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The Fokker-Planck equation for synchrotron motion is solved by expansion in terms of generalized
Laguerre polynomials. The convergence of the expansion is confirmed by computer calculation to be very
rapid. The Robinson instability occurs for sharply peaked impedance. Calculation shows that a simplified
approach based on the Vlasov equation can be taken when combined with an approximate stability criterion
that the growth rate should be less than Imllt, where m is the azimuthal mode number and t is the radiation
damping time for synchrotron oscillations. Fast instability occurs when coupling between different
azimuthal modes is taken into account. The threshold of this instability calculated by the Fokker-Planck
equation is almost equal to that obtained by the Vlasov equation. Thus radiation effects are shown to play
little role in fast instability.

1. INTRODUCTION

Many works on bunched-beam instabilities are based on Sacherer's general theories.!,2
Sacherer used the Vlasov equation expressed in polar coordinates in phase space and
derived integral equations known as Sacherer's integral equations. First,! he dealt with
a case where beam intensity is relatively low and different azimuthal modes, such as
dipole mode, quadrupole mode, etc., are well separated. In this theory, the coupled­
bunch instabilities are explained. A single bunch is shown to be stable for a broadband
impedance and only for a sharply peaked impedance, such as a cavity impedance, does
a single bunch become unstable (Robinson effect.)3

Later2 he extended his theory to the case where the beam intensity is high and two
different azimuthal modes couple to give rise to fast instability. This theory explains
microwave instabilities in proton beams and anomalous bunch lengthening in electron
beams.

Sacherer's theories are mainly for proton beams, but the same formalism is widely
applied to explain electron-beam instabilities. In general, electrons emit synchrotron
radiation and the beam dynamics should be dealt with by use of the Fokker-Planck
equation4 rather than the Vlasov equation. However, in many previous works, the
growth rates of the coupled-bunch instabilities and the Robinson instabilities are
calculated by use ofSacherer's formalism, which is based on the Vlasov equation, and a
stability criterion that the growth rate should be smaller than the radiation damping
rate is used. In explaining a fast single-bunch instability, Sacherer's theory is also widely
used, since the growth time of the fast instability is much shorter than the radiation
damping time. The radiation effect is therefore expected not to play an important role.
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In this spirit, Chao and Gareyte5 derived from the Vlasov equation a simple scaling law
for the anomalous bunch lengthening in SPEAR II which explained the qualitative
features of the experimental data. Suzuki, et al., 6 applied Sacherer's formalism using a
Gaussian beam model to the anomalous bunch lengthening in SPEAR II. They found
that the theory explained the qualitative features of the data well, but that the theory
disagreed quantitatively with the experimental data by a factor of about three to four.

On the other hand, several workers7-10 used the Fokker-Planck equation to explain
anomalous bunch lengthening. In these treatments, however, the unique features of the
Fokker-Planck equation approach, which are different from the results obtained by the
Vlasov-equation approach, are not always clear. Here we develop a new formalism for
solving the Fokker-Planck equation. The Fokker-Planck equation is first expressed in
action-angle variables. In this wayan integro-differential equation is obtained. This is
parallel to Sacherer's formalism for solving the Vlasov equation. The azimuthal modes
and radial modes are thus introduced naturally. Then the Fokker-Planck equation is
solved by expansion in terms of generalized Laguerre polynomials. This method is
similar to that of Besnier,ll who used it to solve Sacherer's integral equations. The
present method is also somewhat similar to that of Renieri,8 who used an expansion in
terms of Hermite polynomials to solve the Fokker-Planck equation. However, he used
Cartesian coordinates and the present method is more suitable to introduce azimuthal
and radial modes. Moreover, in the limit where the radiation damping time becomes
infinite and the diffusion constant becomes zero, the present formalism becomes
identical to Sacherer's formalism. Thus the similarities and differences between the
Fokker-Planck and the Vlasov approaches will become more apparent.

In Section 2, we derive the Fokker-Planck equation for synchrotron motion and
write it in terms of action-angle variables. In Section 3, we develop a formalism for
solving the Fokker-Planck equation. The formalism is applied in Section 4 to a sharply
peaked impedance and the validity of the usual stability criterion for the Vlasov­
equation treatment, that the growth rate should be smaller than the radiation damping
rate, is studied carefully. In Section 5, the formalism is applied to anomalous bunch
lengthening. Conclusions are given in Section 6.

2. THE FOKKER-PLANCK EQUATION IN ACTION-ANGLE VARIABLES

We first derive the Fokker-Planck equation for synchrotron motion in order to
establish notation. The derivation is based on the paper of Chandrasekhar.4 The
equations of motion for synchrotron oscillations are

where

d€
dt

de
- = ko€
dt

ills
2 e 2 eV(e, t) ( )-- --€+ +gt

ko 't T

k _ Ctillo
o - E

(1)

(2)

(3)
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In these equations, the notation is as follows:
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8: angular position with respect to the synchronous particle
t: time
€: energy error

ros: incoherent synchrotron angular frequency
t: radiation damping time

eV(8, t): energy gain per turn due to self-fields
T: revolution period = 2TC/roo

g(t): stochastic function denoting the effect of quantum emission of synchrotron
radiation

ex: momentum compaction factor
000 : revolution angular frequency
E: beam energy.

In Eqs. (1) and (2), a more suitable independent variable is the azimuthal angle around
the ring circumference instead of time, as explained in Ref. 14, but the difference is
neglected here because it is quite small. From Eqs. (1) and (2), the changes ~8 and ~€ in
time i1t are given by

~8 = ko€i1t

Ols
2 2 eV(8, t)

i1€ = - - 8~t - - €i1t + i1t + B(i1t),
ko t T

where

f
t + At

B(At) = t g(t)dt.

The distribution w(B(i1t)) of the stochastic quantity B(i1t) is given by4

1
w(B(At)) = (4nDAt)1/2 exp (- IB(AtW /4DAt),

(4)

(5)

(6)

(7)

where D is the diffusion constant.
Now we introduce a particle distribution function '11(8, €, t) in phase space. It satisfies

the integral equation4

w(e, E, t + At) = ffW(e - Ae, E - M, t)w(e - Ae, E- M; Ae, AE)d(M)d(Ae) (8)

Since

w(8, €; i18, ~€) = w(8, €; ~€)o(~8 - ko€~t),

Eq. (8) is rewritten as

(9)

w(e + koEAt, E, t + At) = fW(e, E - M, t)w(e, E - AE; AE)d(M). (10)
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Expanding Eq. (10) into Taylor series in ~t and ~€, we obtain the Fokker-Planck
equation

o\jJ + k
o

€ o\jJ + {_ 00/ 8 + eV(8, t)} 0'"
ot as ko T Of

2 o(€W) . 02W
=--~- + D~.

't v€ v€

Here we have used the form

(11)

1 [( (O 2 2 eV )2/ ]w(8, € - M; M) = (4~DM)1/2 exp - A€ + k: 8M + t €M - T M 4DM,

(12)

which is obtained from Eqs. (5) and (7). When 't ~ 00 and D -+ 0, the Fokker-Planck
Eq. (11) reduces to the Vlasov equation.

We introduce polar coordinates (r, <1» in phase space that are defined by

S = r cos <I>

(Os .,h
€ = - k

o
r SIn 'P.

Then the Fokker-Planck equation is written as

ow oW ko eV(S, t) . ,h dWo
at + {Os o<t> - {Os T SIn 'P dr

2 {lll . 2,h o\1f sin 2<1> ow} (ko)2= - 'V + r SIn 'P _. +--- + D -
't or 2 0<1> (Os

(13)

(14)

where "'0 is a stationary distribution function which is a function of r only. Only terms
linear in ware retained in Eq. (15).

We first calculate the stationary distribution function Wo(r) which is independent of
<p and t. We neglect the self-force term eVe Then Eq. (15) reduces to

2 { . 2 dWO} (ko)2{ . 2 d2Wo COS
2

<p dWo}- Wo + r SIn <I> - + D - SIn <I> -- + --- = o.
't dr {Os dr 2 r dr

We average Eq. (16) over <I> and obtain

(16)

(17)
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Eq. (17) can be easily solved to give

Wo = cexp [ - ;~ (;;Yl
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(18)

where C is a normalization constant. The rms bunch length (Jo in units of 8 is then
given by

We normalize the distribution function Wo by

fWo(r) d9 d€ = Ne,

where N is the number of electrons in a bunch.
Then the normalization constant C in Eq. (18) is given by

C = Ner:i
2nvsE(Jo2

'

(19)

(20)

(21)

where Vs = ros/roo is the synchrotron tune number. When the self-force term eV is
included in Eq. (17), the stationary distribution is different from the Gaussian
distribution given by Eq. (18).8,12 We neglect in this paper such potential-well
distortion effects. This approximation is the one usually used in the Vlasov-equation
treatment.

We now decompose the distribution function Winto a stationary part W0 and a
time-dependent perturbed part W1 as

w= Wo + W1 exp ( - iQt)
00

W1(r, <t» = L Rn(r) exp (in<t»,
n= - 00

(22)

(23)

(25)

where Q is a coherent frequency. Instability occurs if the imaginary part of n is positive.
The stationary distribution given by Eq. (18) is a solution of Eq. (17), but not a solution
of Eq. (16). However, we assume that the solution Eq. (18) satisfies Eq. (16) on the
average and separate the stationary part from Eq. (15). Then the perturbed function W1

satisfies Eq (15) where Wis replaced by W1. The self-force term eV(8, t) is expressed in the
usual way by use of the longitudinal coupling impedance Z(ro) in the form 13

,14

eV(9, t) = - eroo f: Z(proo + Q) p(p + ~) x exp [+ i(P + ~) - intJ (24).
p = - 00 roo roo

where

p(p') = 2~ ;; f fWl(r, </» exp [ -ip'r cos </>] r dr d</>.

Now we put Eq. (23) into Eq. (15), multiply both-hand sides by 1/(2n)exp( - im<t» and
integrate over <p from 0 to 2n. Then we obtain a coupled integro-differential equation
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for Rm (r). It is, however, more convenient to introduce an action variable x defined by

x = r2 /2a0
2

•

Then we obtain the integro-differential equation

O(r\ )R eco.o d\fJo ~ Z(pcoo + Q)
-l ~-' - mro + -- m - 1..J

s m Tcr0
2 dx p= - 00 p + Q/OJo

x imJm((p + n/roo)j2crfi) n=~CX) i- n f Rn(x')Jn((P + n/roo)j2crP)dx'

(26)

(28)

This is the basic equation which we must solve. It is a generalization of Sacherer's
integral equation to the case of the Fokker-Planck equation. When 't ~ 00 and D ~ 0,
Eq. (27) reduces to Sacherer's integral equation. We note from Eq. (19) that

~2 (~:Y = ~
and that the damping terms and the diffusion terms can be combined. The terms
involving Rm + 2 and Rm - 2 in Eq. (27) appear because of the terms involving sin2 4>,
cos2 4> and sin 24> in the Fokker-Planck Eq. (15).

3. SOLUTION OF THE FOKKER-PLANCK EQUATION

We solve the basic Eq. (27) by expanding the radial function Rm(r) in terms of
orthogonal functions. This method was used by Besnier!! to solve Sacherer's integral
equation without mode coupling and the method was extended to solve the case of
mode coupling by Suzuki, et a1. 6 In accordance with their method, we expand Rm(x) as

where

00

Rm(x) = exp( -x) L ak(m~<Iml>(x),
k=O

(29)

k'-_.- xlml/2 L (Iml>(x).
(Iml + k)! k

(30)
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Here the Lk(ImD(x) are generalized Laguerre polynomials. 15 The functions h (ImD(x)'s
satisfy an orthogonality relation.

(31)

(32)

The convergence of the series in Eq. (29) is checked by computer calculation.
The expansion in Eq. (29) assumes that Rm(x) behaves as x 1ml/2 for small x. This

assumption is valid for the Vlasov equation [t ~ CIJ and D ~ 0 in Eq. (27)J because
Jm((p + Qjmo)J2crJX) 1'01 x lml /2 for small x, .but it must be justified for the Fokker­
Planck Eq. (27). Ifwe put the form in Eq. (29) into Eq. (27), we easily find that terms of
order lower than x 1ml/2 cancel each other and the lowest-order term in x that appears in
Eq. (27) is x 1ml/2• Thus the expansion in Eq. (29) is justified.

We insert Eq. (29) into Eq. (27), and use the relations 15

d 2 (1m!) d (1m!) (Iml m2
)

X gk + (x + 1) _g_k_ + k + - + 1 - - g (1m!) = 0
dx 2 dx 2 4x k

and

(33)

where

and obtain

00 Z(pro + Q) 00 00

x L 0 i m x Jm((p + Ojmo)J2crfi) L L i-nah(n)
p = - 00 p + OJroo n = - 00 h =0

x f: exp( -X')!h(n)(X')Jn((P + Q/roo)J2crft)dx'

= ~exP(-x)[- f (~+ k) ak(m~k<lml)(x) + ~ f (k + 1m - 21 _ m - 2)
t k=O 2 2 k=O 2 2

x ak(m- 2Yk(lm-2!)(x) - m
4
- 1 f {m - 2 - 1m - 21-2k}ak(m-2~<Im-21>(x)
x k=O

_ m - 1 f Jk(lm _ 21+ k)ak(m-2)!kl~12J)(x)+ ~ f {k + 1m + 21 + m + 2}
2x k = 0 2 k = 0 2 2

m + 1 00x ak(m+2~k(lm+21>(x) - ~ kf:
O

{m + 2 + 1m + 21 + 2k} ak(m+2~(lm+21>(x)

+ m2: 1k~O Jk(lm + 21 + k)ak(m+2~kl~:21>(X)J (34)
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We multiply both sides of Eq. (34) by h(lmD(x), integrate over x and obtain

where

and

K";f·N = f: exp( -x)xNfk«(J.)(X)ft(fJ)(x)dx.

The integral in Eq. (36) is evaluated as6

1 (0' p')n + 2 ((cr p')2)
Inl(p') = J 8M exp - ~2 ' (n > 0)

(n + I)! l! V 2

l-nl(P') = (-1)n1nl(p')'

(35)

(36)

(37)

(38)

(39)

by using the series expansion of the Bessel function and the Rodrigues formula for the
generalized Laguerre polynomials. is The integrals in Eq. (37) are evaluated in an
Appendix.

Now, we introduce a matrix element Mr:/, defined by

M ml ~ Z(proo + Q) om- n1 ( 1"'\/)1 ( 1"'\/)
nh = 1..J 1"'\/ l ml P + ~l. roo nh P + ~l. roo

P = - 00 P + ~l. roo
(40)
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and use the scaling parameter ~ of Chao and Gareyte 5 defined by

where I = Ne/T is the current per bunch. Then if we define

Eq. (35) is transformed into the matrix equation

99

(41)

(42)

(
'\ _ .Iml + 21) (m) _ f f {. m~e Mml ~ ~
I'v m + 1 a, - i..J i..J 1 2 nk + U m - 2,n

tffis n = - 00 k = ° 21tO"o tffis

X [~(k + 1m - 21 _ m - 2) Klm- 21,l ml,o
2 2 2 k,l

_ m ~ 1(m _ 2 - 1m - 21 - 2k)K1T21.Iml,-1

- m ~ 1Jk(lm - 21 + k)Kl"'-jj"m
"

-1]

~ 8 [~(k 1m + 21 m + 2) Klm+21,l ml,o+ m+2 n 2 + 2 + 2 k ltffi
s

' ,

m+1
- -4-(m + 2 + 1m + 21 + 2k)Kl'j+2 1,lml,-1

+ m ; 1 Jk(lm + 21 + k)Kl"'-i~I'lml'-lJ} ak(n). (43)

Equation (43) is a matrix equation which we solve by computation. We note from
Eq. (43) that when the self-force is neglected, i.e., M~ = 0, and when we neglect mode
coupling, i.e., we neglecct terms involving bm - 2 ,n and bm + 2 ,m the eigenvalue is

A = m _ i Iml + 21.
'tffis

(44)

It is thus suggested that the stability criterion when we use the Vlasov equation is

Iml
(growth rate) < -.

't

This point will be studied in more detail in Section 4.

4. ROBINSON INSTABILITY DUE TO RF CAVITIES

(45)

In this section, we calculate the instability phenomena when mode coupling is
neglected. Namely, we take only one azimuthal mode m in Eq. (43) and neglect the
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coupling between different azimuthal modes. Equation (43) is then simplified as

(
'\ _ +. Iml + 21) (m) _ . m~e ~ M m1 a (m)
I\. m 1 a1 - 1 2 2 L..J mk k .

toos ncr8 k=O
(46)

We assume a resonator impedance Z(oo) given by

(47)
R

Z(oo) = ( )'00 OOr
1 - iQ - --

OOr 00

where R is the shunt impedance, Q is the quality factor and OOr/2n is the resonant
frequency of a cavity. The matrix element M:~ given by Eq. (40) is expressed as

1 00 Z(p + mv) (cr (p + mv))2m+2k+21
Mm~ = L. s 8 s

m J(m + k)!k!(m + 1)!1! p=-oo P + mvs V2
x exp [ - (J~2(p + mvs)2], (48)

where the coherent frequency Q is replaced by moos. The quantity Z(p + mvs )/

(p + mvs ) is written as

Z(p + mvs ) iR [1 1 ]
P + mvs = 2QJ1 - 1/4Q2 P - Pt - P - P2 '

(49)

where

Pt = PrJ1 - 1/4Q2 - mvs - i ;Q (50)

(51)

(52)

In these expressions, a single-bunch case is assumed.
Now we evaluate the infinite sum S2m(P1) defined by

(53)

where

(54)

The sum in Eq. (53) was evaluated by Zotter16 to good approximation as

m-1
S2m(P1) = Z1 2mSO(P1) + L r(1 + t)Z1 2m - 21-1,

1=0
(55)
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SO(Pl) = -1t exp( -ZI 2) cot 1tPI - i1t[W(ZI) - exp( -ZI 2)] (56)

ZI = (JO(PI + mvs). (57)

W(Z) is the complex error function 15 and r is the gamma function. 15 The matrix element
in Eq. (48) is then written as

M ml _ 1 iR
mk - J(m + k)!k!(m + l)!l! 2QJl - 1/4Q2 2(m+k+ ll

x [S2(m+k+I)(Pl) - S2(m+k+l)(P2)]· (58)

We apply this formalism to a model higher-order mode impedance of a TRISTAN
rf cavity. The parameters used are E = 8 GeV, Pr = 7000.1 (695.3 MHz), R = 800 MQ
and Q = 6 X 104

. In this case, strong Robinson instability occurs. The results are
shown in Figures 1a to 1c for m = 1 (dipole), m = 2 (quadrupole) and m = 3
(sextupole) modes, respectively. The synchrotron tune Vs is arbitrarily chosen to be 0.02
for the cases of m = 1, m = 2 and 0.01 for the case of m = 3. The corresponding
natural bunch lengths are 1.57 em and 3.13 cm, respectively. In the figures, the solid
curves show the solution of the Fokker-Planck equation, while the dashed curves show
the solution of the Vlasov equation. Five radial modes (k, 1 = 0 I"V 4) are taken into
account. Calculations using ten radial modes have also been done, but the results do
not change. This shows the good convergence of the expansion in terms of generalized
Laguerre polynomials.

3

,;)

Q 2
)(

E......

-I

I (rnA)

-2

FIGURE la Imaginary part of coherent oscillation frequency Ain unit of synchrotron frequency (Os for the
dipole mode m = 1. E = 8 GeV, Vs = 0.02 and the bunch length is 1.57 em. The solid curve shows the
solution of the Fokker-Planck equation and the dashed curve shows the solution of the Vlasov equation.
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FIGURE 1b Same as (a) for the quadrupole mode m = 2.
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FIGURE 1c Same as (a) for the sextupole mode m = 3. Vs is chosen to be 0.01 and the bunch length is
3.13 cm.

We see from Figures la to lc that the solution of the Vlasov equation with the
stability criterion of Eq. (45)

(growth rate) < Iml/t

suggested in Section 3 is an approximate measure of the solution of the Fokker­
Planck equation although the Fokker-Planck equation gives a higher threshold
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current. Thus this simplified approach can be employed for practical purposes,
although the solution of the Fokker-Planck equation is not so difficult compared with
the solution of the Vlasov equation. The criterion of Eq. (45) is also suggested by the
work of Renieri. 8 In general, the Fokker-Planck equation is expected to give a higher
threshold current than the Vlasov-equation approach because different radial modes
mix in the matrix-eigenvalue problem and higher radial modes (l =I 0) give a stronger
damping rate than that given by Eq. (45), as is evident from Eq. (44). Finally we should
remark that the higher-order mode impedance in the above calculation is only a model
impedance. In reality, there are many impedance peaks and their eigenfrequencies have
a statistical distribution arising from the construction errors of cavities. Thus the
growth rate obtained in the above calculation has nothing to do with reality. The
statistical calculations for the TRISTAN rf cavities are done in Refs. 17 and 18 using the
Vlasovequation.

5. MODE COUPLING AND ANOMALOUS BUNCH LENGTHENING

For a broadband impedance, the summation over harmonics p in the matrix element
M':~ given by Eq. (40) can be replaced by an integral. When only one azimuthal mode m
is taken into account, the contribution of the real part of the coupling impedance to
M::~ vanishes identically and only the imaginary part contributes, because the product
Iml(p)lmk(P) is an even function of p and

Re Z( -00) = Re Z(oo)

ImZ(-oo) = -lmZ(oo).

(59)

(60)

The matrix element iM:i is real and symmetric so that no instability occurs. When we
take different azimuthal modes together, the imaginary part of the coupling impedance
contributes to terms with m - n = even, and the real part contributes to terms with
m - n = odd. When the real parts of the coherent frequencies of the two different
azimuthal modes become equal, strong instability occurs, as explained by Sacherer. 2

These statements are for the Vlasov-equation approach, but the same thing can be said
for the Fokker-Planck equation approach if we make the additional remark that
additional damping and mode coupling terms appear due to synchrotron radiation.
We study in this section the contribution of these additional terms.

The mode coupling leads to anomalous bunch lengthening in electron storage rings.
The effect was studied in detail by using the Vlasov equation in a previous report 6 and
comparison was made between theory and the experimental data in SPEAR 11. 19 We
study the same phenomena using the Fokker-Planck equation formalism developed in
Section 3. The coupling impedance of SPEAR II proposed by Wilson, et al.,19,20 is
used. We calculate the threshold current ofanomalous bunch lengthening in SPEAR II
by using both the Vlasov and the Fokker-Planck equations. The result is shown in
Figure2forthecasevs = 0.044. We take into account eight azimuthalmodes(m = -4
to 4) and five radial modes. Calculation using ten radial modes have also been done, but
the result does not change. This again shows the good convergence of the expansion in
terms of generalized Laguerre polynomials. The calculation using the Fokker-Planck
equation and that using the Vlasov equation give almost identical results and no
essential difference is seen between the two theories. This is explained by the fact that
the instability due to mode coupling is quite a fast process and the slow processes of
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5

5 10
E(GeV)

FIGURE 2 Threshold current of anomalous bunch lengthening for SPEAR II. VS is taken to be 0.044. The
triangles show the experimental data taken from Ref. 19. The Fokker-Planck and Vlasov equations give
almost identical results.

radiation damping and excitation play no essential part. The quantitative disagree­
ment between the theory and the experiment in SPEAR II by a factor of about three to
four, which was found in the previous report,6 remains unexplained even when
radiation effects are taken into account.

In order to study the above conclusion in the energy range of r-fRISTAN, we have
calculated the threshold current of anomalous bunch lengthening in TRISTAN. The
coupling impedance is assumed to come only from vacuum chambers and the effect
of rf cavities is neglected for simplicity. Thus the result is not a good estimate of the
bunch-lengthening effect, but the difference between the Vlasov and the Fokker­
Planck equation treatments will be made manifest. We assume the same coupling
impedance as that of SPEAR II, except that an improvement factor of 0.2 per unit
length is taken into account. 21

The result is shown in Figure 3, where Vs is assumed to be 0.1. The Vlasov approach
gives almost the same results as the Fokker-Planck approach and the conclusion
obtained before that the two approaches give almost identical results is confirmed also
in the energy range of TRISTAN. With Vs = 0.1, the natural bunch length at 8 GeV is
0.31 cm. This is a very small value and some anomalous bunch lengthening is expected
to occur with this short bunch length.
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FIGURE 3 Threshold current of anomalous bunch lengthening in TRISTAN. Only the vacuum chamber
impedance is taken into account. Vs is taken to be 0.1. The Fokker-Planck aand Vlasov equations give almost
identical results.

6. CONCLUSIONS

The Fokker-Planck equation for the synchrotron motion is expressed using action­
angle variables. The equation is solved by expansion in terms of generalized Laguerre
polynomials. The convergence of the expansion is confirmed by computer calculation
to be very rapid. The method of solution parallels that of Sacherer's integral equations,
which are based on the Vlasov equation, and a direct comparison can be made between
the two approaches.

For a sharply peaked impedance, the Robinson instability occurs. The approxi­
mate stability criterion of Eq. 45, that the growth rate calculated by the Vlasov
equation should be smaller than Iml/t, where m is the azimuthal mode number and t is
the radiation damping time, is shown to hold by the calculation using the Fokker­
Planck equation. So a simplified approach ofSacherer's integral equations can be used
for electron beam instabilities when combined with the above criterion. We note,
however, that a previously used criterion that th'e growth rate should be smaller than
the radiation damping rate is not always correct and that higher azimuthal and radial
modes are more strongly damped.

For a broadband impedance, no instability occurs even with the Fokker-Planck
equation when mode coupling is neglected. The situation is the same as with the
Vlasov-equation treatment. When two different azimuthal-mode frequencies become
equal, a very fast instability occurs. The threshold of this instability is almost identical
to the one given by the Vlasov-equation approach. This result is explained by the fact
that the instability caused by mode coupling is a fast process compared with the
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radiation damping and excitation processes and that the radiation effect plays little role
in the fast instability. The discrepancy found before 6 between the theory and the
experimental data in Spear II thus remains unexplained even when the radiation effect
is taken into account.
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APPENDIX

We evaluate the integrals defined by Eq. (37), i.e.,

where fk«(L)(x)'s are the orthogonal functions defined by Eq. (30), i.e.,

~'I' «(L)(x) = . X(L/2 L «(L)(x)
J k (ex + k)! k •

(61)

(62)
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We have to evaluate the integral in Eq. (61) only for cases where ~ = cx, ~ = cx + 2 and
N = 0 or N = -1 because only the suffices k and 1interchange when ~ = cx - 2.

We first consider the case where ~ = cx. We calculate the case where k ~ 1. In this
case, we use the series expansion of the Laguerre polynomial15

k (cx + k)xr

Lka(x) = L (-1)' k- ,
r=O r r.

for Lka(x) and the Rodrigues formula 15

a _ exp(x)x- a d' { a+l}
L, (X) - I! dx

'
exp( -x)x

for Lt(x). Then the integral in Eq. (61) is expressed as

k (cx + k) 1 1 ~! ji;f;!Ka,a,N - -1 r -- X
k,l - Jo ( ) k - r r! I! (ex + k)! (ex + 1)(

Integrating by parts 1times, we obtain

(63)

(64)

(65)

Ktl,N = J(ex:! k)! J(ex ~ 1)!.to (-1)'(~ ~ ~)~~
x (-I)'(r + N)(r + N - 1)····· (r + N - 1 + 1) x (r + N + cx)! (66)

From Eq. 66, we easily obtain

which shows the normalization of the functionsh(a)(x)'s and

(67)

K a,a,-l ­
k,l -

(cx + k)!I! 1
(cx + 1)!k! cx

(k ~ 1). (68)

For the case where k > 1, we easily obtain

K a,a,-l _
k,l -

(cx + 1)!k! 1
(cx + k)!/! cx

(k > I). (69)

Now, we consider the case where ~ = cx + 2. Also in this case, we combine the series
expansion and the Rodrigues formula forI the generalize Laguerre polynomials and
integrate by parts. Then we obtain the following results in the same way as for the case
where p = cx.
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(ex + k)!/!

K~:~+2,O =
(ex + 2 + l)!k! (ex + 1) (k ~ 1)

- bk,l+ 1
(I + 1)

(70)

(ex + 1 + 2)
(k > 1)

(ex + k)!l!
Ka.,a.+2,-1 (ex + 1+ 2)!k! (l + 1 - k) (k ~ 1) (71)

k,l =
0 (k > 1)




