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Abstract

The topics of this thesis are based on circuit quantum electrodynamics (cQED),
a theoretical and experimental platform allowing the study of light-matter inter-
action. This platform is rich both in observable physical phenomena and future
practical applications. A “circuit” in cQED may comprise various elements, with
the two main types being electromagnetic quantum harmonic oscillators, or res-
onators, and superconducting Josephson quantum bits, qubits. Because of the
relative ease to fabricate and control quantum circuits—especially when com-
pared to the more traditional cavity quantum electrodynamics—cQED has quickly
grown in popularity in research labs across the world and is regarded as one of
the major contenders for quantum computing.

The advances referred to in the title of this thesis address three significant
challenges to practical applications of cQED; they are relevant not only to quantum
computing, but also to other applications, such as simulations of physical systems.
The first advance is related to control scalability. Practical applications require
large circuits, and the current approaches used to send control signals to those
circuits will not scale indefinitely. A solution to this challenge, the quantum socket,
is presented and evaluated in depth. The second advance concerns calibration.
Any application of cQED requires knowing the precise parameters defining the
interactions between the various components of a circuit. Two cutting edge meth-
ods for the calibration of interaction parameters are explained and benchmarked;
they show a remarkable improvement over existing, inefficient, methods. The
third advance involves the physics of dielectric defects in the samples on which
circuits are fabricated. These unwanted defects are modeled as two-level systems
(TLS) that interact with circuit elements such as qubits. Experimental measure-
ments and novel simulations conclusively demonstrate that interactions between
TLS are responsible for the stochastic relaxation-time fluctuations observed in
superconducting qubits.
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Résumé

Les sujets de cette these portent sur I'électrodynamique quantique des circuits
(EDQc), une plateforme théorique et expérimentale permettant I’'étude de 'in-
teraction entre la lumiére et la matiére. Cette plateforme présente de nombreux
phénoménes physiques observables et aussi un fort potentiel pour des applications
futures. Un “circuit” en EDQc peut contenir divers éléments, les deux principaux
étant l'oscillateur harmonique quantique électromagnétique et le bit quantique
supraconducteur de Josephson. Les circuits quantiques sont relativement faciles a
fabriquer et a contrdler, surtout lorsque comparés a I’électrodynamique quantique
en cavité traditionnelle. C’est pourquoi 'EDQc a rapidement gagné en popularité
dans les laboratoires du monde entier et est maintenant considérée comme une
voie prometteuse vers la fabrication d'un ordinateur quantique.

Les “avancées” mentionnées dans le titre de cette thése abordent trois dif-
ficultés qui entravent les applications pratiques de I'EDQc. Ces avancées sont
pertinentes non seulement pour le calcul quantique, mais aussi pour d’autres
applications, telles que la simulation de systemes physiques quantiques, difficile a
réaliser avec un ordinateur classique. La premieére avancée est liée a I'extensibilité
du contréle. Les applications pratiques nécessitent des circuits de grande taille
et les approches actuelles utilisées pour envoyer des signaux de controle a ces
circuits ne pourront pas étre étendues indéfiniment. Une solution a ce probléme,
le connecteur quantique, est présentée et évaluée de maniére approfondie. La
deuxieme avancée concerne l'étalonnage. Toute application de 'EDQc nécessite de
connaitre les parametres précis définissant les interactions entre les différentes
composantes d'un circuit. Deux techniques de pointe pour le calibrage des para-
metres d’interaction sont expliquées et évaluées. Ces techniques montrent une
amélioration notable par rapport aux méthodes existantes inefficaces. La troisieme
avancée concerne la physique des défauts diélectriques présents dans les puces
fabriquées pour les expériences. Ces défauts indésirables sont modélisés comme
des systemes a deux niveaux (SDN) qui interagissent avec les éléments du circuit
tels que les qubits. Des mesures expérimentales et des simulations novatrices
démontrent de maniere concluante que les interactions entre les SDN sont res-
ponsables des fluctuations stochastiques du temps de relaxation, omniprésentes
dans les qubits supraconducteurs.
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Introduction

As a discipline, the study and knowledge of the natural world has its origins in Archaic
Greece, between 650 and 480 BCE. The word “physics” itself traces its roots back to
the Ancient Greek word for “nature”: @uo1g (physis). It was there that some of the first
natural philosophers started seeking explanations for natural phenomena in nature
itself, rather than in supernatural beliefs. One of those early philosophers was Dem-
ocritus of Abdera, probably born between 470 and 460 BCE. Democritus was one of
the first known proponents of atomism, the idea that matter was constituted of indivis-
ible discrete pieces, or atoms, from the word dtopog (dtomos) meaning “indivisible”.
In-between the atoms was simply void that one could cut through in order to separate
chunks of matter. The argument of Democritus was surprisingly simple: If matter was
infinitely divisible, then we could carry out this division (which would of course take
infinite time), and we would be left with infinitely many parts. However, those parts of
matter should also be divisible, thereby contradicting the hypothesis that the initial
chunk was divided infinitely. Therefore, Democritus concluded, there must be a point
at which we must have to stop dividing matter: the atom [1].

As we now know, Democritus ended up right about the atom (or nearly right-let’s
not forget quarks!) In some ways, the indivisibility of the atom is an idea precursor
to quantum mechanics®. In quantum mechanics, particles are discrete, certainly?, but
many other, less obvious, physical quantities—like light and energy—come in discrete
chunks as well.

This thesis is concerned with the physics resulting from the interaction of light and
matter in small numbers of discrete quanta of energy. Reaching this low-energy regime
can be accomplished in a few ways, with the traditional approach being cavity quantum
electrodynamics experiments, which deal with natural atoms and their absorption of

IThe word “quantum” comes from the Latin interrogative adjective meaning “how much”.
2And there are many of them! See the standard model.
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Figure 1.1: Schematic representation of a cavity QED experiment. An atom (red, center)
is sent in an electromagnetic cavity formed by two mirrors (gray, on each side). The
cavity is populated with a photon field (blue). The atom interacts with the cavity
(vellow) and can be excited externally by a laser (purple). Both atom and cavity also
slowly decay into the environment, at different rates y and k (green).

light quanta. A second approach is to use superconductivity to create artificial atoms:
quantum states that are condensates of many particles, but, just like Democritus’ atoms,
behave as a single, indivisible, one.

1.1 Cavity Quantum Electrodynamics

Building interesting quantum systems that we can manipulate is no small endeavor.
Historically, most quantum experiments were implemented within the context of cavity
quantum electrodynamics, or cavity QED. Such a platform let physicists explore light-
matter interactions by constraining light in a cavity (a region of space enclosed by
mirrors), and observing its interactions with matter, usually individual atoms. The
cavity, in particular, turned out to be a very useful experimental apparatus. Indeed, free
space is a very difficult environment to work in, electromagnetically-speaking, for the
simple reason that it allows all light propagation. In the classical world, this is useful,
permitting light emitted from the Sun to bounce around freely, lighting up our world
and allowing us to see. But for quantum mechanics, this freedom restricts the amount
of phenomena that would otherwise occur. Atoms “excited” to a particular energy
level can usually release some of that energy as a photon at a particular frequency
Wpm = (Ey — Ep)/h, which corresponds to the energy difference between the start
and end levels m and n. If an excited atom is sitting around in free space, a photon can
thus easily get emitted spontaneously and fly away. This is problematic if, for example,
you are trying to entangle two atoms in a Bell state |00) + |11); the state will not be
stable for very long, since the atoms will quickly lose their energy and fall back to the
ground state |00).

Enter cavities: A cavity, which can generally be fabricated with two parallel mirrors,
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is different from free space in that it only allows photons with a very restricted set of
frequencies to exist within it. If an atom is excited by a quantum of energy corresponding
to a frequency that is not supported by the cavity, there is nowhere for a hypothetical
photon to go if emitted. Fascinatingly, this restriction on the photon actually prevents
the atom'’s excitation from being converted into light in the first place!

The theoretical ground for such effects is historically attributed to Purcell. In 1946,
he was the first to calculate that a single-electron atom coupled to a near-resonance?
lossy cavity mode would have its decay rate enhanced relative to an atom in free
space [2]. Conversely, if the atom and cavity are far off-resonance, the decay rate can be
reduced. The first experiments on suppressed spontaneous emission were performed
by Drexhage, Kuhn and Schafer with fluorescing organic dye [3].

A cavity also enhances the strength of the interaction with the atom by increasing
the amplitude of the electromagnetic field. Placing atoms within cavities allowed
researchers to start experimenting with strong atom-light interactions, with long atom
lifetime. Early experiments in this direction were started in the 1980s. 20 years later,
it became possible to observe individual excitations swap back and forth between the
electromagnetic field and the atom [4] and create entangled quantum states [5]. For
pioneering this kind of work, Serge Haroche (along with David Wineland, who worked
on similar light-matter effects) won the 2012 Nobel Prize in Physics [6].

1.2 Superconductivity and the Josephson Effect

The phenomenon of superconductivity was first discovered in 1911 by Dutch physi-
cist Heike Kamerlingh Onnes. That discovery itself relied on a second discovery, the
production of liquid Helium, which Onnes had achieved three years earlier, in 1908.
Thanks to the low temperature of liquid Helium, Onnes was able to cool down metals
to very low temperature, which let him observe the transition of Mercury to a state
of near-zero resistance at 4.2 K [7]. A few years later, experiments with persistent
currents showed that the resistivity of superconductors was so small that currents
could not be observed to decay over hours. Onnes received the 1913 Nobel Prize in
Physics “for his investigations on the properties of matter at low temperatures” [8]. Of
course, perfect conductivity is only one of the features of superconductors, the second
is the Meissner effect, discovered in 1933 by the German scientists Walther Meissner
and Robert Ochsenfeld [9]. The effect describes the expulsion of magnetic fields from a
superconductor as it transitions into the superconducting state. This effect does not
result simply from the perfect conductivity. As such, the Meissner effect was a clear sign
that superconductivity was a distinct phase of matter that required the development of
new theories for a proper explanation.

3This means that the atom and cavity have nearly the same frequency

3
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By most accounts, that theory is the BCS theory, named after John Bardeen, Leon
Cooper, and John Robert Schrieffer, the researchers who proposed it in 1957 [10, 11].
The BCS theory relied on the idea of bound electron states, where two electrons-which
are fermions—combine to form a new particle: a Cooper pair—a boson [12]. The BCS
theory is therefore a microscopic theory of superconductivity, and though it is not a
universal one, meaning that certain superconductors do not behave according to BCS
theory, it still enabled many predictions, in particular, the Josephson effect. For their
theory, Bardeen, Cooper and Schrieffer received the 1972 Nobel Prize in Physics*.

Just a few years after the BCS theory was introduced, in 1962, Brian Josephson
predicted what is now called the Josephson effect [14]. The Josephson effect refers to
the quantum tunneling of superconducting electrons—Cooper pairs—across a thin non-
superconducting barrier. While it was known at the time that normal electrons could
tunnel across a barrier, this had not been conclusively observed with Cooper pairs. In
all likelihood, the electrical noise in high-resistance samples created currents in excess
of the critical current®, thereby preventing observation of supercurrents [15]. Once
this was understood, Anderson and Rowell quickly conducted experiments with low-
resistance samples that demonstrated probable tunneling supercurrent [16]. Further
experiments soon confirmed the discovery by observing the magnetic field and AC
dependence of this tunneling supercurrent [17, 18]. The significance of Josephson'’s
prediction was quickly recognized: In 1973, he received the Nobel Prize in Physics,
shared with Leo Esaki and Ivar Giaever [19].

Almost immediately after the Josephson effect was measured, researchers realized
that creating a loop comprising two Josephson junctions would result in a highly sensi-
tive magnetometer [20]. The DC SQUID, which stands for “superconducting quantum
interference device,” exploits the Josephson effect in combination with superconducting
flux quantization to create a flux-to-voltage converter, thereby allowing measurement
of minuscule changes of the magnetic flux threading the loop [21].

A second notable feature of the Josephson junction concerns its dynamics. While
an isolated superconductor in the ground state has a fully defined condensate wave
function, a Josephson junction possesses a macroscopic degree of freedom: the wave
function phase difference across the barrier ¢ = ¢ — ¢, where ¢y and ¢, are the
order parameter phases®. This variable is macroscopic because it determines the
relative phase between every Cooper pair in the left and right superconductors,i.e. a
“macroscopic” number of Cooper pairs.

*This was actually Bardeen’s second Nobel Prize! He had already received one in 1956 for the
invention of the transistor [13].

>Superconductors and Josephson junctions are only superconducting if the current flowing through
them is less than the critical current.

The order parameter is a concept used to solve superconductivity phase transition problems in the
Ginzburg-Landau theory. See Chapter 4 of Ref. [22] for more details.
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Figure 1.2: Schematic representation of a Josephson junction. A Josephson junction
consists of a superconductor (gray) interrupted by an insulating barrier (blue). If the
barrier is thin enough, Cooper pairs may tunnel across, resulting in a superconducting
tunneling current. The behavior of the tunneling current is determined by a single
macroscopic variable: the wave function phase difference ¢ = ¢z — ¢;.

The work more directly relevant to this thesis was started by demonstrating vari-
ous macroscopic quantum effects with Josephson junctions. In 1981, Voss and Webb
demonstrated macroscopic quantum tunneling (MQT) [23], which is unrelated to the
tunneling of Cooper pairs through the junction and instead refers to the tunneling of a
@ “particle” out of its potential well”. The existence of discrete energy levels within
the potential well was confirmed in 1985 by Martinis, Devoret and Clarke [24]. These
results ignited a flurry of experiments meant to show the viability of using Josephson
junctions to build an “artificial atom”. Such a device would be in many ways equivalent
to a real atom, as those used for cavity QED experiments. Unlike traditional atoms,
however, an artificial one was expected to provide many more experimental “knobs,”
for example, controllable energy and couplings to electromagnetic modes.

1.3 Quantum Computing and Quantum Information

A significant reason for the current popularity of superconducting circuit QED is, of
course, its potential as a platform for quantum information and quantum computing.
Building a universal quantum computer 25, 26, 27, 28, 29, 30] will make it possible to
execute quantum algorithms [31], which would have profound implications on science
and society. As a field, quantum computing began in the early 1980s, when researchers
started thinking about performing classical computation using quantum mechanics.
The first articles about quantum computation showed that a quantum-mechanical
Turing machine would in fact not perform worse than a classical computer, and that
classical computation performed with such a “quantum computer” was logically re-
versible [32, 33, 34].

[t was in 1982 that Feynman introduced the idea that a quantum computer could
actually have a computational advantage over classical computers at performing certain

7 A @ particle is represented by a junction wavefunction that is well-defined in the ¢ coordinate.
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tasks. The example he gave was simple: A quantum computer could be used to simulate
a quantum mechanical system [35]. Feynman’s idea spurred research in this direction,
with David Deutsch first formulating the workings of a universal quantum computer
in 1985, followed by further work on the now-ubiquitous circuit model of quantum
computation [36, 37, 38, 39]. Deutsch was also the first to demonstrate a quantum
algorithm providing a provable speedup over a classical computer,; the Deutsch-Jozsa
algorithm [40].

To this day, however, Shor’s algorithm for integer factorization remains the most
important quantum algorithm [41, 42]. Though the Deutsch-Jozsa algorithm provided
a speedup, its potential for real world application was very limited. Shor’s algorithm,
on the other hand, could break public key cryptography based on the RSA system,
which relies on the hardness of factorization and had been recently developed [43]. At
the same time, Shor introduced an algorithm to solve the discrete logarithm problem,
which was used for Diffie-Hellman key exchange [44]. By exploiting the properties of
the quantum Fourier transform [45], both of Shor’s algorithms provide an exponential
speedup over the best classical algorithms. Although no proof exists, it is widely
believed that there are no efficient classical solutions to integer factorization or the
discrete log problem [26]. For that reason, Shor’s result attracted considerable interest
and is still one of the main sources of motivation for the realization of a quantum
computer.

Soon after; a second important result was published, and is now known as Grover’s
search algorithm [46, 47]. Unlike Shor’s algorithm, the search algorithm was proven to
be faster than any classical algorithm. The speedup, however, is only quadratic. While a
classical algorithm will require O(N) steps to search through a list containing N items,
a quantum computer can search through the list in only O(V/N) steps. The relatively
smaller advantage of Grover’s algorithm is counterbalanced by the wide applicability it
has to many problems [48].

The language of quantum computing and quantum algorithms is provided by the
field of quantum information, which deals with the processing, storage, and transmis-
sion of quantum bits, or qubits. The material in this thesis does not depend explicitly
on those concepts, and we instead refer readers to literature dedicated to those topics,
such as Refs. [26, 28, 49, 50]. Within quantum information, the topic most relevant
to this thesis is probably error correction. Indeed, it was quickly realized, once the
first physical qubits started appearing in the 1990s, that many sources of errors would
prevent the algorithms discussed above from being implemented. A similar prob-
lem affects classical information—bits—and there the solution is to encode bits with
some amount of redundancy, a concept called error correction. This classical solution,
however, could not be applied directly to quantum information since qubits are fun-
damentally analogue (i.e., continuous) quantities, and, even more critical, qubit states
cannot be copied [51]. Fortunately, after a few years it was discovered that quantum

6
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error correction was possible [52, 53, 54, 55]. Today, the most promising avenue for
scalable quantum error correction is provided by surface codes, a family of topological
error correcting codes based on the stabilizer formalism [56, 57, 58, 59, 60]. Although
quantum computers will be lacking fault tolerance for the near future, a variety of
potential applications have been devised for such systems. Examples include solving
optimization problems [61, 62], machine learning [63, 64, 65, 66], materials science
and chemistry [67, 68, 69].

Quantum computing architectures based on different types of physical qubits have
been investigated since the late 1990s [29]. This thesis is focused on superconducting
devices, and will not cover the many other approaches to experimental quantum infor-
mation. In brief, those other architectures may be implemented using photons [70, 71],
trapped ions [72], and spins in molecules [73], quantum dots [74, 75, 76, 77, 78], and
silicon [77, 79]. For an overview of the realization of various quantum algorithms on
various types of experimental platforms, see Ref. [31] and the references within.

The very first superconducting qubit was the charge qubit, which was made out of
a voltage-biased Josephson junction. It was developed almost at the same time by the
Devoret group, in France, and the Nakamura group, in Japan [80, 81, 82]. The quantum
mechanical description of the charge qubit is given by the Cooper-pair box Hamiltonian.
The charge qubit managed to show that it was possible to create a quantum two-level
system and control it. Unfortunately, immature experimental techniques and pervasive
charge noise reduced the coherence time to only tens of nanoseconds. Soon after, the
Devoret group, now at Yale University, improved the charge qubit by replacing the single
junction with two junctions in a loop, allowing for tunability of the qubit transition
frequency and operation at the “sweet spot,” improving coherence times[83, 84]. The
second improvement was the development of an efficient readout scheme, though it
was destructive to the qubit state. Two other qubit types were developed around the
same time: the flux qubit [85, 86, 87, 88] and the phase qubit [89]; together with the
charge qubit, they form the original superconducting qubit trifecta [90, 91].

Today, better qubit circuits, setup designs and fabrication improvements have
pushed the coherence times of superconducting qubits to 100 ps and above [92, 93, 94],
and improved quantum-limited amplifier designs allow for high-fidelity nondemolition
readout [95]. Large companies have also joined the race to increase the number of
qubits, with the goal of improving the computational power of quantum devices, and
eventually creating a fault-tolerant qubit. The latest major milestone reached demon-
strated a quantum advantage over classical computers, though with computational
problems specifically designed for that purpose [96, 97]. As a result of these advances,
quantum computing has transitioned into the so-called noisy intermediate scale quan-
tum (NISQ) era [98]. The progress in the last 20 years has therefore been substantial,
and we suggest a few recent reviews to get a sense of it [91, 99, 100, 101].
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1.4 Thesis Overview

This thesis presents three advances, or results, in the field of circuit quantum electro-
dynamics (circuit QED, or cQED, if you really want to save space). For this purpose, we
first explain in Chapter 2 the theory foundational to circuit QED. This includes the two
basic circuit elements, the superconducting resonator and the superconducting qubit,
and the interaction between them. We also briefly cover quantum gates, which is how
qubits are controlled in experiments, and basic dynamics and decoherence concepts
useful for the later chapters.

Chapter 3 switches the tone to explain in depth how to realize cQED experiments.
No more theory (or very little)! The first part covers maybe the most important aspect
of cQED experiments: the setup. Often overlooked in articles, the setup, more than
anything else, will determine the quality of the results. We attempt to touch as many
topics as possible: sample design, thermalization, wiring, filtering, control, readout,
and instrumentation. The rest of the chapter demonstrates the “bring-up” of a device,
including characterization experiments to perform after first cooling down, and evalu-
ation of the primary circuit parameters. The end of the chapter covers more advanced
experiments, including a demonstration of randomized benchmarking.

The following chapters, Chapter 4, 5, and 6 also present experiments that can
be done with a circuit QED setup. Chapter 4, which presents the quantum socket
in conjunction with superconducting resonator measurements, is in many ways an
extension of the setup sections. The quantum socket is a fully vertical wiring system
for qubit devices introduced in 2016. Such an approach is necessary for scalable
superconducting quantum computing. Even today, we are one of very few groups with
a true 3D wiring setup in the lab.

Chapter 5 addresses important issues in cQED involving parameter estimation. As
the size of circuit increases, it becomes important to properly and efficiently calibrate
the various system parameters. The two algorithms presented are able to efficiently
estimate coupling parameters, e.g., between two qubits, for gate calibration, or between
a qubit and a noisy defect, for coherence time improvements.

Chapter 6 explores the basic physics of a pervasive problem in superconducting
devices: the time-fluctuations of qubit relaxation times. Because these fluctuations
can cause T; to vary by an order of magnitude over days, it is critical to understand
their origin and mechanism. The material of this chapter presents measurements and
simulations that strongly support the mechanism of these fluctuations to be due to
interacting two-level systems.

Finally, Chapter 7 concludes by summarizing the advances in this thesis and placing
them in the broader context of the current challenges.



Circuit Quantum Electrodynamics

The field of circuit quantum electrodynamics was born shortly after the demonstra-
tion of the first superconducting qubits, then called artificial atoms, or artificial two-
level systems [80, 81, 87, 89, 83]. Indeed, it was quickly realized that the relative
ease of fabrication of superconducting devices made them convenient to embed in
complex circuits comprising many components. In particular, the first step was to
demonstrate a coupling between a qubit and a superconducting cavity, or resonator,
thereby replicating the setup of cavity QED experiments entirely on a chip [102, 103].
The field quickly expanded, driven by the interest in quantum computing. Coherence
times improved [104, 105, 92], and the number of qubits and resonators on a chip
increased [106, 107,108, 109]. Today’s state of the art quantum circuits are made with
dozens of qubits, and they pose incredible challenges to fabricate, measure, calibrate
and characterize [109, 97].

In this chapter, we discuss the most important elements of circuit QED experiments,
namely the superconducting resonators and qubits. The circuit equations of parallel
RLC resonators are derived in Sec. 2.1. We also cover the transmission line resonators,
which are used in experiments and may be modelled similarly. The quantum Hamil-
tonian of the resonator is attained by a method relying on canonical quantization of
conjugate variables. In Section 2.2 we then cover the Josephson equations, which we
use to obtain the qubit Hamiltonian. Section 2.3 then explains how multiple elements
can be wired together to form a proper quantum circuit. The derivation of the full
circuit Hamiltonian hinges on a systematic formulation of the circuit equations as a di-
rected graph, in addition to the quantization concepts used previously for the resonator
and qubit. Finally, Sections 2.4 and 2.5 cover basic concepts underlying gate-based
operations and the dynamics of quantum circuits.

The material of Sec. 2.3 was developed in collaboration with M. Mariantoni. In par-
ticular, the idea of using the classical instantaneous energy of the circuit via Tellegen'’s
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Figure 2.1: Circuit diagram of a parallel RLC resonator.

theorem to derive the quantum Hamiltonian was initially conceived by M. Mariantoni.

2.1 Resonators

Superconducting resonators are the circuit QED equivalent of optical cavities [110].
Instead of trapping photons, they trap electrons (though, of course, both result in
confined electromagnetic waves). Just like cavities, resonators in quantum mechanics
are represented by quantum harmonic oscillators. Resonators are extremely important
in circuit QED: they are used for measuring qubits. Ideally, they must be of very high
quality to avoid losing information to dissipation.

Note that this section is a simple overview focused on the applications of resonators
to the experiments in this thesis. This field of research is vast and there are many kinds
of circuits, coupling methods and applications for superconducting resonators. For
more details, see Refs. [111, 112, 113] and the references therein.

This section also does not cover the fabrication of resonators. For all the experi-
ments covered in this thesis, the resonators are 1/4 aluminum coplanar waveguides
(CPW). More details can be found in Earnest et al. [114].

2.1.1 Circuit Equations

The circuit of Fig. 2.1 represents a lumped-element parallel RLC circuit, connected
to a voltage source via a coupling capacitance C.. In superconducting experiments,
distributed-element—rather than lumped-element—resonators are generally used
because of their ease of fabrication and quality. Distributed resonators are made from
a finite section of transmission line, the length of which determines the resonance
frequency. The correspondence between the two kinds of circuits is given later in this
section.

10
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We initially focus on the RLC section of the circuit. We can immediately calculate
the resonance frequency w;, for which the input impedance Z,.(w) is purely real. The
impedance is [115]

11 -
Z =|l=+—+iwC| . 2.1

Since the resistive part of the impedance is real, the condition for resonance occurs
when the inductive and capacitive parts sum to zero:

iw;C =0 2.2
w? = * (2.3)
tLC

and therefore w; = 1/+/LC.

A second quantity we may calculate is the internal quality factor. The quality factor
of a resonant circuit is defined as 2 times the number of cycles it can sustain after
being energized. It is calculated by dividing the total energy stored by the amount of
power dissipated, and multiplying by the angular resonance frequency to convert the
resulting time to a number. This quantity is therefore calculated at resonance.

E total

Q=w (2.4)

= Wi
Pdissipated
On average, the energy in an RLC circuit is stored in equal amounts in the capacitor
and the inductor. The resistor only dissipates energy as heat. For a root mean square
(rms) voltage V across the resonator, and on resonance, the total energy is

Etotal = Cv? = Llf (25)

where [} is the rms current flowing through the inductor.
Given the rms voltage, the average power dissipated by the resistor is found by
using Ohm'’s law to solve for I, the rms current flowing through the resistor. Then,

VZ
Pdissipated =RV = ? (2.6)
Therefore, the internal quality factor is
R

le

For a parallel RLC circuit, increasing R improves the quality factor.

11
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As mentioned above, distributed element resonators are often made of a section
of transmission line with 50 Q characteristic impedance. For example, a section of
transmission line with length £ open at one end and grounded at the other resonates
at the fundamental frequency w; corresponding to a wavelength A; = 4¢. The circuit
diagram for such a “quarter-wave” resonator is very similar to Fig. 2.1, with the boxed
RLC network simply replaced by a piece of transmission line. The impedance of such a
line is

Z.(w) = Zytanh (af + i) (2.8)
where Z, is the characteristic impedance, « is the attenuation constant, = w/v, is
the phase constant and v, = c¢/+/¢; is the phase velocity which must be determined
according to the effective relative permittivity &, of the transmission line®.

Parallel RLC resonators behave very similar to A/4 resonators. In fact, if we approx-
imate either Eq. (2.1) or Eq. (2.8) near w;, i.e., for small Aw; = w — w;, we obtain an
expression of the form [115]

Z.(w) ~ Zy (m/40Q; + imdw;/2w;) " . (2.9)

Comparing terms gives the correspondence between the RLC and 4/4 resonator:

R=17Zy/(a?) (2.10)
C=mn/(4w;Zy) (2.11)
L=1/(w?C) (2.12)
w; = 21V, /A (2.13)
Q: = B/(2at). (2.14)

It is thus clear that for a transmission line resonator, decreasing the attenuation
constant improves the quality factor. One notable difference between the RLC and 1/4
resonator is that the latter supports infinitely many resonance modes at the frequencies
W, =(2n—1)w; forn € 1,2,3, .... When deriving the Hamiltonian (Subsection 2.1.2)
we usually ignore the higher modes under the assumption they do not interact with
other circuit elements. This assumption is not always valid, however, and it is important
to keep the other modes in mind.

In an experiment, a resonator cannot be isolated as we have assumed above. It must
be connected to a voltage source, which provides the energy to drive the resonance,
and a load, across which a voltage may be measured. Figure 2.1 shows a simple scheme
making use of a coupling capacitor C, to connect the resonator in parallel with a load
Zo. We also include the source-side impedance Z,. For a distributed element circuit, Z,,
is the characteristic impedance.

IFor a CPW transmission line, the effective relative permittivity can be calculated analytically given
dimensions and substrate type. See, e.g., Chapter 2 in Simons [116].

12
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The use of a coupling circuit to measure a resonator means that w; and Q; cannot be
directly observed. This is because the coupling circuit loads the resonator, modifying
the resonance frequency and the quality factor. The input impedance of the resonator
in series with the capacitor is

Zin(w) = + Z (). (2.15)

iwC.
Finding the coupled resonance frequency w, once again requires finding the fre-
quency at which the imaginary part of the impedance is zero, i.e., the solution to
Im [Z;,(wg)] = 0. This calculation is done most conveniently via a root-finding com-
puter program.
The total quality factor Q may be expressed as a combination of Q; and the coupling

quality factor Q. as
-1
Q= ( ! + ! > (2.16)
Qi Qc .
where Q. = 21/ (2wyZ,C.)? for C. < C.

When measuring a resonator such as the one of Fig. 2.1, the quantity of interest is
the S,; S-parameter:

Sy = % (2.17)
Vs
The voltage on the load impedance is given by current division:
V= 1LZ, (2.18)
= I (l + i>_1 (2.19)
Zo  Zin
the total source voltage is
Vs =1 <ZO + (l + i) 1) (2.20)
Zo  Zin
and therefore
Sy = Eld| (2.21)
Vs
=2 <ZO <i + i) + 1) 1 (2.22)
Zy Zin
- <1 ;20 >_1. (2.23)
2Z;,
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Figure 2.2: S,; parameter for a capacitively coupled RLC or 1/4 resonator with R =
63.66 MQ, L = 2.0264nH, C = 500fF, C. = 3.5fF, and Z, = 50 Q.

We plot the amplitude in dB and phase of S,; as a function of w on Fig. 2.2, for
R = 63.66 M, L = 2.0264 nH, C = 500fF, C. = 3.5fF, and Z, = 50 Q. The resonator
thus has w;/2n = 5GHz and Q; = 1000000. However, we can see that resonance
occurs at a lower frequency wy/2m = 4.98256 GHz. The effect of the coupling capacitor
is thus to decrease the resonance frequency. For a transmission line resonator this
effect can be intuitively understood by picturing the coupling capacitor elongating the
wavelength past the open end of the line.

If we approximate Eq. (2.23) given Z, from Eq. (2.9) near wy, i.e., for small Aw =
w — wy, we obtain the following expression [111]:

-1
Q; 1
Sp@ =1+ ———=| . (2.24)
Q1+ 20Qi—
0

This expression can be adjusted to account for imperfect characteristic impedance

on the source or load side [105]. Thus, given a measurement of S,4, we are able to fit the
data and extract Q; and Q,, resulting in a useful characterization of the resonator [114].

14
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2.1.2 Resonator Hamiltonian

Until now, the quantities we have seen could be calculated in a completely classical
manner. In order to calculate the quantum Hamiltonian, we start from the classical
circuit equations, although we assume the loss of the resonator to be zero, i.e.,, 1/R = 0.

For any closed circuit the total power absorbed is 0. This fact is known as Telle-
gen’s theorem. Because the power is 0, the energy is constant. Integrating the power
therefore results in the classical Hamiltonian. Given the instantaneous voltages and
currents v, and i; on each branch of a circuit, we may write

t
Z vkik =0 — H = f dtlz Ukik' (225)
k - k

Equation (2.25) is general and applies to any kind of circuit, we will make use of it in
Sec. 2.2 and 2.3. In the case of a simple LC resonator, there are only two branches, one
each for the inductor and capacitor, thus we may substitute the constituent equations

di;,
. dve
lc = CE (227)
and obtain the classical Hamiltonian
t
H = f de’ (ULI:L + Ucic) (228)
—]t de (192 4 ¢ 2 2.29
- o dt lL vC dt ( . )
Lo,d1 5
=) dt' =5 (LiZ + Cvd) (2.30)
1
=5 (LiZ + Cvd). (2.31)

(2.32)

Note here that for this simple circuit, v = v, and i; = i;. While the current and
voltage are perfectly valid quantities to analyze, it is common to change variables to
flux and charge. In general, the flux ¢ is defined as the time integral of the voltage
across an element, while the charge q is the integral of the current flowing through an

15



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS

element [117]

t
o(t) =f vdt’ (2.33)
_too
q(t) =f idt’. (2.34)
For the LC circuit then, we obtain
¢
i, = I (2.35)
dc
= — 2.
Uc I (2.36)
_ P qt
H= 51 + °C (2.37)

[t is easy to see that ¢ and q are canonically conjugate variables, meaning they have
a Poisson bracket of one. To “quantize” the Hamiltonian, we use the method of classical
analogy, which is generally attributed to Dirac [118]. According to this method, we may
use the Poisson bracket relation between canonically conjugate variables to define the
commutation relation of analogous quantum operators. Therefore, we promote ¢ and q
to ¢ and § as such:

p.q3=1 — [d4g]=in (2.38)
The quantum Hamiltonian is then
H= A L (2.39)
2L 2C

Because ¢ and § obey the canonical commutation relation, like the quantum har-
monic oscillator, H may be diagonalized with ladder operators. By analogy, we define

N Lh(t)i

¢ = ’ 5 @t +a) (2.40)
i Ch(})l

il l/ > (CUEE)) (2.41)

where w; = 1/VLC, as before. After substituting the ladder operators, Eq. (2.39) finally
results in the well-known Hamiltonian

A = hw;(ata + 1/2). (2.42)
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2.2 Superconducting Qubits

Qubits are the “artificial atoms” of circuit QED. Unlike the harmonic oscillator of the
preceding section, qubits are nonlinear devices in the sense that their energy levels are
not equally-spaced, making them anharmonic oscillators. This fact makes them an es-
sential component in circuit QED. A resonator has all of its energy levels equally spaced
by an energy hwy. When driven by a microwave source, a resonator is thus excited
into a coherent state, a quantum superposition over many states that is experimentally
indistinguishable from the state of a classical oscillator. While superconducting qubits
are generally not true two-level systems, their uneven level spacing makes it possible
to address particular transitions individually. This paves the way to experiments where
we create and manipulate arbitrary quantum states, thereby revealing the quantum
nature of our world.

There exist many types of superconducting Josephson qubits, some were mentioned
in Section 1.3. We focus here on a particular type initially developed by the Schoelkopf
group at Yale: the transmon [104, 119]. The transmon was simplified and made more
modular by the Martinis group in Santa Barbara, where they called it the Xmon due to
its shape [92]. This is the design we use for the experiments of this thesis, though we
will use the two names interchangeably.

The transmon resembles the original Cooper-pair box charge qubit [82]. Itis a
superconducting island connected to another island (or directly to ground plane for the
Xmon) via a pair of parallel Josephson junctions. The major difference when compared
to the original Cooper-pair box is the large capacitance C provided by the island(s), in
parallel to the junctions. The larger capacitance exponentially reduces the sensitivity
to charge noise, at a trade-off of smaller anharmonicity [104]. This modification, along
with fabrication improvements, significantly improved coherence times and propelled
the transmon to wide usage across the world, both in academia and industry.

Because the two Josephson junctions are arranged in a loop, they form a DC SQUID.
However, instead of using the interference effect to measure a magnetic field, qubits
use it as a way to tune the transition frequency via a controlled external flux threading
the loop [83]. Figure 2.3 shows the circuit diagram of a qubit with Josephson energy E;
and capacitance C. Note that this circuit is very similar to that of an LC resonator, in
fact, the Josephson element (either a single junction or two in a loop) is often called a
“nonlinear inductor”.

2.2.1 The Josephson Equations

The Josephson equations were derived by Josephson in 1962 [14]. There are two
equations: the first describes the supercurrent flow as a function of the order parameter
phase difference ¢ (the current-phase relation) while the second relates the voltage
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Oe =

I

Figure 2.3: Circuit diagram of a tunable transmon qubit with Josephson energy E;
and capacitance Cqy. The two parallel Josephson junctions form a superconducting
loop, allowing the critical current I,—or equivalently E;—to be tuned by an external
magnetic field.

across the junction to the time-derivative of ¢ (the phase evolution equation)

i; = Iosin(g) (2.43)
h de

= —— 2.44

Y1 2e dt ( )

where I is the junction critical current and e = 1.602176634 x 10~1° C is the elemen-
tary charge. If the current flowing through the junction exceeds I, a voltage will be
produced resulting in phase evolution.

Recall from Eq. (2.33) that the flux is the integral of the voltage, therefore

=9 =9 (2:45)

where @, = h/2e is the magnetic flux quantum.

If we substitute ¢ for ¢ in the first Josephson equation, we obtain an equation
similar to Eq. (2.35). In fact, if we define the Josephson inductance to be L, = h/(2ely),
we see that when the phase difference is small we recover Eq. (2.35) exactly:

2e
h 2e
= in| — 2.47
2el, Sm( n ¢> (247)
1
~ L—]gb for small ¢. (2.48)

This is why a Josephson junction is a nonlinear inductor. Note however, that L, is nota
magnetic inductance; it is a kinetic inductance, generated by the kinetic energy of the
Cooper pairs carrying the supercurrent. It is this nonlinear inductance that makes a
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qubit an anharmonic oscillator rather than a harmonic oscillator, and which therefore
enables quantum operations.

Before moving to the derivation of the Hamiltonian, we introduce one last equa-
tion which is very useful when fabricating junctions: the Ambegaokar-Baratoff rela-
tion [120], which relates the junction critical current to its normal state resistance
R,:

A
2eR,

where 4 is the superconducting gap, assuming that both superconductors are made
of the same material. For aluminum, 4 ~ 200 peV [121]. A typical single-junction
resistance for the devices used in this thesis is R, ~ 10 k(}, resulting in I, ~ 30 nA.

IO=

(2.49)

2.2.2 Qubit Hamiltonian

We proceed in a way similar to the last section: we start by writing the classical energy
and quantize the conjugate variables. Given the Josephson equations and Tellegen’s
theorem [Eq. (2.25)], the classical energy is

t
—ft a' (Mo ) +c dve 2.51
= e sm(<p Qe I (2.51)

, 1
f dt T __e cos(<p) + CQUC (2.52)
1
= —E; cos(¢p) + ECQUCZ‘ (2.53)

where E; = hly/2e is the Josephson energy. Note that we have assumed that there was
a single Josephson element, with critical current [, and energy E;. Nonetheless, taking
into account two junctions in parallel actually leads to the same Hamiltonian. This is
because quantization of the magnetic flux flowing through the SQUID loop constrains
the phase differences of the two junctions, resulting in a single degree of freedom
(rather than two). The Hamiltonian of the SQUID is

Hsquip = —Ej, cos(gq) — Ej, cos(¢3) (2.54)
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Given the flux quantization condition?, we may rewrite the SQUID Hamiltonian to the
form of a single junction with a rescaling of E; [104, 122, 123]:

2
E, —E P2\ 1 + a2 tan( 22 2.55
H — — .
I} 15 |cos 2, an 2, ( )
— D P L : _
where E;, = E; +E;,,d = ﬁ is the asymmetry, and @ is an externally applied

magnetic flux. The external magnetic flux, in particular, is how the effective Josephson
energy may be controlled, therefore allowing for tunability of the qubit frequency.
Tuning is essential for many experiments, in particular those of Chapters 5 and 6.

Instead of changing variables to (¢, q), we leave ¢ as is and change the voltage
variable to charge number n = q./2e, which is simply equivalent to the number of
Cooper pairs on the qubit island, v; = 2en/Cq. Those two variables (¢, n) therefore
have the same commutation relation as (¢, q) (up to a factor of ) and we may quantize
according to Eq. (2.38) to obtain the quantum Hamiltonian

H = —E; cos(p) + 4E;A? (2.56)

where E; = eZ/ZCQ is the single-electron charging energy.

Equation (2.56) is known as the Cooper-pair box Hamiltonian. As mentioned at the
beginning of this section, however, the added parallel capacitance changes the regime
of the system. Instead of 7 being the well-defined variable, as in the Cooper-pair box,
the large E;/E ratio of the transmon causes ¢ to become the “localized” coordinate.
Counterintuitively, increasing the capacitance Cq decreases the charging energy.

It is interesting to compare Eq. (2.56) and Eq. (2.39). The qubit Hamiltonian looks
different at first glance, since ¢ is enclosed in a cosine, rather than being squared. We
can notice, however, that for a large value of E}, and thus a large potential well, the
phase coordinate will be confined to small values. It is therefore possible to expand the
cosine in the small angle approximation, yielding, to fourth order

s2 a4
. ¢ 14
cos(p) = -1+ >~ o4 (2.57)

Now the two Hamiltonians look very similar: they both contain the same harmonic
potential 2. The qubit Hamiltonian of course contains more terms which provide
the required anharmonicity. This small angle approximation is called the transmon

2The flux through a superconducting loop is quantized because the superconducting order parameter
is single-valued in the phase; i.e., the phase must vary by an integer multiple of 2t when going around
the loop such that the order parameter is equal when returning to the same point [22].
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Table 2.1: Classification of the integer order solutions to Mathieu’s equation. The
solutions are categorized according to parity and periodicity, resulting in four classes
of characteristic values and corresponding Mathieu functions. The index of the char-
acteristic value is called the order and is defined form € 0,1, 2, 3, ... The function

names “ce” and “se” stand for cosine- and sine-elliptic. We are using the same notation
as Ref. [126].

Characteristic Value Mathieu Function Parity  Periodicity

arm(q) cem(x, q) even n-periodic
Arm+1(q) cerm+1(%,q) even m-antiperiodic
bym+1(q) seorm+1(%, q) odd m-antiperiodic
bam+2(q) sezm+2(X, q) odd m-periodic

approximation [124], and it may be used to diagonalize the Hamiltonian. We choose
not to use it here, and instead provide an exact method.

It is clear that we cannot use the same harmonic oscillator ladder operators to diag-
onalize the transmon Hamiltonian. Instead, we express 7 in the conjugate momentum
derivative form

d
= —i 2.58
n=-l (2.58)
resulting in the time-independent Schrodinger equation in the phase basis:
d*yn A
- 4ECd—¢)2 — Ej cos(P)Pn = Enthy. (2.59)

This equation has the same form as Mathieu’s differential equation [125, 126] with

® =2x (2.60)
y(x) = Pn(2x) (2.61)
q=—E;/2Ec (2.62)
a=Ey/Ec. (2.63)

For real g, there is an infinite number of solutions with a particular characteristic
value and a corresponding Mathieu function that may be categorized according to parity
and periodicity. These solutions, the integer order Mathieu functions, are tabulated in
Table 2.1.

It is clear from the form of the Schrédinger equation that the wave function must
be periodic in ¢:

Yn(@) = Yn(p + 2m). (2.64)
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Figure 2.4: First four eigenfunctions of the transmon Hamiltonian for E; /E; = 100.

Thus, we need y(x) to be m-periodic for i (¢) to be 2m-periodic. We may now define
the eigenfunctions and eigenvalues of Eq. (2.59) forlevelsn € 0,1, 2, 3, ...: [f nis even,
Y, = ce, withE,, = Eca,,and ifnis odd, y,, = se, .1 with E;, = E-b, .. We thus select
Mathieu functions of even order, alternating between cosine-elliptic and sine-elliptic.
It may also be convenient to offset the eigenenergies such that E, = 0.

We usually label the transmon basis state vectors according to their corresponding
energy level numberas|0),|1),|2), ... When using the transmon as a qubit, it is possible
to only consider the two or three lowest levels, which are then denoted |g), |e), |f),
where the label “g” and “e” stand for ground and excited. In the qubit approximation,
the Hamiltonian is simply

n 1 1
H = _E(El_EO)é-Z = —Ehw016-2 (265)

where hwy; = E; — Ej, and we negate the Pauli Z matrix to obtain the correct level
ordering.

The first four eigenfunctions of Eq. (2.59) are plotted in Fig. 2.4 with the help of the
Mathieu.jl computer package [127]. Unsurprisingly, they look quite similar to the
eigenfunctions of the quantum harmonic oscillator.

The anharmonicity of the transmon is the difference between the transition fre-
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Figure 2.5: Chip design with two Xmon qubits connected by a 4/2 resonator in the
middle. The 4/4 readout resonators are connected to the top branch of each qubit and
are capacitively coupled to the readout transmission line at the top. The transmission
lines on the left and right sides are for flux biasing; they are inductively coupled to each
qubit’s SQUID. The lines at the bottom of the cross are microwave lines used for qubit
drive pulses; they are capacitively coupled to the cross-shaped island.

quencies wg; and w,
a = ha)lz - h(l)o]_ = Ez - 2E1 + Eo. (266)

Because the cosine potential of the transmon is “softer” than a true harmonic potential,
w1, < wpq, and a is therefore negative. In the transmon approximation, hAwgy; =
V8E Ec — E¢c,and a ~ —E. More accurate closed-form analytical expressions can be
derived by expanding the cosine to higher order [128].

2.3 Quantum Circuits

In the last two sections, we introduced the two main elements of circuit QED individually.
We now explain how to analyze a circuit comprising multiple connected elements in a
general and systematic way, assuming that the couplings between elements are made
with capacitors. This method is, however, easily extensible to inductive couplings; this
extension is left to the reader.

We choose as an example a realistic circuit comprising two transmon qubits and one
resonator connecting them,; it is pictured in Fig. 2.5 (we ignore the readout resonators
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Figure 2.6: Circuit diagram (left) and corresponding directed graph (right) for two
qubits connected by a resonator. Though no direct capacitive coupling was designed
between the two qubits, we still include a parasitic capacitance C;5 in the model. The
four circuit nodes are situated at the three dots and the ground.

above each qubit). The circuit diagram for such a design is shown in Fig. 2.6, along with
the directed graph corresponding to the circuit. We use this graph as a tool to identify
the degrees of freedoms in the circuit and subsequently write the circuit equations.

To create the directed graph, we must first locate the branches and nodes in the
circuit. Branches correspond to individual currents flowing through one or multiple
elements in series. Nodes are located wherever currents from different branches split
or join. We also choose a reference or datum node. The datum may be any node, but it
is generally chosen to be the circuit ground.

The next step is to write the incidence matrix, which is simply a different represen-
tation of the graph. For a circuit with n nodes and b branches, the incidence matrix A is
an n X b matrix where each entry A;; is associated to a node/branch combination. If
branch j is directed out of (into) node i, A;; = 1(—1). If branch j is not connected to
node i, A;; = 0. For large circuits the matrix will thus likely be sparse.

If the circuit is connected, meaning that there is a path from any node to any other
(this will be true for any relevant circuit), we can remove the row corresponding to
the datum node from the incidence matrix. This is because A is a representation of
Kirchhoft’s circuit laws which, for n nodes, determine n — 1 linearly independent
equations [129]. The reduced incidence matrix of the circuit, with the datum row
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crossed out, is then

A=lo 0 0 0 1 1 0 -1 -1/ (2.67)
N

0O 0O
\v4 o/

If we denote the branch currents with the vector i = (i1, 02, ) ib)T, the branch
voltages with the vector ¥ = (v, v, ..., vb)T, and the node-to-datum voltages with the
vector & = (ey, ey, ..., e,_1)7, Kirchhoff’s current and voltage laws can be succinctly
written as

Ai=0 and ATé=7. (2.68)

With those two equations, we can choose n — 1 currents and voltages as our inde-
pendent degrees of freedom. For this circuit, we have, e.g., the voltages

177 = 31 - 82 = v1 - 1.73 (269)
Vg =€y —e3 = V3 — Usg (2.70)
Vg = €1 —€3 =V —Usg (271)

therefore leaving 3 independent voltages, v;, v; and vs. We use only those independent
voltages and currents to write the classical energy with Tellegen’s theorem [Eq. (2.25)]
and the constitutive equations covered in the last sections for the inductor, the capacitor,
and the Josephson junction:

t
H = f [E]Ql (le sin (le + U1CQ11j1 + LRi3i3 + U3CRTj3 + E]QZ(pQZ sin (pQZ + Vs CQZU.S

+ (V1 —v3)C12(V1 —V3) + (V3 —v5)Co3(V3—Vs) + (V1 —s)Cq3 (V1—155)] dt’

(2.72)
£ d 1, 1 2 2 2
= J_OO F[_EJQl CcoSs (le + ELng - E]QZ CoSs (pQZ + E(Clel + CR'U3 + CQZUS
+ C1o(v1 —13)% + Co3(v3—vs)* + C13(V1—U5)2)] dt’ (2.73)
= —E;  cos@g + 1L i2—E;,_ cos@g, + 117TCI7 (2.74)
Jo1 €08 Pq1 + SLRI3 = Byq, COS P2 + 5 .

where V is the voltage vector and C is the capacitance matrix:

R %] Co1 + C12 + (3 —Cyy —C13
V = V3 C= _C12 CR + C12 + C23 —C23 . (275)
Vs —Ci3 —Cy3 Cqz + C13 + (3
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If the circuit had more inductive elements, we would have also defined the appropriate
current vector I and inductance matrix L, which would have led to the inductive part of

the energy %erf We can now substitute V and I for gl; and ¢ by inverting C and L:
V=C1G and [=L"1¢ (2.76)

where C~1 and L1 are symmetric. In those coordinates, the Hamiltonian is

¢§ -1 1 >Tr—173

H = —Ej, cosq + TLR — Ejy, cos @z + 54 C q. (2.77)
Finally, we quantize according to Eq. (2.38), with a slight addition: Because there
are multiple sets of conjugate variables, the quantized coordinates will correspond
to separate Hilbert spaces. The qubit and resonator parts therefore live in their own
Hilbert space. The charge cross-terms, however, are tensor products of two distinct
charge coordinates. They represent the coupling energies between the circuit elements.

For example, the coupling energy between the first qubit and the resonator is

Hoir = [C w2801 ® dr. (2.78)

On the resonator side, we already know the form of gy in the diagonal basis, which
is given by Eq. (2.41). To obtain an operator representation for §41, we switch to the
conjugate momentum form and multiply on the left and right by the identity operator
in the diagonal transmon basis I = ¥, |IX!|. We then insert the identity in the ¢ basis

I, = [ do|9Xal.

2e d
4d=—= according to Eq. (2.58) (2.79)
i d¢
2e d
=— Z |IX 10 |mXm| multiplicating by I (2.80)
l Lm @
2e T o ..d ) _
= —Zf do |IXI| |pX@P| — |mXm]| inserting I, (2.81)
i o do
Lm
2e T Ldyy . .
== ikl [ dgw i because (@lm) = Y (@).  (2.82)
Lm -

It is therefore easy to express § as a matrix in the transmon basis, with each entry
given by an integral over the product of Mathieu functions and derivatives.

One notable point concerns the inverse capacitance matrix in Eq. (2.77): In general,
C~! will be completely dense. Thus, even if we had not included the parasitic capaci-
tance Cy3, there would still be a term proportional to §; @ ¢5 in the Hamiltonian. This
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second order coupling [130] would be fairly small, however, and could be neglected de-
pending on the level of physical accuracy desired. A second consequence is that, unlike
in Egs. (2.39) and (2.56), the capacitive part of the resonator and qubit energy does not
depend only on the “local” capacitor (i.e., Cg and Cy). Instead, there is a dependence on
the entire capacitive network of the circuit, as can be seen, e.g., in the charging energy
of the first qubit

eZ

Ecy, = 7[(3_1](1,1)- (2.83)

This effect must be properly accounted for when calculating the level energies.
In this section, we have demonstrated a formalism for determining the Hamiltonian
of arbitrary quantum circuits, based on the topology of the network expressed as a
graph. This formalism is convenient, especially when compared to the method used,
e.g., in Ref. [131], which depends on guessing a Lagrangian from the circuit equations.
We finish this section by mentioning that if we perform a two-level approximation
and a rotating-wave approximation (see Sec. 2.5) to a qubit-resonator Hamiltonian as
obtained by the method above, we obtain the well-known Jaynes-Cummings Hamilto-
nian
n 1 1
Hyc = hwg (a*a + 5) - Eth&Z +g(até_ +asy) (2.84)

where wq = wg1, 6(4,—) are respectively the qubit raising and lowering operators, and
g is the coupling coefficient.

An interesting transformation to Eq. (2.84) provides a hint as to how qubit readout
might be achieved in circuit QED, the Schrieffer-Wolf transformation [132, 133]. For
the Jaynes-Cummings Hamiltonian, this unitary transformation is [102]

N 9as.—ats
0 = ea@0+=0aT6-) (2.85)

where 4 = wqg — wg. The Schrieffer-Wolf transformation decouples the Hamiltonian,
eliminating the last term of Eq. (2.84), and therefore diagonalizing it. The resulting
Hamiltonian is an approximation however, and is only valid in the dispersive regime,
ford > g,

. 1
UHUT ~ A (wg — x6,) aTa — Eh(wQ +X)6; (2.86)

where y = g2/A. The first term of the above equation shows that the resonator’s
frequency is state-dependent. It changes by an amount 2y depending on whether the
qubit is in |g) or |e). This frequency shift is often called the dispersive shift, or the AC
Stark shift, from its quantum optics origins.

For qubit readout, we simply measure the resonator. This can be done in a variety
of ways. A simple one would be to measure the transmission amplitude at wg — . If
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the qubit is in |g), the resonator will be there, and we will see the corresponding S,
transmission. If the qubit is in |e), S,; will show the resonator is not there.

One important caveat to the above derivation is that the transformation was applied
in the two-level approximation of the qubit. For a transmon, the y shift is only accurate
when the qubit is in |g). In |e), level repulsion caused by the |f) state renders the
approximation invalid. Instead, the excited-qubit-state frequency of the resonator is

(4 +E¢)

WRle ® WR
as can be observed in Fig. 3.9 (b).
The Jaynes-Cummings Hamiltonian is a staple of quantum optics, and by extension
of circuit QED. It is covered extensively in the literature and, thus, we do not explain its
many properties and applications. Instead, see, e.g., Refs. [134, 135, 136, 137].

2.4 Quantum Gates

A qubit is, by definition, a quantum two-level system, and, just like its classical coun-
terpart a variety of operations or “gates” are used to control its state. Note that
other approaches to quantum computation exist, e.g., measurement based comput-
ing [138, 139] or even quantum annealing [140, 141, 142], but gate-based quantum
computing, through its generality and simple correspondence with the way algorithms
themselves are designed, remains the principal contender.

It is convenient to adopt the picture given by the Bloch sphere when describing
qubit operations. The Bloch sphere represents the state space of a two-level system
in 3D, and was originally formulated for nuclear and atomic spins [143, 144]. In that
representation, an arbitrary qubit pure state

lP) = alg) + B le) (2.88)
= cos(0/2) |g) + e'? sin(6/2) |e) (2.89)

is represented as a unit vector in spherical coordinates (1, 8, ¢), or, in R3
d = (sin 6 cos ¢, sin 8 sin @, cos 6) (2.90)

with the angles given by 8 = 2 cos™1(a) and ¢ = tan~1(Im[B]/ Re[B]), assuming that
a € R [26]. We can always make «a real because we have the freedom to set the global
phase of a state (i.e. we have the freedom to multiply |} by an arbitrary factor e‘?). The
global phase of a state can never be observed in a physical measurement. In contrast,
@ is a relative phase between |g) and |e), and it can be observed. It is often just called
“the” phase of a state, since the global phase is ignored.

28



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS

< 4
.....
Shaaa=n e

Figure 2.7: The Bloch Sphere. The Bloch sphere represents the state space of a qubit. An
arbitrary qubit state may be expressed as a Bloch vector d via its length ||d||, azimuthal
angle 6, and polar angle ¢ in spherical coordinates. The Euclidean axes of the Bloch
sphere correspond to basic qubit states, with the x, y, and z-axes corresponding to the
|+), |+i), and |g) states.

Figure 2.7 illustrates the Bloch sphere, including labels for the six states corre-
sponding to the axes. The |g) and |e) states are located at the north and south poles,
respectively. The four states on the equator correspond to equal superpositions. The
|+) = (|g) + |e)) /V2 states are aligned with the x-axis, and the |+i) = (|g) + i |e)) /v/2
states with the y-axis. The orange vector arrow shows an example state |y) with
0 ~m/2and ¢ ~ m/25.

In that representation, qubit gates can be described as rotations around the x, y,
and z axes, which is why that language is often used in the literature (and in this thesis).
If a qubit is initialized in |g), a w rotation about the x-axis will set it to |e). Such a
gate is often denoted X or X,;. Similarly, a ©/2 rotation about the y-axis is denoted
Y /2 or Yz /,. Note that gates that rotate the state by a negative angle differ from their
positive complement, e.g., a m/2 rotation is not identical to a —3m /2 rotation. This is
because rotations are not made instantaneously and other physical processes—notably
decoherence—may occur during the trajectory. For example, imagine that 1/f noise
temporarily changes the qubit frequency by an amount §w. This detuning causes ¢
to increase at a constant rate during the gate, or, equivalently, causes the axis of the
rotation to change. The state after a —3m/2 rotation will therefore differ from the one
where a r/2 rotation was made. The two trajectories in Fig. 2.7 illustrate this difference,
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and more details on the dynamics are explained in Sec. 2.5.

The state of a qubit after decoherence is no longer described by a pure state vector,
as in Eq. (2.88), but instead by a density matrix p. The Bloch sphere can again be used
to represent such a state by allowing the length of the Bloch vector d to be less than
1. As a result, the vector will point to the interior of the sphere. Given @, an arbitrary
single-qubit state can be described by a density matrix

1
p=50U+ad-q) (2.91)

where ||d|| < 1,and 7 = (6x, Gy, &Z) is the Pauli vector.

The main drawback of the Bloch sphere representation is that it can only be used
for single-qubit states. Multi-qubit states require exponentially more dimensions, and
therefore cannot fit in this 3D picture. Nonetheless, because single-qubit gates are part
of most quantum algorithms, the language of qubit “rotations” remains useful even in
multi-qubit contexts.

We finish this section by briefly discussing gate sets. With superconducting qubits,
it is physically possible to rotate the state about any axis in the x — y plane with a
microwave pulse. Such a pulse is made by multiplying an envelope, e.g., Gaussian, with
a carrier wave (see Section 3.3.2). The relative phase of the carrier between pulses
determines the relative angle between rotation axes. A mathematical explanation for
this effect is provided in Section 2.5.2, where we analyze the dynamics of the driven
qubit. Rotations about the z-axis are done very differently. They are equivalent to
changing the frequency of the qubit by an amount dw for a time At, resulting in a
rotation by A¢p = §wAt about the z-axis. Such rotations can be generated by actually
changing the qubit frequency with a flux pulse, or they may be done virtually, by
tracking rotations of the reference frame and modifying the axis of subsequent X and Y
rotations [145].

Despite this freedom, quantum algorithms are generally constructed with a finite
gate set comprising a number of single- and two-qubit gates (and sometimes three-
qubit gates). To implement algorithms then, it is necessary to convert the theoretical
description to an experimental pulse sequence, ideally minimizing the number of pulses
necessary [146], or even changing gates to minimize coherent errors [147]. The pulses
forming the pulse sequence are part of the experimental gate set. The gates in this
set should be optimized to produce high-quality operations, and include, in particular,
two-qubit gates specific to the architecture. For tunable qubits, this gate is often a
controlled-phase (CPHASE) implemented with a flux pulse [148, 149, 150, 151]. The
calibration of such a gate requires knowing the coupling strength between two qubits;
this can be achieved with the methods described in Chapter 5.

Finally, it is important to characterize the quality of the gates in the experimental
gate set. The gold standard is randomized benchmarking, along with its many exten-
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sions [152, 153, 154, 155, 156, 157, 158, 159, 160], which results in the average gate
fidelity [161, 162]

o= [awwlute, v w (292

where U is the ideal gate to be implemented, £, (1) is the result of its implementation
on a pure state |y) and is, in general, a density operator, and the integration is per-
formed uniformly over all pure states (the Haar measure) and is normalized such that
[ dy = I. The average gate fidelity is thus a metric that characterizes how well the
physical implementation of a gate matches its ideal target U on average when the gate
is applied to any possible input state. In Sec. 3.5 we perform single-qubit randomized
benchmarking, purity benchmarking, and randomized benchmarking over time.

2.5 Dynamics and Decoherence

The dynamics of all coherent quantum systems are governed by the Schrédinger equa-
tion, a linear partial differential equation that relates the time derivative of the wave
function to the Hamiltonian [163]

I I
in=— 1) = A ). (2.93)

Despite its simple appearance, the Schrédinger equation does not allow many
analytical closed-form solutions. Some well-known solvable problems include, of
course, the harmonic oscillator, the particle in a box, and the hydrogen atom. More
complicated many-body Hamiltonians, such as those used for the circuits in this thesis,
are generally not solvable analytically. It is therefore important to learn and make
use of both analytical approximations and numerical simulations when studying the
dynamics of circuit QED systems.

Two important approximations used in circuit QED are the two-level approximation
and the rotating-wave approximation. Both of these approximations are used to obtain
the Jaynes-Cummings Hamiltonian [Eq. (2.84)] when starting from the exact circuit
Hamiltonian of a qubit-resonator system.

The two-level approximation is self-explanatory: Instead of including the many
energy levels of a particular system, we truncate the Hilbert space to keep only the
ground state and the first excited state. The validity of this approximation depends
on many factors. For a transmon qubit, the approximation is partially justified by the
anharmonicity a. The anharmonicity makes it possible to drive the transition between
|0) and |1) without exciting other energy levels (in contrast, many energy levels are
populated when driving a resonator). The approximation becomes more accurate with
a larger anharmonicity and a smaller pulse bandwidth. Short drive pulses have a larger
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frequency bandwidth and therefore tend to cause leakage of the qubit state out of
the two-level subspace. Pulse shapes that minimize this leakage have been designed,
leading to higher gate fidelity [164, 165, 166, 167]. Other problems with the two-level
approximation of transmon includes energy level crossings with the qubit in the |1)
state, which are generally influenced by the second excited state |2). The two-level
approximation can also be used with other types of systems if a single excitation is
involved in the dynamics. In that case, the Hamiltonian can be reduced to an effective
two-level subspace. The methods in Chapter 5 exploit this property to simplify the
dynamics between a qubit and, e.g., a resonator. Although the two-level approximation
is conceptually useful, its narrow range of correct applications means that it should
not be used for accurate calculations, and numerical simulations should instead be
preferred.

The rotating-wave approximation if often applied in the context of a rotating frame,
and since that is a useful concept in its own right, we explain both the rotating-wave
approximation and the rotating frame, as applied to the dynamics of a qubit driven by
a microwave pulse?.

2.5.1 The Rotating Frame

The rotating frame is a special case of the standard interaction picture in quantum me-
chanics. What makes it special is that it is designed to eliminate the time-independent
part of a Hamiltonian while simplifying a time-dependent part (in combination with
the rotating-wave approximation). Given a Hamiltonian

H="H,+H,(t) (2.94)

where Hy is time-independent and H, (t) is time-dependent, we define the state in the
rotating frame

[p'(®) = 1?_|¢(t)) (2.95)
= et |y (1) (2.96)

3Thereby making this example a rare “three birds, one stone” event...
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A in
where R is a rotation operator and is usually chosen to be e ntot We insert |1p’(t)) on
the left side of Eq. (2.93) to determine the “rotated dynamics”:

'hal '>—'ha(}%| )) 2.97

thag 1) = thgp (R1Y (2.97)
LOR .. . , 0 , C ara

= lhaR‘LR ly) + tha ) product rule and inserting RTR  (2.98)

oR , A A
= ihaRT [Y'y + RH ) substituting Egs. (2.95) and (2.93) (2.99)

oR , A n
= ihaRT |Y'y + RART [y") inserting Eq. (2.95)
(2.100)
OR ,, A4
= <ihERT + RHRT> [p'). (2.101)

[t is clear that the time evolution of this new rotating state is also described by the
Schrédinger equation, but with a modified Hamiltonian

o OR., A
A = lhaRT + RART. (2.102)

2.5.2 The Driven Qubit Hamiltonian

The Hamiltonian of a driven qubit in the two-level approximation is
. 1
H=Hy+H; = —Ethﬁz + ihe(t) cos(wgt + ¢pg) (64— ). (2.103)

For reference, note that the drive Hamiltonian H; is derived from the application
of a classical field—an oscillating voltage—capacitively coupled to a qubit. The form
preferred for numerical simulations is thus given by H; = &(t) cos(w4t + ¢4)§, where
q is given by Eq. (2.82) and £(t) is the scaled amplitude of the drive in units of angular
frequency [101].

i
We could now use a rotating frame with R = e which would entirely eliminate

H,, but for slightly more generality, we instead enter a frame rotating at the drive

33



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS

frequency R = e 2@t Following Eq. (2.102)

N _OR A
A = maRT + RAR? (2.104)
i’h o _ o
= —deaZRRT + RHRT taking the derivative of R (2.105)
h N A A A n R
= Ewdﬁz + Hy + RART since Hy and R commute (2.106)
h N n
= —E(wQ — wg)6, + he(t) cos(wgt + ¢pg)Ri (6, — 6_) RY (2.107)

= _g(wQ — wg)0, + he(t) cos(wgt + pg) (cos(wdt)6y + sin(wdt)ﬁx) (2.108)

where we simplified Ri (6, — 6_) Rt = I%@I%T with a useful corollary of the Baker-
Campbell-Hausdorff formula

R6, Rt = e729at024 2 @dt0z (2.109)
oA iwgt [62,6y] iwgt\? [62]826y]] iwat\3 [62]62626y]]]
—ay+( 2 ) 1! +( 2 ) 2! +( 2 ) 3! +..  (2110)
_ A (iwgt) 2i8y iwgt\? 46y (iwgt)3 8idy iwgt\* 166y
= Oy ( 2 ) 1! +( 2 ) 2! ( 2 ) 3! +( 2 ) 4! F o (2.111)
(D*(wqt)?* (—D*(wqt)?***
(2k)! y (2k+1)! X (2112)
k=0 k=0

= cos(wqt)dy + sin(wgt) by (2.113)

We continue where we left off, focusing on the second term of Eq. (2.108) to obtain

he(t) cos(wgt + ¢g) (cos(wat)dy, + sin(wgt)dy) (2.114)
=@ ([cosRuwgt + @) + cos(Py)] Gy + [sinQRawgt + ¢g) — sin(¢py)] 6¢) (2.115)
zhET(t) (cos(¢4)6, — sin(¢pa)by) (2.116)

where the rotating-wave approximation was used in the last line to eliminate the fast
terms oscillating at a frequency 2w, . The idea behind the rotating-wave approxima-
tion is that the fast terms average out to zero overs timescales longer than 2w /2wy.
For w;/2m ~ 5GHz, this is 0.1 ns. Since most qubit operations are in the range of
10-100 ns, this approximation is generally valid. Large-amplitude pulses that change
the qubit state very fast are an exception, and should be modelled without the approxi-
mation [168]. Also notice that, had we chosen a frame rotating at a different frequency,
e.g. at w, the two leftover terms would be oscillating at a frequency wqg — wg.
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The final approximated rotating frame Hamiltonian is

A = ;Aaﬁz + hsz(t) (cos(cpd)&y - sin(¢d)6x) (2.117)
where dw = wq — wy is the drive detuning. This Hamiltonian shows that the axis of
rotation can be controlled through the phase ¢ of the microwave drive. Solving for
the time-evolution dynamics of A’ leads to Rabi oscillations, where the qubit rotates
between the ground and excited state. This is how the Bloch sphere trajectories in
Fig. 2.7 were calculated, with Aw/2m = 5 MHz and a constant-amplitude 20 ns drive
pulse. If the drive frequency is swept around wq, we would notice that the rotation
frequency is higher away from Aw = 0, creating a “chevron” pattern. These kinds of
dynamics also occur for two coupled systems, and are studied in Chapter 5.

2.5.3 Decoherence

Experimental quantum systems always interact with the environment, whether through
couplings designed in the circuit for control and measurement, or through unwanted in-
teractions. This second category includes a wide variety of effects. The most prominent
problem today is relaxation caused by TLSs, which are likely found in the disordered
oxide layers at the interfaces between the device and the outside air. Other important
issues include couplings to free electric charges, causing charge noise [169, 104, 119];
couplings to stray magnetic fields, causing flux noise [170, 171]; couplings to free space
modes or package box modes, leading to relaxation [104, 172]; thermal radiation or cos-
mic rays which break down Cooper pairs into quasiparticles, leading to both relaxation
and decoherence [173,174, 175, 176]. Designed couplings also lead to decoherence by
directly carrying heat or electrical noise from room-temperature electronics, which is
why it is critical to design the experimental setup very carefully (see Chapter 3). Even
couplings between circuit elements can lead indirectly to decoherence, e.g., through
the Purcell effect [177, 178].

In principle, these interactions could be handled by including them directly in
the Hamiltonian of Eq. (2.93). However, the extremely large number of degree of
freedoms (i.e., coordinates) associated with the various couplings make this approach
completely impractical, even numerically. Instead, we want a way to describe the
various decoherence channels while including only the Hilbert space of the systems
of interest in calculations. Fortunately, such methods exist, although they come with
certain concessions in the form of assumptions. One of these approaches is given by the
Lindblad equation, which resembles the Schrédinger equation, but instead describes
the time evolution of density operators [179, 180]. We write it in diagonal form below:

dp

i
=7l + Z (4pal =2 (afap + pAfay)) (2.118)
k
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where p and A are the density matrix and Hamiltonian of the system, and the operators
Ay, are Lindblad operators and are sometime also called “collapse” operators.

The Lindblad equation is based on the ideas sketched above, whereas we want to
describe the dynamics of a system coupled to an environment. To make it tractable, we
make the Born-Markov approximation, which states that the system and environment
are uncorrelated—i.e., described by a product-state—and that the interactions between
the two are weak enough that they stay uncorrelated, even after some time evolution.
This assumption has a few consequences, the most important for us being that we
may now ignore the coordinates of the environment and consider the resulting effects
on the system p only. These effects are included into “collapse” operators A, which
describe how the environment causes relaxation and dephasing of the system. A second
consequence is that the dynamics of the system are time-local, or Markovian. The
description of a state at a single point in time by a density operator p(t) entirely
determines the future dynamics. While this may be convenient, it prohibits application
of the Lindblad equation to any non-Markovian dynamics; those for which the state
of the system would depend on what happened to the environment in the past. In
other words, the environment cannot have a “memory” of past interactions with the
system. Dynamics between a qubit and a coherent TLS are highly non-Markovian,
since near resonance the two systems swap energy back and forth. In this case, a good
compromise would be to model coherent TLSs within the system Hamiltonian, and
include the effect of weakly coupled ones as Lindblad operators. This is the approach
used in Chapter 5, where we determine the coupling parameters of a coherent TLS (or
another resonant mode), but still include “background” incoherent relaxation in the
model.

The two most commonly encountered Lindblad operators in the context of qubits
are the amplitude and phase damping operators. They can be expressed with Pauli
operators:

A, =6 (2.119)
T
A, = 7(”62. (2.120)

The amplitude dampening operator A; models energy relaxation, with a rate I'; and the
phase damping operator A, models dephasing with a rate I,. If we solve Eq. (2.118)

for the state of a qubit in the rotating frame (i.e. H = 0), we obtain

g —([y/2+Tp)t
_(cgg ¥ Cee(1—€72) cype ® _(cgg Cge
p(t) = ( Coge—(1/2HTp)E Cpe it where p(0) = Cor Cos (2.121)

is the initial density matrix. It is clear that A; leads to both exponential relaxation
and dephasing and that A, results only in dephasing. Note here that dephasing simply
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means a decay of the off-diagonal elements. We define the T; and T, relaxation times,
which are the ubiquitous qubit quality metrics:

1
T, = — 2.122
=T ( )
1
Ty= ———. 2.123
2T R/2+T, ( )

Notice that if there is no pure dephasing (I, = 0), T, = 2T;; in this case T, is said to be
T;-limited. In frequency tunable qubits, the additional sensitivity to frequency noise
usually means that T, will be smaller than T;. Today’s fixed frequency qubits, on the
other hand, have very little pure dephasing [181].

The above equations are used to fit qubit experimental data, as is done in Sec. 3.4.
Chapter 6 expands on the above concepts to describe the relaxation caused by an
ensemble of TLSs for a qubit operated at different frequencies. Section 6.2.2 in Chapter 6
contains a derivation of the qubit relaxation I; 1Q'TLS caused by a TLS with a particular
coupling strength and frequency.
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How to Measure a Qubit

In this chapter, we tackle the experimental art of controlling and measuring qubits and
resonators in circuit QED. Though the word “art” is used tongue-in-cheek, it is true that
the experimental techniques used in circuit QED are somewhat arcane and, to some
degree, obscure. These methods have been developed and carried through generations
of experimentalists, generally taught to students in the lab by their professor. As a
result, that knowledge is not always readily available in the literature and only the
most careful reading of the many theses written by students over the years will yield
morsels of information. This chapter is not meant to fully solve this problem, but it will
attempt to discuss the important details® that enter the preparation and execution of
superconducting circuit QED experiments.

This chapter begins with a short discussion on device design and fabrication. Then,
assuming that we have a chip in-hand, we proceed in the fashion of a tutorial, starting
from the experimental setup needed, including dilution refrigerator wiring (see Chap-
ter 4 as well) and electronic instruments used for control and readout, and continuing
with the basic techniques used to characterize resonators and qubits as if we had just
cooled down a device. The last section covers randomized benchmarking, a de facto
standard used in quantum computing.

3.1 Device Design & Fabrication

We first discuss device design which, for our purpose, essentially consists of all the tasks
involved in the creation of a mask, such as the one of Fig. 3.1 which corresponds to the
design in Fig. 2.5. The mask is created by arranging the various structures needed for
the quantum circuit. Those include, for example, transmission lines for measurement

Though many will unavoidably be omitted or simply forgotten...
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Figure 3.1: Complete mask design for a two-qubit device. The shaded areas get exposed
to ultraviolet light; they correspond to gap areas. The rest of the mask corresponds
to metal. There are test resonators on the measurement line and test SQUIDs on the
sides. The normal state resistance R, of test SQUIDs is measured to estimate the qubit
frequency prior to a cooldown.

and control pulses, transmission lines for resonators, cross-shaped islands for qubits—
including a loop for the tunable SQUID element—and pads to connect the device to
external electronics. Then, we cover fabrication and present the parameters of the
qubit used in this thesis.

The very first step in creating a design is to choose the “high-level” parameters
of the circuit according to the experiments that we want to run. These high-level
parameters include the layout of the circuit, the number of qubits and resonators and
their frequencies, the coupling strength between the elements, etc.
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Once these parameters have been chosen, the “low-level” parameters must be deter-
mined. That includes the parameters of the individual circuit elements: transmission
line impedance, capacitors, inductors, junctions. These parameters are generally fixed
by the geometry of the metal traces and gaps on the chip. Thus, the various elements
should be modelled with CAD tools, and the resulting parameters calculated via an
appropriate physical simulation. For example, the coupling capacitance between a
qubit and a resonator may be determined via electromagnetic simulations with, e.g.,
Ansys Q3D [182] or FastCap [183]. The mutual inductance between the flux tuning
line and the SQUID can be simulated with FastHenry [184]. The resonance frequency
of distributed element resonators should also be simulated, e.g., with HFSS [185]. If
possible, those circuit parameters should then be validated by running quantum simu-
lations based on the Hamiltonian derived according to the method of Chapter 2. These
simulations can confirm that the frequencies and coupling strengths selected in the
first step are correct for the experiment.

The final step in the design is to assemble the various geometries of the components
into a full chip design. The various control and readout transmission lines must be
connected to pads, and other test structures may be added. Figure 3.1 shows an example
of a completed mask. The structure arrays on the left and right are test SQUIDs. The
normal resistance of those SQUIDs can be measured after fabrication, giving an estimate
of the Josephson energy [via Eq. (2.49)]. If the energy is not what was designed, the
junction evaporation step will need to be adjusted.

The fabrication of a qubit chip comprises many steps, with the two main ones
being the optical lithography, used to create the “larger” features, and the electron-
beam lithography, where the Josephson junctions are formed. The full recipe used
for the sample of this thesis is presented in Appendix A.1. The qubit is fabricated
by depositing and patterning thin-film Al on a thoroughly-cleaned silicon wafer; we
use the same cleaning process as in our work of Ref. [114]. The mask is used during
optical lithography to expose a resist layer resting on top of a metal layer (which itself
was evaporated on the surface of a wafer). When the wafer is exposed, ultraviolet
light passes through the open areas of the mask and changes the chemical properties
of the resist, allowing it to be dissolved away with a solvent and revealing the metal
layer below. This metal itself is then etched away, creating gaps in the layer. More
details on optical lithography fabrication can be found in Ref. [114]. The Josephson
tunnel junctions are fabricated with electron-beam lithography in a later step using a
standard double-angle Niemeyer-Dolan technique [186, 187]. This technique requires
two additional metal evaporations along with an intermediate oxidation step to create
the insulating barrier. See Ref. [108] for more details on electron beam lithography.
Photographs of a fabricated qubit—including the SQUID and junctions—can be seen in
Fig. 3.2. A device with resonators only solely requires optical lithography; a fabricated
resonator chip can be seen in Fig. 4.15.
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Figure 3.2: Images of a fabricated sample. (a) Optical image of an Xmon transmon
qubit, with the drive line on the left, measurement resonator coupler above, and flux
bias line below. The cross-shaped island constitutes a capacitor to ground while the
SQUID at the end of the lower arm acts as a tunable nonlinear inductor. (b) Scanning
electron microscope (SEM) image of the SQUID. The brighter layer is the aluminum
deposited during the junction fabrication. (c) SEM image of a Josephson junction made
with a Dolan bridge.

A superconducting qubit identical to the one used in Chapters 5 and 6 is pictured
in Fig. 3.2. The qubit consists of an island in parallel with a SQUID. The island forms
a capacitor that is composed of two intersecting CPW segments in the shape of a
Greek cross, where each segment has length L = 376 pm. One segment is formed by
a center conductor, or strip, of width § = 24 um and is separated by a distance W =
24 um from a ground plane on each side of the strip. The capacitance of the island
is Cq = 100 fF (corresponding to a single-electron charge energy E./h ~ 188.6 MHz).
The qubit capacitor is connected in parallel with the SQUID, which is made of a loop
interrupted by two parallel Josephson tunnel junctions with critical current I, =
17.4 nA (corresponding to a Josephson energy Ej/h = 8.6 GHz) for each junction. The
SQUID forms the inductive element of the qubit. The qubit state can be measured by
means of a capacitively coupled readout resonator, with capacitance C; = 3.4 fF. The
qubit can be energized by means of X or Y microwave pulses (see Section 2.5.2), which
are applied through a capacitive network with coupling capacitor of capacitance Cyxy =
100 aF.

We are able to tune the frequency of the qubit in situ during an experiment by
threading the SQUID loop with a flux ¢, = M, i,, where M; ~ 3 pH is the mutual
inductance between the loop and an external circuit with current i;. A quasi-static
flux bias ¢,° allows us to set the qubit frequency fq (¢5), i.e., the qubit bias point. The
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qubit parameters given above result in a zero-bias f (¢5 = 0) ~ 4.8 GHz.

3.2 Dilution Refrigerator Wiring

You have a chip; now what? As may be expected, if you want to run experiments you will
need a well-equipped cryogenics laboratory. The centerpiece of such a lab is the dilution
refrigerator (DR), a voluminous apparatus that will reach the very low temperature
of approximately 10 mK. Figure 3.3 shows the DR used for the experiments of this
thesis. A DR consists of multiple horizontal metal plates in a vertical arrangement,
with each plate corresponding to a different temperature stage. The very top outer
stage is at room temperature, and lower plates get progressively colder. The first stage
is maintained at ~ 50 K, the second stage is cooled to ~ 3 K, the third stage is called
the still, and is at ~ 700 mK, the fourth stage, the cold plate, is at ~ 100 mK and the
fifth stage—last and coldest—the mixing chamber, is cooled to ~ 10 mK. Dilution
refrigerators depend on two separate cooling systems. The first system is used to cool
the 3 K stage... to 3 K. For that stage, DRs use either a liquid helium heat exchanger or
a pulse tube cryocooler (if a pulse tube is used, the DR is a “dry” fridge). The second
stage indirectly cools the first stage, which is why its temperature is in-between room
temperature and 3 K. The second cooling system, which gives dilution refrigerators
their name, is a heat exchanger exploiting the properties of helium-3 and 4 dilution.
The top part of the dilution unit must be maintained at 3 K by the second stage while
the bottom part directly cools the mixing chamber to ~ 10 mK.

The wiring and electrical equipment inside the fridge are used to relay signals from
room-temperature instruments to the chip mounted at the mixing chamber stage. The
many instruments that generate and read out those signals are located outside the
fridge, in the lab. A complete diagram of the experimental setup can be seen in Fig. 3.5.
This section will cover various aspects of the DR wiring with the goal of providing a
clear picture of the requirements that must be met to perform high-quality experiments.
Additional wiring topics are covered in Chapter 4, including the package and chip 3D
wires, the package holder, and magnetism.

3.2.1 Thermal Engineering

Superconducting quantum devices need a low operating temperature for many reasons.
The obvious one is that the metal must become superconducting for the Josephson
effect to work. For aluminum, the transition temperature is T, ~ 1.2 K. The temperature
however, is also constrained by the frequencies of the devices. Superconducting qubits
and resonators are designed with a frequency in the 4 — 10 GHz range. To a good
approximation, the thermal occupation of the first excited state |e) is described by the
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L

s

Figure 3.3: Picture of the open dilution refrigerator showing the wiring on the mixing
chamber stage (bottom most plate), the cold plate, the still stage, and the 3K stage
(aluminum, at the top). The quantum socket is visible at the very bottom, just below
the mu-metal can lid. The back of the two instrument racks is seen in the background.
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Figure 3.4: Steady-state occupation probability of the first excited state of a qubit. At
higher temperatures the qubit has a significant probability to be found in the first
excited state; this is generally undesirable.

Boltzmann distribution:
e —hwq/kBT

P (3.1)

e 1 + e—wq/keT

where kg is the Boltzmann constant. We plot the probability of occupation as a function
of temperature for a qubit with frequency wq/2m = 5 GHz in Fig. 3.4. Below 30 mK
the occupation probability is < 0.1 %; above 40 mK however, the probability starts
rising very rapidly. A high excitation probability is generally undesirable because it
makes the steady-state of the qubit unpredictable, among other issues [188]. Exper-
iments generally require knowledge of the start state, thus if the qubit is thermally
excited an additional initialization step involving nondemolition measurement will be
required [189, 190, 191].

One additional important problem with operating temperatures between T, and
40 mK concerns quasiparticles [22]. For any BCS superconductor, thermal noise caused
by temperatures above absolute zero will tend to excite Cooper pairs and break them
into quasiparticles, thereby forcing the superconductor out of the ground state and
causing dissipation [192, 173, 104]. This effect also depends on the device frequency,
with lower frequencies commanding lower temperatures.

Itis clear then, that the chip should be cooled well below T for optimal performance.
To achieve low device temperatures, we apply two directives in the thermal design: First,
we maximize the cooling of the chip by thermally anchoring it as well as possible to the
mixing chamber stage of the DR. Second, we minimize the heating of the chip caused by
electrical connections to instruments outside the DR. In most setups, thermal anchoring
isaccomplished by creating a strong mechanical connection between the package where
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the chip is housed and the mixing chamber with a high thermal conductivity metal
and through the thermal conductivity of the outer conductor of the connectors to the
ground plane of the chip (e.g., with wire bonds). In our setup, we use the quantum
socket to mount the device to the DR. The quantum socket—which comprises the
package, package holder, and 3D wires—is described extensively in Ch. 4.

At this time, the control and readout signals that we send to the device come from
electronic instruments located outside the fridge, at room temperaturez. Because the
cables and wires that carry signals to the device are made of metal, they form a direct
thermal path. The heating caused by this path is managed primarily by careful selec-
tion of the wiring materials. For example, we use low thermal conductivity stainless
steel coaxial cables to connect the different stages of the DR. For DC wires, we choose
phosphor bronze, which also has a low thermal conductivity. For the readout line,
which must carry very weak signals from the sample back to room temperatures, we
cannot use stainless steel due to its poor electrical conductivity. Instead, we use a
superconducting niobium cable which, obviously, has excellent conductivity but also
poor thermal conductivity. The electrical and thermal conductivity of metals usually go
hand in hand; superconductors, when in the superconducting state, are the exception.

At each DR stage, we thermally anchor the wiring such that its temperature matches
the temperature of the stage. The cables are therefore progressively cooled to lower
and lower temperatures. For coaxial cables, thermally anchoring the outer conductor
is easy: because we use the metal structure of the fridge as the electrical ground,
we may simply attach the outer conductor to each plate. This is done with coaxial
feedthroughs bolted to the stage to which cables connect using an SMA connector.
The inner conductor is more tricky to thermalize since it is electrically isolated from
the outer conductor by an insulator—usually polytetrafluoroethylene (PTFE)—with
low thermal conductivity. Fortunately, attenuators, which are discussed in Sec. 3.2.2,
are used at every stage and provide a second thermal pathway. We ensure that the
attenuators themselves are well thermalized by placing their body in contact with a
custom copper fixture mounted to the stage. The fixtures can be seen in-between the
attenuators on the mixing chamber stage in Fig. 3.3. To anchor DC wires, we wind them
around custom copper bobbins that are mounted to the stage plates. These bobbins
can be seen on each stage in Fig. 3.3, on the right, in front of the stainless steel posts.

We finish this section by mentioning the effect of thermal radiation. Indeed, al-
though the stages might be thermally isolated from each other thanks to the use of
low conductivity material, blackbody radiation emitted by the higher temperature
stages could find its way to the mixing chamber, heating up the stage and exciting
quasiparticles. To prevent this, the DR stages are isolated from each other by metal

2In the future it might become possible to move certain instruments inside the fridge; for example,
signal generators based on single flux quantum electronics [193, 194].
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cans that shield the lower stages from the higher stages. In addition, we coat the inside
of the mixing chamber can with a black epoxy mixture. This helps ensures that stray
radiation is absorbed by the stage rather than by the sample [195].

For more details on the various experimental techniques used for low-temperature
measurements, see Ref. [196].

3.2.2 Amplification & Attenuation Chains

The signals sent to the chip should be free of noise and other distortions, in other words,
they should have a large signal-to-noise ratio (SNR). However, the energy contained
in the signal itself should be relatively small: a single 5 GHz photon has an energy of
3.3 X 10724], or about 2 X 107> eV. Assuming that this photon is sent as a pulse of
length 20 ns, as might be the case for a qubit z-pulse, the average signal power is

hw
S = i 1.7 X 107 W = —128 dBm (3.2)
where dBm is the decibel-milliwatts unit. We can calculate the corresponding room-
temperature (~ 300 K) Johnson-Nyquist noise power as [197, 198]

N = kgTB = 2.1 x 1013 W = —97 dBm (3.3)

where B ~ 1/At is the bandwidth corresponding to the signal. The thermal noise
is therefore three orders of magnitude larger than the signal. The energy of a single
photon is tiny, so this result is not surprising. Instead of sending a single photon, we
thus need to emit a much higher signal power at room temperature and attenuate this
signal as it travels down the fridge until it reaches the desired power at the device. As
a comparison, the noise power at 10 mK is given by Planck’s radiation law (including
the zero-point energy):

1
N=hol|>+ B=83x10"W = —131dBm. (3.4)

o
eksT —1

The guiding equation in choosing the specifics of the attenuation chain is Friis’
formula [199], which calculates the output SNR given an input SNR and the noise added
by each stage in the chain. For a single stage, the equation is

S GsS;

SNR, = —

- 3.5
N, GsN;+ Ny (3-5)

where the subscripts i and o refer to the input and output of the stage, N is the noise
power added by the stage [given by Eq. (3.4) for the temperature of the stage], and G,
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Figure 3.5: Dilution refrigerator wiring schematics of instruments and control lines.
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is the gain (< 1 for attenuation). At each stage, the signal and noise at the input are
scaled by the gain and extra thermal noise is added. This equation may be cascaded for
multiple stages by feeding the signal and noise at the output of a stage to the input of
the next. Since the temperature of the stages drops, progressively smaller amounts of
noise are added thereby maintaining a high SNR.

Ideally, we would attenuate only at the mixing chamber stage to obtain the highest
SNR. This is not possible, however, because the mixing chamber has only a very small
amount of cooling power available and would not be able to handle the large amount of
energy that this would dissipate. In addition, attenuators have a second purpose: They
help thermalize the inner conductors of coaxial cables, which they mechanically connect
to the DR plates via a resistor. Taking those two points into account, the best scheme
is thus to gradually attenuate the signal with an attenuator at each stage, preferring
lower attenuation at the higher temperature stages and higher attenuation at the lower
temperature stages. The attenuation values chosen for the experiments of this thesis
can be seen in Fig. 3.5, where two attenuation chains are depicted: one for qubit control
(the XY line), and one for readout. We use cryogenic SMA attenuators made by XMA
Corporation.

The pulses going out of the device and back to the lab for readout encounter a
similar problem: they must be amplified. If we didn’t amplify them, they would quickly
be overpowered by thermal noise as they travel to the warmer stages. Friis’ formula
also applies to amplification chains, except that this time, the gain is > 1 and the added
noise is determined by the noise of the amplifier itself>. Amplifying at the lowest
temperature stage would be the most advantageous, but, once again, thermal aspects
must be considered, as amplifiers dissipate a lot of heat. At the mixing chamber stage,
only an extremely low power amplifier may be used, such as a Josephson traveling-
wave parametric amplifier [95]. At higher stages, more power-hungry high-electron
mobility transistors (HEMT) amplifiers may be used (a HEMT will dissipate 10 mW).
In our setup we only use a Low-Noise Factory cryogenic HEMT at the 3 K stage, in
addition to room-temperature low-noise amplifiers (LNA). To minimize losses, we
use superconducting coaxial cables from the mixing chamber to the HEMT. Because
a HEMT still emits a large amount of thermal noise, we install three circulators on
the amplification line. Circulators are ferrite-based nonreciprocal three-port devices;
signals entering one port only exit at one of the two others. In this way, signals from
the device enter port one, exit out of port two and continue on up the line, whereas
thermal noise coming from the HEMT up the chain enter port two and exit out of port
three, which is simply terminated with a 50 (2 load. Two circulators can be seen on the
mixing chamber stage in Fig. 3.3 encased in a gray Cryoperm package for magnetic

3 Amazingly, the “noise temperature” of an amplifier—a measure of the noise added—can be lower
than the temperature of the amplifier itself!
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shielding.

Both attenuation and amplification chains are heavily filtered to prevent as much
noise as possible from reaching the sample. The XY and readout lines are filtered
with microwave low-pass and bandpass filters, in addition to custom carbon-nanotube
filters (CNT) which block frequencies in the infrared range and higher [200]. The flux
bias line is filtered with a custom magnetically loaded Eccosorb filter.

3.2.3 Eccosorb Tee Filter

The Eccosorb tee discussed in this section is a novel cryogenic filter that was designed
and fabricated for qubit flux biasing. As explained in Sec. 2.2, superconducting qubits
can be made frequency-tunable by designing them with a loop interrupted by two
Josephson junctions (a SQUID). The qubit frequency is then controlled by applying
a magnetic flux through that loop with a current line. Such a line is visible coming
from the bottom in Fig. 3.2 (a). Because that line is inductively coupled to the loop, any
current noise will therefore manifest as flux noise, changing the qubit frequency and
causing dephasing. It is thus critical to minimize noise as much as possible.

The Eccosorb filter is a tee, meaning that it combines DC and AC signals. One of
the ways in which we minimize noise is by setting the idle frequency of the qubit with
a pure DC bias voltage coming from a battery. As a result, this voltage is extremely
low-noise, and, in particular, it is free of 60 Hz harmonics that would otherwise come
from mains electricity powered instruments (wall power). AC signals are required to
send pulses that set the instantaneous frequency of the qubit. They are emitted by an
arbitrary waveform generator at high power and can be more strongly attenuated. The
purpose of the idle and pulsed bias is explained in Chapter 5.

There are three stages of filtering: the first stage, which applies only to the DC
signal, is a lumped-element low-pass LC filter made with surface-mount devices (SMD).
Its 3 dB cutoff frequency is f. = 600 kHz. The second stage is a distributed low-pass
stepped-impedance filter, with f. = 800 MHz. While these filters are very effective
below and near f, their attenuation diminishes at high-frequency (IR frequencies),
and they eventually become completely transparent. To block high-frequency radiation,
we cast Eccosorb CRS-117 [201] in the package. Eccosorb is an EM absorber, it consists
of a silicone rubber base loaded with ferromagnetic particles, and therefore has a high
magnetic permeability [202]. The Eccosorb filter stage has f. = 3 GHz (determined
by the package length), and attenuation keeps increasing for higher frequencies. The
Eccosorb absorber is also characterized by a high thermal conductivity and low out-
gassing, making it particularly suited to cryogenic applications. To ensure maximum
absorption, we use a thin polyimide film as substrate, DuPont Pyralux AP 8515R [203],
which is 25.4 pum thick. The PCB with the copper traces (18 um thick) was manufac-
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Figure 3.6: Fabrication of the Eccosorb tee filter. Left: Picture showing the package
before the top Eccosorb layer is poured in. We can see the lumped-element LC filter on
the DC side (left) and the distributed stepped-impedance filter on the AC side (right).
Note that the DC signal goes through the distributed filter. A broadband conical inductor
is used to prevent the AC pulses from traveling back out of the DC port. The PCB is
translucent, letting us see the Eccosorb-filled cavity below. Right: Picture showing the
package with the top Eccosorb layer poured-in, just before curing.

tured by Printech Circuit Laboratories in the United Kingdom. Figure 3.6 shows images
of the filter during fabrication.

Figure 3.7 shows qubit spectroscopy before and after installation of the CNT and Ec-
cosorb tee filters. We can see impressive improvements in the resonator linewidth. This
suggests that thermal noise was strongly reduced. For more details on spectroscopy
experiments, see the next sections.

3.3 Control & Measurement

The dilution refrigerator is now fully wired and the care we have taken to guarantee
that noise and heating effects are well-managed should lead to excellent measurement
results. The last thing we must discuss is the instrumentation needed to perform
those measurements. To keep this section manageable, we will discuss two kinds of
measurements: first, continuous-wave (CW) measurements, which can be done entirely
with a network analyzer, and second, time-domain measurements, which require an
arbitrary waveform generator (AWG) to shape pulses.
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Figure 3.7: Qubit spectroscopy of the same sample (a) before and (b) after installation
of infrared filtering. For this experiment, we measure the resonator with a VNA at
low power while varying the bias voltage of the qubit. The spectroscopic lines of the
resonator are much sharper and better defined in (b), corresponding to a lower level
of noise.

3.3.1 Continuous Wave Measurements with a Network Analyzer

A vector network analyzer (VNA) is a convenient all-in-one instrument: It takes care
of both sending and receiving signals. Because the received signals can be filtered
heavily, VNAs boast excellent sensitivity and extremely low noise floors. Network an-
alyzers generally comprise at least two ports, each capable of both transmitting and
receiving simultaneously. They are therefore able to characterize the S-parameters
of a network [115]. S-parameters are ratios of the voltage received at a port to the
voltage emitted at a port, and are measured as a function of frequency. S; ; = V;/V;
thus represents the amplitude of the voltage wave measured at port i divided by the
amplitude of the voltage wave emitted at port j. For example, S;; measures the reflec-
tivity of the network at port 1. S,; measures the transmission from port 1 to port 2. A
vector network analyzer is capable of measuring the amplitude and phase of signals,
the S-parameters are therefore complex quantities.

One important aspect to keep in mind when making VNA measurements is that,
though an S-parameter is a relative measurement, i.e., a ratio, and is therefore unitless, it
still may depend on the absolute voltage that was sent by the transmitter. In other words,
S-parameters measured with a particular output power may not be representative of
other powers. In fact, this is exactly what we see when measuring resonators, which
have a power-dependent transmission (because of TLS, see e.g., Fig. 4.17).

Internally, a VNA contains a plethora of components: microwave sources to send
signals, mixers for frequency up- and down-conversion, filters for noise reduction, and

51



CHAPTER 3. HOW TO MEASURE A QUBIT

attenuators for power control. The transmitter sends a CW signal at the selected fre-
quency. Generally, we will sweep through multiple frequencies in order to characterize
a network over a particular bandwidth. The time spent at each frequency depends on
the settings of the receiver. The receiver is generally a super-heterodyne design. When
the incoming signal enters the receiver (after exiting the network), it is mixed with a
local oscillator (LO), which is simply another CW signal generated by a source. This
mixing results in waves at the sum and difference of the input signal and LO frequencies.
Only the signal at the difference frequency is kept; this is a lower frequency, called the
intermediate frequency (IF). For example, if the signal frequency is 6.1 GHz and the
LO frequency is 6 GHz, the resulting IF is 100 MHz. It is at this stage that the IF filter is
applied. Because the tone emitted by the transmitter is almost a pure sine wave, it is
extremely narrowband (<1 Hz). It is therefore possible to filter the received signal with
a narrow bandpass filter without losing useful information. The only disadvantage
is that a low IF bandwidth (IFBW) will cause the measurement to take longer due to
the signal needing more time to pass through the filter. After the IF filter, the signal is
digitized by a detector and its amplitude and phase is determined.

A VNA is indispensable for many types of microwave measurements. We have used
a VNA to characterize almost all the microwave components we purchased or made:
cables, attenuators, power dividers, circulators, filters, etc. We used a VNA extensively
to characterize the quantum socket, as is detailed in Chapter 4. Finally, superconducting
resonators are also measured with a VNA.

VNA measurements may be augmented by adding a second microwave source
(also a CW tone). As an example, such a tone could be used to drive a qubit while the
measurement resonator is measured with a VNA. This type of experiment is called two-
tone spectroscopy. For a two-tone experiment, we set the VNA to measure at a single
frequency, that of the resonator. When the drive tone matches the qubit frequency, the
resonator will move due to the dispersive shift (see Sec. 2.3); this is reflected by S,;.
Note that because both tones are CW, they are always “on”. As a result, the qubit cannot
be excited to |e); instead, the state is continuously rotating between |g) and |e) until
decoherence results in a statistical 50-50 mixture. On the side of the resonator, the
continuous tone creates a coherent state which also devolves into a statistical mixture
described by a density matrix, with multiple levels incoherently occupied [204]. The
result is that, on average, the resonator displacement is dampened, and therefore the
contrast of the measured signal is lower. Despite this disadvantage, the simplicity of
VNA measurements make them very useful, especially in the initial stages of a qubit
sample characterization. This is discussed in Section 3.4.
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3.3.2 Time-Domain Measurements

Time-domain measurements are meant to rectify the principal problem of continuous
wave measurements: they allow the qubit and the resonator to reach their ground
states and to be controlled independently over time. Instead of applying continuous
tones that necessarily overlap, we want to send pulses, one after the other. The second
advantage is that we are now able to generate pure states and measure them before
they decohere. These two points are, of course, requirements for gate-based quantum
computation.

The other aspects of the pulsed readout setup are otherwise similar to the VNA: We
still want the ability to measure the amplitude and phase of the voltage transmitted
through the DR. In effect, we simply want to build a “pulsed VNA”. The main part of
this setup is the arbitrary waveform generator. An AWG is a digital-to-analog converter
(DAC): we give it a list of voltage points, and it outputs them. The rate at which an
AWG can emit voltage points is the clock rate. On the measurement side, we use an
analog-to-digital converter (ADC): the ADC measures the incoming voltage and digitizes
it, giving us a list of voltage points. The rate at which the ADC can digitize points is the
sampling rate.

At the time that the setup was built (circa 2015), the fastest available AWGs and
ADCs had rates of a few Gsps (giga samples per second)*. These rates are insufficient
to directly generate and measure signals at ~ 5 GHz. Instead, we use microwave mixers
on the transmitter side to upconvert the signal generated by the AWG before sending
it to the device in the DR. We do the opposite on the receiver side: we use a mixer to
downconvert the signal before it is digitized. Many types of transmitter and receiver
designs exist, we now describe the one we have built.

The transmitter uses an 1Q (in-phase and quadrature) mixer with single-sideband
(SSB) modulation. This means that the AWG emits two identical signals that are 90°
out of phase at an intermediate frequency fr between 100 and 300 MHz. The IQ mixer
multiplies the two signals with a microwave carrier, or local oscillator (LO), f1,o ~ 5 GHz.
This multiplication results in each signal being duplicated in two sidebands at the sum
and difference frequencies f o * fip. This is not ideal because the qubit will then be
driven at two different frequencies. With SSB modulation, we can eliminate one of the
two sidebands by destructive interference. This is possible because the signal sent to
the Q port of the mixer is transmitted with an additional phase difference of 90° relative
to the I port. By choosing the sign of the relative phase emitted by the AWG, we can
suppress either the left or right sideband. Note that IQ mixers are not perfect, the exact
phase difference between the I and Q signals must be properly calibrated to obtain
good sideband suppression. In addition, the LO signal itself can also leak through the

*There are very fast (>20 GHz) AWGs and ADCs, but they are extremely expensive.
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mixers. This can be minimized by calibrating the DC level of the signal going in the /
and Q ports of the mixer.

The transmitter design described above can send high-quality pulses to the DR. In
our setup, we use it both to drive qubit rotations and for resonator readout pulses. For
qubit pulses, control of the rotation axis is achieved by digitally setting the phase of the
IF cosine generated by the AWG. This is substantially more accurate than varying the
amplitude of the I and Q signals. The schematics of Fig. 3.5 show the instruments used
for the transmitter. The IF pulses are generated with a Tabor 2.3 Gsps four-channel
14-bit AWG (Tabor WX2184C). We use a National Instruments source for the qubit
drive LO (NI FSW-0010) and a Keysight source for measurement LO (Keysight E8257D).
The same model Marki IQ mixer is used for upconversion (Marki IQ MLIQ-0218L).

The receiver is built almost exactly like the inverse of a transmitter. We use the
same LO signal to downconvert the incoming pulse back to fg, although a normal (non
IQ) mixer is used. Once again, two “sidebands” are generated in the multiplication,
however, the sum frequency is high, near 2f| . It is therefore very simple to filter out
the high-frequency image. We use a bandpass filter to additionally suppress any DC and
near-DC frequency components before we digitize. In order to obtain the amplitude
and phase of the voltage samples—or; equivalently, the [ and Q samples—we use a
custom-programmed digital downconversion (DDC) scheme.

The first step, directly after digitization, is to decimate the signal in order to obtain a
sample rate equal to 4fr. The ADC clock is supplied by a 1 GHz reference signal coming
from the readout LO and is internally doubled. The sample rate of the digitized data
is thus 2 Gsps. If fir = 100 MHz, we decimate by a factor of five. The decimation is
executed with a finite impulse response (FIR) digital filter which effectively averages
every five samples together. The next step is the downconversion, which is very simple
to perform. Because the sample rate is 4f g, multiplying with a sine and cosine at fg is
equivalent to multiplying by +1 and 0. Thus, we transform every group of 4 samples
identically, with samples (s;, S;+1, Si+2, Si+3) being mapped to I and Q as

ij2,lij241) = (Si, —Sit2) (3.6)
(Qi/ZrQi/2+1) = (Si+1, —Si+3)) (3.7)

where i is the group index. Notice that the downconversion results in another reduction
of the sample rate by a factor of two simply because we are creating a single complex
sample out of two real ones. A critical element that should not be forgotten is that
the digitizer must be synchronized to the AWG for the phase measurements made
over multiple pulse repetitions to be consistent. This is accomplished by triggering
the ADC digitization on a marker signal positioned at the same point in time for each
measurement pulse. This signal is sent via a separate cable connecting the AWG marker
output to the ADC trigger input. As a result, the ADC always measures the first point
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of the incoming waveform “at the same time,” allowing relative phase changes to be
detected.

The output of the DDC step is the baseband (DC) complex envelope of the pulse.
For the purpose of qubit or resonator measurement we average the envelope over
the length of the pulse, clipping out the leading and trailing edges. The result is thus
a single complex IQ point representing the amplitude and phase of the transmitted
signal in millivolts. To obtain S,;, we divide by the amplitude of the pulse emitted by
the AWG. Note that while we choose the envelope of the emitted readout pulse to be a
perfect rectangular shape with Gaussian leading and trailing edges, the envelope of the
measured pulse will look different. The exact portion of the received pulse over which
to average might therefore need to be adjusted, e.g., depending on the resonator Q..

Schematics of the receiver are shown in the top right of Fig. 3.5. Downconversion
is done with a non-IQ Marki mixer (Marki M1-0212LA). The IF signal is filtered by a
Mini-Circuits 20 MHz-1 GHz bandpass filter (Mini-Circuits ZABP-510-S+). The IF signal
is further amplified by an SRS IF amplifier (SRS SR445A) and then digitized by an
Ultraview 2Gsps 12-bit ADC (Ultraview AD12-2000).

Figure 3.8 shows a picture of the transmitter and receiver setup. The large blue
power divider is used to split the LO signal and drive the transmitter and receiver
mixers. We installed directional couplers at the output of the upconversion mixers
(only one pictured here) to monitor the mixed signals in real time on an oscilloscope.

With time-domain experiments, we usually must repeat the measurement many
times, either to achieve lower noise by averaging, or to collect qubit readout statistics
(see the next section). In the experiments of this thesis, we usually acquire between
500 and 1000 readout pulses per “point”. Because the qubit and resonator must fully
decay back to their ground state before a new measurement can be made, the repetition
rate of the readout pulse is limited by relaxation times. We use repetition rates between
2 and 4 kHz, resulting in acquisition times of less than 0.5 s per point.

3.3.3 Qubit Readout

As was briefly explained at the end of Sec. 2.3, readout in circuit QED is usually done
by taking advantage of the qubit state dependent frequency of a coupled resonator.
There are in fact two different methods that make use of this effect in very different
power regimes. The first method is the low-power dispersive readout that was initially
envisioned [102, 205]. The low-power readout is a nondemolition process [206, 207].
During the readout, the qubit state is projected onto the measurement basis, and, if
measurement is repeated, it should yield the same state. This is obviously advanta-
geous for any kind of experiment where the qubit needs to be operated on after being
measured, e.g., for state initialization [191] or quantum error correction [59, 108, 109].
The major disadvantage of the low-power readout is the low signal power, which needs
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Figure 3.8: Readout transmitter and receiver setup. The 1Q mixer on the left multiplies
the LO with the AWG signals at the I and Q ports. The mixer on the right downconverts
the signal coming from the DR with the same LO. An IF bandpass filter is used for image
rejection. Two room-temperature amplifiers and a microwave switch can be seen in
the background.

to be on the singe-photon level. Consequently, we must either forgo single-shot readout
and instead average the measurement signal over many shots, or we need to install a
near-quantum limited amplifier at the mixing chamber stage.

For the low power readout, we send a pulse at one of the displaced resonator
frequencies and measure the transmitted signal. For example, we can choose to measure
at the eigenfrequency that the resonator has when the qubit is in the excited state. In
that case, when the qubit is in |g), the resonator will not be at the readout frequency,
leading to a large S,; value. When the qubit is |e), the resonator will absorb the signal,
leading to a small S,4 value. The different transmission amplitudes are thus correlated
with each qubit state. Figures 3.9 (a) and (b) show the magnitude of the transmitted
power |S,, | averaged over many shots as a function of the readout pulse frequency and
power for the qubit initialized in the ground (a) and excited (b) state. At low power,
the length of the pulse is limited by qubit decoherence, which is itself increased during
the measurement [208]. Notice that, unlike the prediction of Eq. (2.86), the resonator
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Figure 3.9: Qubit readout characterization. The top row shows time-domain (pulsed)
measurements of S,; transmission for the qubit initialized in |g) (a) and |e) (b). The
S,1 samples are averaged together and we plot the magnitude. The state-dependent
dispersive shift is visible at low power. In (c), the same S,; samples are used to calculate
the single-shot readout visibility.

is not evenly shifted by +y around wg. The correct resonator frequency at low power
in Fig. 3.9 (b) is given by Eq. (2.87).

High power readout, which we choose to perform for all the experiments of this the-
sis, solves many of these issues. Instead of relying directly on measuring the frequency-
shifted resonator, the high-power scheme exploits the state-dependent sensitivity of
the onset of the “bright” state of the resonator; at the bare resonator frequency [209].
We can see on Fig. 3.9 (a) and (b) that, at very high power (P eagour = 10 dBm), the
frequency shift caused by the qubit is completely eliminated, and the “bright” resonator
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is visible at its bare frequency, wy (see also the “punchout” measurement in Sec. 3.4).
At a slightly lower—but still high—power, the appearance of this bright state depends
on the qubit state. Indeed, if we observe closely Fig. 3.9, we notice that the power at
which the resonator appears is slightly lower when the qubit is prepared in |e). We
thus configure readout by setting the power just below the power required to trigger
the bright state in |g).

The power used for this kind of readout ensures that the SNR of the pulse measured
by the ADC is high. This allows us to determine the qubit state in a “single-shot,” without
averaging over many pulses. The second advantage is that the readout is not sensitive
to qubit decoherence. If the resonator switches to the bright state, it will stay in that
state for as long as power is maintained, we can thus increase SNR by averaging over
a longer pulse length (if necessary). The main disadvantage is that the high-power
readout is a destructive readout. After the pulse, both the qubit and the resonator will
need time to relax back to the ground state.

It is possible to calibrate the measurement such that we assign the result of each
shot to a binary result, i.e., the qubit state, instead of returning the raw IQ sample. This
makes it possible to plot the results of experiments using the average population P,
instead of an arbitrary voltage scale. Figure 3.10 illustrates the calibration process. We
first collect raw IQ samples for the qubit initialized in the |g) (pale blue) and |e) (pale
orange) state. We may confirm that this is indeed the correct state correspondence
by looking at the magnitude of the voltage: It is higher in the ground state since the
resonator is not present at the measurement frequency (high transmission). Note,
however, that there are outlier samples, i.e., samples for which the resonator was
measured in the bright state even though the qubit was initialized in |g), and vice-versa.
These errors stem either from incorrect state preparation or measurement (so-called
SPAM errors).

These errors make it impossible to use a simple average to identify the IQ values
corresponding to a particular state. Instead, we combine both datasets and run a k-
means clustering analysis using the means of the |g) and |e) datasets as starting points.
If successful, the clustering analysis returns the position of the centroid of each cluster,
¢g and ¢.. We draw a partition line at a point C along the axis defined by the centroids.
Each sample is thus classified according to the side of the partition line it falls on. The
measurement visibility is defined as

V = Pee + Py — 1 (3.8)

glg —
where P, is the proportion of measurement shots classified as |e) when the qubit was
prepared in |e) and equivalently for Py,. The point C itself is determined by maximizing
the visibility (or, if the two clusters are well separated, we may simply set it at the
midpoint between ¢, and c.).
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Figure 3.10: Qubit single shot measurement IQ calibration. Two single-shot mea-
surements are made, one each for a qubit prepared in |g) (pale blue) and |e). Each
measurement consists of 786 individual “shots” or points. The position of the two
clusters ¢y and ¢, is determined via k-means clustering. After finding an optimal mid-
point C, we calculate the transformation taking the 1Q samples to the I axis. Subsequent
measurements can then be classified as |e) if they are on the positive side of the axis,
and |g) otherwise.

Numerically, it is convenient to perform the classification by calculating the complex
plane transformation—a translation by —C followed by a rotation by 8 = arg(cs —
C)—that places ¢g and ¢, on the real axis (corresponding to I). A raw complex 1Q
sample z and transformed as z’ = e'®(z — ) is thus classified as an excited state if
Re[z'] > 0, and as a ground state otherwise. The bright blue and orange points in
Fig. 3.10 correspond to those transformed samples. For these two measurements,
Pgg = 0.990 and P, = 0.965, resulting in a visibility V' = 0.955.

For each experiment, we calibrate the readout by measuring preparations of |g) and
|e) and calculating the transformation. Any subsequent measurement is then classified
according to its real part after the transformation. The average population, for an array
of complex IQ samples {z;} is calculated by taking the mean

Z?’zl Re[e(z; — C)] > 0

P, = ~

(3.9)

where N is the number of shots and the comparison results in a Boolean {0, 1}.
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Figure 3.9 (c) shows the calculated single-shot visibility as a function of measure-
ment power and frequency. The best visibility is actually obtained at a frequency slightly
higher than w,. The visibility drops at low power because the SNR is insufficient for a
single-shot readout.

3.4 Initial Characterization Experiments

Finally! The fridge is cold, instruments are connected, and we are ready to begin
measurements. The first step is to take a full high-power VNA frequency sweep. With
the filters, circulators and amplifiers, the measurement frequency range is from 4
to 8 GHz. Such a sweep is visible in Fig. 4.16 (c). This measurement will reveal the
resonance frequencies of the devices that are coupled to the transmission line. For
us, that means resonators. At this point, you can compare the designed resonance
frequencies to the measured ones; if all went well, they should match.

We can now make a more detailed measurement of each resonator in order to fit
the transmission and extract Q; and Q. [see Fig. 4.16 (d)]. This can be done as we
vary the power, to see how much the resonators are affected by TLS [see Fig. 4.17].
If we are measuring a resonator that is coupled to a qubit (e.g., a readout resonator),
a power sweep will also immediately indicate whether the qubit is working or not.
This is because the resonator gradually transitions into the quantum regime as power
is lowered [210] and during this transition—if there is a qubit—the resonator often
disappears entirely!

If this effect is observed during resonator measurements, a “punchout” experiment
should be executed next [211]. For this measurement, we sweep a larger bandwidth
around the resonator and over a range of powers. The goal is to observe the frequency
of the resonator change as a function of power. An example of a punchout measurement
can be seen in Fig. 3.11, where we plot the amplitude and the phase of S, as a function
of VNA power P qa40ut and frequency freadqout- At high power, there is so much energy
going into the resonator that the system becomes classical—the qubit is “punched
out”—and we see the resonator at its “bare” frequency. As the power is lowered below
3 dBm, the resonator briefly fades out and subsequently reappears as its frequency
shifts. Atlow power, the system is well-described by the Jaynes-Cummings Hamiltonian
[Eq. (2.84)]. The difference between the high-power and low-power frequency is given
by x in Eq. 2.86, the AC Stark shift [102]. If the shiftis positive (as in Fig. 3.11), wg > w,.
A punchout measurement therefore gives a very simple way to calculate the qubit
frequency given an estimate of g.

If it appears that we have working qubits, the next step (before moving to time-
domain measurement) is to perform CW spectroscopy, where we tune the idle qubit
frequency via the DC voltage bias and look at the frequency of the resonator change,
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Figure 3.11: Punchout measurement. We measure S,; with a VNA over a range of
frequencies around the resonator, varying the emitted power. At low power, we observe
the resonator at a frequency shifted by y. At high power, the qubit is “punched out,”
and the resonator reverts to its “bare” frequency.

again, because of the Stark shift. This measurement must be made at low power: the
resonator should be well in the quantum regime. We can use the punchout results
to determine the appropriate power. Figure 3.7 shows two examples of “single-tone”
spectroscopy. We are able to observe anti-crossings between the qubit and resonator,
and, though we cannot observe the qubit directly, we can imagine (and calculate) where
itis. If we wanted, we could also perform “two-tone” spectroscopy to pinpoint the qubit
frequency directly. If we have a good estimate for g, though, it is not necessary.

We are done with VNA measurements, time for... time-domain! We disconnect the
resonators, and instead connect the homodyne readout setup to the measurement
input and outputs of the DR. We also connect the pulsed drive equipment to the qubit
XY line. The setup now looks exactly as the one of Fig. 3.5. The first thing we will
need to do is to roughly calibrate the measurement power. Because we are using a
high-power readout scheme, this is relatively simple: we simply start at very high
power, where we see the resonator at its bare frequency, and lower the power until we
see the resonator disappear (in effect, we replicate the punchout measurement). At
this stage, the measurement does not need to be perfect. We then drive the qubit at its
estimated frequency with a pulse, measuring right after. We repeat this pulse sequence
many times to average the measured voltage, sweeping either the drive pulse length or
amplitude. Assuming that readout was set up properly, we will see the average voltage
oscillate; this is a Rabi measurement. A Rabi measurement where we swept the pulse
length ¢, is pictured in Fig. 3.12 (a). We can easily determine the length of a -pulse:
it is half the oscillation period; here, approximately 0.3 ps. Note that Fig. 3.12 (a) was
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Figure 3.12: Rabi and Ramsey experiments. Left: Rabi experiment. The amplitude of
the measured voltage oscillates as the length of the pulse applied to the qubit increases.
The period of a full rotation is approximately 0.6 pus. The data pictured here is from
the author’s first Rabi experiment, which was done with Carolyn Earnest on Oct. 19th
2018. Right: Ramsey experiment. The oscillation is caused by the difference between
the drive and qubit frequencies. Solid lines are fits.

the first Rabi experiment ever done in our lab, it used a very basic rectangular pulse.
The Rabi calibrations done for the experiments in this thesis use fixed length Gaussian
or cosine pulses and we instead vary the amplitude. Also note that once a basic -pulse
is working, we can change the measurement scale from the voltage amplitude measured
by the digitizer to the average excited population P,, as explained in the last section.
While we can measure the qubit frequency via spectroscopy, the best way to accu-
rately pinpoint wg is a Ramsey experiment. The pulse sequence of a Ramsey exper-
iment consists of a first 7 /2-pulse®, followed by a delay time At, and then a second
n/2-pulse. Since we do not know the exact qubit frequency, the pulses are made at
a frequency wpye that we think is relatively close to wq. If we are not too far off, the
off-resonance pulses will successfully rotate the qubit. The frequency difference, how-
ever, causes the superposition state |g) + |e) obtained after the first pulse to precess,
with the phase of |e) increasing at a rate fr = (wpyse — Wq)/2m during the delay
At. This increasing phase is what causes the oscillations visible in Fig. 3.12 (b). If
we fit these oscillations, we can obtain f§, thereby allowing us to determine wq- In

>1/2-pulses are simply half-amplitude rt-pulses
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practice, we perform multiple Ramsey runs at different pulse frequencies in order to
get a very precise fix on wq. In Fig. 3.12 (b), we fit four Ramsey frequencies obtained
at wpyise/2m € {4.7237,4.7277,4.7597,4.7637} GHz. We can thus calculate the qubit
frequency wqg = 4.74383(1) GHz.

With an accurate qubit frequency, we can repeat the Rabi experiment to better
calibrate the m-pulse amplitude. We can then improve the measurement visibility
by fine-tuning the amplitude and frequency of the readout pulse (see Fig. 3.9). This
simple calibration is generally sufficient for the experiments described in this thesis. To
properly optimize gate fidelity, however, more sensitive experiments are needed. For
example, instead of calibrating the m-pulse amplitude by sending a single pulse, we can
send multiple. The error is thus amplified and can be detected more easily. For examples
of these more sophisticated pulse calibration schemes, see, e.g., Refs. [212, 213, 214].

We are now in a good shape: We know the qubit frequency accurately, and we
calibrated a high-quality m-pulse and readout. This allows us to properly characterize
the decoherence of the qubit with T; and T, experiments. The T; experiment is simple:
we pulse the qubit to the excited state, wait a delay time At, and measure. Because the
qubit is coupled to the environment (and in particular TLS, see Chapters 5 and 6), its
excitation leaks into the environment at a rate I; = 1/T;. As was explained in Sec. 2.5,
as At is increased the average population decreases exponentially. Figure 3.13 (a)
shows a T; experiment; we fit the decay, giving T; = 19.75(30) ps.

From the point of view of gate-based quantum computing, 7, is usually the more crit-
ical number because it encompasses both the relaxation rate I'; and the pure dephasing
rate [, and, for tunable qubits, is often significantly smaller than T;. AT, experiment is
simply an on-resonance Ramsey experiment. As can be seen in Fig. 3.13 (b), because
fr = 0, there are no oscillations, only a decay. Note that due to 1/f noise [215], T,
decays are generally not exponential (< e~4¢/™2), but closer to Gaussian (o< e~(4t/T2)*
with 1 S k < 2). Therefore, we fit the decay with a model containing an extra expo-
nent parameter k. The T, time obtained with this method can be considered to be a
worst-case number because a pure exponential with the same time constant would
actually decay faster®.

[t is possible to make a T, experiment where we filter out the sensitivity to low-
frequency noise [84]. By inserting a m-pulse exactly in the middle of the delay time,
noise that causes a qubit frequency change—and therefore a precession—that is con-
stant during the length of the pulse sequence can be eliminated. This is because the
direction of the precession is inverted after the m-pulse, thereby bringing the qubit
back to its original state when the measurement is made. Higher-frequency noise

A pure exponential would decay faster in the time period 0 < At < T,. After reaching At > T,, a
Gaussian decays faster. We consider the initial period to be more important since that is the time during
which operations will be performed reliably.
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Figure 3.13: T; and T, experiments. Solid lines are fits. Left: T; experiment. Right: T,
experiments.

causes the precession to increase at a randomly fluctuating rate, rendering the m-pulse
ineffective. This type of T, experiment is called an “echo” experiment because, in old
nuclear magnetic resonance setups, the middle m-pulse caused a resurgence of the
measurement signal [216]. If multiple -pulses are inserted, the shape of the noise
filtering function can be tuned, making possible to probe noise in different regions of
the spectrum [217, 181]. A Ts"° decay is shown in Fig. 3.13; as would be expected,
reducing low-frequency noise increases the time constant. Because the source of low-
frequency noise is often 1/f in nature, eliminating it often renders the decay more
exponential.

To finish the initial characterization of the device, we perform spectroscopy of
the qubit and resonator over a large range of Vy;,s, including spectroscopy of the w,
transition, which is accessible at high drive power via a two-photon process at wg, /2.
If desired, we can also measure T; and T, during that same experiment. The relaxation
rate tends to vary as a function of 4 = wg — wq due to the Purcell effect [2, 177, 178].
At smaller detunings, the qubit relaxation rate is enhanced by the resonator relaxation
rate. The dephasing rate directly depends on the flux biasing of the qubit. At zero net

d
flux, the qubit is at the highest frequency, and the frequency derivative is zero qu;Q = 0.

As a result, to first order, flux noise in the SQUID loop will not change the frequency of
the qubit. This is the “sweet spot”. Conversely, as flux bias is increased and the qubit
frequency decreases, the derivative becomes larger and larger,; increasing sensitivity to
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Figure 3.14: Full Hamiltonian calibration spectroscopy. To obtain this data, we first
perform low-power resonator spectroscopy with the VNA. We then switch to the time-
domain measurement setup and perform qubit spectroscopy of both wq = wp; and wys.
The second excited state is accessible at high drive power via a two-photon process
at wy, /2. We then simultaneously fit all three frequencies as a function of V5 using
a full circuit model. The extracted parameters are shown in 3.1. Though this is not
shown, we also measure T; and T, during the experiment.

flux noise, and reducing 7.

Figure 3.14 shows the result of such spectroscopy, along with lines fit according to a
physical model derived with the method of Chapter 2. Such a fit allows us to determine
all the relevant circuit parameters; they are tabulated in Table 3.1. We can then use
those circuit parameters to check whether design was done correctly. One particularly
useful number is E;, which, in combination with the room-temperature resistance of
the SQUID loop and Eq. (2.49), allows us to calculate the value of the superconducting
gap A for the fabricated film. This value may then be used for future designs. With this
sample we measured R, = 6.3(1) k(), corresponding to a gap 4 ~ 160 peV.

Another useful experiment for characterization and calibration of a qubit over a
large range of frequencies is swap spectroscopy, and its optimized extension, octave
sampling. This experiment uses flux pulses to instantaneously set the qubit frequency
rather than setting a DC flux with V},;,s. Swap spectroscopy and octave sampling are
covered in Chapter 5.
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Table 3.1: Qubit-resonator device parameters calculated from the fit of Fig. 3.14. This
device was used in some experiments of this thesis, in particular those of Chapter 5.
C. is the coupling capacitance between the qubit and its readout resonator. Note
that the resonator frequency is that of the “bare” resonator. If we include the effect
of the coupling capacitance, the resonator frequency is 5.032 GHz. The Hamiltonian
parameters are determined via a fit of the resonator and qubit frequency, and the qubit
anharmonicity. The relative error on each parameter is less than 1%.

Parameter Value
E; (GHz) 19.614(5)
E; (MHz) 188.92(5)
fRr (GHz) 5.04844(3)
C. (fF) 3.371(5)
Ty (us) 10 to 25
T, (ns) 400 to 1000

3.5 Randomized Benchmarking

We have shown how to characterize a qubit-resonator system. More advanced ex-
periments will now involve more parameter dimensions (e.g., time), multiple circuit
elements, or longer pulse sequences. The first two points are covered by the exper-
iments done in Chapters 5 and 6, respectively. A great example of an experiment
involving long pulse sequences is randomized benchmarking (RB), the topic of this
section.

As mentioned in Sec. 2.4, randomized benchmarking is used to characterize the
fidelity of quantum gates. The classic RB protocol [152] uses progressively longer
sequences of random gates G, G5, ..., G,,, designed to modify the state of a qubit (or of
multiple qubits) such that, on average, the qubit covers the entire state space uniformly
during the sequence. A final gate G,,,; applied at the end of each sequence returns
the qubit to the ground state, after which the qubit is measured. With a perfect qubit
and perfect gates, that would result in a constant measurement of |g), no matter the
sequence length. For a physical qubit and imperfect gates, any kind of noise or errors—
energy relaxation, dephasing, or even unitary gate errors—transforms the sequence
to a simple depolarizing channel. As a result, the qubit is not always returned to the
ground state, and on average P, decays exponentially as a function of the sequence
length m. The decay is fit to obtain the average gate fidelity F.

The gates used in the sequence are drawn randomly from a set called the Cliffords.
This gate set has two advantages: First, it is a discrete set, though its size grows ex-
tremely quickly with the number of qubits, and, second, the final inversion gate G, 1
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Table 3.2: Single-qubit Cliffords. The single-qubit Clifford group contains 24 elements.
The notation R;;(6) represents a Clifford element as a Bloch sphere rotation by an
angle 6 about the axis represented by the Euclidean vector & = (x,y,z). The right
column gives an implementation of the Clifford in terms of basic X and Z pulses. Note
that a single Clifford may have multiple possible implementations. The notation X /2
represents a /2 rotation around the x-axis.

Clifford Element  Implementation Clifford Element Implementation
Identity I R1,0,0y(1/2) X/2

R(1,0,0 (1) X R(-1,0,0) (/2) -X/2

R(0,1,0y(7) X, Z R(0,1,0)(t/2) X/2,Z/2, =X/2
R0,0,1) () A R(0,-1,0 (/2) X/2, -2/2, =X /2
R1,1,1)(2m/3) X/2,Z/2 R0,0,1)(1/2) Z/2
R(1,1,—1)(27T/3) —Z/2, X/2 Re,0,-1) (/2) —Z/2
R(1,-1,1)(21/3) Z/2, X/2 R(1,0,1) (1) X/2,Z/2, X/2
Ra-1-0@T/3)  X/2-Z/2  Ruo-n(@m  X/2,-2/2, X2
R(-1,1,1)(21/3) Z[2, =X/2 R0,1,-1)() Z, X/2
Ri-11,-1)(2r/3)  —X/2, =Z/2 R0,1,+1)() Z, =X/2
Ri-1,-11)(2r/3) —X/2, Z/2 R1,1,0) () X, Z/2
Ri-1,-1,-1(2r/3) —Z/2, =X/2 R-1,1,0)(m) X, —Z/2

can be computed efficiently. A consequence of the first point is that the qubit will not
cover the entire Bloch sphere; it is confined to a finite set of states. Fortunately, this
still results in exponential decay [154]. The second point is particularly important
because it means that the Cliffords do not constitute a universal gate set. In other
words, quantum computation is not realizable by using gates solely from the Clifford
set. Table 3.2 lists the single-qubit Clifford gates. The two-qubit Clifford set can be
built out of tensor products of single-qubit Cliffords, plus a two-qubit gate, e.g., the
CNOT. Classically efficient methods exist to randomly generate Cliffords for any num-
ber of qubits, making randomized benchmarking scalable. We have implemented the
algorithm described in Ref. [218] to generate Cliffords.

We run a randomized benchmarking experiment by executing pulse sequences
that realize random Clifford sequences. Because the Clifford set contains rotations
about “diagonal” axes, e.g., the Hadamard gate, they cannot all be realized with a single
microwave pulse (for XY rotations), or flux pulse (for Z rotations). Each Clifford must
instead be decomposed into a set of achievable pulses. Since generating Z rotations
with flux pulses generally yields lower fidelity gates, it is advantageous to use “all-
microwave” gates instead. This is possible because X and Y rotations can be combined
to create a Z rotation. The disadvantage is that each Clifford now requires more pulses.
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Figure 3.15: Single-qubit randomized benchmarking (a) and purity benchmarking
(b). For each sequence length m, 50 random sequences are generated. We choose
28 lengths logarithmically spaced between 1 and 5000 for RB, and 1 and 3000 for
PB. Rotations about the z-axis are done virtually by tracking the rotation of the qubit
reference frame. Each microwave pulse is 20 ns long and has a DRAG-optimized cosine
shape. We calibrate the pulse amplitude, DRAG parameter, and qubit frequency with
the “AlIXY” protocol from Ref. [212] prior to running the Clifford sequences.

Another approach is to replace physical Z rotations with virtual rotations, where we
instead track rotations of the qubit reference frame, and adjust the rotation axis of sub-
sequent gates [145]. This method is not only applicable to randomized benchmarking,
but to any algorithm, and is compatible with two-qubit gates.

Figure 3.15 (a) shows the result of a randomized benchmarking experiment with
each Clifford element decomposed in terms of microwave X rotations and virtual Z
rotations. On average, this decomposition results in 23/24 ~ 0.9583 physical pulses
per Clifford. We generate 50 random sequences for each sequence length m and record
the ground population P, after each sequence. We then fit the average P, over each of
the 50 sequences to an exponential model

Py(m) = Ap™ + B (3.10)

where A, B and p are fitting parameters. The average Clifford gate fidelity is then

F_1+ 1 1 3.11
g_d p d ( )
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Figure 3.16: Randomized benchmarking over time. We measure Fg over time by contin-
uously running sequences of increasing length m. We choose 19 lengths logarithmically
spaced between 1 and 3000. A run of a single sequence of each length takes 30 s. Each
point in the plot is the result of a fit performed over a 25 min-window moving average,
with each P, value in the exponential decay therefore averaged over 50 sequences. We
measure a total of 4800 sequences of each length for a total experimental time of 40 h.
The pulse parameters are calibrated in the same way as the experiment of Fig. 3.15.
The F ¢ fluctuations are larger than the fit standard error, which is 0.00002 on average.

where d is the space dimension. For a single qubit, d = 2.

Figure 3.15 (b) shows the result of a “purity” benchmarking (PB) experiment [158,
219]. Purity benchmarking is very similar to RB. The same random Clifford sequences
are run, but instead of measuring only P,—equivalent to a measurement of (6,)—at the
end of each sequence, we also measure (4,) and (d,). This means that each individual
random sequence must be repeated three times, and a rotation pulse must be added
to measure (d,) and (d,). These three expectation values are then used to obtain an
estimate of the purity P = (ax)2 + (ay)2 + (0’2)2. The purpose of a purity benchmarking
experiment is to evaluate the incoherent error per gate €;,. As might be expected,
incoherent errors are caused by decoherence. The incoherent error is useful because,
in combination with the total errore = 1 — F o it allows us to estimate the amount
of coherent error, €.,;, = € — €. In principle, the coherent error may be reduced via
better calibration or pulse quality, and it is therefore a metric of how well the system
has been optimized.

[t is now well-known that taking individual measurements of Ty, T, or Fg is not
sufficient to properly characterize a quantum device. Two-level systems cause fluctua-
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tions of those parameters over time, sometimes decreasing T; by an order of magnitude.
A proper characterization therefore requires measurement over long time periods,
sometime even multiple days. Chapter 6 details the origin of those fluctuations, and
presents measurement and simulations of T; over long time periods and over a range
of qubit frequencies. Similar experiments may be run for other metrics, such as F'g.

Figure 3.16 shows the result of a “monitoring” RB experiment, where we continually
run RB sequences in order to monitor Fg over time. The protocol for this experiment
is slightly different from a standard RB experiment. Instead of directly generating 50
random sequences for each length, we run a single sequence for each length m, and start
over after running the last sequence. We insert a short variable delay time after the
last sequence to ensure that a full run takes exactly 30 s. The sequences are repeated
for as long as is desired. We calculate the average P, value over 50 sequences for every
time point with a centered moving window. At the endpoints, the window is truncated,
e.g., for the first and last point the average is only performed over 25 sequences. The
average P, decay is fit to obtain an estimate of F'g at each time point.

70



The Quantum Socket

Quantum computing architectures are on the verge of scalability, a key requirement for
the implementation of a universal quantum computer. The next stage in this quest is
the realization of quantum error correction codes, which will mitigate the impact of
faulty quantum information on a quantum computer. Architectures with ten or more
quantum bits (qubits) have been realized using trapped ions and superconducting
circuits. While these implementations are potentially scalable, true scalability will
require systems engineering to combine quantum and classical hardware. One technol-
ogy demanding imminent efforts is the realization of a suitable wiring method for the
control and measurement of a large number of qubits. In this chapter! , we introduce an
interconnect solution for solid-state qubits: The quantum socket. The quantum socket
fully exploits the third dimension to connect classical electronics to qubits with higher
density and better performance than two-dimensional methods based on wire bonding.
The quantum socket is based on spring-mounted microwires - the three-dimensional
wires - that push directly on a micro-fabricated chip, making electrical contact. A small
wire cross-section (~ 1 mm), nearly non-magnetic components, and functionality at
low temperatures make the quantum socket ideal to operate solid-state qubits. The
wires have a coaxial geometry and operate over a frequency range from DC to 8 GHz,
with a contact resistance of ~ 150 m(}, an impedance mismatch of ~ 10 (), and minimal
crosstalk. As a proof of principle, we fabricated and used a quantum socket to measure
high-quality superconducting resonators at a temperature of ~ 10 mK. Quantum error
correction codes such as the surface code will largely benefit from the quantum socket,
which will make it possible to address qubits located on a two-dimensional lattice.
The present implementation of the socket can be readily extended to accommodate a
quantum processor with a 10 X 10 qubit lattice, which would allow the realization of a

IThis chapter was largely adapted from Ref. [220]. The list of author contributions can be found in
the Statement of Contributions within the front matter of this thesis. © 2016 American Physical Society
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simple quantum memory.

4.1 Introduction

At present, one of the main objectives in the quantum computing community is to build
and prototype practical hardware technology for scalable architectures that may lead
to the realization of a universal quantum computer [36]. In this chapter, we undertake
the task of implementing an extensible wiring method for the operation of a quantum
processor based on solid-state devices, e.g., superconducting qubits [90, 91, 221].
Possible experimental solutions based on wafer bonding techniques [222, 223, 224,
225, 226] or coaxial through-silicon vias [227] as well as theoretical proposals [228,
229] have recently addressed the wiring issue, highlighting it as a priority for quantum
computing.

Despite the recent experimental accomplishments mentioned in Chapter 1, a truly
scalable qubit architecture has yet to be demonstrated. Wiring is one of the most
basic unsolved scalability issues common to most solid-state qubit implementations,
where qubit arrays are fabricated on a chip. The conventional wiring method based on
wire bonding suffers from fundamental scaling limitations as well as mechanical and
electrical restrictions. Wire bonding relies on bonding pads located at the edges of the
chip. Given a two-dimensional lattice of N X N physical qubits on a square chip, the
number of wire bonds that can be placed scales approximately as 4N (N bonds for each
chip side). Wire bonding will thus never be able to reach the required N2 law according
to which physical qubits scale on a two-dimensional lattice. Furthermore, for large N,
wire bonding precludes the possibility of accessing physical qubits in the center region
of the chip, which is unacceptable for a physical implementation of the surface code. In
the case of superconducting qubits, for example, qubit control and measurement are
typically realized by means of microwave pulses or, in general, pulses requiring large
frequency bandwidths. By their nature, these pulses cannot be reliably transmitted
through long sections of quasi-filiform wire bonds. In fact, stray capacitances and
inductances associated with wire bonds as well as the self-inductance of the bond itself
limit the available frequency bandwidth, thus compromising the integrity of the control
and measurement signals [230].

In this chapter, we set out to solve the wiring bottleneck common to almost all
solid-state qubit implementations. Our solution is based on suitably packaged three-
dimensional microwires that can reach any area on a given chip from above. We define
this wiring system as the quantum socket. The wires are coaxial structures consisting
of a spring-loaded inner and outer conductor with diameters of 380 um and 1290 pm,
respectively, at the smallest point and with a maximum outer diameter of 2.5 mm.
The movable section of the wire is characterized by a maximum stroke of approxi-
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mately 2.5 mm, allowing for a wide range of on-chip mechanical compression. All wire
components are nearly non-magnetic, thereby minimizing any interference with the
qubits. The three-dimensional wires work both at room temperature and at cryogenic
temperatures as low as ~10 mK. The wires’ test-retest reliability (repeatability) is
excellent, with marginal variability over hundreds of measurements. Their electri-
cal performance is good from DC to at least 8 GHz, with a contact resistance smaller
than 150 m() and an instantaneous impedance mismatch of approximately 10 (). No-
tably, the coaxial design of the wires strongly reduces unwanted crosstalk, which we
measured to be at most —45 dB for a realistic quantum computing application.

This chapter is organized as follows. In Sec. 4.2, we introduce the quantum socket
design and microwave simulations. In Sec. 4.3, we show the socket physical implemen-
tation with emphasis on materials and alighment procedures. In Sec. 4.4, we present
a comprehensive DC and microwave characterization of the quantum socket opera-
tion at room and cryogenic temperatures. In Sec. 4.5, we show an application of the
quantum socket relevant to superconducting quantum computing, where the socket
is used to measure aluminum (Al) superconducting resonators at a temperature of
approximately 10 mK. Finally, in Sec. 4.6, we envision an extensible quantum com-
puting architecture where a quantum socket is used to connect to a 10 X 10 lattice of
superconducting qubits.

4.2 Design

The development of the quantum socket required a stage of meticulous micromechan-
ical and microwave design and simulations. Based on signal integrity and quantum
device quality criteria, it was determined that a spring-loaded interconnect - the three-
dimensional wire - was the optimal method to electrically access devices lithographi-
cally fabricated on a chip ? and operated in a cryogenic environment. An on-chip contact
pad geometrically and electrically matched to the bottom interface of the wire can be
placed easily at any desired location on the chip as part of the fabrication process, thus
making it possible to reach any point on a two-dimensional lattice of qubits. The coaxial
design of the wire provides a wide operating frequency bandwidth, while the springs
allow for mechanical stress relief during the cooling process. The three-dimensional
wires used in this chapter take advantage of the knowledge in the existing field of mi-
crowave circuit testing [231]. However, reducing the wire dimensions to a few hundred
micrometers and using it to connect to quantum-mechanical micro-fabricated circuits
at low temperatures resulted in a significant extension of existing implementations
and applications.

2A typical chip comprises a dielectric substrate (e.g,, silicon or sapphire) and a metallic surface.
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4.2.1 Three-dimensional wires

Figure 4.1 shows the design of the quantum socket components. Figure 4.1 (a) displays
a model of a three-dimensional wire. The coaxial design of the wire is visible from
the image, which features a wire 30.5 mm long when uncompressed. The wire is
characterized by an inner cylindrical pin of diameter 380 um and an outer cylindrical
body (the electrical ground) of diameter 1290 pm at its narrowest region; this region is
the bottommost section of the wire and, hereafter, will be referred to as the wire contact
head (cf. the inset of Fig. 4.1 (a), as well as the dashed box on the left of Fig. 4.2 (a)). The
contact head terminates at the wire bottom interface; this interface is designed to mate
with a pad on a chip (cf. Fig. 4.2 (b) and (c)). The outer body includes a rectangular
aperture, the tunnel, to prevent shorting the inner conductor of an on-chip coplanar
waveguide (CPW) transmission line [232, 115]; the transmission line can connect
the pad with any other structure on the chip. Two different tunnel dimensions were
designed, with the largest one reducing potential alignment errors 3. The tunnel height
was 300 um in both cases, with a width of 500 pum or 650 pum. The internal spring
mechanisms of the wire allow the contact head to be compressed; the maximum stroke
was designed to be 2.5 mm, corresponding to a working stroke of 2.0 mm.

The outer body of the three-dimensional wire is an M2.5 male thread used to fix the
wire to the lid of the microwave package (cf. Fig. 4.1 (b) and (d)). The thread is split into
two segments of length 3.75 mm and 11.75 mm that are separated by a constriction
with outer diameter 1.90 mm. The constriction is necessary to assemble and maintain
in place the inner components of the three-dimensional wire. A laser-printed marker
is engraved into the top of the outer body. The marker is aligned with the center of
the tunnel, making it possible to mate the wire bottom interface with a pad on the
underlying chip with a high degree of angular precision.

Figure 4.2 (a) shows a lateral two-dimensional cut view of the three-dimensional
wire. Two of the main wire components are the inner and outer barrel, which com-
pose part of the inner and outer conductor. The inner conductor barrel is a hollow
cylinder with outer and inner diameters of 380 um and 290 um (indicated as part iv
in Fig. 4.2 (a)), respectively. This barrel encapsulates the inner conductor spring. The
outer conductor barrel is a hollow cylinder as well, in this case with an inner diame-
ter of 870 um (parts ii and vii). Three polytetrafluoroethylene (PTFE) disks serve as
spacers between the inner and outer conductor; such disks contribute marginally to
the wire dielectric volume, the majority of which is air or vacuum. The outer spring
is housed within the outer barrel towards its back end, just before the last PTFE disk
on the right-hand side of the wire. The back end of the wire is a region comprising a
female thread on the outer conductor and an inner conductor barrel (cf. dashed box on
the right-hand side of Fig. 4.2 (a)).

3These errors can result in undesired short-circuit connections to ground.
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screw-in
micro connector

Figure 4.1: Computer-aided designs of the three-dimensional wire, microwave package,
and package holder. (a) A wire of length £ = 30.5 mm along with a detail of the con-
tact head (inset). (b) Assembled microwave package including six three-dimensional
wires, washer, washer springs, and chip (shown in green). The arrow indicates the
screw-in micro connector mated to the back end of the wire. Forward hatching indi-
cates the washer cutaway, whereas backward hatching indicates both lid and sample
holder cutaways. (c) cross-section of the microwave package showing the height of
the upper cavity, which coincides with the minimum compression distance . of the
three-dimensional wires (cf. Appendix B.1). (d) Microwave package mounted to the
package holder, connected, in turn, to the mounting plate of a DR with SMP connectors.
A channel with a cross-sectional area of 800 pm X 800 pm connects the inner cavities of
the package to the outside, thus making it possible to evacuate the inner compartments
of the package. This channel meanders to prevent external electromagnetic radiation
from interfering with the sample.
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Figure 4.2: Two-dimensional cut view of the three-dimensional wire, contact pad, and
screw-in micro connector. (a) Side view of the wire cross-section. The wire components
are: i, spring-loaded center conductor of the contact head; ii, spring-loaded outer
conductor of the contact head; iii, vi, and ix, dielectric spacers; iv, center conductor
barrel; v, center conductor spring; vii, outer conductor barrel; viii, outer conductor
spring; x, center conductor tail; xi, outer conductor tail; xii, threaded outer body. The
dashed box on the left indicates the contact head, whereas that on the right indicates the
female threads included for use with the screw-in micro connector. (b) Front view of
the wire. The blue surface indicates the wire bottom interface. (c) On-chip contact pad.
Here, the blue surface indicates the pad dielectric gap, whereas the white surfaces refer
to conductors (thin metallic films deposited on a dielectric substrate). (d) Screw-in
micro connector. The left end of the micro connector mates with the back end of the
three-dimensional wire; the right end is soldered to a coaxial cable, the inner conductor
of which serves as the inner conductor of the micro connector (slotting into x).

The inner conductor tip is characterized by a conical geometry with an opening
angle of 30°. Such a sharp design was chosen to ensure that the tip would pierce through
any possible oxide layer forming on the contact pad metallic surface, thus allowing for
a good electrical contact.

Figure 4.2 (c) shows the design of a typical on-chip pad used to make contact with
the bottom interface of a three-dimensional wire. The pad comprises an inner and
outer conductor, with the outer conductor being grounded. The pad in the figure was
designed for a silver (Ag) film of thickness 3 pm. A variety of similar pads were designed
for gold (Au) and Al films with thickness ranging between approximately 100 nm and
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200 nm. The pad inner conductor is a circle with diameter 320 um that narrows to a
linear trace (i.e., the inner conductor of a CPW transmission line) by means of a raised-
cosine taper. The raised cosine makes it possible to maximize the pad area, while
minimizing impedance mismatch. As designed, the wire and pad allow for lateral and
rotational misalignment of +140 um and +28°, respectively. The substrate underneath
the pad is assumed to be silicon (Si) with a relative electric permittivity €, ~ 11. The
dielectric gap between the inner and outer conductor is 180 pm in the circular region
of the pad; the outer edge of the dielectric gap then follows a similar raised-cosine taper
as the inner conductor. The pad characteristic impedance is designed to be Z, = 50 Q.

4.2.2 Microwave package

The microwave package comprises three main parts: The lid; the sample holder; the
grounding washer. The package is a parallelepiped with a height of 30 mm and with
a square base of side length 50 mm. The chip is housed inside the sample holder. All
these components mate as shown in Fig. 4.1 (b) and (c).

In order to connect a three-dimensional wire to a device on a chip, the wire is
screwed into an M2.5 female thread that is tapped into the lid of the microwave package,
as depicted in Fig. 4.1 (b). The pressure applied by the wire to the chip is set by the
depth of the wire in the package. The wire stroke, package dimensions, thread pitch,
and alignment constraints impose discrete pressure settings (cf. Appendix B.1). In the
present implementation of the quantum socket, the lid is designed to hold a set of six
three-dimensional wires, which are arranged in two parallel rows. In each row, the
wires are spaced by 5.75 mm from center to center, with the two rows being separated
by a distance of 11.5 mm.

A square chip of lateral dimensions 15 mm X 15 mm is mounted in the sample
holder in a similar fashion as in Ref. [233]. The outer edges of the chip rest on four
protruding lips, which are 1 mm wide. Hereafter, those lips will be referred to as the
chip recess. For design purposes, a chip thickness of 550 pm is assumed. Correspond-
ingly, the chip recess is designed so that the top of the chip protrudes by 100 pym with
respect to the adjacent surface of the chip holder, i.e., the depth of the recess is 450 um
(cf. Fig. 4.1 (c)). The outer edges of the chip are pushed on by a spring-loaded grounding
washer. The 100 pm chip protrusion ensures a good electrical connection between
chip and washer, as shown in Fig. 4.1 (c).

The grounding washer was designed to substitute the large number of lateral bond-
ing wires that would otherwise be required to provide a good ground to the chip (as
shown, for example, in Fig. 6 of Ref. [233]). The washer springs are visible in Fig. 4.1 (b),
which also shows a cut view of the washer. The washer itself is electrically grounded
by means of the springs as well as through galvanic connection to the surface of the
lid. The four feet of the washer, which can be seen in the cut view of Fig. 4.1 (b), can be
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designed to be shorter or longer. This makes it possible to choose different pressure
settings for the washer.

After assembling the package, there exist two electrical cavities (cf. Fig. 4.1 (c)):
One above the chip, formed by the lid, washer, and metallic surface of the chip (upper
cavity), and one below the chip, formed by the sample holder and metallic surface of the
chip (lower cavity). The hollow cavity above the chip surface has dimensions 14 mm X
14 mm X 3.05 mm. The dimensions of the cavity below the chip surface are 13 mm X
13 mm X 2 mm. The lower cavity helps mitigate any parasitic capacitance between
the chip and the box (ground). Additionally, it serves to lower the effective electric
permittivity in the region below the chip surface, increasing the frequency of the
substrate modes (cf. Sec. 4.2.4).

A pillar of square cross-section with side length of 1 mm is placed right below the
chip at its center; the pillar touches the bottom of the chip, thus providing mechanical
support *. The impact of such a pillar on the microwave performance of the package
will be described in Sec. 4.2.4.

4.2.3 Package holder

The three-dimensional wires, which are screwed into the microwave package, must be
connected to the qubit control and measurement electronics. In addition, for cryogenic
applications, the package must be thermally anchored to a refrigeration system in order
to be cooled to the desired temperature. Figure 4.1 (d) shows the mechanical module
we designed to perform both electrical and thermal connections. In this design, each
three-dimensional wire is connected to a screw-in micro connector, which is indicated
by an arrow in Fig. 4.1 (b) and is shown in detail in Fig. 4.2 (d). One end of the micro
connector comprises a male thread and an inner conductor pin that mate with the back
end of the three-dimensional wire. The other end of the micro connector is soldered to
a coaxial cable °.

The end of each coaxial cable opposite to the three-dimensional wire is soldered to a
sub-miniature push-on (SMP) connector. The SMP connectors are bolted to a horizontal
plate attached to the microwave package by means of two vertical fixtures, as shown
in Fig. 4.1 (d). The vertical fixtures and the horizontal plate constitute the package
holder. The package holder and microwave package form an independent assembly. A

*The pillar was included in the design as there was concern over potential damage to the large
15 mmXx 15 mm substrates (particularly the Si ones) from mechanical strain due to the three-dimensional
wires pushing on the top of the chip.

>The micro connector is necessary because the high temperatures generated by soldering a coaxial
cable directly to the wire back end would damage some of the inner wire components. The breaking
temperature of those components is even lower than the melting temperature of available eutectic
solders.
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horizontal mounting plate, designed to interface with the package holder, houses a set
of matching SMP connectors. The mounting plate is mechanically and, thus, thermally
anchored to the mixing chamber (MC) stage of a dilution refrigerator (DR).

4.2.4 Microwave simulations

The three-dimensional wires, the 90° transition between the wire and the on-chip pad
as well as the inner cavities of a fully-assembled microwave package were extensively
simulated numerically at microwave frequencies °. The results for the electromagnetic
field distribution at a frequency of approximately 6 GHz, which is a typical operation
frequency for superconducting qubits, are shown in Fig. 4.3. Figure 4.3 (a) shows the
field behavior for a bare three-dimensional wire. The field distribution resembles that
of a coaxial transmission line except for noticeable perturbations at the dielectric PTFE
spacers. Figure 4.3 (b) shows the 90° transition region. This is a critical region for signal
integrity since abrupt changes in physical geometry cause electrical reflections [116,
231]. In order to minimize such reflections, an impedance-matched pad was designed.
However, this leads to a large electromagnetic volume in proximity of the pad, as seen
in Fig. 4.3 (b), possibly resulting in parasitic capacitance and crosstalk.

In addition to considering the wire and the transition region, the electrical behavior
of the inner cavities of the package was studied analytically and simulated numerically.

The simulation software used was the high frequency three-dimensional full-wave electromagnetic
field simulation software (also known as HFSS) by Ansys, Inc.

Table 4.1: Simulation results for the first three box modes of the lower cavity inside
the assembled microwave package shown in Fig. 4.1 (b). The dielectric used for these
simulations was Si at room temperature with relative electric permittivity €, = 11.68.
“Vacuum” indicates that no Si is present in the simulation. “with pillar” indicates
that the 1.0 mm X 1.0 mm X 2.0 mm support pillar is present. TE,,, indicates the
number of half-wavelengths spanned by the electric field in the x, y, and z directions,
respectively (cf. Fig 4.3 (c)). Note that the frequency of the first mode of the upper
cavity is ~ 17.2 GHz.

TEllO TE120 TEZlO
(GHz) (GHz) (GHz)

Vacuum 15.7 242 242
Vacuum with pillar 13.1  23.6  23.6
Si 135 168 168

Si with pillar 6.3 16.2 16.9
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Figure 4.3: Numerical simulations of the electric field distribution. (a) Field for a
three-dimensional wire at 6 GHz. (b) Field in proximity of the 90° transition region
also at 6 GHz. (c) Field for the first box mode at 6.3 GHz. Color bar scales are indicated
in their respective panels. The x, y, and z directions of a Cartesian coordinate system
are also indicated. In (b), the cross-section of the transition region is shown. Note the
large volume occupied by the electric field beneath the contact pad. In (c), an offset
cross-section of the first box mode is shown. The field confinement due to the pillar
is clearly visible. Additionally, the simulation shows a slight field confinement in the
region surrounding the chip recess. A time-domain animation of the simulated electric
field distributions can be found in the Supplemental Material of Ref. [220].

_1)

As described in Sec. 4.2.2, the metallic surface of the chip effectively divides the cavity
of the sample holder into two regions: A vacuum cavity above the metal surface and a
cavity partially filled with dielectric below the metal surface. The latter is of greatest
concern as the dielectric acts as a perturbation to the cavity vacuum 7, thus lowering
the box modes. For a simple rectangular cavity, the frequency f of the first mode due
to this perturbation can be found as [115],

_ fO (Er_ 1) ds
f=hh-"—0— . (+-1)

where f; is the frequency of the unperturbed mode, €, the relative electric permittivity
of the dielectric, d the substrate thickness, and b the cavity height. From Eq. (4.1), we
estimated this box mode to be 12.8 GHz. However, considering the presence of the pillar,

"Provided the vacuum still constitutes the majority of the volume of the cavity.
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the three-dimensional wires, etc., we had to use numerical simulations to obtain a more
accurate estimate of the lowest box modes. The results for the first three modes are
reported in Table 4.1. Discounting the pillar, the analytical and simulated values are in
good agreement with each other. The addition of the support pillar significantly lowers
the frequency of the modes. In fact, it increases the relative filling factor of the cavity by
confining more of the electromagnetic field to the dielectric than to vacuum. Given the
dimensions of this design, the pillar leads to a first mode which could interfere with
typical qubit frequencies. In spite of this, the pillar was included in the design in order
to provide a degree of mechanical support. Note that the pillar can alternatively be
realized as a dielectric material, e.g., PTFE; a dielectric pillar would no longer cause
field confinement between the top surface of the pillar and the metallic surface of the
chip.

4.3 Implementation

The physical implementation of the main components of the quantum socket is dis-
played in Fig. 4.4. In particular, Fig. 4.4 (a) shows a macro photograph of a three-
dimensional wire. The inset shows a scanning electron microscope (SEM) image of the
wire contact head, featuring the 500 um version of the tunnel. This wire was cycled
approximately ten times; as a consequence, the center conductor of the contact head,
which had a conical, sharp shape originally, flattened at the top. The metallic compo-
nents of the wire were made from bronze and brass (cf. Sec. 4.3.1), and all springs from
hardened beryllium copper (BeCu). Except for the springs, all components were gold
plated without any nickel (Ni) adhesion underlayer.

Figure 4.4 (b) displays the entire microwave package in the process of locking the
package lid and sample holder together, with a chip and grounding washer already
installed. As shown in the figure, two rows of three-dimensional wires, for a total
number of six wires, are screwed into the lid with pressure settings as described in
Appendix B.1; each wire is associated with one on-chip CPW pad. The four springs that
mate with the grounding washer feet are embedded in corresponding recesses in the
lid; the springs are glued in these recesses by way of a medium-strength thread locker
that was tested at low temperatures. Figure 4.4 (c) shows a picture of the assembled
microwave package attached to the package holder; the entire structure is attached to
the MC stage of a DR. More details about materials and microwave components can be
found in the Supplemental Material of Ref. [220].
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Figure 4.4: Images of the quantum socket as implemented. (a) Macro photograph
of a three-dimensional wire; inset: SEM image of the contact head. Note that the
tip of the inner conductor retained small metallic flakes that were scraped off the
on chip pads. (b) Microwave package lid with six three-dimensional wires and four
washer springs, washer, and sample holder with chip installed. (c) Package holder with
attached microwave package mounted to the MC stage of a DR. The lid of a custom-made
magnetic shield can be seen at the top of the panel.

4.3.1 Magnetic properties

An important stage in the physical implementation of the quantum socket was the
choice of materials to be used for the three-dimensional wires. In fact, it has been
shown that non-magnetic components in proximity of superconducting qubits are
critical to preserve long qubit coherence [234, 235, 236, 105]. The three-dimensional
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wires are the closest devices to the qubits. For this reason, all their components should
be made using non-magnetic materials. Due to machining constraints, however, alloys
containing ferromagnetic impurities (iron (Fe), cobalt (Co), and Ni) had to be used. For
the outer conductor components we used brass, which is easy to thread; the chosen
type was CW724R 8. For the inner conductor components, brass CW724R did not meet
the machining requirements. Consequently, we decided to use copper alloy (phosphor
bronze) CW453K °. The chemical composition for these two materials is reported
in Table B.1 of Appendix B.2. The dielectric spacers were made from PTFE and the
rest of the components from hardened BeCu; both materials are non-magnetic. The
weight percentage of ferromagnetic materials is non-negligible for both CW453K and
CW724R. Thus, we performed a series of tests using a zero Gauss chamber (ZGC) in
order to ensure both materials were sufficiently non-magnetic. The results are given in
Appendix B.2 and show that the magnetic impurities should be small enough not to
disturb the operation of superconducting quantum devices.

The microwave package and grounding washer were made from high-purity Al
alloy 5N5 (99.9995 % purity). The very low level of impurities in this alloy assures
minimal stray magnetic fields generated by the package and washer, as confirmed by
the magnetic tests discussed in Appendix B.2.

4.3.2 Thermal properties

The thermal conductance of the three-dimensional wires is a critical parameter to
be analyzed for the interconnection with devices at cryogenic temperatures. Low
thermal conductivity would result in poor cooling of the devices, which, in the case of
qubits, may lead to an incoherent thermal mixture of the qubit ground state |g) and
excited state |e) [237]. Even a slightly mixed state would significantly deteriorate the
fidelity of the operations required for QEC [238]. It has been estimated that some of
the qubits in the experiment of Ref. [108], which relies solely on Al wire bonds as a
means of thermalization, were characterized by an excited state population P, =~ 0.04.
Among other possible factors, it is believed that this population was due to the poor
thermal conductance of the Al wire bonds. In fact, these bonds become superconductive
at the desired qubit operation temperature of ~ 10 mK, preventing the qubits from
thermalizing and, thus, from being initialized in |g) with high fidelity.

In order to compare the thermal performance of an Al wire bond with that of a
three-dimensional wire, we estimated the heat transfer rate per kelvin of a wire, I1,,
using a simplified coaxial geometry. At a temperature of 25 mK, we calculated I1, =~
6 X 1077 WK1, At the same temperature, the heat transfer rate per kelvin of a typical

8Alloy 430, grade ISO CuZn21Si3P, UNS C69300.
9Grade DIN 2.1030 - CuSn8, UNS C52100.
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Al wire bound was estimated to be [T, =~ 4 x 10712 WK™ (cf. Appendix B.3 for more
details). A very large number of Al wire bonds would thus be required to obtain a
thermal performance comparable to that of a single three-dimensional wire.

4.3.3 Spring characterization

Another critical step in the physical implementation of the quantum socket was to
select springs that work at cryogenic temperatures. In fact, the force that a wire applies
to a chip depends on these springs. This force, in turn, determines the wire-chip con-
tact resistance, which impacts the socket’s DC and, possibly, microwave performance.
Among various options, we chose custom springs made from hardened BeCu.

[t is noteworthy to mention that the mean number of cycles before mechanical
failure for the three-dimensional wires is larger than 200000 at room temperature
(cf. Appendix B.4 for details); at 10 mK, we were able to use the same wire more than
ten times without any mechanical or electrical damage.

To characterize the springs, their compression was assessed at room temperature,
in liquid nitrogen (i.e., at a temperature T =~ 77 K), and in liquid helium (T = 4.2 K).
Note that a spring working at 4.2 K is expected to perform similarly at a temperature
of 10 mK. A summary of the thermo-mechanical tests is reported in Appendix B.4. The
main conclusion of the tests is that the springs do not break (even after numerous
temperature cycles) and have similar spring constants at all measured temperatures.

4.3.4 Alignment

In order to implement a quantum socket with excellent interconnectivity properties,
it was imperative to minimize machining errors and mitigate the effects of any resid-
ual errors. These errors are mainly due to: Dicing tolerances; tapping tolerances of
the M2.5-threaded holes of the lid; tolerances of the mating parts for the inner cavities
of the lid and sample holder; tolerances of the chip recess. These errors can cause
both lateral and rotational misalignment and become likely worse when cooling the
quantum socket to low temperatures. More details on alignment errors can be found
in Appendix B.5.

The procedure to obtain an ideal and repeatable alignment comprises three main
steps: Optimization of the contact pad and tunnel geometry; accurate and precise chip
dicing; accurate and precise package machining. For the quantum socket described in
this chapter, the optimal tunnel width was found to be 650 um. This maintained reason-
able impedance matching, while allowing greater CPW contact pad and tapering dimen-
sions. The contact pad width W, and taper length T, were chosen to be W, = 320 um
and T}, = 360 pm. These are the maximum dimensions allowable that accommodate
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Figure 4.5: Micro images used to evaluate the alignment procedure of the three-
dimensional wires. (a)-(b) Ag pads. The magenta arrows indicate the first (1) and
second (2) mating instance. The lengths W, and T, are indicated in (a) by means of
magenta bars. (c)-(d) Al pad before and after a cooling cycle to ~ 10 mK. Center
conductor dragging due to cooling is indicated by a green bar. The magenta dashed
line in (a) indicates tunnel (i.e., rotational) alignment for the Ag pad. Note that the
geometries for the pads in panels (a) and (b) are optimized for a 3 um Ag film and, thus,
are slightly different than those for the pads in panels (c) and (d), which are designed
for a 120 nm Al film.

the geometry of the wire bottom interface for a nominal lateral and rotational misalign-
ment of + 140 um and + 28°, respectively. In order to select the given pad dimensions,
we had to resort to a 50 2 matched raised-cosine tapering.

The majority of the chips used in the experiments presented here was diced with a
dicing saw from the DISCO Corporation, model DAD3240. To obtain a desired die length,
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both the precision of the saw stage movement and the blade’s kerf had to be considered.
For the DAD3240 saw, the former is ~ 4 pm, whereas the latter changes with usage
and materials. For the highest accuracy cut, we measured the kerf on the same type of
wafer just prior to cutting the actual die. In order to achieve maximum benefit from
the saw, rotational and lateral alignment dicing markers were incorporated on the
wafer. Such a meticulous chip dicing procedure is only effective in conjunction with
a correspondingly high level of machining accuracy and precision. We used standard
computer numerical control (CNC) machining with a tolerance of 1 thou (25.4 um),
although electrical discharge machining can be pursued if more stringent tolerances
(< 10 pm) are required.

Following the aforementioned procedures we were able to achieve the desired
wire-pad matching accuracy and precision, which resulted in a repeatability of 100 %
over 94 instances. These figures of merit were tested in two steps: First, by micro
imaging several on-chip pads that were mated to a three-dimensional wire; second, by
means of DC resistance tests.

On-chip pad micro imaging

Micro imaging was performed on a variety of different samples, four of which are
exemplified in Fig. 4.5. The figure shows a set of micro images for Ag and Al pads
(details regarding the fabrication of these samples are available in Appendix B.6).
Figure 4.5 (a) and (b) show two Ag pads that were mated with the three-dimensional
wires at room temperature. Panel (a) shows a mating instance where the wire bottom
interface perfectly matched the on chip pad. Panel (b) shows two mating instances
that, even though not perfectly matched, remained within the designed tolerances.
Notably, simulations of imperfect mating instances revealed that an off-centered wire
does not significantly affect the microwave performance of the quantum socket. Finally,
panels (c) and (d) display two Al pads which were both mated with a wire one time.
While the pad in (c) was operated only at room temperature, the pad in (d) was part of
an assembly that was cooled to ~ 10 mK for approximately three months. The image
was taken after the assembly was cycled back to room temperature and shows dragging
of the wire by a few tens of micrometers. Such a displacement can likely be attributed
to the difference in the thermal expansion of Si and Al (cf. Appendix B.5).

As a diagnostic tool, micro images of a sample already mounted in the sample holder
after a mating cycle can be obtained readily by means of a handheld digital microscope.

DC resistance tests

In contrast to the micro imaging tests, which require the removal of the microwave
package’s lid, DC resistance tests can be performed in situ at room temperature after the
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Table 4.2: DC resistance tests. Multiple Au samples were measured. For all samples
the length from the center of one pad to that of the opposite pad of the CPW center
conductor is L,, = 11.5mm. In the table are reported: The width W of each CPW
transmission line; the thickness d of the metal; the metal volume resistivity p at room
temperature or at 77 K; the input and output wire pressure settings {’i) and £}, respec-
tively; the operating temperature T; the number of measurements N; the estimated
trace resistance R* (for the Au samples, the very large parallel resistance ~ 46 k() at
room temperature due to the titanium (Ti) adhesion layer was neglected); the mea-
sured resistances R;,, Rig, and R,,. For a given chip, each resistance was measured
independently N times under similar measurement conditions. The mean values and
standard deviations of R;, are provided; the minimum values of Rj; and R are given.
Note that because R¢ + R"® « R', we expect R;, ~ R". The discrepancy between the
estimated and measured values (R" and R;,) for the Au and Al samples is mainly due to
uncertainties associated with the metal thickness d. The inaccuracies are smaller for
thicker films, as in the case of the 3 um Ag samples.

Metal W d p &, 45 T N R R, Rig Rog
() (um) (m) (Qm) (mm) (mm) (K) () (Q) Q) MQ) (MQ)

Au 10 100 22 452 444 300 30 253 218(3) 31 31
Au 10 100 22 497 4.89 300 2 253 223(0) 38 38
Au 10 100 22 4.18 4.11 300 2 253 217(0) 39 39
Au 10 100 22 457 445 300 2 253 229(0) 288 28.6
Au 10 200 22 460 470 300 10 126.5 98.0(7) 50 50
Au 10 200 4.55 4.60% 470* 77 6 26.16 36.02(2) 77.3 81.8
Ag 30 3000 16 4.60 4.70 300 6 2.04 2.71(4) 0.0043 0.0043
Al 15 120 26 4.25 4.07 300 24 166.1 171(1) 0.0042 0.0042

2 At300 K.

package and package holder have been fully assembled. These tests were performed
on all devices presented in this chapter, including Au, Ag, and Al samples.

The typical test setup comprises a microwave package with two three-dimensional
wires each mating with an on-chip pad. The two pads are connected by means of a CPW
transmission line with series resistance R'. The back end of the wires is connected to
a coaxial cable ending in a microwave connector, similar to the setup in Figs. 4.1 (d)
and 4.4 (c). The DC equivalent circuit of this setup can be represented by way of a
four-terminal Pi network. The circuit comprises an input “i” and output “0” termi-
nal, two terminals connected to a common ground “g,” an input-output resistor with
resistance R;,, and two resistors to ground with resistance Rj; and R,,. The i and o

terminals correspond to the inner conductor of the two microwave connectors. The

“w:n
1
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outer conductor of both connectors is grounded.

The resistance R;, is that of the center conductor of the CPW transmission line,
including the contact resistance R for each wire-pad interface and the series resis-
tance RY° of the wire’s and coaxial cable’s inner conductor, R;, = R*+ 2(R®+ R"°). The
resistances Rjz and R, are those of the path between each center conductor and ground
and include the resistance of the inner and outer conductor of the various coaxial cables
and wires as well as any wire-pad contact resistance. Ideally, these ground resistances
should be open circuits. In reality, they are expected to have a finite but large value
because of the intrinsic resistance of the Si wafers used as a substrate.

The design parameters, electrical properties, measurement conditions as well as the
measured values of R;,, Rjg, and R, for various Au, Ag, and Al samples are reported in
Table 4.2. Measuring resistances significantly different from the expected values meant
that either a lateral or rotational misalignment occurred. The resistances for some
Au samples were also measured at 77 K to verify whether a good room temperature
alignment persisted in cryogenic conditions. The cold measurements were realized
by dunking the package holder into liquid nitrogen. Note that one chip with sapphire
substrate and Al conductors was also measured; in this case, both Rig, and R,; were
larger than 500 M. Notably, we found a 100 % correlation between a successful DC
test at room temperature and a microwave measurement at 10 mK.

The measured value of R;, for the Ag samples is larger than the estimated trace
resistance by ~ 650 m{. This simple result makes it possible to find an upper bound
value for the contact resistance, R¢ < 325 m{). A more accurate estimate of the contact
resistance based on four-point measurements will be described in Sec. 4.4.1.

The DC resistance testing procedure presented here will be useful in integrated-
circuit quantum information processing, where, for example, CPW transmission lines
can serve as qubit readout lines [107, 239, 108]. These tests can be expanded to encom-
pass different circuit structures such as the qubit control lines utilized in Ref. [108].

4.4 Characterization

The three-dimensional wires are multipurpose interconnects that can be used to trans-
mit signals over a wide frequency range, from DC to 10 GHz. These signals can be:
The current bias used to tune the transition frequency of a superconducting qubit;
the Gaussian-modulated sinusoidal or the rectangular pulses that, respectively, make
it possible to perform XY and Z control on a qubit; the continuous monochromatic
microwave tones used to read out a qubit state or to populate and measure a super-
conducting resonator [90, 107, 108, 105]. In general, the wires can be used to transmit
any baseband modulated carrier signal within the specified frequency spectrum, at
room and cryogenic temperatures. In this section, we report experimental results for a

88



CHAPTER 4. THE QUANTUM SOCKET

g

TTT T T T T[T T T T[T T T T TTTT7TTTT

Figure 4.6: I-V characteristic curve for Rj,. The sweeps were conducted by both increas-
ing (red) and decreasing (blue) the applied current between —7 mA and +7 mA. The
shaded region indicates two standard deviations. The dashed black lines indicate the
region (+ 1.5 mA) for which the resistance value was found using linear regression.
The origin of the hystereses is explained in the text. The inset shows the circuit diagram
of the device under test, including all resistors measured by means of the four-point
measurement. The position of the pad is indicated by an arrow.

series of measurements aiming at a complete electrical characterization of the quantum
socket at room temperature and at approximately 77 K (i.e., in liquid nitrogen).

4.4.1 Four-point measurements

The wire-pad contact resistance R is an important property of the quantum socket. In
fact, a large R® would result in significant heating when applying DC bias signals and
rectangular pulses, thus deteriorating qubit performance.

In order to assess R€ for the inner and outer conductor of a three-dimensional wire,
we performed four-point measurements using the setup shown in the inset of Fig. 4.6.
Using this setup, we were able to measure both the series resistance of the wire R"
and the contact resistance R°.

The setup comprises a microwave package with a chip entirely coated witha 120 nm
thick Al film; no grounding washer was used. The package featured three three-
dimensional wires, of which two were actually measured; the third wire was included
to provide mechanical stability. The package was attached to the MC stage of a DR and
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measured at room temperature by means of a precision source-measure unit (SMU);
more details in the Supplemental Material of Ref. [220].

We measured the resistance between the inner conductor of a wire and ground, Rjg.
This resistance comprises the inner conductor wire resistance R{" in series with the
inner conductor contact resistance R{ and any resistance to ground, Rg. Note that, at
the operation temperature of the experiment (~ 10 mK), Al is superconducting and,
thus, the metal resistance can be neglected.

Figure 4.6 shows the current-voltage (I-V) characteristic curve for R,. With increas-
ing bias currents, the contact resistance results in hot-spot generation leading to a
local breakdown of superconductivity. For sufficiently high bias currents, supercon-
ductivity breaks down completely. At such currents, the observed hysteretic behavior
indicates the thermal limitations of our setup. Note, however, that these currents are
at least one order of magnitude larger than the largest bias current required in typical
superconducting qubit experiments [92].

In order to estimate Rig from the I-V characteristic curve, we selected the bias current
region from —1.5 mA to +1.5 mA and fitted the corresponding slope. We obtained R;; =~
148 mQ. This value, which represents an upper bound for the wire resistance and the
wire-pad contact resistance, (R + RY), is significantly larger than that associated
with Al wire bonds [240] or indium bump bonds [226]. In future versions of the
three-dimensional wires, we will attempt to reduce the wire-pad contact resistance by
rounding the tip of the center conductor, stiffening the wire springs, using a thicker
metal film for the pads, depositing Au or titanium nitride (TiN) on the pads, and plating
the wires with TiN. We note, however, that even a large value of the wire and/or wire-
pad contact resistance will not significantly impair the quantum socket microwave
performance; for example, the quantum architecture in Ref. [228] would be mostly
unaffected by the contact resistance of our three-dimensional wires.

4.4.2 Two-port scattering parameters

The two-port scattering parameter (S-parameter) measurements of a bare three-
dimensional wire were realized by means of the setup shown in the inset of Fig. 4.7 (a)
and described in detail in the Supplemental Material of Ref. [220]. The device under
test (DUT) comprises a cable assembly attached to a three-dimensional wire by means
of a screw-in micro connector. The bottom interface of the wire is connected to a
2.92 mm end launch connector, which is characterized by a flush coaxial back plane;
this plane mates with the wire bottom interface well enough to allow for S-parameter
measurements up to 10 GHz. In order to measure the S-parameters of the DUT, we used
a vector network analyzer (VNA) and performed a two-tier calibration (cf. supplement),
which made it possible to set the measurement planes to the ports of the DUT.
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Figure 4.7: S-parameter measurements and simulations for a three-dimensional wire
at room temperature. (a) Magnitude of the measured S-parameters |S,,,,|, withm,n =
{1, 2}. Inset: Image of the measurement setup. From left to right: Segment of flexible
coaxial cable (gray); Sub-miniature type A (SMA) female connector (red); after plane i,
SMA male connector (orange); segment of semi-rigid coaxial cable EZ 47 cable (gray;
cf. supplement); screw-in micro connector (green); three-dimensional wire (purple);
after plane ii, 2.92 mm end launch connector (white and black); SMA female connector
(red); segment of flexible coaxial cable (gray). (b) S-parameter simulations. The lower
attenuation is due to idealized material properties and connections.

The magnitudes of the measured reflection and transmission S-parameters are
displayed in Fig. 4.7 (a). We performed microwave simulations of a three-dimensional
wire for the same S-parameters (cf. Sec. 4.2.4 for the electric field distribution), the
results of which are plotted in Fig. 4.7 (b). The S-parameters were measured and simu-
lated between 10 MHz and 10 GHz. The S-parameters |S,;| and |S;,| show a featureless
microwave response, similar to that of a coaxial transmission line. The attenuation
at 6 GHz is |S,;| = —0.58 dB and the magnitude of the reflection coefficients at the
same frequency is |S;;| = —13.8dB and |S,,| = —14.0 dB. The phase of the various
S-parameters (not shown) behaves as expected for a coaxial transmission line. All
measurements were performed at room temperature.

The S-parameter measurements of a three-dimensional wire indicate a very good
microwave performance. However, these measurements alone are insufficient to fully
characterize the quantum socket operation. A critical feature that deserves special
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Figure 4.8: Microwave characterization setup. The vertical black dashed lines indicate
main reflection planes. The yellow terminations correspond to SMA male connectors
at the end of each cable. The input(output) flexible cable corresponds to the region
in between planes i and ii(xii and xiii), in gray; the blue blocks correspond to SMA
female bulkhead adapters; the plane ii(xii) corresponds to the input(output) port of
the DUT; the orange block corresponds to an SMA male to SMA female adapter; the
EZ 47 input(output) cable corresponds to the region in between planes iv and v(x
and xi), in gray; the plane v(x) corresponds to the solder connection on the three-
dimensional wire; the plane vi(ix) is associated with the screw-in micro connector; the
plane vii(viii) corresponds to the 90° interface connecting each three-dimensional wire
to the input(output) of the CPW transmission line (pale blue). The three-dimensional
wires are indicated in purple.

attention is the 90° transition region between the wire bottom interface and the on-
chip CPW pad. It is well-known that 90° transitions can cause significant impedance
mismatch and, thus, signal reflection [116]. In quantum computing applications, these
reflections could degrade both the qubit control and readout fidelity.

Figure 4.8 shows a typical setup for the characterization of a wiring configuration
analogous to that used for qubit operations (cf. Supplemental Material of Ref. [220]
for details). The setup comprises a DUT with ports 1 and 2 connected to a VNA; the
DUT incorporates a microwave package with a pair of three-dimensional wires, which
address one CPW transmission line on an Au or Ag chip. The microwave package
was attached to the package holder, as described in Sec. 4.2.3 and Sec. 4.3 (cf. also
Figs. 4.1 (d) and 4.4 (c)). The transmission line geometrical dimensions and wire
pressure settings are reported in Table 4.2; only the 200 nm Au samples and the Ag
samples were characterized at microwave frequencies. The back end of each three-
dimensional wire is connected to one end of an EZ 47 cable by means of the screw-in
micro connector described in Sec. 4.2.3; the other end of the EZ 47 cable is soldered to
an SMA male connector. A calibration was performed for all measurements.

We performed a two-port S-parameter measurement of the DUT from 10 MHz to
10 GHz. The measurement results at room temperature for the Au and Ag samples are
shown in Figs. 4.9 (a) and 4.10 (a), respectively. The results for the Au sample at 77 K
are shown in Fig. 4.9 (b).
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Figure 4.9: S-parameter measurements for the Au sample. (a) |S,,,| at room tempera-
ture. (b) |S,,»| at 77 K. The transmission coefficients show that the DUT is a reciprocal
device (i.e., So; = S12), as expected for a passive structure. The inset in (b) shows
the unwrapped phase angle 45,;; the black dashed lines delimit the frequency region
between 1 GHz and 3 GHz. Note that the reflection coefficients S;; and S,, are relatively
large at very low frequency. This is expected for a very lossy transmission line. In fact,
the center conductor for the Au sample is characterized by a series resistance R;, =~ 98 ()
atroom temperature (cf. Table 4.2), which correspondsto S;; ~ S,, =~ —6dBat 10 MHz,
and R;, =~ 36 Q at 77 K, which corresponds to S;; ~ S;, = —12dB at 10 MHz. These
findings are consistent with the time-domain results to be shown in Fig. 4.12, where
the large impedance steps are also due to the large series resistance (cf. Sec. 4.4.3).
The low-loss Ag sample shows much lower reflection coefficients at low frequency
(cf. Fig. 4.10), whereas the lossy Al sample shows high reflections at low frequency and
room temperature (cf. Fig. 4.16 (a) in Sec. 4.5).

The S-parameter measurements of the Au sample show that the quantum socket
functions well at microwave frequencies, both at room temperature and at 77 K. Since
most of the mechanical shifts have already occurred when cooling to 77 K [241], this
measurement allows us to deduce that the socket will continue functioning even at
lower temperatures, e.g.,, ~ 10 mK. The Au sample, however, is characterized by a
large value of R;,, which may conceal unwanted features both in the transmission and
reflection measurements. Therefore, we prepared an Ag sample that exhibits a much
lower resistance even at room temperature. The behavior of the Ag S-parameters
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Figure 4.10: S-parameter measurements for the Ag sample. (a) |S,,,| measurement
at room temperature. (b) |S,,,| microwave simulation. Note that the attenuation for
the measured data is larger than that in the simulation because the latter does not
include the EZ 47 cables used in the DUT of Fig. 4.8.

is similar to that of a transmission line or coaxial connector. For example, |S;;] is
approximately —15 dB; as a reference, for a high-precision SMA connector at the same
frequency |S;;| = —30dB.

The presence of the screw-in micro connector can occasionally deteriorate the
microwave performance of the quantum socket. In fact, if the micro connector is not
firmly tightened, a dip in the microwave transmission is observed. At room temperature,
it is straightforward to remove the dip by simply re-tightening the connector when
required. On the contrary, for the measurements at 77 K and for any other application
in a cryogenic environment assuring that the micro connector is properly torqued at
all times can be challenging. Figure 4.9 (b), for example, shows the S-parameters for
an Au sample measured at 77 K. A microwave dip appeared at approximately 1.8 GHz,
with a 3 dB bandwidth of approximately 200 MHz. The inset in Fig. 4.9 (b) displays
the phase angle of S,; between 1 GHz and 3 GHz, showing that the dip is unlikely a
Lorentzian-type resonance (more details in the Supplemental Material of Ref. [220]).
Note that the dip is far from the typical operation frequencies for superconducting
qubits. Additionally, as briefly described in Sec. 4.6, we will remove the screw-in micro
connector from future generations of the three-dimensional wires.

Figure 4.10 (b) shows a simulation of the S-parameters for the Ag sample, for the
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same frequency range as the actual measurements. While there are visible discrepan-
cies between the measured and simulated S-parameters, the latter capture well some
of the characteristic features of the microwave response of the DUT. In particular, the
measured and simulated reflection coefficients display a similar frequency dependence.
It is worth mentioning that we also simulated the case where the wire bottom interface
is not perfectly aligned with the on-chip pad (results not shown). We considered lateral
misalignments of 100 um and rotational misalignments of ~ 20°. This allowed us
to study more realistic scenarios, such as those shown in Fig. 4.5. We found that the
departure between the misaligned and the perfectly aligned simulations was marginal.
For example, the transmission S-parameters varied only by approximately + 0.5 dB.

Figure 4.11 presents a set of microwave parameters that help further analyze the
performance of the quantum socket. These parameters were calculated from the mea-
sured S-parameter data of Figs. 4.9 and 4.10 (a) for the Au sample at room temperature
and at 77 K and for the Ag sample at room temperature. They make it possible to
characterize the input and output impedance as well as the dispersion properties of
the quantum socket.

The complex input impedance can be obtained from the frequency dependent
impedance matrix Z = [Z,,,,]as [199]

ZIZZ21

Zin=Z11—m )

(4.2)

where Z;, = Z. = 50 is the load impedance. The impedance matrix was obtained
using the measured complex S-parameter matrix S = [S,,,,,] from

g e

The magnitude of Z;,, is shown in Fig. 4.11 (a).
The input voltage standing wave ratio (VSWR) was obtained from [115]

148514
VSWR;, = Tsnl (4.4)
and is displayed in Fig. 4.11 (b).
The phase delay was calculated as [199]
1 4285,
=—— 4,
T = 55 7 (45)

and is displayed Fig. 4.11 (c).

95



CHAPTER 4. THE QUANTUM SOCKET

150 @) 3.0 ©
100 E Au, RT 29 F Au, RT
50 2.8 E’\—K
— 0 Ft—— I T T T T AT T Y Y B —~ 27 Evov v b by
e £ Au, 77K 2 5oF Au, 77K
=100 & ' £.29 R%_\ﬁ ,
= 50 >28F
= ka TN N N N TN T AN T T S AN T T T S T S = 27 ix TN S N NN NN T N SN T T T SN SO S
50 E 28F
ka I T Y T T T YT Y T O S S 27 Evov v b b
0 2 4 6 8 10 0 2 4 6 8 10
3.0 ©) 3.2 @
TE Au, RT 3.0F Au, RT
20 F 2.8
51'0:1111111111 VY A%:g?xxxlxxxlxxxlxxxlxxx
g c Au, 77K 2 30 Au, 77K
l_ka T Wl I N LV V) I 1 2.4k1 T T YT T T YT Y T B S
ok Ag, RT %g - Ag, RT
1.0 E P S PO bl N N M S | T S %g ?1 I T T YT T T YT Y T N O W
0 2 4 6 8 10 0 2 4 6 8 10
f (GHz) f (GHz)

Figure 4.11: Quantum socket microwave parameters. (a) Input impedance magni-
tude |Z;,|. (b) Input VSWR, VSWR;;,. (c) Phase delay 74. (d) Group delay 7,. Blue
corresponds to the Au sample at room temperature (RT), red to the Au sample at 77 K,
and orange to the Ag sample at room temperature (RT).

Finally, the group delay was obtained from [115]

1 0
Tg= 5 ﬁ(4521) (4.6)
and is displayed in Fig. 4.11 (d). The derivative in Eq. (4.6) was evaluated numerically
by means of central finite differences with 6th order accuracy. The data in Fig. 4.11 (d)
were post-processed using 1% smoothing. Note that the output impedance and VSWR
were also evaluated and resembled the corresponding input parameters.

The input and output impedances as well as the VSWRs indicate a good impedance
matching up to approximately 8 GHz. The phase and group delays, which are directly
related to the frequency dispersion associated with the quantum socket, indicate min-
imal dispersion. This is expected for a combination of coaxial structures (the three-
dimensional wires) and a CPW transmission line. Thus, we expect wideband control
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pulses to be transmitted without significant distortion in applications with super-
conducting qubits (cf. Supplemental Material of Ref. [220] for further details about
microwave pulse transmission).

4.4.3 Time-domain reflectometry

In time-domain reflectometry (TDR) measurements, a rectangular pulse with fast rise
time and fixed length is applied to a DUT; the reflections (and all re-reflections) due
to all reflection planes in the system (i.e., connectors, geometrical changes, etc.) are
then measured by way of a fast electrical sampling module. The reflections are, in
turn, related to the impedances of all of the system components. Thus, TDR makes it
possible to estimate any impedance mismatch and its approximate spatial location in
the system.

TDR measurements were performed on the DUT shown in Fig. 4.8, with the same
Au or Ag sample as for the measurements in Sec. 4.4.2. As always, the Au sample was
measured both at room temperature and at 77 K, whereas the Ag sample was measured
only at room temperature. The TDR setup is analogous to that used for the S-parameter
measurements, with the following differences: The DUT input and output reference
planes were extended from planes ii and xii to planes i and xiii of Fig. 4.8; when testing
the DUT input port, the output port was terminated in a load with impedance Z; = Z.
and vice versa when testing the DUT output port. The TDR measurements were realized
by means of a sampling oscilloscope with key features reported in the Supplemental
Material of Ref. [220]. The voltage reflected by the DUT, V7, is acquired as a function of
time t by means of the oscilloscope. The time ¢ is the round-trip interval necessary for
the voltage pulse to reach a DUT reflection plane and return back to the oscilloscope.
The measured quantity is given by'°

Vmeas(t) = vt ®O+V-(© , (4.7)

where V' is the amplitude of the incident voltage square wave. From Eq. (4.7), we can
obtain the first-order instantaneous impedance as [242]

1+&(8)

Z(t) =ch — %) )

(4.8)

where §(t) = (Vmeas(t) - V+) /V+-

ONote that the DUT is a piecewise transmission line inhomogeneously filled with dielectric materials.
Transforming the time t into distance is only possible with detailed knowledge of geometries and
materials for all regions of the DUT. Since this information is not known to a high degree of accuracy, we
prefer to express all measured quantities as a function of t.
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Figure 4.12: TDR measurements for the Au sample at room temperature (blue) and
77 K (red). The inset shows the room temperature data associated with part of the
EZ 47 cable, the input three-dimensional wire, and part of the CPW transmission line.

Figure 4.12 shows Z(t) for the DUT with the Au sample at room temperature and
at 77 K; the measurement refers to the input port of the DUT, i.e., plane i in Fig. 4.8.
The figure inset shows the room temperature data for a shorter time interval. This
corresponds to a space interval beginning at a point between planes ivand v and ending
at a point between planes vii and viii in Fig. 4.8.

Figure 4.13 (a) shows Z(t) for the Ag sample at room temperature. Figure 4.13 (b)
displays the data in (a) for a time interval corresponding to a space interval beginning
at a point between planes iv and v and ending at a point between planes x and xi in
Fig. 4.8; as a reference, the Au data are overlaid with the Ag data.

For the Au sample, the first main reflection plane (plane ii) is encountered at t =
18 ns. The second main reflection plane (plane v) appears after ~ 2.5 ns relative
to the first plane, at t = 20.5ns. From that time instant and for a span of approxi-
mately 250 ps, the TDR measurement corresponds to Z(t) of the three-dimensional
wire itself. The maximum impedance mismatch between the EZ 47 coaxial cable and
the three-dimensional wire is approximately 10 Q0. The third main reflection plane
(plane vii) corresponds to the 90° transition region; for the Au sample, it is impossible
to identify features beyond this plane owing to the large series resistance of the on-chip
CPW transmission line. From empirical evidence, the impedance Z(t) of a lossy line
with series resistivity p increases linearly with the length of the line L as pL /(W d). In
fact, for the Au sample we measured an impedance step across the CPW transmission
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Figure 4.13: TDR measurements for the Ag sample at room temperature. (a) Mea-
surement of port 1 of the setup in Fig. 4.8. (b) Zoomin of (a) addressing the three-
dimensional wire and the 90° transition region between the wire and the CPW transmis-
sion line (blue). The room temperature Au data (red) are also displayed as a reference.

line of approximately 100 ) at room temperature and 40 () at 77 K. These steps are
approximately the R;, values reported in Table 4.2.

In order to obtain a detailed measurement of the impedance mismatch beyond
the 90° transition region, we resorted to the TDR measurements of the DUT with
the much less resistive Ag sample. First, we confirmed that Z(t) of the input three-
dimensional wire for the Ag sample is consistent with the TDR measurements of the
Au sample; this is readily verified by inspecting Fig. 4.13 (b). The three-dimensional
wire is the structure ending at the onset of the large impedance step shown by the
Au overlaid data. The structure spanning the time interval from t = 20.75nsto t =
21ns is associated with the input transition region, the CPW transmission line, and
the output transition region. The output three-dimensional wire starts att =~ 21 ns,
followed by the EZ 47 coaxial cable, which finally ends at the SMA bulkhead adapter
att =~ 23.5ns. The maximum impedance mismatch associated with the transition
regions and the CPW transmission line is ~ 5 Q. Notably, this mismatch is smaller than
the mismatch between the three-dimensional wire and the coaxial cable. This is an
important result. In fact, while it would be hard to diminish the impedance mismatch
due to the transition region, it is feasible to further minimize the wire mismatch by
creating accurate lumped-element models of the wire and use them to minimize stray
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capacitances and/or inductances 1.

[t is worth comparing Z(t) of the quantum socket with that of a standard package
for superconducting qubits, where wire bonds are used to make interconnections be-
tween a printed circuit board and the control and measurement lines of a qubit on
a chip. A detailed study of the impedance mismatch associated with wire bonds is
found in Ref. [230], where the authors have shown that a long wire bond (of length
between ~ 1mm and 1.5 mm; typical length in most applications) can lead to an
impedance mismatch larger than 15 Q (cf. Fig. S3 in the supplementary information
of Ref. [230]); on the contrary, a short wire bond (between ~ 0.3 mm and 0.5 mm;
less typical and more challenging to realize) results in a much smaller mismatch, ap-
proximately 2 (). In terms of impedance mismatch the current implementation of the
quantum socket, which is limited by the mismatch of the three-dimensional wires, lies
in between these two extreme scenarios.

4.4.4 Signal crosstalk

Crosstalk is a phenomenon where a signal being transmitted through a channel gen-
erates an undesired signal in a different channel. Inter-channel isolation is the figure
of merit that quantifies signal crosstalk and that has to be maximized to improve sig-
nal integrity. Crosstalk can be particularly large in systems operating at microwave
frequencies, where, if not properly designed, physically adjacent channels can be signif-
icantly affected by coupling capacitances and/or inductances. In quantum computing
implementations based on superconducting quantum circuits, signal crosstalk due
to wire bonds has been identified to be an important source of errors and methods
to mitigate it have been developed [233, 243, 244]. However, crosstalk remains an
open challenge and isolations (opposite of crosstalk) lower than 20 dB are routinely
observed when using wire bonds 2. The coaxial design of the three-dimensional wires
represents an advantage over wire bonds. The latter, being open structures, radiate
more electromagnetic energy that is transferred to adjacent circuits. The former, being
enclosed by the outer conductor, limit crosstalk due to electromagnetic radiation.

In realistic applications of the quantum socket, the three-dimensional wires must
land in close proximity of several on-chip transmission lines. In order to study inter-
channel isolation in such scenarios, we designed a special device comprising a pair of
CPW transmission lines, as shown in the inset of Fig. 4.14 (a). One transmission line
connects two three-dimensional wires (ports 1 and 2), exactly as for the devices studied
in Subsecs. 4.4.2 and 4.4.3; the other line, which also connects two three-dimensional
wires (ports 3 and 4), circumvents the wire at port 1 by means of a CPW semicircle.

"Work in progress.
2Daniel T. Sank (private communication).
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The distance between the semicircle and the wire outer conductor is designed to be as
short as possible, ~ 100 pm.
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Figure 4.14: Signal crosstalk. (a) Transmission and crosstalk coefficients for the Ag
sample shown in the inset. The numbers adjacent to the pads in the inset correspond to
the device ports. Reciprocal and reflection S-parameters are not shown. (b) Microwave
simulation of the same device. The origin of the peaks at approximately 7 GHz is
explained in the text.

The chip employed for the crosstalk tests is similar to the Ag sample used for
the quantum socket microwave characterization and was part of a DUT analogous to
that shown in Fig. 4.8. The DC resistances of the center trace of the 1 — 2 and 3 — 4
transmission lines were measured and found to be ~ 2.8 and ~ 4.5 (), respectively
(note that the 3 — 4 transmission line is ~ 18.0 mm long, hence, the larger resistance).
All DC resistances to ground and between the two transmission lines were found to be
on the order of a few kilohms, demonstrating the absence of undesired short circuit
paths. A four-port calibration and measurement of the DUT were conducted by means of
a VNA (cf. Supplemental Material of Ref. [220] for details). Among the 16 S-parameters,
Fig. 4.14 (a) shows the magnitude of the transmission coefficients S,; and S;3, along
with the magnitude of the crosstalk coefficients S31, S41, S32, and Sy;.

The results show that the isolation in the typical qubit operation bandwidth, be-
tween 4 GHz and 8 GHz, is larger than ~ 45 dB. Note that the crosstalk coefficients
shown in Fig. 4.14 (a) include attenuation owing to the series resistance of the Ag
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transmission lines. The actual isolation, due only to spurious coupling, would thus be
smaller by a few decibels.

Figure 4.14 (b) shows the microwave simulations of the crosstalk coefficients, which
agree reasonably well with the experimental results. These simulations are based on
the models explained in Sec. 4.2.4. From simulations, we believe the isolation is limited
by the crosstalk between the CPW transmission lines, instead of the three-dimensional
wires. Note that the peaks at approximately 7 GHz correspond to an enhanced crosstalk
due to a box mode in the microwave package. The peaks appear in the simulations,
which are made for a highly conductive package, and may appear in measurements
performed below ~ 1K, when the Al package becomes superconductive. For the room
temperature measurements shown in Fig. 4.14 (a), these peaks are smeared out due to
the highly lossy Al package.

4.5 Applications to Superconducting Resonators

Thus far, we have shown a detailed characterization of the quantum socket in DC and
at microwave frequencies, both at room temperature and at 77 K. In order to demon-
strate the quantum socket operation in a realistic quantum computing scenario, we
used a socket to wire a set of superconducting CPW resonators cooled to approxi-
mately 10 mK in a DR. We were able to show an excellent performance in the frequency
range from 4 GHz to 8 GHz, which is the bandwidth of our measurement apparatus.
Multiple chips were measured over multiple cycles using the same quantum socket;
this demonstrates the high level of repeatability of our wiring method. We measured
five Al on Si samples, as well as one Al on gallium-arsenide (GaAs) sample [245] (data
not shown) and one Al on sapphire sample. The Al on sapphire device, in particular,
featured a few resonators with quality factor comparable to the state-of-the-art in the
literature [105], both at high and low excitation power.

The experimental setup is described in the Supplemental Material of Ref. [220] and
shown in Fig. S1. Figure 4.15 shows a macro photograph of a 15 mm X 15 mm chip
housed in the sample holder; the chip is the Al on Si sample described in Sec. 4.3.4, with
geometrical and DC electrical parameters reported in Table 4.2. The sample comprises
a set of three CPW transmission lines, each connecting a pair of three-dimensional
wire pads; multiple shunted CPW resonators are coupled to each transmission line.
In this section, we will focus only on transmission line three and its five resonators.
The transmission line has a center conductor width of 15 pm and gap width of 9 um,
resulting in a characteristic impedance of approximately 50 (). The resonators are 1/4-
wave resonators, each characterized by a center conductor of width W and a dielectric
gap of width G. The open end of the resonators runs parallel to the transmission line
for alength ¢, providing a capacitive coupling; a 5 um ground section separates the
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gaps of the transmission line and resonators (cf. Fig. S3 in the Supplemental Material
of Ref. [220]). The nominal resonance frequency f; as well as all the other resonator
parameters are reported in Table 4.3.

A typical DR experiment employing the quantum socket consists of the following
steps. First, the chip is mounted in the microwave package, which has already been
attached to the package holder (cf. Sec. 4.2.3 and Sec. 4.3). Second, a series of DC tests
is performed at room temperature. The results for a few Al on Si samples are reported
in Table 4.2. Third, the package holder assembly is characterized at room temperature

Figure 4.15: Macro photograph of an Al chip on Si substrate mounted in a sample
holder with grounding washer. The image shows three CPW transmission lines each
coupled to a set of 1/4-wave resonators. The grounding washer, with its four protruding
feet, is placed above the chip covering the chip edges. The marks imprinted by the
bottom interface of the three-dimensional wires on the Al pads are noticeable. More
detailed images of these marks are shown in Fig. 4.5. This chip and similar other chips
with analogous microwave structures and geometries, including one Al on GaAs sample
as well as one Al on sapphire sample, were used in the measurements at ~ 10 mK in
the DR.
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Figure 4.16: Measurements of Al on Si resonators. (a) Benchtop measurement of the
S-parameters of the CPW transmission line three conducted at room temperature. (b)
|S,1| measurement of the same line with the chip mounted on the MC stage of the DR
at room temperature (blue) and ~ 3 K (red). (c) |S,;| measurement of the sample at
approximately 10 mK. The five dips correspond to 4/4-wave resonators. (d) Magnitude
and phase of S,; for resonator 2.

by measuring its S-parameters. The results of such a measurement are shown in
Fig. 4.16 (a). Fourth, the package holder is mounted by means of the SMP connectors to
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Figure 4.17: Measurement of Q; as a function of (n,,) for one of the Al on sapphire
resonators. The experimental settings used in the measurements are reported in the
Supplemental Material of Ref. [220]; the confidence intervals were evaluated from
the standard errors of the fitting parameters of the normalized inverse transmission
coefficient S;;! and are smaller than the blue diamond symbols. All measurements were
performed at ~ 10 mK. The typical quality factor “S-curve” is observed; the plateaus
on the leftmost and rightmost regions of the curve indicate the reaching of low values
of (n,) and saturation of two-level systems, respectively [105].

the MC stage of the DR and an S,; measurement is performed. The results (magnitude
only) are shown in Fig. 4.16 (b) in the frequency range between 10 MHz and 10 GHz.
Fifth, the various magnetic and radiation shields of the DR are closed and the DR is
cooled down. Sixth, during cooldown the S,; measurement is repeated firstat ~ 3K
and, then, at the DR base temperature of approximately 10 mK. The results are shown
in Fig. 4.16 (b) and (c), respectively. At ~ 3 K we note the appearance of a shallow dip
at approximately 5.7 GHz, probably due to a screw-in micro connector becoming sightly
loose while cooling (cf. Sec. 4.4.2). It is important to mention that in the next generation
of three-dimensional wires we will eliminate the screw-in micro connector, since we
believe we found a technique to overcome the soldering issues detailed in Sec. 4.2.3
(cf. Sec. 4.6 for a brief description). At the base temperature, all five resonators are
clearly distinguishable as sharp dips on the relatively flat microwave background of
the measurement network. We then select a narrower frequency range around each
resonator and make a finer S,; measurement. For example, Fig. 4.16 (d) shows the
magnitude and phase of the resonance dip associated with resonator number 2.
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The normalized inverse transmission coefficient S;;' was fitted as in Ref. [105].
This procedure makes it possible to accurately estimate both the internal Q; and the
rescaled coupling Q: quality factors of a resonator. The fit results are shown in Table 4.3.
The plot of the fits for the magnitude and phase of S,; for resonator 2 are overlaid
with the measured data in Fig. 4.16 (d). The real and imaginary parts of S;;! for the
same resonator; as well as the associated fit, are shown in Fig. S4 in the Supplemental
Material of Ref. [220].

The resonator mean photon number (n,,) can be estimated from the room tem-
perature power at the input channel P;, and the knowledge of the total input channel
attenuation «a (cf. Supplemental Material of Ref. [220]). From basic circuit theory and
Ref. [113], we obtain ,

2 QP

(mpn) = 77 06 7o (4.9)

where h is the Planck constant, 1/Q; = 1/Q; + 1/Q: is the inverse loaded quality factor

of the resonator, and P;, = P;,/a is the power at the resonator input. For example,
(nph) = 4.1 x 107 for resonator 2.

The fabrication process of the resonators described in Table 4.3 was not optimized
for high values of Q;, which, however, is an important figure of merit for applications
to quantum computing. In order to verify the compatibility of the quantum socket
with resonators of higher quality, we decided to fabricate a sample featuring an Al
thin film deposited by means of a ultra-high vacuum electron beam physical vapor
deposition (EBPVD) system; the substrate of choice was, in this case, sapphire. The
sample design is similar to that shown in Fig. 4.15 and the sample preparation analogous

Table 4.3: Resonator parameters. The measured resonance frequency is f,. The
rescaled coupling and internal quality factors Q. and Q;, respectively, are obtained
from the fits of the measured transmission coefficients (cf. text for details). These
quality factors were measured at a high resonator excitation power, corresponding to
(npn) > 10°.

L fo fo WGt Qe Qi

() (MHz) (MHz) (um) (um) (um) ¢ )

1 4600.0 46732 8 5 400 5012 21243
2 5000.0 5064.5 15 9 300 16002 165790
3 5800.0 58729 25 15 400 10269 47165
4 7000.0 7091.7 15 9 300 6230 54894
5 7400.0 7520.1 8 5 400 4173 28353
6 4700.0 4717.6 15 9 45 244960 1977551
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to that in Ref. [105]; fabrication details are in Appendix B.6. We were able to measure a
few resonators with Q; > 10° for large values of (npn)- For one of these resonators, we
measured Q; as a function of (n,,), as shown in Fig. 4.17. As expected from literature
measurements [105], Q; decreased by approximately one order of magnitude when
the resonator mean photon number was reduced from (n,,) = 106 to ~ 1072, For the
lowest mean photon number, Q; ~ 2.8 X 10°; such a quality factor is a good indication
that the quantum socket will likely preserve quantum coherence sufficiently well when
utilized for the manipulation of superconducting qubits.

4.6 Conclusions

In a recent work [91], seven sequential stages necessary to the development of a
quantum computer were introduced. At this time, the next stage to be reached is the
implementation of a single logical qubit characterized by an error rate that is at least
one order of magnitude lower than that of the underlying physical qubits. In order to
achieve this task, a two-dimensional lattice of 10 X 10 physical qubits with an error
rate of at most 1073 is required [59].

Figure 4.18 shows an extensible quantum computing architecture where a two-
dimensional square lattice of superconducting qubits is wired by means of a quantum
socket analogous to that introduced in this chapter. The architecture comprises three
main layers: The quantum hardware; the shielding interlayer; the three-dimensional
wiring mesh.

As shown in Fig. 4.18 (a), the quantum hardware is realized as a two-dimensional
lattice of superconducting qubits with nearest neighbor interactions. The qubits are
a modified version of the Xmon presented in Ref. [92]. Each qubit is characterized
by seven arms for coupling to one XY and one Z control line as well as one measure-
ment resonator and four inter-qubit coupling resonators. We name this type of qubit
the heptaton. The inter-qubit coupling is mediated by means of superconducting
CPW resonators that allow the implementation of control Z (CZ) gates between two
neighboring qubits [148, 151]. A set of four heptatons can be readout by way of a
single CPW transmission line connected to four CPW resonators, each with a different
resonant frequency. Figure 4.18 also shows the on-chip pads associated with each
three-dimensional wire. In the Supplemental Material of Ref. [220], we propose an
extended architecture where each qubit can be measured by means of two different
resonators, one with frequency above and the other with frequency below all coupling
resonator frequencies.

Assuming a pitch between two adjacent three-dimensional wires of 1 mm, the
lateral dimension of one square cell having four heptatons at its edges is 8 mm. The
three distances 4, B, and C between wire pads and resonators leading to this quantity
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Figure 4.18: Extensible quantum computing architecture. (a) Main three layers of
the architecture: The quantum hardware (bottom); the shielding interlayer (middle);
the three-dimensional wiring mesh (top), with wires indicated in yellow. The vertical
magenta dashed lines with double arrows show the mounting procedure to be used to
prepare the assembly. The middle layer (thinner) will be metalized on the bottom and
wafer bonded to the quantum layer beneath; both the thru-holes that accommodate
the three-dimensional wires and the tunnels above the qubits and manipulation lines
are shown. The back end of the wires (top) will be connected to SMPS connectors (not
shown). (b) Two-dimensional view of the quantum hardware. The substrate is indi-
cated in dark blue, the heptatons in light blue, the coupling resonators in magenta, the
four readout resonators in red, green, orange, and cyan, and, finally, the wire pads and
associated lines in yellow. The distances between coupling resonators and wire pads
are A = C = 2.25mm and B = 3.5 mm. Note that the Z control lines are represented
as galvanically connected to the heptatons, similar to Ref. [92]. The measurement can
be multiplexed so that four qubits are readout by one line only.

are indicated in Fig. 4.18 (b). It is thus possible to construct a two-dimensional lattice
of 10 X 10 heptatons on a square chip with lateral dimension 9 X 8 mm = 72 mm.
A 72 mmX72 mm square chip is the largest chip that can be diced from a standard 4 inch
wafer. This will allow the implementation of a logical qubit based on the surface code,
with at least distance five [59]. In this architecture, the coupling resonators act as
a coherent spacer between pairs of qubits, i.e., they allow a sufficient separation to
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accommodate the three-dimensional wires, while maintaining quantum coherence
during the CZ gates. Additionally, these resonators will help mitigate qubit crosstalk
compared to architectures based on direct capacitive coupling between adjacent qubits
(cf. Ref. [108]). In fact, they will suppress qubit-mediated coupling between neighboring
control lines (similar coupling mechanism as in Ref. [130]). It is worth noting that
adjacent coupling resonators can be suitably designed to be at different frequencies,
thus further diminishing qubit-mediated crosstalk.

Implementing a large qubit chip with a lateral dimension of 72 mm presents signifi-
cant challenges to the qubit operation at microwave frequencies. A large chip must be
housed in a large microwave package, causing the appearance of box modes that can
interfere with the qubit control and measurement sequences [233]. Moreover, a large
chip will inevitably lead to floating ground planes that can generate unwanted slotline
modes [233]. All these parasitic effects can be suppressed by means of the shielding in-
terlayer, as shown in Fig. 4.18 (a). This layer can be wafer bonded [222, 223, 224, 225]
to the quantum layer. Thru-holes and cavities on the bottom part of the layer can
be readily fabricated using standard Si etching techniques. The holes will house the
three-dimensional wires, whereas the cavities will accommodate the underlying qubit
and resonator structures. Large substrates also generate chip modes that, however, can
be mitigated using buried metal layers and/or metalized through-silicon vias [243].

The three-dimensional wires to be used for the 10 X 10 qubit architecture will be an
upgraded version of the wires used in this chapter. In particular, the M2.5 thread will
be removed and the wires will be inserted in a dedicated substrate (cf. Fig. 4.18 (a));
additionally, the screw-in micro connector will be substituted by a direct connection to
a subminiature push-on sub-micro (SMPS) connector (not shown in the figure).

In future applications of the quantum socket, we envision an architecture where the
three-dimensional wires will be used as interconnect between the quantum layer and a
classical control/measurement layer. The classical layer could be realized using RSFQ
digital circuitry [246, 247]. For example, high-sensitivity digital down-converters (DDCs)
have been fabricated based on RSFQ electronics [248]. Such circuitry is operated at very
low temperatures and can substitute the room temperature electronics used for qubit
readout. Note that cryogenic DDC chips with dimensions of less than 5 mm X 5 mm can
perform the same operations presently carried out by room temperature microwave
equipment with an overall footprint of ~ 50 cm X 50 cm. Recent interest in reducing
dissipation in RSFQ electronics '3 will possibly enable the operation of the classical
electronics in close proximity to the quantum hardware. We also believe it is feasible to
further miniaturize the three-dimensional wires so that the wire outer diameter would
be on the order of 500 pm. Assuming a wire-wire pitch also of 500 um, it will therefore
be possible to realize a lattice of 250000 wires connecting to ~ 10° qubits arranged

13Confer https://www.iarpa.gov/index.php/research-programs/c3.
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on a 315 X 315 two-dimensional qubit grid with dimensions of 1 m X 1 m. This will
allow the implementation of simple fault-tolerant operations between a few tens of
logical qubits [59].
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Resonant Coupling Parameter Estimation

Today’s quantum computers are composed of tens of qubits interacting with each other
and the environment in increasingly complex networks. In order to achieve the best
possible performance when operating such systems, it is necessary to have accurate
knowledge of all parameters in the quantum computer Hamiltonian. In this chapter?,
we demonstrate theoretically and experimentally a method to efficiently learn the
parameters of resonant interactions for quantum computers consisting of frequency-
tunable superconducting qubits. Such interactions include, for example, those to other
qubits, resonators, two-level systems, or other wanted or unwanted modes. Our method
is based on a significantly improved swap spectroscopy calibration and consists of an
offline data collection algorithm, followed by an online Bayesian learning algorithm. The
purpose of the offline algorithm is to detect and coarsely estimate resonant interactions
from a state of zero knowledge. It produces a square-root reduction in the scaling of
the number of measurements. The online algorithm subsequently refines the estimate
of the parameters to comparable accuracy as traditional swap spectroscopy calibration,
but in constant time. We perform an experiment implementing our technique with a
superconducting qubit. By combining both algorithms, we observe a reduction of the
calibration time by one order of magnitude. Our method will improve present medium-
scale superconducting quantum computers and will also scale up to larger systems.
Finally, the two algorithms presented here can be readily adopted by communities
working on different physical implementations of quantum computing architectures.

LThis chapter was largely adapted from Ref. [249]. The list of author contributions can be found in
the Statement of Contributions within the front matter of this thesis. Published by the American Physical
Society under the terms of the Creative Commons Attribution 4.0 International license.
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CHAPTER 5. RESONANT COUPLING PARAMETER ESTIMATION

5.1 Introduction

As quantum computing systems become larger and more complex, the high-fidelity
operation of those devices is accompanied by the daunting task of calibrating numerous
physical qubits. In particular, calibrating tunable qubits requires the estimation of
resonant interaction parameters, i.e., the frequency and coupling strength, of both
wanted and unwanted resonances. Wanted resonances include those between pairs
of interacting qubits [149, 150], qubits and resonators [151], and qubits and tunable
couplers [250, 251]. In this case, knowledge of the interaction parameters allows
for the implementation of two-qubit gates and readout. Unwanted resonance are
mainly those between qubits and two-level systems (TLSs) [252, 114, 253] as well
as substrate and box modes [172]. Microwave control crosstalk may also behave as
an unwanted resonance, causing Rabi oscillations at the frequency of a nearby qubit.
Such unwanted resonances must be avoided through proper frequency spacing. TLSs,
especially, are a pervasive source of errors in superconducting architectures that must
be remediated [254]. In summary, learning all the interaction parameters allows for
a comprehensive calibration and, thereby, minimization of coherent and incoherent
errors.

In this chapter, we study theoretically and demonstrate experimentally a data-
efficient and automated method for identifying and estimating the parameters of reso-
nant interactions based on swap spectroscopy [255, 151]. We realize swap spectroscopy
by performing energy relaxation time T; measurements of a frequency-tunable Xmon
transmon qubit [92] at different qubit frequencies. The identification and estimation
method is divided into two parts: an offline data collection algorithm [256] and an on-
line Bayesian learning algorithm [257, 258]. Both algorithms are based on the dynamics
of interacting quantum systems. The former is used from a state of zero knowledge
about a particular frequency range to coarsely identify resonance parameters within
that range. The latter focuses on improving the estimate of those parameters. In this
context, the term “online” means that measurements taken during the execution of
the algorithm inform the subsequent ones. For the “offline” method, the execution of
the entire algorithm is predetermined. It is worth noting that the offline algorithm is
applicable to any of the resonance types listed above. The online algorithm can be used
only for coherent resonances, either wanted or unwanted.

By means of our parameter-estimation method, we can shorten the calibration
time of an Xmon transmon qubit significantly. The offline data collection algorithm
makes it possible to reduce the scaling of the number of measurements by a square-root
when compared to a traditional swap spectroscopy calibration. In our experiment,
this algorithm takes ~ 30 min to detect resonances in a 1 GHz bandwidth: one order
of magnitude less time than with traditional methods. The online Bayesian learning
algorithm runs in = 25 s per resonance, bringing the estimation accuracy to the same

112



CHAPTER 5. RESONANT COUPLING PARAMETER ESTIMATION

level as high-resolution traditional swap spectroscopy.

In order to test our method and compare it against traditional swap spectroscopy,
we characterize the resonances within a 1 GHz bandwidth of an Xmon transmon qubit.
We additionally synthesize two resonance modes that emulate the interaction with
another qubit, resonator, or TLS. These modes are created by applying a coherent drive
with a microwave source to the qubit under test. The synthesized resonance mode is
a convenient and flexible tool to test our method since we can arbitrarily change its
resonance frequency by tuning the source frequency as well as its coupling strength by
changing the emitted source power.

Our method is not confined to the realm of superconducting quantum computing. In
fact, it can easily be adopted by practitioners working on different physical implemen-
tations of quantum computing architectures such as trapped ions and semiconductor
qubits [29].

This chapter is organized as follows: In Sec. 5.2, we explain qubit calibration in
frequency-tunable architectures. In Sec. 5.3, we summarize the working principle
of traditional swap spectroscopy, explaining why it is inefficient for the purpose of
detecting resonances. In Sec. 5.4, we introduce the offline octave sampling algorithm
(Sec. 5.4.1) and demonstrate its experimental implementation and associated data
analysis procedure to detect interactions between an Xmon transmon qubit and four
resonance modes (RMs), including an incoherent one (Sec. 5.4.2). In Sec. 5.5, we explain
the online Bayesian learning algorithm (Sec. 5.5.1) and demonstrate its performance at
finding an accurate estimate for the parameters of a resonance (Sec. 5.5.2). In Sec. 5.6,
we discuss additional concerns with the algorithms and the relevance of our methods
for quantum computing. Finally, in Sec. 5.7, we provide an outlook and conclusions.

5.2 Qubit Calibration in Frequency-Tunable
Architectures

A fundamental requirement to the operation of a quantum computer is the proper
calibration of the physical qubits in the system. This calibration includes many specific
operations. One of the most basic tasks, for example, is to run a Rabi experiment on
each qubit. This allows the determination of some experimental parameters needed
to set up, e.g., a m-pulse and perform a measurement. Once this first task is realized,
further experiments can refine the knowledge of the pulse amplitude, rotation axis,
measurement parameters, etc. Finally, a full calibration requires knowing the precise
parameters of the system Hamiltonian and the interaction to the environment, allowing
for the systematic optimization of the fidelity of one- and two-qubit gates as well as
measurement.
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In a frequency-tunable superconducting qubit architecture such as the Google ar-
chitecture [96] or the one used in this work, an additional degree of freedom must
be considered during calibration: the qubit frequency f,. Xmon transmon qubits are
one example of tunable qubits [92]. In this design, an on-chip capacitive island made
from aluminum (Al) is coupled in parallel to a superconducting quantum interference
device (SQUID) comprised of two Josephson tunnel junctions in parallel, forming a
superconducting loop [259]. An Xmon transmon qubit is a quantum anharmonic oscil-
lator, characterized by a non-equally spaced ladder of quantum states. The frequency
(i.e, energy) difference f, between the ground state |g) and first excited state |e) differs
from that between |e) and the second excited state |f) by the so-called qubit anhar-
monicity @ [104]. The qubit transition frequency f is controlled in situ by applying a
local external magnetic flux that threads the SQUID, tuning the Josephson energy E;
and therefore the level separation.

Frequency tunability leads to a few distinct advantages to the operation of a quan-
tum computer. For instance, it allows for adjustable qubit-qubit interactions because
the effective coupling strength between two qubits depends on the frequency difference
between them. This enables the implementation of several types of two-qubit gates
such as the controlled-phase (CPHASE) gate that takes advantage of state |f) as an
auxiliary state [148, 149, 150, 151], as well as the ViSWAP and iSWAP gates [151]. In
addition, setting the frequency of spatially neighboring qubits away from each other
helps avoid control crosstalk and frequency crowding issues, the latter being endemic
in fixed-frequency systems [100].

Another advantage inherent to frequency-tunable architectures is related to en-
ergy relaxation. On-chip superconducting qubits interact with a distribution of TLSs,
which are present in the various amorphous dielectric materials surrounding the qubit
metallic structures (e.g., Si and Al oxides). While the microscopic origin of TLSs is still
under debate [252], their effect on the qubit leads to either a T; reduction or T; and
fq time fluctuations (see Chapter 6). In particular, the T; reduction is caused by the
coherent or incoherent exchange of energy between a qubit and semi-resonant TLSs.
The ability to set the frequency of a qubit away from that of TLSs is therefore desirable
and realizable only with tunability.

Calibrating qubits to implement two-qubit gates or to avoid TLSs is a parameter
estimation problem. We need to determine the Hamiltonian parameters that define the
resonant interactions between a qubit and another system. In all the aforementioned
cases, two parameters must be found: the resonance frequency and coupling strength
of the interaction.

Historically, swap spectroscopy has been a prominent method to perform this kind
of calibration. Unfortunately, traditional swap spectroscopy is inefficient in the amount
of data it requires and therefore slow. This is inconvenient for multiple reasons. First,
as the number of qubits in a system grows, so does the number of calibrations that must

114



CHAPTER 5. RESONANT COUPLING PARAMETER ESTIMATION

be performed. This is particularly relevant to qubit-qubit coupling calibration, which
cannot be performed in parallel on all qubits. Second, TLSs in the environment are
known to fluctuate over time [254, 260, 261, 253, 262]. Similarly, f, itself can shift in
time. The identification of resonant interactions must therefore be repeated at regular
intervals. We thus require a robust, accurate, and time-efficient method to identify the
parameters associated with resonant interactions.

5.3 Traditional Swap Spectroscopy

Swap spectroscopy is an experimental method that allows exploring the environment
of a qubit at various frequencies by using the qubit itself as a probe. Traditionally, swap
spectroscopy has been used to select the operating frequency of qubits, making it possi-
ble to avoid TLSs or regions of low T;. Additionally, it has been used to explore resonant
interactions, such as those with other qubits [150] or resonators [255]. Performing
swap spectroscopy requires a minimally calibrated qubit and, thus, is suitable as a
tune-up experiment.

In a swap spectroscopy experiment the qubit is initialized at the so-called idle
frequency. A m-pulse is then applied to the qubit, energizing it from |g) to |e). At the
end of the m-pulse, a flux pulse is applied to the SQUID in order to tune the qubit to a
different frequency, the probe frequency f,(A), where A is the pulse amplitude. This
procedure requires knowledge of the correspondence between f, and A, which can
be calibrated via regular pulse spectroscopy (see Appendix C.1). After a time t, the
flux pulse is turned off and the qubit is measured back at the idle frequency. This
pulse sequence is illustrated in Fig. 5.1. Note that using a flux pulse to set f,, presents
advantages over quasi-statically changing the idle qubit frequency by means of a DC
current to the SQUID. Namely, it avoids recalibrating the m-pulse and measurement
pulse at each qubit frequency.

In a traditional experiment, t and f, are swept linearly over a desired range and the

A
A flux pulse

t
readout pulse

Figure 5.1: Pulse sequence for a swap spectroscopy experiment. The initial 7-pulse
(red) excites the qubit, which is initialized at the so-called idle frequency. The flux pulse
(blue) changes the qubit transition frequency f to the probe frequency f,(A) for a
duration t. The qubit is then measured (green) after being set back to its idle frequency.
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Figure 5.2: Swap spectra for two frequency ranges. The x-axis shows the probe fre-
quency of the qubit, which is set by the amplitude of the flux pulse applied to the SQUID.
The y-axis indicates the length of the flux pulse before measurement and, therefore, cor-
responds to the interaction time with potential resonance modes. (a) Distinct features
are visible in the full spectrum, including two chevron patterns around 4.8 GHz and
one at 5.1 GHz. The resonance at 5.1 GHz looks aliased because of the low-resolution
sampling of the time axis. A low T; streak is also visible at 4.35 GHz, likely caused by
an incoherent TLS. (b) Zoom in the region with the slower coherent chevron patterns
caused by synthesized resonance modes. For this experiment, the synthesizers were
set at 4.8100 and 4.8314 GHz. A wide frequency scan is needed to see if and where
there are resonance modes, as in (a), but a more detailed experiment, as in (b), is
needed to properly estimate the resonance parameters.

qubit is measured at each point, recording how many measurement shots correspond
to an excited or ground state, n. or n,, respectively. For the experiments of this work,
each pulse sequence is repeated to make 786 high-power single-shot measurements
(see Section 3.3.3). We estimate a readout visibility = 90 %. As a result of measuring
the qubit in the energy basis, swap spectroscopy is insensitive to dephasing.

Figure 5.2 (a) shows the result of a typical swap spectroscopy experiment, a swap
spectrum, with data taken between 4.146 and 5.170 GHz and for times up to 500 ns.
Resonant couplings appear as oscillations, or chevron patterns, of the measured average
population P, = n./(n. + ng) in time. For example, on the far right of the spectrum
it is possible to observe very fast oscillations, corresponding to a strong coupling
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of g = 40 MHz between the qubit and the measurement resonator (see Chapter 3 for
details on the sample layout and experimental setup). To the left of the resonator we
observe a slower oscillation corresponding to a weaker interaction between the qubit
and synthesized resonance mode. Finally, at an even lower frequency, around 4.35 GHz,
we observe a “streaky” structure. In this region, the qubit excitation is lost faster
than elsewhere, and we cannot observe any oscillation. This structure is caused by an
incoherent resonance, most likely a TLS.

The features observed in Fig. 5.2 (a) demonstrate a selection of possible resonant
interactions: strong interactions, where g > 1/T; resulting in multiple coherent
oscillation cycles and weak interactions appearing as regions of lower T;. Neither
of them is ideal for the operation of a qubit. In the case shown in Fig. 5.2, the best
choice for the qubit idle frequency is around 4.6 GHz; far away from any unwanted
interactions.

The data in Fig. 5.2 (a) gives us a rough idea about the parameters of any possible
resonance modes coupled to the qubit within the measured spectrum. It is hard to tell,
however, that there are in fact two resonance modes at 4.8 GHz, or what the frequency of
the oscillation for the resonator is. A more detailed scan, such as the one in Fig. 5.2 (b),
might be necessary to estimate the parameters with sufficient accuracy. Traditional
swap spectroscopy, with data taken in a linear grid, is a possible method to detect and
estimate resonance modes. We show in Sec. 5.4, however, that it is inefficient, and that
there exists a much better way to perform this task: octave sampling.

5.4 Offline Octave Sampling

The offline octave sampling algorithm has a similar objective as swap spectroscopy, i.e.,
to determine if there are any systems interacting resonantly with the qubit and provide
an estimate for their coupling parameters. However, we want to achieve this purpose in
a more efficient fashion by acquiring less data, therefore saving valuable experimental
time. Note that the pulse sequence employed to perform octave sampling is the same
as for swap spectroscopy (see Fig. 5.1). The difference lies in how the spectrum is
sampled. Whereas traditional swap spectroscopy samples the frequency-time space in
a regular grid, octave sampling takes advantage of resonant dynamics to acquire as few
data as possible.

5.4.1 Theoretical Method

In order to explain the data collection strategy, we analyze the time dynamics of the
systems at play. Since we are searching for resonant interactions with a qubit, we work
in a single-excitation manifold (|g) < |e)). Thus, even if a system is characterized by
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more than two energy levels (e.g., a resonator), we can still treat it as a two-level system
because higher levels are never occupied. This is our working assumption throughout
the rest of the chapter.

Note that we can probe the environment of an anharmonic oscillator, e.g., a trans-
mon, within a different single-excitation manifold. In that case, we can populate the
second excited state and look for systems coupled to the |e) « |f) transition. This allows
for the calibration of certain two-qubit CPHASE gates [149, 150, 151, 106]. In either
case, because we consider the exchange of a single excitation, the effective Hamiltonian
remains unchanged.

After a rotating wave approximation, the Hamiltonian of a qubit at the probe fre-
quency f, interacting with a resonance mode at a frequency fry reads

hfy . hfru At A A n
zpaz‘1+ 5 aZ,2+hg(01+02 +0102+), (5.1)

where g is the coupling strength of the qubit-resonance mode interaction, 6, 1 () are
Pauli matrices for the qubit (1) and resonance mode (2), and 61+(2) and 4y, are raising
and lowering operators for the qubit and resonance mode. We solve for the time
evolution of the qubit when it is initialized in state |e) and with the resonance mode
starting in |g). The theoretical probability of finding the qubit in the excited state after
a time t is then given by

A=

5 29\"
P.(t)=1- <3> sin“(2nt/2), (5.2)

where 22 = §f%2+4g?%, with§f = fp— frum- The probability P, of Eq. (5.2) is plotted in
Fig. 5.3 (a) as contours. Close to resonance, the excitation swaps between the qubit and
the resonance mode with frequency {2 increasing at larger & f, resulting in the familiar
chevron pattern. Both the width of the pattern, which we quantify by the full-width half
maximum of the amplitude, 4g, and 2 depend on g. Crucially, the width is proportional
to g, while the period of the oscillation and the position in time of the first minimum
is proportional to 1/g. The goal is to detect a resonance mode by finding the first
minimum of an oscillation, where P, ~ 0 because the excitation has swapped into the
resonance mode.

With these observations in mind, we choose to divide the frequency-time space
into rows of bins within which we take a constant number ng of swap spectroscopy
measurements. Instead of naively sampling the spectrum in a uniform grid, we adapt
the measurement based on the value of g that we are trying to detect. The coupling
strength determines the time t at which we measure and the bin size. On the one hand,
a resonance mode with large coupling strength g has a large width and a short period.
For short time ¢, then, we choose the bins to be wide and short [see the bottom rows of
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Figure 5.3: Offline octave sampling. (a) Contour plot of the probability of finding the
qubit in |e) [see Eq. (5.2)] as a function of time t and frequency detuning Af; both axes
are normalized by the coupling strength g. The highlighted box in the center indicates
which portion of the chevron pattern is meant to be detected by the algorithm. (b)
Swap spectroscopy experiment with octave sampling. Starting from a bin spanning
the full measurement range, at each subsequent octave the bin width is halved and
the bin length is doubled. The color of each bin represents the average value of the
measured P, over ng = 5 samples. The red boxes indicate the resonances reported by
the analysis explained in Sec. 5.4.2.

bins in Fig. 5.3 (a)]. On the other hand, a more weakly coupled resonance mode appears
later in time, with a narrower frequency width and a longer period. In this case, the
bins are longer and narrower [see the top rows of bins in Fig. 5.3 (a)]. In order to cover
the entire measurement space, all bins must be adjacent (without overlapping). This
condition constrains the ratio of number of bins in consecutive rows to be an integer.
We choose this integer to be two because it is the only ratio for which a bin containing
the first oscillation minimum [at t = 1/4g] does not contain any other later minima.
For example, a factor of three would contain both the first and second [at t = 3/4g]
oscillation minima, as can be deduced from Fig. 5.3 (a). We refer to this method as
octave sampling because consecutive bin rows are suited to detect resonances with a
coupling strength ratio of two.

In order to make this bin division systematic, we introduce the concept of a coupling
octave with coupling strength g,,,, where m is the octave number ranging from 0 to
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mg [256]. The final octave number m; is determined by the desired frequency or time
resolution, as discussed below. For each octave, the full frequency spectrum to be
analyzed ranges between a minimum and maximum frequency f i, and f,.x- This
range is divided into 2™ bins of equal size, with frequency width Af = 2g,,, and time
length At = 1/4g,,. The location in time of the bins’ lower edge ist = 1/4g,,. One
such bin, with g, = g, is highlighted in red in Fig. 5.3 (a). Note that the highlighted
bin is not centered on the oscillation minimum. This is because a low-P, measurement
in that area corresponds to a range of possible coupling strengths, namely, those for
which g,,,/2 < g < g The resonance mode plotted in Fig. 5.3 (a) is at the upper end
of this range, and, hence, at the lower edge of the bin.

The execution of the algorithm is determined by the total bandwidth B = f ;24— f min,
which is the frequency width of the single bin spanning the whole spectrum at the zeroth
octave. This bandwidth corresponds to a coupling octave g, = B/2 and, therefore,
to a time length At = 1/4g,. For the next octave, we divide the width of the bins by
two such that the subsequent row has twice as many bins as in the previous step. The
length of the bins in time is correspondingly doubled. An example of this division is
shown by the orange grid in Fig. 5.3 (a).

Thus, if we are given as inputs f,in, fmax and my, the execution of the algorithm,
starting from the zeroth octave m = 0, goes as such:

1. Divide the frequency range in 2™ bins, each with width 2g,,, = B/2™.
2. Each bin spans the time values 1/4g,, <t < 1/2g,,.

3. Take ng swap spectroscopy samples within each of the 2™ bins, sampling uni-
formly at random in frequency and inverse time. That is, for bin k = 1, ..., 2™,
draw f, and t as

fp ~U (fmin + Z(k - 1)gm'fmin + Zkgm)'
t~U (ng, 4'gm)_1 ’

where the notation X ~ U(a, b) signifies that X is drawn randomly from a con-
tinuous uniform distribution U between a and b.

4. Increment m and start over for the next octave.

The total number of bins to be measured, Ny, depends both on the size of the band-
width B and the final octave number m;. To set m¢, we can choose either a maximum
time t,,, = 1/2gm,, or a final frequency resolution Af;,. = 2g,,,, or, and perhaps most
useful, a minimum coupling strength g,;, = gim/2. Any of these quantities determine
the number of bins for the final octave through the octave coupling g, and must be
picked according to the goal of the experimenter. Then, following from the equation for
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the bin width above, we find m; = [log, (B/Afny,)] = [log,(B/2gm,)] (the result of the
logarithm is rounded up). Accordingly, Ny;,s can be calculated by summing the number

of bins per octave,
mg
Npins = Z 2m
m=0

— ome+l _ (5.3)
_2
Afmf '

The total number of points is thus N, = ngNypjps-

In comparison, with the same frequency resolution, traditional swap spectroscopy
divides the frequency axis in B /A f,,. points, and the time axis in ¢, /At ;, points, where
At is the time resolution 2. While octave sampling reaches a time resolution of 1/B,
it would be unfair to the traditional method to use that number directly. Instead, we
assume that 1/A4t,;, is on the order of hundreds of megahertz, allowing the detection
of strong couplings such as those to other qubits or resonators. The total number of
points is then

tm. B
Nigad = 77—
trad Atmin Afmf

1 B
Atmin Afrrzlf.

(5.4)

The number of points scales as 0(1 /A f,,zlf) for the traditional method, whereas it scales
as 0(1/Af;y,) for octave sampling: a square-root improvement.

As a last remark, we note that while the octave sampling strategy was designed
according to the dynamics of coherent resonances, it is also well suited to handle inco-
herent resonances, such as the one at 4.35 GHz in Fig. 5.2 (a). Although an incoherent
resonance does not show clear oscillations, it still increases the qubit relaxation rate.
This relaxation appears as a low-excitation region in the spectrum, where frequency
width and time position obey similar scaling rules as explained above. Such regions of
low excitation can be detected just as well as oscillation minima.

5.4.2 Experimental Results

The result of an experimental implementation of the octave sampling algorithm is
shown in Fig. 5.3 (b), which is the efficient version of Fig. 5.2 (a). Each bin is colored

2Although the concept of an octave number m does not apply to the traditional method, we use the
value of Afy, and t,, for comparison
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according to the average excitation probability P, measured over ny = 5 samples. We
are able to discern the same features as in Fig. 5.2 (a), i.e., distinct low excitation regions,
while acquiring much less data.

The frequency ranges from f,;;, = 4.146 GHz to f,,x = 5.170 GHz such that B =
1024 MHz. We choose the final octave number to be m; = 8, allowing us to detect
TLSs with g = 1 MHz. This corresponds to g,,, = 2 MHz and a minimum bin width of
Afm = 4 MHz. Using Eq. (5.3), Npips = 511 and Ny = 2555.

Referring to Eq. (5.4) and given the resolution to detect oscillations up to 1/4t,;, =
200 MHz (corresponding to g = 100 MHz) in a t,,, = 250 ns time interval, traditional
swap spectroscopy requires Ny,q = 25600 3.

For the parameters used in this experiment, octave sampling requires 1 order of
magnitude fewer points than traditional swap spectroscopy. It is worth noting that
Nyt # +/Niraq due to the prefactors in Egs. (5.3) and (5.4). Since octave sampling
provides a square-root scaling improvement, the reduction in the number of measure-
ments grows for experiments with higher resolution. For example, if we increase m; to
9, N, roughly doubles to 5115, whereas N,,q4 is quadrupled to 102400.

Given the octave sampling results, we intend to determine if there are one or more
resonance modes interacting with the qubit. If there are resonances, we also want an
estimate of their coupling parameters fyy and g. If there are no resonance modes at
all, the qubit does not undergo any swap, and we should always measure it to be in |e)
with P, = 1. Hence, a measurement of P, < 1 indicates energy loss due to a resonance
mode interacting with the qubit.

In practice, however, other spurious experimental effects can lower the measured P,
below the theoretical value of one, even in the absence of a resonance mode. Those
include, for instance, the “bare” energy relaxation rate of the qubit, state preparation,
measurement visibility, bin averaging, and statistical fluctuations. We therefore require
an analysis method that will reliably detect and extract resonances from the octave
data, while minimizing false positives.

The method used to analyze the octave data primarily relies on a peak-finding func-
tion meant to detect low-excitation bins in the spectrum. To avoid duplicate detections
of the same resonance mode, we apply a procedure to combine peaks corresponding
to the same resonance found in different octaves. We configure the sensitivity of the
analysis by setting the minimum prominence value used for peak finding. Setting the
prominence to a lower value (more sensitive) will detect more peaks, potentially lead-
ing to detection of fainter resonances. However, a low value could also generate false
positives if the data is noisy. More details on this analysis method can be found in
Appendix C.2.

3A time resolution At,,;,, = 2.5 ns corresponds to the 400 MHz sampling rate used for sampling a
signal up to 200 MHz
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Table 5.1: Resonance modes detected after analyzing the octave sampling data; the
corresponding bins are boxed in red in Fig. 5.3 (b). The parameters listed result from a
prominence value of 0.39, except for RM4. For RM4, a lower value of 0.09 (more sensi-
tive) is necessary. For values above 0.72, no resonance is detected. The prominence
threshold indicates the maximum tested value for which the resonance is detected; at
that value, the reported parameters are slightly different.

Parameter RM1 RM2 RM3 RM4

Octave number m 7 8 3 8
Bin center frequency (GHz) 4.806 4.832 5.106 4.364
Bin coupling range (MHz) [2,4] [1,2] [32,64] [1,2]
Prominence threshold 0.39 0.50 0.72 0.09

The result of the octave analysis consists of the bin location—frequency and octave
number—for each detected resonance. Since the octave number corresponds to a
coupling strength range, the task of detecting resonances and finding their approximate
coupling parameters is achieved.

We analyze the octave sampling data shown in Fig. 5.3 (b) with different prominence
values to provide an understanding of the sensitivity required to detect resonances. In
that experiment, a qubit interacts with three known modes: two are synthesized with
a microwave source and one is the on-chip readout resonator. The analysis detects
those three modes at a prominence value of 0.39. When the prominence is decreased
to 0.09, an additional resonance is detected at 4.35 GHz. Even at that sensitivity, no
false positives are reported. The coupling parameters resulting from the analysis are
reported in Table 5.1. The bins corresponding to those detections are boxed in red in
Fig. 5.3 (b).

We purposely choose the two synthesized modes, RM1 and RM2, to be close in
frequency to illustrate an important feature of our method: two distinct resonances are
detected separately only if their frequency spacing is sufficiently large. In particular, the
frequency separation must be at least twice as large as the largest of the two coupling
strengths. This ensures that the oscillation minima are separated by one bin width. If
that condition is not met, the two resonances are located either in the same bin or in
neighboring bins, resulting in the detection of a single peak. Here, RM1 and RM2 are
separated by 20 MHz and the coupling strength of RM1 is at most 4 MHz. This means
that there is at least one bin separating the two modes, allowing them to be detected
independently.

The resonator mode, RM3, is detected at a low octave number. This is because
it is characterized by a large coupling strength to the qubit (see Table 3.1 for the
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coupling capacitance). The last detected mode, RM4, is very faint. It corresponds to an
incoherent weakly coupled TLS, as we also see in the traditional swap spectroscopy data
of Fig. 5.2 (a). This mode can only be detected by setting a sufficiently low prominence
value. Itis likely that RM4 could be detected with a less sensitive analysis if an additional
octave was sampled.

For the three known modes, we coarsely estimate the frequency and coupling
strength with a minimal amount of data. Obtaining more precise and accurate results
necessitates the online estimation algorithm, to be explained in the next section.

5.5 Online Bayesian Learning Algorithm

The offline octave sampling algorithm is data efficient and can be performed from
a state of zero knowledge of the qubit’s spectrum. However, it does not provide a
very accurate estimate of the coupling parameters of a resonance mode. To improve
accuracy, we can use the coarse estimate given by the offline method to execute an
online Bayesian learning algorithm and refine the parameters in a very short time. This
process relies on measuring a few dozen points of the qubit oscillation in the swap
spectrum, using again the pulse sequence of Fig. 5.1. Note that for the online algorithm
to work, the qubit must undergo an oscillation. Therefore, this method cannot be used
to estimate the coupling parameters of an incoherent resonance mode. If it is unknown
whether a mode is coherent or not, a traditional swap spectroscopy experiment has to
be run first.

Given an initial probability distribution over the coupling parameters with a reso-
nance mode, the online algorithm successively selects measurement settings to increase
knowledge. After the result of a measurement is recorded, the distribution is updated
according to Bayes’ theorem and a new measurement setting is produced. This pro-
cedure is repeated iteratively until the distribution converges as desired. The source
code developed for this work can be found online [263].

5.5.1 Theoretical Method

The online estimation algorithm is the experimental implementation of the theory
proposed in Ref. [257]. It employs a particle filter method to efficiently represent the
prior and posterior distributions and compute Bayes’ theorem at each iteration.

A particle distribution is a discretized representation of a probability distribution.
The denser the distribution in a particular region of the parameter space, the higher
the probability of those parameters. Here, each particle represents a two-tuple of the
coupling parameters (frym, g) of a resonance mode. At the beginning of an iteration,
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Figure 5.4: Illustration of a simulated iteration of the online particle filter algorithm
with 40000 particles. (a) Given a prior distribution, we heuristically generate measure-
ment settings f,, and ¢ meant to increase information. (b) Following the measurement,
the likelihood £ of the result is computed for each particle. Note that the values shown
on the scale are normalized. (c) We apply Bayes’ theorem to determine the poste-
rior distribution. This task is achieved by resampling the particles according to their
likelihoods. The distribution is split in two “clouds.” After resampling, the posterior
distribution can be used as the next iteration’s prior.

we compute the means, u(frm) = (frm) and u(g) = (g), and standard deviations

o(frm) = J(f}%M) —(frm)* and o(g) = ’(gz) — (g)? of the prior distribution.

The next step is to perform a single measurement to determine the excited popu-
lation P, at a particular probe frequency f,, and time t. These measurement settings
are heuristically selected to increase information gain [257]. In practice, t should scale
inversely with o(g), while f, should be within a factor of u(g) on either side of u(frm)-

We choose the following measurement settings:

PR LG DRTC) for M < My, (5.5)
P u(frm) + crio(fru)  for M > My,
( a
r, tanh | —— |t for M < M,,
t = 2 ld(g)tmaxl e 0 (5 6)
1+7 tanh a4 t for M > M .
anh | ——— or ,
[ 2 o(@Dtmax| " 0

where 1y is picked from U(—-1/2,1/2), r, is picked from U(0,1), a = n/2,c = 5,
M is the iteration number, and we set M, = 25 (see below). These parameters are
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empirical constants determined in Ref. [257], although they are slightly adjusted for this
experiment in order to have a larger distribution for f, and t when M > M,. Note that,
unlike the method proposed in Ref. [257], we choose to limit ¢ to a maximum value well
under T;. This is done to prevent measurements from occurring after the oscillation
has substantially decayed. For this purpose, we use the hyperbolic tangent function as
it has a linear behavior for small arguments, such that tanh(a/o(g)tmax) tmax = a/0(g)
when o(g) is large.

After M, iterations, we modify the heuristic to accelerate convergence. Initially, we
choose probe frequencies coarsely according to the value of g. Then, as our knowledge
improves, o(frym) decreases and can be used to select frequencies in a narrower range
around u(frm)- The factor c is used to avoid choosing measurement frequencies too
narrowly. The time t is always weighted by ~ 1/0(g), but we bias the selection to
larger values after M, iterations.

The last step in the iteration is to apply Bayes’ theorem to update our knowledge
of the coupling parameters. We want to obtain the posterior distribution based on
the measurement result P.(f, t). This is achieved in two sub-steps: (1) We com-
pute the likelihood of obtaining the measurement value given each particle’s (fry, 9)
parameters. (2) We resample the distribution according to these likelihoods.

We compute the likelihood from the measurement result P, = n./n, which is the
proportion of n, excited state outcomes for n individual measurement shots. Since the
theoretical fraction we expect to measure is P, (fp t, frv, 9) [given by Eq. (5.2) in the
decoherence-free case ], we know that the result is a binomial random variable n, ~
B(n, P,). Accordingly, the likelihood of obtaining a particular measurement result
given the measurement settings (f), t) and a particle with parameters (fru, g) is the
probability mass function

n

L(nelfp' L, fRMr g) = (n )f’ge(l - pe)(n—ne)' (57)

(S

where (:l‘) is the binomial coefficient.

In efféct, we are computing the probability that the measurement result corresponds
to a resonance mode with coupling parameters (fry, g)- The next step is to resample
the distribution to keep only those parameters that are most probable. Although this
task can be achieved in a variety of ways, the general idea is to pick particles from
the prior at random, weighted by the likelihood. To avoid duplicate particles in the
posterior distribution, we add normally distributed random noise proportional to the

*In the experiment, we use a model for P, that accounts for relaxation and measurement visibility.
For relaxation, we use Eq. (17) in Ref. [257]. To account for measurement visibility, we clamp the
theoretical probability between 0.05 and 0.95.
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covariance of the prior. The procedure chosen for this experiment is described in
Appendix C.4.

The iteration process is visualized in Fig. 5.4, allowing us to understand more
intuitively how the particle filter technique works. If the measurement is useful, i.e.,
the resulting likelihood favors a subset of the prior, the posterior distribution is shrunk
or filtered, improving knowledge of the parameters. Otherwise, if the likelihood does
not discriminate the particles, the distribution is not modified significantly. After
resampling, the next iteration starts with the last iteration’s posterior as prior.

The task of the online Bayesian learning algorithm is simpler than octave sampling
because we already have a coarse estimate of the interaction parameters. The particle
filter can therefore “fit” to the most likely parameters given the measurements. At
the end of the final iteration, the parameters are given by the mean of the particle
distribution. If the algorithm converges, the final particle “cloud” is small, resulting in
an estimate that is accurate: both true and precise. If the algorithm does not converge,
meaning that the final particle cloud is not tightly concentrated in a single region, it
might be necessary to run the experiment again. Regenerating the initial particle dis-
tribution via the octave sampling method could also improve estimation performance.

Ideally, the uncertainty on the estimated parameters is given by the standard devia-
tion of the final particle distribution. In practice, however, directly taking the standard
deviation is generally not valid in an experimental context. This is because the algo-
rithm does not take into account potential errors on the value of the measurement
settings or any model inaccuracies. To obtain an uncertainty on the parameters, we
instead re-run the full inference steps of the algorithm multiple times on the already-
gathered data, starting from the same initial particle distribution. If the model and
measurement settings were accurate, the results of re-running the inference would be
identical. However, since that is not the case, the estimates obtained by re-running the
inference vary. The error we report is then the standard deviation of the different esti-
mates. Since this procedure does not require acquiring new data it can be performed
offline, after the experiment.

We note that one possible cause of failure is the overestimation of g by an integer
multiple. In that case, crests in the oscillation for the different frequencies partially
overlap. In order to prevent such failures, the experiment can be run multiple times.

5.5.2 Experimental Results

We run the online Bayesian learning algorithm on three distributions generated from
the octave data, one for each detected resonance mode. The generation of those distri-
butions is discussed in Appendix C.3. We do not execute the algorithm on RM4 since the
resonance is incoherent and does not undergo the oscillations necessary to estimate
the coupling parameters with this method.
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Table 5.2: Estimated parameters for the three resonance modes detected after running
the online Bayesian learning algorithm. RM1 and RM2 are synthesized modes and RM3
corresponds to the qubit’s measurement resonator.

Parameter RM1 RM2 RM3
frm (GHz)  4.8091(3) 4.8297(2) 5.033(12)
g (MHz) 2.78(3) 1.62(8) 37.9(3)

For each mode, we perform 35 iterations of the algorithm, at which point the
distribution has converged. The runtime of the algorithm for a single resonance mode
is approximately 23 s. Afterwards, we re-run the full inference 200 times—enough
for the resulting statistics to stop changing—and report the final means and standard
deviations in Table 5.2. As expected, the parameters of the synthesized modes and of
the measurement resonator are correctly identified. Note that the errors shown do
not include systematic errors caused by an inaccurate flux-amplitude-to-frequency
calibration (see Appendix C.1).

Here, the sources are set at 4.810 and 4.8305 GHz. These values are higher than
the ones found in Table 5.2 by ~ 1 MHz, likely due to a systematic calibration error. In
principle, it is possible to relate the power emitted by a synthesizer to the “coupling
strength” of the mode. However, the attenuation and reflection of the signal between
the source and qubit make it impossible to accurately find such a relation. Instead, we
fit the swap spectroscopy measurement of Fig. 5.2 (b) with a non-linear least squares
regression, giving g = 2.852(1) and 1.472(1) MHz for RM1 and RM2, approximately
two standard deviations away from the results in Table 5.2. The anticrossing frequency
and the coupling strength of the resonator are estimated to be 5.032 GHz and 37.4 MHz
by a full Hamiltonian fit (see Section 3.4 and Table 3.1).

To test the performance of the estimation algorithm, we run it 1000 times on RM2
with slightly different initial distributions. The mean of each of the 1000 initial particle
distributions is distributed uniformly at random within a 10 and 1.5 MHz range for fry
and g, respectively. Each individual particle distribution is uniform, with a width
of 15MHz in fry and 2.5MHz in g.

We plot the convergence of the parameters in Fig. 5.5. As shown by the histograms,
more than 99% of the runs converge successfully to properly estimate the frequency
and coupling strength, with just a few failures. The average of the parameters after
the 35" iteration is fgy = 4.8301(4) GHz and g = 1.45(9) MHz.

The estimated true parameters of the resonance, which we compute by fitting
the dataset combining all 35000 measurements, are fry = 4.83008 GHz and g =
1.445 MHz. These values are shown with a red line on the histograms. We compare the
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Figure 5.5: Performance of the online estimation algorithm over 1000 runs with RM2.
(a-b) Histograms over the means of the initial and final particle distributions. (c-d) Mean
of the posterior particle distribution computed after each iteration’s measurement. As
more iterations are made, the particle distribution converges toward the true value
of the parameters. The 0 iteration corresponds to the initial distribution. The true
values of the parameters are identified by a red line in the histograms. The total runtime
of the experiment is 6.4 h. Each individual run executes 35 iterations and, thus, 35
measurements, taking ~ 23 s. Most of the time (60%) is spent acquiring data. In fact,
each measurement comprises 786 shots at a repetition rate of 2 kHz. The leftover time
is attributable to data transfer and processing. The total computation time for the
estimation algorithm is = 1s.

results to a fit instead of the synthesized frequency to circumvent potential calibration
inaccuracies. It is worth noting that the power for this experiment is slightly different
from that of the experiment summarized in Table 5.2.

Several experimental errors could cause the variation of a parameter in the like-
lihood model of Eq. (5.7). While the binomial likelihood accounts for variance in the
qubit measurement, it assumes that all parameters are constant. Consequently, any
parameter fluctuation or drift causes a discrepancy between the inference model and
the physical system. For example, the qubit probe frequency f|, and energy relaxation

129



CHAPTER 5. RESONANT COUPLING PARAMETER ESTIMATION

time T; can be modified by strongly coupled TLSs [254, 261, 260, 262]; f,, can addi-
tionally be perturbed by a nonconstant flux pulse amplitude (see Appendix C.1) or flux
noise in the SQUID loop generated by, e.g., voltage sources or on-chip magnetic defects.
Depending on the nature of the resonance mode, fry and possibly g may vary due to,
e.g., changing temperature or strong coupling to TLSs. If the mode is another qubit,
its frequency may be affected in the same manner as f,,. Finally, the measurement
visibility itself could vary due to possible instrumentation issues.

The errors introduced above can be classified according to their timescale relative
to the length of the online estimation experiment. A parameter that changes during
the execution of the algorithm would lead to inconsistencies with subsequent mea-
surements. This effect is expected to be taken into account by the variance of the
repeated inferences, thereby increasing the calculated standard error. For example,
if frm changes during the experiment, repeating the inference multiple times would
likely lead to a bimodal distribution, i.e., a spread in the estimated value of fyy.

If a parameter changes over a longer timescale, in our case = 30 s, measurements
taken during an experiment remain consistent and the standard error does not increase.
If such an error is suspected, the calibration should be repeated at regular intervals, as
mentioned in Sec. 5.2.

5.6 Discussion

Both algorithms presented above depend on a few parameters that are crucial to their
function. For the octave sampling algorithm, the choice of the frequency range to be
measured is naturally determined by the properties of the device: superconducting
qubits have a limited frequency range within which they operate optimally. For the
device in this work, the upper end of the measurement range f ,,,x Simply corresponds
to the maximum attainable frequency. The lower limit f;, is chosen to be as low as
desired, keeping in mind that TLS far below the operating frequency range of the qubit
are not a cause for concern. In addition, given that the purpose of detecting interactions
is to then select optimal operating frequencies, it might be sufficient to set f;, to the
lowest frequency where high-fidelity control and readout is achievable. Since we use a
resonator for readout, the farther away the qubit is in frequency, the lower the fidelity
of the measurement. Other constraints, e.g., pulse control bandwidth, might dictate
even tighter limits.

A second important parameter for the octave sampling method is n,. In principle, a
single high-quality (many shots) measurement of P, at the center of the bin should be
sufficient. This would be analogous to traditional swap spectroscopy. However, because
of the efficiency of the octave method, we can afford to take a few more measurements
per bin. This is what we have chosen to do by randomly distributing n; = 5 measure-
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ments per bin. This redundancy increases the detection sensitivity and protects against
possible statistical fluctuations in the measurement.

One more parameter worth discussing is the number of octaves to be measured my,
which corresponds to t,,, or equivalently, Af;,, as explained in Sec. 5.4.1. Generally,
this parameter should be determined by the requirements of the experiment for which
the calibration is made. If a long gate sequence is needed, e.g., for randomized bench-
marking, detecting weakly coupled resonance modes is important. This would not
necessarily be the case for shorter experiments, such as process tomography. A total
time tp,. ~ texp, Where tey, is the length of the experimental gate sequence, is therefore
generally a good choice.

For the particle filter algorithm, the choice of a, ¢, and M, is discussed in Ref. [257].
Other parameters of interest include t,,,, and the number of particles to be used. The
time t,,,x is used in Eq. (5.6) to restrict the maximum measurement time. This is
necessary because the qubit eventually decays to the ground state. To obtain reliable
results, t,,.x should be set well below T;. Note that another way to limit the maximum
measurement time would be to replace tanh(a/o(g)tmax) tmax With a/a(g) in Eq. (5.6)
(asin the original proposal) and simply stop the algorithm once a sufficiently small 6 (g)
is reached.

The number of particles to be used is constrained mainly by the performance of
the computer running the resampling procedure and, potentially, numerical accuracy
issues [264]. As a rule of thumb, at least 10000 particles should be used; in this work,
we have used 40000.

In Sec. 5.2, we explain that our method can be used not only for a simple qubit swap
spectroscopy experiment, but also to look for resonances with the |e) < |f) transition
with a double-excitation protocol. In fact, the algorithms discussed in this work are
very general and apply even to systems that do not involve a resonance mode. We can
use the online and offline algorithms to efficiently detect the location and estimate
the parameters of any qubit dynamics akin to a chevron pattern. This is the case, for
example, with a whole class of parametric two-qubit gates, where instead of varying
fp we vary the frequency of a flux drive applied to the SQUID of a qubit or tunable
coupler [265, 266, 267].

Finally, we briefly discuss the problem of choosing qubit operating frequencies.
Once the calibration showcased in this work is accomplished and all resonant couplings
are identified, the next step is to use this information to optimize the performance of
a quantum computer. This process depends on the quantum computing architecture.
For an array of directly-coupled superconducting qubits, we want to avoid crosstalk
between neighboring qubits and minimize interactions with TLSs. We therefore need
to choose the idle frequencies of all qubits at the same time, taking into account both
wanted and unwanted couplings. Additional concerns apply for choosing the operating
frequencies of two-qubit gates: we must consider the frequency path that the qubits
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will take during the gate. For example, it is undesirable for a qubit to cross through a
resonance with a TLS. If such crossings are unavoidable, e.g., if the device is afflicted by
many TLSs, knowing the coupling strength of each TLS helps select the optimal set of
qubit interaction frequencies.

While this work does not explain the process needed to perform this optimization
(see, e.g., Ref. [268] for an example), we emphasize that the runtime improvement of
the offline and online algorithms when compared to traditional swap spectroscopy
presents several advantages: First, the calibration may be run more often. Second, the
calibration is affordable enough to be run on a larger spectrum, giving the frequency
optimization process more information to work with.

5.7 Conclusions

In conclusion, we explain two methods for the Hamiltonian parameter estimation of
resonant couplings in the context of tunable superconducting qubits. Both algorithms
work well and are able to successfully identify and accurately estimate the parameters
of various resonance modes. The octave sampling technique can be run without prior
knowledge about potential resonances in the environment of the qubit and allows
efficient detection of coupled modes within a chosen parameter range. The online
Bayesian algorithm can be performed or omitted depending on whether a more accurate
estimate of the coupling parameters is desired. Using these algorithms reduces the
number of measurements needed from O(1/4f3 ) to O(1/Af;,). This translates to a
reduction in runtime by one order of magnitude in typical conditions.

We experimentally demonstrate both techniques on a superconducting Xmon trans-
mon qubit and evaluate their performance. We are able to detect the resonance with
the qubit’s measurement resonator; as well as with synthesized resonance modes and
a naturally occurring weakly coupled TLS. We determine that the methods are efficient,
reliable, and readily automated. We expect this type of calibration to be critical to the
operation of large-scale quantum computers, superconducting or otherwise. Future
work includes integrating the information we acquire by our methods into a compre-
hensive optimization process for selecting the operating frequency of each qubit in
a quantum computer and implementing the calibration of a two-qubit gate with the
online Bayesian algorithm.
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Time Fluctuations

Amorphous dielectric materials have been known to host two-level systems (TLSs) for
more than four decades. Recent developments on superconducting resonators and
qubits enable detailed studies on the physics of TLSs. In particular, measuring the
loss of a device over long time periods (a few days) allows us to investigate stochastic
fluctuations due to the interaction between TLSs. In this chapterl, we measure the
energy relaxation time of a frequency-tunable planar superconducting qubit over time
and frequency. The experiments show a variety of stochastic patterns that we are
able to explain by means of extensive simulations. The model used in our simulations
assumes a qubit interacting with high-frequency TLSs, which, in turn, interact with
thermally activated low-frequency TLSs. Our simulations match the experiments and
suggest the density of low-frequency TLSs is about three orders of magnitude larger
than that of high-frequency ones.

6.1 Introduction

Superconducting devices operated in the quantum regime [99] are ideal tools to study
the properties of amorphous dielectric materials [252]. These materials are known
to be characterized by defects that can be modeled as two-level systems (TLSs) [269].
TLSs can interact with superconducting resonators or qubits, resulting in dissipation
channels that are particularly prominent in planar devices. Such devices are fabri-
cated by depositing superconducting films made from metals, e.g., aluminum (Al) or
niobium, on silicon (Si) or sapphire substrates. A few examples of planar devices can
be found in our works of Refs. [114] and [249], where we have investigated coplanar
waveguide (CPW) resonators [234] as well as Xmon transmon qubits [92].

IThis chapter was largely adapted from Ref. [262]. The list of author contributions can be found in
the Statement of Contributions within the front matter of this thesis. © 2021 American Physical Society
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A large body of work on CPW resonators and qubits has shown that TLSs are likely
hosted in native oxide layers [270, 112,271, 272, 105, 273, 274, 171, 253, 275] at the
substrate-metal (SM), substrate-air (SA), or metal-air (MA) interfaces [276, 228, 114,
277]. TLSs originate within these layers because naturally occurring oxides deviate
from crystalline order. This deviation may result in trapped charges, dangling bonds,
tunneling atoms, or collective motion of molecules.

[t is convenient to distinguish between two categories of TLSs based on their en-
ergy E and the device operating temperature T. When E > kgT, the corresponding TLSs
reside in the quantum ground state; these TLSs are hereafter referred to as quantum-
TLSs (Q-TLSs). When E < kgT, the TLSs are thermally activated and are referred to as
thermal-TLSs (T-TLSs). Typically, superconducting resonators are characterized by a
resonance frequency f, and qubits by a transition frequency f, with f,. ~ f, ~ 5GHz,
and are operated at T ~ 50 mK. Hence, the energy threshold between Q- and T-TLSs
isE/h ~ 1GHz.

Superconducting quantum devices interact (semi-)resonantly with Q-TLSs [278],
affecting the internal quality factor of resonators, Q;, or the energy relaxation time of
qubits, T;. Several authors have hypothesized that Q-TLSs additionally interact with
T-TLSs [279, 280, 281], leading to experimentally observed stochastic fluctuations in Q;
and f, [282, 279,171, 253] as well as T; and f4 [283, 252]. The model proposed by
these authors depart from the TLS standard tunneling model (STM), where TLS inter-
actions are neglected [269]. The interacting model is sometimes called the generalized
tunneling model (GTM).

It has recently been shown that planar fixed-frequency transmon qubits exhibit
random fluctuations in both T; and f, over very long time periods [261, 260, 284].
Frequency-tunable transmon qubits, as the Xmon, show TLS-induced fluctuations pre-
dominantly in T; [254]. TLS-induced f fluctuations are present but are overshadowed
by additional noise processes such as flux noise 2. These findings serve as the main
motivation for the experiments and simulations presented in this chapter.

In this chapter, we present the experimental measurement of spectrotemporal
charts for an Xmon transmon qubit as well as the results of detailed simulations cor-
responding to these experiments. In the spectrotemporal charts, T; is measured and
simulated for time periods up to 48 h and for f; ranges up to 300 MHz. Our main ob-
jective is to validate the Q-TLS-T-TLS interaction hypothesis in the GTM by comparing
experiments and simulations. In our simulations, a qubit interacts with an ensemble of
Q-TLSs, the frequencies of which undergo stochastic fluctuations due to the interac-
tion with T-TLSs. For every Q-TLS we consider a set of interacting T-TLSs, where the
dynamics of each T-TLS state are governed by a random telegraph signal (RTS). The

2The flux noise experienced by tunable transmon qubits is caused by the increased flux sensitivity
due to the SQUID and the flux line coupled to it.
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Q-TLS frequency fluctuation process, which is broadly referred to as spectral diffusion,
is responsible for the random fluctuations in Tj;.

The comparison between experiments and simulations reveals that the Q-TLS-
T-TLS interaction likely exists, as proposed in the GTM. In particular, our simulations
reproduce well the spectral-diffusion patterns presented in the experiments. Our model
suggests that the density of T-TLSs is significantly higher than that of Q-TLSs. We find
a T-TLS density of approximately 6 x 10° GHz™* um~3, which is about three orders of
magnitude larger than the Q-TLS density.

Finally, we show that certain statistical analyses, such as the Allan deviation, are not
able to capture the fluctuation characteristics of a given time series (e.g., the number
of T-TLSs contributing to the stochastic process). Instead, a direct analysis of the time
series provides a more accurate description of the stochastic processes due to TLSs.

The chapter is organized as follows. In Sec. 6.2, we review the theory necessary to
describe the stochastic fluctuations of T;. In Sec. 6.3, we explain the methods required
to perform experiments and simulations. In Sec. 6.4, we present our main results. In
Sec. 6.5, we provide an in-depth discussion on some of our main results. Finally, in
Sec. 6.6, we summarize our findings and suggest a roadmap for future work.

6.2 Theory

In this section, we introduce physical models of TLSs (Sec. 6.2.1); we then describe
the qubit-Q-TLS and Q-TLS-T-TLS interaction (Subsecs. 6.2.2 and 6.2.3); finally, we
amalgamate the previous concepts in order to explain qubit stochastic fluctuations
(Sec. 6.2.4).

6.2.1 Physical Models of TLSs

The STM is a phenomenological model describing defects in amorphous dielectric
materials. The defects are commonly assumed to be quantum-mechanical double-well
potentials, or TLSs, with energy barrier V. In the STM, the TLS tunneling energy 4, is
calculated by means of the WKB approximation,

d
Ay = hf)yexp (_ﬁ 2 mV). (6.1)

In this equation, (2 is the attempt frequency (assumed to be the same for both wells),
d is the spatial distance between the two wells, and m is the mass of the physical entity
associated with the TLS (e.g., a molecular mass) [285]

The unperturbed Hamiltonian of a TLS reads Hy;g = (Aaz + Aoax) /2, where 4
is the asymmetry energy between the two wells of the TLS; 7, and o, are the usual
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Pauli matrices in the so-called diabatic (“left” and “right”) basis. By diagonalizing this
Hamiltonian we obtain Ay s = E 6,/2, where

E= M2+Ag (6.2)

is the TLS energy and 6, = [0, cos(6) + 7, sin(8)]/2 is the Pauli matrix in the energy
basis; 8 = arctan(4,/4) is the rotation angle used to perform the diagonalization.

One of the hypothesis in the STM is that 4 and 4, are uncorrelated quantities with
joint probability density

D
—, for A>0 and 4, = &,

fan, = 4o ° i (6.3)
0, otherwise.

In this equation, D is the TLS density in units of inverse energy and volume and &, is
the minimum tunneling energy. A further hypothesis is that interactions between TLSs
are very weak and, thus, negligible.

The hypotheses behind the STM prevent this model from explaining a variety of
features observed in devices affected by TLS defects. Among other phenomena, the STM
cannot explain the temperature dependence of the frequency noise of superconducting
resonators [279] as well as the strong temperature dependence of the relaxation rate
of Q-TLSs measured with qubits [286]. Most importantly, the STM cannot explain
the spectral diffusion dynamics observed both in the work of Ref. [254] and in our
experiments.

In order to resolve these shortcomings, it is necessary to extend the STM to the
GTM by making the following modifications:

1. Interactions between TLSs are not neglected.

2. The joint probability density is assumed to be nonuniform with respect to 4,

Ltu( A\ io<a<e
AO 8max , or B -
faa, = and Epin < 4 < Epaxs (6.4)
0, otherwise.

In this equation, u < 1 is a small positive parameter and &£,,,, is a maximum
energy cutoff dictated by the energy scales of the system under consideration
(see Sec. 6.3.2).
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The interaction energy between any pairs of TLSs is assumed to be a function of
their spatial separation r,

Up
U(r) = = (6.5)

where U, is a material-dependent parameter associated with electric or elastic interac-
tions. It is worth noting that interactions can occur between pairs of Q-TLSs or T-TLSs
as well as between a T-TLS and a Q-TLS.

In the study of superconducting planar qubits, both f, and T; are affected by the
interactions hypothesized in the GTM. These type of qubits interact semi-resonantly
with an ensemble of Q-TLSs, where each Q-TLS can strongly interact with one or more
T-TLSs. Such interactions lead to stochastic fluctuations in T; and f.

6.2.2 Qubit-Q-TLS Interaction

The interaction between a qubit and a single Q-TLS leads to perturbations in T; and
fq- These perturbations depend on the coupling strength between the qubit and Q-
TLS, g, and on the difference between the Q-TLS transition frequency fqo.r1s and f,
Af = fq— fqrs- In this work, we consider only T; fluctuations because, for a tunable
qubit, f fluctuations are dominated by other noise processes such as flux noise.

In the rotating frame of the qubit and after a rotating wave approximation, the
Hamiltonian of the qubit coupled to the Q-TLS reads

Hyqais = hAf 6365 +hg (6% ® 3ms + He), (6.6)

where 6(;7 and 6(’2_*_“5 are the qubit and Q-TLS lowering and raising operators in the
energy basis and H.c. is the Hermitian conjugate of the first term in parentheses. The
coupling strength g is due to the electric dipole moment p of the Q-TLS and the electric
field E, of the qubit 3, hg = p - E.

The master equation in Lindblad form of a qubit-Q-TLS system reads

dp i ) VR DR
7t = " pHaus A1 Z <Lijj ) {Lfo' p} ’ (6.7)
j

where p(t) is the density matrix, ﬁq,Q-TLS is given by Eq. (6.6), j € {q, Q-TLS}, and f,j
and lA,J]r- are Lindblad operators.

3The electric field ﬁq is the field associated with the qubit capacitor, which is described in Sec. 3.1
and Appendix D.3.
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To account for the energy relaxation rates of the qubit and Q-TLS, we introduce the

following Lindblad operators
L,= /f'l 64 (6.8)

5 f TLS A
Loris = | T e Q-TLS (6.9)
QTLS

where I} is the energy relaxation rate of the Q-TLS due to phononic interactions
with the environment, I3} is the bare energy relaxation rate of the qubit *.

The quantity ﬁjﬁijr- = 0 at all times because there is at most one excitation in
a qubit-Q-TLS coupled system. With this assumption, and by defining the effective
non-Hermitian Hamiltonian [287]

7 7 Eroq agac TLS a4 A
Her = Hoqmis — 5 (F 1636 + I 68150 Q-TLS)' (6.10)

the Lindbladian of Eq. (6.7) can be written as a simple Schrodinger equation with a
“decaying wave function” |#(t)) = a(t) |e) + B(t) |1), where a(t) and S(t) are the
time-dependent complex amplitudes associated with the excited state |e) of the qubit
and |1) of the Q-TLS.

The exact result of the Schrodinger equation for a(t) given that a(t = 0) = 1 and
Bt =0)=0is

1 A A
a(t) =51 Ia exp <_Zt> + b exp <Zt>

where A is given by Eq. (6.14),a = A — (I“lQ'TLS — Y + 4miAf,and b = A + (I“lQ'TLS —
Y — 4miAf.

Since we are calculating a decay, we are only interested in the envelope of a(t),
a(t). We thus set Im[A4] = 0 in the two exponential terms of Eq. (6.11) and calculate

the envelope probability P,(t) = |d(t)|2 for the qubit to be in |e),

g FlQ-TLS
X exp| ————t], (6.11)

5 ep | a|? Y™ 4+ 3+ Re[4] L 2 rY™ 4 [ — Re[4] ,
() =|3| &P 2 24| &P 2
ab*+ a*b I’lQ'TLS + flqt (6.12)
—F— X B — .
2az P 2

*This is the rate caused by all dissipation sources other than TLSs.
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When I]Q'TLS > flq, which is the regime of interest in our experiments, the term pro-

portional to |b|? in Eq. (6.12) is dominant. Therefore, in order to find an approximate
expression for the Q-TLS contribution only, we subtract the qubit contribution I3 from
the rate in the exponential proportional to |b|2. As a result, the contribution to the
energy relaxation rate of the qubit due to the Q-TLS can be approximated by

TLS
[AQILS _ ™ — I — Re[4]
1 = 5 ,

(6.13)

where

A= \/ (7 + 2i(2maf) - rlQ'TLS)2 —16(21g)?, (6.14)

with i2 = —1.

In presence of amorphous dielectric materials, the qubit is coupled to an ensemble
of Q-TLSs. In this case, Eq. (6.13) represents the individual contribution to the energy
relaxation rate of the qubit due to the k-th Q-TLS, I; 1q‘Q'TLS - I 1q’k ; each Q-TLS is now
characterized by its own coupling strength g, frequency f;, and energy relaxation
rate I7*. The effective qubit relaxation rate is therefore given by

1
K= =R+ Z ok, (6.15)
1 3

6.2.3 Q-TLS-T-TLS Interaction

We intend to calculate the frequency shift experienced by a Q-TLS due to the interaction
with a T-TLS. We assume that the unperturbed energy and eigenstates are E = Er1.rg
and {|—), |+)} for the T-TLS and E = E.r;s » Errs and {|0), [1)} for the Q-TLS. These
two TLSs form a quantum-mechanical system with Hamiltonian given by Eq. (11) in the
work of Ref. [280]. Assuming the interaction energy U between the T-TLS and Q-TLS is
given by Eq. (6.5), the four eigenenergies of the system are

- Eqris — |( Erris ’
Ey =— 5 + 5 + U4 + U? (6.16a)
and

- Eqris — |( Erris ’
Ef =+ 5 + > - U4l + U?, (6.16b)

where 4 is the asymmetry energy of the T-TLS.
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The frequency shift §f ¥ of the Q-TLS due to the interaction with the T-TLS reads
héfF =Ef — Ef — Equus, (6.17)

which is negative when the T-TLS is in |—) and positive otherwise.

A T-TLS is thermally activated because of the condition E1r;s < kgT and, thus,
switches state in time. This causes the sign of §f T to change, affecting the time evolution
of the frequency of the Q-TLS coupled to it.

6.2.4 Qubit Stochastic Fluctuations

We assume that the state of a T-TLS over time is modeled by an RTS with switching rate

|4
= —-——, 6.18
Y =Yo eXD< kBT> (6.18)
where y, is a heuristic proportionality constant and V is implicitly given by Eq. (6.1).
A Q-TLS is generally coupled to several T-TLSs, where the £-th T-TLS is characterized

by a certain value of y, and &f,". Given the state (|¥)) of each T-TLS at a time ¢, we
can approximate the effective frequency shift of the Q-TLS by summing the individual
values of &f," (t). Since the T-TLS state is modeled by an RTS, the effective shift varies
with t leading to a time series
Eq1Ls T

X 0! (6.19)

?

fors(t) =

For the k-th Q-TLS, f; fluctuates in time according to Eq. (6.19). As a consequence,

I} fluctuates because of its dependence on I 1q’k, which, in turn, depends on f; through
Eq. (6.14). The stochastic fluctuations of I;! = 1/T; are the main subject of this chapter.

6.3 Methods

In this section, we describe the methods used to perform the experiments on T; fluctu-
ations (Sec. 6.3.1) and the corresponding simulations (Sec. 6.3.2).

6.3.1 Experiments

In this work, we use an Xmon transmon qubit to probe TLS defects. The main goal
of our experiments is to characterize fluctuations in T; over long time periods and
for different values of f,. We measure T; by means of a standard energy relaxation
experiment, a “T; experiment.” Details on the qubit and setup are given in Chapter 3.
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Table 6.1: Experimental parameters for the three datasets introduced in Sec. 6.4. Num-
ber of frequency points, N¢. Qubit frequency, f,. Repetition period, 4t. Observation
time, tps-

Dataset Nf fqrange At tops
(=) (GHz) ()  (h)

1 16 [4.369,4.669] 640 42.5
31 [4.500,4.560] 1000 47.2
3 31 [4.500,4.530] 1000 48.1

N

In a T; experiment, we prepare the qubit in the excited state |e) by means of a
pulse. We then measure the average population of |e), P,, for many values of a delay
time spaced logarithmically between 1 ns and 200 ps. We read out the qubit state
over 655 high-power single-shot measurements (see Section 3.3.3) for each delay time
to find P, with a visibility 2 90 %. Due to the various relaxation channels affecting
the qubit, including TLS interactions, P, decays exponentially in time. We obtain T}
by fitting the exponential decay and acquire between 36 and 38 points for each Ty
experiment.

We measure T; for different values of f, by setting a quasi-static flux bias ore
applied to the qubit. The correspondence between ¢, and fq is obtained from a
qubit parameter calibration. Depending on the experiment, we set f; over different
bandwidths varying between 30 and 300 MHz. We select N linearly spaced values
of f4 for each T; experiment. The T; measurements are repeated continuously at a
repetition period At over an observation time t, leading to matrices of data points as
detailed in Appendix D.1. These matrices constitute the spectrotemporal charts of T;
presented in Sec. 6.4. The experimental parameters for the three datasets shown in
this work are reported in Table 6.1.

6.3.2 Simulations

The procedure to simulate the effect of TLSs on the stochastic fluctuations in T; is
composed of three main steps: (1) Generate an ensemble of Q-TLSs interacting with
the qubit. (2) Generate several T-TLSs interacting with each Q-TLS. (3) Generate a time
series for each T-TLS and propagate the effect of the T-TLSs’ switching state to each
Q-TLS, and, finally, to the qubit.

Before detailing each step of the procedure, it is worth introducing a few general
assumptions:
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e We consider that all TLSs are distributed uniformly in the oxide layers at the SA
and MA interfaces of the qubit device. The thickness of these layers is assumed
to be t,x = 3 nm for both interfaces, a reasonable amount for a device exposed
to ambient air pressure [276, 288, 289]. Note that device fabrication affects the
oxide layers. For example, without thorough substrate cleaning, it would be
expected that there would be an oxide layer at the SM interface®.

o All the TLS parameters used in this procedure are assumed to be fixed for the
entire duration of each simulation (see Appendix D.2); for each T-TLS, for example,
y is constant in time.

e We assume that all T-TLSs belong to a single species (see Sec. 6.5.1).

o We set I}! = 1/27 MHz, which is the value estimated according to the highest
observed T; values for our device.

e For all distributions used in this work, we determine the probability density
function (PDF) by normalizing a given distribution [e.g., that represented by
Eq. (6.4)] over the chosen boundary values; we also find the cumulative density
function (CDF). In order to pick a random value from a distribution, we generate
arandom quartile value between 0 and 1. We then calculate the random value
corresponding to the generated quartile either by inverting the CDF or via root
finding.

For step (1), we follow a similar procedure as in the work of Ref. [92]. Each Q-
TLS is characterized by a 3-tuple of fundamental parameters, ( foris 9, I]Q'TLS). We
pick fq.rLs uniformly at random from a frequency range relevant to our experiments.
Since fy ~ 4.5 GHz, we generate Q-TLSs with fq.11s € [4,5] GHz.

In order to generate g, we need a numerical value for both the effective electric
dipole moment $ ° and IIEqII at the position of the Q-TLS.

We pick p from a known probability density that has been experimentally measured,
e.g., in the work of Ref. [270],

(6.20)

pmax

~ 2
b - Y
1_< ) ) for Pmin Sp Spmax;

~A
1)
Il
S|

otherwise.

=

>The substrate in this work was cleaned before deposition of the aluminum layer; the fabrication
recipe is shown in Appendix A.1.
5The angle 1) between p and E'q is integrated in the distribution for g, i.e., p = ||B|| cosn [270].

142



CHAPTER 6. TIME FLUCTUATIONS

In this equation, we set the minimum and maximum value of § to be p,,;, = 0.1 debye
and P,.x = 6 debye; we choose p,ax as in Ref. [92] and Py, assuming that any smaller
dipole moment is negligible.

The position of a Q-TLS can be randomly picked at any point within the qubit oxide
layers. We may then determine E'q at each of these points by means of a conformal
mapping technique. This technique allows us to transform the electric field of the
qubit capacitor, E ¢ into the known field of a parallel-plate capacitor. Details on this
procedure are given in Appendix D.3.

Finally, we assume that I"lQ'TLS « A3 [269], where the tunneling energy of the Q-TLS,
4, is picked from an inverse probability distribution. We choose the bounds such that
the resulting decay rates range between 1 and 100 MHz, with most rates at the low end
of this range.

In order to complete step (1), we need to know the total number of Q-TLSs, Nq.s,
and their associated 3-tuple parameters. The Q-TLSs are hosted within an interaction
region with volume determined by the length of the two CPW segments forming the
qubit Al island and the same cross-sectional area used to pick E'q (see Appendix D.3),
Vine = 96 pm X 3 nm X 376 pm X 2. Given a Q-TLS bandwidth Bg.g1s = 1 GHz, assuming
a Q-TLS density D = 200 GHz™* um~3 (see Sec. 6.5.2), and disregarding all Q-TLSs
with g < 70kHz, we obtain Nq.r;s ~ 570.

In step (2), each T-TLS is characterized by a 2-tuple of fundamental parameters,
(6f$, y). We generate §f * from Eq. (6.17), where 4 and 4, are picked from the GTM
distribution of Eq. (6.4). We assume &,;;;, = 125 MHz, £,,,,x = 1 GHz, and ¢ = 0.3 [280].
The interaction energy U(r) is calculated from Eq. (6.5), where Uy = kg X 10 Knm3
and r is the Q-TLS-T-TLS distance; this distance must be picked at random. Given a
cylindrical region with radius r and height ¢, centered on the Q-TLS and a uniform T-TLS
density, the CDF for the number of T-TLSs is proportional to 2. As a consequence, the
PDF is linearin, f,- < r. We pick r from f, assuming r,,;, = 15nm and r,,, = 60 nm
as bounds (see Sec. 6.5.2 for a discussion on 7,,).

We then generate y from Eq. (6.18). In addition to the parameters used to gener-
ate 5f¢, weneed T = 60mK, y, = 0.4Hz 2y, = 1GHz, m = 16u,and d = 2 A (see
Sec. 6.5.1 for a discussion on the physical meaning of these parameters). Note that the
effective qubit temperature T = 60 mK corresponds to a qubit ground state population
of 2.7 %, which is approximately the value observed in our experiments.

Similarly to step (1), in order to complete step (2) we need to select the num-
ber of T-TLSs interacting with each Q-TLS, Nt1.5. We generate a set of Nyprs = 10
T-TLSs, ensuring that each of them additionally fulfills the condition Ef — E; =

\/E%_TLS +4U(A+U) < Enax = kgT/2. We choose half of the thermal energy as

our activation threshold, although similar values would work as well.
In step (3), we generate the simulated spectrotemporal charts for I (and, thus, T;).
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Stochastic fluctuations are due to a T-TLS switching state randomly between the left
and right well. We simulate these fluctuations as an RTS with a single y for both the left
and right well, i.e., assuming a symmetric noise process. For an RTS, the probability of
spending a time t in a certain state is given by the PDF f; = y exp(—yt). Starting from
a random state, we produce a list of times spent in each T-TLS state until reaching ¢t;.
In order to generate a time series for the T-TLS state, we sample the time list at At
intervals. The values of both At and t;,; used in the simulations are the same as for the
experiments and are reported in Table 6.1.

The T-TLS state corresponds to a particular § f ¥. Therefore, as explained in Sec. 6.2.4,
the time series f o.r;s(t) for each Q-TLS can be calculated by means of Eq. (6.19). Finally,
we evaluate Eq. (6.15) for all values of interest of f; in order to match the spectrotem-
poral charts measured in the experiment, we choose f, for the ranges and Ny values
reported in Table 6.1.

The simulations are performed using the Julia Programming Language [290]. The
computer code QubitFluctuations. j1 canbe obtained from a GitLab repository [291].

6.4 Results

The main results of this work are presented in Fig. 6.1, which shows the experimental
and simulated spectrotemporal charts of T;. Details on the experiments and simulations
are described in Subsecs. 6.3.1 and 6.3.2, respectively, with parameters reported in
Table 6.1. Each realization of a simulation is random due to the very nature of the
method (because, e.g., fq.ris is distributed uniformly). We thus choose to display
simulated spectrotemporal charts that resemble the experiments.

A visual inspection of the T; stochastic fluctuations in Fig. 6.1 reveals three distinct
spectral-diffusion patterns:

1. Band-limited diffusive.
2. Fast narrowband telegraphic.
3. Slow wideband telegraphic.

Generally, it is also possible to observe combinations of such patterns.

The three patterns can be qualitatively explained by performing ad hoc simulations
using a similar method as in Sec. 6.3.2. However, instead of randomly generating the 3-
and 2-tuple of steps (1) and (2), we set these tuples by hand. We simulate the effect of
several T-TLSs on one Q-TLS, considering three T-TLS sets with different ranges of §f ¥
and y. For clarity, we choose three Q-TLSs with distinct values of fq. s — Q-TLS 1, 2,
and 3 — one for each set of T-TLSs.
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t (h); experiments

t (h); simulations
|

0 — ~ 0
450 452 454 456 450 451 452 453
fy (GHz) fy (GHz)

Figure 6.1: Experimental [(a), (b), and (c); datasets 1,2 and 3, respectively, in Ta-
ble 6.1] and simulated [(d), (e), and (f)] spectrotemporal charts of T; vs. f and ¢, where
the panels in each column display an experiment and the corresponding simulation.
Spectral-diffusion patterns in the experiments are highlighted with boxes. Band-limited
diffusive: dashed purple boxes. Fast narrowband telegraphic: solid orange boxes. Slow
wideband telegraphic: dash-dotted red boxes. In the simulations, we add a background
time series of Gaussian white noise with a standard deviation of 2 kHz, which is com-
parable to the fitting error of our T; experiments.
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Figure 6.2: Three spectral-diffusion patterns. (a) Q-TLS frequency f q.rs vs. t for Q-TLS 1
(left purple line), 2 (middle orange line), and 3 (right red line). (b) and (c) Simulated
spectrotemporal charts of T; vs. f; and t for g = 50 and 100 kHz, respectively. The
color map for T; is the same as in Fig. 6.1.

In broad strokes, the band-limited diffusive process is reproduced by simulating
the effect of many (~ 10) T-TLSs on Q-TLS 1; we select T-TLSs with low values of 1/y
(ranging between tens of minutes and hours) and small values of §f ¥ (< 1 MHz). The
fast narrowband telegraphic process, instead, is generated by considering a few (< 3) T-
TLSs acting on Q-TLS 2; in this case, we select high values of 1/y (on the order of hours)
as well as small values of §f ¥ (< 1 MHz). Similarly to the case of the fast narrowband
process, the slow wideband telegraphic process is created assuming also a few (< 3)
T-TLSs, this time coupled to Q-TLS 3; in this instance, however, we select very high
values of 1/y (on the order of days) and large values of §f ¥ (< 20 MHz).

Figure 6.2 illustrates the results of the simulation of the three patterns. Figure 6.2 (a)
exemplifies the effect of the three different sets of T-TLSs on Q-TLS 1, 2, and 3. Fig-
ures 6.2 (b) and (c) demonstrate the impact of each Q-TLS on the spectrotemporal chart
of T; for a small (a) and large (b) value of g. The T-TLS and Q-TLS parameters used in
the simulations are reported in Table 6.2.

Q-TLS 1 is affected by many T-TLSs that switch continuously within the observation
time. The T-TLSs act additively on the Q-TLS, resulting in a diffusive shift of f.rs [see
Eq. (6.19)]. Different from Brownian diffusion, the shift in fq.r;s does not exceed the
sum of the individual frequency shifts induced by each T-TLS at any observation time.
The diffusive process is thus characterized by a limited frequency bandwidth, as shown
in Fig. 6.2 (a). The spectrotemporal chart of T; displays a similar behavior; T; fluctuates
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in time over a finite frequency range, exhibiting moderate and strong variations in
Figs. 6.2 (b) and (c), respectively.

Q-TLS 2, which is affected by a few T-TLSs, switches mainly between two values
of fo-rLs (low and high); for both states, much smaller fluctuations at higher switching
rates are noticeable. The telegraphic nature of this process affects dramatically the
spectrotemporal chart of T; when fqqs = fg. This is the case in the example of
Fig. 6.2 (a) when Q-TLS 2 dwells in the low frequency position. In this state, T; becomes
largely reduced compared to when the Q-TLS resides in the high frequency position,
as displayed in Figs. 6.2 (b) and (c). The low value of FlQ'TLS leads to a narrowband
process, with more pronounced T; variations in Fig. 6.2 (b) compared to Fig. 6.2 (c).

[t is worth noting that, in our example, the high frequency position lies between two
values of f [vertical solid light-gray lines in Fig. 6.2 (a)] but is too far from either of
them to significantly impact T;. This effect shows that the frequency resolution of our
experiments [i.e., the x-axis “pixeling” in Figs. 6.2 (b) and (c)] affects the spectrotempo-
ral chart of T;.

Q-TLS 3 behaves similarly to Q-TLS 2, although one of the T-TLSs has a significantly
larger value of §f . Due to low values of y, Q-TLS 3 undergoes telegraphic frequency
shifts only a couple of times during observation. The high value of FlQ'TLS strongly
damps the effect on T, resulting in a wideband process. In fact, the effect is barely
visible in Fig. 6.2 (b), even when the Q-TLS is almost on resonance with the qubit. In
presence of a strong coupling, however, the impact on the spectrotemporal chart of T
is clearly identifiable; as shown in Fig. 6.2 (c), the effect extends over a large frequency
range.

6.5 Discussion

In this section, we discuss the physical characteristics of a T-TLS (Sec. 6.5.1); we then
discuss the density of TLSs (Sec. 6.5.2); finally, we provide insight on the interpretation
of the Allan deviation and power spectral density (Sec. 6.5.3).

6.5.1 Physical Characteristics of a T-TLS

The two quantities required to represent T-TLSs in the simulations shown in Fig. 6.1
are §f ¥ and y of Egs. (6.17) and (6.18), respectively. The former is determined only
by parameters chosen according to the GTM. The latter requires the knowledge of
additional physical characteristics of T-TLSs: m and d, as well as £; explicitly,

AV 1 [ 0,V
Y = Yo €xp —<a> o (ln A_o> /(kgT)
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Table 6.2: T-TLS and Q-TLS parameters used in the simulations of Fig. 6.2.

QTLS foms 50 o
(GHz) (MHz) (Hz) (MHz)
2x107° 09
5x 107> 0.7
8x10°5 0.7
1x10™* 06
1 4510 10 2% 10~ 06
3x107% 0.5
4%x10™* 0.3
1x1073 0.1
3x10~> 0.8
2 4531 5 8x10°° 0.2
2x107* 0.1
6x107° 20
3 4570 90 8% 10-6 3

The T-TLS mass m must be between that of a very light particle such as an electron
and that of heavier elements such as atoms and molecules. That is, it can vary over sev-
eral orders of magnitude. The interwell distance d should be on the order of angstroms.
Electrons and atoms cannot get displaced by more than the interatomic bond length.
In the case of molecules, the commonly accepted fluctuation model involves the col-
lective motion of atoms, where each individual atom also cannot move more than the
interatomic bond length [285, 252].

In our simulations, we assume a single species of T-TLSs. In order to obtain simu-
lated spectrotemporal charts that resemble the experimental ones, the product d?m
in Eq. (6.21) must lie within one order of magnitude of 1 X 10™*° m? kg. Considering
that d is confined within a few angstroms, the value of m cannot be chosen arbitrar-
ily. If there was clear evidence of multiple T-TLS species characterized by different
ranges of y, they could be modeled assuming different values of m and d. For example,
lighter particles would have higher values of y. Those different species of T-TLS may
also be characterized by different parameters determining the various distributions
described in Section 6.2. Nonetheless, we determined heuristically that the simulated
distributions of y and §f ¥ is sensitive to the parameter choice and that the parameters
presented in this work could not be changed significantly without sacrificing closeness
to the experimental data.

148



CHAPTER 6. TIME FLUCTUATIONS

We assume that TLSs, and thus T-TLSs, are hosted in oxide layers at the SM, SA,
or MA interfaces (see Sec. 6.1). The oxide layers are composed of molecules with an
oxygen (0) atom bound to a pair of neighboring atoms. A T-TLS can be modeled as an O
atom with mass m = 16 u tunneling between two wells (i.e., states) at a distance d from
each other. It is reasonable to assume that d is comparable to the bond length between
the O atom and a neighboring atom [269]. In many applications, using Si or sapphire
substrates and Al as a metal results in amorphous Si or Al oxide interfacial layers. The
bond length between the O and Si or Al atoms is on the order of 2 A [292, 293]; this is
why in our simulations we choose d = 2 A.

Equation (6.1) is valid only when V' > 0. Accordingly, it must be that 2, > 4,
for all values of 4 picked from the GTM distribution. On the one hand, choosing a
value 2, ~ A, leads toV ~ 0, which would correspond to a single- rather than a double-
well potential. On the other hand, we cannot choose (2 to be arbitrarily large due to its
relationship to y in Eq. (6.21). In fact, there is a small range of values of 2, that results in
a distribution of y similar to that empirically inferred from the spectrotemporal charts
of Fig. 6.1. We choose 2, = 1 GHz to match the experimental range y € [107°,1072] Hz
(i.e., a period from days to minutes) as closely as possible. In this case, we obtain T-TLSs
with V = 1.8 GHz.

6.5.2 Density of TLSs

The TLS density D is estimated by counting the number N of TLSs within a certain
interaction region with volume V;,; and bandwidth B, D = N /(V,: B).

In the case of Q-TLSs, their number N.rs can be readily obtained by counting the
interactions between a qubit and a Q-TLS in spectroscopy experiments [92, 249, 275,
294]. For qubits where Q-TLSs are hosted in a volume of native oxide, the estimated
density is Do.ris ~ 100 GHz ! um™3. In order to reproduce well our experimental
spectrotemporal charts, in the simulations we choose D11 s = 200 GHz ! pm~3.

Spectroscopic methods cannot be used to count the number of T-TLSs because, at
such low frequencies, the qubit is in an incoherent thermal state. The experimental
spectrotemporal charts reveal that Q-TLSs are generally affected by multiple sources
of telegraphic noise, as clearly shown by the band-limited diffusive pattern in Fig. 6.1.
This observation makes it possible to infer the number of T-TLSs coupled to each Q-TLS,
Nt11s; in the simulations, we choose Ntr s = 10. These T-TLSs are assumed to be
contained inside an interaction region with volume V;,; centered on their host Q-TLS.
It is worth pointing out that our choice of N1 = 10 can still result in both the fast
narrowband and slow wideband telegraphic patterns in Fig. 6.1; this is because § f ¥ and
y are distributed over a large parameter range possibly leading to a single predominant
T-TLS.
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The experiment of Fig. 6.1 (c) allows us to resolve T-TLSs with interaction strengths
U(r) = 1 MHz. According to Eqg. (6.5), this condition corresponds to a maximum inter-
action distance r,,, = 60 nm. Notably, this condition is similar to that hypothesized
in the work of Ref. [280]. As explained in Sec. 6.3.2, the T-TLS interaction region is a
cylinder with radius r,,, and a height of t; the volume associated with this region
is Vi =~ 3.4x107% um3 7.

Given B = (E nax — Emin)/h = 500 MHz, we finally get Dyps = 6 X 10° GHz™* pm ™3,
This value is much larger than D15, suggesting that D varies significantly in frequency
and is higher at lower frequencies. This finding is in contrast with the typical assump-
tion made by the STM practitioners that TLSs are uniformly distributed in frequency. It
is worth noting that a result similar to ours has been recently reported in the work of
Ref. [254], although our value for D5 is even larger than in that work.

6.5.3 On the Interpretation of the Allan Deviation and Power
Spectral Density

Time series experiments similar to those reported here are frequently studied by
means of statistical analyses such as the Allan deviation (AD) or the power spectral
density (PSD), or both. For example, this approach has been pursued in the work of
Refs. [261, 260]. It is tempting to ascribe simple models to these statistical estimators

’For the Q-TLS density used in our simulations, Dqqs = 200 GHz ™' pm~3, we can find a Q-TLS area
density 0.1 = Dgis X 1GHz X 3nm = 0.6 um~2, The average area per Q-TLS is therefore 1/0q11s-
Assuming each Q-TLS is contained within a square, the radius of the circle inscribed in each square
is rqrus = /1/0¢rLs/2 = 600 nm. Since 7'y, < 7o, the T-TLS interaction regions do not overlap on
average and, thus, we are not double counting T-TLSs.

Table 6.3: Time-series simulation parameters used in Fig. 6.3. The simulations are
performed as described in Sec. 6.3.2; however, instead of randomly picking all relevant
parameters, we manually specify them. Note thaty = 1/(21).

Mrris  foris g Yy Vil
(GHz) (MHz) (MHz) (pHz) (MHz)
1 45011 0.04 15 100 0.6

45011 0.02 10 75 0.8
45015 0.02 10 70 0.6
4.4989 0.02 10 140 0.8
44986 0.02 10 75 0.4
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Figure 6.3: Comparison between the statistical analyses of two simulated times se-
ries. (a) Simulated time series of T; vs. t. The series for M s = 1 is vertically off-
set by 40 ps for clarity. (b) Estimated overlapping AD o vs. T and associated fitting
curves from Eq. (6.22). We find A; = 5.84(5) and 4.98(6) us, hy = 749(111) and
583(119) us? Hz %, and 1/t, = 195(7) and 195(10) pHz for Mpq;s = 1 and 4, re-
spectively. Note that we are fitting 02 with the Levenberg-Marquardt algorithm, but
plotting a. The overlapping AD is computed at logarithmically-spaced points. (c) Es-
timated PSD S vs. f. We use the fitting parameters from (b) to overlay the model
of Eq. (6.23) to the data. The PSD is estimated using the Welch’s method with 25 h
overlapping segments (rectangular window). The value of 7, fitted for M1 g = 1
matches (within the confidence interval) that chosen in the simulations and reported
in Table 6.3; the fitted 7 for M1 s = 4, instead, does not match any of the values in
Table 6.3.

in order to extract T-TLS parameters such as their switching rate y and number Mrrs;
in this case, M5 is the total number of T-TLSs affecting the qubit by interacting with
a single or multiple Q-TLSs. It is common, however, to encounter scenarios where these
models are misleading.

Figure 6.3 presents two distinct scenarios that illustrate this issue. The time series

151



CHAPTER 6. TIME FLUCTUATIONS

in Fig. 6.3 (a) are obtained by simulating one scenario with My s = 1 and another
with M5 = 4. The simulations parameters are reported in Table 6.3. As expected,
there is a stark visual difference between the two time series: In the first scenario, it is
possible to clearly identify one RTS; this is impossible in the second scenario. However,
this difference is not reflected in either the overlapping AD or PSD. In both simulated
scenarios, we observe a pronounced peak in the overlapping AD and a lobe in the
PSD. These features are indicative of Lorentzian noise. However, they appear to be
practically the same for the two scenarios. In fact, it is possible to fit the overlapping
AD or PSD using a simple model based on a single source of Lorentzian noise, along
with white noise. The model reads

2

h Ayt 2T

g2 =0 ( 0 0) <4e—T/T0 — e 2T/To _3 4 —) (6.22)
27 T To

for the AD and

4A%7,
1+ (2nf1y)?
for the PSD, where t and f are the analysis interval and frequency, hy, and 4, are
the white and Lorentzian noise amplitudes, and 7, is the Lorentzian characteristic
time [295].

Although the two simulated time series are associated with entirely different scenar-
ios, the simple models of Egs. (6.22) and (6.23) fit accurately both the overlapping AD
and PSD for very similar values of 7y; we obtain 1/7y = 195(7) uHz when Mg s = 1
and 1/t, = 195(10) pHz when M1 = 4. This conclusion can be qualitatively under-
stood by noticing that multiple physical sources of Lorentzian noise combine to form a
single wideband peak in the overlapping AD (or lobe in the PSD). As a consequence,
this feature can be mistakenly fitted with a model comprising a single Lorentzian term.
For this reason, we elect not to analyze our experimental results by ascribing simple
models to the AD (or PSD).

S=hy+ (6.23)

6.6 Conclusions

We study the physics of TLSs by means of a frequency-tunable planar superconducting
qubit. We show that simulations based on the TLS interacting model (or GTM) can
explain the spectrotemporal charts of T; observed in the experiments over long time
periods. We find that the density of T-TLSs is much larger than that of Q-TLSs, meaning
TLSs are nonuniformly distributed over large frequency bandwidths. Our finding
corroborates the results reported in the work of Ref. [254].

Our experiments demonstrate that the additional dimension provided by frequency
tunability makes tunable qubits a better probe to study spectral diffusion compared
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to fixed-frequency devices. Hence, we suggest that future work on TLS stochastic
fluctuations should explore even wider frequency bandwidths. A large bandwidth
would increase the chances to encounter a scenario where a pair of Q-TLSs interacts
with a single T-TLS, resulting in a synchronous fluctuation of the two Q-TLSs. Such an
experiment would conclusively prove the validity of the TLS-TLS interaction hypothesis
in the GTM.

It is well-known that external strain or electric fields applied to a qubit chip modify
the Q-TLSs’ characteristic energies, 4 or 4, or both [275]. Therefore, we suggest to
apply external fields while exploring long time qubit fluctuations. Such an experiment
may make it possible to indirectly observe a similar change in the characteristic en-
ergies of the T-TLSs. In fact, both 4 and 4, contribute to changes in §f T, whereas y is
affected only by 4. In principle, this procedure would allow us to perform an indirect
spectroscopic study of T-TLSs as a function of external fields.

It is also worth noting that recent advances on the coupling of superconducting
devices to bulk acoustic waves [296] may pave the way to the acoustic characterization
of TLS-induced qubit loss and fluctuations.

Lastly, we expect that performing experiments at different operating temperatures
would provide one more knob to modify the frequency bandwidth of thermally acti-
vated TLSs. This approach would allow us to characterize the TLS density for different
frequency ranges. In particular, it would be expected that the amount of thermally acti-
vated would decrease with decreasing temperature, thus leading to smaller fluctuations
inTy.
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Conclusion

It is hopefully now clear that the advances presented in this thesis were and still are
part of three major challenges currently affecting circuit QED devices, those being
control scalability, calibration, and decoherence. We also want to remind that, though
the mainstream media largely focuses on the quantum computing aspect of cQED, the
work of this thesis is applicable to many other purposes, including fundamental physics.
Indeed, cQED is an extremely powerful platform for light-matter research, which is
relevant to a multitude of physical phenomena, such as photosynthesis [297].

Chapter 4 addresses the scalability challenge inherent to the planar layout of su-
perconducting circuits. Above a certain number of qubits, control lines cannot be
routed on-chip from the edges. An additional dimension is required. The quantum
socket is a true 3D wiring solution, as opposed to a “stacked chips” methods where
the routing is done on a different substrate located above or below the main circuit
substrate, but still has the wiring inputs coming from the edge [225, 298, 299]. The
latest work by groups with large number of qubits still makes use of this non-scalable
wiring method [96, 97], it is therefore clear that a solution is still needed, and it will
likely be based on a miniaturized version of the quantum socket. To our knowledge, the
only other true 3D wiring method was proposed by the Leek group, in Oxford [300].

Chapter 5 proposes two efficient methods to calibrate resonant couplings between
various systems in circuit QED. These methods become essential as the size of circuits
grows because the number of couplings between qubits, resonators, and often coher-
ent TLSs grows with it. The need for such methods is evident when reading about
the sophisticated calibrations of large-scale experiments, e.g., see Ref. [268] and the
supplementary material of Refs. [96, 97].

Finally, Chapter 6 explores what is probably the most urgent problem with super-
conducting architectures: decoherence caused by two-level systems [301]. We provide
strong evidence that interactions between low and high-energy TLS are the root cause

154



CHAPTER 7. CONCLUSION

of the large coherence time fluctuations observed in qubits. Solving this problem is
a hard challenge, because the true origin of those defects is still uncertain. In all like-
lihood, better fabrication methods will be needed to eliminate the various physical
systems that may be responsible for TLS in amorphous dielectrics. Some success has
already been achieved, as in Ref. [171], which cleaned electric spins on the surface of a
sample, leading to a reduction in noise.
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A

Appendix for Chapter 3

A.1 Qubit Chip Fabrication Recipe

The fabrication recipe for the sample used in Chapters 5 and 6 is described in the

steps below. It was developed over the years by C. T. Earnest and C. R. H. McRae.

The fabrication process is performed on a 4 in float-zone silicon wafer with <100>
orientation and at least 10 kQ cm resistivity. First, the markers, which are used to align
the optical layer to the e-beam layer, are etched in the wafer (steps 1-5). Then, the wafer
is cleaned and a 100 nm aluminum layer is evaporated (steps 6-8). Optical lithography
is used to fabricate the large structures (i.e., everything but the junctions) with a mask
covering the whole wafer (steps 9-13). The Josephson junctions are fabricated with
electron beam lithography (steps 14-19). Note that the wafer is diced into individual
chips right after e-beam patterning, and before development (step 16).

1. Spin photoresist

e Tool: Headway Research spin coater
e Supplies: Shipley S1811 photoresist

e Process: Spinresist with aninitial 4 sec spin (low speed) at 500 rpm (100 rpm/s
acceleration), then a 60 sec spin (high speed) at 5000 rpm (500 rpm/s acceler-
ation). Bake on hot plate, 90 sec at 120°C.

2. UV exposure of marker mask

e Tool: SUSS MA6 mask aligner

e Process: exposure: 4 sec, alignment gap: 30 um, WEC offset: 0, WEC type:
contact, exposure type: vacuum, pre vacuum: 5 segc, full: 5 sec, purge vacuum:
20 sec.
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3. Develop photoresist

e Tool: UV development wetbench
e Supplies: MF-319 developer, deionized water

e Process: Develop in MF-319 bath for 45 sec, then rinse with DI water 1 min.
4. Dry-etch silicon

e Tool: Oxford Instruments ICP380 DRIE dry silicon etcher

e Process: 15 cycles, for ~ 10 min at 2 um/min.
5. Strip photoresist

e Tool: Solvent wetbench
» Supplies: Remover PG solvent stripper, IPA

» Process: Prepare two Remover PG baths (heated to 70°C), and one IPA bath.
Sonicate for 7 min in each Remover PG bath. IPA bath for 7 min. Rinse with DI
water.

6. RCA SC-1 Clean

¢ Tool: HF wetbench
e Supplies: deionized water, H,0,, NH,OH

e Process: Add 300 mL DI water, then 60 mL H,0,, then 60 mL NH,OH to RCA
vessel (5:1:1 ratio). Turn on hot plate to 230°C, once vessel has reached 75°C,
turn the hot plate down to 160°C and immerse sample for 10 min, monitoring
to maintain the temperature at 75°C. Remove vessel from hot plate and give
wafer a quick rinse in DI water bath (60 sec) before transferring it to the HF
dip (see next step).

7. HF Dip

e Tool: HF wetbench
e Supplies: 10:1 buffered oxide etch (buffered HF), deionized water

e Process: Prepare 3 DI water baths with increasing volumes. Prepare 1% HF
solution by adding 50 mL 10:1 buffered HF to 450 mL of DI water . Set timer
for 1 min and immerse wafer held by Teflon holder in HF solution. Check wafer
to see hydrophilic-phobic visual change. Remove wafer and immerse in first
DI bath for 2 min. Repeat for other two DI baths. Dry completely with N, gas,
then transfer immediately to Plassys holder, and into loadlock. Pump loadlock
immediately. Dispose of HF and clean up work area with water.
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8. Evaporate Aluminum layer (with 850°C anneal)

10.

11.

12.

13.

e Tool: Plassys MEB 550 SL3-UHV e-beam evaporator

» Process: Ramp heat to 850°C over 30 min and anneal wafer 10 min. Cool down
to 25°C overnight. Before evaporation, perform gettering by evaporating Ti
on chamber walls. Evaporate 100 nm of Al at 2 nm/s. Pressure after gettering:
~ 1 x 107 Torr, during evaporation: ~ 1 X 10~8 Torr.

Spin photoresist

e Tool: Headway Research spin coater
e Supplies: Shipley S1811 photoresist

e Process: Spinresist with an initial 4 sec spin (low speed) at 500 rpm (100 rpm/s
acceleration), then a 60 sec spin (high speed) at 5000 rpm (500 rpm/s acceler-
ation). Bake on hot plate, 90 sec at 120°C.

UV exposure of device mask

e Tool: SUSS MA6 mask aligner

» Process: exposure: 4 sec, alignment gap: 30 um, WEC offset: 0, WEC type:
contact, exposure type: vacuum, pre vacuum: 5 sec, full: 5 sec, purge vacuum:
20 sec.

Develop photoresist

e Tool: UV development wetbench
e Supplies: MF-319 developer, deionized water

e Process: Develop in MF-319 bath for 45 sec, then rinse with DI water 1 min.
Carefully time development as MF-319 will slightly etch the Al.

Dry-etch aluminum

e Tool: Oxford Instruments ICP380 DRIE dry metal etcher

e Process: Prepare DI water bath. Etch Al in ICP mode with added N, gas for
60 sec. Take out wafer and immediately immerse wafer in water bath. Rinse
thoroughly to remove reactive chlorinated species. Dry with N,.

Strip photoresist
¢ Tool: Solvent wetbench

» Supplies: Remover PG solvent stripper, IPA

186



APPENDIX A. APPENDIX FOR CHAPTER 3

e Process: Prepare two Remover PG baths (heated to 70°C), and one IPA bath.
Sonicate for 7 min in each Remover PG bath. IPA bath for 7 min. Rinse with IPA
and dry with N, (no water before e-beam resist, which is hydrophobic).

14. Spin e-beam resist (double layer)

e Tool: Headway Research spin coater

e Supplies: MMA (8.5) EL11 (for the bottom layer, 500 nm), PMMA A4 (for the
top layer, 200 nm)

» Process: Firstlayer, spin MMA, initial 5 sec spin at 500 rpm (100 rpm/sec accel-
eration), then 50 sec spin at 4000 rpm (1000 rpm/s acceleration), bake 90 sec
at 150°C. Second layer, spin PMMA, initial 5 sec spin at 500 rpm (100 rpm/sec
acceleration), then 40 sec spin at 4000 rpm (1000 rpm/s acceleration), bake
90 sec at 180°C.

15. E-beam exposure of junctions

e Tool: JEOL JBX-6300FS Electron Beam Lithography System
e Process: Align to Si markers and pattern junctions.

16. Dice wafer into chips
e Tool: DISCO DAD3240 dicing saw
17. Develop e-beam resist

e Tool: E-beam development wetbench
» Supplies: MIBK developer, IPA developer
e Process: 90 sec MIBK/IPA (1:3 ratio), then 15 sec IPA, dry with N,.

18. Evaporate junctions

e Tool: Plassys MEB 550 SL3-UHV e-beam evaporator
e Process: Evaporate 50 nm Al at +17°. Oxidize with O, at 3 Torr for 35 min.
Evaporate 70 nm Al at-17°.
19. Lift-off e-beam resist

e Tool: Solvent wetbench
e Supplies: Remover PG, [PA

e Process: Place chip in Remover PG bath at 70°C for 20min with agitation. Peel
off aluminum by squirting with pipette on chip. Move to fresh Remover PG
bath and sonicate on low power. Rinse with IPA and dry with N,.
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B.1 Wire Compression

In this appendix, we discuss the pressure settings of the three-dimensional wires.
In the current implementation of the quantum socket, the pressure exerted by the
three-dimensional wires on the chip is controlled by the installation depth of the
wire in the lid. This depth depends on the number of rotations used to screw the
wire into the M2.5-threaded hole of the lid. Since the wire’s tunnel has to be aligned
with the corresponding on-chip pad, a discrete number of wire pressure settings is
allowed. For the package shown in Fig. 4.1 (b) and Fig. 4.4 (b), the minimum length
an unloaded wire has to protrude from the ceiling of the lid’s internal cavity to touch
the top surface of the chip is #. = 3.05mm (cf. Fig. 4.1 (c)). For a maximum wire
stroke AL = 2.5 mm, the maximum length an unloaded wire can protrude from the
cavity ceiling without breaking when loaded is . + AL = 5.55 mm. The first allowed
pressure setting, with wire and pad perfectly aligned, is for £, = 3.10 mm. The pitch
for an M2.5 screw is 0.45 mm. Hence, five pressure settings are nominally possible,
for fp = 3.10 + 0.45 k mm, with k = 1, 2, ..., 5. We found the ideal pressure setting to
be for k = 3, corresponding to a nominal £, = 4.45 mm; the actual average setting for
12 wires was measured to be {’p = 4.48 mm + 0.28 mm, with standard deviation due to
the machining tolerances. For greater depths we experienced occasional wire damage;
lesser depths were not investigated. Possible effects on the electrical properties of the
three-dimensional wires due to different pressure settings will be studied in a future
work.
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Table B.1: Chemical composition (weight %) of the two main materials used in the
three-dimensional wires. Copper: Cu; tin: Sn; zinc: Zn; lead: Pb; phosphorus: P;
aluminum: Al; manganese: Mn.

Material Cu Sn 7n Fe Ni Pb P Si Others
CW724R273 —-77 0.3 rest 0.3 0.2 <0.09 0.04—-0.10 2.7—3.4 Al =0.05 Mn = 0.05
CW453KP rest 75—-85 <0.2 <0.1 <0.2 <0.02 0.01-—0.4 - 0.2

2 See [302] and [303].
b See [304].

B.2 Magnetism

In this appendix, we describe the measurement setup employed to characterize the
magnetic properties of the materials used in the quantum socket and present the main
measurement results. Additionally, we give an estimate of the strength of the magnetic
field caused by one three-dimensional wire inside the microwave package.

The ZGC used in our tests comprises three nested cylinders, each with a lid with
a central circular hole; the hole in the outermost lid is extended into a chimney that
provides further magnetic shielding. The walls of the ZGC are made of an alloy of Ni
and Fe (or mu-metal alloy) with a high relative magnetic permeability .. The alloy
used for the chamber is a CO-NETIC® AA alloy and is characterized by a DC relative
magnetic permeability at 40 G, upe = 80000, and an AC relative magnetic permeability
at 60 Hz and at 40 G, ,ujg = 65000. As a consequence, the nominal magnetic field
attenuation lies between 1000 and 1500. The ZGC used in our tests was manufactured
by the Magnetic Shield Corporation, model ZG-209.

The flux gate magnetometer used to measure the magnetic field B is a three-axis
DC milligauss meter from AlphaLab, Inc., model MGM3AXIS. Its sensor is a 38 mm X
25mm X 25 mm parallelepiped at the end of a ~ 1.2 m long cable; the orientation of
the sensor is calibrated to within 0.1° and has a resolution of 0.01 mG (i.e., 1 nT) over a
range of + 2000 mG (i.e., + 200 uT).

The actual attenuation of the chamber was tested by measuring the value of the
Earth’s magnetic field with and without the chamber in two positions, vertical and
horizontal; inside the chamber the measurements were performed a few centimeters
from the chamber’s base, approximately on the axis of the inner cylinder. In these and
all subsequent tests, the magnetic sensor was kept in the same orientation and position.
The results are reported in Table B.2, which shows the type of measurement performed,
the magnitude of the measured magnetic field ||§||, and the attenuation ratio a. The
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maximum measured attenuation was @ =~ 917 in the horizontal position.

The ZGC characterization of Table B.2 also serves as a calibration for the measure-
ments on the materials used for the quantum socket. In these measurements, each
test sample was positioned approximately 1 cm away from the magnetic sensor. The
results, which are reported in Table B.3, were obtained by taking the magnitude of the
calibrated field of each sample. The calibrated field itself was calculated by subtracting
the background field from the sample field, component by component. Note that the
background and sample fields were on the same order of magnitude (between 0.10 mG
and 0.80 mG), with background fluctuations on the order of 0.10 mG. Thus, we recorded
the maximum value of each x, y, and z component. Considering that the volume of the
measured samples is significantly larger than that of the actual quantum socket com-
ponents, we are confident that the measured magnetic fields of the materials should be
small enough not to significantly disturb the operation of superconducting quantum
devices. As part of our magnetism tests, we measured a block of approximately 200 g
of 5N5 Al in the ZGC; as shown in Table B.3, the magnitude of the magnetic field was
found to be within the noise floor of the measurement apparatus .

A simple geometric argument allows us to estimate the actual magnetic field due
to one three-dimensional wire, without taking into account effects due to supercon-
ductivity (most of the wire is embedded in an Al package, which is superconductive
at the qubit operation temperatures). We assume that one wire generates a magnetic
field of 0.25 mG (i.e., the maximum field value in Table B.3; this is a large overestimate
considering the tested samples had volumes much larger than any component in the
wires) and is a magnetic dipole positioned 15 mm away from a qubit. The field gener-
ated by the wire at the qubit will then be B, = 0.2575/0.015% mG, where r, =~ 10 mm

INote that we also performed magnetic tests by exposing all samples to a ultra-high pull neodymium
rectangular magnet, with dimensions 25.4 mm X 25.4 mm X 9.5 mm and a pull of 10.4 kg. We found
magnetic fields with the same order of magnitude as in Table B.3.

Table B.2: ZGC calibration. The margins of error indicated in parentheses were esti-
mated from the fluctuation of the magnetic sensor.

Measurement ||1§ I a

Q (mG) )

Vertical position, background field = 554(20) -
Vertical position, with ZGC 0.66(5) 842(34)

Horizontal position, background field 539(20) -
Horizontal position, with ZGC 0.59(5) 917(44)
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is the distance at which the field was measured in the ZGC; thus, By = 0.075 mG. As-
suming an Xmon qubit with a superconducting quantum interference device (SQUID)
of dimensions 40 um X 10 um (cf. Ref. [92]), the estimated magnetic flux due to the
wire threading the SQUID is @, = 4 x 10~'® Wb. This is approximately three orders of
magnitude smaller than a flux quantum &, = 2.07 x 10~1> Wb; typical flux values for
the Xmon operation are on the order of 0.5 &,.

B.3 Thermal Conductance

In this appendix, we describe the method used to estimate the thermal performance of
a three-dimensional wire and compare it to that of an Al wire bond. Note that at very
low temperature, thermal conductivities can vary by orders of magnitude between two
different alloys of the same material. The following estimate can thus only be considered
correct to within approximately one order of magnitude. Thermal conductivity is a
property intrinsic to a material. To characterize the cooling performance of a three-
dimensional wire, we instead use the heat transfer rate (power) per kelvin difference,
which depends on the conductivity.

The power transferred across an object with its two extremities at different temper-
atures depends on the cross-sectional area of the object, its length, and the temperature
difference between the extremities. Since the cross-section of a three-dimensional wire
is not uniform, we assume the wire is made of two concentric hollow cylinders. The
cross-sectional area of the two cylinders is calculated by using dimensions consistent
with those of a three-dimensional wire. The inner and outer hollow cylinders are
assumed to be made of phosphor bronze and brass alloys, respectively. The thermal

Table B.3: Magnetic field measurements of the materials used for the main components
of the quantum socket. The tested samples are significantly larger than any component
used in the actual implementation of the three-dimensional wires and microwave
package. The margins of error indicated in parentheses were estimated from the
fluctuation of the magnetic sensor.

Material  ||B||
(mG)

CW724R 0.21(5)
CW453K  0.25(5)
AI5N5  0.02(5)
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Table B.4: Parameters used in the estimate of the heat transfer rate per kelvin difference
for a three-dimensional wire and an Al wire bond. In the table are reported: The
hollow cylinder inner diameter d;; the hollow cylinder outer diameter and wire bond
diameter d,; the hollow cylinder and wire bond cross-sectional area A4; the thermal
conductivity k..

di do A kt
(um) (P—m) (mz) (mw K—l m—l)

Inner conductor e
(phosphor bronze) 290 380 4.74x10 3.7
Outer conductor 870 1290 713 x 10-7 .

(brass)

Wire bond Y

(Al) 50 1.96 x 10 0.01

conductivities of these materials at low temperatures are determined by extrapolating
measured data to 25 mK 2.

The Al wire bonds are assumed to be solid cylinders with diameter 50 um. In the
superconducting state, the thermal conductivity of Al can be estimated by extrapolating
literature values [305].

The heat transfer rate per kelvin difference is calculated by multiplying the thermal
conductivity k, with the cross-sectional area A and dividing by the length of the thermal
conductor ¢. The heat transfer rate per kelvin difference of a three-dimensional wire is
calculated by summing the heat transfer rate per kelvin difference of the inner conductor
to that of the outer conductor and is found to be [T, = 6 X 1077 WK™1! at 25 mK. At
the same temperature, the heat transfer rate per kelvin of a typical Al wire bond is
estimated to be IT, =~ 4 X 1022 WK™ (cf. Table B.4), much lower than for a single
three-dimensional wire. Note that, instead of Al wire bonds, gold wire bonds can be
used. These are characterized by a higher thermal conductivity because they remain
normal conductive also at very low temperatures. However, Al wire bonds remain the
most common choice because they are easier to use.
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B.4 Thermo-Mechanical Tests

In this appendix, first we describe the test setup used to find the mean number of cycles
before mechanical failure of a three-dimensional wire and show images of the wire after
testing; then, we discuss the performance of the springs used in three-dimensional
wires at various temperatures.

In order to obtain the mean number of cycles before mechanical failure of a three-
dimensional wire we used an automated pneumatic system, which makes it possible to
compress the wire a very large number of times. The wire under test was operated at
a stroke of 2.0 mm; the test cycle time was 120 strokes per minute; finally, the entire
test took place at a temperature of 20 °C. The test was run for approximately 28 h, for
a total of 200000 wire compressions. Both the inner and outer conductor of the wire
were mechanically functioning properly at the end of the test; mechanical abrasion
was visible, even though the overall wire condition was excellent, as shown by the
two images in Fig. B.1. From tests on wires with a similar form factor, but made from
different materials, we are confident that the number of cycles before DC and microwave
electrical failure of our wires will also exceed 200000.

The three types of tested springs are called FE-113 225, FE-112 157, and FE-50
15 and their geometric characteristics are reported in Table B.5. We ran temperature
cycle tests by dunking the springs repeatedly in liquid nitrogen and then in liquid
helium without any load. At the end of each cycle, we attempted to compress them
at room temperature. We found no noticeable changes in mechanical performance
after many cooling cycles. Subsequently, the springs were tested mechanically by
compressing them while submerged in liquid nitrogen or helium. The setup used for

2Confer http://www.lakeshore.com/Documents/LSTC_appendixI_1.pdf .

Table B.5: Thermo-mechanical tests on hardened BeCu springs. In the table are re-
ported: The outer diameter D of the coil forming the helix structure of the spring; the
diameter d of the circular cross-section of the spring (note that the smallest wire diam-
eter is 150 um); the spring free length Ly, i.e., the spring length at its relaxed position;
the number of coils N; the spring force F (estimated at all operating temperatures).

Spring type D d L¢ N, F.
(mm) (mm) (mm) Q) (N)
FE-113225 230 0.26 1155 1125 ~1.0

FE-112157 1.30 0.22 18.00 42.00 ~1.0
FE-5015 0.60 0.15 3175 150.00 ~ 0.5
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Figure B.1: Side and top view images of a three-dimensional wire after 200000 com-
pression cycles.

the compressive loading test of the springs is shown in Movie S4 of the Supplemental
Material of Ref. [220], which also shows a properly functioning spring immediately
after being cooled in liquid helium. In these tests, we only studied compression forces
because in the actual experiments the three-dimensional wires are compressed and
not elongated.

The compression force was assessed by means of loading the springs with a mass.
The weight of the mass that fully compressed the spring determined the spring com-
pression force F.. The compression force of each spring is reported in Table B.5. We
observed through these tests that the compression force is nearly independent of the
spring temperature, increasing only slightly when submerged in liquid helium. As-
suming an operating compression AL = 2.0 mm, we expect a force between 0.5 N and
2.0 N for the inner conductor and between 2.0 N and 4.0 N for the outer conductor of a
three-dimensional wire at a temperature of 10 mK. Note that we chose spring model
FE-113 225 for use with the grounding washer.
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Figure B.2: Micro images showing three-dimensional wire alignment errors. (a)-
(b) Au pads. The pad displayed in (a) is connected to that in (b) by way of a CPW
transmission line approximately 11.5 mm long. The die shifted upward between the
first (green arrow (1)) and second (green arrow (2)) mating instance, resulting in a
lateral misalignment for the bottom pad. The rotational misalignment for the pad in (a)
is indicated by a dashed green line. (c) Successful alignment for six Ag pads on the
same chip. (d) Peripheral area of an Ag sample (ground plane). The marks are due to
contact with the grounding washer.

B.5 Alignment Errors

In this appendix, we provide more details about alignment errors. Figure B.2 shows a
set of micro images for Au and Ag samples. The Au pads in panels (a) and (b) were mated
two times at room temperature; the three-dimensional wires used to mate these pads
featured the smaller tunnel (500 um width). The pad dimensions were W, = 230 um
and T, = 1000 um. Noticeably, for the pad in panel (a) the wire bottom interface
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matched the contact pad in both mating instances, even though the matching was
affected by a rotational misalignment of approximately 15° with respect to the trans-
mission line longitudinal axis. However, for the pad in panel (b) the lateral misalignment
was significant enough that the inner conductor landed on the dielectric gap in the
second mating instance.

In our initial design, a perfect match required that the die dimensions should be
at most 1 thou smaller than the dimensions of the chip recess, as machined. In the
case of the sample holder used to house the Au samples, the chip recess side lengths
were 15.028(5) mm, 15.030(5) mm, 15.013(5) mm, and 15.026(5) mm. The Au sam-
ples were diced from a Si wafer using a dicing saw from DISCO, model DAD-2H/6, set
to obtain a 15 mm X 15 mm die. Due to the saw inaccuracies, the actual die dimen-
sions were 14.96(1) mm X 14.96(1) mm, significantly smaller than the chip recess
dimensions. This caused the die to shift randomly between different mating instances,
causing significant alignment errors.

As described in Sec. 4.3.4, in order to minimize such errors a superior DISCO saw was
used, in combination with a DISCO electroformed bond hub diamond blade model ZH05-
SD 2000-N1-50-F E; this blade corresponds to a nominal kerf between 35 and 40 um.
Additionally, we used rotational as well as lateral aligning markers; the latter were
spaced with increments of 10 um that allowed us to cut dies with dimensions ranging
from 14.97 mm to 15.03 mm, well within the machining tolerances of the sample holder.
After machining, the actual inner dimensions of each sample holder were measured by
means of a measuring microscope. The wafers were then cut by selecting the lateral
dicing markers associated with the die dimensions that fit best the holder being used.

Figure B.2 (c) shows a successful alignment for six Ag pads on the same chip; the
chip is mounted in a sample holder with grounding washer. All three main steps for an
ideal and repeatable alignment (cf. Sec. 4.3.4) were followed. Figure B.2 (d) shows the
distinctive marks left by the grounding washer on an Ag film. The marks are localized
towards the edge of the die; the washer covered approximately 500 pm of Ag film. This
indicates a good electrical contact at the washer-film interface.

In conclusion, it is worth commenting some of the features in Fig. 4.5 (d) of Sec. 4.3.3.
The figure clearly shows dragging of a three-dimensional wire due to cooling contrac-
tions. In fact, for the Al chip recess an estimate of the lateral contraction length from
room temperature to ~ 4 K can be obtained as

ALy = a(4)Ly =~ (415 x1073) (15 x 1073 m) ~ 62 um (B.1)
where a(4) is the integrated linear thermal expansion coefficient for Al 6061-T6 3
at 4K from Refs. [241] and L, is the room temperature length of the recess side *.

31SO AIMg1SiCu; UNS A96061.
“Note that a(4) can be accurately estimated from the data on Al 6061 at the NIST Cryogenic Materials
Property Database [306] (archived version).
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Note that the sample holder is actually made from Al alloy 5N5; however, different Al
alloys contract by approximately the same quantity. For the Si sample substrate, the
lateral contraction length from room temperature to ~ 4K is approximately given
by ALg; =~ 3.2 um, where the integrated linear thermal expansion coefficient at 4 K was
found in Table 2 of Ref. [307]. Below 4 K, the thermal expansion of both materials is
negligible for our purposes and, thus, the 4 K estimate can also be considered to be
valid at ~10 mK.

B.6 Sample Fabrication

In this appendix, we outline the fabrication processes for the samples used to test the
quantum socket. A set of samples was made by liftoff of a ~ 3 um Ag film, which was
grown by means of EBPVD (system from Intlvac Canada Inc., model Nanochrome II)
on a 3 inch float-zone (FZ) Si (100) wafer of thickness 500 pm. The superconducting
Al on Si samples were made by etching a ~ 120 nm Al film that was deposited by
EBPVD on a 500 um FZ Si wafer. The Al on sapphire sample was made by etching
a~ 100 nm Al film that was deposited by UHV EBPVD (system from Plassys-Bestek
SAS) on a 500 um c-plane single crystal sapphire wafer. Prior to deposition, the wafer
was annealed in vacuo at approximately 850 °C, while being cleaned by way of molec-
ular oxygen; a 1 nm germanium buffer layer was grown at room temperature, before
depositing the Al film. Last, two sets of test samples were made by etching Au films of
thickness 100 nm and 200 nm, with a 10 nm Ti adhesion underlayer in both sets. The
films were grown by EBPVD (Intlvac) on a 3 inch Czochralski (CZ) undoped Si (100)
wafer of thickness 500 um.

The 3 um Ag samples were required to reduce the series resistance of the CPW
transmission lines (cf. Subsecs. 4.4.2, 4.4.3, and 4.4.4). Fabricating such a relatively
thick film necessitated a more complex process as compared to that used for the Au and
Al samples. The Ag samples were fabricated with a thick resist tone reversal process.
The wafer was spun with an AZ P4620 positive tone resist to create a resist thickness
of ~ 14 um, then soft baked for 4 min at 110 °C. Because the resist layer is so thick,
a rehydration step of 30 min was necessary before exposure. Optical exposure was
performed for 30 s in a mask aligner from SUSS MicroTec AG, model MAS®, in soft contact
with a photomask. After exposure the sample was left resting for at least 3 h so that
any nitrogen created by the exposure could dissipate. The tone reversal bake was done
for 45 min in an oven set to 90 °C, filled with ammonia gas. The sample then underwent
a flood exposure for 60 s and was developed in AZ® 400K for 15 min. Subsequently,
3 um of Ag was deposited and liftoff of the resist was performed in acetone for 5 min
with ultrasounds.
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C.1 Qubit Flux Pulse

Performing swap spectroscopy requires the ability to set the qubit’s frequency to a
desired value f, for a particular duration. In our experiment, this is done with a flux
pulse applied to the SQUID with an AWG. As shown in Fig. 3.5, the flux pulse reaches the

sample after going through multiple stages of filtering, attenuation, and connections.

This means that the waveform will be modified compared to what is generated by the
AWG.

In addition, while we control the amplitude of the pulse, we are ultimately interested
in the resulting frequency of the qubit. We therefore need a way to convert between
the amplitude A of the flux pulse and the qubit probe frequency f,. This can be done,
for example, with pulse spectroscopy, where we send m-pulses to the qubit at different
frequencies while it is detuned by a flux pulse of a particular amplitude. The qubit
frequency for that amplitude can then be fit. This is repeated for many amplitudes in
order to get a map between 4 and f,.

The above considerations mean that the measurement settings (f,, t) that we select
may contain multiple kinds of potential errors. This must be taken into account when
estimating the coupling parameters with either the offline or online algorithms.

For example, if f, is higher than the true probe frequency of the qubit due to some
systematic error in the amplitude-frequency map, the result fyy reported by the online
algorithm is higher than the true value as well. Similarly, an error on the value of ¢
leads to a wrong estimation of g. In practice, this kind of systematic error is not a major
problem as long as the error is consistent between experiments. For our application,
for example, it does not matter that the estimated frequency of the resonance is not
truly 4.8305 GHz. The quantity of interest is the flux amplitude corresponding to the
mode.
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Another kind of error would occur if the flux pulse amplitude was not constant
in time, for example, due to filtering. This would result in a time-dependent probe
frequency f, over the length of the pulse. Assuming that the time-dependence is not so
strong that the qubit frequency changes by an amount ~ g in less than a Rabi period,
the consequences for the octave algorithm should be negligible. This is because the
detection is made via the first minimum of the swap oscillation. The online estimation
algorithm would be affected more strongly, since the model assumes that the qubit
probe frequency is constant. The error on the parameters estimated by an experiment
suffering from this issue, as computed by the repeated inference method discussed in
Sec. 5.5.1, would be expected to capture this effect.

To improve accuracy, it is important to properly calibrate the flux pulses prior to the
experiment, ensuring that the qubit frequency is stable. This calibration can be done,
again, with pulse spectroscopy, by mapping out the qubit frequency over the length
of the pulse. Deviations can be subsequently corrected by modifying the shape of the
pulse emitted by the AWG.

C.2 Details on Octave Analysis

The task of detecting resonances in data gathered with the octave sampling algorithm
(the data plotted in Fig. 5.3) is done in two sub-steps: (1) Find peaks in each octave.
(2) Merge the octaves together. The source code implementing this analysis as well as
the particle generation procedure can be found online, in the OctaveAnalysis module
of the TLSInfer package [263].

First, the average bin excitation is reversed in order to transform the low-excitation
regions into peaks. Then, we find peaks in each octave individually. This is done by
looking for points in the data that are prominent when compared to neighboring points.
Each peak must be taller than the lowest point to the left and right by a certain amount,
the prominence value. Decreasing this value leads to more peaks being detected and
therefore increases the detection sensitivity. The result of the peak finding step for the
highest octave of the data is shown in Fig. C.1.

The second step is to check if the peaks detected in different octaves correspond to
the same resonance. This is done by comparing the frequency position of the peaks
found. If the frequencies are close, we assume that the peaks correspond to the same
resonance and the detections are therefore merged. When merging detections from
different octaves, the one from the lower octave is preferred. This is because the
coupling strength is estimated from the first oscillation minimum, which corresponds
to the lowest octave detected.

When the procedure is complete, we are left with a single peak location per reso-
nance, along with the lowest octave where it is found. This gives a coarse estimate of
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the frequency and coupling strength of that resonance, as is reported in the main text
in Table 5.1.

There are a few possible causes of errors with this procedure. The most likely error
occurs when two detections corresponding to a single resonance are reported, or, on the
contrary, when two resonances close in frequency are reported as one. The first issue
is not very problematic, since further analysis done with the Bayesian online algorithm
will likely correctly report that the two detections come from the same resonance. The
second is solved by increasing the resolution of the octave data collection.

C.3 Particle Distribution Generation

While a prior particle distribution for the online Bayesian algorithm can be manually
specified, it is much more convenient to generate one from available octave data. The
first step in the process is to divide the octave data in multiple spectra such that we are
left with one resonance mode per spectrum. To split the spectrum, we simply cut the
data between each detected resonance (see Appendix C.2). If this cut happens to fall
within a bin, we slice the bin into two sub-bins, keeping track of each part’s proportion.

Following this, we can restrict ourselves to a frequency-time spectrum containing a
single resonance mode. To specify a discrete distribution representing our knowledge of
the coupling parameters, we follow a procedure where we pick bins from the spectrum
and generate a particle according to the bin parameters. We pick from bins according
to a weight, which we choose to be proportional to 1 — P,, but only for those above
a particular threshold. We ignore bins below the threshold. Thus, bins for which the

1.0 T T T T

0.0 | | 1 | |
4.200 4.400 4.600 4.800 5.000

f, (GHz)
Figure C.1: Peaks found in the highest octave of Fig. 5.3 (b) with the prominence value

set to 0.09. There are many peaks found for RM3. They are merged when the detection
analysis proceeds to the lower octaves.
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Figure C.2: Initial particle distribution generated from the octave data in Fig. 5.3 (b) after
splitting the spectrum in according to the detections. The distribution corresponding
to RM1 is plotted in blue, the one for RM2 in orange, and the one for RM3 in green.

average excitation P, is low have a high weight and have a higher chance of being
chosen for generating particles.

Each particle represents a two-tuple of frequency-coupling-strength values. To
generate a particle, we must choose those two values. The frequency of the generated
particle is chosen uniformly at random within the frequency range of the bin drawn.
The coupling strength is picked from the uniform distribution U (4,,, 24,,,), where 4,,
is the bin width. We repeat this procedure (draw a bin, generate a particle) to create as
many particles as is desired for the distribution.

Exemplary particle distributions generated for RM1, RM2, and RM3 can be seen in
Fig. C.2, with their statistics tabulated in Table C.1. These distributions can be used as
the starting point for the online algorithm discussed in Sec. 5.5. In our experiment we
use distributions comprising 40000 particles. This number can be adjusted depending
on the capabilities of the computer executing the algorithm.

Table C.1: Frequency and coupling parameters statistics of the particle distributions
generated for RM1, RM2 and RM3. A plot of those distributions can be seen in Fig. C.2.

Parameter RM1 RM2 RM3
frm (GHz) 4.811(4) 4.830(2) 5.088(42)
g (MHz) 3(2) 2(1) 4(7)
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C.4 Bayesian Resampling Procedure

The exact resampling procedure is described in detail in Chap. 2 of Ref. [256]. We
reproduce a shortened version here for completeness.

As inputs, we require the particle locations, as an array of frequency-coupling-
strength tuple, in addition to their likelihoods, as computed in the main text. Note
that the likelihoods must be normalized to sum to unity, after which they become
weights. This normalization ensures that the weights array is a valid discrete probability
distribution that can be drawn from.

The algorithm then draws particles from the input distribution according to the
weights, and, from the position of the particles drawn, generate new ones by adding
“noise.” This prevents having duplicates in the output distribution, even if a particle from
the input is drawn multiple times. The resampling algorithm is shown in pseudocode
in Algorithm 1. Note that the particle at index i in the {X;} array has its corresponding
weight at the same index in the {w}} array. In addition, the amount of noise added to
the position of the particle drawn is controlled by the spread of the input distribution,
quantified by taking the covariance. For more details, see Ref. [256].

Algorithm 1: Particle Resampling
Input: Array of particle positions {X; } and weights {w; }
Output: New particle positions {y;}
Function resample({X,.}, {w;,})

a=0.98

fi = mean({x,})

X =(1-a®)cov({X})

foriel:ndo

[ = rand(Discrete({wy}))

fp=a¥;+ (1—a)i

y; = rand(Normal(i;, X))
end

return {y;}

end
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Figure D.1: Scatter plot of T} vs. f; and t for dataset 2 [same dataset as in Fig. 6.1 (c]]
at the actual measurement time; the color map for T; is the same as in Fig. 6.1. Note
that the vertical axis is truncated at t = 5 h to display the relative measurement times

more clearly.
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Appendix for Chapter 6

D.1 Experimental Details

The spectrotemporal charts displayed in Sec. 6.4 can be interpreted as matrices of T;
values, with m rows and n columns; m and n represent a time and frequency index,
respectively. The (1, 1) entry is the bottom-left element of the matrix, such that time
increases from bottom to top. We set f; from low to high values, completing one row
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of each matrix when reaching the highest value of f,. Subsequent rows are measured
restarting always from the lowest value of f ;. Hence, the time ¢,, ,, at which each data
point (m, n) is taken increases from left to right for the m-th row, starting at t,, ; and
ending at tm,N - The time difference between subsequent rows is a constant value
defined as At = t;; 411 — tin 1. Although each measurement in any particular row is
taken at a different time, we choose to display the data on a rectangular matrix where
each row element is associated with the same time value. As a comparison, Fig. D.1
shows a scatter plot for which each T; value is plotted at the actual measurement time.
This figure elucidates two limitations of our experiments: (1) The impossibility to
measure an entire row at exactly the same time. (2) The fact that tmNy ~ tme11e It
additionally stresses a difference between experiments and simulations, i.e., the fact
that in simulations all row elements are calculated at the exact same time.

In order to keep At constant we must account for experimental nonidealities. The
time required to perform a single T; experiment is te,, ~ 16s and varies slightly
between experiments. In addition, latencies in the electronic equipment when setting a
new value offq result in a short time overhead. To overcome these issues, we measure
a test row and record the corresponding measurement time. We then augment this
measurement time by a certain buffer time, which we estimate to be sufficiently longer
than any possible time variations due to nonidealities. The sum of the measurement
time of the test row and the buffer time is At. For example, for the dataset shown in
Fig. 6.1 (c), the time elapsed to acquire the data of the test row is approximately 992 s.
In this case, we choose At = 1000 s. The values of At for each dataset shown in Sec. 6.4
are reported in Table 6.1.

D.2 Long-Time Stability

One of the assumptions in Sec. 6.3 is that the TLS parameters do not change in time,
i.e., they are considered to be static. Thus, the only dynamically varying quantity is
the state of a TLS. In order to show that this is a reasonable assumption, in Fig. D.2 we
display three experimental time series measured at f; = 4.529 GHz. The first time
series corresponds to a column extracted from the spectrotemporal chart of Fig. 6.1 (a);
the second series is an additional trace not included in the spectrotemporal charts
because too short compared to the other traces; finally, the third series is a column
from Fig. 6.1 (c). Each point in the three series is plotted at the actual time at which
it is measured relative to the first point of the first series. It is worth noting that
the frequency of these time series is not captured in the spectrotemporal chart of
Fig. 6.1 (b).

The three time series are measured over the course of approximately three weeks.
Despite the large time gap between the first and third series, we observe a similar T; -
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Figure D.2: Time series of T; vs. t showing the relative time between measurements
for dataset 1 (dark blue) and 3 (yellow) [same datasets as in Fig. 6.1 (a) and (c)] and
an additional dataset (green); all datasets are for f; = 4.529 GHz.

drop pattern: The T; times are distributed around two values, 5 and 23 ps. These
results indicate a reproducible feature and suggest a static TLS distribution.

It is well known that by cycling the sample temperature, e.g., when warming up and
cooling back down a device, results in a strain field that can modify the TLS parameters.
However, when operating a sample at a constant temperature and without exceedingly
large excitation electric fields (as in the experiments reported in this work), we expect
a static TLS distribution.

D.3 Qubit Electric Field

As explained in Section 3.1, the qubit capacitor is a Greek cross formed by two CPW
strips of length L. Since L > S + W, we approximate the qubit capacitor as a CPW
segment of infinite length; we additionally assume that the capacitor is made of an
infinitesimally thin conducting sheet. When determining F?q, we can thus restrict
ourselves to points within the CPW vertical cross-section.

We determine E q by means of a conformal mapping technique. A conformal map is
a function that locally preserves angles, allowing us to transform the CPW geometry
into that of a much simpler infinite parallel-plate capacitor; the map function is given by
Eq. (25) in the work of Ref. [308]. We then use this map to transform the electric field
of the parallel-plate capacitor into that of the CPW. The electric field is proportional
to the qubit electric potential with respect to ground, or zero-point voltage; given the
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Figure D.3: Qubit electric field IIE'qII for ¢, = 1V vs. width x at one value of the
heightz = 1.5 nm. The origin of the graphisatx = 0, corresponding to the middle point
of the strip. Due to the symmetry of the CPW segment with respect to its longitudinal
axis (i.e., the y-axis; not shown), we display ||E'q(x) || only for half of the CPW segment,
for x > 0. The extent of the conducting sections of the CPW is indicated by the thick
blue lines. The dashed black vertical lines are placed at the edge of each conductor;
the left line corresponds to the edge of the strip and the right line to the edge of the
ground plane.

qubit plasma frequency f, = ,/8EjE_/h, the zero-point voltage reads

’hfp e ( E\*
d)o— Z_Cq_C_q<2EC> ~4uV (Dl)

In order to generate g, we evaluate IIEqII at randomly picked points (x, z) corre-
sponding to Q-TLS positions. These points are confined within the cross-section region
introduced above. The cross-section is centered on the middle point of the strip and
has a length of 96 um and a height of 3 nm; the left and right edges of the cross-section
extend 12 pm into the ground plane and the top edge corresponds to the oxide layer’s
top edge. Figure D.3 shows IIE'q(x, 2)|l.
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