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Abstract We present the Ernst potential and the line element of an exact solu-
tion of Einstein’s vacuum field equations that contains as arbitrary parameters
the total mass, the angular momentum, and the quadrupole moment of a rotating
mass distribution. We show that in the limiting case of slowly rotating and slightly
deformed configuration, there exists a coordinate transformation that relates the
exact solution with the approximate Hartle solution. It is shown that this approx-
imate solution can be smoothly matched with an interior perfect fluid solution
with physically reasonable properties. This opens the possibility of considering
the quadrupole moment as an additional physical degree of freedom that could be
used to search for a realistic exact solution, representing both the interior and ex-
terior gravitational field generated by a self-gravitating axisymmetric distribution
of mass of perfect fluid in stationary rotation.

Keywords Quadrupole, Exterior solutions, Interior solutions

1 Introduction

Astrophysical compact objects are in general not spherically symmetric rotating
mass distributions. To describe the corresponding gravitational field one can as-
sume axial symmetry, with an axis of symmetry that coincides with the axis of
rotation. Then, the deviation from spherical symmetry can be described by means
of axisymmetric multipole moments.

In general relativity, vacuum solutions with multipole moments have been
known for a long time. In fact, if we restrict ourselves to solutions with only
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monopole moment, Birkoff’s theorem guarantees that the only solution is the
Schwarzschild metric. Moreover, if rotation is also taken into account, the black
hole uniqueness theorems state that the only asymptotically flat solution with
a regular horizon is the Kerr metric [[1]. The next interesting multipole is the
quadrupole. In this case, the uniqueness theorems do not apply and it is possible
to find a large number of different vacuum solutions with the same quadrupole.
Differences appear only at the level of higher multipoles. The first static solution
with an arbitrary quadrupole was found by Weyl [1]], using cylindrical coordinates.
Later on, Erez and Rosen (ER) [2]] discovered a solution with arbitrary quadrupole
in prolate spheroidal coordinates which are more convenient for the investigation
of multipole solutions. Zipoy [3] and Voorhees [4] found a simple transforma-
tion which allows to generate static solutions from a given one. In particular, the
Zipoy—Voorhees (ZV) transformation can be used to generate the simplest solu-
tion with quadrupole, starting from the Schwarzschild metric. Stationary solutions
represent an additional challenge. In fact, the first physically relevant rotating so-
lution was found only in 1963 by Kerr [S]. The Ernst representation of stationary
axisymmetric fields was an important achievement that allowed to search for the
symmetries of the field equations upon which modern solution generating tech-
niques are based.

In this work, we will limit ourselves to the study of a particular stationary ax-
isymmetric vacuum solution which was derived by Quevedo and Mashhoon (QM)
in [6;[7]] as a generalization of the ER metric [2]. The QM solution contains in gen-
eral an infinite number of gravitational and electromagnetic multipole moments.
Here, however, we neglect the electromagnetic field and focus on the contribution
of the gravitational quadrupole only. The main goal of the present work is to show
that the QM solution can be used to describe the exterior gravitational field of ro-
tating compact objects. First, we will see that the set of independent and arbitrary
parameters entering the metric determines the total mass, angular momentum and
mass quadrupole moment of the source. Although higher multipole moments are
present, they all can be expressed in terms of the independent lower multipoles.
This result is obtained by using the invariant definition of relativistic multipole
moments proposed by Geroch and Hansen [8}; 9; [L0]. The spacetime turns out
to be asymptotically flat and and free of singularities outside a region which can
be “covered” by an interior perfect fluid solution. This last property, however, is
shown only in the limiting case of a slightly deformed body with uniform and slow
rotation.

There exists in the literature a reasonable number of interior spherically sym-
metric solutions which can be matched with the exterior Schwarzschild metric.
Nevertheless, a major problem of classical general relativity consists in finding a
physically reasonable interior solution for the exterior Kerr metric. Although it is
possible to match numerically the Kerr solution with the interior field of an in-
finitely tiny rotating disk of dust [[L 1], such a hypothetical system does not seem
to be of relevance to describe astrophysical compact objects. It is now widely
believed that the Kerr solution is not appropriate to describe the exterior field of
rapidly rotating compact objects. Indeed, the Kerr metric takes into account the to-
tal mass and the angular momentum of the body. However, the moment of inertia
is an additional characteristic of any realistic body which should be considered in
order to correctly describe the gravitational field. As a consequence, the multipole
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moments of the field created by a rapidly rotating compact object are different
from the multipole moments of the Kerr metric. For this reason a solution with
arbitrary sets of multipole moments, such as the QM solution, can be used to de-
scribe the exterior field of arbitrarily rotating mass distributions.

To completely characterize the spacetime it is necessary to find an exact solu-
tion with a set of interior multipole moments. Due to the generality of the exterior
solution, one can expect that the corresponding interior solution can be derived
by postulating an infinite series of inner multipoles with arbitrary functions which
can be matched one by one with the exterior solution. To see if this procedure is
realizable, in this work we analyze the special case of a deformed rotating body
with quadrupole moment only. Despite this simplification, the problem of finding
interior solutions is at present still out of reach due, in part, to the complexity of
Einstein’s equations with a realistic model for the inner configuration. We there-
fore limit ourselves here to the study of approximate perfect fluid solutions.

In fact, in the case of slowly rotating compact objects it is possible to find ap-
proximate interior solutions with physically meaningful energy-momentum ten-
sors and state equations. Because of its physical importance, in this work we will
study the Hartle-Thorne (HT) [112} [13] interior solution which can be coupled to
an approximate exterior metric. Hereafter this solution will be denoted as the HT
solution. One of the most important characteristics of this family of solutions is
that the corresponding equation of state has been constructed using realistic mod-
els for the internal structure of relativistic stars. Semi-analytical and numerical
generalizations of the HT metrics with more sophisticated equations of state have
been proposed by different authors. A comprehensive review of these solutions
is given in [14]. In all these cases, however, it is assumed that the multipole mo-
ments (quadrupole and octupole) are relatively small and that the rotation is slow.
We will find the explicit coordinate transformation that transforms an approxima-
tion of the QM solution into the exterior HT solution and can be matched with an
approximate solution. In this manner, we show that the QM solution satisfies the
main physical conditions to be matched with an interior solution.

2 Exterior solution

It is well known that the main physical information about an axisymmetric sta-
tionary vacuum gravitational field can be encoded in the complex Ernst potential
[155[16]). For a special case of the QM solution the Ernst potential reads

oy X 1=+ DAp+iy(A +p) + A4 — p
x+1—(x—DAu+iyA+p)—A+pu]’

E=e (1)

where the function ¥ can be written in terms of the Legendre polynomials P and
Legendre functions Q as
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Here 8 and g are arbitrary real constants. Moreover, A and p are functions of x
and y
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with
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The constant & can be represented in terms of the additional constants a and m as

oc—m
o= , o=+vVm?2—a. (6)
a

The solution is asymptotically flat and possesses the following independent pa-
rameters: m, a, 0, and ¢. In the limiting case « =0, a =0, g=0and 6 = 1,
the only independent parameter is m and the Ernst potential determines the
Schwarzschild spacetime. Moreover, for &« = a = 0 and ¢ = 0 we obtain the Ernst
potential of the ZV static solution which is characterized by the parameters m and
6. Furthermore, for ¢ = a = 0 and 8 = 1, the resulting solution coincides with
the ER static spacetime [2]. The Kerr metric is also contained as a special case for
g=0and 0 = 1.

The physical significance of the parameters entering the potential can be
established in an invariant manner by calculating the relativistic Geroch-Hansen
multipole moments. We use here the procedure formulated in [17]] which allows
us to derive the gravitoelectric M,, as well as the gravitomagnetic J, multipole
moments. A lengthly but straightforward calculation yields

M2k+1 = Jo :07 k:0a1727"' (7)
My=m+0o(8—1) (3)
M2=%03&]—%03(53—352—45—}—6)—m625(6—2)—3m26(5—1)—m3,
)
Ji=ma+2ac(6—1), (10)
_4 3c 0 T2 363 a0

Js = 1zac8q a[30(5 382 -5+3)

+mc*(38% —6842)+4m*c(5—1)+m>|.  (11)

The even gravitomagnetic and the odd gravitoelectric multipoles vanish identically
because the solution possesses and additional reflection symmetry with respect to
the hyperplane y = 0. Higher odd gravitomagnetic and even gravitoelectric multi-
poles can be shown to be linearly dependent since they are completely determined
in terms of the parameters m, a, ¢ and 8. From the above expressions we see that
the ZV [3} 4] parameter changes the value of the total mass My as well as the
angular momentum J; of the source. The mass quadrupole M, can be interpreted
as a nonlinear superposition of the quadrupoles corresponding to the ZV, ER and
Kerr spacetimes. Notice that in the limiting static case of the ZV metric the only
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non-vanishing parameters are m = ¢ and 0 so that all gravitomagnetic multipoles
vanish and we obtain My = m& and M, = m>(1 — §%)/3 for the leading grav-
itoelectric multipoles. This means that the ZV solution represents the field of a
static deformed body. To our knowledge, this is the simplest generalization of the
Schwarschild solution which includes a quadrupole moment.

In order to completely describe the geometric and physical properties of the
spacetime, it is convenient to calculate the explicit form of the metric. In fact, the
Ernst potential is defined as

E=f+iQ, with o(x*—1)Q,=flwo, c(1-y)Qy = —f’ao, (12)

where f and ® are the main metric functions which determine the line element in
prolate spheroidal coordinates (¢,x,y, ¢):

ds® = f(dt — wd)?

2 2 2
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The metric function 7y can be calculated by quadratures once f and @ are known.
The calculation of the metric functions results in

f= 56*2451’2&’ (14)
o= —2a—26%e2q5P2Q2, (15)
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It is easy to show that this solution is asymptotically flat and free of singu-
larities outside the sphere x = 1 which represents a naked singularity. In fact, a
numerical investigation of the Kretschmann invariant shows that the hypersurface
x = 1 is singular, independently of the value of the parameters m, & # 1, a, and
g. Only in the limiting case ¢ = 0 and 8 = 1, the hypersurface x = 1 coincides
with the exterior horizon of the Kerr spacetime. This situation is illustrated in Fig.
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Fig. 1 Structure of the hypersurface x = 1 in the spacetime of a rotating mass with arbitrary
quadrupole parameter. The plot (a) illustrates the case of vanishing quadrupole, ¢ = 0, with
0 = 1. The hypersurface x = 1 corresponds to an event horizon (dashed line). The horizon
covers the ring singularity which is caused by the rotation of the body. The case (b) is for § =2
and ¢ = 10. The horizon x = 1 becomes singular due to the presence of the quadrupole moment
so that the spacetime is characterized by a naked singularity (solid line). By varying the value
of the quadrupole parameter ¢ it is possible to generate additional singularities (¢) which are
always inside the outer naked singularity situated at x = 1

which shows that a naked singularity is always present when the quadrupole
parameter ¢ is non zero or when 8 # 1. Moreover, the symmetry axis y = £1 is
free of singularities (except at x = 1), indicating that the condition of elementary
flatness is satisfied [[1].

All the properties mentioned above seem to indicate that the solution can be
used to describe the exterior field of a deformed, rotating mass distribution. From
the point of view of general relativity, however, to describe the entire manifold
of a rotating body it is necessary to find an interior solution which takes into
account the inner properties of the body and that can be matched to the exterior
vacuum solution. However, rather few exact stationary solutions that involve a
matter distribution in rotation are to be found in the literature. In particular, the
interior solution for the rotating Kerr solution is still unknown. In fact, the quest for
a realistic exact solution, representing both the interior and exterior gravitational
field generated by a self-gravitating axisymmetric distribution of mass of perfect
fluid in stationary rotation is considered a major problem in general relativity.
We believe that the inclusion of a quadrupole in the exterior and in the interior
solutions adds a new physical degree of freedom that could be used to search for
realistic interior solutions. To see if this is true, we will use a special limit of
the above solution with quadrupole moment and will show that in fact it can be
matched with a realistic approximate interior solution.

3 The field of a slowly rotating and slightly deformed body

In this section we calculate the limiting case where the deviation from spherical
symmetry is small and the body is slowly rotating. It is convenient to introduce
the new spatial coordinates r and 6 by means of [[18]]

r—m

x=—0"r y=cos0, (23)

and to choose the ZV parameter as § = 1+ sq, where s is a real constant. Then, ex-
panding the metric (T3) to first order in the quadrupole parameter ¢ and to second
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order in the rotation parameter a, we obtain

2m  2d® 20 2 2
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Furthermore, we introduce coordinates R and ® by means of

7 3 2[R R? 2. 2.

a’ 2.M M ) 2. 3.M
, 3 R 2.M a? 2.
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(28)
where

24,
M =m(1—gq), J=—ma, Q:——gm q. (29)
m

A straightforward computation shows that the metric (24)—(26) can be written
as

2.4 2.0\ "
2 2 2
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AN 2N\,
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where
1) (5 )
ky = ki — %{42,
o) ()
and we choose for the free parameter s the particular value s = —1 for the sake of

simplicity. Here Q)" are the associated Legendre functions of the second kind

-2 3 x+1
1 —(2_1)/2 _ 2
3 x+1  5x—3x° Gl
2 _ 2.2 —
Qs (x) = 2(x 1)111;_1 + 21

The line element (30) was first derived in an equivalent representation by Hartle
[12] and Hartle and Thorne [[13]. Consequently, our results show that the general
solution (I3)—(22) contains as a special case the HT metric which describes the
exterior gravitational field of any slowly and rigidly rotating deformed body.

In the case of ordinary stars, such as the Sun, the smallness of the parame-
ters M sun) Zsun ~ 1078, Jsun | %2 Sun = 107 12 Qs,m/,%’slm ~ 10712, allows us to
simplify the metric (30) to obtain [19]

2. 2 4]
{1 — T//l + RgPZ(cos(@)] dr’> + = sin? Odtd ¢

2.4 20
{H £ %

ds* =
== py(cos @)} dR?
_ |:1 — %Pz(cos @):| Rz(d@2 —|—sin2 @d¢2) (32)

The accuracy of this metric is of one part in 10!2. Consequently, it describes the
gravitational field for a wide range of compact objects, and only in the case of
very dense (.# ~ %) or very rapidly rapidly rotating (J ~ %2) objects large dis-
crepancies will appear.

4 The interior solution

If a compact object is rotating slowly, the calculation of its equilibrium proper-
ties reduces drastically because it can be considered as a linear perturbation of
an already-known non-rotating configuration. A very good approximation of the
internal structure of the body is delivered by a perfect fluid model satisfying a one-
parameter equation of state, & = (&), where &2 is the pressure and & is the
density of total mass—energy. A further simplification follows from the assumption
that the configuration is symmetric with respect to an arbitrary axis which can be
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taken as the rotation axis. Furthermore, the rotating object should be invariant with
respect to reflections about a plane perpendicular to the axis of rotation, i.e, about
the equatorial plane. As for the rotation, it turns out that configurations which
minimize the total mass—energy (e.g., all stable configurations) must rotate uni-
formly [20]. Uniform rotation facilitates the study of the internal properties of the
body, especially if we restrict ourselves to the case of slow rotation. That is, we
assume that angular velocities € are small enough so that the fractional changes
in pressure, energy density and gravitational field due to the rotation are all less

L 2 . ) .
than unity, i.e. Q% < (%) ?{é where . is the mass and Z is the radius of the

non-rotating configuration. The above condition is equivalent to the physical re-
quirement Q < ¢/Z. The metric functions must be found by solving Einstein’s
equations

1
A% \% _ v
R, — 55“R =8nTy, (33)
where the stress-energy tensor is that of a perfect fluid
T = (+2P)uuy — 2§ (34)
The 4-velocity which satisfies the normalization condition u*u, = 1 is

ul =@ = 0, u? = ,Qut, W= (gtt+2.Qgt¢ +.ng¢¢)7l/2, 35

where the angular velocity €2 is a constant throughout the fluid.

The explicit integration of the inner Einstein’s equations depends on the par-
ticular choice of the density function &(R), where R is the radial coordinate, and
on the equation of state &2 = &(&). For the sake of simplicity, we consider here
only the simplest case with & =const and let the pressure & be determined by the
field equations. Then, the total mass of the non-rotating body is .# = 4x&%3 /3,
where Z is the radius of the body. Under these conditions, the resulting line ele-
ment can be written as

dPy(R)

ds* = (14+2®)dt* - 1+2R—= + ®2(R)P2(cos O) dR?

—R?[1 42, (R)Py(cos @) [dO? +sin* O(d¢ — @dt)?],  (36)
where
b = ‘P()(R) + (pz(R)Pz(COS @), 37

is the interior Newtonian potential. Here @y is the interior Newtonian potential for
the non-rotating configuration and @,(R) is the perturbation due to the rotation.
Moreover,

D=0Q—-0 (38)

is the angular velocity of the local inertial frame, where 2 = const is the angular
velocity of the fluid and @ = @(R) is the angular velocity of the fluid relative to
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the inertial frame. With a suitable choice of the integration constant, the interior
unperturbed Newtonian potential can be expressed as

2
Py(R) = —2mp (%2 — R3> , (39)

where Z is the radius of the non-rotating configuration. The function @,(R) sat-
isfies the following equation

dP:(R)

47'ER2p 2 2x 47 24
=®(R —— |-+ -—pQ°R 4
dR 2( >( ¥ R) N AR i “0)
where y is defined by
dy 24 8w 5.3
TR @2(R)+?p!2 R, (4D

For the angular velocity relative to the local inertial frame @ one obtains the
differential equation

1 d [ ,dd\ 4dj _ , a2
R4dR< JdR>+Rde 0. JR) [* 3P ] @)

which is related to the equilibrium condition of a rotating self-gravitating body,
namely, the condition that there exists a balance between pressure forces, grav-
itational forces and centrifugal forces. The solution for @(R) must be regular at
the origin and outside the body it must take the form @(R) = Q — 2J/R3, where
J is the total angular momentum of the star. This condition guarantees a smooth
matching of the corresponding metric functions on the surface of the mass distri-
bution.

For the integration of the field equations it is convenient to consider also an
additional differential equation which follows from the conservation law T“x =0
and involves the pressure and its partial derivatives. Even in the simple case of
& = const, the resulting expression is rather cumbersome. A detailed analysis of
this equation will be presented elsewhere [19]. The integration of the system of
partial differential equations @0)—([2)), together with the differential equation for
the pressure, cannot be carried out analytically. Nevertheless, it is possible to find
numerical solutions not only in the simple case & = const, but also in the case of
more realistic density functions [13]].

It is easy to show analytically that the interior solution (36) can be matched
smoothly on the surface R = Z with the exterior solution in the special case
of an unperturbed configuration with @, = 0 and @y as given in Eq. (39). In the
general case of a rotating deformed body, the matching can be performed only
numerically. In fact, the solutions of the field equations for the inner distribution
of mass are calculated using the matching conditions as boundary conditions. In
this manner, it is possible to find realistic solutions that describe the interior and
exterior gravitational field of slowly rotating and slightly deformed mass distribu-
tions.
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5 Conclusions

In this work we studied an exact solution of Einstein’s vacuum field equations
which represents the exterior gravitational field of a stationary axisymmetric ro-
tating mass distribution. It contains four free parameters that determine the total
mass, angular momentum, and quadrupole momentum of the body. It was shown
that the solution is asymptotically flat and is free of singularities outside a region
that can be covered by an interior solution. In fact, we show that the presence
of a gravitoelectric quadrupole changes drastically the geometric properties of the
spacetime. Independently of the value of the quadrupole, there always exists a sin-
gular surface which is not surrounded by an event horizon. This implies that the
gravitoelectric quadrupole moment of the source can always be associated with the
presence of naked singularities. However, the naked singularities are situated very
close to the origin of coordinates so that a physically reasonable interior solution
could be used to cover them.

The main goal of this work was to take the first step to prove that the exact ex-
terior QM solution can be matched in general with an interior solution. To this end
we calculated the limiting case of an approximate solution for a slowly rotating
and slightly deformed source. This means that the solution is expanded to first or-
der in the quadrupole parameter and to second order in the rotation parameter. We
show that a particular choice of the ZV parameter allows us to find explicitly a co-
ordinate transformation that transforms the solution into the approximate exterior
Hartle metric. Assuming that the inner configuration can be described by a perfect
fluid which rotates uniformly with respect to an axis that coincides with the axis
of symmetry and that the source is symmetric with respect to reflections about
the equatorial plane, the set of differential equations which follow from Eintein’s
interior equations was derived and investigated. A particular analytic solution was
presented that can be matched with the approximate exterior solution in the case of
an unperturbed non-rotating perfect fluid. To consider the general case of a slowly
rotating and slightly deformed perfect fluid it is necessary to perform numerical
calculations to integrate the corresponding set of differential equations. Our nu-
merical results show that it is possible to obtain numerical solutions with realist
physical properties and to match them with the exterior approximate solution. The
inclusion of the quadrupole parameter in the interior and exterior metrics is equiv-
alent to adding a new degree of freedom which facilitates to search for interior
solutions.

We conclude that the particular QM solution presented in this work can be
used to describe the gravitational field of a rotating body with arbitrary quadrupole
moment. In this work, it was shown that in the case of a slightly deformed body
with uniform and slow rotation, there exist a set of solutions of Einstein solutions
which can be used to completely describe the spacetime. The case of an arbitrarily
rotating perfect fluid with arbitrary quadrupole parameter will be investigated in a
future work.
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