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G. Giannini,31 M. D. Gladders,18, 4 D. Gruen,1 R. A. Gruendl,29, 30 I. Harrison,53 W. G. Hartley,54 K. Herner,7

S. R. Hinton,55 D. L. Hollowood,56 W. L. Holzapfel,57 K. Honscheid,58, 59 N. Huang,57 E. M. Huff,49

D. J. James,60 M. Jarvis,20 G. Khullar,4, 18 K. Kim,16 R. Kraft,61 K. Kuehn,62, 63 N. Kuropatkin,7
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We present a Bayesian population modeling method to analyze the abundance of galaxy clusters
identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak
gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope
(HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-
lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic
uncertainty in weak-lensing mass calibration that increases from 1% at z = 0.25 to 10% at z = 0.95,
to which we add 2% in quadrature to account for uncertainties in the impact of baryonic effects. We
implement an analysis pipeline that joins the cluster abundance likelihood with a multi-observable
likelihood for the SZ, optical richness, and weak-lensing measurements for each individual cluster.
We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing
mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol ECS, and
SPTpol 500d surveys and the DES Year 3 and HST-39 weak-lensing datasets. This work represents
a crucial prerequisite for the subsequent cosmological analysis of the real dataset.
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I. INTRODUCTION

The abundance of massive dark-matter halos (and of
the galaxy clusters they host) as a function of cosmic time
– the halo mass function – depends sensitively on the
cosmological parameters, and in particular the matter
density Ωm, the amplitude of fluctuations on 8 h−1Mpc
scales σ8, and the dark energy equation of state parame-
ter w. Therefore, measurements of the cluster abundance
can be turned into a powerful cosmological probe [e.g.,
1]. In practice, however, we cannot directly access the
halo mass, but we can observe cluster properties that
correlate with mass (so-called mass proxies, or simply
observables). These observables can be classified into
three broad categories: i) optical and infrared properties
of cluster member galaxies and of intra-cluster light, ii)
properties of the gaseous intra-cluster medium (ICM),
and iii) measurements of the effects of gravitational lens-
ing. So-called observable–mass relations then create the

mailto:sebastian.bocquet@physik.lmu.de
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missing link between these measurements and the theo-
retical model for the halo mass function, and constraints
on cosmology can be derived [see, e.g., 2, 3, for reviews].
The South Pole Telescope (SPT; [4]) detects galaxy

clusters via the thermal Sunyaev-Zel’dovich effect (here-
after SZ; [5]), which is caused by cold photons from the
cosmic microwave background (CMB) scattering with
hot electrons in the ICM. The SZ effect is a spectral
distortion in the CMB radiation and is thus not af-
fected by cosmic dimming. Therefore, with its arcminute-
resolution that is well matched to the size of massive dis-
tant clusters, the SPT can detect clusters out to the high-
est redshifts at which they exist, probing a large range
of cosmic times. In practice, the SZ cluster candidates
are confirmed by the presence of an overdensity of (clus-
ter member) galaxies, which are also used to determine
the cluster redshift. The distinct signature of the SZ ef-
fect allows the construction of highly pure and complete
cluster samples which are a strong foundation for cosmo-
logical analyses [e.g., 6–11]. The strength of the SZ effect
is given by the integrated ICM pressure and thus corre-
lates tightly with the halo mass [e.g., 12]. However, due
to our lack of sufficiently detailed knowledge about the
properties of the ICM, the details (i.e., the parameters)
of the SZ–mass relation cannot be predicted reliably.

The effects of gravitational lensing, on the other hand,
are sourced by the entire matter distribution of a halo,
and, on cluster-mass scales, are only mildly affected by
the details of galaxy and ICM evolutions. However, the
typical measurement uncertainty is large and observa-
tions for many clusters need to be combined to obtain
sufficient constraining power. Then, lensing can offer
a robust means of measuring halo masses, with well-
understood control over systematic uncertainties (e.g.,
[13–17], and review [18]).

This is the first in a series of papers that aim at de-
riving cosmology and cluster astrophysics constraints by
leveraging the overlap of the SPT survey and the Dark
Energy Survey (DES) footprints. Indeed, one of the sci-
ence goals of the DES was to provide optical confirmation
and redshifts for SPT clusters, as well as weak-lensing
measurements. Of the 5,200 deg2 of SPT cluster surveys
(combining SPT-SZ [19], SPTpol ECS [20], and SPT-
pol 500d [21]), almost 3,600 are also covered by the DES.
In this overlap area, and up to cluster redshift of z ∼ 1.1,
we now use DES data to confirm clusters in a statisti-
cally robust way by using information from random lines
of sight to calibrate the frequency of (false) random asso-
ciations.1 This approach is implemented in the MCMF
algorithm [22] that has been applied to various cluster
datasets [23, 24], now including SPT [21, 25]. The opti-
cal confirmation with MCMF allows us to use the SPT
data to greater depth than outside of the DES overlap re-
gion, where we adopt an SZ-only selection scheme. The

1 We resort to the all-sky WISE survey at high cluster redshifts
z ≳ 1.1 that are beyond the reach of DES.

resulting SPT cluster cosmology sample comprises 1,005
confirmed clusters above z > 0.25. We use DES weak-
lensing data for 688 clusters up to z < 0.95. At high
cluster redshifts 0.6 < z < 1.7, the DES lensing dataset
is supplemented with targeted measurements using the
Hubble Space Telescope for 39 clusters (hence HST-39;
[26–28]).
In this work, we describe the measurements and the

analysis framework for the cluster cosmology analysis.
We focus on three key areas:

• We measure weak-lensing shear profiles of SPT
clusters using the DES Year 3 (Y3) lensing dataset
(see Fig. 1). To make these measurements useful
in the calibration of the SPT observable–mass re-
lation, we establish a framework that relates the
lensing measurements to the underlying halo mass,
following [29]. This framework requires additional
measurement inputs such as the offset distribution
of the observed cluster centers around which the
shear profiles are measured, and a determination
of the fraction of cluster member contamination,
which tends to dilute the observed amount of shear.
We perform these calibrations and combine them
with synthetic mass maps from numerical simula-
tions to obtain the complete weak-lensing mass cal-
ibration model.2

• We present the analysis strategy and likelihood
function for the cosmology analysis, which is de-
signed to be simple yet robust, accounting for all
relevant sources of biases and uncertainties. The
framework is based on the notion that weak lensing
can provide unbiased mass estimates within known
and controlled uncertainties. Our approach is min-
imalist in the sense that we avoid making strong or
unnecessary assumptions about, e.g., the parame-
ters of the SZ–mass relation (in particular, we do
not assume the clusters to be in hydrostatic equilib-
rium) or the properties of cluster member galaxies.
Instead, using the weak-lensing data, we empiri-
cally calibrate the observable–mass relations. We
use the multi-wavelength cluster data in a well-
understood “cluster-by-cluster” likelihood frame-
work that allows us to handle, e.g., possible cor-
relations between the different cluster observables
straightforwardly (to mitigate an effect often called
“selection bias”).

• We validate the analysis pipeline by analyzing mock
catalogs. These synthetic datasets are drawn from
our model and therefore include all known sources
of systematic and statistical uncertainties. The
analysis of several statistically independent mock

2 Note that the measurements and model calibrations for the HST-
39 lensing dataset were presented in separate publications and
can be used without further modification [26–28].
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FIG. 1. DES Y3 weak-lensing mass map, smoothed with a 0.5 deg Gaussian kernel [30]. We outline the main SPT cluster
survey footprint (the SPTpol ECS fields centered at R.A. 11 and 13 hrs, Dec. −25◦ are not shown) and the subset of SPT
clusters with z < 0.95, for which we can measure the DES Y3 lensing signal in the overlapping survey regions. The spatial
density of clusters increases from SPTpol ECS to SPT-SZ and SPTpol 500d due to the increasing survey depths, which enhance
the sensitivity to lower-mass halos that are more abundant.

realizations confirms that our likelihood framework
and analysis pipeline are able to recover the known
input values and are thus ready for the analysis of
the real dataset.

The paper is structured as follows. We present the
dataset in Section II. A summary of halo lensing the-
ory can be found in Section III. We extract the DES
weak-lensing measurements in Section IV. We discuss our
model of the weak-lensing measurements in Section V,
and the observable–mass relations in Section VI. In Sec-
tion VII, we describe the likelihood function. The val-
idation of our analysis pipeline using mock data is pre-
sented in Section VIII. We conclude with a summary in
Section IX. The cosmological results of the joint SPT
cluster and DES and HST weak-lensing dataset will be
presented in a companion paper ([31]; hereafter Paper II).

Throughout this paper, the (multivariate) normal dis-
tribution with mean µ and (co)variance K is expressed
as N (µ,K). When converting angles to distances, we
adopt a fiducial flat ΛCDM cosmology with Ωm = 0.3

and h = 0.7. Halo masses M200c refer to the mass en-
closed within a sphere of radius r200c, within which the
mean density is 200 times larger than the critical den-
sity ρc(z) at the cluster redshift z. M500c and r500c are
defined in an analogous way.

II. DATA

We construct a cluster catalog using SPT-SZ and SPT-
pol survey data and optical and infrared follow-up mea-
surements. We supplement the catalog with weak-lensing
measurements from the DES and targeted observations
using the HST.

A. The SPT Cluster Catalog

We use a combination of the cluster catalogs from
the SPT-SZ and SPTpol surveys, which cover a total of
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TABLE I. The SPT-SZ and SPTpol cluster surveys. The SPTpol 500d footprint lies within SPT-SZ. Over the shared footprint,
we use only the deeper 500d data. The SPTpol ECS covers two separate regions of sky. We quote the unmasked survey area
used in the analysis, and the overlap with the unmasked part of the DES survey that can be used to confirm cluster candidates.
The number of clusters is for the cosmology sample used in this work. The selection is summarized in Eqs. 1 and 2.

Survey Boundaries Depth (150 GHz) Area Area∩DES No. of clusters

[µK-arcmin] [deg2] with z > 0.25

SPTpol ECS 10h ≤ R.A. ≤ 14h −30◦ ≤ Dec. ≤ −20◦ 30–40 541.8 0 41

SPTpol ECS 22h ≤ R.A. ≤ 6h −40◦ ≤ Dec. ≤ −20◦ 25–39 1,986.3 1,421.6 166

SPT-SZ 20h ≤ R.A. ≤ 7h −65◦ ≤ Dec. ≤ −40◦ 12–18 1,906.0 1,688.9 408

SPTpol 500d 22h ≤ R.A. ≤ 2h −65◦ ≤ Dec. ≤ −50◦ 5.3 460.1 456.8 390

Total 4,894.2 3,567.3 1,005

5270 deg2 of the southern sky. Note that within the SPT-
SZ survey footprint, the 500 deg2 SPTpol 500d patch was
re-observed to greater depth with SPTpol [32]. The sur-
vey footprint is shown in Fig. 1. Key features of the SPT
cluster surveys are summarized in Table I.

Over the entire survey region, the cosmology catalog
only includes clusters above redshift z > 0.25. Objects
at lower redshifts are excluded because, owing to the fil-
tering applied to the SPT maps to remove atmospheric
noise as well as increased noise contributions from the
primary CMB, there is a strong evolution in the SPT
selection function at low redshift.

Over the 1,327 deg2 of the SPT survey that is not cov-
ered by DES, we apply the sample selection as a cut in
the SPT signal-to-noise ratio (SNR) ξ > 5. The resulting
cluster candidate list has a purity ≳ 95%. Cluster con-
firmation and redshift assignment are performed using
targeted optical observations. In particular, all SPT-SZ
clusters and some SPTpol clusters were imaged in Sloan
g, r, i, and z with the Parallel Imager for Southern Cos-
mology Observations (PISCO; [33]). More details about
the cluster samples can be found in the original catalog
publications [19, 20].

Over the 3,567 deg2 of the SPT survey that is cov-
ered by DES (notably, the overlap region contains the
SPTpol 500d survey), we confirm SPT cluster candi-
dates and assign redshifts using the Multi-Component
Matched Filter cluster confirmation tool (MCMF; [22]).
In a first step, MCMF measures an optical richness (the
sum of membership probabilities of all galaxies consid-
ered cluster members), the position of the optical center,
and a redshift for each SPT detection. In principle, an
SPT detection with a corresponding richness and red-
shift measurement can be considered a confirmed cluster
of galaxies. However, given the abundance of galaxies on
the sky, there is a chance that a small local overdensity
of galaxies is erroneously associated with an SPT noise
fluctuation. Therefore, we also run MCMF on random lo-
cations in the DES footprint to determine the statistical
properties of chance associations as a function of richness
and redshift. We then consider an SPT cluster candidate
confirmed only if the probability of chance association is
smaller than a given threshold. We define this threshold

0.5 1.0 1.5
redshift z

0

10

20

30

40

ric
hn

es
s c

ut
 

m
in

(z
) SPT-SZ & SPTpol ECS

SPTpol 500d

FIG. 2. Sample selection threshold in optical richness λ as a
function of redshift. The threshold is empirically determined
to ensure a redshift-independent sample purity. The dotted
line marks redshift z = 1.1, below which we use optical data
from DES. We use WISE data above that redshift. Thin
lines show the individual λmin(z) for DES and WISE, and
thick lines show the combination. The SPTpol 500d survey
is significantly deeper than SPT-SZ and SPTpol ECS and we
thus apply a different sample selection threshold.

such that the sample of confirmed detections has a purity
> 98%.3 In practice, this threshold is implemented as a
lower limit in richness λmin, and SPT detections are con-
sidered to be confirmed clusters if the measured richness
exceeds this threshold. We let the value of λmin evolve
with cluster redshift (λmin(z), see Fig. 2) such that the
resulting sample purity is constant at all redshifts. More
details can be found in the publications in which MCMF
is applied to SPT-SZ and SPTpol 500d data [21, 25].
The different SPT surveys have different depths and

therefore, at fixed detection SNR, the cluster candidate
lists have different purity levels.4 To keep the purity of

3 This value is chosen such that the remaining level of contamina-
tion is within the shot noise of the total sample size.

4 Over a fixed survey area, and above a given SNR cut, a given
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the cluster samples extracted from the SPT sub-surveys
roughly constant, we apply different cuts in the SPT SNR
(ξ > 4.25 for SPTpol 500d, ξ > 4.5 for SPT-SZ, and
ξ > 5 for SPTpol ECS), and we apply a different (lower)
λmin(z) to SPTpol 500d (blue in Fig. 2).
MCMF can use DES data only for clusters up to red-

shift z ≲ 1.1. As can be seen in Fig. 2, λmin starts to
steeply increase above redshift z ≳ 1, indicating that
only high-richness clusters can be confirmed beyond this
redshift. To confirm clusters at higher redshifts, we also
run MCMF on data from the Wide-field Infrared Survey
Explorer (WISE; [34]) and repeat the analysis along ran-
dom lines of sight to determine λmin(z). The thick lines
in Fig. 2 show the complete model for λmin(z) with the
transition from DES to WISE data at redshift z = 1.1.
Over the full SPT footprint, there are 747 confirmed

clusters above ξ > 5 and z > 0.25. This sample is already
twice as large as the one used in our previous cluster
cosmology analyses based on SPT-SZ [9, 11]. When we
apply the (lower) SPT SNR cuts discussed above, along
with the confirmation using MCMF and λmin(z), we ob-
tain our fiducial cluster cosmology sample of 1,005 con-
firmed clusters, a sample that is almost three times as
large as the SPT-SZ cosmology catalog.

To summarize, outside of the DES overlap area (ap-
proximately 27% of the total survey area), we select 110
clusters according to

ξ > 5

z > 0.25.
(1)

Within the DES overlap region (approximately 73% of
the survey area), the selection is

ξ > 4.25 / 4.5 / 5 (500d / SZ / ECS)

λ > λmin(z)

z > 0.25,

(2)

with the ξ limit and λmin(z) chosen for the appropriate
SPT survey. This sub-sample contains 895 clusters. In
the cosmological analysis, we will explicitly model the
full sample as selected according to Eqs. 1 and 2.
We note that in the redshift regime where we run

MCMF both on DES and WISE, the two richness mea-
surements are in reasonable agreement. We attempted
to further tune and correct the WISE richness measure-
ments to exactly match those from DES, but were not
successful. Therefore, in the cosmological analysis, we
will separately fit the DES richness–mass relation and
the WISE richness–mass relation. Finally, note that the

fixed number of false detections due to noise fluctuations is ex-
pected. However, a sufficiently deep survey would also detect
many clusters (and thus obtain a highly pure candidate list),
whereas an extremely shallow survey would detect no or very
few clusters (and thus produce a low-purity candidate list that
mostly consists of false detections).

moderate spatial resolution of WISE may limit its abil-
ity to confirm high-redshift clusters [see discussion in 21].
To first order, such effects are absorbed by the WISE
richness–mass relation and the intrinsic scatter in that
relation. Then, in the cosmological analysis in Paper II,
we will blindly compare the analysis of the z < 1 clus-
ter sample (which does not rely on WISE data) with the
analysis of the full cluster sample.

B. DES Y3 Weak-Lensing Data

The 5,000 deg2 DES was conducted in the grizY bands
using the Dark Energy Camera (DECam; [35]) on the 4m
Blanco telescope at the Cerro Tololo Inter-American Ob-
servatory (CTIO) in Chile. In this work we use data from
the first three years of observations (DES Y3), which
cover almost the entire survey footprint.

1. The Shape Catalog

The DES Y3 shape catalog [36] is constructed from the
r, i, z-bands using the Metacalibration pipeline [37,
38]. We refer the reader to other DES Y3 publications
for detailed information about the photometric dataset
[39] and the point-spread function modeling [40]. After
application of all source selection cuts, the DES Y3 shear
catalog contains about 100 million galaxies over an area
of 4,143 deg2. Depending on the exact definition, the
effective source density is 5–6 arcmin−2.

2. Source Redshifts and Shear Calibration

We use the selection of lensing source galaxies in to-
mographic bins as defined and calibrated in [36, 41–43]
and employed in the DES 3x2pt analysis [44]. Source
redshift distributions are estimated using self-organizing
maps and the method is thus referred to as SOMPZ.
The final calibration accounts for the (potentially cor-
related) systematic uncertainties in source redshifts and
shear measurements. For each tomographic source bin,
the mean redshift distribution (with amplitude scaled by
factor 1 +m to account for the multiplicative shear bias
m) is provided, and the systematic uncertainties are cap-
tured through 1,000 realizations of the distribution (see
top panel of Fig. 3). Note that these uncertainties are
correlated among the source bins; we account for this
correlation in our analysis.

In addition to the tomographic bins and SOMPZ, we
also use two individual galaxy photo-z estimates, DNF
[45] and BPZ [46], when determinining the amount of
cluster member contamination (see Section IVD).
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FIG. 3. DES Y3 lensing source redshifts. Top panel: Mean
and 5th/95th percentiles of the source redshift distributions in
each tomographic bin. Middle panel: Lensing efficiency Σ−1

crit

for each source bin, as a function of lens redshift. Bottom
panel: (Systematic) Uncertainty in Σ−1

crit. Dotted lines show
the contributions from photo-z uncertainties, solid lines show
the joint uncertainties from photo-z and shear calibration.
Throughout our analysis, we do not use source bin 1 due to
its low lensing efficiency and the higher level of uncertainties
in its calibration.

C. High-Redshift HST Weak-Lensing Data

To complement ground-based weak-lensing measure-
ments, a sub-sample of 39 SPT clusters with redshifts
0.6 < z < 1.7 were observed with the HST. Additional
photometric data were collected with VLT/FORS2 and
Gemini-South/GMOS. More details about the HST-39
dataset can be found in [26–28].

III. GALAXY CLUSTER WEAK LENSING

Gravitational shear is induced by the matter density
contrast in the lens plane. The tangential shear profile
caused by an object with a projected mass distribution
Σ(r) is

γt(r) =
∆Σ(r)

Σcrit
=

⟨Σ(< r)⟩ − Σ(r)

Σcrit
. (3)

The critical surface mass density Σcrit is defined as

Σ−1
crit(source, lens) =

4πG

c2
Dl

Ds
×max [0, Dls] (4)

where c is the speed of light, G the gravitational constant,
and the Di are angular diameter distances, where l de-
notes the lens and s denotes the source. When the source
is not behind the lens, Σ−1

crit and the shear γ vanish.
The observable quantity is the reduced tangential shear

gt(r) =
γt

1− κ
(r) (5)

with the convergence κ(r) = Σ(r)/Σcrit.
The inverse critical surface mass density Σ−1

crit plays
a central role in the lensing analysis because it acts as
a lensing efficiency that modulates the strength of the
observed shear signal given a particular lens mass. To
compute Σ−1

crit, the lens redshift and the redshift distri-
bution of source galaxies need to be known, and uncer-
tainties in the calibration of that distribution propagate
into uncertainties on Σ−1

crit (see middle and bottom panels
of Fig. 3). Residual uncertainties in the shear calibration
further affect the relation in Eq. 5. In our analysis of
DES Y3 lensing data, we account for both of these ef-
fects as discussed in Section II B 2.
Cluster lensing is measured along cluster sightlines,

where cluster member galaxies – which are not sheared
by their host halo – can potentially contaminate the sam-
ple of source galaxies. This cluster member contamina-
tion biases the measured shear low, and it is particularly
important when the galaxy redshifts are estimated from
broad-band photometry. We characterize this contami-
nation in Section IVD and account for it in Section VB.
Finally, the massive dark matter halos that host galaxy

clusters are complex objects that are embedded in the
large-scale structure. The variety of halo profiles, their
correlation with neighboring structures, and uncertain-
ties in the observationally determined halo centers all
need to be modeled and accounted for. We will address
these points in Sections IVC and V.

IV. DES WEAK-LENSING MEASUREMENTS

We extract DES Y3 weak-lensing data products for
SPT clusters and quantify the relevant systematic and
statistical uncertainties. In short, we

1. define rescaling factors for the shear in each tomo-
graphic source bin. These factors depend on clus-
ter redshift and allow us to optimally combine the
source bins for each lens,

2. extract the tangential shear profile and source red-
shift distribution for each cluster in our sample,

3. determine the miscentering distributions of the ob-
servationally determined cluster centers,
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4. estimate the cluster member contamination of the
measured shear signal.

These steps are described in detail in the following sub-
sections. In Section VB we fold these measurements into
a condensed model that is then implemented in the cos-
mology analysis pipeline.

A. Tomographic Source Bins

We select lensing source galaxies based on four tomo-
graphic bins (see Fig. 3), following the DES 3x2pt analy-
sis [44]. Assuming a fiducial flat ΛCDM cosmology with
Ωm = 0.3, we compute the average lensing efficiency for
each bin b

⟨Σ−1
critb⟩(zlens) =

∫
dzs Pb(zs) Σ

−1
crit(zs, zlens) (6)

using the mean source redshift distribution Pb(zs), and
as shown in the middle panel of Fig. 3.
For a given lens, we only use those source bins for which

the median source redshift is larger than the lens redshift,
to avoid the regime where the analysis would be highly
sensitive to the accurate calibration of the high-redshift
tails of the redshift distributions. The median redshifts
of the four bins are zmedian = 0.285, 0.476, 0.743, 0.942,
as indicated by vertical lines in Fig. 3. In Appendix A,
we discuss that applying more aggressive limits (i.e., use
the source bins up to higher lens redshifts) leads to un-
expected trends in the redshift evolution of the lensing
efficiencies, and we thus prefer to apply the fiducial se-
lection described above. In principle, for clusters with
redshifts 0.25 < z < 0.28 we could use lensing sources
from bin 1. However, because of the relatively high level
of uncertainty in its calibration, we discard bin 1 alto-
gether. In summary, we do not use source bin 1, and
we use bin 2 for lenses with z < 0.47, bin 3 for lenses
with z < 0.74, and bin 4 for lenses with z < 0.95. With
these cuts, we extract over 99% of the total statistical
constraining power (signal-to-noise ratio) of the lensing
dataset.

B. Shear Measurements and Source Redshift
Distributions

In DES Y3, the lensing shear is extracted using Meta-
calibration [37, 38]. The Taylor-expansion of the ob-
served source ellipticity e given an applied amount of
shear γ yields

e =e|γ=0 +
∂e

∂γ

∣∣
γ=0

γ + ...

≡e|γ=0 +Rγ γ + ...

(7)

with the shear response Rγ . Since the mean unsheared
ellipticity vanishes (⟨e|γ=0⟩ = 0) we obtain an estimator

for the average shear

⟨γ⟩ = ⟨Rγ⟩−1⟨e⟩. (8)

The shear response is computed from artificially sheared
shape catalogs. In practice, we use a smooth shear re-
sponse estimator Rγ [36, Section 4.3]. Additionally, a
selection response Rsel accounts for the fact that lensing
sources are selected based on their (intrinsically) sheared
observations. We determine a single value of Rsel for the
entire sample of cluster lensing sources:

Rsel ≈
1

2

⟨e1⟩S+ − ⟨e1⟩S− + ⟨e2⟩S+ − ⟨e2⟩S−

∆γ
(9)

where e1, e2 are the ellipticities along the cartesian co-
ordinate axes, and where the superscripts S+ and S−
indicate that artificial shear of +0.01 and −0.01 is ap-
plied (and thus ∆γ = 0.02).
Notionally, a simple estimator for the tangential shear

can be defined by averaging over all sources i in all source
bins b as follows

gt, preliminary =

∑
b=2,3,4

∑
i et,b,i w

s
i∑

b=2,3,4

∑
i w

s
i (Rγ +Rsel)

, (10)

with source weights ws
i (corresponding to the inverse vari-

ance in the measured ellipticity, accounting both for the
intrinsic variance of shapes and for measurement uncer-
tainties) and shear and selection response Rγ and Rsel.
In practice, we refine the estimator by accounting for

the fact that the lensing efficiency changes between the
source bins, and with it, the amplitude of the observed
shear. The preliminary estimator averages over data that
do not have a common mean, thereby artificially increas-
ing the variance in the recovered estimate. To avoid this
effect, we rescale the ellipticities in each bin b by a factor

frescale,bin b(zlens) = ⟨Σ−1
crit,bin4⟩(zlens)/⟨Σ

−1
crit,binb⟩(zlens)

(11)
and divide the weights in bin b by f2

rescale,bin b(zlens). By
definition, the shear in bin 4 remains unchanged, and
the shear in the other source bins is enhanced.5 The
estimator we employ in our analysis then is

gt =
⟨Σ−1

crit,bin 4⟩(zlens)
∑

b=2,3,4⟨Σ
−1
crit,bin b⟩(zlens)

∑
i et,b,i w

s
i∑

b=2,3,4

(
⟨Σ−1

crit,bin b⟩(zlens)
)2∑

i w
s
i (Rγ +Rsel)

(12)
Note that, as defined in Eqs. 4 and 6, the ⟨Σ−1

crit⟩ used
in the estimator are computed in our reference cosmol-
ogy. In the cosmological analysis, model shear profiles

5 The noise in the other bins is enhanced accordingly, so that the
signal-to-noise ratio per bin remains constant. In other words,
our estimator does not alter the signal-to-noise ratio per source
bin, but it does increase the signal-to-noise ratio of the combined
measurement.
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FIG. 4. DES Y3 shear profiles of SPT clusters. The indi-
vidual profiles (thin gray lines) are noisy, but on average, a
positive shear signal is measured (dark violins show the dis-
tribution of measurements, dark horizontal marks show the
mean). Colored lines show three example clusters with high
(purple), average (pink), and low signal-to-noise ratios (yel-
low) in the lensing profile measurements.

are computed using Σ−1
crit evaluated for each tomographic

bin for the cosmological parameters of the evaluation,
and then the model shear profiles are combined into a
single profile using the (fixed, non-cosmology dependent)
rescaling factors.

We also experimented with a more sophisticated es-
timator where frescale is additionally multiplied with the
source fraction (unity minus the cluster member contam-
ination, see Section IVD) in the respective source bin.
This scheme was meant to further increase the signal-to-
noise ratio in the measured shear profiles. However, in
practice, the improvements were modest and therefore,
we do not apply this extra analysis step.

For each cluster, we also measure the lensing source
redshift distribution as

P (zs) =

∑
b=2,3,4

(
⟨Σ−1

crit,bin b⟩(zlens)
)2

Pb(zs)
∑

i Rγw
s
i∑

b=2,3,4

(
⟨Σ−1

crit,bin b⟩(zlens)
)2∑

i Rγws
i

(13)
where Pb(zs) is the mean source redshift distribution in
each tomographic bin. The distributions P (zs) will be
used in the cosmological analysis to compute ⟨Σ−1

crit⟩ (in
a way that is analogous to Eq. 6).
We extract two sets of shear profiles and source redshift

distributions for each cluster, using either the SPT posi-
tion or the position determined from optical data using
the MCMF algorithm. We use sources within a projected
distance of 500 h−1kpc and 3.2/(1 + zcluster)h

−1Mpc,
where these regions are calculated within our fiducial cos-
mology. We measure Rsel = −0.0023 for optical centers
and Rsel = −0.0025 for SPT centers. Compared to the
typical shear response Rγ ∼ 0.66, the selection response
thus plays a minor role. We use annuli that are linearly
spaced with ∆r = 0.3h−1Mpc. For each cluster and for
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FIG. 5. Number of DES Y3 lensing source galaxies per SPT
cluster, as a function of cluster redshift. The number drops
toward high cluster redshifts for several reasons: we use fewer
source bins for high-redshift clusters, high-redshift clusters
appear smaller on the sky, and additionally, we apply an outer
radial cut of 3.2/(1 + z)h−1Mpc.

each cluster radial bin, we measure the reduced shear
and extract a source redshift distribution. The tangen-
tial shear measurements are illustrated in Fig. 4. In to-
tal, for the optical centers, we extract lensing data around
688 clusters from a total of 555,912 sources, with an aver-
age of 808 sources per cluster (see Fig. 5). The individual
shear profile measurements are quite noisy as shown in
the middle panel of the figure. In the analysis, we will
combine lensing information for hundreds of clusters to
obtain precise mass calibration constraints.

C. The Miscentering Distributions for the
Weak-Lensing Measurements

Two sets of centers are available for all DES weak-
lensing measurements: mm-wave SZ centers as measured
by the SPT and optical centers extracted from the opti-
cal imaging using the MCMF algorithm.6 Since no ob-
servationally determined position is a perfect tracer of
the true halo center, the effect of miscentering must be
accounted for in the lensing analysis. Note that in the
simulation-based models for the halo mass function and
for cluster lensing, the potential minima are adopted as
the true halo centers.
We set up the DES lensing analysis such that we can

use either the SPT centers or the optical centers. Using
the real data, we will blindly compare the cosmological
constraints obtained from the two sets of centers in Pa-
per II. In this section, we calibrate the offset distribu-
tions between the observed positions and the underlying

6 MCMF adopts the brightest cluster galaxy (BCG) as the center
if it is within 250 kpc of the cluster position determined by SPT,
else, the position of the peak of the galaxy density map is used.
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halo center, assumed to be the projected position of the
minimum in the halo potential.

Some clusters in the lensing sample are heavily affected
by masking in the DES data. Because masking out the
center strongly affects the determination of the optical
center, we discard problematic clusters from the miscen-
tering analysis and from the lensing sample. In the end,
we discard 10 clusters for which more than 1/3 of the
area contained within a 1 arcmin radius of the center
is masked. In the case of SPT centers, no clusters are
excluded.

1. Fitting the SPT–optical offset distribution

We parametrize the intrinsic miscentering distributions
(SZ–true and optical–true) as

σi = σi,0

(
λ

60

)1/3

for i ∈ {0, 1}

Poffset(r) = ρR(r, σ0) + (1− ρ)R(r, σ1)

(14)

with the Rayleigh function R. It is common to describe
the width of the distribution as a function of r500c [e.g.
20, 47–50]. Given the approximately linear scaling of
richness with mass [e.g., 17, 20, 51], we adopt a scaling of
the width with λ1/3. Finally, ρ must be between 0 and 1
which we enforce by applying a uniform prior ρ ∼ U [0, 1].
In addition to the intrinsic SZ miscentering distribu-

tion, the observed SPT centers are affected by noise and
the telescope’s positional uncertainty. We model these
effects as

σ2
SPT =

θ2beam + (κSPTθc)
2

ξ2
+ σ2

astrom. (15)

with the cluster detection significance ξ, the filter scale
θc, an astrometric uncertainty σastrom. = 5′′, and the
fit parameter κSPT that is of order unity. The effective
SPT beam is θbeam = 1.3′. We neglect the measurement
uncertainty on the centers determined from the optical
DES data.

The observed SZ–optical distribution is then the con-
volution of the offset distribution between the true halo
center and the SZ center, the offset distribution between
the true halo center and the optical center, and the SPT
positional uncertainty. With this approach, we make the
underlying assumption that the SZ and optical offsets for
a given cluster are independent. We validate our miscen-
tering analysis code by analyzing mock datasets. We cre-
ate these by taking the observed distribution of clusters
in λ − z space and then drawing mock offsets according
to our model.

The recovered parameters of the miscentering model
are summarized in Table II. Note that the posterior dis-
tribution is mildly bimodal, because our model with two
unknown offset distributions is very flexible. When in-
corporating the miscentering model into our lensing mod-
eling framework, we will use the full posterior distribu-
tion to correctly handle the bimodality. In Appendix B,

TABLE II. Parameters of the SZ and optical miscentering
distributions (mean and 68% credible interval, one-sided lim-
its are for the 95% credible interval).

Parameter Constraint

ρSZ 0.88+0.12
−0.06

σSZ,0 [h
−1Mpc] 0.007+0.002

−0.007

σSZ,1 [h
−1Mpc] 0.174+0.050

−0.113

κSPT 0.92+0.14
−0.12

ρopt 0.89+0.11
−0.06

σopt,0 [h
−1Mpc] 0.007+0.002

−0.007

σopt,1 [h
−1Mpc] 0.182+0.038

−0.112
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FIG. 6. Goodness of fit of our miscentering model. We create
1,000 mocks of the SZ–optical offset distribution using the
mean recovered fit parameters. We then compute the log-
likelihood for each mock and for the real data, again using
the mean recovered fit parameters. The log-likelihood of the
real data is representative for the expected distribution and
we conclude that the model is adequately describing the data.

we show that our constraints could be further refined by
also using X-ray center positions. However, that analysis
requires extra assumptions, and we base our cosmology
analysis on the observed SPT–optical offsets.
As a cross-check, we allow for additional flexibility by

allowing all parameters in Eq. 14 to evolve with redshift
and richness. However, in this more flexible analysis, all
evolution parameters are consistent with no evolution,
and we thus keep our simplified model.
We further validate our model and the recovered con-

straints by drawing 1,000 mock realizations of the SZ–
optical miscentering distribution using the mean recov-
ered parameter values and the observed distribution of
richness, θc, and ξ. We then compute the log-likelihood
of the data and of each mock dataset given the mean
recovered parameter values. Fig. 6 shows that the log-
likelihood obtained for the real data is representative for
the assumed model, and we conclude that our model is
able to adequately describe the data.
In the top panel of Fig. 7, we show the model predic-

tions for the SZ–optical offset distribution along with the
observed offsets. In the middle panel, we show the SZ off-
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FIG. 7. Offset distributions (SZ–optical, SZ–true, and
optical–true). The top panel also shows the measured SPT–
MCMF offset distribution which is well described by the
model. The middle panel shows that the SZ offsets as mea-
sured by the SPT are dominated by the effect of the beam.

set distribution and the contribution from the SPT beam
(i.e., measurement uncertainty), which is the dominant
source of SZ miscentering. Finally, the bottom panel
shows the optical offset distribution. Our model sug-
gests that 81% of the cluster population is well centered,
whereas the remaining clusters show a typical offset of
about 0.2 h−1Mpc. This result is broadly consistent with
other analyses that used data from DES and precursor
optical datasets [e.g., 47, 52, 53].

2. Comparison with Numerical Simulations

In the above, we establish the SZ and optical miscen-
tering distributions empirically. We now compare these
results with measurements extracted from numerical sim-

ulations. In Fig. 8, we show our model-inferred SZ cen-
tering distribution in units of r/r500c. Our miscentering
model discussed above is in physical units, and we con-
vert to r/r500c by using a fiducial value of r500c for each
cluster. The plot then shows the sample average.
The Magneticum simulation7 has been previously used

to infer the SZ miscentering distribution [50]. As a cross-
check, we use the same mm-wave lightcone map and add
realizations of the CMB background, atmospheric fore-
grounds, and run the SPT cluster detection pipeline. We
derive essentially the same miscentering distribution as
presented in [50], confirming their result. Fig. 8 sug-
gests that the simulated lightcone constructed from Mag-
neticum overestimates the amount of SZ miscentering.
This is not a new realization: The SZ miscentering dis-
tribution by [50] is in good agreement with measurements
of the SZ–optical miscentering [20, 49]. This would im-
ply either that optical miscentering is negligible (which
is ruled out by observations), or that Magneticum over-
estimates the amount of SZ miscentering. Other likely
explanations are related to artifacts due to the construc-
tion of the lightcone, or that there is significant correla-
tion between SZ and optical miscentering.
Comparisons with more numerical simulations are

needed to reach definitive conclusions on the observed
mismatch. We emphasize that these simulations need
to be processed and analyzed as the SPT data would to
make meaningful comparisons. In this analysis, we pro-
ceed with our data-driven miscentering model and leave
a more exhaustive comparison with simulations to future
work. In Paper II, we will investigate the cosmological
impact of using either the optical centers or the SPT cen-
ters, or larger radial scales to verify that our miscentering
model is sufficiently robust.

D. Cluster Member Contamination of the Lensing
Source Galaxy Sample

The sample of lensing source galaxies along a cluster
line of sight is in general contaminated by cluster member
galaxies because we measure redshifts using broad-band
photometry with relatively large statistical uncertainties.
These galaxies, which are not sheared by their host halo,
bias the measured weak-lensing signal low. To quantify
the fractional contamination by cluster member galax-
ies, we closely follow the methodology described in [54].
In that work, the method of P (z) decomposition [e.g.,
16, 55–57] is applied in a cluster-by-cluster analysis con-
text like ours, i.e., without stacking. In this approach,
the redshift distribution of source galaxies is modeled as
the weighted sum of an uncontaminated field component
Pfield(z), and a component of the contaminants Pcl(z).
In the original analysis, the focus was on DES Y1 data;

7 http://www.magneticum.org/index.html

http://www.magneticum.org/index.html
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FIG. 8. Offset distribution of the SZ cluster center with re-
spect to the true halo center. We compare our data-driven
result with the distribution obtained from lightcones gener-
ated from the Magneticum hydrodynamical simulation [50].
Our empirically determined model (using the observed offsets
between SPT centers and optical centers) is not well described
by the simulation and we thus do not use the simulation-based
miscentering distribution in our analysis.

we update aspects of the analysis and apply it to the
DES Y3 dataset.

The radial dependence of the contaminants is modeled
with a Navarro-Frenk-White profile (NFW; [58]), which
we normalize to unity at r = 1h−1Mpc. To approxi-
mately account for the effect of miscentering, the profile
is modified to remain constant within the miscentering
radius Rmis, which we define as

Rmis =

√
π

2

(
ρσ0 + (1− ρ)σ1

)
(16)

with the mean miscentering parameters ρ and σ from
section IVC. We model the scale radius rs of the NFW
profile as a function of cluster richness as

rs =
(λ/60)1/3

10cλ
(17)

with the free parameter cλ. We allow for a power-law
dependence of the cluster member contamination with
cluster richness. The redshift dependence is complicated
[54], and we allow for considerable freedom. The full
model reads

A(R, z, λ) =ΣNFW(R, rs)/ΣNFW(1h−1Mpc, rs)

× exp

(
A∞ +

∑
i

Ai exp

(
−1

2

(z − zi)
2

ρ2corr

))
× (λ/60)Bfcl

(18)

with the array of redshifts

zi ∈ {0.2, 0.28, 0.36, 0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.92, 1}.
(19)

The fractional cluster member contamination then is

fcl(R, z, λ) = A(R, z, λ)/ (1 +A(R, z, λ)) . (20)

This functional form ensures that 0 ≤ fcl ≤ 1 for any
positive value of A(R, z, λ).

We model the redshift distribution of source galaxies
(with source redshift zs) as the weighted sum of the field
distribution and a cluster member component, which is
modeled as a Gaussian distribution of width σz and that
is offset from the cluster redshift by zoff :

Pmodel(zs) =fcl N (zs − (zcluster + zoff), σ
2
z)

+ (1− fcl)Pfield(zs)

zoff(z) =zoff,0 + (zcluster − 0.5) zoff,1

σz(z) =σz,0 + (zcluster − 0.5)σz,1

(21)

With no prior knowledge of the possible evolution of the
offset zoff and width σz, we allow both to evolve linearly
with redshift.8

For each cluster, the likelihood for the observed sources
in each bin in radius and source redshift is

lnLcluster =
∑
i

wi ln [Pmodel(Ri, zs,i)] + const. (22)

where wi are the lensing weights of the source galaxies.
To correctly normalize the likelihood, we normalize the
weights wi such that the mean weight equals the mean
shear response Rγ . In other words, the typical source
galaxy contributes to the total likelihood with a weight
of ⟨Rγ⟩ ≈ 0.66.
Our model has considerable freedom along the redshift

axis, see Eq. 18. Based on the model parameter ρcorr, we
impose a certain degree of smoothness. For each pair of
amplitudes Ai and Aj and their corresponding redshifts
zi and zj , we regularize the log-likelihood as

Dij =
1− exp

(
− (zi−zj)

2

2ρ2
corr

)
2π

√
ρcorr

(23)

lnLregij = − lnDij −
1

2

(
Ai −Aj

Dij

)2

+ const. (24)

The total log-likelihood is the sum over all cluster likeli-
hoods (see Eq. 22) and over all regularization terms

lnL =
∑
i

lnLcluster,i +
∑
j

lnLreg,j + const. (25)

The SOMPZ redshift estimates (see Section II B 2)
turn out to be inadequate to estimate the cluster member
contamination and we are not able to extract a mean-
ingful measurement. Therefore, we estimate the cluster

8 When sampling the likelihood, we reject parameter combinations
of σz,0 and σz,1 that would result in σz < 0.
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FIG. 9. Fractional cluster member contamination fcl of the
weak-lensing shear signal. Upper panel: Evolution as a func-
tion of cluster redshift, using the DNF and BPZ photo-z es-
timators. Thick lines show the mean and thin lines show the
2-σ interval. As a cross check, we also show the mean result
obtained using bins in redshift instead of the smooth function.
Lower panel: Example redshift distributions of the contam-
inants for clusters with 0.4 < z < 0.6 and 60 < λ < 100.
Thin, smooth lines show the model, which is also used in the
top panel and throughout our weak-lensing analysis. Binned
histograms show the distribution as obtained using a model-
free approach for cross-check purposes. The contaminants are
concentrated around the cluster redshift, and their number
decreases with increasing distance from the cluster center.

member contamination using the DNF and BPZ redshift
estimates. We explain the better performance with the
fact that DNF and BPZ are trained on optimized pho-
tometry made in all DES bands, whereas the SOMPZ
are restricted to the Metacalibration r, i, z photome-
try. In practice, we use the point estimate zmc instead of
the full redshift probability distribution.

We report the recovered parameters of our cluster
member contamination model in Table III. We show the
evolution with redshift in the top panel of Fig. 9. It is
clear that the trend follows no obvious functional form
which motivates our complex modeling, as was discussed
in [54]. For cross-check purposes, we also consider a sim-
pler model in which we replace the term for the redshift
evolution (second line in Eq. 18) with a simple amplitude
in bins of redshift. The recovered results from the sim-
plified analysis are also shown in the top panel of Fig. 9,
and confirm the complex evolution with redshift. Further

note that the choice of cluster center (SPT or optical) has
a very minor impact on the amount of cluster member
contamination. This is expected because we do not con-
sider the innermost 500 h−1kpc in this analysis. Finally,
and most interestingly, there is a statistically significant
deviation between the cluster member contamination as
inferred using DNF redshifts or BPZ redshifts (purple vs.
orange lines in top panel of Fig. 9).
To further validate our analysis, we also perform a

model-free measurement of cluster member contamina-
tion. Still following [54], we note that the cluster mem-
ber contamination is localized around the cluster red-
shift. Therefore, we assume that there is no residual
cluster member contamination at zcluster + 0.5. We can
then use the field redshift distribution, measured far away
from the cluster center, and the cluster line-of-sight red-
shift distribution, and normalize both so that they match
above zcluster+0.5. Any local enhancement of the cluster
line-of-sight redshift distribution can then be attributed
to cluster members. We apply this test to stacked mea-
surements of all clusters within three bins in redshift and
two bins in richness. The bottom panel of Fig. 9 shows
the analysis for clusters with 0.4 < z < 0.6 and richness
60 < λ < 100 for DNF redshifts. In the radial range
of interest, our recovered model and the model-free es-
timation agree reasonably well. Finally, the model-free
analysis confirms that the BPZ redshifts do indeed indi-
cate a higher level of cluster member contamination than
the DNF redshifts.
Given the apparent mismatch between the cluster

member contamination as determined from BPZ and
DNF redshifts, we will perform a blind comparison of
the cosmological results obtained from the real data us-
ing either model (Paper II). Another robustness test will
consist in only using lensing data for r > 800 h−1kpc in-
stead of r > 500 h−1kpc, thereby excluding more of the
radial range where the cluster member contamination is
particularly strong.

V. THE CLUSTER WEAK-LENSING MODEL

We reviewed the theory of cluster lensing in Section III
and we discussed the measurements of lensing shear pro-
files in Section IV. Here, we introduce the model we em-
ploy for the DES Y3 lensing dataset and summarize the
HST lensing model.

A. The Model for HST Weak Lensing

The model for the HST lensing data was introduced
along with the measurements in [26–28] and implemented
in [11, 16]. Here, we briefly summarize the key points and
refer the reader to the referenced works. We model the
HST shear profiles using the NFW profile and the halo-
concentration–mass relation c(M, z) from [59], along with
the measured source redshift distributions. The residual
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TABLE III. Parameters of the cluster member contamination model (mean and standard deviation).

Parameter DNF photo-z BPZ photo-z

SPT center MCMF center SPT center MCMF center

zoff,0 0.0523± 0.0018 0.0513± 0.0018 0.0273± 0.0010 0.0269± 0.0011

zoff,1 −0.1341± 0.0105 −0.1346± 0.0111 −0.1320± 0.0077 −0.1303± 0.0075

σz,0 0.0885± 0.0016 0.0877± 0.0016 0.0783± 0.0011 0.0784± 0.0011

σz,1 −0.0497± 0.0086 −0.0531± 0.0095 −0.0375± 0.0069 −0.0367± 0.0068

log(c) 0.545± 0.028 0.504± 0.027 0.676± 0.028 0.652± 0.028

Bλ 0.703± 0.028 0.730± 0.029 0.750± 0.024 0.773± 0.025

ρcorr 0.1021± 0.0038 0.1018± 0.0038 0.1065± 0.0041 0.1048± 0.0040

A0 −1.14± 0.52 −1.08± 0.52 −0.66± 0.47 −0.69± 0.49

A1 0.26± 0.45 0.13± 0.44 0.47± 0.40 0.33± 0.42

A2 1.23± 0.36 1.26± 0.36 1.24± 0.32 1.22± 0.33

A3 −0.17± 0.42 −0.15± 0.41 0.06± 0.37 0.08± 0.38

A4 −0.23± 0.39 −0.33± 0.38 −0.11± 0.35 −0.23± 0.36

A5 1.25± 0.39 1.27± 0.38 1.26± 0.34 1.25± 0.35

A6 0.87± 0.43 0.85± 0.42 1.02± 0.39 1.02± 0.40

A7 −0.32± 0.41 −0.37± 0.41 −0.28± 0.38 −0.38± 0.38

A8 −0.09± 0.41 −0.06± 0.41 −0.08± 0.36 −0.16± 0.38

A9 0.85± 0.47 0.81± 0.46 0.77± 0.43 0.83± 0.44

A10 1.21± 0.57 1.04± 0.57 0.86± 0.54 0.94± 0.55

A∞ −3.74± 0.83 −3.69± 0.82 −4.02± 0.75 −3.87± 0.78

mismatch between real, miscentered halo profiles (and
their diversity) and the NFW model is captured in an
MWL−Mhalo relation, where MWL is the mass-like quan-
tity that enters the NFW model and Mhalo is the halo
mass definition we adopt in modeling the halo mass func-
tion. More details of the mass modeling are also found
in [60]. The uncertainties in the source redshift distribu-
tion and shear calibration and the effects of line-of-sight
variations in the matter and source redshift distributions
are quantified and accounted for in the analysis.

B. The Model for DES Weak Lensing

We now describe the model we adopt for relating the
DES weak-lensing measurements to the underlying halo
mass. The methodology is developed in [29] where a
generic but realistic toy model is considered. We compute
the surface mass density profile starting from an NFW
profile with a constant halo concentration c = 3.5 and
an approximate correction for miscentering of magnitude
Rmis (see Section IVC and Eq. 16):

Σ(r|M) =

{
ΣNFW(Rmis|M, c) for r ≤ Rmis

ΣNFW(r|M, c) for r > Rmis

(26)

Note that, because Σ(r|M) is constant within Rmis, the
density contrast vanishes for these radii (see Eq. 3)

∆Σ(r ≤ Rmis) = 0. (27)

The density contrast outside of Rmis is computed as

∆Σ(r > Rmis) ≡⟨Σ(< r)⟩ − Σ(r)

=⟨ΣNFW(< r)⟩+ R2
mis

r2
[ΣNFW(Rmis)

− ⟨ΣNFW(< Rmis)⟩]− ΣNFW(r)

=∆ΣNFW(r)− R2
mis

r2
∆ΣNFW(Rmis).

(28)

Note that since ΣNFW(r) and ∆ΣNFW(r) have analyt-
ical solutions [see, e.g., 61], Eq. 28 can be computed
exactly. We now use Σ(r) and ∆Σ(r) to compute the
shear profile using Eqs. 3 and 5. We compute ⟨Σ−1

crit⟩
(Eq. 4) using the source redshift distribution (Eq. 13).
Finally, we account for the mean effect of cluster mem-
ber contamination by correcting the model shear profile
with 1 − fcl(r, λ, zcluster) (see Eq. 20). In summary, our
model shear profile is constructed from an NFW profile, is
approximately corrected for miscentering, and corrected
for the mean amount of cluster member contamination.
Since the lensing efficiency ⟩Σ−1

crit⟩ explicitly depends on
cosmology, we re-compute it at each step in the likelihood
analysis following Eq. 6.
We follow the discussion in [29] and only consider

the radial range between 500 h−1kpc and 3.2/(1 +
zcluster) h−1Mpc. The inner limit avoids the regime
where miscentering, cluster member contamination, and
hydrodynamical effects play a more significant role. The
outer limit is chosen to exclude the 2-halo term regime –
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our lensing analysis is thus restricted to the 1-halo-term
regime. As a cross-check of our fiducial analysis choice,
in Paper II, we will also perform an analysis where we
exclude the innermost 800 h−1kpc.

1. Weak-Lensing Mass Bias and Scatter

Our simple model for the shear profile is not a per-
fect description of actual shear profiles. In particular, it
does not account for departures from the NFW profile or
for all sources of uncertainty. Therefore, the halo mass
inferred using this model is a biased and noisy mass esti-
mator. Rather than making the model more complex, we
define the mass M that enters Eq. 26 as a latent variable
called the “weak-lensing mass” MWL, and establish an
MWL−Mhalo relation, where Mhalo is mass for which the
halo mass function is defined. We calibrate this relation-
ship accounting for the fact that we model the complex
halo projected mass distributions with a simplistic model
(this is also referred to as halo mass modeling) and ac-
counting for the observational systematic and stochastic
uncertainties.9

We follow the methodology presented in [29] to cali-
brate the MWL −Mhalo relation. From the Magneticum
simulation suite [62–65], we use pairs of hydrodynamical
and gravity-only runs with identical initial conditions to
create the link between the gravity-only halo mass and
realistic, full-physics halo mass profiles. This allows us
to use accurate predictions for the halo mass function
from gravity-only simulations ([66], but also emulators
[67–69], while simultaneously accounting for the impact
of baryonic effects on halo profiles and thus on cluster
cosmology (i.e., we argue that our approach addresses
the concerns raised in, e.g., [70]). We then repeat the
same analysis but use the Illustris-TNG hydrodynamical
simulations [71–76]. Finally, we estimate the impact of
the uncertainty in baryonic effects on the MWL −Mhalo

relation by taking the difference of the results based on
Magneticum and Illustris-TNG.10

The strategy for calibrating the MWL −Mhalo relation
is to use the projected mass maps from numerical simula-
tions to create synthetic lensing shear profiles according
to the specifications of the DES Y3 lensing measurements
of SPT clusters. We now summarize these specifications
and their implementation:

• For each halo in the simulation with M200c >
1.56 × 1014 h−1M⊙, we create three sets of two-

9 Note that alternatively, one could explicitly marginalize over the
sources of lensing uncertainty during the cosmological likelihood
analysis. We tested such an approach and concluded that it is
computationally intractable for the size and complexity of the
weak-lensing dataset considered here.

10 While estimating an uncertainty by comparing two sets of results
is not ideal, it reflects the status quo. In future work, we will
compare the calibrations obtained from more numerical simula-
tions as they become available.

dimensional mass maps by projecting along the
three orthogonal directions, with a projection
depth of ± 20h−1Mpc. In practice, we down-
sample the more abundant low-mass halo popu-
lation to achieve a roughly constant number of
halos per logarithmic mass interval. We analyze
9,798 mass maps for a total of 3,266 halos.

• For each halo mass map, we define a set of positions
that are offset from the true halo center by an ar-
ray of radii Rmis; the azimuthal angle is drawn uni-
formly.11 We then process the projected mass maps
into polarly binned, scaled maps of convergence
Σ(R, ϕ|Rmis) and tangential shear Γt(R, ϕ|Rmis)
for each set of polar positions.

• We construct synthetic source redshift distribution
P synth(zs) as in Eq. 13, but we randomly draw the
distributions Pb(zs) (that include the multiplicative
shear bias m) from the 1,000 realizations of the
calibration systematics, to capture the impact of
these systematic uncertainties.

• Using the maps of convergence and shear and the
source redshift distributions, we now produce syn-
thetic tangential shear profiles. Improving upon
previous work, we compute the reduced shear not
only for each polar position in the map, but also
for each source redshift zs. Averaging over azimuth
and source redshifts is done after the computation
of the reduced shear, and the mean profile is

gsyntht (R|Rmis) =

∫
dzs P

synth(zs)

∫
dϕ

2π

Σ−1
crit,ls Γt(R, ϕ|Rmis)

1− Σ−1
crit,ls Σ(R, ϕ|Rmis)

.

(29)

Deviating from this order in the integration would
bias the synthetic profiles at the level of 0.01, which
would not be acceptable given our targeted level of
accuracy. Note that low-order corrections for this
bias exist [78]. However, instead of complicating
the model with such a correction, we prefer to ab-
sorb the bias into a correct model of the synthetic
shear profiles and thus into the lensing bias we are
in the process of calibrating.

• Our models for miscentering and for cluster mem-
ber contamination depend on the cluster richness.
Therefore, for each halo in the simulation, we
draw a richness according to the scaling relation

11 Drawing the direction of miscentering uniformly neglects the po-
tential correlation between miscentering and halo morphology,
which can bias the inferred lensing mass [77]. In the cosmo-
logical analysis of the real dataset, we will compare the results
obtained using optical and SPT centers, or a large radial cut
(and the corresponding models) as cross-checks.
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TABLE IV. Parameters of the weak-lensing-mass-to-halo-mass relation (mean and standard deviation). In the cosmo-
logical analysis, we use the full posterior distribution to also account for the parameter covariances. The redshifts are
z ∈ {0.252, 0.470, 0.783, 0.963}.

Parameter Optical center SPT center

r > 500 h−1kpc r > 800 h−1kpc r > 500 h−1kpc r > 800 h−1kpc

DNF BPZ DNF BPZ DNF BPZ DNF BPZ

ln bWL(z0) −0.042 −0.044 −0.055 −0.056 −0.007 −0.009 −0.022 −0.022

ln bWL(z1) −0.040 −0.046 −0.058 −0.061 0.005 −0.002 −0.017 −0.018

ln bWL(z2) −0.033 −0.038 −0.083 −0.075 0.025 0.024 −0.018 −0.014

ln bWL(z3) −0.082 −0.089 −0.163 −0.145 −0.015 −0.012 −0.088 −0.074

σln bWL,1
(z0) −0.006 −0.005 −0.005 −0.005 −0.006 −0.006 −0.005 −0.005

σln bWL,1
(z1) −0.014 −0.013 −0.013 −0.012 −0.013 −0.013 −0.013 −0.011

σln bWL,1
(z2) −0.052 −0.054 −0.055 −0.051 −0.053 −0.052 −0.052 −0.051

σln bWL,1
(z3) −0.112 −0.114 −0.115 −0.105 −0.120 −0.110 −0.110 −0.104

σln bWL,2
(z0) 0.008 0.008 0.008 0.007 −0.009 0.010 0.007 0.008

σln bWL,2
(z1) 0.015 0.016 0.013 0.015 −0.015 0.016 0.013 0.014

σln bWL,2
(z2) 0.017 0.014 0.015 0.013 −0.019 0.014 0.016 0.012

σln bWL,2
(z3) −0.010 −0.009 −0.009 −0.008 0.010 −0.009 −0.009 −0.008

bM 1.029 ± 0.006 1.027 ± 0.007 1.049 ± 0.007 1.047 ± 0.007 0.995 ± 0.008 0.993 ± 0.008 1.017 ± 0.007 1.015 ± 0.007

sWL(z0) −3.115 ± 0.044 −3.112 ± 0.042 −2.892 ± 0.034 −2.888 ± 0.034 −3.040 ± 0.047 −3.038 ± 0.049 −2.872 ± 0.034 −2.871 ± 0.034

sWL(z1) −3.074 ± 0.048 −3.071 ± 0.046 −2.840 ± 0.035 −2.833 ± 0.034 −2.980 ± 0.056 −2.976 ± 0.054 −2.817 ± 0.035 −2.814 ± 0.034

sWL(z2) −2.846 ± 0.060 −2.847 ± 0.057 −2.427 ± 0.048 −2.429 ± 0.047 −2.711 ± 0.072 −2.709 ± 0.074 −2.418 ± 0.047 −2.421 ± 0.048

sWL(z3) −1.945 ± 0.101 −1.952 ± 0.104 −1.378 ± 0.086 −1.393 ± 0.084 −1.842 ± 0.102 −1.877 ± 0.101 −1.370 ± 0.089 −1.383 ± 0.085

sM −0.226 ± 0.040 −0.239 ± 0.041 −0.590 ± 0.043 −0.595 ± 0.043 −0.302 ± 0.043 −0.315 ± 0.044 −0.601 ± 0.043 −0.606 ± 0.043

in Eq. 42, with scatter given by a combination of
the intrinsic log-normal scatter σlnλ and a Poisson
contribution. The parameters of the richness–mass
relation are drawn as

Aλ ∼ N (76.5, 8.22)

Bλ ∼ N (1.02, 0.082)

Cλ ∼ N (0.29, 0.272)

σlnλ ∼ N (ln 0.23, (0.16/0.23)2)

(30)

as given in [20, Table 4].

• We apply the effects of the shape measurement bias
and cluster member contamination to the synthetic

shear profiles gsyntht (R), accounting also for possible
non-linear shear biases.12

• We draw off-centered cluster positions from the cal-
ibrated miscentering distributions. Note that we
account for the stochastic noise and the systematic
uncertainty in the miscentering model. To draw
from the SPT miscentering distribution, we first
assign core radii θc and detection significances ξ to
the simulated halos (see Eq. 15). The distribution

12 The non-linear shear bias αNL incorporates, among others, the
potential biases arising when measuring shapes in crowded clus-
ter fields. We thus marginalize over a generous prior lnαNL ∼
N (ln 0.6, 0.42) [following 17, 29, 38].

of core radii is well described by an exponential
distribution

θc DA(z) ∼ Rc,0 exp

(
−θc DA(z)

Rc,0

)
, (31)

with the angular diameter distance DA(z). We de-
termine the scale

R−1
c,0 = 3.76± 0.16h/Mpc (32)

which we adopt as a prior, assuming no variation
with mass or redshift. To predict ξ, which mod-
ulates the strength of the observational positional
uncertainty, we follow the scaling relation and scat-
ter model described in Eqs. 38–40, with priors on
the SZ scaling relation parameters

ASZ ∼ N (5.24, 0.852)

BSZ ∼ N (1.53, 0.12)

CSZ ∼ N (0.47, 0.412)

σln ζ ∼ N (ln 0.27, (0.1/0.27)2)

(33)

as given in [11]. We furthermore assume a field
depth of γfield = 1.2 and draw ξ from a truncated
Gaussian, such that ξ > 4.5 to avoid divisions by
very small values of ξ in Eq. 15.

• We create realizations of the cluster member con-
tamination model.

• We compute realizations of shear due to the uncor-
related large-scale structure along the line of sight.
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We now have libraries of synthetic shear profiles, which
are created accounting for all relevant sources of statisti-
cal and systematic uncertainties. Each halo in this syn-
thetic catalog has a shear profile for each projection direc-
tion and miscentering distance. Each of these shear pro-
files are then fitted with our extraction model described
above, resulting in a weak-lensing mass MWL. Given the
known halo mass in the simulation, we can now calibrate
the MWL − Mhalo relation by weighting the individual
weak-lensing masses with the miscentering distribution
[see 29, Section 2.3.1]. The mean relation is well de-
scribed by

⟨ln
(
MWL

M0

)
⟩ = bWL(z) + bM ln

(
M200c

M0

)
(34)

with a pivot mass M0 = 2 × 1014 h−1M⊙. The scatter
in lnMWL is well described by a normal distribution of
width

lnσlnMWL
=

1

2

[
sWL(z) + sM ln

(
M200c

M0

)]
(35)

with the same value for M0. In practice, we use simula-
tions at four redshifts z ∈ {0.252, 0.470, 0.783, 0.963} to
calibrate the free parameters of the model. To correctly
capture the somewhat complex dependence of the uncer-
tainty on bWL with redshift, we describe σbWL(z) as the
linear combination of two independent components

σbWL(z) = σbWL,1(z) + σbWL,2(z). (36)

To obtain values for the bias or scatter at any interme-
diate redshift, we interpolate linearly.

We compute 8 sets of weak-lensing bias and scatter
posteriors, varying the centers (SPT vs optical), photo-z
codes used for the estimation of the cluster member con-
tamination (BPZ vs DNF), and the inner fitting radius
(Rmin = 0.5, 0.8 h−1Mpc). The bias and scatter pa-
rameters are summarized in Table IV. As discussed, this
model is established based on the Magneticum simula-
tions. We repeat the same analysis using two snapshots
of Illustris-TNG, or 1,431 mass maps from 477 halos. The
recovered model parameters differ from the ones based on
Magneticum as follows [see also 29, Section 3.4]:

∆bWL = 0.02

∆bM = 0.018

∆sWL = 0.25

∆sM = 0.59.

(37)

We interpret these differences as uncertainties in the
MWL − Mhalo due to baryonic effects, and add them
in quadrature to the uncertainties quoted in Table IV.
In the likelihood analysis, we sample the bias and scat-
ter parameters within these combined uncertainties. The
top and bottom panels in Fig. 10 show the evolution of
the mass bias and scatter with cluster redshift. In the
analysis of the real data in Paper II, we will show that
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FIG. 10. Evolution of the lensing mass bias bWL, its uncer-
tainty σbWL , and the intrinsic scatter σlnMWL with redshift,
at the pivot mass 2 × 1014 h−1M⊙. Top and bottom panels:
Solid lines show the mean relations, and the shaded bands
show the 68% and 95% credible intervals. Middle panel: Ad-
dition of the error budgets of select model components to the
final uncertainty of about 2 − 10%. The error budget due
to “all other effects” contains, among others, the impact of
the uncertainty in the cluster member contamination and of
the noise due to the finite set of simulated halos. The total
uncertainty is largely dominated by the uncertainties in the
source photo-z calibration and the impact of baryonic effects.

the parameter uncertainties in the lensing model are sub-
dominant in comparison to the measurement errors. This
justifies our approach of estimating the impact of the un-
certainties in baryonic modeling using only two sets of
simulations. For future work, we plan to compare more
simulations to obtain a more refined error estimate.

2. Discussion of the Lensing Mass Bias and Scatter

We now discuss the impact of the various elements that
enter the determination of the lensing bias and scatter
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(see bullet list in the previous subsection). We do so by
examining the (squared) correlation coefficients ρ2i,j be-
tween the effect i under consideration (e.g., photo-z cal-
ibration) and the output quantity j of interest (e.g., un-
certainty on lensing mass bias bWL) [see 29, Section 2.3.4].

We illustrate the impact of a selection of effects on
the final uncertainty in the weak-lensing mass bias in
the middle panel of Fig. 10. The final uncertainty is
dominated by the uncertainties in baryonic effects at low
redshifts and the photo-z calibration (through ⟨Σ−1

crit⟩)
at cluster redshifts beyond around 0.45. The uncer-
tainty due to the combined effects of the final size of
the simulated halo sample, miscentering, cluster mem-
ber contamination, and shear calibration is small, and it
only amounts to ∼ 1% uncertainty up to cluster redshift
z ∼ 0.8.

The uncertainty on the weak-lensing scatter correlates
less strongly with the individual model components. This
suggests that the limitation of having a relatively small
sample of simulated halos is more important here than it
is for determining the bias.

As discussed, the calibration requires us to assume a
fiducial richness–mass and SZ–mass relation. Given that
both the synthetic shear profiles and our model have very
similar dependencies on richness via miscentering and
cluster member contamination, the width of the priors
on the richness–mass relation parameters do not affect
the uncertainty on the weak-lensing bias and scatter (the
squared correlation coefficient is small). The situation is
analogous for the parameters of the SZ–mass relation,
which enters through the SPT positional uncertainty. In
summary, the choice of fiducial observable–mass relations
is necessary to calibrate our lensing model but it does not
affect our final result strongly.

VI. SZ AND RICHNESS SCALING RELATIONS

As in previous SPT work, the SZ detection significance
ξ is related to the unbiased significance ζ [e.g., 79]

P (ξ|ζ) = N
(√

ζ2 + 3, 1
)
. (38)

This relationship accounts for the maximization bias in ξ
with respect to three free parameters (R.A., Dec., and fil-
ter scale) and the unit noise in the appropriately rescaled
maps. We assume lognormal intrinsic scatter in ζ of
width σln ζ . The mean unbiased significance is modeled
as a power-law relation in mass and E(z) ≡ H(z)/H0

⟨ln ζ⟩ = lnASZ +BSZ ln

(
M200c

3× 1014 h−1M⊙

)
+ CSZ ln

(
E(z)

E(0.6)

)
.

(39)

To account for the variable depth of the SPT surveys and
fields, we rescale ASZ for each individual SPT field

ASZ,field = γfieldASZ. (40)
The variations in depth also affect the redshift evolution
CSZ. Within the SPT-SZ and SPTpol ECS surveys, the
variations of CSZ across fields are neglible [19, 20]. Fol-
lowing [21], we rescale CSZ for each SPT survey, assuming
the SPT-SZ survey as the reference:

CSZ, SPT-SZ = CSZ

CSZ, SPTpol ECS = CSZ − 0.09

CSZ, SPTpol 500d = CSZ + 0.26

(41)

Similarly, we model the mean relation between the in-
trinsic richness λ̃ and mass as a power law in mass and
(1 + redshift) [e.g., 80].

⟨ln λ̃⟩ = lnAλ +Bλ ln

(
M200c

3× 1014 h−1M⊙

)
+ Cλ ln

(
1 + z

1.6

) (42)

We assume lognormal intrinsic scatter in λ̃ of width σlnλ.
We model the observational error on the measured rich-
ness λ as an additional lognormal distribution with a
width that corresponds to the Poisson uncertainty [e.g.,
49], such that

P (lnλ| ln λ̃) = N (ln λ̃, 1/λ̃). (43)

VII. CLUSTER POPULATION MODEL

Our analysis pipeline builds upon previous work, especially [8, 11]. Significant updates have been required to
handle the large amount of DES weak-lensing data. We maintain the cluster-by-cluster weak-lensing mass calibration
approach from previous analyses (as opposed to a stacking approach).

A. Multi-Observable Scaling Relation

The mean scaling relations between the unbiased SZ significance ζ, optical richness λ̃, and weak-lensing mass MWL

were defined in Eqs. 34, 39, and 42. As discussed, we model the intrinsic scatter in all observables as lognormal. We
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account for possible correlations among all pairs of intrinsic scatter and establish a covariance matrix

Σmulti-obs =

 σ2
ln ζ ρSZ,WLσln ζσlnMWL

ρSZ,λσln ζσlnλ

ρSZ,WLσln ζσlnMWL σlnMWL
2 ρWL,λσlnMWLσlnλ

ρSZ,λσln ζσlnλ ρWL,λσlnMWL
σlnλ σ2

lnλ

 . (44)

We can now write the joint multi-observable scaling relation as a multivariate Gaussian distribution in log-observables

P
( ln ζ

lnMWL

lnλ

 |M, z,p
)
= N

( ⟨ln ζ⟩(M, z,p)

⟨lnMWL⟩(M, z,p)

⟨lnλ⟩(M, z,p)

 ,Σmulti-obs

)
(45)

with the model parameters p.

B. Likelihood Function

Neglecting sample variance (see Appendix C), we describe the cluster population as (independent) Poisson realiza-
tions of the halo mass function.

1. Poisson Likelihood

The Poisson probability of observing k events (halos) given the expected rate µ is

P (k|µ) = µke−µ

k!
⇒ lnP (k|µ) = k lnµ− µ+ const. (46)

Splitting up our observable space in fine bins (in redshift, SPT detection significance, etc., such that each bin contains
at most one event) we have a likelihood function

lnL =
∑
i

lnµi −
∑
j

µj (47)

where the sum i runs over all bins that contain an observed event, and the sum j runs over all bins.13 We now take
the limit of infinitesimally small bins dx. The expected (differential) number of events then is dµ = dµ

dx dx, and so

lnL =
∑
i

ln

(
dµ

dx
dx

) ∣∣∣
xi

−
∫

dµ

dx
dx =

∑
i

ln
dµ

dx

∣∣∣
xi

−
∫

dµ

dx
dx+ const. (48)

Note that in this form, the index i runs over events, whereas above it ran over bins. Therefore, in its differential form
Eq. 48, the unbinned Poisson likelihood does indeed not involve any form of binning.

2. Hierarchical Cluster Population Likelihood Function

We now apply the Poisson likelihood to our multi-observable cluster sample:

lnL(p) =
∑
i

ln
d4N(p)

dξ dλ dgt dz

∣∣∣
ξi,λi,gt,i,zi

−
∫

· · ·
∫

dξ dλ dgt dz
d4N(p)

dξ dλ dgt dz
Θs(ξ, λ, z) + const. (49)

with the survey selection function Θs which, in our analysis, is defined in terms of cuts in ξ, λ, and z (see Eqs. 1
and 2). The lensing data are tangential shear profiles gt. The differential cluster abundance is

d4N(p)

dξ dλ dgt dz
=

∫
· · ·
∫

dΩs dM dζ dλ̃ dMWL P (ξ|ζ)P (λ|λ̃)P (gt|MWL,p)P (ζ, λ̃,MWL|M, z,p)
d3N(p)

dM dz dV

dV (z,p)

dΩs

(50)

13 Of course one can also choose broader bins that contain more
than one event – in this case, the second term in Eq. 47 needs to

be scaled accordingly.
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with the halo mass function d3N(p)
dM dz dV , and the differential volume dV (z,p)

dΩs
within the survey footprint Ωs.

The survey selection function Θs is not a function of lensing gt, and so the second term in Eq. 49 becomes∫
· · ·
∫

dξ dλ dgt dz
d4N(p)

dξ dλ dgt dz
Θs(ξ, λ, z) =

∫ ∞

zcut

dz

∫ ∞

ξcut

dξ

∫ ∞

λmin(z)

dλ
d3N(p)

dξ dλ dz
(51)

with

d3N(p)

dξ dλ dz
=

∫
dgt

d4N(p)

dξ dλ dgt dz
=

∫∫∫∫
dΩs dM dζ dλ̃ P (ξ|ζ)P (λ|λ̃)P (ζ, λ|M, z,p)

d3N(p)

dM dz dV

dV (z,p)

dΩs
(52)

We can thus rewrite the log-likelihood from Eq. 49 and obtain our final log-likelihood

lnL(p) =
∑
i

ln

∫ ∞

λmin(z)

dλ
d3N(p)

dξ dλ dz

∣∣∣
ξi,zi

−
∫ ∞

zcut

dz

∫ ∞

ξcut

dξ

∫ ∞

λmin(z)

dλ
d3N(p)

dξ dλ dz
+
∑
i

ln

d4N(p)
dξ dλ dgt dz

∣∣∣
ξi,λi,gt,i,zi∫∞

λmin(zi)
dλ d3N(p)

dξ dλ dz

∣∣∣
ξi,zi

+const.

(53)
where both sum runs over all clusters in the sample. The first two terms in Eq. 53 are the Poisson likelihood in
(ξ, z)–space with the condition λ > λmin(z). The last term in Eq. 53 is the conditional probability

d4N(p)
dξ dλ dgt dz∫∞

λmin(z)
dλ d3N(p)

dξ dλ dz

=
P (λ, gt, ξ, z|p)

P (λ > λmin(z), ξ, z|p)
≡ P (λ, gt|λ > λmin(z), ξ, z,p) (54)

which we refer to as the “mass calibration likelihood”. Finally, the “lensing likelihood” P (gt|MWL,p) for each cluster
is computed as a product of independent Gaussian probabilities in each radial bin i

P (gt|MWL,p) =
∏
i

(
σgt,i

√
2π
)−1

exp

[
−1

2

(
gt,i − gt,i(MWL,p)

σgt,i

)2
]
, (55)

with shape noise σgt,i . Note that the model shear profile gt(MWL,p) explicitly depends on the cosmological parameters

in p through the distances in Σ−1
crit (Eq. 4).

C. Numerical Implementation

We compute∫ ∞

λmin(z)

dλ
d3N(p)

dξ dλ dz

∣∣∣
ξ,z

=

∫ ∞

λmin(z)

dλ

∫∫
dM dζ dλ̃ P (ξ|ζ)P (λ|λ̃)P (ζ, λ̃|M, z,p)

d3N(p)

dM dz dV
(56)

on a regular grid in (ξ, z). In practice, since P (ζ|M, z,p) is different for each SPT field (Eqs. 39 and 40), we compute
a different grid for each SPT field. For the SPT fields that do not overlap with the DES footprint, the calculation is
simpler because it does not involve richness. With these grids, we can evaluate the first two terms of the log-likelihood
given by Eq. 53.
The main computational challenge for the analysis pipeline is the evaluation of the mass calibration likelihood

Eq. 54 for each cluster in the sample. While the denominator does not need to be explicitly computed because it can
straightforwardly be evaluated from the grid in (ξ, z) we just discussed, the numerator involves the four-dimensional
convolution in Eq. 50. We address the computational challenge with Monte-Carlo integration.
The key to efficient Monte-Carlo integration is a good sampling of the integration parameter space, meaning that

no computation time should be wasted on parts of the integrand that contribute negligibly to the integral. In a
previous SPT analysis, a very efficient Monte-Carlo integration scheme for the case of X-ray follow-up data YX was
presented [9]. That algorithm draws random deviates ζ and YX from the observed quantities ξ and Y observed

X , and
then draws random deviates for the halo mass from the distribution P (M |ζ, YX). The value of the integral is then

proportional to the mean of the probabilities P (M) ≡ d3N(p)
dM dz dV of each random draw. While this algorithm could be

readily applied to the richness follow-up data, it cannot be applied to the lensing data, because P (MWL|gt) is not
properly normalized. In other words, we cannot in general draw random deviates MWL given a measured shear profile
gt. Consider for example a cluster that has negative shear due to the rather large shape noise – this cannot lead to
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the random draw of a well defined (i.e., positive) lensing mass MWL. We thus design a new Monte-Carlo integration
scheme.

Our Monte-Carlo integration of Eq. 50 is iterative. In a first pass, we draw a modest number of 211 = 2048 log-
masses uniformly in the wide mass range 1013 < M/(h−1M⊙) < 1016. For each log-mass draw, we draw random

deviates ζ, λ̃,MWL according to the multi-variate scaling relation (Eq. 45). We then evaluate P (ξ|ζ), P (λ|λ̃), and the
lensing likelihood P (gt|MWL,p) using the observed quantities ξ, λ, gt. The (un-normalized) probability of each mass
draw i then is

P (lnMi) = P (ξ|ζ)P (λ|λ̃)P (gt|MWL,p)
dN(p)

d lnM
. (57)

In a second pass, we now draw a large number of 215 = 32, 768 log-masses from the distribution P (lnM). By
construction, P (lnM) describes the part of the integrand that has high probability and we thus have constructed
an efficient Monte-Carlo integrator. We evaluate the individual contributions as described above, and obtain a final
estimate of the integral as

d4N(p)

dξ dλ dgt dz
=

〈
P (lnMi)

prior(lnMi)

〉
(58)

where the prior distribution is the distribution the log-masses were drawn from (that is, Eq. 57).
For clusters without weak-lensing measurements we only need to evaluate P (λ|λ > λmin(z), ξ, z,p). The integral

then reduces to a lower-dimensional one, and can be solved in an analogous way. Obviously, for cluster with no lensing
or richness data, the term P (λ, gt|λ > λmin(z), ξ, z,p) is constant and does not need to be computed at all.

We note that because the error model for the observed richness is lognormal (see Eq. 43), the convolution with the
observational error does not need to be explicitly computed. Instead, the observational scatter can be straightforwardly
combined with the intrinsic scatter. In our discussion, we explicitly track P (λ|λ̃) for the purpose of completeness.

VIII. PIPELINE VALIDATION USING MOCK
CATALOGS

We implement the analysis framework described in this
paper as a python module for CosmoSIS [81].14 We test
the pipeline using full-scale mock catalogs that are drawn
from the model, verifying that we can recover the input
parameters. The mock catalogs are created by drawing
halos from the halo mass function (using Poisson statis-
tics), drawing realizations of the multi-observable scaling
relations, and applying the survey selection cuts. The
mocks are formatted identically to the real data. Our
validation approach is a meaningful test of the analysis
pipeline because creating the mocks is significantly less
challenging than implementing the likelihood function.

We create four statistically independent mock catalogs
by performing the aforementioned steps for a set of differ-
ent initial random seeds {0, 1, 2, 3} (for the same model
and the same input parameters). For the analysis of the
mock catalogs, our prime interest is in assessing whether
the pipeline has any remaining biases. We are not neces-
sarily interested in keeping track of all potential sources
of uncertainty (which we will, of course, in the analysis of
the real data) and so, for simplicity and to make the mock
tests slightly more stringent, we fix the parameters of the
MWL−Mhalo relations, the correlated scatter parameters
ρ, and the cosmological parameters Ωbh

2, Ωνh
2, and ns

14 https://cosmosis.readthedocs.io/

to their input values. Because the cluster abundance data
cannot meaningfully constrain the Hubble parameter h,
we apply a Gaussian prior h ∼ N (0.7, 0.052), centered
on the input value of 0.7. In terms of the cosmological
parameters, we thus sample Ωm, ln(10

10As), and h, and
record σ8 as a derived parameter.
We show the parameter constraints from the mock

analyses in Fig. 11. The results show some amount of
statistical scatter from catalog to catalog. The parame-
ter input values are shown with lines, and are recovered
within the uncertainties.
To perform a more stringent test, we re-create the lens-

ing data of mock 1 but assume that shape noise is four
times lower than in the real data (and in the fiducial
mock catalogs). As expected, the analysis of that mock
dataset (named “mock catalog 1, low shape noise” in the
figure), produces tighter parameter constraints, that still
agree with the input parameters.
The validation tests confirm that our analysis pipeline

correctly implements our modeling framework. The
pipeline is thus ready to be used for the analysis of the
real dataset. Note that the pipeline test presented here
does not answer the question whether the model we im-
plemented is a good description of the real data. This
question cannot be answered using synthetic data. What
we confirm here is that the code correctly reflects the
framework described in this paper, and that it is self-
consistent in its ability to recover unbiased measurements
of cosmological parameters from mock inputs. In the
analysis of the real data in Paper II, we will perform a
series of blind tests to verify that the assumed model is

https://cosmosis.readthedocs.io/
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FIG. 11. Analysis of four statistically independent mock catalogs in a flat ΛCDM cosmology. There is visible statistical scatter
between the different mock catalog realizations. Dashed lines show the parameter input values, which are recovered within the
uncertainties. We apply an informative prior N (0.7, 0.052) to the Hubble parameter h and require Ωm > 0.232, σln ζ > 0.05,
and σlnλ > 0.05. All other parameters are marginalized over wide flat ranges. Blue contours show the analysis of mock 1, but
with mock lensing data that has four times lower shape noise than the fiducial mock (red contours).

indeed able to describe the real dataset. IX. SUMMARY

In this paper, we present the analysis framework that
we will use to extract cosmological information from the
abundance of clusters detected in the SPT-SZ and SPT-
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pol surveys with a simultaneous mass calibration using
weak-lensing data from DES Y3 and HST. The results of
the analysis of the real data will be presented in Paper II.

We build a Bayesian population model to describe the
cluster abundance assuming Poisson statistics, and we
forward-model the cluster selection as cuts in the SPT
detection significance ξ, cluster redshift z > 0.25, and a
cut in optical richness λmin(z) for the part of the sur-
vey footprint that is shared between SPT and DES. We
perform a simultaneous weak-lensing cluster mass cali-
bration on a cluster-by-cluster basis, i.e., we do not stack
the lensing signal for multiple clusters. We account for
the intrinsic and observational scatters in all cluster ob-
servables and allow the intrinsic scatter to be correlated
among the observables.

A key focus of this work is to prepare the DES Y3
lensing data for cluster mass calibration. We establish a
data-driven model for cluster miscentering and find some
tension with current hydrodynamic simulations. Our
analysis is thus based on the data-driven miscentering
model, and we leave a more detailed comparison with
simulations for future work. We set up a flexible model
to describe the impact of cluster member contamination.
Contaminants are described by a Gaussian distribution
that is offset from the cluster redshift. The width of
the Gaussian and the amount of offset are free param-
eters. The radial trend is described by an NFW profile
with free concentration. The amount of contamination
is modeled as a power law in richness, and as a flexible
function of redshift, to accommodate the non-trivial im-
pact of filter band transitions. We combine these models
with the DES Y3 source redshift distributions and pro-
jected mass maps from hydrodynamic simulations to es-
tablish an effective model that creates the link between
halo mass and the measured shear profiles. For the cur-
rent lensing dataset, we estimate an accuracy in lensing
mass that varies between 1% at z = 0.25 and 10% at
z = 0.95. We add an additional 2% uncertainty due to
uncertainties in the impact of hydrodynamic effects in
quadrature, and obtain a final accuracy between 2–10%.
Note that the first set of numbers can be improved by re-
ducing the systematic uncertainties in the source redshift
distribution. We thus expect significant progress with
the upcoming data from, e.g., the Euclid15 and Vera C.
Rubin observatories.16 The additional 2% uncertainty,
however, reflects our current lack of knowledge of how
the halo mass distributions are influenced by hydrody-
namic effects, and importantly, this estimate is based on
the comparison of only two numerical simulations. More
work, and more comparisons between different hydrody-
namic feedback models is needed to better characterize
and to reduce this uncertainty.

We introduce the multi-observable likelihood function
and discuss its implementation in our analysis pipeline.

15 https://www.euclid-ec.org
16 https://www.rubinobservatory.org

We validate the pipeline, demonstrating that it is able
to produce unbiased constraints by analyzing synthetic
mock datasets that are drawn from the model.
The analysis framework presented here enables ro-

bust cluster cosmology analyses using samples of about
1,000 clusters. It remains to be shown whether our
analysis approach can also be efficiently applied to
much larger cluster samples selected in optical data or
from upcoming, deep X-ray and SZ surveys (e.g., from
eROSITA,17 SPT-3G, Simons Observatory,18 or CMB-
S419) or whether stacking approaches will prove to be
more practical.
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Ciències de l’Espai (IEEC/CSIC), the Institut de F́ısica
d’Altes Energies, Lawrence Berkeley National Labora-
tory, the Ludwig-Maximilians-Universität München and
the associated Excellence Cluster Origins, the University
of Michigan, NSF’s NOIRLab, the University of Notting-
ham, The Ohio State University, the University of Penn-
sylvania, the University of Portsmouth, SLAC National
Accelerator Laboratory, Stanford University, the Univer-
sity of Sussex, Texas A&M University, and the OzDES
Membership Consortium.

Based in part on observations at Cerro Tololo Inter-
American Observatory at NSF’s NOIRLab (NOIRLab
Prop. ID 2012B-0001; PI: J. Frieman), which is man-
aged by the Association of Universities for Research in
Astronomy (AURA) under a cooperative agreement with
the National Science Foundation.
The DES data management system is supported by

the National Science Foundation under Grant Num-
bers AST-1138766 and AST-1536171. The DES partic-
ipants from Spanish institutions are partially supported
by MICINN under grants ESP2017-89838, PGC2018-
094773, PGC2018-102021, SEV-2016-0588, SEV-2016-
0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded
by the CERCA program of the Generalitat de Catalunya.
Research leading to these results has received funding
from the European Research Council under the Euro-
pean Union’s Seventh Framework Program (FP7/2007-
2013) including ERC grant agreements 240672, 291329,
and 306478. We acknowledge support from the Brazil-
ian Instituto Nacional de Ciência e Tecnologia (INCT)
do e-Universo (CNPq grant 465376/2014-2).
This manuscript has been authored by Fermi Research

Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics.
This research has made use of the SAO/NASA Astro-

physics Data System and of adstex.20 We thank Ludwig,
the SPT support cat for this analysis. Inquiries about
SPT support cats shall be directed to TC.

[1] Z. Haiman, J. J. Mohr, and G. P. Holder, ApJ 553, 545
(2001), arXiv:astro-ph/0002336.

[2] S. W. Allen, A. E. Evrard, and A. B. Mantz, ARA&A
49, 409 (2011), arXiv:1103.4829.

[3] G. W. Pratt, M. Arnaud, A. Biviano, D. Eckert,
S. Ettori, D. Nagai, N. Okabe, and T. H. Reiprich,
Space Sci. Rev. 215, 25 (2019), arXiv:1902.10837.

[4] J. E. Carlstrom, P. A. R. Ade, K. A. Aird, B. A. Ben-
son, L. E. Bleem, S. Busetti, C. L. Chang, E. Chau-
vin, H. M. Cho, T. M. Crawford, et al., PASP 123, 568
(2011), arXiv:0907.4445.

[5] R. A. Sunyaev and Y. B. Zeldovich, Comments on As-
trophysics and Space Physics 4, 173 (1972).

[6] B. A. Benson, T. de Haan, J. P. Dudley, C. L. Reichardt,
K. A. Aird, K. Andersson, R. Armstrong, M. L. N.
Ashby, M. Bautz, M. Bayliss, et al., ApJ 763, 147 (2013),
arXiv:1112.5435.

[7] M. Hasselfield, M. Hilton, T. A. Marriage, G. E. Ad-
dison, L. F. Barrientos, N. Battaglia, E. S. Battistelli,
J. R. Bond, D. Crichton, S. Das, et al., J. Cosmology
Astropart. Phys. 2013, 008 (2013), arXiv:1301.0816.

[8] S. Bocquet, A. Saro, J. J. Mohr, K. A. Aird, M. L. N.
Ashby, M. Bautz, M. Bayliss, G. Bazin, B. A. Ben-

20 https://github.com/yymao/adstex

son, L. E. Bleem, et al., ApJ 799, 214 (2015),
arXiv:1407.2942.

[9] T. de Haan, B. A. Benson, L. E. Bleem, S. W. Allen,
D. E. Applegate, M. L. N. Ashby, M. Bautz, M. Bayliss,
S. Bocquet, M. Brodwin, et al., ApJ 832, 95 (2016),
arXiv:1603.06522.

[10] Planck Collaboration, N. Aghanim, Y. Akrami, F. Ar-
roja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Bal-
lardini, A. J. Banday, R. B. Barreiro, et al., A&A 641,
A1 (2020), arXiv:1807.06205.

[11] S. Bocquet, J. P. Dietrich, T. Schrabback, L. E. Bleem,
M. Klein, S. W. Allen, D. E. Applegate, M. L. N.
Ashby, M. Bautz, M. Bayliss, et al., ApJ 878, 55 (2019),
arXiv:1812.01679.

[12] R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins,
C. M. Baugh, and C. S. Frenk, MNRAS 426, 2046 (2012),
arXiv:1203.3216.

[13] D. E. Applegate, A. von der Linden, P. L. Kelly, M. T.
Allen, S. W. Allen, P. R. Burchat, D. L. Burke, H. Ebel-
ing, A. Mantz, and R. G. Morris, MNRAS 439, 48
(2014), arXiv:1208.0605.

[14] F. Bellagamba, M. Sereno, M. Roncarelli, M. Maturi,
M. Radovich, S. Bardelli, E. Puddu, L. Moscardini,
F. Getman, H. Hildebrandt, et al., MNRAS 484, 1598
(2019), arXiv:1810.02827.

[15] H. Miyatake, N. Battaglia, M. Hilton, E. Medezin-
ski, A. J. Nishizawa, S. More, S. Aiola, N. Bahcall,

https://arxiv.org/abs/astro-ph/0002336
https://arxiv.org/abs/1103.4829
https://arxiv.org/abs/1902.10837
https://arxiv.org/abs/0907.4445
https://arxiv.org/abs/1112.5435
https://arxiv.org/abs/1301.0816
https://github.com/yymao/adstex
https://arxiv.org/abs/1407.2942
https://arxiv.org/abs/1603.06522
https://arxiv.org/abs/1807.06205
https://arxiv.org/abs/1812.01679
https://arxiv.org/abs/1203.3216
https://arxiv.org/abs/1208.0605
https://arxiv.org/abs/1810.02827


26

J. R. Bond, E. Calabrese, et al., ApJ 875, 63 (2019),
arXiv:1804.05873.

[16] J. P. Dietrich, S. Bocquet, T. Schrabback, D. Applegate,
H. Hoekstra, S. Grandis, J. J. Mohr, S. W. Allen, M. B.
Bayliss, B. A. Benson, et al., MNRAS 483, 2871 (2019),
arXiv:1711.05344.

[17] T. McClintock, T. N. Varga, D. Gruen, E. Rozo, E. S.
Rykoff, T. Shin, P. Melchior, J. DeRose, S. Seitz,
J. P. Dietrich, et al., MNRAS 482, 1352 (2019),
arXiv:1805.00039.

[18] K. Umetsu, A&A Rev. 28, 7 (2020), arXiv:2007.00506.
[19] L. E. Bleem, B. Stalder, T. de Haan, K. A. Aird, S. W.

Allen, D. E. Applegate, M. L. N. Ashby, M. Bautz,
M. Bayliss, B. A. Benson, et al., ApJS 216, 27 (2015),
arXiv:1409.0850.

[20] L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders,
P. A. R. Ade, S. W. Allen, A. J. Anderson, J. Annis,
M. L. N. Ashby, J. E. Austermann, et al., ApJS 247, 25
(2020), arXiv:1910.04121.

[21] L. E. Bleem, M. Klein, SPT, and DES, to be submitted.
[22] M. Klein, J. J. Mohr, S. Desai, H. Israel, S. Allam,
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FIG. 12. Ratio of lensing efficiencies Σ−1
crit for the tomographic

source bins. Vertical lines mark the lens redshift at which the
ratio stops decreasing.

at z ∼ 0.6 for the ratio of bin 2 and bin 3).
In our analysis, we use a given source bin only for lenses

with redshifts that are smaller than the median source
redshift of that bin. This requirement is more stringent
than the discussion of ratios of lensing efficiencies pre-
sented here, and we conclude that our analysis is robust
to the potential problems addressed in this appendix.

Finally, we remind the reader that the source bins were
originally defined for the 3x2 pt analysis. That analy-
sis is not very sensitive to the high-redshift tails of the
source redshift distributions but rather to an accurate
calibration of the mean redshift. In this appendix, we
thus explore the lensing data products in a regime that
was not validated. For future analyses of lensing datasets
from wide-field surveys such as Euclid and LSST, we rec-
ommend that multiple use cases including the analysis of
galaxy clusters, cosmic shear, galaxy-galaxy lensing, and
other lensing probes be considered jointly.

Appendix B: Joint SZ, optical, and X-ray
miscentering

Cluster X-ray centers have often been used as a proxy
for the true halo center, because of the excellent angular
resolution and the fact that in hydrostatic equilibrium
the peak ICM emission occurs at the minimum of the
cluster potential. We expand the analysis presented in
Section IVC1 by incorporating 70 large-scale X-ray cen-
troid measurements from Chandra data [82, 83]. We do
not assume that those centroids coincide with the true
halo centers and describe the intrinsic X-ray–true offset
as in Eq. 14. We expand the likelihood function by also
considering the measured offsets between optical and X-
ray centers (modeled as the convolution of the optical–
true and X-ray–true offset distributions) and SPT and
X-ray centers (modeled as the convolution of the SZ–

true and X-ray–true offset distributions and the SPT po-

TABLE V. Parameters of the joint SZ–optical–X-ray mis-
centering distributions (mean and 68% credible interval, one-
sided limits are for the 95% credible interval).

Parameter Constraint

ρSZ 0.90 (> 0.50)

σSZ,0 [h
−1Mpc] 0.004+0.001

−0.004

σSZ,1 [h
−1Mpc] 0.065+0.014

−0.065

κSPT 0.80+0.14
−0.12

ρopt 0.81+0.03
−0.03

σopt,0 [h
−1Mpc] 0.016+0.009

−0.005

σopt,1 [h
−1Mpc] 0.118+0.011

−0.011

ρX 0.80 (> 0.50)

σX,0 [h
−1Mpc] 0.018+0.010

−0.005

σX,1 [h
−1Mpc] 0.056 (< 0.248)

sitional uncertainty).
The recovered parameter constraints on the SZ and op-

tical miscentering are consistent with our baseline results,
but they are somewhat tighter (see Table V). However,
we note that this simplified model does not account for
the expected correlation between SZ and X-ray centers or
the tendency of optically determined center positions to
align with the X-ray center. Our cosmological analysis
can be self-consistently performed using the miscenter-
ing distributions calibrated without X-ray data, and the
contribution of the uncertainty in the offset modeling to
the overall error budget in the lensing mass calibration is
negligible (Section VB2). Therefore, we leave further ex-
plorations of multi-observable cluster miscentering that
includes X-ray observations to future work.

Appendix C: Impact of Sample Variance

In the SPT analyses to date, the effect of sample vari-
ance has been negligible compared to the more important
shot noise (Poisson error). Since we are now using sig-
nificantly deeper data (over the SPTpol 500d footprint),
we re-assess the situation.
We compute the sample variance in the predicted clus-

ter abundance in SPTpol 500d, the deepest patch of our
survey [following, e.g., 84, 85]. For simplicity, we assume
that the field’s footprint is circular on the sky. We assume
a fiducial cosmology and scaling relation parameters and
apply the cluster selection with z > 0.25 and ξ > 4.25.
In Fig. 13, we show the contributions to the relative un-
certainty in the predicted cluster abundance due to shot
noise and the sample variance. For all redshifts, the con-
tribution from sample variance is smaller than shot noise.
All other SPT fields are significantly shallower, and the
relative importance of sample variance is even smaller.
We thus neglect the effect of sample variance on the SPT
cluster abundance.
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FIG. 13. Contributions of sample variance and shot noise to
the total uncertainty in the cluster abundance in our deepest
SPT field.


