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We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of
underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons.
In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only
global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The
two vector field multiplets involved are assumed to belong, respectively, to the adjoint (AZ) and vector
(eL) representations of the starting global Lorentz symmetry. We propose that these prototype vector

fields are covariantly constrained, AZAfj =+M?2 and eLef‘ = +M?, that causes a spontaneous violation
of the accompanying global symmetries (M4 . are their presumed violation scales). It then follows that
the only possible theory compatible with these length-preserving constraints is turned out to be the
gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected
in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a
curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating
spin-connection and tetrad modes are also considered and their possible unification with the Standard
Model is briefly discussed.
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1. Introduction

One can think that Poincaré gauge gravity (PGG) [1,2] (see also
[3] and references therein) with the underlying vector fields of
tetrads and spin-connections is perhaps the best theory candi-
date for gravitation to be unified with the other three elementary
forces of nature. PGG looks in essence as a gauge field theory in
flat Minkowski space which successfully mimics curved space ge-
ometry when making the transition to the base world space in
terms of general affine connections and metric. Remarkably, there
is some clear analogy between a local frame in PGG and a local
internal symmetry space in conventional quantum field theories.
As a result, the vector fields of the spin-connections gauging the
local frame Lorentz group SO(1, 3);r appear in PGG much as pho-
tons and gluons appear in the Standard Model. We propose that
such an analogy may follow from their common origin related
to spontaneous breaking of underlying spacetime symmetries in-
volved (such as relativistic invariance etc.) with all gauge fields
appearing as massless Nambu-Goldstone bosons [4]. This rather
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old idea [5] has gained a further development [6-8] in recent
years.

Here we will follow the recently introduced emergence conjec-
ture [9,10] according to which an origin of any gauge symmetry
is basically related to some covariant constraint(s) which, for one
reason or another, is put on a vector field system possessing only
some global internal symmetry. As a matter of fact, the simplest
holonomic constraint of this type for vector field (or vector field
multiplet) A, may be the “length-fixing” condition

C(A)= A A* —n*M? =0, n?=n,n*=+1 (1)

where n;, is a properly oriented unit Lorentz vector, while M is
some high mass scale. We will see that gauge invariance appears
unavoidable in the proposed theory, if the equations of motion in-
volved should have enough freedom to allow a constraint like (1)
to be fulfilled and preserved over time. Namely, gauge invariance
in such theories has to appear in essence as a response of an in-
teracting field system to putting the covariant constraint (1) on its
dynamics, provided that we allow parameters in the corresponding
Lagrangian density to be adjusted so as to ensure self-consistency
without losing too many degrees of freedom. Otherwise, a given
field system could get unphysical in a sense that a superfluous
reduction in the number of degrees of freedom would make it
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impossible to set the required initial conditions in an appropriate
Cauchy problem. Furthermore, in quantum theory, to choose self-
consistent equal-time commutation relations would also become
impossible [11].

To see how technically a global internal symmetry may be
converted into a local one, let us consider the question of con-
sistency of the constraint for vector field (1) with its equations
of motion. We propose some arbitrary relativistically invariant La-
grangian L(A, ) which only possesses a global Abelian U (1) sym-
metry, and, apart from the vector field A,, contains the charged
fermion 1. In the presence of the constraint (1), it follows that the
equations of motion can no longer be independent. This means
that there should be some relationship between all the vector and
matter field Eulerians (E4, Ey, ..) involved.! Such a relationship
can quite generally be formulated as a functional - but by local-
ity just a function - of the Eulerians, F(E4, Ey ), being put equal
to zero at each spacetime point with the configuration space re-
stricted by the constraint C(A) =0,

F(C=0;Ep, Ey)=0 (2)

for the one matter fermion case proposed.

Let us consider a “Taylor expansion” of the function F ex-
pressed through various combinations of the fields involved, their
combinations with the Eulerians, as well as the derivatives acting
on them. We basically consider the terms with the lowest mass
dimension 4, corresponding to the Lorentz invariant expressions

uEDH, AuED®, Eyyr, VE; (3)

to eventually have an emergent gauge theory at a renormalizable
level. All the other terms in the expansion contain field combina-
tions with higher mass dimensions (presumably related to some
Planck mass order scale) and therefore can be neglected.

Now, together with the constraint (1), which has to be pre-
served under the time development given by the equations of
motion,

(Ent =0 (4)

one has in fact the five equations for the 4-component vector field
AH. This means that not all of the vector field Eulerian compo-
nents can be independent. Therefore, there must be a relationship
of the form given in the emergence equation (2). When being ex-
pressed as a linear combination of the Lorentz invariant terms (3),
this equation leads to the identity between the vector and matter
field Eulerians of the following type

Au(Ep)H =itEyy — itwlsW (5)

(where t is some constant) which is in fact identically vanished
when the equations of motion are satisfied. This identity imme-
diately signals about invariance of the basic Lagrangian L(A, ¢)
under vector and fermion field local U(1) transformations whose
infinitesimal form is given by

Sy = it (6)

Conversely, the identity (5) follows from the invariance of the
physical Lagrangian L(A, ) under the transformations (6). In-
deed, both direct and converse assertions are particular cases of
Noether’s second theorem [12].

So, we have shown how the constraint (1) enforces the choice
of the parameters in the starting Lagrangian L(A, 1), so as to

A, =y,

! Hereafter, the notation E, stands for the vector field Eulerian determined by
the corresponding Lagrangian L(A, v) (Ex)* =93L/dA, — 8,[0L/8(dyA,)]. We use
similar notations for other field Eulerians as well.

convert its global U(1) charge symmetry into a local one, thus
demonstrating an emergence of gauge symmetry (6) that allows
the emerged Lagrangian to be completely determined. For a the-
ory with renormalizable couplings, it is in fact the conventional
QED Lagrangian supplemented by the constraint (1) imposed on
the vector field Aj,. Interestingly, this type of the QED theory with
the constrained vector potential was considered by Nambu [13]
quite a long ago.

Let us make it clearer what does the constraint (1) mean in
the gauge invariant QED framework. This constraint is in fact very
similar to the constraint appearing in the nonlinear o -model for
pions [14]. It means, in essence, that the vector field A, devel-
ops some constant background value, (A,)=n, M, and the Lorentz
symmetry SO (1, 3) formally breaks down to SO (3) or SO (1, 2) for
the time-like (n® = 1) or space-like (n®> = —1) case, respectively.
As a result, the corresponding vector Goldstone mode is produced
which may be associated with a photon. Nonetheless, despite an
evident similarity with the nonlinear o-model for pions, which
really breaks the corresponding chiral SU(2) x SU(2) symmetry
in hadron physics, the QED theory with the supplementary vector
field constraint (1) involved leaves the physical Lorentz invariance
intact. Actually, as was shown in the tree [13] and one-loop [15]
approximations, there is no physical Lorentz violation in the QED
supplemented by the covariant constraint (1). Later this result was
also confirmed for many other gauge theories with the supple-
mentary vector field constraints, particularly, in the non-Abelian
[16] and supersymmetric theories [10]. So, we conclude with a
remark that in contrast to a spontaneous violation of internal sym-
metries, a spontaneous Lorentz invariance violation (SLIV) caused by
the length-preserving vector field constraint does not necessarily
imply a physical breakdown of Lorentz invariance. Actually, gauge
invariance in QED and other gauge theories always leads to a to-
tal conversion of SLIV into gauge degrees of freedom of massless
vector Goldstone bosons.

In the Section 2 we turn to the construction of an emergent
PGG theory. We start with an arbitrary theory of some vector and
fermion fields which possesses only global spacetime symmetries,
such as Lorentz and translational invariance, in flat Minkowski
space M. The two vector field multiplets involved are proposed to

belong, respectively, to the adjoint (A',i) and vector (eit) represen-
tations of the starting global Lorentz symmetry. We show that if
these prototype vector fields are covariantly constrained then the
only possible theory compatible with these constraints is turned
out to be the standard PGG. In minimal theory case being linear
in curvature we unavoidably come to the Einstein-Cartan theory
that is thoroughly presented in the Section 3. The extended theo-
ries with propagating spin-connection and tetrad modes and their
possible unification with the Standard Model is briefly discussed in
the final Section 4, where we also conclude.

2. Towards an emergent Poincaré gravity

Conventionally, we have in PGG the world space (WS) symme-
try 1SO(1, 3)ws, which includes translations and the orbital part
of Lorentz transformations, and a local frame (LF) Lorentz sym-
metry SO(1,3);r, which only includes the spin part of Lorentz
transformations acting on representation indices. Remarkably, this
duality is in an automatic accordance with the Einstein equiva-
lence principle which, therefore, need not to be specially pos-
tulated in PGG as is in the standard GR. We begin with the
entirely global spacetime symmetries, both ISO(1,3)ws and
S0(1,3);F, and our starting objects are the two vector field mul-
tiplets which are 4-vectors of ISO(1,3)ws and belong, respec-

tively, to the adjoint (AZ) and vector (e;'L) representations of the
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Lorentz group SO(1,3);r (and an antisymmetry in the Latin in-
dices (a,b,c,...,1,j,k,...) is hereafter imposed). In what follows
we will refer to these prototype fields as the spin-connections and
tetrads, as they really are turned out once an emergence procedure
is applied to them. As a result, the local frame Lorentz symme-
try SO(1,3);r and translation subgroup in ISO(1,3)ws appear
gauged, while the orbital Lorentz transformations are actually ab-
sorbed by the latter. So, eventually one has the local translations
and local SO (1, 3);r transformations being gauged by the emer-
gent tetrad and spin-connection fields, respectively. Again, due to
gauge invariance emerged the physical Lorentz (and translation in-
variance) remains in the final theory.

2.1. Constrained tetrad and spin-connection fields

First of all, as we could learn above from the emergent QED
case, the tetrad and spin-connection fields have to be properly con-
strained to induce an appropriate emergence process. The essential
point is, however, that the tetrad field is generically constrained

by definition, ehe, = 8” To see clearer what does this constraint

mean, let first notice that whereas the spin-connection field AZ
has a canonical vector field mass dimension, the tetrad field eiL ap-
pears to have zero mass dimension. Treating it as all other boson
fields having a canonical dimension of mass we introduce some
fundamental mass scale in the definition of tetrad fields e;'L (ef‘ )
changing their orthogonality equations to

el el =5 Mz, eﬂe] —8’ Mz, elel' =n’M;, (7)
where the first two conditions could be considered as those which
define the inverse tetrads e , whereas the third one is their
length-fixing constraint. Here n? stands for

2 _ Mo gig] _ of oMb
n =81”L<SU _8}81. _S;L(Sl. =4, (8)

We can readily see that the last constraint in (7) is indeed similar
to the constraints we have above for conventional vector fields (1).
This constraint actually means that PGG is a spontaneously broken
theory that manifests itself at some input mass scale M, which
could be in principle associated with the Plank mass Mp. One can
choose this violation in a way that the vacuum of the PGG theory
is flat Minkowski space rather than breaks Lorentz invariance.

The similar length-fixing constraint is proposed to be put on
the spin-connection fields AZ

ALAE =n*M3. n? =njnlt = £1 (9)

being analogous to the constraints (1) for ordinary vector fields
(here nﬁ stands now for some properly-oriented ‘unit’ rectangu-
lar matrix). The constraint (9) actually means that we also have
a spontaneous Lorentz violation in PGG that appears at some high
mass scale M4 which could be in principle close to the Plank mass
Mp as well. This will cause, as we confirm later, the generation of
Goldstone vector bosons gauging Lorentz symmetry in the local

frame, while the physical Lorentz invariance is left intact.
2.2. From global to local symmetries

We start with some prototype theory possessing only global
symmetries 1SO(1,3)ws and SO (1, 3);r operating in the two flat
Minkowski spaces with constant metrics 7, and 7;j, respectively.
This yet arbitrary theory contains some prototype vector fields
having form of spin-connections A i p(x) and tetrads el 1w (X) and may
also contain some matter fields (say, fermions ). The theory have
in general all possible interactions between all vector and matter

fields involved. The corresponding Lagrangian £ is supposed to
also include the standard Lagrange multiplier terms with the field
functions A4 (x) and Ae(x)

L, A, Y5 ke, ha)

=L, A Y) — —(A”A“ n?M%) — ( el —n?M?).

(10)

The variations under A4 (x) and A¢(x) result, accordingly, in the co-
variant length-preserving constraints for the spin-connection and
tetrad fields

i
cAzAI{Agf—nzW:o, Ce=¢ el =Mz =0 (11)
in the PGG theory. Therefore, we face the question of consistency
of these extra constraint equations with the equations of motion
for the vector fields of tetrads eiL and spin-connections A'IJL

€N, =0, (EHu=0 (i,j=0,1,2,3; £=0,1,2,3). (12)

For an arbitrary Lagrangian L(e, A,v), the time development of
the fields would not preserve in general the constraints (11). So
the parameters in the Lagrangian £ must be chosen so as to give
a relationship between the Eulerians for all the fields involved.
The need to preserve the constraints C4 = 0 and C. = 0 with
time implies that the equations of motion for the vector fields
of spin-connections AZ and tetrads eL, respectively, cannot be all
independent. As a result, the special emergence equations for spin-
connection fields

FICa=0;En,E,Ep,..) =0 (i,j=0,1,2,3) (13)
and tetrad fields
FuCe=0;E,Ea,Ey,..)=0 (n=0,1,2,3), (14)

necessarily appear.

Let us consider first the emergence equations (13). Again,
when being expressed as a linear combination of the basic mass
dimension-4 terms, this equation leads to the identities between
all field Eulerians involved

e = g A )" ey (Ee)

+& STy +ysiey (15)

which are precisely analogous to those which appear in the emer-
gent Yang-Mills theory [9,10]. An appropriate identification of the
Eulerian terms on the right-hand side of the identity (15) with the

structure constants C[[k]lj[mnjand the fermion representation matri-

ces S of the Lorentz symmetry group SO(1,3);r is indeed quite
clear. The point is that the right-hand side of this identity must
transform in the same way as its left-hand side, which transforms
as the adjoint representation of SO (1, 3);r. As to their coefficients
and other possible terms in the identity (15), there were remained,
as usual, only terms which satisfy the Lee bracket operation to
close the symmetry algebra once the corresponding field transfor-
mations are identified.

As to the basic identities following from the emergence equa-
tions for tetrad fields (14), the non-trivial lowest mass dimension
terms constructed from the Eulerians for this case will necessarily
include the translation operator expression T, = —d,, for all the
fields involved. Consequently they take the following form

el 0, (E)! + ALB(ENY + BuEy )Y + T (3uEf) =0 (16)

which consist of all the terms having mass dimension 5.
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Now again, Noether’s second theorem [12] can be applied di-
rectly to the above identities (15) and (16) in order to derive the
gauge invariance of the Lagrangian L(e, A, ) in (10). Indeed, with
the constraint (11) implied, this Lagrangian tends to be invari-
ant under local transformations of the spin-connection, tetrad and
matter fields of the type

SA = el Ayl + el Ak — 5,6V AT — 5,6V,

Se =el9,&H — Mek

by = Esifyuw, vi = [vi.vi] /4 (17)

Note that the first two terms in 8Az correspond to local Lorentz
rotations of the spin-connection fields A;ﬂ with parameters g (x),
while the third term is due to the local translations conditioned by
the parameters £#(x). The last terms in SAZ means that the spin-

connection fields AZ gauge just the local Lorentz rotations. The
tetrad field in aef‘ is Lorentz-rotated (in the local Lorentz frame)
and, simultaneously, subject to the coordinate-dependent transla-
tions (in the world spacetime). And finally, the transformation of
the fermion field v in (17) is, as usual, determined by the fermion
representation matrices. The local transformations (17) shows that
the somewhat arbitrarily introduced prototype vector fields AZ
and eL are really turned out to be the PGG spin-connection and
tetrad fields once they satisfy the length-preserving constraints
(11). Moreover, the induced gauge symmetry (17) unavoidably
leads to the emergent PGG Lagrangian

L (e, A, Y5 he, ha)

A
= L™ (e A Y)pc — - (ALl —°M5)

Ae i 2nm2
— ?(euel —n*“M;) (18)
where L™(e, A, ¥)pcc is solely constructed from the covariant
curvature and torsion tensors

Rty = 0 Al + AT, Ay, Th, = dpel, +muAl el (19)

and a covariant derivative for the fermion field

Ty D W =0y @) — @)y 'y + Aab\/f{y Ya}¥. (20)

We also included the corresponding Lagrange multiplier terms
which, as was mentioned above, do not contribute to the physi-
cal field equations of motion. Now, for a theory with the lowest
dimension coupling constants, containing at most the quadratic
terms in the curvature and torsion one has

L™ (e, A, y)pcc =LV (e, A, y) + LD (e, A, ¥) (21)

where the first term correspond to the minimal Einstein-Cartan
theory being linear in the curvature

Hev

e €. € .. e
LD, A y) = o MZJ Ry +e

- e
vy' Dy (22)

(where « stands for the modified Newtonian constant 87 G), while
in the second term £@ all eight possible quadratic terms [17,18]
are generally collected.

2.3. Broken symmetry phase: zero spin-connection modes

We have found above that the presence of the spin-connection
and tetrad field constraints (11) in the theory unambiguously con-
vert the global symmetry ISO(1,3)ws x SO(1,3)r we started
with into the local Poincaré symmetry T(1,3)ws x SO (1, 3)f that
leads to the conventional PGG theory. The point is, however, that
these constraints mean at the same time that this global sym-
metry is spontaneously broken thus inducing the Goldstone spin-
connection and tetrad field modes.

To see it in more detail, let us consider first the spin-connection
fields. Note above all, whereas the emergent PGG Lagrangian
LpEc in (18) possesses the local Poincaré symmetry T(1,3)ws x
SO0(1,3);r, the accidental global symmetry of the Ilength-
fixing spin- connection constraint (9) appears much higher,
IS0 (6, 18)ws.2 This symmetry is indeed spontaneously broken at

a scale Mg, (A ,i> = nMM A, with the vacuum direction determined

now by the matrix nﬂ (9) which describes simultaneously both of
the SLIV cases, time-like or space-like

1SO(6,18) — 1SO(5,18), 150(6,18) — ISO(6,17) (23)

respectively, depending on the sign of n%® = +1. In both cases the
matrix nﬁ has only one non-zero element, subject to the appropri-
ate 1SO(1,3)ws and (mdependently) S0(1,3).F transformations.
They are, specifically, n ” or n prov1ded that the VEV is devel-
oped along the (ij) dlrectlon 1n the local Lorentz frame and along
the u =0 or pu =3 direction, respectively, in the world spacetime.

As was argued in the above non-Abelian vector field case, side
by side with one true vector Goldstone boson corresponding to
spontaneous violation of an actual ISO(1,3)ws x SO(1,3)fr sym-
metry of the PGG Lagrangian, the five pseudo-Goldstone vector
bosons related to the breakings (23) of the accidental symme-
try I1SO(6,18) of the constraint (9) per se are also produced.’
Remarkably, the vector PGBs remain strictly massless being pro-
tected by the simultaneously generated Lorentz gauge invariance.
Together with the above true vector Goldstone boson, they also
come into play thus properly completing the entire adjoint gauge
multiplet of spin-connection fields of the local Lorentz symmetry
group SO(1,3)F.

Due to the constraint (9), which virtually appears as a single
condition put on the spin-connection field multiplet A%, one can

identify the pure Goldstone field modes AZ using the parametriza-
tion

A=Al HniH, mlAL=0 (4= 44D 4

and an effective “Higgs” mode H = ,/M% —n2.A2, Note that, apart

from the pure vector fields, the general zero modes AZ con-
tain the five scalar modes, Aj or Aj, for the time-like (n; =

n< 8,08)) or space-like (”u =n mg 38y SLIV, respec-
t1vely They can be eliminated from the theory, if one imposes

2 This symmetry being treated as the world space symmetry is determined
by a proper number of the spacetime directions related to the (local frame)
Lorentz group representations of the vector fields involved. In this way, the length-
fixing constraint for spin-connection fields (9) possesses the global symmetry
IS0 (6, 18)ws, whereas a similar constraint for tetrad fields (7) the lower global
symmetry IS0 (4, 12)ws, as is claimed below.

3 Note that in total there appear the 23 pseudo-Goldstone modes, complying with
the number of broken generators of SO (6, 18). From these 23 pseudo-Goldstone
modes, 18 modes correspond to the six three-component vector states, as will be
shown below, while the remaining 5 modes are scalar states which will be excluded
from the theory.
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appropriate supplementary conditions on the five fields AZ which
are still free of constraints. Using their overall orthogonality (24)
to the physical vacuum direction n}i, one can formulate these sup-
plementary conditions in terms of a general axial gauge for the
entire .A,L multiplet n“A = 0. Here n, is the unit world space-

time vector which is orlented so as to be “parallel” to the vacuum
unit n}{ matrix. This matrix can be taken hereafter in the “two-
vector” form nZ =nyuel (nun* =1, €Ve;j = 1) where €V is the
unit Lorentz group tensor belonging to its adjoint representation.
As a result, in addition to the “Higgs” mode excluded earlier by the
orthogonality condition (24), all the other scalar fields are elimi-
nated. Consequently only the pure vector fields, .A” (W =1,2,3)

or A;]u’ (u” =0,1,2), for the time-like or space-like SLIV respec-
tively, are left in the theory. Clearly, the components Ag{)zﬁj)
and Aﬁj/‘?z(m correspond to the true Goldstone vector boson, for
each type of SLIV, respectively, while all the other five ones (with
(ij) # (ij)) are vector PGBs. Consequently these six modes alto-
gether represent the fundamental spin-connection field multiplet
in the PGG theory in the final symmetry broken phase.

2.4. Broken symmetry phase: zero tetrad modes

Let us now turn to the tetrad fields. Again, as one can
readily confirm, the tetrad length-fixing constraint in (7) pos-
sesses the high total global symmetry I1SO (4, 12)ws rather than
I1SO(1,3)ws x SO(1,3);F as other terms in the emergent PGG La-
grangian (18). This symmetry then spontaneously breaks to some
its “diagonal” subgroup ISO (1, 3) that results in an appearance of
the corresponding Goldstone and Higgs modes. Note that this vi-
olation precisely looks as the 16-dimensional Poincaré symmetry
violation down to the ordinary 4-dimensional one. As it is well
known for spontaneously broken spacetime symmetries [19], such
a violation can solely lead to the Goldstone modes correspond-
ing to the broken translational generators. There are no additional
modes corresponding to the broken Lorentz generators. So, we
eventually have only twelve Goldstone modes (according to the
number of the broken translation generators) which may be given
by the non-diagonal eL components (e?’m, 6;’3, e% and their in-
verse ones), whereas the Higgs mode by some combination of
their diagonal ones (eo, el, e%, e3) Indeed, the above Goldstone
modes are in fact pseudo-Goldstone modes since, as was men-
tioned above, the symmetry of the PGG Lagrangian Ly is much
lower than the symmetry of the tetrad field constraint (7).

All that can be readily seen by using the familiar parametriza-
tion
e}, = ¢, +nj,/ Mg —¢? (e? —ee/n) (25)
with e appearing as the vector Goldstone fields which correspond
to the spontaneous violation of the high-dimensional translation
invariance. For the unit vacuum direction tensors chosen accord-
ingly as n = 8' and nf‘ :81“ one therefore has
stel 1, =0 (3' 5" _5' 5' 8 =4, 3’ 81t =4). (26)

w

i 0 _
SMei =0,

At the same time, the vector Goldstone fields ¢!, and e fields are
turn out to be the gauge fields of local translations, as dlrectly fol-
lows from the tetrad transformation law in (17). Meanwhile the
second (diagonal) term in the parametrization (25) represents the
effective Higgs mode, h = v/ MZ — ¢2. Note that with this “mixed”
Kronecker symbols 8}, and 8/* one also has some new orthogonal-
ity equation

ka_ k
8_e<el_

el'ek sy = M2s!* (27)

provided that the standard orthogonality conditions (7) work.

For a general metric tensor g,,(x) which corresponds to the
tetrad EL one consequently has from a conventional metric defini-
tion and equations (25)

1 1
Suv = M277ue ev 77;w+ [[](51 ezv"“s e]u)‘i‘e Ciy — quez]

(28)

where 7, stands for a flat metric n,, = n,-jéiL(S{) in the world
space and, therefore, the second term in (28) represents a devia-
tion from the flat metric. As is readily seen from (28), the vacuum
in the PGG theory is a largely flat Minkowski spacetime that al-
lows to treat gravity as a generically spontaneously broken theory.
Though this point was discussed in many different contexts [3], it
looks the most transparent just in the emergent PGG framework.
Indeed, one can readily see that the above-mentioned deviation
from a flat metric is naturally small once the symmetry breaking
scale M, related to the tetrad field eL is associated with the Planck
mass scale Mp. Respectively, an inverse metric tensor g (x) cor-
responding to the tetrad e has a similar form with an extremely
small deviation from a ﬂat metric n#*V = 17”6,”8}’ given as in (28)
by an appropriate Goldstone tetrad field combinations. Indeed, a
conventional relationship between general metrics, g,,8"° = 85,
is automatically satisfied.

3. Emergent Einstein-Cartan theory

We start with the minimal theory part £ (22) in the ba-
sic emergent Lagrangian (21). Without kinetic terms, the tetrad
and spin-connection Goldstone modes in this minimal Lagrangian
are not propagating physical fields, though their variations may
lead to some non-trivial constraint equations. We will see below
that, varying this Lagrangian under Goldstone tetrad modes e,ﬂ
one comes to the Einstein-Cartan equation, while variation under
Goldstone spin-connection modes A] may reveal some spin-spin
gravitational interaction trace in this equatlon

Let us note first that for a variation of tetrad fields and their
determinant we have now taking into account that tetrads are di-
mensionful fields,

m__ v
de; = —e;

ellsel /M7, se= eel'sel, /M¢. (29)
Multiplying the both sides of the first equation by 81L and using
the tetrad orthogonality condition (27) in its right side one has

i My M i _ i
5(8,6;)=—08(5"¢e,); 8h=0, Be =de! e (30)
where we also used the Goldstone condition (26) for the ef‘ and ¢l
modes, respectively. Thus, the effective Higgs field h does not vary

and a total variation of the starting tetrad fields eL(e“ ) amounts
to the variation of the pure Goldstone modes eﬂ( ). In terms of

these modes the variation equations (29) acquire the simple forms

sel' =8l = —e!

e?Se{,/M?, Se = se=eel'sel, /My (31)
This in turn means that the variation of the minimal Lagrangian
LM (22) under the Goldstone tetrad fields ¢,' will lead to the
same equations of motion as the variation under the total tetrad
fields eui.

In contrast to tetrads, there is no the similar orthogonality con-

ditions (7), (27) for spin-connection fields Aﬁ As a result, not only
its Goldstone mode Aﬁ but also its effective Higgs mode # in

(24) will vary that, therefore, might lead to the corrections of the
order (’)(AZ/Mf‘) to the spin-connection constraint equation along
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the vacuum direction given by the unit tensor n . However, as we
show below, all these corrections are unavmdably canceled in the
final Einstein-Cartan equation.

With these preliminary comments, let us now rewrite the min-
imal PGG theory £ (22) in the symmetry broken phase. Indeed,
substituting the spin-connection field parameterization (24), one is
led to the Einstein-Cartan theory expressed in terms of the pure
emergent modes A;i. At the same time, one can still keep the to-
tal tetrad field e,ﬁ in the theory (being properly dimensioned by
mass scale M,) rather than its Goldstone modes %i since, as was
mentioned above, they both lead to the same equations of motion
in the minimal theory. However, one should first use the local in-
variance of the emergent Lagrangian £™ (21) to gauge away the
apparently large but fictitious Lorentz violating terms (being pro-
portional to the scale M) which appear in the symmetry broken
phase (24). As one can readily see, they stem from the effective
Higgs field H expansion in (24) when it is applied to some spin-
connection field couplings following from the corresponding co-
variant derivatives in the Lagrangian £™. To exclude them we can
make some appropriate Lorentz rotations of all the fields involved,
namely, spin-connection and tetrad fields and matter fermions

AZ—>AZ+8,’<AI{+8,i.A;’j, eM—>e —8,l<6k

v — (1 +sifyij/4)w (32)

with a phase eli(x) being linear function in the 4-coordinate,
glf = —(an“)MA. These transformations lead to an exact cancel-
lation of the large constant term in the effective Higgs field H
expansion in (24) so that the transformed Lagrangian appears to
contain everywhere just the combination H — M4 as an effective
Higgs field. Thus, the emergent Einstein-Cartan theory following
from the minimal Lagrangian (22) in the symmetry broken phase
takes the form (we retain the same notations for fields)

Mo

_ em 1 €6 ¢ i
N AT [Rik + R, 4 - MA)]+ s Aly?
+ZeM {W(Dm/f)Jr —nfP(H — Mp)yly', Vab]w}

(33)

where R;’w is the stress tensor of emergent spin-connection
modes A

Rity = dvAj, — du AT + (AR AT, — A% AY) (34)

while R stands for the new SLIV oriented tensor of the type

v

R, =3y —nld9, + 1y [(n”‘AM + Ay — ik Al 4 nvA’k)]
(35)

acting on the effective Higgs field expansion terms in (33). The
“standard” Lorentz covariant derivative D , for fermion v, though
written in terms of the emergent A fields, is defined exactly as in
(20). We have also introduced a general axial gauge fixing term
for the entire AZ multiplet to remove all scalar modes from the
theory. After variation of the Lagrangian (33) under tetrad field one
comes to some extended equation of motion that can be written
in the form

RPO — gPOR)2 + K 9PO
_ _[(ﬁ"" - gp"ﬁ/z)

K .

+ g @7 e = g e YLy yap W 1(H — M) (36)
e

when going from local to general frame. Here the left side presents

the standard Einstein-Cartan equation terms including the energy-

momentum tensor

907 = et — g7 ey Dy (37)

2M,

expressed, however, in terms of the emergent A;i modes, whereas
the right side corresponds to the Lorentz breaking background
terms newly appeared. The R and R tensors are defined as usual

(R, R)’" = (R, R)we”e”g“p/M

(R, R) = (R, R)e! el /ML, (38)

The theory is not yet fully determined until the constraint equa-
tions for the spin connection modes .A',i are found by an appropri-
ate variation the Lagrangian (33). They are rather simplified in the
limit when the tetrad fields take the constant background value,
el =8, M, (e =1). In this approach, which allows to omit all the
tetrad derivative terms, and also leaving only terms linear in spin-
connection modes AZ one comes to the “zero-order” constraint
equations in the symmetry broken phase

Al psdtsl + Al sitsp)
K| o7 ‘Aab kil
=—7 v in Vbl —1n* TG Ve vy ), (39)

where the second term in the bracket is related to spontaneous
Lorentz violation disappearing when its scale M4 goes to infinity.
They consequently give the following solution for spin-connection
fields expressed in the pure local frame Lorentzian components

K - K N
Aape = _Zwyabcw (1 + —Anzﬁjkwyijkw> (40)
where the combination of the y-matrices 7, and the matrix 7}k

are defined according to the following (anti)symmetrization of in-
dices

R 1
Vijk = 5 (Vi[jkj — Yklijl + Vijlki] + ﬂilcnabyalbjj + ﬂjk’lab)/b[iaj) )
Vitif) = (Vi Vij)- (41)

Note that the “zero-order” solution (40) holds in fact for the con-
tortion tensor Kjq, part in the total spin-connection field Agpe =
Aabc ~+ Kb since an ordinary part Aabc vanishes in the absence of
the fermion source.

Expanding the effective Higgs field / in (24) in the Lagrangian
(33), one comes to the highly nonlinear theory in terms of the zero
spin-connection modes AZ which contains some properly sup-
pressed Lorentz violating couplings. The point is, however, that all
these terms are precisely canceled in the basic equation of motion
(36) once the constraint equations (39) are used. Thus, one even-
tually is led to the standard Einstein-Cartan equation terms given
solely by the left side of the equation (36). Indeed, one can readily
see how this cancellation works for the largest extra terms in its
right side. Putting the “zero-order” solution (40) into the equation
of motion (36) taken in the same approximation (the background
value for tetrads, no tetrad derivative terms, no terms higher than
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linear in AZ) one receives for the right side the vanishing sum of
the largest SLIV contributions

A (YD) (FPabe ) G PP9) (42)

128M4

stemming from its first and second terms, respectively. Thereby,
one unavoidably comes to the standard Einstein—Cartan equation
in (36). Note that these six-fermion contributions are much smaller
even compared to the tiny generic four-fermion interaction in
the Einstein—Cartan theory itself. Nonetheless, their cancellation is
strictly provided by the Poincaré gauge invariance emerged. Apply-
ing these arguments order by order in spin-connection modes AZ
in the equations of motion (36) and constraint equations (39) one
may come to the same conclusion in a general case as well.

4. Extended theories: an overlook

After the minimal Einstein-Cartan theory, let us now turn to a
general PGG Lagrangian (21) containing in its second part £ all
possible quadratic combinations of the Poincaré torsion and cur-
vatures, T;w and R’fw (17), respectively. Generally, the quadratic
Lagrangians contain ghosts and tachyons but, fortunately, there ex-
ist several examples of the unitary PGG theories in the literature
[17,18]. They include the models with both torsion and curvature
(R4 R?+ T2), as well as the models with only torsion-squared
(R 4 T?) or curvature-squared (R + R?) terms. Substituting the
field parametrizations (24) and (25) into them and expanding the
square roots there in powers of A%/M2 and ¢?/M? one is led,
likewise the above minimal model, to a highly nonlinear theory
in terms of the propagating tetrad and spin-connection emergent
Goldstone modes, A}i and eL. Apart from the standard vector field
couplings, this theory contains many Lorentz violating couplings

stemming from their field strengths T;'w and R}iv in the symmetry
broken phase. However, as can be directly confirmed, all their con-
tributions, similar to conventional gauge theories [13,15,16], are
canceled among themselves.

Some of these unitary PGG theories could be also used for an
unification with the Standard model. There is some point which
may help to choose the right PGG candidate. Actually, one can
propose that the spin-connection fields AZ could be unified with
ordinary SM gauge fields in a framework of some non-compact lo-
cal symmetry group thus leading to a hyperunification of all gauge
forces presented in the local Lorentz frame. As to tetrads eL, how-
ever, they transform like as ordinary matter fields being belonged
to the fundamental vector multiplet of SO (1, 3).r rather than to
its adjoint representation. Note that the ordinary gauge theories do
not contain the objects like the tetrads, namely, the fundamental
vector field multiplets. In this sense, one may only expect a par-
tial unification of PGG with SM unifying only the spin-connection
fields with the SM gauge bosons.

Remarkably, there is such an example of the unitary theory con-
taining only the curvature-squared terms [17] that can be written
in our notations as

e . . -
Eem(A, w) — [,?g _ mRijkl (lekl + Rklu _ 4R1k]l) (43)

where the curvature tensors (34) in the second term are properly
contracted with tetrads, RV = R};,e#ke"!, and (anti)symmetrized.
In this theory the tetrads will only give the constraint equations
causing some extra terms to the Einstein-Cartan equation (36),
whereas the spin-connection fields .A;ﬁ become to propagate like
those in the Standard Model. Their entire unification seems to be
most obvious inside the pseudo-orthogonal SO (1, N) groups in
which a direct embedding of the Lorentz group SO(1,3) can be

readily carried out. Requiring then that such unified group has to
contain a non-trivial internal symmetry group giving some grand
unification theory (GUT) for three other forces, we come to the
condition N —4 =4k + 2 (k=1,2,...) selecting the SO(N — 4)
GUTs which have complex representations. So, the minimal pos-
sible symmetry group for a hyperunification of all forces appears
to be the SO(1,13) symmetry which then spontaneously breaks
at some Planck mass order scale into SO(1,3) x SO(10) so as
to naturally lead to PGG, on the one hand, and SO(10) GUT
[20] for quarks and leptons, on the other (see also [21] where
S0 (1,13) was introduced in a somewhat different context). How-
ever, apart from the SO(1, N) series, some other hyperunification
groups are also possible. Particularly, if one keeps an eye on the
SU(N) type GUT, then the hyperunification group could be looked
for in the special linear SL(2N, C) groups containing as subgroups
the SL(2,C) covering the Lorentz group and some grand unified
SU(N) symmetry. Thus, apart from the familiar SU(5) GUT [22],
which would stem from the SL(10,C), the higher SU(N) GUTs
containing all three quark-lepton families could also emerge from
the hyperunified theories.

One might expect that there would be a potential danger for
any hyperunified theory due to the Coleman-Mandula “no-go” the-
orem [23] on the impossibility of combining spacetime and inter-
nal symmetries. Nonetheless, regarding to the hyperunified theo-
ries we consider here, this “no-go” theorem seems not to be a
unavoidable obstacle, as may be seen from the following heuris-
tic arguments. Indeed, the first is that the theorem only works if
there is a mass gap in the theory that means difference in energy
between the vacuum and the next lowest energy state which is in
fact the mass of the lightest particle. However, there is no mass
gap in the theory in the hyperunification symmetry limit where
all the fields, as gauge bosons so the matter fields, are massless.
Apart from an extended gauge invariance in a hyperunified the-
ory, the generic masslessness of gauge fields like as photon, gluons
and graviton could also be provided by their Nambu-Goldstone na-
ture that is presumably related to the spontaneous breakdown of
global spacetime symmetries [6-8]. The second and rather impor-
tant point seems to be related to the nature of PGG as a theory
where the gauge group involved does not need to be specially
linked to the base space manifold. Actually, one may take the space
to be either curved [1] or flat [2] being no conditioned by PGG on
its own. As usually appears [2], one would have to identify the
theory with some space manifold at a later stage. As a result, the
local frame Lorentz gauge symmetry rather looks like an internal
symmetry in PGG, and as such may then have an unobstructed
unification with SM or GUT.

We will return to these interesting issues elsewhere.
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