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EVOLUTION OF NUCLEAR SHAPES IN LIGHT
NUCLEI FROM PROTON- TO NEUTRON-RICH SIDE
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The relativistic Hartree–Bogoliubov (RHB) model with density-depen-
dent meson-exchange interaction and separable pairing is employed to study
the shape evolution and shape coexistence in Mg (Z = 12), Si (Z = 14),
S (Z = 16), and Ar (Z = 18) isotopes from proton-rich side to neutron-
rich side. A sudden shape transition is observed in these isotopic chains.
A reasonable agreement of quadrupole deformation is found with the finite
range droplet model (FRDM). Our findings of binding energies, quadrupole
deformation parameter, charge radii, and isotope shifts are also in good
agreement with the results of Hartree–Fock–Bogoliubov calculations based
on the D1S-Gogny force. In addition to shape evolution, the disappearance
of N = 28 shell closure and onset of deformation is also observed towards
the neutron-rich side. The modification of N = 28 shell gap is related
to the quadrupole excitations across it. The present calculations infer the
neutron drip line at 40Mg.
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1. Intoduction

The study of nuclei far from the β-stability line (exotic nuclei) is a de-
voted part of modern nuclear-structure studies. The limit of nuclear exis-
tence is reached while going away from the stability line. Nuclear drip lines
form the edges of the nuclear chart and are defined as limits beyond which
a single nucleon becomes unbound in the nuclear ground state. The ad-
vancement in Radioactive Ion Beam (RIB) facilities and sensitive detection
technologies has made it accessible to study the structure and properties of
these nuclei.
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The evolution of ground-state shape from proton-rich side to neutron-
rich side is a frontier area in nuclear physics. The shape evolution in isotonic
or isotopic chains has been investigated consistently by various theoretical
and experimental techniques. The results obtained from the electron and
in-beam spectroscopy experiment reveal the prolate-spherical shape coexis-
tence for 44S, with intruder configuration being the ground state [1, 2]. This
intruder ground state was predicted to be due to the quadrupole excitation
across the Z = 14 and N = 28 shell gaps. An exhaustive study of the evo-
lution of shapes and other ground-state properties in light nuclei is done in
Ref. [3]. They have employed relativistic mean-field (RMF) theory with NL-
SH force and with BCS pairing in the calculations. The nuclear deformation
in light even–even isotopes has been investigated with the Hartree–Fock–
Bogoliubov (HFB) model using SLy4 Skyrme parameterization [4]. The
relation between single-particle motion and potential energy surfaces has
been studied by taking deformation into account. The large-amplitude col-
lective dynamics of shape phase transition in the low-lying states of 30−36Mg
and shape coexistence in excited 0+ state in 32Mg has been investigated in
Refs. [5, 6], respectively. The study of shape evolution for 28−42Si isotopes
has been done within the framework of the Skyrme–Hartree–Fock model
by employing BCS approximation for the pairing channel [7]. Shape coexis-
tence and triaxial deformation in Ne, Na, Mg, and Al isotopes have also been
studied by Davies et al. [8]. One of the prominent subjects in the study of
nuclear structure of exotic nuclei, in the light region, is the evanescence of
the traditional magic numbers and the emergence of new ones. The weak-
ening of the N = 28 shell closure and the development of deformation has
been observed in low-energy Coulomb excitation experiments [9–11]. Their
study indicated a prolate shape of the 44Ar nucleus by calculating B(E2)
values and the spectroscopic quadrupole moment of the 2+1 state from the
differential Coulomb excitation cross sections. Many theoretical studies have
been done on the shape evolution in N = 28 isotones and reduction of shell
gaps [12–15].

The nuclear density functional theories have been used to understand
nuclear many-body dynamics for an appreciable description of nuclei near
the drip lines [16–22]. The RHB model has been employed to study shell
structure of Si, S, Ar, and Ca isotopes in recent papers [18–20]. In these
papers, binding energies and their derivative properties have been studied by
taking considering spherical symmetry. Their results indicate the presence of
N = 14 sub-shell closure and also reproduce the traditional magic numbers
(N = 8, 20, and 28). However, to throw some light on the effect of defor-
mation on light nuclei from proton to neutron-rich side, we have performed
quadrupole constrained RHB calculations using density-dependent meson
exchange (DD-ME2) parameter set [23] with pairing interaction which is
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separable in momentum space. An extensive study of shape evolution and
shape coexistence is done for Mg, Si, S, and Ar even–even isotopes. The
other ground-state observables are also studied. The present calculations do
not provide any indication about N = 14 sub-shell closure in these isotopes
rather, the disappearance of N = 28 shell closure is observed. In the present
manuscript, we have briefly presented the impact of deformation on the shell
structure of even–even Mg, Si, S, and Ar isotopes.

The organization of this paper is as follows: A brief description of the
RHB model with meson-exchange coupling and with separable pairing is pre-
sented in Section 2. Results and discussion for shape evolution and various
ground-state observables, compared with experimental data, are presented
in Section 3. Finally, the concluding remarks of the present analysis are
given in Section 4.

2. Theoretical framework

Self-consistent mean-field (SCMF) models provide a very successful tool
to study nuclear ground-state properties and excited-state properties from
the valley of β-stability to the nuclear drip lines throughout the entire nuclear
chart. These models are based on the nuclear energy density functionals
(EDF) in which the nucleons are treated as independent particles moving
inside the nucleus under the influence of potentials that are derived from
such functionals [24]. In the relativistic case, the nucleons are treated as
Dirac spinors that interact by the exchange of virtual mesons, as described
by Refs. [25–29].

2.1. Lagrangian density for the meson exchange models

The total Lagrangian density of mesons exchange model can be written
as [23, 30]

L =
∑
i

ψ̄i(iγµ∂
µ −m)ψi + 1

2∂µσ∂
µσ − 1

2m
2
σσ

2 − 1
2ΩµνΩ

µν

+1
2m

2
ωωµω

µ − 1
4
~Rµν

~R
µν

+ 1
2m

2
ρ~ρµ · ~ρµ − 1

4F µνF
µν

−gσψ̄ψσ − gωψ̄γµψωµ − gρψ̄~τγµψ · ~ρµ − eψ̄γµψAµ , (1)

where m denotes the bare mass of nucleon and ψ denotes the Dirac spinors.
mσ, mω, mρ are masses of σ, ω, ρ mesons with corresponding coupling
constants gσ, gω, gρ for the mesons to the nucleons, respectively. Ωµν , ~Rµν ,
Fµν are field tensor of the vector fields ω, ρ, and the photon. Arrows denote
isovectors and boldface symbols are used for vectors in ordinary space.
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From the Lagrangian density in Eq.(1), one can obtain the Hamiltonian
density H(r) and hence obtain the total energy which depends on the Dirac
spinors and the meson fields by integrating the Hamiltonian density over the
r-space [31]

ERMF

[
ψ, ψ̄, σ, ωµ, ~ρ µ, Aµ

]
=

∫
d3rH(r) =

A∑
i=1

∫
d3rψ†i (αp+ βm)ψi

+
1

2

∫
d3r

(
(∇σ)2 +m2

σσ
2
)
− 1

2

∫
d3r

(
(∇ω)2 +m2

ωω
2
)

−1

2

∫
d3r

(
(∇ρ)2 +m2

ρρ
2
)
− 1

2

∫
d3r(∇A)2

+

∫
d3r

(
gσρsσ + gωjµω

µ + gρ~jµ · ~ρ µ + ejpµA
µ
)
. (2)

The single-nucleon Dirac equation is derived by variation of the energy den-
sity functional (2) with respect to ψ̄ and takes a simple form that includes
only the vector potential V (r) and the effective mass M∗(r) = m+ gσσ

{−iα∇+ βM∗(r) + V (r)}ψi(r) = εiψi(r) . (3)

The vector potential reads

V (r) = gωω + gρτ3ρ+ eA0 +ΣR
0 , (4)

where ΣR
0 denotes the rearrangement term arising from the density depen-

dence of the vertex functions (gσ, gω and gρ) and is defined as

ΣR
0 =

∂gσ
∂ρv

ρsσ +
∂gω
∂ρv

ρvω +
∂gρ
∂ρv

ρtvρ . (5)

ρtv denotes the isovector density which is the difference between the proton
and the neutron vector density. The functionals are described by density-
dependent coupling constants gi(ρ) (for i = σ, ω, ρ, δ). The coupling of σ
field and ω field to the nucleon field is given by [32–34]

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω (6)

with

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(7)

which is a function of x = ρ/ρsat. Here, ρsat (= 0.152 fm−3) is the baryon
density at saturation in symmetric nuclear matter.

For density dependence of ρ-meson coupling, Dirac–Brueckner suggested
the functional form [35], given by

gρ(ρ) = gρ(ρsat)e
−aρ(x−1) . (8)

The isovector channel is parameterized by gρ(ρ) and aρ.
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2.2. Relativistic Hartree–Bogoliubov approximation
with a separable pairing interaction

The incorporation of pairing correlations is important to understand the
structure phenomena in open shell nuclei quantitatively [36, 37]. The formu-
lation of RHB model is found to be a relativistic extension of the HFB model
in which mean-field and pairing correlations are treated self-consistently.
The RHB model provides a unified description of particle–hole (ph) and
particle–particle (pp) correlations on a mean-field level by using the average
self-consistent mean-field potential that encloses the long-range ph correla-
tions and a pairing field potential which sums up the pp correlations. In the
RHB model, density matrix in the presence of pairing can be generalized in
two densities, the normal density ρ̂, and pairing tensor κ̂. The relativistic
Hartree–Bogoliubov energy density functional can be written as

ERHB[ρ̂, κ̂] = ERMF[ρ̂] + Epair[κ̂] , (9)

where ERMF[ρ̂] is the nuclear energy density functional and is given in
Eq. (2). The pairing part of RHB functional is given by

Epair[κ̂] =
1

4

∑
n1n′

1

∑
n2n′

2

κ∗n1n′
1

〈
n1n

′
1

∣∣V PP
∣∣n2n′2〉κn2n′

2
, (10)

where
〈
n1n

′
1|V PP|n2n′2

〉
are the matrix elements of the two-body pairing

interaction, and indices n1, n′1, n2, and n′2 denote quantum numbers that
specify the Dirac indices of the spinor. The quasiparticle wave functions
Uk and Vk are obtained by the variational principle from the solution of
relativistic Hatree–Bogoliubov equations. In coordinate representation(

hD −m− λ ∆
−∆∗ −h∗D +m+ λ

)(
Uk(r)
Vk(r)

)
= Ek

(
Uk(r)
Vk(r)

)
. (11)

In the self-consistent relativistic mean-field calculation, ĥD is the single-
nucleon Dirac Hamiltonian and m is the mass of nucleon. The λ chemical
potential is determined by the particle number subsidiary condition such
that the expectation value of the particle number operator in the ground
state equals the number of nucleons. The pairing field ∆ reads

∆n1n′
1

=
1

2

∑
n1n′

2

〈
n1n

′
1

∣∣V PP
∣∣n2n′2〉κn2n′

2
. (12)

The pairing force is separable in momentum space and in r-space has
the form of

V PP
(
r1, r2, r

′
1, r

′
2

)
= −Gδ (R−R′)P

(
r)P (r′

)
, (13)
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where R = 1√
2
(r1 + r2) and r = 1√

2
(r1 − r2) represent the center of mass

and the relative coordinates, respectively, and the form factor P (r) is of the
Gaussian form written as

P (r) =
1

(4πa2)3/2
e−r

2/2a2 . (14)

The two parameters G and a have been adjusted to reproduce the density
dependence of gap at the Fermi surface. The values of these parameters
in the present work are taken as G = 728 MeV fm3 and a = 0.644 fm for
protons and neutrons. It is derived in Refs. [36, 38–40] calculated with the
DIS Gogny force. The pairing force has a finite range and also it conserves
translational invariance due to the presence of the factor δ(R−R′). Even
though this force is not completely separable in coordinate space, however,
the anti-symmetrized pp matrix elements can be represented as a sum of a
finite number of separable terms in the harmonic oscillator basis〈

n1n2
∣∣V PP

∣∣n′1n′2〉a =
∑
N

WN∗
n1n2

WN
n′
1n

′
2
. (15)

The pairing field ∆, in this case, takes the form

∆n1n2 =
∑
N

PNW
N∗
n1n2

with PN =
1

2
Tr
(
WNκ

)
, (16)

and finally, the pairing energy in the nuclear ground state is given by

Epair = −G
∑
N

P ∗NPN . (17)

The total energy Etot [MeV] for the nuclear system with A (mass number)
nucleons can be calculated as [41]

Etot = ERMF + Epair + Ecm . (18)

Here, Ecm accounts for the center-of-mass correction and is given as Ecm =

− 〈P
2〉

2Am , where 〈P 〉 =
∑A

i pi is the total momentum of the nucleus in the
center-of-mass frame with A nucleons [42].

2.3. Details of calculations

The pairing correlations play an important role in the understanding of
ground-state properties of the open-shell nuclei. Pairing has been included
in the relativistic Hartree–Bogoliubov model in the form of simple constant
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gap approximation, where the pairing gap∆ is obtained from odd–even mass
differences. The input parameters required to carry out explicit numerical
calculations are [26]: (i) the baryon and meson masses m,mσ,mω, and mρ;
(ii) the coupling constants of the meson fields to the nucleons gσ, gω, and gρ;
(iii) the number of oscillator shells for fermions and bosons (NF and NB);
(iv) the basis parameters used for the expansion of the Dirac spinor and
the meson fields. The meson masses and the coupling constants, calculated
using χ2 fitting procedure, for the DD-ME2 interaction are

M = 939 MeV , mσ = 550.1238 MeV , mω = 783 MeV ,

mρ = 763 MeV , gσ = 10.5396 , gω = 13.0189 ,

gρ = 3.6836 .

For the calculations of the shape evolution and ground-state properties, we
have used the DIRHBZ numerical code developed by Nikšić et al. [31].

In the mean-field formalism, the maximum number of harmonic oscil-
lator shells in the expansion of fermion and boson fields have to be used
to achieve a reliable convergence. However, the computation time increases
dramatically with the increase in number of shells. This problem can be
tackled by limiting the number of shells, that can be done by studying the
convergence behavior. In the present work, we have chosen N = 28 isotones
of Mg, Si, S, and Ar to obtain the reliable values of binding energy per
nucleon, charge radius (Rch), and quadrupole deformation parameter (β2)
by performing calculations with the number of oscillator shells ranging from
NF = NB = 12–20. Figure 1 presents the results of total binding energy,
binding energy per nucleon (E/A), charge radius (Rch), and quadrupole
deformation parameter, β2 (optimized for each constrained value of defor-
mation parameter) as a function of the number of oscillator shells (N). The
variation of binding energy with an increase in number of oscillator shells is
0.12% for 40Mg while, this variation is around 0.03% for N = 28 isotones
of Si, S, and Ar. The increase of NF = NB from 12 to 20 changes the E/A
by about 0.12–0.03% and Rch by 0.14–0.06%, while quadrupole deformation
parameter β2 by 2–4% for these isotones of N = 28. Therefore, to save
computation time and to obtain reasonably converging mean-field solutions,
12 major oscillator shells are adopted in the present study.

In principle, the harmonic oscillator (HO) basis has served as an ex-
tremely useful tool in the nuclear structure study. However, for weakly
bound systems with large spatial extension, it does not work due to its lo-
calization [43]. One has to use extremely large major oscillator shells to
reproduce the density of a weakly bound nucleus, which is not feasible in
practice (see Figs. 1 and 2 in Ref. [43]). The RHB equations are solved in
coordinate space for the description of halo nuclei [44–46]. Later on, it was
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Fig. 1. The results of convergence study of the total binding energy, binding energy
per nucleon, charge radii (Rch), and quadrupole deformation parameter (β2) for
N = 28 isotone of Mg, Si, S, and Ar nuclei as a function of oscillator shells (N =

NF =NB).

observed that the solution of RHB equations in Woods–Saxon (WS) basis
provides a successful description of drip-line nuclei [47–50] where the radial
wave function has a proper asymptotic behavior at a large distance from
the center. Therefore, the WS basis is recommended over the HO basis for
solving RHB equations in weakly bound systems.

3. Results and discussion

3.1. Quadrupole deformation and shape coexistence

The main purpose of the present work is to study the deformation sys-
tematics in light nuclei from proton-rich side to neutron-rich side. We have
performed axially constrained RHB calculations using DD-ME2 parameter
set for the entire isotopic chain of Mg, Si, S and Ar to obtained the variation
of binding energies with respect to quadrupole deformation parameter β2.
In mean-field approximations, the quadrupole deformation parameter β2 is
related to intrinsic quadrupole moment Q20 and is defined as

β2 =

√
5π

9

Q20

AR2
0

, (19)

with R0 = 1.2A1/3. The resulting plots of total energy versus quadrupole
deformation are called potential energy curves (PECs). The analysis of
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shape evolution starts with a self-consistent relativistic Hartree–Bogoliubov
(RHB) calculation of quadrupole binding energy curves. It has been studied
in Ref. [50] that at the local minimum in the PEC, the constrained and the
unconstrained solutions are identical. One would have the same ground state
with the self-consistent unconstrained calculations. Sometimes, however, the
constrained calculations are also necessary for a soft PEC, or if many local
minima are close to each other. We have used a small step of deformation in
the present calculations to obtain the ground state of various nuclei. Due to
this small deformation step, the ground state can be found to be very close
to the real ones obtained by unconstrained calculations.

Figures 2–5 show the potential energy curves (PECs) for even–even iso-
topes of Mg, Si, S, and Ar, respectively. The energies are normalized with
respect to the total energy of the absolute minima. Figure 2 presents the
PECs for Mg isotopic chain which starts from N = 8 shell closure. The
deformed shapes are seen to evolve between the shell closures. In Fig. 2, the
potential energy curve for 20Mg has a spherical shape which is expected for
magic neutron number N = 8. A sudden shape transition from spherical to
prolate is observed as one moves from 20Mg to 22Mg. A large prolate defor-
mation minimum (β2 = 0.5) is seen for 22,24Mg nuclei. The shape becomes
oblate for 26Mg and a spherical shape is restored for 32Mg due to N = 20
shell closure. On moving towards the more neutron-rich side, a prolate min-
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imum is seen for 34−40Mg isotopes with quadrupole deformation between
β2 ≈ 0.35–0.45. An oblate–prolate shape coexistence is also observed for
26Mg and 30Mg isotopes.

The PECs for the even–even isotopes of Si are shown in Fig. 3. It can
be observed that most of the Si isotopes favor an oblate shape minimum on
moving away from N = 8 shell closure. 26Si have a ground-state prolate
minimum with quadrupole deformation β2 = 0.40 coexisting with an almost
degenerate oblate minima with β2 = 0.30. In addition to this, the isotopes
24Si, 26Si, 30Si, 38Si and 40Si show the phenomena of shape coexistence.
The study of shape evolution for S isotopic chain starts from 26S (Z = 16,
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Fig. 3. The same as described in the caption of Fig. 2 but for Si isotopes.

N = 10) which exhibits very small prolate deformation. A sudden rise
in the quadrupole deformation parameter is observed on moving from 26S
to 28S, see Fig. 4. It is interesting to observe a staggering behavior of
β2 on moving towards N = 20 shell closure. The sign of the deformation
parameter changes in each step with an increase in neutron number. A
spherical shape is observed for 36S as expected due to the magic neutron
number, N = 20. The potential energy curves show a prolate ground-state
minimum from 38−46S isotopes. The shape again becomes oblate for 48−52S
isotopes. It is worth to note that the ground state the minimum for 56S is
spherical in the potential energy curve supporting the presence of N = 40
sub-shell closure. In addition to these shape transitions, an oblate–prolate
shape coexistence is also seen for many sulfur isotopes. Figure 5 presents the
PECs for Ar isotopic chain. The chain of isotopic study starts from Z = 10
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and terminates at N = 40. It can be observed from the figure that most of
the Ar isotopes are oblate in their ground state. A spherical ground-state
shape is observed for nuclei with neutron numbers N = 20 and N = 40.
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Fig. 4. The same as described in the caption of Fig. 2 but for S isotopes.
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It should be noted that some of the shape coexisting nuclei with axial
deformation might correspond to a triaxial ground state. However, to in-
vestigate it, one has to consider the triaxial degree of freedom in the calcu-
lations. The RMF approach with triaxiality was firstly developed by Koepf
and Ring [51]. The beyond-RMF study done by Yao et al. [52] found the tri-
axial ground state for 26Mg. In the Gogny-HFB calculations, a considerable
triaxial ground-state deformation is observed for 24Si and 44Ar [53]. A re-
cent study of light nuclei by Wang et al. [54] found a triaxial ground state
in shape-coexisting nuclei 38Si, 46S and 48S. However, their results indicate
that the triaxiality effect on the mean-field part of nuclear binding energy
in these nuclei is marginal.

In Figs. 2–5, the disappearance of N = 28 shell closure is also observed.
The N = 28 isotones, 40Mg, 42Si, 44S, and 46Ar, have some finite deforma-
tions indicating the disappearance of N = 28 shell closure. An interesting
case of study is seen for 44S (an isotone of N = 28) which shows an oblate–
prolate shape coexistence. This observation is in agreement with the exper-
imental observation [55, 56] and with the predictions of various theoretical
results [12–14].

The overall calculated results of binding energies, quadrupole deforma-
tion parameter, and charge radii for even–even isotopes of Mg, Si, S, and
Ar nuclei are summarized in Tables I–IV. These results are calculated using
axially constrained RHB calculations with pairing force which is separable
in momentum space. The findings of nuclear observables with DD-ME2
interaction are compared with the results of the HFB model with D1S-
Gogny interaction [53] and with the available experimental data [57–60].
The use of different interactions between the nucleons leads to the varia-
tion in the ground-state shapes in the two models. The study of nuclear
drip lines is itself a very broad and interesting area. Different theoretical
models have remarkably divergent predictions about neutron drip lines [61].
Considering the case of Mg isotopes, different neutron drip line predictions
have been proposed. According to the study done in Ref. [62], the heaviest
magnesium isotope observed is 40Mg, while the drip line is found at 42Mg
in some recent studies [63, 64]. A recent study done using the deformed
RHB theory in continuum predicts 46Mg as a drip-line nucleus [65]. In our
present study, the neutron drip line in Mg isotopic chain is predicted for the
40Mg nucleus subjected to a negative value of two-neutron separation energy
(S2n(Z,N) = Eb(Z,N)−Eb(Z,N − 2)) for 42Mg. In terms of the chemical
potential (λn), the separation energy can be written as S2n ≈ −2λn [61].
A positive value of λn (= 0.6293) for 42Mg results in the negative value
of S2n, leading to an unbound system. On the proton-rich side, the sta-
bility of a nuclei can be investigated by calculating two-proton separation
energy (S2p(Z,N) = Eb(Z,N)−Eb(Z − 2, N)). The negative values of S2p
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for 22Si,26S, 28Ar and for 30Ar nuclei indicate these systems to be unsta-
ble/unbound to the proton emission. Nuclei with small values of S2n and
S2p exhibit the characteristics of a somewhat loosely bound system. It can
be observed that the neutron-rich nuclei 56S, in the sulfur isotopic chain,
have a very low value of two-neutron separation energy (S2n) leading to an
unbound system.

TABLE I

The binding energy (in MeV), the quadrupole deformation parameter β2, and root-
mean-square charge radii Rch for the ground states and a few intrinsic excited states
of 20−42Mg isotopes compared with that of D1S-Gogny [53] and with available
experimental data [57–60].

Nuclei
DD-ME2 D1S-Gogny [53] Experiment [57–60]

B.E. β2 Rch B.E. β2 Rch B.E. β2 Rch

20Mg 133.79 0.0 3.119 136.22 0.0 3.01 134.47 0.440
22Mg 165.65 0.500 3.091 166.25 0.500 3.08 168.58 0.570
24Mg 193.73 0.500 3.072 193.25 0.537 3.10 198.26 0.609 3.057
26Mg 211.75 −0.310 3.046 212.39 −0.309 3.05 216.68 0.489 3.034

211.57 0.350 3.047
28Mg 228.08 0.335 3.071 228.49 0.0 3.02 231.63 0.503
30Mg 239.19 0.225 3.093 239.35 0.030 3.07 241.64 0.415

238.98 −0.200 3.092
32Mg 250.17 0.0 3.108 248.04 0.0 3.12 249.72 0.501
34Mg 254.16 0.350 3.180 252.43 0.393 3.20 256.71 0.553
36Mg 259.44 0.400 3.215 256.75 0.418 3.24 260.80 0.500
38Mg 261.34 0.450 3.257 258.71 0.418 3.26
40Mg 262.31 0.440 3.283 259.08 0.434 3.28
42Mg 261.08 0.375 3.293

The stability of a nucleus is directly related to its binding energy and is
also an important quantity to test a parameter set. The r.m.s. deviation of
binding energies and charge radii is defined as

(σrms)BE =

√∑n
i=1

(EExp
i −ECal

i )
2

n ,

(σrms)Rch
=

√∑n
i=1

(RExp
i −RCal

i )
2

n , (20)

where n is the number of nuclei for which the r.m.s. deviation is calculated.
The r.m.s. deviations of binding energy for these nuclei with DD-ME2 pa-
rameter set are 3.0006 MeV, 3.7455 MeV, 3.8978 MeV, and 3.2174 MeV for
Mg, Si, S, and Ar isotopic chain, respectively. It can be observed from
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TABLE II

The same as in Table I, but for 22−44Si isotopes.

Nuclei
DD-ME2 D1S-Gogny [53] Experiment [57–60]

B.E. β2 Rch B.E. β2 Rch B.E. β2 Rch

22Si 132.82 0.0 3.283
24Si 167.80 −0.250 3.175 169.93 −0.229 3.13 172.01 0.245

167.61 0.300 3.208
26Si 200.83 0.400 3.187 202.31 −0.324 3.15 206.05 0.439

200.76 −0.300 3.153
28Si 231.62 −0.350 3.156 231.58 −0.370 3.17 236.54 0.407 3.122
30Si 250.15 −0.250 3.151 251.64 0.0 3.10 255.62 0.311 3.134

249.83 0.125 3.108
32Si 268.02 −0.200 3.165 267.57 0.010 3.15 271.41 0.228
34Si 283.83 0.0 3.174 281.14 0.0 3.20 283.43 0.183
36Si 290.41 0.150 3.207 289.19 0.0 3.21 292.01 0.265
38Si 297.67 0.300 3.265 296.12 0.285 3.27 299.93 0.255

297.09 −0.225 3.253
40Si 303.67 −0.300 3.300 302.18 −0.277 3.30 306.47 0.370

302.96 0.325 3.302
42Si 310.21 −0.350 3.340 308.15 −0.332 3.34
44Si 311.41 −0.300 3.346 309.29 −0.258 3.33

Tables I–IV that there are only a few experimental data, for charge radii,
available for Mg, Si, and S isotopes which would not be sufficient to cal-
culate the r.m.s. deviation of charge radii ((σrms)Rch

). However, the value
of (σrms)Rch

for Ar isotopic chain is 0.0211 fm. The values of r.m.s. devia-
tions of binding energy and charge radii are found to be comparable to the
D1S-Gogny force.

In the PECs of these isotopic chains, a sudden shape transition is ob-
served. Mainly, the Mg and Si isotopes show a sudden rise in deformation
with the addition of neutrons. The origin of deformations is related to the
evolution of the shell structure of single-particle orbitals. The nuclei with
a magic number of nucleons (neutron or/and proton) form a closed shell
which implies a spherical shape. However, this picture of spherical shape
gets altered if the single-particle orbits are partially filled or by the excita-
tion of nucleons to higher orbitals. To throw some light on the phenomena
of nuclear deformation, we have shown, in Fig. 6, the neutron and proton
single-particle energy levels for 20Mg and 22Mg. According to Jahn–Teller
effect [66], the regions of low-level density around the Fermi surface favor
the onset of deformation and are related to the ground-state minima in the
potential energy curves. The upper two panels of Fig. 6 show single neu-
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TABLE III

The same as in Table I, but for 26−56S isotopes.

Nuclei
DD-ME2 D1S-Gogny [53] Experiment [57–60]

B.E. β2 Rch B.E. β2 Rch B.E. β2 Rch

26S 167.33 0.050 3.350 170.95 0.0 3.29
28S 205.31 0.350 3.296 207.11 0.127 3.25 209.41 0.265
30S 238.19 −0.250 3.265 240.15 0.030 3.21 243.68 0.339
32S 265.49 0.275 3.261 266.32 −0.030 3.23 271.78 0.301 3.261
34S 287.06 −0.215 3.291 287.59 0.0 3.27 291.84 0.250 3.285

286.23 0.125 3.275
36S 307.03 0.0 3.293 306.31 0.0 3.30 308.71 0.157 3.298
38S 318.70 0.200 3.318 318.59 0.101 3.32 321.05 0.247

318.12 −0.100 3.311
40S 331.51 0.290 3.344 329.93 0.245 3.35 333.17 0.284
42S 341.60 0.275 3.359 339.79 0.301 3.39 344.12 0.300
44S 348.67 0.345 3.403 347.42 −0.242 3.39 351.82 0.258

347.83 −0.300 3.385
46S 353.24 0.275 3.411 352.91 −0.200 3.40

352.90 −0.225 3.405
48S 357.19 −0.225 3.431 356.93 0.0 3.39

357.06 0.200 3.419
50S 359.87 −0.225 3.468 358.11 0.0 3.42

359.66 0.160 3.437
52S 361.60 −0.160 3.484 357.07 0.0 3.46

361.44 0.125 3.472
54S 361.98 0.100 3.508
56S 362.24 0.0 3.542

tron and proton levels corresponding to spherical configuration with β2 = 0
for the 20Mg nucleus. A large gap between the last occupied (1p1/2) and
the first unoccupied (1d5/2) neutron orbits is observed. The 20Mg nucleus
has a neutron shell closure at N = 8. All neutron orbits below the Fermi
level are occupied which leads to a spherical shape. The lower two panels
of Fig. 6 present the neutron and proton single-particle energy levels in the
22Mg nucleus as functions of the axial deformation parameter β2. The solid
curves present levels with positive parity and dashed curves denote levels
with negative parity. Fermi levels are denoted by a thick black line. A large
shell gap with 0.50 ≤ β2 ≤ 0.55 is observed around the Fermi level in the
plots of single-particle energies for neutron and proton, respectively. The
proton shell gap, however, is more pronounced than the neutron shell gap
favoring the minima in the PEC of 22Mg. This large proton shell gap is
mainly formed by two levels split from the degenerate 1πd5/2 state favoring
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TABLE IV

The same as in Table I, but for 28−58Ar isotopes.

Nuclei
DD-ME2 D1S-Gogny [53] Experiment [57–60]

B.E. β2 Rch B.E. β2 Rch B.E. β2 Rch

28Ar 162.44 0.125 3.506
30Ar 204.01 0.250 3.444

203.55 −0.200 3.430
32Ar 242.77 −0.240 3.381 244.13 −0.130 3.36 246.40 0.261 3.347
34Ar 273.76 −0.225 3.382 275.35 0.020 3.35 278.72 0.235 3.365

273.08 0.150 3.369
36Ar 302.69 −0.235 3.396 302.40 −0.180 3.37 306.72 0.257 3.391
38Ar 326.52 0.0 3.387 326.64 0.0 3.39 327.34 0.159 3.403
40Ar 341.92 −0.075 3.396 343.10 0.0 3.39 343.81 0.252 3.427
42Ar 357.04 −0.175 3.414 357.77 0.053 3.41 359.34 0.273 3.435

356.88 0.175 3.413
44Ar 370.93 −0.175 3.424 371.02 0.081 3.42 373.73 0.246 3.445

370.64 0.175 3.423
46Ar 383.54 −0.180 3.434 382.66 0.0 3.43 386.92 0.196 3.438
48Ar 391.57 −0.200 3.468 391.25 −0.190 3.48 0.228
50Ar 398.48 −0.230 3.504 398.30 0.0 3.47
52Ar 404.25 −0.260 3.547 402.08 0.0 3.50
54Ar 408.21 −0.175 3.556 404.33 0.0 3.54
56Ar 410.96 −0.125 3.582 405.62 0.0 3.57
58Ar 414.04 0.0 3.606 405.80 0.0 3.61

the deformation, i.e., the filling of [220]1/2 and [211]3/2 orbitals of 1d5/2
sub-shell, which are downsloping. However, the filling of [202]5/2 orbital of
1d5/2 sub-shell leads to a decrease in deformation due to its upsloping char-
acter. This decrease in deformation can be observed for the 26Mg nucleus.
Further, moving along the Mg isotopic chain, the deformation increases due
to the mixing or special superpositions of single-particle states. The same
can be said for Si isotopes. Thus, these ideas propose a simple compre-
hension of the several mechanisms leading to deformation in these isotopic
chains.

In Fig. 7, the isotopic evolution of deformation parameter β2 as a func-
tion of neutron number, N , is shown for all the isotopes of Mg, Si, S, and
Ar. The comparison of the calculated values of the deformation parame-
ter is done with the finite range droplet model (FRDM) and with available
experimental data. In this figure, the progress of deformations with the
neutron number, which is already seen in Figs. 2–5, is more apparent. In
the Mg isotopic chain, all isotopes except 26Mg have been shown to pos-
sess a prolate shape. The 20Mg and 32Mg nuclei have spherical shapes due
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to the presence of N = 8 and N = 20 shell closures, respectively. Large
prolate deformation is observed as one moves away from N = 8 shell clo-
sure. The nuclei above N = 20 shell closure also show a significant large
deformation (β2 ∼ 0.4). It has been also noted that the Mg isotope with
N = 28 shell closure takes a very large deformation (β2 ∼ 0.45), forced by
a neutron mean-field, indicating the disappearance of shell closure and shell
effect at N = 28. The Si isotopes are predicted to have large prolate as well
as oblate deformations near the proton- and neutron-rich side. The disap-
pearance of N = 28 shell closure is also visible in 42Si, as it has a significant
oblate deformation (β2 = −0.35). A variety of shape transitions is seen
throughout the S isotopic chain. A staggering type behavior of deformation
parameter is observed up to N = 20 shell closure, indicating the softness of
these isotopes. A large prolate deformation is observed on moving towards
neutron-rich side which further becomes small on approaching neutron sub-
shell closure at N = 40. Most of the Ar isotopes are seen to have an oblate
ground state with a spherical shape at N = 20 shell closure and N = 40
sub-shell closure. The predictions of deformations in these isotopic chains
are found to be in good agreement with that of the finite range droplet model
and with experimental data.

In Fig. 8, we have presented the nuclei exhibiting the shape coexistence
using the RHB model with DD-ME2 interaction. On the vertical axis, the
energy difference between the prolate minima and oblate minima is shown. A
positive value of ∆E implies that the prolate minima are more pronounced
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than the oblate minima, while a negative value indicates that the oblate
minima are deepest than the corresponding prolate minima. In the Mg
chain presented here, the prolate shape is the lowest energy state. However,
the 26Mg and 30Mg isotopes exhibit shape coexistence with |∆E| = 0.2 MeV.
Many Si isotopes also show the shape coexistence phenomenon. The nuclei
24Si, 26Si, 30Si, 38Si, and 40Si have almost degenerate prolate and oblate
minima. Except for 26Si and 38Si, the other Si isotopes are oblate in the
lowest energy state coexisting with a prolate minimum. Several isotopes of S
that show the shape coexistence are: 34S, 38S, 44S, 46S, 48S, 50S, and 52S.
The positive value of ∆E for 38S, 44S, and 46S indicates the prolate ground
state for these nuclei. On the other hand, a negative value of ∆E for 34S,
48S, 50S, and 52S implies the oblate ground state. The value of ∆E is found
to be very small for the 48S, 50S, and 52S nuclei indicating the softness of
these nuclei. Finally, the 30Ar, 34Ar, 42Ar, and 44Ar nuclei have also been
found to be shape coexisting nuclei in the Ar isotopic chain. Except for 30Ar,
other nuclei have the oblate ground state coexisting with prolate minima a
few keV above the lowest minima.

Figure 9 presents the isotope shifts for Mg, Si, S and Ar isotopic chains.
The isotope shift for each isotopic chain is calculated relative to the mean-
square nuclear charge radii of the reference nuclei with N = 20, given as

δ
〈
r2ch
〉20,N

=
〈
r2ch
〉N − 〈r2c〉20 , (21)
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where 〈r2ch〉 is the mean-square charge radii of nuclei calculated from charge
radius (Rch) given in Tables I–IV. A parabola like behavior of isotope shifts is
observed for all isotopic chains. The minima in the isotope shifts correspond
to nuclei near the stability line. In Fig. 9, the 26Mg, 30Si, 32S and 34Ar nuclei
show the minima in the isotope shifts. Moreover, these nuclei have smaller
charge radii even as compared to the lighter neighbors. The isotope shift
is observed to rise considerably towards the proton-rich side. This rise in
isotope shift to the extreme left or towards the proton-rich side indicates
the swelling of charge radius due to large proton skin. The trend of isotope
shifts, in the present study, is compared with the results of HFB calculations
using the D1S-Gogny force and with available experimental data.

3.2. Single-particle energy spectra of N = 28 isotones

The emergence of collectivity and shape coexistence phenomenon in the
nuclei can be understood by the evolution of neutron and proton single-
particle energy levels with quadrupole deformation and the occurrence of
gaps around the Fermi level. The regions of low-level density favor the onset
of deformation as explained in the Jahn–Teller effect [66]. The ground-
state minima in the potential energy curve are associated with the effect
of low-level density around the Fermi surface. The feature of deformation
occurrence in the N = 28 isotones can be ascribed to the possibility of
quadrupole correlations between the occupied and valence states.

Figures 10–13 present the neutron and proton single-particle energy lev-
els for N = 28 isotones, calculated using the RHB model with DD-ME2
interaction. The increase in neutron N = 28 shell gap [55] and the near
degeneracy of the d3/2 and s1/2 proton orbitals can be seen in these fig-
ures. In Fig. 10, the gap between occupied and unoccupied neutron levels
is around β2 ≈ −0.37 favoring an oblate shape, while on the proton side,
this gap is around β2 ≈ 0.44 which favors the onset of prolate deformation.
The proton shell gap is more pronounced than the neutron gap leading to
the prolate ground state of 40Mg. The picture of magic nucleus [67] in 42Si
seems to be broken, in Fig. 11, as a large neutron and proton shell gaps
are observed on the oblate side which results in the pronounced oblate min-
imum at β2 ≈ −0.35. In 44S, the largest gap between neutron states is
around β2 ≈ −0.30, that is, on the oblate side (left panel of Fig. 12). In the
proton energy level spectra, the largest gap is found on the prolate side with
deformation around β2 ≈ 0.35 (right panel of Fig. 12). The formation of
the oblate neutron and prolate proton shell gaps is the origin of the coexis-
tence of deformed shapes in 44S (cf. Fig. 4). Finally, a large spherical gap is
observed between occupied and unoccupied neutron levels, as shown in the
left panel of Fig. 13. For proton states, the largest gap is observed around
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−0.23 ≤ β2 ≤ −0.17, that is, on the oblate side. The competition between
the spherical shape favored by neutron states and the oblate shape favored
by proton states leads to the shallow extended oblate minimum shown in
Fig. 5.
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Fig. 12. The same as described in the caption of Fig. 10 but for the 44S nucleus.
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Fig. 13. The same as described in the caption of Fig. 10 but for the 46Ar nucleus.

In Table V, the theoretically calculated neutron N = 28 spherical shell
gaps, and the corresponding quadrupole deformation parameter for the min-
ima of potential energy curves of 40Mg, 42Si, 44S, 46Ar, and 48Ca are shown.
A clear reduction of the spherical N = 28 shell gap is seen as one moves
towards the proton-deficient side. It can be observed from Table V that the
spherical gap between doubly magic 48Ca and 46Ar decreases from 4.8706
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to 4.4351 MeV, which is in good agreement with experimental data [56, 68].
The theory and experiment, both points toward a strong disruption of the
N = 28 spherical gaps as the isotones become more neutron-rich. It was
shown in the RHB study of neutron-rich N = 28 isotones that the relativis-
tic mean-field model reproduces the N = 28 shell gap due to the inclusion of
the spin-orbit interaction and the isospin dependence of this term [22]. The
removal of protons from a nucleus stimulates the energy change of the neu-
tron levels due to the proton–neutron interaction. Experimentally, indirect
evidence of the erosion of the gap has been obtained by following the evolu-
tion of excitation energies of the 2+1 state and the E2 transitions in N = 28
isotones and neighboring nuclei [55, 56]. The present findings of erosion of
N = 28 shell gap in light nuclei are consistent with the results of RHB cal-
culations with density-dependent point coupling (DD-PC1) interaction [12]
and with other theoretical models.

TABLE V

Theoretically calculated neutron N = 28 spherical energy gaps, and the corre-
sponding values of ground-state minima of the quadrupole binding energy maps of
40Mg, 42Si, 44S, 46Ar, and 48Ca.

Nucleus ∆sph
N=28 β2 [min]

40Mg 1.8314 0.440
42Si 2.7369 −0.350
44S 3.7923 0.345
46Ar 4.4351 −0.180
48Ca 4.8706 0.0

4. Conclusion

In the present work, we have done self-consistent calculations using the
relativistic Hartree–Bogoliubov (RHB) model with density-dependent me-
son exchange (DD-ME2) interaction. The pairing correlations have been
taken into account by employing an interaction that is separable in momen-
tum space. An extensive study of shape evolution and other ground-state
properties has been done for Mg, Si, S, and Ar isotopic chains by taking ax-
ial symmetry into account. The study has covered complete isotopic chains
from proton-rich side to neutron-rich side. The PECs gives a clear picture
of shape evolution and shape transition for even–even isotopes of Mg, Si, S,
and Ar. A sudden shape transition and large deformation are observed for
these isotopic chains even near the nuclear drip lines. A positive value of
chemical potential (λn) and negative value of two-neutron separation energy
(S2n) is predicted for 40Mg which indicates a neutron drip line nucleus. Our
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calculations also indicate the drip line for 56S due to a very small value of
S2n. In the present work, the proton drip line is observed for the 24Si, 28S,
and for 32Ar nucleus in these chains. Some isotopes of Mg, Si, S, and Ar
isotopic chains are seen to exhibit well-deformed oblate–prolate shape co-
existence with an energy difference of a few keV. A strong shell effect has
been observed in these isotopic chains as the nuclei with the magic number
of neutrons, N = 8 and 20, show a spherical shape. The 56S and 58Ar nuclei
are observed to be spherical in their ground state indicating the presence
of N = 40 sub-shell closure. However, the shell effects are washed out for
the N = 28 magic number, as it shows different properties. It has been
observed from the present study that the isotones of N = 28 magic number
show a well-deformed minimum rather than spherical minima. The reduc-
tion of neutron shell gap between 48Ca and 40Mg favors the occurrence of
particle–hole excitations between the occupied and valance orbits. An in-
teresting case of 44S nuclei is studied as this nucleus with N = 28 shows a
strong prolate- and oblate-shape minima coexisting in the ground state. In
conclusion, we can say that the deformation effect cannot be neglected in
the structural characterization of light nuclei.
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