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Abstract. According to quantum electrodynamics (QED), liquid water is composed by two
phases, the first one characterized by a coherent state in which all the molecules oscillate
in phase, the other by a non-coherent state in which they are all non-correlated. In the
coherent state, the phase-correlated oscillations take place within macroscopic spatial regions
called “coherent domains” (CD), admitting a spectrum of excited energy levels and generating,
at their borders, an evanescent coherent e.m. field. When two or more excited CDs are
sufficiently close to each other, the overlapping between their evanescent fields gives rise to
a novel type of interaction due to the mutual exchange of virtual photons by quantum tunnel
effect. Furthermore, when such water coherent domains are enclosed with waveguides consisting
of suitable materials and design, these effects are stabilized and enhanced, allowing for the
realization of an extended network of interacting coherent domains. In this paper, we’ll discuss
how to exploit this dynamics to perform quantum computations by setting-up a set of universal
quantum gates and calculate their operational time as a function the main parameters of the
proposed physical model. We show this model can represent a basic architecture for a novel
kind of quantum hyper-computer, characterized by a very high computational speed and able
to overcame some of the main issues currently affecting the quantum computational frameworks
so far proposed.

1. Introduction
The fundamental unit of any quantum computer is the logical quantum bit (or simply qubit),
namely a mathematical entity, associated to a unit vector state in a two-dimensional complex
space. In order to build a quantum computer, it is needed to realize a physical implementation of
such logical qubits, called “physical” qubits. A qubit can be built by considering many different
two-levels physical systems having certain specific requisites [1] and different proposal in this
direction has been advanced so far [2].

Apart its theoretical interest, the importance of realizing quantum computation lies in the
common belief it would offer several key advantages with respect its classical counterpart and in
the deep impact it would have, for this reason, on a lot of scientific and technological fields such
as computer science, cryptography, simulation of very complex systems, artificial intelligence,
quantum information, finance and many others.

Nevertheless, despite this enormous potential, many challenges affect its physical
implementation so limiting the quantum systems suitable for this scope to, for example,
trapped ions, superconductors, quantum dots, molecular spins and optical cavities, each being
characterized by specific strengths and weaknesses [3].
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A common issue affecting all the above implementations is the decoherence that compromises
the stability of the quantum state, namely the effect of environmental noise (due to the
interaction of the quantum system with its surrounding) able to destroy the phase information
required for quantum computation. On the other hand, the reading of computational results
needs for a measurement of the quantum state of the system (namely its interaction with
a classical system) thus requiring a delicate and effective compromise between stability and
measurability. A failure to achieve such compromise could heavily limit the scalability of any
quantum computational system so preventing it from being actually useful.

A key parameter used to evaluate the “merit” of a particular quantum computational scheme
is the ratio λ−1 = τQ/τop [4] representing the longest possible quantum calculation, where τQ
is the “decoherence time” (i.e. the time for which a system remains quantum coherent) and
τop the operation time (namely the time required by the system to perform elementary unitary
operations involving at least two qubits). The value of λ−1 is larger when the greater is τQ and
the smaller is τop. The latter is a measure of the calculation speed, defined as the maximum
number of logical operations for unit time achievable by the system. The attainment of very high
values of computational speed is then a top priority to achieve for any quantum computational
system.

In this paper we discuss a completely novel proposal regarding how to exploit the QED
coherent dynamics occurring in liquid water to perform quantum computations.

According to the theory of QED coherence in condensed matter [5], liquid water exhibits a two
– phases behavior, due to the presence of a coherent and non-coherent fractions of molecules.
The coherent fraction is composed by arrays of so-called “coherent domains” (CDs), namely
macroscopic quantum regions in which all the molecules oscillate in phase with each other and
with a self-trapped electromagnetic field, while the non-coherent one is made by an ensemble of
uncorrelated molecules (vapor phase) filling the interstices between coherent domains. Inside a
coherent domain, the electromagnetic field, generated by coherent dynamics, spreads across its
boundaries in the form of evanescent field whose tail extends far from it, being therefore able to
overlap the analogous evanescent fields produced by the other CDs in the surroundings.

We have yet shown [6-10] this overlapping gives rise to a quantum-type interaction between
CDs, we have called “evanescent tunneling coupling” interaction, mediated by the exchange,
through tunnel effect, of evanescent (virtual) photons between close CDs, provided the involved
CDs have a spectrum of excited states as always occurs in the case of coherent liquid water
[9,11].

The resulting transition probability between quantum states of the coupled interacting
coherent domains can be described by a “Rabi -like equation” [9]. This suggests the fascinating
possibility to use this still unexplored “evanescent tunneling coupling” interaction to achieve
quantum computation in liquid water since, as also discussed in this paper, such interaction
can be used to realize every type of one- and two-qubit gates and, consequently, every type of
quantum computation at all [10].

This possibility is further strengthened by enclosing the water CDs with waveguides made
of metamaterials (MTMs) [6,10,12]. This has two important consequences: a) it ensures the
stability of coherent fraction of water against the disruptive effect of thermal collisions at room
temperature [9] and b) it determines an important amplification of the evanescent e.m. field
crossing the boundaries of a given CD in turn allowing the possibility for each of them “to
communicate”, through the evanescent tunneling-coupling mechanism, with other and farther
CDs, so generating an extended network of superfast mutually interacting coherent domains
[6-8,10].

On the other hand, the alleged extraordinary computational power of quantum computing
with respect its classical counterpart is limited by several factors that meaningfully reduce the
achievable calculation speed with respect to the largest theoretically reachable one. According
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to some theoretical results [13,14], the “ultimate” limit of computation would be theoretically
affected by the energy spread ∆E of the physical system performing computation. Furthermore,
as known, quantum computational efficiency is heavily reduced by the loss of coherence of the
system due to its interaction with the environment.

In this paper we’ll show how the use of water as physical substrate for quantum computation
could offer several meaningful advantages with respect the present-day state of the art in
quantum computation as, firstly, its stability against the environmental “decoherence” and a
very high computational speed and density.

As regards as the calculation speed, that can be define as the maximum number of logical
operations the system can perform per unit of time, if we could “indefinitely” increase the value
of ∆E we would, in principle, “indefinitely” boost the calculation speed to its theoretical limit.

As we’ll prove in this paper, the time required to set-up the elementary quantum gates
based on the evanescent tunneling-coupling interaction decreases when the energy spread ∆E
increases. A very distinguishing feature of the proposed model is the presence of an energy gap
per molecule characterizing water in its coherent state (with respect to the non coherent one).
In fact, due to the very high number of molecules contained in a single coherent domain, the
energy storable in its excited energy levels could be very high, so that the resulting spectrum
would have virtually no upper bound [11]. Such energy gap could be further increased by the
occurrence of so-called “supercoherence”, namely the onset of a coherence between coherent
domains [12,15], that would make available to each quantum logic gate a greater quantity of
energy (due to a wider range of possible excited energy levels for each CD).

Supercoherent dynamics could then further boost the computational power of the proposed
quantum system based on water CDs [10] by considering, for example, a system composed by
an extended network of correlated water CDs, oscillating in phase with each other.

In this kind of system, a high number N of tuned oscillating elementary systems (water
CDs) would work in parallel achieving a computational time inversely proportional to N . This
reminds, in principle, the concept of quantum “hyper-computing” or “accelerated” quantum
computation (namely the execution of a virtually countable infinite number of computational
steps within a finite time interval) already investigated in some previous publications [6,7,8,16].

In this paper, we’ll particularly focus on a possible scheme to employ coherent dynamics
of liquid water to realize a universal set of quantum logic gates, also giving a theoretical
estimation of the operational time for each of them. Finally, we’ll also discuss some aspects
of a possible novel architecture for quantum hypercomputer system that uses liquid water as
physical substrate and tunneling interaction between water coherent domains.

2. A brief overview of QED coherence in liquid water
In 1973 mathematical physicists K. Hepp and E. Lieb [17] found that the Dicke Hamiltonian, the
first conceptual physical model of the laser, under suitable conditions (almost always verified in
the condensed matter) about density and temperature of the system, undergoes a spontaneous
phase transition (called “Superradiant Phase Transition” or SPT) to a new state in which a large
classic coherent electromagnetic field, oscillating in tune with the atomic transitions between
the ground state and a particular excited state, spontaneously emerges and gets trapped inside
the atomic or molecular ensemble.

Later, G. Preparata [5], within the framework of Quantum Field Theory (QFT), shown such
SPT to be a general phenomenon occurring in a large class of physical systems whose stationary
(long-time) dynamics automatically selects the couple of levels, driving the transition itself,
characterized by an energy gap given by

E = h̄ω0 =
hc

λ
(1)
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where λ is the wavelength of light, c the speed of light in vacuum and h̄ = h/2π is the reduced
Planck constant (from this point on, unless differently said, we assume the “natural units”
h̄ = c = 1). The need to consider the QFT approach to describe such dynamics is rooted in
the assumption that the Lagrangian function of a physical system (and then its equations of
motion) must be invariant under local transformation of the phase φ (~x, t) of the matter field
ψ (~x, t) due to the fluctuations of its components. Such invariance is achieved by introducing a
gauge field Aµ (~x, t) in the Lagrangian so that the space-time derivative Dµ of the matter field
is given by

Dµψ = i∂µψ −Aµψ (2)

so that the Lagrangian is invariant under the gauge transformation

Aµ → A′µ = Aµ − ∂µX (3)

in which X (~x, t) is an arbitrary function of space-time. When we consider the space-time
scales of atoms and molecules, the gauge field Aµ (~x, t) is just the usual electromagnetic field so
that the description of the system dynamics is just QED.

For a system composed by N elementary units (atoms and /or molecules) there exist a critical
value of density ρ̄ = (N/V )c, that depends on the “electric polarizability” of the elementary
species, and a temperature T0 such that, when ρ > ρ̄ and T < T0 ) for which all the matter
components are phase correlated among them by means of the action of an electromagnetic field
oscillating in tune with them too, confined within a defined spatial region, called “Coherence
Domain” (CD), associated to the wavelength of the tuning electromagnetic field, given by
equation (1). More specifically, we consider a two-levels quantum system, whose matter field
is described by the two wavefunctions ψ1 (~x, t) and ψ2 (~x, t), respectively associated to the two
levels, subjected to the normalization condition

|ψ1|2 + |ψ2|2 = 1 (4)

and an electromagnetic filed described by a scalar field A (~x, t). If now we restrict ourselves to
a region whose spatial dimension is of order of λ given by eq. (1) and introduce the adimensional
time τ = ω0t, the Eulero – Lagrange equations describing the two - levels matter system
interacting with the e.m. field are given by [5]

i ∂∂τψ1 (τ) = gA∗ (τ)ψ2 (τ)

i ∂∂τψ2 (τ) = gA (τ)ψ1 (τ)

−1
2Ä (τ) + iȦ (τ)− µA (τ) = gψ∗1 (τ)ψ2 (τ)

(5)

with

g ≡ 2π (ωp/ω0) f
1
2
01 (6)

where ωp is electron “plasma frequency” (me is the electron mass)

ωp = (e/
√
me) (N/V )1/2 (7)

the term f01 is the oscillator strength for the electronic transition from the ground state ψ1

to the excited state ψ2 and µ is the photon “mass” term [5]. We search for the solution of the
system (5) around τ = 0, where we assume the initial conditions

A (0) ∼ 0, ψ1 (0) ∼ 1, ψ2 (0) ∼ 0 (8)
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By differentiating the third of Eqs. (5) and substituting it into the second one, we obtain the
following equation

−1

2

∂3

∂τ3
A+

∂2

∂τ2
A+ iµ

∂

∂τ
A+ gA2 = 0 (9)

We now look for solutions of Eq. (10) in the form

A = exp (ipτ) (10)

that, inserted in Eq. (10), gives

p3

2
− p2 − µp+ g2 = 0 (11)

Equation (11) describes two completely different dynamical regimes for our system according
as [5] g > gcrit or g < gcrit, where

gcrit =

[
8

27
+

2

3
µ+

(
4

9
+

2

3
µ

)3/2
]1/2

(12)

In the first case, Eq. (11) admits three real solutions and, by Eq. (10), the system performs
zero-point periodic oscillations around a state characterized by the conditions (8). In the second
case, Eq. (11) admits two complex conjugate (p1, p2 = p∗1) and one real p3 roots. This means
the field A has a “runaway” solution like

A ∼ exp [Im (p) τ ] (13)

where p is the complex solution of Eq. (11) for which Im (p) > 0. Such a solution is
characterized by an exponentially growing amplitude from its “perturbative” point-zero value
corresponding to vacuum fluctuations towards a non-vanishing value that forces a similar increase
of the matter field component ψ2. The system then becomes instable and evolves, in a very short
time [5], towards a limit cycle defined by (0 < γ < π/2)

ψ1 (τ) = cos γ exp [iθ1 (τ)]
ψ2 (τ) = sin γ exp [iθ2 (τ)]
A (τ) = A0 exp [iϕ (τ)]

(14)

characterized by the phase-locking constrain [5]

∂ϕ

∂τ
=
∂θ1
∂τ
− ∂θ2
∂τ

(15)

Equations (14) and (15) imply the new state of the system is just the coherent state
above described, called “coherent ground state” (CGS), characterized by the coherent common
oscillation of matter and e.m. fields all assuming non-vanishing amplitudes.

One of the most important consequences of such dynamical evolution is the shift of the
frequency of the coherent e.m. field, that becomes renormalized by the coherent interaction to
a value ωcoh < ω [5] given by

ωcoh = ω0 −
∂ϕ

∂τ
< 0 (16)

Such frequency shift, not corresponding to a similar change in wavelength λ , ensures the
coherent e.m. field to be trapped inside the CD, a process in all similar to that of total reflection
of light between two media having different refraction indices.
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Figure 1. Schematic view of a spherical CD and the coherent evanescent e.m. field escaping
from it.

In particular, it can be shown [5] the e.m. field, in the case of a spherical CD, can be described
by the following equations

A (~x, τ) = A (0)
sin (ω0τ)

ω0τ
(r < r0) (17)

A (r) ' A (0)√
2

exp
[
−r
√
ω2
0 − ω2

coh (r − r0)
]

ω0r
(r > r0) (18)

At the interface between CD, whose radius is given in general by [5]

RCD ∼=
3

8
λ (19)

and the surrounding medium, an evanescent e.m. field is then produced (fig. 1).
This evanescent field is characterized by a pulsation ωcoh and it crosses the CD’s border,

falling off at a rate of the order of λ [5] (fig. 2) as given by Eq.(18).
According to the coherent dynamics, the phase agreement between matter and co-resonating

e.m. field defines a new macroscopic quantum state (corresponding to a high number N of
elementary components) characterized by a well-defined value of phase Φ which defines the
rhythm of oscillation of whole the system. From a quantum viewpoint this means the state
vector of the system to be an eigenstate of a quantum phase operator [5, 18].

The transition from the non-coherent state to the coherent one can be considered as a
“condensation” in which the system releases outwards a given energy, previously “borrowed”
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Figure 2. Radial profile of evanescent e.m. field A (r) of a CD, with r0 = RCD. A (0) is the
e.m. field intensity at the center of CD.

from quantum vacuum zero-point oscillations. Every coherent domain is then characterized by
an energy gap per molecule ∆E/N that makes it more stable with respect the non-coherent state.
The value of this gap depends on the couple of levels involved in the coherent oscillations [5].
For absolute temperatures different than T = 0 , thermal collisions could transfer to molecules
an energy higher than the energy gap so pushing them out of tune. In the general case we can
identify a coherent and a non - coherent fraction of the system Fc (T ) and Fnc (T ) , respectively
indicating the number of molecules belonging, at each instant, to the coherent and non - coherent
phases satisfying, at a given temperature, the following constraint:

Fc (T ) + Fnc (T ) = 1 (20)

For every T 6= 0 , the system oscillates between the coherent and the non-coherent state,
according to whether the coherent electrodynamic attraction is overtaken or not by the thermal
collisions transferring to the CD the energy Ether . In the case of liquid water, already studied
in several previous works [5,15,19-23], the molecules are characterized by a very rich spectrum
of electronic excitations and the coherent oscillations occurs between a ground state and a 5d
excited level characterized by the transition energy Eexc = 12.06 eV that lies just below the
ionization threshold. The water CD can be then considered as a very huge reservoir of quasi-
free electrons (a water CD can include, at the density of liquid water, a number of molecules of
the order of n ' 2 · 105 , corresponding to a number of quasi-free electrons of about ne ' 2 · 104)
that are very easily excitable in the form of cold electron “vortices”, as far as this energy supply
is lower than the energy gap per molecule ∆E/N ' 0.26 eV associated to the coherent state.
These vortices form the metastable coherent excited spectrum of water CD [11] whose energy
depends on the quantized value of their angular momentum and on the external magnetic field.
A very important feature of such excited states is that, because of the coherence, energy supplied
from the outside is absorbed by the CD as a whole and such vortices cannot be excited nor decay
thermally since they are coherent and have a quantized magnetic moment that allows them to
align to an external static magnetic field. For this reason, they are characterized by a very long
lifetime.

Furthermore, being the spectrum {En} a collective property of the entire CD, it has
practically no upper limit since, although every molecule in the coherent state cannot absorb
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an energy higher than Ecoh , all the N resonant molecules can account for a total energy of
excitation of the order of NEcoh a very high quantity (including frequencies up to visible and
HV spectrum) since, at room temperature, N/V ∼ 1022 cm−3. Finally, we remark another
important feature of coherent water when it is close to a surface. In this case the disruptive
effect of thermal collisions is compensated by the attraction of the water molecules to the wall
[6,9,24,25]. In this way the coherent fraction of water is stabilized to a value close to the unity
so that it can be considered as fully coherent [25] even at room temperature.

3. Tunneling-coupling interaction between coherent domains of water
Our idea to exploit coherent dynamics occurring in liquid water in order to perform quantum
computation is based on the chance the water CDs could interact each other [10,11,26]. This
is possible if the CDs has a spectrum of excited states and can release outwards the energy
stocked in its cold excited vortices. A conceivable chemo-electrodynamical mechanism has been
proposed so far [10, 27] to explain the emission of energy from excited CDs.

On the other hand, we have proven [6-9,15,26] the existence of a purely quantum process
allowing the water CDs to interact each other through the exchange of virtual photons by
quantum tunneling effect.

Such interaction would occur when the evanescent coherent fields produced at the boundaries
of two or more CDs (sufficiently close each other) partially or totally overlap, allowing for the
exchange of virtual photons among them as schematically shown in fig. 3.

From the standpoint of classical physics, evanescent waves usually originate by the “frustrated
total internal reflection” (FTIR) of a light beam at the boundary between two media
characterized by different values of refraction index. In this case a “transmitted” wave
component is nevertheless present in the second medium, namely just the so-called “evanescent”
wave. From the quantum standpoint, the tunneling of evanescent modes of e.m. waves is just
interpreted as the tunneling of virtual photons through the corresponding potential barrier.
Such tunneling photons are characterized by a negative square mass in the ordinary metric [6,7].
The “quantum-tunneling” interaction above described can be also considered as the result of
the process of excitation-deexcitation of the CD energy levels, that determines the tunneling of
virtual photons between them (since the CDs are stable in their fundamental state) as the result
of the exchange of virtual photons between the quasi-free electrons belonging to the coherent
vortices associated to the couple of involved CDs.

From a QFT viewpoint, this process can be described, assuming a not too strong coupling,
by the following Hamiltonian (we limit ourselves to the photon dynamics) [10,28]:

H =
∑
~k

[
ω~k

(
a†~k,1

a~k,1 + a†~k,2
a~k,2

)
+ Γ

(
a†~k,1

a~k,1 + a†~k,2
a~k,2

)]
(21)

where a~k,i (a†~k,i
) is the annihilation (creation) operator for the mode ~k in the i-th CD (i = 1, 2)

acting on the vacuum state |0〉 and Γ is a real parameter quantifying the coupling strength. We
then assume:

|1〉 → |ψ1〉 = a†1 |0〉 (22)

|2〉 → |ψ2〉 = a†2 |0〉 (23)

and Γ is approximatively independent of the value of ~k. From a macroscopic viewpoint, the
exchange of a virtual photon can be described as the time evolution of a two – levels system
(described by the energy eigenstates |1〉 and |2〉 respectively associated to the values E1 and E2)
whose Hamiltonian has the form:
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Figure 3. Overlapping between the evanescent fields associated to two nearby CDs.

H = E1 |1〉 〈1|+ E2 |2〉 〈2|+ Γ (|1〉 〈1|+ |2〉 〈2|) (24)

where, again, the parameter Γ ∈ R represents the “strength” of the interaction, giving the
coupling of the two states, namely the “amplitude” of the tunneling of virtual photons. The
transition probability between the two eigenstates |1〉 and |2〉 is then given by a “Rabi equation”
[9,26]:

P12 (t) =
Γ2

Γ2 + (E1 − E2)
2 sin2

√(E1 − E2)
2 + 4Γ2

4
t

 (25)

that describes quantum oscillations in which a photon wave packet of a given wave number
is coupled back and forth between two CDs.

In particular, we note the probability of transition between the two states admits the
maximum value:

Pmax =
Γ2

Γ2 + (E1 − E2)
2 (26)

that is equal to 1, namely the excitation is completely transferred from one state to the other
(from a CD to the other) when E1 = E2 , whatever the value of Γ 6= 0. In this case the two
CDs are energy degenerate.

The time evolution of such a coupled system, originating from the Hamiltonian (24), is
described by the unitary evolution operator [4,9]:
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U (t) = exp

[
−i(E1 + E2)

2
t

] [
cos (|~n| t) I − i sin (|~n| t) ~n

|~n|
· ~σ
]

(27)

where ~σ = (σx, σy, σz) are the Pauli matrices, I is the 2 × 2 identity matrix and the three -
dimensional vector ~n has the components:

n1 = Γ, n2 = 0, n3 =
1

2
(E1 − E2) (28)

Mathematically, the evolution operator expressed by Eq. (27) is a ”rotation” operator of
angle θ in the quantum states space:

U = exp (iα) exp

(
−iθû · ~σ

2

)
(29)

in which, by comparing Eqs (27) and (29):

α = −E1 + E2

2
t; θ = 2 |~n| t; û =

~n

|~n|
(30)

The time-evolution operator of the system composed by two tunneling - interacting CDs can
be then expressed as the product of a rotation of angle θ and an overall phase shift of angle α.
As a consequence of the above reasoning, two interacting CDs cannot be further considered as
independent entities but as interconnected parts of the same system.

3.1. Tubular coherent domains of water and their interaction
When two CDs are sufficiently close to each other (or when the evanescent field amplitude
is sufficiently high even at higher inter-distances), their respective e.m. evanescent fields can
overlap. The width of the resulting overlapping zone, through which tunneling of virtual photons
takes place, will depend on the distance between the two CDs and on the spreading of the two
evanescent fields outside the respective CDs, whose “extension”, described by their tales, is of
order of λ = 2π/ω0 (fig. 3). For a water CD, it has been calculated [6] dp ' 10−7m, so that,
in order to the evanescent fields overlapping to take place, a couple of water CDs should have
their mutual intercentrum distance satisfying the condition:

dCD ≤ 2 (RCD + dp) '
11

4
λ ∼= 137.5 nm (31)

On the other hand, in order to the tunneling coupling interaction to take place effectively,
once the coherent state has been achieved, it is needed to ensure: a) the stabilization of the
coherent fraction of liquid water against disruptive thermal fluctuations (so that Fc (T ) ∼ 1)
b) a suitable amplification of the evanescent fields generated by each coherent domain. The
latter is a necessary condition since, although the condition (31) is satisfied, the evanescent
field intensity could be too low for ensure a sufficient coupling between them. On the other
hand, such amplification could also allow for the evanescent coupling to spread, for a given field
intensity A (0), even at distances d >> dCD.

As already proven [6,9,10,16,24] both the conditions a) and b) can be assured by enclosing
water inside the inner volume of (even symmetrical) waveguides whose walls are made up of
suitably designed metamaterials (MTMs) (fig. 4), a kind of materials characterized by a purely
imaginary value of refraction index. We can also consider the water molecules contained in such
waveguide as a whole tubular coherent domain, according to a process we could define as CD
“compactification” (whose dynamics and consequences will be studied in detail in a forthcoming
paper), at least with respect to the generation of the evanescent field inside the contained CDs
[5].
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Figure 4. Tubular structure of water CD inside a waveguide made up of metamaterial.

Figure 5. Evanescent coupling by virtual photons (green and red spots) exchange between two
waveguides filled with water CDs.

The evanescent field amplification induced by MTMs determines an important increase of the
evanescent penetration depth dp (at least up to four time the original value) allowing a single
CD to interact with other ones even if placed far away from it, so forming a spatially extended
network of mutually interacting CDs that could be used, as we’ll see, to realize superfast parallel
quantum computations.

In our theoretical framework the propagation of a photon in a waveguide (namely a tubular
water CD) is likened to the presence of a photonic spatial mode, due to tunneling, in one or the
other waveguide as sketched in fig. 5.

The previous discussion can be easily generalized to the case of many interacting water CDs,
by restricting our analysis to single excited states in which the i-th CD is described by its
coherent ground state |ϕig〉 and by an excited state |ϕie〉 so that the overall quantum ground
state is given by:
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|ϕ0〉 =
∏
i

|ϕig〉 (32)

while all possible excited states are described by the state vector:

|ϕk〉 = |ϕke〉
∏
i 6=k
|ϕig〉 (33)

In this picture, the excited state |ϕk〉 is the state in which the k-th tubular CD is in the
excited state while all the other are in the coherent ground state. The set {|ϕk〉} is a basis for
the space of excited states and satisfies the general orthogonality relation:

〈φi,k |φj,l〉 = δi,jδk,l (34)

with k, l = e, g (where ”e” stands for ”excited” and ”g” for ”ground”). This basis is often
referred to as “site basis” since each state, when expressed in this basis, can be identified by the
specific CD where the excitation is localized.

The Hamiltonian of a system composed by N interacting CDs can be then written, in this
basis, as:

H =
N∑
i=1

εi |i〉 〈i|+
N∑
i 6=j

Γij |i〉 〈j| (35)

where εi is the relative excitation energy of the i-th tubular CD, namely εi = Ei − ωcoh, and
Γij is the “strength” of the tunneling interaction between the i-th and j-th CDs. In our system
configuration, the values of Γij will definitively depend on the mutual distance between tubular
units as well as on the structural features (that in turn control the evanescent field amplification)
of MTMs tubular waveguides, whose detailed design and features will be studied in a separate
work.

4. The mapping of unitary quantum transformations on interacting water CDs
and the realization of universal quantum computation
Quantum computation relies on the manipulation of quantum information by exploiting dynamic
transformation of quantum states of a physical system.

Each of these transformations is described by unitary linear operator (a matrix when
expressed in a suitable basis) defined in the complex vector space associated with the quantum
state space. In the framework of classical computation, there exists a small set of gates (like,
for example, AND, OR, NOT gates) that can be used to compute an arbitrary classical function
and such set is then said to be ”universal”.

A similar result holds in quantum computation framework where a set of gates can be found
to be used to realize universal quantum computation, since it can be shown [4] that any arbitrary
unitary transformation can be implemented from a set of primitive transformations, including
the two-qubits CNOT (controlled-NOT) gate in addition to three one-qubit gates.

A suitable set of gates that also allows a fault-tolerant construction is [4]:

(1) the Hadamard gate H ( to be not confused with the Hamiltonian);

(2) the π/8 gate T ;

(3) the ”phase” gate S;

(4) the CNOT gate.
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To each of these gates is associated a unitary operator whose matrix representation in the
computational basis that is given in table 1. The physical realization of quantum computation
algorithms implies the mapping of logical qubits to physical states of the considered quantum
system (namely the “physical” qubits), and then the implementation of a suitable set of unitary
operators, acting on these states and realizing the universal quantum gates, each corresponding
to a unitary time evolution of the system, as described by its Hamiltonian.

Generally, for a given physical quantum system, this mapping is not unique and, also, different
mappings could give rise to different values of computational speed and overall fidelity.

As we’ll see, the physical implementation of such unitary transformations generally sets
some constraints on the parameters of physical system. The possibility to engineering the CDs
interaction in order to use them for practical quantum computation relies on the ability to set
and control such parameters.

Encoding quantum operations into the dynamics of physical system then implies the ability
to state a correspondence between quantum unitary transformations, the system’s Hamiltonian
and the physical (geometrical and/or structural) properties of the system itself.

For a closed quantum system, the time evolution is driven by a set of unitary transformations
that are functions of the system’s Hamiltonian H according to:

U (t) = e−
i
h̄
Ht (36)

We can then “invert” Eq. (36) and search for the Hamiltonian able to originate, after a time
interval τG, a desired unitary transformation τG, namely:

HQ =
ih̄

τG
lnUQ (37)

By using the site basis defined by Eqs (32) and (33), the logical qubit states are mapped
to the physical states |i〉 where i indicates the i-th CD that, in this representation, is directly
associated with a state of the qubit register.

4.1. Realization of one-qubit gates
According to the above mapping, an N-dimensional quantum state needs 2N CDs to be
represented by a physical circuit made of water CDs. In our model, a single quantum qubit
gate, acting on a two-dimensional quantum space, needs two interacting CDs (labelled by 1 and
2) to be realized.

Then we can write, using the notation of Eqs (32) and (33):

|0〉 → |φ1〉 = |1e2g〉
|1〉 → |φ2〉 = |1g2e〉

(38)

in which, for further clarity, we have explicitly labeled the single CD (as 1 and 2) and its energy
state (ground or excited). For a two-qubits gate, the related quantum space is four dimensional,
so we must consider four CDs and adopt the following mapping of the (computational) basis
states:

|00〉 → |φ1〉 = |1e2g3g4g〉
|01〉 → |φ2〉 = |1g2e3g4g〉
|10〉 → |φ3〉 = |1g2g3e4g〉
|11〉 → |φ4〉 = |1g2g3g4e〉

(39)

It is worthy to be observed how the adopted mapping can be directly related, within our
model, to the underlying system dynamics, since it can be associated to the tunneling exchange
of virtual photons between two water-filled waveguides (that is a couple of interacting tubular
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CDs of water) by adopting the dual-rail representation for the photon. According to such
representation, the two logic states |01〉 and |10〉 respectively represent the state in which a
photon is absent and present as spatial mode in the i-th waveguide.

We are now in position to study how to realize the elementary quantum transformations
needed to perform universal quantum computation.

The simplest gate to be implemented is the T gate whose unitary matrix is given in table 1.
The corresponding Hamiltonian is given, using Eq. (38), by the matrix:

HT (τ) =
πh̄

4τ

(
0 0
0 −1

)
(40)

The effect of T gate is to change the relative phase between |0〉 and |1〉 by the amount eiπ/4;
this transformation then doesn’t involve any exchange between the basis states and then no
interaction between the corresponding CDs. This is confirmed in the Hamiltonian (40) in which
the off-diagonal terms, associated to the terms Γ12 = Γ21 = Γ are zero. It’s easy to obtain the
expression of the time τT required by the system evolution to realize the T gate. By remembering
the difference in the diagonal term of the Hamiltonian corresponds to the difference between the
relative energy of excitation of the two states |0〉 and |1〉 we have:

πh̄

4τT
= ∆ε01 = E1 − E2 ⇒ τT =

πh̄

4 (E1 − E2)
(41)

We would obtain the same result, through a more formal and general approach, by considering
the Eqs (27)-(30) and recalling that (see Table 1), in terms of Pauli matrices:

UT = exp

(
i
π

8

)
exp

(
−iπ

8
σz

)
(42)

so, by equating Eqs. (27) and (42) and using Eq. (30) we find [10,26]:

uz = 1; ux = uy = 0; θ =
π

4
; α =

π

8
(43)

By inserting these values in the Eq. (30) and using Eq. (28) we find:

E1−E2
2√

Γ2 + (E1−E2)
2

4

= 1 (44)

and

t =
πh̄

8 |~n|
=
πh̄

8

1√
Γ2 + (E1−E2)

2

4

(45)

From Eq. (44) we derive Γ = 0 that, inserted in the Eq. (45) just gives the Eq. (41). The
latter indicates the time required to perform T gate is inversely proportional to the difference of
the excited energy levels of the two CDs. Equation (41) and the requirement Γ = 0 show
the T gate can be implemented, in our model, by considering a couple of non-interacting
(Γ = 0) tubular CDs, characterized by non-degenerate excited energy states (E1 6= E2 ). The
Hamiltonian corresponding to S gate (whose unitary matrix is given in table 1) is given by:

HS (τ) =
πh̄

2τ

(
0 0
0 −1

)
(46)

The effect of S gate is to apply the T gate twice since S = T 2 . So, like the T gate, we have in
this case Γ12 = Γ21 = Γ = 0 and the time required to implement the gate is obtained as above:
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τS =
πh̄

2 (E1 − E2)
(47)

with E1 6= E2. The physical implementation of such gate is then realized in the same way as
the T gate. The values of the parameters û , θ and α are found to be [10]:

uz = 1; ux = uy = 0; θ =
π

2
; α =

π

4
(48)

As known, the application of the NOT gate to a qubit |φ〉 = α |0〉 + β |1〉 interchanges the
basis vectors so that we have UNOT |φ〉 = α |1〉+β |0〉 Its unitary matrix, in computational basis,
is given in table 1.

Table 1. Parameters to implement quantum gates and related operational times.

gate unitary matrix

Hadamard 1√
2

(
1 1
1 −1

)
T exp (iπ/8)

(
exp (−iπ/8) 0

0 exp (iπ/8)

)
S

(
1 0
0 i

)
NOT

(
0 1
1 0

)

CNOT


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



The corresponding Hamiltonian is:

HNOT (τ) =
πh̄

2τ

(
−1 1
1 −1

)
(49)

We note UNOT can be expressed, in terms of Pauli matrices as:

UT = σx (50)

the same analysis of NOT gate performed as above leads us to the constraints [10]:

ux = 1; uy = uz = 0; θ = π; α =
π

2
(51)

By inserting these values in Eq. (30) and using Eq. (28) we find:

Γ√
Γ2 + (E1−E2)

2

4

= 1 (52)

and
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t =
πh̄

2 |~n|
=
πh̄

2

1√
Γ2 + (E1−E2)

2

4

(53)

Equation (52) implies E1 = E2 while, from Eqs. (51) and (53) we obtain:

τNOT =
πh̄

2Γ
(54)

as can be also confirmed by the analysis of the Hamiltonian (49). We note τNOT is equal to half
of the “Rabi time” as calculated through Eq. (26) so that the physical implementation of such
gate can be achieved by considering a couple of two interacting tubular CDs (Γ12 = Γ21 = Γ 6= 0)
characterized by degenerate excited energy levels (E1 = E2) as required in order to ensure a fully
transfer of excitation between them (corresponding to the transition |0〉→← |1〉). The Hadamard

gate, often referred to as “square root of NOT gate”, turns |0〉 into (|0〉+ |1〉)
/√

2 and |1〉 into

(|0〉 − |1〉)
/√

2 in a sense “halfway” between the states |0〉 and |1〉 [4]. Its associated unitary

matrix is given in table 1 and the corresponding Hamiltonian is:

HHAD (τ) =
πh̄

2
√

2τ

(
1−
√

2 1

1 −1−
√

2

)
(55)

The matrix UHAD can be expressed, in terms of Pauli matrices as:

UHAD =
σx + σz√

2
(56)

this implies [10]

ux =
1√
2

; uy = 0; uz =
1√
2

; θ = π; α =
π

2
(57)

By inserting these values in Eq. (30) and using Eq. (28) we find:

Γ√
Γ2 + (E1−E2)

2

4

=
1√
2

;
E1 − E2

2
√

Γ2 + (E1−E2)
2

4

=
1√
2

(58)

leading to the constraint

E1 − E2

2Γ
= 1 (59)

By using Eq. (59) in Eq. (30) we find:

τHAD =
πh̄

2
√

2Γ
=

πh̄√
2 (E1 − E2)

(60)

The Hadamard gate can be physically realized by considering two non-degenerated interacting
tubular CDs evolving for a time given by Eq. (60). It’s important to note Eq. (59) sets a
constraint on the circuital realization of such port in terms of geometrical and/or engineering
design of the involved tubular CDs.
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Table 2. Parameters to implement one-qubit gates and related operational times.

Gate α θ ux uy uz ∆t

Hadamard −π/2 π 1
/√

2 0 1
/√

2 πh̄
/√

2∆E

T −π/8 π/4 0 0 1 πh̄/4∆E
S −π/4 π/2 0 0 1 πh̄/2∆E

Figure 6. Circuit representation of controlled unitary operation on single qubit.

4.2. Controlled operations
The above discussion clearly indicates how, by a suitable selection of the physical parameters E1,
E2, Γ and by letting the system evolving for an appropriate time ∆t, an ensemble of interacting
water CDs can realize, in principle, any generic quantum gate. Such dynamics is also able to
reproduce any controlled unitary operations cU (such as, for example, CNOT), so allowing the
realization of any quantum computing circuits. A generic controlled unitary operation U on a
single qubit can be realized by considering the circuit shown in fig. 6, by decomposing U as:

U = eiαAXBXC (61)

where X = σ̂X and

A ≡ Rz (β)Ry
(
−γ

2

)
B ≡ Ry

(
−γ

2

)
Rz
(
− δ+β

2

)
C ≡ Rz

(
δ−β
2

) (62)

with the unitary operators A, B, C acting on a single qubit such that ABC = I and for some
angles β, δ and γ. To prove how this allows us, within our model of quantum computation, to
physically realize controlled operations on qubits, it suffices to note any unitary transformation
can be expressed in terms of rotations in the space of quantum states that, in turn, can be
simulated through interacting water coherent domains for a suitable choice of the transformation
parameters (see table 2). The relations between the parameters in Eq. (62) and the angle θ in
table 1 has been calculated in [10]. The previous discussion can be easily generalized to realize
multiple - qubits conditioned unitary operations [4,10].

4.3. Realization of two-qubits gates
In order to show how to implement a two-qubits gate, we apply the above framework to the
example of the CNOT gate, due to its fundamental importance in quantum computing. The
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unitary matrix describing CNOT is given in table 1 and its corresponding Hamiltonian can be
written as:

HCNOT (τ) =
πh̄

2τ


0 0 0 0
0 0 0 0
0 0 −1 1
0 0 1 −1

 (63)

The CNOT gate acts on a two-qubits state |ct〉, where the first qubit is the “control” and
the second one is the “target”, in such a way that if c = 0 the target qubit is unchanged
while, if c = 1, it is subject to the NOT operation. According to our model, CNOT gate can
be physically constructed by considering four tubular CDs according to the following scheme.
We note the upper left quarter of UCNOT , acting on upper part of the two-qubit state, is the
identity transformation while the lower right quarter, acting on the lower part of the two-qubit
state, is just the NOT gate already considered. So, the CNOT gate can be physically realized by
considering a couple of degenerate interacting CDs to perform the NOT gate, and another couple
of non-degenerate non-interacting CDs to realize the control. In this case the time required by
realize the CNOT operation is simply given by:

τCNOT =
πh̄

2Γ
(64)

5. Quantum (hyper)computation by means of water coherent domains
Any feasible quantum computing scheme should satisfy some general requirements [4]:

(1) the physical realization of well-defined qubits;

(2) the initialization of the system in a well-defined initial state, such, for example, the qubit
|0〉 ;

(3) the set-up and “programming” of a set of universal quantum gates;

(4) the efficient storing and retrieving of information;

(5) a sufficiently long decoherence time in order to ensure the quantum computation to finish.

A general treatment of how to address the above requirements within our model is the
subject of previous and forthcoming publications [10,26]. Here we’ll focus specifically on the
point c), limiting ourselves to recall some key previous results related to the other aspects
only when needed. According to the quantum coherent dynamics of water, the wavefunction
describing a coherent domain, Ψ = ψ exp (iΘ), represents an eigenstate |Θ〉 of the quantum
phase operator (whose eigenvalue is related to the coherent frequency of oscillation including
the angular frequency of the excited vortices) [9,10,21,27].

So, any coherent state corresponds to an eigenstate of quantum phase operator and then
is always a well-defined quantum state. On the other hand, we have shown the systems
composed by tubular CDs can be used as circuits able to hard code the action of specific
elementary quantum unitary operations. The actual feasibility of a quantum computer based
on the water coherent domains dynamics demands for the “programmability” of such circuits
in order to perform sequential and / or parallel operations. This also implies our ability to
control and “adjust” the strength of the evanescent photon tunneling interaction between CDs,
macroscopically measured by the value of Γ. We can assume such value depends:

(1) on the reciprocal distance between interacting CDs (or, more generally, their geometrical
configuration) since, for a given couple of tubular CDs, Γ is inversely proportional to their
spatial separation;
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(2) for a given spatial separation, on the intensities of the evanescent coherent fields produced
by them, in turn related to the specific design of the enclosing shell made up of MTMs.

Many different configurations of two or more tubular CDs could reproduce the same quantum
gate, because of the “freedom” in the choice of ∆E and Γ. Each of these configurations is
characterized, for a given specific quantum gate they belong to, by a different computational
time, depending on the values of ∆E or Γ. The value of quantum phase Θ exactly defines the
quantum state |Ψ〉 of the water tubular CDs (ground or excited) since a change in Θ would imply
a change in the value of the coherent oscillation frequency and vice versa. The “identification”
of the quantum state |Ψ〉 with its phase state |Θ〉, together with the precise arrangement of the
tubular CDs in a given circuit, allows us:

(1) to set the quantum state of each tubular CD, so initializing the quantum qubits register;

(2) to “program” and “control” the quantum gates made by water CDs [10,26];

(3) to achieve a “selective” excitation and a measurement scheme of the phase of such coherent
domains capable to address each of them and the qubits they are associated to in order to
realize the quantum circuits and operations.

The last point is particularly important in controlled operations in which the setting
of the control qubit is crucial. For example, in the case of CNOT gate, the four state
{|00〉 , |01〉 , |10〉 , |11〉} have to be selectively addressed, initialized and measured. In the mapping
we have defined (as results from the Hamiltonian HCNOT ) the two sets A = {|00〉 , |01〉} and
B = {|10〉 , |11〉}, corresponding to different values of the control qubit, are characterized by
different transition energies h̄ωA and h̄ωB (the set A is implemented by a couple of non-
interacting CDs while the set B by interacting ones) so that they can be distinguished and
selected by using, for example, a resonating approach [10].

With regard to the performance of a quantum computational system, as we have seen a rough
indication is given by the value of λ−1 = Nop that is directly proportional to the decoherence
time τQ of the system. As already shown [9,24,25], the decoherence time of coherent quantum
state of liquid water can be extraordinary long (virtually even “indefinitely” long) provided that
we are able to ensure the condition of interfacial water inside tubular CDs. If this condition is
satisfied, as we assume for water inside waveguides made by MTMs, then τQ could be of many
orders of magnitude greater than τop so overcoming the critical issue related to environmental
decoherence that affect all the other quantum computational schemes so far proposed. Equations
(41), (47) and (60) also show computing time can be reduced by increasing ∆E (for T , S and
Hadamard gates respectively), whereas for the NOT and CNOT gates, according to Eqs. (54)
and (64), a reduction of computational time corresponds to increase the interaction strength Γ.

The energy “accumulated” in an excited water CDs, in the form of rotational energy of its
cold vortices, can be very high, leading to a value of ∆E up to about 105eV and a corresponding
operational time as small as:

τG ∼ 10−39s (65)

for T , S and Hadamard gates. In order to estimate the transformation times required to
implement the NOT and CNOT gates, we note the value of Γ (which can be increased by a
suitable geometrical and structural design of the tubular MTMs shells) is related, for a given
coupling configuration of the tubular CDs, to the tunneling time ∆ttun of the evanescent photon
from one CD to the other [6,8,9,10,16,26], in the following way:

Γ ∝ 1

∆ttun
(66)
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On the other hand, it is just such tunneling process that allows the excitation to transfer
between a couple of interacting CDs so we can assume:

∆ttun =
τRabi

2
(67)

where τRabi is the “Rabi” time, namely the time required by the system of coupled CDs
to perform a complete oscillation between its excited states, that is exaclty twice the time to
implement the NOT and CNOT gate, leading us to:

τCNOT = τNOT ∼= ∆ttun (68)

The tunneling time is related, in turn, to the energy of the tunneling photon [6,10], that is:

∆ttun ≤
2πh̄

ωcoh
(69)

where ωcoh is the frequency of the coherent evanescent field associatd to the water CD. For
a single exctited water CDs we can extimate an upper bound for ∆ttun as [10]:

∆ttun ≤
2πh̄

NCD∆Emol
(70)

where NCD is the number of water molecules belonging to the the CD and ∆Emol is the
energy gap per molecule carachterizing the coherent state. Equation (68) gives for our system
[10]:

τCNOT = τNOT ∼ 10−20s (71)

In general, it can be assumed the overall operational time of a computational system depends
on the:

(1) overall gates operational time
∑
G
τG;

(2) time required by a circuit to “communicate” with another τC ;

(3) decoherence time of the system τdec;

(4) time of writing and retrieval of information τRW ;

(5) implementation of parallel and/or serial computational schemes.

For a generic system, several theoretical upper bounds for computational speed (expressed
as the number of logical operations performed per unit of time nop) related to energy has
been proposed so far, even if the computation if performed reversibly. More specifically, for a
quantum system characterized by an energy uncertainty ∆E, the time T⊥ required to evolve to
an orthogonal quantum state obeys the bound [13,14]:

T⊥ ≥
πh̄

2∆E
(72)

that gives the corresponding upper limit for the computational speed nop

nop ≡
1

T⊥
≤ 2∆E

πh̄
(73)

For a two-levels system, the energy uncertainty of the system can be written as ∆E =
|E2 − E1| so that the minimum computational speed is directly proportional to ∆E. The
identification of T−1⊥ with a maximum computationl clock speed seems quite reasonable for



APSAC 2021
Journal of Physics: Conference Series 2162 (2022) 012003

IOP Publishing
doi:10.1088/1742-6596/2162/1/012003

21

some reasons. In quantum circuits each logic gate brings the system to a near-orthogonal state
so we can tipically assume T⊥ as the minimum time required, for example, to flip a qubit from
|0〉 to |1〉 (and vice versa), like in the NOT operation. In our model of computation, the value
of nop,G = 1/τG increases, for every quantum gate, with the value of relative excitation energy
∆E = E1 − E2, that can also represent the energy uncertainty of the quantum state of the
system composed by a couple of interacting CDs. Then we can write, for a given quantum gate:

nop,G = αG
∆E

πh̄
(74)

where the coefficient αG is specific for every quantum gate and can be easily obtained from
the values of ∆t = 1/nop in table 2 and agrees with the general bound (56). More specifically,
for the NOT gate, that realizes the flip |0〉 ⇔ |1〉, the computational speed can be extimated by
Eq. (70) that, compared with Eq. (73), gives the constraint:

NCD∆E

2πh̄
≤ nop ≤

2∆E

πh̄
(75)

One of the most important reason of interest in quantum computing is the common believe
it could be intrinsically much more powerful than classical computation. The model of quantum
computation based on water coherent domains could be, in principle, even much more powerful
of the quantum computation schemes so far proposed.

The discussed model in fact, apart to be able to solve efficiently the critical issue of
environmental decoherence, could ensure, if properly implemented, a precise and superfast
(theoretically almost instantaneous as already discussed in some previous publications [6,10,26])
set-up and addressing of the quantum states used in computation. A similar mechanism could be
also used to perform writing and reading of quantum information as we’ll show in a forthcoming
publication.

But one of the most important and interesting features of the proposed model of computation
concerns its scalability to a large number of quantum circuits composed by many interacting
CDs that are able to meaningful increase the computational speed.

According to the commonly accepted picture, the overall speed of a computational system
wouldn’t depend on the computational architecture, namely if the logical operations are
performed in serial or in parallel [10,26].

This can be noticed, for example, by generalizing the Eq. (73) to N logical gates acting in
parallel:

nop (N) ≤ 2

πh̄

N∑
l=1

∆El (N) (76)

if ∆Etot is the total energy available to the system then we can suppose ∆Ei = ∆Etot/N and
write:

nop (N) ≤ 2

πh̄

N∑
l=1

∆Etot
N

=
2N

πh̄

∆Etot
N

=
2∆Etot
πh̄

(77)

that is independent on the number N of the involved water CDs.
Yet, as we have seen, the onset of the QED coherence is characterized by an energy gap

that allows the coherent state to have an energy smaller than the non-coherent one. A
further increase of the coherence of the system, as occurring in the so-called “supercoherence”
[10,12,26,27], would further increase the stability of the system and the related energy gap. For
the proposed water system instead, the use of a greater number of logic gates (associated to an
increasing number of water CDs) would be accompanied by a higher energy ∆E available for
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Figure 7. “Synchronized” evanescent coupling and virtual photon exchange between waveguides
filled water CDs acting in parallel.

each gate (due to a wider range of possible excited energy levels for each CD associated to the
increased number of elementary systems involved in the coherent dynamics) with a consequent
reduction of the related computational time for each gate. The underlying dynamics of the
proposed computational model then opens a very remarkable perspective to further boost its
computational power.

The consideration of an extended network of correlated (through the tunneling and/or phase
interaction) water CDs oscillating in phase with each other (fig. 7), is then able to reduce, in
principle, the overall parallel computational time, in a way proportional to the number N of
the tuned oscillating elementary systems. Such result, that would be impossible to achieve for
a closed system, is a natural consequence of the quantum coherent dynamics of liquid water as
an open system locally exchanging energy with the fluctuations of quantum vacuum.

So, in the Eq. (77), when N increases, each term of the sum increases as well and the
time required to execute each step proportionally reduces, so that, if N1 � N2 we recover, in
principle, the concept of “hyper-computing”, already analyzed, in a preliminary form, in several
previous publications [6-8,9,10,12,16], for which the time required to perform a given number of
operations decreases or, at least, remains constant whatever the number of operations.

Finally, in an actual quantum computer architecture, it is very important to consider the issue
of memorization and readout of quantum information and the magnitude of the time interval
required to perform such operations. This is strictly related to the specific processes used to
implement memorization and readout of quantum information that, in our model, are linked
to the mutual phase interaction between water CDs and to the interaction between them and
their surrounding electromagnetic-thermodynamics environment which they “probe” through
e.m. vector potentials. A more detailed study of the role of such interactions in the storage and
retrieval of quantum information is not trivial and will discussed in a forthcoming work.

6. Conclusions
Starting from the predictions of QED coherence in water, the realization of quantum circuits,
based on the dynamics of energy excitations of coherent water domains, as well as the proposal
of a novel architecture of quantum hypercomputing system have been discussed. We have shown
such dynamics is able to perform universal quantum gates for one and two-qubits and then, in
principle, any type of quantum computation.

The operational speed of the quantum gates so obtained can reach very high values close to the
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ultimate limit imposed by the fundamental principles of quantum mechanics. This result can be
achieved by suitably “adjusting” the energy levels of the water coherent domains (corresponding
to its excited levels), by composing the quantum circuits and controlling the parameters ruling
the interaction between them.

Apart from the very high computational speed reachable by each elementary universal gate
and the precise control and setting of the quantum states representing the qubits, further very
amazing features of the proposed model concern the possibility to overcome the environmental
decoherence and to realize “supercoherent” quantum computing. The latter refers to the
possibility of implementing an extended network of quantum gates acting in parallel, whose
computational speed would be proportional to number of the matter components that join the
common coherent oscillation, so achieving a much higher operational speed than of a single
quantum gate. “Supercoherence” then opens the door to a sort of “quantum hypercomputing”
able to boost the computational speed well beyond the ultimate limit so far assumed in classical
and quantum computation.

Despite some features of the proposed model (like, for example, storing and retrieving of
the quantum information and the study of other interaction mechanisms apart the tunneling
of virtual photons already considered) would obviously need further closer examinations (a lot
of which already strongly in progress), we argue it could open very fascinating perspectives
towards a new conception of quantum computing using water molecules as physical and
computational substrate as well as very intriguing technological applications requiring a very
high computational power and stability as, for example, the simulation of very complex quantum
systems, environmental and health forecasting, large-scale and strong artificial intelligence,
encryption / decryption of data and cybersecurity, big data analysis, financial predictions and
many others.
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