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Symmetry in Neutrino Oscillation in Matter: New Picture and
the νSM–Non-Unitarity Interplay

Hisakazu Minakata

Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA;
hisakazu.minakata@gmail.com

Abstract: We update and summarize the present status of our understanding of the reparametrization
symmetry with an i Ø j state exchange in neutrino oscillation in matter. We introduce a systematic
method called “Symmetry Finder” (SF) to uncover such symmetries, demonstrate its efficient hunting
capability, and examine their characteristic features. Apparently they have a local nature: the 1–2 and
1–3 state exchange symmetries exist at around the solar and atmospheric resonances, respectively,
with the level-crossing states exchanged. However, this view is not supported, to date, in the globally
valid Denton et al. (DMP) perturbation theory, which possesses the 1–2, but not the 1–3, exchange
symmetry. This is probably due to our lack of understanding, and we find a clue for a larger symmetry
structure than we know of. In the latter part of this article, we introduce non-unitarity, or unitarity
violation (UV), into the νSM neutrino paradigm, a low-energy description of beyond νSM new physics
at a high (or low) scale. Based on the analyses of UV extended versions of the atmospheric resonance
and the DMP perturbation theories, we argue that the reparametrization symmetry has a diagnostic
capability for the theory with the νSM and UV sectors. Speculation is given on the topological nature
of the identity, which determines the transformation property of the UV α parameters.

Keywords: reparametrization symmetry; neutrino oscillation; non-unitarity

1. Introduction

Symmetry is one of the deepest subjects in physics. When one picks up a field theory
textbook from bookshelf, say, ref. [1], one finds the description of various symmetries,
space-time symmetries, internal symmetries, CP, T, and CPT, discrete symmetries, sym-
metry in the hadron spectrum, and Op4q in the Coulomb problem, not to mention gauge
symmetry for constructing the Standard Model (SM). Most likely, even the several big
monographs would not be sufficient for full coverage of the subjects because of its profound
consequences and evolving nature. Fortunately, a set of beautiful lectures on symmetry in
particle physics delivered in the last decades in the 20th century is left for us [2].

In this paper, we discuss the reparametrization symmetry in neutrino oscillation in
matter. It indeed has quite different character from those described in refs. [1,2]. Invari-
ance under reparametrization merely implies that there is another way of parametrizing
the equivalent solution of the theory. Consequently, a general view on such symmetry
would be that it might be useful, but no conceptually deep notion is likely to be involved.
Recently, however, we have been accumulating new experiences about the reparametriza-
tion symmetry [3–5], which may introduce a new perspective on this view. Therefore,
in this paper, we present our self-contained global picture of the symmetry in neutrino
oscillation in matter with the hope of bringing the subject to the readers’ attention and
for a new judgement. If successful, we could possibly overturn the above prejudice about
reparametrization symmetry.

What does symmetry look like in neutrino oscillation in matter? Let us give a simple and
concrete example. In a perturbative framework valid at around the atmospheric resonance [6],
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which will be dubbed as the “helio-perturbation theory” in this paper, it is noticed [7] that the
expression of the oscillation probability is invariant under the transformations

λ1 Ø λ3, cos φ Ñ ¯ sin φ, sin φ Ñ ˘ cos φ. (1)

The notations are such that φ is the θ13 in matter, and λ1 ą λ3 denote the two eigen-
values which participate in the level crossing at around the atmospheric resonance in the
inverted mass ordering [6]; see Section 6.2. (In normal mass ordering, λ3 ą λ2 are the
two eigenvalues which have the level crossing [6].) A similar symmetry as in Equation (1)
but replacing the 1–3 exchange by the 1–2 exchange using ψ as the matter-dressed θ12 (θ12
in matter) was observed earlier in the Denton et al. (DMP) perturbation theory [8]. The
precise meaning of the term “matter-dressed θ12” is explained after Equation (19), and
similarly for θ13 in matter by Equation (44).

Recently, we have developed a systematic method of finding the reparametrization
symmetry in neutrino oscillation in matter, termed “Symmetry Finder” (SF) [3–5]. We will
review this machinery and its powerfulness and try to show the readers where we are in our
journey of uncovering and understanding this symmetry. It is interesting in its own right,
serving, for example, to keep the consistency of the calculations of the observables, a “bread
and butter” item but an important task for the theorists. Eventually, we are going to suggest,
in the active three neutrino framework extended to include unitarity violation (UV) that the
reparametrization symmetry distinguishes between the νSM (neutrino-mass-embedded
SM) and the UV sectors of the theory, offering a useful tool for diagnosing such theories [5].
We are aware that in the physics literature, UV usually means “ultraviolet”. However, in
this paper, UV is used as an abbreviation for “unitarity violation” or “unitarity violating”.
We hope that SF, a systematic approach, provides an efficient digging-out machinery for
the symmetries in neutrino oscillation in matter and their deeper understanding. We
believe that it follows the spirit of the early analyses on symmetries and strengthens their
impacts [9–18].

1.1. Local Character of the Reparametrization Symmetry

To our current understanding, the reparametrization symmetry of neutrino oscillation
takes different forms depending upon where we are, i.e., which regions of neutrino energy
E, baseline L, and the matter density ρ are along the neutrino trajectory in the kinematical
phase space. Therefore, let us first introduce the matter effect [19] and draw a global picture
of neutrino oscillation in the earth matter environment. The matter potential will be defined
in Equation (13) in Section 3.1. In Figure 1, the equi-probability contour of Ppνµ Ñ νeq is
presented [20] in the region of the energy baseline that roughly covers Super-Kamiokande’s
atmospheric neutrino observation 0.1 GeVÀ E À 10 GeV; see Figure 3 in ref. [21]. It also
overlaps with the regions for all the ongoing and planned long-baseline accelerator neutrino
experiments. Two peaks are visible: the solar scale (E „ 200 MeV, L „ 2000 km) and the
atmospheric scale (E „ 8 GeV, L „ 104 km) enhanced oscillations. For brevity, we refer
to these respective regions as the solar resonance and the atmospheric resonance regions
hereafter. In this article, the term “resonance” should be understood in this less strict sense
than usual; see refs. [19,22–24].

Now, what we are telling the readers is that the reparametrization symmetry takes
different form around each peak. That is,

• In the solar resonance region, the reparametrization symmetry of the 1–2 state ex-
change type exists, to be discussed in Section 4;

• In the atmospheric resonance region, the reparametrization symmetry of the 1–3 state
exchange type exists [4].
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Figure 1. The equi-probability contour of Ppνµ Ñ νeq is presented [20] in region of energy-baseline
that covers the atmospheric neutrino observation by Super-Kamiokande. Two peaks are visible: the
solar scale (E „ 200 MeV, L „ 2000 km) and the atmospheric scale (E „ 8 GeV, L „ 104 km) enhanced
oscillations. The matter density is taken to be a constant, ρ “ 4.0 g/cm3, which gives only a bold
approximation to the Earth matter density.

Since the symmetry in the framework with local validity in the solar resonance re-
gion [7] has never been investigated in the literature, we will fill the gap in this article.

In fact, the features described in the above-itemized statements appeal to our intuition.
The 1–2 and 1–3 state level crossings, respectively, are the key to the solar-scale and the
atmospheric-scale resonances, and they are the dominant players in these respective regions.
The symmetry type specified by the exchanged states mentioned above just reflects the
main players in each region; see, e.g., refs. [25–28] for the earlier versions of the atmospheric
resonance perturbation theory. Given the existence of the various versions, not to trigger
any confusion, we discuss in this paper the particular version in ref. [6] under the name of
“helio-perturbation theory” to discuss the reparametrization symmetry in the atmospheric
resonance region. The term “helio-perturbation”, shorthand of the “helio-terrestrial-ratio
perturbation”, is invented because it perturbs the dominant effect of the atmospheric
resonance by the small solar-scale effect of order „ ∆m2

21{∆m2
31 « 0.03.

1.2. Globally Valid vs. Locally Valid Frameworks

However, it turned out that the things are not so simple. Progress in the perturbative
treatment of neutrino oscillations in matter now allows us to have a limited number of
“globally valid” frameworks, the DMP [8] and Agarwalla et al. (AKT) [29] theories. By
“globally valid”, we mean that the framework is valid throughout the terrestrial region
depicted in Figure 1. In fact, the region of validity of the globally valid frameworks is
likely to extend to much higher energies, which is explored, e.g., by IceCube-DeepCore [30].
See the related discussions in ref. [31]. As opposed to the above-mentioned “locally
valid” theories, a globally valid theory is able to describe the both solar and atmospheric
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resonances. The secret for such greater capability is in the usage of the Jacobi method; see
ref. [29] for a concise exposition of the Jacobi method.

Does the globally valid framework allow us to formulate the reparametrization sym-
metry in both the solar and atmospheric resonance regions? Thus far, the answer is no.
According to the result of ref. [3], only the reparametrization symmetry of the 1–2 state
exchange type is obtained, or, in other words, the better way of formulating SF such that
the potential of the globally valid frameworks is fully utilized remains to be discovered.
Remember, however, that the problem has been examined only in the DMP theory so far,
and it is interesting to know how the problem looks like in the AKT perturbation theory [29].
While the present author is suspicious about the above conclusion, it is the current status of
our understanding of the reparametrization symmetry in neutrino oscillation in matter. In
close relationship to this point, a conjecture is given toward the generalization of the SF
formalism to accommodate much more generic reparametrization symmetry [5].

Here are additional (not so pedagogical) comments on the globally valid vs. locally
valid frameworks of neutrino oscillation. One may argue that the wider coverage indicates
the superiority of the globally valid framework over the local frameworks. Moreover, one
can show that the DMP preserves the Naumov identity [32], at least approximately [4]. This
is a necessary condition that has to be satisfied for the globally valid framework, while the
helio-perturbation theory does not support this property for a good reason [4]. Nonetheless,
we would like to emphasize that it is only one side of the coin. From the viewpoint of our
symmetry discussion, a one-to-one correspondence between the crossing of the resonant
level and the existing symmetry type is revealing and looks physically appealing.

1.3. Paper Plan: Part I and II

This paper has the two parts. Part I spans from Sections 1–4, and Part II spans from
Sections 5–9. In Part I, we define the target of our discussion, the reparametrization
symmetry of the state exchange type, and introduce the concept of “Symmetry Finder” (SF),
a systematic way of hunting the reparametrization symmetry; see Section 2. We briefly
describe the 1–2 state exchange symmetry in the DMP perturbation theory [3] as a prototype
of such symmetry we discuss in this article. In Section 3, we review the solar resonance
perturbation (SRP) theory [7] and introduce the V matrix method [33]. In Section 4, we
formulate SF for the SRP theory and analyze the SF equation to obtain the 1–2 exchange
symmetry. The SF treatment of the SRP theory has not been done before, so we are going
to add something new in this subject. Our discussion will be pedagogical in most part of
Part I, aiming at facilitating the readers’ understanding of the subject. For this purpose, we
restrict ourselves to νSM symmetry in Part I.

In Part II, we focus on the reparametrization symmetry in the theory with the non-
unitary flavor mixing matrix, or UV; see refs. [34–38], for example, with more references
coming later. As overviewed in Section 5, looking for new physics beyond the νSM is
a vigorously pursued subject in particle physics, and non-unitarity is one of the promis-
ing ways for its low-energy description. We are interested in such a possibility that the
symmetry can be used as a diagnostics tool for the theory with the νSM and UV sectors.
For this purpose, we feel, non-unitarity would provide a useful testing ground for such a
possibility because its principle and the relation to the high- or low-energy new physics is
relatively well defined [34–38]. In Sections 6–9, we give a self-contained treatment of the 1–3
state exchange symmetry in the helio-UV perturbation theory [39], a UV extension of the
helio-perturbation theory [6]. Since the SF treatment of the helio-UV perturbation theory
has never been done in the literature, the derivation and discussion of such symmetry in
this theory is all new.

In summary, our goals and the motivating force in this paper are:

• Part I: We summarize the current status of our understanding of the reparametrization
symmetry of the state exchange type in neutrino oscillation in matter. To the best of
our knowledge, no one expected that so many symmetries are hidden in the DMP and
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the helio-perturbation theories [3,4]. A tantalizing question is: what are the nature
and implications of the symmetry?

• Part II: We introduce non-unitarity and analyze the symmetry in the UV-extended
frameworks of neutrino evolution. We realize the possible utility of the symmetry as a
diagnostics tool for theories with the νSM and UV sectors. A part of the reparametriza-
tion symmetry acts only on the νSM variables, not UV ones, distinguishing between
the two sectors of the theory [5]. Can we observe the whole picture of this?

2. Introducing Symmetry Finder

Is there a systematic way of uncovering reparametrization symmetry in neutrino
oscillation? Our answer is yes: Symmetry Finder (SF) does the job in a vacuum [40] and in
matter [3–5]”.

Let us consider that the expression of the flavor basis state (i.e., wave function) ν in
terms of the mass eigenstate ν̄ in a vacuum or in matter in the following two different ways,

ν “ Upθ23, θ13, θ12, δqν̄ “ Upθ1
23, θ1

13, θ1
12, δ1qν̄1, (2)

where the quantities with “prime” imply the transformed ones, and ν̄1 may involve eigen-
state exchanges and/or rephasing of the wave functions. If it is in matter, the mixing angles
and the CP phase can be elevated to the matter-dressed variables. Since the SF equation
represents the same flavor state by the two different sets of the physical parameters, it
implies symmetry.

2.1. The PDG and SOL Conventions of the Flavor Mixing Matrix

To discuss the 1–2 state exchange symmetries in a vacuum and in matter, which we
will do in Part I, it is convenient to introduce the flavor mixing matrix U ” UMNS [41] in a
convention called “SOL” [39,40], which is slightly different from the usual particle data
group (PDG) convention [42],

USOL ”

»
–

1 0 0
0 e´iδ 0
0 0 e´iδ

fi
flUPDG

»
–

1 0 0
0 eiδ 0
0 0 eiδ

fi
fl “

»
–

1 0 0
0 c23 s23
0 ´s23 c23

fi
fl

»
–

c13 0 s13
0 1 0

´s13 0 c13

fi
fl

»
–

c12 s12eiδ 0
´s12e´iδ c12 0

0 0 1

fi
fl

” U23pθ23qU13pθ13qU12pθ12, δq. (3)

In this paper, hereafter, we use the abbreviated notations cij ” cos θij, sij ” sin θij, etc.,
where ij “ 12, 13, 23. In Equation (3), δ denotes the lepton analogue of the quark Kobayashi–
Maskawa (KM) CP-violating phase [43], and the second line defines the notations for the
three rotation matrices in the SOL convention. UPDG denotes the U matrix in the PDG
convention [42]

UPDG “

»
–

1 0 0
0 c23 s23
0 ´s23 c23

fi
fl

»
–

c13 0 s13e´iδ

0 1 0
´s13eiδ 0 c13

fi
fl

»
–

c12 s12 0
´s12 c12 0

0 0 1

fi
fl

” U23pθ23qU13pθ13, δqU12pθ12q, (4)

with the second line being the rotation matrices in the PDG convention. The reason for
our terminology of USOL in Equation (3) is because the CP phase factor e˘iδ is attached to
(the sine of) the “solar angle” θ12 in USOL, whereas in UPDG, e˘iδ is attached to s13. Notice
that the convention change from the PDG to SOL conventions does not alter the oscillation
probability because the rephasing factors in Equation (3) can be absorbed into the neutrino
wave functions, leaving no effect in the observables. In Part II, we will use the PDG
convention for convenience to treat the 1–3 exchange symmetry in the helio-perturbation
theory [4] and its UV extension.
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2.2. Symmetry Finder (SF) in Vacuum

The idea of SF has a simple realization in a vacuum where the flavor eigenstate ν is
related to the mass eigenstate ν̄ using the SOL convention U matrix (3)

ν “ Uν̄ “ U23pθ23qU13pθ13qU12pθ12, δqν̄. (5)

Then, one can easily prove the relation

U12pθ12, δq

»
–

ν1
ν2
ν3

fi
fl “ U12

´
θ12 ` π

2
, δ

¯
»
–

´eiδν2
e´iδν1

ν3

fi
fl “ U12

´ π

2
´ θ12, δ ˘ π

¯
»
–

eiδν2
´e´iδν1

ν3

fi
fl. (6)

Hereafter, the state ν1 denotes the one with the largest νe component. The state ν2 is
the one that is separated from the state ν1 by the mass squared difference
m2

2 ´ m2
1 ” ∆m2

solar » 7.5 ˆ 10´5 eV2 ą 0.
As we stated above, the relation (6) implies symmetry [40]. The first equality means

that the use of θ1
12 “ θ12 ` π

2 and the exchanged (and rephased) mass eigenstates 1 Ø 2
produces the same oscillation probability. Since rephasing does not affect the observables,
the first equality in Equation (6) implies 1–2 exchange symmetry under the transformation

Symmetry IA-vacuum: m2
1 Ø m2

2, c12 Ñ ´s12, s12 Ñ c12. (7)

The existence of an alternative choice, c12 Ñ s12 and s12 Ñ ´c12 (θ12 Ñ θ12 ´ π
2 ),

should be understood. Similarly, the second equality in (6) implies the symmetry of the
probability under the transformation

Symmetry IB-vacuum: m2
1 Ø m2

2, c12 Ø s12, δ Ñ δ ˘ π. (8)

2.3. Symmetry Finder in Matter

In the exact diagonalization scheme of Zaglauer and Schwarzer (ZS) [44], the Hamilto-
nian is formally identical to that in a vacuum apart from the replacements of the mixing
angles θij to the matter-dressed ones θ̃ij, δ Ñ δ̃, and the eigenvalues m2

i Ñ λi (i, j “ 1, 2, 3).
Therefore, the symmetries (7) and (8) are easily elevated to Symmetry IA-ZS and IB-ZS
with the fully matter-dressed variables [3,40].

Let us move into the more manageable approximate frameworks. Within the νSM, so
far, the following two types of the reparametrization symmetry are identified and analyzed.

• Eight reparametrization symmetries of the 1–2 state exchange type in DMP [3].
• Sixteen reparametrization symmetries of the 1–3 state exchange type in the helio-

perturbation theory [4].

The list will be enriched after Section 4 below by

• Eight reparametrization symmetries of the 1–2 state exchange type in the solar reso-
nance perturbation (SRP) theory.

Notice that the obtained symmetries are so numerous, including the ZS symmetries
above, that they cannot occur by accident. A certain nontrivial structure must be be-
hind the appearance of so many symmetries. This then suggests that the existence of
the reparametrization symmetry is universal in neutrino oscillation in matter. We shall
introduce the various symmetries that appear in several different theories in a step-by-step
manner and try to understand their structure in this article.

2.4. Reparametrization Symmetry in DMP

To formulate SF in matter, we need the expression of the flavor basis state ν in terms of
the mass eigenstate ν̄ analogous to Equation (5) in a vacuum. This can be computed with
the V matrix method [33], which will be explained in Section 3.4 for the SRP theory. Here,
we simply want to show the “atmosphere” of how SF works to find symmetry in matter.
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Hence, we quote the expression of the flavor basis state in terms of the mass eigenstate to
the first order in the DMP perturbation theory computed in ref. [3]:

»
–

νe

νµ

ντ

fi
fl “ U23pθ23qU13pφqU12pψ, δq

ˆ

$
’’&
’’%

1 ` ǫc12s12 sinpφ ´ θ13q

»
——–

0 0 ´sψ
∆m2

ren
λ3´λ1

0 0 cψe´iδ ∆m2
ren

λ3´λ2

sψ
∆m2

ren
λ3´λ1

´cψeiδ ∆m2
ren

λ3´λ2
0

fi
ffiffifl

,
//.
//-

»
–

ν1
ν2
ν3

fi
fl, (9)

where ψ and φ denote, respectively, θ12 and θ13 in matter. cψ and sψ are shorthand nota-
tions for cos ψ and sin ψ, respectively. ǫ is the unique expansion parameter in the DMP
perturbation theory and is defined as

ǫ ” ∆m2
21

∆m2
ren

, ∆m2
ren ” ∆m2

31 ´ s2
12∆m2

21, (10)

where ∆m2
ren is the “renormalized” atmospheric ∆m2 used in ref. [6]. The same quantity is

known as the effective ∆m2
ee in the νe Ñ νe channel in vacuum [45]. While we prefer the

usage of ∆m2
ren in the context of the present paper, the question of which symbol should

be appropriate to use here is under debate [6]. The authors of ref. [46] make the choice
alternative to ours.

With Equation (9), we write down the equation similar to Equation (6) in a vacuum.
The added first-order structure in Equation (9) leads to a proliferation of the reparametriza-
tion symmetries, the eight DMP symmetries [3], as tabulated in Table 1. To see how the SF
equation is actually formulated and solved, please wait until Sections 4.1 and 4.2, in which
the SRP theory is treated.

Table 1 must be used with care. Here, we must focus on the first three columns of
Table 1, in which the informations of the νSM DMP symmetry are tabulated [3]. The fourth
column is added to display the rα parameter transformation property for the DMP-UV
perturbation theory [5], a UV-extended version of the DMP theory [31] to be discussed
later. The α parametrization [35] will be used to describe the non-unitary mixing matrix,
as defined in Equation (37) in Section 6.1, and rα denotes the α parameters in the SOL
convention. For the definition of rα, see Equation (A3) in Appendix A. The fourth column
will be useful for a comparison with the case of the UV extended helio-perturbation theory,
which will be discussed in Sections 7 and 8.

Readers may be anxious to know how Table 1 is obtained. If it is a burning question
for a reader, he/she can turn to ref. [3] to reproduce the results in the first three columns or
ref. [5] for all the four columns. However, instead, we move on to the SRP theory to see the
new symmetry results, where we meet a very similar structure to DMP. As our intuition
told us in Section 1, the theory will have the symmetries of the 1–2 state exchange type.
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Table 1. Summary of the reparametrization symmetries of the 1–2 state exchange type in the DMP
and DMP-UV perturbation theories. The column “Type” shows the symmetry type. For the νSM
DMP, look at the first three columns only: the symmetry denoted as “X” in the Type column is referred
to as “Symmetry X-DMP” in the text. For the DMP-UV perturbation theory, the fourth column must
be included in addition to the first three columns to show the rα parameters’ transformation, and the
symmetry is denoted as “Symmetry X-DMP-UV”.

Type Vacuum Parameter Transf. Matter Parameter Transf. UV Parameter Transf.

IA none λ1 Ø λ2, cψ Ñ ¯sψ, sψ Ñ ˘cψ none

IB θ12 Ñ ´θ12, δ Ñ δ ` π. λ1 Ø λ2, cψ Ñ ˘sψ, sψ Ñ ˘cψ none

IIA θ23 Ñ ´θ23, θ12 Ñ ´θ12. λ1 Ø λ2, cψ Ñ ˘sψ, sψ Ñ ˘cψ rαµe Ñ ´rαµe, rατµ Ñ ´rατµ

IIB θ23 Ñ ´θ23, δ Ñ δ ` π. λ1 Ø λ2, cψ Ñ ¯sψ, sψ Ñ ˘cψ same as IIA

IIIA θ13 Ñ ´θ13, θ12 Ñ ´θ12. λ1 Ø λ2, φ Ñ ´φ rαµe Ñ ´rαµe, rατe Ñ ´rατe

cψ Ñ ˘sψ, sψ Ñ ˘cψ

IIIB θ13 Ñ ´θ13, δ Ñ δ ` π. λ1 Ø λ2, φ Ñ ´φ same as IIIA
cψ Ñ ¯sψ, sψ Ñ ˘cψ

IVA θ23 Ñ ´θ23, θ13 Ñ ´θ13. λ1 Ø λ2, φ Ñ ´φ rατe Ñ ´rατe, rατµ Ñ ´rατµ

cψ Ñ ¯sψ, sψ Ñ ˘cψ

IVB θ23 Ñ ´θ23, θ13 Ñ ´θ13, λ1 Ø λ2, φ Ñ ´φ same as IVA
θ12 Ñ ´θ12, δ Ñ δ ` π. cψ Ñ ˘sψ, sψ Ñ ˘cψ

3. Solar Resonance Perturbation Theory

The solar resonance perturbation (SRP) theory [7], one of the locally valid theories,
aims at describing physics around the solar-scale resonance. In this section, we briefly re-
view the SRP theory toward investigation of the reparametrization symmetry in the theory.

3.1. Three Active-Neutrino System with Unitary Flavor Mixing Matrix

We start by defining the standard three neutrino evolution system in matter. It is
defined by the Schrödinger equation in the vacuum mass eigenstate basis, the “check basis”,

i
d

dx
ν̌ “ 1

2E

$
&
%

»
–

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

fi
fl ` U:

»
–

a ´ b 0 0
0 ´b 0
0 0 ´b

fi
flU

,
.
-ν̌ ” Ȟν̌. (11)

In Equation (11), which defines the check basis Hamiltonian Ȟ, U denotes the 3 ˆ 3
unitary flavor mixing matrix, which relates the flavor basis neutrino state ν to the vacuum
mass eigenstates as

να “ Uαi ν̌i. (12)

Hereafter, the subscript Greek indices α, β, or γ run over e, µ, τ, and the Latin indices
i, j run over the mass eigenstate indices 1, 2, and 3. E is the neutrino energy, and ∆m2

ji ”
m2

j ´ m2
i . The usual phase redefinition of neutrino wave function is carried out to leave

only the mass squared differences. Notice, however, that doing or undoing this phase
redefinition does not affect our symmetry discussion in this article.

The functions apxq and bpxq in Equation (11) denote the Wolfenstein matter poten-
tials [19] due to charged current (CC) and neutral current (NC) reactions, respectively,

apxq “ 2
?

2GF NeE « 1.52 ˆ 10´4
ˆ

Yeρ

g cm´3

˙ˆ
E

GeV

˙
eV2,

bpxq “
?

2GF NnE “ 1
2

ˆ
Nn

Ne

˙
a, (13)
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where GF is the Fermi constant. Ne and Nn are the electron and neutron number densities
in matter. ρ and Ye denote, respectively, the matter density and number of electrons per
nucleon in matter. These quantities, except for GF, are, in principle, position dependent.
Until reaching Section 9, however, we take the uniform matter density approximation.

In the νSM unitary three-neutrino system, the NC potential bpxq does not affect the
neutrino flavor change, because it comes as the unit matrix in flavor space. However,
it is included in Equation (11) for use in our discussion of the system with non-unitary
in Section 6 in Part II and to show the relationship between the NC and the CC matter
potentials. In discussions in Part I, we simply set bpxq “ 0.

3.2. Region of Validity of the Solar Resonance Perturbation (SRP) Theory

The SRP theory [7] aims at describing physics around the solar-scale enhancement,
or the resonance; see, e.g., refs. [47–50] for the pioneering discussions on physics in this
region. Given the formula

∆m2
21L

4E
“ 0.953

˜
∆m2

21

7.5 ˆ 10´5eV2

¸ˆ
L

1000km

˙ˆ
E

100MeV

˙´1

, (14)

the SRP theory will be valid in a region around neutrino energy E “ p1 ´ 5q ˆ 100 MeV and
baseline L “ p1 ´ 10q ˆ 1000 km; see Figure 1. In this region, the matter potential a defined
in Equation (13) is comparable in size to the vacuum effect represented by ∆m2

21,

ra ” a

∆m2
21

“ 0.609

˜
∆m2

21

7.5 ˆ 10´5 eV2

¸´1˜
ρ

3.0 g/cm3

¸ˆ
E

200 MeV

˙
„ Op1q. (15)

Therefore, this perturbative framework must be able to describe the solar-scale reso-
nance [19,22,23].

3.3. Solar-Resonance Perturbation Theory in Brief

For convenience in discussion of the 1–2 exchange symmetry, we use the SOL con-
vention of the U matrix (3) to construct the SRP theory, as in ref. [51]. We transform to the
tilde basis rν “ U12pθ12, δqν̌ “ U:

13pθ13qU:
23pθ23qν with the Hamiltonian rH “ U12pθ12, δqȞU:

12
pθ12, δq. We decompose rH as

rH “ 1
2E

»
–

s2
12∆m2

21 ` c2
13a c12s12eiδ

∆m2
21 0

c12s12e´iδ
∆m2

21 c2
12∆m2

21 0
0 0 ∆m2

31 ` s2
13a

fi
fl ` 1

2E

»
–

0 0 c13s13a
0 0 0

c13s13a 0 0

fi
fl

” rH0 ` rH1, (16)

where we have defined rH0 ( rH1) as the first (second) term in Equation (16). We then
transform to the “hat basis”

ν̂ “ U:
12pϕ, δqrν “ U:

12pϕ, δqU:
13pθ13qU:

23pθ23qν, (17)

where U12pϕ, δq is parametrized as

U12pϕ, δq “

»
–

cos ϕ eiδ sin ϕ 0
´e´iδ sin ϕ cos ϕ 0

0 0 1

fi
fl, (18)
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and is determined so that Ĥ0 “ U:
12pϕ, δq rH0U12pϕ, δq is diagonal. The condition entails

cos 2ϕ “ cos 2θ12 ´ c2
13rab`

cos 2θ12 ´ c2
13ra

˘2 ` sin2 2θ12

,

sin 2ϕ “ sin 2θ12b`
cos 2θ12 ´ c2

13ra

˘2 ` sin2 2θ12

, (19)

where ra is defined in Equation (15). This equation defines the matter-dressed θ12, the
effective mixing angle which governs the 1–2 space rotation in matter.

To organize the perturbative expansion in an intelligent way, we decompose the hat-
basis Hamiltonian Ĥ into the zeroth-order and the first-order terms, Ĥ0 and Ĥ1, respectively,
as Ĥ “ Ĥ0 ` Ĥ1, where

Ĥ0 “ 1
2E

»
–

λ1 0 0
0 λ2 0
0 0 λ3

fi
fl, Ĥ1 “ 1

2E

»
–

0 0 cϕc13s13a

0 0 sϕc13s13e´iδa

cϕc13s13a sϕc13s13eiδa 0

fi
fl, (20)

where cϕ ” cos ϕ and sϕ ” sin ϕ. The zeroth-order eigenvalues are given by

λ1 “ sin2pϕ ´ θ12q∆m2
21 ` cos2 ϕc2

13a,

λ2 “ cos2pϕ ´ θ12q∆m2
21 ` sin2 ϕc2

13a,

λ3 “ ∆m2
31 ` s2

13a. (21)

The SRP theory is defined as the perturbation theory with the unperturbed Hamilto-
nian Ĥ0, which is perturbed by the first-order Hamiltonian Ĥ1. For more about the unique
feature of the SRP theory, see Section 3.5.

3.4. V Matrix Method

The formulation of Symmetry Finder (SF) [3–5] heavily relies on the V matrix method [33].
Therefore, we start from the exposition of the method. The V matrix method is also one
of the ways of computing the oscillation probability; see, for example, refs. [6,8]. Once we
have the expression of the flavor eigenstate να in terms of the mass eigenstate basis ν̄i in
matter as

να “ Vαi ν̄i (22)

the oscillation probability can readily be calculated in complete parallelism with the case in
a vacuum by replacing the U matrix by the V matrix as

Ppνβ Ñ ναq “
ˇ̌
ˇ̌
ˇ

ÿ

i

VαiV
˚
βi e´i

λi x
2E

ˇ̌
ˇ̌
ˇ

2

“ δαβ ´ 4
ÿ

jąi

RerVαiV
˚
βiV

˚
αjVβjs sin2 pλj ´ λiqx

4E
´ 2

ÿ

jąi

ImrVαiV
˚
βiV

˚
αjVβjs sin

pλj ´ λiqx

2E
(23)

assuming the adiabaticity of the neutrino evolution in matter, where x denotes the baseline.
Let us compute the V matrix elements to the first order in the SRP theory. In per-

turbation theory to the first order in Ĥ1, the mass eigenstate in matter can be written as

ν̄i “ ν̂
p0q
i ` ν̂

p1q
i , and hence ν̄i “ ν̂

p0q
i in the lowest order. Inverting the state relationship in

Equation (17), we obtain at the zeroth order

ν “ U23pθ23qU13pθ13qU12pϕ, δqν̂p0q ” Vp0qν̂p0q, (24)
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which defines the zeroth-order V matrix.
We calculate the first-order correction to the hat basis wave functions. Using the

familiar perturbative formula for the wave functions, we have

ν̂
p1q
i “

ÿ

j‰i

2EpĤ1q˚
ji

λi ´ λj
ν̂

p0q
j (25)

with Ĥ1 in (20), and the λi are the eigenvalues of 2EĤ0; see (21). See also ref. [5] for a

clarifying remark on this computation. Using the result of ν̂
p1q
i from Equation (25), the mass

eigenstate is given to the first order in SRP theory as

»
–

ν̂1
ν̂2
ν̂3

fi
fl “

»
—–

1 0 ´ cϕc13s13a
λ3´λ1

0 1 ´ sϕc13s13a
λ3´λ2

e´iδ

cϕc13s13a
λ3´λ1

sϕc13s13a
λ3´λ2

eiδ 1

fi
ffifl

»
—–

ν̂
p0q
1

ν̂
p0q
2

ν̂
p0q
3

fi
ffifl

“

»
—–

1 0 ´ cϕc13s13a
λ3´λ1

0 1 ´ sϕc13s13a
λ3´λ2

e´iδ

cϕc13s13a
λ3´λ1

sϕc13s13a
λ3´λ2

eiδ 1

fi
ffiflrU23pθ23qU13pθ13qU12pϕ, δqs:

»
–

νe

νµ

ντ

fi
fl ” V:

»
–

νe

νµ

ντ

fi
fl,

using Equation (24) in the second line. Inverting this relation, we obtain

»
–

νe

νµ

ντ

fi
fl “ U23pθ23qU13pθ13qU12pϕ, δq

"
1 ` Wpϕ, δ; λ1, λ2q

*»
–

ν̂1
ν̂2
ν̂3

fi
fl ” V

»
–

ν̂1
ν̂2
ν̂3

fi
fl, (26)

where Wpθ13, ϕ, δ; λ1, λ2q is defined by

Wpθ13, ϕ, δ; λ1, λ2q ” c13s13

»
—–

0 0 cϕa
λ3´λ1

0 0 sϕa
λ3´λ2

e´iδ

´ cϕa
λ3´λ1

´ sϕa
λ3´λ2

eiδ 0

fi
ffifl. (27)

Equation (26) defines the V matrix to the first order in expansion.
Notice the remarkable similarity between the V matrix expressions of the flavor state

in Equation (9) (DMP) and Equation (26) (SRP). Not so surprisingly, the symmetry structure
of the SRP theory is akin to that of DMP, as shown in Table 3. In fact, the DMP and SRP are
essentially identical in their leading order apart from yes/no of the matter dressing of θ13,
and we have no surprises on the very similar symmetry structures, apart from a difference
regarding the presence or absence of the φ transformations. However, it is automatically
enforced in DMP because sin 2φ9 sin 2θ13 [8].

We have computed the oscillation probability by inserting the V matrix elements ob-
tained by using Equations (26) and (27) into Equation (23). The calculated results reproduce
the formulas obtained by using the S matrix method to the first order in the SRP theory [7].

3.5. Framework-Generated Effective Expansion Parameter

We remark that the SRP theory has an exceptional feature as a perturbation theory.
Look at the hat basis Hamiltonian, Equation (20). What is peculiar is that the 3-3 element
of Ĥ is of order λ3 „ ∆m2

31, whereas all the other elements, the eigenvalues λ1 and λ2,
as well as the only non-vanishing off-diagonal elements in Ĥ1, are of order ∆m2

21 „ a.
Therefore, the perturbative Hamiltonian is not small compared to the first 2 ˆ 2 block of the
unperturbed Hamiltonian, both in Ĥ and rH.

Then, the question is: How does the SRP work as the perturbation theory? The answer
is that it works because of the new effective expansion parameter, which emerges from
the framework itself. Recall the V matrix computation in Section 3.4. All the first-order
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correction terms are inversely proportional to λ3 ´ λ1 or λ3 ´ λ2. The feature stems from the
special structure of Ĥ1, whose non-vanishing elements exist only in the 3-i and i-3 (i “ 1, 2)
elements, as seen in Equation (20). Then, the large denominator with λ3 » ∆m2

31 " a acts
as a suppression factor, the propagator suppression. The suppression factor can be read off
from the first-order V matrix as

Aexp ” c13s13

ˇ̌
ˇ̌ a

∆m2
31

ˇ̌
ˇ̌ “ 2.78 ˆ 10´3

˜
∆m2

31

2.4 ˆ 10´3 eV2

¸´1˜
ρ

3.0 g/cm3

¸ˆ
E

200 MeV

˙
. (28)

Aexp acts as an effective expansion parameter, which is a factor of 10 smaller than
∆m2

21{∆m2
31 » 0.03. As a consequence, the agreement with only the leading-order term in

the probability is shown to be quite good [7].

4. Symmetry in the Solar-Resonance Perturbation Theory

We investigate the reparametrization symmetry in the SRP theory. We derive the SF
equation, a powerful machinery to identify the symmetries, and obtain the solutions given
in Table 3. What we do first is to embody the general statement of symmetry in Equation (2)
in the SRP theory.

4.1. Symmetry Finder Equation in the SRP Theory

To prepare the first state in the right-hand side of Equation (2), we define an alternative
but physically equivalent state to that in Equation (26),

F

»
–

νe

νµ

ντ

fi
fl “ FU23pθ23qU13pθ13qU12pϕ, δqR:R

"
1 ` Wpθ13, ϕ, δ; λ1, λ2q

*
R:R

»
–

ν1
ν2
ν3

fi
fl, (29)

where Wpθ13, ϕ, δ; λ1, λ2q is defined in Equation (27). In Equation (29), we have introduced
the flavor-state rephasing matrix F and the generalized 1–2 state exchange matrix R, which
are defined by

F ”

»
–

eiτ 0 0
0 eiσ 0
0 0 1

fi
fl, R ”

»
–

0 ´eipδ`αq 0
e´ipδ`βq 0 0

0 0 1

fi
fl. (30)

The flavor-state rephasing F does not affect the observables because it can be absorbed
by the neutrino states, and inserting unity, R:R “ 1, is of course harmless. However, in
fact, the F matrix actually plays a role: without it, we would miss several symmetries we
are going to uncover with F [3–5]. Moreover, the state exchange matrix R and F form a
complex system composed of the phases τ, σ, α, and β, and they come in to the SF equation
to produce the coupled nontrivial solutions. Notice that the rephasing matrices, both F
and R in Equation (30), take the nonvanishing, nontrivial (not unity) elements in the 1–2
sub-sector because we restrict ourselves into the 1–2 state exchange symmetry in this theory.

Now, we demand that the state defined in Equation (29) must be written by the flavor
state, but with the transformed parameters, which are denoted with the primed symbol.
That is, the transformations are such that ϕ Ñ ϕ1, θ23 Ñ θ1

23, θ13 Ñ θ1
13, and δ Ñ δ1, which

becomes symmetry transformations if the SF equation has a solution. This is equivalent
to preparing the second state in the right-hand side of Equation (2). Using the notation
δ1 “ δ ` ξ, and the abbreviated notations s1

13 ” sin θ1
13 and c1

13 ” cos θ1
13 and the same for

θ23, and ϕ for later use, the SF equation in the SRP theory reads:
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»
–

eiτ 0 0
0 eiσ 0
0 0 1

fi
fl

»
–

νe

νµ

ντ

fi
fl

“

»
–

1 0 0
0 c23 s23eiσ

0 ´s23e´iσ c23

fi
fl

»
–

c13 0 s13eiτ

0 1 0
´s13e´iτ 0 c13

fi
flFU12pϕ, δqR:R

"
1 ` Wpθ13, ϕ, δ; λ1, λ2q

*
R:R

»
–

ν1
ν2
ν3

fi
fl

“

»
–

1 0 0
0 c1

23 s1
23

0 ´s1
23 c1

23

fi
fl

»
–

c1
13 0 s1

13
0 1 0

´s1
13 0 c1

13

fi
flU12pϕ1, δ ` ξq

"
1 ` Wpθ1

13, ϕ1, δ ` ξ; λ2, λ1q
*»

–
´eipδ`αqν2

e´ipδ`βqν1
ν3

fi
fl. (31)

As became explicit in Equation (31), the vacuum angles θ23 and θ13, in general, trans-
form under the symmetry transformations after the phase redefinition F in the flavor
eigenstate is introduced. It is one of the most interesting features of the SF equation in
matter [3–5].

4.2. The First and the Second Conditions and Their Solutions

We look for the solution of the SF equation under the ansatz s23eiσ “ s1
23 and s13eiτ “

s1
13, because apparently we have no other choice within the present SF formalism. The

ansatz leads to the two consequences: (1) the possible values of τ and σ are restricted to
integer multiples of π; (2) the SF Equation (31) can be decomposed into the following first
(first line) and the second (second line) conditions:

FU12pϕ, δqR: “ U12pϕ1, δ ` ξq,

RWpθ13, ϕ, δ; λ1, λ2qR: “ Wpθ1
13, ϕ1, δ ` ξ; λ2, λ1q. (32)

One can show that the first condition can be reduced to

cϕ1 “ ´sϕe´ipα´τq “ ´sϕeipβ`σq, sϕ1 “ cϕeipβ`τ´ξq “ cϕe´ipα´σ´ξq. (33)

We note that under the above restriction of τ and σ being integer multiples of π,
Equation (33) implies that all the rest of the phase parameters, ξ, α, and β, must also be
integer multiples of π [3]. This is the key property that emerges from the first condition,
which restricts the solution space in the SF framework in its current form. The solutions of
the first condition (33) are summarized in Table 2.

The readers might be puzzled by “Symmetry Xf” in the first column, in which “f”
implies flipping the sign of s12 because it was absent in the DMP symmetries in Table 1. It
is a characteristically new feature of the 1–3 exchange symmetry in the helio-perturbation
theory [4], as will be explained in Section 8.

Table 2. The universal solution of the first conditions, which are common to the SRP (Section 4.2),
DMP [3], and the helio- and helio-UV perturbation theories (Section 7.2). For the former two
symmetries, the symmetry symbols with “f” (s12 sign flip), such as Symmetry Xf, must be ignored in
the first column.

Symmetry τ, σ, ξ α, β

IA, IAf τ “ σ “ 0, ξ “ 0 α “ β “ 0 (upper)
α “ π, β “ ´π (lower)

IB, IBf τ “ σ “ 0, ξ “ π α “ π, β “ ´π (upper)
α “ β “ 0 (lower)
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Table 2. Cont.

Symmetry τ, σ, ξ α, β

IIA, IIAf τ “ 0, σ “ ´π, ξ “ 0 α “ π, β “ 0 (upper)
α “ 0, β “ π (lower)

IIB, IIBf τ “ 0, σ “ ´π, ξ “ π α “ 0, β “ π (upper)
α “ π, β “ 0 (lower)

IIIA, IIIAf τ “ π, σ “ 0, ξ “ 0 α “ 0, β “ π (upper)
α “ π, β “ 0 (lower)

IIIB, IIIBf τ “ π, σ “ 0, ξ “ π α “ π, β “ 0 (upper)
α “ 0, β “ π (lower)

IVA, IVAf τ “ σ “ π, ξ “ 0 α “ π, β “ ´π (upper)
α “ β “ 0 (lower)

IVB, IVBf τ “ σ “ π, ξ “ π α “ β “ 0 (upper)
α “ π, β “ ´π (lower)

In fact, the solutions of the first condition possess interesting universal properties.
Because only the νSM part of the theory comes in to the first condition, the solution is
universal in the SRP, DMP [3], and the helio-perturbation theories [4]. The property holds
also in the DMP-UV [5] and the helio-UV perturbation theories, the latter of which is
to be discussed in Sections 6–8. The fact that the universal solution applies to the helio-
and the helio-UV perturbation theories is nontrivial because the 1–3 exchange is involved.
However, via a smart choice of the R matrix, etc., one can make the solutions identical
among these theories [4]. Thus, Table 2 serves not only for the SRP but also for the DMP
and helio-perturbation theories, including their UV extensions. The symmetry with symbol
“f” (s12 sign flip) applies only to the one in the helio- and helio-UV perturbation theories.

The second condition in Equation (32) reads:

c13s13

»
—–

0 0 ´eiαsϕ
a

λ3´λ2

0 0 e´ipδ`βqcϕ
a

λ3´λ1

e´iαsϕ
a

λ3´λ2
´eipδ`βqcϕ

a
λ3´λ1

0

fi
ffifl

“ c1
13s1

13

»
—–

0 0 c1
ϕ

a
λ3´λ2

0 0 e´ipδ`ξqs1
ϕ

a
λ3´λ1

´c1
ϕ

a
λ3´λ2

´s1
ϕeipδ`ξq a

λ3´λ1
0

fi
ffifl. (34)

One can examine the solutions of Equation (34) one-by-one for the given solutions
of the first condition in Table 2. This straightforward calculation is left for the interested
readers. The solutions obtained in such an exercise consist of the symmetries tabulated in
Table 3.

Table 3. All the reparametrization symmetries of the 1–2 state exchange type found in the solar-
resonance perturbation theory are tabulated as “Symmetry X”, a shorthand of “Symmetry X-SRP”. In
this table, the notations are such that λj (j “ 1, 2) are the first two eigenvalues of 2EH, and ϕ denotes
θ12 in matter.

SRP Symmetry Vacuum Parameter Transformations Matter Parameter Transformations

Symmetry IA none λ1 Ø λ2, cϕ Ñ ¯sϕ, sϕ Ñ ˘cϕ.

Symmetry IB θ12 Ñ ´θ12, δ Ñ δ ` π. λ1 Ø λ2, cϕ Ñ ˘sϕ, sϕ Ñ ˘cϕ.

Symmetry IIA θ23 Ñ ´θ23, θ12 Ñ ´θ12. λ1 Ø λ2, cϕ Ñ ˘sϕ, sϕ Ñ ˘cϕ.
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Table 3. Cont.

SRP Symmetry Vacuum Parameter Transformations Matter Parameter Transformations

Symmetry IIB θ23 Ñ ´θ23, δ Ñ δ ` π. λ1 Ø λ2, cϕ Ñ ¯sϕ, sϕ Ñ ˘cϕ.

Symmetry IIIA θ13 Ñ ´θ13, θ12 Ñ ´θ12. λ1 Ø λ2, cϕ Ñ ˘sϕ, sϕ Ñ ˘cϕ.

Symmetry IIIB θ13 Ñ ´θ13, δ Ñ δ ` π. λ1 Ø λ2, cϕ Ñ ¯sϕ, sϕ Ñ ˘cϕ.

Symmetry IVA θ23 Ñ ´θ23, θ13 Ñ ´θ13 λ1 Ø λ2, cϕ Ñ ¯sϕ, sϕ Ñ ˘cϕ.

Symmetry IVB θ23 Ñ ´θ23, θ13 Ñ ´θ13, λ1 Ø λ2,
θ12 Ñ ´θ12, δ Ñ δ ` π. cϕ Ñ ˘sϕ, sϕ Ñ ˘cϕ.

4.3. Symmetries of the 1–2 and 1–3 State Exchange Types in νSM

Together with the results obtained in ref. [4], we have confirmed our physical picture
that the symmetries of the 1–2 and 1–3 state exchange types exist in the solar and atmo-
spheric resonance regions, respectively. Notice that ref. [4] is, so far, the unique case in
which the 1–3 state exchange symmetry is found and discussed.

What is the relationship between the 1–2 symmetry in DMP and the 1–3 symmetry
in the helio-perturbation theory? It is shown that there exists a limiting procedure, the
ATM limit, by which DMP approaches to the helio-perturbation theory [52]. Then, the
natural question would be: what happens in the 1–2 exchange symmetry under such
a limit in DMP? Does it have something to do with the 1–3 exchange symmetry in the
helio-perturbation theory? The answer is no, to our understanding. In taking such a limit
in DMP, we enter into the regions cψ Ñ 0 (sψ Ñ 0) for the normal mass ordering (inverted
mass ordering). In both cases, sin 2ψ Ñ 0, and ψ degrees of freedom are frozen. Therefore,
by the ATM limit, the whole DMP theory turns into the helio-perturbation theory, and no
remnant of the ψ symmetry is left. This is related to the fact that the ATM limit is called the
“operational limit” in ref. [31].

After the comparative treatment of the 1–2 exchange symmetries in the DMP and SRP
theories, whose symmetry results are summarized in Tables 1 and 3, respectively, we must
go on to discuss the 1–3 symmetry in the helio-perturbation theory. However, we will
do it in an extended framework, which includes non-unitarity, a promising method for
discussing physics beyond the νSM at high or low scales.

5. Symmetry in Three-Neutrino System with Non-Unitarity

Now, we enter into Part II, in which we change gears. Thus far, we have discussed the
reparametrization symmetry within the νSM frameworks. From now on, we jump into the
theory of neutrino oscillation in matter with a non-unitary flavor mixing matrix.

It is a very popular idea that the νSM provides only an incomplete picture of our world.
A well-known concrete model describing the departure from the νSM is the existence of
low-mass neutral leptons, the sterile neutrinos; see, e.g., refs. [53–55]. In a more generic
context, possible deviation from νSM is extensively discussed in the framework called
non-standard interactions (NSI) [19,56–61], and non-unitarity, neutrino evolution with
non-unitary flavor mixing matrix [34,35,37,38]; see, e.g., refs. [62–65] for reviews of NSI,
refs. [66–69] for constraints on NSI, and refs. [39,51,70–80] for a limited list of the remaining
articles on non-unitarity.

In this paper, we focus on a non-unitarity approach to new physics beyond νSM. For
our purpose of understanding the implications of the symmetry in neutrino oscillation, we
feel that non-unitarity is a better framework to try first. This is because the generic NSI
are much less constrained frameworks than non-unitarity. It typically has 25 parameters
in addition to the νSM ones by including the production, propagation, and detection NSI.
(The precise number of degrees of freedom is model-dependent, such as doing independent
counting of neutron and proton NSI or not, and is not the real concern here. The one given
above for NSI is based on 8 from propagation and 9 + 9 ´ 1 (overall phase) from production
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and detection.) Conversely, non-unitarity has only 9, see Section 6.1. By construction, the
method of modification of the active three-flavor neutrino sector due to new physics at
high or low scales is not arbitrary, but determined by a UV-producing new physics sector;
see discussions in, e.g., refs. [34,38].

An interesting question would then be whether consideration of the reparametrization
symmetry affects our understanding of the theory with non-unitarity. To address such a
question in a reliable manner, we must: (1) establish the theoretical framework of neutrino
oscillation in matter to include the effect of UV, and (2) perform the SF analysis in such
a way that the internal consistency between the constraints coming from the “genuine
non-unitary” and “unitary evolution” parts is met [39]; see Section 8. The first task is
carried out by formulating the “DMP-UV” perturbation theory [31] and the “helio-UV”
perturbation theory [39] corresponding to their νSM versions. Moreover, the consistent
SF analysis for the symmetry in the DMP-UV perturbation theory is carried out, and the
results are reported in ref. [5]. The resulting eight symmetries, Symmetry X-DMP-UV (X =
IA, IB, ¨ ¨ ¨, IVB), are copied from this reference to Table 1.

A remark on the DMP-UV perturbation theory: In the sterile neutrino model, it does
not necessarily provide an adequate description of such models in the whole kinematical
region. For example, if the sterile mass is the „ eV scale, there exist resonances at an energy
of Op1q TeV [81,82], which are outside the validity of the framework. This problem can be
avoided if we remain in |ρE| À 100 pg/cm3q GeV, as discussed in ref. [31]. In a related but
different approach, an extended DMP-like theory with a sterile neutrino is formulated in
ref. [83], but the Op1q TeV resonance is not covered in its current treatment.

Therefore, what is lacking in symmetry discussion in the UV-extended theories, within
our present scope of SF, is to analyze the reparametrization symmetry in the helio-UV
perturbation theory. This will be the remaining goal in this article, to which we will devote
the rest of this paper.

Since the symmetry structure of the SPR theory is so akin to the one in DMP, we do
not try to extend our study to the SRP-UV theory. However, since such a UV extended
SRP theory is formulated in ref. [51], one can easily proceed toward the task whenever the
demand exists.

6. The Helio-UV Perturbation Theory

This section is meant to be a brief review of the helio-UV perturbation theory with a
non-unitary flavor mixing matrix [39], a UV extended version of the helio-perturbation
theory [6]. Throughout Part II, we use the PDG convention [42] for the U matrix because
we are going to discuss the 1–3 exchange symmetry [4].

Despite the difference in the theory-treated and the state exchange types in the sym-
metries, many of the features of the discussions from Section 6 through Section 9 are very
similar to the ones in ref. [5], in which the symmetry of the DMP-UV-perturbation theory is
discussed. (The merit of such similarity is that by going through Section 6 through Section 9
in this paper, the readers not only understand symmetry in the helio-UV perturbation
theory but also can have a very good idea on what DMP-UV symmetry is, and vice versa.)
Nonetheless, we go through the whole SF formulation in the helio-UV perturbation theory
because a factor of two larger number of symmetries necessitates an independent SF analy-
sis, and the detailed differences often matter. This entails the intriguing differences between
the helioP-UV and DMP-UV symmetries in the α and the rα transformation properties and
the structure of the rephasing matrices; see Tables 1 and 4 and Appendix B.

6.1. Three-Active-Neutrino System with Non-Unitary Flavor Mixing Matrix

While discussion of the theoretical basis of the system of three active neutrinos prop-
agating under the influence of a non-unitary flavor mixing matrix is highly nontrivial,
we believe that by now, there is a standard method [36,38]. That is, we start from the
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Schrödinger equation in the vacuum mass eigenstate basis, the “check basis”, i d
dx ν̌ “ Ȟν̌,

where Ȟ is given by replacing the U matrix in Equation (11) by the non-unitary N matrix,

Ȟ “ 1
2E

$
&
%

»
–

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

fi
fl ` N:

»
–

a ´ b 0 0
0 ´b 0
0 0 ´b

fi
flN

,
.
-. (35)

N is the 3 ˆ 3 non-unitary flavor mixing matrix, which relates the flavor neutrino
states to the vacuum mass eigenstates as

να “ Nαi ν̌i. (36)

The properties of the Greek and Latin indices are as before. The CC and NC matter
potentials [19] apxq and bpxq, respectively, are defined in Equation (13). We use the uniform
matter density approximation until reaching Section 9.

To parametrize the non-unitarity mixing matrix N, we use the α parametrization [35,84]:

N “ p1 ´ αqUPDG “

$
&
%1 ´

»
–

αee 0 0
αµe αµµ 0
ατe ατµ αττ

fi
fl

,
.
-UPDG, (37)

where UPDG denotes the PDG convention U matrix defined in Equation (4). Notice that the
α matrix defined as in Equation (37) is U matrix convention-dependent [39], and hence, the
one in Equation (37) is defined under the PDG convention. See Appendix A. The diagonal
αββ parameters are real, and the off-diagonal ones αβγ (β ‰ γ) are complex, so that the α

matrix brings in the nine degrees of freedom in addition to the νSM ones.

6.2. Formulating the Helio-UV Perturbation Theory

The renormalized helio-UV perturbation theory has two kind of expansion parameters,
ǫ and UV α parameters. ǫ “ ∆m2

21{∆m2
ren is the one used in the helio-perturbation theory [6],

as well as in the DMP perturbation theory as in Equation (10). The other expansion
parameters are the α matrix elements αβγ in Equation (37), which represent the UV effect.

We start our formulation by transforming to the tilde basis with the Hamiltonian

rH “ pU13U12qȞpU13U12q: “ rHνSM ` rHp1q
UV ` rHp2q

UV , (38)

where U13 and U12 without arguments imply the rotation matrices in a vacuum (4), and

rHνSM “ ∆m2
ren

2E

$
’&
’%

»
—–

apxq
∆m2

ren
` s2

13 ` ǫs2
12 0 c13s13e´iδ

0 ǫc2
12 0

c13s13eiδ 0 c2
13 ` ǫs2

12

fi
ffifl ` ǫc12s12

»
–

0 c13 0
c13 0 ´s13e´iδ

0 ´s13eiδ 0

fi
fl

,
/.
/-

. (39)

In rHνSM in Equation (39), the rephasing to remove the NC potential is understood [39].

We call the first and second terms in Equation (39) rHp0q
νSM and rHp1q

νSM, respectively.
Here is an important note for our nomenclature of the various bases. In both the SRP

and helio-UV perturbation theories, we use the notation “hat basis” for the one with the
diagonalized unperturbed Hamiltonian; see Ĥ in Equation (20) for the SRP and the one in
Equation (48) for the helio-UV perturbation theory. The basis that is one step before the
hat basis, i.e., the one to be diagonalized by a single rotation, is termed the “tilde basis” in
both theories. Therefore, the definition of the tilde basis Hamiltonian differs between the
SRP and helio-UV perturbation theories. The former is defined as rH “ U12ȞU:

12 and given
in Equation (16), and the latter is given in Equations (38) and (39). Notice that the check
basis is the vacuum mass eigenstate basis, which is common to both theories apart from
the difference of with and without the UV effects.
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The UV part in Equation (38) has the first- and second-order terms in the α parameters

rHp1q
UV “ b

2E
U:

23 AU23, rHp2q
UV “ ´ b

2E
U:

23 Ap2qU23, (40)

where

A ”

»
—–

2αee

´
1 ´ apxq

bpxq

¯
α˚

µe α˚
τe

αµe 2αµµ α˚
τµ

ατe ατµ 2αττ

fi
ffifl,

Ap2q ”

»
—–

α2
ee

´
1 ´ apxq

bpxq

¯
` |αµe|2 ` |ατe|2 α˚

µeαµµ ` α˚
τeατµ α˚

τeαττ

αµeαµµ ` ατeα˚
τµ α2

µµ ` |ατµ|2 α˚
τµαττ

ατeαττ ατµαττ α2
ττ

fi
ffifl. (41)

For consistent nomenclature, A must carry the superscript as Ap1q, but for the sim-
plicity of the expressions, we omit it throughout this paper. In what follows, we continue
omitting the superscript p1q for many of the quantities in the first order in the α parameters
because our treatment will be free from the second-order terms apart from in Section 9.

Then, we use U13pφ, δq rotation to diagonalize rHp0q
νSM in Equation (39):

U13pφ, δq: rHp0q
νSMU13pφ, δq “ 1

2E
diagpλνSM

´ , λνSM
0 , λνSM

` q. (42)

where φ denotes the matter-dressed θ13, and the eigenvalues λ´, λ0, λ` are given by

λνSM
´ “ sin2pφ ´ θ13q∆m2

ren ` c2
φa ` ǫs2

12∆m2
ren,

λνSM
0 “ ǫc2

12∆m2
ren,

λνSM
` “ cos2pφ ´ θ13q∆m2

ren ` s2
φa ` ǫs2

12∆m2
ren. (43)

In the helio-perturbation theory [6], λ` and λ´ are always the two states that partici-
pate in the atmospheric level crossing, and λ` “ λ3 and λ´ “ λ2 (λ´ “ λ1) are around the
level crossing in the normal (inverted) mass ordering; see Figure 3 in ref. [6]. Through the
diagonalization procedure, the matter-mixing angle φ is determined as

cos 2φ “ cos 2θ13∆m2
ren ´ a

λνSM
` ´ λνSM

´

,

sin 2φ “ sin 2θ13∆m2
ren

λνSM
` ´ λνSM

´

. (44)

We call the basis with the diagonalized zeroth-order term the hat basis. The first-order
UV term has the form

Ĥ
p1q
UV “ b

2E
U13pφ, δq:U:

23 AU23U13pφ, δq ” b

2E
G. (45)

For later convenience, we parametrize the G matrix elements by factoring out the e˘iδ

factors as

G ”

»
–

H11 e´iδ H12 e´iδ H13
eiδ H21 H22 H23
eiδ H31 H32 H33

fi
fl. (46)

The explicit expressions of Hij are presented in Appendix C.
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6.3. Renormalized Eigenvalue Basis

As in ref. [5], we move to the “renormalized” hat basis, in which the eigenvalues
absorb the diagonal Hii elements

λ´ “ λνSM
´ ` bH11 ´ bH

p2q
11 ,

λ0 “ λνSM
0 ` bH22 ´ bH

p2q
22 ,

λ` “ λνSM
` ` bH33 ´ bH

p2q
33 , (47)

where H
p2q
ij is defined by Equation (46) but by replacing A by Ap2q in Equation (45). For an

explicit form, see Equation (87). Restricting to the first-order νSM and UV terms, the hat
basis Hamiltonian takes the form, using the notation spφ´θ13q ” sinpφ ´ θ13q etc., of

Ĥ “ 1
2E

»
–

λ´ 0 0
0 λ0 0
0 0 λ`

fi
fl ` ǫc12s12

∆m2
ren

2E

»
—–

0 cpφ´θ13q 0
cpφ´θ13q 0 spφ´θ13qe´iδ

0 spφ´θ13qeiδ 0

fi
ffifl

` b

2E

»
–

0 e´iδ H12 e´iδH13
eiδ H21 0 H23
eiδ H31 H32 0

fi
fl. (48)

6.4. Computation of the V Matrix: Zeroth Order

We calculate the V matrix to formulate the SF equation. At the zeroth order, it is easy
to obtain using the knowledge obtained above. The only point we have to pay attention to
is how non-unitarity affects the V matrix. The relationship between the hat (zeroth-order
eigenstate in matter) and the check basis (vacuum mass eigenstate) Hamiltonian is given by

Ĥ “ U13pφ, δq: rHU13pφ, δq “ U13pφ, δq:U13U12ȞU:
12U:

13U13pφ, δq, (49)

with U13 and U12 without arguments implying the ones in vacuum. This means, in terms
of the states, ν̂i “ rU13pφq:U13U12sik ν̌k, or ν̌i “ rU:

12U:
13U13pφ, δqsijν̂j. Then, the flavor state

is connected to the hat-basis state as

να “ tp1 ´ αqUuαi ν̌i “ rp1 ´ αqU23U13U12sαi ν̌i

“ rp1 ´ αqU23pθ23qU13pφ, δqsαjν̂j ”
”
Vp0q ` V

p1q
UV

ı
αj

ν̂j (50)

where we have recovered the vacuum rotation angle θ23 for clarity. Equation (50) reveals
the V matrix in the leading and first orders in the helio-UV perturbation theory. In DMP the
formula corresponding to Equation (50) is: να “ rp1 ´ rαqU23pθ23qU13pφqU12pψ, δqsαjν̄j [5].
We shall treat the α term in (50) as the first-order genuine UV term, so that the V matrix is
given at the zeroth and the first-order UV terms as

Vp0q “ U23pθ23qU13pφ, δq,

V
p1q
UV “ ´αU23pθ23qU13pφ, δq “ ´αVp0q. (51)

6.5. First-Order Correction to the V Matrix

In addition to the α-matrix-origin first-order term V
p1q
UV as given above, the other first-

order correction arises from perturbative corrections due to Ĥp1q. We call the former the
genuine UV part, as in the subscript, and the latter the unitary evolution part, the EV part.
See ref. [39] for these concepts.

Since the computation for the first-order V matrix is exactly parallel to the one in
Section 3.4, we only give the result, leaving the interested readers to follow the steps
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described there. The V matrix representation of the flavor state in the form of Equation (22)
to the first order in the helio-UV perturbation theory is given as

»
–

νe

νµ

ντ

fi
fl “ U23pθ23qU13pφ, δq

"
1 ` W

p1q
νSM ` W

p1q
EV ´ Z

p1q
UV

*»
–

ν̂´

ν̂0
ν̂`

fi
fl. (52)

These first-order terms in Equation (52) are given by

W
p1q
νSMpθ13, θ12, δ, φ; λiq “ ǫc12s12

»
——–

0 ´cpφ´θ13q
∆m2

ren
λ´´λ0

cpφ´θ13q
∆m2

ren
λ´´λ0

0 spφ´θ13qe´iδ ∆m2
ren

λ`´λ0

0 ´spφ´θ13qeiδ ∆m2
ren

λ`´λ0
0

fi
ffiffifl,

W
p1q
EV pθ23, δ, φ; λi, Hijq “

»
—–

0 ´e´iδ H12
b

λ´´λ0
e´iδH13

b
λ`´λ´

eiδ H21
b

λ´´λ0
0 H23

b
λ`´λ0

´eiδ H31
b

λ`´λ´
´H32

b
λ`´λ0

0

fi
ffifl,

Z
p1q
UVpθ23, δ, φ; αβγq “

´
Vp0q

¯:
αVp0q. (53)

The last term, the genuine UV term, may require a comment. It was originally the

´αVp0q term in Equation (51), but we have defined Z
p1q
UV such that

V
p1q
UV “ ´αVp0q “ ´Vp0q

Z
p1q
UV, (54)

to make the expression of the V matrix coherent. The Z
p1q
UV term in Equation (53) is a simple

solution of Equation (54).

6.6. Computation of the Probability with the V Matrix Method

We calculate the oscillation probability with the use of the V matrix method by utilizing
Equation (23). However, since the probability in the νSM part is fully computed in ref. [6],
here we concentrate on the UV-related parts only, the genuine non-unitary (UV) part,
and the unitary evolution (EV) part. See Appendix B in ref. [6] for the expressions of the
probability in the νSM part.

Notice that the calculation in ref. [6] is carried out using the ATM convention (see
Appendix A) of the U matrix. In general, care is needed to translate it to the V matrix
under the present PDG convention. However, the change in convention does not alter the
expression of the oscillation probability in the νSM part, because the rephasing cannot
affect the observables. This statement is true for the UV part as well, but the α parameters
must transform accordingly, as explained in Appendix A.

We restrict ourselves to the νµ Ñ νe channel. This is because we give in Section 9
an all-order proof of the reparametrization symmetry we derive, which is valid in all the

flavor oscillation channels. The genuine non-unitary part Ppνµ Ñ νeqp1q
UV at the first order is

given by

Ppνµ Ñ νeqp1q
UV

“ 2s23 sin 2φ
”
cos 2φRe

´
αµee´iδ

¯
´ pαee ` αµµqs23 sin 2φ

ı
sin2 pλ` ´ λ´qx

4E

´ s23 sin 2φIm
´

αµee´iδ
¯

sin
pλ` ´ λ´qx

2E
. (55)

For this computation, the use of the original form V
p1q
UV “ ´αVp0q is more profitable.

The unitary evolution part Ppνµ Ñ νeqp1q
EV reads
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Ppνµ Ñ νeqp1q
EV

“ sin 2θ23 sin 2φcφRepH21q b

λ´ ´ λ0

"
´ sin2 pλ0 ´ λ´qx

4E
´ sin2 pλ` ´ λ´qx

4E
` sin2 pλ` ´ λ0qx

4E

*

` sin 2θ23 sin 2φsφRepH23q b

λ` ´ λ0

"
´ sin2 pλ0 ´ λ´qx

4E
` sin2 pλ` ´ λ´qx

4E
` sin2 pλ` ´ λ0qx

4E

*

` 4s2
23 cos 2φ sin 2φRepH13q b

λ` ´ λ´
sin2 pλ` ´ λ´qx

4E

´ 2 sin 2θ23 sin 2φ

"
cφImpH21q b

λ´ ´ λ0
` sφImpH23q b

λ` ´ λ0

*

ˆ sin
pλ0 ´ λ´qx

4E
sin

pλ` ´ λ´qx

4E
sin

pλ` ´ λ0qx

4E
. (56)

These results agree with those obtained in ref. [39].

7. Symmetry Finder for the Helio-UV Perturbation Theory

We follow the SF method [3–5], which is introduced in Sections 2 and 4, and utilize
the formalism to extract the symmetries from the helio-UV perturbation theory. For the
convenience of the readers who want to compare the outcome of our analysis to the one
obtained for the DMP-UV-perturbation theory, we have prepared Appendix B and Table 1
for the DMP-UV, which is to be compared with Table 4 for the helio-UV.

7.1. Symmetry Finder (SF) Equation

For clarity, we restrict ourselves to the reparametrization symmetry of the 1–3 (in our
case ν´ Ø ν`) state exchange type. We start from the state which is physically equivalent
with the one in Equation (52):

F

»
–

νe

νµ

ντ

fi
fl “ FU23pθ23qU13pφ, δqR:R

"
1 ` W

p1q
νSM ` W

p1q
EV ´ Z

p1q
UV

*
R:R

»
–

ν´

ν0
ν`

fi
fl. (57)

In Equation (57), we have introduced the flavor-state rephasing matrix F defined by

F ”

»
–

eiτ 0 0
0 1 0
0 0 eiσ

fi
fl, (58)

and a generalized ν´ Ø ν` state exchange matrix R

R ”

»
–

0 0 ´e´ipδ´αq

0 1 0
eipδ´βq 0 0

fi
fl, R: ”

»
–

0 0 e´ipδ´βq

0 1 0
´eipδ´αq 0 0

fi
fl, (59)

where τ, σ, α, and β denote the arbitrary phases. As we discuss the ν´ Ø ν` exchange
symmetry, both the F and R matrices in Equations (58) and (59) take the nonvanishing,
nontrivial (not unity) elements in the ν´ ´ ν` sub-sector.

The SF equation, the statement that the generic flavor state Equation (57) should be
written as a transformed state, is given with the use of Φ, a collective representation of all
the parameters involved and Φ

1 their transformed ones, by
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»
–

eiτ 0 0
0 1 0
0 0 eiσ

fi
fl

»
–

νe

νµ

ντ

fi
fl “

»
–

1 0 0
0 c23 s23e´iσ

0 ´s23eiσ c23

fi
flFU13pφ, δqR:

ˆ R

"
1 ` W

p1q
νSMpΦ; λ1, λ2q ` W

p1q
EV pΦ, α; λ1, λ2q ´ Z

p1q
UVpΦ, αq

*
R:R

»
–

ν´

ν0
ν`

fi
fl

“

»
–

1 0 0
0 c1

23 s1
23

0 ´s1
23 c1

23

fi
flU13pφ1, δ ` ξq

"
1 ` W

p1q
νSMpΦ

1; λ2, λ1q ` W
p1q
EV pΦ

1, α1; λ2, λ1q ´ Z
p1q
UVpΦ

1, α1q
*»

–
´e´ipδ´αqν`

ν0

eipδ´βqν´

fi
fl. (60)

7.2. The First and Second Conditions: νSM Part

We solve the SF Equation (60) with the ansatz s1
23 “ s23e´iσ, which enforces σ integral

multiples of π. However, the corresponding condition for s13 is missing. Though the ansatz
for s23 is sufficient for the decomposability of the SF equation into the first and second
conditions, the restriction on τ of being integral multiples of π is not imposed at this stage.

The first and second conditions, the zeroth-order term and the νSM first-order term in
Equation (60) reads

FU13pφ, δqR: “ U13pφ1, δ ` ξq,

RW
p1q
νSMpθ13, θ12, δ, φ; λiqR: “ W

p1q
νSMpθ1

13, θ1
12, δ ` ξ, φ1; λiq. (61)

The first condition can be boiled down to the compact form as

cφ1 “ ´sφe´ipα´τq “ ´sφeipβ`σq, sφ1 “ cφeipβ`τ`ξq “ cφe´ipα´σ`ξq, (62)

and the consistency conditions for the phases result.

α ` β ´ τ ` σ “ 0 pmod. 2πq, τ ´ σ ` ξ “ 0, ˘ π. (63)

The first condition (62) is identical to the one in Equation (33) in the SRP theory. The
explicit form of the second condition on the νSM part reads:

ǫc12s12

»
——–

0 spφ´θ13qeiα ∆m2
ren

λ`´λ0
0

´spφ´θ13qe´iα ∆m2
ren

λ`´λ0
0 cpφ´θ13qe´ipδ´βq ∆m2

ren
λ´´λ0

0 ´cpφ´θ13qeipδ´βq ∆m2
ren

λ´´λ0
0

fi
ffiffifl

“ ǫc1
12s1

12

»
——–

0 ´cpφ1´θ1

13q
∆m2

ren
λ`´λ0

0

cpφ1´θ1

13q
∆m2

ren
λ`´λ0

0 spφ1´θ1

13qe´ipδ`ξq ∆m2
ren

λ´´λ0

0 ´spφ1´θ1

13qeipδ`ξq ∆m2
ren

λ´´λ0
0

fi
ffiffifl, (64)

where the notation is such that c1
12 ” cos θ1

12, and cpφ1´θ1

13q ” cospφ1 ´ θ1
13q, etc.

Here is an important note for τ, σ, α, β, and ξ and their solutions. Equation (62) tells us
that α ´ τ and β ` σ must be integers, where we abbreviate “in units of π” for the moment.
Then, β must be an integer as well. Now, the second condition (64) requires that α must be
an integer, which implies that τ must be an integer. Look at the 1-2 or 2-1 elements. Then,
by comparing the 2–3 elements at the both sides of Equation (64), we know that ξ is an
integer. Thus, we have shown that τ, σ, α, β, and ξ are all integers in units of π [4]. The
resultant solutions of the first condition are tabulated in Table 2, showing the universal
feature of the solutions as we mentioned in the SRP analysis.

The νSM part of the first and second conditions in Equations (62) and (64) with W
p1q
νSM

given in Equation (53) is fully analyzed in ref. [4]. It resulted in the sixteen reparametrization
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symmetries of the 1–3 state exchange type in the helio-perturbation theory. They are
denoted as “Symmetry X-helioP”, where X = IA, IB, IIA, IIB, IIIA, IIIB, IVA, and IVB, which
are duplicated with “non-f” and “f” types, where the latter means that the flipping of s12
is involved. See the first three columns of Table 4. Notice that for the θ13 transformations,
either the sign flip, or θ13 Ñ θ13 ˘ π, or their combinations are involved in some of them.
They arise as the solution of the second condition, as no θ13 is involved in the first condition.

The decomposability of the second condition implies that the symmetries of the helio-
UV theory cannot be larger than the sixteen symmetries. The question is whether all of
them survive in the UV extension.

Table 4. Summary of the reparametrization symmetries in the helio-UV perturbation theory [39].
The first column is for the symmetry type denoted as “X” where X = IA, IB, IIA, IIB, IIIA, IIIB, IVA,
and IVB. Each X is duplicated with and without “f”, where “f” implies a s12 sign flip. The first to
third columns are identical to the ones in ref. [4]. The fourth column provides information of the α

parameter transformation in the X row and the rephasing matrix Rep(X)helioP in the Xf row. They are
both determined by the symmetry type and common to the symmetries XA, XAf, XB, and XBf (four
rows).

Type Vacuum Parameter Transf. Matter Parameter Transf. α Transf./Rep(X)

IA none λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ none
cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

IAf θ13 Ñ θ13 ˘ π, θ12 Ñ ´θ12 λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ diag(1,1,1)
cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q

IB θ13 Ñ ´θ13, δ Ñ δ ` π. λ´ Ø λ`, cψ Ñ ˘sψ, sψ Ñ ˘cψ same as IA, IAf
cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

IBf θ13 Ñ ´θ13 ˘ π, θ12 Ñ ´θ12, λ´ Ø λ`, cψ Ñ ˘sψ, sψ Ñ ˘cψ same as IA, IAf
δ Ñ δ ` π cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q

IIA θ23 Ñ ´θ23, θ13 Ñ ´θ13 λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ ατe Ñ ´ατe,
cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q ατµ Ñ ´ατµ

IIAf θ23 Ñ ´θ23, θ13 Ñ ´θ13 ˘ π λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ diag(1,1,-1)
θ12 Ñ ´θ12 cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q

IIB θ23 Ñ ´θ23, δ Ñ δ ` π λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ same as IIA, IIAf
cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

IIBf θ23 Ñ ´θ23, θ13 Ñ θ13 ˘ π, λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ same as IIA, IIAf
θ12 Ñ ´θ12, δ Ñ δ ` π cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q.

IIIA θ13 Ñ ´θ13 ˘ π, λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ αµe Ñ ´αµe

cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q ατe Ñ ´ατe

IIIAf θ13 Ñ ´θ13, θ12 Ñ ´θ12. λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ diag(-1,1,1)
cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

IIIB θ13 Ñ θ13 ˘ π, δ Ñ δ ` π. λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ same as IIIA, IIIAf
cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q

IIIBf θ12 Ñ ´θ12, δ Ñ δ ` π. λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ same as IIIA, IIIAf
cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

IVA θ23 Ñ ´θ23, θ13 Ñ θ13 ˘ π λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ αµe Ñ ´αµe

cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q ατµ Ñ ´ατµ

IVAf θ23 Ñ ´θ23, θ12 Ñ ´θ12 λ´ Ø λ`, cφ Ñ ¯sφ, sφ Ñ ˘cφ diag(-1,1,-1)
cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q



Symmetry 2022, 14, 2581 24 of 36

Table 4. Cont.

Type Vacuum Parameter Transf. Matter Parameter Transf. α Transf./Rep(X)

IVB θ23 Ñ ´θ23, θ13 Ñ ´θ13 ˘ π, λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ same as IVA, IVAf
δ Ñ δ ` π. cpφ´θ13q Ñ ¯spφ´θ13q, spφ´θ13q Ñ ¯cpφ´θ13q

IVBf θ23 Ñ ´θ23, θ13 Ñ ´θ13, λ´ Ø λ`, cφ Ñ ˘sφ, sφ Ñ ˘cφ same as IVA, IVAf
θ12 Ñ ´θ12, δ Ñ δ ` π. cpφ´θ13q Ñ ˘spφ´θ13q, spφ´θ13q Ñ ˘cpφ´θ13q

7.3. The Second Condition: Genuine Non-Unitary and Unitary Evolution Parts

The first-order terms in the SF Equation (60) constitute the second condition, which
can be decomposed into the νSM, EV, and the UV parts. The first one is already analyzed
in Section 7.2. The latter two take the forms of

RW
p1q
EV pθ23, δ, φ; λi, HijqR: “ W

p1q
EV pθ1

23, δ ` ξ, φ1; λ1
i, H1

ijq,

RZ
p1q
UVpθ23, δ, φ; αβγqR: “ Z

p1q
UVpθ1

23, δ ` ξ, φ1, α1
βγq. (65)

We analyze the genuine non-unitary and unitary evolution parts, the second and first lines
in Equation (65), so that they are cast into forms which are ready to solve.

Now, we address the genuine non-unitary part first. It is useful to use the notation
for the zeroth-order V matrix as Vp0q “ U23pθ23qU13pφ, δq as in Equation (51) to make the

equations compact. Using Equation (53), the second condition with Z
p1q
UV in Equation (65)

takes the form

R
”
Vp0qpθ23, φ, δq

ı:
αVp0qpθ23, φ, δqR: “

”
Vp0qpθ1

23, φ1, δ ` ξq
ı:

α1Vp0qpθ1
23, φ1, δ ` ξq. (66)

Then, the transformed α can be written in a closed form as

α1 “ Vp0qpθ1
23, φ1, δ ` ξqR

”
Vp0qpθ23, φ, δq

ı:
αVp0qpθ23, φ, δqR:

”
Vp0qpθ1

23, φ1, δ ` ξq
ı:

. (67)

The right-hand side of this equation will be analyzed in the next Section 8.1.
Next, we move to the second condition for the EV part. The first line in Equation (65)

can be written as

»
—–

0 e´ipδ´αqH32
b

λ`´λ0
eipα`βqe´iδ H31

b
λ`´λ´

´eipδ´αqH23
b

λ`´λ0
0 eiβH21

b
λ´´λ0

´e´ipα`βqeiδH13
b

λ`´λ´
´e´iβ H12

b
λ´´λ0

0

fi
ffifl

“

»
—–

0 ´e´ipδ`ξqH1
12

b
λ`´λ0

´e´ipδ`ξqH1
13

b
λ`´λ´

eipδ`ξqH1
21

b
λ`´λ0

0 H1
23

b
λ´´λ0

eipδ`ξqH1
31

b
λ`´λ´

´H1
32

b
λ´´λ0

0

fi
ffifl. (68)

One can show, by using the hermiticity of the H matrix, that it can be written in a
reduced form as

H1
21 “ ´e´ipα`ξqH23

H1
13 “ ´eipα`β`ξqH31

H1
23 “ eiβ H21. (69)

Notice the vastly different features of the second condition on Z
p1q
UV in Equation (67)

and the one on W
p1q
EV in Equation (69). It makes consistency between them highly nontrivial.
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8. Solution of the SF Equation in the Helio-UV Perturbation Theory

8.1. Solution of the Second Condition: Genuine Non-Unitary Part

We discuss first the genuine non-unitary part because we encounter an important
concept, which will be denoted as the “key identity”, as below. If we use the simplified

notation rVRV:s ” Vp0qpθ1
23, φ1, δ ` ξqR

”
Vp0qpθ23, φ, δq

ı:
, Equation (67) can be written as

α1 “ rVRV:sαrVRV:s:. Therefore, we first calculate the block rVRV:s in two steps. We
define Cr13s as:

Cr13s ” U13pφ1, δ ` ξqRU13pφ, δq:

“

»
—–

c1
φ 0 s1

φe´ipδ`ξq

0 1 0
´s1

φeipδ`ξq 0 c1
φ

fi
ffifl

»
–

0 0 ´e´ipδ´αq

0 1 0
eipδ´βq 0 0

fi
fl

»
–

cφ 0 ´sφe´iδ

0 1 0
sφeiδ 0 cφ

fi
fl, (70)

so that

rVRV:s ” Vp0qpθ1
23, φ1, δ ` ξqR

”
Vp0qpθ23, φ, δq

ı:
“

»
–

1 0 0
0 c1

23 s1
23

0 ´s1
23 c1

23

fi
flCr13s

»
–

1 0 0
0 c23 ´s23
0 s23 c23

fi
fl. (71)

We simply calculate Cr13s and rVRV:s by inserting each solution of the SF equation
in Table 4 one-by-one with the values of the phase parameters α, β, etc., corresponding to
each solution as given in Table 2. To our surprise, computation with all the solutions in
Table 4 entails an extremely simple result:

Cr13s “ Vp0qpθ1
23, φ1, δ ` ξqR

”
Vp0qpθ23, φ, δq

ı:
“ Rep(X)

helioP
, (72)

which is a mixing-parameter independent constant despite the profound dependencies on
the νSM variables in rVRV:s in the left-hand side. That is, Rep(X)

helioP
denotes the rephasing

matrix, which is necessary for the Hamiltonian proof of the symmetry [4], and is given by

Rep(II)
helioP

”

»
–

1 0 0
0 1 0
0 0 ´1

fi
fl for IIA, IIAf, IIB, IIBf,

Rep(III)
helioP

”

»
–

´1 0 0
0 1 0
0 0 1

fi
fl for IIIA, IIIAf, IIIB, IIIBf,

Rep(IV)
helioP

”

»
–

´1 0 0
0 1 0
0 0 ´1

fi
fl for IVA, IVAf, IVB, IVBf, (73)

and Rep(I)
helioP

“ diag(1,1,1) for IA, IAf, IB, IBf.
The feature of this result is in complete parallelism with the DMP-UV theory [5],

but the DMP-UV results are not exactly the same as the helio-UV results. To distinguish
our result from the DMPs, we have introduced the notation Rep(X)

helioP
with the index

showing the theory dependence. See Equation (A6) in Appendix B for the expressions of
Rep(X)

DMP
, which can be compared to Rep(X)

helioP
. Roughly speaking, the relation between

the rephasing matrices of the DMP-UV and helio-UV perturbation theories is Rep(II) Ø
Rep(IV). Notice that our classification scheme of Symmetry X is based on the solutions of
the first condition, and we do not arbitrarily alter the definitions of the symmetries in each
theory.

It appears that the result (72), in particular the second equality, implies the existence
of extremely interesting identities, which we call the “key identity” hereafter.
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Then, the second condition on Z
p1q
UV, written as the equation on the α matrix, Equa-

tion (67), can readily be written as

α1 “ Rep(X)
helioP

α Rep(X):
helioP

, (74)

which implies that α1 “ α for Symmetry X = I, and

α1 “

»
–

αee 0 0
αµe αµµ 0

´ατe ´ατµ αττ

fi
fl,

»
–

αee 0 0
´αµe αµµ 0
´ατe ατµ αττ

fi
fl,

»
–

αee 0 0
´αµe αµµ 0
ατe ´ατµ αττ

fi
fl, (75)

for X = II, III, and IV, in order. As in the case of DMP-UV symmetries, no UV α parameters’
transformation is present in Symmetry X = IA, IB, and their s12 flipped counterpart.

The resulting transformation properties of the α parameters and Rep(X)
helioP

are summa-
rized in Table 4. The corresponding informations in DMP, Rep(X)

DMP
, and the rα parameters’

transformation are given in Equation (A6) and Table 1, respectively. Notice that Rep(X)
helioP

,
and hence, the α parameters’ transformation properties depend only on the symmetry type
X = I, II, III, and IV, but not on the types A, Af, B, and Bf.

8.2. Solution of the Second Condition: Unitary Evolution Part

The solutions of the first condition depend not only on the symmetry types denoted
generically as XA and XB but also on the upper and lower signs of the phase parameters
α, β, etc., as summarized in Table 2. Using the phase parameters, one can show that the
second condition (69) implies that Hij transforms under Symmetry X as:

Symmetry IA, IAf, IIIB, IIIBf : H1
13 “ ´H31, H1

21 “ ¯H23, H1
23 “ ˘H21,

Symmetry IB, IBf, IIIA, IIIAf : H1
13 “ H31, H1

21 “ ¯H23, H1
23 “ ¯H21,

Symmetry IIA, IIAf, IVB, IVBf : H1
13 “ H31, H1

21 “ ˘H23, H1
23 “ ˘H21,

Symmetry IIB, IIBf, IVA, IVAf : H1
13 “ ´H31, H1

21 “ ˘H23, H1
23 “ ¯H21, (76)

where the ˘ (or ¯) sign refers to the upper and lower signs in Table 2 and Table 4, which
are synchronized between them. Notice that the transformation property of Hji can be
obtained from the transformation property of Hij by using the hermiticity Hji “ pHijq˚.

Here is a comment on the exchange transformations of the eigenvalues. Since we have
renormalized the eigenvalues such that the diagonal Hii elements are absorbed into the
eigenvalues (see Equation (47)), the second condition (69) does not contain the information
on the Hii transformations. Hence, it must be determined by the consistency with the
eigenvalue exchange λ´ Ø λ`. That is,

H11 Ø H33, (77)

and H22 is invariant.

8.3. Consistency between the UV and EV Solutions and Invariance of the Oscillation Probability

The next crucial step is to verify the consistency between the solutions of the SF
equation obtained from its genuine non-unitary part given in Equation (74) and the Hij

transformations given in Equations (76) and (77). Using the explicit expressions of Hij in
Appendix C, the consistency can be shown to hold for all the Symmetry X-helioP-UV in
Table 4. Though this is a crucially important step, we would like to leave this exercise to
the interested readers because it can be done straightforwardly.

The remaining task is to verify the invariance of the oscillation probabilities Ppνµ Ñ νeqp1q
EV

in Equation (56) and Ppνµ Ñ νeqp1q
UV in Equation (55). The former is written in terms of the

νSM and Hij parameters without any naked α parameters. Therefore, showing the invari-
ance under Symmetry X can be carried out straightforwardly for all sixteen symmetries,
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with the transformation properties of these parameters given in Table 4 and Equation (76).

On the other hand, Ppνµ Ñ νeqp1q
UV consists of the νSM and the naked α parameters. We can

use the transformation properties of these variables summarized in Table 4 to prove the
invariance under all the Symmetry X. These exercises for invariance proof are again left for
the interested readers.

In this paper, we do not discuss the other oscillation channels explicitly, apart from
the νµ Ñ νe as in the above, because we will prove the Hamiltonian invariance in Section 9,
which automatically applies to all the oscillation channels.

9. The Heliop-UV Symmetry as a Hamiltonian Symmetry

In this section, we show that all the helioP-UV symmetries summarized in Table 4
leave the flavor basis Hamiltonian invariant up to the rephasing factor. This implies that all
the helioP-UV symmetries hold in all orders in the helio-UV perturbation theory. Therefore,
our discussion in this section will include the full Hamiltonian, including the second-order
UV terms Ap2q in Equation (41).

We have the following two ways to construct the flavor basis Hamiltonian, HVM

and HDiag. (In refs. [3,4] and arXiv v1 of this article, HVM and HDiag are denoted as HLHS

and HRHS, respectively.) For HVM, its subscript implies “vacuum-matter”, which means
that it is composed of the vacuum and matter terms. In the unitary case in a vacuum,
Hflavor “ UȞU:, where Ȟ is the vacuum mass eigenstate basis Hamiltonian, and U the νSM
flavor mixing matrix; see Equation (4). In the non-unitary case in matter, since the flavor
basis ν is related to the mass eigenstate basis ν̌ as ν “ Nν̌, the flavor-basis Hamiltonian,
which we call HVM, can be written as HVM “ NȞN:, where the check basis Hamiltonian Ȟ
is given in Equation (35). For HDiag, the subscript implies that it is “diagonalized”, which
means that it exhibits the feature that it is the Hamiltonian obtained by rotation back
from the diagonalized hat-basis to the flavor basis. The way that HDiag is obtained will be
explained in Section 9.2. Of course, they are equal to each other; HVM “ HDiag.

9.1. Transformation Property of HVM

Using N “ p1 ´ αqU and NN: “ p1 ´ αqp1 ´ αq:, 2E times HVM “ NȞN: can be
written as

2EHVM “ p1 ´ αq

$
&
%UpΞq

»
–

m2
1 0 0

0 m2
2 0

0 0 m2
3

fi
flUpΞq: ` p1 ´ αq: ¨

»
–

a ´ b 0 0
0 ´b 0
0 0 ´b

fi
fl ¨ p1 ´ αq

,
.
-p1 ´ αq:, (78)

where we have used a collective notation Ξ for all the vacuum parameters involved. Here,
we have used a slightly different phase-redefined basis from the one in Equation (35) to
make the vacuum Hamiltonian 9 diag(m2

1, m2
2, m2

3), making it more symmetric, but it does
not affect our symmetry discussion.

We have shown in ref. [4] that the vacuum term transforms under Symmetry X as

$
&
%UpΞq

»
–

m2
1 0 0

0 m2
2 0

0 0 m2
3

fi
flUpΞq:

,
.
- Ñ Rep(X)

helioP

$
&
%UpΞq

»
–

m2
1 0 0

0 m2
2 0

0 0 m2
3

fi
flUpΞq:

,
.
-Rep(X):

helioP
. (79)

where Rep(X)
helioP

is the rephasing matrix defined in Equation (73). Using the transformation
property α1 “ Rep(X)

helioP
αRep(X):

helioP
in Equation (74), the matter term in Equation (78),

which originates from the νSM and the UV sectors of the theory, obeys the same transfor-
mation property as in the vacuum term. Then, the whole HVM transforms under Symmetry
X as

HVM Ñ Rep(X)
helioP

HVMRep(X):
helioP

, (80)
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which means that HVM is invariant under Symmetry X up to the rephasing factor Rep(X)
helioP

.
By being the real diagonal matrix with unit elements ˘1, Rep(X)

helioP
does not affect physical

observables, as it can be absorbed into the neutrino wave functions.
We note that the vacuum and matter terms of HVM in Equation (78) have quadratic and

quartic dependences on p1 ´ αq, respectively. The fact that they have the same transforma-
tion property as Rep(X)

helioP
under Symmetry X solely relies on the α matrix transformation

property in Equation (74). On the other hand, Rep(X)
helioP

is inherently the νSM concept;
see Equation (72). Therefore, there is no a priori reason why α must transform by it and
only by it. With the “Columbus’ egg” view, one might argue that of course it must be the
case because invariance under the symmetry requires it. Yet, it is remarkable to see that
it indeed emerges from the theory via the genuine UV part of the SF Equation (67). This
indicates an intriguing interplay between the νSM and the UV sectors in the theory.

In passing, we note that we do not use the property that the matter density is uniform
to obtain the invariance proof, the feature which prevails in the proof of invariance of HDiag

in Section 9.2.

9.2. Transformation Property of HDiag

In this section, we discuss HDiag to show that it is invariant under Symmetry X-helioP-
UV with the same rephasing matrix as needed for HVM. We first construct HDiag. By using
the state relation in Equation (50), HDiag is given by the hat-basis Hamiltonian Ĥ as

HDiag “ p1 ´ αqU23U13pφ, δqĤU:
13pφ, δqU:

23p1 ´ αq:. (81)

The expression of Ĥ is given in Equation (48) to the first order in the helio-UV pertur-
bation. In this section, we proceed with this first-order Hamiltonian to prove the invariance
of HDiag under Symmetry X. In Section 9.4, we will present a simple argument to show that
our proof of invariance prevails even after we include the second-order effect.

Since we innovate the way to prove the invariance HDiag, we include the νSM part as
well, though it has been fully treated in ref. [4]. From the identity (72), one obtains

Vp0qpθ1
23, φ1, δ1q “ Rep(X)

helioP
Vp0qpθ23, φ, δqR:. (82)

Then, HDiag in Equation (81) with the use of Equation (51) transforms under Symmetry
X as

HDiag “ p1 ´ αqVp0qpθ23, φ, δqĤpθ23, θ12, φ, δ; rαβγ, λiq
”
Vp0qpθ23, φ, δq

ı:
p1 ´ αq:

Ñ Symmetry X p1 ´ α1qVp0qpθ1
23, φ1, δ1qĤpθ1

23, θ1
12, φ1, δ1; rα1

βγ, λ1
iq

”
Vp0qpθ1

23, φ1, δ1q
ı:

p1 ´ α1q:

“ Rep(X)
helioP

p1 ´ αqVp0qpθ23, φ, δqR:Ĥpθ1
23, θ1

12, φ1, δ1; rα1
βγ, λ1

iqR
”
Vp0qpθ23, φ, δq

ı:
p1 ´ αq:Rep(X):

helioP
. (83)

Note that R is the “untransformed” matrix.

9.3. Symmetry IIIB as an Example

What we should do now is to verify that the relation

R:Ĥpθ1
23, θ1

12, φ1, δ1; α1
βγ, λ1

iqR “ Ĥpθ23, θ12, φ, δ; αβγ, λiq (84)

holds for all the sixteen symmetries, Symmetry X-helioP-UV where X = IA, IAf, ¨ ¨ ¨, IVBf.
This proves the invariance of HDiag up to the rephasing factor Rep(X)

helioP
.

To give the readers some feeling, let us examine one example, the case of Symmetry
IIIB, to show how the job is done. We restrict to the first-order νSM and UV parts, as the
proof for the Ĥp0q part can be done trivially. Using the solutions of the first condition in
Table 2 and the transformation property of the νSM variables given in Table 4, the left-hand
side of Equation (84) can be written as
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»
–

0 0 ˘e´iδ

0 1 0
˘eiδ 0 0

fi
fl

"
ǫc12s12

∆m2
ren

2E

»
—–

0 ˘spφ´θ13q 0
˘spφ´θ13q 0 ˘cpφ´θ13qe´iδ

0 ˘cpφ´θ13qeiδ 0

fi
ffifl

` b

2E

»
–

0 ˘e´iδH32 e´iδ H31
˘eiδH23 0 ˘H21
eiδH13 ˘H12 0

fi
fl

*»
–

0 0 ˘e´iδ

0 1 0
˘eiδ 0 0

fi
fl. (85)

The Hij transformation property in Equation (76) is used for the second (EV) term. It is
easy to calculate the entity in Equation (85) to show that it is identical to the first-order term
in Ĥ given in Equation (48). Therefore, Equation (84) holds for Symmetry IIIB-helioP-UV.

What is remarkable is that the equality in Equation (84) can be shown to hold for all
Symmetry X-helioP-UV, where X=IA, IAf, ¨ ¨ ¨, IVBf. This means that HDiag transforms under
Symmetry X as

HDiag Ñ Rep(X)
helioP

HDiagRep(X):
helioP

. (86)

That is, HDiag is invariant apart from the rephasing factors Rep(X)
helioP

and Rep(X):
helioP

.
Notice again that Rep(X)

helioP
is rooted in the νSM (see Equation (72)) but also governs the

UV part of the theory.

9.4. Including the Second-Order UV Effect

Now let us include the second-order UV effect into our proof of invariance. Let us
define the second-order G matrix as in Equation (45),

Ĥ
p2q
UV “ b

2E
U13pφ, δq:U:

23 Ap2qU23U13pφ, δq ” b

2E
Gp2q, (87)

and define Hp2q matrix to parametrize the Gp2q matrix by replacing Hij by H
p2q
ij in (46). One

can easily show by using the UV α parameter transformation property given in Table 4
that the transformation property, i.e., the sign-flipping pattern, of the Ap2q matrix is exactly

identical to that of A. This means that the transformation property of H
p2q
ij is the same as

that of Hij given in Equation (76). Since the inclusion of the second-order UV term merely

changes Hij to Hij ´ H
p2q
ij in Equation (84), and their transformation properties are the same,

the invariance proof given in Section 9.3 remains valid with the inclusion of the second
order UV effect.

To summarize, we have shown in this section that the flavor basis Hamiltonian Hflavor,
both HVM and HDiag, transforms as Hflavor Ñ Rep(X)

helioP
HflavorRep(X):

helioP
under Symmetry

X-helioP-UV, where X=IA, IAf, IB, ¨ ¨ ¨, IVBf. This establishes the property of Symmetry X as
the Hamiltonian symmetry which holds in all orders in the helioP-UV perturbation theory
in all the oscillation channels.

10. Conclusion and Discussions

In this paper, we tried to update and summarize the present status of our knowledge
and understanding of the reparametrization symmetry in neutrino oscillation in matter.
We have introduced and used a systematic method called Symmetry Finder (SF) [3–5] to
identify the symmetries and investigate their characteristic features in several theories. A
“success and failure” record in our symmetry search may be summarized as follows:

• In the νSM: The eight 1–2 state exchange symmetries are uncovered both in the
SRP (solar resonance perturbation) theory (see Table 3 in Section 4) and the DMP
perturbation theory (see Table 1 and ref. [3]). Similarly, the sixteen 1–3 state exchange
symmetries are identified in the helio-perturbation theory [4]. In spite of the “globally
valid” nature of the framework, no 1–3 exchange symmetry is identified in DMP.
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• In UV(unitarity violation)-extended theories of the νSM: In the helio-UV and DMP-
UV perturbation theories, the νSM symmetry in each theory is elevated to the UV-
extended one with the additional transformations on the UV sector α matrix, α Ñ
Rep(X)αRep(X):, where Rep(X) denotes the rephasing matrix. The number and the
state exchange type of the symmetry are kept the same as those of the corresponding
νSM theory. For the procedures and results, see Sections 6 to 9 and Table 4 for the
helio-UV symmetries and ref. [5] and Table 1 for the DMP-UV symmetries.

We note that the picture of the reparametrization symmetry is transparent in the locally
valid theories. The regions of validity of SRP and the helio-perturbation theories are around
the solar and atmospheric resonances, respectively. Correspondingly, they have the 1–2
and 1–3 state exchange symmetries, respectively, reflecting the main players in each region.
However, it appears that this simple picture does not apply to the globally valid DMP
perturbation theory. Though the framework can describe both the solar and atmospheric
resonances and the 1–2 state exchange symmetry is identified [3], we were not able to pin
down where the 1–3 state exchange symmetry is in DMP.

As it stands, the field of reparametrization symmetry in neutrino oscillation is still in
its infancy, with only less than two years of the SF search. Reflecting this status, our current
understanding of the symmetry is immature in many ways. At this moment, the symmetry
can be discussed for a given particular neutrino oscillation framework. That is, we cannot
identify “general symmetry” for the generic flavor-basis, or mass-basis, Hamiltonian in
matter. See, however, ref. [46] for an alternative approach with possible relevance to this
point. We must keep in mind that the development of the field in the future may bring us
to a new unexpected regime of understanding of neutrino oscillation physics. Certainly, it
is still too premature to ask what the ultimate goal is of the symmetry approach.

What is new in this paper? In Part I, the SF analysis of the SRP theory with the
self-contained V matrix treatment is new. In Part II, the symmetry analysis in the helio-UV
perturbation theory using the SF framework and the recognition of the “key identity” are
all new. Together with the similar analysis in ref. [5] for the DMP-UV perturbation theory,
each exercise offers an important consistency check to each other for everything we have
learnt from both theories, and hence it is important to carry through.

Yet, the penetrating theme throughout this paper is to convey to the readers our
state-of-the-art understanding of the symmetry in neutrino oscillation. The summary of
the obtained reparametrization symmetry so far can be found in Table 1 for the DMP and
DMP-UV perturbation theories, Table 3 for the SRP theory, and Table 4 for the helio- and
helio-UV perturbation theories.

10.1. The Reparametrization Symmetry as a Diagnostics Tool

In Part II of this article and in ref. [5], we have made an intriguing proposal: reparametriza-
tion symmetry can be used for diagnosing neutrino theory with non-unitarity. There is a
clear indication for such a possibility. We have observed in ref. [31], but not mentioned for
reasons explained in ref. [5], that the oscillation probability given in the UV extended DMP
theory possesses the νSM symmetries called Symmetry IA- and IB-DMP; see Table 1. Im-
portantly, these symmetries are not accompanied by the UV α parameters’ transformation,
which implies that a part of the reparametrization symmetries distinguishes between the
νSM and UV variables.

By performing the SF analyses of the DMP-UV perturbation theory in ref. [5] and the
helio-UV theory in this paper, we have confirmed that (1) the above-mentioned property
of Symmetry IA and IB is reproduced by the SF formalism, and (2) the remaining six
symmetries IIA, IIB, ¨ ¨ ¨, IVB in the DMP-UV theory, and the similar twelve symmetries in
the helio-UV theory, do have the associated α transformations, respectively, as reported in
ref. [5] and Section 8. Therefore, the reparametrization symmetry as a whole can recognize
and distinguish the νSM and the UV sectors of the theory.

In fact, the α parameters’ transformation under Symmetry X has quite interesting
features. It is governed solely by the rephasing matrix, rα1 “ Rep(X)

DMP
rαRep(X):

DMP
in DMP,
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and α1 “ Rep(X)
helioP

αRep(X):
helioP

in the helio-UV theories. Here, rα denotes the α matrix in the
SOL convention; see Section 2.1. Rep(X)

helioP
differs from Rep(X)

DMP
only by the reshuffling

of Rep(X), Rep(II) Ø Rep(IV) between helioP and DMP; see Equations (73) and (A6). In
both the DMP and the helio-perturbation theories, Rep(X) is the diagonal matrix with
elements e˘iπ , the constant matrices. This is a very different transformation property from
the ones of the νSM variables, which can be described as the “discrete rotations”.

10.2. A Conjecture for the Larger Symmetries

Most probably, the most important outcome in the symmetry discussion in the νSM
and its UV extension is the key identity Vp0qpΦ

1qRrVp0qpΦqs: “ Rep(X), the helioP version
in Equation (72) and the DMP version in Equation (88) (see below), where Vp0q denotes the
zeroth-order V matrix with Φ as its arguments in the collective notation. Remember that
the identity plays several key roles, which include determining the α parameters’ transfor-
mation properties and offering a new path for the Hamiltonian proof of the symmetry.

We have conjectured in ref. [5] that the whole body of the reparametrization symmetry
is much larger than what we saw in the above summary. Notice that the left-hand side of
the identity involves Vp0qpΦq before and after the transformation, the generic quantity in
a given theory. We see no obvious dependencies on the types of the state exchange in it
apart from the particular form of R specific to our case. The right-hand side of the identity
is a constant. It naturally leads to the conjecture that by generalizing the R choice, the key
identity accommodates a generic class of discrete rotations of the νSM variables. If true, it
would solve the issue of the missing 13 exchange symmetry when applied to DMP.

10.3. The Key Identity and Its Possible Topological Nature

Now, the remaining important question is the interpretation of the constant and phase-
sensitive nature of Rep(X). For this purpose, let us go to the identity (its complex conjugate)
in DMP [5] for definiteness,

Vp0qpθ23, ψ, φ, δqR:Vp0qpθ1
23, ψ1, φ1, δ ` ξq: “ Rep(X):

DMP
, (88)

where R denotes the R matrix in DMP, and Vp0qpθ23, ψ, φ, δq denote the zeroth-order V
matrix. While we discuss here Equation (88) in DMP, a similar identity exists in the helio-
UV theory, Equation (72), and our consideration below must apply to it as well.

The identity indeed reveals a quite interesting feature, as noticed above. Despite
the fact that the left-hand side displays rich dependencies of the untransformed and
transformed νSM variables, the right-hand side consists of the constant elements ˘1 “
e˘iπ , whose character may suggest a topological origin of the identity. Since the way we
understand it could affect our interpretation of the reparametrization symmetry, let us
address this issue. We try to argue below that the left-hand side of Equation (88) can be
regarded as the symmetry charge. Nonetheless, we must say that our consideration below
may still be at a speculative level.

In Up1q gauge theory with a complex scalar field ϕ, the symmetry charge can be
calculated as Q “

ş
d3xπδϕ, where δϕ denotes a variation of the field under an infinitesimal

Up1q transformation, ϕ Ñ ϕ ´ iǫϕ, and π is the canonical conjugate of ϕ [1]. ǫ displays
an infinitesimal nature of the transformation and is to be removed when we define δϕ.
While there is no reason to expect the Up1q charge to be quantized, if one calculates Q
around the vortex solution, it indeed is quantized to an integer times the unit of charge, the
Nielsen–Olesen vortex [85]. The quantization of the scalar charge around the vortex comes
from the nontrivial homotopy π1

`
S1

˘
“ Z [2].

Now, we try to interpret the identity (88) along a similar line of thought. We consider
that the basic elements of the transformation are given by rVp0qpθ23, ψ, φ, δqs:. Then, the
quantity corresponding to δϕ in the scalar field case is R:Vp0qpθ1

23, ψ1, φ1, δ ` ξq: because the
subtracted untransformed part R:Vp0qpθ23, ψ, φ, δq: gives no contribution. We must leave
R:, our ǫ equivalent, because it is not small but orders unity and performs state exchange.
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The important difference between our case and the Up1q charge is that we now treat discrete
symmetry, not continuous symmetry. The integration over the space coordinate x is absent
because this is quantum mechanics, or zero-dimensional field theory. Lacking knowledge
by the author of the field theory of discrete symmetry, we cannot prove that the “canonical
conjugate” is given by Vp0qpθ23, ψ, φ, δq, but it is at least not unnatural. Despite the fact
that we do not know whether similar reasoning exists for the discrete group to guarantee
the integral property of Rep(X)

DMP
, such as homotopy in the vortex case, it appears to the

author that it is legitimate to leave it as a conjecture given its intriguing feature and its
practical utility. We believe that this point deserves further investigation.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks the four referees for their useful comments, some encouraging,
very precise and extensive, and the others thoughtful and deep.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Three Useful Conventions of the Lepton Flavor Mixing Matrix

We start from the most commonly used form, the PDG convention [42] of the U matrix
defined in Equation (4). Recently, we have started to use the two other conventions called
the “SOL” and the “ATM”, which differ only by the phase redefinitions from UPDG. USOL is
defined in Equation (3). UATM is defined by

UATM ”

»
–

1 0 0
0 1 0
0 0 e´iδ

fi
flUPDG

»
–

1 0 0
0 1 0
0 0 eiδ

fi
fl “

»
–

1 0 0
0 c23 s23eiδ

0 ´s23e´iδ c23

fi
fl

»
–

c13 0 s13
0 1 0

´s13 0 c13

fi
fl

»
–

c12 s12 0
´s12 c12 0

0 0 1

fi
fl. (A1)

The reason for our terminology of UATM and USOL is because the CP phase factor e˘iδ is
attached to (the sine of) the “atmospheric angle” θ23 in UATM and to the “solar angle” θ12 in
USOL, respectively. In the PDG convention, e˘iδ is attached to s13. UATM is used to compute
the probability, e.g., in refs. [6–8,39]. USOL is used for the same purpose in refs. [31,51].

It should be remembered that the oscillation probability calculated by using the PDG,
ATM, and the SOL conventions is exactly identical. This is because the phase redefinition
cannot alter the physical observables. Therefore, the measured values of the mixing angles
and CP phase does not depend on which convention is used for the U matrix to compute
the probability.

On the other hand, the α matrix is U matrix convention-dependent. Once the phase
convention of the U matrix is changed from UPDG to USOL, a consistent definition of NSOL

requires the α matrix to transform [39], as can be seen in

NSOL ”

»
–

1 0 0
0 e´iδ 0
0 0 e´iδ

fi
flNPDG

»
–

1 0 0
0 eiδ 0
0 0 eiδ

fi
fl “

$
&
%1 ´

»
–

1 0 0
0 e´iδ 0
0 0 e´iδ

fi
flα

»
–

1 0 0
0 eiδ 0
0 0 eiδ

fi
fl

,
.
-USOL

” p1 ´ αSOLqUSOL. (A2)

Therefore, the α matrix is convention-dependent. It takes the form in the SOL conven-
tion of

αSOL “

»
–

1 0 0
0 e´iδ 0
0 0 e´iδ

fi
flα

»
–

1 0 0
0 eiδ 0
0 0 eiδ

fi
fl “

»
–

αee 0 0
e´iδαµe αµµ 0
e´iδατe ατµ αττ

fi
fl ”

»
–

rαee 0 0
rαµe rαµµ 0
rατe rατµ rαττ

fi
fl, (A3)
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where we have introduced the simplified notation αSOL
βγ ” rαβγ for convenience. Similarly,

we have for the ATM convention

αATM “

»
–

1 0 0
0 1 0
0 0 e´iδ

fi
flα

»
–

1 0 0
0 1 0
0 0 eiδ

fi
fl “

»
–

αee 0 0
αµe αµµ 0

e´iδατe e´iδατµ αττ

fi
fl ”

»
–

αATM
ee 0 0

αATM
µe αATM

µµ 0
αATM

τe αATM
τµ αATM

ττ

fi
fl. (A4)

Appendix B. DMP-UV Symmetry: A Brief Summary

To show the difference between the helio-UV and the DMP-UV symmetries, we
recollect just two equations from ref. [5]. In the DMP-UV theory, we have HVM and HDiag
similar to the ones in Equations (78) and (81). See Equations (79) and (82) in ref. [5]. One
can show that both HVM and HDiag transform under Symmetry X as

HVM Ñ Rep(X)
DMP

HVMRep(X):
DMP

,

HDiag Ñ Rep(X)
DMP

HDiagRep(X):
DMP

, (A5)

where the rephasing matrix Rep(X)DMP is given by Rep(I)DMP = diag (1,1,1), and

Rep(II)
DMP

“

»
–

1 0 0
0 ´1 0
0 0 1

fi
fl, Rep(III)

DMP
“

»
–

´1 0 0
0 1 0
0 0 1

fi
fl, Rep(IV)

DMP
“

»
–

´1 0 0
0 ´1 0
0 0 1

fi
fl. (A6)

Notice that Rep(II)
DMP

“ Rep(IV)
helioP

(up to the overall sign), Rep(IV)
DMP

“ Rep(II)
helioP

(up to the overall sign), and Rep(III)
DMP

“ Rep(III)
helioP

. Since our classification scheme of
Symmetry X, X=I, II, III, and IV is based on the solutions of the first condition, which are
universal among DMP, SRP, and the helio-perturbation theories, we do not exchange our
definitions of the Symmetry II and IV in the helio- and helio-UV perturbation theories. The
resulting rα parameter transformation property is given in the fourth column of Table 1.

Appendix C. H Matrix Elements

The Hermitian H matrix is defined in Equation (46). The explicit expressions of its
elements are given by

H11 “ 2c2
φαee

ˆ
1 ´ ∆a

∆b

˙
` 2s2

φ

”
s2

23αµµ ` c2
23αττ ` c23s23Re

`
ατµ

˘ı

´ 2cφsφ

”
s23Re

´
e´iδαµe

¯
` c23Re

´
e´iδατe

¯ı
,

H22 “ 2
”
c2

23αµµ ` s2
23αττ ´ c23s23Re

`
ατµ

˘ı
,

H33 “ 2s2
φαee

ˆ
1 ´ ∆a

∆b

˙
` 2c2

φ

”
s2

23αµµ ` c2
23αττ ` c23s23Re

`
ατµ

˘ı

` 2cφsφ

”
s23Re

´
αµee´iδ

¯
` c23Re

´
ατee´iδ

¯ı
,

H21 “
”
c23cφ

´
αµee´iδ

¯
´ s23cφ

´
ατee´iδ

¯
´ sφ

!
c2

23α˚
τµ ´ s2

23ατµ ` 2c23s23pαµµ ´ αττq
)ı

“ H˚
12,

H13 “
„

2cφsφ

"
αee

ˆ
1 ´ ∆a

∆b

˙
´

”
s2

23αµµ ` c2
23αττ ` c23s23Re

`
ατµ

˘ı*

` cos 2φ
!

s23Re
´

αµee´iδ
¯

` c23Re
´

ατee´iδ
¯)

´ i
!

s23Im
´

αµee´iδ
¯

` c23Im
´

ατee´iδ
¯)

“ H˚
31,

H23 “
”
c23sφ

´
αµee´iδ

¯
´ s23sφ

´
ατee´iδ

¯
` cφ

!
c2

23α˚
τµ ´ s2

23ατµ ` 2c23s23pαµµ ´ αττq
)ı

“ H˚
32. (A7)
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