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Abstract
Taking accurate measurements of the temperature of quantum systems is a challenging task. The
mathematical peculiarities of quantum information make it virtually impossible to measure with
infinite precision. In the present paper, we introduce a generalize thermal state, which is
conditioned on the pointer states of the available measurement apparatus. We show that this
conditional thermal state outperforms the Gibbs state in quantum thermometry. The origin for the
enhanced precision can be sought in its asymmetry quantified by the Wigner–Yanase–Dyson skew
information. This additional resource is further clarified in a fully resource-theoretic analysis, and
we show that there is a Gibbs-preserving map to convert a target state into the conditional thermal
state. We relate the quantum J-divergence between the conditional thermal state and the same
target state to quantum heat.

1. Introduction

Quantum metrology is a task to utilize the peculiar properties of quantum systems, such as quantum
coherence and entanglement, to achieve parameter estimation at precision beyond the classical limit [1–4].
Hence, the quest to identify quantum states that are uniquely suited for metrological tasks with limited
resources [5, 6] is of crucial practical relevance. In the following, we address this issue and impose the
plausible and realistic condition that only the observable eigenstates of the measurement apparatus, aka
pointer states [7–11] are available.

One of the most prominent metrological tasks is quantum thermometry of stationary states. In fact,
quantum thermometry with Gibbs states has been well studied [12–20]. In this simplest scenario it is easy to
see that the optimal measurement for estimating the inverse temperature β is the Hamiltonian. However,
when the system size is very large and supports quantum correlations, even energy measurements are a
challenging task [14, 15]. Therefore, it is desirable to find better states whose corresponding optimal
measurements are experimentally implementable, and which ideally even outperform Gibbs states in the
low-temperature limit [21–23].

In this paper, we discuss a quantum state, that indeed fulfills the aforementioned ‘wishlist’. The
conditional thermal state (CTS) is constructed as Gibbsian-distributed quantum state of the pointer basis
corresponding to the available measurement apparatus. The CTS originally appeared in the one-time
measurement approach to quantum work [24–29] and correspondingly tighter maximum work theorems. In
the following, we demonstrate that the CTS outperforms the Gibbs state in quantum thermometry. To
elucidate its properties further we then show that it can be understood as a non-passive state with useful
resources [30–34]. To this end, we first relate its asymmetry, which is quantified by the Wigner–Yanase–
Dyson (WYD) skew information [35–40], to its QFI. Then, focusing on a system undergoing unitary
evolution, we discuss the state convertibility between the exact final state and the CTS constructed by the
pointer states given by the evolved post-measurement state. Finally, we demonstrate that their symmetric
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divergence, also known as quantum J-divergence, can be interpreted as quantum heat [41]. Our results
demonstrate the usefulness of the CTS as a resource state from both fundamental and practical perspectives.

2. Conditional thermal state

We begin by establishing notions and notations. For the ease of the presentation, and to avoid clutter in the
formulas, we work in units for which the Boltzmann constant kB and the reduced Planck constant h̄ are
kB = h̄= 1.

The concept of the CTS is illustrated in figure 1. In a d-dimensional Hilbert spaceH, given a
HamiltonianH and the pointer states {|ψk⟩}dk=1 of an implementable measurementM, the CTS is defined as

ρβ ≡
d∑

k=1

e−β⟨ψk |H|ψk⟩

Zβ
|ψk⟩⟨ψk| . (1)

Here, Zβ is the normalization factor

Zβ ≡
d∑

k=1

e−β⟨ψk |H|ψk⟩ , (2)

which can be interpreted as a generalized partition function [24–28]. The CTS is defined as the thermal state
conditioned on the choice of the measurement implementable in the laboratory. The CTS maximizes the von
Neumann entropy [42] under the constraint that the ensemble average of the Hamiltonian is fixed (see
appendix A). Note that when {|ψk⟩}dk=1 are the pointer states of H, ρβ becomes the Gibbs state
ρ
eq
β ≡ e−βH/Z eq

β , where Z eq
β ≡ tr

{
e−βH

}
is the standard canonical partition function. Therefore, the CTS can

be regarded as a generalized thermal state.
For later convenience, we also define the following conditional thermal separable state in a composite

Hilbert spaceH1 ⊗H2

ρ̃β ≡
d∑

k=1

e−β⟨ψk |H|ψk⟩

Zβ
|ψk⟩⟨ψk|1 ⊗ |ϕk⟩⟨ϕk|2 , (3)

where {|ϕk⟩}dk=1 are the arbitrary orthogonal eigenstates ofH2. From these definitions, we also have
ρβ = tr2 {ρ̃β}, which will become important in our discussion of the relation between the quantum Fisher
information (QFI) for quantum thermometry and the asymmetry measure of ρβ .

3. Quantum thermometry

3.1. Quantum Fisher information
An important figure of merit in quantummetrology is the QFI. Given a quantum state ρθ parameterized by a
certain parameter θ ∈ R, the variance of an unbiased estimator (δθ)2 is bounded by the quantum
Cramér–Rao bound (QCRB), (δθ)2 ⩾ 1/I(ρθ;θ), where I(ρθ;θ) is the QFI defined by I(ρθ;θ)≡
−2 limϵ→0 ∂

2
ϵF(ρθ,ρθ+ϵ) [43–48]. The definition stems from the relation between the Bures distance and

the symmetric logarithmic derivative. Thus, the QFI can be obtained by optimizing the classical Fisher
information over all possible measurements, as detailed in [45]. Here, F(ρ,σ)≡ ||√ρ

√
σ||21 is the quantum

fidelity between two quantum states ρ and σ [49], and ||A||1 ≡ tr{
√
A†A} is the trace norm. We denote

∂m/∂xm simply by ∂mx .

3.2. Quantum thermometry with the CTS
For our present purposes we now analyze the precision, with which the inverse temperature β can be
estimated from the CTS. This will also allow us to relate the QFI of the CTS to the WYD skew information
Iα(ρβ ,H) contained by ρβ with respect to the Hamiltonian H, which quantifies the asymmetry of ρβ .

The QFI I(ρβ ;β) of the CTS ρβ is given by (see appendix B for the proof.)

I (ρβ ;β) = ∂2β lnZβ , (4)

and the optimal measurement achieving the quantum Cramér–Rao bound is

G=
d∑

k=1

⟨ψk |H|ψk⟩|ψk⟩⟨ψk| . (5)

2
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Figure 1. Illustration of the concept: The conditional thermal state (CTS) describes state of a thermal quantum system conditioned
on the measurable pointer basis {|ψk⟩}dk=1 of an implementable measurementM. The CTS maximizes the von Neumann entropy
under the constraint that the ensemble average of the Hamiltonian is fixed.

To compare the sensitivity of the CTS ρβ and the Gibbs state ρeqβ , we define the QFI difference as

∆Iβ ≡ I(ρβ ;β)−I(ρeqβ ;β). We have

∆Iβ =−∂2βS
(
ρβ ||ρeqβ

)
= ∂2β

(
ln

Zβ
Z eq
β

)
, (6)

where S(ρβ ||ρeqβ )≡ tr{ρβ lnρβ}− tr
{
ρβ lnρ

eq
β

}
denotes the quantum relative entropy [50] of ρβ with

respect to ρeqβ . The relative entropy measures the distinguishability of ρβ and ρeqβ . Therefore, the condition
that the CTS outperforms the Gibbs state in quantum thermometry at a certain temperature β0 is

∂2βS
(
ρβ ||ρeqβ

)∣∣∣
β=β0

< 0 . (7)

Therefore, the curvature of the quantum relative entropy S(ρβ ||ρeqβ ) with respect to β can be regarded as the
criteria quantifying the performance of the CTS for quantum thermometry.

4. Single-qubit example

As a pedagogical example, we show the single-qubit case. Let σx,σy and σz be the Pauli matrices. The

Hamiltonian is H= ωσz, so that the eigenstates of H are |0⟩=
(
1 0

)T
and |1⟩=

(
0 1

)T
. Therefore,

Z eq
β = tr

{
e−βH

}
= 2cosh(βω). Considering the pointer states |ψ0(θ)⟩= ei

θ
2 σx |0⟩ and |ψ1(θ)⟩= ei

θ
2 σx |1⟩

with θ ∈ R, the normalization factor of the CTS becomes Zβ(θ) = 2cosh(βω cos(θ)).
Therefore, we obtain from equation (6),

∆Iβ (θ) = ω2

(
−1+

cos2 (θ)

cosh2 (βω cos(θ))
+ tanh2 (βω)

)
. (8)

In the low-temperature limit (βω≫ 1), we have

∆Iβ (θ)≃
(

ω cos(θ)

cosh(βω cos(θ))

)2

⩾ 0 ∀θ ∈ R . (9)

This means that the CTS can outperform the Gibbs state for any choice of pointer states in the
low-temperature limit. As an example, choose θ = π/4 and ω = 1, which is illustrated in figure 2.

5. Asymmetry

The natural question arises, where exactly this enhanced performance of the CTS in thermometry originates.
To this end, we now analyze the relation between the QFI of ρβ and the asymmetry measure, which is
quantified by the WYD skew information Iα(ρβ ,H) contained by ρβ with respect to the Hamiltonian H.

The asymmetry of quantum state is related to its quantum coherence, which is regarded as a resource of
breaking the symmetry of a group. This is characterized by the resource theory of asymmetry (RTA) [30–34],
whose development has also contributed to exploring quantum thermodynamic resources [51–56]. In
particular, when we consider time translations {exp(−iHt), |, t ∈ R}, a state ρ is symmetric if and only if
[ρ,H] = 0, and asymmetric if and only if [ρ,H] ̸= 0. Here, the symmetric state is considered the free state,

3
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Figure 2. Relation between∆Iβ and β: We choose ω = 1 and θ = π/4. In the low-temperature limit, we have
I(ρβ ;β) ⩾ I(ρeqβ ;β), meaning that the CTS outperforms the Gibbs state in thermometry.

while the asymmetric state is regarded as the resource state. Covariant operations [57], which are the relevant
set of free operations, cannot generate an asymmetric state from a symmetric one or convert one asymmetric
state into another. An asymmetry measure must satisfy two conditions: (i) it vanishes if and only if the state
is symmetric, and (ii) it does not increase under all covariant operations. One quantity satisfying these
conditions is the skew information [35–40].

For a quantum state ρ, the WYD skew information is defined as Iα(ρ,H)≡ tr
{
ρH2

}
− tr

{
ραHρ1−αH

}
with 0< α < 1. With Varρ{H} ≡ tr

{
ρH2

}
− (tr{ρH})2 the variance of H with respect to ρ, we can define

the general variance (covariance) Qα(ρ,H) as Qα(ρ,H)≡ Varρ{H}− Iα(ρ,H) [58–60].
Hence, the QFI of ρβ can be alternatively written as the covariance of the Hamiltonian H12 ≡H⊗12

with respect to the conditional thermal separable state ρ̃β (3). By using the fact that Varρ̃β{H12}= Varρβ{H}
and the asymmetry monotone of WYD skew information Iα(ρ̃β ,H12)⩾ Iα(ρβ ,H) [35–37], we obtain (see
appendix C for the proof.)

I (ρβ ;β) = Qα (ρ̃β ,H12)⩽ Qα (ρβ ,H) . (10)

Note that when the chosen basis comprises the pointer states of the Hamiltonian, i.e. ρβ = ρ
eq
β , we have

Iα(ρ
eq
β ,H) = 0 because of [ρeqβ ,H] = 0. In this case, the upper bound becomes Varρβ{H}, which is exactly the

QFI of ρβ for estimating β, and equation (10) saturates.
These results demonstrate that the asymmetry of the CTS quantifies the maximum ultimate precision

limit of the quantum thermometry. In our scenario, since the asymmetry resource contains the quantum
coherence over the eigenstates of the Hamiltonian [35], from equation (10), the quantum coherence of the
conditional thermal separable state ρ̃β can be engineered by choosing appropriate pointer states maximizing
the QFI of ρβ .

6. State preparation of the CTS

In the preceding section we have shown that the inherent asymmetry of the CTS can be exploited as a
resource. Hence, we now continue with a more formal analysis of the resource-theoretic properties of the
CTS arising from the state distinguishability with the Gibbs state. To this end, we consider a quantum system,
which is initially prepared in a Gibbs state, ρeqβ (0), and evolves under a time-dependent Hamiltonian Ht from
t = 0 to t= τ with a corresponding unitary Uτ . Our main interest is the state convertibility of the exact final
state into the CTS by considering the information-theoretic properties of the averaged excess work.

Let us write ρ(τ) as the exact final state ρ(τ) = Uτρ
eq
β (0)Uτ . In this case, the exact averaged work ⟨W⟩ is

given by ⟨W⟩= tr{ρ(τ)Hτ}− tr
{
ρ
eq
β (0)H0

}
. When∆F eq is the equilibrium free energy difference

∆F eq ≡−β−1 ln(Z eq
β (τ)/Z eq

β (0)), the excess work is given by [61, 62]

⟨Wex⟩ ≡ ⟨W⟩−∆F eq = β−1 S
(
ρ(τ) ||ρeqβ (τ)

)
. (11)

We initially measure the system with H0 ≡
∑d

k=1Ek|Ek⟩⟨Ek|, where {|Ek⟩}dk=1 are the eigenstates of H0. The
post-measurement state of the system after the evolution is Uτ |Ek⟩. Thus, the CTS constructed from the

4
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post-measurement state for the final Hamiltonian Hτ ≡
∑d

k=1E
′
k|E ′

k⟩⟨E ′
k| is given by [24]

ρβ (τ) =
d∑

k=1

e−β⟨Ek |U
†
τHτUτ |Ek⟩

Zβ (τ)
Uτ |Ek⟩⟨Ek|U†

τ , (12)

where Zβ(τ) is again the conditional partition function.
In [24] it was shown that the excess work is lower bounded by

⟨Wex⟩⩾ β−1S
(
ρβ (τ) ||ρeqβ (τ)

)
. (13)

Therefore, from equations (11) and (13), we have

S
(
ρ(τ) ||ρeqβ (τ)

)
⩾ S

(
ρβ (τ) ||ρeqβ (τ)

)
. (14)

From [63–65], equation (14) becomes tight if and only if there exists a sufficiently large n0 and there exists a
Gibbs-preserving map En :H⊗n →H⊗n for n⩾ n0 such that

En
(
ρ
eq
β (τ)

⊗n
)
= ρ

eq
β (τ)

⊗n
, En

(
ρ(τ)

⊗n
)
= Ξn , (15)

where for any ϵ > 0, the quantum state Ξn satisfies

Tn ≡
1

2
||ρβ (τ)⊗n −Ξn||1 < ϵ. (16)

This means that the CTS is not just a mathematical object but can be prepared, allowing for an arbitrarily
small error via the Gibbs-preserving map with an asymptotic number of copies of the state.

Also, from the quantum relative entropy of the exact final state ρ(τ) with respect to the CTS ρβ(τ)
S(ρ(τ)||ρβ(τ)), we obtain (see appendix D for the proof.)

S(ρ(τ) ||ρβ (τ))+S
(
ρβ (τ) ||ρeqβ (τ)

)
= S

(
ρ(τ) ||ρeqβ (τ)

)
, (17)

which we call thermodynamic triangle equality. Therefore, when S(ρ(τ)||ρeqβ (τ)) = S(ρβ(τ)||ρeqβ (τ)), we
must have ρ(τ) = ρβ(τ) (i.e. U†

τHτUτ =H0).
To analyze the scaling of the required number of copies n given an arbitrarily small error ϵ, we employ the

inequality S(ρβ(τ)⊗n||Ξn)⩽ (Tn +λn) ln(1+Tn/λn) [66], where λn denotes the minimum non-zero
eigenvalue of Ξn. Since d= rank(ρβ(τ)), we can write λn ∼ 1/dn [66]. Therefore, when Tn < ϵ≪ 1, we have

S
(
ρβ (τ)

⊗n ||Ξn

)
≲
(
ϵ+

1

dn

)
ln(1+ ϵdn)

= ϵ

(
1+

∞∑
k=1

(−1)k+1

k(k+ 1)
ϵkdkn

)

= ϵ

(
1+

dn

2
ϵ+O

(
ϵ2d2n

))
.

(18)

To guarantee limn→0 S(ρβ(τ)⊗n||Ξn) = 0, the simplest condition is ϵdn ∼ 1. Therefore, the required number
of copies of ρβ(τ) can be approximately given by

n∼ logd

(
1

ϵ

)
. (19)

Here, we note that this state preparation protocol inherently depends on an unknown parameter. Therefore,
in the context of thermometry, this protocol remains limited. We need to further explore state preparation
protocols that are independent of such parameters.

5
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7. Quantum heat from the CTS

Furthermore, the symmetric divergence between ρ(τ) and ρβ(τ), i.e. the quantum J-divergence defined
as [67],

J(ρ(τ) ,ρβ (τ))≡ S(ρ(τ) ||ρβ (τ))+ S(ρβ (τ) ||ρ(τ)) , (20)

is related to the concept of quantum heat [41]. This becomes obvious when the quantum J-divergence is
written as (see appendix E for the proof.)

J(ρ(τ) ,ρβ (τ)) = β (⟨W⟩−W0 (ρβ (τ))−∆E(ρβ (τ))) . (21)

Here, the internal energy change of ρβ(τ) is∆E(ρβ(τ))≡ tr{ρβ(τ)(Hτ −H0)}, and the quantum
ergotropy of ρβ(τ) with respect to H0 isW0(ρβ(τ))≡ tr{ρβ(τ)H0}− tr

{
Γρβ(τ)Γ

†H0

}
, where

Γ≡
∑d

k=1 |Ek⟩⟨Ek|U†
τ = U†

τ is the ergotropic transformation [68]. From the first law of thermodynamics,
β−1J(ρ(τ),ρβ(τ)) can be regarded as a heat, particularly the quantum heat, which has been discussed in the
literature as the heat induced by the measurement [41]. In essence, the CTS ρβ(τ) is conditioned on the first
energy measurement outcome; therefore, its relation to the quantum heat is consistent in this context. Also,
note that when Uτ is a adiabatic passage, then ρ(τ) = ρβ(τ) = ρ

eq
β (τ), so that β−1J(ρ(τ),ρβ(τ)) = 0, which

is consistent with zero heat exchange in the adiabatic process.

8. Conclusion

In conclusion, we have introduced a conditional thermal state, which is a thermal state conditioned on the
pointer states, and demonstrated that this conditional thermal state can outperform the Gibbs state in the
quantum thermometry as a useful resource state. We also have explored its resource-theoretic properties in
terms of the asymmetry, state convertibility and its relation to the quantum heat. As an application, these
results could help experimentalists to achieve a better sensitivity in quantum thermometry under the
constraints in the implementable measurements. From the fundamental point of view, these results provide
insightful perspective on the implications of the conditional thermal state in the thermodynamic protocols in
the quantum systems in a resource-theoretic approach. Finally, the present analysis also provides an
additional a posteriorimotivation and justification for the one-time energy measurement approach to
quantum work [24–29]. Future work will involve further exploration of concrete state preparation protocols
for generating the conditional thermal state.
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Appendix A. Derivation of conditional thermal state

Consider a density matrix ρ with the following spectral decomposition

ρ=
d∑

k=1

pk|ψk⟩⟨ψk| , (A1)

where {|ψk⟩}dk=1 are the pointer states of a given measurementM. Let H be the Hamiltonian of the system.
Then, we want to maximize the von Neumann entropy

S(ρ)≡−tr{ρ lnρ} (A2)

6
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under the conditions

tr{ρ}= 1 and E(ρ)≡ tr{ρH}= Const. (A3)

By using the optimization method of Lagrange multipliers with constraints, we have:

δ (S(ρ)− γE(ρ)−α) =−
d∑

k=1

δpk (lnpk +β⟨ψk |H|ψk⟩+α+ 1) = 0 . (A4)

For any δpk, equation (A4) has to be valid so that each term has to be independently 0. Therefore, we must
have pk ∝ e−β⟨ψk |H|ψk⟩. From the requirement of

∑d
k=1 pk = 1, we obtain the CTS ρβ .

Appendix B. Detailed derivations of equations (4)–(7)

From the definition of QFI, we have

I (ρθ;θ) =−2 lim
ϵ→0

∂2ϵF (ρθ,ρθ+ϵ) (B1)

where

F (ρβ ,ρβ+ϵ)≡ ||√ρβ
√
ρβ+ϵ||21

≡
(
tr

{√
ρ
1/2
β ρβ+ϵ ρ

1/2
β

})2

=
1

ZβZβ+ϵ

(
d∑

k=1

e−(β+
ϵ
2 )⟨ψk |H|ψk⟩

)2

=
Z2
β+ϵ/2

ZβZβ+ϵ
.

(B2)

Before calculating the quantum Fisher information, let us show the following fact:

lim
ϵ→0

∂ϵZβ+ϵ =−
d∑

k=1

e−β⟨ψk |H|ψk⟩⟨ψk |H|ψk⟩= ∂βZβ

lim
ϵ→0

∂2ϵZβ+ϵ =
d∑

k=1

e−β⟨ψk |H|ψk⟩⟨ψk |H|ψk⟩2 = ∂2βZβ

lim
ϵ→0

∂ϵZβ+ϵ/2 =− 1

2

d∑
k=1

e−β⟨ψk |H|ψk⟩⟨ψk |H|ψk⟩=
1

2
∂βZβ

lim
ϵ→0

∂2ϵZβ+ϵ/2 =
1

4

d∑
k=1

e−β⟨ψk |H|ψk⟩⟨ψk |H|ψk⟩2 =
1

4
∂2βZβ .

(B3)

For two functions f(x) and g(x), where g(x) ̸= 0, we have:

∂2x

(
f 2

g

)
= 2

(
∂2x f
) f
g
+

2

g
(∂xf)

2 − 4f

g2
(∂xf)(∂xg)−

(
∂2xg
) f 2
g2

+
2f 2

g3
(∂xg)

2
.

Therefore, if we define x= ϵ, f = Zβ+ϵ/2 and g= Zβ+ϵ, we can obtain:

lim
ϵ→0

∂2ϵF(ρβ ,ρβ+ϵ) = lim
ϵ→0

∂2ϵ

(
Z2
β+ϵ/2

ZβZβ+ϵ

)

=
1

2

∂2βZβ

Zβ
+

1

2

(
∂βZβ
Zβ

)2

− 2

(
∂βZβ
Zβ

)2

−
∂2βZβ

Zβ
+ 2

(
∂βZβ
Zβ

)2

=
1

2

(
∂βZβ
Zβ

)2

− 1

2

∂2βZβ

Zβ

=
1

2

(
(∂β lnZβ)

2 −Z−1
β ∂2βZβ

)
.

(B4)

7
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Therefore, from equation (B1), we can obtain

I (ρβ ;β) = Z−1
β ∂2βZβ − (∂β lnZβ)

2
= ∂2β lnZβ . (B5)

For the optimal measurement, we need to prove that the uncertainty of the unbiased estimator with the
measurement

G=
d∑

k=1

⟨ψk |H|ψk⟩|ψk⟩⟨ψk| (B6)

achieves the quantum Cramér–Rao bound. The uncertainty is given by

(δβ)
2
G ≡

Varρβ {G}
|∂βtr{ρβG}|2

. (B7)

Here, we have

tr{ρβG}=
d∑

k=1

e−β⟨ψk |H|ψk⟩

Zβ
⟨ψk |H|ψk⟩= tr{ρβH}=−∂β lnZβ (B8)

and

Varρβ {G} ≡ tr
{
ρβH

2
}
− (tr{ρβH})2

=
d∑

k=1

e−β⟨ψk |H|ψk⟩

Zβ
⟨ψk |H|ψk⟩2 − (∂β lnZβ)

2

= Z−1
β ∂2βZβ − (∂β lnZβ)

2

= ∂2β lnZβ .

(B9)

From equations (B5) and (B7), we can obtain

(δβ)
2
G =

1

∂2β lnZβ
=

1

I (ρβ ;β)
, (B10)

which is the quantum Cramér–Rao bound; therefore, equation (B6) is the optimal measurement for the
quantum thermometry.

From equation (B5), we can write

∆Iβ ≡ I (ρβ ;β)−I
(
ρ
eq
β ;β

)
= ∂2β ln

Zβ
Z eq
β

. (B11)

Since the von Neumann entropy S(ρβ)≡−tr{ρβ lnρβ} is

S(ρβ) = βtr{ρβH}+ lnZβ , (B12)

the quantum relative entropy S(ρβ ||ρeqβ ) becomes

S
(
ρβ ||ρeqβ

)
=−S(ρβ)− tr

{
ρβ lnρ

eq
β

}
=− ln

Zβ
Z eq
β

. (B13)

Therefore, we can write

∆Iβ =−∂2βS
(
ρβ ||ρeqβ

)
. (B14)

When the CTS outperforms the Gibbs state for the quantum thermometry at β = β0, i.e.

∆Iβ0 > 0 , (B15)

we must have

∂2βS
(
ρβ ||ρeqβ

)∣∣∣
β=β0

< 0 . (B16)

8
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Appendix C. Proof of equation (10)

First, let us prove I(ρβ ;β) = Qα(ρ̃β ,H12), where

H12 ≡H⊗12 . (C1)

Since

ρ̃β ≡
d∑

k=1

e−β⟨ψk |H|ψk⟩

Zβ
|ψk⟩⟨ψk|1 ⊗ |ϕk⟩⟨ϕk|2 (C2)

and

ρβ = tr2 {ρ̃β} , (C3)

we have

tr{ρ̃βH12}= tr{ρβH}=−∂β lnZβ (C4)

and

tr
{
ρ̃βH

2
12

}
= tr

{
ρβH

2
}
, (C5)

so that

Varρ̃β {H12}= Varρβ {H} . (C6)

Next, let us compute the WYD skew information Iα(ρ̃β ,H) contained by ρ̃β with respect toH12. By using
the fact that for a pure state |φ⟩ we have |φ⟩⟨φ|α = |φ⟩⟨φ| for any α, we can obtain

Iα (ρ̃β ,H12) = tr
{
ρ̃βH

2
12

}
− tr

{
ρ̃αβH12ρ̃

1−α
β H12

}
= tr

{
ρ̃βH

2
12

}
−

d∑
k=1

e−β⟨ψk |H|ψk⟩

Zβ
⟨ψk |H|ψk⟩2

= tr
{
ρ̃βH

2
12

}
−Z−1

β ∂2βZβ .

(C7)

Therefore, we can obtain

Qα (ρ̃β ,H12)≡ Varρ̃β {H}− Iα (ρ̃β ,H12)

= Z−1
β ∂2βZβ − (∂β lnZβ)

2

= ∂2β lnZβ .

(C8)

From equation (B5), we can finally write

I (ρβ ;β) = Qα (ρ̃β ,H12) . (C9)

Next, let us prove I(ρβ ;β)⩽ Qα(ρβ ,H). The WYD skew information has asymmetry monotone [36]

Iα (ρ̃β ,H12)⩾ Iα (ρβ ,H) . (C10)

From equation (C6), we can obtain

Qα (ρ̃β ,H12)⩽ Qα (ρβ ,H) = Varρβ {H}− Iα (ρβ ,H) . (C11)

Because of equation (C9), we can obtain

I (ρβ ;β)⩽ Qα (ρβ ,H) . (C12)

9
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Appendix D. Proof of equation (17)

The quantum relative entropy S(ρ(τ)||ρβ(τ)) can be written as

S(ρ(τ) ||ρβ (τ)) =−S(ρ(τ))− tr{ρ(τ) lnρβ (τ)}

=−S(ρ(τ))+β
d∑

k=1

⟨Ek |U†
τρ(τ)Uτ |Ek⟩⟨Ek |U†

τHτUτ |Ek⟩+ lnZβ (τ) .
(D1)

Because

ρ(τ) = Uτρ
eq
β (0)U†

τ =
d∑

k=1

e−βEk

Z eq
β (0)

Uτ |Ek⟩⟨Ek|U†
τ , (D2)

we have

d∑
k=1

⟨Ek |U†
τρ(τ)Uτ |Ek⟩⟨Ek |U†

τHτUτ |Ek⟩= tr
{
Uτρ

eq
β (0)U†

τHτ
}
= tr{ρ(τ)Hτ} . (D3)

Therefore,

S(ρ(τ) ||ρβ (τ)) =−S(ρ(τ))+βtr{ρ(τ)Hτ}+ lnZβ (τ) . (D4)

From the unitary invariance of the von Neumann entropy, we can write

S(ρ(τ) ||ρβ (τ)) =−S
(
ρ
eq
β (0)

)
+ lnZβ (τ)+βtr{ρ(τ)Hτ}

= β
(
tr{ρ(τ)Hτ}− tr

{
ρ
eq
β (0)H0

})
+ ln

Zβ (τ)

Z eq
β (0)

= β⟨W⟩+ ln
Zβ (τ)

Z eq
β (0)

,

(D5)

where

⟨W⟩ ≡ tr{ρ(τ)Hτ}− tr
{
ρ
eq
β (0)H0

}
(D6)

is the exact averaged work. Because

ln
Zβ (τ)

Z eq
β (0)

= ln
Zβ (τ)

Z eq
β (τ)

+ ln
Z eq
β (τ)

Z eq
β (0)

, (D7)

from [24], we have

ln
Zβ (τ)

Z eq
β (0)

=−S
(
ρβ (τ) ||ρeqβ (τ)

)
−β∆F eq . (D8)

Therefore, we have

S(ρ(τ) ||ρβ (τ))+ S
(
ρβ (τ) ||ρeqβ (τ)

)
= β (⟨W⟩−∆F eq) . (D9)

Because the exact excess work is [62]

⟨Wex⟩= ⟨W⟩−∆F eq = β−1S
(
ρ(τ) ||ρeqβ (τ)

)
, (D10)

we can obtain the thermodynamic triangle equality

S(ρ(τ) ||ρβ (τ))+ S
(
ρβ (τ) ||ρeqβ (τ)

)
= S

(
ρ(τ) ||ρeqβ (τ)

)
. (D11)

10
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Appendix E. Proof of equation (21)

The quantum J-divergence of ρ(τ) and ρβ(τ) is defined as

J(ρ(τ) ,ρβ (τ))≡ S(ρ(τ) ||ρβ (τ))+ S(ρβ (τ) ||ρ(τ)) . (E1)

In equations (D9) and (D11), we have already proved the thermodynamic triangle equality. Next, let us
consider the quantum relative entropy S(ρβ(τ)||ρ(τ)), which is given by

S(ρβ (τ) ||ρ(τ)) =−S(ρβ (τ))− tr{ρβ (τ) lnρ(τ)} . (E2)

The von Neumann entropy of ρβ(τ) is

S(ρβ (τ)) = βtr{ρβ (τ)Hτ}+ lnZβ (τ) . (E3)

Also

tr{ρβ (τ) lnρ(τ)}=−β
d∑

k=1

Ek⟨Ek |U†
τρβ (τ)Uτ |Ek⟩− lnZ eq

β (0)

=−β
d∑

k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− lnZ eq

β (0) .

(E4)

Therefore,

S(ρβ (τ) ||ρ(τ)) = β

(
d∑

k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− tr{ρβ (τ)Hτ}

)
− ln

Zβ (τ)

Z eq
β (0)

. (E5)

From equation (D8), we can obtain

S(ρβ (τ) ||ρ(τ))− S
(
ρβ (τ) ||ρeqβ (τ)

)
−β∆F eq

β = β

(
d∑

k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− tr{ρβ (τ)Hτ}

)
. (E6)

By using tr{ρβ(τ)H0}, we can write

d∑
k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− tr{ρβ (τ)Hτ}

=
d∑

k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− tr{ρβ (τ)H0}− tr{ρβ (τ)(Hτ −H0)} .

(E7)

Let Γ be the ergotropic transformation

Γ≡
d∑

k=1

|Ek⟩⟨Ek|U†
τ = U†

τ . (E8)

Then, we have

tr
{
Γρβ (τ)Γ

†H0

}
=

d∑
k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
. (E9)

The ergotropy of ρβ(τ) with respect to the Hamiltonian H0 is defined as [68]

W0 (ρβ (τ))≡ tr{ρβ (τ)H0}− tr
{
Γρβ (τ)Γ

†H0

}
= tr{ρβ (τ)H0}−

d∑
k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
. (E10)

Therefore, by defining

∆E(ρβ (τ))≡ tr{ρβ (τ)(Hτ −H0)} , (E11)

11
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we can write

d∑
k=1

Ek
e−β⟨Ek |U

†
τHτUτ |Ek⟩

Zβ (τ)
− tr{ρβ (τ)Hτ}=−W0 (ρβ (τ))−∆E(ρβ (τ)) . (E12)

Therefore,

S(ρβ (τ) ||ρ(τ))− S
(
ρβ (τ) ||ρeqβ (τ)

)
= β (∆F eq −W0 (ρβ (τ))−∆E(ρβ (τ))) . (E13)

From equations (E1), (D9) and (E13), we can obtain

J(ρ(τ) ,ρβ (τ)) = β (⟨W⟩−W0 (ρβ (τ))−∆E(ρβ (τ))) . (E14)
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[23] Correa L A, Perarnau-Llobet M, Hovhannisyan K V, Hernańdez-Santana S, Mehboudi M and Sanpera A 2017 Low-temperature

thermometry can be enhanced by strong coupling Phys. Rev. A 96 062103
[24] Deffner S, Paz J P and Zurek W H 2016 Quantum work and the thermodynamic cost of quantum measurements Phys. Rev. E

94 010103(R)
[25] Sone A, Liu Y-X and Cappellaro P 2020 Quantum Jarzynski equality in open quantum systems from the one-time measurement

scheme Phys. Rev. Lett. 125 060602
[26] Sone A and Deffner S 2021 Jarzynski equality for stochastic conditional work J. Stat. Phys. 183 11
[27] Beyer K, Luoma K and Strunz W T 2020 Work as an external quantum observable and an operational quantum work fluctuation

theorem Phys. Rev. Res. 2 033508
[28] Sone A, Soares-Pinto D O and Deffner S 2023 Exchange fluctuation theorems for strongly interacting quantum pumps AVS

Quantum Sci. 5 032001
[29] Sone A, Yamamoto N, Holdsworth T and Narang P 2023 Jarzynski-like equality of nonequilibrium information production based

on quantum cross-entropy Phys. Rev. Res. 5 023039
[30] Chitambar E and Gour G 2019 Quantum resource theories Rev. Mod. Phys. 91 025001
[31] Marvian I and Spekkens R W 2014 Asymmetry properties of pure quantum states Phys. Rev. A 90 014102

12

https://orcid.org/0000-0003-3539-6140
https://orcid.org/0000-0003-3539-6140
https://orcid.org/0000-0002-4293-6144
https://orcid.org/0000-0002-4293-6144
https://orcid.org/0000-0003-0504-6932
https://orcid.org/0000-0003-0504-6932
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1088/2399-6528/aaa234
https://doi.org/10.1088/2399-6528/aaa234
https://doi.org/10.1088/1367-2630/ab098b
https://doi.org/10.1088/1367-2630/ab098b
https://doi.org/10.1103/PhysRevD.24.1516
https://doi.org/10.1103/PhysRevD.24.1516
https://doi.org/10.1088/0143-0807/36/6/065024
https://doi.org/10.1088/0143-0807/36/6/065024
https://doi.org/10.1103/PhysRevLett.128.010401
https://doi.org/10.1103/PhysRevLett.128.010401
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1038/ncomms12782
https://doi.org/10.1038/ncomms12782
https://doi.org/10.1103/PhysRevA.98.012115
https://doi.org/10.1103/PhysRevA.98.012115
https://doi.org/10.1103/PhysRevA.99.052318
https://doi.org/10.1103/PhysRevA.99.052318
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevLett.118.130502
https://doi.org/10.1103/PhysRevLett.118.130502
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1088/1367-2630/17/5/055020
https://doi.org/10.1088/1367-2630/17/5/055020
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevE.94.010103
https://doi.org/10.1103/PhysRevE.94.010103
https://doi.org/10.1103/PhysRevLett.125.060602
https://doi.org/10.1103/PhysRevLett.125.060602
https://doi.org/10.1007/s10955-021-02720-6
https://doi.org/10.1007/s10955-021-02720-6
https://doi.org/10.1103/PhysRevResearch.2.033508
https://doi.org/10.1103/PhysRevResearch.2.033508
https://doi.org/10.116/5.0152186
https://doi.org/10.116/5.0152186
https://doi.org/10.1103/PhysRevResearch.5.023039
https://doi.org/10.1103/PhysRevResearch.5.023039
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevA.90.014102
https://doi.org/10.1103/PhysRevA.90.014102


Quantum Sci. Technol. 9 (2024) 045018 A Sone et al

[32] Gour G and Spekkens R W 2008 The resource theory of quantum reference frames: manipulations and monotones New J. Phys.
10 033023

[33] Marvian I and Spekkens R W 2013 The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and
single copy transformations New J. Phys. 15 033001

[34] Gour G, Marvian I and Spekkens R W 2009 Measuring the quality of a quantum reference frame: the relative entropy of frameness
Phys. Rev. A 80 012307

[35] Marvian I and Spekkens R W 2014 Extending Noether’s theorem by quantifying the asymmetry of quantum states Nat. Commun.
5 3821

[36] Takagi R 2019 Skew informations from an operational view via resource theory of asymmetry Sci. Rep. 9 14562
[37] Li W 2019 Monotonicity of skew information and its applications in quantum resource theory Quantum Inf. Process. 18 1
[38] Yamaguchi K and Tajima H 2023 Smooth metric adjusted skew information rates Quantum 7 1012
[39] Marvian I, Spekkens R W and Zanardi P 2016 Quantum speed limits, coherence and asymmetry Phys. Rev. A 93 052331
[40] Ahmadi M, Jennings D and Rudolph T 2013 The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry

New J. Phys. 15 013057
[41] Elouard C, Herrera-Martí D A, Clusel M and Auffèves A 2017 The role of quantum measurement in stochastic thermodynamics

npj Quantum Inf. 3 9
[42] Jaynes E T 1957 Information theory and statistical mechanics Phys. Rev. 106 620
[43] Liu J, Yuan H, Lu X-M and Wang X 2020 Quantum Fisher information matrix and multiparameter estimation J. Phys. A: Math.

Theor. 53 023001
[44] Fiderer L J, Fraïsse J M and Braun D 2019 Maximal quantum Fisher information for mixed states Phys. Rev. Lett. 123 250502
[45] Jacobs K 2014 Quantum Measurement Theory and its Applications (Cambridge University Press)
[46] Sone A, Cerezo M, Beckey J L and Coles P J 2021 Generalized measure of quantum Fisher information Phys. Rev. A 104 062602
[47] Cerezo M, Sone A, Beckey J L and Coles P J 2021 Sub-quantum Fisher information Quantum Sci. Technol. 6 035008
[48] Beckey J L, Cerezo M, Sone A and Coles P J 2022 Variational quantum algorithm for estimating the quantum Fisher information

Phys. Rev. Res. 4 013083
[49] Jozsa R 1994 Fidelity for mixed quantum states J. Mod. Opt. 41 2315
[50] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary edn (Cambridge University

Press)
[51] Gour G, Müller M P, Narasimhachar V, Spekkens R W and Halpern N Y 2015 The resource theory of informational

nonequilibrium in thermodynamics Phys. Rep. 583 1
[52] Lostaglio M 2019 An introductory review of the resource theory approach to thermodynamics Rep. Prog. Phys. 82 114001
[53] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Quantum coherence, time-translation symmetry and thermodynamics

Phys. Rev. X 5 021001
[54] Lostaglio M, Jennings D and Rudolph T 2015 Description of quantum coherence in thermodynamic processes requires constraints

beyond free energy Nat. Commun. 6 6383
[55] Marvian I 2022 Operational interpretation of quantum Fisher information in quantum thermodynamics Phys. Rev. Lett.

129 190502
[56] Marvian I 2020 Coherence distillation machines are impossible in quantum thermodynamics Nat. Commun. 11 25
[57] Bartlett S D and Wiseman HM 2003 Entanglement constrained by superselection rules Phys. Rev. Lett. 91 097903
[58] Petz D 2002 Covariance and Fisher information in quantum mechanics J. Phys. A: Math. Gen. 35 929
[59] Manzano G, Parrondo J M and Landi G T 2022 Non-Abelian quantum transport and thermosqueezing effects PRX Quantum

3 010304
[60] Pires D P, Céleri L C and Soares-Pinto D O 2015 Geometric lower bound for a quantum coherence measure Phys. Rev. A 91 042330
[61] Deffner S and Lutz E 2010 Generalized Clausius inequality for nonequilibrium quantum processes Phys. Rev. Lett. 105 170402
[62] Landi G T and Paternostro M 2021 Irreversible entropy production: from classical to quantum Rev. Mod. Phys. 93 035008
[63] Shiraishi N and Sagawa T 2021 Quantum thermodynamics of correlated-catalytic state conversion at small scale Phys. Rev. Lett.

126 150502
[64] Shiraishi N and Sagawa T 2022 Erratum: Quantum thermodynamics of correlated-catalytic state conversion at small scale [Phys.

Rev. Lett. 126, 150502 (2021)] Phys. Rev. Lett. 128 089901
[65] Takagi R and Shiraishi N 2022 Correlation in catalysts enables arbitrary manipulation of quantum coherence Phys. Rev. Lett.

128 240501
[66] Audenaert K M and Eisert J 2005 Continuity bounds on the quantum relative entropy J. Math. Phys. 46 102104
[67] Audenaert K M 2013 On the asymmetry of the relative entropy J. Math. Phys. 54 073506
[68] Allahverdyan A E, Balian R and Nieuwenhuizen T M 2004 Maximal work extraction from finite quantum systems Europhys. Lett.

67 565

13

https://doi.org/10.1088/1367-2630/10/3/033023
https://doi.org/10.1088/1367-2630/10/3/033023
https://doi.org/10.1088/1367-2630/15/3/033001
https://doi.org/10.1088/1367-2630/15/3/033001
https://doi.org/10.1103/PhysRevA.80.012307
https://doi.org/10.1103/PhysRevA.80.012307
https://doi.org/10.1038/ncomms4821
https://doi.org/10.1038/ncomms4821
https://doi.org/10.1038/s41598-019-50279-w
https://doi.org/10.1038/s41598-019-50279-w
https://doi.org/10.1007/s11128-019-2284-8
https://doi.org/10.1007/s11128-019-2284-8
https://doi.org/10.22331/q-2023-05-22-1012
https://doi.org/10.22331/q-2023-05-22-1012
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1103/PhysRevLett.123.250502
https://doi.org/10.1103/PhysRevLett.123.250502
https://doi.org/10.1103/PhysRevA.104.062602
https://doi.org/10.1103/PhysRevA.104.062602
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1103/PhysRevResearch.4.013083
https://doi.org/10.1103/PhysRevResearch.4.013083
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1016/j.physrep.2015.04.003
https://doi.org/10.1016/j.physrep.2015.04.003
https://doi.org/10.1088/1361-6633/ab46e5
https://doi.org/10.1088/1361-6633/ab46e5
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1103/PhysRevX.5.021001
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1103/PhysRevLett.129.190502
https://doi.org/10.1103/PhysRevLett.129.190502
https://doi.org/10.1038/s41467-019-13846-3
https://doi.org/10.1038/s41467-019-13846-3
https://doi.org/10.1103/PhysRevLett.91.097903
https://doi.org/10.1103/PhysRevLett.91.097903
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1088/0305-4470/35/4/305
https://doi.org/10.1103/PRXQuantum.3.010304
https://doi.org/10.1103/PRXQuantum.3.010304
https://doi.org/10.1103/PhysRevA.91.042330
https://doi.org/10.1103/PhysRevA.91.042330
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/RevModPhys.93.035008
https://doi.org/10.1103/RevModPhys.93.035008
https://doi.org/10.1103/PhysRevLett.126.150502
https://doi.org/10.1103/PhysRevLett.126.150502
https://doi.org/10.1103/PhysRevLett.128.089901
https://doi.org/10.1103/PhysRevLett.128.089901
https://doi.org/10.1103/PhysRevLett.128.240501
https://doi.org/10.1103/PhysRevLett.128.240501
https://doi.org/10.1063/1.2044667
https://doi.org/10.1063/1.2044667
https://doi.org/10.1063/1.4811856
https://doi.org/10.1063/1.4811856
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2

	Conditional quantum thermometry—enhancing precision by measuring less
	1. Introduction
	2. Conditional thermal state
	3. Quantum thermometry
	3.1. Quantum Fisher information
	3.2. Quantum thermometry with the CTS

	4. Single-qubit example
	5. Asymmetry
	6. State preparation of the CTS
	7. Quantum heat from the CTS
	8. Conclusion
	Appendix A. Derivation of conditional thermal state
	Appendix B. Detailed derivations of equations (4)–(7)
	Appendix C. Proof of equation (10)
	Appendix D. Proof of equation (17)
	Appendix E. Proof of equation (21)
	References


