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Abstract

We demonstrate the successful down-scaling of donor-based silicon quantum dot structures

to the single donor limit. These planar devices are realized in ultra high vacuum (UHV)

by means of scanning tunneling microscope (STM) based hydrogen lithography which –

in combination with a gaseous dopant source and a thermal silicon source – allows for the

patterning of highly-doped planar Si:P structures with sub-nm precision encapsulated in

a single-crystal environment.

We present advancements of the alignment strategy for patterning ex-situ metallic contacts

and top gates over the buried dopant devices. Here, we use a hierarchical array of etched

registration markers. A key feature of the alignment process is the controlled formation

of atomically flat plateaus several hundred nanometers in diameter that allows the active

region of the device to be patterned on a single atomic Si(100) plane at a precisely known

position.

We present a multiterminal Si:P quantum dot device in the many-electron regime. Copla-

nar regions of highly doped silicon are used to gate the quantum dot potential resulting

in highly stable Coulomb blockade oscillations. We compare the use of these all epitaxial

in-plane gates with conventional metallic surface gates and find superior stability of the

former. We highlight the challenges of down-scaling within a planar architecture and show

how capacitance modeling can be used to optimize the tunability of quantum dot devices.

Based on these results, we demonstrate the fabrication of an in-plane gated few-donor

quantum dot device which shows highly stable Coulomb blockade oscillations as well as a

surprisingly dense excitation spectrum on the scale of 100 μeV. We explain how these low-

energy resonances arise from transport through valley-split states of the silicon quantum

dot providing extensive effective mass calculations to support our findings.

Finally, we describe how STM H-lithography can be used to incorporate individual impuri-

ties at precisely known positions within a gated device and demonstrate transport through

a single phosphorus donor. We find a bulk-like charging energy as well as clear indica-

tions for bulk-like excited states. We highlight the potential of this technology to realize

elementary building blocks for future donor-based quantum computation applications in

silicon.
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Chapter 1

Introduction

Down-scaling has been the leading paradigm of the semiconductor industry ever since the

invention of the first transistor in 1947 [1]. Miniaturization of the single most important

building block of modern silicon-based electronic devices – the field-effect transistor (FET)

– has advanced to a stage where device performance can depend on the number and the

discrete distribution of individual dopants [2] with channel lengths approaching the 10nm-

scale [3]. Consequently, the ability to control dopant density and distribution on a sub-

nm level is a key challenge for further scaling of conventional integrated nanoelectronic

devices. The realization that “traditional” miniaturization of conventional silicon devices

by geometric scaling will soon reach its ultimate limit (set by the discreteness of matter) has

lead to intensified research in alternative approaches to further enhance the computational

power of logic devices. One of the most exciting of these emerging technologies is quantum

computation – a drastically novel concept of computation that goes far beyond digital

logic.

Richard Feynman was amongst the first to realize the potential of the peculiar nature of

quantum mechanics for computational purposes, suggesting in the early 1980’s [4] that

a quantum computer may be used to efficiently simulate quantum mechanical systems.

The field of quantum computation received wider interest with the development of several

quantum algorithms that allow for efficient solutions to problems that are considered

computationally hard on a classical computer. Arguably the most famous examples in

this regard are Shor’s algorithm [5] for prime factorization of large numbers and Grover’s

algorithm [6] for searching in large databases.

A key element of quantum computation is the concept of superposition. Consider a two-

level system characterized by the two states |1〉 and |0〉. A classical system will always

be in one of the two discrete states. By contrast, a quantum two-level system can be in

1
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any superposition, or linear combination α|1〉 + β|0〉 of these basis states, where α and β

are complex numbers and |α|2 + |β|2 = 1. It is these quantum states of a suitable two-

level quantum-mechanical system that form the elementary building block of a quantum

computer – a quantum bit or qubit.

The qubit represents the full quantum-mechanical phase information of the system. How-

ever, by measuring the system (by coupling it to a suitable measurement apparatus) the

system is forced into one of its eigenstates. Any measurement therefore destroys the

superposition in a probabilistic way: while the outcome of a single measurement is non-

deterministic, the probability for measuring the eigenstates |1〉 and |0〉 are given by |α|2
and |β|2, respectively. One of the greatest challenges in realizing a functional quantum

computer is thus the need to preserve the coherent state of the superpositions, i.e. the

relative phase information defining the qubits. In particular, the corresponding coherence

times must be much longer than the typical time needed to perform logical operation on

the qubits. This requires the system to be sufficiently isolated from its environment since

any unwanted interactions with the external world might cause quantum decoherence.

One of the intriguing features of quantum computation is the fact that the governing quan-

tum mechanics are universal and therefore independent of the physical implementation of

a quantum computer. As a result, qubit architectures are being pursued in a wide and di-

verse variety of systems, such as ion traps [7], quantum-optical systems [8], atoms trapped

in photon cavities described by cavity quantum electrodynamics (CQED) [9], or nuclear

magnetic resonance (NMR) schemes using molecules in solution [10]. The latter received

wide-spread interest in 2001 when a group at IBM Almaden Research Center reported the

first successful demonstration of Shor’s algorithm [11]. By using NMR techniques on a

7-qubit system (defined by the nuclear spins of a molecule) Vandersypen et al. were able

to factorize the number 15 into its prime factors 3 and 5.

Alternatively, qubits have also been proposed in several solid-state systems. Considering

the stringent need to protect the qubits from decoherence, solid-state qubits may not seem

ideal due to the inherent strong coupling to the host material. However, solid-state sys-

tems offer the key advantage that scaling of the structures seems feasible. The need for

scalability was highlighted in 1998 by Preskill [12] who argued that a “useful” quantum

computer required a suitably large number of qubits to exploit its computational advan-

tage over classical computers. Considering a finite (10−6) error rate for each operation,

he estimated that 106 qubits may be necessary to outperform classical computers on the

prime factorization problem. Shortly after, DiVincenzo [13] formulated several essential

requirements for a successful quantum computer architecture, again emphasizing the need
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Figure 1.1: Schematic of the Kane quantum computer. Illustration of the
elementary building block of a silicon-based quantum computer as proposed by Kane
[14]. Information is encoded on the nuclear spin of individual phosphorus donors in a
28Si host. Logic operations are performed using surface gates: The ‘J gates’ control
the electron-mediated coupling between the spins while the ‘A gates’ control their
resonance frequency in an external magnetic field.

for scalability. His five major criteria for the physical implementation of a quantum com-

puter are: (i) A scalable physical system with well-defined qubits. (ii) The ability to

initialize these qubits to a simple fiducial state. (iii) Decoherence times that are much

longer than the required quantum logical operations. (iv) A universal set of quantum

gates. (v) A qubit-specific measurement capability. These so-called DiVincenzo criteria

have since been seminal in focusing both theoretical and experimental research in different

quantum-information processing schemes.

In 1998, Kane [14] proposed using the nuclear spin of phosphorus donors in silicon to

realize a scalable solid-state quantum computer. A key advantage of silicon-based systems

is their inherent potential for scalability due to the vast existing knowledge and advanced

technologies developed by the silicon industry over many decades. A schematic of the

Kane architecture is illustrated in Fig. 1.1. Here, the qubits are realized by the nuclear

spin of individual 31P donors which are patterned in a regular array (with 20 nm spacing)

in an isotopically purified 28Si host crystal. Surface gates (‘A’ and ‘J’) are deposited on

an oxide barrier over the donor array. Logic operations on the qubits are performed by

applying an external oscillating magnetic field Bac. By applying a suitable voltage to

the ‘A gate’ above a donor, its hyperfine interaction can be altered resulting in a change

in the resonance frequency of its nucleus. It is therefore possible to address the qubits

individually by bringing specific donors into resonance with Bac. By contrast, the ‘J gates’

control the electron-mediated coupling between adjacent nuclear spins thus enabling two-

qubit operations.

Spins in a magnetic field are an inherent two-level system and therefore a natural choice
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for the realization of a qubit. For solid-state systems, spins in silicon are a particularly

promising candidate due to their resilience against decoherence. This is essentially due

to two desirable material properties of silicon [14]: The predominance of spin-zero 28Si

nuclei and a small spin-orbit coupling. Indeed, for P donors in bulk silicon at T = 1.5K

the electron spin relaxation time has been found to be thousands of seconds, while the

31P nuclear spin relaxation time exceeds 10 hours [15]. As a result, further donor-based

quantum computer architectures have been proposed in silicon, using either the donor

electron spin [16] or charge [17] to define the qubit. More recently, nuclear spins of 31P

in Si have also been shown to serve as suitable quantum memory for spin superposition

states [18] with a lifetime exceeding 100 s [19].

Scaling of all donor-based quantum computer schemes relies on vast arrays of individual

impurities that are patterned in a host crystal. Indeed, two-dimensional architectures for

such donor arrays have been proposed [20] that specifically address the need for quantum

error correction and the necessity to “shuttle” qubit states in a realistic system. To avoid

spatial oscillations in the exchange coupling between neighboring donor sites arising from

the silicon bandstructure [21], these architectures rely on the precise control over the

location of each dopant atom within the array. A key challenge in fabricating a functional

donor-based qubit is therefore the ability to pattern individual impurities in an epitaxial

silicon environment with essentially atomic accuracy.

In this thesis, we demonstrate how scanning tunneling microscopy (STM) based lithogra-

phy can be used as a viable way to overcome this challenge. STM has previously proven its

capability to both image [22] as well as manipulate [23] crystalline matter on the atomic

scale. Here, we use STM-based hydrogen lithography – in combination with a gaseous

dopant source and a thermal silicon source – to fabricate highly phosphorus doped nanos-

tructures in a silicon single-crystal environment.

Following the goal of realizing a single donor device, we initially fabricate donor-based

quantum dots. Here, electrons are confined in all three dimensions resulting in a quantized

energy spectrum. Quantum dots have attracted significant research interest over the past

30 years since they allow the effects of an engineered confinement to be studied in structures

that are often referred to as “artificial atoms” [24]. We then follow a systematic approach

to down-scaling of donor-based quantum dots towards the single donor limit. Finally,

we demonstrate the fabrication of a deterministic single donor transport device where

precisely one phosphorus dopant atom is patterned between electrical leads with a spatial

accuracy of ±6 Å.

Our approach thus enables the placement of individual impurities within a single-crystal
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silicon environment with a spatial accuracy comparable to the lattice spacing. The results

of this thesis therefore present an important step towards a scalable donor-based quantum

computer in silicon.

Overview of this thesis

This thesis is structured as follows:

Chapter 2 gives a summary of the background and theoretical concepts necessary for

the understanding of the following chapters. We briefly discuss the relevant material

and electronic properties of silicon which serves as a host material for the donor-based

devices presented here. We also review some characteristic features of electronic transport

in silicon nanostructures. In particular, we introduce effective mass theory as a viable

method to calculate the electronic states of strongly confined systems. Furthermore, we

discuss the constant interaction model of Coulomb blockade which will be applied in

subsequent chapters to interpret experimental results on quantum dots.

The experimental methods used will be described in chapter 3. Here, we first give a brief

introduction to the basics of scanning tunneling microscopy (STM) and describe the fea-

tures of our STM system. This is followed by an overview of the fabrication technique used

to realize planar dopant-based devices in silicon by means of STM hydrogen lithography.

We then explain how the electrical transport properties of these devices are measured at

low temperatures in a dilution refrigerator.

The subsequent four chapters then present the key experiments and results of this PhD

thesis:

Chapter 4 concerns itself with advances in device fabrication developed during this thesis.

We present an improved strategy to align ex-situ metallic contacts and top gates to the

dopant devices allowing for an overall alignment accuracy of ∼100 nm. This method relies

on a hierarchical array of alignment markers that is etched into the silicon substrate. A

key feature of this new alignment strategy is the controlled formation of step-free areas

in the middle of a central etched marker, which allows the active area of a device to be

patterned on a single atomic plane. We will highlight the importance of this for donor-

based quantum computation architectures. Furthermore, we introduce a new method to

form reliable ohmic contact to the overgrown dopant structures by using vertically etched

contact vias.

In chapter 5 we show how STM-lithography can be used to fabricate functional donor-

based quantum dot structures in silicon. Here, we present a multiterminal planar quantum
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dot in the many-electron regime and demonstrate how donor-based in-plane gates can be

used as a viable alternative to metallic top gates to reliably tune the electrochemical of the

dot. In particular, we compare the use of such in-plane gates in an epitaxial environment

with conventional surface gates and find superior stability of the former. Based on these

results, we then describe the particular challenges of down-scaling in a planar dopant-based

architecture and discuss strategies to overcome these obstacles.

Successful down-scaling will be demonstrated in chapter 6, where we present a donor-

based quantum dot in the few-electron regime. Electrical characterization of this device

at low temperatures reveals a surprisingly dense excitation spectrum at an energy scale

of ∼100μeV. We attribute this spectrum to valley splitting of electronic states in the

strongly confined dot. To support our interpretation, we present extensive effective mass

calculations for our few-donor structure. These results highlight the importance of the

valley degree of freedom in ultra-small silicon quantum devices.

In chapter 7 we demonstrate how STM-lithography can be used to fabricate a gated single

donor transport device in silicon. Here, exactly one phosphorus dopant is placed between

source and drain electrodes with a spatial accuracy comparable to the lattice spacing.

Low-temperature transport measurements reveal a stability diagram that is consistent

with the bound states of a single donor. Furthermore, we observe a charging energy that

is in very good agreement with reported values for phosphorus donors in bulk silicon. We

also find indications for bulk-like excited states in the co-tunneling spectrum of the device.

We attribute the bulk-like properties to the absence of surface gates and nearby interfaces

in our planar architecture.

Chapter 8 concludes this thesis and gives an outlook on future experiments.
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Chapter 2

Background

2.1 Electronic properties of silicon

Silicon (Si) with atomic number 14 is one of the most abundant elements on earth. It has

several isotopes, the most common of which (∼92%) is 28Si which has nuclear spin zero.

To this day, silicon remains the most important material in the semiconductor industry

where it is used to fabricate transistors, microchips, integrated circuits, and solar cells.

As a result, Si is also one of the most extensively studied materials. The following section

gives a brief overview of its material properties so far as they are relevant for this thesis.

They can be found in any introduction to semiconductor physics, e.g. ref. [25].

In bulk Si, each atom forms covalent bonds to its four neighbors in a tetrahedral con-

figuration, as illustrated in Fig. 2.1. It thus adopts the diamond cubic crystal structure

represented by a face-centered cubic (fcc) Bravais lattice with two atoms in each primitive

Figure 2.1: Bulk silicon lattice structure. In the diamond cubic crystal structure
of bulk Si each atom is covalently bound to 4 tetrahedral neighbors. Reproduced from
[26].
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Figure 2.2: Band structure of silicon. a, The 1st Brillouin zone of the fcc lattice
showing the labels for high symmetry points. b, Simplified band structure (or ε-k
diagram) for bulk silicon. The blue arrow indicates the position of the conduction
band minima at k ≈ 0.85 2π

a along 〈100〉 which leads to 6 degenerate “valleys” (see
Fig. 2.4 a). Unoccupied states are shaded in gray. Si has an indirect bandgap of
1.12 eV at 300K. Reproduced from [27].

cell, separated by a/4 in each dimension. The lattice spacing a (i.e. the length of the unit

cell) is approx. 5.43 Å. The first Brillouin zone of the fcc lattice is depicted in Fig. 2.2 a.

Silicon is an elemental group-IV semiconductor with a bandgap of ∼1.12 eV at room

temperature. A simplified band structure for bulk Si is shown in Fig. 2.2 b. Silicon

has an indirect bandgap, i.e. the maximum energy state of the valence band and the

energy minimum of the conduction band occur at different positions in k-space. The

conduction band minima are located at k = 0.852π
a along the 〈100〉 directions. Due to

the crystal symmetry, this leads to 6 equivalent minima which are degenerate in energy.

The presence of these 6 so-called valleys (see Fig. 2.4 a) has important implications for

electronic transport in silicon systems which will be discussed in the next section.

The Si(100) surface

The crucial part of device fabrication in this thesis was performed on the 2×1 reconstructed

Si(100) surface. When a bulk silicon crystal is truncated along a crystallographic (100)

plane (see Fig. 2.3 a), every surface atom has two valence electrons that do not participate

in a covalent bond (Fig. 2.3 b). The high density of the resulting dangling bonds renders

this surface configuration energetically unfavorable resulting in a reconstruction of the

surface lattice (Fig. 2.3 c). Here, the formation of dimers (Fig. 2.3 d) between two

neighboring Si surface atoms (with a bond length of 2.67 Å) lowers the energy of the
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a c
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dimer row3.84 Å 2.67 Å

Figure 2.3: Surface reconstruction of Si(100). a, Si bulk truncated along the
(100) direction yields an energetically unfavorable surface with a 1 × 1 symmetry,
where each Si surface atom has two dangling bonds (b). c, The formation of dimers
lowers the energy of the surface which results in the Si(100)-2 × 1 reconstruction.
These dimers form parallel rows on the surface with a pitch of 7.68 Å. d, The dimers
of the reconstructed surface are covalently bound by a σ-bond. In addition, the
overlap between the remaining dangling bond on each atom forms a (weaker) π-bond.
Reproduced from [26].

surface. These dimers form ordered rows on the reconstructed Si(100) 2× 1 surface.

2.2 Transport in silicon nanostructures

Describing the motion of charge carriers through a crystalline environment in a quantum

mechanical picture is not a trivial task. A common simplification is to introduce a carrier

effective mass. In this approximation electrons and holes are treated like free particles in

a vacuum, but with a different effective mass which captures the effects of the periodic

potential of the crystal.

2.2.1 The concept of effective mass

The concept of effective mass (see e.g. [28]) in solid-state physics is an approximation

used to describe carriers in a crystalline environment. Depending on the symmetry of the

crystal, the effective mass m∗ is anisotropic and is thus represented by a tensor:

(
1

m∗

)
ij

= �
−2 ∂

2ε(k)

∂ki∂kj
(2.1)

where k is the wave vector and ε(k) the energy of the charge carrier. This means that

the effective mass is inversely proportional to the curvature of the dispersion relation ε(k)

as determined by the material’s band structure. For electrons in bulk silicon (the band
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diagram for which is shown in Fig. 2.2) the above tensor can be diagonalized yielding

a longitudinal and two degenerate transversal effective masses, ml = 0.92me and mt =

0.19me, respectively, where me ≈ 9.11 · 10−31 kg is the electron rest mass.

The effective mass concept is widely used to describe the motion of charge carriers under

the influence of electric or magnetic fields. Calculations of bulk conduction properties

commonly employ an average effective mass which for electrons in Si is given by

m∗
ave = 3

(
1

ml
+

1

mt
+

1

mt

)−1

≈ 0.26me. (2.2)

2.2.2 The effective mass approximation

The following section briefly introduces effective mass theory (EMT) as developed by

Kohn and Luttinger [29] to calculate transport properties of semiconductors. It follows

an introduction by Davies [30]. For simplicity we will assume an isotropic effective mass.

Let us initially consider a one-dimensional system. Suppose we need to solve for the wave-

function Ψ(x) of a perfect crystal in the presence of an additional potential or perturbation

V (x). The Schrödinger equation then takes the form

[Ĥ0 + V (x)]Ψ(x) = EΨ(x) (2.3)

where Ĥ0 is the Hamilton operator of the periodic potential for which we assume we know

the solutions, Ĥ0Φnk(x) = ε(k)Φnk(x). For a periodic potential these solutions are Bloch

functions, Φnk(x) = unk(x)e
ikx, where unk(x) has the same periodicity as the potential

and n is the band index. In the EMT approach, one makes two important assumptions: (i)

Only the wavefunctions from one band play a significant part, so that the different bands

can be treated independently. (ii) States from only a small region of k-space around the

bottom of the band at k = k0 contribute significantly to the solution. Under these two

assumptions, the wavefunction of the problem can be written as1

Ψ(x) ≈ Φnk0F (x) (2.4)

This means that the wavefunctions can be decomposed into an atomic-scale part (i.e. a

Bloch function at the local minimum of the energy band) and an envelope function F (x)

(see Fig. 2.5 b). Because of assumption (ii), the latter must be a slowly varying function

1For notational simplicity, we assume a single conduction band minimum at k0 = 0 as is the case for
GaAs, for example. If several minima are present (such as in Si) the corresponding wavefunction is a sum
over the contributions from all band minima.
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in real space. Using eq. (2.4), the Schrödinger equation (2.3) then reduces to a much

simpler form [
εn

(
−i

d

dx

)
+ V (x)

]
F (x) = EF (x). (2.5)

The result is an equation for the envelope function alone, including an effective Hamilto-

nian which does not contain the periodic potential of the host crystal anymore. In three

dimensions, the kinetic operator εn(−i d
dx ) is replaced by εn(−i∇). This effective Hamil-

tonian would still be very complicated if we consider the full band structure for εn(k).

However, in most cases the dispersion relation around the conduction band minimum Ecb

at k = k0 can be fitted quite accurately by a parabola:

εn(k) = Ecb +
�
2(k − k0)

2

2m∗ (2.6)

Substituting this into (2.5) we thus obtain

[
− �

2

2m∗∇2 + V (r)

]
F (r) = (E − Ecb)F (r) (2.7)

The final result of the EMT approach is a Schrödinger equation which resembles that for

free electrons, except for the effective mass, with the energy measured from the bottom

of the conduction band. Regarding the applicability of the latter for devices in silicon,

it is necessary to relax assumption (i) above. Silicon has several equivalent valleys in

the conduction band, all of which must be considered to describe electronic states. The

effective Hamiltonian then becomes a matrix of differential equations acting on a vector

whose components are the wavefunctions in each band.

Despite its severe approximations, EMT has been quite successful in providing an accurate

description of systems even well beyond its range of validity [31], such as calculating the

electronic states of shallow donors in silicon [32].

2.2.3 Valley-splitting in silicon

The crystal symmetry of bulk silicon results in 6 energetically degenerate valleys as illus-

trated in Fig. 2.4 a. This degeneracy has a profound impact on the transport characteris-

tics of silicon quantum devices.

By confining the carriers in one or more directions – and thus reducing the symmetry – the

valley degeneracy can be partially lifted. This is illustrated in Fig. 2.4 a where electrons

are strongly confined in z-direction (along [001]) resulting in a two-dimensional system.

Experimentally, this can be realized in quantum wells of Si heterostructures [33, 34] or
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Figure 2.4: Valley splitting in silicon. a, The 6 conduction band minima, or
valleys, within the 1st Brillouin zone of bulk silicon (see Fig. 2.2 a). If the system
is confined along one direction, the resulting 2D bandstructure is a projection of
the 3D case onto a plane perpendicular to the confinement direction. b, The 6-fold
degeneracy of the conduction band minima of bulk silicon can be partially lifted by
confining the electrons to two dimensions. The remaining degeneracies may be lifted
by additional abrupt confinement.

in δ-doped silicon [35]. The corresponding 2D band structure is then a projection of the

bulk band structure onto a plane perpendicular to the confinement direction in k-space.

The projection leads to 4 degenerate Δ-pockets as well as two Γ-pockets at k = 0 which

are lower in energy (Fig. 2.4 b).

The remaining degeneracies can be broken in the presence of sharp confinement or mate-

rials interfaces. The resulting valley splitting depends on the details of the confinement

potential which must both be steep enough as well as occur on a nm-scale in order to yield

a significant splitting. An abrupt change in confinement potential along a given crystal

direction will generally lead to a coupling between the two valley states of the correspond-

ing k-axis. Consider a confinement along the z-direction. A simplified schematic of the

conduction band edge along ẑ is depicted in Fig. 2.5 a. Within the framework of the

effective mass approximation the wavefunctions for states close to the conduction band

minima at k±z = ±k0ẑ can then be expressed as [31]

Ψ(r) =
∑
j=±z

αje
ikjzukj

(r)F (r) (2.8)

where eikjzukj
(r) are Bloch functions reflecting the periodic potential of the crystal and

the coefficients αj represent the respective contributions from both z-valleys. F (r) is the
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Figure 2.5: Valley splitting in the effective mass approximation. a, Simpli-
fied schematic showing the conduction band edge along [001] within the 1st Brillouin
zone (BZ). The band minima occur at ±k0 ≈ 0.85 2π

a . b, In the presence of a sharp
confinement potential V (z) the eigenstates of the system can be expressed by pairs of
even and odd functions, Ψe and Ψo, respectively. While both have the same envelope
function F (r), their fast-oscillating parts are out of phase by π/2 which can result in
an energy difference between the even and odd valley combinations.

envelope function satisfying the equation

[Ĥ0 + Vv(z)]F (r) = εF (r) (2.9)

Here, the quantum well is fully described by Ĥ0 while all the details of the valley interaction

are captured in terms of an effective coupling potential Vv(z) which will be treated as a

perturbation. The form of this coupling potential is not a priori known and must be

determined for each system. Using first order perturbation theory, eq. (2.9) can be

transformed2 into matrix form [31]

⎛
⎝ ε(0) Δ1

Δ∗
1 ε(0)

⎞
⎠

⎛
⎝ α−z

α+z

⎞
⎠ = ε

⎛
⎝ α−z

α+z

⎞
⎠ (2.10)

where ε(0) is the eigenenergy of the unperturbed Hamiltonian Ĥ0. Diagonalizing the matrix

equation we obtain the new eigenenergies

ε± = ε(0) ±Δ1 (2.11)

with the valley splitting Ev = 2|Δ1|.

Due to the symmetry of the problem it is a reasonable approach [31] to represent the

eigenstates of eq. (2.10) by pairs of even and odd valley combinations corresponding to

2The atomic scale oscillations ukj (r) are dropped since they lead only to small corrections.
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(α−z, α+z) ∝ (1, 1) and (1,−1), respectively:

Ψe(r) = cos(k0z)F (r) (2.12)

Ψo(r) = sin(k0z)F (r) (2.13)

Both wavefunctions have the same envelope but their fast-oscillating parts are phase

shifted by π/2 as depicted in Fig. 2.5 b. The valley splitting can then be calculated

as3

Ev = 〈Ψe|V |Ψe〉 − 〈Ψo|V |Ψo〉 (2.14)

In chapter 6 we will use this approach to calculate the valley splitting arising from the

lateral confinement in a few-donor silicon quantum dot. In this case, the valley splitting

potential Vv(r) will be identified as the confinement potential of the quantum dot itself.

2.2.4 Density of states in lower dimensions

In transport structures on the sub-μm scale, a strong confinement along one or more

directions can lead to the formation of subbands that reflect the reduced dimensionality of

the system [36]. This occurs when the characteristic confinement length scale is smaller

than the Fermi wavelength λF of the system, i.e. the de-Broglie wavelength of electrons

at the Fermi level. The formation of these subbands affects the number of states n(E)

that contribute to transport processes at a given energy. For a bulk material, the density-

of-states (DOS) ρ(E) = dn(E)/dE has the well-known square root dependence ρ3D(E) ∝
√
E − Ecb where Ecb is the conduction band minimum. By contrast, the DOS in two

dimensions is independent of energy,

ρ2D(E) = gsgv
m

2π�2
(2.15)

Here, gs and gv account for the spin and valley degeneracy, respectively. Because of the

constant density-of-states, the electron sheet density ns is directly proportional to the

Fermi energy, ns = gsgvm
∗EF /2π�

2. As a result, the Fermi wavelength of a 2D system is

related to the carrier density as

2π

λF
= kF =

√
4πns

gsgv
(2.16)

3The operator V can be related to Vv(z) of eq. (2.9).
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Figure 2.6: Density of states in 1, 2, 3 dimensions. Schematic comparison of
the density of states as a function of energy for a three-dimensional system (black),
a two dimensional system (blue) and a one-dimensional system (red). The latter
diverges at certain energies En which indicate the bottoms of the 1D subbands.

The second 2D subband starts to be populated when EF exceeds the bottom of the second

band, which leads to the stepwise increasing DOS depicted by the blue curve in Fig. 2.6.

If the dimensionality is reduced even further, each 2D subband splits into a series of 1D

subbands with band bottoms at En, where n=1,2,... The one-dimensional DOS is then

given by

ρ1D(E) =

√
m∗

2π�2
1√

E − En
(2.17)

The “kinks” in the DOS (i.e. the energies for which dρ/dE diverges) are commonly referred

to as van Hove singularities. The spacing between the discontinuities in the 2D and 1D

DOS reflects the confinement of the system. It should be noted that even for 2D and 1D

structures, the corresponding DOS is continuous in energy. This changes if the charge

carriers are confined in all 3 dimensions as is the case for (“0-dimensional”) quantum dots.

Here, the continuum of states is replaced by a discrete spectrum which will be discussed

in more detail in section 2.3.

2.2.5 Transport in planar dopant layers in silicon

The electronic properties and particularly the conductivity of semiconductors can be dras-

tically altered by introducing comparatively small amounts of foreign materials. For sil-

icon, typical (bulk) doping densities range from 1013 cm−3 to 1020 cm−3, roughly corre-

sponding to a ratio of impurities to silicon atoms of 1/109 to 1/100. Depending on the host

material, the dopants can act either as electron acceptors or electron donors. As a group-

IV element, silicon is typically doped with group-III acceptors (such as B, Ga) or group-
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V donors (P, As). Bulk doping of Si nanostructures is commonly achieved by thermal

diffusion or ion implantation in conjunction with a suitable lithography mask. Here, the

resulting doping profile typically varies (in all 3 dimensions) over length scales much larger

than the lattice spacing. By contrast, the structures presented in this thesis are fabricated

in δ-doped silicon, where the impurities are essentially confined to a two-dimensional plane

in the Si host crystal yielding an abrupt doping profile in the plane-perpendicular direction

on a length scale of a few Å. Our quantum electronic devices are realized by laterally pat-

terning phosphorus δ-doped layers in silicon using STM-lithography. Here, the extremely

high (sheet) doping densities (ns ∼ 1014 cm−2, corresponding to 1 P donor per 4 Si atoms)

within the dopant plane has important implications for the transport properties of the

two-dimensional Si:P structures which will be discussed in the next section.

Transport parameters of δ-doped Si:P

Transport in phosphorus δ-doped Si has previously been studied both theoretically [35, 37]

and experimentally [38, 39, 40]. Qian et al. [35] have used density functional theory (DFT)

to calculate the 2D bandstructure at 1/4ML P coverage. Here, the donor electrons are

represented as linear combinations of the products of two-dimensional plane waves (within

the dopant plane) and 1D Gaussian functions (in z-direction). The resulting bandstructure

is shown in Fig. 2.7 a, where the energy zero corresponds to the conduction band minimum

(CBM) of bulk Si. As a result of the high doping density the conduction bands of the

2D system are pulled down below the Fermi level EF which is calculated to lie approx.

99meV below the bulk CBM [35]. As discussed above, the strong vertical confinement

within the δ-doping plane breaks the 6-fold valley degeneracy of bulk Si thus resulting in

the formation of 2D subbands. Here, two Γ subbands arise from the projection of the 2

z-valleys while the remaining x- and y-valleys form the fourfold degenerate Δ-bands (see

Fig. 2.4). Considering exchange correlations (dotted lines in Fig. 2.7 a), Qian obtains

a valley splitting of ∼20meV between the Γ1 and Γ2 valleys resulting from the abrupt

doping profile along the z-direction. Electronic transport through the Si:P δ-doping plane

occurs via the 6 occupied subbands below the Fermi level. From fitting the curvature

of each calculated subband, Qian obtains effective masses of m∗
t = 0.211 and m∗

l = 0.95

which are slightly modified from the corresponding bulk values.

In a more recent publication Carter et al. [37] have performed a full non-empirical band-

structure modeling of the system considering both valence and donor electrons. In contrast

to Qian, who used an empirical pseudopotential to define the doping potential, Carter used



2.2. Transport in silicon nanostructures 17

5

4

3

2

1

0
-20 -10 0 10 20

Distance from δ-layer (Å)

D
en

si
ty

  ρ
 (1

0 
   

e/
cm

  )
21

3

1/2 ML

1/4 ML

1/8 ML

1 ML

ba

0 0.1 0.2 0.3

0

-0.1

-0.2

-0.3

-0.4

0.1

Wavevector  k (2�/a)

En
er

gy
 E

 (e
V

)

1Г
2Г

1Δ

2Δ
E   = -0.99 eVF

Figure 2.7: Theoretical calculations for δ-doped Si:P. a, Subband structure
at a P doping density of 1/4ML. The energy zero is placed at the conduction band
minimum of bulk Si. The dotted lines show the band structure when exchange-
correlations are considered. Reproduced from Qian et al. [35]. b, Plane averaged
distribution of the donor electron density (perpendicular to the dopant plane) for
different P doping densities. For 1/4ML P coverage, the electron density drops to
1/10 of its peak value at a distance of ∼1 nm. Reproduced from Carter et al. [37].

a periodic (three-dimensional) superlattice to represent the dopants. The calculated donor

electron density along z-direction is shown in Fig. 2.7 b for different doping densities. For

1/4ML P coverage, the electron density drops to 1/10 of its peak value at a distance of

∼1 nm from the dopant plane, resulting in an effective electronic “thickness” of the dopant

layer of ∼2 nm. They also calculated the 2D bandstructure for the system, obtaining re-

sults that are broadly consistent with the values reported by Qian. In particular, they find

a Fermi level that lies 130meV below the CBM of bulk Si and a Γ1-Γ2 splitting of 120meV.

The discrepancy with respect to Qian’s values is most likely the result of the assumed or-

dering of the dopants in Carter’s model, which is an inherent feature of the superlattice

representation. This is in contrast to realistic δ-doped Si:P devices where the dopants are

disordered due to the statistical nature of the donor incorporation process [41, 42]. To

capture the effects of disorder, Carter repeated the calculations using a larger4 supercell

(with a disordered dopant distribution within the cell). For the disordered 1/4ML case,

they obtain a Fermi level at −70meV and a Γ1-Γ2 splitting of 60meV. These results will

be used in chapter 6 as an input to calculate the excitation spectrum of a few-donor Si:P

quantum dot.

Experimental transport parameters

To put our work into a larger context, we will briefly summarize some important transport

parameters for our planar dopant-based silicon devices. While these may not be directly

4The max. size of the supercell is limited by finite computational resources. In the disordered case, the
supercell extended 4 lattice sites in both lateral directions and 40 atomic layers in the vertical direction.
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Transport in δ-doped Si:P at 4K

quantity symbol typical values Ref.

sheet electron density ns ∼ 2× 1018 m−2 Goh [39]
mobility μ 20− 100 cm2/Vs Oberbeck [43], Goh [38, 39]
mean free path l ∼ 5− 10 nm Goh [38], Reusch [40]
phase coherence length lϕ < 100 nm Ruess [44], Goh [38]
Fermi wavelength λF ∼3 nm from eq. (2.16)

Table 2.1: Summary of relevant transport parameters for δ-doped Si:P at 4K.

relevant for the understanding of the work presented in this thesis, it will enable the reader

to compare our system to other 2DEG structures in the literature.

The carrier density of δ-doped Si:P layers can be obtained experimentally from Hall-bar

measurements [39]. We reliably obtain electron sheet densities ns of ∼ 2×1018 m−2 which

corresponds to planar doping densities of 0.25ML. Table 2.1 summarizes several relevant

transport parameters obtained in previous experiments on P δ-doped devices by our group.

At low temperatures, electronic transport in two-dimensional δ-doped Si:P layers is domi-

nated by scattering of electrons with the ionized donor atoms within the doping plane [38].

Several characteristic length scales [36] define the transport properties of our system. The

mean free path l is the inverse of the scattering time τ and corresponds to the distance

an electron propagates between two collisions. In the Drude theory of conduction, the

mobility μ is related to the scattering time by

μ =
eτ

m∗ (2.18)

We typically find l ∼ 10 nm [38, 40] in our system due to the high doping densities which

result in frequent collisions. This is reflected by a comparatively low mobility of typically

20− 100 cm2/Vs [38, 39, 43]. By contrast, the spatial separation of dopants and 2DEG in

GaAs/AlGaAs heterostructures allows for mobilities on the order of 107 cm2/Vs [45] with

mean free paths of several μm.

Transport is diffusive in laterally patterned regions where the characteristic width W

is larger than the mean free path, l < W . This is also true for the dopant-based planar

nanowires which serve as electrical leads in the quantum devices presented in later chapters.

Another important parameter is the phase coherence length lϕ which denotes the distance

an electron propagates without undergoing a phase-randomizing inelastic scattering event.

For our δ-doped Si:P layers we typically find lϕ on the order of several 10s of nm at 4K.
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The high doping density in our system results in a small Fermi wavelength which can

be estimated from eq. (2.16). Assuming a two-fold spin and 4-fold valley degeneracy we

obtain λF ∼3 nm. We thus expect truly 2D transport characteristics within the δ-doped

layer since the vertical confinement length scale (∼1 nm) is smaller than λF . For laterally

patterned dopant nanowires with minimal widths of 4−5 nm we expect quasi -1D behavior,

where W ∼ λF .

2.3 Coulomb blockade

Consider a setup of conductors as illustrated in Fig. 2.8 a. An island with a self-capacitance

CΣ is weakly connected via tunnel junctions to two electrodes so that electrons can tunnel

from the source lead via the island to the drain lead. If the size of the island (and therefore

CΣ) is small enough, the so-called charging energy Ec = e2/CΣ required to add an extra

electron onto the island may exceed the thermal energy of the electrons so that current

through the island is suppressed. This phenomenon is called Coulomb blockade. Two

elementary conditions must be satisfied to observe Coulomb blockade [46]:

(i) The thermal energy of the system must be smaller than the charging energy,

kBT 	 e2

CΣ
(2.19)

Experimentally, this can be achieved by measuring at cryogenic temperatures and

devices with sufficiently small (typically sub-μm) islands. In this context the island

is commonly referred to as “dot” to reflect its quasi 0-dimensional character.

(ii) The tunnel coupling between the dot and the leads must be weak enough so that a

well-defined integer number of electrons can reside on the island long enough for the

system to be measured. A lower limit for the tunnel resistances RS,D to the leads

(see Fig. 2.8 b) can be estimated by considering the typical time-scale to charge or

discharge the dot, Δt = RS,DCΣ. Taking into account the Heisenberg uncertainty

principle ΔEΔt = (e2/CΣ)RS,DCΣ > h, we obtain

RS,D 
 h/e2 ≈ 25.8kΩ (2.20)

In the device of Fig. 2.8 a, the tunneling of a single electron causes a discrete change in the

island’s electrostatic energy. In the Coulomb blockaded regime, the number of electrons on

the island is fixed to an integer number N . Let us now consider a suitable gate electrode
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Figure 2.8: Schematic of a lateral quantum dot. a, A conducting island
(“dot”) is connected to source and drain contacts by tunnel junctions and to a gate
by a capacitor. For very small dot sizes, the energy needed to add an extra electron
onto the dot becomes significant and current from source to drain can be blocked. b,
Circuit diagram for a gated dot. The source and drain tunnel barriers are represented
as a parallel capacitor and resistor. The charging energy in this circuit is e2/(CS +
CD + CG).

which has capacitive coupling but no tunnel coupling to the island. By applying a voltage

to the gate, we can raise (lower) the electrostatic energy of the island in a continuous

manner until eventually an electron can tunnel off (onto) the dot thus minimizing the

energy of circuit. Such gated devices, which allow for the controlled tunneling of individual

charges, are therefore referred to as single electron transistors (SET). Controlled single

electron tunneling was first experimentally observed in 1987 in gated aluminium tunnel

junctions [47]. Since then, quantum dots have been realized in a vast and diverse range of

materials such as metallic nanoparticles, organic molecules, carbon nanotubes as well as

a variety of semiconducting nanostructures.

So far the phenomenon of Coulomb blockade has been introduced from a purely electro-

static point of view. However, with typical device sizes on the order of a few 100 nm,

quantization effects become relevant. In particular, the confinement of charge carriers

within the quantum dot will lead to a discrete spectrum of quantum mechanical states.

2.3.1 The constant-interaction model

The simplest theoretical model to describe a Coulomb blockaded structure with a discrete

energy spectrum is the so-called constant capacitance or constant interaction (CI) model

[48]. The introduction presented in this section follows refs. [49] and [50].

The CI model is essentially based on two assumptions: (i) The discrete energy spectrum is

assumed to be independent of the number N of electrons on the dot. (ii) The interactions

between the dot and all other electrodes as well as the Coulomb interactions between the

electrons on the dot can be represented by capacitances which are assumed to be constant
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(regardless of the electron number or applied voltages). The system can thus be fully

described by a set of capacitances as illustrated in the circuit diagram of Fig. 2.8 b. Here,

CΣ is the sum over the mutual capacitances between the dot and all the other electrodes,

CΣ = CS +CD +CG. The total energy of a dot with N electrons in the ground state can

then be written as

U(N) =
[e(N −N0) + CSVSD + CGVG]

2

2CΣ
+

N∑
i=1

εi (2.21)

Here, we assume that the source-drain voltage VSD is applied to the S electrode while

keeping D grounded5. N0 is the number of electrons in the dot at zero gate voltage VG.

The total energy is thus comprised of the electrostatic energy (where CSVSD and CGVG

are continuous and represent the charge induced by the externally applied voltages) and

the sum of the single particle energies εi. The latter reflect the confinement characteristics

of the dot and may depend on additional parameters such as an external magnetic field.

Transport experiments by definition entail a change in electron number on the dot. Such

processes are conveniently described in terms of an electrochemical potential which is

defined as the energy to required to add the N th electron to the dot:

μN = U(N)− U(N − 1) = (N −N0 − 1

2
)Ec − e(

CS

CΣ
VSD +

CG

CΣ
VG) + εN (2.22)

Equation (2.22) describes the transition between the ground states of the N and the N−1

electron system, respectively.

Coulomb diamonds

Energy diagrams for the quantum dot are illustrated in Fig. 2.9 a. The continuous states

in the source and drain leads are filled up to the potentials μS and μD, respectively. The

discrete 0D-states in the dot are filled with N electrons up to μN . The energy spacing

between the dot states is commonly referred to as the addition energy which is given by

Eadd = μN − μN−1 = Ec +ΔEN (2.23)

The addition energy is thus the sum of the charging energy Ec and the single-particle

level spacing ΔEN = εN − εN−1. The latter generally increases as the dot size is reduced.

It should be noted, though, that even for small dots ΔEN can be zero, e.g. when two

5This is often referred to as asymmetric bias and was the standard setup for the quantum dot measure-
ments of this thesis.
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Figure 2.9: Coulomb diamonds. a, Low-bias energy diagrams for a quantum dot
connected to source (S) and drain (D) leads via tunnel barriers. In case I, current
is blocked and the dot contains a fixed number of N electrons. By contrast, in case
II an electrochemical potential of the dot is aligned with the lead potentials μS and
μD enabling conduction through the dot. b, By applying a gate voltage VG the
electrochemical potentials of the dot can be tuned with respect to the leads, resulting
in a pattern of conductance peaks. c, The conductance as a function of bias voltage
VSD and gate voltage yields a so-called stability diagram of the quantum dot. Here,
the current is blockaded in the diamond shaped regions. The height of these Coulomb
diamonds corresponds to the addition energy.

consecutive electrons are added to the same spin-degenerate level.

In the upper panel of Fig. 2.9 a (case “I”) transport through the device is blocked and

the dot contains a fixed number of N electrons. By applying an appropriate gate voltage

VG the dot potential μN+1 can be aligned with that of source and drain (case “II”). This

allows the electron number on the dot to fluctuate between N and N + 1 thus enabling

conduction through the dot. At low bias voltages (eVSD 	 Ec), this results in a pattern

of conductance peaks as a function of the gate voltage as illustrated in Fig. 2.9 b. The

spacing between these Coulomb peaks can be obtained by solving eq. (2.22) for VG:

ΔVG = V
(N)
G − V

(N−1)
G =

CΣ

eCG
(μN − μN−1) =

1

eαG
Eadd (2.24)

Here, we have introduced the coupling factor or lever arm of gate G:

αG =
CG

CΣ
(2.25)

Evidently 0 < αG < 1. It is a measure for the “effectiveness” of a gate and converts the

applied gate voltage into an energy.

We now consider a finite source-drain bias VSD which is applied to the source electrode,

i.e. μD = const and μS = μD − eVSD. We can then formulate constraints for the number
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N of electrons on the dot to remain stable. For VSD > 0 these are:

μN < μD − eVSD (2.26)

μN+1 > μD (2.27)

Analogously, for VSD < 0 we obtain:

μN < μD (2.28)

μN+1 > μD − eVSD (2.29)

The constraints can be converted into two border lines for VSD > 0:

VG =
1

eαG

[
εN + Ec

(
N − 1

2

)
− μD + e(1− αS)VSD

]
, (2.30)

VG =
1

eαG

[
εN+1 +Ec

(
N +

1

2

)
− μD − eαSVSD

]
(2.31)

The lines for different N define diamond shaped regions in the VSD-VG plane (see Fig.

2.9 c), where conduction is blockaded. Since the border lines cross each other at eVSD =

ΔEN + Ec, the height of these Coulomb diamonds directly corresponds to the addition

energy.

Excited state spectroscopy

Up to now we have assumed that transport through the dot occurs via a single level.

However, additional levels may contribute if the bias exceeds the single-particle level spac-

ing, eVSD > ΔEN+1. This is illustrated in Fig. 2.10 where transitions between N and

N+1 electrons are shown considering not only the ground states (GS) but also the excited

states (ES) for both electron numbers (panel a). This leads to additional electrochemical

potentials of the dot as depicted in Fig. 2.10 b. The additional levels cause an increase

in device current as they enter the bias window and therefore result in additional lines

of increased conductance outside the blockaded diamonds (Fig. 2.10 c). Panel d shows

the corresponding energy diagrams for the three points (I to III) indicated in the VSD-VG

plane. By measuring the stability diagram of a quantum dot, i.e. its conductance as a

function of bias and gate voltages, it is thus possible to reconstruct the single-particle

excitation spectrum of the system.
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Figure 2.10: Excited state spectroscopy. a, Arrows indicate the possible tran-
sitions between different dot states for N and N+1 electrons. b, The corresponding
electrochemical potentials for the transitions depicted in (a). c, Transport through
these excited states results in lines of increased conductance in the stability diagram,
running parallel to the diamond edges outside of the blockaded regions. The corre-
sponding level alignment at the indicated positions is illustrated in d.

2.3.2 Limits of the constant-interaction model

Despite its simplicity, the constant-interaction model derived above has been very success-

ful in describing transport phenomena in quantum dots in a variety of materials systems

[46]. This is particularly true for quantum dots in the many-electron regime and for limited

ranges of plunger-gate voltages. As the number of electrons is reduced or the gate-voltage

ranges are extended, modifications of this description may become necessary. In partic-

ular, it is found that the experimental capacitances of few-electron dots change with the

electron number and therefore depend on the applied gate voltages. For many practical

purposes, however, the constant-interaction picture can still be used if one allows for gate

voltage dependent lever arms αG = αG(VG). This will be discussed in more detail using

the example of a few-donor quantum dot in chapter 6.

If the tunnel coupling between the dot and the source and drain leads is gradually in-

creased, further corrections to the constant-interaction theory have to be taken into ac-

count. In the strong-coupling regime (see section 2.3.4), sequential resonant tunneling is

no longer the dominant transport process and higher order tunneling processes have to be

considered. One of the most important amongst these are so-called co-tunneling processes

[51], i.e. correlated tunneling processes of two (or more) electrons, which will be described

in the next section.
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Figure 2.11: Co-tunneling processes. a, Schematic level alignment depicting
elastic (I) and inelastic (II) co-tunneling processes. b, While sequential tunneling is
forbidden within the Coulomb blockaded regions, elastic co-tunneling of carriers leads
to a finite current within the Coulomb diamonds. When the bias voltage exceeds the
energy separation ΔEN to an excited state, inelastic co-tunneling becomes possible
(dark gray region).

2.3.3 Co-tunneling

The constant interaction model presented above describes Coulomb blockade essentially

as a classical phenomenon where single-electron transitions occur between well-defined

charge states. At low bias (within the Coulomb diamonds), these transitions are forbidden

as a result of energy conservation. However, electronic transport through a quantum

dot can also arise from higher-order tunneling processes. The latter are energetically

forbidden for sequential tunneling of individual electrons – but can occur if two (or more)

electrons participate in the process [51]. This correlated tunneling or co-tunneling occurs

via intermediate virtual states on the dot which may be occupied for a time tH � �/Ec

which is limited by the Heisenberg uncertainty principle.

The two energy schematics of Fig. 2.11 a illustrate co-tunneling processes. In panel I, an

electron tunnels via the virtual state μN below the Fermi level of both source and drain

(μS and μD, respectively). This process is referred to as elastic co-tunneling since the

transferred electron keeps its energy. Elastic co-tunneling can occur for any bias voltage

and therefore leads to a small background conductance in the blockaded region (indicated

by the grey shading in Fig. 2.11 b) where sequential tunneling is suppressed. At larger

bias voltages, inelastic co-tunneling processes become possible (panel II of Fig. 2.11 a).

Here, an electron tunnels into a virtual state (indicated by the red line) that corresponds

to an excited state of μN . Simultaneously, an electron tunnels from the μN state on the

dot to the other lead. Since this process leaves the dot in an excited state, the bias eVSD

must exceed the required excitation energy ΔEN . Inelastic co-tunneling results in steps in
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the differential conductance within the blockaded region. This is indicated by the dotted

red line in Fig. 2.11 b, above which (in the dark gray region) both elastic and inelastic

co-tunneling processes can occur.

For a quantum dot structure with the conductance G, a simple estimate for the co-

tunneling rate Γct can be given by [52]

Γct ≈ Γse
G

GQ
(2.32)

Here, Γse is the single electron tunneling rate and GQ = e2/h. Co-tunneling processes are

less probable than single-electron tunneling if G 	 GQ and therefore become only visible

if the dot is in the strongly coupled regime where G � GQ.

2.3.4 Line shape of the Coulomb conductance peaks

Up to now we have treated the quantum dot as an isolated system. However, in a more

realistic picture we need to consider the finite coupling of the quantum mechanical levels

of the dot to the source and drain leads arising from an overlap of the corresponding

wavefunctions. The tunnel coupling results in a finite energy width of the dot levels given

by �Γ = �ΓS + �ΓD. Here, ΓS,D are the tunnel rates to the source and drain electrode,

respectively, and Γ therefore corresponds to an inverse average lifetime. Considering a

finite temperature T , we can now differentiate two different transport regimes [48] for

our system given by the weak-coupling limit, �Γ 	 kBT , and the strong coupling regime,

kBT � �Γ.

Weak-coupling regime

In the weak-coupling limit the temperature is larger than the quantum mechanical broad-

ening of the energy levels of the dot. For a theoretical treatment of the conductance

through the quantum dot it is important to know how many dot levels contribute to the

transport. Here, we will only consider the quantum Coulomb blockade regime, where the

thermal energy is much smaller than the average single-particle spacing, �Γ 	 kBT 	 ΔE,

so that transport occurs through a single dot level. A theoretical description of this regime

was given by Beenakker [48]. Here, the energy levels of the dot are represented by delta

functions while the electronic states in the source and drain leads are treated as a contin-

uum with a thermal occupation that is governed by the Fermi-Dirac distribution

f(E) =
1

eE−μ/kBT + 1
(2.33)
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Beenakker derived an analytical expression for the Coulomb peak conductance G(i) arising

from the dot level i:
G(i)

G
(i)
max

= cosh−2

(
αG(V

(i)
G − VG)

2kBT

)
(2.34)

where V
(i)
G denotes the position of the Coulomb peak on the gate voltage axis. The peak

amplitude G
(i)
max is given by

G(i)
max =

e2

4kBT

(
1

Γ
(i)
S

+
1

Γ
(i)
D

)−1

(2.35)

where Γ
(i)
S,D represent the tunnel rates for level i to the source and drain leads, respec-

tively. A characteristic of the weak-coupling regime is a decreasing peak amplitude as the

temperature is raised. From fitting eq. (2.34) to an experimental Coulomb peak, it is

therefore possible to determine the effective electron temperature of the system. This will

be demonstrated for a donor-based quantum dot in the few-electron limit in chapter 6.

Strong-coupling regime

In the strong coupling limit, where kBT � �Γ, higher-order tunneling processes need to be

considered which goes beyond the formalism discussed above. Assuming non-interacting

electrons the conductance in the zero temperature limit is given by the Breit-Wigner

formula [53]:

G =
2e2

h

(
1

ΓS
+

1

ΓD

)−1 h2Γ

α2
G(V

max
G − VG)2 + (hΓ/2)2

(2.36)

which corresponds to a Lorentzian lineshape. Here, the coupling constant Γ = ΓS +ΓD is

assumed to be independent of the level index i. The peak height is equal to the conductance

quantum 2e2/h, where the factor 2 reflects the spin-degeneracy. In chapter 7 we will use

eq. (2.36) to extract the difference in tunnel rates (ΓS/ΓD) for a single donor transport

device.

2.4 Summary

In this chapter, we have briefly reviewed the theoretical background for the work presented

in this thesis. In particular, we have introduced effective mass theory as a viable means to

describe valley splitting in silicon. This will be the basis for more elaborate calculations

of the electronic excitation spectrum of a few-donor quantum dot presented in chapter

6. We have also discussed relevant characteristics of transport in dopant-based silicon
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nanostructures.

Furthermore, we have discussed the constant-interaction model of Coulomb blockade. De-

spite its limitations we will demonstrate how this model can be used to describe quantum

dot devices both in the many-electron as well as in the few-electron regime.



Chapter 3

Experimental Methods

The following chapter gives a brief overview of the experimental techniques as well as

the equipment used throughout this thesis. It is divided into two parts: the first part

focuses on sample fabrication. Here, we describe the instrument that is central to the

fabrication of the dopant-based silicon nanodevices presented in this thesis, a scanning

tunneling microscope. We then briefly discuss the cleanroom equipment used for ex-situ

post-processing of the samples.

The second part deals with sample measurement and introduces the equipment used to

characterize the transport properties of the STM-patterned devices at low temperatures.

3.1 Scanning tunneling microscopy

The tool that is at the heart of our approach to fabricating functional P-doped nanostruc-

tures in silicon is a scanning tunneling microscope (STM). Invented by Binnig and Rohrer

[22] in the early 1980’s it has become a widely used instrument in surface science due to

its unrivalled resolution. In this section, we will give an introduction to the basic principle

of operation of a STM. We will then briefly discuss the underlying physics following the

approach of Chen [54]. For a more detailed description and theoretical discussion, the

reader is referred to several extensive review articles and textbooks [54, 55, 56].

The schematic of Figure 3.1 illustrates the basic components of a STM system. A sharp

metal tip is scanned in a raster motion over a conducting surface in a vacuum environment.

Piezoelectric actuators are used to move the tip in both lateral (x,y) as well as vertical (z)

direction. If the distance between tip and sample is small enough (typically less than one

nanometer), electrons can tunnel through the vacuum barrier between the two conductors.
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Figure 3.1: Schematic diagram of a scanning tunneling microscope. The
simplified schematic illustrates the principle of operation of a STM in constant current
mode: a sharp metal tip is scanned over a conducting surface using a piezoelectric
scanner tube. A finite bias voltage between sample and tip results in a tunneling
current which is kept constant by a feedback loop which regulates the z-height of the
tip. By combining the lateral (x,y) and height (z) information, a topographic map of
the surface is acquired.

This results in a finite tunneling current (typically 0.1−1 nA) when a bias voltage is applied

between the tip and the sample. An electronic feedback loop regulates the z-height of the

tip so that the measured tunneling current remains constant. By recording the height of

the tip as a function of the lateral position, a topographical map of the surface can be

generated. This is referred to as constant current mode and is the only mode of operation

which will be used throughout this thesis.

A simplified energy diagram for the sample/vacuum/tip junction is depicted in Fig. 3.2.

Electronic states in both conductors are occupied up to the respective Fermi level EF . Φs,t

represents the workfunction for sample and tip, respectively. The vacuum gap of width

z between the two conductors presents a tunnel barrier for electrons. In this simplified

picture of one-dimensional tunneling through a rectangular barrier we can calculate the

change in tunneling current I(z) if the distance between tip and sample is changed by Δz

[54]:

I(z)

I(z −Δz)
= e2κΔz (3.1)

Here, κ =
√

2me(Φs − eV )/�, me is the electron rest mass, and V is the applied bias

voltage across the tunnel junction. Assuming a sufficiently small bias (eV 	 Φs), we can

estimate the change in tunneling current as a function of Δz. Using the appropriate value

of Φs = 4.8 eV for silicon, we find that the current signal changes roughly by a factor of
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Figure 3.2: Energy diagram for the sample/vacuum/tip tunneling junc-
tion. The simplified band structure diagram illustrates different imaging modes of
a STM. a, Sample and tip are in equilibrium and no net tunneling current flows.
The Fermi level EF separates the filled from the empty states. Φs and Φt are the
workfunctions of the sample and tip, respectively. b, When a negative bias (V < 0) is
applied to the sample, electrons tunnel from the sample’s surface states (with density
ρs(E)) to the metallic tip, causing a net tunneling current (filled state imaging). c, A
positive sample bias (V > 0) results in a tunneling current flowing from the tip into
the surface states of the sample (empty state imaging).

10 if z is varied by 1 Å. It is this exponential dependence of the tunneling current on the

tip-sample separation (along with the high precision of the piezo elements) that allows for

the sub-Å vertical resolution of STM.

In a more realistic picture, the assumption of small bias voltages does not hold anymore.

In particular, imaging semiconductor surfaces typically requires a bias on the order of

1 − 2V due to the finite bandgap of the semiconductor where no electronic states exist

to tunnel from/into. In general, one must therefore consider the density of states of both

sample and tip and integrate over the energy window corresponding to the applied bias.

Evaluating these integrals is usually an involved process. A common simplification is to

assume a constant DOS, ρt, for the metallic tip and only consider an energy dependent

DOS, ρs(E), for the sample. This is illustrated in Fig. 3.2, where the blue curve depicts the

surface density of states of the sample. Tersoff and Hamann [57] have given an expression

for the bias-dependent tunneling current in this case:

I(r, V ) ∝ ρt(EF )

∫ EF+eV

EF

ρs(r, E)dE (3.2)

When a negative bias (with respect to the tip) is applied to the sample, electrons will

tunnel from the sample’s occupied surface states to the tip (Fig. 3.2 b). This is referred

to as filled state imaging. All STM images of silicon surfaces presented in this thesis fall

into this category. Conversely, if a positive bias is applied to the sample, electrons tunnel

from the tip into the unoccupied surface states of the sample (empty state imaging, Fig.

3.2 c). Despite its simplicity, the above model accounts for an important feature of images
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acquired by STM in constant current mode: the generated “height” profile of the sample

surface is actually a map of the local density of states within the energy range defined by

the applied bias. STM images are therefore always a convolution of the spatial topography

and the local electronic structure of the surface.

3.2 The VT-STM system

The main instrument for the fabrication of all devices presented in this thesis is a variable-

temperature scanning tunneling microscope (VT-STM) by Omicron Nanotechnology GmbH.

The system comprises two interconnecting ultra-high vacuum (UHV) chambers – prepa-

ration and analysis chamber – with a base pressure better than 1 × 10−11 mbar. Both

chambers are pumped independently via Varian Star Cell ion pumps as well as tita-

nium sublimation pumps (TSP) while pressures are monitored via ion gauges. Balzers

quadrupole mass spectrometers (QMS) can be used to analyze the composition of the

residual gas in both chambers. A fast exchange load-lock (FEL) allows for quick loading

of both samples and tips which are moved between chambers in specially designed holders

using a system of internal transfer arms and manipulators. The latter are equipped with

resistive heating elements as well as contact brushes for direct current heating of the Si

samples.

Preparation chamber: After pumping the FEL with a turbomolecular pump to roughly

10−6 mbar, the sample holder or STM tip is transferred into the preparation chamber.

Here, the samples are outgassed for several hours using resistive heating (at 300− 400◦C)

as well as direct current heating (at ∼450◦C). Furthermore, Si samples are typically

“flashed” in this chamber, i.e. annealed to ∼1100◦C for 1min to prepare the surface

for STM-lithography. The sample temperature is controlled via viewports using a Mikron

M90 infrared pyrometer. The preparation chamber is also equipped with a silicon sub-

limation source (SUSI) by MBE Komponenten GmbH that allows for Si overgrowth of

completed samples. The SUSI produces a beam of thermally emitted Si atoms from a

heated high-purity silicon filament that allows for growth rates of several Å/min.

Analysis chamber: After flashing, the sample is transferred to the analysis chamber

which contains the actual STM stage (see Fig. 3.3 a). The chamber is fitted with a

high-purity atomic hydrogen source by EPI Ltd which consists of a H2 microdosing valve

and a thermal cracker. The latter is a heated tungsten filament which causes thermal
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Figure 3.3: The VT-STM. a, The STM stage is mounted on a base plate suspended
by springs which decouples the sensitive STM setup from ambient vibration with
the help of eddy current dampers. The sample is mounted above the STM tip as
illustrated in the schematic shown in b. Contact brushes on either side of the sample
holder allow for direct current heating of the sample. c, The Si(100) wafer substrate
is cleaved in 3× 10mm2 pieces and clamped into the sample holder.

dissociation of the beam of incoming H2 molecules into atomic hydrogen. This allows for

in-situ passivation of the highly reactive Si(100) sample surface. The analysis chamber is

also equipped with a microdosing source for high-purity (99.999%) phosphine (PH3), which

serves as a gaseous precursor molecule for phosphorus dosing of depassivated Si surfaces.

A photograph of the STM stage is shown in Fig. 3.3 a. To decouple the sensitive STM

setup from ambient vibrational noise, the entire STM is suspended on soft springs inside

the mounting posts. Vibrations of the stage are further reduced by a passive eddy current

damping mechanism consisting of an array of copper plates suspended between permanent

magnets. The sample is mounted facing downwards above the STM tip as illustrated

in the schematic of Fig. 3.3 b. The position of the tip is controlled by piezoelectric

actuators that allow for coarse and fine motion of the tip in all three dimensions: coarse

movements (in the range from μm to mm) are performed by a piezoelectric “stick-slip”

stepper, while fine motion (nm to μm) is achieved via a piezo scanner tube. The STM

tips are mounted magnetically on this scanner tube which allows for fast tip exchange.
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Throughout this thesis, we have used electrochemically etched tungsten tips supplied

by Omicron Nanotechnology GmbH. To reduce electronic noise, an in-situ pre-amplifier

mounted on the STM stage is used for the tunneling current between the STM tip and

the substrate.

3.3 STM hydrogen lithography

Ever since the invention of the STM in 1981 by Binnig and Rohrer [22], this novel tool

has not only intrigued by its capability to image surfaces with unprecedented resolution –

but also by its potential to modify and pattern such surfaces at the atomic scale. Among

the most notable examples are the formation of the letters ”IBM” with individual xenon

atoms on a nickel (110) surface as well as the renowned “quantum corral” by Eigler’s group

[23] who patterned ferromagnetic cobalt adatoms into a ring on a copper surface and then

imaged the resulting standing wave pattern of electronic surface states within the barrier.

While the latter experiments are based on the principle of moving certain adatoms on

the surface, it is also possible to realize structures by means of a lithographic process.

The idea to use the tip of a STM to pattern structures by selectively depassivating silicon

surfaces was developed in the early 1990’s by Lyo and Avouris [58] for wet-chemically

passivated Si(111)-7 × 7 and later by Lyding and Tucker [59] for Si(100)-2 × 1 surfaces

using a hydrogen termination layer as a monatomic “resist”. Since then, several groups

have reported the patterning of Si(100):H surfaces using STM [60, 61, 62, 63, 64]. Si(100) is

the most technologically relevant surface of silicon due to the fact that it forms the highest

quality Si/SiO2 interfaces. It also exhibits a comparatively simple surface reconstruction

compared to other vicinals, such as Si(111).

The process of STM hydrogen lithography has been refined by our group over many years

[44, 65, 66, 67]. In this section, we will briefly review the relevant processing steps which

are illustrated in Fig. 3.4. For a more detailed discussion, the reader is referred to the

existing publications [65, 66] and previous PhD theses [26, 68].

Surface preparation

To minimize surface contamination by ambient gaseous adsorbates, STM lithography is

performed in an ultra high vacuum (UHV) environment. In-situ processing starts by

outgassing the samples for several hours at T ≈ 450◦C to remove residual adsorbates

such as water vapor. During this step, the Si surface is protected from contamination

by the native oxide layer which desorbs at higher temperatures around 760◦C [69]. To
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Figure 3.4: STM hydrogen lithography. The schematic illustrates the processing
steps involved in STM lithography in UHV along with the typical sample temperature.
a, The Si(100) surface is initially dosed with atomic hydrogen. b, This monatomic
resist is then selectively desorbed with the STM tip. c, The surface is dosed with
phosphine gas which adsorbs onto the exposed Si and dissociates. d, A quick anneal
incorporates the P atoms into the topmost Si layer. e, In a last step, the sample is
overgrown with epitaxial Si.

prepare the silicon surface for lithography, the sample is then quickly annealed (“flashed”)

to ∼1100◦C for approx. 1min. This is achieved by sending a dc current (typically 4−5A)

through the clamped Si sample. During the anneal, the native SiO2 layer is thermally

removed along with remaining carbon residues [70]. Simultaneously, the Si(100)-2 × 1

surface reconstruction is formed as a result of the thermal activation of the surface Si

atoms. After 1min at 1100◦C, the temperature is first quenched to ∼800◦C and then

slowly reduced to RT at a rate of ∼100◦C/min. The slow cool-down yields a low-defect

(2× 1)-reconstructed surface.

Hydrogen termination

As a result of the (2×1)-reconstruction every surface Si atom is left with one electron that

does not participate in a covalent bond with a neighboring atom. These unpaired electrons

are referred to as dangling bonds (DB) and they are responsible for the high reactivity of

the clean Si(100) surface. To passivate the surface, it is terminated with atomic hydrogen

which (in contrast to molecular H2) has a sticking coefficient close to one. The surface

is exposed to H at a pressure of 5 × 10−7 mbar for 6min (corresponding to an exposure

of ∼140 Langmuir) to ensure saturation dosing. During the H dosing step (illustrated in

Fig. 3.4 a), the sample is dc heated to 350◦C to ensure the formation of a monohydride
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layer, where exactly one H atom is covalently bound to each Si dangling bond. Here, the

temperature is a trade-off between a low-defect Si surface (since atomic H causes etching

of Si surfaces at RT [59]) and a high-quality H layer (since hydrogen thermally desorbs

from the Si(100):H surface at temperatures above ∼470◦C [71]). A common defect of the

terminated surface are hemihydrides, where only one H is bound to a silicon dimer leaving

one single dangling bond. These single dangling bonds are visible as bright protrusions in

STM images. The H layer can be removed thermally (from the entire surface) by heating

the sample above ∼470◦C [71]. Alternatively, the H “resist” can be removed selectively

by the spatially confined electric field between the STM tip and the sample.

Selective depassivation with the STM tip

In the early 1990’s, several groups found [72, 73] that hydrogen could be desorbed at

RT from a monohydride Si surface by applying a bias of several volts to a STM tip.

Based on these early experiments, Lyding and Tucker [59] developed the idea of using the

monatomic hydrogen layer as a resist for a novel form of STM-based nano-lithography (Fig

3.4 b). The desorption is the result of an electron-stimulated process in the strong electric

field between the STM tip and the sample. Different mechanisms for the tip-induced

desorption of hydrogen have been identified, depending on the applied bias voltage [74].

At low voltages (sample bias approx. +2.5V to +5.5V), inelastic tunneling processes cause

the excitation of a vibrational mode of the Si:H covalent bond which eventually breaks the

bond. At higher bias voltages (> 6V), electrons emitted from the tip can directly excite

the σ bond between Si and H, thus occupying the higher-energy anti-bonding level σ∗ of

the bond.

For the purposes of this thesis, different STM-lithography parameters were used during de-

vice fabrication. The patterning process usually begins with the inner structures (typically

within one 400× 400 nm2 scan frame). Here, we aim to achieve sub-nm patterning preci-

sion with well-resolved edges of the desorbed regions. In particular, we want to minimize

the lateral extent of the tip electric field in order to avoid excessive “stray desorption”,

i.e. the unwanted random desorption of single H atoms in the vicinity of the intended

structure. For these inner device regions, we therefore use smaller bias voltages (typically

around +4V) and a lower feedback current (1 − 2 nA) at tip speeds of 100 nm/s or less.

For larger outer structures (with feature sizes on the order of hundreds of nm) where

precision is not paramount, we generally focus on minimizing the patterning time. This

is achieved by a higher tip bias (typically 6− 7.5V) and feedback current (2− 3.5 nA) as
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well as much higher tip speeds (up to 1000 nm/s). It should be noted, however, that the

optimal desorption parameters may depend on the sharpness and the atomistic details of

the individual tip.

Dosing and incorporation

After desorption, the entire surface is dosed with phosphine (PH3) which serves as a

gaseous precursor molecule for P incorporation. Here, the sample is kept at RT and ex-

posed to PH3 at a pressure of 5 × 10−9 mbar for 6min (corresponding to an exposure of

∼1.4 Langmuir). PH3 molecules selectively adsorb only onto the areas that were depassi-

vated during H-lithography with a sticking coefficient of essentially 1 [75] (Fig. 3.4 c). By

contrast, phosphine adsorption is inhibited in the H terminated regions.

The underlying reaction pathways and kinetics have been well-documented for the clean

Si(100) surface [41, 71, 76]: an adsorbed PH3 molecule undergoes a successive dissociation

on the Si surface, losing all of its 3 H atoms in the process:

PH3(ads) → PH2 +H → PH+ 2H → P + 3H → P(incorp)

In STM images of dosed surfaces (see Fig. 3.5 c), the corresponding PHx species can be

identified by their apparent height and their relative position with respect to the Si dimers

underneath [76]. A brief (typically 1min) anneal at 350◦C then causes the P atoms to

substitute for a vicinal Si atom in the topmost layer of the substrate, ejecting a Si atom

in the process [77] (Fig. 3.4 d). These Si adatoms tend to form chains on the Si surface,

perpendicular to the dimer rows underneath. As a result of the incorporation, the P

donor now occupies a substitutional Si lattice site where it is covalently bound to its 3

neighboring Si surface atoms. P dopant diffusion and segregation is therefore minimized

during the subsequent processing steps. Importantly, the H mask stays intact during the

350◦C anneal. The STM-defined doped regions thus maintain their integrity throughout

the incorporation process [78]. Under the above conditions, we reliably obtain a P coverage

of ∼0.25ML which corresponds to a sheet doping density of ∼ 1.7 × 1014 cm−2. This is

consistent with theoretical studies of the P incorporation mechanism [41] as well as the

experimental carrier densities measured on δ-doped Si:P Hall-bar devices [43].

The incorporation pathway will be discussed in more detail in chapter 7, where we demon-

strate the controlled incorporation of a single P donor within a depassivated area of 3

adjacent dimers.
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Figure 3.5: STM images of the Si surface. Representative filled state images
of the Si surface taken at various stages of STM lithography. a, A clean Si(100)
surface before H-termination showing monatomic steps ∼1.4 Å in height. The inset
is a high-resolution image of the bean-shaped Si dimers along with two single dimer
vacancy (DV) defects. b, A rectangular area (brighter region) has been desorbed on
the H-terminated surface. Some single dangling bonds (DB) are visible. c, The same
region after dosing with phosphine. The dissociation products PH2 and PH are visible
within the H-desorbed regions. d, Si adatom chains are observed in the patterned
area (outlined by dashed line) after P incorporation.

Silicon overgrowth

After the incorporation anneal, the entire surface is overgrown with Si from a thermal

sublimation source (Fig. 3.4 e) to achieve full electrical activation [79] of the incorporated

donors and to encapsulate the patterned Si:P structure, removing it from surface states.

The Si growth rate is typically on the order of ∼1.4 Å/min (1ML/min). During over-

growth, the sample is dc heated to 250◦C. This low growth temperature maintains the

structural integrity of the Si:P device by minimizing the possibility of dopant diffusion out

of the STM-patterned area [80].

While the surface roughness generally increases as a function of overgrowth thickness, we

still find a good epitaxial quality of the surface after overgrowth of typically 25 nm [81]. It

should be noted that earlier experiments have included an additional 470◦C anneal (after

donor incorporation) to remove the remaining H mask [44]. It is known that the presence
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of surface hydrogen can hinder Si surface diffusion and thus reduce the epitaxial quality of

the overgrowth surface [82]. However, the H mask was left intact during Si overgrowth for

all devices presented in this thesis to minimize the thermal budget. While the surrounding

H does indeed lead to a slightly increased roughness of the overgrowth surface (over the H

terminated areas) [82], we did not find any detrimental effects on the electronic transport

properties of our devices.

Some typical STM images of a Si(100) surface are depicted in Fig. 3.5 at several stages

of the lithography process. Panel a illustrates a clean surface before H-termination. Two

step edges (∼1.4 Å in height) are visible along with several dimer vacancies (DV), the most

common surface defects which appear as dark features on the surface. Two single DVs are

shown in the close-up in the inset of Fig. 3.5 a. In this high-resolution image, the individual

bean-shaped Si dimers are clearly discernible. Fig. 3.5 b depicts the end of a ∼5 nm wide

electrical lead structure after selective removal of the H resist by the STM tip. A few single

dangling bond (DB) sites are visible, but it is known that no dissociative adsorption of

PH3 molecules can occur at these sites [41, 76]. The depassivated regions of the Si surface

appear brighter than the surrounding hydrogen resist. This is a typical example of how

STM images are a convolution of both the geometric as well as the electronic topography

of a surface: even though the depassivated regions could be expected to be “lower” (due

to the absence of the H layer), they appear “higher” (i.e. brighter) in the STM images

due to the additional tunnel current contributed by the Si surface states [56]. Panel c of

Fig. 3.5 shows the same area after dosing with phosphine where the dissociation products

PH2 and PH can be identified within the H-desorbed region. A similar lead structure after

P incorporation is depicted in Fig. 3.5 d, where the ejected Si atoms are found to form

adatom chains running perpendicular to the underlying silicon dimer rows. The latter are

confined to the STM-patterned area (dashed line) thus confirming the structural integrity

of the H-mask during the P incorporation anneal. Furthermore, the absence of ejected Si

adatoms outside the patterned region corroborates the fact that single DB sites indeed

cannot adsorb PH3 molecules and thus do not participate in the incorporation process.

3.4 Ex-situ processing of samples

After successful STM-patterning and silicon encapsulation, post-processing of samples was

carried out in the cleanroom environment of the Semiconductor Nanofabrication Facility

at UNSW which is rated to ISO class 5 (corresponding to AS class 3.5 ) with a maximum

concentration of 105 particles ≥ 0.1μm per cubic meter. This section briefly introduces the
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200μm

Figure 3.6: Packaged device ready to measure. A completed device glued and
Al bonded into a chip carrier. The wet-etched registration marker array is clearly
visible in the microscope image on the right along with the EBL-patterned ex-situ
metallic contacts and bond pads.

equipment used for imaging and contacting of the devices and summarizes the fabrication

steps to prepare the samples for electrical measurements. The relevant process parameters

for each step are listed in the form of “recipes” in appendix A.4.

The alignment and definition of ex-situ metallic contacts was performed in a FEI XL30

scanning electron microscope (SEM) which is equipped with a Nanometer Pattern Gen-

eration System (NPGS) by JC Nabity Lithography Systems for electron beam lithography

(EBL). For high-resolution surface topography measurements and to determine the exact

encapsulation thickness of completed devices, the samples were imaged with an atomic

force microscope (AFM) by Digital Instruments (DI). Wet etching and chemical process-

ing was performed in designated fume cupboards while silicon dry etching was carried out

in a home-built hollow-cathode reactive ion etcher (RIE). For metallization of aluminium

ohmic contacts a Sloan/Varian e-beam evaporator was used at a typical pre-evaporation

pressure of ∼ 10−6 mbar. The evaporator is equipped with a quartz thickness monitor to

control the deposition rate and thickness of the deposited metal. To remove any residue

of e-beam resist after developing, the samples were generally treated in a Denton Vacuum

PE-250 oxygen plasma asher.

After lift-off, the samples were cleaved to a length of ∼5mm and then glued into a leadless

ceramic chip carrier (see Fig. 3.6). E-beam resist is used as a glue to ensure that the

samples can easily be removed from the carrier if further processing is necessary. In a

final step, the contacts of the device are wire bonded to the chip carrier using a Karl Suss

semi-automatic aluminium wedge bonder1. One downside of using Al is that it becomes

1Gold wire bonding was avoided due to possible contamination of the sample surface for subsequent
processing steps, such as metallization of additional top-gates.
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superconducting below a critical temperature Tc = 1.2K, which will affect electronic

measurements in zero magnetic field at mK-temperatures. However, this is easily overcome

by applying a weak background magnetic field higher than the critical magnetic field of

Al (∼10mT) [83].

3.5 Electrical characterization

3.5.1 Measurements at 4 Kelvin

After successful post-processing of a device, every sample is initially characterized at liquid

helium (LHe) temperatures (4.2 K) in a designated dip station. It should be noted that

the setup of this dip station is optimized for quick sample exchange rather than for low-

noise measurements. The main objective of this first characterization is to check for good

ohmic contact to the STM-patterned device. This is achieved by measuring the resistance

between two terminals on one STM-patterned contact patch which is typically a few 10s

of kΩ. This will be discussed in more detail in section 4.3.6 of the following chapter.

For gated devices, the next step is to determine the effective gate range for each gate,

i.e. the voltage range where the gate leakage current remains below a certain threshold.

Excessive leakage currents can alter the transport properties of nano-scale devices either

temporarily (until the sample has been thermally cycled to well above the carrier freeze-

out temperature) or permanently. The gate leakage characteristics for our devices exhibit

a negligible temperature dependence below 4K, so this initial characterization is crucial

for subsequent measurements at mK temperatures. Finally, the transport properties may

be measured as a function of gate voltage and/or magnetic field (up to 2T). In the case

of quantum dot devices, initial stability diagrams are recorded. If device performance

at 4K is satisfactory the sample is subsequently measured more extensively in a dilution

refrigerator.

3.5.2 Measurements in a dilution refrigerator

Electronic measurements at milli-Kelvin (mK) temperatures were performed in a Kelvinox

K100 3He/4He dilution refrigerator by Oxford Instruments. The latter is encased in a

copper radiation shield to reduce electronic noise due to external radiation, particularly

at radio and microwave frequencies. Since the greater part of the measurement data

presented in this thesis have been taken at mK-temperatures, we will briefly describe the

basic principle of operation of a dilution fridge [84] in the following section.
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Principle of operation of a dilution refrigerator

A simplified schematic of a dilution refrigerator (reproduced from [84]) is shown in Fig.

3.7 a. Its principle of operation, originally proposed in 1951 by H. London, relies on the

specific thermodynamic properties of the two stable helium isotopes at very low tempera-

tures. When a mixture of 4He and 3He is cooled below a critical temperature it separates

into two phases: the concentrated phase (rich in 3He) and the lighter dilute phase (rich

in 4He). Since the enthalpy of the 3He in the two phases is different, cooling power can

be generated by “evaporating” 3He from the concentrated into the dilute phase. The

4He (which makes up the majority of the dilute phase) is inert and the 3He ‘gas’ moves

through the liquid 4He without interaction. Here, the 3He ‘gas’ is formed at the phase

boundary in the mixing chamber at a temperature of a few mK. In a continuously oper-

ating closed-loop system the latter is pumped from the dilute phase and returned into the

concentrated phase as illustrated in the schematic. The 1K pot is used to condense the

3He/4He mixture into the dilution unit. The still below further cools the incoming 3He

to below 1.2K before it enters the heat exchangers and the mixing chamber. In the still

itself, the 3He is pumped away from the liquid surface at ∼ 0.6K. Here, 3He evaporates

preferentially due to its much higher vapor pressure than 4He at this temperature. This

in turn results in an osmotic pressure difference within the dilute phase which drives a

flow of 3He from the mixing chamber to the still. The 3He leaving the mixing chamber

also cools the returning flow of concentrated 3He in a series of heat exchangers.

Fig. 3.7 b shows a photograph of the sample probe inside the inner vacuum chamber

(IVC) along with the most important functional parts as pictured in panel a. The sample

is mounted at the lower end of a copper rod which is thermally coupled to the mixing

chamber. The device itself is cooled indirectly via the bonding wires and the thermal

contact to the chip carrier. During operation, the IVC is in coarse vacuum (∼ 10−5 mbar)

to avoid convective heat transfer from the surrounding liquid helium bath to the sam-

ple probe. Several co-axial metallic shields (not shown) prevent radiative heating of the

mixing chamber from the warmer parts of the cryostat. Two samples can be mounted

simultaneously either in perpendicular (as shown) or parallel orientation with respect to a

magnetic field which is created by a superconducting magnet coil mounted coaxially in the

LHe bath of the cryostat (Fig. 3.7 c). The setup allows for homogeneous magnetic fields

up to ±8 Tesla (at an accuracy of 1mT) which can be swept at a rate of up to 0.2T/min.

The sample is connected electrically to the break-out box at the top of the cryostat via

twisted pair cables which are characterized by low noise pick-up. For better thermaliza-
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tion (to reduce the heat load on the mixing chamber) the wiring loom of 20 cables is

wound around the probe many times at several points of the probe. The setup allows for

base temperatures of ∼20mK which can be monitored via a RuO2 thermometer mounted

close to the mixing chamber. It should be noted, however, that this does not necessarily

correspond to the actual sample temperature. In particular, the electron temperature of

quantum transport devices can be significantly higher than this bath temperature as will

be discussed in more detail in chapter 6. The sample temperature can be raised up to

∼1K by means of a resistive heater element. However, the transport data of the quantum

devices presented in this thesis were acquired almost exclusively at base temperature.

Measurement setup

Fig. 3.7 c is a schematic of the typical instrument setup used to measure electronic trans-

port through a quantum dot device. All electrical measurements were performed in direct

current (dc) mode: two dc voltage sources (in most cases a Yokogawa 7651 ) are used to

apply the gate and bias voltages. The latter is applied asymmetrically, meaning that the

voltage is applied to one transport electrode (usually the source S) while the other elec-

trode is grounded via the current pre-amplifier (CPA). We mainly used a DL Instruments

1211 CPA and sometimes an older model Stanford Research Systems SR-570, both with

variable gain. These low-noise pre-amps convert the source-drain current into a voltage

with a typical gain factor of 106 − 109 V/A which is then read out with a HP/Agilent

34401A digital multimeter. The instruments are connected to the break-out box of the

cryostat with BNC cables (depicted as blue lines in Fig. 3.7 c), with passive inline RC-

type low-pass filters (typically ∼ 100Hz cut-off frequency) on the voltage cables to reduce

high-frequency noise.

All instruments as well as temperature and magnetic field are controlled via GPI-Bus by

an external computer. Galvanic coupling to the measurement setup inside the copper

cage is avoided by using optical isolators, connected by a fibreglass cable (orange line

in Fig. 3.7 c). Using the LabView programming environment, the measurement and

data acquisition process can be controlled via automated software routines. Many of the

measurement routines used throughout this thesis were originally programmed by Dr.

A. Fuhrer, and modified or amended as needed. Depending on the sensitivity of the

measurement, we recorded data at a typical acquisition rate of 2− 5Hz.



Chapter 4

Advancements in device

fabrication

One of the key challenges in fabricating functional devices using STM-lithography is con-

necting the planar, buried P-doped structures to the outside world [44]. In the course of

this thesis, an improved strategy for aligning external electric contacts and surface gates

to the STM-patterned devices has been developed which will be discussed in this chapter.

We briefly summarize the initial registration scheme based on optical lithography which

has previously been adapted by our group [68, 85] and discuss its shortcomings. We then

present an improved, complete electron beam lithography (EBL)-based fabrication scheme

for aligning multiterminal Ohmic contacts and top gates to buried, phosphorus-doped

nanostructures in silicon defined by STM H-lithography. By prepatterning a silicon sub-

strate with EBL-defined, wet-etched registration markers, we are able to align macroscopic

contacts to buried, conducting STM-patterned structures with an alignment accuracy of

∼100 nm. A key aspect of this alignment process is that, by combining a circular marker

pattern with step engineering, we are able to reproducibly create atomically flat, step-free

plateaus with a diameter of several hundred nm so that the active region of the device can

be patterned on a single atomic Si(100) plane at a precisely known position.

To demonstrate the applicability of this registration strategy, we show low temperature

measurements from a 50 nm wide P-doped silicon nanowire device patterned on an atom-

ically flat terrace. We conclude the chapter by summarizing further advancements of our

fabrication strategy as they are relevant for the realization of quantum transport devices

presented in later chapters of this thesis.
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4.1 Registration markers for UHV devices

The capability of the scanning tunneling microscope to perform nanolithography on H-

passivated silicon surfaces has enabled the fabrication of atomically precise, highly doped

phosphorus devices [63, 67, 85]. To achieve full electrical activation of the dopants as well

as to avoid detrimental surface effects, these planar Si:P structures are encapsulated deep

(∼25 nm) within the silicon host crystal in the ultra high vacuum (UHV) environment

of the STM system. Electrical characterization of such devices requires alignment of ex-

situ macroscopic contacts to the buried dopant layers. Since the dopants are confined

essentially to a monatomic plane occupying substitutional Si lattice sites, there is little

contrast between the STM-patterned regions and the surrounding substrate. After removal

from UHV, the encapsulated devices are thus generally not visible to optical and scanning

electron microscopes (SEM) as well as atomic force microscopes (AFM), making it difficult

to align directly to the encapsulated structures. As a consequence, it is necessary to

introduce some form of registration markers that can be used to align external contacts.

Several methods exist to realize registration markers for STM applications [68], most of

which rely on prepatterning of the initial substrate. However, the high temperature anneal

(∼1100 ◦C) required to form a low-defect (2 × 1)-reconstructed Si(100) surface in UHV

for STM lithography (see chapter 3) places severe constraints on the potential types of

markers used. A common approach is to pattern surface markers made of metals or alloys,

such as tungsten [86], titanium [87, 88], or CrPt [89]. However, even refractory metals

with a melting point far higher than that of silicon (1414◦C), are still subject to surface

diffusion at elevated temperatures [68, 90]. A second method relies on ion implantation

to define markers prior to introducing the sample into UHV [91, 92], which can later be

imaged in the STM. Again, thermally activated diffusion degrades the integrity of ion

implanted regions [63]. Possible deterioration of surface quality in the device region due

to surface contamination and/or diffusion of impurities therefore limits the practical use

of alignment markers defined by metal deposition or ion implantation for our purposes

[85].

An alternative approach is to etch marker structures directly into the substrate [93] rather

than introducing any foreign materials. This method has previously been adapted and

modified by our group [85] and enabled the alignment of ex-situ surface contacts to buried

STM-patterned nanoscale devices, as will be discussed in the next section.
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Figure 4.1: Optical vs e-beam lithography. a, SEM image of a contacted
device which was patterned following the old fabrication scheme. An array of 4 inner
markers (white arrow) was used to coarsely position the STM-patterned structure in-
situ. Larger triangular markers (red arrow) were used to align ex-situ ohmic contacts
defined by optical lithography. b, As a comparison, ohmic contacts were defined on a
similar marker structure using e-beam lithography. This allows for patterning of much
smaller well-defined structures such as a 250 nm wide top gate (G) aligned precisely
between the ohmic contacts.

4.2 Shortcomings of previous registration scheme

In this section, we will briefly review the registration scheme previously used by our group

to fabricate STM-patterned transport devices. Largely developed by F. Ruess [68, 85],

this method relies on the use of optical lithography in conjunction with wet-etching to

define registration markers on the silicon substrate prior to STM-patterning. To ensure a

UHV compatible, contamination-free substrate, a thermal oxide layer is used as a lithog-

raphy mask for the marker structure along with several rigorous wet-chemical cleaning

procedures. The registration markers are defined by several etched structures of varying

shape and size, etched to a uniform depth of ∼350 nm. These markers are designed to

enable alignment of metal contacts after Si overgrowth using optical lithography. Fig.

4.1 a shows a SEM image of a contacted device after metallization of four-terminal ohmic

contacts. Inner markers (indicated by the white arrow) are used to roughly define the po-

sition of the STM-patterned device, while larger triangular structures (along with larger

outer markers) facilitate alignment during optical lithography.

This initial registration method was sufficient to fabricate several successfully contacted

STM-patterned devices such as nanowires [85], dopant arrays [94], and tunnel junctions

[95]. However, it is burdened with several shortcomings that severely limit its viability to

fabricate more complex STM-devices, particularly top gated structures:

• Poor alignment accuracy: Using UV optical lithography in conjunction with the

array of etched marker structures results in a comparatively poor overlay accuracy

between external contacts and the buried STM-patterned structures on the order of

±500 nm. Here, the alignment accuracy is essentially limited by the precision with
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which the optical lithography mask can be aligned to the sample in the mask aligner.

This necessitates the patterning of large STM-patterned contact patches (∼6μm2)

to reliably establish electrical contact to the doped regions after encapsulation. De-

passivating such large regions on the Si(100):H surface is a time-consuming process,

taking on the order of 1 hour/μm2 under the typical desorption conditions (Vtip ∼ −4

to −8V and It ≈ 1−3 nA). More importantly, the poor alignment accuracy severely

limits the practicability of patterning top gates, which need to be patterned precisely

over the nano-scale dopant devices.

• Lack of in-situ metrology: The device is generally STM-patterned somewhere

in between 4 inner markers, which are 15μm apart. Locating this inner device

area prior to H-lithography is a time-consuming process that relies on large STM

scan frames. Furthermore, in the absence of STM-compatible central markers it is

virtually impossible to relocate the patterned structure once the STM tip has been

moved away from its initial position. Multi-step processes, that require the STM tip

to be retracted from the sample at some point1, are therefore not viable with this

method. Also, tip changes during the patterning process are not practicable since

they require the tip to be completely removed from the sample. After a new tip has

been installed, relocating the desorbed device regions would require the scanning of a

very large area (defined by the innermost markers) on the order of 10s of μm2. With

typical scan rates (at sufficient resolution) of ∼30min per 1μm2 this is generally not

feasible.

• Minimum feature size: Using standard UV mask aligners to perform optical

lithography for ex-situ metallic structures makes it challenging to reliably pattern

feature sizes smaller than a few hundred nanometers. Defining multiple top gates

over a STM-patterned device (which is typically patterned within a 400 × 400 nm2

scan frame) is therefore not possible.

• Flexibility of process: STM-patterning is restrained by the necessity to be com-

patible with the pre-defined optical lithography mask for the ohmic contacts. Also,

it is not possible to change the layout of a new device without going through the

time-consuming and costly process of designing a new optical mask.

To address these issues, an improved, fully EBL-based alignment strategy was developed

which will be discussed in the next section. The advantages of using EBL instead of optical

1An example are 3D devices [96], i.e. vertical structures containing several stacked STM-patterned
regions with Si buffer layers grown in between.
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lithography are demonstrated in Fig. 4.1 b which shows a SEM image of an exemplary

device with a 250 nm wide top gate, patterned precisely between the four-terminal ohmic

contacts.

4.3 Novel method for surface gate and contact alignment

The ability to align multiple gates and Ohmic contacts to buried STM-patterned dopant

regions requires a high degree of overlay accuracy. With the initial alignment scheme

adopted by our group, this has remained a key challenge for the realization more com-

plex, gated nano- and atomic-scale devices. To overcome these challenges, an advanced

alignment scheme has been developed as part of this thesis, which has two unique fea-

tures. Firstly, the process is fully EBL-based, allowing smaller (<500 nm feature size) and

shallower (∼60 nm) markers that can be imaged by the STM directly. This results in an

increased overall alignment accuracy down to ∼100 nm. Secondly, by using circular mark-

ers, we are able to control the formation of large (≥ 300 nm diameter) step-free plateaus

in the center of the registration marker array such that the active region of the device can

be STM-patterned onto an atomically flat Si(100) plane.

4.3.1 Etched registration markers

For our new registration scheme, we will retain the wet-chemical etching procedure [85]

that has previously proven effective to prepattern the Si substrate without contaminating

the surface. Several chemistries exist for wet-etching of silicon. The most commonly

used etch chemistries for micromachining silicon wafers in industrial applications rely

on aqueous solutions of alkali hydroxides, such as KOH [97]. For our markers, we use

a solution of tetramethylammonium hydroxide (TMAH), a quaternary ammonium salt

which has a slower etch rate than KOH and has been found to result in lower surface

roughness of the etched Si(100) surfaces [98]. The etch rate can be controlled by adjusting

the concentration as well as the temperature of the etchant [98].

Wet-etching requires a chemically robust etch mask to define the etched regions. We use

a ∼50 nm SiO2 layer which acts as a lithographic mask2 and simultaneously protects the

Si surface from possible contamination during the pre-patterning process [85]. While wet-

etching is inherently a very clean method, it has the disadvantage of being an anisotropic

process with varying etch rates for different crystal directions [98, 99]. For our purposes,

this leads to an unfavorable etch profile. In particular, the sidewalls of an etched region on

2The etch rate selectivity of TMAH between Si and SiO2 is on the order of 104 [98].
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Figure 4.2: Anisotropy of wet etch process. a, Schematic etch profile illus-
trating the anisotropy of wet etching silicon. The etch trenches will generally have
{111} sidewalls which form a ∼54.7◦ angle with the surface. b, Vertical sidewalls
can be achieved if the etch mask is precisely aligned with the 〈100〉 axes. However,
an inevitable lateral undercut effectively widens the structures. c, SiO2 mask for an
experimental star shaped marker structure. d, The same marker after wet etching (to
∼200nm depth) and removal of the etch mask. While the lines parallel to 〈100〉 have
vertical sidewalls, they are much wider due to underetching. e, The marker structure
after a standard 1min anneal at 1100◦C yielding poor edge contrast.

a Si(100) surface will generally not be vertical but rather form a 54.7◦ angle with respect

to the wafer surface, thus exposing the chemically more stable {111} surfaces as illustrated

in Fig. 4.2 a. Indeed, the {111}/{100} etch ratio for 22% TMAH solution was determined

to be approx. 0.08 [98]. Vertical sidewalls can only be achieved if the edges of the etched

region are aligned precisely with the 〈100〉 crystallographic axes. However, the resulting

etch profile in this case will always have a low aspect ratio [99], due to an unavoidable

undercut as illustrated in Fig. 4.2 b.

The anisotropy of wet-chemical etching of Si(100) can be demonstrated experimentally by

the star-shaped structure shown in the bottom row of Fig. 4.2. Here, panel c depicts a

SEM image of the lithographic mask where four uniform ∼350 nm wide trenches have been

etched into the SiO2 layer. After a TMAH etch of the underlying Si substrate and removal

of the oxide mask, the etch profile exhibits a drastic orientation dependence (Fig. 4.2 d):

While the trenches along the 〈110〉 direction are narrow with slanted sidewalls, the ones

along 〈100〉 have vertical sidewalls but are much wider with a less well-defined edge. Panel

e shows the same structure after the 1100◦C anneal in UHV which is necessary to prepare
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the surface for STM-lithography. We observe a significant loss of integrity of the etched

marker structure [85] due to a silicon step-flow process (see section 4.3.3). This results

in a greatly reduced contrast in optical and SEM images. More importantly, the thermal

degradation of the well-defined marker edges adversely affects the alignment accuracy,

since the latter entirely depends on how precisely the position of the markers can be

determined. The development of a novel type of marker structure was therefore necessary

to improve the alignment accuracy of our registration scheme, as will be discussed in the

next section.

4.3.2 Overview of new registration scheme

In this section, we will give an overview of the new registration scheme and briefly de-

scribe the involved processing steps before discussing the key issues in more detail in the

subsequent sections.

As part of this thesis, the entire ex-situ part of sample processing was shifted from optical

lithography to e-beam lithography. This includes the pre-UHV definition of a registration

marker array on the sample chips as well as the alignment and patterning of metallic con-

tacts and top gates on encapsulated STM-patterned devices. EBL is not commonly used

in industrial silicon processing due to its low yield and comparatively high cost. However,

for the fabrication of individual samples as in our case, it offers the advantage of a high

alignment accuracy combined with the possibility to reliably pattern much smaller feature

sizes down to ∼20 nm. Furthermore, EBL allows for much greater process flexibility since

device layouts can easily be modified and tailored specifically for every sample without

relying on a specific optical lithography mask.

A schematic overview of the fabrication process is given in Fig. 4.3 along with represen-

tative device images for several processing steps. We use commercially available n-type

(phosphorus-doped) 2 inch Si(100) wafers with a miscut angle of ±0.1◦ and a bulk resistiv-

ity of 1− 10Ωcm. The basic chemical processing steps are similar to the ones previously

used by Ruess et al. [85]. To remove any remaining contamination, the substrate is

wet-chemically cleaned in subsequent baths of sulphuric peroxide (3:1 H2SO4:H2O2), hy-

drofluoric acid (5% HF), and 6:1:1 H2O:HCl:H2O2. Next, a 50 nm thermal dry oxide layer

is grown onto the wafer substrate at 1100◦C to act as a lithographic mask. Using e-beam

lithography on standard polymethyl methacrylate (PMMA) e-beam resist, a hierarchical

array of registration markers is defined in the oxide as illustrated in the schematic of Fig.

4.3 a and c. Importantly, this array comprises two types of markers (indicated by differ-
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ent colors in panel c) that serve different purposes and are accordingly patterned in two

subsequent EBL/wet-etching cycles with different etch depths:

(i) Outer, deeper structures (shown in red in panel c) serve solely as alignment markers

and are used for both coarse alignment of the STM tip inside the UHV chamber

with an optical microscope (50 μm2 squares, not shown) as well as for fine alignment

(2× 2 arrays of 2μm2 squares) during the EBL-processing steps after the sample is

taken out of the UHV system.

(ii) Inner circular markers (shown in black in panel c) ∼5μm in diameter are used both

to form a step-free Si(100) plateau that defines the central device region for high

resolution STM lithography, but are also shallow enough to allow imaging with the

STM, thereby providing extra alignment capability.

Pattern transfer [85] is achieved by etching the SiO2 mask in buffered HF (15:1 NH4F:HF)

at 30◦C (Fig. 4.3 a), followed by a wet-chemical etch of the exposed Si substrate in a 25%

aqueous TMAH solution at room temperature. All markers are defined in one EBL step

and initially etched to a depth of ∼100 nm (Fig. 4.3 b). To ensure good visibility in the

SEM after the initial high temperature anneal (“flashing”) in UHV, the outer markers are

etched further in a second step to a depth of ∼400 nm. This is achieved by covering the

shallow markers with a protective layer of PMMA (panel d) over the oxide mask, with

EBL-defined windows opened over the deep markers. Fig. 4.3 f shows a SEM image of a

registration marker sample before flashing with the deeper 2×2 square array markers (DM)

and the shallow circular trenches (CT) at the center of the marker array (the outermost

50μm2 optical markers are not shown).

After wet etching of the marker array, the protective oxide layer is removed (panel e) in a

buffered HF etch followed by a final full cleaning cycle (similar to the initial wafer clean)

to remove any organic and metallic residues. The samples are then introduced into the

STM system. After outgassing the sample for several hours at ∼450◦C using a resistive

heater, the sample is direct current heated to 1100◦C for ∼1min. This anneal removes

the native oxide layer as well as residual traces of carbon and also forms the Si(100) 2× 1

surface reconstruction. The flashing procedure also leads to a loss of integrity of the etched

marker structures (Fig. 4.3 g) which adversely affects the alignment accuracy, as will be

discussed in more detail in the next section. The corresponding rounding of the markers

is clearly visible in SEM images of a marker sample after the anneal (Fig. 4.3 h). In a

next step, the Si is terminated with atomic hydrogen which forms a monohydride resist for

STM lithography [59] (Fig. 4.3 k). The photograph in the inset of panel h illustrates how



54 CHAPTER 4. ADVANCEMENTS IN DEVICE FABRICATION

the STM tip appears with respect to the etched registration marker array when viewed

through the optical microscope attached to the STM chamber. Using the microscope,

the tip can be positioned within approx. ±30μm of the center of the array. Beginning

with micron-sized scan frames, the central circular marker is then located using the STM

in imaging mode (with a typical sample bias of Vb = −2V and a tunneling current of

I ≈ 0.1 nA). This process typically takes on the order of 20min. Here, the long straight

trenches visible in Fig. 4.3 f and h are used to quickly guide the STM tip to the center of

the array, where a step-free Si(100) plateau has formed as a result of the high-temperature

anneal. The atomically flat terrace is generated on top of the “hillock” enclosed by the

circular trench due to a thermally activated step-flow process (see section 4.3.4). This is

illustrated by the schematic in Fig. 4.3 i. Panel j depicts a 3.5×3.5 μm2 STM image of the

hillock which is ∼60 nm in height and ∼4μm in diameter at the base. The active device

area will be patterned on the step-free area on top of the hillock, which is precisely at the

origin of the registration marker array. STM lithography is performed using the standard

procedure [44] which has been described in detail in chapter 3: the required device pattern

is formed by selective desorption of the H resist (Fig. 4.3 k) by using the STM tip with Vb

ranging from +4V to +7V and I on the order of several nA.

Figure 4.3 l shows as an example a 50 nm wide nanowire device that has been patterned

on a ∼300 nm wide terrace. This device will be discussed in more detail in section 4.3.6

below. After H desorption, the surface is dosed with phosphine (PH3) which adsorbs onto

the exposed Si sites. Phosphorus incorporation (panel m) is achieved by a 1min anneal

at 350◦C. The entire sample is then overgrown with ∼25 nm of epitaxial silicon (panel n).

Fig. 4.3 o shows a STM image3 of an encapsulated device where the circular trench (CT)

as well as the edges of larger STM-patterned contact patches are visible (indicated by the

white arrow).

After removal from UHV, ex-situ ohmic leads are defined by EBL over these larger contact

patches, using the deep etched structures as alignment markers (see section 4.3.5). After

removing the native surface oxide by a ∼5 s dip in buffered HF, the leads are metallized

with aluminium. A subsequent 15min anneal at 350◦C causes the Al to diffuse down

to the STM-patterned contact patches thereby establishing Ohmic contact between the

external leads and the buried device. In a final EBL-step, one or multiple top gates are

patterned over the device, as illustrated in the schematic of Fig. 4.3 p. Panel q shows an

exemplary SEM image of a completed device with 4 ohmic Al contacts (O) as well as a

3The image was reproduced from ref. [100]. A high-pass filter has been applied to increase the visibility
of the edges of the device.
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Figure 4.4: Wet etched EBL alignment markers. AFM scans of the wet etched
deep alignment markers before (a) and after (b) the initial 1100◦C anneal in UHV.
These 2×2 arrays of etch pits (each approx. 2×2μm2 in size) are used to align ex-situ
metallic contacts and top gates defined by e-beam lithography. The height profiles
shown in the insets illustrate the loss of integrity resulting from step-flow processes
during the anneal.

metallic top gate (G) patterned on the native SiO2 barrier.

4.3.3 Thermal degradation of the etched marker structures

Even though the temperature of the initial 1100◦C anneal is far below the melting point of

Si (1414◦C), it causes drastic changes of the sample’s surface morphology. Due to surface

silicon diffusion during the anneal, the integrity of the etched alignment markers degrades,

and their initially sharp edges become rounded as the etch pits fill up as a result of silicon

migration. This can be seen in SEM images as well as AFM scans of the marker structure,

as illustrated in Fig. 4.4. Here, the deep (∼400 nm) markers are found to decrease to

∼120 nm in depth during flashing, in agreement with previous observations [85, 101]. The

shallow markers (initially 100 nm deep) reduce to ∼60 nm in depth. The rounding of

the marker structure ultimately limits the alignment accuracy of the postprocessing EBL

steps. To counteract this effect, we use arrays of etch pits rather than a single pit to

define a single marker. The basic idea is that while the edges of each pit severely degrade

during the anneal (making it difficult to determine its center), the pitch between repeated

structures remains largely unaffected. The center of a regular array of pits can therefore

be determined much more accurately, even if the edges of the individual pits are rounded.

Using the 2 × 2 arrays of square markers shown in Fig. 4.4, we estimate our alignment

accuracy for EBL-patterned structures to be approximately ±100 nm.

To reduce the detrimental effects of the flashing procedure on the integrity of the alignment

markers, the use of reactive ion etching (RIE) to achieve marker structures with vertical
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Figure 4.5: Schematic of step-flow process. a,Initially, the Si(100) surface
enclosed by the shallow circular trench shows the usual step density. b, During a
short ∼1100◦C anneal in UHV, atoms detach from the step edges and diffuse over the
terraces where they desorb into the vapor (red arrow). c, Eventually, a large step-free
area forms in the center of the circular trench which defines the device region.

sidewalls and a high depth-to-width aspect ratio may seem desirable. Here, a chemically

reactive plasma is created by electromagnetic excitation of a low-pressure gas. High-

energy ions from the plasma are accelerated towards the sample, reacting with the surface

substrate and thus causing an etch process. However, RIE is known to cause sub-surface

damage as well as contamination of the exposed areas in the form of reaction by-products

[102] and is thus avoided.

4.3.4 Formation of the central step-free terrace

No silicon wafer substrate can be cut with atomic precision along a specific crystal plane.

Our high quality Si(100) wafers have a nominal miscut angle of ±0.1◦, causing the terrace

structure seen in STM images of the Si(100) surface (see, e.g., Fig. 4.6 a) with irregular

monatomic steps occurring every few 10s of nanometers. In this section, we will discuss

how this surface morphology can be controllably altered by “step engineering”.

The formation of a large step-free plateau exactly at the origin of the registration marker

array is extremely important to our alignment strategy. The exact nature of the kinetic

processes that cause the surface morphology of Si substrates to change and lead to the for-

mation of large step-free areas on Si(100) and Si(111) during high-temperature annealing

is still a matter of debate [103]. It is believed that high temperature annealing causes the

movement of atomic steps across terraces by a step-flow evaporation process. The steps

eventually accumulate at barriers of extremely high step-density, such as micron-sized pe-
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riodic gratings [103], ridge structures [104, 105] or, in our case, etched circular trenches,

which leads to step-free regions between the barriers. Below its bulk melting point of

1414◦C, the Si(100) surface undergoes a roughening transition at ∼1200◦C, where atomic

steps are spontaneously created on terraces [105, 106]. At temperatures below this transi-

tion, atoms at step edges may detach from the steps, diffuse on to the terraces as adatoms,

and eventually desorb into the vapor [107], as illustrated in the schematic of Fig. 4.5. If

the adatoms are predominantly derived from the steps4, the rate of evaporation on a large

terrace, per bounding step-edge site, will be larger than on a small terrace, which causes

widely spaced steps to move faster than narrowly spaced ones. Since regions of high step

density (such as the sidewalls of etched trenches) represent a barrier for step flow, a large

terrace will form on an area enclosed by a trench once it has been cleared from all steps

by step flow to the barriers. At the same time, due to surface diffusion, the trenches fill

up with silicon and their edges become rounded, thus causing the observed degradation

of integrity of the etched structures.

An example of such a step-free area is shown in the STM images of Fig. 4.6. While the

Si(100) surface outside of the circular trench shows the typical stepped terrace structure

(panel a), the terrace on top of the “hillock” (∼800 nm in diameter) is free of any atomic

steps (panel c,d). We have tested several different shapes of the central shallow marker

structures for their ability to create step-free areas, such as parallel lines, dot arrays, and

circular trenches of different diameters. While all types of etched structures generally

result in the formation of some step-free areas during flashing, only the enclosed circular

trenches were found to be useful for our registration purposes, since they reliably provide

step-free terraces at a predictable position, in this case, exactly in the center of the circular

trench. In our case, we determined that the optimal diameter of these circular trenches

is ∼5μm with a trench width of 1μm. For smaller diameters, no large terraces formed

as the hillock enclosed by the circular trench did not extend to its full height after the

anneal, while for larger diameters, pits were found to form in the middle of the terrace.

The formation of such pits has been previously observed [105, 108] and was attributed

to large step-free terraces eventually becoming unstable against the formation of vacancy

clusters at some distance from the step edges when the terrace width exceeds the average

adatom diffusion length before desorption.

We have also investigated how the terrace width changes with the etch depth of the shallow

circular trench and have found that an initial depth (before flashing) of approximately

100 nm yields the largest step-free areas. It should be mentioned that we are limited in

4Some adatom-vacancy pairs will also form on terraces.
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Figure 4.6: Engineering of atomically flat areas. a, STM image of the Si(100)
substrate outside the etched marker structure showing the typical irregular terrace
structure with steps of monatomic height occurring with a spacing on the order of
10’s of nanometers. b, Step-engineering allows for the creation of atomically flat
areas many hundreds of nm in size. The 3-dimensional STM image shows a circular
wet-etched trench with a diameter of approx. 5μm after the initial 1min anneal at
∼1100◦C in UHV. c, A step-free circular area (∼800nm in diameter) has formed on
top of the “hillock”. d, A high-resolution image of the plateau reveals an atomically
flat Si(100) surface showing some common surface defects such as dimer vacancies
(dark spots).

varying the depth by the practicability of scanning these regions during STM lithography.

If the trench is too deep (> 200 nm before flashing), the high surface corrugation on the

slope of the hillock may cause an advanced decay of the STM tip and makes aligning the

contact patches difficult as the visibility of the desorbed regions decreases for higher step

density. If the trench is too shallow (< 50 nm before flashing), it becomes very difficult to

locate the position of the central terrace due to the low surface corrugation (∼10 nm) after

flashing. While it is possible to pattern 20 × 20μm2 step-free areas [105] at the bottom

of micron-deep etch pits after annealing for ∼1 h in UHV at similar temperatures, we

have optimized a method of achieving atomically flat circular trenches that can be imaged

and lithographically patterned by the STM. Furthermore, we generally avoid extended

annealing times which tend to cause a significant increase in chamber pressure causing

possible surface contamination. Typically, the largest terraces created by our method

have measured up to 800 nm across (Fig. 4.6); however, we are able to reliably achieve

step-free regions with several hundreds of nanometers in diameter. This is sufficient for
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the active regions of our nano- to atomic-scale devices to be patterned on a single atomic

plane.

Importance of step engineering

Since our planar P-doped quantum devices are patterned on silicon surfaces, it is important

to understand how the microscopic surface morphology affects their transport properties.

The influence of step density on electronic transport in δ-doped Si:P Hallbar devices has

previously been investigated by our group [40]. Electrical conduction and magnetotrans-

port measurements on these μm-scale devices showed no dependence on the miscut angle

(and thus the step density) of the substrate.

However, the situation may change as the device size is decreased to the nm-scale where

quantum effects become dominant and the atomistic details of the crystalline host material

can no longer be ignored. This is true in particular for possible applications in silicon-based

quantum computation schemes that rely on vast arrays of precisely positioned individual

donors [14, 17, 109]. Indeed, Koiller et al. [21] have highlighted the challenges arising from

strong oscillations of the exchange coupling between neighboring donors as a function of

their relative spacing. These oscillations result from the valley structure of the silicon

crystal and occur on the scale of the Si lattice constant. The positioning of the individual

impurities with atomic-scale precision is thus a fundamental ingredient for the successful

operation of donor-based qubits. Even though recent publications have focused on methods

to overcome certain problems associated with non-ideal donor placement [110], it is evident

that random atomic steps (causing changes in the donor spacing) on the initial patterning

surface may be detrimental to the fabrication of future quantum computing devices.

4.3.5 Alignment of ex-situ contacts

The active region of our devices such as nanowires [67], tunneling gaps [95], and quantum

dots (see chapters 5 and 6) can usually be patterned within a 400 × 400 nm2 STM scan

frame and thus fits on the central step-free terrace. To aid the formation of Ohmic con-

tacts to such a STM-patterned device, large square contact regions up to approximately

3.5 × 1.5μm2 in size are consecutively patterned by the STM, aligned either side of the

circular trench, and desorbed, as illustrated in the composite STM and SEM image of a

final device in Fig. 4.7 a. The circular trench is clearly visible in the STM images acquired

during lithography as well as ex-situ using AFM (panel b) and can thus be used to check

the alignment of the EBL-patterned Ohmic contacts before metallization (panel c). The
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Figure 4.7: Alignment of ex-situ metallic contacts. a, Composite image of a
contacted device showing all STM scan frames acquired during lithography, stitched
together. The actual device is patterned on the central step-free terrace within a
400 × 400nm2 scan frame. Three consecutive patches of increasing size are then
desorbed on either side. The bottom of the trench indicated by the dotted white line is
clearly visible in the STM images of the large outer contact patches (∼ 3.5×1.5μm2 in
size) and serves to align the four-terminal Ohmic contacts shown in the SEM image in
the background. b, AFM image of the circular marker after encapsulation. The onset
of the trench (dashed line) is clearly visible and thus serves to check the alignment of
the EBL-defined Ohmic contacts before metallization, as illustrated in c.

atomically flat, central terrace at the top of the hillock cannot be resolved with AFM. We

therefore estimate the precision of this AFM alignment check, using the circular trench,

to be approximately ∼100 nm. This is comparable to the accuracy of the EBL patterning

step using the micron-sized 2 × 2 arrays of square markers described above (Fig. 4.4).

From comparing SEM images of the final device after metallization to STM images ac-

quired during H-lithography of the contact patches (Fig. 4.7 a), we estimate an overlap

area between metallic leads and P-doped regions of approximately 2 μm2. Along with

the ohmic contacts, standard cross-shaped markers are patterned during the initial EBL

postprocessing step. These well-defined metallic markers then serve as alignment markers

in a subsequent EBL step for the definition of one or multiple top gates over the STM-

patterned device. The alignment accuracy of these top gated structures is thus limited by

the accuracy of the penultimate EBL step.
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It should be emphasized that, while STM lithography can be performed with essentially

atomic precision, the ex-situ alignment of Ohmic contacts and top gates to the encap-

sulated device represents the critical step in the registration strategy developed in this

chapter. We estimate the overall alignment accuracy between the buried STM-patterned

P-doped device region and the surface metal contacts and top gates to be on the order

of ∼100 nm. This value essentially reflects the positional uncertainty resulting from the

thermal degradation of the etched marker structures and also corresponds to the measure-

ment uncertainty when using AFM to verify the correct alignment of the EBL-patterned

Ohmic contacts with respect to the circular trench.

4.3.6 An exemplary nanowire device

To demonstrate the applicability of the novel alignment strategy described above, we

have patterned an exemplary nanowire device on the central terrace of a registration

marker array. Fig. 4.8 a shows a STM image of the 50 × 240 nm2 nanowire patterned

on the atomically flat terrace formed within the circular trench. In a subsequent step,

larger contact arms were desorbed on either side of the device (analogous to the ones

illustrated in Fig. 4.7 a) before dosing the entire surface with phosphine for 6min at a

chamber pressure of ∼ 5 × 10−9 mbar (corresponding to an exposure of ∼1.4 Langmuir),

followed by a 1min incorporation anneal at 350◦C. Finally, the sample was overgrown

with ∼25 nm of epitaxial silicon at 250◦C. The low growth temperature maintains the

structural integrity of the Si:P device by minimizing the possibility of dopant diffusion out

of the STM-patterned area [80]. The Si encapsulation also ensures full electrical activation

of the P donors yielding a carrier density of ∼ 2× 1014 cm−2 [44]. The entire in-situ part

of device fabrication including STM-patterning and overgrowth took roughly 10 hours for

this device. After removal from UHV, ex-situ ohmic contacts are EBL-patterned over

the contact patches, using the wet-etched registration array as alignment markers. Here,

two leads are defined per STM-patterned contact patch for source (S) and drain (D),

respectively. After metallization of the Al Ohmic leads, electrical contact to the buried

P-doped region is established by a 30min anneal at 350◦C under N2 atmosphere. In a

last step, a 250 nm wide aluminium top gate (G) is EBL-patterned (perpendicular to the

wire) over the central device area as shown in the SEM image of Fig. 4.8 b.

The device was subsequently characterized at 4.2K to confirm good contact to the buried

structure. Our low-doped (∼ 1015 cm−3) silicon substrates typically conduct down to

temperatures around ∼40K. At even lower temperatures, the substrate becomes insulating
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Figure 4.8: A 50nm nanowire patterned on a step-free terrace. a, STM
image of a ∼ 50× 240nm2 nanowire device patterned on the atomically flat plateau
(indicated by the dotted line) on the central circular marker. The image was taken
after H-lithography (with the desorbed regions appearing brighter) but before the
phosphine dosing step. b, SEM image of the completed device with EBL-patterned
four-terminal Ohmic contacts for source (S) and drain (D) and a metallic top gate
(perpendicular to the buried nanowire underneath). The dashed white line indicates
the position of the circular trench.

due to the freeze-out of carriers and any measured current is therefore entirely confined

to the STM-patterned P-doped structures of the device.

Fig. 4.9 a is a simplified schematic of the device with the large STM-patterned contact

patches for S and D connected via the nanowire in between. The external Ohmic (termi-

nals “1” to “4”) are patterned in a four-terminal configuration. The first step is to check

for good ohmic contact to the buried STM-patterned structure. This is achieved by simply

measuring the resistance of the contact patches alone via their two metal terminals. The

resulting IV -curves for source and drain are shown in Fig. 4.9 b and reveal two-terminal

resistances of approx. 1.8 kΩ and 1.3 kΩ, respectively.

Fig. 4.9 c shows the current ISD flowing through the nanowire as a function of the applied

source-drain voltage VSD. The linear IV -curves confirm Ohmic behavior of the device with

a two-terminal resistance of ∼6.3 kΩ. However, this value is not equal to the resistance of

the 50 nm nanowire since it also includes the contact resistances in series. To eliminate the

contribution of the latter, we measure the wire in a four-terminal configuration by sending

a dc current through one set of terminals (e.g. 1 and 3 in Fig. 4.9 a) while monitoring

the resulting voltage drop via the other set of terminals (2 and 4) and obtain a nanowire

resistance of ∼4.9 kΩ. By comparing this value to the 2T resistance of ∼6.3 kΩ we can

roughly estimate the contact resistances to be on the order of several 100Ω for our device.

Previous STM studies by our group [80] estimate the effective (vertical) thickness of the

initially planar Si:P devices to be ≤ 6 Å due to P segregation (along growth direction)

during Si overgrowth at 250◦C. Using this value and the lateral dimensions of the wire,

we obtain a resistivity of ∼ 6 × 10−7 Ωcm, comparable with other STM-patterned wire
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Figure 4.9: Transport characteristics of the nanowire at 4.2K. a, Schematic
of the four-terminal configuration with two ex-situ contacts (see Fig. 4.8 b) per STM-
patterned contact patch for source (S) and drain (D), respectively. b, IV -curves
through the contact patches yield two-terminal resistances of R1-2 ≈ 1.8 kΩ and
R3-4 ≈ 1.3 kΩ for S and D, respectively. c, IV -characteristics of the nanowire reveal
Ohmic behavior of the device. No significant change in wire resistance is observed
as a function of the applied top gate voltage VG. The inset shows the gate leakage
current as a function of VG. From this plot, we determine an effective gate range of
roughly −400mV to 400mV.

devices of similar dimensions [67].

IV -curves were measured for different voltages applied to the top gate, VG = 0,±400mV,

as shown in Fig. 4.9 c. However, no significant change in device resistance was observed

within the effective gate range. The latter is determined from the plot shown in the inset,

which depicts the measured gate leakage current Ileak (flowing from the top gate to the S

and D electrodes) as a function of the applied gate voltage. The gate range denotes the

maximum voltage that can be applied to the gate before Ileak exceeds a certain threshold, in

this case 10 pA. We obtain a gate range of approx. −400mV to 400mV for our aluminium

top gate patterned on the native ∼1 nm SiO2 layer. This value is quite small5, possibly due

to an oxide defect resulting from the post-processing procedures. As a comparison, more

recent transport devices by our group [111] incorporate a thick (∼70 nm), low temperature

UHV oxide on top of the STM-patterned and encapsulated structures, allowing for gate

ranges on the order of ±7V. The fact that gating action is not observed for our device can

be attributed to the extremely high carrier density (∼ 1014 cm−2) within our planar Si:P

structures, which is indeed orders of magnitude higher than the doping concentrations in

other gated silicon nanowires [112].

The device presented in this section is a successful proof-of-concept for the improved

registration scheme developed during this thesis, allowing for reliable STM-patterning of

5We typically obtain gate ranges of several volts for top gates patterned on native oxide.
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devices on atomically flat Si(100) surfaces. Furthermore, the observed good ohmic contact

to the buried structure highlights the high alignment accuracy achieved by our fabrication

technique.

4.4 Further advances of device fabrication

Optimization of the fabrication scheme for our STM-patterned Si:P devices is a continuing

and collaborative process within our group. The novel alignment method presented in

the previous section has enabled the successful fabrication of several quantum transport

devices, such as nanowires [113], Aharonov-Bohm nanorings [114], and quantum dots [115].

However, since then further advancements have again lead to important changes of the

fabrication method. The most important improvement will be briefly summarized in the

following section as it is relevant to the fabrication of devices presented in this thesis.

4.4.1 Aluminium vias to contact overgrown devices

An important advancement of the fabrication scheme is the introduction of an alternative

method to form reliable ohmic contacts between the buried STM-patterned P-doped re-

gions and ex-situ metallic leads. This new method relies on dry etched vertical contact

holes and was developed as part of this thesis in collaboration with Dr. A. Fuhrer. It has

lead to a significant increase in device yield.

Up to this point, contact to the encapsulated Si:P structures was established by litho-

graphically defining aluminium metallic leads over the STM-patterned contact patches

followed by a 350◦C anneal for 15min under N2 atmosphere [44]. While this temperature

is too low to cause uniform downwards diffusion of the Al through the Si substrate, it

is sufficient for so-called “spiking” to occur [116]. Here, Si diffuses into the Al layer at

a direct Si/Al contact leaving rectangular pits behind in the silicon substrate. At ele-

vated temperatures the Al then refills these voids forming “spikes” [117]. Spiking is an

uncontrolled and non-uniform process that is generally unwanted in semiconductor pro-

cessing [117]. For our devices, it is evident that this contacting method (illustrated in Fig.

4.10 a) produces unreliable results since it depends on the random formation of spikes of

sufficient depth within the small (∼ 1μm2) overlap area between the metal lead and the

STM-patterned contact patch beneath. The resulting Si pits caused by Al spiking can

be clearly seen in SEM images of a contacted device after wet-chemical removal of the Al

leads as shown in Fig. 4.10 b. Indeed, only a few spiking events (illustrated by the arrows)

occur within the overlap area. This results in a low yield of successfully contacted devices
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Figure 4.10: Ex-situ contacting of buried devices. a, Schematic of the previ-
ously used contacting method, relying on irreproducible spiking of the deposited Al
leads down to the STM-patterned P-doped layer (red) during an anneal at ∼350◦C.
b, Pits resulting from Al spiking through the substrate are visible in SEM images
(indicated by white arrows) after wet-chemical removal of the Al contacts (outlined
in white). c, Schematic of the new fabrication scheme using RIE etched contact vias
penetrating through the P-doped layer. d, An array of contact vias is EBL-patterned
over each STM-patterned contact patch (indicated by the red shaded regions), as de-
picted in the SEM image of an exemplary 2-terminal device. The holes are ∼140nm
in diameter with a pitch of roughly 500 nm as shown in the close-up (e). The vias are
typically etched to a depth of ∼70 nm, thus penetrating the P-doped layer below. A
cross section of the contact vias along the yellow dashed line is depicted in Fig. 4.11.

as well as unpredictable contact resistances ranging from a few kΩ to hundreds of MΩ.

To overcome these problems, a new contacting method was developed which is illustrated

in the schematic of Fig. 4.10 c. Here, an array of vertical holes, or vias, is defined over the

P-doped contact regions. Subsequently, the metallic leads are deposited over the array,

filling the contact holes. Since the latter penetrate through the dopant layer, a direct

contact between the metal and the highly-doped Si:P regions is formed. Such metal vias

are commonly used in the semiconductor industry to provide vertical interconnection in

stacked integrated circuits [118]. Using vias in our devices has the additional advantage of

rendering the previously used contact anneal at 350◦C unnecessary, thus minimizing the

thermal budget. To achieve a vertical etch profile and a high aspect ratio for the contact

holes, we use a dry etch process rather than wet etching. The hole array is defined by

EBL and subsequently etched in a hollow cathode reactive ion etching (RIE) system6 to

a depth of typically 70 nm to ensure that the vias penetrate through the P-doped layer

6A summary of the process parameters is given in appendix A.4.
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∼25 nm beneath the Si surface.

A SEM image of an exemplary device is depicted in Fig. 4.10 d, where an array of contact

vias has been defined over each of the two STM-patterned contact patches below (indicated

by the red shaded regions). These P-doped patches are characterized by a vertical δ-doping

profile with only a very small spread of the dopants along growth direction (≤ 6 Å) due

to the overgrowth process at 250◦C [80]. The actual contact area where the metal vias

penetrate the P-doped layer, will therefore be quite small. To maximize this Al/Si:P

contact area we increase the number of vias per contact patch, which is achieved by

patterning the holes with a small diameter (∼140 nm) in a dense array with an average

spacing of ∼500 nm. The latter is a tradeoff between maximizing the contact area and

ensuring that enough of the dopant layer remains to conduct within the plane.

Aluminium is used as contact material due to its good processing properties: it is easy to

evaporate, shows strong cohesion on Si, and it easy to bond to. One downside of using

elemental Al is that it becomes superconducting below a critical temperature Tc = 1.2K,

which may affect electronic measurements at mK-temperatures. However, this is easily

overcome by applying a weak background magnetic field higher than the critical magnetic

field of Al (∼10mT) [83].

To further investigate the etch profile of the contact holes, transmission electron micro-

scope (TEM) images were taken7 on a typical device. Here, a fine lamella is cut out of

a STM-patterned sample which has undergone all the usual fabrication steps including

silicon overgrowth (in this case approx. 30 nm). The position of the cut was chosen to

give a cross section of the metal vias penetrating a contact patch as illustrated by the

dotted yellow line in Fig. 4.10 e. The resulting TEM image in Fig. 4.11 a shows a cross

section of 3 vias. The close-up of a contact hole in Fig. 4.11 b clearly shows that the

Al penetrates into the etched hole, thus intersecting the P-doped layer (indicated by the

dotted line) ∼30 nm below the Si surface. The encapsulation depth is determined from

an atomic force microscope (AFM) scan of the overgrowth profile at the edge of the sam-

ple, illustrated in the inset. Grain boundaries are visible within the ∼70 nm thick Al

layer. A high-resolution TEM image of the Si encapsulation layer (Fig. 4.11 c) reveals an

undisturbed lattice structure which is further confirmation of the epitaxial quality of the

low-temperature (250◦C) overgrowth. This is in agreement with previous detailed STM

studies of overgrowth surfaces [81].

By incorporating aluminium vias into our fabrication scheme, we consistently obtain good

ohmic contact to our buried Si:P structures with low contact resistances on the order

7The TEM images were taken at EAG Labs in Raleigh, NC, USA using a Hitachi HD2300.
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Figure 4.11: TEM images of contact holes. a, Transmission electron micrograph
depicting the cross section of the contact region of a typical device. Ex-situ contacts
are formed by a ∼70 nm thick aluminium layer EBL-patterned over the array of RIE
vias. b, A close-up of such a via reveals that the Al penetrates through the STM-
patterned P dopant plane. The encapsulation depth of the latter (∼30 nm) can be
determined from AFM scans of the Si overgrowth profile at the edge of the sample, as
illustrated in the inset. c, An atomic-resolution TEM image reveals an undisturbed
lattice structure of the Si encapsulation layer.

of 1 − 30 kΩ. Generally, the Al/Si:P interface must be treated as a Schottky contact.

Such a metal-semiconductor junction results in an Ohmic contact (i.e. a contact with

voltage independent resistance) only, if the Schottky barrier height ΦB is zero or negative.

This is not the case for the Al/Si:P interface in our devices, for which a typical value

of ΦB ≈ 0.7 eV is reported [119]. However, the extremely high P doping density in our

devices results in a very small depletion region on the semiconductor side, so that electrons

can directly tunnel through the barrier. In equilibrium (without any voltage applied across

the Schottky contact) this depletion length xd can be estimated as [25]

xd =

√
2εΦi

eNd
(4.1)

where ε = ε0εSi is the electric permittivity, Nd is the bulk doping density, and Φi is

the built-in potential. The latter can be calculated from Φi = ΦB − kBT ln(Nc/Nd),



68 CHAPTER 4. ADVANCEMENTS IN DEVICE FABRICATION

where Nc = 2(2πm∗
e,DOSkBT )

3/2h−3 is the effective density of states in the conduction

band and m∗
e,DOS = 1.08m0 is the Si effective mass8 for density-of-states calculations

[25]. We can estimate an effective bulk doping density for our samples from the sheet

density (∼ 1014 cm−2) within the doping plane and the aforementioned maximum spread

of the dopants (6 Å) in growth direction and obtain Nd ∼ 1021 cm−3. At liquid helium

temperature, eq. (4.1) then yields xd ≈ 0.5 nm – which corresponds to only 1 Si lattice

spacing. While this is a very rough estimate, it demonstrates that due to the high P-doping

density the Al/Si:P interface in our devices can, for all practical purposes, be viewed as

metal/metal-like junction with Ohmic characteristics.

4.5 Chapter summary

In this chapter, we have shown the use of UHV compatible, wet-etched EBL-patterned

registration markers for ex-situ alignment of multiple Ohmic contacts and surface gates to

STM-lithographically defined P-doped devices. By patterning a circular marker structure

in the center of the registration marker array, we are able to generate step-free plateaus

with a diameter of several hundred nm. This allows for the active region of a device to

be patterned on a single atomic Si(100) plane at a precisely known position. Further-

more, we have highlighted the importance of step-engineering for possible future quantum

computation devices that rely on atomically precise control over the position of individual

donors.

The current overall alignment accuracy of EBL-defined structures with respect to the

STM-patterned device is ∼100 nm, with the main limiting factor being the degradation of

the integrity of the etched marker structures during the initial 1100◦C surface preparation

anneal of the sample in UHV. Using the new alignment scheme, we have demonstrated

electrical transport measurements of a 50 nm wide Si:P nanowire patterned on a central

terrace, which shows Ohmic conduction and a low resistivity of ∼ 6× 10−7 Ω cm at 4.2K.

We have also discussed how the introduction of RIE etched contact vias enables the for-

mation of reliable low-ohmic contacts between the external metallic leads and the encap-

sulated P-doped regions. This new contacting method has resulted in a drastic increase

in the yield of successfully contacted STM-patterned devices.

8Assuming 6 degenerate bands, this is given by 62/3 3
√

(m∗
t )

2m∗
l .



Chapter 5

A donor-based many-electron

quantum dot

In this chapter, we demonstrate a fully functional multiterminal Si:P quantum dot device

in the many-electron regime. The entire structure is STM-patterned on a single atomic

plane of a Si(100) surface, including three donor-based in-plane gates. We show that

such coplanar regions of highly doped silicon can be used to reliably gate nanostructures

resulting in highly stable Coulomb blockade oscillations in our donor-based quantum dot.

In particular, we compare the use of these all epitaxial in-plane gates with conventional

metallic surface gates and find superior stability of the former for our device. These results

highlight that in the absence of the randomizing influences of interface and surface defects

the electronic stability of donor-based dots in silicon can be comparable to or better than

that of quantum dots defined in other material systems.

Based on this successful demonstration of a many-donor quantum dot, we will then discuss

the challenges in down-scaling of device dimensions within our planar donor-based archi-

tecture. We will introduce capacitance modeling as a viable tool to predict the electrostatic

properties of new device designs which helps to improve the tunability of quantum dot

structures of reduced size.

5.1 Quantum dots in semiconductor devices

To put our work in a larger context we will briefly review quantum dot structures in the

literature and contrast our donor-based approach to these existing device architectures.

Here, we will focus on quantum dots in the many-electron regime. A further discussion of
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more recent devices in the few and single electron limit will be given in the following two

chapters.

The first clear demonstration of Coulomb oscillations was performed by Folton and Dolan

[47] in 1987 in a μm-sized aluminium tunneling structure. Since then, Coulomb blockade

has been observed in a vast and diverse range of materials such as metallic nanoparticles

[120], organic molecules [121], carbon nanotubes [122] as well as a variety of semiconduct-

ing nanostructures [123, 124, 125, 46]. The latter have received special interest since the

advent of improved nanofabrication methods in the 1980’s, such as electron beam lithog-

raphy (EBL) and molecular beam epitaxy (MBE), which allow for high control over the

electronic properties in semiconductor materials. This is true in particular for modula-

tion doped GaAs/AlGaAs heterostructures which are arguably the best-studied quantum

dot architecture due to their relative ease of fabrication and high carrier mobilities [46].

Here, quantum wells are formed by an engineered band-discontinuity along growth di-

rection. The strong confinement (along z-direction) in the quantum well generates a

two-dimensional electron gas (2DEG) where carriers are free to move in the x-,y-direction

while quantization effects occur in the z-direction. Quantum dots can be created in these

structures by introducing additional lateral confinement either by vertically etching the

substrate [126, 127] or by using a suitable arrangement of surface gates which cause a

local depletion in the 2DEG underneath [128, 123, 124]. A more extensive discussion of

the early experiments in this field can be found in a review article by Kouwenhoven [46].

Similarly, quantum wells can also be formed in modulation-doped silicon/silicon-germanium

heterostructures which generate a 2DEG at the interface (see e.g. refs. [129, 34] for a re-

view of this field). Analogous to GaAs, quantum dots can be created in these structures

by either directly etching the substrate [130, 131] or by using top gates [125]. While mo-

bilities in Si systems are generally lower [132, 125] than in III-V materials, they offer clear

advantages in the context of quantum information processing [14, 17] due to long spin

lifetimes afforded by the abundant nuclear spin zero isotope 28Si.

Silicon quantum dots have also been realized in field-effect transistor structures on Si/SiO2

[133, 134, 135] or silicon-on-insulator (SOI) substrates [136]. By using polycrystalline

silicon or metallic gates on an oxide barrier, an inversion layer is created between highly

doped contact regions. Barriers between the dot and the leads can then be created by

additional gates in multi-layer gate stacks [135].

Quantum dots can also be realized in semiconducting nanowires made from III-V materials

(such as InAs [137]) or Si [138]. These nanowires are commonly grown by means of

the vapor-liquid solid (VLS) mechanism using gold metal particles as catalysts and are



5.1. Quantum dots in semiconductor devices 71

typically ∼10 - 100 nm in diameter [139]. The resulting whiskers are then transferred

onto an insulating substrate (usually a silicon wafer with a SiO2 layer) and contacts are

lithographically patterned. After deposition of a suitable barrier material or dielectric,

surface gates are defined in an additional lithography step which allow for confinement

along the wire.

Quantum dots in all these material systems have since progressed towards the few- and

single- electron limit. More recent developments will be discussed in more detail in chap-

ters 6 and 7. A common feature of the architectures described above is the fact that

confinement (at least along one dimension) is defined extrinsically by applying a voltage

to some form of gate. This is in sharp contrast to donor-based devices where confinement

is created intrinsically (even in the absence of any applied gate voltages) by the attractive

potential of the ionized dopants. A donor-based architecture thus allows for significantly

smaller overall device dimensions and – more importantly – a much greater control over

the confinement landscape on a length scale comparable to the lattice spacing. This has

important implications for the electronic properties as well as the scalability of these struc-

tures as will be discussed in this chapter. Donor-based quantum dots in the many-electron

regime have previously been defined by ion implantation [140]. Here, several hundred P

donors were implanted into a host silicon crystal to form a roughly spherical island ∼50 nm

in diameter which (in conjunction with a metallic top gate) defined a tunable quantum

dot. However, an inherent drawback of ion implantation is the comparatively low spa-

tial control over the dopant position on the order of ∼10 nm even at low (14 keV) ion

beam energies [140]. This is detrimental for possible donor-based quantum computation

applications [14, 17] that rely on the precise positioning of dopants with sub-nm accuracy.

In the following section, we will present an alternative method to realize donor-based

quantum dot structures in silicon using STM hydrogen lithography. We will demonstrate

how this approach allows for unprecedented spatial control of the dopant distribution on

the single nanometer scale. Furthermore, in contrast to other architectures our device

is fabricated in a single-crystal silicon environment and does not contain any heteroge-

neous interfaces. This allows us to avoid common interface-related defects such as charge

traps [141, 142] which cause current noise or lattice dislocations which may create leakage

pathways [125].
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Figure 5.1: An in-plane gated donor-based quantum dot. a, Composite STM
image of the device (bright regions) directly after performing STM lithography on a
single atomic terrace on the H-terminated Si(001) surface. Three in-plane gates (PG,
T 1, T 2) are used to tune the electron number on the quantum dot. With a saturation
doped area of approx. 2100nm2, the dot is estimated to contain ∼4000 electrons. The
dot is connected to source (S) and drain (D) via ∼4 nm wide leads (corresponding
to ∼5 dimer rows), interrupted by 8 nm tunnel gaps as illustrated in the close-ups of
the left (b) and right (c) gap.

5.2 A planar STM-patterned Si:P quantum dot

In this section we will demonstrate a fully functional multiterminal quantum dot that was

fabricated in conjunction with Dr. A. Fuhrer. It is the first STM-patterned dopant-based

device that showed Coulomb blockade. Up to this point, STM hydrogen lithography had

realized individual components of a complete device architecture (such as donor nanowires

[143] as electrical leads, nm-scale tunnel junctions [95], and isolated P-doped nano-islands

[78]) with a major obstacle being the ability to electrically gate devices. While previous

attempts to fabricate a Si:P quantum dot had relied on metallic surface gates [78], the

current device follows a different strategy relying entirely on integrated donor-based in-

plane gates to tune the electrochemical potential of the dot.

The device was patterned on a n-type 1 − 10Ωcm Si(100)-2 × 1 substrate which has

been pre-patterned with an etched registration marker structure as discussed in detail in

the previous chapter. Fig. 5.1 shows a composite STM image taken immediately after

patterning the quantum dot structure on the terminated silicon surface by selective H-

desorption with the STM tip in lithography mode (Vtip ≈ −4 to −7.5V and It ≈ 1−3 nA).

All of the active device area lies on a single monatomic terrace and appear bright in the

STM-images due to a change in the electronic structure at a dangling bond site compared
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Figure 5.2: External metallic contacts for the Si:P quantum dot. a, SEM
image of the completed device after Al metallization of the external ohmic leads. Two
metallic leads are defined for each STM-patterned contact patch (yellow regions),
except for T 2. The arrays of etched contact vias are clearly visible over the contact
patches. The central red square indicates the relative size and position of the STM
image in Fig. 5.1 a. b, The metallic leads are extended out to larger bond pads.

to the surrounding H-terminated areas. The dot in the center is connected by two ∼8 nm

wide tunnel gaps to the source and drain terminals which have a minimum width of

∼4 nm (∼5 silicon dimer rows as shown in the close-up images of Fig. 5.1 b and c). Three

additional areas T1, T2, and PG were patterned to serve as in-plane gates to tune the

electron number on the dot by applying corresponding gate voltages, VT1, VT2, VPG. All

five terminals of the dot are extended out to ∼3μm long STM-patterned contact patches

leading away from the device, as indicated by the yellow shaded regions in Fig. 5.1 a and

Fig. 5.2 a, respectively. After STM-lithography, the entire surface is saturation dosed

with phosphine for 6min at room temperature at a chamber pressure of ∼ 5× 10−9 mbar

(corresponding to an exposure of ∼1.4 Langmuir). A subsequent 1min anneal at 350◦C

incorporates the P donors into the topmost layer of the Si surface in the areas where the

hydrogen was desorbed by the STM tip. In a last step, the device is encapsulated by

growing a ∼25 nm thick epitaxial silicon layer at 250◦C over the entire structure. The

entire in-situ fabrication for this particular device took approx. 30 hours.

The use of donor-based in-plane gate electrodes allows us to fully fabricate the electroni-

cally active device area in-situ in the UHV environment, thus completely avoiding defect

prone interfaces [142] or metallic gate electrodes near the device. Importantly, the low

thermal budget (T < 250◦C) for the overgrowth process leads to minimal diffusion of the

P dopants in the silicon and preservation of the STM patterned geometry on the sub-nm

scale [44, 66]. After encapsulation the device is removed from the UHV environment and

electron-beam lithography (EBL) is used to align two separate aluminum ohmic contacts
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Figure 5.3: Proposed SET device. The quantum dot device of Fig. 5.1 is the
first experimental realization of a planar single-electron transistor as proposed in this
schematic by Tucker et al. [144].

to each of the donor patches as shown in the SEM image of Fig. 5.2 a. An array of 50 nm

deep holes with a diameter of about 100 nm are defined over the donor patches using

reactive ion etching to help form low resistance ohmic contacts (see section 4.4.1). In a

last step, the sample is glued and wire bonded to a chip carrier using the large metallic

bondpads shown in Fig. 5.2 b.

The concept of using STM-lithography to pattern donors in silicon was proposed ap-

proximately 10 years ago for the realization of atomically precise architectures enabling

applications in single electronics and quantum computing circuits [144]. It should be noted

that the few-donor quantum dot presented here is the first experimental realization of such

a planar SET structure as proposed by Tucker et al. [144] (see Fig. 5.3). However, the

donors defining the structure in this original concept paper were believed to be self-ordered

over larger distances (∼100s of nm), which we know not to be the case for incorporated

P donors [42].

5.2.1 Electrical characterization of the many-electron quantum dot

Following a brief initial characterization of the device at 4.2K to confirm ohmic contact to

the buried structure, the quantum dot was measured in a dilution refrigerator with a base

temperature of ∼80mK. To suppress the superconductivity of the aluminum contacts at

mK-temperatures, we apply a background magnetic field B = 100mT.

From the current versus voltage (IV ) measurements of Fig. 5.4 a we can estimate the

contact resistance to the buried donor layer to be ∼10 kΩ per contact. Here, IV curves are

recorded using the two metallic terminals patterned for each individual STM-patterned

contact patch (see Fig. 5.2 a). By contrast, contact combinations across gaps in the
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Figure 5.4: Electrical characterization of the Si:P quantum dot. a, The
resistance between the two metallic terminals for each STM-patterned electrode con-
firms good ohmic contact to the buried dopant structure with two-terminal resistances
of roughly 20kΩ. b, Leakage current from each of the gate electrodes to all other
contacts as a function of the applied gate voltage. In comparison, the orange IV curve
is a measurement across the device from source to drain. c, The source-drain current
(at VSD = 360μV) shows regular oscillations as a function of the applied gate voltage
VPG. The modulation of the peak height is most likely due to a strongly modulated
density of states in the narrow S and D leads.

patterned donor structure show insulating behavior for small applied bias voltages. Figure

5.4 b shows the corresponding IV traces for each of the three in-plane gates where we

measure the leakage current Ileak flowing from the gate to any of the other terminals.

From these plots we determine the effective gate range for each gate. The latter is defined

as the maximum voltage that can be applied to a gate before Ileak exceeds a certain

threshold, typically 100 pA. None of the gates show leakage for |Vgate| < 250mV. It is

interesting to note that the leakage curve for the plunger gate (PG) seems to be more

symmetric than those of gates T1 and T2 where large positive voltages can be applied

before leakage occurs. This may reflect the fact that the two narrow gate leads T1 and T2

get partially depleted for very positive voltages and thus exhibit larger positive breakdown

voltages. For negative VT1 or VT2, the breakdown is governed essentially by the gap size.

The smaller gate range for T2 thus reflects its slightly smaller gate separation (34 nm)

compared to the other two gates T1 and PG (both 36 nm), as illustrated in Fig. 5.1 a.
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Figure 5.5: Stability diagram of a many-electron Si:P quantum dot. a, The
device conductance GSD plotted as a function of the bias voltage VSD and the plunger
gate voltage VPG reveals stable Coulomb blockade with a constant charging energy
Ec ≈ 3.3meV. Only a few minor switching events are observed which are indicated
by the arrows. b, CB oscillations as a function of the two gate voltages VT1 and VT2

at VSD = 100μV. Over most of the gate range the peaks show a perfect 45◦ slope
which is an experimental confirmation of the near identical geometric arrangement of
these two gates relative to the dot.

Gate leakage currents only flow in the field emission regime when the applied gate voltage

has sufficiently narrowed the barrier induced by the intrinsic region in the gap between

donor patches. As a comparison, an IV trace through the dot (orange curve in Fig.

5.4 b) shows an almost immediate onset of current with the applied bias voltage. Here,

the much smaller gaps between dot and source/drain contacts (∼8 nm) were designed to

act as tunnel barriers. By applying a fixed bias voltage (VSD = 360μV) clear Coulomb

oscillations are observed in the source-drain current ISD over the entire gate range of VPG,

as illustrated in Fig. 5.4 c.

One of the unique advantages of STM-lithography is that one knows with nanometer

precision where the dopants are patterned within a device. From the dot area (∼2100 nm2)

and the known electron density of a saturation dosed Si:P layer (ns ∼ 1.7 × 1014 cm−2)

we can thus estimate an upper limit for the electron number of N < 4000. We therefore

expect our many-electron dot to be in the classical regime of Coulomb blockade, where

the single particle spacing is much smaller than the charging energy, ΔE 	 Ec [48, 46].

This is consistent with the fact that the observed CB-peak spacing VPG ≈ 12.5mV is

approximately constant over the entire gate range (Fig. 5.4 c).

A stability diagram of the quantum dot device is shown in Fig. 5.5 a, where the differential

conductance GSD = dI/dVSD is plotted as a function of the applied bias and plunger gate

voltages. Within the framework of the constant interaction model of Coulomb blockade

(see section 2.3.1) the height of the Coulomb diamonds corresponds to the addition energy.
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Capacitances of the quantum dot device (in aF)

CΣ CS CD CPG CT1 CT2 αPG

48.5 9.7 9.7 13.2 7.2 7.2 0.27

Table 5.1: Summary of the experimental capacitance values extracted from the
height Ec = e2/CΣ of the Coulomb diamonds (Fig. 5.5 a) and the periodicity of the
CB peaks, ΔVgate = e/Cgate (Fig. 5.4 c).

From the plot of Fig. 5.5 a we estimate1 Ec = e2/CΣ = 3.3 ± 0.2meV. The mutual

capacitances extracted from this and the CB peak spacing as a function each gate voltage,

ΔVgate = e/Cgate, are summarized in table 5.1. Tuning the in-plane gates in our quantum

dot leads to extremely stable CB-oscillations with only a few minor switching events as

indicated by the white arrows in the stability diagram of Fig. 5.5 a. These are most likely

caused by charge rearrangements in the vicinity of the device. The high stability of the

device is further highlighted in a measurement of the dot conductance as a function of

both VT1 and VT2 (see Fig. 5.5 b) spanning about half of the available gate range for

each of the gates. Here, the CB-peaks move at a constant 45◦ slope indicating that the

two gates T1 and T2 have the same capacitive coupling to the dot as expected from the

symmetry of the device geometry.

It should be noted that the Coulomb peak heights in Fig. 5.4 c are observed to vary

significantly. The smooth modulation occurs on a gate voltage scale on the order of

∼100mV. Using the appropriate lever arm αPG = 0.27 for the plunger gate this translates

to an energy scale on the order of a few 10s of meV, which leads us to attribute the

observed variation in peak height to a strongly modulated density of states (DOS) at the

Fermi level of our narrow source and drain leads. The tight lateral confinement within

the ∼4 nm wide electrodes results in transversal quantization and thus a quasi-1D DOS

[36], as illustrated in Fig. 2.6 of chapter 2. In a simple particle-in-a-box approximation

[46], the spacing between these DOS peaks is estimated to occur on a characteristic energy

scale �
2π2/gm∗L2 , where L is the width of the wire, m∗ is the electron effective mass,

and g = gsgv accounts for the spin and valley degeneracy. Using the lead width L = 4nm,

an averaged effective mass reported for δ-doped Si:P layers of m∗ = 0.28me [35], and

assuming full spin and valley degeneracy (g = 12), this yields an expected spacing on the

order of 10meV – which is broadly consistent with the observed modulation of the peak

height. Indeed, a modulated DOS in low-dimensional leads has been found to influence

the transport properties of several other quantum dot structures [145, 146, 147]. This will

1In the many-electron regime ΔE � Ec and therefore Eadd = Ec +ΔE ≈ Ec.
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Figure 5.6: Metallic top gate over the buried quantum dot. a, False-color
SEM image of the device after an aluminium top gate (TG) has been patterned on
the native SiO2 barrier. b, The composite close-up image illustrates the approximate
relative position of the ∼ 400 × 400nm2 top gate with respect to the buried planar
Si:P quantum dot (red), ∼25nm below the surface.

be discussed in more detail in section 6.4.5 of the following chapter.

5.2.2 Patterning of a top gate over the planar quantum dot

In the previous section we have demonstrated how donor-based quantum dots can be

realized in a planar architecture, relying exclusively on highly doped in-plane gates to

tune the electrochemical potential of the dot. The plunger gate of this device was found

to have a lever arm αPG = CPG/CΣ ≈ 0.27 allowing for a total change of the electron

number on the dot by ∼40 within the available gate range. Considering that the total

number of electrons on the dot is roughly 4000, it is desirable to increase the tunability of

the device. It may thus be advantageous to incorporate a top gate into our architecture

for two reasons: Firstly, considering a simple plate capacitor model it is obvious that the

capacity of two parallel (co-axial) plates will be larger2 than that of two co-planar plates,

resulting in a larger lever arm in the former case. Secondly, the presence of an oxide barrier

between a top gate and the dot may afford a higher gate range compared to an in-plane

gate, where the gate barrier is defined solely by the frozen-out Si substrate between the

electrodes.

To investigate the effects on the functionality of the device, a surface gate was fabricated

on top of the planar quantum dot. Importantly, this was done after the electrical charac-

terization with just the donor structure and ohmic contacts presented in the last section.

The resulting structure is shown in Fig. 5.6 with the small top gate TG (shown in green)

aligned to lie between the ohmic contacts (red) and the contacts for the three in-plane

gates (blue). We use a short oxygen plasma to remove organic residues and clean the sur-

face before evaporating the aluminium top gate. The latter is therefore fabricated directly

2We assume an equal separation between the plates in both cases.
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Changed capacitances of top gated device (in aF)

CΣ CT1 CPG αPG CTG αTG

without 48.5 7.2 13.2 0.27 n/a n/a
with top gate ∼84 3.7 73 0.87

Table 5.2: Comparison of some relevant capacitances of the planar quantum dot
before and after fabrication of the metallic top gate (TG). The sum capacitance CΣ

nearly doubles and the top gate has a much higher lever arm αTG compared to the
plunger gate (PG) of the in-plane gated device.

on the native SiO2 layer.

The device was subsequently re-measured at mK-temperatures. We find a top gate range

of approx. −400mV to 400mV (Fig. 5.7 a). We then again perform gate sweeps at low

bias, this time as a function of the top gate voltage VTG (Fig. 5.7 b) and find a CB peak

period VTG ≈ 2.5mV that is much smaller than that of the in-plane gates. This is expected

because of the stronger capacitive coupling of the top gate to the dot. In particular, the

sum capacitance CΣ nearly doubles as a result of the increased total capacitive coupling

of the dot. Table 5.2 compares the new capacitances to those before the top gate was

fabricated. Importantly, the top gate indeed exhibits a much higher lever arm αTG ≈ 0.87

compared to the plunger gate (αPG ≈ 0.27) of the planar device. The top gate thus

allows for a total change in electron number by ∼320 – an increase of almost an order of

magnitude compared to the planar device.

Despite the increased tunability, we find that the highly stable and regular Coulomb

oscillations observed prior to the addition of the top gate (see Fig. 5.4 c) can not be

reproduced when sweeping the top gate voltage. Figure 5.7 b shows an up- and down-

sweep of VTG which exhibits both considerably more noise as well as clear hysteretic

behavior. Importantly, the presence of the top gate is detrimental to the device stability

even when only the in-plane gates are used while keeping the top gate grounded. This is

illustrated in Fig. 5.7 c which shows Coulomb oscillations as a function of the in-plane gate

voltage3 VT1, both before and after the top gate was added to the device. The switching

noise is significantly higher in the presence of the top gate (right panel in Fig. 5.7 c) even

though the latter was grounded during this measurement. We attribute this to the fact

that the metallic top gate provides a ground plane which effectively pulls the electric fields

arising from the in-plane gate voltages closer to the defect-prone Si/SiO2 interface.

Using the top gate, we also find that noise and hysteresis effects increase significantly

3Due to a contact problem, the gate PG could not be used during this measurement.
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Figure 5.7: Reduced stability of the top gated device. a, Leakage character-
istic for the Al top gate patterned on the native SiO2 layer yielding an effective gate
range of roughly ±400mV. b, Up- and down-sweep of the top gate voltage VTG show-
ing clear hysteresis and switching effects. c, Coulomb oscillations (at VSD = 1mV)
before (left panel) and after (right panel) the metallic top gate has been patterned
over the device, showing reduced stability in the latter case. The lower average peak
spacing in the right panel reflects the reduced lever arm of gate T 1 in the presence
of the top gate. d, Coulomb oscillations as a function of VTG, where the gate volt-
age window is steadily increased with each sweep. Initially (for |VTG| < 10mV), the
Coulomb peaks (bright vertical lines) are found to be more or less reproducible, with
only a few minor switching events. However, as the VTG window is increased the peaks
first shift to different positions and eventually become very noisy and hysteretic.

(and often irreversibly for a specific cool-down) when increasing the VTG range. This is

illustrated in Fig. 5.7 d which depicts successive up- and down-sweeps of VTG for a steadily

increasing gate voltage window. In the first few sweeps the CB peaks (bright vertical lines)
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are more stable, with only a few initial discontinuities, and occur at roughly the same

values of VTG for each sweep. With increasing gate voltage these peaks become unstable

before nearly disappearing in the noise as VTG exceeds ±50mV. This unstable behavior

often persists even after grounding the device for several hours and only disappears again

after completely warming up the donor device. We attribute this behavior to the fact that

more and more charge traps at the Si/SiO2 interface [142] get activated as the electric field

between the device and the top gate increases. It is important to note that no attempt

was made to reduce the interface trap densities in our case. In particular, a thermal oxide

(which is typically grown at temperatures around 1000◦C) can not be implemented in

our devices since it causes donor diffusion out of the STM patterned regions. However,

it should be emphasized that similar switching noise may also be present in top gated

single electron devices containing a higher quality thermal oxide [135, 140, 148]. It is

possible that more controlled and slower growth conditions [149] for the native oxide may

result in a marginal improvement of the device stability. More importantly, complete

epitaxial fabrication of a purely in-plane gated donor device in a UHV environment has

significant advantages over conventional metallic gate electrodes. This is true both in

terms of alignment precision as well as avoiding the inevitable detrimental effects that

impurities and charge traps near interfaces may have on electronic device stability [142].

By avoiding surface gates altogether, electric fields resulting from the voltages applied to

in-plane gates only arise within the epitaxial silicon region, leading to very stable device

behavior – even close to fields where gate leakage starts to occur (see Fig. 5.4 c).

The demonstration of epitaxial in-plane gates fabricated in a UHV environment is thus a

crucial step towards reproducible gating of functional donor-based nanostructures. Based

on the high stability of the in-plane gated dot, a decision was made to focus entirely on

a planar architecture for subsequent quantum dot devices fabricated during this thesis.

Relying exclusively on in-plane gates does however present a challenge for the scale-down

of dopant-based devices as will be discussed in the next section. In the following chapters

we will then demonstrate the highly stable operation of in-plane gated few-donor (chapter

6) and single donor (chapter 7) devices.

5.3 Challenges in down-scaling of planar Si:P quantum dots

Having demonstrated the successful operation of a STM-patterned Si:P quantum dot in

the many-electron regime, the next goal – as with any other quantum dot architecture

– was to reduce the size of the island towards the few-electron limit. Only by avoiding
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the ensemble averaging inevitable in larger structures can the quantum properties of elec-

trons and donors (such as their discrete spin states) be investigated in detail. However,

reaching the few-electron regime cannot be achieved by simply decreasing the size of the

entire structure. In particular, there are two key challenges that need to be addressed

for successful down-scaling of a functional quantum dot device, which will be discussed in

more detail in the following sections:

(i) Tunnel coupling: The tunnel characteristics of our planar tunnel junctions are sensitive

to changes in the gap dimensions on the sub-nm scale. Maintaining the proper tunnel

resistance therefore requires careful adjustment of the device geometry as the dot

size is decreased.

(ii) Device tunability: The mutual capacitances will decrease significantly as the dot is

reduced in size, particularly in a planar geometry. To ensure good tunability of the

device it is therefore necessary to maintain good capacitive coupling between the dot

and the in-plane gates. At the same time, gate leakage must be minimized to obtain

a sufficient gate range.

5.3.1 Tunnel coupling to the external leads

Being able to perform transport spectroscopy requires the quantum dot to be connected

to external source and drain leads which act as electron reservoirs. In order to observe

Coulomb blockade (with a well-defined integer number of electrons on the island), the

resistance between the island and these leads must be higher than the resistance quantum

h/e2 ≈ 26 kΩ. This is commonly achieved by introducing tunnel junctions between the

dot and the leads.

In electrostatically defined lateral quantum dots in GaAs [45] and SiGe heterostructures

[125], these tunnel gaps are usually defined by applying suitable voltages to the top gates

resulting in a local depletion region that “pinches off” the 2DEG underneath. The tunnel

barriers can therefore be tuned over a certain range by adjusting the external gate voltages.

By contrast, the tunnel junctions in our planar devices are realized by gaps between

the STM-patterned P-doped regions defining the island and the leads, respectively. At

cryogenic temperatures, the low-doped intervening substrate acts as a tunnel barrier due to

the freeze-out of carriers. The transport characteristics are therefore fixed by the geometry

of the tunnel junction. While the effective barrier height can be modulated to a certain

degree by the in-plane gate voltages, the extremely small dimensions of our donor dots

make it difficult to realize dedicated barrier gates which tune only the tunnel coupling
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to the leads. Particularly for few-donor devices (with dot diameters <5 nm), all in-plane

gates will show non-proximal capacitive coupling which affects the dot potential and the

tunnel barriers at the same time. This will be discussed in more detail in section 6.4.3 of

the following chapter.

From previous studies of nm-scale dopant-based tunnel junctions [95, 100] we know that the

tunnel resistance is exponentially dependent on the separation between the electrodes, with

changes of a few nm in separation resulting in differences of several orders of magnitude

in resistance [100]. Furthermore, it was found that both the gap separation and the lead

width of the tunnel junction are crucial, with a low width-to-length aspect ratio of the

gap resulting in a higher resistance [100].

The underlying physics determining the transport characteristics of our lateral tunnel

junctions is not yet fully understood and is a matter of ongoing research. However, different

tunneling regimes can be identified [100]: At low bias voltages (eVSD 	 Eb where Eb is

the height of the tunnel barrier), tunneling can be described by the Simmons model [150],

which assumes that the barrier is not influenced by the applied voltage resulting in a

bias-independent ohmic tunneling resistance. At higher bias voltages, a transition occurs

to the Fowler-Nordheim regime [25], where the effective barrier width decreases with the

applied bias. This leads to an exponential increase of the tunneling current commonly

observed in the field emission regime. For our purposes, the applied bias voltages during

transport spectroscopy will generally be much smaller than the typical barrier heights

(Eb ∼ 100meV) which can be estimated from temperature-dependent measurements of

tunnel junction devices [100]. It is therefore the zero-bias resistance of the tunneling

junctions that is relevant for our quantum dot structures.

The useful range of tunnel resistances for a quantum dot device is bounded by the re-

sistance quantum as the lower limit (∼26 kΩ) and the practicability of measuring small

device currents as the upper limit (typically <1TΩ). In the absence of a full theoreti-

cal description of the geometry dependence of the tunneling characteristics, we rely on

general trends inferred from previous studies on tunnel junctions [100] as well as empiri-

cal data from previous quantum dots. In particular, the dimensions used for the tunnel

gaps of the many-donor dot presented in this chapter (with ∼8 nm gaps and ∼4 nm wide

electrodes) have yielded good results. It should be noted that a gap separation of 8 nm

is consistent with values previously discussed in a proposal by Tucker and Shen [144].

They estimated the correct scale for lateral tunnel junctions used in donor-based silicon

quantum dots to be a small multiple of the Bohr radius aB, corresponding to ∼10 nm.

The Bohr radius is a measure for the spatial extent of the donor wavefunction in Si and is
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given by aB = 4πε0εSi�
2/m∗e2 ≈ 2.5 nm, where εSi = 11.7 is the Si dielectric constant and

m∗ = 0.26m0 the average electron effective mass [151]. Tucker and Shen also identified

2aB ≈ 5 nm as the lower limit for the gap separation to prevent direct electrical coupling

by wavefunction overlap. For subsequent quantum dot devices we will retain the nominal

gap dimensions that were used successfully for the many-donor quantum dot.

5.3.2 Capacitive coupling to the gates

Studying the transport properties of a quantum dot for different electron numbers can

give useful insights into the underlying physics of the system [46]. A key requirement

for a functional quantum dot device is therefore the ability to tune the electrochemical

potential of the dot over a sufficient range by applying a voltage to a suitable gate electrode.

The tunability of a gated device depends on two parameters: the gate lever arm and the

effective gate range. In the framework of the constant interaction model (see section 2.3.1)

the former is given by CG/CΣ, where CG is the capacitance between gate and dot and

CΣ is the sum capacitance. CG/CΣ is largely determined by the geometry of the gate

electrode, in particular its separation to the dot and the other electrodes. Due to the

comparatively large gate separations (on the order of several 10s of nm), direct tunneling

to/from the gate at low bias can be neglected4. The leakage characteristic of a gate is

therefore governed by the field emission regime, where the bias voltages are sufficient to

tilt the barrier profile thus decreasing the effective barrier width [25]. Previous studies

of lateral tunnel junctions in our system have shown that the gate bias required to cause

field emission (typically on the order of several 100mV) increases significantly for higher

separations [100]. The optimal gate separation is therefore a trade-off between maximizing

the capacitive coupling (for small separations) and minimizing the gate leakage (for large

separations).

One of the distinctive features of our dopant-based quantum dots is the fact that the

dot size scales proportionally with the electron number. Moreover, due to the high sheet

doping density (0.25ML) in our system, the confinement length-scales of a donor-based

few-electron quantum dot will be much smaller than in other quantum dot architectures.

As an example, a planar Si:P dot with N = 10 electrons will have a diameter <5 nm. By

contrast, the effective diameter of both lateral [45] as well as vertical GaAs quantum dot

structures with the same electron number is on the order of 100 nm [152]. Due to the

small dot sizes, maintaining sufficient capacitive coupling presents a particular challenge

4This is in contrast to the tunnel barriers to the leads with separations � 10 nm.
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Figure 5.8: FastCap panel file. a, The cross-capacitances of the planar quantum
dot are modeled using the FastCap software [154]. Here, the device is represented by
a 3-dimensional wire grid or “panel file”, with a uniform thickness (in z-direction) of
2 nm. b, We find better agreement with the experimental data when adding a lateral
“seam” s around all patterned structures to account for the finite spread of charge
density into the surrounding Si substrate.

for down-scaling in our dopant-based architecture.

Since STM-patterning of Si:P devices is a comparatively time-consuming process, it is

desirable to optimize device geometry prior to fabrication. However, in contrast to top

gated architectures, where the gate capacitance can often be easily estimated from a simple

parallel plate capacitor model [153], predicting the capacitances for our planar devices is

not straightforward. To facilitate down-scaling of our Si:P quantum dots, we will therefore

use a numerical capacitance solver (FastCap) to model the capacitances and gate lever

arms of new device geometries.

5.3.3 Capacitance modeling

FastCap is a finite-element multiconductor capacitance solver [154] which was originally

developed to facilitate capacitance modeling of μm-scale integrated circuits for the mi-

croelectronics industry. As such, it relies entirely on classical electrostatics without any

quantum corrections, treating the conducting structures as a perfect metal (with screen-

ing length zero) surrounded by a homogeneous dielectric. By contrast, in this thesis we

will apply FastCap to estimate the capacitances of highly doped planar structures in sil-

icon with dimensions on the nanometer scale. Nevertheless, we find surprisingly good

agreement with the experimental values which we attribute to the extremely high sheet

doping densities of our samples which result in metal-like screening lengths5 on the order

of nanometers. FastCap takes input in the form of a three-dimensional wire-frame model

(so-called panel files) of the conducting structures where the surfaces are discretized into

triangular or quadrilateral panels (see Fig. 5.8 a). Using a multipole acceleration algo-

5see section 6.5.2
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Capacitances of the quantum dot device (in aF)

CΣ CPG CT1 CT2 αPG

experimental 48.5 13.2 7.2 7.2 0.27
FastCap, as desorbed 36 11 5.1 5.1 0.31
FastCap, with 2 nm seam 47 12 6 6 0.26

Table 5.3: Comparison between experimental capacitances for the many-electron
quantum dot and the corresponding values calculated by FastCap, assuming a uniform
thickness of 2 nm for the doped regions. The agreement between experimental and
calculated values can be significantly improved when adding a 2 nm wide seam around
the desorbed area of the dot (see Fig. 5.8 b) to account for the finite lateral extent of
the donor electron density.

rithm, which greatly reduces computation time, the software then calculates the mutual

capacitances for the set of conductors.

To demonstrate the applicability of this simple capacitance solver to our planar dopant

structures, we will model the capacitances of the many-electron Si:P quantum dot pre-

sented in this chapter. The initial calculations were performed by Dr. A. Fuhrer [115]

who matched the lateral contour of the wire-frame model (Fig. 5.8 a) directly to the STM

images of the H-desorbed region of the device (see Fig. 5.1 a). In the vertical (z-) direc-

tion, a uniform thickness of 2 nm is assumed, in agreement with theoretical calculations

for phosphorus δ-doped layers with similar sheet densities [37]. It should be noted that

this “thickness” refers to the spatial extent of the electron charge density in the direction

perpendicular to dopant plane (see Fig. 2.7 in chapter 2) and should not be confused with

the finite spread of the dopants in z-direction due to segregation during the overgrowth

process. Since the latter has been determined to be less than 6 Å [80] it is neglected for

the capacitance calculations. Furthermore, only the central region of the device is con-

sidered, for which the dimensions are known with nm-precision (see Fig. 5.1). Based on

these conditions, the calculated values were found to be in reasonable agreement with the

experimental capacitances (see table 5.3) with errors on the order of ±30%.

The implementation of FastCap for STM-patterned planar Si:P structures was later stud-

ied in more detail in our group by W. Tang [155] who also performed extended calcu-

lations for the many-electron quantum dot. In particular, he calculated that the error

from neglecting the outer μm-sized contact structures is on the order of 10% [155]. More

importantly, he found that a better agreement between the calculated and experimental

capacitance values could be obtained by increasing the lateral extent of the wire-frame

model beyond the edges of the actual donor region. This is illustrated in Fig. 5.8 b, where
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Figure 5.9: Lever arm vs gate separation. The calculated lever arm αPG for
the many-donor quantum dot as a function of the separation d between the in-plane
gate electrode and the dot.

a “seam” of uniform thickness s is added laterally around the original contour. This seam

accounts for the finite lateral extent of the electron wavefunction – which is expected to

reach beyond the physical location of the dopants within the patterned region6. Interest-

ingly, the best match with the experimental values was found [155] for a seam of 2 nm

thickness (see table 5.3) – which is comparable to the Bohr radius (∼2.5 nm) for P donors

in Si [151]. This is plausible since the latter is by definition a measure for the spread of the

donor wavefunction in the surrounding Si host crystal. The resulting FastCap capacitances

are summarized in

Based on this excellent agreement between the calculated values and the experimental

data, FastCap was used to optimize the layout and improve the tunability of subsequent

devices. Following a systematic approach to down-scaling, several devices of intermediate

size were fabricated, such as a quantum dot with ∼770 electrons [111]. Here, a wide concave

in-plane gate was patterned with the dot at the focal point, allowing for a comparatively

large lever arm of 0.36 as predicted by capacitance modeling.

While FastCap can be used effectively to model the lever arm of a given gate geometry,

no simple model exists to predict the corresponding gate range. It is therefore difficult

to determine the optimal gate separation for a device. However, we can determine trends

based on the experimental results of the many-donor device. Here, the separation of the

plunger gate was ∼36 nm (Fig. 5.1) resulting in a lever arm of 0.27 and a gate range

of approx. ±250mV. Using FastCap, we can calculate how the lever arm changes as a

function of the distance d between gate and dot. The results are depicted in Fig. 5.9

which shows a marginal decrease in αPG from 0.27 to ∼ 0.19 as the gate separation is

6This is analogous to assuming a finite thickness of 2 nm in z-direction
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doubled. By contrast, based on previous studies of lateral donor-based tunnel gap devices

[100] we expect a much stronger dependence of the leakage characteristic on the gate

separation. The small decrease in lever arm should therefore easily be compensated by

the much greater gain in gate range, resulting in an overall increase of device tunability.

In the next chapter, we will demonstrate how these considerations have enabled the fab-

rication of a tunable few-donor quantum dot. In particular, for the two plunger gates of

this device (patterned at increased separations of 44 nm and 57 nm, respectively) we find

lever arms on the order of 0.1 and gate ranges exceeding ±1V.

5.4 Chapter summary

This chapter has demonstrated the fabrication of a functional STM-patterned donor-based

quantum dot in the many electron regime. We have shown that donor-based in-plane gates

are a viable alternative to metallic top gates to reliably tune the electrochemical of the

dot. In particular, we find that such coplanar gates allow for highly stable operation of the

device by circumventing the detrimental effects of interface or surface defects. We highlight

this fact by comparing transport measurements of the purely in-plane gated device to

measurements performed after a metallic top gate has been added to the structure, and

find superior without the top gate.

We have also discussed the challenges associated with down-scaling of device dimensions

in our planar donor-based architecture. In particular, we have identified the need to

maintain sufficient capacitive coupling to the in-plane gates as a key issue for realizing

tunable quantum dot devices in the few-electron regime. Here, capacitance modeling has

been introduced as a viable tool to help optimize the layout of future devices.



Chapter 6

A few-donor Si:P quantum dot

Coulomb blockade of an STM-patterned quantum dot device was first demonstrated on

a dot which was roughly 2100 nm2 in size and thus contained several thousand P donors

[115]. This device was discussed in detail in the previous chapter, along with the challenges

related to downscaling within a planar architecture.

In this chapter we demonstrate the successful down-scaling of donor-based quantum dots to

the few-electron limit. We present results from a dot approximately 20 nm2 in size which is

estimated (from the passivated area and dosing conditions) to contain ∼7 P donors. Low-

temperature transport measurements reveal stable Coulomb blockade oscillations as well

as a surprisingly dense excitation spectrum with an average energy spacing of ∼100μeV.

Modeling of the energy spectrum of the quantum dot using effective mass theory1, we

are able to show that this dense set of excitations can be attributed to valley splitting of

electronic states in the highly confined dot.

6.1 Few-electron quantum dots in silicon

The first gated quantum dots to reach the few-electron limit were fabricated in modulation

doped GaAs/AlGaAs heterostructures [152] due to their high mobility and relative ease of

fabrication. However, silicon has attracted much attention as a host material for quantum

electronic devices over the last 10 years. This is largely due to its favorable material

properties for spin-based electronics [156] and quantum computation applications [14]:

a weak spin-orbit coupling and the abundance of a nuclear spin-zero isotope. To date,

1This was done in collaboration with Prof. M. Eriksson and Prof. M. Friesen at the University of
Madison-Wisconsin (USA).
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silicon-based quantum dot structures have been fabricated in a variety of architectures.

In modulation-doped silicon/silicon-germanium heterostructures, quantum wells can be

formed that generate a two-dimensional electron gas (2DEG) at the interface [34]. Quan-

tum dots can be created in this system by introducing additional lateral confinement either

by directly etching the substrate [131] or by using surface gates [125]. The latter have

enabled the realization of devices in the few-electron regime [157, 158, 159] and also allow

for the implementation of charge read-out techniques [160].

Quantum dots can also be realized in silicon nanowires [138, 139, 161, 162]. These

nanowires are commonly grown by means of the vapor-liquid solid (VLS) mechanism

using gold metal particles as catalysts and are typically ∼10 - 100 nm in diameter [139].

The resulting whiskers are then transferred onto an insulating substrate (usually a silicon

wafer with a SiO2 layer) and contacts are lithographically patterned. After deposition of

a suitable barrier material or dielectric, top gates are defined in an additional lithography

step which allow for confinement along the wire. Silicon nanowire quantum dots in the

few-electron regime have been reported by several groups [138, 161, 162].

Quantum dots have also been realized in field-effect transistor structures on Si/SiO2 sub-

strates [135, 163, 164, 165]. By using metallic [135, 163] or polycrystalline silicon [165]

gates on an oxide barrier, an inversion layer is created between highly doped contact re-

gions. Barriers between the dot and the leads are created either by low-doped regions

[165] or additional barrier gates in multi-layer gate stacks [163]. Charge sensing has also

been implemented in this architecture [148, 153].

In all these approaches, confinement is (at least along one dimension) created by applying

a voltage to some form of gate. By contrast, confinement within the donor-based struc-

tures presented in this thesis arises from the attractive potential of the ionized donors

themselves. This not only allows for devices of smaller overall dimensions, but also leads

to much steeper confinement slopes, the consequences of which will be discussed in this

chapter.

Observations of previous silicon few-electron quantum dots show a variety of transport

spectra with resonances of an average energy spacing ranging from 100 μeV to 10meV.

These resonance spectra arise from processes that can be either intrinsic to the quantum

dot itself or due to extrinsic features [166] as will be discussed in more detail in section

6.4.5. Intrinsic resonances are commonly found to result from orbital excited states with

a typical spacing on the order of several meV. By contrast, the ∼100μeV spacing of

resonances we observe in our device is a result of valley excited states arising from the

strong lateral confinement within the dot.
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Figure 6.1: Few-donor quantum dot device. a, Composite STM image of
the 4-terminal quantum dot device with source (S) and drain (D) leads and two
in-plane gates (G1, G2) acquired during STM-lithography before PH3 dosing. The
superimposed orange shaded areas indicate the innermost parts of the contact arms
for each electrode which were desorbed in a subsequent step. b, Close-up of the
central area indicated by the white square in a. Gate G1 was patterned closer to
the dot and with a deliberate shift (blue arrow) towards the D electrode to allow for
control of the tunnel coupling symmetry (section 6.4.3). All dimensions are in nm.

6.2 Device geometry

In chapter 4 we outlined in detail the fabrication scheme as developed and enhanced within

our group over recent years. The following section briefly summarizes the fabrication

details relevant for the present device.

Figure 6.1 shows a STM image of the quantum dot structure after H-desorption of the

central 4-terminal device with source (S) and drain (D) leads and two in-plane gates (G1

and G2). In a subsequent step, larger contact arms were desorbed for each electrode

(indicated by the yellow shaded regions in Fig. 6.2) before dosing the entire surface

with phosphine for 6min at a chamber pressure of ∼ 5× 10−9 mbar (corresponding to an

exposure of ∼1.4 Langmuir). A device layout with two separate gates was chosen not only

to achieve better tunability afforded by an increased capacitive coupling to the dot but

also to allow for higher flexibility in gating operations via two independent gate voltages.

This enables differential gating, i.e. a certain dot potential does not correspond to one

fixed gate voltage but rather to an entire subspace of the parameter-space spanned by all

gate voltages VGi . In the case of two gates, this means that the dot potential is constant

along a line in the VG1 − VG2 plane (as shown later in Fig. 6.6 c). Differential gating can

be advantageous in terms of device stability where common defects like charge-traps can

oscillate between two (or more) stable configurations at a particular potential thus causing

switching noise [141]. If several gates are present, the operating point of the device can
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Figure 6.2: Ex-situ metallic contacts. a, SEM image of the encapsulated device
after RIE etching of an array of contact holes which penetrate through the P doped
layer. The position of the large STM-patterned contact patches for each of the 4
electrodes (approx. 2.5 × 0.9μm2 for S and D) is indicated by the yellow shaded
areas. The red square indicates the position of the central device as shown in Fig.
6.1. b, Al metal contacts are EBL-patterned over the contact holes, with one terminal
per gate and two terminals each for S and D. The metal leads are extended out to
larger bond pads shown in c.

be shifted to a different configuration of gate voltages where the oscillator is tuned out of

resonance.

After PH3 dosing and a P incorporation anneal for 30 s at ∼350◦C the entire structure was

overgrown with approx. 30 nm epitaxial Si. The latter was grown at a rate of ∼1.7 Å/min

with a sample temperature of 250◦C. After removal from UHV, an array of contact holes

was defined in an EBL step and subsequently RIE etched down to the buried STM-

patterned contact patches. The latter are indicated by the yellow shaded regions in the

SEM image of Fig. 6.2 a. For the transport leads (S and D) the contact patches were

patterned about twice as large as for the two gates to allow for 2 terminals per contact

patch. In a last EBL step the aluminium contacts were patterned over the contact holes

(Fig. 6.2 b and c). While quantum dot devices are typically measured in a 2-terminal

configuration2 where only one metal contact per STM-patterned patch is necessary, the

additional contacts for the S and D leads allow us to determine that good ohmic contact

has been made (see inset of Fig. 6.4).

6.3 Estimating the number of P donors on the dot

To understand the transport properties of our device it is important to estimate the

number of P donors which constitute the quantum dot. One of the advantages of hydrogen

lithography using a STM is the fact that the latter can be turned from a patterning tool into

2The contact resistance (∼kΩ) is negligible compared to the resistance of the tunnel gaps (∼GΩ)
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Figure 6.3: Estimating the number of donors on the dot. a, Close-up STM
image of the 4.6 × 4.6 nm2 desorbed area that defines the quantum dot. The dot is
coupled to the source and drain leads via tunnel gaps. All dimensions shown are in nm.
b, By overlaying a grid with dimer row spacing (7.68 Å), one can count the number
of desorbed Si dangling bonds in the dot area. Along with an understanding of the
P incorporation mechanism this allows for the identification of potential phosphorus
incorporation sites highlighted in green in c. Stray dangling bonds (DB) and single
bare silicon dimers which do not contribute to P incorporation are indicated in red.

a non-invasive imaging tool by simply adjusting the tip voltage (see chapter 3). While it is

in principle possible to directly determine the number of incorporated donors by imaging

the structure again after the incorporation anneal, this step was avoided in the case of the

present device to reduce patterning time and minimize the risk of surface contamination.

Instead, we estimate the number of donors from high-resolution images of the desorbed

area in conjunction with a statistical study (see appendix A.1).

Figure 6.3 a shows a high-resolution STM image of the quantum dot in the center of the

device before PH3 dosing. The dimer rows of the Si(100) surface are clearly visible which

allows for atomically precise surface metrology yielding tunnel gaps of 9.2 nm and 10.0 nm

(12 and 13 dimer rows) between the dot and the S and D lead, respectively. A close-up

of the H-desorbed area defining the quantum dot is shown in Fig. 6.3 b, where a dimer

row grid has been superimposed. This allows us to count the number of desorbed Si

dangling bonds (DB). At least 3 contiguous dimers within one dimer row are necessary

to incorporate one P atom [76] as will be discussed in more detail in chapter 7. We can

thus identify the potential incorporation sites represented by the green colored dimers in

panel c. By contrast, the red regions do not contain enough adjacent dimers for P to

incorporate.

Previous studies of δ-doped Si:P samples [39, 43] as well as μm-scale devices [44] have

yielded electron densities of ∼ 2 × 1014 cm−2 corresponding to a planar dopant coverage

of ∼0.25ML. This is in agreement with theoretical studies of phosphorus incorporation in

δ-doped devices [71]. For nm-scale desorbed areas, however, the density of incorporated

P donors has been found [167] to decrease significantly for certain PH3 dosing conditions



94 CHAPTER 6. A FEW-DONOR SI:P QUANTUM DOT

due to an edge effect: a PH3 molecule at the edge of the desorbed area does not have

enough neighboring Si dangling bond sites to lose all of its 3 H atoms and incorporation

may be inhibited.

Dopant incorporation is inherently a statistical process. In order to quantify the decrease

of doping density and thus estimate the number of donors in the present device, a statistical

study was carried out in collaboration with Dr. J. Miwa and W. Tang using the same PH3

dosing conditions. Here we patterned an array of desorption sites similar in size to the dot

presented in this chapter. From STM-images after the dosing and incorporation step the

number of incorporated P donors was determined for each site. A summary of this study

is given in appendix A.1. For desorbed areas ∼5 nm in diameter we find an average donor

coverage of 0.09ML. Importantly, this value is significantly lower than the 0.25ML donor

coverage achievable on a bare Si surface [43] or larger depassivated areas [44]. Including

error bars, the 0.09ML coverage translates to an estimated number of 6 ± 3 phosphorus

donors for our quantum dot device.

6.4 Electrical characterization at mK-temperatures

A initial characterization at 4.2 K confirmed that the sample was well contacted electrically

and showed Coulomb blockade oscillations as a function of gate voltage. The quantum

dot device was subsequently cooled down in a 3He/4He dilution refrigerator with a base

temperature of ∼20mK.

As discussed in chapter 3, we first check for good ohmic contact to the buried STM-

patterned structure. This is done by simply measuring the resistance R2T of the contact

patches alone via their two metal terminals (Fig. 6.2). The resulting IV -curves for the

source and drain contact are shown in the inset of Fig. 6.4 and reveal a two-terminal

resistance of approx. 3 kΩ for both S and D electrodes.

The next crucial step is to determine the effective gate range for both in-plane gates, i.e.

the maximum voltages that can be applied to each gate before the leakage current Ileak

(flowing from a given gate to any of the other electrodes) exceeds a certain threshold,

typically 100 pA. Fig. 6.4 shows the measured Ileak curves for both gates as a function of

the applied gate voltage. From this plot we determine an effective gate range of -1.03 V to

1.37V for G1 and -1.30 V to 1.82V for G2, respectively. The smaller gate range for gate

G1 is expected since it is patterned closer to the leads (see Fig. 6.1 b).

After these initial characterizations, we are now able to measure stability diagrams of the

quantum dot device where the differential conductance dI/dVSD is plotted as a function
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Figure 6.4: Determining the gate range. The graph shows the gate leakage
current as a function of the applied gate voltage for each gate. We determine an
effective gate range of -1.03V to 1.37V for G1 and -1.30V to 1.82V for G2, respec-
tively. The smaller gate range for gate G1 is expected since it is patterned closer to
the leads. The inset shows linear I-V curves through the contact patches for S and
D with a two-terminal resistance of ∼ 3 kΩ, confirming good ohmic contact to the
buried device.

of the applied bias and gate voltages as shown in Fig. 6.5. Here, the gate voltage is

applied to both gates in parallel. For clarity, we label each of the diamonds with roman

numerals which will be used in the following discussion. Importantly, these numbers do not

correspond to the number of electrons on the dot. The latter is not known exactly since

the gate range is not sufficient to deplete the dot with the pattern of Coulomb diamonds

continuing all the way down to the negative end of the gate range. Under equilibrium

conditions the electron number is expected to be equal to the number of donors on the

dot. From the stability data we can immediately make several important observations,

each of which will be addressed in more detail in the following sections:

• The addition energy Eadd, given by the height of the Coulomb diamonds, increases

as the gate voltage is lowered (see section 6.4.1).

• The device conductance decreases significantly with decreasing gate voltage (section

6.4.3).

• The device shows highly stable Coulomb blockade with only a few very minor charge

rearrangements over a measurement time of approx. 15 hours (section 6.4.4).

• A great number of lines of increased conductance are visible outside of the blockaded

regions. Their origin will be discussed in detail in sections 6.4.5 and 6.5.
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Figure 6.5: Low-temperature stability diagram. The device conductance
dI/dVSD was measured as a function of the bias voltage VSD and the gate volt-
age applied to both in-plane gates in parallel. To limit the maximum current through
the device, the bias voltage window was decreased for rising gate voltage, resulting
in the overall trapezoidal shape of the data plot. A great number of conductance
resonances are visible as bright lines of increased conductance running parallel to the
edges of the Coulomb diamonds.

6.4.1 Addition energy spectroscopy

The height of each dark diamond in Fig. 6.5 is the addition energy, Eadd = Ec + ΔE,

where Ec is the charging energy and ΔE is the single-particle level spacing. Here, Eadd

increases noticeably as electrons are removed from the dot: the extracted values are shown

in Fig. 6.6 a, rising from < 20meV to ∼50meV within the available gate range3. Such a

dramatic change in addition energy is only possible when the quantum dot is in the few-

electron limit, so that the removal of electrons causes the actual size of the dot to change

significantly. Interestingly, the measured addition energy of ∼50meV at the lower end of

the gate range actually exceeds the value reported for single P donors in bulk silicon [168].

This may reflect the fact that as the occupation number of the dot decreases, screening of

the positive charge becomes less effective and the remaining electrons are more strongly

bound by the increasing positive potential of the ionized donors.

The addition energy follows a smooth background curve (indicated in grey in Fig. 6.6 a)

with prominent peaks for diamond “IV” and, arguably, diamond “VIII”. Such local max-

ima of Eadd generally reflect a stable electron configuration, typically due to a filled shell

[46], so that the next incoming electron requires an extra energy ΔE in addition to the

purely electrostatic charging energy Ec. In materials systems such as GaAs, circular few-

electron quantum dots often exhibit a regular sequence of stable occupation numbers4

3The value for diamond “I” was obtained from another sweep not shown here.
4These are sometimes referred to as “magic numbers”.
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Figure 6.6: Addition energy and gate lever arm. a, The addition energy
(extracted from Fig. 6.5) steadily increases as electrons are removed from the dot as
illustrated by the smooth background curve (grey) which serves as a guide to the eye.
Clear “kinks” are visible for diamond “IV” and possibly diamond “VIII” which may
reflect higher orbital states. b, The extracted lever arm (for both gates in parallel)
is also found to rise with decreasing gate voltage which is attributed to an increasing
ratio of gate to lead capacitance. The latter is determined (for the source lead) from
the negative slopes of the Coulomb diamonds in Fig. 6.5. c, From the slope of the
Coulomb transitions in this gate-gate sweep we extract a ratio of the gate capacitances
of G1/G2 ≈ 1.4.

with increased addition energy [24, 152]. This sequence reflects a well-ordered 2D shell

filling analogous to the filling of electron levels in atomic physics. In this context quantum

dots are often being referred to as “artificial atoms” [24]. However, for silicon such a reg-

ular shell filling is typically not observed due to the additional valley degree of freedom.

The latter results in a more complex spin filling that intricately depends on the atomistic

details of the structure [163, 169, 170].

It is plausible to identify the baseline in Fig. 6.6 a as the charging energy with the “kinks”

representing the single-particle energy spacing ΔE [122]. For diamond “IV” (which shows

the most significant “kink”) we can then roughly estimate ΔE to be on the order of 5-

7meV. This value is indeed consistent with the particle-in-a-box estimate for the orbital

level spacing for a 2D dot of this size, as will be discussed in more detail in section 6.4.5.

From the Coulomb diamonds of Fig. 6.5 we can also determine the gate lever arm as

αGi = ΔVGi/Eadd. The latter is a measure for the “effectiveness” of gate i, converting

gate voltage into energy. In the CI model it is defined as the ratio of the gate capacitance to

the total capacitance, αGi = CGi/CΣ. Fig. 6.6 b shows the extracted lever arm when both

gates are used in parallel5. A clear increase is observed as the gate voltage is lowered which

indicates a significant change of the capacitances between the dot and the electrodes. As

a result, the simple constant interaction model of Coulomb blockade has limited validity

[152] which is reflected by the observed change in Eadd.

5The gate lever arm is additive, i.e. αG1+G2 = αG1 + αG2
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Figure 6.7: FastCap panel file. The cross-capacitances of the device were modeled
using the FastCap software [154]. Here, the device is represented by a 3-dimensional
wire grid.

The significant rise of α for lower gate voltages can be explained by the decreasing effective

dot size as electrons are removed. This has a much stronger effect on the capacitive

coupling to the leads than on the coupling to the gates which are much farther away [162].

Indeed, the ratio of gate to source capacitances (extracted from the negative slopes of the

Coulomb diamonds [45]) is found to increase for lower gate voltages, as shown by the green

curve in Fig. 6.6 b.

Since both in-plane gates can be used separately, the ratio of their respective capacitances

can be extracted directly from the slope of the Coulomb transitions in a gate-gate sweep

(Fig. 6.6 c). We obtain CG1/CG2 ≈ 1.4 which is consistent with the device geometry (Fig.

6.1 b) since gate G1 is patterned closer to the dot than G2.

6.4.2 Capacitance modeling

In chapter 5 we discussed how capacitance modeling was used to optimize device design

for the down-scaling of our planar quantum dot structures. To verify the validity of this

approach, it is instructive to compare the experimental capacitance values for the present

few-donor device to the numerical predictions. We use the FastCap [154] software tool to

model the capacitances of our device. The latter is represented by a three-dimensional

wire-frame model as shown in Fig. 6.7. We assume a uniform thickness in z-direction of

2 nm, in agreement with theoretical calculations for phosphorus δ-doped layers with similar

sheet densities [37]. It should be noted that this “thickness” refers to the spatial extent

of the electron charge density in the direction perpendicular to dopant plane and should

not be confused with the finite spread of the dopants in z-direction due to the overgrowth

process. Since the latter has been determined to be less than 6 Å [80] we neglect it for our

simple capacitance calculations. Furthermore, we only consider the central region of the

device for which the dimensions are known with nm-precision (Fig. 6.1). Including the
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Capacitances of the quantum dot device (in aF)

CΣ CS CD CG1 CG2 αG1 αG2

experimental 5.16 2.32 1.93 0.53 0.38 0.102 0.073
FastCap 4.92 2.08 1.90 0.51 0.43 0.105 0.088

Table 6.1: The experimental values are extracted from diamond “V” in the sta-
bility plot of Fig. 6.5 as described in section 2.3.1. We assume that the measured
value of Eadd for this diamond corresponds directly to Ec since it lies on the smooth
background curve in Fig. 6.6 a. For the FastCap calculations, a lateral “seam” of
2 nm was added around all four electrodes (as illustrated in 6.8 a) to account for the
finite spread of charge density into the surrounding Si substrate. We assume the dot
to be square with a variable edge length d. We find the best agreement with the
experimental values for d = 7.6 nm.

outer μm-sized contact structures leads to corrections of only ∼10% [155].

Since the observed capacitance values vary strongly with gate voltage we will initially

focus on diamond “V” of Fig. 6.5 for which we assume the diamond height to correspond

to Ec as discussed above. Moreover, this diamond is close to zero gate voltage for which

we expect the dot to be charge-neutral.

As described previously, the basic assumptions of FastCap are rather crude, assuming the

conducting regions to be a perfect metal surrounded by a homogeneous dielectric, without

any quantum corrections. Similar to assuming a finite thickness in the vertical direction,

we add a lateral “seam” around the entire desorbed area of the device to account for the

finite spread of the donor wavefunctions into the surrounding material.

Adding such a seam was found to yield better agreement with previous devices [155], as

discussed in section 5.3.3. Here, a seam width of 2 nm was determined empirically to give

the best match with the experimental values. Indeed, this value is plausible since it is

similar to the effective Bohr radius aB ≈ 2.5 nm in silicon [151]. We will therefore again

add a 2 nm seam around the desorbed areas for all four electrodes of the present device

(see Fig. 6.8 a). By contrast, we will use the effective diameter d of the dot (which we

will approximate as a square) as a fitting parameter for the FastCap calculations. The

reason for this is that donor incorporation is inhibited at the very edges of the desorbed

dot region (see section 6.3), and we therefore expect a smaller effective dot size. The

calculated capacitances are summarized in table 6.1. We find the best match for an

effective dot diameter of d = 7.6 nm (compared to a diameter of ∼4.6 nm of the physically

desorbed dot area).

Considering the crudeness of the modeling approach the agreement with the experimental

values is remarkably good, with errors of � 10%. In particular, the assumption that the
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Figure 6.8: Capacitance modeling. a, For the FastCap calculations, a lateral
“seam” of 2 nm was added around all four electrodes to account for the finite spread
of charge density into the surrounding Si substrate. The dot is approximated as a
square with a variable edge length d. b, The calculated values reproduce the rise
in charging energy quite well assuming d increases from ∼5.5 nm to ∼9.5 nm as five
electrons are added to the dot. However, the simple modeling does not account for
the significant change in gate lever arm as shown in c.

nm-scale dopant regions can be represented by a homogeneous metal only holds if the

screening length within the these regions is much smaller than the size of the doped areas

[171]. We therefore attribute the excellent agreement to the extremely high doping density

in our devices which results in a metal-like screening length on the order of ∼1 nm (see

section 6.5.2).

Based on the excellent agreement with the experimental data, an attempt was made to

reproduce the overall rising trend of the charging energy with decreasing electron number

(see Fig. 6.6 a) by calculating the capacitances for different effective dot sizes. While the

dimensions of the electrodes were fixed (with a seam of 2 nm as described above), the dot

was assumed to be square with a variable side length d which was then used as a fitting

parameter (see Fig. 6.8 a). The results are shown in panel b, which depicts the charging

energy calculated from the FastCap sum capacitances via Ec = e2/CΣ. The calculated

values reproduce the baseline of the experimental curve accurately assuming d increases

from ∼5.5 nm to ∼9.5 nm as 5 electrons are added to the dot. However, despite the well-

known effects of reduced screening it seems questionable whether such a drastic change

in dot size is plausible for our donor-based quantum dot. We can further test the validity

of the modeling results by calculating the gate lever arm over the same range as shown

in Fig. 6.8 c. While the FastCap results (blue curve) reproduce the rising trend of the

experimental data, the curves clearly do not match.

We thus conclude it to be unlikely that the observed increase in Eadd is due to a change

in the effective dot size alone. Another possible explanation is the varying tunnel barrier

height between the dot and the leads which will be discussed in detail in the next section

(6.4.3). The height of these barriers increases as the gate voltage is lowered resulting in
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a stronger confinement along the S-D-axis. This in turn leads to a reduction of CS and

CD and thus a lower sum capacitance. Such an increase in charging energy arising from a

modulated tunnel barrier height has been observed in other quantum dot systems [122].

However, to include the effects of a variable barrier height is far beyond the capabilities

of our simple capacitance modeling approach.

6.4.3 Tunnel coupling symmetry

An important advantage of STM patterning is that one can determine which tunnel barrier

should dominate conduction by simply considering the geometry of the gaps directly from

the STM images. Variations in the device dimensions even at the atomic scale have

significant effects on the tunnel resistance. Previous experiments in our group have shown

that both the gap length and the lead width of the tunnel junction are crucial, with a low

width-to-length aspect ratio of the gap predicting a high resistance [100]. From Fig. 6.3 a

we determine an aspect ratio of 0.58 for the S-side gap in contrast to 0.61 for the D side.

Despite this small difference in values we already know that the tunnel junction to the S

electrode is expected to have a higher resistance.

Figure 6.9 a shows another stability diagram of the device where the conductance is plotted

on a logarithmic scale for better visibility of the transport resonances at low gate voltages.

Here, the gate voltage is applied to gate G1 only (while keeping G2 floating). Over the

entire gate range we observe a great number of lines of increased conductance running

parallel to the diamond edges outside of the blockaded regions. For comparison, the

diamonds are labeled with the same roman numerals (which do not correspond to the

electron number on the dot) as in Fig. 6.5. Diamond “IV” is easily identified by its local

maximum in peak height. We find that the diamond pattern has shifted towards higher

gate voltages compared to Fig. 6.5. This is most likely due to several VG1 sweeps to the

very edges of the gate range for G1 which may have caused some charge rearrangements

in the vicinity of the device (see section 6.4.4).

Experimentally, an asymmetry in tunnel coupling manifests itself in an asymmetry of the

observed transport features [145]. This is apparent from the data in Fig. 6.9 a: for VG1 ≥ 0,

predominantly lines with negative slopes are observed indicating a stronger coupling to

the D electrode [145]. As we will discuss later in this chapter (section 6.5.2), we attribute

the resonances visible in Figs. 6.5 and 6.9 a, with a spacing on the order of a few meV, to

a modulated density of states in the source and drain leads. This can be understood by

considering the simple energy schematic of Fig. 6.10 where the DOS in both S and D is
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Figure 6.9: Tunnel coupling symmetry. a, Stability diagram where the gate
voltage is only applied to gate G1 while keeping G2 floating. Here, the data is plotted
on a logarithmic scale to increase the visibility of resonance features at lower gate
voltages. The diamonds are labeled with the same roman numerals (which do not
correspond to the electron number on the dot) as in Fig. 6.5, where both gates
were used in parallel. The white square indicates the position of the close-up data
of Fig. 6.13. While for VG1 > 0 conductance features are visible predominantly with
positive slope, both positive and negative slopes are observed at the lower end of the
gate range. This is a result of the gate voltage dependent coupling asymmetry as
illustrated in the schematic energy diagram in b. c, The Coulomb peak conductance
shows a decreasing trend for lower gate voltages (VSD = 60μV).

strongly modulated. A transport resonance (i.e. a peak in the differential conductance)

occurs whenever a dot level aligns with the potential μS,D in the leads. However, tunneling

rates generally depend on the number of available states to tunnel from/into6 so that a

resonance can also occur when a dot level is aligned with a DOS peak within the bias

window [147]. Now assume that the coupling constants to source and drain, ΓS and ΓD,

are significantly different as illustrated by the narrower barrier and thicker arrow on the

drain side in Fig. 6.10 a. Only when a DOS peak in the weaker coupled lead enters the

bias window, eVSD, will the device conductance show a noticeable relative increase. This is

because tunneling through the corresponding (higher) barrier represents the rate-limiting

6This essentially follows from Fermi’s Golden Rule.
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Figure 6.10: Resonances arising from DOS in the leads. a, Energy diagram
of single-electron tunneling through a discrete quantum level, μN , in the presence
of a strongly modulated DOS in the leads. For asymmetric tunnel barriers, ΓS 	
ΓD, transport through the S barrier is the rate-limiting process as indicated by the
thin arrow. b, Schematic stability diagram showing lines of increased conductance
resulting from the DOS peaks in the S (blue) and D lead (pink). The latter will be
much less pronounced due to the stronger coupling to D as indicated by the dotted
pink line.

process [145]. From the data of Fig. 6.9 a we thus conclude that for VG1 ≥ 0 the tunnel

barrier is higher on the S side – as expected from the device geometry. It should be noted

that a disparity between conductance features with opposite slope does not automatically

pinpoint DOS in the leads as their origin. A similar disparity is also commonly observed

for resonances arising from dot excited states in asymmetrically coupled devices [165, 166].

The impact of variations in the device design at the nm-scale is also apparent if we consider

the effect of the in-plane gates. Due to the small size of the dot, it is evident that an applied

gate voltage will not only tune the electrochemical potential of the dot but will also affect

the tunnel barriers to the leads [100]. This non-proximal coupling is a commonly observed

feature of few-electron quantum dots in many materials systems [152, 158]. Gate G1 was

patterned with a deliberate shift of ∼10 nm towards the D electrode as shown in Fig.

6.1. This allows for the ratio ΓS/ΓD of the tunnel rates to be tuned via the gate voltage

VG1 as illustrated in Fig. 6.9 b. While making VG1 more negative increases the height of

both tunnel barriers (resulting in a lower device conductance) the effect will be stronger

on the D-side barrier which effectively results in an increased coupling symmetry, where

ΓS/ΓD → 1. This is clearly visible in the stability diagram, where the observed number

of resonance lines with negative slopes increases for VG1 < 0.

Regarding the coupling strength between the dot and the leads, it is instructive to inves-

tigate the Coulomb peaks in more detail. From fitting the peakshape to theory [48] we

determine an electron temperature of ∼260mK. This value is higher than the nominal

bath temperature of ∼20mK. The discrepancy is too high to be accounted for by heating
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Figure 6.11: Electron temperature. The graph shows a more careful measure-
ment of the Coulomb blockade peak closest to zero gate voltage at a source-drain bias
of 40μV. The red line is a fit to theory in the quantum CB regime [48] which yields
an electron temperature of ∼260mK.

due to external noise. The most likely explanation is that the device is in the transition

region to the lifetime broadened regime where kBT < hΓ [48]. In this regime, the Coulomb

peaks are broadened by the finite tunnel coupling Γ to the source and drain leads rather

than temperature [48].

6.4.4 Charge offset stability

One of the most important challenges for future large-scale integration of SET devices is

noise due to random offset charges [134, 172]. Here, noise refers to intrinsic fluctuations

of the current through the device. The offset charges originate from carriers bound to

charge traps or impurities in the insulating environment of the device which are close

enough to have a finite capacitive coupling Ct to the device. In the case of a quantum

dot, the corresponding charge Qt will cause a change δVG = Qt/Ct in the effective gate

voltage thus shifting the Coulomb blockade thresholds. As a consequence, the device will

commonly exhibit noise in the form of random telegraph signals (RTS) [141] where the

current fluctuates between two (or more) discrete levels that reflect the discrete charge

states of the defect.

Charge offset noise affects the proper operation of many nanoelectronic devices, in par-

ticular single electron transistors (SETs) which are used to detect the charge state of a

nearby dot [158, 173]. Furthermore, charge noise also presents a challenge for possible

quantum computing applications [174].

The effects of individual charge traps on the transport spectroscopy of silicon quantum

dots has been investigated by Pierre et al. [175] who used a simple capacitive model in

order to discriminate the resulting features from other transport resonances. Long-term
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Figure 6.12: Charge offset stability. The graph shows the evolution of a Coulomb
peak position in gate space over 4 days. The gate voltage was continuously swept from
-60mV to 140mV (only the relevant part of the data is shown). After an initial drift
the peak position stabilizes around 80± 2mV, yielding a stability of ∼0.01e.

charge offset stability in Si based nanoelectronic devices has been studied by Zimmerman

et al. [176, 177] who found the stability of SETs patterned on SOI material to be better

than 0.01e over a measurement period of several weeks.

Fig. 6.12 illustrates the stability of the Coulomb peak position for our few-donor dot

measured over four days. Here, the gate voltage was swept continuously within a fixed

200mV window. After an initial long-term drift over approx. two days, the peak position

stabilizes to within ±2mV, which translates into a stability of ∼0.01e. These slow initial

drifts were generally observed throughout all measurements of the device: whenever the

gate voltage was moved over a large range (i.e. several 100mV), subsequent sweeps at

first showed substantial switching noise which then settled on a time scale of 10-20 hours.

It should be noted that applying excessive gate voltages to the in-plane gates (resulting

in leakage currents of several nA) was found to cause shifts of the charge transitions in

the stability diagrams. This is attributed to charge rearrangements in the vicinity of the

device which cause a change in the effective gate voltage as discussed above.

Most of the defects that create offset charges are associated with surfaces or material

interfaces such as the Si/SiO2 interface in MOSFET devices [142]. Due to the ∼30 nm

epitaxial Si encapsulation layer and the absence of surface gates, detrimental effects arising

from surface defects are circumvented in our quantum dot structure. However, we can not

rule out the presence of impurities in the substrate surrounding the patterned structure.

Based on the very low background doping density7 of the substrate (∼1015 cm−3) there

are a few possible explanations for the presence of switching noise in our devices. One

possibility are additional P dopants in the plane of the device which are an unwanted

7The substrate doping corresponds to only ∼1 impurity per (100 nm)3.
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byproduct of the STM-lithography process due to stray desorption. However, the latter

can be minimized by careful adjustment of the STM-desorption parameters, leaving room

for further optimization in future devices. Another possible explanation is the presence of

point defects in the silicon encapsulation layer [178] due to the low growth temperature

used.

Gate voltage induced charge noise in P doped silicon has been studied previously by

Ferguson et al. [179] who found that the current fluctuations in Si SETs arise from the

slow ionization of phosphorus donors in the gate electric field. After applying a gate

pulse the noise level typically equilibrated over several hours, which is consistent with the

findings for our device.

6.4.5 Low-bias excitation spectrum

There are several possible explanations [166] for the great number and small energy sep-

aration of the conductance resonances in the stability diagram of Fig. 6.5, both intrinsic

to the dot and extrinsic. Determining the origin of such resonances is at the heart of

transport spectroscopy for any given quantum dot system.

To investigate the possible causes of the resonances in our structure we have measured

stability diagrams at higher resolution around a particular Coulomb transition (near zero

gate voltage) as shown in Fig. 6.13. The data reveal a very dense spectrum of resonances

with an average spacing on the order of ∼100μeV as illustrated in panel c. The predom-

inance of lines with positive slope again reflects the asymmetric tunnel coupling to the

leads as discussed in section 6.4.3. In order to distinguish intrinsic features arising from

dot excited states from extrinsic features (such as those related to the DOS in the leads),

one generally tries to match up corresponding pairs of resonance lines for positive and

negative bias [46] as illustrated in Fig. 2.10 of chapter 2. However, the high density of

resonances in conjunction with the coupling asymmetry makes it very difficult to reliably

match the corresponding pairs in our case8.

Considering the small dimensions of the device, the spectrum of observed resonances is

surprisingly dense. To elaborate on this, we will briefly review the typical origins [166] of

transport resonances in semiconductor quantum dot devices and discuss their applicability

to the data of our quantum dot.

8While the tunnel coupling becomes more symmetric at the lower end of the gate range (see section
6.4.3), the strongly decreased device conductance leads to a much less well-defined low-bias spectrum thus
making it equally difficult to identify excited state pairs.
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Figure 6.13: Low-energy transport resonances. a, A close-up of the charge
transition between diamond “IV” and “V” (see Fig. 6.9 a) which is closest to zero
gate voltage reveals a dense set of conductance features. The white square indicates
the region of the higher-resolution sweep shown in b, where an even larger number
of transport resonances emerges as indicated by the arrows. c, The extracted energy
spectrum of the low-bias transport resonances (with pos. slope) yields an average
spacing of ∼100μeV.

Orbital excited states

A good approximation for the mean level spacing ΔE in two-dimensional dot structures

(where lateral confinement is weaker than in z-direction) is given by [46]

ΔE =
π�2

gm∗A
(6.1)

where m∗ is the electron effective mass, A is the effective area of the dot, and g accounts

for the spin and valley degeneracies. Despite its simplicity, this approximation has been

found to be quite reliable when applied to modulation-doped or inversion layer quantum

dots [46, 135]. However, if we consider the appropriate values for our highly doped silicon

dot, i.e. a spherically averaged effective mass of 0.28me [35], a dot area of ∼20 nm2 (Fig.

6.3), and full spin and valley degeneracy (g = 12), we find an expected level spacing of

∼4.5meV. Evidently, this is more than an order of magnitude larger than the experimental

value of Fig. 6.13 c which leads us to rule out orbital excited states as a plausible origin

of the observed resonances.

Density of states in the low-dimensional leads

Due to the very narrow width of our source and drain leads (∼5 nm) we expect to observe

quasi-1D characteristics resulting from the tight lateral confinement [36]. The patterned

width of the leads at the narrowest point is roughly 5 nm (see Fig. 6.1). Confinement

along z-direction is even stronger, with a vertical spread of the donor electron density
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of ∼2 nm [37] (see section 6.4.2). Both these confinement lengths are comparable to the

Fermi wavelength of 2 − 3 nm in our structures [180] leading to transversal quantization

of propagating states. The discrete electronic states of the quantum dot then act as a

“spectrometer” which effectively samples the DOS in the electrodes [147] as illustrated in

Fig. 6.10.

The spacing between these DOS peaks can again be estimated from a particle-in-a-box

approximation. However, for 1D confinement, a hard-wall potential (i.e. infinitely steep

potential walls) yields a spectrum where the spacing between successive levels increases

steadily, ΔEn ∼ n/L2 [46], where L is the width of the wire. Such an increasing level

spacing is not consistent with the observations for our dot, where the densely spaced

resonances are distributed evenly. A constant spacing of energy levels is however generally

found for systems with a parabolic confinement potential. The latter is often used as an

approximation for quantum dots where the confinement varies over distances of 10s of

nanometers, such as top-gated Si MOS structures [181]. The constant level spacing for a

harmonic potential is given by [46]

ΔEharm =
�

g

√
8V

m∗
1

L
(6.2)

Here, V is the height of the parabolic potential well which we assume to be on the order of

∼100meV in agreement with previous studies on tunnel junctions [100]. Using the same

values for g and m∗ as above for our leads, we obtain an average level spacing of ∼7meV.

Even if we consider the fact that both leads widen to approx. 15 nm further away from

the dot (Fig. 6.1 b), the resulting spacing is still more than an order of magnitude too

large to account for the observed resonances. Moreover, a harmonic potential does not

seem to be a good approximation for the very sharp confinement potential present in our

structure (discussed in more detail in section 6.5.2). We conclude that DOS modulations

in the quasi-1D leads are unlikely to explain the observed spectrum.

It should also be noted that for Coulomb blockade devices the occurrence of negative

differential conductance (NDC) is commonly argued to arise from a modulated DOS in

the leads [145, 146]. The argument can be easily understood by considering Fig. 6.10

where the conductance is expected to first increase and then decrease every time a DOS

peak passes the dot level. We do indeed observe NDC in our transport data (Fig. 6.13).

However, other mechanisms can also lead to NDC in quantum dot devices such as energy-

dependent tunneling [182]. This is caused by a varying tunnel rate between the leads and

the dot for different discrete dot states. Qualitatively, if an excited state with a lower
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tunnel rate comes into the bias window the sequential tunneling current through the dot

will decrease due to the longer lifetime of electrons in this state.

Phonon absorption and emission

For the sake of completeness we include confined lattice vibrations in this discussion since

they have been found to cause evenly spaced excitation spectra at comparable energy

scales in nanowire [162] and carbon nanotube [183] quantum dots. Phonon emission and

absorption can enhance current through a dot by offering additional inelastic tunneling

processes [166]. However, a discrete phonon spectrum can only exist in heterostructures

where material interfaces or sharp changes of material composition are present. This is

the case for structures such as free-standing Si nanowires [162], carbon nanotubes [183],

or molecular transistors in the Coulomb blockaded regime [169, 184]. By contrast, our

structures inherently do not contain any material interfaces. The only modulated quantity

is the P doping density. The P donors occupy substitutional Si lattice sites within the

encapsulated structure. With Si and P being neighbors in the periodic table of elements,

the relative difference in atomic weight (≈ 28, and ≈ 31, respectively) is very small.

In summary, it does not seem plausible that our highly homogeneous Si:P structures

present a phonon cavity, so that a discrete spectrum of confined phonons can be ruled out

as an explanation for the transport data.

Fluctuations of the local density-of-states

Another possible explanation for the observed spectrum is disorder in the leads, which

may cause irregular fluctuations in the local density-of-states (LDOS) [185, 186]. As

discussed previously (see Fig. 6.10), a modulated density-of-states can result in peaks in

the differential conductance. The corresponding resonances can be very dense and have

been observed [187] to occur on an energy scale comparable to the 100μeV we observe.

The irregular fine structure of the LDOS arises from quantum interference of elastically

scattered quasiparticles diffusing coherently within a length scale related to their lifetime

at a particular energy E. In the case of an electron tunneling from the source to the dot

these interfering quasiparticles are, in fact, holes at E < μS left behind in the emitting

reservoir. Being in a nonequilibrium state, the holes then “float up” towards the Fermi

level (due to inelastic collisions between electrons) and thus have a finite lifetime [187].

Disorder is inherent to our doped Si:P structures [38] and arises from the random distri-

bution of the donor atoms within the doping plane after incorporation [71]. The influence
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of disorder can be described using the dimensionless parameter kFl, where kFl 
 1 corre-

sponds to weak disorder [188]. Here, l is the electron mean free path and kF is the Fermi

wave vector. For δ-doped silicon the latter is given by
√

4πns/g, where ns is the sheet

doping density and g = gsgv accounts for the spin and valley degeneracy. A very high

doping density should thus correspond to weak disorder. To estimate kF for our system we

assume gs = 2 and a four-fold degeneracy of the Δ valleys, gv = 4 (see section 2.2). With

a mean free path on the order of ∼ 5 − 10 nm [38] we then obtain a disorder parameter

kFl � 10 
 10 and thus conclude that our highly doped Si:P structures are in the limit

of weak disorder. This may initially seem surprising, but is ultimately a result of a more

efficient screening (of the disordered impurity potentials) for higher charge densities. It

therefore seems questionable whether the weak disorder in our leads could result in such

prominent resonances in our structure.

The effects of disorder-induced LDOS fluctuations have been studied experimentally in

detail in μm-size vertical GaAs double-barrier structures [187] where they were found to

cause irregular peaks in the differential conductance. More recently, Pierre et al. [146]

investigated transport through single impurities in silicon MOSFETs with doping densities

≤ 1020 m−3. They observed transport resonances with an average spacing on the order of

∼ 1meV which they attributed to LDOS fluctuations in their ∼ 50 nm doped leads. With

our significantly thinner leads (∼ 5 nm) and much higher doping density (corresponding

to ∼ 1027 m−3) we would expect the resulting level spacing to be even larger in our case,

not smaller as observed.

In summary, we cannot completely rule out resonances arising from disorder effects, but

with our very highly doped narrow leads we do not consider that these can account for

the observed transport spectrum.

6.5 Valley-splitting in a few-electron Si:P quantum dot

An alternative explanation for the observed transport spectrum is to consider the unusual

band-structure of highly doped δ-layers of phosphorus in silicon. The critical feature is the

near degeneracy of four of the conduction band minima or valleys in the band structure

(see chapter 2) and how this is affected by the strong lateral and vertical confinement.

The phosphorus δ-layer that constitutes the conducting regions of the device is a two-

dimensional sheet of charge, with a Fermi surface as shown in Fig. 6.14 b. Two valleys

exist at the Γ-point in the center of the first Brillouin zone. These two out-of-plane

valleys, Γ1 and Γ2, are lowest in energy and are known to be split by the strong quantum
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Figure 6.14: Valley degeneracy in silicon. a, The 6 degenerate valleys within
the 1st Brillouin zone of bulk silicon. b, In δ-doped Si:P layers, where the electrons are
confined along the vertical direction, the resulting 2D bandstructure is a projection
of the 3D case onto a plane perpendicular to the confinement direction. This results
in 4 (nearly) degenerate Δ valleys and two non-degenerate valleys Γ1 and Γ2 which
are lower in energy (c).

confinement in z-direction, perpendicular to the doping plane [37, 35]. In addition, there

are four Δ-valleys, two each in the x and y directions, which are usually degenerate in 2D

devices. However, since our quantum dot device is also confined laterally on the nm-scale

it is important to consider if any splitting of this degeneracy can give rise to the resonances

observed in Fig. 6.13.

6.5.1 Valley-splitting in the literature

In contrast to material systems like GaAs heterostructures, the presence of 6 degenerate

valleys in the band structure of bulk silicon presents a challenge in understanding and

controlling the transport properties of silicon-based nanostructures. This is particularly

true for spin-based quantum computational applications, since valley splitting is often

found to be of a similar order of magnitude, 0.1 - 1meV [189, 31], as the Zeeman splitting

between different spin states. In order to avoid valley states competing with spin states

for prominence in such devices it is generally favorable to have large valley splitting [189].

Furthermore, valley degeneracies present a possible source of decoherence for quantum

computation applications [21].

Ohkawa and Uemura [190] and later Sham and Nakayama [191] were among the first to

extend the effective-mass theory of Luttinger and Kohn [32] by considering the multival-

ley structure of Si. Experimentally, valley-splitting was first observed in the Shubnikov-

deHaas oscillations of Si MOS structures in strong magnetic fields [192, 193]. Due to its

profound impact on the transport characteristics of silicon nanostructures, valley-splitting

has received a renewed interest over the last decade, both theoretically [31, 194, 195, 196]
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and experimentally [189, 197]. The majority of this work has been focused on quantum

wells in Si/SiGe heterostructures [31, 189] or Si/SiO2 MOSFETs [197] where carriers are

only confined in one direction. Boykin et al. [194] have performed atomistic calculations

for Si/SiGe quantum wells and find a valley splitting on the order of 10μeV to 1meV

which oscillates and decays with the quantum well width. Goswami et al. [189] were able

to control the valley splitting of the lowest (Γ) subband by applying electric and magnetic

fields to a quantum point contact in a stepped Si/SiGe heterostructure.

The impact of valley splitting on the spin filling of silicon quantum dots has been high-

lighted theoretically by Hada and Eto [198] as well as experimentally by Lim et al. [163]

and Lansbergen et al. [199]. The need for proper control over valley splitting in silicon

based quantum information processing schemes was emphasized by the theoretical work of

Koiller et al. [21] who calculated how inter-valley electronic interference results in strong

oscillations in the exchange coupling between electronic donor states. This in turn may

present a challenge for donor-based quantum computer architectures [14, 17].

Qian et al. [35] have used both effective mass approximations as well as density functional

theory (DFT) to calculate the band structure for phosphorus δ-doped silicon at a P cover-

age of 1/4ML. They found a Fermi level about 100 meV below the bulk silicon conduction

band minimum with 6 filled subbands: two Γ-subbands which are split by ∼20meV and

four degenerate Δ-subbands. These are located at energies of −370meV (Γ1), −350meV

(Γ2), and −210meV (Δ) below the bulk Si conduction band edge (see Fig. 2.7 a in chapter

2). Expanding on these results Carter et al. [37] performed further DFT calculations for

δ-doped Si at several P doping densities, also considering some effects of doping disorder.

In particular, they found that the Γ1-Γ2 splitting is significantly different for the ordered

(∼120meV) and disordered case (∼60meV), respectively. Generally, DFT is a powerful

tool to describe ordered periodic systems. However, due to the need to represent the

modeled structure by periodic supercells of limited size9 a full DFT description is less

suitable for disordered or low-symmetry systems such as quantum dots. As an alternative,

Friesen et al. [31] have developed an effective mass formalism to calculate valley splitting

in quantum well structures. Their theory provides comparatively simple analytical results

for several device geometries (such as quantum wells) which are found to be in excellent

agreement with (more complex and computationally intensive) atomistic calculations. An

enhancement of this theory will be presented in the next section which focuses on the

calculation of valley excited states in our strongly confined silicon quantum dot.

9The size of the supercells is limited by finite computational resources.
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6.5.2 Effective-mass modeling of the excitation spectrum

In collaboration with Prof. Mark Eriksson and Prof. Mark Friesen at the University

of Madison-Wisconsin (USA) we have performed a numerical analysis of the many-body

states in the few-electron quantum dot presented in this chapter. The numerical calcu-

lations were carried out by Mark Friesen10. In the following section we summarize the

basic concepts11 of this modeling approach to give a description of the observed transport

resonances on the scale of ∼ 100μeV (Fig. 6.13) as well as on the scale of ∼ 1 − 10meV

(Fig. 6.5). The results of this extensive analysis are published in ref. [201].

Low-bias regime: valley states

We have performed a numerical analysis of the many-body states in our few-donor quan-

tum dot using effective mass theory. As discussed in section 6.3, the quantum dot is

defined by a region in Si which is P-doped at a sheet density of ∼0.09 monolayers. Since

our effective-mass calculations use the energy splitting between the Γ1 and Γ2 subbands of

δ-doped Si as an input parameter, we use the published value which is closest to the donor

density found for our dot structures, namely 0.125ML [37]. While this does not exactly

coincide with the peak value of 0.09ML derived from our array experiments, it is still well

within the variance of the experimental doping density (see Appendix A.1). Both values

are substantially above the metal-insulator transition (MIT) [202, 203]. This means that

the separation between P atoms in the quantum dot is smaller than the effective Bohr

radius aB ≈ 2.5 nm in silicon [151]. The electrons are therefore delocalized across the en-

tire dot and it is justified to use a jellium approximation for the donor distribution where

the positive charge of the ionized P donors in the dot is assumed to be homogeneously

distributed over the entire area of the dot. Furthermore, due to the planar nature of the

device, we will treat the confinement in vertical and lateral direction separately:

V (r) = V (z) + V (x, y) (6.3)

This approximation results in wavefunctions Ψ(r) = Ψ(z)Ψ(x, y). We thus represent the

dot as a two-dimensional jellium with charge density σ = 0.135C/m2 corresponding to

a 0.125ML P coverage within the dot. To simplify the calculation for the lateral part,

we assume the dot to be circularly symmetric, i.e. V (x, y) = V (r) as illustrated in Fig.

10These calculations were carried out during several sabbatical visits of Prof. Friesen to UNSW between
2008 and 2010

11For a more detailed description of the computational methods, the reader is referred to refs. [31, 200].
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6.15 b. A circular dot seems plausible as a first approximation considering the shape of

the P incorporation area in Fig. 6.3. We adopt an anisotropic effective mass tensor, with

mt = 0.21m0 and ml = 0.95m0, based on DFT calculations of δ-doped Si:P [35].

The goal is to self-consistently calculate the confinement potential and the charge distribu-

tion and subsequently solve for the eigenfunctions of an effective-mass Hamiltonian. Since

the confinement potential is separable, this is achieved in two steps: First, we solve for the

vertical component by considering a 2D sheet of charge. We then solve the lateral part

of the effective mass equations which account for the lateral confinement potential. By

constructing multi-electron wavefunctions in the Hartree approximation we are then able

to compute the energies of the electronic states for different donor and electron numbers.

For brevity, we will only describe the vertical part of the self-consistent calculation12.

We consider three (partially) filled bands: the Γ1, Γ2, and Δ bands. The former two

correspond to “even” and “odd” combinations of the z-valleys as described in chapter 2.

We use the splitting between Γ1 and Γ2 as an input to the calculations. Carter et al.

[37] have reported values for the Γ1-Γ2 splitting in δ-doped Si:P for different sheet doping

densities of ordered dopants. For the (more realistic) disordered case they only give the

value for 1/4ML. We thus estimate the corresponding splitting for 0.125ML P density by

scaling the 1/4ML value in the same way as in the ordered case, as illustrated in Fig. 6.15

a.

For notational simplicity we will limit ourselves to a single Γ band. Extending the equa-

tions to the case of separate Γ1 and Γ2 bands, which were both considered for the actual

calculations, is straightforward. In the Hartree approximation, the 1D charge density along

the z-direction is given by ρ = ρi + ρΓ + ρΔ, where the ionic and electron contributions

are defined as

ρi(z) = σδ(z) (6.4)

ρΓ(z) = −σβΓF
2
Γ(z) (6.5)

ρΔ(z) = −σβΔF
2
Δ(z) (6.6)

where σ is the 2D charge density, δ(z) is the Dirac delta function and βΓ and βΔ are the

filling fractions of the two respective bands, normalized to βΓ+βΔ = 1. The corresponding

envelope functions FΓ and FΔ are normalized to
∫
F 2
γ dz = 1, where γ = Γ,Δ is the

band index. The electrostatic potentials arising from eqs. (6.4)-(6.6) are calculated from

12The calculation of the horizontal component uses a similar approach [200].
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Poisson’s equation:
d2V (z)

dz2
= −ρ(z)

ε
(6.7)

where ε = εSiε0 is the permittivity. The envelope functions are then obtained by solving

Schrödinger-like effective mass equations:

EΓFΓ(z) =

[
− �

2

2ml

d2

dr2
+ V (z)

]
FΓ(z) (6.8)

EΔFΔ(z) =

[
− �

2

2mt

d2

dr2
+ V (z)

]
FΔ(z) (6.9)

which are coupled via the potential V = Vi + VΓ + VΔ. Solutions for the electrostatic and

envelope function equations must be obtained self-consistently. One generally starts with

a “guess” for the initial wavefunctions, which in our case have a Gaussian form:

Fγ(z) =

(
2

πa2γ

)1/4

e−(z/aγ)2 (6.10)

The self-consistent loop is then performed numerically and iterated as follows13:

(i) Provide a Gaussian estimate for the Γ and Δ single electron wavefunctions in iteration

α,

(ii) calculate the corresponding electrostatic potential using a Poisson solver,

(iii) incorporate the potential into a finite element Schrödinger solver and compute the

corresponding eigenfunctions,

(iv) fit the eigenfunctions FΓ(z) and FΔ(z) to Gaussian forms which will be used in

iteration α+ 1,

(v) repeat until convergence is achieved, i.e. until the charge density does not change

anymore from one iteration to the next.

The lateral part is again treated self-consistently in a similar way [201] solving for the

envelope functions Fγ(x, y). For the Δ band two equations FΔx(x, y) and FΔy(x, y) must

be considered to account for the anisotropy of the effective mass. Due to the circular

symmetry FΔx(x, y) = FΔy(y, x).

The results of the full calculations for a dot with 7 P donors and 7 electrons are displayed

in Fig. 6.15. The dot radius (i.e. the radius of the jellium of positive charge) is calculated

13We benchmarked our approach by reproducing the 1D donor electron density (in z-direction) for a
δ-doped layer reported by Carter et al. [37]
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Figure 6.15: Self-consistent modeling of dot states. a, The graph illustrates
how the Γ1-Γ2 splitting of ∼22meV shown in c is estimated from the values reported
by Carter et al. (solid symbols) [37] by simply scaling the value for the disordered
case. b, The dot is modeled in a 2D jellium approximation where the positive charge
is assumed to be homogeneously spread over a disk of radius rdot as illustrated in the
inset. The assumed sheet charge density σ ≈ 0.135C/m2 corresponds to a 0.125ML
P doping density and rdot is given by the number of P donors. The self-consistent
calculation yields the charge density as well as the energy of three bound subbands,
Γ1, Γ2, and Δ as shown in c. The confinement potential has a maximum slope of
∼ 1 eV/nm. All results shown are for 7 donors on the dot (rdot ≈ 1.6 nm).

from the assumed sheet density (0.125ML) and the number of donors, which in this case

yields rdot ≈ 1.62 nm. The modeled dot is thus slightly smaller in diameter than the

desorbed area of the actual device as illustrated in the inset of Fig. 6.15 b. This is

consistent with the fact that donor incorporation is unlikely to occur at the very edges

of the desorbed area as discussed previously in section 6.3. In contrast to the continuum

of states in a 2D system [35], a discrete set of single particle levels exists in the quantum

dot: Γ1, Γ2, and 4 degenerate Δ levels. In this context we will also refer to the multitude

of Δ-subbands as the Δ-shell14. By definition, the Fermi level for the dot coincides

with the highest of the three filled (or partially filled) levels. The corresponding charge

distributions for the different bands are shown in Fig. 6.15 b. The electronic charge

spreads out substantially beyond the edge of the “jellium disk” which again justifies the

assumed “seam” of charge around the doped structure for the capacitance calculations

discussed in section 6.4.2. Interestingly, the dimensions considered there (dot “diameter”

of 5.5 to 9.5 nm) are consistent with the calculated lateral spread of the electron density

(roughly 6 nm) in Fig. 6.15 b. The steep slope of the charge density curve reflects the

small screening length in our structure which is on the order of 1 nm.

14This expression is commonly used in quantum dot terminology [24] in reference to atomic physics.
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Valley splitting of the Δ subbands

The remaining 4-fold valley degeneracy within the Δ-shell is lifted by the steep lateral

confinement which has a maximum slope of ∼1 eV/nm (Fig. 6.15 c). The valley splitting

is calculated using a perturbative approach [31] as discussed in chapter 2. Here we assume

that the perturbation is given by the self-consistent Hartree potential V (x, y) as calculated

above.

The full effective mass wavefunctions within the Δ band of our silicon quantum dot can

be expressed as [31]

Ψ(r) =
∑

ξ=±x,±y

αξe
ikξ |ξ|ukξ(r)FΔξ

(x, y)FΔ(z) (6.11)

The summation is over all 4 Δ valleys (see Fig. 6.16 a) where eikξξukξ(r) are Bloch

functions and k±ξ = ±k0x̂,±k0ŷ represent the conduction band minima. The coefficients

αξ describe the relative phase between the different valley contributions, with
∑ |αξ|2 = 1.

The lateral effective mass Schrödinger equation can then be written as:

⎛
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Δ∗
11 E(0) Δ22 Δ23
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12 Δ∗
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⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠ (6.12)

Diagonalizing eq. (6.12) gives the first order energy eigenvalues Ei. The off-diagonal

elements15 are the valley splitting terms, i.e. they represent the first order corrections to

the unperturbed energy eigenvalues E(0) (see Appendix A.2).

The resulting energy levels are illustrated in Fig. 6.16 b. Here, valley splitting partially

lifts the degeneracy of the Δ levels, yielding an energy difference of 0.22meV and 0.32meV,

respectively. The remaining 2-fold degeneracy of the middle level is a result of the assumed

circular symmetry of the dot. In addition, all levels are 2-fold spin-degenerate.

In order to understand what causes the great number of resonances in the stability diagram

one must consider the electron occupation of these levels when N electrons are on the

dot. For 5 ≤ N ≤ 12, additional valence electrons reside in the Δ-shell since Γ1 and

Γ2 can only each accommodate 2 electrons. This is illustrated for N = 7 in Fig. 6.16 c.

However, in addition to the ground state, there exist several low-lying excited states and it

is these valley excited states which cause the observed transport resonances. Considering

15Many of these are identical due to the symmetry of the problem.
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Figure 6.16: Valley splitting of Δ-bands for a circularly symmetric dot. a,
Two-dimensional projection of the Brillouin zone for planar Si:P. The Γ band in the
center of the BZ is lower in energy and split into Γ1 and Γ2 due to the tight confinement
in z-direction while the 4 Δ bands centered around ±k0x̂, ŷ remain degenerate. b,
Discrete set of single particle levels for the quantum dot. The steep lateral confinement
causes valley splitting of the Δ subbands on the order of a few 100μeV. The middle
level remains degenerate due to the assumed circular symmetry. All levels are still 2-
fold spin degenerate. c, For a dot occupation number of N = 7, 3 electrons will reside
in the closely spaced Δ levels. (The remaining 4 electrons are in the two low-lying
Γ-levels.) There are 52 combinatorial electron/spin configurations (some of which are
shown along with their respective energy and degeneracy) representing a total of 7
low-lying excited states which will cause transport resonances at the bias voltages
VSD as shown in d.

all possible electron/spin configurations (many of which are degenerate) one obtains a

resonance spectrum as shown in Fig. 6.16 d.

Many of the calculated valley excited states are still highly degenerate as a result of the

assumed circular symmetry of the charge distribution. Although the quantum dot is close

to symmetric, the statistical nature of the P incorporation within the H-desorbed area (Fig.

6.3) will invariably lead to an asymmetry in the confinement potential. To account for

this anisotropy we use a perturbative approach. The latter requires one fitting parameter

Eanis to account for the splitting between the Δx and Δy basis states (see Appendix A.2).

Fig. 6.17 a illustrates how the remaining degeneracy within the Δ-shell is lifted as the

corresponding perturbed eigenstates are expanded in the valley basis states. Fig. 6.17 b

shows the resulting spectrum of excited states as a function of the anisotropy parameter.

Looking at the observed data in Fig. 6.13 c, we find the best agreement for Eanis ≈
0.2meV.

It should be noted that we have computed energy levels for all different combinations

of donor and electron numbers on the dot, consistent with the range of possibilities for

6±3 phosphorus dopants. Some of the resulting spectra are shown in the appendix A.3.

The best match to the experimental data corresponds to a 7-donor dot at the transition

between 7 and 8 electrons. This case is depicted in Fig. 6.17 c which shows the energies

of the resonances as they would appear in transport as a function of the source-drain
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This degeneracy is lifted when one accounts for a more realistic, slightly asymmetric
charge distribution using a perturbative approach characterized by a single anisotropy
parameter Eanis. The calculated resonance spectrum as a function of Eanis is shown
in b. c, The calculated low-bias transport resonances for a 7-donor quantum dot with
N = 7 and N = 8 electrons, respectively, and an anisotropy splitting of 200μeV.
While the calculated spectrum is not expected to match the experimental one (Fig.
6.13 c), it does reproduce the characteristic pattern as well as the average spacing
well. The presence of several closely spaced lines in the calculated spectrum also
explains the experimentally observed variation of amplitudes for different resonances.

voltage VSD. The resonances at VSD > 0 correspond to 7-electron excited states while

those at VSD < 0 correspond to 8-electron excited states. It should be emphasized that

we do not expect the excited states in Fig. 6.17 c to exactly match the energies of those

in Fig. 6.13 c, because the precise donor positions are both unknown and not included in

a jellium calculation. We do, however, find that the calculation reproduces the density of

levels, the typical spacing between those levels, and the characteristic fluctuations in that

spacing. Particularly closely spaced levels should appear as brighter lines in the data, and

such variation in brightness from level to level is indeed observed in the experimental data

of Fig. 6.13 b.

The occupation of the Δ-shell provides a natural explanation for the experimentally ob-

served closely spaced resonances. It should be highlighted, though, that there are conduc-

tion resonances also at higher energies well beyond the 1.5meV shown here as is evident

from Fig. 6.5. These cannot be explained by the finite number of many-particle states in

the Δ-manifold alone. In order to understand these additional resonances it is necessary

to extend the model derived above to include the source and drain electrodes.
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Figure 6.18: Eigenstates for a realistic lead geometry., Using a numerical
Schrödinger solver, the electronic eigenstates were calculated for two geometries, rep-
resenting the narrowest (5.3 nm wide) part at the very tip of the source electrode (a)
as well as the more realistic geometry including the 15 nm wide part of the lead as
illustrated in b. c, Resulting eigenstates for the Δx band with the lead oriented at
45◦ with respect to the 〈100〉 direction. d, Corresponding eigenstates are observed
for both geometries in the narrow part of the lead at corresponding energy scales.
However, not all wavefunctions (like the ones at 5.6meV and 21.6meV) of the re-
alistic structure enter the narrow tip (region “A”) of the leads. (Note that many
intermediate eigenstates are not shown.)

High-bias regime: Modulated DOS in quasi-1D leads

As discussed in section 6.4.5, local peaks in the density of states (DOS) in the leads

have been found to contribute to resonances in the conductance of various quantum dot

structures [146, 204, 205, 163]. The narrow source and drain leads (Fig. 6.3) present quasi

one-dimensional regions where the density of states is expected to have sharp maxima as

depicted in Fig. 6.10 a. Such “kinks” in the DOS are commonly referred to as van Hove

singularities. The energy spacing between these is determined by the width of the leads.

For our ∼ 5 nm wide leads, a simple particle-in-a-box estimate yields a spacing > 10meV

so that the van Hove singularities in the narrow part of the leads cannot explain the many

resonances at bias voltages > 1.5mV.

However, the STM-patterned leads are actually wider than 5nm over most of their length

(see Fig. 6.1 and the close-ups in Fig. 6.18 a,b), and thus may well exhibit van Hove

singularities that are more closely spaced than those in the narrow tip of the leads. It is

therefore useful to calculate the DOS in the leads to determine whether they contribute

to the resonance spectrum. Because of their large size as well as the very high density of

electrons, the self-consistent many-body method used to treat the quantum dot cannot be

applied to the leads. Instead, the leads are analyzed using a single particle calculation,

which is sufficient to reveal the number and average spacing of the DOS peaks. This
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Figure 6.19: Tunneling density of states. The graph shows the calculated DOS
for a long wire of width 5.3 nm (black) and 15 nm (blue), respectively. The effective
tunneling DOS ρtun (red curve) for the realistic geometry of the source electrode (as
depicted in Fig. 6.18 b) contains secondary peaks which cause additional transport
resonances. (Only the results for the Δx band are shown.)

approach is illustrated in Fig. 6.18. Here, we consider both the very tip (Fig. 6.18 a) as

well as the ∼ 15 nm wide part of the source lead (Fig. 6.18 b). It is plausible to ignore

the wider extensions of the leads since their distance to the tip of the electrode exceeds

the phase coherence length found in our structures, ∼ 100 nm at temperatures < 1K

[38]. As a result, electrons traveling along the lead will have lost their “phase memory” of

quantization and coherence effects over distances exceeding 100 nm.

The DOS is calculated by numerically solving for the eigenstates of a sufficiently long16

(length
 width) piece of wire, as shown in the upper row of Fig. 6.18. The corresponding

eigenenergies of the transversal modes determine the position of the van Hove singularities.

The total DOS is then given by

ρ(E) =
∑
j

nj(E) (6.13)

where nj(E) is the DOS for the jth eigenstate including its “tail” which is given by a

general analytical formula (see chapter 2).

The black line in Fig. 6.19 depicts the resulting density of states ρA(E) computed for

a uniform wire of width 5.3 nm (region “A” in Fig. 6.18 a) representing the narrowest

part at the tip of the leads. As already expected from the particle-in-a-box estimate, the

spacing of the van Hove singularities in this case is too large to explain the experimental

data. However, the 15 nm wide region further up the source lead produces many more

16For the calculations, both geometries were assumed to be 300 nm long.
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singularities ρB(E) (shown by the blue line), which are much more closely spaced. For

the realistic structure shown in Fig. 6.18 b it is thus important to ask whether any of the

van Hove singularities of region “B” contribute to the local density of states in region “A”

at the tip of the lead. Panel d in Fig. 6.18 shows several calculated wavefunctions for

the lead geometry along with their respective energies. Some of these wavefunctions have

almost no weight at the tip of the lead and will therefore not contribute to the density of

states, but many of them do. We can thus approximately identify the effective tunneling

DOS ρtun at the tip of the source lead by multiplying the density for each eigenstate by

its fractional occupation fj in the narrow region “A”:

ρtun(E) =
∑
j

fjnj(E) (6.14)

where

fj =

∫
AΨ2dr∫

A+B Ψ2dr
(6.15)

The resulting tunneling DOS contains many secondary peaks as shown for the Δx subband

in Fig. 6.19.

The total DOS is then obtained by summing over the contributions from each subband.

The slight misorientation of the leads from the crystallographic [11̄0] axis spreads out the

peaks arising from the different subbands due to the anisotropy of the effective mass. This

in turn further increases the number of peaks in the total tunneling DOS, which shows an

average peak spacing < 10meV as depicted in Fig. 6.20. Transport resonances will occur

every time the manifold of dot levels aligns with one of the DOS peaks as illustrated in

Fig. 6.10. The realistic lead geometry thus provides an explanation for the large number

of resonances extending out to ±50meV in Fig. 6.5.

In summary, valley splitting of electronic states in the quantum dot in combination with

confinement effects in the narrow leads provide a plausible and consistent explanation for

the observed resonance spectrum. It should be noted however, that disorder effects are

not taken into account in our effective mass approach and we cannot completely rule out

the possible contribution of LDOS fluctuations to the measured transport resonances.

We do not expect our modeling to match all experimental observations on this device. In

particular, the “kinks” in the addition energy (see Fig. 6.6 a) are likely to reflect higher

orbital levels arising from the complex charge distribution of the realistic device which is

not captured by the simple jellium approximation.



6.6. Magnetic field dependence of transport features 123

Energy (meV)
0 400300200100

D
O

S
 (a.u.)

15 nm

Figure 6.20: Total tunneling density of states., The calculated single-electron
tunneling DOS (black curve) for the realistic geometry of the source electrode is
summed over the contributions from the Γ1 (red), Γ2 (brown), as well as the Δx

(light blue) and Δy (blue) subbands. It shows a large number of peaks with an
average spacing < 10meV explaining the observed transport resonances at higher
bias voltages. The calculated DOS for each subband are shifted by their respective
distance to the Fermi level. From Fig. 6.1 a misalignment of 2.5◦ from the 〈110〉
direction was estimated for the source lead, resulting in a shift between the peaks for
Δx and Δy, respectively.

6.6 Magnetic field dependence of transport features

Magnetic fields are commonly used to investigate the transport properties of quantum dot

devices [45, 46, 152, 166]. The following section gives a summary of the magnetospec-

troscopy performed on our few-donor quantum dot. Here, the device was measured in

a magnetic field B (parallel to the dopant plane) up to 8T. A parallel field orientation

is commonly used for larger two-dimensional quantum dots (with typical diameters on

the order of 100 nm) to avoid the effects of an additional magnetic confinement of the

electronic wavefunction in the direction perpendicular to the B-field. This magnetic con-

finement occurs on a characteristic length scale of lB ∼ √
�/|eB| [31] which is on the

order of ∼10 nm for typical B-field strengths of a few Tesla. This value is indeed much

larger than the confinement length scale (∼1 nm) of our donor-based structures so that

the additional magnetic confinement can be neglected.

6.6.1 Zeeman shift of a charge transition

Figure 6.21 a shows the same low-bias stability diagram that is depicted in Fig. 6.13, but

for several discrete values of the magnetic field B. We find that the charge transition moves

towards lower gate voltages VG1 as the magnetic field is increased, as indicated by the blue

arrows. To quantify this shift we plot the position of the Coulomb peak as a function of

B in Fig. 6.21 b. Here, the peak position (VG1 ≈73mV) has shifted compared to panel a

(≈52mV at 0.1 T) as a result of several gate sweeps over a large voltage ranges in between
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the two measurements (see section 6.4.4). In Fig. 6.21 b we observe a linear shift of the

peak position with B. As discussed in chapter 2, Coulomb peaks occur when the Fermi

levels in the leads are aligned with an electrochemical potential μN of the dot. The latter

can be tuned not only by an electric field (i.e. a gate voltage) but also by a magnetic

field via the Zeeman energy EZ = ΔszgμBB [45]. Here, g is the gyromagnetic or g-factor

which for electrons in silicon is very close to the free-electron value of g = 2 [206] and Δsz

is the total change in spin momentum associated with the transition μN . In most cases

Δsz = ±1
2 , thus reflecting the spin of the “incoming” electron of the charge transition

μN . Using the appropriate lever arm αG1 ≈ 0.10 at this transition we can convert the

observed slope ΔVG1/ΔB ≈ −0.67mV/T into an energy shift and which yields a g-factor

of 2.3 ± 0.3, in reasonable agreement with the expected value of 2. The error bar for the

experimental value is due to an uncertainty in both the fitted slope ΔVG1(B) and the lever

arm αG1. Fig. 6.21 c depicts the height of the Coulomb peak as a function of B, showing

a significant modulation on a scale of ∼2T. To investigate the origin of this varying peak

height we have performed direct magnetospectroscopy of the low-bias spectrum.

6.6.2 B-dependent Coulomb peak height

While the average spacing of the resonance features in Fig. 6.21 a remains roughly the

same, changes in the line pattern are visible, both in position as well as intensity. To

quantify the changes in the low-bias resonance spectrum we continuously sweep the bias

voltage (at a fixed gate voltage) while increasing the magnetic field in small increments.

The sweeps were performed separately for VSD < 0 and VSD > 0, as illustrated in Fig.

6.21 d and e. While VG1 is fixed, the position of the coulomb peak will shift down in gate

voltage as B is increased. This leads to the observed linear shift of the ground state (GS)

line in the magnetospectroscopy plots (indicated by the dashed line in Fig. 6.21 d and e).

Importantly, the VG1 values for both sweeps (VSD < 0 and VSD > 0) were chosen so that

only features with positive slope appear at that particular gate voltage, as indicated by the

two dashed lines in Fig. 6.21 a. This was done to avoid artifacts arising from conductance

lines with negative slope in the magnetospectroscopy data: a resonance line with negative

slope would appear very similar to a resonance line with positive slope which splits as a

function of B.

Apart from minor switching noise17 (which causes small vertical discontinuities) it is ob-

vious from the data in Fig. 6.21 d and e that most of the resonances move with respect

17This is consistent with the ∼0.01 e stability of the Coulomb peak position discussed in section 6.12.
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Figure 6.21: Magnetic field dependence. a, The charge transition of Fig. 6.13
for different values of the magnetic fields B. The transition shifts towards lower gate
voltages, from ∼51.5mV at B = 0 to ∼48mV at B = 6T, as indicated by the blue
arrows. b, The Coulomb peak position shifts linearly in a magnetic field with a
slope of −67mV/T. A clear modulation of the peak height is observed as shown in c.
Magnetospectroscopymeasurements were performed at the gate positions indicated by
the dotted lines in a. To avoid artifacts arising from resonance features with negative
slope as the peak position shifts along the gate axis, the data was taken separately
for VSD < 0 (d) and VSD > 0 (e), respectively. Most features shift with respect to
the ground state (GS), eventually crossing it. These crossings (white arrows) coincide
with the local maxima of the B-dependent Coulomb peak height of panel c.
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to the GS line. Some lines even cross the GS line at the positions indicated in Fig. 6.21 e.

These crossings are evidenced by an increase of conductance as both lines overlap. In-

deed, the B-positions of the crossings coincide with the local maxima in the Coulomb

peak height shown in 6.21 c. We therefore conclude that the observed smooth modulation

of the Coulomb peak intensity originates from low-lying transport resonances crossing the

GS line. This is in contrast to previous reports on B-dependent Coulomb peak heights in

a donor-based quantum dot18 [115] where the modulations occurred on a similar B-scale

of 2T. Here, the device was measured in a magnetic field perpendicular to the dopant

plane and the varying peak height was attributed to a scrambling of the semiclassical

electron trajectories in the quantum dot as the magnetic flux Φ = B/A through the dot

area A was increased by multiples of the flux quantum Φ0. Indeed, a flux quantum for this

many-donor quantum dot (with a dot area A ≈ 2100 nm2) was found to be consistent with

the observed B scale of 2T. By contrast, the measurements on the present device were

conducted in a parallel field on a device with a much smaller area resulting in a required

B-field scale of several 100T to change the flux through the dot by Φ0.

6.6.3 B-field dependence of the low-bias spectrum

While the observed shifts of the resonances give a plausible explanation for the varying

Coulomb peak height, the reason for these shifts in the low-bias excitation spectrum is still

unknown. To evaluate the B-dependence of Fig. 6.21 d and e it is helpful to compensate

for the linear shift of the GS line by skewing the data as shown in the composite plot of

Fig. 6.22. Here, the bias voltage has been converted into an energy by multiplying with

a geometric factor that accounts for the slopes of the respective diamond edges.

The magnetic field dependence of valley splitting in silicon quantum dots is still an area

of ongoing research and the details of the magnetospectroscopy data of our quantum dot

device are not yet fully understood. However, we can make several observations which we

will briefly compare to results in the literature.

There is a general trend for the lines to shift towards lower energies with increasing field.

However, there is a clear difference between the data sets for positive and negative bias:

For VSD > 0, most lines follow an almost linear trend and very few crossings and splittings

are found. By contrast, more splittings are observed for VSD < 0 and the lines tend to have

a steeper slope. The differences between both spectra may indicate that the resonances

are indeed due to dot excited states in which case they would correspond to different dot

18These measurements were performed on the many-electron quantum dot presented in chapter 5.
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Figure 6.22: Resonance spectrum vs. B. To compensate for the linear shift of
the charge transition along the gate axis, the bias spectroscopy data of Fig. 6.21 d
and e is skewed. (An extended data set is shown for VSD < 0.) Also, the bias voltage
is converted into an energy via a geometric scaling factor that accounts for the slopes
of the diamond edges. The lines of increased conductance shift down with respect
to the (horizontal) GS line, with slopes ranging from ∼65μeV/T to ∼100μeV/T as
indicated by the blue lines. Several pairs of lines can be identified which follow the
same pattern as a function of B, one of which is highlighted by the dotted green lines.
The energy spacing of these lines (∼430μeV) is likely to reflect the valley splitting of
electronic states within the dot.

occupation numbers (since the corresponding lines for VSD > 0 and VSD < 0 terminate

on different Coulomb diamonds as can be seen in Fig. 6.21 a).

In Fig. 6.22 we fit lines to two prominent features (blue lines), the slopes of which are

representative for the positive and negative bias data. For VSD > 0 we obtain a slope of

roughly -65 μeV/T which is very similar to EZ = 58μeV/T. Möttönen et al. [147] recently

reported magnetospectroscopy measurements on a silicon MOS quantum dot where reso-

nances with an average spacing of a few 100μeV were attributed to a modulated DOS in

the ∼50 nm wide leads. The corresponding resonances were found to shift linearly with

respect to the GS line in a magnetic field at a slope of EZ , resulting from a Zeeman

splitting of the DOS for spin-up and spin-down electrons in the leads. From their B-field

behavior, they were able to distinguish between DOS resonances and spin-split (orbital)

excited states which move at a slope of 2EZ . However, the simple model of Möttönen et

al. does not account for the variation in slopes or the observed crossings/anti-crossings
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in our data. Furthermore, we have argued previously (section 6.4.5) that the low-bias

resonances of Fig. 6.22 with a spacing on the order of 100 μeV are unlikely to originate

from a modulated DOS in our very narrow leads.

For conductance features arising from spin-degenerate excited states we generally expect to

observe a linear splitting in a B-field [166] with an increasing spacing given by the Zeeman

energy 2|EZ | ∼ 116 μeV/T. Indeed, the fitted line in the negative bias data of Fig. 6.22

has a slope of approx. -100μeV/T which is comparable to the expected Zeeman shift.

However, while several lines split and merge at various B fields, there is no clear evidence

for Zeeman splitting at B = 0. This may either be due to the fact that the observed

resonances do not arise from dot excited states or (assuming that they are excited states)

that these are not spin-degenerate.

There have been some recent reports on the magnetic field dependence of valley splitting,

ΔEv(B), in silicon devices [189, 207]. Goswami et al. [189] studied valley splitting in

Si/SiGe heterostructures and found that the splitting (∼1μeV at B = 0) could be tuned

by a magnetic field at a rate of ∼25μeV/T. Xiao et al. [207] observed a B-dependent

splitting between the two Γ-valleys in a few-electron silicon MOS-based quantum dot.

Here, the valley splitting was found to increase at a rate of ∼37μeV/T resulting in a linear

shift of the valley excited state with respect to the ground state. Both observed slopes

are significantly smaller than the values we observe in our data. Moreover, an increasing

valley splitting should result in an increasing average spacing of the entire spectrum which

we do not observe.

A more careful examination of the data in Fig. 6.22 reveals the presence of several pairs

of lines which move parallel throughout the entire B-range of the plot. One of these pairs

is indicated by the dotted green lines which are split by ∼430 μeV. Interestingly, this

splitting is on the same order of magnitude as the calculated valley splitting and may thus

be a further indication of the importance of valley splitting in our device.

Furthermore, in Fig. 6.22 we observe several levels crossing (particularly for VSD < 0)

roughly in the B-field range between ∼2.5T and 5T. At these B values, the Zeeman

splitting is on the order of ∼300 to 600μeV. The crossings may therefore reflect a change

in the spin configuration of the different valley states [198].

Calculating the magnetic field dependence of the excitation spectrum for our device was

beyond the simple effective mass model presented in section 6.5. It is plausible that

the observed B-dependence reflects the atomistic details and the irregular confinement

landscape of the actual device.
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6.7 Chapter summary

This chapter has shown the experimental realization of a STM-patterned donor-based

quantum dot structure in the few-electron regime. From high-resolution STM images and

a statistical study, we estimate the dot to contain ∼7 P donors.

Transport spectroscopy at mK-temperatures revealed very stable Coulomb blockade os-

cillations as well as a surprisingly dense set of well-resolved resonances on the order of

100μeV. This energy scale is far too small to be explained by simple confinement effects

within the nm-scale quantum dot or the quasi-1D leads. Instead, the resonances are at-

tributed to a splitting of the Δ-valleys in the conduction band, resulting from the abrupt

lateral confinement potential, which gives rise to a dense set of many-body excited states.

This interpretation is supported by extensive effective mass calculations which were per-

formed in collaboration with Prof. M. Eriksson and Prof. M. Friesen at the University

of Madison-Wisconsin. While the magnetospectroscopy data of the device is not yet fully

understood, it gives further indications for valley splitting in the quantum dot.

The results of this chapter highlight the importance of the valley degree of freedom in ultra-

small silicon quantum devices. Classical CMOS miniaturization is beginning to approach

the length scales studied here. An understanding of the physics of sharp confinement po-

tentials will therefore be crucial for continued developments in both quantum and classical

devices in silicon.
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Chapter 7

Transport properties of a single P

donor

After demonstrating the fabrication of a donor-based few-electron quantum dot (chapter

6), a successful attempt was made to reach the ultimate scaling limit: a single donor

transport device. Whilst our group has previously demonstrated the incorporation of

an individual P donor on the Si(100)-2 × 1 surface by means of STM-lithography [66],

being able to pattern exactly one donor at a precisely known position within a functional

device is a much more complex task. Indeed, to achieve this in a deterministic way has

required a deeper understanding of the adsorption and incorporation mechanism in nm-

scale desorbed patches. In particular, the shape and exact size of the sub-nm hydrogen

desorbed region for single dopant incorporation prove to be crucial.

In this chapter, we present a statistical study to optimize the patterning parameters for

the reliable incorporation of a single P donor. Using a higher PH3 dosing pressure of

5 × 10−8 mbar to achieve saturation dosing, we find that a patch of 3 adjacent dimers

along one dimer row is necessary to incorporate one P atom.

Based on these results, an in-plane gated device was fabricated where exactly one phos-

phorus atom is placed between the source and drain leads. While there have been a

few recent reports on transport through individual impurities in silicon structures, our

approach allows for devices with unprecedented control over the number and spatial po-

sitioning of the dopant atoms. The latter can be controlled to a lateral accuracy of ±6 Å.

Low-temperature transport measurements reveal a stability diagram with three diamonds

(corresponding to the three possible charge states of the donor) and a charging energy
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that is in good agreement with the expected value for the bulk case. Furthermore, we

observe clear indications for the donor excited states in the co-tunneling spectrum.

7.1 Single donor transport devices in silicon

Miniaturization of the single most important building block of modern silicon based elec-

tronic devices – the field-effect transistor (FET) – has advanced to a stage where device

performance can depend on the number and the discrete distribution of individual dopants

[2], with channel lengths approaching the 10nm-scale [3]. Consequently, being able to con-

trol dopant density and distribution on a sub-nm level is a key challenge for further scaling

of conventional integrated nanoelectronic devices. The last decade thus has seen an in-

creased interest in the electronic properties of individual impurities in silicon-based devices

[208].

To date, there have been several reports on electronic transport through single dopants

in silicon devices [146, 165, 209, 210, 211, 212, 213]. These experiments were performed

in various FET architectures where the placement of few or single dopant atoms in the

transport channel was achieved by either low-energy ion implantation [210, 211, 214] or

indiffusion from higher doped contact regions [146, 165, 212, 213].

Ono et al. [211] observed conductance modulations at T > 6K in a silicon nanoFET which

they attributed to an individual boron acceptor in the transport channel. However, they

were unable to determine a charging energy. Sellier et al. [209] reported the observation of

the D0 and D− charge states of a single arsenic donor in a gated silicon nanowire. Due to

the high capacitive coupling between donor and gate in their FinFET architecture, they

found a binding energy for the ionized D− state which is drastically higher than the bulk

value. They also observed excited state energies lower than the corresponding bulk values

due to the Stark effect in the gate electric field. Expanding on these results, Lansbergen

and co-workers [165] reported tight binding calculations which are in good agreement with

the measured excited state energies. In particular, they observed a confinement transition

between the Coulombic donor potential and a quantum well formed at the Si-SiO2 interface

under the gate. Using the same FinFET architecture, the same group have also recently

shown transport through a double donor system [215]. Prati et al. [213] studied microwave-

assisted transport through single As donors in a similar FinFET device. Like Sellier et al.,

they find a reduced charging energy for D0 due to the high capacitive coupling between

the donor and the gate.

Pierre et al. [146] also reported transport through a single As impurity in the channel
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of a nanoFET device. They were able to identify donor excited states via co-tunneling

features in the D0 diamond. Calvet and coworkers [212] have investigated the excitation

spectrum of individual Pt impurities in a MOSFET channel identifying excited states via

their magnetic field dependence. Transport through single phosphorus donors implanted

in the channel of a Si nanoFET was reported by Tan et al. [210]. Again, a reduced

charging energy for the D0 state (on the order of 30meV in contrast to 44meV in bulk

Si) was attributed to the strong capacitive coupling to the nearby metallic gates.

In many of the reported single donor transport spectra additional lines not arising from

donor excited states are attributed to a strongly modulated density-of-states in the leads

[146, 165]. The energy spacing of the corresponding resonances is found to be on the order

of 1meV [146] to a few meV [165].

Importantly, all previous devices share one essential drawback: the placement as well as

the exact number of impurities in the transport channel is random. This results in many

devices being necessary to show the desired result of one dopant in a suitable location.

Evidently, such approaches are not suitable for scale-up of donor-based quantum compu-

tation architectures which require precise control over the number and location of vast

arrays of dopants [14, 17].

7.2 Initial incorporation studies

A statistical study was carried out in co-operation with Dr. J. Miwa and T. Watson, to

gain a better understanding of the adsorption and incorporation process in desorbed areas

that are only a few lattice sites in size. The procedure is analogous to the incorporation

study for the 7 donor device presented in the last chapter (see appendix A.1). Here, we

desorb arrays of designated single donor incorporation sites, dose and anneal the surface,

and subsequently re-image the array to identify the P related features. An exemplary array

is shown in Fig. 7.1 after H-desorption (panel a) and after the dosing and incorporation

anneal cycle (panel b). By comparing high-resolution STM images of each array site before

and after the incorporation step, we thus obtain quantitative information on the likelihood

of incorporating one or more P atoms in a patch of a given size.

Previous theoretical work has shown that a minimum of 3 adjacent dimers are necessary

to incorporate one P atom from an adsorbed PH3 molecule [71, 76]. Since the dissociation

and incorporation pathway involves atom movements which exhibit a strong anisotropy on

the (2×1)-reconstructed Si(100) surface [216], these 3 dimers should be oriented along one

dimer row [71]. For our array study, we thus focus on patches where 3 adjacent dimers
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a bafter desorption after incorporation

20nm

Figure 7.1: Single donor incorporation array. STM images of a 7 × 10 array
of designated single donor incorporation sites after H desorption (a) and after the
phosphine dosing and anneal cycle (b). The array sites in the first line are indicated
by white circles. The desorption sites vary in size from approx. 2 to 5 dimers.
The outer box and lines serve as registration markers. Several of these arrays were
patterned.

have been desorbed along one single dimer row. Hydrogen lithography at this sub-nm

scale is quite demanding on the quality of the STM tip and the exact adjustment of the

desorption parameters. In particular, the desorption process for these large arrays involves

many voltage changes on the STM tip which can affect the tip stability. As a result, the

desorbed patches in a given array vary in size from approx. 2 to 5 dimers.

After desorption, every site is imaged to determine the exact number of depassivated

Si dangling bonds (DB). The entire array is then dosed with PH3 at a pressure of 5 ×
10−8 mbar for 6min (corresponding to an exposure of ∼14 Langmuir). This value is a factor

of 10 higher than the standard dosing conditions used for previous devices. It was chosen to

ensure phosphine saturation coverage within the sub-nm desorbed region. After dosing, the

sample is annealed to 350◦C for 5 s. The short anneal time minimizes thermal drift of the

sample and thus makes relocating the array easier for subsequent STM imaging. Fig. 7.2

illustrates some exemplary 3-dimer array sites before (top row) and after the incorporation

process (middle). Nearby dimer vacancy (DV) defects can be used as registration markers

to identify the precise location of each array site. Importantly, the surrounding hydrogen

mask is still intact after the anneal. Incorporation reactions are evidenced by clear changes

in the surface morphology as well as the apparent height profiles of the observed features

as depicted in the bottom row of Fig. 7.2. A histogram of the observed feature heights

after incorporation is shown in Fig. 7.3 a. Two dominant peaks are clearly discernible,

roughly located at ∼ 30±10 pm and ∼ 65±15 pm, respectively. We attribute these peaks

to two distinctive surface species: the incorporated Si-P heterodimer and the ejected Si
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Figure 7.2: 3-dimer incorporation sites. Three exemplary array sites for which
the H-desorbed patch is 3 dimers in size (top row). The presence of dimer vacancy
(DV) defects facilitates identifying of the array sites after the PH3 dosing and in-
corporation anneal cycle (middle row). Some individual dangling bonds (DB) are
visible. These are mobile on the terminated Si(100):H surface during the elevated
temperatures of the incorporation anneal [71] and therefore may not be present in
the images after the anneal. Height profiles with respect to the surrounding hydrogen
mask are shown in the bottom row, taken at the positions indicated by lines in the
STM images above. (For better visibility of the overlay graphics the STM images are
shown in b/w).

adatom, respectively. Examples for both features are shown in Fig. 7.2. The observation

of a Si-P heterodimer (site “I”) is a direct evidence for successful P incorporation at a given

array site. It has been previously found to appear as an asymmetric protrusion ∼ 40 pm

in height [66, 77] which is consistent with our findings. However, in many array sites the

heterodimer is not observed since it is masked by the brighter Si adatom (sites “II” and

“III” of Fig. 7.2) which is ejected as a result of the incorporation process [76]. While there

are several stable configurations for the adatom on the surface [217, 218], we observe the

latter predominantly as a bright feature centered on a dimer row. This is consistent with

theoretical studies [217, 218] and indicates that the Si adatom resides in the dimer-bridge
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Figure 7.3: Results of statistical study. a, Histogram showing the heights
(with respect to the surrounding H mask) of the features observed at the array sites
after the incorporation cycle. Two peaks are clearly discernible which are attributed
to the Si-P heterodimer and the ejected Si adatom, respectively. The few features
approx. 100 to 120pm in height are most likely due to single dangling bonds. b,
The graph illustrates how the number of P-related features at a given array site after
incorporation depends on the size of the initial H-desorbed patches (with the total
number for each size shown in brackets). Evidently, a patch of 3 desorbed dimers is
favorable for the reliable incorporation of one single P donor, with a success rate of
∼70%.

configuration where it is bound to the two Si atoms of one dimer below (see last panel

of Fig. 7.4). In the presence of the surrounding hydrogen it is plausible that this is the

energetically favorable position. Some additional features were observed with an apparent

height ranging from ∼ 90 − 120 pm in the histogram of Fig. 7.3 a. This range is broadly

consistent with reported values for the (tip voltage dependent) apparent height of dangling

bonds on the Si(100):H surface [59, 219]. The corresponding features are therefore most

likely due to individual dangling bonds which do not indicate an incorporated donor.

While in principle an ejected Si atom should be present at every array site where a P

incorporation has occurred we do not always observe it and rather see only the heterodimer

(e.g. site “I” in Fig. 7.2). This is most likely due to a finite possibility for the Si adatom

to diffuse away from the initial array site during the anneal. Indeed, Si adatoms have been

found to be mobile on the H-terminated Si(100) surface at elevated temperatures [220].

The observed features show a considerable spread of heights in the histogram. There are

two reasons for this: the apparent “height” of a feature represents the local tunneling

current which can be influenced by the microscopic details of the STM tip and the surface

(e.g. nearby surface defects), particularly for features on the sub-nm scale. Furthermore,

the spread of the peak associated with the ejected Si adatom may reflect several different

possible configurations of the adatom [216, 217, 218] which can either be in the aforemen-

tioned dimer-bridge configuration or in the end-bridge configuration where it is bound to
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two Si surface atoms of different dimers.

To further confirm that the observed features with an apparent height from ∼50 to 80 pm

are indeed due to the ejected Si atom, an attempt was made to image the array again after

desorption of the entire remaining H mask. To avoid further surface reactions and diffusion

processes, this was achieved by using the STM tip in lithography mode rather than heating

the sample to the required ∼470◦C [221]. However, it was found that the STM tip has a

tendency to move individual Si adatoms away from the original incorporation sites as the

surrounding H is desorbed. Indeed, single Si adatoms are known to be quite mobile on

the Si(100) surface, particularly along the dimer rows [216, 222] – until they meet other

Si adatoms to form chains or islands [223]. This makes evaluation of the STM images of

the array without the H mask unreliable. As a result we will rely on the surface features

observed after incorporation but with the H mask still intact. These are the relevant

conditions when fabricating a transport device since the H mask in that case cannot be

removed, as will be discussed in more detail in section 7.3.

Another important motivation for our statistical study was to determine the optimal size

for the desorbed patches to ensure the reliable incorporation of precisely one donor. The

results are illustrated in Fig. 7.3 b, where the probability of finding a certain number of

P-related features after incorporation is plotted for different sizes of the initial desorbed

patch. Here, only suitable patches with contiguous desorbed dimers along one dimer row

were considered, 95 in total. It is evident that the ideal size for single donor incorporation

patch is 3 adjacent dimers. If the patches are larger (4, 5, or 6 dimers in size) there is a

finite chance of incorporating more than one donor. It should be noted that the arrays

also included some 2 dimer patches, none of which showed evidence of a P donor after

incorporation. This further highlights the validity of the theoretical predictions [71].

From our statistical incorporation study we conclude that the probability of incorporating

a single P atom within a 3-dimer patch (3DP) is approximately 70% under the dosing

and anneal conditions stated above. This number is easily sufficient to fabricate a single

donor transport device as will be shown later in this chapter. However, it will need to

be improved for future scale-up of devices containing a multitude of precisely positioned

dopants [17]. It is very likely that further incorporation studies along with a deeper

understanding of the incorporation process in the presence of a surrounding hydrogen

mask will lead to significant improvements of the success rate. In particular, further array

studies are currently underway to image the surface after PH3 dosing (but before the

anneal) to investigate how the dosing conditions affect the incorporation rate.
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Figure 7.4: Incorporation pathway of an individual phosphorus atom. The
panels illustrate the sequential dissociation process of the adsorbed phosphine (PH3)
molecules and the final incorporation reaction (see text). The 3-dimer patch is in-
dicated by the red box in the first panel. Here, we assume saturation dosing of the
initial surface. Reactions taking place at T = 350◦C are indicated by the red bar
below. The Si adatom ejected in the final P incorporation reaction resides in the
dimer-bridge configuration (last panel), consistent with our observations.

7.2.1 Incorporation pathway for an individual P impurity

We now give a summary of the complete incorporation pathway for a single P donor

within a 3-dimer patch that is consistent with the findings from our statistical study.

The underlying reaction pathways and kinetics have been well-documented for the clean

Si(100) surface [41, 71, 76]:

PH3(ads) → PH2 +H → PH+ 2H → P + 3H → P(incorp)

The sequential reaction is illustrated in Fig. 7.4, where we explicitly consider the pres-

ence of the surrounding hydrogen mask as well as the position of the ejected Si adatom.

The initial 3DP is indicated by the red box. During the phosphine dosing step at room

temperature, PH3 molecules adsorb on the bare Si surface, immediately dissociating to

PH2 + H as depicted in the first panel. We assume the dosing rate to be high enough to

achieve saturation coverage with PH2. At this point, all 6 DBs are passivated by PH2

and the associated H (2nd panel) and further dissociation within the patch is inhibited at

room temperature (RT). Thermal activation is required to desorb some of the phosphine

fragments. During the short anneal at 350◦C, some PH2+H will recombine and desorb as

PH3, immediately allowing one of the remaining two PH2 fragments to further dissociate

to PH+2H (3rd panel) – which is energetically favorable compared to desorption if free

DBs are available [71]. Again, further reactions are inhibited until the remaining PH2
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fragment eventually recombines and desorbs, at which point the left over PH undergoes a

final dissociation step to P+3H. Still at 350◦C, the phosphorus adatom then incorporates

into the top layer of the Si surface, ejecting a Si atom in the process [77]. The latter sub-

sequently resides in the dimer-bridge configuration near the Si:P heterodimer [217, 218]

as illustrated in the last panel of Fig. 7.4. It is this Si adatom that is seen in the STM

images after the incorporation anneal (see Fig. 7.2). It should be noted at this point

that even if only two or one PH3 molecules adsorb to the initial 3DP, exactly one P atom

will incorporate. However, for the sake of reproducibility we focus on saturation dosing

conditions since sub-saturation dosing is much harder to control experimentally.

7.2.2 Placement accuracy of the single donor

Regarding placement accuracy, the single dopant can only be incorporated within the 3-

dimer patch, substituting one of the 6 vicinal Si atoms. Since this patch can in principle

be desorbed around a chosen dimer site, the overall spatial uncertainty of the dopant site

is given by the area of the patch (i.e. 2×3 lattice sites or ∼ 7.7×11.5 Å2). Our fabrication

strategy thus allows for the deterministic placement of a single impurity in silicon with a

lateral accuracy better than ±6 Å. While the incorporated P may diffuse upward during

the final low-temperature Si overgrowth step, the low thermal budget keeps vertical dopant

segregation to a minimum, with an upper limit of ∼ 6 Å [80].

Phosphine dissociation and phosphorus incorporation, diffusion and segregation have pre-

viously been studied in detail on clean Si(001), both theoretically [71] and experimentally

[76]. However, few studies have investigated these processes in the presence of a hydro-

gen mask which confines many of the reaction pathways to within the desorbed areas.

Future improvements in dosing and incorporation parameters along with an improved un-

derstanding of the incorporation mechanism within these ultra-small patterned dots will

likely lead to atomic placement with an accuracy down to the single lattice site.

7.3 Fabrication of the single donor transport device

The results of the incorporation array study presented in the previous section lead to

the successful fabrication of a single donor transport device. Here, we use a patterning

approach that is similar to the previously discussed devices of this thesis with a few

important modifications. Until now, devices were patterned on n-type lightly P-doped

silicon wafers with a doping density of ∼1015 cm−2 (corresponding to a resistivity of 1 −
10Ωcm). As a result, there is a small but finite chance of a phosphorus donor from the
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Figure 7.5: Incorporation of a single phosphorus atom. a High resolution
STM image of the H-desorbed surface (before dosing) showing the innermost part of
the source and drain leads. A close-up of the central 3 dimer patch is depicted in
b. The additional features are due to a stray dangling bond (DB) and an imaging
artefact to the left (white arrow) resulting from a slight double tip. c, The same
site after PH3 dosing and a 5 s incorporation anneal. Some ejected Si adatom chains
within the S and D leads are highlighted by blue arrows. d, The close-up reveals a
single protrusion at the site of the previous 3-dimer patch which is associated with a
single ejected Si adatom. All dimensions are in nm.

background doping to be close enough to the channel between source and drain to appear

in transport measurements. To avoid this ambiguity for our single donor device we choose

a p-type (boron doped) substrate with a similar resistivity (1 − 10Ωcm).

STM-patterning of the gated device was achieved in a two-step process: First, the intended

incorporation area for the single donor as well as the innermost parts of the leads are

desorbed. Here, the 3DP is patterned precisely in the middle between the leads as shown

in Fig. 7.5 a. For the width of the leads as well as their separation to the central donor

we chose approximately the same dimensions that had yielded good results for the few-

donor quantum dot presented in the last chapter (see Fig. 6.3). A close-up of the single

donor patch in Fig. 7.5 b reveals the required 3 adjacent desorbed dimers as well as

two additional features which are due to a stray dangling bond and an imaging artefact,

respectively, and will therefore not affect the incorporation process. Subsequent dosing

and an incorporation anneal completes the first patterning step. Here, we use the same

parameters as in the array study, i.e. a PH3 exposure of ∼14 Langmuir and a 5 s anneal

at 350◦C. Next, the area is imaged again to verify the successful incorporation of a single

P dopant. Here, a lead extension on the D side (blue arrow in Fig. 7.6 a) which has been

desorbed along with the central structure in the first step serves as a marker that helps to

relocate the initial incorporation site after the thermal drift caused by the anneal. Indeed,

Fig. 7.5 c and d reveal a bright protrusion centered on a dimer row with a height of

∼70 pm with respect to the surrounding H mask (inset of panel d). This is consistent with

the expected height (65 ± 15 pm) for a single ejected Si atom determined from the array
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Figure 7.6: Single phosphorus donor transport device. a, STM image of the 4
terminal device with source (S) and drain (D) leads and two in-plane gates (G1, G2)
acquired during STM-lithography after incorporation of the central single P donor
but before PH3 dosing of the outer electrodes. The orange shaded areas indicate the
contact arms for each electrode which were desorbed in the subsequent step. The
“lead” (blue arrow) on the D side incorporated in the first donor incorporation step
served as a marker to relocate the initial incorporation site. b, Close-up of the central
area as indicated by the white square in (a). Gate G1 was patterned to be twice as
wide as G2, resulting in a reduced leakage (see text). The white circle indicates the
position of the single P impurity (close-ups of which are shown in Fig. 7.5). All
dimensions are in nm.

studies of section 7.2. We thus conclude that one single impurity has been successfully

incorporated in the central desorbed 3-dimer patch. The tips of the S and D leads can

be clearly identified by the ejected Si adatoms and adatom chains, some of which are

indicated by blue arrows in Fig 7.5 c. The presence of such adatom chains perpendicular

to the dimer rows underneath confirms the successful donor incorporation throughout the

structure [66]. Furthermore, the fact that ejected Si is only observed within the desorbed

regions confirms the structural integrity of the nm-scale leads during the incorporation

anneal.

In the second patterning step, the in-plane gates G1 and G2 are aligned and desorbed along

with the extensions of the leads as shown in Fig. 7.6. Owing to the discrete spectrum

of the P donor, a current flowing from S to D will be modulated in a characteristic way

when a voltage is applied to either of the gates. As for the 7 donor quantum dot of the last

chapter, we choose a two-gate layout to allow for higher tunability with two independent

gate voltages. However, in contrast to the few-donor dot we pattern both gates with the

same separation (54 nm) to the central impurity, but with different widths to investigate

how the gate leakage characteristics are affected by the width of the electrodes.

For the second dosing and anneal cycle we use the standard parameters (∼1.4 Langmuir
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of PH3 and 30 s at 350◦C) which have proven to yield reliable results for many previous

devices [115, 201]. It is important to note that as a result of the initial P incorporation

process, the central 3DP is effectively re-passivated and can therefore not incorporate

any additional donors during the second dosing and anneal cycle. Furthermore, lateral

diffusion during the second anneal at 350◦C is inhibited for the incorporated single P

impurity which occupies a substitutional Si site. After the second donor incorporation

step, the entire structure is overgrown with silicon from a thermal sublimation source.

The low sample temperature of 250◦C during this process minimizes vertical segregation

to a maximum of a few lattice sites [80], while ensuring good epitaxial quality of the

overgrown Si [81]. Due to a calibration error, the encapsulation thickness for the single

donor device was ∼180 nm. While this is much higher than the standard 25 nm for previous

devices it is not expected to be detrimental to the transport characteristics – particularly

in the absence of surface gates.

After removal from UHV, RIE etched contact holes and aluminium contacts were defined

over the STM-patterned patches in subsequent EBL steps. Ex-situ processing was identical

to the 7 donor device, as described in more detail in section 6.2. Again, two metal terminals

are patterned for both S and D allowing us to determine that good ohmic contact has

been made (see Fig. 7.7). Only one terminal was patterned for each in-plane gate.

7.4 Low-temperature transport characteristics

An initial brief characterization at 4K confirmed that the sample was well contacted elec-

trically. Two Coulomb peaks were observed as a function of gate voltage. The single

donor device was subsequently cooled down in a 3He/4He dilution refrigerator with a base

temperature of ∼20mK. Like the few-donor quantum dot presented in the last chapter, all

electrical measurements were carried out by applying a dc voltage to the source electrode

while keeping the drain grounded.

As discussed in chapter 3, we first check for good ohmic contact to the buried STM-

patterned structure. This is done by simply measuring the resistance R2T of the contact

patches alone via their two metal terminals. The resulting IV -curve for the S electrode1

is shown in the inset of Fig. 7.7 revealing an Ohmic (i.e. linear) characteristic with a two-

terminal resistance of approx. 36 kΩ. This resistance is higher than the corresponding

value (∼3 kΩ) for the few-donor dot of the last chapter, most likely resulting from the

smaller STM-patterned contact patches which were used in an attempt to reduce the

1The D electrode could not be measured due to a misalignment of one of the two metallic contacts.



7.4. Low-temperature transport characteristics 143

overall patterning time (approx. 12 hours for the present device).

The next crucial step is to determine the effective gate range for both in-plane gates,

i.e. the maximum voltages that can be applied to each gate before the leakage current

(flowing from a given gate to any of the other electrodes) exceeds a certain threshold,

typically 100 pA. Fig. 7.7 shows the measured leakage curves for both gates as a function

of the applied gate voltage. From this plot we determine an effective gate range of -

0.73V to 1.3V for G1 and -0.52V to 1.0V for G2, respectively. It is evident that the

narrower gate, G2, has a smaller gate range. This is possibly due to a higher potential

gradient around the tip of a narrow electrode which results in a smaller effective tunnel

barrier. It may thus be favorable to pattern future devices with wider gates with rounded

edges rather than narrow gates. The leakage characteristic for G1 shows a very steep

onset, where the leakage current increases by more than an order of magnitude within

a 1mV increase of gate voltage. We attribute this to an avalanche-type breakdown [25]

rather than direct tunneling processes. This occurs when the field strength at the gate

becomes large enough to cause avalanche multiplication of substrate carriers and has been

observed before for our planar Si:P structures [100]. The leakage curves for both gates

are strongly asymmetric for positive and negative gate voltages with a significantly higher

break-through voltage for VG > 0. This is consistent with the findings from the few-

donor quantum dot (see Fig. 6.4 in chapter 6) and may reflect the fact that the gate

electrodes themselves get partially depleted for very positive voltages [115]. It should be

noted that both gates of the single donor device (with a gate separation of 54 nm) have a

significantly smaller gate range than the ones of the few-donor dot. Here, the device was

patterned on a n-type substrate with two in-plane gates at distances of 57 nm and 44 nm

from the dot (see Fig. 6.1 in chapter 6) resulting in a gate range of −1.3 to 1.8V and

−1.0 to 1.4V, respectively. By contrast, the single donor device was patterned on a p-type

substrate (with the same nominal resistivity of 1 − 10Ωcm). For the resulting (bipolar)

n++-p-n++ junction between the gate and the other electrodes one would therefore expect

a higher barrier and therefore a higher gate range than for the corresponding n++-n-n++

profile of the few-donor device. The reasons for the smaller gate range of the single donor

device are not yet understood. One possibility is that an increased number of dangling

bonds (arising from stray desorption or thermal H desorption during the first incorporation

anneal) has resulted in the uncontrolled incorporation of P donors between the gates and

the leads thus creating a leakage pathway. However, further investigations of the gate

leakage characteristics as a function of device geometry as well as substrate type will be

necessary for future devices.
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Figure 7.7: Determining the gate range. Leakage current as a function of
the applied gate voltage for each gate. The wider gate G1 has a higher gate range
with a very sharp onset of the leakage current at approx. +1.35V. We determine
an effective gate range of -730mV to 1300mV for G1 and -515mV to 1020mV for
G2, respectively. The inset shows a linear IV curve through the contact patch of the
source electrode with a two-terminal resistance of ∼ 36 kΩ, confirming good ohmic
contact to the buried device.

7.4.1 Stability diagram of a single donor

Transport characteristics of the single donor device at mK-temperatures are shown in

Fig. 7.8 a, where the current ISD through the device is plotted as a function of the bias

voltage VSD and gate voltage VG (applied to gates G1 and G2 in parallel). As discussed in

previous chapters, the electrodes of our transport devices are formed of Si:P δ-layers which

are doped well above the metal-insulator transition and will therefore conduct even at mK-

temperatures [224]. By contrast, the surrounding substrate is very lightly doped silicon

which represents tunnel barriers at low temperatures due to the freeze-out of carriers.

This is illustrated in the energy schematic of Fig. 7.8 c. Electronic transport from S to

D thus occurs via the discrete states of the single P donor in the channel. For isolated

phosphorus donors in bulk silicon there are two bound states, the charge-neutral D0 state

and the two-electron state D− [225], as depicted in Fig. 7.8 b. In addition to these ground

states there exists a spectrum of excited states which will be discussed in more detail

in section 7.4.4 below. For the bulk Si:P system, the two ground states have a binding

energy of 45.6meV and ∼1.7meV, respectively [168, 226], resulting in a charging energy

of 45.6 − 1.7 ≈ 44meV for D0. For the donor in our transport device, we also expect two

bound states D0 and D− [209]. However, the donor spectrum may be different from the

bulk case due to the proximity of the highly-doped electrodes. Indeed, several groups have

reported a lowering of the electrochemical potential for the D− transition resulting from
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Figure 7.8: Transport characteristics of a single donor device. a, The source-
drain current (log scale) as a function of bias voltage (VSD) and gate voltage (VG)
yields the expected stability plot for a single donor where the D+ region does not close
for lower gate voltages. The D+↔D0 and D0↔D− transitions occur at reproducible
positive values of VG. To limit the current through the device the VSD window
was decreased with rising gate voltage, resulting in a trapezoidal plot. The dotted
box indicates the region shown in Fig. 7.9. b, Energy schematic of the Coulombic
potential profile for an isolated P donor in bulk Si where the D0 and D− states are
separated from the Si conduction band edge Ecb by their binding energy, 45.6meV and
∼1.7meV, respectively. c, By contrast, the donor potential in our device is strongly
modified by the nearby S and D electrodes. At low temperatures, the low-doped
substrate represents tunnel barriers of a certain height with respect to the Fermi level
EF in the leads. The electrochemical potentials of the D0 and D− states reside below
the top of the barrier. They can be shifted down by applying a positive gate voltage
which will also decrease the barrier height. The energy difference between both states
is the charging energy EC .

a strong capacitive coupling to a surface gate [165, 209, 213]. This was found to result in

a significantly increased binding energy for D− which translates2 to a decreased charging

energy for D0. Calderon et al. [196] recently studied how the presence of heterointerfaces

affects the charging energy of shallow donors in silicon. In particular, they found that

nearby insulating barriers and metallic gates result in a strong reduction of the charging

energy.

In the stability diagram of Fig. 7.8 a, the current is suppressed in the diamond-shaped

dark regions due to Coulomb blockade. An immediate observation is that the “diamond”

for VG < 450mV does not close. This is the expected behavior [165] for the positively

ionized D+ state since the single P donor cannot lose more than its one unbound valence

electron. Indeed, the blockaded bias region increases nearly linearly with decreasing gate

voltage all the way down towards the lower end of the gate range. Importantly, the device

2An increased binding energy effectively shifts the D− level closer to the D0 level since the latter is
charge neutral and thus not affected by the capacitive coupling to the surface gate.
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Figure 7.9: Stability plot of a single P donor. a,The differential conductance
dISD/dVSD, plotted as a function of bias and gate voltage (applied to both gates in
parallel). From the D0 diamond, we estimate a charging energy of 47 ± 3meV. An
additional feature (indicated by the arrow) is most likely due to the charge transition
of a nearby charge trap. We also observe a roughly diamond-shaped region for VG >
820mV which may reflect the D− charge of the donor. However, the well-resolved
Coulomb blockade behavior disappears above∼900mV and the current noise increases
drastically due to leakage from gate G2. b, The leakage current from G2 (see Fig.
7.7) is clearly visible in the measured drain current for VG > 1000mV.

conductance remains quite high throughout the gate range, on the order μS. This allows

us to rule out the presence of additional “hidden” charge transitions below VG = 450mV

which might not be visible if the device conductance were to decrease significantly [158].

We thus identify the diamond between VG ∼ 450mV and 820mV in Fig. 7.8 a as the

charge-neutral D0 state of the P donor.

In other architectures for single donor transport devices [165, 209] it is possible to measure

the binding energy, i.e. the energy difference between the bound states and the top of the

barrier between donor and leads as illustrated in Fig. 7.8. This requires the effective barrier

height to be determined from the temperature-dependent source-drain IV characteristics

over larger temperature ranges (typically on the order of 100K [209]). In our devices, the

barrier is defined by the low-doped intervening Si substrate which becomes conducting

above the freeze-out temperature of ∼ 40 − 50K [100]. The barrier height is therefore

difficult to determine for our sample due to the limited temperature range available [100],

so that the binding energy is not directly experimentally accessible. However, we can

readily determine the charging energy (i.e. the energy difference between D0 and D−) from

the height of the D0 diamond. This is illustrated in the stability diagram of Fig. 7.9 a which

shows the device conductance dISD/dVSD as a function of bias and gate voltages. It should

be noted that the D0 diamond is slightly asymmetric with respect to the VSD = 0 axis
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which leads to different values of EC for positive and negative bias, ∼46meV and ∼48meV,

respectively. This asymmetry is most likely due to a slight change in capacitive coupling

to the leads for different charge states resulting in different slopes of the corresponding

diamond edge [162]. Taking the average value and accounting for the relatively smooth

increase of conductance at the tips of the diamond (resulting from the high conductivity

of the device), we estimate an experimental charging energy of 47± 3meV. Interestingly,

this value is comparable to the bulk value of ∼44meV. This is in sharp contrast to the

reported single donor devices mentioned above [165, 209, 213] where the D0 charging

energy was found to be significantly reduced (by roughly a factor of ∼ 0.6 − 0.7) due to

the strong electrostatic coupling to the gate. We attribute the observed bulk-like value

for EC in our device to the absence of surface gates and the weaker capacitive coupling

between the in-plane gates and the donor in our planar architecture3. It should be noted

that an additional charging feature is visible in the stability diagram as a diagonal line of

increased noise, indicated by the white arrow in Fig. 7.9 a. This may be due to a nearby

charge trap with a weak capacitive coupling to the gates. At some particular gate-voltage

configuration, the trap comes into resonance, fluctuating between two charge states. By

applying different voltages to the two in-plane gates, this resonance can be shifted away

from the D+ ↔ D0 transition (see Fig. 7.11).

We also observe a roughly diamond-shaped region for VG > 820mV in Fig. 7.9 a which

we associate with the two-electron D− state. The large extent of this diamond is contrary

to what one would expect for a bulk-like system, where D− is only weakly bound by

∼1.7meV [226]. Furthermore, we observe a drastic change of the transport characteristics

for gate voltages above ∼900mV, where the stable Coulomb blockade behavior and the

well-defined diamond edges vanish and the current noise increases strongly. This can be

attributed to the onset of leakage from the narrow gate G2 (since VG is applied to both

gates in parallel in Fig. 7.9 a). While the leakage current is not visible in the differential

conductance of 7.9 a, it can easily be seen in the direct current signal of panel b for

VG > 1000mV. The strong gate leakage affects the reliability of the data at the highest

gate voltages so that we cannot extract a dependable value for the charging energy of D−.

As will be discussed in the next section, the gate voltage not only shifts the electrochemical

potential of the donor states, but also modulates the height of the tunnel barrier along the

transport direction. What appears like a “closing D− diamond” in Fig. 7.9 a may thus

in fact be a signature of the vanishing tunnel barriers between the donor and the leads

resulting in a sharp increase of direct tunneling from S to D. However, the reasons for the

3see section 5.3
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large extent of the D− diamond are not yet fully understood. One plausible explanation

is a strongly decreasing gate lever arm as the gate voltage is increased. This is consistent

with the decreasing slopes in Fig. 7.9 a as will be discussed in more detail in section 7.4.2

below. A reduced lever arm would indeed cause the D− diamond to be “stretched” along

the gate axis.

Looking at the stability diagram of Figs. 7.8 a and 7.9 a, it is important to note that the D0

diamond is not centered around VG = 0. Instead, the D+ ↔ D0 transition reproducibly4

occurs at positive gate voltages around ∼ 450± 30mV. It may at first seem counter-

intuitive that the isolated donor is not in the charge-neutral D0 state under equilibrium

conditions (i.e. VSD = VG = 0). Considering the stability of our data it is unlikely that

this behavior could be explained by offset charges. Instead, we attribute this characteristic

to the gate-voltage dependent potential profile of our sample, which can be justified by

a simple quantitative analysis. In contrast to the bulk case (Fig. 7.8 b), the Coulombic

donor potential in our transport device is modified due to the proximity of the highly-

doped S and D electrodes, resulting in the double barrier profile illustrated in Fig. 7.8 c

along the transport direction. The tunnel barrier is formed by the intervening substrate

which is insulating at low temperatures. Importantly, the exact height of this barrier

is unknown for our device. However, based on previous studies of planar Si:P tunnel

junctions of similar geometry5 [100], we can assume a barrier height of ∼100meV and, as

a first approximation, a bulk-like binding energy of 45.6meV for D0. The charge-neutral

state then resides approximately 100meV−45.6meV ≈ 54meV above the Fermi level in

the leads when no gate voltage is applied. This is illustrated in the schematic of Fig. 7.8 c.

As mentioned previously, a voltage applied to the in-plane gates shifts the electrochemical

potential of the donor states. This means that the donor remains positively ionized until

a sufficient positive gate voltage brings the D0 electrochemical potential into resonance

with the Fermi energy in the leads. Using the experimental gate lever arm α ≈ 0.1 (see

table 7.1), we can roughly estimate the required gate voltage as 1
eα54meV= 540mV. This

is in reasonable agreement with the experimentally obtained value for the first charge

transition of ∼ 450± 30mV, particularly considering the crudeness of the model. This

may be a further indication that the single donor in our device is indeed in a bulk-like

state that is only weakly influenced by the nearby in-plane electrodes.

4This behavior is consistent even between different cool-downs of the sample.
5While these tunnel junctions were patterned on n-type substrates, the difference in barrier height

(between n-type and p-type substrate) is expected to be small due to the very low background doping
density (∼ 1015 cm−3) in both cases.
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Capacitances of the single donor device (in aF)

CΣ CS CD CG1 CG2 αG1+G2

3.5 1.35 1.75 0.21 0.19 0.1

Table 7.1: Experimental capacitance values extracted from the D0 diamond in the
stability plot of Fig. 7.9 a as described in section 2.3.1. Here, we have used the
average value of ∼47meV for the charging energy EC to determine CΣ. The values
for source and drain capacitance are extracted from the slopes of the diamond edges
at the D+↔D0 transition.

7.4.2 Device capacitances

From the peak spacing ΔVG at zero bias we obtain a combined gate capacitance of CG =

e/ΔVG ≈ 0.4 aF. We also determine an average gate lever arm α = EC/ΔVG ≈ 0.1, which

is a measure for the effectiveness of the electrostatic coupling between gate and donor.

The changing slopes of the diamond edges in Fig. 7.9 a indicate that α actually decreases

for higher gate voltages. This is consistent with the results from the few-donor quantum

dot, where α was found to decrease by roughly a factor of 2 throughout the gate range (see

Fig. 6.6 in chapter 6). We attribute the decreasing lever arm to the lowering of the tunnel

barriers for positive gate voltages which results in a weaker confinement of the electronic

states along the S-D direction. This in turn will lead to a stronger capacitive coupling

CS,D to the leads while the capacitances CG to the farther gates remain roughly constant so

that αG = CG/(CS+CD+CG) will decrease [122]. In a system where the capacitances are

dependent on the applied gate voltage, the simple constant interaction model of Coulomb

blockade [48] no longer applies. The experimental capacitances summarized in table 7.1 are

thus approximate values that are only valid at the D+↔D0 transition while the extracted

lever arm is the average value for the D0 diamond.

Gate G1 shows a slightly stronger capacitive coupling to the donor than G2. This is

consistent with the geometry of Fig. 7.6 b since G1 is wider. Regarding the leads, from

the slopes of the Coulomb diamonds we find a higher capacitance for the D electrode.

With a roughly identical width of both leads, this implies that the incorporated donor

should be located closer to the D electrode. This will be discussed in more detail in the

next section (7.4.3).

7.4.3 Asymmetry of tunnel coupling

As was discussed in detail in section 6.4.3 of the previous chapter, an asymmetry in

the tunnel coupling to source and drain manifests itself in a disparity of the observed
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100μeV) conductance of the D+↔D0 transition. The peakshape does not change
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∼3770K, the bath temperature of the cryostat corresponds well to the temperature
extracted from a fit (grey line) to the quantum CB theory [48], indicating the cross-
over to the temperature-broadened regime around 4K.

transport resonances. In the stability diagram of Fig. 7.9, lines of increased conductance

are observed predominantly with positive slope indicating a stronger tunnel coupling to

the D electrode. This is consistent with the stronger capacitive coupling to the drain

(table 7.1). It thus seems plausible that the donor in the channel is located closer to the

drain lead. The dimensions of the central device area after incorporation are shown in

Fig. 7.5 c, where we observe the ejected Si adatom to be one lattice site (≈3.8 Å) closer

to the source lead. However, the adatom does not reside directly above the incorporated

P donor, but is shifted along the dimer row as illustrated in the last panel of Fig. 7.4. We

conclude that the incorporated P donor resides to the right of the observed Si adatom in

Fig. 7.5 c, and is therefore indeed at least one lattice site closer to the D electrode – in

excellent agreement with the electrical results.

To gain a quantitative understanding of the tunnel coupling asymmetry in our device,

we have measured the temperature dependence6 of the first charge transition. Fig. 7.10

shows the low-bias conductance G of the D+↔D0 transition up to ∼4K. It is evident

that the Coulomb peakshape does not change at temperatures below ∼1K, indicating

that here the device is in the lifetime broadened regime [48], kBT < hΓ, where Γ is the

6This T -dependent data was measured in collaboration with Dr. H. Huebl at the Walther Meissner
Institute, Germany.
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coupling constant. The latter is the sum of the two tunnel rates for the source and drain

tunnel barrier, respectively, Γ = ΓS + ΓD [48, 227]. The Coulomb peaks for T < 1K are

broadened due to the finite tunnel coupling between the dot and the leads (rather than

temperature) so that Γ corresponds to the FWHM of the peak, assuming that only one

quantum level contributes to the transport through the donor [228]. This assumption is

justified since the donor excited states are much higher in energy (see section 7.4.4) than

the bias voltages used in Fig. 7.10. Using α ≈ 0.1 to convert gate voltage into an energy,

we obtain Γ = α · FWHM ≈ 680 μeV from the peak at 100mK. We can use this value to

get a rough estimate for the tunneling asymmetry: in the lifetime broadened regime the

(T -independent) peak maximum GMAX is given by [228]

GMAX =
2e2

�

ΓSΓD

(ΓS + ΓD)2
(7.1)

Here, the factor 2 accounts for spin degeneracy. Using the experimental values for Γ (=

ΓS+ΓD) and GMAX ≈ 270 μS, we obtain ΓS = 1μeV and ΓD = 679μeV. This means that

there is indeed a considerable asymmetry in the tunnel coupling with tunneling through

the source barrier being the rate-limiting process. Differences of more than two orders

of magnitude in the tunnel rates have also been found for other single donor transport

devices [229].

It should be noted that the above method gives only a rough estimate for the tunnel rates,

since it relies on the experimental value for the Coulomb peak height GMAX. A more

elaborate approach introduced by Foxman et al. [227] is independent of the absolute value

of GMAX and relies on the T -dependence of the Coulomb peak for higher temperatures

(where hΓ < kBT ). However, the cross-over to the temperature-broadened regime in our

device occurs around 4K. Since measurements were only performed up to 4.2K, we do

not have sufficient data to extract the required T -dependence of the peak height in this

regime.

7.4.4 Single donor excitation spectrum

A close-up of the D+ ↔ D0 transition is depicted in Fig. 7.11 for two different gate config-

urations. We observe a great number of transport resonances in the stability diagram as

lines of increased conductance running parallel to the diamond edges outside the blockaded

regions. The average energy spacing of these resonances is on the order of ∼1meV. It is

worth noting that this energy scale is an order of magnitude larger than the ∼100 μeV

spacing observed for the few-donor dot of the last chapter. Many of these lines terminate
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Figure 7.11: Resonance spectrum. a, Close-up of the D+ ↔ D0 transition in Fig.
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b, To shift the background charging feature (indicated by the arrow in a) out of the
window, only VG2 was swept while keeping VG1 at a fixed value of 750mV.

on the edge of the “empty” D+ diamond and therefore cannot be due to excited states

of the donor electron [152, 165] (since the corresponding D+ state contains no electrons).

Instead, we attribute the resonances to a quasi-1D density of states in our nm-scale S and

D leads. Such DOS features have previously been observed in many quantum dot systems

[170, 205, 204] as well as single donor devices [165]. Furthermore, in chapter 6 we presented

modeling results for the density-of-states in our narrow source and drain leads (see section

6.5.2). In particular, the single-particle calculations revealed how transversal quantization

in the wider (∼16 nm, see Fig. 7.6) part of the S and D electrodes contributes to the

effective tunneling DOS at the tip of the leads, resulting in transport resonances on the

order of a few meV. Indeed, we can use a very simple particle-in-a-box estimate for the

average level spacing. To account for the roughly even spacing of the observed resonances

we assume a harmonic confinement potential [46], which was discussed in more detail in

section 6.4.5:

ΔEharm =
�

g

√
8V

m∗
1

L
(7.2)

Here, m∗ is the electron effective mass, L is the width of the lead, and g accounts for

the spin and valley degeneracies. V is the height of the parabolic potential well which

we assume to be on the order of ∼100meV in agreement with previous studies on tunnel

junctions [100]. Using a spherically averaged effective mass of 0.28me [35], a width of
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16 nm, and assuming two-fold spin and 4-fold valley degeneracy7 (g = 8), we find an

expected level spacing ΔE of ∼3meV, in reasonable agreement with the observed data.

Another possible explanation is that some of the features may be due to disorder-induced

fluctuations in the local density of states in our highly doped leads [187, 146].

Excited states of confined quantum structures are commonly identified via their effect on

the sequential tunneling characteristics. In the case of transport devices these manifest

themselves in the form of lines of increased conductance in the un-blockaded regions [46].

In addition to the DOS related features, one would therefore expect to find resonances

arising from excited states of the single P impurity. The energies of the lowest D0 excited

states for isolated phosphorus donors in bulk silicon are summarized in table 7.2. The

6-fold degeneracy of the conduction band minimum of bulk silicon is reflected by the

manifold of six 1s states, comprising the ground state and the first two excited states. The

nomenclature commonly used in the literature derives from group theory8 and reflects the

symmetry of the corresponding state.

The proximity of gates and interfaces has been found to strongly influence the excited

states of other single donor transport structures via the Stark shift in gate electric fields on

the order of several MV/m [165, 230]. However, in our device the gate voltage is typically

applied symmetrically to both in-plane gates on either side of the transport channel. As

a result, the gate electric field at the position of the donor is most likely negligible and

no Stark shift is expected. Furthermore, the donor is encapsulated deep in the silicon

crystal and thus not affected by any interface-related confinement [165]. In the absence of

nearby interfaces and strong gate electric fields, we would thus expect to see resonances

at the positions indicated in Fig. 7.11 a, where the gate voltage is applied to both gates in

parallel. However, we do not see any clear indication of the excited states in the data. For

VSD > 0, no features are visible at the corresponding energies, but this is likely to be due

to the asymmetry in the tunnel coupling which reduces the visibility of the features with

a negative slope. For VSD < 0, no conductance line is immediately obvious for the 1s(T2)

state. While we do find one resonance at ∼13meV which may indeed originate from the

1s(E) state, the latter could also be due to a DOS feature that coincidentally resides at

that particular energy. Fig. 7.11 b shows the same transition for a different gate voltage

configuration. Here, only VG2 is swept while keeping VG1 at a fixed value of 750mV. This

allows the background charging feature causing switching noise in Fig. 7.11 a (indicated

by the white arrow) to be moved out of the window. Apart from this, the both sweeps

7see section 2.2
8Donor eigenstates in silicon belong to the tetrahedral (Td) point group [32].
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Excitation spectrum of P donors in bulk Si

State Nomenclature ΔE (meV) Degeneracy

GS 1s(A1) 0 1
1st ES 1s(T2) 11.70 3
2nd ES 1s(E) 13.01 2
3rd ES 2p0 34.11 6
4th ES 2p± 39.19 12

Table 7.2: The excited state (ES) energies of the D0 state for isolated P donors in
bulk silicon [168, 225]. Their energy ΔE is given with respect to the ground state
(GS) energy, 45.6meV below the silicon conduction band edge.

show essentially the same spectrum, which further highlights the stability of our device.

We conclude that for our sample the direct determination of excited states from the un-

blockaded region of the stability diagram is inconclusive due to the dense spacing and

relative predominance of resonances arising from the strongly modulated DOS in the leads.

However, higher-order tunneling processes can provide a means to separate lead-related

features from those that are a clear signature of the donor spectrum [146].

7.4.5 Observation of co-tunneling features

With Coulomb peak conductances on the order of several 100 nS the coupling between

donor and leads in our device is sufficiently strong for co-tunneling features to become

visible within the Coulomb blockaded region [231] of the D0 diamond. The latter is

illustrated on a logarithmic scale in Fig. 7.12 a. Panel b of the same figure depicts a bias

sweep at a fixed gate voltage which shows a strongly rising conductance with clear peaks

within the blockaded region. To increase the visibility of these resonances in the stability

plot we have subtracted a smoothed curve (indicated by the red line) for every value of

VG.

Co-tunneling processes can be either elastic (in which case the corresponding conductance

lines may reflect local maxima of the DOS in the leads [146]) or inelastic via a donor

excited state [231]. In the latter case, the applied bias must exceed the lowest excitation

energy of the dot, eVSD ≥ E1, and the corresponding features are typically found to be

more pronounced with a clear step in the current [146].

Conductance resonances in the co-tunneling regime are visible as roughly horizontal lines

within the D0 diamond in Fig. 7.12 c. While there are several such lines for VSD < 20mV,

two sets stand out due to their relative magnitude and – more importantly – the fact that

they are symmetric in VSD. They occur at bias voltages of ∼ ±15mV and ∼ 11mV and
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Figure 7.12: Co-tunneling features of D0 a, When plotting the device conduc-
tance on a logarithmic scale, structure within the blockaded region of D0 becomes
visible, indicating higher-order co-tunneling processes. b, The conductance as a func-
tion of bias voltage (at a fixed gate voltage indicated by the white line in a) shows
clear peaks. c, To make these peaks more visible on the strongly rising background,
we subtract a smoothed curve (red line in b) for every VG. Two prominent sets of
resonances, symmetric in VSD are remarkably similar in energy to the first two excited
states E1 and E2 for isolated P donors in bulk Si.

∼ −12mV, respectively. Remarkably, these values are very close to the first two excited

state energies of P donors in bulk silicon [225] of E1 = 11.70meV and E2 = 13.01meV

for the 1s(T2) and the 1s(E) state, respectively (see table 7.2). In contrast to previous

reports, where the bound states of single donors were found to be strongly influenced by

nearby interfaces and strong gate electric fields [165], our planar architecture thus allows

for level spectroscopy of a single impurity with a bulk-like spectrum.

There are additional features in the co-tunneling spectrum, many of which are less pro-

nounced or do not seem to occur in pairs symmetric in VSD. These may be due to elastic

co-tunneling processes, reflecting peaks in the density-of-states in the leads [146]. An-

other prominent and symmetric set of lines is observed at approx. ±24meV. The origin

of this feature is not yet understood since the next bulk excited state is ∼34meV above

the ground state. Due to the weak electric field in our device it seems unlikely that this

2p0 excited state would be Stark-shifted so significantly.

7.4.6 Magnetic field dependence

The following section gives a summary of the magnetospectroscopy measurements on our

single donor device. The experiments were performed in a parallel magnetic field up to

8T.
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region.

Coulomb peak spacing vs. B

To further confirm that we are indeed measuring transport through a single donor, we have

measured the Coulomb peak spacing as a function of a magnetic field B, as illustrated

in Fig. 7.13. A magnetic field breaks the spin degeneracy of the donor states, splitting

them into a spin-down9 and a spin-up state which are separated by the Zeeman energy

EZ = ±2ΔszgμBB [45]. Here, g is the gyromagnetic or g-factor which for electrons in

silicon is very close to the free-electron value of g = 2 [206], μB is the Bohr magneton,

and Δsz = ±1
2 is the total change in spin momentum associated with a particular charge

transition. For D0, the spin-down level thus becomes the ground state resulting in a shift

of the corresponding D+↔D0 Coulomb peak towards lower gate voltages. Conversely, the

D0↔D− peak is expected to shift up in gate voltage since the second “incoming” electron

must be spin-up, forming a singlet ground state due to the Pauli exclusion principle.

In Fig. 7.13 a the gate voltage was applied to both gates in parallel. The many switching

events are most likely due to the charge fluctuations of a nearby charge trap as the gate

9By convention, “spin-down” refers to the spin oriented parallel to B which is lower in energy.
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voltage is repeatedly swept over a large range in a comparatively short time10. To minimize

the error arising from this noise as well as from long term drift in the absolute peak

positions, we extract the peak spacing for the D0 as illustrated in Fig. 7.13 b. We find

that the width of the D0 diamond increases as a function of the applied B field, which is

the expected behavior for a single donor as described above. A linear fit (indicated by the

red line) yields a slope of 1.17mV/T which (using a gate lever arm α ≈ 0.1) translates

into an energy shift of 117μeV/T. From the latter we determine an experimental value

for the g-factor of ∼2.0, in excellent agreement with the expected value.

To reduce the switching noise in the magnetospectroscopy data, we have repeated the

sweep for different gate configurations. In Fig. 7.13 c, only the voltage on G2 was swept

while keeping VG1 at a fixed value of 950mV. Indeed, the peak positions are much more

stable which indicates that the charge trap remains in a stable configuration. It is thus

plausible that the charge trap is located closer to gate G1 resulting in a stronger coupling

to the latter. The extracted peak spacing is depicted in Fig. 7.13 d. Using the g-factor

of 2.0 determined from panel b, we can now use the slope of the linear fit to estimate the

average lever arm for gate G2. We obtain αG2 ≈ 0.04 which is in reasonable agreement

with the determined capacitance values summarized in table 7.1.

Resonance spectrum as a function of B-field

Fig. 7.14 a shows a close-up of the first charge transition for different magnetic fields.

The transition is found to shift towards lower gate voltages which is consistent with the

magnetospectroscopy data of Fig. 7.13. While the resonance pattern remains roughly

the same, slight changes are visible, particularly at low bias voltages. As discussed in

the previous section, a magnetic field splits the one-electron state D0 into a spin-down

ground state and a spin-up excited state. The latter is commonly seen as an additional

conductance feature separated from the GS line by the Zeeman energy [152, 166]. To check

for Zeeman splitting of the GS line, we perform bias sweeps at a fixed gate voltage while

increasing the magnetic field in small increments. Here, we only consider the negative

bias side since we do not expect to see the spin excited state for VSD > 0 due to the

coupling asymmetry. The resulting magnetospectroscopy data is illustrated in Fig. 7.14 b

where we convert VSD into an energy via a simple geometric factor that accounts for the

slopes of the Coulomb diamond. Since we keep the gate voltage fixed, the shift of the

charge transition along the gate axis translates into the observed linear shift of the GS

10Stability of our devices was discussed in more detail in section 6.4.4.
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Figure 7.14: Magnetospectroscopy. a, A close-up of the D+↔D0 for different
magnetic fields. The ground state (GS) line (indicated by the arrow) of D0 is expected
to split into a spin-down GS and a spin-up excited state. b, To investigate possible
Zeeman splitting of the GS line, we have performed direct magnetospectroscopy at
a fixed gate voltage (indicated by the dotted line in a). Here, a simple geometric
factor converts VSD into an energy ΔE, shown on the right y-axis. The slope of the
GS line (≈59μeV/T) reflects the linear shift of the first charge transition to lower
gate voltages by the Zeeman term −μBB. We observe a low-bias resonance (black
dotted line) that moves away from the GS line. However, the slope of this feature
(≈ 30μeV/T) is only half of the expected value for the spin excited state. Instead,
we attribute this resonance to a DOS peak in the source electrode which moves with
respect to the GS line as the latter shifts with B. This is further evidenced by an
observed modulation of the Coulomb peak height (VSD = 100μeV) of the D+↔D0

transition.

line along the bias axis. The experimental slope of ∼59μeV/T is in excellent agreement

with the expected value of μB ≈ 57.8 μeV/T. We also find a resonance that is very close

to the GS line at zero field and moves the opposite direction, indicated by a black dotted

line. However, its slope of ∼30μeV/T is only half the expected value for the spin excited

state. Furthermore, close inspection of the feature reveals that there is a finite splitting

between both lines even around zero field. We thus attribute this feature to a DOS peak

in the source. Indeed, resonances arising from a strongly modulated DOS in the leads

have previously been found to shift linearly in a magnetic field with a slope corresponding

to half the Zeeman energy [147].

Fig. 7.14 c shows the peak height of the first charge transition as a function of B. We find

a strong modulation on a scale of a few T. A similar behavior was already observed for
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the few-electron dot (section 6.6.3). It is plausible that this modulation is caused by DOS

features crossing the GS line as the corresponding D+↔D0 transition shifts with B. We

conclude that like the orbital excited states, the spin excited state is masked by the relative

predominance of the DOS features. However, it is possible that further improvements in

the layout of future devices will enable direct spectroscopy of the excitation spectrum of

single donors. In particular, wider tunnel gaps resulting in a lower coupling may reduce

the disparity between extrinsic resonances caused by a strongly modulated DOS in the

leads and intrinsic features arising from donor excited states.

7.5 Chapter summary

The importance of single donor architectures for future nanoelectronic devices has been

highlighted in a very recent review article by Koenraad et al. [208], identifying “STM-

controlled placement of P and subsequent overgrowth by silicon” as “the most promising

method at the moment” for the controlled scaling of silicon devices towards the single-

donor limit. This limit has been reached with the experimental realization of the STM-

patterned single donor transport device described in this chapter. From an extensive

statistical study we determine the ideal size of the H-desorbed region for the reliable

incorporation of exactly one phosphorus donor. For a desorbed patch of 3 adjacent dimers

along one dimer row we find a ∼70% probability of incorporating one P donor when using

a phosphine dosing exposure of ∼14 Langmuir. Furthermore, we estimate the spatial

positioning accuracy for the individual impurity to be better than ±6 Å.

We have reported low-temperature spectroscopy of a gated single phosphorus donor in

a single-crystal silicon transport device. In addition to the unprecedented patterning

accuracy of our fabrication approach, there is no ambiguity as to the type of dopant within

the channel in contrast to recent publications [165, 209]. We find a stability diagram that

is consistent with the 3 possible charge states of a single donor. The measured charging

energy of the charge-neutral D0 state is in good agreement with the value for P in bulk

silicon. While we are not able to identify the donor excited states directly from the

stability plot, we observe clear indications for bulk-like excited states in the co-tunneling

characteristics.

Controlling the doping profile as well as the location of individual dopants will be crucial

for future scaling of classical devices in silicon. Furthermore, this chapter highlights how

STM-based fabrication techniques provide a viable pathway for the scale-up of novel donor-

based quantum computation architectures.
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Chapter 8

Conclusions and future work

This thesis has demonstrated that STM hydrogen lithography can be used as a viable

tool to realize planar highly-doped quantum dot devices in silicon. We have shown how

the size of these dopant-based quantum dot structures can be reduced from the many-

electron regime to the single donor limit. This down-scaling was achieved in several steps,

which have been discussed in detail in chapters 5 to 7. An initial requirement for successful

down-scaling was to improve the alignment accuracy of our fabrication scheme. In chapter

4, we have developed an improved strategy to align ex-situ metallic contacts and top

gates to the dopant regions with an overall alignment accuracy of ∼100 nm. This method

relies on a hierarchical array of alignment markers which is etched directly into the Si

substrate and therefore avoids possible surface contamination by any foreign materials.

A defining feature of this new alignment strategy is the controlled formation of step-free

areas in the middle of a central etched marker, which allows the active area of a device

to be patterned on a single atomic plane. We have highlighted the importance of this for

possible applications in quantum computation architectures, that rely on the atomically

precise positioning of arrays of individual donors. Furthermore, we have introduced a

new method to form reliable ohmic contact to the overgrown dopant structures by using

vertically etched contact vias that form contact channels between the EBL-patterned

metallic leads and the buried STM-patterned μm-sized contact patches below.

While individual components of a complete device architecture (such as donor nanowires,

nm-scale tunnel junctions, and isolated P-doped nano-islands) had previously been real-

ized by STM-lithography, a major remaining obstacle was the ability to electrically gate

devices. In chapter 5 we showed how donor-based in-plane gates can be used as a viable

alternative to top gates to reliably tune the electrochemical of a quantum dot. Here,

we demonstrated a fully functional multiterminal quantum dot which was the first STM-

161
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patterned dopant-based device to show Coulomb blockade. We found that the in-plane

gates allow for highly stable operation of the device by circumventing the detrimental

effects of interface or surface related defects. To highlight this fact, we compared the ini-

tial stable measurements of the planar device to transport data that was obtained after a

metallic top gate was added to the structure. We found superior stability without the top

gate which we attribute to charged defects at the oxide interface underneath the top gate.

As a result, all further devices fabricated during this thesis were patterned in an entirely

planar architecture, without any surface gates. We outlined the particular challenges of

down-scaling in a planar architecture with a key obstacle being the need to maintain suf-

ficient device tunability by keeping good capacitive coupling between the in-plane gates

and the dot. Here, we have shown how capacitance modeling can be used to help improve

the geometry of future devices by predicting the lever arm.

The next step in down-scaling was discussed in chapter 6 where we presented a quan-

tum dot in the few-electron regime with an estimated number of 7 P dopants forming

the dot. Transport spectroscopy of this device at mK-temperatures revealed very stable

Coulomb blockade oscillations again highlighting the advantages of a fully planar devices

fabricated in a fully epitaxial silicon environment. We found a surprisingly dense set of

well-resolved transport resonances with an average energy spacing on the order of 100 μeV.

These resonances were attributed to valley splitting of the Δ-subbands in the conduction

band resulting from the abrupt lateral confinement potential of the nm-scale donor de-

vice. To support our interpretation, we presented extensive effective mass calculations for

our few-donor structure. These results are a testament to the importance of the valley

degree of freedom in ultra-small silicon quantum devices. In particular, a deeper under-

standing of the physics of the sharp confinement potentials in our devices will be crucial

for possible applications in donor-based quantum computation applications, where the in-

terplay between valley and spin excited states has been identified as a possible source of

decoherence.

The ultimate scaling limit of donor-based quantum dots was reached in chapter 7, where

we demonstrated the controlled fabrication of a gated single donor transport device. The

realization of this device followed an extensive statistical study that focussed on optimizing

the size of the H-desorbed region for the reliable incorporation of exactly one phosphorus

donor. Here, we found that for a desorbed patch of 3 adjacent dimers along one dimer row

the probability of incorporating one P donor is ∼70%. The spatial positioning accuracy

for this individual impurity was determined to be better than ±6 Å, which is comparable

to the Si lattice spacing.
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We presented low-temperature transport spectroscopy of the gated single phosphorus

donor in the single-crystal silicon environment of our device. We find a stability dia-

gram that is consistent with the 3 possible charge states of a single donor. Importantly,

the measured charging energy of the charge-neutral D0 state is in good agreement with

the value for P in bulk silicon. We also observe clear indications for bulk-like excited

states in the co-tunneling characteristics. We attributed this to the absence of interfaces

and strong gate electric fields which have been known to strongly affect the donor bound

states in previous single donor devices.

The successful down-scaling of donor-based silicon quantum transport devices from the

many-electron regime to the single donor limit is the key achievement of this thesis. This

goal has been achieved in the comparatively short time span of a PhD thesis. As a

comparison, for quantum dots in GaAs/AlGaAs heterostructures – arguably the best-

studied quantum dot architecture – reaching the single-electron limit has taken well over

a decade and was the result of a collaborative effort of many research groups. The STM-

lithographic placement of P donors followed by epitaxial overgrowth has just recently

been highlighted in a review report by Koenraad and Flatte [208] as the “most promising

method” for the “controlled scaling of silicon devices towards the single-donor limit”. The

single-donor device presented in this thesis proves the validity of this statement. Indeed,

our approach allows for precise control over the exact number of impurities as well as

their position within the device with a spatial accuracy comparable to the lattice spacing.

This result therefore presents an important step towards the realization of donor-based

quantum computer architectures that rely on arrays of precisely positioned individual

donors in silicon.

8.1 Future work

The results of this thesis form the basis for a multitude of exciting experiments that will

need to be performed in the near future. It should be mentioned that several of these

experiments are already on-going within our group. The projects can be roughly divided

into three categories.

8.1.1 Device tunability

A remaining challenge of our planar architecture is the non-proximal coupling of the in-

plane gates which affect both the dot potential as well as the tunnel coupling of the dot

to the leads. To increase device control, it would be desirable to be able to tune the
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tunnel coupling and the electrochemical potential of the dot independently. This is true

in particular for devices containing a linear array of nm-scale dots or single impurities.

Several possible solutions exist:

• Improvement of device design: By further optimizing the layout of the planar struc-

tures it may be possible to separate “plunger gates” (to control the dot potential)

from barrier gates. An alternative may be to increase the number of gates to allow

for local compensation of the potentials from gates that are farther away.

• Integration of top gates: We have previously shown that top gates have a different

coupling characteristic compared to in-plane gates. By adding top gates to the planar

architecture it may be possible to achieve better control over the potential landscape

of the device. For example, the top gates could determine the overall tunnel coupling

while the in-plane plunger gates could be used to locally compensate the top gate

voltage and thus tune the dot potential. Key issues which need to be addressed in

this context are the device stability in the presence of surface gates and a further

improvement of the alignment accuracy of the top gates with respect to the donor

device.

• Reduction of gate leakage : The main reason for the non-proximal coupling of the

in-plane gates is their comparatively large separation to each other and to the dot.

These large separations are necessary to reduce gate leakage through the (shallow)

insulating barrier defined by the intervening intrinsic silicon substrate between the

(n-type) phosphorus dopant regions. An alternative method to increase the effec-

tive barrier height may be to incorporate additional p-type dopant regions (from a

separate doping source) between the gates and the dot. While this would require an

additional STM-lithography step, the resulting pn-junctions could act as “channel

stoppers” for leakage currents. Indeed, the VT-STM is already equipped with a

suitable dosing source for (p-type) boron dopants.

8.1.2 Scale-up of single donor devices

Having reached the ultimate scaling limit of a single donor, the next goal is the controlled

scale-up of devices that contain several individual impurities within at precise array. In

chapter 7 we have shown that we can incorporate precisely one donor within a suitable

desorbed area with a ∼70% chance. While this is sufficient to realize a single donor

device, it is obviously too low to reliably fabricate a device that contains several individual
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impurities. For example, for a device containing 3 P donors the overall success rate for

incorporating one donor in each of the three designated incorporation sites would only be

0.73 ≈ 0.34. It will thus be necessary to further optimize the dosing and incorporation

conditions to achieve an incorporation probability close to 1. Detailed studies are currently

underway to achieve this.

The first step of scaling up will be the realization of a controlled double donor device.

Here, the key issues will be to achieve independent gating of both impurities as well as

controlling the coupling between the donors, as discussed above. A long-term goal will be

to pattern several donors in a linear array. This may enable the demonstration of advanced

gate operations such as the coherent charge transfer by adiabatic passage (CTAP) [109]

along the donor chain.

8.1.3 Spin measurements

A donor-based quantum computer architecture relies on measuring and controlling the

nuclear and/or electron spins of individual donors. An important first step in this direction

will be measuring the electron spin state of an isolated P impurity. This has only recently

been demonstrated for the spin of a single electron bound to a phosphorus donor in silicon

[232]. This is achieved by coupling a single electron transistor (SET) to the impurity. By

applying a magnetic field, the electron spin states of both the donor and the SET island

are split by the Zeeman energy. The relative tuning between the spin-split levels in donor

and SET can be controlled by suitable gate pulses so that only electrons with a certain

spin state can tunnel between the two. This allows for a single-shot readout of the spin

state of the donor electron. Furthermore, the evolution of the spin state can be measured

as a function of time which yields the lifetime T1 of that particular spin state. The latter

is an important parameter for possible quantum computation applications since it defines

an upper limit for duration of logical qubit operations.

Experiments are currently underway in our group to reproduce the spin readout scheme

described above in our planar architecture. Here, the SET is realized by a many-donor

quantum dot similar to the one presented in chapter 5 of this thesis. This planar SET is

weakly coupled to a single P donor which is patterned at a distance of a few 10’s of nm

from the island of the SET. Determining the spin lifetime characteristics of our system

will be an important step towards fabricating a donor-based silicon qubit.
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Appendix

A.1 Statistical incorporation array studies

In order to estimate the number of phosphorus atoms in the few-donor quantum dot

device presented in chapter 6, a statistic study of incorporation sites was carried out in

collaboration with Dr. J. Miwa and W. Tang.

For δ-doped Si:P samples [43] as well as μm-scale desorbed areas [44] we reliably obtain

a planar dopant coverage of ∼0.25ML. For nm-scale desorbed areas, however, the density

of incorporated P donors is found to decrease which we attribute to an edge effect: a PH3

molecule at the edge of the desorbed area does not have enough Si dangling bond sites

to lose all of its 3 H atoms and can thus not be incorporated. To quantify the resulting

decrease of doping density, we have STM-patterned an array of desorption sites (see Fig.

20nm

Figure A.1: Array of incorporation sites. STM image of a 8 × 5 array of
desorption sites (bright areas) that are similar in size (∼4×4nm2) to the few-donor
quantum dot presented in chapter 6. Each desorption site was subsequently imaged
in higher resolution both before and after the dosing and incorporation step (see Fig.
A.2). Several of these arrays were patterned.
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A.1) approximately the same size (∼4×4 nm2) as the few-donor quantum dot of chapter

6. The incorporation anneal parameters were identical to the ones used for the quantum

dot device (30 s at 350◦C). Four exemplary desorption sites are shown in Fig. A.2. By

imaging each desorption site before (top row) and after the incorporation step (bottom

row) we can directly determine the number of incorporated P atoms as a function of the

number of desorbed Si dangling bonds (DB). The number of P donors for each site can be

determined from the number of ejected Si adatoms, indicated by the black circles in the

bottom row of Fig. A.2.

While it is in principle possible to determine the number of P donors in an actual quan-

tum dot device in a similar way, it requires a more elaborate registration marker structure

to relocate the patterned area after the incorporation anneal. To reduce STM pattern-

Figure A.2: P incorporation for comparable dot areas. Four exemplary des-
orption sites (column I-IV) that are very similar in size and shape to the few-donor
dot presented in chapter 6. Row A: Close-up STM images of the H-desorbed sites
before dosing and incorporation. The background has been darkened and a grid with
dimer row spacing has been superimposed to count the number of Si dangling bonds
(DB), analogous to Fig. 6.3 in chapter 6. Row B : The green areas represent possible
P incorporation sites. Row C : The same sites after P incorporation. The number of
incorporated P atoms for each site can be determined from the number of the ejected
Si adatoms (black circles). The surrounding white line schematically illustrates the
spatial extent of the electronic wavefunctions by adding one Bohr radius (∼ 2.5 nm
in Si) around each individual P incorporation site. The strong overlap justifies the
treatment of the dot as a jellium of positive charge.
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0.125 ML

0.09 ML

Figure A.3: Donor counting statistics. Phosphorus donor coverage of nm-scale
H-desorbed areas such as shown in Fig. A.2. The data was obtained from 24 des-
orption sites, very similar in size and shape to the few-donor quantum dot presented
in chapter 6. A Gaussian fit to the data (red curve) peaks at a P donor coverage of
0.09ML for contiguous desorbed areas. For our dot this yields a most likely number
of N = 6 ± 3 donors in the dot. For the effective-mass calculations we assume a P
coverage of 0.125ML which lies well within the variance of the data.

ing time and minimize the risk of surface contamination, the STM imaging step after P

incorporation was avoided for the quantum dot device described in chapter 6.

The results of the desorption array study are summarized in the histogram of Fig. A.3

where we plot the relative occurrence of different P donor coverages (expressed as a fraction

of a monolayer) for the array sites. A Gaussian fit to the data peaks at a P coverage of

0.09ML. For the few-donor dot of chapter 6 with a desorbed area of 66 dangling bonds

(see Fig. 6.3) this translates to an estimated number of 6±3 P donors. The error reflects

the variance of the data in Fig. A.3. Even though a P coverage of 0.09ML is lower than

in δ-doped layers, the average spacing between the donors (∼13 Å) is still much smaller

than the Bohr radius of ∼2.5 nm in silicon. This is illustrated in the bottom row of Fig.

A.2 where we have added one Bohr radius around every P incorporation site as indicated

by the white lines. The strong overlap justifies the treatment of the dot as a jellium of

positive charge.

Since our effective-mass calculations use the energy splitting between the Γ1 and Γ2 sub-

bands of δ-doped Si as an input parameter, we use the published value [37] which is closest

to the donor density found for our dot structures, namely 0.125ML. While this does not

exactly coincide with the peak value of 0.09ML derived from our array experiments, it is

still well within the variance of the experimental data (Fig. A.3).
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A.2 Effective mass calculations for the laterally confined dot

In chapter 6 we have calculated the low-bias excitation spectrum of a few-donor silicon

quantum dot. Here, the strong confinement within the dot was found to lift the degeneracy

of the Δ levels causing transport resonances on the order of ∼100 μeV. The following

section gives some more details on how the valley splitting was calculated.

For the Δ band, two envelope functions are required1 to describe the lateral component

of the wavefunctions due to the anisotropic effective mass:

ExFΔx(x, y) =

[
− �

2

2ml

∂2

∂x2
− �

2

2mt

∂2

∂y2
+ V (x, y)

]
FΔx(x, y)

ExFΔy(x, y) =

[
− �

2

2ml

∂2

∂y2
− �

2

2mt

∂2

∂x2
+ V (x, y)

]
FΔy(x, y)

It is easily seen that FΔx(x, y) = FΔy(y, x) which reflects the radial symmetry of the

problem.

As discussed in chapter 6, valley splitting of the 4-fold degenerate Δ levels is calculated

using a perturbation approach represented by the matrix equation

⎛
⎜⎜⎜⎜⎜⎝

E(0) Δ11 Δ12 Δ13

Δ∗
11 E(0) Δ22 Δ23

Δ∗
12 Δ∗

22 E(0) Δ33

Δ∗
13 Δ∗

23 Δ∗
33 E(0)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠ (A.1)

The (complex) off-diagonal elements Δμν are the valley splitting terms, many of which

are identical due to the radial symmetry. To evaluate these terms, the wavefunctions are

expressed as pairs of even and odd combinations of the valley states along the Δx and Δy

direction, respectively,

Ψe(r) ∼ cos(k0ξ)FΔξ
(x, y)

Ψo(r) ∼ sin(k0ξ)FΔξ
(x, y)

where ξ = x, y. We thus obtain

Δ11 = Δ33 =

∫
cos(2k0x)F

2
Δx

(x, y)V (x, y)dxdy

Δ12 = Δ22 = Δ13 = Δ23 =

∫
cos(k0x) cos(k0y)FΔx(x, y)FΔy (x, y)V (x, y)dxdy

1This is in contrast to the single vertical component FΔ(z) of eq. (6.9).
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The integrals are all real (i.e. Δμν = Δ∗
μν) and involve only cosine terms due to wavefunc-

tion symmetries. Diagonalizing eq. (6.12) then yields the valley-split energy eigenvalues

which are depicted in Fig. 6.16 of chapter 6:

E1 = E(0) +Δ11 + 2Δ12

E2 = E(0) −Δ11 (2-fold degenerate)

E3 = E(0) +Δ11 − 2Δ12

Anisotropy splitting

The remaining 2-fold degeneracy is a result of the circular symmetry. It is lifted by con-

sidering the anisotropy of the confinement potential in the realistic device. A perturbative

approach is used to account for this anisotropy which is characterized by a single parameter

Eanis. Eq. (A.1) is then replaced by

⎛
⎜⎜⎜⎜⎜⎝

E(0) − Eanis
2 Δ11 Δ12 Δ12

Δ11 E(0) − Eanis
2 Δ12 Δ12

Δ12 Δ12 E(0) + Eanis
2 Δ11

Δ12 Δ12 Δ11 E(0) + Eanis
2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠ = Ẽ

⎛
⎜⎜⎜⎜⎜⎝

α−x

α+x

α−y

α+y

⎞
⎟⎟⎟⎟⎟⎠

Diagonalizing above matrix yields the 4 non-degenerate energy eigenvalues shown in Fig.

6.17:

Ẽ1,2 = E(0) −Δ11 ± Eanis/2

Ẽ3,4 = E(0) +Δ11 ±
√
4Δ2

12 + (Eanis/2)2

A.3 Few-electron quantum dot: Modeling results for differ-

ent donor numbers

We have modeled the transport spectrum as discussed above for a variety of different

combinations of donor and electron numbers on the dot, consistent with the range of

possibilities for 6 ± 3 P dopants. The results are summarized in Fig. A.4. As discussed

in section 6.5, the best match to the experimental data of Fig. 6.13 corresponds to a

seven-donor dot at the Coulomb blockade transition between seven and eight electrons

(highlighted in red in Fig. A.4).
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Figure A.4: Calculated resonance spectra for different donor numbers.
Overview of the calculated excited state energies for the few-donor quantum dot
discussed in chapter 6 assuming the dot to contain 6, 7, and 8 phosphorus donors,
respectively. For each donor number the resulting resonance spectrum is shown for
a varying number of electrons on the dot, N = 7, 8, 9. The asymmetry in the
confinement potential due to the statistical incorporation of the P donors is accounted
for by a perturbation approach characterized by a single anisotropy parameter. For
visual clarity, the spectra for each configuration are shown for three discrete values of
this anisotropy splitting. The best fit to the experimental data was obtained for the
configuration highlighted in red.
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A.4 Recipes

Post-processing of completed STM-patterned devices in a cleanroom environment is a

crucial part of successful device fabrication. The following tables briefly summarize the

process flow along with the relevant parameters for both the patterning of EBL-defined

RIE-etched vertical contact vias as well as the EBL-patterning of ex-situ metallic contacts.

Processing of vertical contact vias

Step Operation Parameters/Description

1 Measure encapsula-
tion thickness

Use Dektak or AFM to determine the thickness of the
SUSI encapsulation

2 NPGS files prepare NPGS e-beam patterning files for contact
holes and Ohmics

3 Dehydration bake 180◦C for 5min on hotplate
cool down for 2min

4 Spin on double layer
EBL resist

spin on 2 layers of PMMA A4 at 2500 rpm for 60 s,
⇒ ∼ 350-400 nm resist, avoid edge beads

5 Bake resist 10min at 180◦C on hotplate

6 EBL: write holes write array of holes (100 nm diameter, 500 nm pitch),
Ebeam = 15 kV, spot size 2,
area dose for holes: 3500 μC/cm2

7 Develop resist 40 s MIBK:IPA = 1:3 then 20 s IPA stop bath,
blow dry with N2

8 RIE: etch holes flow rates CHF3:CF4 = 10:10,
chamber pressure p = 14 kPa,
etch for 8min at 150W,
⇒ approx. 60-70 nm etch depth

9 Remove PMMA 10min in NMP at 40◦C,
squirt with acetone, then IPA,
blow dry with N2,
O2 plasma ash if necessary

10 SEM imaging check for correct position of RIE holes
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Processing of ex-situ aluminium contacts

Step Operation Parameters/Description

1 Dehydration bake 180◦C for 5min on hotplate
cool down for 2min

2 Spin on single layer
EBL resist

spin on PMMA A4 at 5000 rpm for 30 s,
⇒ ∼ 100-150 nm resist

3 Bake resist 10min at 180◦C on hotplate

4 EBL: write Ohmics write ohmic contact structure at Ebeam = 15 kV,
spot size 2-3 (inner contacts), 6 (bond pads),
area dose 180μC/cm2

5 Develop resist 40 s MIBK:IPA = 1:3 then 20 s IPA stop bath,
blow dry with N2

6 Plasma ashing remove residual resist on patterned Ohmics,
90 s O2 plasma ash at 50W

7 Remove native oxide 10 s in buffered HF (1:5 in H2O),
30 s rinse in deionized water,
blow dry with N2

8 Metallization deposit approx. 80 nm of Al

9 Remove resist 60min in NMP bath at 40◦C,
ultrasonic bath if necessary,
squirt off with acetone then IPA

10 Packaging cleave sample if necessary,
glue into chip carrier with PMMA,
bond with Al wire bonder
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[115] A. Fuhrer, M. Füchsle, T. C. G. Reusch, B. Weber, M. Y. Simmons, Atomic-scale,
all epitaxial in-plane gated donor quantum dot in silicon, Nano Lett. 9(2), 707–710
(2009).

[116] J. O. McCaldin, H. Sankur, Diffusivity and solubility of Si in the Al metallization
of integrated circuits, Appl. Phys. Lett. 19(12), 524–527 (1971).

[117] H. J. Lee, R. Sinclair, P. Li, B. Roberts, A study of the failure mechanism of a
titanium nitride diffusion barrier, J. Appl. Phys. 86(6), 3096–3103 (1999).

[118] P. S. Andry, C. K. Tsang, B. C. Webb, E. J. Sprogis, S. L. Wright, B. Dang, D. G.
Manzer, Fabrication and characterization of robust through-silicon vias for silicon-
carrier applications, IBM J. Res. Dev. 52(6), 571–581 (2008).

[119] A. Y. C. Yu, C. A. Mead, Characteristics of aluminum-silicon schottky barrier diode,
Solid-State Electron. 13(2), 97–104 (1970).

[120] F. Kuemmeth, K. I. Bolotin, S. F. Shi, D. C. Ralph, Measurement of discrete
energy-level spectra in individual chemically synthesized gold nanoparticles, Nano
Lett. 8(12), 4506–4512 (2008).

[121] W. J. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park, Kondo resonance in
a single-molecule transistor, Nature 417(6890), 725–729 (2002).



BIBLIOGRAPHY 183

[122] P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, H. S. J. van der Zant,
Electron-hole symmetry in a semiconducting carbon nanotube quantum dot, Nature
429(6990), 389–392 (2004).

[123] U. Meirav, M. A. Kastner, S. J. Wind, Single-electron charging and periodic conduc-
tance resonances in GaAs nanostructures, Phys. Rev. Lett. 65(6), 771–774 (1990).

[124] L. P. Kouwenhoven, N. C. Vandervaart, A. T. Johnson, W. Kool, C. J. P. M. Har-
mans, J. G. Williamson, A. A. M. Staring, C. T. Foxon, Single electron charging
effects in semiconductor quantum dots, Z. Phys. B-Condens. Mat. 85(3), 367–373
(1991).

[125] K. A. Slinker, K. L. M. Lewis, C. C. Haselby, S. Goswami, L. J. Klein, J. O. Chu,
S. N. Coppersmith, R. Joynt, R. H. Blick, M. Friesen, M. A. Eriksson, Quantum
dots in Si/SiGe 2DEGs with Schottky top-gated leads, New J. Phys. 7, 8 (2005).

[126] S. Tarucha, Y. Hirayama, Magnetotunneling in a coupled two-dimensional-one-
dimensional electron system, Phys. Rev. B 43(11), 9373–9376 (1991).

[127] B. Su, V. J. Goldman, J. E. Cunningham, Observation of single-electron charging
in double-barrier heterostructures, Science 255(5042), 313–315 (1992).

[128] H. van Houten, C. W. J. Beenakker, Comment on “Conductance oscillations periodic
in the density of a one-dimensional electron gas”, Phys. Rev. Lett. 63(17), 1893–1893
(1989).
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A. C. Gossard, Energy-dependent tunneling in a quantum dot, Phys. Rev. Lett.
98(3) (2007).

[183] S. Sapmaz, P. Jarillo-Herrero, Y. M. Blanter, C. Dekker, H. S. J. van der Zant,
Tunneling in suspended carbon nanotubes assisted by longitudinal phonons, Phys.
Rev. Lett. 96(2) (2006).

[184] S. Braig, K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular
transistors, Phys. Rev. B 68(20) (2003).

[185] I. V. Lerner, Distribution functions of current density and local density of states in
disordered quantum conductors, Phys. Lett. A 133(4-5), 253–259 (1988).

[186] V. I. Fal’ko, Image of local density of states fluctuations in disordered metals in the
differential conductance of tunneling via a resonant impurity level, Phys. Rev. B
56(3), 1049–1052 (1997).

[187] J. Könemann, P. König, T. Schmidt, E. McCann, V. I. Fal’ko, R. J. Haug,
Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs het-
erostructures, Phys. Rev. B 64(15) (2001).

[188] T. Ihn: Electronic quantum transport in mesoscopic semiconductor structures,
Springer, New York, (2004).

[189] S. Goswami, K. A. Slinker, M. Friesen, L. M. McGuire, J. L. Truitt, C. Tahan, L. J.
Klein, J. O. Chu, P. M. Mooney, D. W. van der Weide, R. Joynt, S. N. Coppersmith,
M. A. Eriksson, Controllable valley splitting in silicon quantum devices, Nature
Physics 3(1), 41–45 (2007).

[190] F. J. Ohkawa, Y. Uemura, Valley splitting in an n-channel (100) inversion layer on
p-type silicon, Surf. Sci. 58(1), 254–260 (1976).

[191] L. J. Sham, M. Nakayama, Effect of interface on the effective mass approximation,
Surf. Sci. 73(1), 272–280 (1978).

[192] A. B. Fowler, F. F. Fang, W. E. Howard, P. J. Stiles, Magneto-oscillatory conduc-
tance in silicon surfaces, Phys. Rev. Lett. 16(20), 901–903 (1966).

[193] T. Ando, A. B. Fowler, F. Stern, Electronic properties of two-dimensional systems,
Rev. Mod. Phys. 54(2), 437–672 (1982).



188 BIBLIOGRAPHY

[194] T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N. Coppersmith, P. von
Allmen, F. Oyafuso, S. Lee, Valley splitting in strained silicon quantum wells, Appl.
Phys. Lett. 84(1), 115–117 (2004).

[195] M. Friesen, S. N. Coppersmith, Theory of valley-orbit coupling in a Si/SiGe quantum
dot, Phys. Rev. B 81(11) (2010).

[196] M. J. Calderon, J. Verduijn, G. P. Lansbergen, G. C. Tettamanzi, S. Rogge,
B. Koiller, Heterointerface effects on the charging energy of the shallow D− ground
state in silicon: Role of dielectric mismatch, Phys. Rev. B 82(7) (2010).

[197] K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, Y. Hirayama, Valley polarization
in Si(100) at zero magnetic field, Phys. Rev. Lett. 96(23) (2006).

[198] Y. Hada, M. Eto, Electronic states in silicon quantum dots: multivalley artificial
atoms, Phys. Rev. B 68(15) (2003).

[199] G. P. Lansbergen, G. C. Tettamanzi, J. Verduijn, N. Collaert, S. Biesemans,
M. Blaauboer, S. Rogge, Tunable Kondo effect in a single donor atom, Nano
Lett. 10(2), 455–460 (2010).

[200] D. Drumm, M. Friesen, Valley splitting in δ-doped layers in the high-disorder limit.

[201] M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, M. Y.
Simmons, Spectroscopy of few-electron single-crystal silicon quantum dots, Nat.
Nanotechnol. 5(7), 502–505 (2010).

[202] V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brun-
thaler, A. Prinz, G. Bauer, Low-density spin susceptibility and effective mass of
mobile electrons in Si inversion layers, Phys. Rev. Lett. 88(19) (2002).

[203] G. Brunthaler, A. Prinz, G. Bauer, V. M. Pudalov, Exclusion of quantum coherence
as the origin of the 2D metallic state in high-mobility silicon inversion layers, Phys.
Rev. Lett. 87(9), art. no.–096802 (2001).
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