63, 9, ¢, 6)T gives no contribution. We must leave
RT, our € equivalent, because it is not small but orders unity and performs state exchange.
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The important difference between our case and the U(1) charge is that we now treat discrete
symmetry, not continuous symmetry. The integration over the space coordinate x is absent
because this is quantum mechanics, or zero-dimensional field theory. Lacking knowledge
by the author of the field theory of discrete symmetry, we cannot prove that the “canonical
conjugate” is given by v (©) (623, 9, ¢, 9), but it is at least not unnatural. Despite the fact
that we do not know whether similar reasoning exists for the discrete group to guarantee
the integral property of Rep(X),, ., such as homotopy in the vortex case, it appears to the
author that it is legitimate to leave it as a conjecture given its intriguing feature and its
practical utility. We believe that this point deserves further investigation.
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Appendix A. Three Useful Conventions of the Lepton Flavor Mixing Matrix

We start from the most commonly used form, the PDG convention [42] of the U matrix
defined in Equation (4). Recently, we have started to use the two other conventions called
the “SOL” and the “ATM”, which differ only by the phase redefinitions from Uppe. Uso is
defined in Equation (3). U,y is defined by

1 0 0 1 0 0 C13 0 513 C12 512 0
Upc| 01 0 [=| 0 o3  sp3e? 0 1 0 —s12 c12 0 |[. (A1)
0 0 e¥ 0 —5236_15 (23 —s13 0 c13 0 0 1

The reason for our terminology of U, and Uy, is because the CP phase factor et g

attached to (the sine of) the “atmospheric angle” 6,3 in U, and to the “solar angle” 1, in
U, respectively. In the PDG convention, et is attached to 513. Uamy is used to compute
the probability, e.g., in refs. [6-8,39]. Us, is used for the same purpose in refs. [31,51].

It should be remembered that the oscillation probability calculated by using the PDG,
ATM, and the SOL conventions is exactly identical. This is because the phase redefinition
cannot alter the physical observables. Therefore, the measured values of the mixing angles
and CP phase does not depend on which convention is used for the U matrix to compute
the probability.

On the other hand, the & matrix is U matrix convention-dependent. Once the phase
convention of the U matrix is changed from U to Uso, a consistent definition of Ny,
requires the & matrix to transform [39], as can be seen in

1 0 1 0 0 1 0 0 1 0 0
= |0 e™® 0 [Nwg| 0 € 0 [=<51=]0 ¢e® 0 |a|] 0 e 0 [ U
0 e 0 0 e? 0 0 e 0 0 e
U (42)
Therefore, the a matrix is convention-dependent. It takes the form in the SOL conven-
tion of
1 0 0 1 0 0 RXee 0 0 fee 0 0
thOL == 0 —id 0 n© 0 615 QN = (3_15&}16 (X‘u}l O = %ye %yy ~O 7 (A3)
0 0 ¥ 0 0 ¢ e Onre ary trr Qe Oy Brg
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where we have introduced the simplified notation asﬁoi = dp, for convenience. Similarly,
we have for the ATM convention

10 0 10 0 e 0 0 oM 00
™M=101 0 |af 01 0 [=] ag a0 | =] at oapt 0| (A4)
00 e™® 0 0 ¢ e Pure e Pary e o a

Appendix B. DMP-UV Symmetry: A Brief Summary
To show the difference between the helio-UV and the DMP-UV symmetries, we
recollect just two equations from ref. [5]. In the DMP-UV theory, we have Hyy and Hpiag

similar to the ones in Equations (78) and (81). See Equations (79) and (82) in ref. [5]. One
can show that both Hyy and Hpag transform under Symmetry X as

Hyy — ReP(X)DMPHVMReP(X)DMP,
Hiyy — Rep(X),p HouwsRep(X)] ., (A5)
where the rephasing matrix Rep(X)pwe is given by Rep(I)pye = diag (1,1,1), and
1 0 0 -1 0 0 -1 0 0
Repl),,=1] 0 -1 0 |, Rep(Il),, . = 0 1 0|, Rep(IV),,, = 0 -1 0 (A6)
0 0 1 0 0 1 0 0 1
Notice that Rep(Il) ,,,, = Rep(IV), ., (up to the overall sign), Rep(IV),,,. = Rep(l),,. .

(up to the overall sign), and Rep(Ill) ,,,, = Rep(Ill), , .. Since our classification scheme of
Symmetry X, X=I, II, III, and IV is based on the solutions of the first condition, which are
universal among DMP, SRP, and the helio-perturbation theories, we do not exchange our
definitions of the Symmetry II and IV in the helio- and helio-UV perturbation theories. The
resulting & parameter transformation property is given in the fourth column of Table 1.

Appendix C. H Matrix Elements

The Hermitian H matrix is defined in Equation (46). The explicit expressions of its
elements are given by

A
Hy; = ZCéaEg <1 — AZ) + Zsé [s%zxw + Byarr + c3523Re (zxw)]
— 2c¢s¢ [523Re (8_1‘50{},@) + cx3Re (e_i‘socn) ] ,
_ 2 2
Hy = 2[c23aw + S530rr — C23523Re (zxw)],
A
Hiy = 25%0433 <1 — AZ) + ZCé [s%yxw + c3rr + co3sRe ("‘Tﬂ)]

+  2c¢8p [sBRe (vc;,ge_w) + cp3Re (arge_w) ] ,

Hy = [c23c¢ ocyee‘i‘s) — 523C¢ (ocne_i‘s) - S(p{cggfxiy — Sh30ey + 262353 (A — “TT)}] = Hiy,
Hy; = [Zc¢s¢ Kee (1 — i';) — [s%yxw + e + 023523Re(1xw)]}
+ cos 2¢{523Re (a”ee i ) + cx3Re (ocne_i‘s)} - i{Sz:}Il’I‘l(D(yee_i(s) + czglm(txne_i‘s) }] = H3,
Hy; = [cz35¢ (lxyee i ) — 5235¢ (wreff*i(s) + C¢{C%3“:y - S%a“w + 2023823 (App — “TT)}] = Hp. (A7)
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