Eur. Phys. J. C (2022) 82:67
https://doi.org/10.1140/epjc/s10052-022-10019-3

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Massless fermions in spatially flat FLRW space-times

Ion I. Cotaescu®

West University of Timigoara, V. Parvan Ave. 4, 300223 Timisoara, Romania

Received: 5 December 2021 / Accepted: 10 January 2022
© The Author(s) 2022

Abstract The propagation of the packets of left-handed
plane wave solutions of the massless Dirac equation is
studied in spatially flat Friedmann-Lemaitre—Robertson—
Walker (FLRW) space-times. Assuming that the observations
are performed in physical frames with Painlevé—Gullstrand
coordinates, the current and energy—momentum tensor are
derived, emphasising their severe decay and moderate dis-
persion during propagation. As the wave packets move along
null geodesics, interesting effects are produced by the appar-
ent or event horizons.

1 Introduction

The theory of cosmic neutrinos in curved backgrounds
was developed focusing on neutrino oscillations in vari-
ous scenarios and gravitational fields [1-12] including the
Schwarzschild metric, where the influence of the gravita-
tional lensing was studied [13—16]. As the flavor transitions
cannot be separated from propagation, the effective method
of the wave packets was considered for deriving physical
results [17-28] but without paying special attention to the
propagation in gravitational fields.

We recently studied photon wave packets in spatially
flat Friedmann—Lemaitre—Robertson—Walker (FLRW) space
time, showing that their propagation has new sound features
which cannot be observed in the flat space-times [29,30]. We
showed that, in expanding FLRW space-times, an observer
at rest in its proper physical frame with Painlevé—Gullstrand
coordinates [31,32] measures photon wave packets empha-
sising the severe decay of the maximum intensity and moder-
ate dispersion. In the present paper, we would like to continue
this investigation in the case of the left-handed massless Dirac
fermions propagating in spatially flat FLRW space-time but
without flavour couplings. For this reason, we speak here
about massless fermions instead of neutrinos.
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We apply here the same method as in the case of the
Maxwell field, starting with the observation that the mass-
less Dirac equation can be solved analytically in any spa-
tially flat FLRW space-time, in either conformal or physical
frames. However, in contrast with the flat case, the plane
wave solutions must depend explicitly on the initial condi-
tions because of the physical space coordinates which are no
longer homogeneous as the co-moving ones. In addition, we
must take into consideration that the detector measuring the
wave packets selects the fermions emitted by a fixed remote
source. In fact, the detector filters the fermion momenta along
the source-observer direction with the help of a suitable pro-
jection operator determining the amplitude of the detected
one-dimensional wave packet as well as the expectation val-
ues and dispersions of the measured observables.

The principal results obtained here are the current and
energy—momentum tensor of the plane wave packets of mass-
less fermions propagating in spatially flat FLRW space-
times with scale factors a(z). We find that the current and
the energy—momentum tensor evolve as a(t)~3 and a(t)™*
respectively while the dispersion is proportional to a(?).
Moreover, we show that the apparent motion of these wave
packets along null geodesics give rise to interesting horizon
effects as in the case of the photon wave packets we studied
recently [29,30].

We start in the Sect. 2 defining the conformal and physical
local charts which have to be completed with the local non-
holonomic frames we need for studying the Dirac equation.
In the next section we construct the plane wave solutions
in conformal frames where we can take over the results of
the flat case completed with the explicit initial conditions.
After quantisation, the operators of the current and energy—
momentum tensor are written in the physical frame where
their expectation values can be interpreted. In Sect. 4 we
define the one-particle wave packets showing how these may
be detected and deriving explicitly the expectation values of
the current and energy—momentum tensor in the one-particle
state defining the wave packet. An example of isotropic wave
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packet is given in Sect. 5 where we study the propagation
in the matter-dominated and de Sitter expanding universes
emphasising the horizon effects. Finally, we present some
concluding remarks.

We use the Planck units withi = c = G = 1.

2 Frames

The space-times in which we study the propagation of the
massless fermions are the local-Minkowskian spatially flat
FLRW space-times, (M, a), with scale factors a(¢). We con-
sider here the frames formed by local charts of coordinates
x* (a, u,v,... =0,1,2,3) in which we must define non-
holonomic orthonormal frames using tetrads.

The simplest local charts are the conformal Euclidean
ones, {f., X.}, with the conformal time 7. and the co-moving
Cartesian space coordinates x, = (x/ x2), having line
elements of the form

ds? = a(t.)? (drf —dx, - dxc) . (1

c? C’C

Note that these coordinates were proposed for the first time by
Lemaitre [34] in de Sitter’s universe. The conformal coordi-
nates are useful in applications but these are different from the
physical coordinates of Painlevé—Gullstrand type [31,32],
formed by the cosmic time t and the physical space coordi-
nates X = ()c1 , xz, x3 ). These coordinates can be introduced
by substituting

dr ; x!
te=| —, xt=—, i,j,k,...=1,2,3, 2
‘ / an’ T awm " @
for deriving the new line elements
a)? a( ) o
ds? = (1 2) dr? +2 -dxdr — dx - dx, (3)
a(n)? a)

of the physical local charts {z, x} of these manifolds. The
functiona(t) = a[t.(t)]is the usual FLRW scale factor while

a() 1 da() 1 da() a(t)
a(t) a@) dt  a(t)? dte  a(te)?’
is the Hubble function for which we do not use a special

notation. The inverse transformation {f,x} — {z., X} is
obvious

t = / a(t)dte, X = a(te)xe. 5)

“

In cosmology one prefers the FLRW coordinates {f, X.} with
the well-known line element

ds? = dr? — a(r)*dx, - dx., (6)

since the co-moving space coordinates comply with the
homogeneity of the universes with flat space sections. It
is remarkable that the invariants depending only on a(?),
namely the Ricci and Kretschmann scalars, have the same
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form in physical and FLRW coordinates. The difference is
that only in physical local charts we can separate the pecu-
liar velocity from the recessional one [33]. For this reason, in
what follows we use mainly physical frames resorting to the
conformal ones as an auxiliary tool when these offer techni-
cal advantages. The final results are given in both the physical
and FLRW frames.

The physical local chart with the metric (3) plays the role
of a proper frame of an observer staying at rest in the origin
O (x = 0) and evolving along the vector field d; which, in
general, is not a Killing one. In this local chart, the observer
has a dynamical apparent horizon of radius

a(t)
a(t)

In addition, this may have an event horizon whose radius is
the distance [38,39],

. a(t)
re(t) = /t a)’ 3

from which a photon emitted at time ¢ never arrives at the
origin. In general, these horizons are different evolving with
different velocities [30]. The exception is the de Sitter space-
time whose apparent and event horizons coincide. In physical
coordinates, we thus have the opportunity of analysing the
physical effects due to the apparent horizons [29] which are
hidden when one uses the co-moving space coordinates.

To write the Dirac equation, we need to fix the tetrad gauge
giving the vector fields e; = eg 0y defining the local orthog-
onal frames, and the 1-forms o = égdx“ of the dual co-
frames (labelled by the local indices, ft, D, ... =0, 1, 2, 3).
The metric tensor of (M, a) can be expressed now as g, =

ra(t) = (N

n Be e,, where n = diag(l, —1, —1, —1) is the Minkowski

metric. Here we restrict ourselves to the Cartesian diagonal
tetrad gauge defined by the vector fields

U g — g+ 4Dy
eny = —— = _
T AT T awy” ™
1
i = —— 0. = 0., 9
T Ay T ©

and the corresponding dual 1-forms

o’ = a(t,)dt, = dt,
i i ;ooa@)
o' =a(t.)dx, =dx' — —=x'dt, (10)
a(t)
which preserve the global SO(3) symmetry allowing us to
use systematically the S O (3) vectors. When we use the charts
with spherical coordinates we keep the same Cartesian gauge.
We obtain thus the frames {x; e} formed by a local chart
{x} and the local orthogonal frame and co-frame given by the
tetrads e and ¢, as defined by Egs. (9) and (10), respectively.
The co-moving space coordinates of these frames can be
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transformed by the E (3) isometries formed by space transla-
tions and global S O (3) rotations. Note thatin physical frames
the translations are time-dependent while the rotations retain
a global symmetry [33].

The local frames are defined up to local gauge transfor-
mations of the Lorentz group. In order not to affect the phys-
ical meaning, the entire theory must be invariant under local
gauge transformations, generalising thus the Lorentz covari-
ance of special relativity [35]. In what follows we study the
massless fermions in the frames {x; e} of the space-times
M, a).

3 Quantum field

We consider first the massless Dirac fermions in conformal

frames where the Dirac equation, Epys = 0, of the massless

quantum field v is conformally covariant. This means that
the Dirac operator in the conformal frame {#., X.; e},

. 3i a(t.)

.0 . c/ 0

iy o, +iy'o,i +— ,

[ P Y A }

(11

Ep =

a(te)
expressed in terms of Dirac matrices ya‘ in the chiral repre-
sentation (with diagonal y>), allows the substitution ¥ —

a(tc)’% tﬂ that leads to the simpler equation
(iv°0, +iviay) ¥ =0,

which has the same form and solutions as in special relativity.
The difference is that the space-time (M, a) is no longer
homogeneous as the Minkowski one, such that the general
solution we look for must depend explicitly on the initial
condition x.90 = (0, Xc0), showing when and where this
was prepared.

Under such circumstances, we may take over the results
known in the flat case writing down the general form of the
left-handed quantum field prepared at the time 7. in the space
point X.( as

12)

Y(xe) = Wpr(xe)
= [ @ X [Uprtraate. i) + Voo (xob .20]
A
(13)

in terms of field operators, a and b, and left-handed funda-
mental spinors,

1
Upi(xe) = 2 - (fA(()I’)) e~ iPUte=1c0)+iP-(Xe—Xc0)
27 a(t:)]?
(14)
1
Vp,)»(-xc) — 2 +4 > (nkép)> eip([c*[c())*ip'(xc*xcﬂ)
[2m a(t)]2
(15)

which depend on the initial condition. The Pauli spinors of
helicities A = i%, related as 7, (p) = ioz[&(p)]*, form an
orthonormal system, 5;‘ & = n;f Ny = &y, and satisfy the
eigenvalues problems

o -p&(p) =2prép),

o -p ni(p) = =2pAm(p), (16)

that allowed us to derive the forms (14) and (15).

We now understand that the fundamental spinors of pos-
itive frequencies, U, are non-vanishing only for A = —%
while those of negative frequencies, V, have only A = % as
in the flat Minkowski space-time. For this reason we denote
simply

Up=U

p’A‘:_%v Vp = V ls (17)

p.A=3
the orthonormal solutions that satisfy

(Up, Up) = (Vp, V) = $p-p),
(Up, Vp’) = (VP’ Up’) =0.

(18)
(19)

and form a complete system with respect to the Hermitian
form,

) = [ Ereat Ty, 0)
where i = 1+ yY is the Dirac adjoint of v.

Similarly, we denote the particle, a(p) = a(p, A = —%),
and antiparticle, b(p) = b(p, 2 = %), field operators whose
non-vanishing anti-commutation rules read
fam.a'@)} = {om. o' @)} = '@ -p). @D
With these operators we may construct the momentum basis

of the Fock space with an unique vacuum state, |0), defined
as

a(p)|0) = b(p)[0), (0la’(p) = (0|67 (p) = 0. (22)

just as in the flat case. Obviously, this is a generalised basis
whose vectors having infinite norms do not represent physical
states but allow one to construct such states as suitable linear
combinations, i.e. the wave packets we have to study here.

The observed quantities are the expectation values of con-
served or time-dependent operators. The conserved opera-
tors are the one-particle operators corresponding to the con-
served quantities via the Noether theorem, namely the charge,
momentum and angular momentum operators. In what fol-
lows we use only the momentum operator whose components
can be written as

P = (llf, }SilI/> :

= / &p p' (o @)ae) + 6 @B |, (23)
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respecting the normal ordering of the operator products [36].
The notation P’ stands for the components of the orbital

momentum operator which act as
(P'W)(xe) = =iy W (xo), (24)

in the conformal frame where the co-moving space coordi-
nates can be translated as in the flat case. We remind the
reader that the corresponding isometries in physical frames
are depending on time [33].

The expectation values of the time-dependent operators
must be derived in physical frames, {¢, x; e}, where these
have physical meaning. We consider here the Dirac current
(density) having the components

I = Ty oK), yhe) =iyt @29

and the energy—momentum tensor with symmetrised com-
ponents [37],

T (x) = T (x)
— % : (E(x)yw(x)v”lp(x)
~VOW )y (0¥ (). (26)

These operators are Hermitian conserved currents in the
sense that their divergences are vanishing giving rise to the
mentioned conserved one-particle operators [36].

4 Detecting wave packets

In what follows we study the propagation of the plane wave
packets generated by one-particle physical states,

o) = / & p a(p) @’ (p)[0), @7)

defined by square integrable functions, «(p), which must
satisfy the normalisation condition,

(a|er) = / Eplap)® = 1. (28)

The corresponding *wave function’

Va(xe) = (0[¥ (xe)|a) = /d3p Up(xc)a(p), (29)

defines the normalised wave packet, (V¥,, ¥y) = 1, in the
conformal frame. In this approach, the expectation values
of the one-particle operators in the state |«) can be calcu-
lated simply by using the corresponding orbital operators.
For example, the expectation values of the components of
the momentum operator can be derived as

@7'l0) = (v P) = [ @ppla®P. GO

@ Springer

by using the Hermitian form (20) and the operator (24) in the
conformal frame.

Let us imagine now that an observer, staying at rest in
the origin O of its proper frame with physical coordinates,
{t, x; e}, measures a beam of massless fermions emitted
at the initial time #y by a source S situated in the space
point X) = —nda(ty). These fermions propagate along the
unit vector n until they are detected at the final time ¢
in the observer’s origin. The time-independent parameter d
is the co-moving distance SO while the physical distance
evolves in time as d(t) = da(t) [30,33]. The fermion beam,
described in the conformal frame {z., X.; e} by the wave
packet (29), is detected in the origin (x = 0) of the physical
frame of the same observer, {7, X; e}, at the final time 7. In
this layout, the conformal and physical frames have Cartesian
axes parallel to those of the orthogonal frame defined by the
tetrads (9) and (10). We simplify the geometry by choosing
these axes parallel with the orthonormal frame {e;, e;, €3}
such that n = e3 gives now the direction SO.

The wave packet evolves causally until the detector of the
observer O measures some of its parameters selecting only
the fermions coming from the source S whose momenta are
parallel with e3. This means that the domain of the momenta
measured by O is [29,30]

where Ap is a small quantity. Therefore, the measured state
|), is given now by the corresponding projection operator
A A acting as

o) = Anla) = /A & pap)a’(p)o). (32)

Moreover, we may evaluate the integrals over A as

Ap Ap
2 2 R
[013PF(1))=/A dpl/A dpz/ dp’F(p', p*, p¥)
A -£ -2 0
o0
~ (Ap)? /0 dpF (0,0, p), (33)

according to the mean value theorem. Thus we can calculate
the quantity

(@|Aale) = f Ppap)? = (Ap)k, (34)
A
where
K= /oodp|ot(0, 0, p)I*. (35)
0

Under such circumstances, the new wave packet

(OIA AW (xc)ex) Z/Ad3p Up(xc)a(p), (36)
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behaves as a one-dimensional packet,

o0
Ve (xe) = /0 dp Up(xc)a(p), (37)
depending on the new normalised wave function
~ a(O, 07 p) /‘OO ~ 2
alp) = ——F—— dpla(p)l” =L (38)
NG 0

The momentum direction is now along the third axis which
means that the polarisation —% is just the spin projection on
this axis. Therefore, we have & 1 (p) = (0, )T obtaining the
one-dimensional spinors,

0
N 1 e iPXe 1 39
Up(xe)) = ——=—F—=—=28, E= ) (39)
P )t V2m 0
0
which depend on the variable
Xe=tc—teo =%} —d, (40)

corresponding to the initial point X, = (0,0, —d) at the
initial time 7.9. With these preparations we can write the
definitive form of the one-dimensional wave packet in the
conformal frame,

1
Vg (e, x2) = - D(X)E, 41)

a(t:)?

where the function

d(X) = dpe "PXa(p), (42)

] o0
V2 /0
plays the role of an amplitude which encapsulates the prin-
cipal integral we have to solve to study the propagation.

The observer O can measure the parameters of the Dirac
field in its proper physical frame, {¢, x; e}, where the one-
dimensional wave packet,

1
Ve, x) = —5 ®(NE, (43)

a(t)?2

depends on the new variable

t 1 3
X:/ >y (44)
n al) a@®)

obtained after performing the substitution (2) in Eq. (40). In
this frame, the wave packet is prepared in the physical space
point xg = (0, 0, —da(tp)) at time # (such that 7.(fg) = t0).
Finally, this packet must be detected in x = 0 at the final
time 7 which is not yet derived.

To study the propagation of this wave packet, we focus
on the expectation values of the operators (25) and (26) in
the state |o¢A ). We calculate first the expectation values of the

components (25) of the Dirac current using the wave packet
(43) and the matrices (A.2). We obtain thus

T =@l g 0la) = P )y (P (x) = JVE, (45)

where

1
J(t. X) = — [@(X)]%, 46
(r, X) a(t)3|()| (46)
is the density while V#* = VE 4 VI is the four-velocity in
the physical frame where this can be split, in peculiar,

(W) = (1,0,0,1), (47)

and recessional,
(V") = (o, e 4, fx3), (48)
a a a

four-velocities [33]. As expected, the four-velocity is a null
vector, g, V#VY = 0, but it is remarkable that after sepa-
rating the recessional part we remain with a flat null peculiar
velocity which satisfies the null condition nwf/“ VP =0
with respect to the Minkowski metric 7, as in special relativ-
ity. As mentioned before, this separation cannot be done in
frames with FLRW coordinates where the current (45) takes
the form J, = JV,, depending on the density (46), but the
co-moving four-velocity

1
Ve = (1, 0,0, —) . (49)
a

Similarly, we derive the expectation values of the sym-
metrised components (26) of the energy—momentum tensor,

T = (@ 7" 0ld) = 3 (Tal0y " @V 95
—VOY 0y va()) = VAV, (50)
where the quantity

i

16X =65 3 (

D(X)*ax P(X) — P(X)IxP(X)*),
61V

will be called here the infensity since this is just the density
of energy, I = T%. Performing the same calculation in the
FLRW frame we find that the components of the energy—
momentum tensor, 7/ V=1 %3 V', have the same intensity
but depend on the co-moving velocity V. instead of V.

The density J depends on the amplitude (42) which has the
property |®(X)| < ®(0) whether & is a test function. This
means that, at any time ¢, the function (25) has an absolute (or
global) maximum, J (¢, 0), for X = 0 we call the maximum
density. The existence of a corresponding maximum intensity
is not obvious but if we chose a real valued test function &
then the quantity

OX) =id(X)* IxD(X) = O(—X)D(X), (52)

@ Springer
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depends on the new function

1 > ;
Q1(X) = E/o dp pe~"Xa(p), (53)

which has the desired property |®(X)| < ®(0). Therefore,
representing the intensity as

0)

I(t, X) = (®(X)+®( X)) < —=5 =1(.0),

a(n*2
(54)

we understand that the maximum intensity, I(z,0), is
obtained once again for X = 0.

These maximum values are located at time ¢ in point
(0,0, x3 (1)) where

() =a@) [/ld—[/ —d} (55)
" - 1o Cl(t/) '

solves the equation X = 0. Remarkably, this is just the null
geodesic passing through the point S at the initial time #o,
when xfn (to) = —d(t9) = —da(ty), and arriving in O at the
final time, 77, that can be derived by solving the equation

X (tf)—0—>/;) a(t) d, (56)

resulting from the geodesic (55). The maximum density and
intensity propagate along the null geodesic SO along the
third axis, in the domain x,, € [—d(fy), 0], with the velocity

a(r) 3
vh () = 1+ 22230, 57)
a)”
Therefore, the initial velocity
d(t
03 (10) = 1 — ati)d = 1 — 20 (58)
ra (1)

is apparently different from the speed of light, but finally, at
the time 7y when the wave packet is detected, the observer
O measures just the speed of light, vi (tr) = 1.

In expanding space-times (M, a) with positive Hubble
functions, the dragging back effect of the background deter-
mines initial velocities less than the speed of light. If at
the initial time 7o the source is inside the apparent hori-
zon, then the geodesic motion is apparently accelerated from
0 < v% (fo) < lupto vf’n (ty) = 1. Moreover, when at
the initial time the source is behind the apparent horizon,
d(ty) > rq(to), then v,3,l (t9) < 0 which means that the motion
starts in the backward direction, stops and turns back to the
forward direction accelerating to the detector which finally
records the speed of light. In these space-times the maximum
density follows the null geodesic having a decay o a(r)™3
resulting from Eq. (46). The maximum intensity has the same
trajectory with the difference that this has the decay o< a(r) ™
as in the case of the photons propagating in the same back-
grounds [29,30].

@ Springer
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Fig. 1 The null geodesics of the maximum quantities of two fermions
emitted simultaneously at the initial instant ¢ = f#o. The first one is
emitted by the source S; inside the dynamical event horizon while the
second one is emitted by the source S, outside it. The second fermion
starts in the backward direction, stops at the time #y,, when it restarts in
the forward direction accelerating until arriving in O at the time £, > #;

It remains to evaluate the space dispersion of the wave
packet, §x(¢), defined as the width of the function 7 (¢, X) at
a given time. This depends on the width § X of the function
®(X) + ®(—X), which is a constant quantity depending on
the profile of this function. Then, according to Eq. (44), we
deduce that the physical dispersion, 6x () = §Xa(t), evolves
from 8x(f9) = §Xa(tp) up to Sx(ty) = 6Xa(ty).

In conclusion, we may say that in expanding space-times,
the apparent motion of the maximum quantities under con-
sideration is accelerated with a severe decay and moderate
dispersion, laying out specific horizon effects.

5 Isotropic wave packet

Let us illustrate now all the aforementioned effects in a brief
graphical analysis studying the apparent motions of the wave
packets of massless fermions in the proper physical frame
{t, x; e}p of an observer O. In order to obtain intuitive pro-
files of the densities and intensities of these packets, we use
arbitrary units, avoiding extremely large or small numbers.

We consider a simple isotropic wave packet which may
be defined in spherical coordinates, k = (k, 6, ¢), of the
momentum space. We assume that at the initial time 7o the
source S prepares the wave packet in xg = —d(tp) defining
the real-valued wave function in momentum representation
as

a(p) = ﬂ Vﬁ*%e*)/p vp > E (59)
27Ty p) ' 2
This function is normalised,
o0
/ & pa(p)? = 4 / dp pa(p)® =1, (60)
0
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depending on the free parameter y and the expectation value
of the radial momentum of the emitted fermion,

o
P= 471/ dp p*a(p)? = p, (61)
0
whose dispersion can be derived simply as

o0
dispP = 4n/ dp p*a(p)? — p* = (62)
0

a
2y

The observer O measures the one-dimensional wave
packet whose wave function (38) is re-normalised by using
the constant

2

_ (T4 2 - 14 , 63
‘ /0 P = - D@y - D) (63)

such that this now reads

Qyp—2Qyp—-1
'y p)

prP=lemvp,

a(p) = (2y)yﬁ‘1\/
(64)

With its help, we derive the expectation value of the momen-
tum along the third axis,
o
3 Lo -
Py = dppa(p)y”=p——, (65)
0 14

which has to be detected by O at the instant # = 77 in x> = 0
with the dispersion

o
1
disp P} = / dpp?a(p)? = p* =5~ >—5.  (66)
= 2y 22
proportional with P}.
The amplitude in the proper physical frame of the observer
O is given by Eq. (42) as

f p— 1
®L(X) =277 e _
7yQ2yp—DI'Qyp)
1 y vh—3
r p+ — . 67
) (yp+2><y+ix> ©7
With this amplitude, the density (46) and intensity (51)
become
| y2 yp—1
Jo(t, X) = J , 68
LX) = s o<y2+X2> (68)
1 Y2 yp+i
T(t, X) = Tt s 69
L(t, X) 2R O(y2+X2> (69)
where we denote
F(rp+3)

1
To=<ﬁ——)Jo=—_ (70)
2y VYA (yp =1
We observe that our density and intensity are different powers

of a genuine Cauchy-Lorentz distribution. Therefore, these

quantities have different widths,

_2 _2
8X, =2y 2Wi — 1, §Xp =2pV2mi — 1, (71)

determining their dispersion.

Example I: Matter-dominated universe

Let us consider first a massless fermion in the space-time
(M, t%) with the scale factor a(t) = t% which is known
as the matter-dominated universe. The gravitational source
producing this FLRW space-time is a perfect fluid whose
density (of matter or energy) p and pressure p read

p=0. (72)

The density has the Big Bang singularity at + = 0, which
means that the condition + > 0 is mandatory. An observer
at rest in the origin of its proper physical frame {z, x; e}o
in (M, t%) has a dynamical apparent horizon on a sphere

of radius r,(¢) = % t expanding with the constant velocity

3
vazi.

We assume that, at the initial moment ¢, two sources, S|
situated inside the apparent horizon and S, situated outside,
emit simultaneously two massless fermions in the same state
defined by the wave function (59). These fermions follow
the null geodesics plotted in Fig. 1 arriving to the observer
O at the final times resulting from Eq. (56), i. e, #; and 1;,
respectively.

The fermion emitted by S; inside the apparent horizon
starts with an initial velocity smaller than 1, because of the
dragging effect of the background, propagating then accel-
erated straightforward to O as in Fig. 2 where we plot both
the intensity (69) and density (68) in a logarithmic scale.

b
apparent
horizon

=t

Fig. 2 The consecutive profiles in a logarithmic scale of the intensity
and density (smaller) of the fermion emitted by the source S;. This starts
with an initial velocity less than one because of the dragging effect, and
then it accelerates up to the speed of light measured in O. The decay
and dispersion are obvious

@ Springer
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Fig. 3 The consecutive profiles in a logarithmic scale of the intensity
of the fermion emitted by the source S» which starts in the backward
direction turning back in xop to the observer O where this arrives at
the instant #,. The decay and dispersion are present during the entire
propagation

In contrast, the fermion emitted by the source S, starts
in the backward direction, with vfn (to) < 0, because the
dragging effect is stronger outside the event horizon. This
fermion goes in the backward direction decelerating until
it stops when the dynamical apparent horizon reaches it at
instant #gop and distance |xgop| > d. From this static posi-
tion the fermion restarts in the forward direction approaching
accelerated to the detector in O which records the speed of
light.

This remarkable effect produced by the apparent horizon
can be pointed out exclusively in the physical frame where
one uses the physical space coordinates. However, this appar-
ent scenario, presented in Fig. 3, cannot be observed directly
as the fermion moves causally during propagation, being
measured/observed only by the detector in O. Nevertheless,
indirect methods can be found for revealing this effect as in
the photon case where the redshift magnitude may give us
information about the relative position between source and
dynamical horizon at the initial time [30].

Example II: de Sitter expanding universe

The second example is of a massless fermion in the expand-
ing portion of the de Sitter space-time, known as the de Sit-
ter expanding universe, (M, aqs), having the de Sitter scale

factor ags(t) = exp(wgst), with wgs = % and t € R.
This manifold does not have a perfect fluid produced by the
cosmological constant A in vacuum. In this space-time the
apparent horizon on the sphere of radius r, = a);S1 is in fact
a static event horizon separating different domains of causal-
ity [38,39]. Therefore, the only fermions arriving in O are
emitted by sources inside the event horizon as in Fig. 4 where
we plot the consecutive profiles of the intensity and density
affected by decay and dispersion. If a similar wave packet is

@ Springer

event horizon

W

T
-100 0

s Cox o

Fig. 4 The consecutive profiles in a logarithmic scale of intensity and
density of a wave packet of a massless fermion emitted inside the event
horizon. We observe the decay and dispersion

event horizon event horizon

Fig. 5 Horizon effects produced by the event horizon of the de Sitter
space-time which traps the packets prepared on it and reflects the packets
prepared beyond it. Consecutive profiles of the intensity are plotted in
both cases in a logarithmic scale

prepared just on the event horizon, then it collapses without
moving as in the left panel of Fig. 5. The wave packets pre-
pared outside the event horizon propagate in the backward
direction as being reflected by this horizon. The evolution
of the intensity in this case can be seen in the right panel of
Fig. 5.

6 Concluding remarks

We described completely the propagation of the packets
of left-handed plane waves of massless Dirac fermions as
observed in the physical frames of the spatially flat FLRW
space-times.

An observer may measure in its proper physical frame the
expectation value of the fermion conserved momentum (65),
the density (46) and the intensity (51). This gets thus the
opportunity of estimating the emitted density and intensity,

a(tp)*
a(t)*’

Jemite = obsﬁ» Temitt = ITobs (73)
a(fo)
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which depend only on the initial and final times. Unfortu-
nately, the initial time cannot be determined directly as in
the case of the light where the redshift gives the ratio of ini-
tial and final scale factors according to the Lemaitre equation
[40,41] of Hubble’s law [42,43]. Instead, one may deduce the
initial time from other observations as, for example, detecting
simultaneously fermions and photons from the same source.

In general, the energy is not a conserved quantity in spa-
tially flat FLRW space-times except for the de Sitter expand-
ing universe. Nevertheless, we can use the energy operator
H = id, whose expectation values give the evolving energy
which may be different from that defined in special relativ-
ity [44]. Moreover, this operator does not commute with the
conserved momentum (23) that acts as Pl = —ia(t)_laxi
in the physical frame. For this reason, in our opinion, the
measurement of the fermion energy remains an open prob-
lem that must be studied carefully before drawing definitive
conclusions.

In spite of these difficulties, we hope that the genuine
kinematic study presented here may improve the theory of
the cosmic neutrinos emitted by remote sources in various
epochs of our expanding universe.
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Appendix A: Fermions in physical frames

As the physical frames are less popular, we present few tech-
nical details starting with the form of the local covariant
derivatives Vg = &4V, that read

a@) ; lLa(t) |
Vo=0 +—=x'd., Vi=09,
0 ; + X x+2 (l)y

Al
an” (A.D)

Furthermore, we give the form of the point-dependent Dirac
matrices

a0 o

=y’ +x A2
Y =y o) (A.2)

yox) =0,

and the covariant derivatives

B La(m? o ;. 1@ 0
0=0 =5 5 Vo, Vi=0i+ oo o7 v
(A.3)
0 __ d(t)2 i
VO =9 + PO x'd,i
i . lam a(t)2
V= -3, ~ 320 P xix7d (A.4)

in the gauge defined in Egs. (9) and (10). The Dirac operator
[44],

Ep = iy&@& =iy*(x)V,

: 3
:l)/oat+lylaxz+l)/0 () < 8)C‘+ )
a(r) 2
in physical frames has the kinetic part of the flat case com-
pleted by the last term giving the coupling to the gravity of
the space-times (M, a).

(A.5)
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