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We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of 
underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. 
In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only 
global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The 
two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aij

μ) and vector 
(ei

μ) representations of the starting global Lorentz symmetry. We propose that these prototype vector 
fields are covariantly constrained, Aij

μ Aμ
i j = ±M2

A and ei
μeμ

i = ±M2
e , that causes a spontaneous violation 

of the accompanying global symmetries (M A,e are their presumed violation scales). It then follows that 
the only possible theory compatible with these length-preserving constraints is turned out to be the 
gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected 
in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a 
curvature we unavoidably come to the Einstein–Cartan theory. The extended theories with propagating 
spin-connection and tetrad modes are also considered and their possible unification with the Standard 
Model is briefly discussed.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One can think that Poincaré gauge gravity (PGG) [1,2] (see also 
[3] and references therein) with the underlying vector fields of 
tetrads and spin-connections is perhaps the best theory candi-
date for gravitation to be unified with the other three elementary 
forces of nature. PGG looks in essence as a gauge field theory in 
flat Minkowski space which successfully mimics curved space ge-
ometry when making the transition to the base world space in 
terms of general affine connections and metric. Remarkably, there 
is some clear analogy between a local frame in PGG and a local 
internal symmetry space in conventional quantum field theories. 
As a result, the vector fields of the spin-connections gauging the 
local frame Lorentz group S O (1, 3)L F appear in PGG much as pho-
tons and gluons appear in the Standard Model. We propose that 
such an analogy may follow from their common origin related 
to spontaneous breaking of underlying spacetime symmetries in-
volved (such as relativistic invariance etc.) with all gauge fields 
appearing as massless Nambu–Goldstone bosons [4]. This rather 
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old idea [5] has gained a further development [6–8] in recent 
years.

Here we will follow the recently introduced emergence conjec-
ture [9,10] according to which an origin of any gauge symmetry 
is basically related to some covariant constraint(s) which, for one 
reason or another, is put on a vector field system possessing only 
some global internal symmetry. As a matter of fact, the simplest 
holonomic constraint of this type for vector field (or vector field 
multiplet) Aμ may be the “length-fixing” condition

C(A) = Aμ Aμ − n2M2 = 0, n2 ≡ nμnμ = ±1 (1)

where nμ is a properly oriented unit Lorentz vector, while M is 
some high mass scale. We will see that gauge invariance appears 
unavoidable in the proposed theory, if the equations of motion in-
volved should have enough freedom to allow a constraint like (1)
to be fulfilled and preserved over time. Namely, gauge invariance 
in such theories has to appear in essence as a response of an in-
teracting field system to putting the covariant constraint (1) on its 
dynamics, provided that we allow parameters in the corresponding 
Lagrangian density to be adjusted so as to ensure self-consistency 
without losing too many degrees of freedom. Otherwise, a given 
field system could get unphysical in a sense that a superfluous 
reduction in the number of degrees of freedom would make it 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2017.04.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:j.chkareuli@iliauni.edu.ge
http://dx.doi.org/10.1016/j.physletb.2017.04.012
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.04.012&domain=pdf


378 J.L. Chkareuli / Physics Letters B 769 (2017) 377–384
impossible to set the required initial conditions in an appropriate 
Cauchy problem. Furthermore, in quantum theory, to choose self-
consistent equal-time commutation relations would also become 
impossible [11].

To see how technically a global internal symmetry may be 
converted into a local one, let us consider the question of con-
sistency of the constraint for vector field (1) with its equations 
of motion. We propose some arbitrary relativistically invariant La-
grangian L(A, ψ) which only possesses a global Abelian U (1) sym-
metry, and, apart from the vector field Aμ , contains the charged 
fermion ψ . In the presence of the constraint (1), it follows that the 
equations of motion can no longer be independent. This means 
that there should be some relationship between all the vector and 
matter field Eulerians (E A , Eψ , ...) involved.1 Such a relationship 
can quite generally be formulated as a functional – but by local-
ity just a function – of the Eulerians, F (E A, Eψ), being put equal 
to zero at each spacetime point with the configuration space re-
stricted by the constraint C(A) = 0,

F (C = 0; E A, Eψ) = 0 (2)

for the one matter fermion case proposed.
Let us consider a “Taylor expansion” of the function F ex-

pressed through various combinations of the fields involved, their 
combinations with the Eulerians, as well as the derivatives acting 
on them. We basically consider the terms with the lowest mass 
dimension 4, corresponding to the Lorentz invariant expressions

∂μ(E A)μ, Aμ(E A)μ, Eψψ, ψ Eψ (3)

to eventually have an emergent gauge theory at a renormalizable
level. All the other terms in the expansion contain field combina-
tions with higher mass dimensions (presumably related to some 
Planck mass order scale) and therefore can be neglected.

Now, together with the constraint (1), which has to be pre-
served under the time development given by the equations of 
motion,

(E A)μ = 0 (4)

one has in fact the five equations for the 4-component vector field 
Aμ . This means that not all of the vector field Eulerian compo-
nents can be independent. Therefore, there must be a relationship 
of the form given in the emergence equation (2). When being ex-
pressed as a linear combination of the Lorentz invariant terms (3), 
this equation leads to the identity between the vector and matter 
field Eulerians of the following type

∂μ(E A)μ = it Eψψ − itψ Eψ (5)

(where t is some constant) which is in fact identically vanished 
when the equations of motion are satisfied. This identity imme-
diately signals about invariance of the basic Lagrangian L(A, ψ)

under vector and fermion field local U (1) transformations whose 
infinitesimal form is given by

δAμ = ∂μω, δψ = itωψ. (6)

Conversely, the identity (5) follows from the invariance of the 
physical Lagrangian L(A, ψ) under the transformations (6). In-
deed, both direct and converse assertions are particular cases of 
Noether’s second theorem [12].

So, we have shown how the constraint (1) enforces the choice 
of the parameters in the starting Lagrangian L(A, ψ), so as to 

1 Hereafter, the notation E A stands for the vector field Eulerian determined by 
the corresponding Lagrangian L(A, ψ) (E A)μ ≡ ∂L/∂ Aμ − ∂ν [∂L/∂(∂ν Aμ)]. We use 
similar notations for other field Eulerians as well.
convert its global U (1) charge symmetry into a local one, thus 
demonstrating an emergence of gauge symmetry (6) that allows 
the emerged Lagrangian to be completely determined. For a the-
ory with renormalizable couplings, it is in fact the conventional 
QED Lagrangian supplemented by the constraint (1) imposed on 
the vector field Aμ . Interestingly, this type of the QED theory with 
the constrained vector potential was considered by Nambu [13]
quite a long ago.

Let us make it clearer what does the constraint (1) mean in 
the gauge invariant QED framework. This constraint is in fact very 
similar to the constraint appearing in the nonlinear σ -model for 
pions [14]. It means, in essence, that the vector field Aμ devel-
ops some constant background value, 

〈
Aμ

〉 = nμM , and the Lorentz 
symmetry S O (1, 3) formally breaks down to S O (3) or S O (1, 2) for 
the time-like (n2 = 1) or space-like (n2 = −1) case, respectively. 
As a result, the corresponding vector Goldstone mode is produced 
which may be associated with a photon. Nonetheless, despite an 
evident similarity with the nonlinear σ -model for pions, which 
really breaks the corresponding chiral SU (2) × SU (2) symmetry 
in hadron physics, the QED theory with the supplementary vector 
field constraint (1) involved leaves the physical Lorentz invariance 
intact. Actually, as was shown in the tree [13] and one-loop [15]
approximations, there is no physical Lorentz violation in the QED 
supplemented by the covariant constraint (1). Later this result was 
also confirmed for many other gauge theories with the supple-
mentary vector field constraints, particularly, in the non-Abelian 
[16] and supersymmetric theories [10]. So, we conclude with a 
remark that in contrast to a spontaneous violation of internal sym-
metries, a spontaneous Lorentz invariance violation (SLIV) caused by 
the length-preserving vector field constraint does not necessarily 
imply a physical breakdown of Lorentz invariance. Actually, gauge 
invariance in QED and other gauge theories always leads to a to-
tal conversion of SLIV into gauge degrees of freedom of massless 
vector Goldstone bosons.

In the Section 2 we turn to the construction of an emergent 
PGG theory. We start with an arbitrary theory of some vector and 
fermion fields which possesses only global spacetime symmetries, 
such as Lorentz and translational invariance, in flat Minkowski 
space M4. The two vector field multiplets involved are proposed to 
belong, respectively, to the adjoint (Aij

μ) and vector (ei
μ) represen-

tations of the starting global Lorentz symmetry. We show that if 
these prototype vector fields are covariantly constrained then the 
only possible theory compatible with these constraints is turned 
out to be the standard PGG. In minimal theory case being linear 
in curvature we unavoidably come to the Einstein–Cartan theory 
that is thoroughly presented in the Section 3. The extended theo-
ries with propagating spin-connection and tetrad modes and their 
possible unification with the Standard Model is briefly discussed in 
the final Section 4, where we also conclude.

2. Towards an emergent Poincaré gravity

Conventionally, we have in PGG the world space (WS) symme-
try I S O (1, 3)W S , which includes translations and the orbital part 
of Lorentz transformations, and a local frame (LF) Lorentz sym-
metry S O (1, 3)L F , which only includes the spin part of Lorentz 
transformations acting on representation indices. Remarkably, this 
duality is in an automatic accordance with the Einstein equiva-
lence principle which, therefore, need not to be specially pos-
tulated in PGG as is in the standard GR. We begin with the 
entirely global spacetime symmetries, both I S O (1, 3)W S and 
S O (1, 3)L F , and our starting objects are the two vector field mul-
tiplets which are 4-vectors of I S O (1, 3)W S and belong, respec-
tively, to the adjoint (Aij

μ) and vector (ei
μ) representations of the 
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Lorentz group S O (1, 3)L F (and an antisymmetry in the Latin in-
dices (a, b, c, ..., i, j, k, ...) is hereafter imposed). In what follows 
we will refer to these prototype fields as the spin-connections and 
tetrads, as they really are turned out once an emergence procedure 
is applied to them. As a result, the local frame Lorentz symme-
try S O (1, 3)L F and translation subgroup in I S O (1, 3)W S appear 
gauged, while the orbital Lorentz transformations are actually ab-
sorbed by the latter. So, eventually one has the local translations 
and local S O (1, 3)L F transformations being gauged by the emer-
gent tetrad and spin-connection fields, respectively. Again, due to 
gauge invariance emerged the physical Lorentz (and translation in-
variance) remains in the final theory.

2.1. Constrained tetrad and spin-connection fields

First of all, as we could learn above from the emergent QED 
case, the tetrad and spin-connection fields have to be properly con-
strained to induce an appropriate emergence process. The essential 
point is, however, that the tetrad field is generically constrained 
by definition, ei

μeν
i = δν

μ . To see clearer what does this constraint 
mean, let first notice that whereas the spin-connection field Aij

μ

has a canonical vector field mass dimension, the tetrad field ei
μ ap-

pears to have zero mass dimension. Treating it as all other boson 
fields having a canonical dimension of mass we introduce some 
fundamental mass scale in the definition of tetrad fields ei

μ (eμ
i ) 

changing their orthogonality equations to

ei
μeν

i = δν
μM2

e , ei
μeμ

j = δi
j M2

e , ei
μeμ

i = n2M2
e , (7)

where the first two conditions could be considered as those which 
define the inverse tetrads eμ

i , whereas the third one is their 
length-fixing constraint. Here n2 stands for

n2 ≡ δν
μδ

μ
ν = δi

jδ
j
i = δi

μδ
μ
i = 4 . (8)

We can readily see that the last constraint in (7) is indeed similar 
to the constraints we have above for conventional vector fields (1). 
This constraint actually means that PGG is a spontaneously broken 
theory that manifests itself at some input mass scale Me which 
could be in principle associated with the Plank mass M P . One can 
choose this violation in a way that the vacuum of the PGG theory 
is flat Minkowski space rather than breaks Lorentz invariance.

The similar length-fixing constraint is proposed to be put on 
the spin-connection fields Aij

μ

Aij
μ Aμ

i j = n2M2
A, n2 ≡ nij

μnμ
i j = ±1 (9)

being analogous to the constraints (1) for ordinary vector fields 
(here nij

μ stands now for some properly-oriented ‘unit’ rectangu-
lar matrix). The constraint (9) actually means that we also have 
a spontaneous Lorentz violation in PGG that appears at some high 
mass scale M A which could be in principle close to the Plank mass 
M P as well. This will cause, as we confirm later, the generation of 
Goldstone vector bosons gauging Lorentz symmetry in the local 
frame, while the physical Lorentz invariance is left intact.

2.2. From global to local symmetries

We start with some prototype theory possessing only global 
symmetries I S O (1, 3)W S and S O (1, 3)L F operating in the two flat 
Minkowski spaces with constant metrics ημν and ηi j , respectively. 
This yet arbitrary theory contains some prototype vector fields 
having form of spin-connections Aij

μ(x) and tetrads ei
μ(x) and may 

also contain some matter fields (say, fermions ψ ). The theory have 
in general all possible interactions between all vector and matter 
fields involved. The corresponding Lagrangian Ltot is supposed to 
also include the standard Lagrange multiplier terms with the field 
functions λA(x) and λe(x)

Ltot(e, A,ψ;λe, λA)

= L(e, A,ψ) − λA

2
(Aij

μ Aμ
i j − n2M2

A) − λe

2
(ei

μeμ
i − n2M2

e ).

(10)

The variations under λA(x) and λe(x) result, accordingly, in the co-
variant length-preserving constraints for the spin-connection and 
tetrad fields

CA = Aij
μ Aμ

i j − n2M2
A = 0, Ce = ei

μeμ
i − n2M2

e = 0 (11)

in the PGG theory. Therefore, we face the question of consistency 
of these extra constraint equations with the equations of motion 
for the vector fields of tetrads ei

μ and spin-connections Aij
μ

(E i j
A )μ = 0, (E j

e )μ = 0 (i, j = 0,1,2,3; μ = 0,1,2,3). (12)

For an arbitrary Lagrangian L(e, A,ψ), the time development of 
the fields would not preserve in general the constraints (11). So, 
the parameters in the Lagrangian L must be chosen so as to give 
a relationship between the Eulerians for all the fields involved. 
The need to preserve the constraints CA = 0 and Ce = 0 with 
time implies that the equations of motion for the vector fields 
of spin-connections Aij

μ and tetrads ei
μ , respectively, cannot be all 

independent. As a result, the special emergence equations for spin-
connection fields

F i j(CA = 0;EA,Ee,Eψ, ...) = 0 (i, j = 0,1,2,3) (13)

and tetrad fields

Fμ(Ce = 0;Ee,EA,Eψ, ...) = 0 (μ = 0,1,2,3), (14)

necessarily appear.
Let us consider first the emergence equations (13). Again, 

when being expressed as a linear combination of the basic mass 
dimension-4 terms, this equation leads to the identities between 
all field Eulerians involved

∂μ(EA)
i j
μ = c[i j]

[kl][mn] Akl
μ(EA)μ,mn + e[i

μ(Ee)
j],μ

+ Eψ Sijψ + ψ SijEψ (15)

which are precisely analogous to those which appear in the emer-
gent Yang–Mills theory [9,10]. An appropriate identification of the 
Eulerian terms on the right-hand side of the identity (15) with the 
structure constants c[i j]

[kl][mn]and the fermion representation matri-

ces Sij of the Lorentz symmetry group S O (1, 3)L F is indeed quite 
clear. The point is that the right-hand side of this identity must 
transform in the same way as its left-hand side, which transforms 
as the adjoint representation of S O (1, 3)L F . As to their coefficients 
and other possible terms in the identity (15), there were remained, 
as usual, only terms which satisfy the Lee bracket operation to 
close the symmetry algebra once the corresponding field transfor-
mations are identified.

As to the basic identities following from the emergence equa-
tions for tetrad fields (14), the non-trivial lowest mass dimension 
terms constructed from the Eulerians for this case will necessarily 
include the translation operator expression Tμ = −∂μ for all the 
fields involved. Consequently they take the following form

ei
ν ∂μ(Ee)

ν
i + Aij

ν ∂μ(EA)νi j + (∂μEψ)ψ + ψ(∂μEψ) = 0 (16)

which consist of all the terms having mass dimension 5.
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Now again, Noether’s second theorem [12] can be applied di-
rectly to the above identities (15) and (16) in order to derive the 
gauge invariance of the Lagrangian L(e, A, ψ) in (10). Indeed, with 
the constraint (11) implied, this Lagrangian tends to be invari-
ant under local transformations of the spin-connection, tetrad and 
matter fields of the type

δAij
μ = εi

k Akj
μ + ε

j
k Aik

μ − ∂μξν Aij
ν − ∂μεi j,

δeμ
i = eν

i ∂νξμ − eμ
k εk

i ,

δψ = 1

2
εi jγi jψ, γi j = [

γi, γ j
]
/4. (17)

Note that the first two terms in δAij
μ correspond to local Lorentz 

rotations of the spin-connection fields Aij
μ with parameters εi j(x), 

while the third term is due to the local translations conditioned by 
the parameters ξμ(x). The last terms in δAij

μ means that the spin-

connection fields Aij
μ gauge just the local Lorentz rotations. The 

tetrad field in δeμ
i is Lorentz-rotated (in the local Lorentz frame) 

and, simultaneously, subject to the coordinate-dependent transla-
tions (in the world spacetime). And finally, the transformation of 
the fermion field ψ in (17) is, as usual, determined by the fermion 
representation matrices. The local transformations (17) shows that 
the somewhat arbitrarily introduced prototype vector fields Aij

μ

and ei
μ are really turned out to be the PGG spin-connection and 

tetrad fields once they satisfy the length-preserving constraints 
(11). Moreover, the induced gauge symmetry (17) unavoidably 
leads to the emergent PGG Lagrangian

Lem(e, A,ψ;λe, λA)

= Lem(e, A,ψ)P GG − λA

2
(Aij

μ Aμ
i j − n2M2

A)

− λe

2
(ei

μeμ
i − n2M2

e ) (18)

where Lem(e, A, ψ)P GG is solely constructed from the covariant 
curvature and torsion tensors

Rij
μν = ∂[ν Aij

μ] + ηkl Aik[ν Alj
μ], T i

μν = ∂[νei
μ] + ηkl Aik[ν el

μ] (19)

and a covariant derivative for the fermion field

ψ̄γ i←→D μψ = ψ̄γ i(∂μψ)− (∂μψ̄)γ iψ + 1

4
Aab

μ ψ̄{γ i, γab}ψ. (20)

We also included the corresponding Lagrange multiplier terms 
which, as was mentioned above, do not contribute to the physi-
cal field equations of motion. Now, for a theory with the lowest 
dimension coupling constants, containing at most the quadratic 
terms in the curvature and torsion one has

Lem(e, A,ψ)P GG = L(1)(e, A,ψ) +L(2)(e, A,ψ) (21)

where the first term correspond to the minimal Einstein–Cartan 
theory being linear in the curvature

L(1)(e, A,ψ) = e

2κ

eμ
i eν

j

M2
e

Ri j
μν + e

ei
μ

2Me
ψ̄γ i←→D μψ (22)

(where κ stands for the modified Newtonian constant 8πG), while 
in the second term L(2) all eight possible quadratic terms [17,18]
are generally collected.
2.3. Broken symmetry phase: zero spin-connection modes

We have found above that the presence of the spin-connection 
and tetrad field constraints (11) in the theory unambiguously con-
vert the global symmetry I S O (1, 3)W S × S O (1, 3)L F we started 
with into the local Poincaré symmetry T (1, 3)W S × S O (1, 3)L F that 
leads to the conventional PGG theory. The point is, however, that 
these constraints mean at the same time that this global sym-
metry is spontaneously broken thus inducing the Goldstone spin-
connection and tetrad field modes.

To see it in more detail, let us consider first the spin-connection 
fields. Note above all, whereas the emergent PGG Lagrangian 
Lem

P GG in (18) possesses the local Poincaré symmetry T (1, 3)W S ×
S O (1, 3)L F , the accidental global symmetry of the length-
fixing spin-connection constraint (9) appears much higher,
I S O (6, 18)W S .2 This symmetry is indeed spontaneously broken at 
a scale M A , 

〈
Aij

μ

〉
= nij

μM A , with the vacuum direction determined 

now by the matrix nij
μ (9) which describes simultaneously both of 

the SLIV cases, time-like or space-like

I S O (6,18) → I S O (5,18), I S O (6,18) → I S O (6,17) (23)

respectively, depending on the sign of n2 = ±1. In both cases the 
matrix nij

μ has only one non-zero element, subject to the appropri-
ate I S O (1, 3)W S and (independently) S O (1, 3)L F transformations. 
They are, specifically, n〈i j〉

0 or n〈i j〉
3 provided that the VEV is devel-

oped along the 〈i j〉 direction in the local Lorentz frame and along 
the μ = 0 or μ = 3 direction, respectively, in the world spacetime.

As was argued in the above non-Abelian vector field case, side 
by side with one true vector Goldstone boson corresponding to 
spontaneous violation of an actual I S O (1, 3)W S × S O (1, 3)L F sym-
metry of the PGG Lagrangian, the five pseudo-Goldstone vector 
bosons related to the breakings (23) of the accidental symme-
try I S O (6, 18) of the constraint (9) per se are also produced.3

Remarkably, the vector PGBs remain strictly massless being pro-
tected by the simultaneously generated Lorentz gauge invariance. 
Together with the above true vector Goldstone boson, they also 
come into play thus properly completing the entire adjoint gauge 
multiplet of spin-connection fields of the local Lorentz symmetry 
group S O (1, 3)L F .

Due to the constraint (9), which virtually appears as a single 
condition put on the spin-connection field multiplet Aij

μ , one can 
identify the pure Goldstone field modes Ai j

μ using the parametriza-
tion

Aij
μ = Ai j

μ + nij
μH, nij

μA
μ
i j = 0 (A2 ≡ Ai j

μA
μ
i j ) (24)

and an effective “Higgs” mode H =
√

M2
A − n2A2. Note that, apart 

from the pure vector fields, the general zero modes Ai j
μ con-

tain the five scalar modes, Ai j
0 or Ai j

3 , for the time-like (nij
μ =

n〈i j〉
0 gμ0δ

(i j)〈i j〉) or space-like (nij
μ = n〈i j〉

3 gμ3δ
(i j)〈i j〉) SLIV, respec-

tively. They can be eliminated from the theory, if one imposes 

2 This symmetry being treated as the world space symmetry is determined 
by a proper number of the spacetime directions related to the (local frame) 
Lorentz group representations of the vector fields involved. In this way, the length-
fixing constraint for spin-connection fields (9) possesses the global symmetry 
I S O (6, 18)W S , whereas a similar constraint for tetrad fields (7) the lower global 
symmetry I S O (4, 12)W S , as is claimed below.

3 Note that in total there appear the 23 pseudo-Goldstone modes, complying with 
the number of broken generators of S O (6, 18). From these 23 pseudo-Goldstone 
modes, 18 modes correspond to the six three-component vector states, as will be 
shown below, while the remaining 5 modes are scalar states which will be excluded 
from the theory.
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appropriate supplementary conditions on the five fields Ai j
μ which 

are still free of constraints. Using their overall orthogonality (24)
to the physical vacuum direction nij

μ , one can formulate these sup-
plementary conditions in terms of a general axial gauge for the 
entire Ai j

μ multiplet nμAi j
μ = 0. Here nμ is the unit world space-

time vector which is oriented so as to be “parallel” to the vacuum 
unit nij

μ matrix. This matrix can be taken hereafter in the “two-

vector” form nij
μ = nμε i j (nμnμ = 1, ε i jεi j = 1) where ε i j is the 

unit Lorentz group tensor belonging to its adjoint representation. 
As a result, in addition to the “Higgs” mode excluded earlier by the 
orthogonality condition (24), all the other scalar fields are elimi-
nated. Consequently only the pure vector fields, Ai j

μ′ (μ′ = 1, 2, 3) 

or Ai j
μ′′ (μ′′ = 0, 1, 2), for the time-like or space-like SLIV respec-

tively, are left in the theory. Clearly, the components A(i j)=〈i j〉
μ′

and A(i j)=〈i j〉
μ′′ correspond to the true Goldstone vector boson, for 

each type of SLIV, respectively, while all the other five ones (with 
(i j) 	= 〈i j〉) are vector PGBs. Consequently these six modes alto-
gether represent the fundamental spin-connection field multiplet 
in the PGG theory in the final symmetry broken phase.

2.4. Broken symmetry phase: zero tetrad modes

Let us now turn to the tetrad fields. Again, as one can 
readily confirm, the tetrad length-fixing constraint in (7) pos-
sesses the high total global symmetry I S O (4, 12)W S rather than 
I S O (1, 3)W S × S O (1, 3)L F as other terms in the emergent PGG La-
grangian (18). This symmetry then spontaneously breaks to some 
its “diagonal” subgroup I S O (1, 3) that results in an appearance of 
the corresponding Goldstone and Higgs modes. Note that this vi-
olation precisely looks as the 16-dimensional Poincaré symmetry 
violation down to the ordinary 4-dimensional one. As it is well 
known for spontaneously broken spacetime symmetries [19], such 
a violation can solely lead to the Goldstone modes correspond-
ing to the broken translational generators. There are no additional 
modes corresponding to the broken Lorentz generators. So, we 
eventually have only twelve Goldstone modes (according to the 
number of the broken translation generators) which may be given 
by the non-diagonal ei

μ components (e0
1,2,3, e1

2,3, e2
3 and their in-

verse ones), whereas the Higgs mode by some combination of 
their diagonal ones (e0

0, e1
1, e2

2, e3
3). Indeed, the above Goldstone 

modes are in fact pseudo-Goldstone modes since, as was men-
tioned above, the symmetry of the PGG Lagrangian Lem

P GG is much 
lower than the symmetry of the tetrad field constraint (7).

All that can be readily seen by using the familiar parametriza-
tion

ei
μ = ei

μ + ni
μ

√
M2

e − e2 (e2 ≡ ei
μe

μ
i /n2) (25)

with ei
μ appearing as the vector Goldstone fields which correspond 

to the spontaneous violation of the high-dimensional translation 
invariance. For the unit vacuum direction tensors chosen accord-
ingly as ni

μ = δi
μ and nμ

i = δ
μ
i one therefore has

δi
μe

μ
i = 0, δ

μ
i e

i
μ = 0 (δi

μδ
μ
j = δi

j, δi
μδν

i = δν
μ, δi

μδ
μ
i = 4). (26)

At the same time, the vector Goldstone fields ei
μ and eμi fields are 

turn out to be the gauge fields of local translations, as directly fol-
lows from the tetrad transformation law in (17). Meanwhile the 
second (diagonal) term in the parametrization (25) represents the 
effective Higgs mode, h =

√
M2

e − e2. Note that with this “mixed” 
Kronecker symbols δi

μ and δμ
i one also has some new orthogonal-

ity equation

eμeνδk
ν = eμek = eμek

νδν = M2
e δ

μ (27)
k i k i k i i
provided that the standard orthogonality conditions (7) work.
For a general metric tensor gμν(x) which corresponds to the 

tetrad ei
μ one consequently has from a conventional metric defini-

tion and equations (25)

gμν = 1

M2
e
ηi je

i
μe j

ν = ημν + 1

M2
e
[h(δi

μeiν +δ
j
νe jμ)+ei

μeiν −ημνe
2]

(28)

where ημν stands for a flat metric ημν = ηi jδ
i
μδ

j
ν in the world 

space and, therefore, the second term in (28) represents a devia-
tion from the flat metric. As is readily seen from (28), the vacuum 
in the PGG theory is a largely flat Minkowski spacetime that al-
lows to treat gravity as a generically spontaneously broken theory. 
Though this point was discussed in many different contexts [3], it 
looks the most transparent just in the emergent PGG framework. 
Indeed, one can readily see that the above-mentioned deviation 
from a flat metric is naturally small once the symmetry breaking 
scale Me related to the tetrad field ei

μ is associated with the Planck 
mass scale M P . Respectively, an inverse metric tensor gμν(x) cor-
responding to the tetrad eμ

i has a similar form with an extremely 
small deviation from a flat metric ημν = ηi jδ

μ
i δν

j given as in (28)
by an appropriate Goldstone tetrad field combinations. Indeed, a 
conventional relationship between general metrics, gμν gνρ = δ

ρ
μ , 

is automatically satisfied.

3. Emergent Einstein–Cartan theory

We start with the minimal theory part L(1) (22) in the ba-
sic emergent Lagrangian (21). Without kinetic terms, the tetrad 
and spin-connection Goldstone modes in this minimal Lagrangian 
are not propagating physical fields, though their variations may 
lead to some non-trivial constraint equations. We will see below 
that, varying this Lagrangian under Goldstone tetrad modes eμ i

one comes to the Einstein–Cartan equation, while variation under 
Goldstone spin-connection modes Ai j

μ may reveal some spin-spin 
gravitational interaction trace in this equation.

Let us note first that for a variation of tetrad fields and their 
determinant we have now taking into account that tetrads are di-
mensionful fields,

δeμ
i = −eν

i eμ
j δe j

ν/M2
e , δe = eeμ

i δei
μ/M2

e . (29)

Multiplying the both sides of the first equation by δi
μ and using 

the tetrad orthogonality condition (27) in its right side one has

δ(δi
μeμ

i ) = −δ(δ
μ
i ei

μ); δh= 0, δei
μ = δei

μ, (30)

where we also used the Goldstone condition (26) for the eμi and ei
μ

modes, respectively. Thus, the effective Higgs field h does not vary 
and a total variation of the starting tetrad fields ei

μ(eμ
i ) amounts 

to the variation of the pure Goldstone modes ei
μ(eμi ). In terms of 

these modes the variation equations (29) acquire the simple forms

δeμ
i = δe

μ
i = −eν

i eμ
j δe

j
ν/M2

e , δe = δe = eeμ
i δei

μ/M2
e . (31)

This in turn means that the variation of the minimal Lagrangian 
L(1) (22) under the Goldstone tetrad fields eμ i will lead to the 
same equations of motion as the variation under the total tetrad 
fields eμ

i .
In contrast to tetrads, there is no the similar orthogonality con-

ditions (7), (27) for spin-connection fields Aij
μ . As a result, not only 

its Goldstone mode Ai j
μ but also its effective Higgs mode H in 

(24) will vary that, therefore, might lead to the corrections of the 
order O(A2/M2 ) to the spin-connection constraint equation along 
A
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the vacuum direction given by the unit tensor nμ
i j . However, as we 

show below, all these corrections are unavoidably canceled in the 
final Einstein–Cartan equation.

With these preliminary comments, let us now rewrite the min-
imal PGG theory L(1) (22) in the symmetry broken phase. Indeed, 
substituting the spin-connection field parameterization (24), one is 
led to the Einstein–Cartan theory expressed in terms of the pure 
emergent modes Ai j

μ . At the same time, one can still keep the to-
tal tetrad field eμ

i in the theory (being properly dimensioned by 
mass scale Me) rather than its Goldstone modes eμ i since, as was 
mentioned above, they both lead to the same equations of motion 
in the minimal theory. However, one should first use the local in-
variance of the emergent Lagrangian Lem (21) to gauge away the 
apparently large but fictitious Lorentz violating terms (being pro-
portional to the scale M A ) which appear in the symmetry broken 
phase (24). As one can readily see, they stem from the effective 
Higgs field H expansion in (24) when it is applied to some spin-
connection field couplings following from the corresponding co-
variant derivatives in the Lagrangian Lem . To exclude them we can 
make some appropriate Lorentz rotations of all the fields involved, 
namely, spin-connection and tetrad fields and matter fermions

Ai j
μ → Ai j

μ + εi
kA

kj
μ + ε

j
kA

ik
μ, ei

μ → ei
μ − εi

kek
μ,

ψ →
(

1 + εi jγi j/4
)

ψ (32)

with a phase εi j(x) being linear function in the 4-coordinate, 
εi j = −(nij

μxμ)M A . These transformations lead to an exact cancel-
lation of the large constant term in the effective Higgs field H
expansion in (24) so that the transformed Lagrangian appears to 
contain everywhere just the combination H − M A as an effective 
Higgs field. Thus, the emergent Einstein–Cartan theory following 
from the minimal Lagrangian (22) in the symmetry broken phase 
takes the form (we retain the same notations for fields)

e−1Lem
EC = 1

2κ

eμ
i eν

j

M2
e

[
Ri j

μν +Ri j
μν(H− M A)

]
+ 1

2
δ(nμAi j

μ)2

+ ei
μ

2Me

{
ψ̄γ i(

←→D μψ) + 1

4
nab
μ (H− M A)ψ̄[γ i, γab]ψ

}
(33)

where Ri j
μν is the stress tensor of emergent spin-connection 

modes Ai j
μ

Ri j
μν = ∂νAi j

μ − ∂μAi j
ν + ηkl(Aik

ν A
l j
μ −Aik

μA
l j
ν) (34)

while Ri j
μν stands for the new SLIV oriented tensor of the type

Ri j
μν = nij

μ∂ν −nij
ν ∂μ +ηkl

[
(nik

ν A
l j
μ + nlj

μAik
ν ) − (nik

μA
l j
ν + nlj

νAik
μ)

]
(35)

acting on the effective Higgs field expansion terms in (33). The 
“standard” Lorentz covariant derivative 

←→D μ for fermion ψ , though 
written in terms of the emergent A fields, is defined exactly as in 
(20). We have also introduced a general axial gauge fixing term 
for the entire Ai j

μ multiplet to remove all scalar modes from the 
theory. After variation of the Lagrangian (33) under tetrad field one 
comes to some extended equation of motion that can be written 
in the form
Rρσ − gρσR/2 + κϑρσ

= −[
(
Rρσ − gρσR/2

)
+ κ

8Me
(gρσ ei

μ − gρμeσ
i )nab

μ ψ̄[γ i, γab]ψ](H− MA) (36)

when going from local to general frame. Here the left side presents 
the standard Einstein–Cartan equation terms including the energy–
momentum tensor

ϑρσ = 1

2Me
(gρσ ei

μ − gμσ eρ
i )ψ̄γ i←→D μψ (37)

expressed, however, in terms of the emergent Ai j
μ modes, whereas 

the right side corresponds to the Lorentz breaking background 
terms newly appeared. The R and R tensors are defined as usual

(R,R)σρ = (R,R)
i j
μνeσ

i eν
j gμρ/M2

e ,

(R,R) = (R,R)
i j
μνeμ

i eν
j /M2

e . (38)

The theory is not yet fully determined until the constraint equa-
tions for the spin connection modes Ai j

μ are found by an appropri-
ate variation the Lagrangian (33). They are rather simplified in the 
limit when the tetrad fields take the constant background value, 
eμ

i = δi
μMe (e = 1). In this approach, which allows to omit all the 

tetrad derivative terms, and also leaving only terms linear in spin-
connection modes Ai j

μ one comes to the “zero-order” constraint 
equations in the symmetry broken phase

Ai
μbδ

[μ
a δ

ρ]
i +Ai

μaδ
[μ
i δ

ρ]
b

= −κ

4

(
δρkψ̄{γk, γab}ψ − n2 Aρ

ab

2M A
δμknij

μψ̄{γk, γi j}ψ
)

, (39)

where the second term in the bracket is related to spontaneous 
Lorentz violation disappearing when its scale M A goes to infinity. 
They consequently give the following solution for spin-connection 
fields expressed in the pure local frame Lorentzian components

Aabc = −κ

4
ψ̄γ̂abcψ

(
1 + κ

8M A
n2̂nijkψ̄γ̂i jkψ

)
(40)

where the combination of the γ -matrices γ̂i jk and the matrix ̂nijk

are defined according to the following (anti)symmetrization of in-
dices

γ̂i jk ≡ 1

2

(
γi[ jk] − γk[i j] + γ j[ki] + ηikη

abγa[bj] + η jkη
abγb[ia]

)
,

γk[i j] ≡ {γk, γi j}. (41)

Note that the “zero-order” solution (40) holds in fact for the con-
tortion tensor K jab part in the total spin-connection field Aabc =
A0

abc +Kabc since an ordinary part A0
abc vanishes in the absence of 

the fermion source.
Expanding the effective Higgs field H in (24) in the Lagrangian 

(33), one comes to the highly nonlinear theory in terms of the zero 
spin-connection modes Ai j

μ which contains some properly sup-
pressed Lorentz violating couplings. The point is, however, that all 
these terms are precisely canceled in the basic equation of motion 
(36) once the constraint equations (39) are used. Thus, one even-
tually is led to the standard Einstein–Cartan equation terms given 
solely by the left side of the equation (36). Indeed, one can readily 
see how this cancellation works for the largest extra terms in its 
right side. Putting the “zero-order” solution (40) into the equation 
of motion (36) taken in the same approximation (the background 
value for tetrads, no tetrad derivative terms, no terms higher than 
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linear in Ai j
μ) one receives for the right side the vanishing sum of 

the largest SLIV contributions

± eκ2

128M A
n̂ijk (

ψ̄γ̂i jkψ
) (

ψ̄γ̂abcψ
)
(ψ̄γ̂ abcψ) (42)

stemming from its first and second terms, respectively. Thereby, 
one unavoidably comes to the standard Einstein–Cartan equation 
in (36). Note that these six-fermion contributions are much smaller 
even compared to the tiny generic four-fermion interaction in 
the Einstein–Cartan theory itself. Nonetheless, their cancellation is 
strictly provided by the Poincaré gauge invariance emerged. Apply-
ing these arguments order by order in spin-connection modes Ai j

μ

in the equations of motion (36) and constraint equations (39) one 
may come to the same conclusion in a general case as well.

4. Extended theories: an overlook

After the minimal Einstein–Cartan theory, let us now turn to a 
general PGG Lagrangian (21) containing in its second part L(2) all 
possible quadratic combinations of the Poincaré torsion and cur-
vatures, T i

μν and Rij
μν (17), respectively. Generally, the quadratic 

Lagrangians contain ghosts and tachyons but, fortunately, there ex-
ist several examples of the unitary PGG theories in the literature 
[17,18]. They include the models with both torsion and curvature 
(R + R2 + T 2), as well as the models with only torsion-squared 
(R + T 2) or curvature-squared (R + R2) terms. Substituting the 
field parametrizations (24) and (25) into them and expanding the 
square roots there in powers of A2/M2

A and e2/M2
e one is led, 

likewise the above minimal model, to a highly nonlinear theory 
in terms of the propagating tetrad and spin-connection emergent 
Goldstone modes, Ai j

μ and ei
μ . Apart from the standard vector field 

couplings, this theory contains many Lorentz violating couplings 
stemming from their field strengths T i

μν and Rij
μν in the symmetry 

broken phase. However, as can be directly confirmed, all their con-
tributions, similar to conventional gauge theories [13,15,16], are 
canceled among themselves.

Some of these unitary PGG theories could be also used for an 
unification with the Standard model. There is some point which 
may help to choose the right PGG candidate. Actually, one can 
propose that the spin-connection fields Ai j

μ could be unified with 
ordinary SM gauge fields in a framework of some non-compact lo-
cal symmetry group thus leading to a hyperunification of all gauge 
forces presented in the local Lorentz frame. As to tetrads ei

μ , how-
ever, they transform like as ordinary matter fields being belonged 
to the fundamental vector multiplet of S O (1, 3)L F rather than to 
its adjoint representation. Note that the ordinary gauge theories do 
not contain the objects like the tetrads, namely, the fundamental 
vector field multiplets. In this sense, one may only expect a par-
tial unification of PGG with SM unifying only the spin-connection 
fields with the SM gauge bosons.

Remarkably, there is such an example of the unitary theory con-
taining only the curvature-squared terms [17] that can be written 
in our notations as

Lem(A,ψ) = Lem
EC − e

4κA
Ri jkl

(
Ri jkl +Rkli j − 4Rikjl

)
(43)

where the curvature tensors (34) in the second term are properly 
contracted with tetrads, Ri jkl =Ri j

μνeμkeνl , and (anti)symmetrized. 
In this theory the tetrads will only give the constraint equations 
causing some extra terms to the Einstein–Cartan equation (36), 
whereas the spin-connection fields Ai j

μ become to propagate like 
those in the Standard Model. Their entire unification seems to be 
most obvious inside the pseudo-orthogonal S O (1, N) groups in 
which a direct embedding of the Lorentz group S O (1, 3) can be 
readily carried out. Requiring then that such unified group has to 
contain a non-trivial internal symmetry group giving some grand 
unification theory (GUT) for three other forces, we come to the 
condition N − 4 = 4k + 2 (k = 1, 2, ...) selecting the S O (N − 4)

GUTs which have complex representations. So, the minimal pos-
sible symmetry group for a hyperunification of all forces appears 
to be the S O (1, 13) symmetry which then spontaneously breaks 
at some Planck mass order scale into S O (1, 3) × S O (10) so as 
to naturally lead to PGG, on the one hand, and S O (10) GUT 
[20] for quarks and leptons, on the other (see also [21] where 
S O (1, 13) was introduced in a somewhat different context). How-
ever, apart from the S O (1, N) series, some other hyperunification 
groups are also possible. Particularly, if one keeps an eye on the 
SU (N) type GUT, then the hyperunification group could be looked 
for in the special linear S L(2N, C) groups containing as subgroups 
the S L(2, C) covering the Lorentz group and some grand unified 
SU (N) symmetry. Thus, apart from the familiar SU (5) GUT [22], 
which would stem from the S L(10, C), the higher SU (N) GUTs 
containing all three quark–lepton families could also emerge from 
the hyperunified theories.

One might expect that there would be a potential danger for 
any hyperunified theory due to the Coleman–Mandula “no-go” the-
orem [23] on the impossibility of combining spacetime and inter-
nal symmetries. Nonetheless, regarding to the hyperunified theo-
ries we consider here, this “no-go” theorem seems not to be a 
unavoidable obstacle, as may be seen from the following heuris-
tic arguments. Indeed, the first is that the theorem only works if 
there is a mass gap in the theory that means difference in energy 
between the vacuum and the next lowest energy state which is in 
fact the mass of the lightest particle. However, there is no mass 
gap in the theory in the hyperunification symmetry limit where 
all the fields, as gauge bosons so the matter fields, are massless. 
Apart from an extended gauge invariance in a hyperunified the-
ory, the generic masslessness of gauge fields like as photon, gluons 
and graviton could also be provided by their Nambu–Goldstone na-
ture that is presumably related to the spontaneous breakdown of 
global spacetime symmetries [6–8]. The second and rather impor-
tant point seems to be related to the nature of PGG as a theory 
where the gauge group involved does not need to be specially 
linked to the base space manifold. Actually, one may take the space 
to be either curved [1] or flat [2] being no conditioned by PGG on 
its own. As usually appears [2], one would have to identify the 
theory with some space manifold at a later stage. As a result, the 
local frame Lorentz gauge symmetry rather looks like an internal 
symmetry in PGG, and as such may then have an unobstructed 
unification with SM or GUT.

We will return to these interesting issues elsewhere.
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