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Abstract: We present a protocol for the hierarchical controlled joint remote implementation of the

partially unknown operations of m qudits belonging to some restricted sets by using m multiparticle

high-dimensional entangled states as the quantum channel. All the senders share the information of

the partially unknown operations and cooperate with each other to implement the partially unknown

operations on the remote receiver’s quantum system. The receivers are hierarchized in accordance

with their abilities to reconstruct the desired state. The agents in the upper grade need only cooperate

with one of the lower-grade agents, and the agents in the lower grade need the cooperation of

all the other agents. The protocol has the advantage of having high channel capacity by using a

high-dimensional entangle state as the quantum channel for the hierarchial controlled joint remote

implementation of partially unknown quantum operations of m qudits.

Keywords: hierarchial joint remote implementation of quantum operation; partially unknown operation;

high-dimensional quantum system

1. Introduction

The utilization of the principle of quantum mechanics in information processing pro-
vides some novel methods for quantum information processing, such as quantum key
distribution [1–9], quantum secure direction communication [10–20], quantum telepor-
tation [21–28], quantum remote state preparation [29,30], quantum computation [31–40],
quantum nonlocal gate [41–46] and quantum operation remote implementation [47–49].

Recently, the remote implementation of quantum operation has garnered much in-
terest since it was first proposed by Huelga et al. [47]. Theoretical protocols for the remote
implementation of quantum operations, especially partially unknown quantum operations,
have been proposed via different quantum channels [48–61]. The operations are partially un-
known, since the values of their matrix elements are unknown but the positions of the nonzero
matrix elements are known. Huelga et al. showed that single-qubit operations can be remote
implemented via a quantum entangled channel shared in advance, and classical communication
and partially unknown operations of one qubit belonging to two restricted sets

Ucom =

(

eiϕ 0

0 e−iϕ

)

, Uanti =

(

0 eiϕ

−e−iϕ 0

)

(1)

can be remote implemented via less resources [48]. In 2006, Wang investigated the ex-
tension of the remote implementation of partially unknown operations to the case of
multiqubit. The partially unknown operations of N qubits as suggested by Wang have
only one nonzero element in every row or every column of their representation matrices.
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Since the nonzero element in the first row has 2N possible positions, the nonzero element
in the second row has 2N − 1 possible positions and the nonzero element in the 2Nth
row has one possible position, the partial operations of N qubits belong to 2N ! restricted
sets [49]. Moreover, Wang presented a scheme for combining the remote implementation of
U = U1U2. U1, U2 are partially unknown operations belonging to the restricted sets [50].
In 2008, Fan and Liu presented a protocol for the multiparty controlled remote implementa-
tion of partially unknown operations [51]. Qiu and Wang presented a scheme to implement
the partially unknown operations of two qubits belonging to 24 restricted sets via Cavity
QED [52]. In 2010, Chen showed that quantum operations belonging to restrict set can be
divided into m pieces and simultaneously remotely implemented on m remote receivers’
quantum system [53]. In 2011, Chen et al. presented a protocol for the probabilistic remote
implementation of a partially unknown operation via nonmaximally entangled state [54].
Situ and Qiu considered the remote implementation of partially unknown operations of
multiqubit without prior sharing of entanglement [55]. In 2013, Zhan et al. presented a
protocol for the remote implementation of partially unknown operations

U0 =





u0 0 0
0 u1 0
0 0 u2



, U1 =





0 0 u0

u1 0 0
0 u2 0



, U2 =





0 u0 0
0 0 u1

u2 0 0



 (2)

belonging to three restricted sets in a three-dimensional quantum system [56]. In 2019, Peng
et al. put forward a protocol for quantum rotation operation sharing with a five-qubit cluster
state [57]. In 2022, An and Cao presented a method for the parallel remote implementation
of partially unknown operations of one qubit in polarization and spatial-mode degrees
of freedom with a hyperentangled state [58]. In 2023, Peng et al. presented a scheme for
the remote implementation of m partially unknown operations of one qubit on the remote
receivers’ quantum systems under the controller’s control [59]. In 2024, Liu et al. proposed
a protocol for the bidirectional controlled remote implementation of a partially unknown
operation of two qubits belonging to eight restricted sets via a nine-qubit entangled state

1√
2
[|ϕ+⟩|ϕ+⟩|ϕ+⟩|ϕ+⟩|0⟩ + |ϕ−⟩|ϕ−⟩|ϕ−⟩|ϕ−⟩|1⟩], where |ϕ±⟩ = 1√

2
(|00⟩ ± |11⟩) [60].

Shi et al. presented a protocol for the hierarchical joint remote implementation of a partially
unknown quantum operation of one qubit with a cluster state, where the receivers are
hierarchized according to their abilities to accomplish the remote implementation of the
partially unknown operations [61]. The remote implementation of the partially unknown
operation of one qubit has been experimental demonstrated via linear optical elements [62].

In the past few years, researchers have expressed much interest in quantum informa-
tion processing via high-dimensional quantum system, as a high-dimensional quantum
system has a high capacity for the storing and processing of quantum information in long-
distance quantum communication. Moreover, it offers a alternate method for scaling up
the quantum computation. In 2000, Muthukrishnan and Stroud showed that an arbitrary
n-qudit operation can be decomposed into single- and two-qudit operations [63]. In 2001,
Bennett investigated the method for the remote preparation of an arbitrary qudit state [64].
In 2002, Vlasov showed that two single-qudit noncommutative operations and two-qudit
operations can construct a universal qudit operation [65]. In 2003, Zhou et al. presented
the concept of a qudit cluster state and proposed one-way computation based on the qudit
cluster state [66]. In 2005, Wang et al. presented a protocol for quantum secure direct
communication via high-dimensional quantum state [67]. In 2007, Li et al. put forward a
method for the controlled teleportation of an arbitrary m-qudit state with d-dimensional
Greenberger–Horne–Zeilinger(GHZ) states [68]. In 2014, Luo and Wang proposed a proto-
col for the implementation of universal quantum computation on the high-dimensional
quantum system via a set of one-qudit and two-qudit operations [69]. Krenn et al. proposed
the creation of a (100 × 100)-dimensional entangled state via spatial modes of photons [70].
In 2017, Kues et al. demonstrated the generation of a high-dimensional frequency entangled
state [71]. Bouchard et al. realized optimal cloning for a high-dimensional state of photons
in their orbital angular momentum degrees of freedom [72]. In 2018, Hu et al. reported
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the experimental demonstration of quantum superdense coding with a four-dimensional
path-polarization entangled state |ψ⟩ = 1

2 (|00⟩+ |11⟩+ |22⟩+ |33⟩) [73]. In 2019, Reimer
et al. demonstrated high-dimensional one-way quantum computation via qudit cluster
state [74]. In 2020, Vagniluca et al. realized four-dimensional quantum key distribution
via high-dimensional quantum state encoded in time-bin degrees of freedom [75]. Hu et
al. experimentally realized the efficient generation [76] and distribution [77] of a high-
dimensional entangled state and demonstrated high-dimensional quantum teleportation
via the high-dimensional entangled state [78]. Wang et al. investigated the control effec-
tiveness of high-dimensional controlled teleportation [79]. Kiktenko et al. showed the
significant reduction of quantum operations for the implementation of a Toffoli gate via
a high-dimensional quantum state [80]. In 2022, Saha et al. presented a novel method to
decompose an n-qudit Toffoli gate into two-qudit gates without an auxiliary qudit [81].
Nikolaeva proposed a scheme to decompose an n-qubit Toffoli gate via 2n-3 two-qutrit
gates [82]. Chen et al. presented a scheme for the perfect teleportation of a sing-qubit
state with a high-dimensional partially entangled state |Φ⟩ = a0|00⟩+ a1|11⟩+ a2|22⟩ [83].
In 2023, Hrmo et al. experimentally realized a two-qudit entangling gate via a trapped-ion
system [84]. Luo et al. experimentally demonstrated a two-qutrit gate via supercon-
ducting quantum circuits [85]. Xing proposed a method for preparing a multiparticle
high-dimensional GHZ state via optical system [86]. In 2024, Lv et al. experimentally
demonstrated high-dimensional controlled teleportation via a three-dimensional GHZ state
|φ⟩ = 1√

2
(|000⟩+ |111⟩+ |222⟩) [87]. Xu et al. experimentally demonstrated quantum state

compression from two qubits α|0⟩+ β|1⟩ to a qutrit α2|0⟩+
√

2αβ|1⟩+ β2|2⟩ [88].
Although there are some protocols for the remote implementation of partially un-

known operations belonging to restricted sets in a high-dimensional quantum system, the
hierarchical joint remote implementation of partially unknown operations of m qudits
in high-dimensional quantum system is not seriously considered [55,56]. We present a
protocol for the hierarchical joint remote implementation of partially unknown operations
of m qudits belonging to restricted sets via m multiparticle high-dimensional entangled
states. All the senders share the information of the partially unknown operations and coop-
erate with each other to jointly remotely implement the partially unknown operations in
high-dimensional system. The receivers are hierarchized in accordance with their abilities
to complement the partially unknown operations remote implementation. The upper-
grade agents only need the cooperation of one of the other agents to complete the remote
implementation of the partially unknown operations and the lower-grade agents need
the cooperation of all the other agents. The protocol has the advantage of having a high
channel capacity by remote implementing partially unknown operations of m qudits via m
multiparticle high-dimensional entangled states.

2. Hierarchial Joint Remote Implementation of Partially Unknown Operations of One
Qudit via a Multiparticle High-Dimensional Entangled State

To present the principle of our protocol clearly, we first present the protocol for the
hierarchical joint remote implementation of partially unknown operations of one qudit
belonging to restricted sets in d-dimensional quantum system, then generalize it to the case
of remote implementation of partially unknown operations of m qudits.

Similar to the two-dimensional system, |0⟩, · · · , |d − 1⟩ is the eigenbasis of the pauli
operator Zd [68,89]. |0⟩x, · · · , |d − 1⟩x is the eigenbasis of the pauli operator Xd.

|j⟩x =
1√
d
(|0⟩+ e

2πi
d j|1⟩+ · · ·+ e

2πi
d j(d−1)|d − 1⟩), (3)
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where j = 0, 1, · · · , d − 1. Similar to Ref. [89], the quantum Fourier transformation

Hd =
1√
d











1 1 · · · 1

1 e
2πi

d 1·1 · · · e
2πi

d 1·(d−1)

· · · · · ·
1 e

2πi
d (d−1)·1 · · · e

2πi
d (d−1)·(d−1)











(4)

and the inverse quantum Fourier transformation

H−1
d =

1√
d











1 1 · · · 1

1 e−
2πi

d 1·1 · · · e−
2πi

d (d−1)·1

· · · · · ·
1 e−

2πi
d 1·(d−1) · · · e−

2πi
d (d−1)·(d−1)











(5)

can implement transformation between eigenvectors |j⟩ and |j⟩x (j = 0, 1, · · · , d − 1):

|j⟩x = Hd|j⟩, |j⟩ = H−1
d |j⟩x. (6)

The two-qudit C-NOT operation can be described as [68,89]:

UC =
d−1

∑
j1,j2=0

|j1, j1 ⊕d j2⟩⟨j1, j2|. (7)

Here j1 ⊕d j2 means j1 + j2 mod d.
Similar to the case of partially unknown operations of N qubits, the partially unknown

operations of one qudit that have only one nonzero element in every row or every column
of their representation matrices can be remotely implemented with fewer resources [49,50].
Since the unique nonzero element in the first row has d possible positions, the nonzero
element in the second row has d − 1 possible positions, and the nonzero element in the
dth row has one possible position, there are d! restricted sets for the partially unknown
operations of one qudit. The partially unknown operations of one qudit belonging to d!
restricted sets, as suggested by Wang, can be described as [49,50]:

Ul1,l2,··· ,ld−1
= e

iϕ0⊕2 l1⊕3 l2⊕4 ···⊕dld−1 |0 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩⟨0|
+ e

iϕ1⊕2 l1⊕3 l2⊕4 ···⊕dld−1 |1 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩⟨1|
+ e

iϕ2⊕3 l2⊕4 ···⊕dld−1 |2 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩⟨2|
+ · · ·+ e

iϕ(d−1)⊕dld−1 |(d − 1)⊕d ld−1⟩⟨d − 1|, (8)

where lj = 0, 1, · · · , j (j = 1, 2, · · · , d − 1) are used to label the d! restricted sets. ϕ0, ϕ1, · · · ,
ϕd−1 are d real parameters. (k − 1) ⊕k lk−1 (k = 2, · · · , d) means (k − 1) + lk−1 mod k.
The n senders Alice1, · · · , Alicen share the information of the partially unknown operation
Ul1,l2,··· ,ld−1

(ϕ0, ϕ1, · · · , ϕd−1) to be remote implemented. That is, Aliceu (u = 1, · · · , n)
knows ϕu,0, ϕu,1, · · · , ϕu,d−1. Here,
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n

∑
u=1

ϕu,0 = ϕ0

n

∑
u=1

ϕu,1 = ϕ1

· · ·
n

∑
u=1

ϕu,d−1 = ϕd−1. (9)

all the senders Alice1, · · · , Alicen cooperate with each other to remotely implement the
partially unknown operations and help the remote receiver to prepare the target state.

For the hierarchical joint remote implementation of partially unknown operations,
the n senders Alice1, · · · , Alicen, y upper-grade agents Bob1, · · · , Boby and z lower-grade
agents Charlie1, · · · , Charliez share a (n + y + z)-qudit entangled state. One of the upper-
grade agents Bob1, · · · , Boby has a qudit b in an arbitrary state |ψ⟩. The upper-grade
agent first performs a C-NOT operation on his entangled particle and particle b, and then
carries out a Z-basis measurement on particle b. The n senders Alice1, · · · , Alicen first
perform corresponding unitary operations on their entangled particles according to the
measurement result obtained by the upper-grade agent, and then implement partially
unknown operations according to their information of the partially unknown operation
to be remotely implemented. The upper-grade agents Bob1, · · · , Boby can reconstruct the
desired state with the cooperation of one of the lower-grade agents and the lower-grade
agents Charlie1, · · · , Charliez need the cooperation of all the other agents to prepare the
desired state.

For the hierarchical joint remote implementation of partially unknown operations, all
the agents share a (n + y + z)-qudit entangled state. The (n + y + z)-qudit entangled state
shared by Alice1, · · · , Alicen, Bob1, · · · , Boby Charlie1, · · · , Charliez can be written as:

|φ⟩ =
1

d

d−1

∑
j1,j2=0

e
2πi

d j1 j2 |j1, · · · , j1⟩A1,··· ,An

|j1, · · · , j1⟩B1,··· ,By |j2, · · · , j2⟩C1,··· ,Cz
, (10)

where particles A1, · · · , An belong to the sender Alice1, · · · , Alicen, the upper-grade
agents Bob1, · · · , Boby are in possession of particles B1, · · · , By, and the lower-grade agents
Charlie1, · · · , Charliez are in possession of particles C1, · · · , Cz.

Without loss of generality, suppose Bob1 has the qudit b in the arbitrary state [52]:

|ψ⟩b = α0|0⟩+ α1|1⟩+ · · ·+ αd−1|d − 1⟩, (11)

where |α0|2 + |α1|2 + · · ·+ |αd−1|2 = 1. The n, senders Alice1, · · · , Alicen want to jointly
remotely implement partially unknown operation Ul1,l2,··· ,ld−1

and help the remote receiver
prepare the target state |ψ′⟩.

|ψ′⟩ = Ul1,l2,··· ,ld−1
|ψ⟩

= e
iϕ0⊕2 l1⊕3 l2⊕4 ···⊕dld−1 α0|0 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩

+ e
iϕ1⊕2 l1⊕3 l2⊕4 ···⊕dld−1 α1|1 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩

+ e
iϕ2⊕3 l2⊕4 ···⊕dld−1 α2|2 ⊕3 l2 ⊕4 · · · ⊕d ld−1⟩

+ · · ·+ e
iϕ(d−1)⊕dld−1 αd−1|(d − 1)⊕d ld−1⟩. (12)
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The state of particles A1, · · · , An, B1, · · · , By, C1, · · · , Cz,b can be written as:

|Φ⟩ = |φ⟩A1,··· ,An ,B1,··· ,By ,C1,··· ,Cz
⊗ |ψ⟩b

=
1

d

d−1

∑
j1,j2,j3=0

e
2πi

d j1 j2 αj3 |j1, · · · , j1⟩A1,··· ,An
|j1, · · · , j1⟩B1,··· ,By

|j2, · · · , j2⟩C1,··· ,Cz
|j3⟩b. (13)

For the hierarchical joint remote implementation of the partially unknown operation
Ul1,l2,··· ,ld−1

, Bob1 first implements C-NOT operation on qudits B1 and b by using qudit B1

as the control qudit, and then performs Z-basis measurement on qudit b. After the C-NOT
operation, the state of particles A1, · · · , An, B1, · · · , By, C1, · · · , Cz, and b becomes:

|Φ1⟩ =
1

d

d−1

∑
j1,j2,j3=0

e
2πi

d j1 j2 αj3 |j1, · · · , j1⟩A1,··· ,An
|j1, · · · , j1⟩B1,··· ,By

|j2, · · · , j2⟩C1,··· ,Cz
|j1 ⊕d j3⟩b. (14)

The state of particles A1, · · · , An, B1, · · · , By, C1, · · · , Cz becomes |φ⟩1 if the Z-basis
measurement result is t (t = 0, 1, · · · , d − 1).

|φ1⟩ =
1√
d

d−1

∑
j1,j2=0

e
2πi

d j1 j2 αt⊕d(d−j1)
|j1, · · · , j1⟩A1,··· ,An

|j1, · · · , j1⟩B1,··· ,By |j2, · · · , j2⟩C1,··· ,Cz
. (15)

To implement partially unknown operations remotely, Aliceu (u = 1, · · · , n) first im-
plements single qudit operation Xt on its qudit Au according to the Z-basis measurement re-
sult t, and then implements partially unknown operation Ul1,l2,··· ,ld−1

(ϕu,0, ϕu,1, · · · , ϕu,d−1)
in accordance with its information of ϕu,0, ϕu,1, · · · , ϕu,d−1. The single qudit operation Xt

in accordance with the Z-basis measurement result t can be written as:

Xt =
d−1

∑
j=0

|t ⊕d (d − j)⟩⟨j|. (16)

The state of particles A1, · · · , An, B1, · · · , By, C1, · · · , Cz becomes |φ⟩2 after Aliceu

(u = 1, · · · , n) implements single qudit operation Xt on its qudit Au.

|φ2⟩ =
1√
d

d−1

∑
j1,j2=0

e
2πi

d (t−j1)j2 αj1 |j1, · · · , j1⟩A1,··· ,An

|t ⊕d (d − j1), · · · , t ⊕d (d − j1)⟩B1,··· ,By

|j2, · · · , j2⟩C1,··· ,Cz
. (17)

After the single qudit operation Xt, Aliceu (u = 1, · · · , n) implements partially un-
known operation Ul1,l2,··· ,ld−1

(ϕu,0, ϕu,1, · · · , ϕu,d−1) in accordance with its information of
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ϕu,0, ϕu,1, · · · , ϕu,d−1 on qudit Au. The state of particles A1, · · · , An, B1, · · · , By, C1, · · · , Cz

becomes (without normalization):

|φ3⟩ =
d−1

∑
j2=0

|j2, · · · , j2⟩C1,··· ,Cz
[α0e

2πi
d tj2 e

i(ϕ1,0⊕2 l1 ···⊕dld−1
+···+ϕn,0⊕2 l1 ···⊕dld−1

)

|0 ⊕2 l1 · · · ⊕d ld−1, · · · , 0 ⊕2 l1 · · · ⊕d ld−1⟩|t, · · · , t⟩
+ α1e

2πi
d (t+d−1)j2 e

i(ϕ1,1⊕2 l1 ···⊕dld−1
+···+ϕn,1⊕2 l1 ···⊕dld−1

)

|1 ⊕2 l1 · · · ⊕d ld−1, · · · , 1 ⊕2 l1 · · · ⊕d ld−1⟩
|t ⊕d (d − 1), · · · , t ⊕d (d − 1)⟩+ · · ·

+ αd−1e
2πi

d (t+1)j2 e
i(ϕ1,(d−1)⊕dld−1

+···+ϕn,(d−1)⊕dld−1
)

|(d − 1)⊕d ld−1, · · · , (d − 1)⊕d ld−1⟩
|t ⊕d 1, · · · , t ⊕d 1⟩]A1,··· ,An ,B1,··· ,By

=
d−1

∑
j2=0

|j2, · · · , j2⟩C1,··· ,Cz
[α0e

2πi
d tj2 e

iϕ0⊕2 l1 ···⊕dld−1

|0 ⊕2 l1 · · · ⊕d ld−1, · · · , 0 ⊕2 l1 · · · ⊕d ld−1⟩|t, · · · , t⟩
+ α1e

2πi
d (t+d−1)j2 e

iϕ1⊕2 l1 ···⊕dld−1

|1 ⊕2 l1 · · · ⊕d ld−1, · · · , 1 ⊕2 l1 · · · ⊕d ld−1⟩
|t ⊕d (d − 1), · · · , t ⊕d (d − 1)⟩+ · · ·

+ αd−1e
2πi

d (t+1)j2 e
iϕ(d−1)⊕dld−1 |(d − 1)⊕d ld−1, · · · , (d − 1)⊕d ld−1⟩

|t ⊕d 1, · · · , t ⊕d 1⟩]A1,··· ,An ,B1,··· ,By
. (18)

To jointly remotely implement the partially unknown operation, Aliceu (u = 1, · · · , n)
performs X-basis measurement on his entangled particle Au. The state of particles A1, · · · ,
An, B1, · · · , By, C1, · · · , Cz can be rewritten as (neglecting the whole factor):

|φ3⟩ =
d−1

∑
r1,··· ,rn ,j2=0

|j2, · · · , j2⟩C1,··· ,Cz
[α0e

2πi
d tj2

e
iϕ0⊕2 l1 ···⊕dld−1 e−

2πi
d (r1+···+rn)(0⊕2l1···⊕d ld−1)

|r1⟩x ⊗ · · · ⊗ |rn⟩x|t, · · · , t⟩+ α1e
2πi

d (t+d−1)j2

e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (r1+···+rn)(1⊕2l1···⊕d ld−1)

|r1⟩x ⊗ · · · ⊗ |rn⟩x|t ⊕d (d − 1), · · · , t ⊕d (d − 1)⟩
+ · · ·+ αd−1e

2πi
d (t+1)j2 e

iϕ(d−1)⊕dld−1

e−
2πi

d (r1+···+rn)((d−1)⊕d ld−1)|r1⟩x ⊗ · · · ⊗ |rn⟩x

|t ⊕d 1, · · · , t ⊕d 1⟩]A1,··· ,An ,B1,··· ,By
. (19)

The state of particles B1, · · · , By, C1, · · · , Cz becomes |φ4⟩ if the measurement result
obtained by Au (u = 1, · · · , n) is |ru⟩x (ru = 0, · · · , d − 1).

|φ4⟩ =
d−1

∑
j2=0

|j2, · · · , j2⟩C1,··· ,Cz
[α0e

2πi
d tj2

e
iϕ0⊕2 l1 ···⊕dld−1 e−

2πi
d (0⊕2l1···⊕d ld−1)r|t, · · · , t⟩

+ α1e
2πi

d (t+d−1)j2 e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

|t ⊕d (d − 1), · · · , t ⊕d (d − 1)⟩+ · · ·
+ αd−1e

2πi
d (t+1)j2 e

iϕ(d−1)⊕dld−1 e−
2πi

d ((d−1)⊕d ld−1)r

|t ⊕d 1, · · · , t ⊕d 1⟩]B1,··· ,By , (20)
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where r = r1 + · · ·+ rn.
Firstly, we suppose that the agents agree to reconstruct the desired state |ψ′⟩ at the

upper-grade agent Bobk’s site (k = 1, · · · , y). The quantum circuit for the hierarchial
joint remote implementation of partially unknown operations of one qudit with upper-
grade agent is shown in Figure 1. To jointly remotely implement the partially unknown
operations, the lower-grade agent Charliep (p = 1, · · · , z) performs a Z-basis measurement
on its qudit Cp. The upper-grade agents Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby perform X-
basis measurements on qudits B1, · · · , Bk−1, Bk+1, · · · , By. The receiver Bobk can prepare
the target state |ψ′⟩ by cooperating with one of the lower-grade agents.
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Figure 1. The quantum circuit for the hierarchial joint remote implementation of partially unknown

operations of one qudit with upper-grade agent Bobk. Classical communication from the sender

Alicej (j = 1, · · · , n), the upper-grade agents Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby and the the lower-

grade agent Charliep (p = 1, · · · , z) to the receiver Bobk are represented by double lines. r1, · · · , rn,

s1, · · · , sy and t, j2 denote the results of the generalized X-basis measurements and generalized

Z-basis measurements. Xt, Ul1,··· ,ld−1
(ϕj,0, · · · , ϕj,d−1) in the solid-line boxes denote the single-qudit

operations performed by the sender Alicej, and U
r,j2,s
t in the solid-line box denotes the unitary

operation performed by the receiver.

After the Z-basis measurement, the state of particles B1, · · · , By becomes |φ5⟩ if the
measurement result obtained by Charliep (p = 1, · · · , z) is |j2⟩ (j2 = 0, · · · , d − 1).

|φ5⟩ = [α0e
2πi

d tj2 e
iϕ0⊕2 l1 ···⊕dld−1 e−

2πi
d (0⊕2l1···⊕d ld−1)r|t, · · · , t⟩

+ α1e
2πi

d (t+d−1)j2 e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

|t ⊕d (d − 1), · · · , t ⊕d (d − 1)⟩+ · · ·
+ αd−1e

2πi
d (t+1)j2 e

iϕ(d−1)⊕dld−1 e−
2πi

d ((d−1)⊕d ld−1)r

|t ⊕d 1, · · · , t ⊕d 1⟩]B1,··· ,By . (21)



Entropy 2024, 26, 857 9 of 26

To implement the partially unknown operations remotely, the upper-grade agents
Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby perform X-basis measurements on their qudits B1, · · · ,
Bk−1, Bk+1, · · · , By. The state of particles B1, · · · , By can be rewritten as:

|φ6⟩ =
d−1

∑
s1,··· ,sk−1,

sk+1,··· ,sy=0

[α0e−
2πi

d (s1+···+sk−1+sk+1+···+sy)t

e
2πi

d tj2 e
iϕ0⊕2 l1 ···⊕dld−1 e−

2πi
d (0⊕2l1···⊕d ld−1)r

|s1⟩x ⊗ · · · ⊗ |sk−1⟩x|t⟩|sk+1⟩x ⊗ · · · ⊗ |sy⟩x

+ α1e−
2πi

d (s1+···+sk−1+sk+1+···+sy)(t+d−1)

e
2πi

d (t+d−1)j2 e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

|s1⟩x ⊗ · · · ⊗ |sk−1⟩x|t ⊕d (d − 1)⟩|sk+1⟩x ⊗ · · · ⊗ |sy⟩x + · · ·
+ αd−1e−

2πi
d (s1+···+sk−1+sk+1+···+sy)(t+1)e

2πi
d (t+1)j2 e

iϕ(d−1)⊕dld−1

e−
2πi

d ((d−1)⊕d ld−1)r|s1⟩x ⊗ · · · ⊗ |sk−1⟩x|t ⊕d 1⟩|sk+1⟩x

⊗ · · · ⊗ |sy⟩x]B1,··· ,Bk−1,Bk ,Bk+1,··· ,By . (22)

The state of particle Bk becomes |Ψ⟩Bk
if the measurement results obtained by Bob1, · · · ,

Bobk−1, Bobk+1, · · · , Boby are |s1⟩x, · · · , |sk−1⟩x, |sk+1⟩x, · · · , |sy⟩x.

|Ψ⟩Bk
= [α0e−

2πi
d ste

2πi
d tj2 e

iϕ0⊕2 l1 ···⊕dld−1 e−
2πi

d (0⊕2l1···⊕d ld−1)r|t⟩
+ α1e−

2πi
d s(t+d−1)e

2πi
d (t+d−1)j2 e

iϕ1⊕2 l1 ···⊕dld−1

e−
2πi

d (1⊕2l1···⊕d ld−1)r|t ⊕d (d − 1)⟩+ · · ·
+ αd−1e−

2πi
d s(t+1)e

2πi
d (t+1)j2 e

iϕ(d−1)⊕dld−1

e−
2πi

d ((d−1)⊕d ld−1)r|t ⊕d 1⟩]Bk
, (23)

where s = s1 + · · ·+ sk−1 + sk+1 + · · ·+ sy.
The single-qudit operation

U
r,j2,s
t = e

2πi
d (s−j2)te

2πi
d (0⊕2l1···⊕d ld−1)r|0 ⊕2 l1 · · · ⊕d ld−1⟩⟨t|

+ e
2πi

d (s−j2)(t+d−1)e
2πi

d (1⊕2l1···⊕d ld−1)r

|1 ⊕2 l1 · · · ⊕d ld−1⟩⟨t ⊕d (d − 1)|+ · · ·
+ e

2πi
d (s−j2)(t+1)e

2πi
d ((d−1)⊕d ld−1)r

|(d − 1)⊕d ld−1⟩⟨t ⊕d 1| (24)

in accordance with measurement results t, r, j2, s can transform state |Ψ⟩Bk
to the target

state |ψ′⟩:

|ψ′⟩Bk
= U

r,j2,s
t |Ψ⟩Bk

. (25)

Similar to the hierarchical remote implementation of partially unknown operation of one
qubit [61], the upper-grade agent needs to only cooperate with one of the lower-grade
agents to prepare the target state.

Now, we discuss another case, in which all of the agents agree to reconstruct the desired
state |ψ′⟩ at the lower-grade agent Charliep’s site (p = 1, · · · , z). The quantum circuit for the hi-
erarchial joint remote implementation of partially unknown operations of one qudit with lower-
grade agent is shown in Figure 2. To reconstruct the desired state |ψ′⟩ at the lower-grade agent
Charliep’s site, the other lower-grade agents Charlie1, · · · , Charliep−1, Charliep+1, · · · , Charliez

and the upper-grade agents Bob1, · · · , Boby perform X-basis measurements on their entangled
particles C1, · · · , Cp−1, Cp+1, · · · , Cz and B1, · · · , By, after Aliceu (u = 1, · · · , n) implements
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the partially unknown operation Ul1,l2,··· ,ld−1
(ϕl,0, ϕl,1, · · · , ϕl,d−1) and performs an x-basis

measurement on qudit Au. The state |φ4⟩ can be rewritten as:

|φ4⟩C1,··· ,Cp−1,Cp+1,··· ,Cz ,B1,··· ,By ,Cp

=
d−1

∑
q1,··· ,qp−1,qp+1,

··· ,qz ,s1,··· ,sy=0

|q1⟩x ⊗ · · · ⊗ |qp−1⟩x ⊗ |qp+1⟩x ⊗ · · ·

⊗|qz⟩x|s1⟩x ⊗ · · · ⊗ |sy⟩x{α0e
iϕ0⊕2 l1 ···⊕dld−1

e−
2πi

d (0⊕2l1···⊕d ld−1)re−
2πi

d ts[
d−1

∑
j2=0

e
2πi

d (t−q)j2 |j2⟩]

+ α1e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

e−
2πi

d (t+d−1)s[
d−1

∑
j2=0

e
2πi

d (t+d−1−q)j2 |j2⟩] + · · ·

+ αd−1e
iϕ(d−1)⊕dld−1 e−

2πi
d ((d−1)⊕d ld−1)r

e−
2πi

d (t+1)s[
d−1

∑
j2=0

e
2πi

d (t+1−q)j2 |j2⟩]}. (26)

Here, q = q1 + · · ·+ qp−1 + qp+1 + · · ·+ qz.
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Figure 2. The quantum circuit for the hierarchial joint remote implementation of partially unknown

operations of one qudit with lower-grade agent Charliep. r1, · · · , rn, s1, · · · , sy, q1, · · · , qz and t, j2 are

the results of the generalized X-basis measurements and generalized Z-basis measurements. Tr,s
t,q in

the solid-line box denotes the unitary operation performed by the receiver Charliep.
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The state of particle Cp becomes |ω⟩Cp
if the measurement results obtained by Charlie1,

· · · , Charliep−1, Charliep+1, · · · , Charliez and Bob1, · · · , Boby are |q1⟩x, · · · , |qp−1⟩x, |qp+1⟩x,
· · · , |qz⟩x and |s1⟩x, · · · , |sy⟩x.

|ω⟩Cp
= α0e

iϕ0⊕2 l1 ···⊕dld−1 e−
2πi

d (0⊕2l1···⊕d ld−1)r

e−
2πi

d ts[
d−1

∑
j2=0

e
2πi

d (t−q)j2 |j2⟩]

+ α1e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

e−
2πi

d (t+d−1)s[
d−1

∑
j2=0

e
2πi

d (t+d−1−q)j2 |j2⟩] + · · ·

+ αd−1e
iϕ(d−1)⊕dld−1 e−

2πi
d ((d−1)⊕d ld−1)r

e−
2πi

d (t+1)s[
d−1

∑
j2=0

e
2πi

d (t+1−q)j2 |j2⟩]. (27)

To reconstruct the desired state |ψ′⟩, Charliep first applies the inverse quantum Fourier
transformation on its particle Cp, and then applies corresponding unitary operation on its
particle in accordance with all the other agents measurement results. The inverse quantum
Fourier transformation H−1

d transform quantum state |ω⟩Cp
to

|ω1⟩Cp
= α0e

iϕ0⊕2 l1 ···⊕dld−1 e−
2πi

d (0⊕2l1···⊕d ld−1)r

e−
2πi

d tsH−1
d [

d−1

∑
j2=0

e
2πi

d (t−q)j2 |j2⟩]

+ α1e
iϕ1⊕2 l1 ···⊕dld−1 e−

2πi
d (1⊕2l1···⊕d ld−1)r

e−
2πi

d (t+d−1)sH−1
d [

d−1

∑
j2=0

e
2πi

d (t+d−1−q)j2 |j2⟩] + · · ·

+ αd−1e
iϕ(d−1)⊕dld−1 e−

2πi
d ((d−1)⊕d ld−1)r

e−
2πi

d (t+1)sH−1
d [

d−1

∑
j2=0

e
2πi

d (t+1−q)j2 |j2⟩]

= α0e
iϕ0⊕2 l1 ···⊕dld−1 e−

2πi
d (0⊕2l1···⊕d ld−1)r

e−
2πi

d ts|t ⊕d (d − q)⟩
+ α1e

iϕ1⊕2 l1 ···⊕dld−1 e−
2πi

d (1⊕2l1···⊕d ld−1)r

e−
2πi

d (t+d−1)s|t ⊕d (d − 1 − q)⟩+ · · ·
+ αd−1e

iϕ(d−1)⊕dld−1 e−
2πi

d ((d−1)⊕d ld−1)r

e−
2πi

d (t+1)s|t ⊕d (1 − q)⟩. (28)

The unitary operation Tr,s
t,q

Tr,s
t,q = e

2πi
d (0⊕2l1···⊕d ld−1)re

2πi
d ts

|0 ⊕2 l1 · · · ⊕d ld−1⟩⟨t ⊕d (d − q)|
+ e

2πi
d (1⊕2l1···⊕d ld−1)re

2πi
d (t+d−1)s

|1 ⊕2 l1 · · · ⊕d ld−1⟩⟨t ⊕d (d − 1 − q)|+ · · ·
+ e

2πi
d ((d−1)⊕d ld−1)re

2πi
d (t+1)s

|(d − 1)⊕d ld−1⟩⟨t ⊕d (1 − q)| (29)
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in accordance with the senders’ measurement results r and t, the upper-grade agents’
measurement results and the other lower-grade agents’ measurement result q will transform
state |ω1⟩Cp

to the target state |ψ⟩Cp
.

|ψ⟩Cp
= Tr,s

t,q |ω1⟩Cp
. (30)

The partially unknown operations of one qudit can be remotely implemented via local uni-
tary operations, classical communication, and one multiparticle entangled state. Compared
to previously protocol for remotely implementing partially unknown operations of one
qubit, the protocol has the advantage of having a high channel capacity by transmitting d
coefficients ϕ0, · · · , ϕd−1 via one multiparticle entangled state [48].

3. Hierarchial Joint Remote Implementation of Partially Unknown Operations of m
Qudit via m Multiparticle High-Dimensional Entangled States

Now, let us generalize the protocol for the hierarchial joint remote implementation of
partially unknown operations of m qudit with m multiparticle high-dimensional entangled
states. The senders share the information of the partially unknown operations to be remotely
implemented and cooperate with each other to help the remote receiver to reconstruct the
desired state.

Similar to the case for the remote implementation of partially unknown operations of
one qudit, the partially unknown operations of m qudits have only one nonzero element
in every row or every column of their representation matrices. There are M! (M = dm)
restricted sets for partially unknown operations of m qudits, since the unique nonzero
element in the first row has M possible positions, the nonzero element in the second row
has M − 1 possible positions, and the nonzero element in the Mth row has one possible
position. The partially unknown operations of m qudit belongs to M! restricted sets as
suggested by Wang can be described as [50]:

Ul1,l2,··· ,lM
= e

iϕ0⊕2 l1⊕3 l2⊕4 ···⊕MlM−1 |t0
1, · · · , t0

m⟩⟨0, · · · , 0|
+ e

iϕ1⊕2 l1⊕3 l2⊕4 ···⊕MlM−1 |t1
1, · · · , t1

m⟩⟨0, · · · , 1|
+ e

iϕ2⊕3 l2⊕4 ···⊕MlM−1 |t2
1, · · · , t2

m⟩⟨0, · · · , 2|+ · · ·
+ e

iϕ(M−1)⊕MlM−1 |tM−1
1 , · · · , tM−1

m ⟩⟨d − 1, · · · , d − 1|, (31)

where ϕ0, ϕ1, · · · , ϕM−1 are M real parameters, lj = 0, 1, · · · , j (j = 1, 2, · · · , M − 1) are

used to label the M! restricted sets. tl
j = 0, · · · , d − 1 (j = 1, · · · , m, l = 0, · · · , M − 1) and

t0
1dm−1 + · · ·+ t0

m = 0 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕M lM−1

t1
1dm−1 + · · ·+ t1

m = 1 ⊕2 l1 ⊕3 l2 ⊕4 · · · ⊕M lM−1

· · ·
tM−1
1 dm−1 + · · ·+ tM−1

m = (M − 1)⊕M lM−1. (32)

Similar to the case for the hierarchical joint remote implementation of partially un-
known operations of one qudit, the n senders Alice1, · · · , Alicen share the information
of the partially unknown operation Ul1,l2,··· ,lM

(ϕ0, ϕ1, · · · , ϕM−1) to be remotely imple-
mented. That is, Aliceu (u = 1, · · · , n) knows ϕu,0, ϕu,1, · · · , ϕu,M−1. Here, ∑

n
u=1 ϕu,j = ϕj

(j = 0, 1, · · · , M − 1). All the senders Alice1, · · · , Alicen cooperate with each other to re-
mote implement the partially unknown operations and help the remote receiver to prepare
the target state.

Similar to the case for the hierarchical joint remote implementation of partially un-
known operations of one qudit, the n senders Alice1, · · · , Alicen, y upper-grade agents
Bob1, · · · , Boby and z lower-grade agents Charlie1, · · · , Charliez share m (n + y + z)-qudit
entangled states. One of the upper-grade agents has the qudits b1, · · · , bm in the arbitrary
m-qudit state. For the hierarchical joint remote implementation of partially unknown opera-
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tions, the upper-grade agent first carries out m C-NOT operation on his entangled particles
and particles b1, · · · , bm, and then performs Z-basis measurements on particles b1, · · · , bm.
The n senders Alice1, · · · , Alicen first perform corresponding unitary operations on their
entangled particles according to the measurement result obtained by the upper-grade agent,
and then implement partially unknown operations according to their information of the
partially unknown operation to be remotely implemented. The receivers are hierarchized
according to their abilities to reconstruct the desired state. That is, the upper-grade agents
Bob1, · · · , Boby can prepare the desired state with the cooperation of one of the lower-grade
agents and the lower-grade agents Charlie1, · · · , Charliez need the cooperation of all the
other agents to prepare the target state.

To hierarchically jointly remotely implement the partially unknown operations of
m qudits, the n senders Alice1, · · · , Alicen, y upper-grade agents Bob1, · · · , Boby and z
lower-grade agents Charlie1, · · · , Charliez share m (n+y+z)-qudit entangled states.

|φ′⟩ = |φ⟩⊗m

=
d−1

∑
j11,j12,··· ,
jm1,jm2=0

e
2πi

d j11 j12 · · · e
2πi

d jm1 jm2

|j11, · · · , j11⟩A11,··· ,A1n
|j11, · · · , j11⟩B11,··· ,B1y

|j12, · · · , j12⟩C11,··· ,C1z
· · ·

|jm1, · · · , jm1⟩Am1,··· ,Amn
|jm1, · · · , jm1⟩Bm1,··· ,Bmy

|jm2, · · · , jm2⟩Cm1,··· ,Cmz
. (33)

where particles A1u, · · · , Amu belong to the sender Aliceu (u = 1, · · · , n), the upper-grade
agents Bobk (k = 1, · · · , y) are in possession of particles B1k, · · · , Bmk, and the lower-grade
agents Charliep (p = 1, · · · , z) are in possession of particles C1p, · · · , Cmp.

Without loss of generality, suppose Bob1 has the qudits b1, · · · , bm in the arbitrary
m-qudit state [89]:

|ψ⟩b1,··· ,bm
=

d−1

∑
l1,··· ,lm=0

αl1,··· ,lm |l1, · · · , lm⟩, (34)

where

d−1

∑
l1,··· ,lm=0

|αl1,··· ,lm |2. (35)

The n senders Alice1, · · · , Alicen want to jointly remotely implement the partially unknown
operation Ul1,l2,··· ,ld−1

and help the remote receiver prepare the target state |ψ′⟩.

|ψ′⟩ = Ul1,l2,··· ,lM−1
|ψ⟩

= e
iϕ0⊕2 l1⊕3 l2⊕4 ···⊕MlM−1 α0,··· ,0|t0

1, · · · , t0
m⟩

+ e
iϕ1⊕2 l1⊕3 l2⊕4 ···⊕MlM−1 α0,··· ,1|t1

1, · · · , t1
m⟩+ · · ·

+ e
iϕ(M−1)⊕MlM−1 αd−1,··· ,d−1|tM−1

1 , · · · , tM−1
m ⟩.

(36)
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The state of particles A11, · · · , Cmz, b1, · · · , bm can be written as:

|Φ⟩ = |φ⟩A11,··· ,Cmz
⊗ |ψ⟩b1,··· ,bm

=
d−1

∑
j11,j12,··· ,jm1,
jm2,l1,··· ,lm=0

e
2πi

d j11 j12 · · · e
2πi

d jm1 jm2 αl1,··· ,lm

|j11, · · · , j11⟩A11,··· ,A1n
|j11, · · · , j11⟩B11,··· ,B1y

|j12, · · · , j12⟩C11,··· ,C1z
· · ·

|jm1, · · · , jm1⟩Am1,··· ,Amn
|jm1, · · · , jm1⟩Bm1,··· ,Bmy

|jm2, · · · , jm2⟩Cm1,··· ,Cmz
|l1, · · · , lm⟩b1,··· ,bm

. (37)

For the hierarchical joint remote implementation of the partially unknown operations,
Bob1 performs m C-NOT operations on qudit bv and Bv1 (v = 1, · · · , m) by using qudit Bv1

as the control qudit. The state of particles A11, · · · , Cmz, b1, · · · , bm becomes |Φ1⟩ after the
C-NOT operations.

|Φ1⟩ = |φ⟩A11,··· ,Cmz
⊗ |ψ⟩b1,··· ,bm

=
d−1

∑
j11,j12,··· ,jm1,
jm2,l1,··· ,lm=0

e
2πi

d j11 j12 · · · e
2πi

d jm1 jm2 αl1,··· ,lm

|j11, · · · , j11⟩A11,··· ,A1n
|j11, · · · , j11⟩B11,··· ,B1y

|j12, · · · , j12⟩C11,··· ,C1z
· · ·

|jm1, · · · , jm1⟩Am1,··· ,Amn
|jm1, · · · , jm1⟩Bm1,··· ,Bmy

|jm2, · · · , jm2⟩Cm1,··· ,Cmz

|l1 ⊕d j11, · · · , lm ⊕d jm1⟩b1,··· ,bm
. (38)

After the C-NOT operations, Bob1 performs a Z-basis measurement on particles on qu-
dit bv (v = 1, · · · , m). The state of particles A11, · · · , Cmz becomes |φ1⟩ if the measurement
results are t1, · · · , tm (t1, · · · , tm = 0, · · · , d − 1).

|φ1⟩ =
d−1

∑
j11,j12,··· ,
jm1,jm2=0

e
2πi

d j11 j12 · · · e
2πi

d jm1 jm2

αt1⊕d(d−j11),··· ,tm⊕d(d−jm1)

|j11, · · · , j11⟩A11,··· ,A1n
|j11, · · · , j11⟩B11,··· ,B1y

|j12, · · · , j12⟩C11,··· ,C1z
· · ·

|jm1, · · · , jm1⟩Am1,··· ,Amn
|jm1, · · · , jm1⟩Bm1,··· ,Bmy

|jm2, · · · , jm2⟩Cm1,··· ,Cmz
. (39)

Similar to the case for the hierarchical joint remote implementation of partially un-
known operations of one qudit, Aliceu (u = 1, · · · , n) first performs a single-qudit op-
eration Xt1

, · · · , Xtm on particles A1u, · · · , Amu according to Bob1’s measurement results
t1, · · · , tm, and then applies the partially unknown operation Ul1,l2,··· ,lM

(ϕu,0, · · · , ϕu,M−1)
on its particles A1u, · · · , Amu in accordance with its knowledge of ϕu,0, · · · , ϕu,M−1 and per-
form X-basis measurements on particles A1u, · · · , Amu. The state of particles A11, · · · , Cmz
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becomes |φ2⟩ after Aliceu (u = 1, · · · , n) performs single-qudit operation Xt1
, · · · , Xtm on

its particles A1u, · · · , Amu.

|φ2⟩ =
d−1

∑
j11,j12,··· ,
jm1,jm2=0

e
2πi

d (t1−j11)j12 · · · e
2πi

d (tm−jm1)jm2

αj11,··· ,jm1
|j11, · · · , j11⟩A11,··· ,A1n

|t1 ⊕d (d − j11), · · · , t1 ⊕d (d − j11)⟩B11,··· ,B1y

|j12, · · · , j12⟩C11,··· ,C1z
· · · |jm1, · · · , jm1⟩Am1,··· ,Amn

|tm ⊕d (d − jm1), · · · , tm ⊕d (d − jm1)⟩Bm1,··· ,Bmy

|jm2, · · · , jm2⟩Cm1,··· ,Cmz
. (40)

After performing a single-qudit operation Xt1
, · · · , Xtm on particles A1u, · · · , Amu

(u = 1, · · · , n), Aliceu applies partially unknown operation Ul1,l2,··· ,lM
(ϕu,0, · · · , ϕu,M−1)

on its particles A1u, · · · , Amu. The state of particles A11, · · · , Cmz becomes

|φ3⟩ =
d−1

∑
j12,··· ,jm2=0

|j12, · · · , j12⟩C11,··· ,C1z
· · · |jm2, · · · , jm2⟩Cm1,··· ,Cmz

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ1,0⊕2 l1 ···⊕MlM−1

|t0
1, · · · , t0

m⟩A11,··· ,Am1
· · · e

iϕn,0⊕2 l1 ···⊕MlM−1 |t0
1, · · · , t0

m⟩A1n ,··· ,Amn

|t1, · · · , t1⟩B11,··· ,B1y
· · · |tm, · · · , tm⟩Bm1,··· ,Bmy

+ α0,··· ,1e
2πi

d t1 j12 · · · e
2πi

d (tm+d−1)jm2 e
iϕ1,1⊕2 l1 ···⊕MlM−1

|t1
1, · · · , t1

m⟩A11,··· ,Am1
· · · e

iϕn,1⊕2 l1 ···⊕MlM−1 |t1
1, · · · , t1

m⟩A1n ,··· ,Amn

|t1, · · · , t1⟩B11,··· ,B1y
· · · |tm ⊕d (d − 1), · · · , tm ⊕d (d − 1)⟩Bm1,··· ,Bmy

+ · · ·
+ αd−1,··· ,d−1e

2πi
d (t1+1)j12 · · · e

2πi
d (tm+1)jm2 e

iϕ1,(M−1)⊕MlM−1

|tM−1
1 , · · · , tM−1

m ⟩A11,··· ,Am1
· · · e

iϕn,(M−1)⊕MlM−1

|tM−1
1 , · · · , tM−1

m ⟩A1n ,··· ,Amn
|t1 ⊕d 1, · · · , t1 ⊕d 1⟩B11,··· ,B1y

· · ·
|tm ⊕d 1, · · · , tm ⊕d 1⟩Bm1,··· ,Bmy ].

=
d−1

∑
j12,··· ,jm2=0

|j12, · · · , j12⟩C11,··· ,C1z
· · · |jm2, · · · , jm2⟩Cm1,··· ,Cmz

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

|t0
1, · · · , t0

m⟩A11,··· ,Am1
· · · |t0

1, · · · , t0
m⟩A1n ,··· ,Amn

|t1, · · · , t1⟩B11,··· ,B1y
· · · |tm, · · · , tm⟩Bm1,··· ,Bmy

+ α0,··· ,1e
2πi

d t1 j12 · · · e
2πi

d (tm+d−1)jm2 e
iϕ1⊕2 l1 ···⊕MlM−1

|t1
1, · · · , t1

m⟩A11,··· ,Am1
· · · |t1

1, · · · , t1
m⟩A1n ,··· ,Amn

|t1, · · · , t1⟩B11,··· ,B1y
· · · |tm ⊕d (d − 1), · · · , tm ⊕d (d − 1)⟩Bm1,··· ,Bmy

+ · · ·
+ αd−1,··· ,d−1e

2πi
d (t1+1)j12 · · · e

2πi
d (tm+1)jm2 e

iϕ(M−1)⊕MlM−1

|tM−1
1 , · · · , tM−1

m ⟩A11,··· ,Am1
· · · |tM−1

1 , · · · , tM−1
m ⟩A1n ,··· ,Amn

|t1 ⊕d 1, · · · , t1 ⊕d 1⟩B11,··· ,B1y
· · · |tm ⊕d 1, · · · , tm ⊕d 1⟩Bm1,··· ,Bmy ].

(41)
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To implement the partially unknown operations remotely, Aliceu performs X-basis
measurements on its particles A1u, · · · , Amu. The state of particles A11, · · · , Cmz can be
rewritten as:

|φ3⟩ =
d−1

∑
r11,··· ,rmn ,

j12,··· ,jm2=0

|j12, · · · , j12⟩C11,··· ,C1z
· · · |jm2, · · · , jm2⟩Cm1,··· ,Cmz

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d (r11+···r1n)t
0
1 · · · e−

2πi
d (rm1+···rmn)t0

m

|r11⟩x, · · · , |rm1⟩x, · · · , |r1n⟩x, · · · , |rmn⟩x

|t1, · · · , t1⟩ · · · |tm, · · · , tm⟩
+ α0,··· ,1e

2πi
d t1 j12 · · · e

2πi
d (tm+d−1)jm2 e

iϕ1⊕2 l1 ···⊕MlM−1 ⟩
e−

2πi
d (r11+···r1n)t

1
1 · · · e−

2πi
d (rm1+···rmn)t1

m

|r11⟩x, · · · , |rm1⟩x, · · · , |r1n⟩x, · · · , |rmn⟩x

|t1, · · · , t1⟩ · · · |tm ⊕d (d − 1), · · · , tm ⊕d (d − 1)⟩
+ · · ·
+ αd−1,··· ,d−1e

2πi
d (t1+1)j12 · · · e

2πi
d (tm+1)jm2

e
iϕ(M−1)⊕MlM−1 e−

2πi
d (r11+···r1n)t

M−1
1

· · · e−
2πi

d (rm1+···rmn)tM−1
m |r11⟩x, · · · , |rm1⟩x, · · · ,

|r1n⟩x, · · · , |rmn⟩x|t1 ⊕d 1⟩ ⊗ · · · ⊗
|t1 ⊕d 1⟩ · · · |tm ⊕d 1⟩ ⊗ · · · ⊗
|tm ⊕d 1⟩]A11···Am1···A1n ···AmnB11···B1y ···Bm1···Bmy

.

(42)

The state of particles B11, · · · , Cmz becomes |φ4⟩ if the measurement results obtained
by Aliceu(u = 1, · · · , n) are |r1u⟩x, · · · , |rmu⟩x.

|φ4⟩ =
d−1

∑
j12,··· ,jm2=0

|j12, · · · , j12⟩C11,··· ,C1z
· · · |jm2, · · · , jm2⟩Cm1,··· ,Cmz

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m |t1, · · · , t1⟩ · · · |tm, · · · , tm⟩
+ α0,··· ,1e

2πi
d t1 j12 · · · e

2πi
d (tm+d−1)jm2 e

iϕ1⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t1
1 · · · e−

2πi
d rmt1

m |t1, · · · , t1⟩
· · · |tm ⊕d (d − 1), · · · , tm ⊕d (d − 1)⟩+ · · ·

+ αd−1,··· ,d−1e
2πi

d (t1+1)j12 · · · e
2πi

d (tm+1)jm2

e
iϕ(M−1)⊕MlM−1 e−

2πi
d r1tM−1

1 · · · e−
2πi

d rmtM−1
m

|t1 ⊕d 1⟩ ⊗ · · · ⊗ |t1 ⊕d 1⟩ · · ·
|tm ⊕d 1⟩ ⊗ · · · ⊗ |tm ⊕d 1⟩]B11···B1y ···Bm1···Bmy , (43)

where rv = rv1 + · · · rvn (v = 1, · · · , m).
Firstly, we suppose that the agents agree to reconstruct the desired state |ψ′⟩ at the

upper-grade agent Bobk’s (k = 1, · · · , y) site. The quantum circuit for the hierarchial joint
remote implementation of partially unknown operations of m qudits with upper-grade agent
is shown in Figure 3. To reconstruct the desired state at Bobk’s site, the lower-grade agent
Charliep (p = 1, · · · , z) performs Z-basis measurement on his qudits C1p, · · · , Cmp. The other
upper-grade agents Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby perform X-basis measurements on
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their qudits B11, · · · , Bm1, · · · , Bob1,k−1, · · · , Bobm,k−1, Bob1,k+1, · · · , Bobm,k+1, · · · , Bob1,y, · · · ,
Bobm,y. The receiver Bobk can reconstruct the desired state by performing unitary operation
on his qudits Bob1,k, · · · , Bobm,k according to other upper-grade agents’ measurement results
and one of the lower-grade agents’ measurements.
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Figure 3. The quantum circuit for the hierarchial joint remote implementation of partially unknown

operations of m qudits with upper-grade agent Bobk. U
r1,··· ,rm ,j12,··· ,jm2,s1,··· ,sm

t1,··· ,tm
in the solid-line box

denotes the unitary operation performed by the receiver.
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The state of particles B11, · · · , B1y, · · · , Bm1, · · · , Bmy becomes |φ5⟩ if the measurement
results obtained by Charliep are |j12⟩C1p

, · · · , |jm2⟩Cmp
.

|φ5⟩ = [α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m |t1, · · · , t1⟩ · · · |tm, · · · , tm⟩
+ α0,··· ,1e

2πi
d t1 j12 · · · e

2πi
d (tm+d−1)jm2 e

iϕ1⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t1
1 · · · e−

2πi
d rmt1

m |t1, · · · , t1⟩
· · · |tm ⊕d (d − 1), · · · , tm ⊕d (d − 1)⟩+ · · ·

+ αd−1,··· ,d−1e
2πi

d (t1+1)j12 · · · e
2πi

d (tm+1)jm2

e
iϕ(M−1)⊕MlM−1 e−

2πi
d r1tM−1

1 · · · e−
2πi

d rmtM−1
m

|t1 ⊕d 1⟩ ⊗ · · · ⊗ |t1 ⊕d 1⟩ · · ·
|tm ⊕d 1⟩ ⊗ · · · ⊗ |tm ⊕d 1⟩]B11···B1y ···Bm1···Bmy . (44)

To hierarchically jointly remotely implement the partially unknown operations, the
other upper-grade agents Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby perform X-basis measure-
ments on their qudits B11, · · · , Bm1, · · · , B1,k−1, · · · , Bm,k−1, B1,k+1, · · · , Bm,k+1, · · · , B1,y, · · · ,
Bobm,y. The state of particles B11, · · · , B1y, · · · , Bm1, · · · , Bmy can be rewritten as:

|φ5⟩ =
d−1

∑
s11,··· ,s1y ,··· ,

sm1,··· ,smy=0

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m e−
2πi

d s1t1 · · · e−
2πi

d smtm

|s11⟩x · · · |s1,k−1⟩x|t1⟩|s1,k+1⟩x · · · |s1,y⟩x · · ·
|sm1⟩x · · · |sm,k−1⟩x|tm⟩|sm,k+1⟩x · · · |sm,y⟩x

+ α0,··· ,1e
2πi

d t1 j12 · · · e
2πi

d (tm+d−1)jm2 e
iϕ1⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t1
1 · · · e−

2πi
d rmt1

m e−
2πi

d s1t1 · · · e−
2πi

d sm(tm+d−1)

|s11⟩x · · · |s1,k−1⟩x|t1⟩|s1,k+1⟩x · · · |s1,y⟩x · · ·
|sm1⟩x · · · |sm,k−1⟩x|tm ⊕d (d − 1)⟩|sm,k+1⟩x · · · |sm,y⟩x + · · ·

+ αd−1,··· ,d−1e
2πi

d (t1+1)j12 · · · e
2πi

d (tm+1)jm2 e
iϕ(M−1)⊕MlM−1

e−
2πi

d r1tM−1
1 · · · e−

2πi
d rmtM−1

m e−
2πi

d s1(t1+1) · · · e−
2πi

d sm(tm+1)

|s11⟩x · · · |s1,k−1⟩x|t1 ⊕d 1⟩|s1,k+1⟩x · · · |s1,y⟩x · · ·
|sm1⟩x · · · |sm,k−1⟩x|tm ⊕d 1⟩|sm,k+1⟩x · · · |sm,y⟩x]B11···B1y ···Bm1···Bmy , (45)

where sv = sv1 + · · ·+ sv,k−1 + sv,k+1 + · · ·+ svy (v = 1, · · · , m).
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The state of particles B1k, · · · , Bmk becomes |φ6⟩ if the measurement results obtained by
Bob1, · · · , Bobk−1, Bobk+1, · · · , Boby are s11, · · · , sm1, · · · , s1,k−1, · · · , sm,k−1, · · · , s1,k+1, · · · ,
sm,k+1, · · · , s1y, · · · , smy.

|φ6⟩ = [α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m e−
2πi

d s1t1 · · · e−
2πi

d smtm |t1⟩ · · · |tm⟩
+ α0,··· ,1e

2πi
d t1 j12 · · · e

2πi
d (tm+d−1)jm2 e

iϕ1⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t1
1 · · · e−

2πi
d rmt1

m e−
2πi

d s1t1 · · · e−
2πi

d sm(tm+d−1)

|t1⟩ · · · |tm ⊕d (d − 1)⟩+ · · ·
+ αd−1,··· ,d−1e

2πi
d (t1+1)j12 · · · e

2πi
d (tm+1)jm2 e

iϕ(M−1)⊕MlM−1

e−
2πi

d r1tM−1
1 · · · e−

2πi
d rmtM−1

m e−
2πi

d s1(t1+1) · · · e−
2πi

d sm(tm+1)

|t1 ⊕d 1⟩ · · · |tm ⊕d 1⟩]B1k ···Bmk
. (46)

Similar to the case for remote implementation of partially unknown operations of one
qudit, the m-qudit operation

U
r1,··· ,rm ,j12,··· ,jm2,s1,··· ,sm
t1,··· ,tm

= e
2πi

d t1(s1−j12) · · · e
2πi

d tm(sm−jm2)e
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m

|t0
1, · · · , t0

m⟩⟨t1, · · · , tm|
+ e

2πi
d t1(s1−j12) · · · e

2πi
d (tm+d−1)(sm−jm2)e

2πi
d r1t1

1 · · · e
2πi

d rmt1
m

|t1
1, · · · , t1

m⟩⟨t1, · · · , tm ⊕d (d − 1)|+ · · ·
+ e

2πi
d (t1+1)(s1−j12) · · · e

2πi
d (tm+1)(sm−jm2)e

2πi
d r1tM−1

1 · · · e
2πi

d rmtM−1
m

|tM−1
1 , · · · , tM−1

m ⟩⟨t1 ⊕d 1, · · · , tm ⊕d 1|, (47)

in accordance with Bob1’s measurement results t1, · · · , tm, the senders’ measurement results
r1, · · · , rm, the lower-grade agents’ measurement results j12, · · · , jm2 and the upper-grade
agents’ measurement results s1, · · · , sm can reconstruct the desired state at Bobk’s site.

(U
r1,··· ,rm ,j12,··· ,jm2,s1,··· ,sm
t1,··· ,tm

)B1k ,··· ,Bmk
|φ6⟩ = |ψ′⟩. (48)

Now, we discuss another case in which the agents agree to reconstruct the desired state
|ψ′⟩ at Charliep’s site (p = 1, · · · , z). The quantum circuit for the hierarchial joint remote
implementation of partially unknown operations of m qudits with lower-grade agent is
shown in Figure 4. To reconstruct the desired state at the lower-grade agent Charliep’s site,
the other lower-grade agents Charlie1, · · · , Charliep−1, Charliep+1, · · · , Charliez and the
upper-grade agents Bob1, · · · , Boby perform x-basis measurements on their entangled par-
ticles C11, · · · , Cm1,· · · ,Cp−1,1, · · · , Cp−1,m,Cp+1,1, · · · , Cp+1,m, C1z, · · · , Cmz and B1, · · · , By,
after Aliceu (l = u, · · · , n) implements partially unknown operation Ul1,l2,··· ,ld−1

(ϕl,0, ϕl,1, · · · ,
ϕl,d−1) and performs x-basis measurements on its qudit Au. The state |φ4⟩ can be rewritten as:
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|φ4⟩ =
d−1

∑
j12,··· ,jm2,s11,··· ,
smy ,q11,··· ,qmz=0

e−
2πi

d j12q1 · · · e−
2πi

d jm2qm

|q11⟩x, · · · , |q1,p−1⟩x|j12⟩|q1,p+1⟩x · · · |q1,z⟩x · · ·
|qm1⟩x, · · · , |qm,p−1⟩x|jm2⟩|qm,p+1⟩x · · · |qm,z⟩x

[α0,··· ,0e
2πi

d t1 j12 · · · e
2πi

d tm jm2 e
iϕ0⊕2 l1 ···⊕MlM−1

e−
2πi

d r1t0
1 · · · e−

2πi
d rmt0

m e−
2πi

d s1t1 · · · e−
2πi

d smtm

+ α0,··· ,1e
2πi

d t1 j12 · · · e
2πi

d (tm+d−1)jm2

e
iϕ1⊕2 l1 ···⊕MlM−1 e−

2πi
d r1t1

1 · · · e−
2πi

d rmt1
m

e−
2πi

d s1t1 · · · e−
2πi

d sm(tm+d−1) + · · ·
+ αd−1,··· ,d−1e

2πi
d (t1+1)j12 · · · e

2πi
d (tm+1)jm2

e
iϕ(M−1)⊕MlM−1 e−

2πi
d r1tM−1

1 · · · e−
2πi

d rmtM−1
m

e−
2πi

d s1(t1+1) · · · e−
2πi

d sm(tm+1)], (49)

where

qv = qv,1 + · · ·+ qv,p−1 + qv,p+1 + · · ·+ qv,z,

sv = sv,1 + · · ·+ sv,y. (50)

The state of particles C1p, · · · , Cmp becomes |ω⟩ if the measurement results are ob-
tained by Charlie1, · · · , Charliep−1, Charliep+1, · · · , Charliez are q11, · · · , qm1, · · · , q1,p−1,
· · · , qm,p−1,q1,p+1, · · · , qm,p+1, · · · ,q1z, · · · , qmz.

|ω⟩ = α0,··· ,0e
iϕ0⊕2 l1 ···⊕MlM−1 e−

2πi
d r1t0

1 · · · e−
2πi

d rmt0
m

e−
2πi

d s1t1 · · · e−
2πi

d smtm [(
d−1

∑
j12=0

e
2πi

d j12(t1−q1)

|j12⟩) · · · (
d−1

∑
jm2=0

e
2πi

d jm2(tm−qm)|jm2⟩)]

+ α0,··· ,1e
iϕ1⊕2 l1 ···⊕MlM−1 e−

2πi
d r1t1

1 · · · e−
2πi

d rmt1
m

e−
2πi

d s1t1 · · · e−
2πi

d sm(tm+d−1)[(
d−1

∑
j12=0

e
2πi

d j12(t1−q1)

|j12⟩) · · · (
d−1

∑
jm2=0

e
2πi

d jm2(tm+d−1−qm)|jm2⟩)] + · · ·

+ αd−1,··· ,d−1e
iϕ(M−1)⊕MlM−1 e−

2πi
d r1tM−1

1 · · ·
e−

2πi
d rmtM−1

m e−
2πi

d s1(t1+1) · · · e−
2πi

d sm(tm+1)

[(
d−1

∑
j12=0

e
2πi

d (t1+1−q1)j12 |j12⟩) · · ·

(
d−1

∑
jm2=0

e
2πi

d (tm+1−qm)jm2 |jm2⟩)]. (51)
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Figure 4. The quantum circuit for the hierarchial joint remote implementation of partially unknown

operations of m qudits with lower-grade agent Charliep.

To reconstruct the desired state, Charliep first performs the inverse Hadamard op-
erations on its qudits C1p, · · · , Cmp and then performs corresponding unitary operation
on its qudits according to all the other agents’ measurement results. After Charliep per-
forms m inverse Hadamard operations on its qudits C1p, · · · , Cmp, the state of particles
C1p, · · · , Cmp becomes:



Entropy 2024, 26, 857 22 of 26

|ω1⟩ = α0,··· ,0e
iϕ0⊕2 l1 ···⊕MlM−1 e−

2πi
d r1t0

1 · · · e−
2πi

d rmt0
m

e−
2πi

d s1t1 · · · e−
2πi

d smtm [|t1 ⊕d (d − q1)⟩
· · · |tm ⊕d (d − qm)⟩]C1p ,··· ,Cmp

+ α0,··· ,1e
iϕ1⊕2 l1 ···⊕MlM−1 e−

2πi
d r1t1

1 · · · e−
2πi

d rmt1
m

e−
2πi

d s1t1 · · · e−
2πi

d sm(tm+d−1)[|t1 ⊕d (d − q1)⟩
· · · |tm ⊕d (d − 1 − qm)⟩]C1p ,··· ,Cmp

+ · · ·

+ αd−1,··· ,d−1e
iϕ(M−1)⊕MlM−1 e−

2πi
d r1tM−1

1 · · ·
e−

2πi
d rmtM−1

m e−
2πi

d s1(t1+1) · · · e−
2πi

d sm(tm+1)

[|t1 ⊕d (1 − q1)⟩ · · · |tm ⊕d (d − qm)⟩]C1p ,··· ,Cmp
. (52)

The m-qudit unitary operation

T
r1,··· ,rm ,s1,··· ,sm
t1,··· ,tm ,q1,··· ,qm

= e
2πi

d r1t0
1 · · · e

2πi
d rmt0

m e
2πi

d s1t1 · · · e
2πi

d smtm

|t0
1, · · · , t0

m⟩⟨t1 ⊕d (d − q1), · · · , tm ⊕d (d − qm)|
+ e

2πi
d r1t1

1 · · · e
2πi

d rmt1
m e

2πi
d s1t1 · · · e

2πi
d sm(tm+d−1)

|t1
1, · · · , t1

m⟩⟨t1 ⊕d (d − q1), · · · , tm ⊕d (d − 1 − qm)|
+ · · ·

+ e
2πi

d r1tM−1
1 · · · e

2πi
d rmtM−1

m e
2πi

d s1(t1+1) · · · e
2πi

d sm(tm+1)

|tM−1
1 , · · · , tM−1

m ⟩⟨t1 ⊕d (1 − q1), · · · , tm ⊕d (d − qm)|, (53)

in accordance with the measurement results t1, · · · , tm, q1, · · · , qm, r1, · · · , rm, s1, · · · , sm

obtained by the other agents can reconstruct the desired state |ψ′⟩ at Charliep’s site.

T
r1,··· ,rm ,s1,··· ,sm
t1,··· ,tm ,q1,··· ,qm

|ω1⟩C1p ,··· ,Cmp
= |ψ′⟩. (54)

Similar to the case for remotely implementing partially unknown operations of one qu-
dit, the protocol for the remote implementation of partially unknown operations of m
qudits has the advantage of possessing a channel capacity by transmitting dm coefficients
ϕ0, · · · , ϕdm−1 via m multiparticle entangled states. The protocol is more convenient in
application, since partially unknown operations of m qudits can be remotely implemented
with less resources than that in bidirectional teleportation. Similar to the case for remotely
implementing partially unknown operations of m qubits, the protocol for the remote im-
plementation of partially unknown operations of m qudits plays an important role in
distributed quantum computation, since the partially unknown operations of m qudits are
not reducible to the direct products of partially unknown operations of one qudit. Since
high-dimensional multiphotonic operations have been experimentally realized with an an-
cilla state and quantum nondemolition measurements, and a high-dimensional multiqudit
state has been demonstrated via photon’s frequency degree of freedom, the protocol for the
remote implementation of partially unknown operations of m qudits can be realized with
current techniques [90].

4. Discussion and Summary

In Ref. [58],the two agents Alice and Bob can exploit the nonlocality of two-qubit
entangled state to avoid the requirement that the receivers are hierarchized in accordance
with their abilities to reconstruct the desired state in controlled remote implementation of
the partially unknown operations of one qubit with multiparticle entangled state. How-
ever, when the protocol becomes a hierarchical controlled joint remote implementation of
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partially unknown operations of m qudits, the approach in Ref. [58]. does not work. In
contrast to Ref. [48], the information of the partially unknown operations to be remotely
implemented is shared by the n senders and the receiver cannot reconstruct the desired
state if it does not cooperate with all the senders. This result will enhance the security of
quantum operation remote implementation in long-distance quantum communication.

In summary, we propose a scheme for the hierarchical joint remote implementation
of partially unknown operations of m qudits belonging to restricted sets by using m mul-
tiparticle entangled states as the quantum channel. The n senders share the information
of the partially unknown operations to be remotely implemented and perform quantum
operations on their entangled particles according to their knowledge of the quantum opera-
tion to be remotely implemented. The lower-grade agents perform z-basis measurements if
the agents agree to reconstruct the desired state at the upper-grade agent’s site. The upper-
grade agent needs only to cooperate with one of the lower-grade agents to reconstruct
the desired state. The other agents perform x-basis measurements if the agents agree to
reconstruct the desired state at the lower-grade agent’s site. The lower-grade agent needs
all the other agents’ cooperation to reconstruct the desired state. This protocol has the
advantage of having high channel capacity in long-distance quantum communication
by using high-dimensional quantum entangled states as the quantum channel for joint
implementing the partially unknown operations of m qudits.
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