
Instituto de Microelectrónica de Sevilla - IMSE (CSIC/US)

Design of a hardware Root-of-Trust on
embedded systems

Eros Camacho Ruiz

Supervisors

Dr. Piedad Brox Jiménez
Prof. Francisco Vidal Fernández Fernández

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2024

A mis abuelos, Juani y Pepe
A mi madre, Virginia.

Acknowledgements

This dissertation has been developed at the Instituto de Microelectrónica de Sevilla - IMSE
(CSIC/US). It was supported also by TOGETHER (TEC2016-75151-C3-3-R) and VIGILANT
(PID2019-103869RB-C31) projects from the Spanish Government, and SPIRS (GA: 952622)
and QUBIP (GA: 101119746) from the European Commission. It was partially supported by
FPU (Formación del Profesorado Universitario) fellowship program for PhD Student from
Spanish Government (December 2021 - September 2023) . During 2023, a stay of 3 months has
been accomplished at the “Network and Information Security Group (NISEC)” of the Tampere
University in Finland, supported by SPIRS project.

I would also like to express my deepest appreciation to my thesis directors, whose expertise,
understanding, and patience, added considerably during this stage. Firstly, I would like to thank
to Paco for contributing with his enormous knowledge capacity and his critical vision. Also,
it is not among in the supervisors list, I don’t want to miss the opportunity to thank Rafa for
his invaluable and selfless help in the completion of this thesis. Your knowledge in the analog
design field and your perseverance.

I cannot forget to thank Santi, who although he has not been the supervisor of the thesis,
his help has been a key pillar in all the work done. It is impossible to forget the “Thursday
meeting” that kept us alive during the pandemic. And finally, I don’t want to forget Piedad. If I
am something called a scientist or researcher, it is because of you and because you believed in
me when nobody else did. You have given me the opportunity to grow as a person and as a
professional for which I am eternally grateful.

I would like to thank anyone who wasted their time on helping me during this stage of my
life, particularly Macarena and Felipe. For our talks at Sapiens. All the colleges that now are
more than just colleges from PB-12: Andrés, Franpi, Chema, Virginia, Manu. Even if we are
worlds apart, we will always find time to have breakfast at La Manuela. I would also like to
thank all the IMSE staff who have made it possible for me to have a place to work every day:
Technical Unit, janitors and cleaners.

Por último, dar las gracias a mis abuelos, porque si soy algo, hoy día, es gracias a ellos. Y
por supuesto a mi madre, por nunca perder la esperanza y mantenerme a tu lado todo lo que has
podido, por muchos kilómetros que tuvieramos que recorrer. Fíjate hasta donde hemos llegado.

Preface

Nowadays, cybersecurity is essential for world’s economic security, protecting sensitive
information and ensuring safe online services. It is critical for several infrastructures, data
privacy, national security or global communications. To this end, several organizations around
the globe (i.e., National Institute of Standards and Technology) are in charged to develop
new strategies to prevent cyber attacks or information leakages. To this end, the CIA Triad,
is a fundamental cybersecurity model that forms the basis for security systems development,
representing Confidentiality, Integrity, and Availability.

The Root-of-Trust in cybersecurity, which is closely tied to the principles of the CIA Triad,
serves as the foundation for creating a secure computing environment. Root-of-Trusts, which
include hardware, firmware, and software components, provide essential functions dependent
on trust. In terms of Confidentiality, the Root-of-Trusts securely store cryptographic keys and
manages them, ensuring sensitive data remains confidential. For Integrity, they can verify
the integrity of essential components during the boot process, maintaining system integrity
and preventing unauthorized modifications. Physical Unclonable Functions enhance security
by providing unique identifiers and contributing to various security functions. Regarding
Availability, they can reduces the risk of compromise and unauthorized access, mitigating
security incidents that could disrupt service. Hardware Root-of-Trust are preferred over
software ones due to their immutability, reduced susceptibility to attacks, and dependable
performance, despite the trade-off in deployment speed.

On the other hand, the advent of quantum computing poses a challenge to traditional
cybersecurity paradigms, as it could render widely-used cryptographic algorithms obsolete by
performing complex computations at unprecedented speeds. To counter the challenges posed
by quantum computing, the field of Post-Quantum Cryptography is emerging with the goal
of developing cryptographic algorithms that remain secure in the quantum computing era. In
2017, National Institute of Standards and Technology initiated a Post-Quantum Cryptography
algorithm standardization contest to define the first standard.

Internet of Things, a network of interconnected devices embedded with sensors, offers
opportunities for efficiency and convenience but also presents unique security challenges. The
hypothesis of this dissertation is that the design and implementations of hardware crytographic

viii

modules is the most suitable to secure the so-called Internet of Things devices. The combination
of these hardware components gives birth to a Root-of-Trust that offers the most efficient
performance results, together with an extra security level of protection derived from the physical
implementations that avoid software attacks (malware). The proposed solution presented in
these dissertation encompasses a set of cryptographic primitives that cover a full suite of
security features. Hash functions (SHA-2 and SHA-3), as well as Post-Quantum Cryptography
accelerations are incorporated for Confidentiality, and a Physical Unclonable Function to ensure
Integrity. The Availability aspect is also considered during the design and implementation
phases of each Root-of-Trust component. Each module is designed separately and after their
individual validation they are integrated into the Root-of-Trust, demonstrating its utility in
different use cases.

In summary, the goals addresses with this dissertation are the following:

• Design of a novel Physical Unclonable Function based on a generally undesired phenomena
called Random Telegraph Noise. This innovative approach has been protected by a patent.

• Design for both families of hash functions in the SHA-2 and SHA-3 standards.

• Design of hardware accelerators for Post-Quantum Cryptography algorithms.

• The validation of the proposed hardware designs through the following implementations:

– A mixed-signal Application-Specific Integrated Circuit integration for the implemen-
tation of a novel Physical Unclonable Function, based on Random Telegraph Noise,
in a 65 nanometer advanced lithographic node widely used in Complementary
Metal-Oxide-Semiconductor fabrication.

– The full digital implementation of hash functions on programmable logic included
in commercial Systems-on-Chips. To ease its re-use, they are encapsulated in
Intellectual-Property modules and interconnected to embedded processors. A set of
drivers and tests is also provided to facilitate the integration into embedded software
running on the procesors.

– A full-digital Application-Specific Integrated Circuit integration of the SHA-256 in
a 65 nanometer Complementary Metal-Oxide-Semiconductor technology.

– The hardware Post-Quantum Cryptography accelerators are implemented following
a hardware/software co-design methodology using Systems-on-Chips.

• Analysis of the performance of each implementation and its comparison with similar
approaches in the state-of-the-art.

ix

• Integration of different crypto primitives in a hardware Root-Of-Trust on a Systems-on-
Chip and validate it in several use cases.

The research activities of this dissertation have been funded by the following projects:
VIGILANT (“The Variability Challenge in Nano-CMOS: From device Modeling to IC Design
for Mitigation and Exploitation”, PID2019-103869RB-C31) founded by the Spanish government,
and SPIRS (“Secure Platform for ICT systems Rooted at the Silicon manufacturing process”,
GA: 952622) founded by the European Commission. On the one hand, the participation in
VIGILANT project opened the possibility to explore the inherent variability in the Complementary
Metal-Oxide-Semiconductor field to generate unique identifiers. On the other hand, the
collaboration in the SPIRS platform has enabled the use of hardware-developed modules in
cybersecurity environments through the Root-Of-Trusts.

The dissertation is organized in five chapters. The first chapter addresses the context of this
dissertation among cybersecurity field. The Root-Of-Trust selection design leads to the next
three chapters divided in each crypto primitive design. The selected use cases are shown in the
next chapter in which the final Root-Of-Trust design is also presented. The final conclusions
are summarized in the last chapter.

Table of contents

List of Figures xv

List of Tables xix

List of Acronyms xxiii

1 Introduction 1
1.1 Cybersecurity Context . 1
1.2 The deployment of an information system: the CIA Triad 3
1.3 Root-of-Trust. From hardware perspective 4
1.4 The Quantum menace . 6
1.5 Dissertation Overview . 8

2 Physical Unclonable Functions 11
2.1 Introduction . 11
2.2 RTN-based PUF . 12

2.2.1 The entropy source: RTN . 14
2.2.2 How to extract information: The Maximum Parameter Fluctuation . . 15
2.2.3 Conceptual architecture of the RTN-based PUF 16
2.2.4 The bit selection method for the RTN-based PUF 20
2.2.5 Metrics to evaluate the RTN-based PUF 21
2.2.6 Verifying the PUF performance . 22
2.2.7 Studying the impact of the size and biasing condition of the entropy-

generating transistors . 26
2.2.8 Evaluating the non-idealities in the building blocks of the RTN-based

PUF . 30
2.2.9 Summary of the RTN-based PUF realization results 35

2.3 RTN-based PUF low-level design . 35
2.3.1 Floorplan of the RTN-based PUF integration scheme 36

xii Table of contents

2.3.2 Transistors Array design . 38
2.3.3 Analog Sensing block implementation 43
2.3.4 Biasing blocks . 54
2.3.5 Final layout design . 56
2.3.6 Conclusions of the low-level design 60

2.4 Conclusions . 60

3 Hash Functions 63
3.1 Introduction . 63
3.2 SHA-2 . 64

3.2.1 Introduction . 64
3.2.2 Mathematical background . 65
3.2.3 Proposed scheme . 68
3.2.4 Implementation of all SHA-2 versions 70
3.2.5 Embedded system integration and results 72

3.3 SHA-2 low-level design . 74
3.3.1 Description of the SHA-256 ASIC implementation 74
3.3.2 Synthesis and Validation . 79
3.3.3 ASIC layout and tapeout . 80

3.4 SHA-3 family . 83
3.4.1 Introduction . 83
3.4.2 Keccak Function Background . 84
3.4.3 Keccak Core Design . 86
3.4.4 IP Module Integration . 88
3.4.5 Embedded System Design . 90
3.4.6 Results . 91

3.5 Conclusions . 95

4 Post-Quantum Cryptography 97
4.1 Introduction . 97
4.2 NTRU . 98

4.2.1 Introduction . 98
4.2.2 The NTRU Encryption Scheme . 100
4.2.3 Hardware Implementation of Polynomial Multiplication 103
4.2.4 Robust Acceleration Against Timing Attacks 105
4.2.5 IP Module Design and Integration 108
4.2.6 Results . 116

Table of contents xiii

4.3 Single-Power Analysis in NTRU AU . 121
4.3.1 Introduction . 121
4.3.2 Experimental Setup . 122
4.3.3 SPA of the NTRU AU . 123
4.3.4 SPA of the countermeasures proposed 124
4.3.5 SPA of the accelerated algorithm . 126

4.4 Conclusions . 129

5 Final RoT design: Use Cases 131
5.1 Introduction . 131
5.2 Message verification: HMAC . 133
5.3 Adding new functionalities to the NTRU cryptosystem 136

6 Conclusions 139

References 141

Appendix A Brief CV 155
A.1 Journal Papers . 155
A.2 Conference Papers . 156
A.3 Other merits . 157
A.4 Projects . 158

Appendix B RTN-based PUF ASIC integration 159
B.1 Layout images . 159

Appendix C SHA2 163
C.1 Mathematical Equations . 163
C.2 SHA-2 Constants . 164
C.3 SHA-2 Initial Values . 165

Appendix D NTRU 167
D.1 IP module resource occupation and timing performance results 167
D.2 Multiplication, encryption and decryption acceleration using the hardware

implementation with respect to the time required for the software results . . . 175
D.3 Optimizing area and acceleration results . 183

List of Figures

1.1 The European Cybersecurity Skills Framework (ECSF) of ENISA. 2
1.2 The CIA Triad: Confidentiality, Integrity and Availability 3
1.3 Different Root-of-Trust approaches . 5
1.4 Cryptography schemes . 7

2.1 Conceptual representation of a PUF . 11
2.2 Illustrating RTN in the drain current (generated from variations in the threshold

voltage) of a transistor where the RTN parameters have been indicated. 14
2.3 Methods to extract RTN information . 15
2.4 A drain current trace (top) with CMAXC, CMINC and MCF (bottom) computed

over a time interval tMCF of 500s. 17
2.5 The different architectures proposed for the RTN-based PUF. 18
2.6 Illustrating probability calculation for the bit selection method: two current

traces (top two plots), the corresponding MCFs (tMCF = 5s) and the response
(“0” or “1”) from comparing the MCFs (bottom). 21

2.7 The challenge used for the evaluation of the PUF quality. 23
2.8 Resulting number of pairs from the bit selection carried out in the 1.000 RTN-

based PUF instances. 24
2.9 Results of the metrics of the proposed RTN-based PUF. 25
2.10 Impact of channel area on reliability and number of pairs. 27
2.11 Area cost per stable bit for different channel areas. 27
2.12 HW (unpredictability) and HDinter (uniqueness) for different channel areas. 28
2.13 Impact of drain and gate voltages on reliability and number of pairs. 28
2.14 Area cost per stable bit for different biasing conditions. 29
2.15 HW (unpredictability) and HDinter (uniqueness) for different biasing conditions. 29
2.16 Schematic of the Analog MUX. 31
2.17 Impact of the comparator offset in the bit stability. 31
2.18 Initial coarse parametric analysis of the impact of offset and MCFth. 32

xvi List of Figures

2.19 Detailed parametric analysis of the impact of offset and MCFth. 33
2.20 Detailed parametric analysis of the impact of imperfect switching. 34
2.21 Floorplan of the RTN-PUF showing the unit cell and the ASB. 37
2.22 CMOS transmission gates implemented in the transistors’ array. In the red box

the load resistance and capacitor used for the simulations. 39
2.23 Dynamic behavior and settling during the selection process. 41
2.24 Schematic of the proposed ASB . 43
2.25 Final design of the PDH circuit. The circuits red and blue are the equivalent

black circuit in each phase. CM represents the current-mirror. 44
2.26 Illustration of the errors to consider during the first phase of the top-down

design of the PDH circuit. VMAX represents the CMAXV. 45
2.27 Implementation of the rail-to-rail OTA with its biasing circuitry and the aspect

ratios used. 47
2.28 Schematic of the IA implemented. 49
2.29 Autozeroing offset-free IA schematic. 50
2.30 Multiple inputs resistor pondered IA plus comparator scheme. VMAX and VMIN

correspond to CMAXV and CMINV respectively. 51
2.31 Comparator schematic based on two-stage OTA topology. 52
2.32 Final floorplan of the layout distribution for the ASB. 53
2.33 Bias current generation within chip design. 54
2.34 ICC generation within chip design. 56
2.35 MILESTONE-I layout . 57
2.36 MILESTONE-I PADs distribution. 57
2.37 The timing schedule to generate a PUF response. 59

3.1 Message Schedule scheme. 69
3.2 SHA-2 core scheme. 69
3.3 Schematic of the SHA-2 IP module. 70
3.4 User interface of the SHA-2 IP Module. 72
3.5 Block Diagram of the SHA-2 IP Module integration in a embedded system . 73
3.6 Block diagram of the ASIC integration of the SHA-256 algorithm 76
3.7 SIPO diagram used for input data of the SHA-256 block 76
3.8 PISO diagram used for output data of the SHA-256 block 77
3.9 Timing diagram to load the message length in the SHA-256 ASIC integration 77
3.10 Timing diagram to load the message in the SHA-256 ASIC integration 78
3.11 Timing diagram to read the digest value in the SHA-256 ASIC integration . . 78
3.12 Post-synthesis simulation result of NIST test number 10 81

List of Figures xvii

3.13 Post-synthesis simulation result of NIST test number 69 81
3.14 Layout ASIC. In red the block for SHA-256 81
3.15 Distribution of the blocks and pads in the ASIC focusing in the SHA-256 block.

In black, pads for supply voltages and ground 82
3.16 Basic version of the Keccak core (SHA3-512 example). 86
3.17 First optimized version of the Keccak core (SHA3-512 example) 87
3.18 Second optimized version of the Keccak core (SHA3-512 example) 88
3.19 SHA-3 IP Module encapsulation . 89
3.20 User interface of the SHA-3 IP Module . 90
3.21 Block Diagram of the SHA-3 IP Module integration in a embedded system . 91
3.22 Comparison between different strategies of the SHA-3 core for the SHA3-512

implementation. 92
3.23 Results of the execution of the input chain "abcd" as hexadecimal, ASCII text

and using input file . 94

4.1 Distribution of nonzero elements in different r(x) generations. The red line
represents the maximum obtained, while the blue line defines a confidence
threshold for the implementation. 106

4.2 Block diagram of the AU designed in this dissertation. 108
4.3 Simplified block diagram of the hardware polynomial multiplier architecture. 109
4.4 Comparison in terms of clock cycles between strategies versus M. 111
4.5 Block diagram of the hardware polynomial multiplier architecture considering

parallelization. 112
4.6 Block diagram of the hardware polynomial multiplier architecture, considering

parallelization and including AXI4-Stream interconnection interfaces. 113
4.7 IP Integrator window . 114
4.8 Block diagram of the complete embedded system and the necessary blocks to

interconnect the IP module with the Zynq Processor. 115
4.9 Experimental setup scheme. 123
4.10 SPA of the NTRU multiplication module . 124
4.11 First countermeasure proposed. 125
4.12 Second countermeasure proposed. 125
4.13 SPA of the NTRU multiplication module with the original AU and the two

countermeasures proposed. 126
4.14 SPA of the NTRU multiplication module with the original algorithm versus the

application of the accelerated version. 127

xviii List of Figures

4.15 Detail of the SPA of the NTRU multiplication module with the original
algorithm versus the application of the accelerated version. 128

5.1 Schematic of the PoC RoT . 131
5.2 Block diagram of the PoC RoT . 132
5.3 Execution example of the HMAC function 135
5.4 Execution example of the HMAC function using the PUF/TRNG. 135
5.5 Completing the NTRU hardware implementation. 136

B.1 Layout of the array of 4,096 transistors and inset showing the layout of the unit
cell. 159

B.2 Layout design of the PDHMAX circuit. 160
B.3 Comparator final layout implementation. 160
B.4 Final layout of the ASB. 161

List of Tables

2.1 PUF comparison with other authors (1) . 26
2.2 PUF comparison with other authors (2) . 26
2.3 Summary of parametric variations . 27
2.4 PUF quality metrics of the selected implementation 33
2.5 Parametric Sweep of Ron and Ro f f . 34
2.6 Comparison between different ICCs (voltages in mV) 37
2.7 Worst and best case of each transistor size evaluated to comprise the transmission

gates . 40
2.8 Array test bench definition . 42
2.9 Evaluation of the 4,096 unit cell array (threshold times in µs) 43
2.10 OTA required and attained specifications . 46
2.11 PDHMAX circuit performance for a 20-mV step input 48
2.12 PDHs performance for 30 real RTN traces 48
2.13 RTN traces characterization in terms of ICC values 50
2.14 ASB characterization using simulated RTN traces and parasitic extraction . . 53

3.1 SHA-2 family hash functions parameters . 65
3.2 Performance of all hash function in the SHA-2 family. 71
3.3 Comparison of the SHA-2 HW implementation with the state of the art. . . . 71
3.4 Acceleration of the SHA-2 HW implementation vs SHA-2 SW implementation 73
3.5 Port description in the SHA-256 design for the ASIC integration 75
3.6 Truth table of the decoder used in the Control module 75
3.7 Actions associated to the values of the control signals 76
3.8 Post Synthesis SHA-256 Occupation . 79
3.9 SHA-3 family hash functions parameters. 84
3.10 Comparison of the implementation of the SHA-3 core for different state-of-the-

art works. 93
3.11 Acceleration of the SHA-3 family HW vs SHA-3 family SW implementations 94

xx List of Tables

4.1 NTRU parameter set . 101
4.2 NTRU confident limits . 106
4.3 AU operation in function of ri. 108
4.4 Resources and timing performance comparison between this dissertation for

ntru-hps2048509, a recent work of the latest NTRU version, and other works
of the previous standard. 117

4.5 Summary of the M selected for the maximum efficiency in terms of resource
occupancy and timing performance of the IP module. 120

5.1 Resources occupancy of each module in the final RoT design. 133

C.1 SHA-224 and SHA-256 list of constants from upper-left to bottom-right . . . 164
C.2 SHA-384, SHA-512, SHA-512/224 and SHA-512/256 list of constants from

upper-left to bottom-right . 164
C.3 SHA-224 and SHA-256 initial hash values 165
C.4 SHA-384 and SHA-512 initial hash values 165
C.5 SHA-512/224 and SHA-512/256 initial hash values 166

D.1 IP module resource occupation and timing performance results for N = 509
and maxcoe f = 400. 167

D.2 IP module resource occupation and timing performance results for N = 509
and maxcoe f = 509. 168

D.3 IP module resource occupation and timing performance results for N = 677
and maxcoe f = 516. 169

D.4 IP module resource occupation and timing performance results for N = 677
and maxcoe f = 677. 170

D.5 IP module resource occupation and timing performance results for N = 821
and maxcoe f = 625. 171

D.6 IP module resource occupation and timing performance results for N = 821
and maxcoe f = 821. 172

D.7 IP module resource occupation and timing performance results for N = 701
and maxcoe f = 533. 173

D.8 IP module resource occupation and timing performance results for N = 701
and maxcoe f = 701. 174

D.9 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 509 and maxcoe f = 400. 175

List of Tables xxi

D.10 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 509 and maxcoe f = 509. 176

D.11 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 607 and maxcoe f = 516. 177

D.12 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 607 and maxcoe f = 607. 178

D.13 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 821 and maxcoe f = 625. 179

D.14 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 821 and maxcoe f = 821. 180

D.15 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 701 and maxcoe f = 533. 181

D.16 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for
N = 701 and maxcoe f = 701. 182

D.17 Multiplication, encryption and decryption efficiency of each resource for N =

509 and maxcoe f = 400. 183
D.18 Multiplication, encryption and decryption efficiency of each resource for N =

509 and maxcoe f = 509. 184
D.19 Multiplication, encryption and decryption efficiency of each resource for N =

677 and maxcoe f = 516. 185
D.20 Multiplication, encryption and decryption efficiency of each resource for N =

677 and maxcoe f = 677. 186
D.21 Multiplication, encryption and decryption efficiency of each resource for N =

821 and maxcoe f = 625. 187
D.22 Multiplication, encryption and decryption efficiency of each resource for N =

821 and maxcoe f = 821. 188
D.23 Multiplication, encryption and decryption efficiency of each resource for N =

701 and maxcoe f = 533. 189

xxii List of Tables

D.24 Multiplication, encryption and decryption efficiency of each resource for N =

701 and maxcoe f = 701. 190

List of Acronyms

AMS Analog/Mixed-Signal
ANSI American National Standards Institute
ASB Analog Sensing Block
ASIC Application Specific Integrated Circuit
AU Arithmetic Unit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
BTI Bias Temperature Instability
CAD Computer Aided Design
CAVP Cryptographic Algorithm Validation Program
CIA Confidentiality, Integrity, and Availability
CMOS Complementary Metal-Oxide-Semiconductor
CPU Central Process Unit
DLP Discrete Logarithm Problem
DMA Direct Memory Access
DPA Differential Power Analysis
DUT Device Under Test
ENISA European Union Agency for Cybersecurity
FF Flip-Flop
FIFO First In, First Out
FIPS Federal Information Processing Standard
FPGA Field Programmable Gate Array
HDL Hardware Description Language
HLS High Level Synthesis
HMAC Hash-based Message Authentication Code
HPS Hoffstein, Pipher, and Silverman
HRSS Hülsing, Rijnveld, Schanck, and Schwabe
HW Hardware

xxiv List of Acronyms

IA Instrumentation Amplifier
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IP Intellectual Property
KEM Key Encapsulation Mechanism
LFSR Linear Feedback Shift Register
LSB Least-Significant Bit
LUT Look-Up Table
MAC Message Authentication Code
MCF Maximum Current Fluctuation
MPF Maximum Parameter Fluctuation
MSB Most-Significant Bit
MUX Multiplexer
MVF Maximum Voltage Fluctuation
NIST National Institute of Standards and Technology
NTRU Nth-degree Truncated polynomial Ring Unit
NVM Non-Volatile Memory
OTA Operational Transconductance Amplifier
PDH Peak Detection and Hold
PEX Parasitic EXtraction
PISO Parallel-In Serial-Out
PKCS Public-Key Cryptography Standards
PL Programmable Logic
PoC Proof-of-Concept
PQC Post-Quantum Cryptography
PS Processing System
PUF Physical Unclonable Function
PYNQ Python Productivity for Zynq
RAM Random Access Memory
RO Ring Oscillator
RoT Root-of-Trust
RSA Rivest, Shamir and Adleman
RTL Register Transfer Level
RTN Random Telegraph Noise
SCA Side-Channel Attack

List of Acronyms xxv

SHA Secure Hash Algorithm
SIPO Serial-In Parallel-Out
SoC System-on-Chip
SPA Simple Power Analysis
SRAM Static Random Access Memory
SVP Shortest Vector Problem
SW Software
TRNG True Random Number Generator
VLSI Very Large Scale Integration

Chapter 1

Introduction

1.1 Cybersecurity Context

Cybersecurity is a crucial component of the digital ecosystem in Europe, as it plays a central
role in safeguarding European interests, enabling the European Union (EU) economy to
function at its full potential, and ensuring that citizens can safely and securely access online
services [1]. This encompasses a wide range of sensitive information, including personally
identifiable information, protected health information, personal data, intellectual property, and
governmental and industry information systems [2]. The impact of cybersecurity is specially
relevant in the following strategic points:

• Critical infrastructures: As society increasingly depends on digital infrastructure, it
is essential to investigate cybersecurity to protect critical systems like power grids,
healthcare systems, and financial institutions [3].

• Data Privacy Preserving: As data privacy concerns continue to mount, it is increasingly
important for organizations to investigate cybersecurity in order to comply with regulations
and safeguard sensitive information from unauthorized access [4].

• Economic and National Security Implications: Cybersecurity incidents can have severe
economic and national security implications. Investigating and understanding these
aspects helps in developing strategies to mitigate risks [5].

• Global Communications: In a globally interconnected world, investigating cybersecurity
is essential for international collaboration in addressing cyber threats and ensuring the
security of shared digital resources [6].

2 Introduction

There are always security breaches that attackers could exploit with the potential to
jeopardize the safety and well-being of individuals. There are some recent examples in
which some security aspects of citizens have been compromised either in international, national
or local context:

• The US State of Maine’s data was accessed due to the MOVEit Transfer breach, exposing
1.3 million individuals [7].

• The hacked phone of the Prime Minister of Spain, Pedro Sánchez, using Pegasus exposed
more than 3GB of sensitive information [8].

• The attack to the Seville town-hall that paralyzed all processes during more than a month,
even affecting to the salary payment of many workers [9].

To this end, there are organisations or agencies that are continuously investigating and
reporting new procedures or standards that improve the security of systems. The European
Union Agency for Cybersecurity (ENISA) [10] is a center of expertise for cybersecurity in
Europe in different areas as shown Figure 1.1. It works closely with EU member states and the
private sector to develop and promote cybersecurity standards, best practices, and guidelines.
ENISA also provides support to EU member states in the event of a cyber crisis. The National
Institute of Standards and Technology (NIST) [11] is a non-regulatory agency of the United
States Department of Commerce that promotes innovation and industrial competitiveness by

Figure 1.1 The European Cybersecurity Skills Framework (ECSF) of ENISA [10].

1.2 The deployment of an information system: the CIA Triad 3

advancing measurement science, standards, and technology. NIST’s cybersecurity program
focuses on developing standards, guidelines, and best practices to manage cybersecurity-related
risk. The Internet Engineering Task Force (IETF) is a large open international community of
network designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. IETF develops and promotes
voluntary Internet standards, in particular the standards that comprise the Internet protocol
suite (TCP/IP) [12]. Moreover, in the national framework there is the Centro Criptológico
Nacional (CCN) that is a Spanish government agency responsible for coordinating the actions
of different government agencies that use cryptographic methods or procedures, ensuring the
security of information technologies in that area [13].

1.2 The deployment of an information system: the CIA Triad

The CIA Triad, illustrated in Figure 1.2, was first mentioned in a NIST publication in 1977
[14]. This sets a fundamental cybersecurity model that forms the basis for the development
of security systems. The three letters in “CIA” triad stand for Confidentiality, Integrity, and
Availability:

Information
Security

Confidentiality

Integrity Availability

Figure 1.2 The CIA Triad: Confidentiality, Integrity and Availability

4 Introduction

• Confidentiality: safeguarding sensitive information from unauthorized access. This
involves implementing measures such as encryption, access controls, and secure authen-
tication mechanisms. By ensuring confidentiality, organizations can protect proprietary
information, personal data, and classified materials [15].

• Integrity: guarantees the accuracy and trustworthiness of data, preventing unauthorized
modifications or corruption. Technologies such as cryptographic hash functions and
digital signatures play a crucial role in ensuring data integrity. By maintaining the
integrity of information, organizations can foster trust among users and stakeholders
[16].

• Availability: ensuring that information and services are accessible when needed. This
involves implementing redundancy, failover mechanisms, and disaster recovery plans to
mitigate the impact of system failures, natural disasters, or cyberattacks. By prioritizing
availability, organizations can minimize downtime and maintain continuous operations
[17].

Since the CIA Triad was proposed, new menaces in the field of cybersecurity have emerged.
The change in the nature of cyber threats leads to the importance of adapting to this new
challenges. For that, it is necessary to explore specific security models, frameworks, and
technologies in greater detail.

1.3 Root-of-Trust. From hardware perspective

The establishment of a Root-of-Trust (RoT) [18] in cybersecurity is intricately linked to the
fundamental principles of the CIA Triad. The RoT serves as the cornerstone for building a
secure computing environment, aligning with each aspect of the triad. As foundational security
primitives, RoTs encompass hardware, firmware, and/or software components, delivering a
suite of essential, trust-dependent functions.

Several organizations released standards that define sets of security services within RoT:

• NIST standardizes integrity, measurement, reporting, storage, update, and verification
services [19].

• ISO 7498-2 manages authentication, access control, confidentiality, integrity, and non-
repudiation services [20].

• The Trusted Computing Group works in the measurement, reporting, and storage services
[21].

1.3 Root-of-Trust. From hardware perspective 5

In the realm of Confidentiality, the RoT plays a pivotal role by securely storing cryptogra-
phic keys and facilitating secure key management processes. By safeguarding these keys, it
ensures that sensitive data remains confidential, accessible only to authorized entities with the
necessary credentials. Some examples include the use of symmetric or asymmetric algorithms in
the context of public key cryptography, hash functions such as SHA-256 or message verification
functions based on hashes.

Moving on to Integrity, the RoT acts as a guardian of the system’s trustworthiness. For
example, during the boot process, the RoT verifies the integrity of essential components,
including firmware and the operating system. If any tampering or unauthorized modifications
are detected, the RoT can halt the boot sequence, preventing the system from compromising
its integrity. This capability is crucial in maintaining the integrity of the system’s state and
preventing malicious actors from manipulating critical components. The core of the security
enhance of this part will be the addition of Physical Unclonable Functions (PUFs). They can
provide unique identifiers linked to the underlying hardware, enhancing authentication, and
contributing to various security functions critical for maintaining the confidentiality, integrity,
and trustworthiness of the computing environment.

Lastly, in the context of Availability, the RoT indirectly contributes by reducing the risk
of compromised and unauthorized access. By ensuring the integrity and confidentiality of
the system, the RoT mitigates the likelihood of security incidents that could lead to service
disruptions, aligning with the overarching goal of sustaining system availability.

Hardware RoTs, illustrated in Figure 1.3b, hold a preference over their software counterparts
[22], shown in Figure 1.3a, due to their inherent immutability, reduced susceptibility to attacks,
and a track record of more dependable performance. Certain methods aim to enhance the safety
of cryptographic key storage by replacing Non-Volatile Memories (NVMs) with PUFs. Their
reliability instills a higher level of confidence in their capability to execute trusted functions
seamlessly. While software RoTs offer the advantage of swift deployment across diverse

(a) SW RoT approach (b) HW RoT approach

Figure 1.3 Different Root-of-Trust approaches

6 Introduction

platforms, their reliance on mutable code introduces a trade-off in terms of the robust assurance
provided by their hardware counterparts.

As the cybersecurity threats constantly evolve, the hardware RoT must be continually
adapted to address the latest challenges and advancements in the field. This adaptability is
crucial for ensuring that the RoT remains resilient against emerging cybersecurity threats,
ranging from sophisticated attacks to novel vulnerabilities. Regular updates and enhancements
to the hardware RoT’s design and functionality are imperative to meet the demands of an
ever-changing cybersecurity environment.

1.4 The Quantum menace

Quantum computers represent a groundbreaking advancement in computational capabilities
with the potential to revolutionize various fields [23]. Unlike classical computers that use bits
to represent either a 0 or a 1, quantum computers leverage quantum bits or qubits, which can
exist in multiple states simultaneously due to the principles of superposition and entanglement.
This unique feature enables quantum computers to perform parallel computations and solve
certain problems exponentially faster than classical computers.

Some cases of advent of quantum computing is the IBM Quantum Platform [24] and Google
Quantum Supremacy [25]. IBM Quantum Platform is a cloud-based quantum computing
platform that provides access to IBM’s quantum processors and simulators. They count with
a Quantum development Roadmap, making clear that the advance of quantum computing is
unstoppable. Meanwhile, Google Quantum Supremacy is a term used to describe the ability
of a quantum computer to perform a calculation that would be practically impossible for a
classical computer to perform in a reasonable amount of time.

Although it is not clear when a quantum computer will be powerful enough to surpass
the classical computer, the advent of quantum computing poses a significant challenge to
traditional cybersecurity paradigms. They raise concerns about the potential obsolescence of
widely-used cryptographic algorithms by performing complex computations at unprecedented
speeds, threatening the security of current encryption methods based on the difficulty of certain
mathematical problems. This directly threatens the security mechanisms based on symmetric
and asymmetric cryptography.

Symmetric cryptography employs a single secret key for both encryption and decryption
processes as shown Figure 1.4a. The efficiency and speed of symmetric key algorithms make
them well-suited for securing data communication and storage. The most popular and used
symmetric algorithm is Advanced Encryption Standard (AES) [26] which is specified by
the NIST under standard FIPS PUB 197 [27]. In the quantum computing context, Grover’s

1.4 The Quantum menace 7

algorithm [28] poses a theoretical threat, suggesting that a quantum computer could search
through the key space quadratically faster, potentially reducing the effective key length. That
is, challenging the security assumptions of symmetric encryption algorithms, which rely on
the difficulty of brute-force attacks. The strategy followed by NIST was to duplicate the keys
length from 128-bits to 256-bits.

On the other hand, asymmetric cryptography, also known as public-key cryptography, is a
type of cryptographic scheme where distinct pairs of keys are employed for encryption and
decryption as shown Figure 1.4b. The widely used RSA (Rivest–Shamir–Adleman) algorithm
[29] is a prominent example. In asymmetric cryptography, one key in the pair is designated as
public and can be openly shared, while the other remains private. Information encrypted with
the public key can only be decrypted using the corresponding private key. NIST has released
several standards that use the RSA algorithm such as the NIST SP 800-56B [30]. The security
of the scheme relies on the difficulty of factoring large numbers or solving discrete logarithm
problems, which can be efficiently solved by quantum computers using algorithms like Shor’s
algorithm [31]. To address this challenge, the field of Post-Quantum Cryptography (PQC) is
emerging, aiming to develop cryptographic algorithms that remain secure even in the era of
quantum computing. To that end, NIST initiated a PQC algorithm standardisation contest in
2017 [32] whose aim was to define the first PQC standard. The first draft standard of those
selected algorithms was published in August 2023 [33].

Plaintext

Shared key

Encrypted Message

Encryption

Plaintext

Decryption

(a) Symmetric cryptography scheme

Plaintext

Public key

Encrypted Message

Encryption

Plaintext

Decryption

Secret key

(b) Asymmetric cryptography scheme

Figure 1.4 Cryptography schemes

8 Introduction

1.5 Dissertation Overview

Internet of Things (IoT) has set a new paradigm where interconnected devices play the main
role [34]. IoT, characterized by a network of embedded devices with sensors, processing
units and connectivity to the internet, brings unprecedented opportunities for efficiency and
convenience [35]. However, the intersection of IoT and hardware security poses unique
challenges, demanding robust measures to safeguard sensitive data and mitigate potential
threats to interconnected systems [36]. Not only that, but implementations on, for example,
wearable devices impose severe restrictions that require low power consumption and small
sizes [37].

Intense competition among companies to bring electronic devices in the first place has
demanded the development of strategies to reduce time-to-market. The re-usability of Intellectual
Property (IP) cores and an automatic design methodology reduce significantly the duration
of the design cycle of embedded systems [38] in the IoT ecosystem. However, the need to
deploy functional systems in a short time has sometimes led to serious security problems by
presenting information leaks that could reveal confidential data. Two well-known examples
are Spectre and Meltdown, which are vulnerabilities that affect modern microprocessors.
Spectre is a vulnerability that uses side-channel timing attacks to extract private data based on
speculative execution resulting from a branch miss-prediction [39]. Meltdown is related to a
micro-architectural attack that exploits out-of-order execution to reveal the contents of kernel
memory in many Intel and some ARM processors [40].

In light of the confidential data leaks observed in embedded systems, the hypothesis of
this dissertation is that the design of dedicated hardware for a RoT could be the most suitable
option to secure the embedded systems widely adopted in the IoT ecosystem. To corroborate
this, this dissertation will pursue the following goals:

• To explore, design and implement the elements of a hardware RoT.

• To analysis the most suitable cryptographic primitives to ensure information security
around the three key principles: confidentiality, integrity and availability.

• To validate the proposed RoT implementation on a System-on-Chip (SoC) that combines
one embedded processor with Programmable Logic (PL) for prototyping.

• To provide use cases that corroborate the feasibility of the proposed solutions in message
verification and PQC cryptosystems.

• To design digital and mixed-signal integrated circuits of cryptographic primitives to
achieve high-performance implementations.

1.5 Dissertation Overview 9

In order to achieve these objectives, the structure of this dissertation is organized as follows:

• A novel PUF design is presented in Chapter 2 based on generally undesired phenomena
called Random Telegraph Noise (RTN). After performing several evaluations, a mixed-
signal circuit was implemented into an Application Specific Integrated Circuit (ASIC).

• Given the crucial role that hash functions have become in the field of cryptography,
two such functions (SHA-2 and SHA-3) are studied and implemented in Chapter
3. For that, it is provided a set of drivers and tests that eases the integration into
software implementations. Subsequently, one of these hash functions was incorporated
in accordance with the digital flow in a Very Large Scale Integration (VLSI) circuit.

• Chapter 4 addresses the potential for improving the performance of PQC algorithms,
with the NTRU (Nth-degree Truncated polynomial Ring Unit) algorithm chosen for
this purpose. An exhaustive analysis was conducted to determine the most suitable
NTRU implementation for the IoT context from the proposed options. Additionally, a
comprehensive study was undertaken to explore the potential for extracting information
from these implementations through Side-Channel Attacks (SCAs).

• Chapter 5 proposes two use cases that utilize a combination of various cryptographic
primitives included in the RoT suggested in this dissertation.

• The dissertation ultimately culminates in Chapter 6, where the conclusions drawn from
the results and conclusions obtained of each chapter.

Chapter 2

Physical Unclonable Functions

2.1 Introduction

PUFs have emerged as a potential solution to build trusted anchors that provide secure hardware
solutions for consumer and industrial IoT devices [41]. Based on their properties, PUFs can be
used to generate unique identifiers that facilitate device authentication to prevent spoofing and
counterfeiting [42]. They also introduce an extra hardware-based layer for building lightweight
encryption schemes, as they can be used to obfuscate the secret keys used by ciphers, ensuring
the confidentiality of data exchanged by the electronic device in which the PUF is embedded
or attached [22]. In addition, PUFs can provide seeds to be used in the creation of public and
private key pairs for public-key cryptography, increasing system security by avoiding the need
to share secret keys [43].

A PUF works as a black box that maps an input challenge sequence to an output response
conforming the so-called challenge-response pair, as Figure 2.1 illustrates. For that, it should

Challenge Response

Figure 2.1 Conceptual representation of a PUF

12 Physical Unclonable Functions

feature three characteristics: uniqueness (different PUF instances should return different
responses for the same challenge), unpredictability (the response cannot be anticipated) and
reliability (the same response should be obtained for the same challenge applied to the same PUF
instance, that is, the PUF response must be robust or stable over time and varying environmental
conditions) [44]. The quality of the PUF, according to these three features, depends ultimately
on the specific PUF implementation, its behavior in the presence of impeding factors (like noise
or aging for silicon PUFs), and the response post-processing [45].

All reported PUFs use at its very core a source of entropy [46]: for example, silicon
PUFs use the inherent randomness of the manufacturing process (e.g., inducing variations
of the transistor’s threshold voltage) to implement the challenge-response pair. For instance,
Arbiter PUFs are based on time delay variations [43][47], transistor-pair PUFs utilize the
mismatch-induced variations in the subthreshold drain currents of transistors [43, 47, 48], Ring
Oscillator (RO) PUFs use the variability in oscillation frequencies [49], and Static Random
Access Memory (SRAM) PUFs are based on the cells’ power-up value (set by the subtle
differences in the threshold voltages of the transistors in the cross-coupled inverters) [50].
This work explores the implementation of a different type of PUF based on Complementary
Metal-Oxide-Semiconductor (CMOS) technology where the entropy source comes from a
physical phenomenon whose impact is otherwise undesired: the RTN. The application of this
phenomenon is straightforward as RTN has proven to be resistant against aging.

This dissertation delves into the inception, evaluation, and final design of an RTN-based
PUF in an ASIC, following an analog design flow. It begins with the birth of the idea for an
RTN-based PUF, exploring the initial thought process, the theoretical underpinnings, and the
creative sparks that led to its conception. The following part focuses on the rigorous evaluation
of the RTN-based PUF. This involves a detailed analysis of its performance, reliability, and
robustness under various conditions. The evaluation process is critical in identifying potential
improvements and understanding the limitations of the RTN-based PUF. The final part discusses
the integration of the RTN-based PUF into an ASIC. This section outlines the steps taken to
incorporate the PUF into an analog design flow, ensuring its compatibility and functionality
within the ASIC. It also addresses the challenges encountered during the circuit design process
and the solutions implemented to overcome them.

2.2 RTN-based PUF

As it was above mentioned, two of the most implemented PUFs among Silicon-based PUFs are
those based on SRAMs or ROs. In any case, both PUF implementations require, typically, a
large number of transistors for their implementation, leading to high area overhead. In devices

2.2 RTN-based PUF 13

where such area constraints are very demanding (i.e., wearable devices), this can be a problem.
To reduce the area used as much as possible, PUFs whose rationale is the exploitation of some
feature and the comparison of said feature in a pair of transistors have been proposed. Both
the TCO-PUF (“Two Choses One” PUF) [47] and the SCA-PUF (Subthreshold Current Array
PUF) [51] are relevant in this type of PUF architectures. These designs use the comparison
of the generated current level in the subthreshold region of the selected transistors. One
main drawback of these approaches is that the entropy source is not immune to aging and
temperature-induced variations, thus potentially impacting the PUF response as well.

The PUF presented in this dissertation explores the implementation of a different type of
CMOS-based PUF where the entropy source comes from a physical phenomenon named as RTN.
The utilization of this phenomenon as a foundation for PUF development is justified by several
potential benefits: (1) the requirement of only one transistor and certain biasing conditions for
RTN manifestation suggests that it would likely require less area for implementation compared
to other solutions [52]; and, (2) the degradation due to aging is significantly reduced as the bias
conditions of the transistor do not need to reach their nominal operating voltages to observe the
RTN, ensuring the longevity and reliability of the PUF [53].

Although it will be deeply detailed later, in practice, RTN is observed as discrete and
random shifts in the drain current of a transistor, where it is essential to highlight that two
identically designed transistors may show different RTN-induced current shifts. Very few
works have been reported that use RTN as underlying entropy source:

• The solutions described in [54] and [55] exploit a phenomenon called BTI (Bias Tempe-
rature Instability) in CMOS transistors. Even though the physical mechanism known as
RTN is mentioned in these works, the main method presented is based on the previous
application of high voltages to the transistor gate, thus creating BTI discharging events
(rather than pure RTN events) that really are the core of the proposed PUF. A disadvantage
of these two approaches is that the stress phases at voltages higher than the nominal one
that need to be applied cause a premature aging of the PUFs, making them potentially
unreliable over time.

• In the work presented in [56] the response of the PUF is extracted from the fluctuations
that the RTN mechanism causes in the oscillation frequencies of the ROs. By taking two
identical ROs and comparing the number of frequency fluctuations per unit time that
each RO manifests as a result of the presence of RTN in the transistors of the inverter
chains, a response can be obtained. However, it is difficult to determine whether these
fluctuations are really due exclusively to RTN and not to some type of electronic noise.

14 Physical Unclonable Functions

2.2.1 The entropy source: RTN

The RTN can be defined as a transient phenomenon that occurs in the threshold voltage of
transistors in the form of discrete and random shifts. In CMOS transistors, it can be observed
through two parameters: in the form of voltage (throught variations in the threshold voltages) or
in the form of current (through drain current variations caused by these changes in the threshold
voltages). The origin of this phenomenon lies in the existence of defects in the channel-oxide
interface of the transistor and in the capture and emission events of charge carriers in these
defects [57].

The parameters that characterize the RTN phenomenon are the number of defects in the
transistor, the amplitude of the change in the threshold voltage ∆Vth, that will cause a shift in the
drain current ∆ID, that is associated to the trapping/detrapping events of each defect, and their
time constants (the capture time (tc) and the emission time (te)). Both, the number of defects
and the dynamics of carrier capture/emission, are unique and differentiating characteristics of
each transistor, which means that the RTN phenomenon can be potentially used to generate
unique identities through the PUF.

An example of variations in a drain current generated by the variation in the threshold
voltage with RTN is shown in Figure 2.2. This example corresponds to a simple case in
which the current trace displays only one detectable RTN defect, which causes its current to
alternate between two levels. The time constants, τe and τc, of this defect are the average of the
corresponding times-to-emission tei and times-to-capture tci, respectively. In general, there are
more than just a single RTN defect.

Figure 2.2 Illustrating RTN in the drain current (generated from variations in the threshold
voltage) of a transistor where the RTN parameters have been indicated.

2.2 RTN-based PUF 15

It is essential to highlight the fact that two identically designed transistors may show
different RTN-induced threshold voltage shifts. These variations between transistors are the
entropy source of the RTN-based PUF presented in this dissertation.

2.2.2 How to extract information: The Maximum Parameter Fluctuation

The design of this PUF requires a metric that can capture, in a comprehensive manner, the
amount of RTN present in each transistor and that is amenable to evaluation using the simplest
possible circuitry. This metric is the so-called Maximum Parameter Fluctuation (MPF). As
explained above, RTN fluctuations can be observed either in the voltage at the gate node or in
the transistor’s drain current. The concept of MPF captures both fluctuations (i.e., the observed
parameter P in the MPF metric can be either voltage or drain current). The current version
of the metric, Maximum Current Fluctuation (MCF) and the voltage version of the metric,
Maximum Voltage Fluctuation (MVF) were first reported in [58] and in [59], respectively, as
methods to encapsulate all the RTN information.

To observe the RTN-induced fluctuations, the first method uses the drain current, ID, set
from a certain source voltage, VS, gate voltage, VG, and drain voltage, VD, illustrated in Figure
2.3a for the case of PMOS transistors. The second method, known as constant-current method
[60] may be used to obtain the voltage fluctuations at the gate node. This method consists
in using a current source, ICC, at the drain of the transistor, short-circuiting the gate and the
drain nodes (in a typical diode configuration) and observing the RTN-induced fluctuations of
the voltage at the drain node, VD (which is equivalent to the gate node) as Figure 2.3b shows

VG

VS

VD

I D

(a) Current-mode PMOS configuration

VDD

ICC

VSS

VD

(b) Voltage-mode PMOS configuration

Figure 2.3 Methods to extract RTN information

16 Physical Unclonable Functions

for the case of PMOS transistors. The NMOS transistors version follows the same strategy of
configuration.

The MPF can be calculated at any time instant, t ′, defined by t0 ≤ t ′ ≤ t f , where t0 and t f

is the initial and final time of the measurement window. For that, it is required to compute
the Cumulative Maximum Parameter (CMAXP), which is split in the Cumulative Maximum
Voltage (CMAXV), for voltage, and the Cumulative Maximum Current (CMAXC), for drain
current. Equation 2.1 shows the CMAXV and CMAXC formulation.

CMAXV (t ′) = max
∀t∈[t0,t ′]

VD(t) ; CMAXC(t ′) = max
∀t∈[t0,t ′]

ID(t) (2.1)

Similarly, the Cumulative Minimum Voltage (CMINV), and the Cumulative Minimum
Current (CMINC), can be defined as Equation 2.2 shows.

CMINV (t ′) = min
∀t∈[t0,t ′]

VD(t) ; CMINC(t ′) = min
∀t∈[t0,t ′]

ID(t) (2.2)

The MPF at t ′ is then defined as the difference between CMAXP(t ′) (either CMAXV (t ′) or
CMAXC(t ′)) and CMINP(t ′) (either CMINV (t ′) or CMINC(t ′)) as Equation 2.3 shows.

MPF(t ′) =CMAXP(t ′)−CMINP(t ′) (2.3)

In other words, the MPF value will be determined by the cumulative impact of RTN either
on the transistor voltage at the drain node or on the transistor current (both related to threshold
voltages shifts) because of the trapping/detrapping events observed in a time interval defined
by tMPF = t f − t0, (defined identically for voltage, tMV F , or current, tMCF). Here it is necessary
to keep in mind that the longer this time, the more RTN information is captured in the MPF.

An example of MCF measurement (the same can be applied to MVF) is shown in Figure 2.4.
MPF is a continuous function of time but to carry out the required comparison needed in the PUF,
only the value of the MPF at the end of the time interval (t f) will be used (considering t0 = 0).
The MPF metric is a non-negative, ever-increasing function that, over time, will “capture” all
RTN-induced variations both in the drain voltage and in the drain current (reflecting the number
of defects, the shifts caused by each defect as well as its temporal characteristics).

2.2.3 Conceptual architecture of the RTN-based PUF

The PUF design should fulfill a way to extract the information contained in the MPF (usign
the RTN as entropy source) and somehow obtain a bit as response. For that, four designs have
been proposed whose operation principle is the comparison between two MPF values. The first
proposed design for the PUF can use an architecture where the MPF of only one transistor is

2.2 RTN-based PUF 17

Figure 2.4 A drain current trace (top) with CMAXC, CMINC and MCF (bottom) computed
over a time interval tMCF of 500s.

compared to an MPF reference. A differential architecture is also possible, where the MPF
calculation is carried out on a pair of transistors and then compared. Both architectural options
can exploit either voltage or current. The advantage of using differential architectures over non-
differential ones is that differential design can mitigate and cancel out first-order environmental
dependencies such as aging, temperature, and supply voltage since these should affect the two
identical structures similarly. These designs are shown in Figure 2.5 and summarized in the
following:

• Using the transistors’ current configuration to obtain a MCF value and comparing it with
a reference. It is shown in Figure 2.5a.

• Using the transistors’ current configuration to obtain a MCF value and comparing it with
the MCF of another transistor. It is shown in Figure 2.5b.

• Using the transistors’ voltage configuration to obtain a MVF value and comparing it with
a reference. It is shown in Figure 2.5c.

• Using the transistors’ voltage configuration to obtain a MVF value and comparing it with
the MVF of another transistor. It is shown in Figure 2.5d.

In the non-differential architecture (Figure 2.5a and Figure 2.5c), a single transistor, ma,
specified by a challenge ci (which specifies the address in the array of the specific transistor
selection and that is used as PUF input) from an array of a number, M, of equally designed

18 Physical Unclonable Functions

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

REPLICATOR

(a) Current-mode configuration comparing
with a reference.

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

MCF
CALCULATION

TRANSISTOR SELECTOR M:2

…

ri (0,1)

ci = { ai , bi } IDmai IDmbi

MCFmbiMCFmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

IDID

Sample
& Hold

�
tMCF

+ —

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

VG

VS

VD

m1 VG

VS

VD

m2 VG

VS

VD

mM…

M-TRANSISTOR ARRAY

MCF
CALCULATION

…

ri (0,1)

ci = { ai } IDmai

COMPARATOR

CURRENT
MIRROR

PEAK
DETECTOR

PEAK
DETECTOR

CMAX CMIN

MCF

ID

ID
ID

Sample
& Hold

�
tMCF

+ —

TRANSISTOR SELECTOR M:1

REF

REPLICATOR

(b) Current-mode configuration comparing
with another transistor.

M-TRANSISTOR ARRAY

…

PEAK
DETECTOR

PEAK
DETECTOR

CMAXV CMINV

MVF

Sample
& Hold

!
tMVF

+ —

VDD

m1

ICC

VDD

VDD

m2

ICC

VDD

VDD

mM

ICC

VDD

…

VD

MVF
CALCULATION

ri (0,1)

ci = { ai } VDmai

COMPARATOR

TRANSISTOR SELECTOR M:1

REF

(c) Voltage-mode configuration comparing
with a reference.

M-TRANSISTOR ARRAY

MVF
CALCULATION

MVF
CALCULATION

TRANSISTOR SELECTOR M:2

…

ri (0,1)

ci = { ai , bi } VDmai VDmbi

MVFmbiMVFmai

COMPARATOR

PEAK
DETECTOR

PEAK
DETECTOR

CMAXV CMINV

MVF

Sample
& Hold

!
tMVF

+ —

VDD

m1

ICC

VDD

VDD

m2

ICC

VDD

VDD

mM

ICC

VDD

…

VD

(d) Voltage-mode configuration comparing
with another transistor.

Figure 2.5 The different architectures proposed for the RTN-based PUF.

transistors (same type, same size), is selected using an M : 1 multiplexer. In this case, the core
element of the PUF is a single transistor. All transistors must have the same biasing conditions.
Once the transistor is selected, the parameter chosen (either voltage or current) is used for the
MPF calculation module, where the MPFs is computed for a preset time interval tMPF . Then,
the result is compared to an MPF reference, determining an output: if MPFma > MPFREF ,
the output given is “1” (“0”, otherwise). This output can be used as, at least a basis of, a
PUF response ri. To obtain an n-bit response R = (r1,r2, . . . ,rn), a sequence of n challenges
C = (c1,c2, . . . ,cn) is given to the PUF device.

Alternatively, the differential architecture (Figure 2.5b and Figure 2.5d), starts from an
array with an even number, M, of equally designed and biased transistors. In this case, the core
element of the PUF is a pair of transistors, ma and mb, specified by a challenge ci (now, this

2.2 RTN-based PUF 19

challenge ci specifies the addresses in the array of the transistors in the selected pair), which is
selected using an M : 2 multiplexer. Once the pair is selected, the parameters chosen (either
voltage or current of each transistor) are used for the MPF calculation module. The results,
MPFma and MPFmb , are then compared to decide which has higher MPF value, thus determining
an output: if MPFma > MPFmb , the output given is ”1” (”0”, otherwise). This output can be
used at least as a basis of a PUF response ri. To obtain an n-bit response R = (r1,r2, . . . ,rn), a
sequence of n challenges C = (c1,c2, . . . ,cn) is given to the PUF device.

Apart from the array, one MPF calculator (an MVF calculator for Figure 2.5c and 2.5d, and
an MCF calculator for Figure 2.5a and 2.5b) is necessary to compute the MCF of each selected
transistor (depending on the architecture). It receives either the drain voltage from the selected
current-driven transistor (VDmai) or the drain current signal from the selected voltage-driven
transistor (IDmai). At the end of the process, it returns the calculated MPF value (MV Fmai or
MCFmai). In the case of the differential architecture, two MPF calculators will be necessary.
Additionally, the MPF calculator comprises:

• A current replicator for the case of MCF calculator in which the current signal is
duplicated.

• A couple of peak detectors (connected to the current replicator only for the case of
current-mode configuration) that receive the signals. One of them oversees the maximum,
while the other detects the minimum, obtaining the maximum (CMAXP) and minimum
(CMINP) accumulated parameter (voltage or current) signal respectively.

• A summation block, connected to the peak detectors, that subtracts the minimum signal
from the maximum signal to obtain the MPF value (either the MVF or the MCF).

• A sample and hold block that controls the summation block and resets at t = t f , making
sure that the calculation is performed at each time interval, tMPF (tMV F or tMCF). At the
beginning of this time interval, both CMAXP and CMINP are reset to the initial values
(in which CMAXP =CMINP =VD(t0)|ID(t0)). Thus, a different MPF can be obtained
at each time interval tMPF .

And finally, there is the MPF comparator, associated to the MPF calculators that receives the
MPF signal from the voltage-driven transistor or current-driven transistor. It performs the
comparison to a reference or with another MPF value, deciding which is larger and obtaining a
one-bit response, ri.

In summary, the challenge ci can be a single digital word ai for the non-differential
architecture or a pair of digital words ai and bi for the differential architecture that select
a specific transistor ma or a specific pair of transistors ma,mb, respectively, from the array, and,

20 Physical Unclonable Functions

then the corresponding single-bit response ri (“0” or “1”) is obtained. The function that maps a
challenge to a response is thus the difference in amount of RTN captured during a certain time
interval, either as a difference with respect to the reference or between the two transistors, with
this amount being measured by the MPFs.

A relevant parameter in these architectures (both non-differential and differential architectu-
re) is the duration of the time interval used to compute the MPF, tMPF = t f − t0. The longer
this interval, the more RTN emission/capture events can be captured into the MPF metric, but,
on the other hand, the longer it takes for the PUF device to return an n-bit response. A too
short of a time interval can be an issue as well, as RTN may not be observed at all. In this
regard, an additional constraint on the minimum value of tMPF results from considering the
time constants of the RTN defects and the ability of the MPF calculation module in capturing
fast RTN events since any time-to-emission tei or time-to-capture tci below this ability threshold
will go undetected.

Since this PUF is based on RTN, which is unique and unpredictable, it can be expected
that the proposed PUF device will have a unique and unpredictable response as well. RTN
is, nonetheless, a time-varying phenomenon. From one use to the next, there is a probability
that a response bit flips. However, the use of the MPF metric decreases the flip probability
since MPF represents but an “accumulation” of RTN and is thus expected to remain similar on
different requests of the same challenge. Despite this, the reproducibility over factors like time
or temperature can be further improved (thus minimizing the probability of a bit flip) by using
a bit preselection method at the point of manufacture. The bit preselection method assesses
the reproducibility of each bit (i.e., the reproducibility of the response of each transistor, in
the non-differential architecture of each transistor pair, in the differential architecture) and the
resulting ranking is used to take only the most stable available bits to form the PUF. The bit
preselection method can be carried out for both voltage and current as the parameter chosen.

2.2.4 The bit selection method for the RTN-based PUF

To improve the quality of the PUF, during the manufacturing process, a bit selection method is
proposed. This technique ranks each bit (e.g., each transistor pair) and the resulting ranking is
used to select only the most stable bits to form the PUF. This selection is performed through
the use of the probability (P). It is defined as shown Equation 2.4 where n0 and n1 are the
number of zeroes and ones, respectively, obtained in the overall set of responses L. An ideal bit
is determined by P = 1 (the response bit, from the MCF comparison of the two transistors in
the pair, would always be either “1” or “0”). Figure 2.6 illustrates an example of a probability
computation of one pair of transistors that works as the basis of this selection method. In this
instance, the two upper plots corresponds to the drain current of two transistors, ma and mb,

2.2 RTN-based PUF 21

P = 0.9

ID
C C

C
MAX

CMIN
MCF ma
MCF mb

R
es

po
ns

e
(0

,1
)

0

1

M
C

F
(A

)

0

200n

400n

I D
 (A

) m
b

7.7µ
7.8µ
7.9µ
8.0µ
8.1µ

I D
 (A

) m
a

7.2µ

7.4µ

7.6µ

t (s)
0 5 10 15 20 25 30 35 40 45 50

Figure 2.6 Illustrating probability calculation for the bit selection method: two current traces
(top two plots), the corresponding MCFs (tMCF = 5s) and the response (“0” or “1”) from
comparing the MCFs (bottom).

where CMAXC and CMINC have been calculated in ten intervals of tMCF = 5s. The third plot
represents the MCF computation for each transistor, while the fourth plot illustrates the bit
response for each interval, resulting in a probability of P = 0.9.

P = max
(n0

L
,
n1

L

)
(2.4)

2.2.5 Metrics to evaluate the RTN-based PUF

The evaluation of the quality of this PUF design was carried out using features that quantitatively
describe its performance: the uniqueness (different PUF instances should return different
responses for the same challenge), unpredictability (the response cannot be anticipated), and
reliability (the same response should be obtained for the same challenge applied to the same
PUF instance, that is, the PUF response must be robust or stable over time and varying
environmental conditions). These features are quantified through a set of specific metrics [61]:

22 Physical Unclonable Functions

• The “intra-chip Hamming Distance”, denoted as HDintra, is used to measure reliability.
First, a n-bit response is obtained from an instance i, denoted by Ri. The same n-bit
response is extracted at a different operating condition (temperature or supply voltage) or
time instants with a value R′i. Taking m samples of R′i (being the t-th sample, R′i,t) it is
possible to obtain HDintra as Equation 2.5 shows. HD represents the Hamming Distance
(i.e., the number of positions of two arrays of length, l, at which their corresponding
value are different) as shown Equation 2.6. The ideal value of HDintra is 0% for a
reliability = 100%, (reliability = 100%−HDintra).

HDintra =
1
m

m

∑
t=1

HD(Ri,R′i,t)

n
×100% (2.5)

HD(x,y) =
l

∑
j=1
|x j− y j| (2.6)

• The concept of “inter-chip Hamming Distance”, denoted as HDinter, is used to measure
uniqueness. If there are two instances, i and j (i ̸= j), each with n-bit responses, Ri

and R j respectively, for a given challenge C, then the average inter-chip HD among k
instances is defined in Equation 2.7. Its ideal value is 50%.

HDinter =
2

k(k−1)

k−1

∑
i=1

k

∑
j=i+1

HD(Ri,R j)

n
×100% (2.7)

• The metric of “Hamming Weight”, denoted as HW , is used to measure unpredictability
as Equation 2.8 shows. The term ri,l represents the l-th binary bit of an n-bit response
from instance i. Its ideal value is also 50%.

HW =
1
n

n

∑
l=1

ri,l×100% (2.8)

2.2.6 Verifying the PUF performance

After proposing the conceptual architecture of the RTN-based PUF, the subsequent step involves
conducting various evaluations. The RTN simulator introduced in [62] serves as a crucial tool
in this evaluation, enabling the generation of RTN current traces under variations in the size of
transistors or the biasing conditions for the PMOS configuration (shown in Figure 2.3a). For
that, among the different designs proposed, the design of Figure 2.5b in which the transistor
generate a drain current that experiments the RTN variation is the one which has been used.

2.2 RTN-based PUF 23

For this evaluation, 500-s long, drain current traces of 1,000 80nm/60nm PMOS transistors
(biased with |VGS|= 0.6V and |VDS|= 0.1V) were obtained with the RTN simulator mentioned
above. This simulator can generate current traces with a fixed time step, including both
manufacturing variations and RTN fluctuations. Having a time step of 1ms would be the
equivalent to considering a settling time for the MCF calculation and comparator circuits of
1ms when operating on real current traces in the fabricated PUF. Therefore, taking tMCF = 1s
(complying with the rule of setting tMCF three orders of magnitude larger than the settling
time), on 500-s long current traces, yields 500 values of the MCF metric for each transistor. To
compose a single RTN-based PUF instance, M = 500 transistors were randomly selected (the
maximum length of a response R is then 250 bits). For a sound evaluation of the proposed PUF
quality, 1,000 of these PUF instances were generated. The evaluation results in this Section
uses the collection of challenges Ceval illustrated in Figure 2.7: the transistors to build a PUF
instance are stored in a list; then, the challenge Ceval pairs transistors that are consecutive in
that list (the 1st with the 2nd, the 3rd with the 4th, and so on).

The evaluation is carried out using MATLAB. The RTN-based PUF is simulated through
basic math functions where each current trace is processed individually and proper computations
are performed (e.g., the MCF is calculated using Equation 2.3). This simulation also takes into
consideration potential non-idealities that might occur in a silicon implementation of either
the MCF calculator or the comparator. For that, it was set a minimum value to compute the
differences. In this scenario, the MCF calculator can only detect alterations in the current

Figure 2.7 The challenge used for the evaluation of the PUF quality.

24 Physical Unclonable Functions

traces that exceed 20nA, and the comparator can produce a response if the difference between
MCF values surpasses 20nA. If not, it yields a random value. These threshold values were
established based on the resolution performance of some current comparators discussed in the
literature [63, 64]. Figure 2.8 shows the result of the bit selection process on all generated
1,000 PUF instances. On every instance, 500 values of the MCF are computed (on a current
trace of 500s with tMCF = 1s) for each transistor in every pair. Then, the probability for every
pair is computed using P in Equation 2.4 (L = 500). For every value pi of the probability in the
horizontal axis, the plot shows the statistics of the number of pairs with a probability equal or
larger than pi. As it can be seen, the better the probability, the fewer number of pairs. With
the bit selection process done, reliability, uniqueness and unpredictability can be evaluated.
For reliability, HDintra has been computed for each PUF instance and every pi value. The
results are shown in Figure 2.9a in terms of reliability easing the comprehension of this concept
for the readers, where the average number of pairs from Figure 2.8 is also plotted. Note that
for P = 1 , there are ≈ 20 pairs and the value of reliability is close to ≈ 100% (HDintra≈ 0).
If such high reliability degree is required for a 128-bits response, then an array of ≈ 2,300
transistors would be sufficient. For uniqueness and unpredictability, HDinter and HW have
been computed and depicted in Figure 2.9b. HDinter is always around the ideal value of 50%.
HW presents more fluctuations, especially around high values of P, but nevertheless remain
close to the ideal value on the whole range.

A first quality comparison is made with other reported differential PUFs using transistor
arrays (like the one presented here) but taking variations in the threshold voltages caused by
static manufacturing randomness as entropy source to generate a response [47, 48, 51] but
ignoring RTN. Table 2.1 reports this comparison with averages of the quality metrics. For

+&33,#4!+;:B!3)?&&!$?D&?+!$Y!;.4#,32D&!'.?4&?!3).#!3)&!+&33',#4!
3,;&L>!$#!bRR<+!'$#4!-2??!3?.-&+>!*,&'D+!bRR!%.'2&+!$Y!3)&!
G:1!;&3?,-!Y$?!&.-)!3?.#+,+3$?9!

!6$!-$;A$+&!.!+,#4'&!567<0.+&D!(/1!,#+3.#-&>!;CE55!
3?.#+,+3$?+!W&?&!?.#D$;'*!+&'&-3&D!J3)&!;.C,;2;!'+)!$Y!.!
?&+A$#+&!W! ,+! 3)&#!NbR!0,3+L9!1$?!.!+$2#D!&%.'2.3,$#!$Y! 3)&!
A?A+&D! (/1! a2.',3*>! Q>RRR! $Y! 3)&+&! (/1! ,#+3.#-&+!W&?&!
4&#&?.3&D9! 6)&! &%.'2.3,$#! ?&+2'3+! ,#! 3),+! I&-3,$#! 2+&+! 3)&!
-$''&-3,$#! $Y! -).''&+! ;%Y,.! ,''2+3?.3&D! ,#! 1,49! b^! 3)&!
3?.#+,+3$?+!3$!02,'D!.!(/1!,#+3.#-&!.?&!+3$?&D!,#!.!',+3_!3)&#>!
3)&!-).''&!;%Y,.!A.,?+!3?.#+,+3$?+!3).3!.?&!-$#+&-23,%&!,#!3).3!
',+3!J3)&!Q+3!W,3)!3)&!N#D>!3)&!`?D!W,3)!3)&!P3)>!.#D!+$!$#L9!

1,49!c!+)$W+!3)&!?&+2'3!$Y!3)&!0,3!+&'&-3,$#!A?$-&++!$#!3)&!
Q>RRR!(/1! ,#+3.#-&+9!U#!&%&?*! ,#+3.#-&>!bRR!%.'2&+!$Y! 3)&!
G:1!.?&!-$;A23&D!J$#!.!-2??!3?.-&!$Y!bRR+!W,3)!+;:BC!O&L!
Y$?! &.-)! 3?.#+,+3$?! ,#! &%&?*! A.,?9! 6)&#>! ?&A?$D2-,0,',3*! Y$?!
&%&?*!A.,?!,+!-$;A23&D!2+,#4!T8,#!8a9!P!JHCE55L9!1$?!&%&?*!
%.'2&!'# !$Y! 3)&! A?$0.0,',3*! ,#! 3)&!)$?,=$#.'! .C,+>! 3)&! A'$3!
+)$W+!3)&!+3.3,+3,-+!$Y!3)&!#2;0&?!$Y!A.,?+!W,3)!.!A?$0.0,',3*!
&a2.'! $?! '.?4&?! 3).#!'# 9! "+! ,3! -.#! 0&! +&&#>! 3)&! 0&33&?! 3)&!
?&A?$D2-,0,',3*>!3)&!Y&W&?!3)&!#2;0&?!$Y!A.,?+9!!

n,3)! 3)&! 0,3! +&'&-3,$#! A?$-&++! D$#&>! ?&',.0,',3*>!
2#,a2&#&++!.#D!2#,Y$?;,3*!-.#!0&!&%.'2.3&D9!1$?!?&',.0,',3*>!
V3#"+(,!).+!0&&#!-$;A23&D!Y$?!&.-)!(/1!,#+3.#-&!.#D!&%&?*!
%.'2&! $Y! A?$0.0,',3*!T9! 6)&! ?&+2'3+! .?&! +)$W#! ,#! 1,49! dJ.L>!
W)&?&!3)&!.%&?.4&!#2;0&?!$Y!A.,?+!Y?$;!1,49!c!,+!.'+$!A'$33&D9!
7$3&! 3).3! Y$?!TCO >! 3)&?&! .?&! pNR! A.,?+! .#D! 3)&! %.'2&! $Y!
?&',.0,',3*! ,+! -'$+&! 3$! pQRRo! JV3#"+(,pRL9! FY! +2-)!),4)!

?&',.0,',3*!D&4?&&!,+!?&a2,?&D!Y$?!.!QNO<0,3+!?&+A$#+&>!3)&#!.#!
.??.*! $Y! pN>`RR! 3?.#+,+3$?+!W$2'D! +2YY,-&! JpQQ&;N! $Y! 3$3.'!
4.3&!.?&.!Y$?! 3)&! 3&-)#$'$4*!.#D!3?.#+,+3$?+!2+&D!)&?&L9!1$?!
2#,a2&#&++! .#D! 2#,Y$?;,3*>! V3#"+%(! .#D! VF!).%&! 0&&#!
-$;A23&D!.#D!D&A,-3&D!,#!1,49!dJ0L9!V3#"+%(!,+!.'W.*+!.?$2#D!
3)&! ,D&.'! %.'2&! $Y! bRo9! VF! A?&++! ;$?&! Y'2-32.3,$#+>!
&+A&-,.''*!.?$2#D!),4)!%.'2&+!$Y!T>!023!#&%&?3)&'&++!?&;.,#!
-'$+&!3$!3)&!,D&.'!%.'2&!$#!3)&!W)$'&!?.#4&9!!

"! Y,?+3! a2.',3*! -$;A.?,+$#! ,+!;.D&!W,3)! $3)&?! ?&A$?3&D!
D,YY&?,.'! (/1+! 2+,#4! 3?.#+,+3$?! .??.*+! J',X&! 3)&! $#&!
A?&+&D!)&?&L!023!3.X,#4!%.?,.3,$#+!,#!3)&!3)?&+)$'D!%$'3.4&+!
-.2+&D!0*!+3.3,-!;.#2Y.-32?,#4!?.#D$;#&++!.+!?$A*!+$2?-&!
3$! 4&#&?.3&! .! ?&+A$#+&! [d\e[S\! 023! ,4#$?,#4! 5679! 6.0'&! F!
?&A$?3+!3),+!-$;A.?,+$#!W,3)!.%&?.4&+!$Y!3)&!a2.',3*!;&3?,-+9!
1$?!.!̀ N<0,3!?&+A$#+&>!,3!,+!+)$W#!3).3!2+,#4!567!$23A&?Y$?;+!
$3)&?! .AA?$.-)&+! W)&?&! ?$A*! -$;&+! +$'&'*! Y?$;! 3)&!
;,+;.3-)<,#D2-&D!%.?,.0,',3*9!6),+!+&&;+!3$!A$,#3!$23!.3!3)&!
,;A$?3.#-&! $Y! 567! W)&#! 2+,#4! 3)&! 3)?&+)$'D! %$'3.4&!
%.?,.3,$#+!.+!?$A*!+$2?-&9!

"#$3)&?!-$;A.?,+$#!-.#!0&!;.D&!W,3)!.!D,YY&?,.'!(/1!
3).3!D$&+!2+&!567![QP\!,#!5U+!.#D!'$$X,#4!.3!3)&!.?&.!2+.4&!
Y$?!+,;,'.?!'&%&'+!$Y!(/1!a2.',3*9!"+!+)$W#!,#!6.0'&!FF>!3)&!
A?A+&D!567<0.+&D!(/1!-.#!.33.,#!3)&!+.;&!%.'2&+!$Y!3)&!
.%&?.4&D! a2.',3*! ;&3?,-+! J?&',.0,',3*>! 2#,a2&#&++>! .#D!
2#,Y$?;,3*L!023!2+,#4!-$#+,D&?.0'*!Y&W&?!3?.#+,+3$?+9!1,#.''*>!
6.0'&! FF! .'+$! ?&A$?3+! .! -$;A.?,+$#! W,3)! .! #$#<D,YY&?,.'!
(/1!2+,#4!I5"G!-&''+![QN\9!"4.,#>!&a2.'!a2.',3*!'&%&'+!.?&!
.-),&%&D!W,3)!.!;2-)!'$W&?!#2;0&?!$Y!3?.#+,+3$?+9!

E9! :U7:@/IFU7I!
! F#!3),+!W$?X>!.!#$%&'!(/1!0.+&D!$#!3)&!567!A)&#$;&#$#!
).+! 0&&#! A?A+&D9! 6),+! #&W! .AA?$.-)! D&;$#+3?.3&+! 3).3!
3.X,#4!3W$!3?.#+,+3$?+!.#D!-$;A.?,#4!3)&,?!G:1>!.!;&3?,-!3).3!
-.A32?&+!.''! ?&'&%.#3!567! ,#Y$?;.3,$#>!;.X&+! ,3!A$++,0'&! 3$!
$03.,#! .! ?&',.0'&! (/1! ?&+A$#+&9! "#! .?-),3&-32?&! Y$?! 3)&!
A?A+&!(/1!).+!0&&#!$23',#&D!.#D!.!0,3!+&'&-3,$#!;&3)$D!3).3!
)&'A+! ,;A?$%,#4! 3)&! (/1! a2.',3*!).+! 0&&#! D&+-?,0&D9! 6$!
%.',D.3&! 3),+! A?A+.'>! +,;2'.3&D! D?.,#! -2??! 3?.-&+! W,3)!
567!).%&! 0&&#! 4&#&?.3&D! 3$! 02,'D! .! +&3! $Y! Q>RRR! (/1!
,#+3.#-&+9!6)&+&!).%&!0&&#!&%.'2.3&D!,#!3&?;+!$Y!3)&!&++,.'!
(/1! Y&.32?&+^! 2#,a2&#&++>! 2#A?&D,-3.0,',3*>! .#D! ?&',.0,',3*9!
6)&! &%.'2.3,$#! ?&+2'3+! +)$W! 3).3! 3)&! 567<0.+&D! (/1!
$23A&?Y$?;+!$3)&?!(/1+!3).3!2+&!.!A.,?!$Y!3?.#+,+3$?+!.#D!3)&!
-$;A.?,+$#! $Y! %$'3.4&<-2??! .+! 3)&! 0.+,-! -$;A$#'!
G$?&$%&?>!,3!-.#!.33.,#!3)&!+.;&!a2.',3*!'&%&'!$Y!.!(/1!3).3!
.'+$!2+&+!567!.+!?$A*!+$2?-&!.#D!.#!I5"G<0.+&D!(/1>!
?&D2-,#4!3)&!#2;0&?!$Y!3?.#+,+3$?+9!6)&!Y232?&!W$?X!,#%$'%&+!
3)&! &CA&?,;.'! %.',D.3,$#! $Y! 3)&! (/1! .#D! ,3+! &%.'2.3,$#!
2#D&?!3&;A&?.32?&!%.?,.3,$#+!.#D!.4,#49!

6"B@8!FF9!:UG("5FIU7!nF6Z![QP\!"7V![QN\!J"COQIL9!
" JKLM" JKNM" B'2&"93,E"

A*02(D2021<"OPQ" SS9SS! SS9SS! SS9SS!
RS2/1*,"OPQ" PO9R! <! PS9Sd!
RT"OPQ" <! bR! PS9Sc!

B*:'/303-<" cb<#;! cb<#;! cb<#;!

4;+D*,"38"
1,(/&2&13,&"

`P>OQc!
JN>RPO!Qd6<5U+L!

P>SSN!
JO`N!c6<
I5"G!
-&''+L!

N>NOc!

!

6"B@8!F9!:UG("5FIU7!nF6Z![d\>![O\!"7V![S\!J"CZQL98
" JUM" JVM" JWM" B'2&"93,E"

A*02(D2021<"OPQ" SQ9bO! <! SP9N! SS9O!
RS2/1*,"OPQ" bR9N`! PS9S! PS9S! PS9SS!
RT"OPQ" <! b`9SP! b`9SP! bR9RS!

!

!

!
1,49!d9!J.L!W%.#,-#.#+/>!.#D!J0L!V3#"+%(!.#D!VF!$Y!3)&!A?$A$+&D!567<0.+&D!
(/19!

!
!

Reliability
Pairs

(a)

Av
er

ag
e

R
el

ia
bi

lit
y

(%
)

80

90

100 Average no. of Pairs

0

100

200

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

HW
HDinter
Pairs

(b)

Av
er

ag
e

H
D

in
te

r &
 H

W
 (%

)

49.8

50.0

50.2 Average no. of pairs

0

100

200

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

!
1,49!c9!5&+2'3,#4!#2;0&?!$Y!A.,?+!Y?$;!3)&!0,3!+&'&-3,$#!-.??,&D!$23! ,#!3)&!
Q>RRR!567<0.+&D!(/1!,#+3.#-&+9!!

Mean
Mean-3!
Mean+3!

N
um

be
r o

f P
ai

rs

0

50

100

150

200

250

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

163

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 02,2024 at 23:43:25 UTC from IEEE Xplore. Restrictions apply.

Figure 2.8 Resulting number of pairs from the bit selection carried out in the 1.000 RTN-based
PUF instances.

2.2 RTN-based PUF 25

collection of challenges Ceval illustrated in Fig. 5: the
transistors to build a PUF instance are stored in a list; then,
the challenge Ceval pairs transistors that are consecutive in that
list (the 1st with the 2nd, the 3rd with the 4th, and so on).

Fig. 6 shows the result of the bit selection process on all
generated 1,000 PUF instances. On every instance, 500
values of the MCF are computed (on a current trace of 500s
with tMCF= 1s) for each transistor in every pair. Then,
reproducibility for every pair is computed using P in Eq. 4
(L=500). For every value pi of the probability in the
horizonal axis, the plot shows the statistics of the number of
pairs with a probability equal or larger than pi. As it can be
seen, the better the reproducibility, the fewer number of pairs.

With the bit selection process done, reliability,
uniqueness and uniformity can be evaluated. For reliability,
HDintra has been computed for each PUF instance and every
value of probability P. The results are shown in Fig. 7(a),
where the average number of pairs from Fig. 6 is also plotted.
Note that for P=1 , there are ~20 pairs and the value of
reliability is close to ~100% (HDintra~0). If such high
reliability degree is required for a 128-bits response, then an
array of ~2,300 transistors would suffice (~11 m2 of total
gate area for the technology and transistors used here). For
uniqueness and uniformity, HDinter and HW have been
computed and depicted in Fig. 7(b). HDinter is always around
the ideal value of 50%. HW presents more fluctuations,
especially around high values of P, but nevertheless remain
close to the ideal value on the whole range.

A first quality comparison is made with other reported
differential PUFs using transistor arrays (like the one
presented here) but taking variations in the threshold voltages
caused by static manufacturing randomness as entropy source
to generate a response [7]–[9] but ignoring RTN. Table I
reports this comparison with averages of the quality metrics.
For a 32-bit response, it is shown that using RTN outperforms
other approaches where entropy comes solely from the
mismatch-induced variability. This seems to point out at the
importance of RTN when using the threshold voltage
variations as entropy source.

Another comparison can be made with a differential PUF
that does use RTN [14] and ROs and looking at the area usage
for similar levels of PUF quality. As shown in Table II, the
proposed RTN-based PUF can attain the same values of the
averaged quality metrics (reliability, uniqueness, and
uniformity) by using half the number of transistors. Finally,
Table II also reports a comparison with a non-differential
PUF using SRAM cells [12]. Again, equal quality levels are
achieved with a much lower number of transistors.

V. CONCLUSIONS
 In this work, a novel PUF based on the RTN phenomenon
has been proposed. This new approach demonstrates that
taking two transistors and comparing their MCF, a metric that
captures all relevant RTN information, makes it possible to
obtain a reliable PUF response. An architecture for the
propose PUF has been outlined and a bit selection method that
helps improving the PUF quality has been described. To
validate this proposal, simulated drain current traces with
RTN have been generated to build a set of 1,000 PUF
instances. These have been evaluated in terms of the essential
PUF features: uniqueness, unpredictability, and reliability.
The evaluation results show that the RTN-based PUF
outperforms other PUFs that use a pair of transistors and the
comparison of voltage-current as the basic component.
Moreover, it can attain the same quality level of a PUF that
also uses RTN as entropy source and an SRAM-based PUF,
halving the number of transistors. The future work involves
the experimental validation of the PUF and its evaluation
under temperature variations and aging.

TABLE II. COMPARISON WITH [14] AND [12] (n=128).
 [14] [12] This work

Reliability (%) 99.99 99.99 99.99

HDinter (%) 48.0 - 49.97

HW (%) - 50 49.96

Technology 65-nm 65-nm 65-nm

Number of
transistors

4,352
(256 17-transistors

ROs)

4,992
(832 6T-
SRAM
cells)

2,286

TABLE I. COMPARISON WITH [7], [8] AND [9] (n=32).
 [7] [8] [9] This work

Reliability (%) 91.58 - 94.2 99.8

HDinter (%) 50.23 49.9 49.9 49.99

HW (%) - 53.94 53.94 50.09

Technology 130-nm 65-nm 130-nm 65-nm

Fig. 7. (a) Reliability, and (b) HDinter and HW of the proposed RTN-based
PUF.

Fig. 6. Resulting number of pairs from the bit selection carried out in the
1,000 RTN-based PUF instances.

Mean
Mean-3σ
Mean+3σ

N
um

be
r o

f P
ai

rs

0

50

100

150

200

250

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

(a) Reliability of the proposed RTN-based PUF.

collection of challenges Ceval illustrated in Fig. 5: the
transistors to build a PUF instance are stored in a list; then,
the challenge Ceval pairs transistors that are consecutive in that
list (the 1st with the 2nd, the 3rd with the 4th, and so on).

Fig. 6 shows the result of the bit selection process on all
generated 1,000 PUF instances. On every instance, 500
values of the MCF are computed (on a current trace of 500s
with tMCF= 1s) for each transistor in every pair. Then,
reproducibility for every pair is computed using P in Eq. 4
(L=500). For every value pi of the probability in the
horizonal axis, the plot shows the statistics of the number of
pairs with a probability equal or larger than pi. As it can be
seen, the better the reproducibility, the fewer number of pairs.

With the bit selection process done, reliability,
uniqueness and uniformity can be evaluated. For reliability,
HDintra has been computed for each PUF instance and every
value of probability P. The results are shown in Fig. 7(a),
where the average number of pairs from Fig. 6 is also plotted.
Note that for P=1 , there are ~20 pairs and the value of
reliability is close to ~100% (HDintra~0). If such high
reliability degree is required for a 128-bits response, then an
array of ~2,300 transistors would suffice (~11 m2 of total
gate area for the technology and transistors used here). For
uniqueness and uniformity, HDinter and HW have been
computed and depicted in Fig. 7(b). HDinter is always around
the ideal value of 50%. HW presents more fluctuations,
especially around high values of P, but nevertheless remain
close to the ideal value on the whole range.

A first quality comparison is made with other reported
differential PUFs using transistor arrays (like the one
presented here) but taking variations in the threshold voltages
caused by static manufacturing randomness as entropy source
to generate a response [7]–[9] but ignoring RTN. Table I
reports this comparison with averages of the quality metrics.
For a 32-bit response, it is shown that using RTN outperforms
other approaches where entropy comes solely from the
mismatch-induced variability. This seems to point out at the
importance of RTN when using the threshold voltage
variations as entropy source.

Another comparison can be made with a differential PUF
that does use RTN [14] and ROs and looking at the area usage
for similar levels of PUF quality. As shown in Table II, the
proposed RTN-based PUF can attain the same values of the
averaged quality metrics (reliability, uniqueness, and
uniformity) by using half the number of transistors. Finally,
Table II also reports a comparison with a non-differential
PUF using SRAM cells [12]. Again, equal quality levels are
achieved with a much lower number of transistors.

V. CONCLUSIONS
 In this work, a novel PUF based on the RTN phenomenon
has been proposed. This new approach demonstrates that
taking two transistors and comparing their MCF, a metric that
captures all relevant RTN information, makes it possible to
obtain a reliable PUF response. An architecture for the
propose PUF has been outlined and a bit selection method that
helps improving the PUF quality has been described. To
validate this proposal, simulated drain current traces with
RTN have been generated to build a set of 1,000 PUF
instances. These have been evaluated in terms of the essential
PUF features: uniqueness, unpredictability, and reliability.
The evaluation results show that the RTN-based PUF
outperforms other PUFs that use a pair of transistors and the
comparison of voltage-current as the basic component.
Moreover, it can attain the same quality level of a PUF that
also uses RTN as entropy source and an SRAM-based PUF,
halving the number of transistors. The future work involves
the experimental validation of the PUF and its evaluation
under temperature variations and aging.

TABLE II. COMPARISON WITH [14] AND [12] (n=128).
 [14] [12] This work

Reliability (%) 99.99 99.99 99.99

HDinter (%) 48.0 - 49.97

HW (%) - 50 49.96

Technology 65-nm 65-nm 65-nm

Number of
transistors

4,352
(256 17-transistors

ROs)

4,992
(832 6T-
SRAM
cells)

2,286

TABLE I. COMPARISON WITH [7], [8] AND [9] (n=32).
 [7] [8] [9] This work

Reliability (%) 91.58 - 94.2 99.8

HDinter (%) 50.23 49.9 49.9 49.99

HW (%) - 53.94 53.94 50.09

Technology 130-nm 65-nm 130-nm 65-nm

Fig. 7. (a) Reliability, and (b) HDinter and HW of the proposed RTN-based
PUF.

Fig. 6. Resulting number of pairs from the bit selection carried out in the
1,000 RTN-based PUF instances.

Mean
Mean-3σ
Mean+3σ

N
um

be
r o

f P
ai

rs

0

50

100

150

200

250

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

(b) HDinter and HW of the proposed RTN-based PUF.

Figure 2.9 Results of the metrics of the proposed RTN-based PUF.

a 32-bit response, it is shown that using RTN outperforms other approaches where entropy
comes solely from the mismatch-induced variability. Another comparison can be made with
a differential PUF that does use RTN [56] in ROs and comparing with the area usage of the
RTN-based PUF transistors array for similar levels of PUF quality. As shown in Table 2.2, the
proposed RTN-based PUF can attain the same values of the averaged quality metrics (reliability,
uniqueness, and unpredictability) but using fewer transistors. Finally, Table 2.2 also reports a
comparison with a non-differential PUF using SRAM cells [65]. Again, equal quality levels are
achieved with a lower number of transistors. To ensure a fair comparison, it would be essential
to include the transistors that will be utilized in the implementation of the MCF calculator and
the comparator.

As a conclusion, the evaluation results show that the RTN-based PUF outperforms other
PUFs that use a pair of transistors and the comparison of voltage or current as the basic
component. Moreover, it can attain the same quality level of a PUF that also uses RTN as

26 Physical Unclonable Functions

Table 2.1 PUF comparison with [47], [48] and [51]. (n = 32)

[47] [48] [51] This dissertation

Reliability (%) 91.58 - 94.2 99.8
HDinter (%) 50.23 49.9 49.9 49.99

HW (%) - 53.94 53.94 50.09
Technology 130-nm 65-nm 130-nm 65-nm

Table 2.2 PUF comparison with [56] and [65]. (n = 128)

[56] [65] This dissertation

Reliability (%) 99.99 99.99 99.99
HDinter (%) 48.0 - 49.97

HW (%) - 50 49.96
Technology 65-nm 65-nm 65-nm

Number of 4,352 4,992
2,286transistors (256 17T ROs) (832 6T-SRAM cells)

entropy source. Thus, the aim of this section which was the verification of the PUF architecture
has been corroborated with these results.

2.2.7 Studying the impact of the size and biasing condition of the entropy-
generating transistors

The importance of this evaluation abides in that there are several factors that can influence the
presence of RTN. First, the number of RTN defects is determined by the channel area. Second,
both the occupancy and the relative shift amplitude ∆ID/ID of an RTN defect are strongly
dependent on the carrier concentration [66] and, therefore, on the gate voltage, |VGS|. Third, the
charge uniformity from source to drain is significantly influenced by |VDS| and this can impact
the RTN behavior [67], especially in nanometric scale devices with short channel effects. The
aim of this evaluation is to find the importance of these factors in the performance of the PUF.
For that, the strategy of evaluation followed in the previous section has been also applied here
(i.e., the use of the RTN simulator, the strategy to generate transistor pairs shown in Figure
2.7 and the evaluation on1,000 PUF instances). The experiments have been carried out in two
groups, one to study the effect of the channel area and one to analyze the impact of biasing.
The values of the parametric variations (channel geometries, expressed by Width/Length in nm
for each biasing combination) for this design of experiments are listed in Table 2.3.

2.2 RTN-based PUF 27

Table 2.3 Summary of parametric variations

|VGS|(V)
|VDS|(V) 0.1 0.6 1.2

0.6 80/60, 200/60, 300/80 80/60 80/60
0.8 80/60 80/60 80/60
1.2 80/60 80/60 80/60

!

!

"I#! H1WAZ;/>U/RfK1=AN1;<W!
=(!)*3,-+!.?*!*SA*&,'*+.3!,+!.?,3!A/A*&:!,.!,3!,'A(&./+.!.(!

<+(F!F?/.!9/1.(&3!,+90%*+1*!.?*!K=L:!.?*!%+)*&02,+-!*+.&(A2!
3(%&1*! (9! .?*! WY;#! ;,&3.:! .?*! +%'8*&! (9! K=L!)*9*1.3! ,3!
)*.*&',+*)!82!.?*!1?/++*0!/&*/#!b*1(+):!8(.?!.?*!(11%A/+12!
/+)!.?*!&*0/.,B*!3?,9.!/'A0,.%)*!L;'M;'!(9!/+!K=L!)*9*1.!/&*!
3.&(+-02!)*A*+)*+.! (+! .?*! 1/&&,*&! 1(+1*+.&/.,(+! CDVE! /+):!
.?*&*9(&*:! (+! .?*! -/.*! B(0./-*:! f!()f#! =?,&):! .?*! 1?/&-*!
%+,9(&',.2!9&('!3(%&1*!.(!)&/,+!,3!3,-+,9,1/+.02!,+90%*+1*)!82!
f!')f!/+)!.?,3!1/+!,'A/1.!.?*!K=L!8*?/B,(&!CDZE:!*3A*1,/002!,+!
+'@0*+-.?!)*B,1*3!F,.?!3?(&.!1?/++*0!*99*1.3#!

=?*!)*3,-+! (9! *SA*&,'*+.3! .?/.! ?/3! 8**+! 1/&&,*)! (%.!
1(+3,3.3!(9!/!9/1.(&,/0!A/&/'*.&,1!/+/023,3!(9!.?*!WY;!4%/0,.2!
'*.&,13!9(&!),99*&*+.!1('8,+/.,(+3!(9!1?/++*0!/&*/3:!/+)!-/.*!
/+)!)&/,+!B(0./-*3#!;(&!*/1?!1('8,+/.,(+:!.?*!K=L!3,'%0/.(&!
F/3! %3*)! .(! -*+*&/.*! D:]]]! 1%&&*+.! .&/1*3! 9(&! Wd$b!
.&/+3,3.(&3!,+!/!D#M@I:!VU@+'!6d$b!A&(1*33#!=(!1('A(3*!/!
3,+-0*!K=L@8/3*)!WY;!,+3./+1*:!17g!U]]!.&/+3,3.(&3!5,#*#:!MU]!
A/,&37!F*&*!&/+)('02!3*0*1.*)#!;(&!/!3(%+)!*B/0%/.,(+!(9!.?*!
A&(A(3*)! WY;! 4%/0,.2:! D:]]]! (9! .?*3*! WY;! ,+3./+1*3! F*&*!
-*+*&/.*)#! b,+1*! .?*! ,'A/1.! (9! 8,/3,+-! /+)! /&*/! /&*:! ,+!
A&,+1,A0*:!%+1(&&*0/.*)!(+!/!9,&3.!/AA&(S,'/.,(+!5.?*&*!'/2!8*!
/!M"#@(&)*&!)*A*+)*+1*!8*.F**+! .?*! 1?/++*0! 0*+-.?! /+)! .?*!
K=L! /'A0,.%)*! 9(&! 0*+-.?3! 8*0(F! P]+'! CDZE7:! .?*!
SA&,'*+.3!?/B*!8**+!1/&&,*)!(%.!,+!.F(!-&(%A3:!(+*!.(!3.%)2!
.?*!*99*1.!(9!.?*!1?/++*0!/&*/!/+)!(+*!.(!/+/02a*!.?*!,'A/1.!(9!
8,/3,+-#!=?*!B/0%*3!(9!.?*!A/&/'*.&,1!B/&,/.,(+3!9(&!.?,3!)*3,-+!
(9! *SA*&,'*+.3! /&*! 0,3.*)! ,+! =/80*! "#! ;(&! */1?! (9! .?*3*!
B/&,/.,(+3:!.?*!WY;!,+3./+1*3!/&*!*B/0%/.*)!5%3,+-!dQ=hQN7!
/+)! .?*! ,'A/1.! (+! &$5'*B'5',C7 5.?&(%-?!DE!"#%&7:! +('@+$($%%7
5F,.?!DE!"#$%7:!+(A&$)'.,*B'5',C75F,.?!DF7:!/+)!.?*!(+/B$&7#"7
A*'&%!F,.?!A&(8/8,0,.2!K:7,3!/+/02a*)#7

I#! K1W9^<W!

9N! ;/A*.,7#"7,&*(%'%,#&7.-*(($57*&$*7
=?&**! 1?/++*0! /&*/3! F*&*! *SA0(&*)G! T:[]]! +'$!

51(&&*3A(+),+-! .(! .?*! 3'/00*3.! .&/+3,3.(&! 3,a*3:! FMO7 >7
[](/MV](/7:!DM:]]]!+'$! 5FMO7>7M]](/MV](/7!/+)!MT:]]]!
+'$!5FMO7>7P]](/M[](/7#!;,-#!T!3?(F3!?(F!&*0,/8,0,.2!/+)!
.?*!+%'8*&!(9!A/,&3!1?/+-*!F,.?!1?/++*0!/&*/!5,+!/00!9,-%&*3!
?*&*/9.*&!.?*!'*.&,13!&*A&*3*+.!B/0%*3!/B*&/-*)!(B*&!.?*!D:]]]!
WY;! ,+3./+1*37#!;(&! *B*&2!B/0%*!A$!(9! .?*!A&(8/8,0,.2! ,+! .?*!
?(&,a(+./0! /S,3:! .?*! A0(.! 3?(F3! .?*! +%'8*&! (9! A/,&3! F,.?! /!
A&(8/8,0,.2!*4%/0! .(!(&! 0/&-*&! .?/+!A$#!Q3! ,.!1/+!8*!3**+:! .?*!
8*..*&! .?*!&*A&()%1,8,0,.2:! .?*!9*F*&!.?*!+%'8*&!(9!A/,&3!8%.!
.?*!?,-?*3.!.?*!&*0,/8,0,.2#!=?*!0/&-*3.!/&*/!3**'3!.(!?/B*!8*..*&!
&*0,/8,0,.2! 9(&! 0(F*&!B/0%*3!(9!K#!>(F*B*&:! 9(&! .?*! &/+-*!(9!
,+.*&*3.!(9!&*0,/8,0,.2!510(3*!.(!D]]e:!K747]#\7:!/00!-*('*.&,*3!
/../,+!.?*!3/'*!0*B*0!(9!&*0,/8,0,.2#!Q!A/&.,1%0/&02!,+.*&*3.,+-!
,+3,-?.!,+.(!.?*!,+90%*+1*!(9!.?*!1?/++*0!/&*/!1/+!8*!(8./,+*)!
,9!3.%)2,+-!.?*!/&*/!1(3.!.(!,'A0*'*+.!/!WY;!F,.?!.?*!8*..*&!
&*0,/8,0,.2! /B/,0/80*#! Q3! 3?(F+! ,+! ;,-#! U:! .?,3! 1(3.! 5/.! .?*!
8(..('7! &*9*&3! .(! .?*! 3,0,1(+! /&*/! +**)*)! .(! ,'A0*'*+.! /!
A*&9*1.02! 3./80*! 8,.! 5K>D7! .(! (8./,+! /! ?,-?02! &*0,/80*! WY;!
5&*0,/8,0,.2gD]]e7#!"9!MU]!A/,&3!2,*0)!M]!A/,&3!F,.?!K>D:!.?%3!

A&(B,),+-! A*&9*1.! &*0,/8,0,.2:! /! &*3A(+3*! (9! 0*+-.?! (7F(%0)!
&*4%,&*! /+!(P MU] M]$ 7.&/+3,3.(&! /&&/2N! =?*! 1(3.! (9! 3%1?! /!
3./80*! 8,.! ,3! .?*+! (P FPOPMU] <K$!5F,.?! <K! 8*,+-! .?*!
+%'8*&!(9!A/,&3!/.!A&(8/8,0,.2!K7#!".!1/+!8*!1(+10%)*)!.?/.!.?*!
3'/00*3.! /&*/! A&(B,)*3! .?*! 0(F*3.! /&*/! 1(3.! F?,0*! .?,3! 1(3.!
,+1&*/3*3!/0'(3.!9(%&9(0)!9(&!.?*!0/&-*3.!1?/++*0#!;,+/002:!;,-#!
V! 3?(F3! .?/.! DF! /+)! DE!"#$%! /&*! 8/&*02! ,'A/1.*)! 82! .?*!
1?/++*0!/&*/!B/0%*:!/+):!,+!*B*&2!1/3*:!.?*!B/0%*3!&*'/,+!10(3*!
.(!.?*!,)*/0!(+*3!(9!U]e#!

QN! ;/A*.,7#"7B'*%'(R7
=?*! K=L! 3,'%0/.(&! 1/+! /03(! 3,'%0/.*!),99*&*+.! 8,/3,+-!

1(+),.,(+3! 53**! =/80*! "7#! =?*! ,'A/1.! .?/.! .?*! 8,/3,+-!
1(+),.,(+3!5,#*#:!3(%&1*@)&/,+!/+)!3(%&1*@-/.*!B(0./-*37!?/B*!
(+!&*0,/8,0,.2!/+)!.?*!+%'8*&!(9!A/,&3!,3!3?(F+!,+!;,-#!Z!59(&!K7
47]#\U7 (+02! 3,+1*! .?,3! ,3! .?*! &/+-*! (9! ,+.*&*3.! ,+! .*&'3! (9!
&*0,/8,0,.27#! Q! .&/+3,3.(&! ,+! 3/.%&/.,(+! 2,*0)3! 8*..*&! 4%/0,.2!
9,-%&*3!.?/+!,+!.?*!0,+*/&!&*-,'*!/+)!3(!,.!)(*3!,9:!/)),.,(+/002:!
.?*! -/.*! B(0./-*! ,3! 30,-?.02! (B*&! ?/09! .?*! 3%AA02! B(0./-*! (9!
D#MI#!"+!.*&'3!(9!/&*/!1(3.!A*&!3./80*!8,.!5;,-#![7:!8,/3,+-!F,.?!
f!()fg]#[I! /+)! f!')fgD#MI! A&(B,)*3! .F,1*! .?*! &*)%1.,(+! ,+!
/&*/!.?/+!%3,+-!f!()fgD#MI!/+)!f!')fg]#DI:!/+)!/!D#U!&*)%1.,(+!
F,.?!&*-/&)!.(!f!()fg]#VI!/+)!f!')fg]#DI#!$+*!,'A(&./+.!+(.*!
.(! '/<*! ?*&*! ,3! .?/.! 8,/3,+-! F,.?! ?,-?*&! B(0./-*3! '/2:!
?(F*B*&:! 1/%3*! ! A&*'/.%&*!)*-&/)/.,(+! .?&(%-?! /-,+-#! =(!

<%&'()A.)W*++%,-)./)K%,%+(0,12)a%,1%01.34/
! ! !"!"!"#$%"
! ! &'(" &')" ('*"

!"#"!"#$%"
&')" #),&)P/+)),&)P/*)),#)#/ #),&)/ #),&)/
&'+" #),&)/ #),&)/ #),&)/
('*" #),&)/ #),&)/ #),&)/

#$!!"#$$%&'(%)*%+,-%.'/0-1+"23%$(+"4'-$'$*5'6),'%#7"'8-#.-$('7)*8-$#+-)$9'

/
U:J./'./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/SB7886R/7367C./

132151nm2
302480nm2

522193nm2
80x60 nm2

200x60 nm2

300x80 nm2

A
re

a
co

st

pe
r b

it
(n

m
2)

0

200k

400k

R
el

ia
bi

lit
y

(%
)

98.5

99

99.5

100

N
um

be
r o

f
Pa

irs

20
40
60
80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./&./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
7367C./

80x60 nm2

200x60 nm2

300x80 nm2

H
W

 (%
)

49.5

50.0

50.5

H
D

in
te

r (
%

)

49.9

50.0

50.1

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

/
U:J./(./AX57SF/4M/SB7886R/7367/48/%&'()*('(!+/78G/,-.*&/01203)(/4./

80x60 nm2

200x60 nm2

300x80 nm2

R
el

ia
bi

lit
y

(%
)

70

80

90

100

N
um

ber of Pairs

0

100

200

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

Figure 2.10 Impact of channel area on reliability and number of pairs.

For the transistors’ size evaluation three channel areas were explored: 4,800nm2 (corres-
ponding to the smallest transistor sizes, W/L = 80nm/60nm), 12,000nm2 (W/L = 200nm/60nm)
and 24,000nm2 (W/L = 300nm/80nm). Figure 2.10 shows how reliability and the number of
pairs change with channel area. The largest area devices seem to show better reliability for
lower values of P. However, for the range of interest of reliability (close to 100%, P > 0.9),
all geometries attain the same level of reliability. A particularly interesting insight into the

!

!

"I#! H1WAZ;/>U/RfK1=AN1;<W!
=(!)*3,-+!.?*!*SA*&,'*+.3!,+!.?,3!A/A*&:!,.!,3!,'A(&./+.!.(!

<+(F!F?/.!9/1.(&3!,+90%*+1*!.?*!K=L:!.?*!%+)*&02,+-!*+.&(A2!
3(%&1*! (9! .?*! WY;#! ;,&3.:! .?*! +%'8*&! (9! K=L!)*9*1.3! ,3!
)*.*&',+*)!82!.?*!1?/++*0!/&*/#!b*1(+):!8(.?!.?*!(11%A/+12!
/+)!.?*!&*0/.,B*!3?,9.!/'A0,.%)*!L;'M;'!(9!/+!K=L!)*9*1.!/&*!
3.&(+-02!)*A*+)*+.! (+! .?*! 1/&&,*&! 1(+1*+.&/.,(+! CDVE! /+):!
.?*&*9(&*:! (+! .?*! -/.*! B(0./-*:! f!()f#! =?,&):! .?*! 1?/&-*!
%+,9(&',.2!9&('!3(%&1*!.(!)&/,+!,3!3,-+,9,1/+.02!,+90%*+1*)!82!
f!')f!/+)!.?,3!1/+!,'A/1.!.?*!K=L!8*?/B,(&!CDZE:!*3A*1,/002!,+!
+'@0*+-.?!)*B,1*3!F,.?!3?(&.!1?/++*0!*99*1.3#!

=?*!)*3,-+! (9! *SA*&,'*+.3! .?/.! ?/3! 8**+! 1/&&,*)! (%.!
1(+3,3.3!(9!/!9/1.(&,/0!A/&/'*.&,1!/+/023,3!(9!.?*!WY;!4%/0,.2!
'*.&,13!9(&!),99*&*+.!1('8,+/.,(+3!(9!1?/++*0!/&*/3:!/+)!-/.*!
/+)!)&/,+!B(0./-*3#!;(&!*/1?!1('8,+/.,(+:!.?*!K=L!3,'%0/.(&!
F/3! %3*)! .(! -*+*&/.*! D:]]]! 1%&&*+.! .&/1*3! 9(&! Wd$b!
.&/+3,3.(&3!,+!/!D#M@I:!VU@+'!6d$b!A&(1*33#!=(!1('A(3*!/!
3,+-0*!K=L@8/3*)!WY;!,+3./+1*:!17g!U]]!.&/+3,3.(&3!5,#*#:!MU]!
A/,&37!F*&*!&/+)('02!3*0*1.*)#!;(&!/!3(%+)!*B/0%/.,(+!(9!.?*!
A&(A(3*)! WY;! 4%/0,.2:! D:]]]! (9! .?*3*! WY;! ,+3./+1*3! F*&*!
-*+*&/.*)#! b,+1*! .?*! ,'A/1.! (9! 8,/3,+-! /+)! /&*/! /&*:! ,+!
A&,+1,A0*:!%+1(&&*0/.*)!(+!/!9,&3.!/AA&(S,'/.,(+!5.?*&*!'/2!8*!
/!M"#@(&)*&!)*A*+)*+1*!8*.F**+! .?*! 1?/++*0! 0*+-.?! /+)! .?*!
K=L! /'A0,.%)*! 9(&! 0*+-.?3! 8*0(F! P]+'! CDZE7:! .?*!
SA&,'*+.3!?/B*!8**+!1/&&,*)!(%.!,+!.F(!-&(%A3:!(+*!.(!3.%)2!
.?*!*99*1.!(9!.?*!1?/++*0!/&*/!/+)!(+*!.(!/+/02a*!.?*!,'A/1.!(9!
8,/3,+-#!=?*!B/0%*3!(9!.?*!A/&/'*.&,1!B/&,/.,(+3!9(&!.?,3!)*3,-+!
(9! *SA*&,'*+.3! /&*! 0,3.*)! ,+! =/80*! "#! ;(&! */1?! (9! .?*3*!
B/&,/.,(+3:!.?*!WY;!,+3./+1*3!/&*!*B/0%/.*)!5%3,+-!dQ=hQN7!
/+)! .?*! ,'A/1.! (+! &$5'*B'5',C7 5.?&(%-?!DE!"#%&7:! +('@+$($%%7
5F,.?!DE!"#$%7:!+(A&$)'.,*B'5',C75F,.?!DF7:!/+)!.?*!(+/B$&7#"7
A*'&%!F,.?!A&(8/8,0,.2!K:7,3!/+/02a*)#7

I#! K1W9^<W!

9N! ;/A*.,7#"7,&*(%'%,#&7.-*(($57*&$*7
=?&**! 1?/++*0! /&*/3! F*&*! *SA0(&*)G! T:[]]! +'$!

51(&&*3A(+),+-! .(! .?*! 3'/00*3.! .&/+3,3.(&! 3,a*3:! FMO7 >7
[](/MV](/7:!DM:]]]!+'$! 5FMO7>7M]](/MV](/7!/+)!MT:]]]!
+'$!5FMO7>7P]](/M[](/7#!;,-#!T!3?(F3!?(F!&*0,/8,0,.2!/+)!
.?*!+%'8*&!(9!A/,&3!1?/+-*!F,.?!1?/++*0!/&*/!5,+!/00!9,-%&*3!
?*&*/9.*&!.?*!'*.&,13!&*A&*3*+.!B/0%*3!/B*&/-*)!(B*&!.?*!D:]]]!
WY;! ,+3./+1*37#!;(&! *B*&2!B/0%*!A$!(9! .?*!A&(8/8,0,.2! ,+! .?*!
?(&,a(+./0! /S,3:! .?*! A0(.! 3?(F3! .?*! +%'8*&! (9! A/,&3! F,.?! /!
A&(8/8,0,.2!*4%/0! .(!(&! 0/&-*&! .?/+!A$#!Q3! ,.!1/+!8*!3**+:! .?*!
8*..*&! .?*!&*A&()%1,8,0,.2:! .?*!9*F*&!.?*!+%'8*&!(9!A/,&3!8%.!
.?*!?,-?*3.!.?*!&*0,/8,0,.2#!=?*!0/&-*3.!/&*/!3**'3!.(!?/B*!8*..*&!
&*0,/8,0,.2! 9(&! 0(F*&!B/0%*3!(9!K#!>(F*B*&:! 9(&! .?*! &/+-*!(9!
,+.*&*3.!(9!&*0,/8,0,.2!510(3*!.(!D]]e:!K747]#\7:!/00!-*('*.&,*3!
/../,+!.?*!3/'*!0*B*0!(9!&*0,/8,0,.2#!Q!A/&.,1%0/&02!,+.*&*3.,+-!
,+3,-?.!,+.(!.?*!,+90%*+1*!(9!.?*!1?/++*0!/&*/!1/+!8*!(8./,+*)!
,9!3.%)2,+-!.?*!/&*/!1(3.!.(!,'A0*'*+.!/!WY;!F,.?!.?*!8*..*&!
&*0,/8,0,.2! /B/,0/80*#! Q3! 3?(F+! ,+! ;,-#! U:! .?,3! 1(3.! 5/.! .?*!
8(..('7! &*9*&3! .(! .?*! 3,0,1(+! /&*/! +**)*)! .(! ,'A0*'*+.! /!
A*&9*1.02! 3./80*! 8,.! 5K>D7! .(! (8./,+! /! ?,-?02! &*0,/80*! WY;!
5&*0,/8,0,.2gD]]e7#!"9!MU]!A/,&3!2,*0)!M]!A/,&3!F,.?!K>D:!.?%3!

A&(B,),+-! A*&9*1.! &*0,/8,0,.2:! /! &*3A(+3*! (9! 0*+-.?! (7F(%0)!
&*4%,&*! /+!(P MU] M]$ 7.&/+3,3.(&! /&&/2N! =?*! 1(3.! (9! 3%1?! /!
3./80*! 8,.! ,3! .?*+! (P FPOPMU] <K$!5F,.?! <K! 8*,+-! .?*!
+%'8*&!(9!A/,&3!/.!A&(8/8,0,.2!K7#!".!1/+!8*!1(+10%)*)!.?/.!.?*!
3'/00*3.! /&*/! A&(B,)*3! .?*! 0(F*3.! /&*/! 1(3.! F?,0*! .?,3! 1(3.!
,+1&*/3*3!/0'(3.!9(%&9(0)!9(&!.?*!0/&-*3.!1?/++*0#!;,+/002:!;,-#!
V! 3?(F3! .?/.! DF! /+)! DE!"#$%! /&*! 8/&*02! ,'A/1.*)! 82! .?*!
1?/++*0!/&*/!B/0%*:!/+):!,+!*B*&2!1/3*:!.?*!B/0%*3!&*'/,+!10(3*!
.(!.?*!,)*/0!(+*3!(9!U]e#!

QN! ;/A*.,7#"7B'*%'(R7
=?*! K=L! 3,'%0/.(&! 1/+! /03(! 3,'%0/.*!),99*&*+.! 8,/3,+-!

1(+),.,(+3! 53**! =/80*! "7#! =?*! ,'A/1.! .?/.! .?*! 8,/3,+-!
1(+),.,(+3!5,#*#:!3(%&1*@)&/,+!/+)!3(%&1*@-/.*!B(0./-*37!?/B*!
(+!&*0,/8,0,.2!/+)!.?*!+%'8*&!(9!A/,&3!,3!3?(F+!,+!;,-#!Z!59(&!K7
47]#\U7 (+02! 3,+1*! .?,3! ,3! .?*! &/+-*! (9! ,+.*&*3.! ,+! .*&'3! (9!
&*0,/8,0,.27#! Q! .&/+3,3.(&! ,+! 3/.%&/.,(+! 2,*0)3! 8*..*&! 4%/0,.2!
9,-%&*3!.?/+!,+!.?*!0,+*/&!&*-,'*!/+)!3(!,.!)(*3!,9:!/)),.,(+/002:!
.?*! -/.*! B(0./-*! ,3! 30,-?.02! (B*&! ?/09! .?*! 3%AA02! B(0./-*! (9!
D#MI#!"+!.*&'3!(9!/&*/!1(3.!A*&!3./80*!8,.!5;,-#![7:!8,/3,+-!F,.?!
f!()fg]#[I! /+)! f!')fgD#MI! A&(B,)*3! .F,1*! .?*! &*)%1.,(+! ,+!
/&*/!.?/+!%3,+-!f!()fgD#MI!/+)!f!')fg]#DI:!/+)!/!D#U!&*)%1.,(+!
F,.?!&*-/&)!.(!f!()fg]#VI!/+)!f!')fg]#DI#!$+*!,'A(&./+.!+(.*!
.(! '/<*! ?*&*! ,3! .?/.! 8,/3,+-! F,.?! ?,-?*&! B(0./-*3! '/2:!
?(F*B*&:! 1/%3*! ! A&*'/.%&*!)*-&/)/.,(+! .?&(%-?! /-,+-#! =(!

<%&'()A.)W*++%,-)./)K%,%+(0,12)a%,1%01.34/
! ! !"!"!"#$%"
! ! &'(" &')" ('*"

!"#"!"#$%"
&')" #),&)P/+)),&)P/*)),#)#/ #),&)/ #),&)/
&'+" #),&)/ #),&)/ #),&)/
('*" #),&)/ #),&)/ #),&)/

#$!!"#$$%&'(%)*%+,-%.'/0-1+"23%$(+"4'-$'$*5'6),'%#7"'8-#.-$('7)*8-$#+-)$9'

/
U:J./'./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/SB7886R/7367C./

132151nm2
302480nm2

522193nm2
80x60 nm2

200x60 nm2

300x80 nm2

A
re

a
co

st

pe
r b

it
(n

m
2)

0

200k

400k

R
el

ia
bi

lit
y

(%
)

98.5

99

99.5

100

N
um

be
r o

f
Pa

irs

20
40
60
80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./&./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
7367C./

80x60 nm2

200x60 nm2

300x80 nm2

H
W

 (%
)

49.5

50.0

50.5

H
D

in
te

r (
%

)

49.9

50.0

50.1

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

/
U:J./(./AX57SF/4M/SB7886R/7367/48/%&'()*('(!+/78G/,-.*&/01203)(/4./

80x60 nm2

200x60 nm2

300x80 nm2

R
el

ia
bi

lit
y

(%
)

70

80

90

100

N
um

ber of Pairs

0

100

200

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

Figure 2.11 Area cost per stable bit for different channel areas.

28 Physical Unclonable Functions

influence of the channel area can be obtained if studying the area cost to implement a PUF
with the better reliability available. As shown in Figure 2.11, this cost (at the bottom plot)
refers to the silicon area needed to implement a perfectly stable bit (P = 1) to obtain a highly
reliable PUF (reliability = 100%). If 250 pairs yield 20 pairs with P = 1, thus providing perfect
reliability, a response of length n would require an n×250/20 transistor array. The cost of such
a stable bit is then n×W ×L×250/NP (with NP being the number of pairs at probability P).
It can be concluded that the smallest area provides the lowest area cost while this cost increases
almost fourfold for the largest channel. Finally, Figure 2.12 shows that HW and HDinter are
barely impacted by the channel area value, and, in every case, the values remain close to the
ideal ones of 50%.

!

!

"I#! H1WAZ;/>U/RfK1=AN1;<W!
=(!)*3,-+!.?*!*SA*&,'*+.3!,+!.?,3!A/A*&:!,.!,3!,'A(&./+.!.(!

<+(F!F?/.!9/1.(&3!,+90%*+1*!.?*!K=L:!.?*!%+)*&02,+-!*+.&(A2!
3(%&1*! (9! .?*! WY;#! ;,&3.:! .?*! +%'8*&! (9! K=L!)*9*1.3! ,3!
)*.*&',+*)!82!.?*!1?/++*0!/&*/#!b*1(+):!8(.?!.?*!(11%A/+12!
/+)!.?*!&*0/.,B*!3?,9.!/'A0,.%)*!L;'M;'!(9!/+!K=L!)*9*1.!/&*!
3.&(+-02!)*A*+)*+.! (+! .?*! 1/&&,*&! 1(+1*+.&/.,(+! CDVE! /+):!
.?*&*9(&*:! (+! .?*! -/.*! B(0./-*:! f!()f#! =?,&):! .?*! 1?/&-*!
%+,9(&',.2!9&('!3(%&1*!.(!)&/,+!,3!3,-+,9,1/+.02!,+90%*+1*)!82!
f!')f!/+)!.?,3!1/+!,'A/1.!.?*!K=L!8*?/B,(&!CDZE:!*3A*1,/002!,+!
+'@0*+-.?!)*B,1*3!F,.?!3?(&.!1?/++*0!*99*1.3#!

=?*!)*3,-+! (9! *SA*&,'*+.3! .?/.! ?/3! 8**+! 1/&&,*)! (%.!
1(+3,3.3!(9!/!9/1.(&,/0!A/&/'*.&,1!/+/023,3!(9!.?*!WY;!4%/0,.2!
'*.&,13!9(&!),99*&*+.!1('8,+/.,(+3!(9!1?/++*0!/&*/3:!/+)!-/.*!
/+)!)&/,+!B(0./-*3#!;(&!*/1?!1('8,+/.,(+:!.?*!K=L!3,'%0/.(&!
F/3! %3*)! .(! -*+*&/.*! D:]]]! 1%&&*+.! .&/1*3! 9(&! Wd$b!
.&/+3,3.(&3!,+!/!D#M@I:!VU@+'!6d$b!A&(1*33#!=(!1('A(3*!/!
3,+-0*!K=L@8/3*)!WY;!,+3./+1*:!17g!U]]!.&/+3,3.(&3!5,#*#:!MU]!
A/,&37!F*&*!&/+)('02!3*0*1.*)#!;(&!/!3(%+)!*B/0%/.,(+!(9!.?*!
A&(A(3*)! WY;! 4%/0,.2:! D:]]]! (9! .?*3*! WY;! ,+3./+1*3! F*&*!
-*+*&/.*)#! b,+1*! .?*! ,'A/1.! (9! 8,/3,+-! /+)! /&*/! /&*:! ,+!
A&,+1,A0*:!%+1(&&*0/.*)!(+!/!9,&3.!/AA&(S,'/.,(+!5.?*&*!'/2!8*!
/!M"#@(&)*&!)*A*+)*+1*!8*.F**+! .?*! 1?/++*0! 0*+-.?! /+)! .?*!
K=L! /'A0,.%)*! 9(&! 0*+-.?3! 8*0(F! P]+'! CDZE7:! .?*!
SA&,'*+.3!?/B*!8**+!1/&&,*)!(%.!,+!.F(!-&(%A3:!(+*!.(!3.%)2!
.?*!*99*1.!(9!.?*!1?/++*0!/&*/!/+)!(+*!.(!/+/02a*!.?*!,'A/1.!(9!
8,/3,+-#!=?*!B/0%*3!(9!.?*!A/&/'*.&,1!B/&,/.,(+3!9(&!.?,3!)*3,-+!
(9! *SA*&,'*+.3! /&*! 0,3.*)! ,+! =/80*! "#! ;(&! */1?! (9! .?*3*!
B/&,/.,(+3:!.?*!WY;!,+3./+1*3!/&*!*B/0%/.*)!5%3,+-!dQ=hQN7!
/+)! .?*! ,'A/1.! (+! &$5'*B'5',C7 5.?&(%-?!DE!"#%&7:! +('@+$($%%7
5F,.?!DE!"#$%7:!+(A&$)'.,*B'5',C75F,.?!DF7:!/+)!.?*!(+/B$&7#"7
A*'&%!F,.?!A&(8/8,0,.2!K:7,3!/+/02a*)#7

I#! K1W9^<W!

9N! ;/A*.,7#"7,&*(%'%,#&7.-*(($57*&$*7
=?&**! 1?/++*0! /&*/3! F*&*! *SA0(&*)G! T:[]]! +'$!

51(&&*3A(+),+-! .(! .?*! 3'/00*3.! .&/+3,3.(&! 3,a*3:! FMO7 >7
[](/MV](/7:!DM:]]]!+'$! 5FMO7>7M]](/MV](/7!/+)!MT:]]]!
+'$!5FMO7>7P]](/M[](/7#!;,-#!T!3?(F3!?(F!&*0,/8,0,.2!/+)!
.?*!+%'8*&!(9!A/,&3!1?/+-*!F,.?!1?/++*0!/&*/!5,+!/00!9,-%&*3!
?*&*/9.*&!.?*!'*.&,13!&*A&*3*+.!B/0%*3!/B*&/-*)!(B*&!.?*!D:]]]!
WY;! ,+3./+1*37#!;(&! *B*&2!B/0%*!A$!(9! .?*!A&(8/8,0,.2! ,+! .?*!
?(&,a(+./0! /S,3:! .?*! A0(.! 3?(F3! .?*! +%'8*&! (9! A/,&3! F,.?! /!
A&(8/8,0,.2!*4%/0! .(!(&! 0/&-*&! .?/+!A$#!Q3! ,.!1/+!8*!3**+:! .?*!
8*..*&! .?*!&*A&()%1,8,0,.2:! .?*!9*F*&!.?*!+%'8*&!(9!A/,&3!8%.!
.?*!?,-?*3.!.?*!&*0,/8,0,.2#!=?*!0/&-*3.!/&*/!3**'3!.(!?/B*!8*..*&!
&*0,/8,0,.2! 9(&! 0(F*&!B/0%*3!(9!K#!>(F*B*&:! 9(&! .?*! &/+-*!(9!
,+.*&*3.!(9!&*0,/8,0,.2!510(3*!.(!D]]e:!K747]#\7:!/00!-*('*.&,*3!
/../,+!.?*!3/'*!0*B*0!(9!&*0,/8,0,.2#!Q!A/&.,1%0/&02!,+.*&*3.,+-!
,+3,-?.!,+.(!.?*!,+90%*+1*!(9!.?*!1?/++*0!/&*/!1/+!8*!(8./,+*)!
,9!3.%)2,+-!.?*!/&*/!1(3.!.(!,'A0*'*+.!/!WY;!F,.?!.?*!8*..*&!
&*0,/8,0,.2! /B/,0/80*#! Q3! 3?(F+! ,+! ;,-#! U:! .?,3! 1(3.! 5/.! .?*!
8(..('7! &*9*&3! .(! .?*! 3,0,1(+! /&*/! +**)*)! .(! ,'A0*'*+.! /!
A*&9*1.02! 3./80*! 8,.! 5K>D7! .(! (8./,+! /! ?,-?02! &*0,/80*! WY;!
5&*0,/8,0,.2gD]]e7#!"9!MU]!A/,&3!2,*0)!M]!A/,&3!F,.?!K>D:!.?%3!

A&(B,),+-! A*&9*1.! &*0,/8,0,.2:! /! &*3A(+3*! (9! 0*+-.?! (7F(%0)!
&*4%,&*! /+!(P MU] M]$ 7.&/+3,3.(&! /&&/2N! =?*! 1(3.! (9! 3%1?! /!
3./80*! 8,.! ,3! .?*+! (P FPOPMU] <K$!5F,.?! <K! 8*,+-! .?*!
+%'8*&!(9!A/,&3!/.!A&(8/8,0,.2!K7#!".!1/+!8*!1(+10%)*)!.?/.!.?*!
3'/00*3.! /&*/! A&(B,)*3! .?*! 0(F*3.! /&*/! 1(3.! F?,0*! .?,3! 1(3.!
,+1&*/3*3!/0'(3.!9(%&9(0)!9(&!.?*!0/&-*3.!1?/++*0#!;,+/002:!;,-#!
V! 3?(F3! .?/.! DF! /+)! DE!"#$%! /&*! 8/&*02! ,'A/1.*)! 82! .?*!
1?/++*0!/&*/!B/0%*:!/+):!,+!*B*&2!1/3*:!.?*!B/0%*3!&*'/,+!10(3*!
.(!.?*!,)*/0!(+*3!(9!U]e#!

QN! ;/A*.,7#"7B'*%'(R7
=?*! K=L! 3,'%0/.(&! 1/+! /03(! 3,'%0/.*!),99*&*+.! 8,/3,+-!

1(+),.,(+3! 53**! =/80*! "7#! =?*! ,'A/1.! .?/.! .?*! 8,/3,+-!
1(+),.,(+3!5,#*#:!3(%&1*@)&/,+!/+)!3(%&1*@-/.*!B(0./-*37!?/B*!
(+!&*0,/8,0,.2!/+)!.?*!+%'8*&!(9!A/,&3!,3!3?(F+!,+!;,-#!Z!59(&!K7
47]#\U7 (+02! 3,+1*! .?,3! ,3! .?*! &/+-*! (9! ,+.*&*3.! ,+! .*&'3! (9!
&*0,/8,0,.27#! Q! .&/+3,3.(&! ,+! 3/.%&/.,(+! 2,*0)3! 8*..*&! 4%/0,.2!
9,-%&*3!.?/+!,+!.?*!0,+*/&!&*-,'*!/+)!3(!,.!)(*3!,9:!/)),.,(+/002:!
.?*! -/.*! B(0./-*! ,3! 30,-?.02! (B*&! ?/09! .?*! 3%AA02! B(0./-*! (9!
D#MI#!"+!.*&'3!(9!/&*/!1(3.!A*&!3./80*!8,.!5;,-#![7:!8,/3,+-!F,.?!
f!()fg]#[I! /+)! f!')fgD#MI! A&(B,)*3! .F,1*! .?*! &*)%1.,(+! ,+!
/&*/!.?/+!%3,+-!f!()fgD#MI!/+)!f!')fg]#DI:!/+)!/!D#U!&*)%1.,(+!
F,.?!&*-/&)!.(!f!()fg]#VI!/+)!f!')fg]#DI#!$+*!,'A(&./+.!+(.*!
.(! '/<*! ?*&*! ,3! .?/.! 8,/3,+-! F,.?! ?,-?*&! B(0./-*3! '/2:!
?(F*B*&:! 1/%3*! ! A&*'/.%&*!)*-&/)/.,(+! .?&(%-?! /-,+-#! =(!

<%&'()A.)W*++%,-)./)K%,%+(0,12)a%,1%01.34/
! ! !"!"!"#$%"
! ! &'(" &')" ('*"

!"#"!"#$%"
&')" #),&)P/+)),&)P/*)),#)#/ #),&)/ #),&)/
&'+" #),&)/ #),&)/ #),&)/
('*" #),&)/ #),&)/ #),&)/

#$!!"#$$%&'(%)*%+,-%.'/0-1+"23%$(+"4'-$'$*5'6),'%#7"'8-#.-$('7)*8-$#+-)$9'

/
U:J./'./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/SB7886R/7367C./

132151nm2
302480nm2

522193nm2
80x60 nm2

200x60 nm2

300x80 nm2

A
re

a
co

st

pe
r b

it
(n

m
2)

0

200k

400k

R
el

ia
bi

lit
y

(%
)

98.5

99

99.5

100

N
um

be
r o

f
Pa

irs

20
40
60
80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./&./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
7367C./

80x60 nm2

200x60 nm2

300x80 nm2

H
W

 (%
)

49.5

50.0

50.5

H
D

in
te

r (
%

)

49.9

50.0

50.1

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

/
U:J./(./AX57SF/4M/SB7886R/7367/48/%&'()*('(!+/78G/,-.*&/01203)(/4./

80x60 nm2

200x60 nm2

300x80 nm2

R
el

ia
bi

lit
y

(%
)

70

80

90

100

N
um

ber of Pairs

0

100

200

Probability, P
0.5 0.6 0.7 0.8 0.9 1.0

Figure 2.12 HW (unpredictability) and HDinter (uniqueness) for different channel areas.

!

!

1(&&(8(&/.*! .?,3:! /+! /-,+-! 3,'%0/.,(+! F/3!)(+*! F,.?! /+!
/11%&/.*! 3.(1?/3.,1! 3,'%0/.(&! CUE#! "+)**):! 8,/3,+-! F,.?!
f!()fg]#[I:!f!')fgD#MI!'/2!1/%3*!.?*!.&/+3,3.(&!.(!/-*!/3!9/&!
/3! P#\! .,'*3! 9/3.*&! .?/+! F?*+! 8,/3,+-! F,.?! f!()fg]#VI! /+)!
f!')fg]#DI#! =?,3! '*/+3! .?/.! /! .&/)*@(99! *S,3.3! 8*.F**+! .?*!
8*..*&!8,/3,+-!.(!&*)%1*!/&*/!1(3.!9(&!/!?,-?02!&*0,/802!WY;!/+)!
.?*!',+,',a/.,(+!(9!.?*!&,3<!(9!A&*'/.%&*!/-,+-#!

"+!.*&'3!(9!DF!/+)!DE!"#$%:!/3!,+!.?*!1/3*!F,.?!.?*!1?/++*0!
/&*/:!+(!3,-+,9,1/+.! .&*+)!/+)!)*3,-+!-%,)*!1/+!8*!*S.&/1.*)!
9&('!.?*!&*3%0.3!3?(F+!,+!;,-#!\:!/3!8(.?!'*.&,13!/&*!/0F/23!
B*&2!10(3*!.(!.?*,&!,)*/0!B/0%*3#!

I"#! 6>;@^9WA>;W!
WY;3!?/B*!*'*&-*)!/3!/!3(0%.,(+!.(!3*1%&*!<*2!*S1?/+-*!

,+!0,-?.F*,-?.!31*+/&,(3#!;(&!.?,3!A%&A(3*:!/!+(B*0!K=L@8/3*)!
WY;!F/3!&*1*+.02!A&(A(3*)#!R33*+.,/0!)*3,-+!A/&/'*.*&3!3%1?!

/3! .?*! /&*/! (9! .?*! .&/+3,3.(&3! (&! .?*,&! 8,/3,+-! 1/+! /99*1.! ,.3!
%+)*&02,+-!*+.&(A2!3(%&1*:!.?*!K=L#!=(!*B/0%/.*!.?*!,'A/1.!
(9!.?*3*!A/&/'*.*&3!(+!.?*!WY;c3!4%/0,.2:!/!3*.!(9!K=L!.&/1*3!
F/3! -*+*&/.*)! 9(&!),99*&*+.! 1?/++*0! /&*/3! /+)! 8,/3,+-!
1(+),.,(+3! %3,+-! /! &*1*+.02! &*A(&.*)! K=L! 3,'%0/.(&#! =?*!
&*3%0.3!3?(F!.?/.! .?*&*! ,3!/! .&/)*@(99!8*.F**+!&*0,/8,0,.2!/+)!
3,0,1(+! /&*/! 1(3.! A*&! 3./80*! 8,.#! =?,3! .&/)*@(99:! ?(F*B*&:!
B/+,3?*3!F,.?!A*&9*1.! &*0,/8,0,.2:!F,.?! .?*!3'/00*3.! .&/+3,3.(&!
8*,+-! .?*! 1?*/A*3.! (A.,(+#! "+! .*&'3! (9! 8,/3,+-:! .?*! 8*3.!
1?/&/1.*&,3.,13! /&*! /../,+*)!F,.?! f!()fg]#[I! /+)! f!')fgD#MI:!
8%.!F,.?!/!1&,.,1/0!)(F+3,)*G!9/3.*&!5%A!.(!iP#\7!)*-&/)/.,(+!
)%*!.(!/-,+-!1('A/&*)!.(!F?*+!%3,+-!0(F*&!8,/3!B(0./-*3#!

K1U1=1;@1W!
b%c! 1R6SF348:S/ @4X54868FC/ 78G/ WICF6XC./ WF37F6J:S/ =6C673SB/ 78G/

A884Y7F:48/ OJ68G7/ +)+%./ BFF5Ch,,DDD.EGF$
V2.623457.62,C:F6C,G6M72RF,M:R6C,+)+%$%+,+)+%i1@W$W=AO$
M:87Ri%')%.5GM./

b+c! ;./<6J7/&!0)'.P/[A8S367C:8J/FB36CB4RG/Y4RF7J6/Y73:7F:48/G26/F4/378G4X/
F6R6J375B/84:C6/:8/U1<C/7C/J7F6/R68JFBC/CS7R6/F4/+)/8X\P/:8/3/1560720
8+.914(-.01:0;<8=0>&5?:1'1@+P/A111P/55./')P/+))!./

b*c! L./]7R7EP/1G./A@&(:@0120 =:!&@/)!&B0C(/5-(!4./WD:Fj63R78Gh/W53:8J63P/
+)+)./

b(c! Q./N73F:8$N73F:86j/&!0)'.P/[K34H7H:R:CF:S/G6M6SF/4SS2578SI/X4G6R/M43/
;L<AP\/:8/3/1560720=:!&/:)!(1:)'0%&'()*('(!+03?+4(5408+.914(-.P/55./
f<.(.%$f<.(.&P/+)%%./

b'c! K./N73FT8$^R436F/&!0)'6P/[@OW1h/O/36R:7H:R:FI/C:X2R7F:48/F44R/M43/787R4J/
A@CP\/ :8/ 3/1560 720 DE&)0 =:!&/:)!(1:)'0 C1:2&/&:5&0 1:0 8+:!?&4(4F0
G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0 G&!?1B40):B0 A99'(5)!(1:40 !10
C(/5-(!0$&4(@:/dWNO@?eP/55./%$(P/+)%"./

b&c! A./a63H72DB6G6/78G/k.$]./@B278JP/[W6S23:FI/78G/36R:7H:R:FIh/M3:68G/43/
M46/d:8Y:F6GeP\/:8/3/1560720HIDJ0=KKK0=:!&/:)!(1:)'0K'&5!/1:0$&L(5&40
G&&!(:@/dA1?NeP/55./%*.(.%$%*.(.(./+)%!./

b"c! Z./1./W2B/78G/W./?6Y7G7CP/[KBIC:S7R/28SR487HR6/M28SF:48C/M43/G6Y:S6/
72FB68F:S7F:48/ 78G/ C6S36F/ E6I/ J68637F:48P\/ :80 3/1560 72/ $&4(@:0
A-!1.)!(1:0C1:2&/&:5&F055./!$%(P/+))"./

b#c! <./NSZ37FB/&!0)'.P/[O/K9U/F7_484XIP\/A99'603?+460%&L./&P/)%%*)*P/
+)%!./

b!c! N./ l4CB:87J7P/]./ OD784P/N./]:34X4F4P/ 78G/ <./ W7F4P/ [KBIC:S7RRI/
28SR487HR6/ M28SF:48/ 2C:8J/ =<;$:8G2S6G/ G6R7I/ MR2SF27F:48/ :8/ 3:8J/
4CS:RR7F43CP\/:8/3/1560=KKK0=:!&/:)!(1:)'08+.914(-.01:0C(/5-(!40):B0
8+4!&.40M=8CA8NP/55./+&%!$+&++P/+)%&./

b%)c! 1./ @7X7SB4/ &!0)'.P/ [O/ 84Y6R/ KBIC:S7R/ 98SR487HR6/ U28SF:48/ 2C:8J/
=<;P\/ :8/3/1560720 =KKK0 =:!&/:)!(1:)'0 8+.914(-.01:0C(/5-(!40):B0
8+4!&.4/dAW@OWeP/+)++./

b%%c! K./ W737j7$@78MR78S7/ &!0)'.P/ [W:X2R7F:8J/ FB6/ :X57SF/ 4M/ 378G4X/
F6R6J375B/ 84:C6/ 48/ :8F6J37F6G/ S:3S2:FCP\/ :80 3/1560 =:!&/:)!(1:)'0
C1:2&/&:5&0 1:0 8+:!?&4(4F0 G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0
G&!?1B4F0):B0A99'(5)!(1:40!10C(/5-(!0$&4(@:0M8GAC$NP/55./%$(P/+)+%./

b%+c! K./W737j7$@78MR78S7P/&!0)'.P/[O/G6F7:R6G/CF2GI/4M/FB6/J7F6,G37:8/Y4RF7J6/
G6568G68S6/ 4M/ =<;/ :8/ H2RE/ 5N>W/ F378C:CF43CP\/ G(5/1&'&5!/1:(50
K:@(:&&/(:@P/a4R2X6/+%'P/+)%!./

b%*c! O./^78J6/&!0)'6P/[@4X573:C48/4M/X4G6R:8J/755347SB6C/M43/F378C:CF43/
G6J37G7F:48h/X4G6R/S73G/7G75F7F:48C/YC/C2HS:3S2:FCP\//:8/3/1560120EJ!?0
K-/19&):0 81'(BO8!)!&0 $&L(5&0 %&4&)/5?0 C1:2&/&:5&P/ 55./ %#&$%#!P/
+)%!.//

b%(c! K./ W737j7$@78MR78S7/ &!0)'.P/ [WF7F:CF:S7R/ SB737SF63:j7F:48/ 4M/ F:X6$
G6568G68F/Y73:7H:R:FI/G6M6SFC/2C:8J/FB6/X7_:X2X/S23368F/MR2SF27F:48P\//
=KKK0>/):4)5!(1:401:0K'&5!/1:0$&L(5&4P/Y4R./&#P/84./#P/55./()*!$()((P/
+)+%./

b%'c! O./N7:F:P/a./Z2836GGIP/78G/K./WSB72X48FP/[O/CICF6X7F:S/X6FB4G/F4/
6Y7R27F6/ 78G/ S4X5736/ FB6/ 563M43X78S6/ 4M/ 5BIC:S7R/ 28SR487HR6/
M28SF:48CP\/:8/K.*&BB&B08+4!&.40$&4(@:0P(!?0Q3RA4P/K./OFB787CP/?./
K86YX7F:E7F4CP/78G/;./WER7Y4CP/1GC./;6D/l43Eh/W53:8J63/;6D/l43EP/
55./+('m+&"P/+)%*./

b%&c! N./ Q./ k:3F48/ 78G/ N./ Q./ 9368P/ [@75F236/ 78G/ 6X:CC:48/ E:86F:SC/ 4M/
:8G:Y:G27R/W:hW:>+/:8F63M7S6/CF7F6CP\/A99'603?+460<&!!.P/(#P/%+")P/%!#&./

b%"c! O./<7F73:G42P/Z./ZB:H72G4P/78G/@./<B64G4342P/[[K:8SB/F4/?6F6SF\h/O/
X6FB4G/F4/:8S367C6/FB6/82XH63/4M/G6F6SF7HR6/=<;/F375C/:8/8784$CS7R6/
N>WU1<CP\/ :8/ 3/1560 120 =KKK0 =:!&/:)!(1:)'0 %&'()*('(!+0 3?+4(540
8+.914(-.0dA=KWeP/55./%$'P/+)+%./

/
U:J./!./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
H:7C:8J/S48G:F:48C./
/

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V

|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

H
W

 (%
)

49.6
49.8
50.0
50.2
50.4
50.6

H
D

in
te

r (
%

)

49.95

50.00

50.05

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./"./AX57SF/4M/G37:8/78G/J7F6/Y4RF7J6C/48//&'()*('(!+/78G/:-.*&/01209)(/4./

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

R
el

ia
bi

lit
y

(%
)

98.5

99.0

99.5

100.0

N
um

be
r o

f P
ai

rs

20

40

60

80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./#./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/H:7C:8J/S48G:F:48C./

86176 nm2

179332 nm2

132151 nm2

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

A
re

a
co

st
 p

er
 b

it
(n

m
2)

0

50k

100k

150k

200k

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

Figure 2.13 Impact of drain and gate voltages on reliability and number of pairs.

2.2 RTN-based PUF 29

For the transistors’ biasing conditions evaluation, it has been used the less-area-cost
identified size (W/L = 80nm/60nm) with the help of the RTN simulator that can also simulate
different biasing conditions. The impact that the biasing conditions (i.e., source-drain and
source-gate voltages) have on reliability and the number of pairs is shown in Figure 2.13
(for P > 0.95 only since this is the range of interest in terms of reliability). A transistor in
saturation yields better quality figures than in the linear regime and so it does if, additionally,
the gate voltage is slightly over half the supply voltage of 1.2V. In terms of area cost per stable
bit (shown in Figure 2.14), biasing with |VGS| = 0.8V and |VDS| = 1.2V provides twice the
reduction in area than using |VGS|= 1.2V and |VDS|= 0.1V , and a 1.5 reduction with respect
to |VGS|= 0.6V and |VDS|= 0.1V . One important note to make here is that biasing with higher
voltages may, however, cause premature degradation through aging. To corroborate this, an
aging simulation was done with an accurate stochastic simulator [68]. Indeed, biasing with
|VGS|= 0.8V , |VDS|= 1.2V may cause the transistor to age as far as 3.9 times faster than when
biasing with |VGS|= 0.6V and |VDS|= 0.1V . However, these results indicate variations in the

!

!

1(&&(8(&/.*! .?,3:! /+! /-,+-! 3,'%0/.,(+! F/3!)(+*! F,.?! /+!
/11%&/.*! 3.(1?/3.,1! 3,'%0/.(&! CUE#! "+)**):! 8,/3,+-! F,.?!
f!()fg]#[I:!f!')fgD#MI!'/2!1/%3*!.?*!.&/+3,3.(&!.(!/-*!/3!9/&!
/3! P#\! .,'*3! 9/3.*&! .?/+! F?*+! 8,/3,+-! F,.?! f!()fg]#VI! /+)!
f!')fg]#DI#! =?,3! '*/+3! .?/.! /! .&/)*@(99! *S,3.3! 8*.F**+! .?*!
8*..*&!8,/3,+-!.(!&*)%1*!/&*/!1(3.!9(&!/!?,-?02!&*0,/802!WY;!/+)!
.?*!',+,',a/.,(+!(9!.?*!&,3<!(9!A&*'/.%&*!/-,+-#!

"+!.*&'3!(9!DF!/+)!DE!"#$%:!/3!,+!.?*!1/3*!F,.?!.?*!1?/++*0!
/&*/:!+(!3,-+,9,1/+.! .&*+)!/+)!)*3,-+!-%,)*!1/+!8*!*S.&/1.*)!
9&('!.?*!&*3%0.3!3?(F+!,+!;,-#!\:!/3!8(.?!'*.&,13!/&*!/0F/23!
B*&2!10(3*!.(!.?*,&!,)*/0!B/0%*3#!

I"#! 6>;@^9WA>;W!
WY;3!?/B*!*'*&-*)!/3!/!3(0%.,(+!.(!3*1%&*!<*2!*S1?/+-*!

,+!0,-?.F*,-?.!31*+/&,(3#!;(&!.?,3!A%&A(3*:!/!+(B*0!K=L@8/3*)!
WY;!F/3!&*1*+.02!A&(A(3*)#!R33*+.,/0!)*3,-+!A/&/'*.*&3!3%1?!

/3! .?*! /&*/! (9! .?*! .&/+3,3.(&3! (&! .?*,&! 8,/3,+-! 1/+! /99*1.! ,.3!
%+)*&02,+-!*+.&(A2!3(%&1*:!.?*!K=L#!=(!*B/0%/.*!.?*!,'A/1.!
(9!.?*3*!A/&/'*.*&3!(+!.?*!WY;c3!4%/0,.2:!/!3*.!(9!K=L!.&/1*3!
F/3! -*+*&/.*)! 9(&!),99*&*+.! 1?/++*0! /&*/3! /+)! 8,/3,+-!
1(+),.,(+3! %3,+-! /! &*1*+.02! &*A(&.*)! K=L! 3,'%0/.(&#! =?*!
&*3%0.3!3?(F!.?/.! .?*&*! ,3!/! .&/)*@(99!8*.F**+!&*0,/8,0,.2!/+)!
3,0,1(+! /&*/! 1(3.! A*&! 3./80*! 8,.#! =?,3! .&/)*@(99:! ?(F*B*&:!
B/+,3?*3!F,.?!A*&9*1.! &*0,/8,0,.2:!F,.?! .?*!3'/00*3.! .&/+3,3.(&!
8*,+-! .?*! 1?*/A*3.! (A.,(+#! "+! .*&'3! (9! 8,/3,+-:! .?*! 8*3.!
1?/&/1.*&,3.,13! /&*! /../,+*)!F,.?! f!()fg]#[I! /+)! f!')fgD#MI:!
8%.!F,.?!/!1&,.,1/0!)(F+3,)*G!9/3.*&!5%A!.(!iP#\7!)*-&/)/.,(+!
)%*!.(!/-,+-!1('A/&*)!.(!F?*+!%3,+-!0(F*&!8,/3!B(0./-*3#!

K1U1=1;@1W!
b%c! 1R6SF348:S/ @4X54868FC/ 78G/ WICF6XC./ WF37F6J:S/ =6C673SB/ 78G/

A884Y7F:48/ OJ68G7/ +)+%./ BFF5Ch,,DDD.EGF$
V2.623457.62,C:F6C,G6M72RF,M:R6C,+)+%$%+,+)+%i1@W$W=AO$
M:87Ri%')%.5GM./

b+c! ;./<6J7/&!0)'.P/[A8S367C:8J/FB36CB4RG/Y4RF7J6/Y73:7F:48/G26/F4/378G4X/
F6R6J375B/84:C6/:8/U1<C/7C/J7F6/R68JFBC/CS7R6/F4/+)/8X\P/:8/3/1560720
8+.914(-.01:0;<8=0>&5?:1'1@+P/A111P/55./')P/+))!./

b*c! L./]7R7EP/1G./A@&(:@0120 =:!&@/)!&B0C(/5-(!4./WD:Fj63R78Gh/W53:8J63P/
+)+)./

b(c! Q./N73F:8$N73F:86j/&!0)'.P/[K34H7H:R:CF:S/G6M6SF/4SS2578SI/X4G6R/M43/
;L<AP\/:8/3/1560720=:!&/:)!(1:)'0%&'()*('(!+03?+4(5408+.914(-.P/55./
f<.(.%$f<.(.&P/+)%%./

b'c! K./N73FT8$^R436F/&!0)'6P/[@OW1h/O/36R:7H:R:FI/C:X2R7F:48/F44R/M43/787R4J/
A@CP\/ :8/ 3/1560 720 DE&)0 =:!&/:)!(1:)'0 C1:2&/&:5&0 1:0 8+:!?&4(4F0
G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0 G&!?1B40):B0 A99'(5)!(1:40 !10
C(/5-(!0$&4(@:/dWNO@?eP/55./%$(P/+)%"./

b&c! A./a63H72DB6G6/78G/k.$]./@B278JP/[W6S23:FI/78G/36R:7H:R:FIh/M3:68G/43/
M46/d:8Y:F6GeP\/:8/3/1560720HIDJ0=KKK0=:!&/:)!(1:)'0K'&5!/1:0$&L(5&40
G&&!(:@/dA1?NeP/55./%*.(.%$%*.(.(./+)%!./

b"c! Z./1./W2B/78G/W./?6Y7G7CP/[KBIC:S7R/28SR487HR6/M28SF:48C/M43/G6Y:S6/
72FB68F:S7F:48/ 78G/ C6S36F/ E6I/ J68637F:48P\/ :80 3/1560 72/ $&4(@:0
A-!1.)!(1:0C1:2&/&:5&F055./!$%(P/+))"./

b#c! <./NSZ37FB/&!0)'.P/[O/K9U/F7_484XIP\/A99'603?+460%&L./&P/)%%*)*P/
+)%!./

b!c! N./ l4CB:87J7P/]./ OD784P/N./]:34X4F4P/ 78G/ <./ W7F4P/ [KBIC:S7RRI/
28SR487HR6/ M28SF:48/ 2C:8J/ =<;$:8G2S6G/ G6R7I/ MR2SF27F:48/ :8/ 3:8J/
4CS:RR7F43CP\/:8/3/1560=KKK0=:!&/:)!(1:)'08+.914(-.01:0C(/5-(!40):B0
8+4!&.40M=8CA8NP/55./+&%!$+&++P/+)%&./

b%)c! 1./ @7X7SB4/ &!0)'.P/ [O/ 84Y6R/ KBIC:S7R/ 98SR487HR6/ U28SF:48/ 2C:8J/
=<;P\/ :8/3/1560720 =KKK0 =:!&/:)!(1:)'0 8+.914(-.01:0C(/5-(!40):B0
8+4!&.4/dAW@OWeP/+)++./

b%%c! K./ W737j7$@78MR78S7/ &!0)'.P/ [W:X2R7F:8J/ FB6/ :X57SF/ 4M/ 378G4X/
F6R6J375B/ 84:C6/ 48/ :8F6J37F6G/ S:3S2:FCP\/ :80 3/1560 =:!&/:)!(1:)'0
C1:2&/&:5&0 1:0 8+:!?&4(4F0 G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0
G&!?1B4F0):B0A99'(5)!(1:40!10C(/5-(!0$&4(@:0M8GAC$NP/55./%$(P/+)+%./

b%+c! K./W737j7$@78MR78S7P/&!0)'.P/[O/G6F7:R6G/CF2GI/4M/FB6/J7F6,G37:8/Y4RF7J6/
G6568G68S6/ 4M/ =<;/ :8/ H2RE/ 5N>W/ F378C:CF43CP\/ G(5/1&'&5!/1:(50
K:@(:&&/(:@P/a4R2X6/+%'P/+)%!./

b%*c! O./^78J6/&!0)'6P/[@4X573:C48/4M/X4G6R:8J/755347SB6C/M43/F378C:CF43/
G6J37G7F:48h/X4G6R/S73G/7G75F7F:48C/YC/C2HS:3S2:FCP\//:8/3/1560120EJ!?0
K-/19&):0 81'(BO8!)!&0 $&L(5&0 %&4&)/5?0 C1:2&/&:5&P/ 55./ %#&$%#!P/
+)%!.//

b%(c! K./ W737j7$@78MR78S7/ &!0)'.P/ [WF7F:CF:S7R/ SB737SF63:j7F:48/ 4M/ F:X6$
G6568G68F/Y73:7H:R:FI/G6M6SFC/2C:8J/FB6/X7_:X2X/S23368F/MR2SF27F:48P\//
=KKK0>/):4)5!(1:401:0K'&5!/1:0$&L(5&4P/Y4R./&#P/84./#P/55./()*!$()((P/
+)+%./

b%'c! O./N7:F:P/a./Z2836GGIP/78G/K./WSB72X48FP/[O/CICF6X7F:S/X6FB4G/F4/
6Y7R27F6/ 78G/ S4X5736/ FB6/ 563M43X78S6/ 4M/ 5BIC:S7R/ 28SR487HR6/
M28SF:48CP\/:8/K.*&BB&B08+4!&.40$&4(@:0P(!?0Q3RA4P/K./OFB787CP/?./
K86YX7F:E7F4CP/78G/;./WER7Y4CP/1GC./;6D/l43Eh/W53:8J63/;6D/l43EP/
55./+('m+&"P/+)%*./

b%&c! N./ Q./ k:3F48/ 78G/ N./ Q./ 9368P/ [@75F236/ 78G/ 6X:CC:48/ E:86F:SC/ 4M/
:8G:Y:G27R/W:hW:>+/:8F63M7S6/CF7F6CP\/A99'603?+460<&!!.P/(#P/%+")P/%!#&./

b%"c! O./<7F73:G42P/Z./ZB:H72G4P/78G/@./<B64G4342P/[[K:8SB/F4/?6F6SF\h/O/
X6FB4G/F4/:8S367C6/FB6/82XH63/4M/G6F6SF7HR6/=<;/F375C/:8/8784$CS7R6/
N>WU1<CP\/ :8/ 3/1560 120 =KKK0 =:!&/:)!(1:)'0 %&'()*('(!+0 3?+4(540
8+.914(-.0dA=KWeP/55./%$'P/+)+%./

/
U:J./!./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
H:7C:8J/S48G:F:48C./
/

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V

|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

H
W

 (%
)

49.6
49.8
50.0
50.2
50.4
50.6

H
D

in
te

r (
%

)

49.95

50.00

50.05

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./"./AX57SF/4M/G37:8/78G/J7F6/Y4RF7J6C/48//&'()*('(!+/78G/:-.*&/01209)(/4./

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

R
el

ia
bi

lit
y

(%
)

98.5

99.0

99.5

100.0

N
um

be
r o

f P
ai

rs

20

40

60

80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./#./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/H:7C:8J/S48G:F:48C./

86176 nm2

179332 nm2

132151 nm2

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

A
re

a
co

st
 p

er
 b

it
(n

m
2)

0

50k

100k

150k

200k

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

Figure 2.14 Area cost per stable bit for different biasing conditions.

!

!

1(&&(8(&/.*! .?,3:! /+! /-,+-! 3,'%0/.,(+! F/3!)(+*! F,.?! /+!
/11%&/.*! 3.(1?/3.,1! 3,'%0/.(&! CUE#! "+)**):! 8,/3,+-! F,.?!
f!()fg]#[I:!f!')fgD#MI!'/2!1/%3*!.?*!.&/+3,3.(&!.(!/-*!/3!9/&!
/3! P#\! .,'*3! 9/3.*&! .?/+! F?*+! 8,/3,+-! F,.?! f!()fg]#VI! /+)!
f!')fg]#DI#! =?,3! '*/+3! .?/.! /! .&/)*@(99! *S,3.3! 8*.F**+! .?*!
8*..*&!8,/3,+-!.(!&*)%1*!/&*/!1(3.!9(&!/!?,-?02!&*0,/802!WY;!/+)!
.?*!',+,',a/.,(+!(9!.?*!&,3<!(9!A&*'/.%&*!/-,+-#!

"+!.*&'3!(9!DF!/+)!DE!"#$%:!/3!,+!.?*!1/3*!F,.?!.?*!1?/++*0!
/&*/:!+(!3,-+,9,1/+.! .&*+)!/+)!)*3,-+!-%,)*!1/+!8*!*S.&/1.*)!
9&('!.?*!&*3%0.3!3?(F+!,+!;,-#!\:!/3!8(.?!'*.&,13!/&*!/0F/23!
B*&2!10(3*!.(!.?*,&!,)*/0!B/0%*3#!

I"#! 6>;@^9WA>;W!
WY;3!?/B*!*'*&-*)!/3!/!3(0%.,(+!.(!3*1%&*!<*2!*S1?/+-*!

,+!0,-?.F*,-?.!31*+/&,(3#!;(&!.?,3!A%&A(3*:!/!+(B*0!K=L@8/3*)!
WY;!F/3!&*1*+.02!A&(A(3*)#!R33*+.,/0!)*3,-+!A/&/'*.*&3!3%1?!

/3! .?*! /&*/! (9! .?*! .&/+3,3.(&3! (&! .?*,&! 8,/3,+-! 1/+! /99*1.! ,.3!
%+)*&02,+-!*+.&(A2!3(%&1*:!.?*!K=L#!=(!*B/0%/.*!.?*!,'A/1.!
(9!.?*3*!A/&/'*.*&3!(+!.?*!WY;c3!4%/0,.2:!/!3*.!(9!K=L!.&/1*3!
F/3! -*+*&/.*)! 9(&!),99*&*+.! 1?/++*0! /&*/3! /+)! 8,/3,+-!
1(+),.,(+3! %3,+-! /! &*1*+.02! &*A(&.*)! K=L! 3,'%0/.(&#! =?*!
&*3%0.3!3?(F!.?/.! .?*&*! ,3!/! .&/)*@(99!8*.F**+!&*0,/8,0,.2!/+)!
3,0,1(+! /&*/! 1(3.! A*&! 3./80*! 8,.#! =?,3! .&/)*@(99:! ?(F*B*&:!
B/+,3?*3!F,.?!A*&9*1.! &*0,/8,0,.2:!F,.?! .?*!3'/00*3.! .&/+3,3.(&!
8*,+-! .?*! 1?*/A*3.! (A.,(+#! "+! .*&'3! (9! 8,/3,+-:! .?*! 8*3.!
1?/&/1.*&,3.,13! /&*! /../,+*)!F,.?! f!()fg]#[I! /+)! f!')fgD#MI:!
8%.!F,.?!/!1&,.,1/0!)(F+3,)*G!9/3.*&!5%A!.(!iP#\7!)*-&/)/.,(+!
)%*!.(!/-,+-!1('A/&*)!.(!F?*+!%3,+-!0(F*&!8,/3!B(0./-*3#!

K1U1=1;@1W!
b%c! 1R6SF348:S/ @4X54868FC/ 78G/ WICF6XC./ WF37F6J:S/ =6C673SB/ 78G/

A884Y7F:48/ OJ68G7/ +)+%./ BFF5Ch,,DDD.EGF$
V2.623457.62,C:F6C,G6M72RF,M:R6C,+)+%$%+,+)+%i1@W$W=AO$
M:87Ri%')%.5GM./

b+c! ;./<6J7/&!0)'.P/[A8S367C:8J/FB36CB4RG/Y4RF7J6/Y73:7F:48/G26/F4/378G4X/
F6R6J375B/84:C6/:8/U1<C/7C/J7F6/R68JFBC/CS7R6/F4/+)/8X\P/:8/3/1560720
8+.914(-.01:0;<8=0>&5?:1'1@+P/A111P/55./')P/+))!./

b*c! L./]7R7EP/1G./A@&(:@0120 =:!&@/)!&B0C(/5-(!4./WD:Fj63R78Gh/W53:8J63P/
+)+)./

b(c! Q./N73F:8$N73F:86j/&!0)'.P/[K34H7H:R:CF:S/G6M6SF/4SS2578SI/X4G6R/M43/
;L<AP\/:8/3/1560720=:!&/:)!(1:)'0%&'()*('(!+03?+4(5408+.914(-.P/55./
f<.(.%$f<.(.&P/+)%%./

b'c! K./N73FT8$^R436F/&!0)'6P/[@OW1h/O/36R:7H:R:FI/C:X2R7F:48/F44R/M43/787R4J/
A@CP\/ :8/ 3/1560 720 DE&)0 =:!&/:)!(1:)'0 C1:2&/&:5&0 1:0 8+:!?&4(4F0
G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0 G&!?1B40):B0 A99'(5)!(1:40 !10
C(/5-(!0$&4(@:/dWNO@?eP/55./%$(P/+)%"./

b&c! A./a63H72DB6G6/78G/k.$]./@B278JP/[W6S23:FI/78G/36R:7H:R:FIh/M3:68G/43/
M46/d:8Y:F6GeP\/:8/3/1560720HIDJ0=KKK0=:!&/:)!(1:)'0K'&5!/1:0$&L(5&40
G&&!(:@/dA1?NeP/55./%*.(.%$%*.(.(./+)%!./

b"c! Z./1./W2B/78G/W./?6Y7G7CP/[KBIC:S7R/28SR487HR6/M28SF:48C/M43/G6Y:S6/
72FB68F:S7F:48/ 78G/ C6S36F/ E6I/ J68637F:48P\/ :80 3/1560 72/ $&4(@:0
A-!1.)!(1:0C1:2&/&:5&F055./!$%(P/+))"./

b#c! <./NSZ37FB/&!0)'.P/[O/K9U/F7_484XIP\/A99'603?+460%&L./&P/)%%*)*P/
+)%!./

b!c! N./ l4CB:87J7P/]./ OD784P/N./]:34X4F4P/ 78G/ <./ W7F4P/ [KBIC:S7RRI/
28SR487HR6/ M28SF:48/ 2C:8J/ =<;$:8G2S6G/ G6R7I/ MR2SF27F:48/ :8/ 3:8J/
4CS:RR7F43CP\/:8/3/1560=KKK0=:!&/:)!(1:)'08+.914(-.01:0C(/5-(!40):B0
8+4!&.40M=8CA8NP/55./+&%!$+&++P/+)%&./

b%)c! 1./ @7X7SB4/ &!0)'.P/ [O/ 84Y6R/ KBIC:S7R/ 98SR487HR6/ U28SF:48/ 2C:8J/
=<;P\/ :8/3/1560720 =KKK0 =:!&/:)!(1:)'0 8+.914(-.01:0C(/5-(!40):B0
8+4!&.4/dAW@OWeP/+)++./

b%%c! K./ W737j7$@78MR78S7/ &!0)'.P/ [W:X2R7F:8J/ FB6/ :X57SF/ 4M/ 378G4X/
F6R6J375B/ 84:C6/ 48/ :8F6J37F6G/ S:3S2:FCP\/ :80 3/1560 =:!&/:)!(1:)'0
C1:2&/&:5&0 1:0 8+:!?&4(4F0 G1B&'(:@F0 A:)'+4(40):B0 8(.-')!(1:0
G&!?1B4F0):B0A99'(5)!(1:40!10C(/5-(!0$&4(@:0M8GAC$NP/55./%$(P/+)+%./

b%+c! K./W737j7$@78MR78S7P/&!0)'.P/[O/G6F7:R6G/CF2GI/4M/FB6/J7F6,G37:8/Y4RF7J6/
G6568G68S6/ 4M/ =<;/ :8/ H2RE/ 5N>W/ F378C:CF43CP\/ G(5/1&'&5!/1:(50
K:@(:&&/(:@P/a4R2X6/+%'P/+)%!./

b%*c! O./^78J6/&!0)'6P/[@4X573:C48/4M/X4G6R:8J/755347SB6C/M43/F378C:CF43/
G6J37G7F:48h/X4G6R/S73G/7G75F7F:48C/YC/C2HS:3S2:FCP\//:8/3/1560120EJ!?0
K-/19&):0 81'(BO8!)!&0 $&L(5&0 %&4&)/5?0 C1:2&/&:5&P/ 55./ %#&$%#!P/
+)%!.//

b%(c! K./ W737j7$@78MR78S7/ &!0)'.P/ [WF7F:CF:S7R/ SB737SF63:j7F:48/ 4M/ F:X6$
G6568G68F/Y73:7H:R:FI/G6M6SFC/2C:8J/FB6/X7_:X2X/S23368F/MR2SF27F:48P\//
=KKK0>/):4)5!(1:401:0K'&5!/1:0$&L(5&4P/Y4R./&#P/84./#P/55./()*!$()((P/
+)+%./

b%'c! O./N7:F:P/a./Z2836GGIP/78G/K./WSB72X48FP/[O/CICF6X7F:S/X6FB4G/F4/
6Y7R27F6/ 78G/ S4X5736/ FB6/ 563M43X78S6/ 4M/ 5BIC:S7R/ 28SR487HR6/
M28SF:48CP\/:8/K.*&BB&B08+4!&.40$&4(@:0P(!?0Q3RA4P/K./OFB787CP/?./
K86YX7F:E7F4CP/78G/;./WER7Y4CP/1GC./;6D/l43Eh/W53:8J63/;6D/l43EP/
55./+('m+&"P/+)%*./

b%&c! N./ Q./ k:3F48/ 78G/ N./ Q./ 9368P/ [@75F236/ 78G/ 6X:CC:48/ E:86F:SC/ 4M/
:8G:Y:G27R/W:hW:>+/:8F63M7S6/CF7F6CP\/A99'603?+460<&!!.P/(#P/%+")P/%!#&./

b%"c! O./<7F73:G42P/Z./ZB:H72G4P/78G/@./<B64G4342P/[[K:8SB/F4/?6F6SF\h/O/
X6FB4G/F4/:8S367C6/FB6/82XH63/4M/G6F6SF7HR6/=<;/F375C/:8/8784$CS7R6/
N>WU1<CP\/ :8/ 3/1560 120 =KKK0 =:!&/:)!(1:)'0 %&'()*('(!+0 3?+4(540
8+.914(-.0dA=KWeP/55./%$'P/+)+%./

/
U:J./!./"#/d28536G:SF7H:R:FIe/78G/"$$%&'(/d28:g2686CCe/M43/G:MM6368F/SB7886R/
H:7C:8J/S48G:F:48C./
/

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V

|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

H
W

 (%
)

49.6
49.8
50.0
50.2
50.4
50.6

H
D

in
te

r (
%

)

49.95

50.00

50.05

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./"./AX57SF/4M/G37:8/78G/J7F6/Y4RF7J6C/48//&'()*('(!+/78G/:-.*&/01209)(/4./

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

R
el

ia
bi

lit
y

(%
)

98.5

99.0

99.5

100.0

N
um

be
r o

f P
ai

rs

20

40

60

80

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

/
U:J./#./O367/S4CF/563/CF7HR6/H:F/M43/G:MM6368F/H:7C:8J/S48G:F:48C./

86176 nm2

179332 nm2

132151 nm2

|VGS| = 0.6V & |VDS|= 0.1V
|VGS| = 0.6V & |VDS|= 0.6V
|VGS| = 0.6V & |VDS|= 1.2V
|VGS| = 0.8V & |VDS|= 0.1V
|VGS| = 0.8V & |VDS|= 0.6V
|VGS| = 0.8V & |VDS|= 1.2V
|VGS| = 1.2V & |VDS|= 0.1V
|VGS| = 1.2V & |VDS|= 0.6V
|VGS| = 1.2V & |VDS|= 1.2V

A
re

a
co

st
 p

er
 b

it
(n

m
2)

0

50k

100k

150k

200k

Probability, P
0.95 0.96 0.97 0.98 0.99 1.00

Figure 2.15 HW (unpredictability) and HDinter (uniqueness) for different biasing conditions.

30 Physical Unclonable Functions

Vth of the transistors, which may not necessarily imply a variation in the presence of RTN,
thereby leaving the PUF unaffected. Nevertheless, a prudent measure would be to operate
within the mid-supply range to mitigate the risk of premature aging. In terms of HW and
HDinter, as in the case with the channel area, no significant design guidelines can be extracted
from the results shown in Figure 2.15.

As a conclusion of this study, results show that there is a trade-off between reliability and
silicon area cost per stable bit. This trade-off, however, vanishes with perfect reliability, with
the smallest transistor (W/L = 80nm/60nm) being the cheapest option. In terms of biasing,
the best characteristics are attained with |VGS| = 0.8V and |VDS| = 1.2V , but with a critical
downside: faster (up to 3.9X) degradation due to aging compared to when using lower bias
voltages.

2.2.8 Evaluating the non-idealities in the building blocks of the RTN-
based PUF

This evaluation has tried to shed light in the impact that non-idealities of some building blocks
(described in Figure 2.5b) have in the PUF reliability. For that, this study has been divided in
two phases. In the first phase, a parametric analysis using MATLAB is carried out to explore
the ideal PUF performance (i.e., without non-idealities in its building blocks and selecting only
the most reliable implementations of the PUF, i.e., using bits with P ≥ 0.99), and also how
non-idealities in the MCF calculators and the comparators impact the PUF performance. In
a second phase, the PUF will be simulated with Spectre AMS to (1) check the design at the
electrical level and (2) include non-idealities in the Analog MUX. The goal of this high-level
design procedure is to refine the specifications for its building blocks so that the next phase of
transistor-level design can be carried out. In doing so, a mixture of languages and simulation
techniques are put in place thus demonstrating a methodology to design hardware security
primitives.

To perform a high-level evaluation of the PUF and how a non-ideal implementation of the
blocks may impact its quality metrics, several non-idealities have been introduced in the form
of parametric variables. For the MCF calculator, a current threshold (MCFth) is introduced
below which no change in the drain current can be detected following the same MATLAB
simulations described in the previous PUF analysis. This represents a resolution limitation
in the circuits that eventually implement this building block. For the Comparator and the
Analog Multiplexer (whose schematic is shown in Figure 2.16 for the sake of clarity), the non-
idealities considered have been the offset and the ratio of the on (Ron) and off (Ro f f) resistances
of the analog switches, respectively. For the sake of illustration, Figure 2.17 shows how a

2.2 RTN-based PUF 31

a

 b

s 11

 out 1 out 2

in1

D
ECO

D
ER

s 12

s 13

s 1M

s 21

s 22

s 23

s 2M

in2 in3 inM

Figure 2.16 Schematic of the Analog MUX.

MCF

r

ideal
comparator

unstable response bit
stable response bit

(a)

MCF

r

o set

ideal
comparator

real
comparator

(b)

Figure 2.17 Impact of the comparator offset in the bit stability.

non-zero comparator offset would impact the PUF quality through the bit stability: for an ideal
comparator (Figure 2.17(a)), a fully stable response bit (red circles) could become unstable
when an offset is present (Figure 2.17(b)); similarly, an unstable bit in an ideal situation could
become stable for a sufficiently large offset. Logically, this alteration will have consequences
not only for the bit stability, but also, as it will be shown later, for the rest of the quality metrics.
Therefore, it is essential that maximum allowable values are found for the non-idealities so that
minimum quality metrics are attained later at the transistor level.

An initial coarse parametric sweep was carried as follows: from 0nA to 100nA in 20nA
increments for MCFth, and in the range of ±100nA in 20nA increments, for the comparator
offset. For each PUF instance and each parametric combination, the numerical simulation

32 Physical Unclonable Functions

MCF th=0nA MCF th=20nA MCF th=40nA

Ideal Performance

MCF th=60nA MCF th=80nA MCF th=100nA

Comparator o�set (nA)

H
W

 (%
)

0

50

100

H
D

in
te

r
(%

)

0

20

40

60

80

Re
lia

bi
lit

y
(%

)

99.70

99.75

99.80

N
o.

 o
f p

ai
rs

20
40
60
80

100
120

100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100

Figure 2.18 Initial coarse parametric analysis of the impact of offset and MCFth.

results are shown in Figure 2.18. This figure represents the values of the PUF quality metrics
averaged over the 1,000 PUF implementations. Several conclusions can be extracted at this
point: (1) the offset has a large impact on all metrics while MCFth plays a significant role
only when it is larger than 60nA; (2) the number of stable pairs improves when the offset
increases (meaning that less silicon area is required to attain a reliable PUF response); (3) the
PUF reliability initially decreases with increasing offset to later improve slightly but, overall,
remains at optimal values because the selected pairs are quite stable; (4) the former apparent
improvements are counteracted by dramatical degradations of the HW and HDinter metrics.
In fact, a slight change in offset produces a large deviation of these two metrics from their ideal
value (50%) and this deviation worsens with increasing MCFth. Figure 2.19 offers a deeper look
at the HW and HDinter degradations when offset varies between ±5nA with 1nA steps: only
when MCFth ≤ 20nA and offset is in the ±4nA range, solutions can be found with HW between
the more acceptable values of 45% and 55%, and with HDinter over 49.5%. In summary, for
this RTN-based PUF to perform acceptably well (reliability ≥ 99%,number of stable pairs

2.2 RTN-based PUF 33

!

MCF th=0nA MCF th=20nA MCF th=40nA

Comparator o�set (nA)

Ideal Performance

H
W

 (%
)

40

50

60

H
D

in
te

r
(%

)

48

49

50

4 2 0 2 4 4 2 0 2 4 4 2 0 2 4

Figure 2.19 Detailed parametric analysis of the impact of offset and MCFth.

≥ 40, 45% ≤ HW ≤ 55%, HDinter ≥ 49%), the comparator offset should be no larger than
±4nA and the MCF calculators should detect RTN events with as low as 20nA of amplitude.

Next, to evaluate the impact of imperfect switches in the Analog MUX, one PUF implemen-
tation from the pool of 1,000 ones was selected. This evaluation required of an electrical
simulator since imperfect switching ultimately distorts the flow of current towards the MCF
calculators. Such a distortion was thus simulated using Spectre AMS and a variety of high-level
description languages. To use Spectre AMS in combination with the RTN simulator, different
high-level description languages have been used: (1) the RTN shifts are added to the transistors
by including a voltage source at their gates to emulate the shift in Vth; (2) the Analog MUX
is a combination of a digital decoder and a collection of analog switches, so a Verilog-AMS
module has been used; (3) the MCF calculator is a purely analog implementation, so Verilog-A
was used there; (4) the comparator module, is a Verilog-AMS block since it receives input
signals and outputs the digital PUF response. A control unit was also implemented in Verilog
to control the selection of transistors and the execution of the MCF comparison. To find out the
impact of Ron and Ro f f of the analog switches in the MUX, the implementation with quality
metrics (obtained in the first phase of high-level design) in Table 2.4 was simulated using
Spectre AMS. These metrics correspond to the worst-case scenario of the non-idealities (i.e.,
the offset and MCFth being 4nA and 20nA, respectively), so the potential effect of the imperfect
analog switches can be better assessed.

Table 2.4 PUF quality metrics of the selected implementation

No. Pairs Reliability (%) HW (%) HDinter (%)

42 99.81 52.38 49.28

34 Physical Unclonable Functions

Table 2.5 Parametric Sweep of Ron and Ro f f

Resistance Start value Final value Steps per decade

Ron 100Ω 100MΩ 1
Ro f f 1kΩ 100MΩ 1

99.7%

99.7%

99.6%

98.5% 100%

44.8%

49.3%

49.3%

49.2%
48.9% 47.5%

47.5%

47.5%
73.4%

73.2%

47.6%

47.6%

47.6%
47.6%

0%

42.9%

40.5%40.4%

39 39 39 36 42

0 0 0

74.5%

H
W (%

)

0

50

H
D

in
te

r
(%

)

46
48

Re
lia

bi
lit

y
(%

)

80

100

N
o.

 o
f

pa
irs

0

20

40

Ron/Ro�
10 4 10 3 10 2 10 1 1 101 102 103

Figure 2.20 Detailed parametric analysis of the impact of imperfect switching.

A parametric analysis was carried out following the sweeps in Table 2.5. For each
combination of resistances, the number of stable pairs, reliability, HW and HDinter were
evaluated. The results are depicted in Figure 2.20. When Ron > Ro f f , (i.e., Ron/Ro f f > 1) both
the reliability and the number of stable pairs are degraded. What happens is that the MCF
calculators receive not only the current from the incorrect transistor in the pair, but also current
of all other transistors in the array that should not be part of the challenge. Then, no stable pair
can be found as the input signals to the MCF calculators can be assimilated to a random noise
where all RTN information is lost (and, being it random, HW is thus close to 50%). In reality,
due to the inherent design of a CMOS transmission gate, this would not be physically plausible.
However, it has been taken into account throughout the entire range of values.

For Ron = Ro f f , the currents of all transistors spill equally into both MCF calculators, so
the two inputs of the comparator are two identical signals. Therefore, with the comparator
offset being 4nA, all responses are “0” in all cases. That is why HW = 0% (so the response of
the resulting PUF is totally predictable), but reliability is 100% and all considered pairs are

2.3 RTN-based PUF low-level design 35

found to be stable. It is only when Ron/Ro f f < 1e−3 that finite resistances are not negatively
impacting the PUF quality. Regarding uniqueness, there is very low correlation between
imperfect switching and HDinter mainly because, as shown in Figure 2.19, the other PUF
implementations are already very unpredictable. Finally, note that the differences with the ideal
case of Ron→ 0 and Ro f f → ∞ (see Table 2.4), may be explained by the logical differences
between a numerical simulation, which idealizes the system performance, and an electrical
simulation, which is closer to reality, especially in dynamically complex circuits.

As a conclusion, both numerical and electrical simulations have been combined to expose
the influence that non-idealities in the PUF building blocks have on the PUF quality metrics.
The outcome of this high-level are design specifications for the building blocks (MCF calculator,
comparator and Analog MUX). The results show that the PUF quality comes not only from the
entropy source but also from the quality of its building blocks.

2.2.9 Summary of the RTN-based PUF realization results

In this section the RTN-based PUF conception has been detailed. For that, the method to
generate a response bit comprises four different architectures: comparing the RTN information
provided by either one or two transistors, and either in terms of voltage or drain current. For
the sake of evaluation, regarding the possibility of generating drain current traces containing
RTN, only one of the architectures has been used for the PUF evaluation. The evaluations have
provided promising results. First, it is demonstrated that the RTN-based PUF can generate
a highly reliable response (regarding the PUF metrics). Second, the best size to provide the
lowest area-cost is W/L = 80nm/60nm for a 65-nm CMOS technology. Besides, the best biasing
condition for that is |VGS|= 0.8V and |VDS|= 1.2V . And, third, it has been also demonstrated
that the building blocks necessary to conform the PUF may also harm its quality. This supports
the importance of well-designed building blocks to improve the PUF performance. With all
this information, the next step taken was the integration into a physical design.

2.3 RTN-based PUF low-level design

Once the conception and verification of the RTN-based PUF was proved the next step was
the low-level design for the implementation in an ASIC. Evaluating the current version of the
PUF has confirmed the feasibility of the RTN-based PUF concept and shed light on how the
necessary building blocks for obtaining the response bit can impact PUF performance. In this
case, for the low-level design, the PUF architecture chosen is the one depicted in Figure 2.5d,
where the RTN is shown in the transistor’s drain voltage. Employing the voltage architecture

36 Physical Unclonable Functions

has yielded several benefits. Firstly, it avoids potential issues that may arise in current sensing,
simplifying the design by utilizing voltages. Secondly, the examination of the bias current
value (ICC) selected in the Constant-Current method [60] enable parameter scaling that may
improve the quality of the PUF. Thirdly, in case aging impacted the PUF, adjusting voltage
levels becomes a simpler task. For that, the analog design flow with UMC 65nm process
technology has been applied.

2.3.1 Floorplan of the RTN-based PUF integration scheme

As it was above mentioned the architecture selected to be implemented is illustrated in
Figure 2.5d. Instead of using the drain current, the threshold voltage, impacted by RTN,
is obtained using the Constant-Current (CC) method [60]. Setting the PMOS transistor in diode
configuration and driving it with a fixed current, the voltage at its drain (VD) can provide a
measure of the threshold voltage. A relationship between transistor size and the optimum value
of the current ICC is also defined. Since the transistors used in this implementation have the
size ratio W/L = 80nm/60nm, following the indication presented in [60], the optimum ICC
for a current-mode implementation should be 100nA.

An important aspect here is that different ICC values provide different amplified versions
of the threshold voltage at the transistor drain. This has an additional advantage over using the
MCF: the RTN-induced shifts on VD are larger and, therefore, the sensing capabilities of the
MVF calculation blocks and the comparator resolution can be relaxed. To demonstrate this, a
modification of the already-used RTN simulator presented in [62] was used. This new version
provided drain voltage traces that contain RTN. From a pool of 1,000 RTN simulated traces,
Table 2.6 shows the cumulative maximum and the minimum voltages detected (CMAXV and
CMINV) and the maximum and minimum MVF computed in 100µs (MV FMAX and MV FMIN).
The tradeoff here, as far as circuit design is concerned, can be appreciated by looking at
the maximum and minimum common-mode voltage of the voltage signal acquired (CMMAX

and CMMIN) at node VD. Lower ICC values lead to wider MVF ranges, resulting in a less
demanding comparator resolution. However, these wider MVF ranges also require wider, and,
therefore more difficult to design, input common-mode ranges for the analog circuits in the
MVF calculation module. On the other hand, detecting the RTN may become more challenging
when the ICC values are very low as the transistor enters into the sub-threshold region.

The concept shown in Figure 2.5d has been translated into a physical realization with the
following approach. On the one hand, both the transistors and the selector are organized into a
single array of M unit cells, each one containing the transistor itself, a set of switches, and a
digital control block. On the other hand, there is an Analog Sensing Block (ASB), comprising

2.3 RTN-based PUF low-level design 37

Table 2.6 Comparison between different ICCs (voltages in mV)

ICC CMAXV CMINV MVFMAX MVFMIN CMMAX CMMIN

100nA 996.7 677.1 175.0 14.8 979.5 738.6
200nA 931.2 645.4 104.8 8.5 923.6 690.0
500nA 858.9 607.3 53.0 4.1 851.5 629.0
700nA 832.9 593.3 44.4 3.3 828.9 602.8
1µA 804.9 569.3 32.8 2.6 803.0 573.4
2µA 742.8 502.7 26.7 1.7 741.6 505.3
3µA 700.9 457.7 17.4 1.3 700.2 459.2
5µA 638.9 387.7 12.7 1.0 637.1 388.7
6µA 613.6 358.6 1.2 0.9 611.3 359.4

the MVF calculator and the comparator that processes the drain voltages and outputs a response
to a given challenge. This organization is depicted in Figure 2.21.

The ASB contains two MVF calculation modules. Each module has two Peak Detection
and Hold (PDH) blocks, to obtain CMAXV and CMINV , a subtractor block (SUB), to provide
the MVF value for the selected transistor, and a comparator, to ultimately attain the response.
As for the unit cell, detailed in the inset of Figure 2.21, the transistor is connected, when set as a
member of the pair defined by the challenge, to a current source (ICC) to evaluate its threshold

ASB

M
VF

 C
A

LC
U

LA
TI

O
N

M
O

D
U

LE

Unit cell

SUB

COMP

SUB

PD
H

m
in

PD
H

m
ax

PD
H

m
in

PD
H

m
ax

MVFmai

r

VDmai

M-UNIT CELL ARRAY

M
VF

 C
A

LC
U

LA
TI

O
N

M
O

D
U

LE

MVFmbi

VDmbi

Figure 2.21 Floorplan of the RTN-PUF showing the unit cell and the ASB.

38 Physical Unclonable Functions

voltage using the CC method. The switches enable the transistor to be set either as the first
(with SWITCH 1) or the second (with SWITCH 2) member of the pair in the challenge, or (with
SWITCH 3) in a standby mode when the transistor is not part of the challenge and to prevent
excessive power dissipation. As shown with the digital control block schematic in Figure 2.21,
these switches are activated depending upon the location (row and column) of the transistor:

• SWITCH 1 is activated when the row (sel_row_1) and the column (sel_col_1) signals
of the first member of the pair selection are activated.

• SWITCH 2 is activated similarly for the second member of the pair (with sel_row_2 and
sel_col_2).

• SWITCH 3 is activated if the transistor is not selected or the ENABLE signal is not
activated, remaining in the standby mode.

An array of 4,096 unit cells has been considered for the RTN-based PUF. This would allow
generating 2,048 pairs and, therefore, a 2,048-bit response. With all these considerations the
next step was the design of this array.

2.3.2 Transistors Array design

The design of the switches deserves, as demonstrated in Section 2.2.8, careful consideration.
The strategy here was to consider two elements: (1) a limit for the detection of RTN changes
(i.e., the fastest RTN event that can be completely detected); (2) the parasitic resistances and
capacitances from the layout of the switches as well as from the routing lines used throughout
the entire array. Both elements bring along a design constraint. On the one hand, the lower
the limit, the more complex the required detection circuit becomes. On the other hand, the
larger the parasitics, the more severe the lowpass filtering out of RTN information, inevitably
arising from having RC elements in any integrated circuit as shown in Equation 2.9 (where
the subscript T denotes the total resistances and capacitances affecting the transistor that is
generating the signal with RTN).

f =
1

2πRTCT
(2.9)

The initial estimation of such parasitics reveals that the total capacitance (CT) connected to
the transistor can be approximated as expressed in Equation 2.10. This calculation is a sum of
the capacitance of the routing lines (CLINE), the parasitic capacitances of the transmission gates
in the array (CGS−SWITCH), the parasitic capacitances of the input transistors of the required
OTAs in the MVF calculator (CGS−OTA), and the load capacitance (CL). After designing the

2.3 RTN-based PUF low-level design 39

array structure, CLINE was determined to be 1pF as a maximum value. The load capacitance,
CL, which represents the connection with the pad, can be estimated as about 1pF . The parasitic
capacitances due to the transistors in the switches and in the OTAs inputs were calculated with
the transistor size as an initial approximation at W/L = 3µm/0.5µm, with each CGS = 100 f F .
According to Equation 2.10, CT can be bounded by 2.6pF . However, to account for any
variations due to fabrication or any unconsidered factors, the total capacitance connected to the
transistor is approximately CT = 5pF .

CT =CLINE +2 ·CGS−SWITCH +4 ·CGS−OTA +CL (2.10)

On the other hand, since the sensing block responsible for computing the MPF is now
specifically designed, it is possible to reduce the detection time of the voltage peak caused by
the RTN to 100ns. This sets the maximum RT , derived from Equation 2.9, at 3,183Ω. This
total resistance (RT), as Equation 2.11 shows, is composed of the routing line resistance (around
100Ω) and the on-resistance Ron of the switch, the latter depending on the size and type of
CMOS transistors used. From Equation 2.11, it is possible to get the maximum Ron allowed,
which is estimated at 3kΩ.

RT = RLINE +Ron (2.11)

Once the specification has been obtained, the next step is to design the switches. To that end,
CMOS transmission gates [69], with low threshold voltage transistors, have been used as shown
Figure 2.22. The first simulation was a static one in which the switch is evaluated in open and

CONTROL

CONTROL

Vin Vout

Vout

RLINE CT

Simulated loads

Figure 2.22 CMOS transmission gates implemented in the transistors’ array. In the red box the
load resistance and capacitor used for the simulations.

40 Physical Unclonable Functions

close state varying the input voltage (Vin) from 0 to 1.2V. The length (L) of the transistors that
comprise the transmission gates was set in 100nm to avoid possible current leakage that could
affect the rest of the circuitry. Then, several widths were evaluated: W = 1µm, W = 2µm and
W = 4µm. To account for manufacturing variations, 1,000 instances of transmission gates were
generated using Monte-Carlo simulation. Table 2.7 displays the worst and best-case resistance
values for Ron and Ro f f of the set of instances evaluated for each size. While the transmission
gate with W = 4µm and L = 100nm, delivers maximum performance, a balanced trade-off
between size and performance is selected: W = 2µm and L = 100nm. The worst Ron occurs
around Vin = 0.7V , where neither NMOS nor PMOS are operating optimally. For Ro f f , the
lowest value corresponds to the input voltage being equal to 0V and the highest one when it is
equal to 1.2V. These results are in line with the established thresholds for Ron and Ro f f ratios
that were obtained in Section 2.2.8.

The array design that conforms the PUF is rooted in the unit cell design. For the array
of 4,096 transistors considered, a square-shaped floorplan of 64 rows x 64 columns has been
implemented. A decoder has been used for the row and column of each of the two unit cells
that make up the challenge (i.e., 4 decoders in total, with 64 output bits). The input of the
decoders (i.e., the specific number of the transistor selected out of the 4,096 in the array) is
a 12-bit digital word. The 6 least significant bits are used for the row selection, while the 6
most significant bits are used for the column selection. To reduce the number of chip pads
devoted to this 12-bit word for unit cell selection, serializers, following the serial-in parallel-out
architecture, have been implemented. For that, two levels of registers have been used, working
as follows: once the 12-bit digital word for the selected transistor has been introduced in the
first-level registers, a load signal activates the data loading in the second-level registers. The
use of two serializers (one per transistor of the pair making up the challenge) is thus required.

Table 2.7 Worst and best case of each transistor size evaluated to comprise the transmission
gates

Size Ron(Ω)(Vin = 0.7V) Roff(Ω)
Worst Case Best Case Worst Case Best Case

W = 1µm
4.46k 2.90k

278k (0 V) 1.44M (0 V)
L = 100nm 342k (1.2 V) 1.50M (1.2 V)

W = 2µm
2.18k 1.50k

253k (0 V) 1.41M (0 V)
L = 100nm 310k (1.2 V) 1.47M (1.2 V)

W = 4µm
1.09k 766

229k (0 V) 1.39M (0 V)
L = 100nm 283k (1.2 V) 1.47M (1.2 V)

2.3 RTN-based PUF low-level design 41

Figure B.1 in Appendix B.1 shows the layout implementation of the PUF array with 4,096 unit
cells. An inset has been included to show the layout of the unit cell as well. The total size of
this array is 730µm×700µm. The array has been designed in a modular and regular fashion
so that it can be easily expanded to generate a larger number of stable response bits.

Once a new given transistor is selected (as 1st or 2nd member of the pair in a new given
challenge), its drain voltage generally differs to the drain voltage of the previous transistor. Due
to the on- and off-resistance of the unit cell switches and the routing parasitics, the voltage that
the ASB is evaluating suffer a dynamic behaviour as shown Figure 2.23. Phase A represents
the measurement of the previous transistor with a drain voltage, V D#1, that in a time t = ts is
deselected, selecting a new one in Phase B with a drain voltage, V D#2. It is therefore important
to determine how long will it take to settle since, if the ASB processes these prematurely, the
extracted MVF values may be incorrect and the response may end up being the wrong one. The
evaluation of this settling time in the selection process has a twofold purpose: (1) to confirm
that the layout has been properly done and (2) to know how fast a response can be reliably
obtained from the RTN-based PUF once a challenge is given.

To measure how well the signal settles, the evaluation tracks its variation rate and extracts at
which three threshold times (indicated as th1, th2, and th3 in Figure 2.23) these rates gradually
decrease below 10mV/µs, 1mV/µs and 0.1mV/µs. The signal is considered settled (and thus
no impact on the PUF response occurs because of this dynamic behavior) when it reaches
threshold time th3 (i.e., a variation rate of 0.1mV/µs or less). To simplify this evaluation and
reduce the computational requirements, only 3 unit cells have been considered in the selection
process.

In addition, temperature variations have been included to cover the Military Extended range
testing for 3 temperatures: −55oC, 27oC and 125oC. At each temperature, a Monte-Carlo

Figure 2.23 Dynamic behavior and settling during the selection process.

42 Physical Unclonable Functions

simulation with 200 samples has been run. The test bench used is defined in Table 2.8. The
3 unit cells selected are: (1) unit cell #0 (at the left topmost corner of the array), labeled
“ORIGINAL”; (2) the one just below, labeled “NEAR”; and (3) the farthest one from unit cell
#0, labeled “FAR”. The test bench considers three consecutive phases (A, B and C) to analyze
if and how the deselection→ selection process depends on each unit cell being the 1st or 2nd

member of the pair and thus quantify any difference whatsoever between nodes V Dmai and
V Dmbi. For V Dmai, the 1st member of the pair is “ORIGINAL” (phase A), then “NEAR”
(phase B) and then “FAR” (phase C). Similarly, for V Dmbi, the 2nd member of the pair is
“FAR” (phase A), then “ORIGINAL” (phase B) and then “NEAR” (phase C).

Table 2.8 Array test bench definition

CELL NUM. ROW COL Phase A Phase B Phase C

ORIGINAL 0 0 0 1st 2nd Standby
NEAR 1 1 0 Standby 1st 2nd
FAR 4,095 63 63 2nd Standby 1st

As mentioned above, due to the unit cell switches and the routing parasitics, the evaluation
carried out obtains the worst case of threshold time th3 (in Figure 2.23) at which the output of
the array (the voltages V Dmai and V Dmbi) is stable and settled and, therefore, no dynamic-
induced error hinders the MVF detection and PUF response. These worst cases (µ +3σ) are
shown in Table 2.9 for all 3 threshold times, all temperatures and each unit cell being the 1st

and 2nd member of the transistor pair in the challenge (following the test bench of Table 2.8).
The results in Table 2.9 show that: 1) both voltages at V Dmai and V Dmbi settle considerably
fast as there are small differences between the threshold times for the same unit cell; 2) the
threshold times between cells are very similar meaning that the location in the array (and thus
routing parasitics from the implemented layout) does not have any impact; 3) the selection as
1st and 2nd member of the pair yields similar threshold times; 4) temperature has an almost
negligible impact. Additionally and in the face of the worst-case value of threshold time th3

(obtained for cell “NEAR” at 125oC when selected as 1st member of the pair as highlighted in
Table 2.9) a guideline for use is attained: to establish a wait time of 10µs to have a properly
stabilized input for the ASB to process. This wait time is to be added to the time for the ASB
to carry out the MVF extraction (tMV F) and comparison.

Concluding, the strategy has been, instead of using the drain current to encapsulate the RTN,
to apply a more practical approach based on monitoring voltages. The strategy followed for the
RTN-based PUF core building block consists of an array of unit cells that contain the transistor,
from which entropy is extracted, and auxiliary elements (switches and a digital control circuit).
This unit cell and the array layout have had to be carefully designed for such entropy to be used

2.3 RTN-based PUF low-level design 43

Table 2.9 Evaluation of the 4,096 unit cell array (threshold times in µs)

T (oC) CELL th1(10mV/µs) th2(1mV/µs) th3(0.1mV/µs)
1st 2nd 1st 2nd 1st 2nd

-55 ORIG. 2.61 2.72 4.76 3.49 6.03 4.46
NEAR 2.57 1.90 5.96 3.52 5.65 4.97
FAR 2.00 0.82 3.54 7.59 4.86 6.64

27 ORIG. 3.07 3.28 4.40 4.66 6.20 6.06
NEAR 0.97 2.13 6.93 4.18 7.06 6.13
FAR 2.32 0.83 4.21 7.44 6.18 6.12

125 ORIG. 3.61 3.84 4.79 5.47 6.10 6.53
NEAR 0.96 2.34 7.20 5.04 8.01 7.60
FAR 2.33 0.82 4.84 7.51 7.71 6.88

without introducing either ohmic losses or timing limitations that may degrade the response
quality and turnaround times. However, the ASIC design does not finish here, the next step is to
evaluate and implement the building blocks required to extract the response bit from the RTN.

2.3.3 Analog Sensing block implementation

The architecture for the ASB in the PUF responsible for measuring and processing all the RTN
information is depicted in Figure 2.24. The voltage signal generated in each transistor serves
as the input to a pair of Peak Detect and Hold circuits (PDHMAX and PDHMIN) to calculate
the maxima (CMAXV) and the minima (CMINV) envelopes, respectively. The subsequent
block is a difference amplifier that internally subtracts the two values obtained, giving the
MVF value for the selected transistors (M1 and M2 in this case). This subtraction (∆MV F)
is added to a reference voltage VREF to set the common-mode operation of the comparator.

response (0,1)

Transistor M1
Transistor M2

Analog Sensing Block (ASB)

PDH MAX

PDH MIN

VD1 VD2

PDH MAX

PDH MIN

VMAX1

VMIN1

VMAX2

VMIN2

MVF
+ VREF VREF

response (0,1)

Transistor M1 Transistor M2

Analog Sensing Block (ASB)

PDH MAX

PDH MIN

VD1 VD2

PDH MAX

PDH MIN

CMAXV1

CMINV1

MVF
+ VREF VREF

CMAXV2

CMINV2

Figure 2.24 Schematic of the proposed ASB

44 Physical Unclonable Functions

The PUF response is directly obtained by comparing the addition result (∆MV F +VREF) with
the reference voltage VREF to finally give the binary response (0,1) depending if it is larger or
smaller than VREF . Thus, this step is divided in the design of the PDH, the subtractor and the
comparator.

2.3.3.1 PDH design

The design and implementation of the PDH circuits, shown in Figure 2.25, have been carried out
inspired by the ideas in [70][71] and adapting those ideas for RTN detection. The PDH circuit
relies on an amplifying element (an OTA) connected to a load made by the series combination
of a hold capacitor CH and a resistor RC (whose purpose will be made apparent later) through a
current mirror.

One important consideration as far as the usage of the PDH circuit within the RTN-based
PUF is that the random offset from the OTA is one major non-ideality that may seriously impact
the values of the detected peaks and, thus, the MVF values that are ultimately attained. This is
because such offset can be of the same order of magnitude as the RTN-induced shifts present
in the transistors, so it is mandatory to overcome this issue. To do so, an offset cancellation
approach is used, as illustrated also in Figure 2.25.

This approach uses three main phases of operation. During the Write phase (switches W
on), represented in the red circuitry, the maximum value of VD plus the input-referred offset
(VL) of the OTA are stored on node L using capacitor CH . The PDH circuit operates in this

Figure 2.25 Final design of the PDH circuit. The circuits red and blue are the equivalent black
circuit in each phase. CM represents the current-mirror.

2.3 RTN-based PUF low-level design 45

phase until time tMV F is reached. In the Read phase (switches R on), represented in the blue
circuitry, the stored value is transferred via the OTA configured as a unity-gain buffer to the
subsequent stage, the subtractor (represented in Figure 2.25 by ZL,DIFF). During this phase, the
OTA subtracts VL at the output. The PDH circuit operates in this phase until the comparator
processes both MVFs. There is a third operation phase, Reset (switch RST on), in which
node L is grounded to set the circuit for detection of new maxima from VD for a new pair of
transistors. Although, the PDH circuit in Figure 2.25 serves as the PDHMAX circuit in the ASB,
the PDHMIN circuit can be designed by just replacing the PMOS current mirror with an NMOS
counterpart.

Once the topology of the PDH is clear several steps were taken to reach the final design in
which the OTA design was the more complex one [72]. The process can be summarized in the
next points:

• The design process was conducted using a top-down approach. The initial step involves
transmitting specifications to determine the OTA requirements, as well as the geometries
of the remaining elements (the current mirror, and the values of CH and RC) that optimize
the performance of the PDH circuit. In this phase, a Verilog-A model is utilized to
substitute the transistor-level description of the OTA, encapsulating all the second-order
non-ideal effects considered previously. The subsequent step involves the transistor-level
design of the OTA, guided by the requirements established in the first phase.

• In terms of the PDH circuit performance specifications (which are the top level in this
methodology), an ideal dynamic behavior and minimal detection errors are sought. Figure
2.26 depicts the various error sources that have been taken into account to evaluate the
quality of the PDH circuit. A single step in this context is used as a representative
for the input VD where one RTN event (that is, a trapping followed by a detrapping)
needs to be detected. This event should represent a worst-case scenario for the PDH

Figure 2.26 Illustration of the errors to consider during the first phase of the top-down design
of the PDH circuit. VMAX represents the CMAXV.

46 Physical Unclonable Functions

circuit. The errors considered in the design of the PDH circuit include the Pedestal Error
(which accounts for the baseline from which detection may commence), the Static Error
(measured post tMV F), and the Dynamic Error (which gauges the dynamic performance
of the PDH circuit). Furthermore, a constraint is placed on the time required for the
voltage VMAX (CMAXV) to reach the peak of the step, with trise ≤ 100ns.

• During this initial design phase, all these errors were required to be less than 1mV , as the
RTN-induced shifts to be detected are above this value (see Table 2.6), and this has been
considered a reasonable balance with design complexity. Moreover, to represent rapid
RTN events (thus representing the worst-case scenario for the PDH circuit), the input step
signal VD has a rise time of 1ns, a pulse amplitude (PA) of 20mV , and a pulse duration
(PD) of 250ns. Simultaneously, this signal has an input voltage common-mode range
(VD,CM) of [350mV −980mV] (see columns CMMAX and CMMIN of Table 2.6), a factor
that will be critical in the design of the OTA. This extensive range of common-mode
operation could potentially cause issues during the implementation phase. Therefore, it
was decided to slightly narrow the range to [400mV −900mV], which in turn enhances
the performance in other specifications. In that sense, several ICCs were discarded
(100nA, 200nA and 6µA) for future consideration.

• The transmission of specifications is conducted with the understanding that the PDH
circuit is operational during the Write phase. The outcome of the initial design step
provides the OTA performance specifications as shown in Table 2.10. In terms of the
current mirror, the aspect ratios of the transistors utilized were W/L = 480nm/200nm
for the PMOS current mirror in the PDHMAX circuit and W/L = 160nm/100nm for the
NMOS current mirror in the PDHMIN circuit. The hold impedance to be used consists of
RC = 13kΩ and CH = 3pF .

Table 2.10 OTA required and attained specifications

Parameter Ao (dB) fu (MHz) Rout (kΩ) CMRR (dB) SR (V/µs)

Required > 60 > 250 > 10 > 70 > 100
Attained (PEX) 75 322.2 12.6 91.7 158.3

• The top-down process continues to complete the transistor-level design of the OTA. Given
the specifications and VD,CM, a two-stage rail-to-rail folded-cascode (FD) OTA [73] has
been found to be an optimal solution for the PDH circuit. The high fu of the OTA is
determined by Miller compensation capacitors (C1−2) and nulling resistors (R1−2), which
guarantee loop stability. Additionally, the entire cell’s biasing is achieved by the circuitry

2.3 RTN-based PUF low-level design 47

shown on the left side, which sets the correct voltage levels at the gates of cascode
transistors (N4-P4) and floating current sources (P5−6, N5−6). The input stage in full
rail-to-rail (N1-P1) enables the circuit to operate across the entire VD,CM range, while a
push-pull stage consisting of O1 and O2 transistors defines the output.

• The schematic of this OTA is shown in Figure 2.27 where the geometries and values
have been listed. Specific matching techniques were used, such as common-centroid
and interdigitation techniques, to harden the design against local variations, preventing
degrading the performance of critical blocks (differential pairs and current mirrors).
Table 2.10 shows the comparison between the required versus the attained specification
of the OTA after parasitic extraction. For that, it was necessary a layout implementation
shown in Figure B.2 in Appendix B.1.

• A final validation of the proposed PDHMAX circuit with offset cancellation is performed
using PEX simulations over a 100-run Monte Carlo analysis, utilizing the input signal
depicted in Figure 2.26 with a step of 20mV . The results of this verification are presented
in Table 2.11. To that end, the Static Error was used, which compares the theoretical
output value to the value obtained at the end of the Write cycle, with tMV F = 100µs.
The PDHMAX circuit was simulated across the VD,CM range to evaluate its performance
for various RTN input signals. The findings indicate that the optimal performance is
achieved for VD,CM at the mid rail (600mV), as both differential input pair stages (NMOS
and PMOS) are biased and the overall transconductance of the OTA increases.

Device Value

N1A, N1B 15/0.5 μm/μm
P1A, P1B 60/0.5 μm/μm

N2, BN1, BN2 36/1 μm/μm
P2, BP1, BP2 72/1 μm/μm

N3A, N3B, BN3 35/1 μm/μm
P3A, P3B, BP3 112/1 μm/μm
N4A, N4B, BN4 5/0.3 μm/μm
P4A, P4B, BP4 15/0.3 μm/μm
N5, N6, BN5 20/0.5 μm/μm
P5, P6, BP5 60/0.5 μm/μm

O1 75/1 μm/μm
O2 30/1 μm/μm

R1, R2 5.85 kΩ
C1, C2 241.6 fF

Figure 2.27 Implementation of the rail-to-rail OTA with its biasing circuitry and the aspect
ratios used.

48 Physical Unclonable Functions

• An additional analysis was performed to evaluate the performance of the PDH circuit
with experimental RTN traces. Using 30 such traces, a 100-run Monte Carlo simulation
was executed for each one. The outcomes are summarized in Table 2.12, where the Static
Error for both PDH circuits is demonstrated to meet the initial specification of a mean
maximum error of 1mV in detecting CMINV and CMAXV.

Table 2.11 PDHMAX circuit performance for a 20-mV step input

VD,CM
Static Error (mV)

µ σ

400 0.773 0.144
600 0.647 0.149
900 1.052 0.286

Table 2.12 PDHs performance for 30 real RTN traces

Circuit Static Error (mV)
µ σ

PDHMAX 0.5319 0.141
PDHMIN 0.8405 0.250

2.3.3.2 Subtractor design

The subtractor already shown in Figure 2.24 was implemented using an Instrumentation
Amplifier (IA) [74] whose schematic is shown in Figure 2.28. In this case, it is possible to
enhance the performance of the circuit by employing a variable resistor R1 that can be selected
to adjust the IA gain. Another applied strategy was to reuse the OTA from the PDHs, with an
output impedance enhanced by modifying the output-stage transistors.

The possibility to use diverse values of ICC was planned during the array implementation in
order to influence on how large o subtle are the RTN shifts detected. The set of ICCs considered
is shown in Table 2.6, removing those ICC discarded in the PDH design: 100nA, 200nA and
6µA. From these considerations, the design of an adjustable R1 will depend mainly of (1)
the output swing of the amplifiers of the IA which has to be carefully considered, and (2)
considering the best possible range of the inputs of the subsequent comparator. This will also
lead to relaxed specs in the comparator because of the gain enhanced provided by R1 in those
ICC values in which it is necessary. The gain of the subtractor can be represented as depicted
in Equation 2.12. Therefore, it is necessary to configure R1 and R2 in the first stage, and R3

and R4 in the second stage, such that the PDHs’ outputs can be amplified through different

2.3 RTN-based PUF low-level design 49

Figure 2.28 Schematic of the IA implemented.

gain stages. The gain of the second stage is set to 2 (this decision will become meaningful
later), so R4 = 2 ·R3. With these values, a parametric analysis was conducted to determine the
optimal values of R1, R2, and R3 that minimize the area used and could lead to larger ∆MV F
ranges in the comparator. Thus, it could be possible to determine the resistances as follows:
R2 = 3kΩ, R3 = 4.8kΩ and R4 = 9.6kΩ, as well as the different values of R1 that can be
selected depending on the value of ICC shown in Table 2.13. The adjusted R1 corresponds
to the inclusion of the switches that select between different values of R1. The switches used
are the same used for the array, detailed in Section 2.2.8. The multiplier column denotes how
many resistors are intended to be connected for minimizing the variability in the manufacturing
process using common-centroid and interdigitation techniques. Finally, VREF is set to 600mV
to leverage the operation in the middle range of the input common-mode range of the IA.

G = G1 ·G2 ; G1 = 1+2 · R2

R1
; G2 =

R4

R3
(2.12)

Another important aspect to deal with is the error that the offset introduce in the gain stage
of the IA. Considering that there are two gain stages, any unwanted variations in the input
stage will be amplified at the output of the IA. A total of 1,000 IA samples were generated
and simulated with varying input common-modes [400mV,600mV,900mV] through Monte
Carlo simulations. The results indicated that the output offsets could reach values up to

50 Physical Unclonable Functions

Table 2.13 RTN traces characterization in terms of ICC values

ICC Used R1 (kΩ) Adjusted R1 (kΩ) Area (µm2) Gain Multiplier

500nA 9.43 9.53 41 1.63 x2
700nA 2.94 3.04 13 2.97 x2
1 µA 1.51 1.56 26 4.84 x4
2 µA 0.86 0.91 15 7.61 x4
3 µA 0.53 0.58 9 11.43 x4
5 µA 0.37 0.42 7 15.19 x4

±8mV . These values may have a large negative impact on the PUF response. To avoid that, an
autozeroing offset cancellation at the output strategy is proposed and implemented finally for
offset reduction as Figure 2.29 shows [75]. This offset cancelling approach (with an output
hold capacitor, CH) is the easiest way to implement such a strategy for compensating the error.
In practice, the offset can be cancelled in just one phase, but an unexpected effect emerged in
the cancellation process that restricts the offset cancellation to two phases. This is primarily
because the schematic shown in Figure 2.29 does not account for parasitic capacitances in the
input transistors of the IA. Consequently, the gain factor k of the offset cancellation, depicted
in Equation 2.13, depends now on the load capacitor, CL (the capacitance of the IA input
transistors). Ideally, when CL→ 0, k = 1 completely eliminating the offset. One solution is to
set a large CH to mitigate the effect, but to avoid excessive area usage, two cycles of the same
offset cancellation were chosen as the solution (CH = 1pF).

Vo/Vi = k =
CLCH

CLCH +C2
L

(2.13)

Figure 2.29 Autozeroing offset-free IA schematic.

2.3 RTN-based PUF low-level design 51

The last improvement in the ASB topology was the merging of the two IA blocks into
a single block. This modification, illustrated in Figure 2.30, greatly reduces the variability
due to manufacturing process between MVFs, resulting in a similar impact on both. The
output signal of this new design can be matematically expressed in Equation 2.14. The IA
second-stage gain above considered as 2, now can cancel the fraction in the equation. As a
result, the error introduced in the PUF is minimized since only one IA is used. By introducing
the obtained value in the comparator on the positive terminal, with its negative terminal to
VREF , the comparator straightforwardly gives the PUF bit response.

Vout,IA = GIA ·
1
2
(Vmax,M1 +Vmin,M2− (Vmax,M2 +Vmin,M1)) (2.14)

2.3.3.3 Comparator design

The ASB final stage corresponds to the generation response on the PUF by processing both
IA outputs containing the MVF calculation connected to a single-stage comparator circuit.
This block processes the difference between the two inputs. A positive differential input at
the comparator will generate a ’1’ as a response bit, while a negative differential input will
generate a ’0’.

After testing multiple topologies by increasing the number of gain stages (single, double
and Miller compensation), it was found that a two-stage OTA fits with the required gain (more
than 60dB for a 1mV input resolution) as well as with the required common-mode input
range of the signal (from 400mV to 900mV). The comparator design process adhered to the
method outlined in [76], utilizing the previously mentioned specifications. After determining
the transistor sizes through manual calculations, a series of simulations were conducted to
verify their functionality. With the proposed transistor sizes, two kinds of simulations were
performed: firstly, DC simulations were used to confirm that a response could be obtained

Figure 2.30 Multiple inputs resistor pondered IA plus comparator scheme. VMAX and VMIN
correspond to CMAXV and CMINV respectively.

52 Physical Unclonable Functions

from various common-mode input ranges of the signal; secondly, Monte-Carlo variations were
used to examine the offset variation, with size adjustments made to minimize its effect. The
importance of both simulations lies in their ability to examine the key specifications that can
influence the performance of the comparator, and consequently, impact the PUF response. The
schematic of the design is shown in Figure 2.31 in which the transistor sizes of the design are
also shown.

Also, the final comparator will not make use of offset-cancellation structures since a well-
designed, simple approach copes well with the offset and does not introduce a significant error.
In addition to this, a pair of buffers were incorporated into the comparator output to boost its
performance, adhering to the approach detailed in [76]. This method enables the comparator to
handle substantial capacitive loads without sacrificing speed. The final layout design is shown
in Figure B.3 in Appendix B.1.

2.3.3.4 Final ASB design

Once all the module of the ASB have been designed separately, the next step is to merge them
to complete the ASB design. The floorplan is conceptually shown in Figure 2.32 and reflects
the crucial decision to cross-position the PDH blocks. This helps maintain the signal processing
on both branches as symmetrical as possible, thus avoiding the undesired effects introduced by
manufacturing process variations. The final layout is depicted in Figure B.4 in Appendix B.1
where each module of the ASB has been highlighted to ease the visualization of the modules
distribution.

Tests using simulated RTN traces were conducted on the entire ASB design to confirm its
proper functionality. The results of the parasitic extracted ASB are presented in Table 2.14 for

Vin +Vin -

VDD

M1M2

M3M4

M5M6

M7

M8

VOUT

IB

Transistors W (um) L (nm)

M1 & M2 48.10 650
M3 & M4 32.50 650
M5 & M6 73.50 750

M7 33.52 730
M8 27 600

VSS

IB = 200 uA

Buffers Stage

M9

M10

M11

M12

M9 & M11 10 480
M10 & M12 1 510

Figure 2.31 Comparator schematic based on two-stage OTA topology.

2.3 RTN-based PUF low-level design 53

Figure 2.32 Final floorplan of the layout distribution for the ASB.

some combinations of RTN traces. The first two rows represent the same selection of traces
(labeled as 62 and 22) but with their positions on the ASB inputs swapped. The displayed
data includes CMAXV and CMINV for tMCF = 100µs, the resulting MVF of each trace, the
∆MV F calculated after the IA operation, and the response returned by the comparator as well
as the expected response. These data indicate that the results align with the expected outcomes,
demonstrating the ASB’s ability to return the anticipated response. While there are slight
differences in the measurement of CMAXV and CMINV when the traces are swapped, these
do not impact the final result as these differences remain under the previously established upper
limit of 1mV . The third row displays a different selection of traces (labeled as 93 and 48) in
a worst-case scenario for the detection in the IA, where it can be observed that the expected
result is once again returned.

Table 2.14 ASB characterization using simulated RTN traces and parasitic extraction

Transistor Trace CMAXV CMINV MVF ∆MV F Resp. Exp. Resp.

M1 48 644.7 636.2 8.5
5.5 1 1

M2 22 672 669 3

M1 22 672.9 668.2 4.7
-2 0 0

M2 48 643.7 637 6.7

M1 93 651.4 645.3 6.1
-0.6 0 0

M2 48 643.6 636.9 6.7

M1 48 642.9 636 6.9
2.3 1 1

M2 93 649.8 645.1 4.7

54 Physical Unclonable Functions

2.3.4 Biasing blocks

The last blocks design involve, on the one hand, performing all the biasing current (IDC)
generation for any amplifier module in the circuitry within the chip design, and on the other
hand, generating all the ICC identified as suitable (see Table 2.13) to be used in the PUF
through an external digital selection.

2.3.4.1 Generation the bias current and reference voltage within chip design

The bias currents utilized in the analog block (i.e., amplifiers) are established with a bandgap
(BG) and several current mirror circuits. These circuits set the golden reference current and,
reduce or amplify the current signals by copying them, respectively. Additionally, the reference
voltage level, VREF , employed in the ASB blocks is generated using an off-chip high-precision
resistor. A simplified diagram depicting the generation and propagation of bias currents is
shown in Figure 2.33. It can be observed that the golden reference current was set at 50µA.
This allows for a reduction in the size relation in the current mirror stage, thereby minimizing
the effects of variability due to the manufacturing process. The implemented BG, which
includes the start-up circuit responsible for activating the BG when the chip is also turned on,
is described in [77]. Additionally, the reference voltage level, VREF , used in the ASB blocks is
generated off-chip using a high-precision resistor.

The sizes of the transistors of the BG core and the start-up circuits were initially determined
using a parametric analysis of the most suitable size combinations. These were then fine-
tuned through several Monte Carlo simulations that included temperature variations. After

Figure 2.33 Bias current generation within chip design.

2.3 RTN-based PUF low-level design 55

the sizes of the transistors were established, a Monte Carlo evaluation was conducted with
200 samples for a temperature range between -20ºC and 80ºC. Initially, the results indicate
that there is a fluctuation in the generated VREF voltage for a constant off-chip resistor of
∆VREF [−20oC,80oC] = [0.5,51]mV . The most extreme case exhibits a variation of 51mV ,
while 75% of cases display a variation below 10mV . A variation of 10mV will lead to a change
in the gold current of 0.89µA. In the case of the replication of 25µA, this will be 0.45µA. For
the most extreme case (51mV), the variation in the gold current will be 4.45µA, while the
variation in 25µA will be 2.23µA. Despite this level of variation, after evaluating the ASB
with parasitic extraction under differences in the gold current of [45µA,50µA,55µA], it was
determined that these variations are tolerable for the proper functioning of the circuit. However,
these variations can be mitigated with the correct setting of the off-chip resistance, allowing the
gold response to be set at 50µA.

2.3.4.2 Generation of the ICCs

The process of generating different ICC sources adheres to the same strategy outlined above: a
gold current can be generated from a BG circuit, which when replicated can produce the set of
ICCs identified in Table 2.13. The goal is to externally select the desired ICC to be applied and
replicate it for the two transistors in each of the three arrays on the chip. The purpose of the
third array will be explained later. The ICC tuning is carried out using a binary control signal
plus different transistors to generate the maximum ICCs possible. The current generated for
the main transistor is 3.2µA and thus appropriately reduced to obtain 1.6µA, 800nA, 400nA,
and 200nA subsequently. By activating/deactivating these transistors, attaining the desired
current levels for ICC becomes possible. For the sake of illustration, if the control signal is
set in (0,0,1,0,1,0), it will generate 1µA, being the binary word (MSB. . . , LSB). Figure 2.34
illustrates the scheme used for the ICC current generation and distribution.

In the initial strategy, the generation of ICC was designed to share the BG circuit with the
Bias Current generation. However, due to technical issues related to a general lack of precision
in achieving smaller current levels, it appeared that the most effective solution involved: (1) an
additional BG circuit and precision resistor to implement the higher values of ICC, setting now
the gold current in 3.2µA; and (2) in both the schematic and layout, the use of individually
physically separated transistors, as opposed to multiple fingers on the same diffusion block, to
enhance the performance of the current mirrors, as this makes the output current more accurate.

56 Physical Unclonable Functions

Figure 2.34 ICC generation within chip design.

2.3.5 Final layout design

Once, on the one hand, the design of the array and the unity cells that will contain the transistors
that will generate a voltage signal containing the RTN has been completed, and on the other
hand, the blocks that will be used to extract all that information and transform it into a response
bit have been described, the next step is to complete the integration of the RTN-based PUF.
This structure can provide a bit response usign the RTN as entropy source from a set of 4,096
transistors distributed in an array. Two of these RTN-based PUFs were considered to be
included in one single die. This will allow to study inter- and intra-die PUF metrics.

Once all the parts required for the ASIC integration have been described, designed and
proved, they can be integrated in the same design. The result is depicted in Figure 2.35, resulting
in the so-called MILESTONE-I design. It includes two identical large PUFs comprising an
array of 4,096 unit cells and a single Test PUF with aging capabilities but fewer unit cells (1,024
precisely). Additionally, a biasing circuitry composed of two bandgap circuits is intended to
provide the proper ICC currents to the PUF arrays and generate the current and biasing voltages
of the analog sensing circuits across the ASIC. The final PADs distribution after the bounding
process of MILESTONE-I is shown in Figure 2.36. The test section was designed to perform
several evaluations under different conditions for the transistor array and the ASB within the
chip:

• One of the considerations in the implementation of the RTN-based PUF is the impact of
aging on the PUF response. As discussed in the conceptualization of the RTN-based PUF,
using RTN as an entropy source could potentially mitigate the effects of aging on the
involved transistors. To confirm it, accelerated aging capabilities have been enabled in a

2.3 RTN-based PUF low-level design 57

Figure 2.35 MILESTONE-I layout

Figure 2.36 MILESTONE-I PADs distribution.

new array of 1,024 unit cells (the third array mentioned earlier). This implementation
only required a modification of the unit cell to include a new switch in its design. In this
array, when the ENABLE_AGING signal is activated, the transistors’ VDS voltage is set to
VST RESS. This will allow to study the impact of aging on RTN, and consequently, on the
performance of the PUF.

58 Physical Unclonable Functions

• In the evaluation of the ASB, the first strategy involved the integration of ten outputs
with internal access to various points within the ASB design. These points function
as internal probes, enabling off-chip observation of internal activities. The output of
the OTA of each PDH calculation module (PDHMAX and PDHMIN) for each selected
transistor (M1 and M2) can be monitored, which allows for the verification of circuit
timing and further validation of this crucial part of the analog system. Additionally, the
output of these four PDH modules can be externally observed, facilitating the comparison
of the envelope calculation with the input reference signal. Lastly, the IA output, both pre
and post-processing through the offset-canceling mechanism, can also be observed. This
feature allows for the evaluation of the autozeroing mechanism’s performance on the IA.

• The second approach in the ASB evaluation involved incorporating the option to input an
external RTN signal. This signal can be utilized as a reference for generating a response
bit, which allows for a thorough evaluation of the ASB’s functionality using its internal
nodes.

• The test capabilities also cover the possibility to access the RTN signals that the selected
transistors are generating. This is the signal that the ASB modules use for the PUF
operation in any of the three arrays.

2.3.5.1 MILESTONE-I timing schedule

Another crucial aspect of the chip design is the adherence to a timing schedule in order to
generate a PUF response. This timing schedule is segmented into three phases: the operation
reset (in GREEN), the selection of the two transistors (in BLUE), and the MVF measurement
and response extraction (in RED). Figure 2.37 illustrates the proposed timing schedule for
obtaining a PUF response. These phases are further broken down as follows:

1. GREEN: The signals RESET and PDH_RESET are activated. The first one (RESET) carries
out the serializers, and the decoders reset. In contrast, the second one performs the reset
of the PDH-ASB modules. Notice that this last one (PDH_RESET) is active on the high
level while the RESET signal is active on the low level.

2. LOAD_DATA_SEL: During specific clock cycles, the data of the selected transistors are
loaded in the serializers’ first stage. In the case of the array of 1,024 transistors, 10 clock
cycles is necessary, while in the case of 4,096 transistors, 12 clock cycles are needed.

3. LOAD: The data stored in the serializers’ first stage are loaded in the second stage,
keeping the identical selected transistors during all measurements.

2.3 RTN-based PUF low-level design 59

Figure 2.37 The timing schedule to generate a PUF response.

4. STABILIZATION: Given a new challenge, a stabilization process is required to ensure
that the voltage received by the ASBs is not influenced by the previously selected
transistor.

5. MEASUREMENT: The measurement of the RTN, as well as the response extraction,
are performed in a time tMV F . The longer this step is active, the more information it is
extracted from the RTN signal.

6. READ: The comparison response from the transistors is read during this clock cycle.
This step is necessary as subsequent blocks, such as the IA and comparator, need to
process the value. Initially set to 10µs, this value can potentially be reduced and largely
depends on the method of IA offset cancellation, given that the comparator is assumed to
perform the calculation almost instantaneously.

7. IA OFFSET STORAGE (IA_RESET): The offset is stored at the hold capacitor in this
part. The inputs of the IA are connected to VREF , so the output is intended to measure
this offset value.

60 Physical Unclonable Functions

8. IA AMPLIFYING: The response from the IA is outputted without the offset influence
ideally. This two-step process is repeated twice to ensure the voltage obtained corresponds
to the MVF with the highest precision possible.

2.3.6 Conclusions of the low-level design

In this section the RTN-based PUF conceptualized in the previous section has become a reality
by being fully integrated into an ASIC. For this purpose, following the analog design flow,
specifications were previously established as well as a floorplan of which elements are necessary
to carry out the integration of the PUF. The task was concluded with the MILESTONE-I design.
This chip integrates two full RTN-based PUFs that allow the evaluation of intra- and inter-
chip PUF statistics. It also integrates the possibility to evaluate the PUF performance under
aging stress conditions, as well as additional circuitry for biasing and generating the necessary
currents to bias the transistors. This innovative approach serves as a Proof-of-Concept (PoC) to
determine the feasibility of constructing PUFs with such entropy source.

2.4 Conclusions

To sum up, PUFs have been recognized as an essential element in the RoT structure. While
various types of PUFs exist, silicon-based PUFs have become notable in the IoT realm due to
their superior quality and minimal space requirements for the implementation. Among these
type of PUFs, this dissertation has presented a novel architecture that utilizes RTN as entropy
source.

The initial phase of this endeavor involved characterizing the RTN-based PUF using
established performance metrics commonly used for PUF evaluation such as reliability, unique-
ness and unpredictability. The evaluation yielded encouraging outcomes, facilitating the
identification of key specifications required for silicon implementation, such as the type of
transistors to be used, their dimensions, and the biasing conditions.

Following this, the creation of the ASIC implementation required a detailed analog design
process. This involved segmenting the design procedure into individual tasks, like the design of
the transistor array and the sensing blocks needed to acquire the response bit. These elements
were then combined, leading to the establishment of the first-ever RTN-based PUF, named as
MILESTONE-I.

Nonetheless, there are avenues yet to be explored in the advancement and deployment
of the RTN-based PUF. Once experimental data are collected, numerous queries about the
fluctuation of PUF metrics under aging or temperature stress conditions remain unresolved.

2.4 Conclusions 61

Furthermore, alternative methods to minimize the PUF’s area need to be investigated. Another
significant factor is the potential of the PUF as a True Random Number Generator (TRNG),
which continues to be a promising area for future exploration. Numerous suggestions take
advantage of the inherently less stable pair challenge-response characteristic of a PUF to
generate random bits, offering an intriguing path for additional research.

In summation, this dissertation represents a significant step forward in the field of PUFs,
specifically in the utilization of RTN as an entropy source. The achievements thus far, including
the successful development of MILESTONE-I, lay the foundation for future advancements and
applications in secure IoT systems and beyond.

Chapter 3

Hash Functions

3.1 Introduction

In contemporary computer science and information security, hash functions stand as fundamental
cryptographic primitives. They play a pivotal role in various applications, ranging from data
integrity verification to password storage and digital signatures. A hash function, in essence, is
a deterministic algorithm that takes an input (or ’message’) and returns a fixed-size string of
bytes, typically a digest, which is unique to the input. This property ensures that even a minor
alteration in the input will lead to a significantly different hash value.

Hash functions have found extensive employment in securing data transmission over
networks, to the extent that they have permeated into fields as diverse as data retrieval,
fingerprinting, and data structure design, becoming indispensable tools for computer scientists,
software engineers, and information security practitioners. They play a very important role as
cryptographic primitives in a wide variety of applications for security purposes [78], such as:

• Verification of message integrity: comparing message digests (hash digests of the
message) calculated before and after transmission. This comparison can help determine
if the message or file has been altered.

• Signature generation and verification: many digital signature schemes perform signature
calculations after hashing the message. In the verification stage, the same hash algorithm
is used to corroborate that the message has not been tampered with since it was signed.

• Password hashing: a strong password storage strategy is critical to mitigate data breaches.
One solution is to store the hash digest of each password instead of its plaintext version.

• Key derivation: hash-based Keys Derivation Functions (KDFs) derive one or more secret
keys from a secret value using hash functions.

64 Hash Functions

A hash function must satisfy three key properties: 1) Collision resistance, it should be
computationally challenging to find two distinct inputs that produce the same hash value;
2) Preimage resistance, given a randomly selected hash value, it should be computationally
challenging to discover an input message that results in this hash value; and 3) Second preimage
resistance, it should be computationally challenging to find a second input that produces the
same hash value as any other specified input. These properties ensure the security and reliability
of the hash function.

Among the family of cryptographic hash functions published by the NIST, SHA-1 is
included, although deprecated since 2011. SHA-2 [79] and SHA-3 [80] are the two hash
algorithms that are still in use (see the table with indicators of security strengths for the above
properties in [81]). This chapter presents several SHA-2 and SHA-3 hardware implementations,
that cover the next points:

• The design of a efficient design that performs a competitive trade-off between the
messages processing time and the required area for the Field Programmable Gate Array
(FPGA) implementation.

• An extensive comparison with the state-of-the-art FPGA implementations in which it is
surpassed the existing literature in terms of efficiency.

• The design of a highly configurable IP, whose configuration enables the possibility
to facilitate the implementation of different instances of the SHA-2 and SHA-3 hash
functions. For that, it is included an AXI4-Lite interconnection protocol that eases the
communication with the system processor.

• It is also included all drivers required to install and invoke the IP module in software
environments. The set of instructions and use cases are public in a repository where the
performance can be evaluated for testing purposes or to be included in a demonstrator.

• Finally, the ASIC implementation of the SHA-2 hash function is also presented.

3.2 SHA-2

3.2.1 Introduction

The SHA-2 hash function is widely used in security protocols and applications, including
TLS and SSL which are cryptographic protocols designed to provide a secure communication
channel between clients and servers over the internet. Digital signatures, Secure/Multipurpose

3.2 SHA-2 65

Internet Mail Extensions (S/MIME) email certificates, Pretty Good Privacy (PGP), and IPsec
also use SHA-2. And hashing with SHA-2 is also required by law for specific government
applications like protecting sensitive data. Additionally, SHA-2 is the industry standard for
hashing algorithms (NIST FIPS 180-4 [79]), and it is used in numerous applications to validate
and sign digital security certificates and documents.

Many hardware implementations of SHA-2 on FPGAs and ASICs have been reported
in scientific literature, as well as commercial IP cores. Two types of architecture can be
distinguished. On the one hand, iteration-based structures reuse a single transformation block
to perform the SHA-2 hash function and offer efficient implementations in terms of area
occupation [82]. On the other hand, pipeline-based structures process multiple messages to
improve the throughput [83]. In halfway, quasi-pipelining structures where the compression
operations are divided into multiple stages to make the critical paths shorter [84]. Additionally,
the work in [84] also redesigns the accumulator register of the compressor as shift register to
improve the hardware utilization. In [85], a good compromise between area and throughput of
a pipelined SHA-256 hash function implementation is researched using one structure with 4
pipeline stages. Other existing works have used optimization techniques based on arithmetic
components to increase timing performance. The work in [86] employs optimized Carry-Save
adders in the hash computation to carry out a three-operand addition. This process is as
time-efficient as a two-operand adder, thereby reducing the duration of the critical path.

3.2.2 Mathematical background

Table 3.1 shows the parameters of the family of hash functions included in the SHA-2 standard
[79].

Table 3.1 SHA-2 family hash functions parameters [79].

Instance Output Size Block Size Rounds

SHA-224 1 224 512 64
SHA-256 256 512 64
SHA-384 384 1024 80
SHA-512 512 1024 80

SHA-512/224 1 224 1024 80
SHA-512/256 256 1024 80

1It is admitted as Legacy until 2025 by SOG-IS [87]

66 Hash Functions

The stages into which the SHA-2 function is divided are the following:

1. Padding: The padding process as it is described in [79] is applied depending on whether
SHA-2 instance is applied. For a message, m, with a length in bits of l the padding works
appending a bit 1 at the end of the message. After that, it is appending k zeroes being
the non-negative solution to the equation l +1+ k ≡ 448 mod 512 for the case of SHA-
224 and SHA-256, or l + 1+ k ≡ 896 mod 1024 for the case of SHA-384, SHA-512,
SHA-512/224 and SHA-512/256.

2. Parsing the message: Once the padding is performed, the message along with the padding,
M, is divided in blocks whose size is shown in Table 3.1. This results in M(N) blocks
being N the number of total blocks (M(1),M(2) . . .M(N)). Inside the hash function each
block is divided in sixteen words 32 bits for the case of SHA-224 and SHA-256, or 64
bits for the case of SHA-384, SHA-512, SHA-512/224 and SHA-512/256. So, the i-th
word of the j-th message block is expressed as M(j)

i .

3. Hash computation: It is repeated for each message block and it is divided into the next
parts:

• Message Schedule: This part is carried out following Equations 3.1 for the case of
SHA-224 and SHA-256, and 3.2 for the case of SHA-384, SHA-512, SHA-512/224
and SHA-512/256 for the t-th word of the j-th message block. The operations
σ
{256}
0 , σ

{256}
1 , σ

{512}
0 and σ

{512}
1 are described in Appendix C.1.

Wt =

M j
t 0≤ t ≤ 15

σ
{256}
1 (Wt−2)+(Wt−7)+σ

{256}
0 (Wt−15)+(Wt−16) 16≤ t ≤ 63

(3.1)

Wt =

M j
t 0≤ t ≤ 15

σ
{512}
1 (Wt−2)+(Wt−7)+σ

{512}
0 (Wt−15)+(Wt−16) 16≤ t ≤ 79

(3.2)

• Hash initialization: In this step the eight working variables are initialized. For the
first iteration the initial values correspond to the values shown in Table C.3 for the
case of SHA-224 and SHA-256, Table C.4 for the case of SHA-384 and SHA-512,
and Table C.5 for the case of SHA-512/224 and SHA-512/256 in Appendix C.3.
For the rest of cases, it is used the previous hash value in the j-th iteration as it is

3.2 SHA-2 67

described in Equation 3.3.
a = H(j−1)

0

b = H(j−1)
1

c = H(j−1)
2

d = H(j−1)
3

e = H(j−1)
4

f = H(j−1)
5

g = H(j−1)
6

h = H(j−1)
7

(3.3)

• Hash computation: Using the equations described in Appendix C.1 the eight
working variables change during 64 cycles as described in Equation 3.4 for the case
of SHA-224 and SHA-256, and 80 cycles as described in Equation 3.5 for the case
of SHA-384, SHA-512, SHA-512/224 and SHA-512/256. Apart from that, it is
used the SHA-2 constants Kt shown in Table C.1 and Table C.2 in the Appendix
C.2

T1 = h+∑
{256}
1 (e)+Ch(e, f ,g)+K(256)

t +Wt

T2 = ∑
{256}
0 (a)+Ma j(a,b,c)

a = T1 +T2

b = a
c = b
d = c
e = d +T1

f = e
g = f
h = g

(3.4)

T1 = h+∑
{512}
1 (e)+Ch(e, f ,g)+K(512)

t +Wt

T2 = ∑
{512}
0 (a)+Ma j(a,b,c)

a = T1 +T2

b = a
c = b
d = c
e = d +T1

f = e
g = f
h = g

(3.5)

68 Hash Functions

• Final hash: The final hash is obtained adding the final result of the eight working
works with the previous hash result. If it is the first block the adding is carried out
with the initial values. Thus, Equation 3.6 described this operation.

H j
0 = a+H(j−1)

0

H j
1 = b+H(j−1)

1

H j
2 = c+H(j−1)

2

H j
3 = d +H(j−1)

3

H j
4 = e+H(j−1)

4

H j
5 = f +H(j−1)

5

H j
6 = g+H(j−1)

6

H j
7 = h+H(j−1)

7

(3.6)

4. Final hash truncation: In order to obtain the desired output size relying on the SHA-2
instance and following the requirement shown in Table 3.1 it is neccesary to compute
a truncation. In the case of SHA-256 and SHA-512 the output hash is directly the
concatenation of the eight words (32-bit and 64-bit word, respectively) obtained in the
final hash operation. For the case of SHA-224, the output hash is formed using the
concatenation of the seventh first hash words. For the case of SHA-384, SHA-512/256
and SHA-512/224, the output hash is formed using the sixth, fourth and third (and the
half of the fourth) first hash words respectively.

3.2.3 Proposed scheme

The aim of the proposed SHA-2 scheme has been the minimization of the number of resources
used in the hardware implementation and, secondly, to maximize the operation frequency.
These two features will lead to an increase in the SHA-2 performance which will be deeply
detailed later. The proposed architecture for the Message Schedule process can be seen in
Figure 3.1. This design is based on a Linear Feedback Shift Register (LFSR) in which the
inputs of the Arithmetic Unit (AU) are Wi−2, Wi−7, Wi−15, Wi−16 or REG[14], REG[9], REG[1]
and REG[0], respectively. While the load process is carrying out the first 16 message blocks, Mt

are stored in the LFSR. The key to this scheme is that it does not require the message schedule
function to be completed first in order to start the SHA-2 Rounds, but rather these coefficients
are generated as the rounds are being executed. Thus, the number of hash operation cycles is
60 for SHA-224 and SHA-256, 80 for SHA-384, SHA-512, SHA-512/224 and SHA-512/256.

This leads to the design of the SHA-2 core scheme as shown in Figure 3.2. In this scheme,
the memory of the hash result (MEM H) stores the initial hash value depending on the SHA-2

3.2 SHA-2 69

REG[0]REG[1]REG[9]REG[14]REG[15]

AU

load

data_in 1

0

data_out

Figure 3.1 Message Schedule scheme.

SHA-2
MESSAGE SCHEDULE

MEM K

MEM H

a b c d e f g h

H_initial

0

1

Ma

Ch

a b c d e f g h

load
10

addr_k

SHA-2 ROUND

data_in

load

Figure 3.2 SHA-2 core scheme.

version as it is indicated in the FIPS 180-4 standard if load signal is activated, otherwise it
stores the output of the SHA-2 Round module. This module requires the input of the MEM
H itself as well as the K coefficients of the SHA-2 version stored in a ROM memory whose
selection is controlled by an address pointer addr_k. The data generated by the SHA-2 Message
Schedule module is directly used in the SHA-2 Round module.

After completing the design of the SHA-2 core, the SHA-2 IP Module can be wrapped
using an AXI4-Lite communication protocol. Several modifications have been also applied

70 Hash Functions

to the padding module as well as to the Control module. The aim of these modifications is
to minimize to the maximum possible the resources used in its implementation. The input
memory is used to synchronize the input data from the software with the input data of the
SHA-2 core. The control module generates all logic control for the SHA-2 core as well as the
address pointer for the k module.

3.2.4 Implementation of all SHA-2 versions

The SHA-2 core modifications required to include these versions are mainly related to the
adaptation of the initial hash, illustrated in Figure 3.2, used at the beginning of the hash
operation. Also, the coefficients of the k memory were also adapted to each version. The
Control logic, shown in Figure 3.3, was modified to count 60 or 80 cycles depending on the
version implemented.

To evaluate performance at the hardware level, two metrics have been used that are widely
used in the state of the art. First, the ability to digest a certain number of bits per unit of time
is called throughput, given in Equation 3.7. BS refers to the number of bits of the input block
to be processed, fmax is the maximum possible operating frequency of the hardware module,
NCC is the total number of clock cycles required to complete the hash operation, and finally,
Nmsg symbolises the number of messages that can be digested at the same time [88]. Secondly,
efficiency is another important parameter, which relates the capacity to process per unit of time

SHA-2 CoreInput MEM

Decoder

Control

data_in [63:0]

control [63:0]

Padding
module

end_op

data_out [63:0]address [63:0]

IP Module

ad
dr

_k

Figure 3.3 Schematic of the SHA-2 IP module.

3.2 SHA-2 71

(i.e. throughput) to the resources cost of a certain implementation, as shown in Equation 3.8. In
this case, since the analysis is performed on FPGA implementations, the cost is related to the
number of slices used.

Throughput =
BS · fmax

NCC
×Nmsg (3.7)

Efficiency =
Throughput

Cost(#Slices)
(3.8)

Table 3.2 collects all the possible SHA-2 implementations in a Kintex UltraScale device in
terms of throughput and efficiency, while Table 3.3 collects various SHA-2 implementations
in the literature and provides a comparison to the SHA-2 implementations presented in this
dissertation. This design is technology independent, so it is possible to implement it on a
different board, such as a Virtex-7 board. In the case of the SHA-256 implementation, it is

Table 3.2 Performance of all hash function in the SHA-2 family.

SHA-2 Version
Block Size

CCs
Frequency Area Throughtput Efficiency

(bits) (MHz) (Slices) (Gbps) (Mbps/Slice)

SHA-224 512 60 214.41 157 1.829 11.654
SHA-256 512 60 218.72 165 1.866 11.312
SHA-384 1024 80 185.19 352 2.370 6.730
SHA-512 1024 80 186.05 352 2.381 6.765

SHA-512/224 1024 80 185.77 352 2.377 6.755
SHA-512/256 1024 80 185.19 352 2.370 6.730

Table 3.3 Comparison of the SHA-2 HW implementation with the state of the art.

Ref. Platform SHA-2 ver.
Area Frequency Throughtput Efficiency

(Slices) (MHz) (Gbps) (Mbps/Slice)

[89] Virtex SHA-256 755 174.00 1.370 1.830
[90] Virtex SHA-256 6136 35.10 2.077 0.338
[91] Virtex-5 SHA-256 387 202.54 1.580 4.190
[92] Virtex-4 SHA-256 610 170.75 1.345 2.200
[93] Virtex-5 SHA-256 1895 411.30 3.290 1.740

This Work Virtex-7 SHA-256 282 191.13 1.630 5.784

[89] Virtex SHA-512 1667 141.00 1.780 1.010
[91] Virtex-5 SHA-512 874 176.06 2.200 2.580
[94] Virtex-5 SHA-512 1080 129.00 0.826 0.765

This Work Virtex-7 SHA-512 576 173.52 2.221 3.856

72 Hash Functions

remained in a competitive position in terms of throughput, but it is in the case of efficiency
that achieves a very significant improvement over other implementations in the literature. In
the case of SHA-512, this design outperforms all implementations already presented in the
literature, both in terms of throughput and efficiency.

3.2.5 Embedded system integration and results

The design of the IP module includes the user interface shown in Figure 3.4. As can be seen, it
is possible to select the module according to the SHA-2 version desired: SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, or SHA-512/256. This IP module can be found in an open
repository available in [95] as sha2_xl_3_0. The compilation process to obtain each version
only requires one parameter which is passed directly in the compiler call: SHA_224, SHA_256,
SHA_384, SHA_512, SHA_512/224 or SHA_512/256. The test suite includes all NIST tests for
byte and bit inputs for each version released in [96] and [97], respectively.

For the performance evaluation, PYNQ-Z2 board [98] was selected, based on the Xilinx
Zynq-7000 SoC which incorporates an ARM as the Processing System (PS) and a Xilinx
Artix-7 as the Programmable Logic (PL), along with the PYNQ C-API provided in [99]. All
SHA-2 instances have been considered in these evaluation as Figure 3.5 shows. The IP modules
have been connected to the processor using the AXI Interconnect module supplied by Xilinx.

Figure 3.4 User interface of the SHA-2 IP Module.

3.2 SHA-2 73

Figure 3.5 Block Diagram of the SHA-2 IP Module integration in a embedded system

The software implementation of SHA-2 [100] has been recently updated and is therefore highly
optimised. As a result, this SW version performs the SHA-224 and SHA-256 operations in less
time than the HW implementation as can be seen in Table 3.4. This is not the case for the other
SHA-2 versions where the HW takes less time to process the data. This is due to the long time
required to send and receive data to and from the IP module when using shared memory. A
reduction in these times could be achieved by modifying the communication protocols. Apart
from that, sha2_xxx_demo introduces new functionalities such as the possibility to perform
hash functions for hexadecimal (-m) or plain ASCII text strings (-t) provided through the
command line, as well as introducing these data through a file as hexadecimal (-mf) or plain
ASCII text strings (-tf).

Table 3.4 Acceleration of the SHA-2 HW implementation vs SHA-2 SW implementation of
[100]

SHA-2 Message Length
Instance Smaller than Block Size Bigger than Block Size

SHA-224 x0.68 x0.87
SHA-256 x0.67 x0.87
SHA-384 x1.54 x2.35
SHA-512 x1.44 x2.32

SHA-512/224 x1.64 x2.35
SHA-512/256 x1.64 x2.37

74 Hash Functions

3.3 SHA-2 low-level design

After the prototyping of the proposed SHA-2 scheme on PL, its integration in a fully-digital
dedicated ASIC on a nanometric technology will provide a reduction of size, memory resources
and power consumption requirements, making them more suitable for wearable and/or low-
power secure applications. The implementation of SHA-2 in a dedicated silicon ASIC brings
new challenges in terms of viability, design, and obtained performances of the solution. The
migration from FPGA to ASIC design is far from being automatic since great efforts in both
front-end and, especially, back-end processes are needed. Also, specific design methodologies
and Computer Aided Design (CAD) tools have to be used.

The selection of the technology between available foundries and integration processes has
been made on the basis of the previous knowledge of the designers group, the availability of
CAD tools and technological libraries, the runs for integration provided by the Europractice
consortium, and the trade-off between cost and expected performances. The selected technology
was TSMC 65nm, to be fabricated under the MiniASIC Programme of Europractice and the
funds for the integration comes from the European projects SPIRS [101].

The Hardware Description Language (HDL) description of the SHA-2 used in the FPGA
implementation was the starting point for the ASIC integration. For that, a methodology
for front-end digital design was applied. However, it was necessary to introduce several
modifications as follows:

• The synthesis tool used in the FPGA design flow infers Block Random Access Memories
(BRAMs) as memory units to storage message words (Wt) and message digests. In ASIC
integration, registers and memory cells included in the TSMC technology library are
used after synthesizing a technology independent HDL description.

• Ad-hoc serial input interface has been designed to reduce the number of input/output
ports used in the ASIC integration of the SHA-256. This interface includes a protocol to
control the data writing and reading, which will be detailed below.

3.3.1 Description of the SHA-256 ASIC implementation

The total number of input/output ports for the ASIC implementation has been drastically
reduced down to 10 (the previous design implemented on programmable devices used more
than 100 ports). Table 3.5 shows the name, direction and a short description of each port used
in the ASIC integration of the SHA-256. The width of the input (i_data_in_S) and the output
(o_data_out_S) data signals have been reduced down to one single bit. The width of the
control signal (i_control_S) is also minimized down to 3 bits with the help of a decoding

3.3 SHA-2 low-level design 75

Table 3.5 Port description in the SHA-256 design for the ASIC integration

Port name Port Direction Description

i_clk_S Input Clock signal
i_reset_n_S Input Synchronous active low reset
i_data_in_S Input Input bit data

i_control_0_S Input Bit 0 of Control [2:0]
i_control_1_S Input Bit 1 of Control [2:0]
i_control_2_S Input Bit 2 of Control [2:0]

i_enable_load_S Input Enable input data (load)
i_enable_read_S Input Enable output data (read)

o_data_out_S Output Output bit data
o_end_op_S Output End operation flag

block. The truth table of the 3 to 5 decoder is shown in Table 3.6. The i_enable_load_S and
i_enable_read_S inputs enable an external control in the data loading and reading processes.

The block diagram of the SHA-256 design for the ASIC implementation is shown in Figure
3.6. This block uses a HDL description that is practically similar to that already presented in
Section 3.2. The only difference is the adaptation of the inputs and outputs to the ad-hoc serial
protocol to send/receive data to/from the ASIC. The control of the incoming data is governed
with a module called CONTROL in Figure 3.6. It is in charge of generating the load signals
for the input data, as well as the memory addresses for their storage. It contains a decoder
whose output signal (control_dec) are associated to six possible control values required by
the SHA-256 block. Each value corresponds to an action that is described in Table 3.7.

The input data of the SHA-256 is provided by the Serial-In Parallel-Out (SIPO) block in
Figure 3.7. It implements a SIPO shift register where the input data is given bit by bit serially.
The SIPO is built using 64 D Flip-Flops (FFs) which are connected in cascade as it is shown in
Figure 3.7. For each clock pulse, the input data at all the FFs can be shifted by a single position

Table 3.6 Truth table of the decoder used in the Control module

i_control_2_S i_control_1_S i_control_0_S control [2:0] control_dec [4:0]

0 0 0 000 00000
0 0 1 001 00001
0 1 0 010 00010
0 1 1 011 00100
1 0 0 100 01000
1 0 1 101 10000

76 Hash Functions

H [255:0]

clk

rst_n
data_out

PISO

enable_read

i_clk_S

i_reset_n_S

i_enable_read_S

o_data_out_S

data_in [63:0]

clk

rst_n

H [255:0]

end_op

SHA-256

control [4:0]

address [2:0]

i_clk_S

i_reset_n_S
o_end_op_S

data_in

clk

rst_n

data_in_sha [63:0]

SIPO

load_data

enable_load

i_clk_S

i_reset_n_S

i_data_in_S

i_enable_load_S

control [2:0]

clk

rst_n

control_dec [4:0]

address [2:0]

CONTROL

load_data

i_clk_S

i_reset_n_Si_control_0_S
i_control_1_S
i_control_2_S

3

5

3

64

256

SHA256 ASIC

i_clk_S

i_reset_n_S

i_data_in_S

i_control_0_S

i_control_1_S

i_control_2_S

i_enable_load_S

i_enable_read_S

o_end_op_S

o_data_out_S

Figure 3.6 Block diagram of the ASIC integration of the SHA-256 algorithm

Table 3.7 Actions associated to the values of the control signals

control [2:0] control_dec [4:0] Action description

000 00000 NO ACTION
001 00001 RESET
010 00010 LOAD LENGTH
011 00100 LOAD DATA
100 01000 START OPERATION
101 10000 READ DATA

data_in
D Q

clk

load_data

D Q

data_in_sha[63]

enable_load D Q

clk

load_data

D Q

data_in_sha[62]

enable_load D Q

clk

load_data

D Q

data_in_sha[1]

enable_load D Q

clk

load_data

D Q

data_in_sha[0]

enable_load

Figure 3.7 SIPO diagram used for input data of the SHA-256 block

if enable_load is active. During the first clock cycle, the Least Significant Bit (LSB) of the
data_in must be provided. As long as the enable_load signal is active the input data will be
shifted to the right until it reaches the end. At that point, the CONTROL block generates the
load_data signal that stays high for one clock cycle and loads the data to the lower bank of
64 registers in parallel. The load_data input only remains active during one clock edge and

3.3 SHA-2 low-level design 77

ends with the subsequent one. The load_data signal will stay low until the SIPO shift register
is not ready with a new value of the input data, and therefore, the data_in_sha signal will not
be modified. Each time the load_data signal is generated, the corresponding storage address
is also updated by the CONTROL block.

A Parallel-In Serial-Out (PISO) shift register is used to change data output of the SHA-256
block from parallel to serial form (see Figure 3.6). This shift register works in a reverse way
to the SIPO shift register, the H signal enters in a parallel way and comes out serially. The
diagram of the PISO that includes 256 connected D FFs as shown in Figure 3.8. The initial
HDL description of the SHA-256 for programmable devices was slightly modified to make
it compatible with the PISO interface. When the control_dec signal activates the read data
process, the SHA-256 block is prepared to send the output data. One control signal called
enable_read is used to control the parallel input and serial output. When the enable_read
signal is activated the Most Significant Bit (MSB) of H values shift from the left to the right
and they are sent to the output serial port (data_out).

The timing diagrams for the SHA-256 ASIC integration are detailed in Figures 3.9, 3.10
and 3.11. A short description of these diagrams is given to fully understand the evolution of
signals in the time domain:

1. During the first two clock cycles of Figure 3.9, the (i_reset_n_S) signal remains
low (logic zero), activating the general reset of the ASIC module. This signal acts
independently of the control value, which, for the sake of illustration, it is set in NO
ACTION value (see Figure 3.9) since the values of i_control_2_S, i_control_1_S
and i_control_0_S are null (see Table 3.7).

clk

D Q

H [1]

enable_read

clk

D Q

H [0]

clk

D Q

H [254]

enable_read

clk

D Q

H [255]

enable_read

data_out

Figure 3.8 PISO diagram used for output data of the SHA-256 block

i_clk_S

i_reset_n_S

i_control_0_S

i_control_1_S

i_control_2_S

control NO ACTION RESET LOAD LENGTH ...

i_enable_load_S

i_enable_read_S

i_data_in_S LEN(0) LEN(1) ... LEN(62) LEN(63) ...

Figure 3.9 Timing diagram to load the message length in the SHA-256 ASIC integration

78 Hash Functions

i_clk_S

i_reset_n_S

i_control_0_S

i_control_1_S

i_control_2_S

control ... LOAD DATA ...

i_enable_load_S

i_enable_read_S

i_data_in_S MSG(0) MSG(1) ... MSG(511)

Figure 3.10 Timing diagram to load the message in the SHA-256 ASIC integration

i_clk_S

i_reset_n_S

i_control_0_S

i_control_1_S

i_control_2_S

control ... START READ ...

i_enable_load_S

i_enable_read_S

i_data_in_S

o_end_op_S

o_data_out_S HASH(255) HASH(254) ... HASH(1) HASH(0)

Figure 3.11 Timing diagram to read the digest value in the SHA-256 ASIC integration

2. The SHA-256 ASIC design is a power-up or power-on reset circuit, which means
that the reset signal has to be asserted to a high value (logic one) after power is first
applied to the circuit and becomes stable. In the third clock cycle, the i_reset_n_S
signal is deactivated (its value goes to logic one with the rising edge of the clock
signal). While the control signal evolves to the RESET value according to the values
of i_control_2_S, i_control_1_S and i_control_0_S. This corroborates that the
external reset is independent of the internal control signal that is set by the three external
signals (i_control_X_S).

3. During the fourth clock cycle, the control signals (i_control_2_S, i_control_1_S
and i_control_0_S) are configured to reach the LOAD LENGTH value with the goal
of providing the length of the message to be hashed. Thus, the input data protocol acts
providing the LSB called LEN(0) during the fourth clock cycle through the i_data_in_S
input. Figure 3.9 shows the evolution of the i_data_in_S signal from an indeterminate
value (striped area) to LEN(0). Internally, data will be provided to the SIPO block. In
parallel, the i_enable_load_S goes to a logic one to load the LEN(0) value to the first
SIPO shift register.

4. In successive clock cycles (see Figure 3.9), the length of the message is transmitted
serially, one bit per each clock cycle. In parallel, it is loaded to the SIPO registers since
the i_enable_load_S remains active.

3.3 SHA-2 low-level design 79

5. Once the message length has been written, the next step is to provide the message block
to be hashed. The timing diagram to load the message is shown in Figure 3.10. As can be
seen, the control signals (i_control_2_S, i_control_1_S and i_control_0_S) must
change to LOAD DATA value. Again, the SIPO registers start to shift the bits of the
message only if the i_enable_load_S signal remains active.

6. The hash process can start once the message length and the block message have been
fully transmitted. At that moment, the input control signals can be configured to reach
the START (see the control value in Figure 3.11).

7. When hashing ends, the signal (o_end_op_S) is activated and there are two different
options: i) load a new message block if the message has not completely digested; ii)
read the final hash value if the entire message has been processed. In the first case, it is
returned to point 5 and the control signal again reaches the LOAD DATA value. In the
second case, the control signal provides the READ value. For the sake of simplicity, it
is only illustrated this second option in Figure 3.11. The reading process using the PISO
interface will not begin while the enable read signal (i_enable_read_S) is not active.
In the reading process, the MSB of the hash value (HASH(255)) is sent firstly as shown
in Figure 3.11.

3.3.2 Synthesis and Validation

After completing the front-end design flow, a synthesized design of the SHA-256 implementation
is obtained and validated using post-synthesis simulations. On the one hand, Table 3.8 shows
the expected area occupation of the SHA-256 block after synthesis. The worst timing slack
of this block after synthesizing it with a clock period of 10 ns is 2 ps. On the other hand, the
testbenches are written in Verilog to corroborate in the simulator that:

• Instantiates and initializes the design.

Table 3.8 Post Synthesis SHA-256 Occupation

Module Cell Count (GE) Cell Area(µm2) Net Area(µm2) Total Area(µm2)

SIPO 261 1317.240 742.423 2059.663
PISO 516 2507.400 1479.523 3986.923

Control 52 181.440 2594.252 2775.692
SHA-256 (Core) 19350 118787.400 70292.775 189080.175

Total 20179 122793.480 75108.973 197902.453

80 Hash Functions

• Generates and applies stimulus to the design.

• Monitors the design output result and checks for functional correctness.

The testbenches include stimulus that read test vectors used in the Cryptographic Algorithm
Validation Program (CAVP) provided by NIST [102]. Tests included in CAVP allow to validate
the SHA-256 implemented in the ASIC according to FIPS 180-4 standard (Secure Hashing)
available at [79]. Thus, the test benches follow the same structure:

1. Initialize all inputs to the design within the test bench at simulation time zero to properly
begin simulation with known values.

2. Apply the reset pulse.

3. After 4 clock cycles, apply stimulus data to set the i_control_X_S control signals to
RESET (see Table 3.7).

4. During 64 clock cycles, apply stimulus data to set the i_control_X_S control signals to
LOAD LENGTH, and simultaneously, stimulus to send input data for hashing according
test vectors of the CAVP.

5. During 512 clock cycles, apply stimulus data to set the i_control_X_S control signals
to LOAD DATA.

6. Apply stimulus data to set the i_control_X_S control signals to START OPERATION,
which starts the message digestion.

7. The testbench waits until the o_end_op_S signal is activated, at which point it returns to
LOAD DATA if there is still information to be hashed, or to READ if the entire message
has not been completely introduced.

After completing the post-synthesis simulations with stimulus of a pair of tests from NIST
CAVP, Figure 3.12 and Figure 3.13 show the results obtained. It is possible to observe how the
results obtained by the synthesised module and the results provided in the CAVP are the same,
concluding that the module is working properly.

3.3.3 ASIC layout and tapeout

In this phase, the design place & route phase is performed as well as its verification against
the synthesis netlist using formal equivalence check. Before tape-out, a complete sign-off
verification process is made from Virtuoso Cadence Design. Once validated, the design is
submitted for fabrication. Thus, the final layout of the ASIC is shown in Figure 3.14. As it

3.3 SHA-2 low-level design 81

Figure 3.12 Post-synthesis simulation result of NIST test number 10

Figure 3.13 Post-synthesis simulation result of NIST test number 69

Figure 3.14 Layout ASIC. In red the block for SHA-256

82 Hash Functions

can be seen another blocks have been integrated in the same ASIC, however this dissertation is
focused in the SHA-256 integration (marked with a red line).

The chip has a pad ring which includes 68 pads. Their distribution in the chip can be seen
in Figure 3.15, in which the green color are the ones related with the SHA-256 implementation.
The ASIC has 36 pads for inputs, 14 pads for outputs, 8 pads for VDD/VSS core and 10
pads for VDD/VSS ring pad. Output digital pads are selected with a driving strength of 2mA,
whereas input digital pads are selected without pull option. The size of the ASIC layout is
1890µmx1890µm.

SHA-256

Figure 3.15 Distribution of the blocks and pads in the ASIC focusing in the SHA-256 block. In
black, pads for supply voltages and ground

3.4 SHA-3 family 83

3.4 SHA-3 family

3.4.1 Introduction

Among the hash algorithms above mentioned, SHA-3 family (that includes SHA-3 and SHAKE
algorithms) is considered more secure than SHA-2 for the same hash length (see the table
with indicators of security strengths for the above properties in [81]). Additionally, compared
to SHA-2, SHA-3 family has relatively fewer implementation costs and is much faster (in
hardware implementations). The SHA-3 family is noted as PQC primitive since it is used
internally by PQC algorithms (e.g. NTRU or CRYSTALS-Kyber, NIST-PQC-finalist) [103].

SHA-2 and SHA-1 are based on Merkle−Damgråd (MD) construction scheme, whereas
SHA-3 family possesses an architecture completely different. It was selected as the winner
of the NIST hash function competition in 2012, succeeding the earlier SHA-2 family of hash
functions [104]. Particularly, the Keccak algorithm was the winner of this NIST hash function
competition for SHA-3.Keccak is based on a principle known as sponge construction, which
relies on a random permutation. This technique enables the input (or “absorption” in sponge
terms) of data of any size, and the output (or “squeezing”) of data of any size, while working as
a pseudorandom function with respect to all previous inputs. Several different digest bit lengths
hash of 224, 256, 384, and 512 bits are available in SHA-3 family.

During the SHA-3 competition, several FPGA implementations were proposed. A detailed
overview was published in the final SHA-3 report [104]. Further optimizations of lightweight
architectures for SHA-3 implementations were proposed in [105] and [106]. Other works focus
on high-speed FPGA implementations such as [107], [108], and [109]. Another approaches
look for a competitive result in terms of efficiency with a good balance between throughput and
area in [110] and [88]. More recently, a hardware design and implementation of the SHA-3
algorithm on FPGA is presented in [111].

This section aims to contribute and expand the work already presented in [112] in the
following ways:

• The main goal is to present an efficient design of the Keccak function used in the
SHA-3 hash function standard compatible with SHA-3 and SHAKE. The efficiency is
corroborated by an optimal trade-off between the time processing of messages and the
required area for FPGA implementation.

• A study and comparison of state-of-the-art FPGA implementations is carried out, achieving
that the proposed solution exceeds the existing literature in efficiency.

84 Hash Functions

• An IP module encapsulation of the SHA-3 and SHAKE function is also included, where
the user can combine different parameters to e.g. make the module faster with higher
area consumption, or swap the different SHA-3 familty versions.

• The drivers required to install and invoke the IP module in software environments are
also provided. There is also a set of instructions and use cases.

3.4.2 Keccak Function Background

The NIST declared the Keccak hash function [113] as the latest Secure Hash Algorithm-3 (SHA-
3) after a competition in 2012. SHA-3 falls under the specifications outlined in the FIPS 202
standard [80], which provides the guidelines and requirements for the implementation and use
of the hash function. The implementation of the Keccak function, regulated by the mentioned
standard, is based on a sponge construction featuring an absorb and squeeze mechanism.
This construction enables the Keccak function to handle input data of arbitrary length and
transform them into an output of a specified length. This transformation involves multiple stages
that systematically process the input data by employing a sequence of operations, ultimately
generating the desired hash value.

The choice of each Keccak instance determines the configuration of the sponge construction,
through the so-called bitrate (r) and capacity (c), where r+ c = b. In the FIPS 202 standard
[80], b = 1600, defining the Keccak-f[1600] as primitive function. Thus, each SHA-3 instance
has its own Keccak instance and therefore different bitrate, capacity, and output size (d) as it is
shown in Table 3.9. These parameters not only define the structure of the construction but also
play a crucial role in determining the overall security strength of the hash function.

Table 3.9 SHA-3 family hash functions parameters. [80]

Instance d r c Keccak Instance

SHA3-224 224 1152 448 Keccak[1152,448]
SHA3-256 256 1088 512 Keccak[1088,512]
SHA3-384 384 832 768 Keccak[832,768]
SHA3-512 512 576 1024 Keccak[576,1024]

SHAKE-128 d 2 1344 256 Keccak[1344,256]
SHAKE-256 d 2 1088 512 Keccak[1088,512]

2It is not predefined

3.4 SHA-3 family 85

The stages into which the SHA-3 function is divided are the following:

1. Padding: As stated in the FIPS 202 standard, the padding rule applied is the so-called
pad10*1. In this process, the input is concatenated with a string of the form P = 1||0 j||1,
where j is the minimum number of zeros to complete an entire input block.

2. Absorbing: Once the message is padded, it is divided into blocks of equal size. Each
block is then XORed with the corresponding part of the internal state of the hash function.
Normally this operation is only performed on the bits of the bitrate (r). This internal
state is defined by a matrix of 25 elements (5x5) of 64 bits (i.e., A[x,y] where 0≤ x ≤
4 and 0≤ y≤ 4).

3. Keccak rounds: Once the XOR operation is completed, the rounds of the Keccak function
begin. There are 24 rounds in total, in which the internal state is operated through the
following five sub-stages:

• Theta (θ): It XORs every bit in the state with the parities of two columns in the
matrix, as shown in Equations 3.9, 3.10, and 3.11. The ROT operation means a
rotation of the array elements.

C[x]=A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4]

for 0≤ x≤ 4
(3.9)

D[x] =C[x−1]⊕ROT (C[x+1],1)

for 0≤ x≤ 4
(3.10)

A′[x,y] = A[x,y]⊕D[x]

for 0≤ x≤ 4 and 0≤ y≤ 4
(3.11)

• Rho (ρ) - Pi (π): It performs bit rotations on each matrix element depending on
the value of a predefined matrix, known as offset matrix (Oρ) [113] as shown in
Equation 3.12.

A′[y,(2x+3y)] = ROT (A[x,y],Oρ[x,y])

for 0≤ x≤ 4 and 0≤ y≤ 4
(3.12)

86 Hash Functions

• Chi (χ): It performs an XOR operation of each bit with a non-linear function of
two other bits in its row, as shown in Equation 3.13.

A′[x,y] = (A[x,y]⊕ !A[x+1,y]) & A[x+2,y]

for 0≤ x≤ 4 and 0≤ y≤ 4
(3.13)

• Iota (ι): It modifies one element of the matrix state in a manner that depends on a
predefined array depending on the Keccak round [80], known as RC, as shown in
Equation 3.14.

A[0,0] = A[0,0] ⊕ RC(round) (3.14)

4. Squeezing: Once the Keccak rounds have finished, there are two possibilities, return to
the absorbing stage with a new message block or, if there is no other block to digest, the
result of the hash function will be the d LSBs of this last operation.

Keccak’s mode of operation must be taken into account when designing and implementing the
function in hardware.

3.4.3 Keccak Core Design

3.4.3.1 Basic version

The hardware design of the Keccak-f[1600] function aims to be functional with the least amount
of resources needed for the implementation. The basic hardware implementation presented
in this thesis is shown in Figure 3.16, where the Keccak[576,1024] core has been used to
implement the SHA3-512 instance. On the one hand, the input stage is formed by the number
of XOR operations according to the bitrate, which is in this case 576 bits for SHA3-512. This

Input [576]

REG
f[1600]

f [576]

XOR

f [1600]

f [1600]
1

0

operation

Keccak-f[1600]

θ ρπ χ ι

Figure 3.16 Basic version of the Keccak core (SHA3-512 example).

3.4 SHA-3 family 87

strategy, mentioned in [111], allows to reduce the number of resources used since the input
block size must be concatenated with zeros to reach the 1600 bits of the Keccak input. On the
other hand, the Keccak core design strategy has followed the architecture first presented in
[114] that is also used in other works such as [107], [108] or [115].

The input stage also contains a multiplexer that, under the control of an operation signal,
chooses either to store in a register the input data operated on by the XOR gate or to store the
output data of the Keccak-f[1600] (containing all the Keccak functions described above) for a
given round. This storage process is performed in a 1600-bit FF register. The resulting data is
read directly from this register after all rounds have been completed. The implementation has
been conceived as a parameterised design, where changing the SHA-3 instance only requires
small changes to the design, such as the number of XOR gates at the input stage which are
related to the bitrate of the function.

3.4.3.2 Optimized version

Based on the initial strategy, two optimised versions of the operation emerge to improve the
performance of the original Keccak core. On the one hand, one of the proposed schemes
is shown in Figure 3.17, where a reduction of the initial number of cycles (24) is achieved
by concatenating STAGES times the Keccak function. Thus, STAGES becomes part of the
set of parameters that can be adjusted in this proposed scheme, taking into account that this
parameter must be a divisor of the number of cycles of the Keccak operation (24). For example,

STAGES = 24

REG
f[1600]

Keccak-
f[1600]

Input [576]

f [576]

XOR

f [1600]
1

0

operation

Keccak-
f[1600]

x24

STAGES = 2

REG
f[1600]

Keccak-
f[1600]

Input [576]

f [576]

XOR

f [1600]
1

0

operation

Keccak-
f[1600]

Figure 3.17 First optimized version of the Keccak core (SHA3-512 example)

88 Hash Functions

if STAGES = 2, it will take 12 cycles to complete the function, whereas if STAGES = 24, it
will take only one cycle to complete the whole function. This strategy leads to an increase in
resources and a decrease in the frequency of operation as the number of stages increases, which
will need to be evaluated later. This scheme is partly based on the schemes presented in [107]
and [88], without considering intermediate registers.

On the other hand, the second strategy, which is much more similar to [107] and [88],
shown in Figure 3.18, aims to increase the number of blocks operated per clock cycle. In
contrast to this dissertation, previous work did not provide a high tunability. For this purpose, a
new parameter called STAGES_REG is added which, when enabled, allows the instantiation
of intermediate registers between Keccak-f[1600], as shown in Figure 3.18. Contrary to the
previous strategy, this does not reduce the number of cycles that each block requires but
increases the number of blocks that can be operated per cycle, thus keeping the operating
frequency constant without a significant increase in resources.

3.4.4 IP Module Integration

The SHA-3 function design presented in this dissertation has been encapsulated into an IP
Module as shown in Figure 3.19. For that, the Keccak core was encapsulated together with its
own Keccak control logic in the so-called SHA-3 core. The Keccak control logic is responsible
for controlling the round counter as well as the input stage of the Keccak core once it is
externally activated for starting the operation, while the control logic of this IP is responsible
for the management of all the individual elements that comprise the encapsulation.

STAGES = 24

STAGES = 2

REG
f[1600]

Keccak-
f[1600]

Input [576]

f [576]

XOR

f [1600]
1

0

operation

Keccak-
f[1600]

REG
f[1600]

REG
f[1600]

Keccak-
f[1600]

Input [576]

f [576]

XOR

f [1600]
1

0

operation

Keccak-
f[1600]

REG
f[1600]

x24

Figure 3.18 Second optimized version of the Keccak core (SHA3-512 example)

3.4 SHA-3 family 89

Keccak Core Keccak
Control

SHA-3 Core

Serializer Decoder

Control

data_in [63:0]

control [63:0]

Padding
module

end_op

data_out [63:0]

address [63:0]

IP Module

Figure 3.19 SHA-3 IP Module encapsulation

This control logic is based on a Finite State Machine with three states: LOAD, START, and
READ. Each one of these states is externally controlled by the control signal. In the first of
these states, the loading process is carried out on the serializer. Since the interface chosen to
interconnect the IP Module has been AXI4-Lite with a bus size of 64 bits, it is necessary an
interface that exchanges data serially/parallel and vice-versa. This is achieved by the serializer
and decoder included in the design. Once all the data have been stored, the control signal can
indicate that operation can begin, at which point the control module is set to the START state,
and the SHA-3 core is activated. When the operation finishes, the end_op signal is activated
and, depending on whether there is more data to operate, it can return to the LOAD state or, if
it is the last, go to the READ state. Since the SHA-3 specifications do not specify a maximum
length of the string to be processed, it is impossible to predict a previous string length in order
to store it. For this reason, it can also be indicated by the control signal that the next block to
be operated will require padding, carried out by the padding module.

The design of the IP module includes the user interface shown in Figure 3.20. As can be
seen, it is possible to select the module according to the SHA-3 instance desired by the end
user: SHA3-224, SHA3-256, SHA3-386 or SHA3-512. It is also possible to choose one of the
two types of optimised versions as well as the amount of stages to be implemented. This IP
module can be found in the repository of this dissertation [116] as sha3_xl_1_0.

90 Hash Functions

Figure 3.20 User interface of the SHA-3 IP Module

3.4.5 Embedded System Design

This section is completed with the inclusion of the SHA-3 IP module in an embedded system.
For this integration, the PYNQ-Z2 [98] development board was used, which is based on the
Xilinx Zynq-7000 SoC, containing on the one hand, an ARM as PS and, on the other, a Xilinx
Artix-7 as PL. Due to the high tunability of the module, the evaluation with respect to the
software has been carried out using all SHA-3 instances, as Figure 3.21 shows. This case is only
considered for the tests performed. In a real application, it would be sufficient to instantiate
the SHA-3 module that the designer considers appropriate. As shown in Figure 3.21, the
connection of the IP modules to the processor has been done through the AXI Interconnect
module provided by Xilinx.

The SHA-3 drivers implementation was carried out in C and adjusted for the PYNQ
environment by utilizing the PYNQ C-API that is available in [99]. This C-API provides an
extensive collection of C routines that eases the loading of bitstreams and communication
with hardware blocks on the PL of the Zynq device via memory-mapped and shared memory
mechanisms. These C routines allow the communication between the processor and SHA-3 IP
module. All the drivers and libraries necessary for the use of the SHA-3 IP module in software
environment are included in the repository of this dissertation.

3.4 SHA-3 family 91

Figure 3.21 Block Diagram of the SHA-3 IP Module integration in a embedded system

3.4.6 Results

3.4.6.1 Performance at HW level

To evaluate performance at the hardware level, two metrics have been used that have been
already defined in Section 3.2. One is called throughput, whose equation is given in Equation
3.7. And the other one is the efficiency, shown in Equation 3.8. For the case of throughput,
there is a new parameter mentioned in [88] which symbolises the number of messages that can
be digested at the same time, Nmsg. This parameter multiply the value of previous throughput
definition.

A Virtex-7 device has been used for the implementation of the designs to perform the
evaluation. This is due to the majority of implementations reported in the state-of-the-art use this
device to implement the SHA-3 function. However, the design is technologically independent,
so it could have been synthesised and implemented on any other platform. The comparison
between different strategies (i.e., number of STAGES and the use or not of intermediate registers,
STAGES_REG) of the SHA-3 core (see Figure 3.19) for the SHA3-512 implementation is
shown in Figure 3.22. Apart from the number of slices used, the two performance parameters
mentioned above are included: throughput and efficiency, represented in the figure as Thr and
Eff respectively. The presence or absence of intermediate registers is shown as 1 or 2 together
with the parameter evaluated. Thus, Slices 1 and Slices 2 represent the number of slices used
without and with intermediate registers, respectively.

As can be seen, the number of slices used increases with the number of STAGES. The higher
the number of Keccak-f[1600] blocks, the more resources are required. However, the strategy
that includes intermediate registers does not use more slices than the strategy that does not.
This is because these new registers are instantiated in the slices used by the Keccak core logic.

92 Hash Functions

1 2 3 4 6 8 12 24
STAGES

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Sl

ic
es

Throughtput (G
bps)

Efficiency (M
bps / Slice)

0

20

40

60

80

100

120

140

2

4

6

8

10

12

14

0

Slices 1
Slices 2
Thr. 1
Thr. 2
Eff. 1
Eff. 2

Figure 3.22 Comparison between different strategies of the SHA-3 core for the SHA3-512
implementation.

In terms of throughput, it can be seen that by maintaining the ability to process different blocks
of messages at the same time, i.e. including the instantiation of intermediate registers, the
throughput increases considerably over the other strategy. Finally, in terms of efficiency, it
decreases considerably as the number of STAGES increases for a strategy without intermediate
registers, while it decreases slightly for a strategy that includes them. The maximum of this
efficiency is precisely in the latter strategy for a number of STAGES of 2 and 3.

The comparison between different implementations in the state-of-the-art has been done by
exploiting the tunability of the module as much as possible, i.e. comparing between different
instances of SHA-3 as well as the different design parameters: STAGES and STAGES_REG.
Table 3.10 shows the comparison of the most competitive state-of-the-art implementations for
different SHA-3 instances and different platforms. Since the configuration with STAGES = 2
and STAGES_REG = 1 is one of the best performing, it was chosen for comparison. It can be
seen, on the one hand, that the implementation carried out in this dissertation improves all the
referenced implementations. On the other hand, it is shown how different instances of SHA-3
give completely different results. When the output size is reduced, the input block increases
(e.g., from SHA3-512 to SHA3-256), which increases the number of slices occupied, thus
increasing the throughput of the design.

In terms of integration, the first step was to integrate the SHA-3 core into an IP module,
whose process has already been mentioned. Carrying out this integration, it increases the
number of Look-Up Tables (LUTs) and FFs by about 600 and 900 respectively, resulting in an
increase of about 500 slices. This increase in resources is independent of the SHA-3 instance,

3.4 SHA-3 family 93

Table 3.10 Comparison of the implementation of the SHA-3 core for different state-of-the-art
works.

Ref. Platform
SHA-3

Slices
Throughput Efficiency

Instance (Gbps) (Mbps/Slice)

[88] Virtex-6 SHA3-512 1406 16.51 11.47
[107] Virtex-6 SHA3-512 2296 18.78 8.17
[110] Virtex-5 SHA3-512 1163 7.80 6.06

Our Work Virtex-7 SHA3-512 1456 17.97 12.34

[109] Virtex-7 SHA3-256 1618 20.08 12.90
[108] Virtex-7 SHA3-256 1418 14.30 11.97

Our Work Virtex-7 SHA3-256 1566 29.25 18.68

[111] Zynq-7000 SHA3-224 1424 12.8 8.98
Our Work Zynq-7000 SHA3-224 1577 30.00 19.02

whose difference has already been taken into account in the core. The resource increase of the
embedded system interconnection is approximately 700 LUTs and 800 FFs.

3.4.6.2 Performance at SW level

Among the set of functions that have been included in the software repository [116], the
first one allows to evaluate the SHA-3 function implemented in hardware with respect to
the NIST bit and byte tests [117][118]. This function allows to evaluate both type of tests
for all available message lengths being compared in time with the SHA-3 software function
found in the repository available in [119]. A double functional verification is included that
compares the results obtained by the SHA-3 IP Module implementation with the same function
in software and with the results included in the NIST tests. In the work repository can be
found as sha3_XXX_test being XXX the implemented instance. The compilation process
to obtain each instance only requires one parameter which is passed directly in the compiler
call: SHA3_224, SHA3_256, SHA3_384 or SHA3_512. This can be easily replicate using the
makefile that accompanies the repository of this dissertation. Using the software provided in
[119], the results of hardware acceleration versus software are shown in Table 3.11. These data
have been obtained as the arithmetic mean of all NIST tests for all instances and considering
a message whose length is either one or more than one input blocks. The results are quite
promising, showing a 6 to 7 times speed-up of HW over SW execution time for the single block
processing case, and 10 to 20 times faster for the multi-block case depending on the type of
SHA-3 instance being used. These results could be improved by reducing the communication
time between the software and the IP module where most of the processing time is spent.

94 Hash Functions

Table 3.11 Acceleration of the SHA-3 family HW vs SHA-3 family SW [119] implementations.

SHA-3 Message Length
Instance < Block Size > Block Size

SHA3-224 x6.23 x10.89
SHA3-256 x6.41 x11.71
SHA3-384 x6.77 x14.54
SHA3-512 x7.33 x19.93

SHAKE128 x2.80 x8.18
SHAKE256 x3.07 x9.64

The actual functionality of the hash function is included in sha3_XXX_demo for SHA-3, and
shake_XXX_demo for SHAKE. This function allows performing hash functions for hexadecimal
strings (-m) or plain ASCII text strings (-t) provided through the command line, as well as
introducing these data through a file as hexadecimal strings (-mf) or plain ASCII text strings
(-tf). In this case, there is also an additional check on the software, which can be commented
on or removed in a final version of the implementation. Results of some execution examples
are shown in Figure 3.23, in which it is possible to observe how different calling always return
an improvement in the execution time.

Figure 3.23 Results of the execution of the input chain "abcd" as hexadecimal, ASCII text and
using input file

3.5 Conclusions 95

3.5 Conclusions

In conclusion, this dissertation underscores the pivotal role of hash functions in the realm
of cybersecurity, with particular emphasis on the widespread use of the SHA-2 function
in contemporary contexts. Notably, the recent introduction of SHA-3 marks a significant
advancement in this domain.

The primary objective of this research endeavor has been to integrate these hash functions
into a hardware RoT. To this end, the exploration started with the in-depth analysis of SHA-2 as
the inaugural candidate. The outcome culminated in the establishment of a comprehensive open
repository, providing a valuable resource for designers seeking to incorporate this function into
their projects. Through a series of refinements and modifications, SHA-2 was further enhanced
and subsequently implemented in an ASIC following a full digital flow implementation.
Simultaneously, the SHA-3 hash function underwent a parallel journey of exploration and
implementation, leading to its integration into a FPGA and subsequent release in an open
repository.

Furthermore, it is worth noting that all relevant standards pertaining to both hash functions
have been meticulously implemented and made openly available. The results of these implemen-
tations are highly encouraging, demonstrating that the incorporation of these functions need not
entail an exorbitant allocation of resources. This finding holds significant implications for the
broader cybersecurity landscape, affirming the feasibility and efficiency of their deployment.

In summation, this dissertation not only illuminates the critical importance of hash functions
in cybersecurity but also charts a tangible path towards their integration within the RoT
framework. The successful implementations of SHA-2 and SHA-3, alongside the provision of
open repositories and adherence to standards, collectively signify a substantial leap forward
in fortifying digital security measures. This dissertation lays a robust foundation for future
endeavors in advancing the security landscape of digital systems.

Chapter 4

Post-Quantum Cryptography

4.1 Introduction

The security of most digital infrastructures relies on Public Key Cryptography (PKC), which
enables secure communications between entities without sharing any pre-established secret.
PKC provides i) protected channel establishment (key establishment) and ii) authentication
of digital information (including authentication of individuals involved in a communication
protocol through the application of digital signatures). The strength of current PKC techniques
is based on the computation complexity of two mathematical problems: the factorization
of large numbers and the computation of discrete logarithms. However, although these
problems are complex for current state-of-the-art systems with high amounts of resources
and computational power, they can be solved in a reasonable amount of time using quantum
computers. As a consequence, the security of cryptographic protocols applied in our everyday
life will be compromised in the near future. For instance, Shor’s algorithm [31] highlights the
capability of quantum computers in efficiently factoring integers. This exposes a weakness in
the widely used RSA algorithm, which relies on the complexity of factoring a large biprime
number. Additionally, Shor’s algorithm can also solve the Discrete Logarithm Problem (DLP)
in polynomial time. The DLP serves as the foundation for other cryptographic methods, such as
Diffie-Hellman (DH), the Digital Signature Algorithm (DSA), and Elliptic Curve Cryptography
(ECC).

The scientific community has developed PQC to deal with this threat. The roadmap of the
EU Cybersecurity Strategy identifies PQC as a key enabling technology, as reported by ENISA
in [120]. Moreover, the NIST started a PQC competition in 2016 to identify cryptographic
algorithms able to withstand quantum computer attacks. During the development of this
dissertation, the algorithms based on Key Encapsulation Mechanism (KEM) selected in the
third round were published in 2020 and underwent modifications until 2022 [103]. Among those

98 Post-Quantum Cryptography

selected were NTRU. However, it was not until July 2022 that NIST published its final decision
on the algorithms to be standardised, with CRYSTALS-Kyber being selected [33]. Besides, it
was not until August 2023 that the first draft of the standard based on CRYSTALS-Kyber was
published as KEM, under the name ML-KEM (FIPS-203) [121]. Due to recent publications
in this regard by NIST and the fact that these publications are not completely closed, it was
decided not to include any information in this dissertation regarding CRYSTALS-Kyber or
ML-KEM. Although it is a very clear and necessary way forward.

Proposals submitted to the NIST PQC contest included software implementations. However,
the design of hardware-efficient solutions is an open challenge for the electronics engineering
community. Recent studies present the use of hybrid hardware/software (HW/SW) co-design
methodologies to combine flexibility and efficiency when implementing PQC-based algorithms
[122, 123]. This chapter focuses on the hardware execution of the previously mentioned PQC
algorithm, NTRU. It advances the field by presenting the acceleration of all parameter sets of
this NTRU version, building upon the work related to NTRU acceleration [124]. Additionally,
it incorporates various mechanisms to counteract SCA, thereby preventing the extraction of
information through Simple Power Analysis (SPA), and safeguarding against timing attacks.

4.2 NTRU

4.2.1 Introduction

Among lattice-based PQC cryptosystems, the public key encryption scheme NTRU was
consolidated as a reference since it offers certain advantages over other cryptosystems with the
same security level, namely that it is faster and works with smaller key sizes [125]. NTRU’s
security is based on the Shortest Vector Problem (SVP), which is a difficult problem in lattice
reduction. Until now, no algorithm has been developed to solve this problem in polynomial
time. The NTRU public key cryptosystem was standardized by the Institute of Electrical and
Electronics Engineers (IEEE) in 2008 as IEEE Std 1363.1-2008 [126] and by the American
National Standards Institute (ANSI) in 2010 as ANSI Std X9.98-2010 [127]. The original
version of NTRU has been progressively improved to be resilient against different types of
attacks. NTRUEncrypt [128] and NTRU-HRSS-KEM [129] submissions in Round 1 of the
NIST PQC standardization contest were merged in Round 2 to give rise to a new NTRU
submission (NTRU [130]), which reached Round 3 [131]. The first list of PQ algorithms
to be standardized has been recently announced [33], in which NTRU is not among those
selected. However, NTRU-based algorithms are a fundamental pillar in PQC with a solid
background. Advances to provide efficient NTRU implementations on embedded systems are

4.2 NTRU 99

an open challenge, especially in certain scenarios where strict restrictions make the adoption of
other PQC finalists with higher levels of complexity unfeasible.

There are a wide variety of implementations of NTRU encryption and decryption schemes
on several platforms, such as software on embedded microcontrollers [132], FPGAs [133],
and even an experimental study of hardware-dedicated building blocks for VLSI integrations
[134]. In most cases, these implementations must be included in IoT environments where area
and time constraints are very limited. This is because the evolution of programmable devices
has progressed towards SoCs, which combine one or more embedded processor cores and
PL, encouraging the development of hybrid implementations following HW/SW co-design
methodologies. The idea behind HW/SW implementations is to exploit the flexibility coming
from software with the efficiency of hardware realizations for the most demanded timing
operations. In NTRU cryptosystem, the critical operation is the multiplication in the nth-degree
truncated polynomial ring; thus, the efforts of the scientific community have been focused on its
acceleration through hardware implementations. Most of the studies reported in the literature
follow two well-distinguished methodologies. On one hand, some studies are based on a
High-Level Synthesis (HLS) methodology, starting from a high-level description of the NTRU
algorithm [135]. On the other hand, some employ a methodology based on a Register-Transfer
Level (RTL) description for critical operations [136–138]. The main advantage of the first
strategy is the reduction in development time due to the use of automatic synthesis tools that do
not require a solid background of designers in hardware description languages. However, the
second strategy generally offers the most efficient implementations in terms of timing, power
consumption, and area, using ad hoc hardware realizations for critical operations.

This section presents an extension of the work presented in [124] based on the implementation
of the NTRU third round version, following a HW/SW co-design methodology. This includes
the evaluation of each NTRU parameter set as well as the decryption evaluation. Additionally,
regarding side-channel attacks, this section complete the evaluation in terms of security started
in [124] for the rest of parameter sets. That is crucial because despite the efficiency of
post-quantum cryptography, implementations of lattice-based cryptography secure against side-
channel attacks remain an open issue, as [139] and [140] point. The security implementation
aspect of lattice-based cryptography has yet to be explored in this regard. Some advances
related with timing attacks are included in [141]. Therefore, this dissertation (unlike others
works presented on NTRU) tries to include a solution that can involve a mitigation against
timing side-channel attacks. Moreover, this implementation follows a flexible design that can
mitigate timing-based side-channel attacks and also make it suitable for the area or temporal
limitations that are common in IoT environments, establishing a compromise between area and
performance. The main contributions of this section are as follows:

100 Post-Quantum Cryptography

• The specific solution for the NTRU polynomial multiplier which allows accelerate the
multiplication, the encryption and decryption process without generating any security
breaches related to timing attacks in the system.

• The design of a highly configurable IP module, whose configuration enables the possibility
to easily implement the different parameter sets as well as different arithmetic units
responsible for performing the multiplication operation.

• The design of an interconnection scheme based in a AXI4-Stream protocol that optimizes
the bandwidth of communication infrastructures between the processor core and the IP.

• The evaluation of i) the resources used for each particular solution and comparison with
other implementations in the literature; and ii) the acceleration factors achieved with the
proposed implementations versus the software implementation of the NTRU third round
version [142]. And the best trade-off between a high acceleration factor and a moderated
value of area occupation.

• Following open policies, all software and hardware developments are available in a public
repository to ease its re-use and corroborate the results [143].

4.2.2 The NTRU Encryption Scheme

4.2.2.1 Mathematical Background

The basis of the actual KEM used in the actual version of NTRU [131] is inherited from the first
round of the NIST PQC contest, in which the NTRU-HRSS-KEM version was submitted. This
version was in turn based on a variant of the Fujisaki–Okamoto transformation [144]. During
the second round of the contest, two of the cryptography algorithms presented, NTRU-HRSS-
KEM and NTRUEncrypt are combined to merge the NTRU presented in the third round, NTRU
Round 3. These latest version of the algorithm included variants which can be summarized in
the transformation of the original NTRU-HRSS (Hülsing, Rijnveld, Schanck, and Schwabe)
[129] and NTRU-HPS (Hoffstein, Pipher, and Silverman) [145]. The difference between these
variants is essentially the sample space of some of the polynomial that are involved in the
cryptosystem.

The cryptography scheme of NTRU is based on polynomial convolution rings or quotient
rings, which are a particular algebraic structure where polynomial operations are performed
[145]. The characteristics of each quotient ring are set depending on the NTRU Round 3
security level, which is modulated by the sets of parameters defined in [131]. The polynomial
degree is configured by the parameter n, and the modulus of the polynomial coefficients is set

4.2 NTRU 101

by the parameter q as it can be observed in Table 4.1. In this scope, any polynomial whose
coefficients are integers is denoted as Z[x].

Table 4.1 NTRU parameter set [131]

Parameter set n q

ntruhps2048509 509 2048
ntruhps2048677 677 2048
ntruhps2048821 821 4096
ntruhrss2048701 701 8192

The most important parts of the KEM is the encryption and the decryption process due to
the fact that they involve the majority amount of time in the encapsulation and decapsulation,
respectively. Focusing on the encryption and decryption schemes in NTRU Round 3 [131], it is
required defining the quotient rings described by Equations 4.1, 4.2, and 4.3.

R/q = Z[x] / (q,Φ1Φn) (4.1)

S/q = Z[x] / (q,Φn) (4.2)

S/3 = Z[x] / (3,Φn) (4.3)

where

• Φ1 is the polynomial (x−1);

• Φn is the polynomial (xn−1)/(x−1) = xn−1 + xn−2 + . . .+1;

• (q,Φ1Φn) represents the operation modulus q for the coefficients and modulus Φ1Φn for
the polynomial degree;

• (q,Φn) represents the operation modulus q for the coefficients and modulus Φn for the
polynomial degree;

• (3,Φn) represents the operation modulus 3 for the coefficients and modulus Φn for the
polynomial degree.

Thus, Equations 4.1, 4.2, and 4.3 can be expressed as shown in Equations 4.4, 4.5, and 4.6.

R/q = Z[x] mod (q,xn−1) (4.4)

S/q = Z[x] mod
(

q,
xn−1
x−1

)
(4.5)

102 Post-Quantum Cryptography

S/3 = Z[x] mod
(

3,
xn−1
x−1

)
(4.6)

Therefore, R/q is a polynomial with a degree of n− 1 at most, with coefficients of
{−q/2,−q/2+1, . . . ,q/2−1}, whereas S/q is a polynomial with a degree of n−2 at most,
with coefficients of {−q/2,−q/2+1, . . . ,q/2−1}, and S/3 is a polynomial with a degree of
n−2 at most, with coefficients of {−1,0,1}, which constitutes the so-called ternary polynomial,
T . In this version of the NTRU, it is necessary to define a subset of ternary polynomials,
represented by T (t), that contain exactly t/2 elements equal to +1 and other t/2 elements
equal to −1.

The NTRU Round 3 encryption scheme initially requires two polynomials: the first one,
which emerges from the public key h(x) ∈ S/q, and the blinding polynomial, which is a ternary
polynomial, r(x) ∈ T . Unlike previous versions of the NTRU cryptosystem, the number of
nonzero coefficients of r(x) is not known in this version. These two polynomials are multiplied
according to the convolution product described in Equation 4.7:

e(x) = r(x)×h(x) mod (q,xn−1) (4.7)

where e(x) ∈ R/q. On the other hand, the message, which is the other polynomial required,
is transformed into a ternary polynomial with q/16− 1 ones and q/16− 1 minus-ones,
m(x) ∈ T (q/8− 2), to increase the message obfuscation in the encryption process. Unlike
NTRUEncrypt, the padding mechanism of the message presented in [129] disappears. However,
a change in the message representation from S/3 to R/q is required for NTRU Round 3. In
NTRU-HPS, the new message m′(x) ∈ S/3 is equivalent to the message m(x). In NTRU-
HRSS, the message m′(x) is obtained after a complex process described in [131], so-called Lift
operation. The operation in which the encrypted message c(x) ∈ R/q is obtained is described
in Equation 4.8,

c(x) = e(x)+m′(x) mod (q,xn−1) (4.8)

In the case of the decryption scheme of the NTRU Round 3 algorithm, several convolution
products are carried out in which some polynomials are required. First, two polynomials that
merge from the secret key of the algorithm, f (x) and fp(x) are used. The first polynomial
is a ternary polynomial, thus f (x) ∈ T , while fp(x) ∈ S/3, being the inverse of f (x) in this
modulus. Second, the inverse of h(x) is also required, hq ∈ S/q. And, finally, the ciphertext
that as it was mentioned above, c(x) ∈ R/q. The decryption process starts with a multiplication
described in Equation 4.9 between the ciphertext, c(x) and one of the polynomial obtained
from the secret key, f (x):

4.2 NTRU 103

a(x) = c(x)× f (x) mod (q,xn−1) (4.9)

The original message is partially recovered using the result of the previous operation and
the other polynomial also generated from the secret key as is shown in Equation 4.10.

m′(x) = a(x)× fp(x) mod
(

3,
xn−1
x−1

)
(4.10)

In order to recover completely the original message the Lift operation, mentioned above, is
used in the case of NTRU-HRSS, not so in the case of NTRU-HPS.

In this encryption operation, the multiplication operation required to calculate e(x) consumes
the highest percentage of time in relation to the total encryption time [125, 146]. This operation
is also used during the decryption process for the calculation of a(x) so that, the goal of this
chapter is to provide a new implementation, suitable for constrained devices, that accelerates
the algorithm execution at the expense of a low increase in resources.

4.2.3 Hardware Implementation of Polynomial Multiplication

The multiplication described in Equation 4.7 or 4.9 follows a cyclic convolution process that
can be expressed by Equation 4.11 (for the case of Equation 4.7),

ek = ∑
i+ j=k mod N

(h j · ri) mod q (4.11)

where the polynomial degree is expressed as N; ek represents the k-th coefficient of e(x); h j

the j-th coefficient of h(x); and ri the i-th coefficient of r(x). It is trivial to prove that this
operation requires N ·N scalar multiplications to conclude. The first effort to accelerate this
operation at the hardware level was reported in [147]. The main changes introduced in this
work were i) the replacement of the multiplication by adding coefficients of the public key,
h(x), to the temporal result for each nonzero element in the blinding polynomial, r(x), now
as a binary polynomial; and ii) the substitution of r(x) by r1(x)+ r2(x) reducing the total
operation cycles to (d1 +d2) ·N, being d1 and d2 the nonzero coefficients of r1(x) and r2(x),
respectively. This was a direct and basic implementation of the scalar multiplication that
achieved good results at the hardware level. However, the techniques were progressively refined
to achieve improved implementations, as in the case of [148], where the scalar multiplication
was replaced by addition or subtraction depending on whether the coefficient r j was 1 or −1,
respectively. Power reduction methods were used to provide a design specially adapted to
security applications (RFIDs and sensor nodes) reducing the amount of resources and power
needed in a physical implementation. On the other hand, due to the large number of zero

104 Post-Quantum Cryptography

elements contained in the polynomial r(x), another important improvement in the hardware
implementation of the polynomial multiplication was the exploitation of this fact in the works
presented in [149] and [150]. They only consider the nonzero coefficients of r(x) polynomial
to implement the convolution product. The first one exploits their locations, whereas the second
identifies the degrees of nonzero terms in the r(x) polynomial during the load process. Using
this consideration, the operation described in Equation 4.11 can be expressed as shown in
Algorithm 1. Therefore, the multiplication operation will require (N ·nnz) scalar multiplications
and (N−nnz) clock cycles of null coefficients of r(x), where N is the degree of the polynomial
and nnz the number of nonzero elements (including 1 and −1) in the r(x) polynomial. This
enhancement significantly reduces the time required to complete the convolution operation.

Algorithm 1 Accelerating the polynomial multiplication using nonzero elements
for i = 0 : N−1 do

if ri ̸= 0 then
for k = 0 : N−1 do

j = mod(k− i,N)
ek = ek +(h j · ri)

end for
end if

end for

A parallelization process of this convolution product can be carried out by adding different
scalar multiplications per operation cycle, considerably reducing the overall operation time.
With the consequent cost in terms of resources, the work in [151] presents a fully parallelized
hardware in which N scalar multiplications are performed in each cycle using a LFSR structure.
In [152] and [137], an improvement over [151] is proposed, where the multiplication operation
is accelerated by analyzing when two, three, or four consecutive zeros are presented in the
obfuscation polynomial r(x). In [137] and [153], it was analyzed whether the total number of
cycles or in other words, the total time required to complete the multiplication operation when it
is accelerated considering consecutive elements can generate a security breach by using timing
attacks that could allow the coefficients of the obfuscation polynomial r(x) to be induced. On
the other hand, the use of fully parallel structures to reduce the number of cycles implies a high
cost in terms of resources, which constrained implementations cannot afford. To solve these
drawbacks, a low-resource architecture for NTRUEncrypt based on a partial parallelization
of the scalar multiplications that does not present any security breach against timing attacks
is proposed in [138]. In this case, the operation could be accelerated using only the 2 · dr
nonzero coefficients of the polynomial r(x) (dr is the number of coefficients that are 1 and −1),
i.e., r(x) ∈ T (dr), resulting in a number of operations equal to (N ·2dr)+ (N−2dr). More

4.2 NTRU 105

recently, the work presented in [154] described a full hardware implementation of the three
multiplications required in NTRU Round 3. However, such implementation is not performed on
the software structure of the cryptosystem presented in [131], using a large amount of resources
to complete the operation in parallel, making its implementation on resource-constrained
devices unfeasible.

4.2.4 Robust Acceleration Against Timing Attacks

In the version of NTRU submitted to the third round of the NIST PQC contest, as described
above, r(x) ∈ T , i.e., the number of nonzero coefficients, is not fixed, being impossible to
predict the number of ones, minus-ones, and zeros before generating the polynomial. Using a
pseudocode such as the one described in Algorithm 1 would cause a security breach if timing
attacks were performed (by disclosing the information of the number of nonzero coefficients
contained in r(x)). The goal of this proposal is to achieve some degree of acceleration of the
N ·N clock cycles of the convolution product without revealing any sensitive information of the
polynomial r(x).

Since it is not possible to know in advance the number of nonzero elements that the
polynomial r(x) will have, the strategy to accelerate this process consists of the evaluation of a
significant number of r(x) possible generations in order to establish an upper limit. For the set
of parameters shown above in Table 4.1, Figure 4.1 shows the distributions of the number of
nonzero elements when the polynomial r(x) is generated 106 times for each parameter set. The
red line represents the maximum number of nonzero elements obtained, or in other words, this
case has a probability of 0.0001% (1 over 106) that happens. Establishing this threshold as a
limit to perform the multiplication operation would not generate any security breaches since
there is no temporal distinction between different generations of r(x). The hardware multiplier,
therefore, will have to operate for at least that number of cycles so as not to raise suspicions
about the number of nonzero elements contained in the polynomial r(x).

In a real implementation, for a specific use case, margins must be established from this
threshold of nonzero coefficients. In this particular case for the specific set of parameters the
confidence margin is set by the blue line in Figure 4.1. Fitting the number of nonzero coefficients
to a normal distribution, the design threshold corresponds to a certain probability shown in
Table 4.2. Thus, it can be considered that is practically impossible to obtain a polynomial
r(x) with more nonzero coefficients than the threshold or confident limit established. In the
case that this happens, establishing some design mechanism that allows for regeneration of the
polynomial r(x) at the software level would solve this remote problem. Hereinafter, this design
threshold value will be referred to as maxcoe f . This limit of coefficients will include a large
number of nonzero coefficients and a small number of zero coefficients.

106 Post-Quantum Cryptography

Setting a maximum for polynomial acceleration

m
ax

im
um

 n
on

-z
er

o
va

lu
es

de
si

gn
 th

re
sh

ol
d

300 320 340 360 380 400
Non-zero elements

0

0.5

1

1.5

2

2.5

3

3.5

4

A
cu

m
ul

at
iv

e
r(

x)
 w

ith
 th

e
sa

m
e

no
n-

ze
ro

 e
le

m
en

ts

10 4

(a) ntruhps2048509

Setting a maximum for polynomial acceleration

m
ax

im
um

 n
on

-z
er

o
va

lu
es

de
si

gn
 th

re
sh

ol
d

400 420 440 460 480 500 520
Non-zero elements

0

0.5

1

1.5

2

2.5

3

3.5

4

A
cu

m
ul

at
iv

e
r(

x)
 w

ith
 th

e
sa

m
e

no
n-

ze
ro

 e
le

m
en

ts

10 4

(b) ntruhps2048677

Setting a maximum for polynomial acceleration

m
ax

im
um

 n
on

-z
er

o
va

lu
es

de
si

gn
 th

re
sh

ol
d

480 500 520 540 560 580 600 620 640
Non-zero elements

0

0.5

1

1.5

2

2.5

3

3.5

4

A
cu

m
ul

at
iv

e
r(

x)
 w

ith
 th

e
sa

m
e

no
n-

ze
ro

 e
le

m
en

ts

10 4

(c) ntruhps2048821

Setting a maximum for polynomial acceleration

m
ax

im
um

 n
on

-z
er

o
va

lu
es

de
si

gn
 th

re
sh

ol
d

400 420 440 460 480 500 520 540
Non-zero elements

0

0.5

1

1.5

2

2.5

3

3.5

4
A

cu
m

ul
at

iv
e

r(
x)

 w
ith

 th
e

sa
m

e
no

n-
ze

ro
 e

le
m

en
ts

10 4

(d) ntruhrss2048701

Figure 4.1 Distribution of nonzero elements in different r(x) generations. The red line
represents the maximum obtained, while the blue line defines a confidence threshold for
the implementation.

Table 4.2 NTRU confident limits

Parameter set N
Max. non-
zero value

Confident Limit
(CL)

Probability of CL (%)

ntruhps2048509 509 390 400 1.2270 ·10−7

ntruhps2048677 677 503 516 1.0382 ·10−7

ntruhps2048821 821 609 625 1.6783 ·10−7

ntruhrss2048701 701 520 533 1.0557 ·10−7

4.2 NTRU 107

These changes can be applied to the operation of the multiplier, so the pseudocode
presented in Algorithm 1 can be upgraded to the pseudocode of Algorithm 2. In this case,
the total number of cycles totalcycles required to complete the operation will be totalcycles =

N ∗maxcoe f +(N−maxcoe f). Setting a fixed number of clock cycles avoids the possible leakage
of timing information that would allow the number of nonzero coefficients of r(x) used in the
multiplication to be known. The inclusion of this countermeasure does not entail a significant
reduction in acceleration that can be achieved by taking advantage of the fact that r(x) is
ternary. To complete the operation, it is necessary to know the number of nonzero coefficients
of the polynomial r(x), nnz. This number must be calculated for each polynomial in each
execution, which can be carried out and stored internally at a stage prior to the multiplication
phase. Therefore, with this information, the number of zeros to be computed as if they were
nonzero elements, i.e., those below the threshold maxcoe f , corresponds to the variable defined
as numberzeros−max or nzm. Therefore, in order to avoid any leakage of timing information, the
acceleration produced by the elimination of the cycles corresponding to the null coefficients
of r(x) will only take place when the threshold determined by maxcoe f is exceeded. Thus,
the pseudocode is designed so that the operation is only performed if one of the following
conditions occurs: 1) the maximum number of zeros nzm has not yet been reached; and 2)
the limit has been exceeded and the coefficient of r(x) is not zero. This analysis will lead to
an implementation of eight different solution two per parameter set: one for maxcoe f = N (in
which it is not performed any algorithm acceleration) and other one for maxcoe f =CL.

Algorithm 2 Accelerating the polynomial multiplication considering nonzero elements and
avoiding timing attacks

nzm = maxcoe f −nnz

for i = 0 : N−1 do
if ri = 0 then

nz = nz+1
end if
if nz≤ nzm or (ri ̸= 0 and nz > nzm) then

for k = 0 : N−1 do
j = mod(k− i,N)
ek = ek +(h j · ri)

end for
end if

end for

108 Post-Quantum Cryptography

4.2.5 IP Module Design and Integration

4.2.5.1 Design of the Arithmetic Unit

The design goal of this hardware-level multiplier is to be fully compatible with the reference
version of NTRU submitted to the third round of the NIST PQC contest [131], so that software
routines can be interchanged with hardware routines in a much easier and more efficient way.
This implies that some particularities in both arithmetic and data types at the software level
must be taken into account for software/hardware implementation. In the NTRU Round 3
scheme [131], the coefficients of the polynomials r(x) and h(x) are computed as modulus 2
and modulus 2048, respectively. The efficient AU presented in [136], [137] and [138] has been
slightly modified. The new architecture uses a logic gate AND instead of a multiplexer. The
AU is controlled by the ri coefficient, whose operation is summarized in Table 4.3 and shown
in Figure 4.2.

Table 4.3 AU operation in function of ri.

ri Operation

00 eoutk = eink

01 eoutk = eink +h j

11 eoutk = eink−h j

XOR

ADD

ADD

AND

hj ri

e_outk

ri

ri

1

0

11

11
11 11

2

11

11

11{ }

e_ink

Figure 4.2 Block diagram of the AU designed in this dissertation.

4.2 NTRU 109

4.2.5.2 Core Design

The architecture of the polynomial multiplier used in the NTRU Round 3 encryption scheme
is described in this section. The module was developed using the RTL-based design flow
provided by Xilinx Vivado tools, and the Verilog HDL was used for hardware description. A
simplified block diagram that contains the main functional blocks necessary for the hardware
implementation of the polynomial multiplication operation is shown in Figure 4.3.

Multiplier operation is coordinated by the Control Unit block. It manages all operations
in different phases: Load coefficients, Operate, and Read result. It generates the indices i,
j, and k, which are used in each phase as memory addresses in the Memory block. This
component contains the coefficients of the input polynomials, r(x) and h(x), stored in the
Load phase. It also stores the partial results during the Operate phase, as well as the resulting
polynomial, e(x), that will be provided by the module in the Read phase. The memories
included in this block were implemented as dual-port memories using the BRAMs usually
available in many programmable devices. During the Operate phase, the Control Unit obeys
the operation described by the pseudocode in Algorithm 2; while the AU carries out either
addition or subtraction over h j, depending on the value of ri, updating the partial results ek.
The number of total clock cycles required to complete the operation, CCop, including the clock
cycles for coefficient loading, CCload , and reading, CCread (both require one clock cycle per
coefficient), and the number of total clock cycles for the multiplication, CCmult , is described by
Equation 4.12. The number of coefficients, N, and the threshold fixed to avoid timing attacks,

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

AU

in_e

r(i)

h(j)

e(k)

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

Figure 4.3 Simplified block diagram of the hardware polynomial multiplier architecture.

110 Post-Quantum Cryptography

maxcoe f , are the main factors determining the overall system runtime.

CCop = CCload +CCmult +CCread

= 2N +N ·maxcoe f +(N−maxcoe f)

= N · (maxcoe f +3)−maxcoe f

≈ N ·maxcoe f

(4.12)

4.2.5.3 Parallelizing the Multiplication Process

In the scheme described above, the number of clock cycles required for the system to complete
the multiplication operation can be further reduced. A possible solution in this proposed scheme
is acceleration using AUs operating in parallel. The strategy is the inclusion of M AUs, where
M is the parallelization degree of the system so that the multiplication module can operate
on M coefficients per cycle. To introduce the ability to parallelize the system through the M
parameter, the pseudocode presented in Algorithm 2 is redefined in Algorithm 3, in which the
the total clock cycles due to the operation of the AUs is reduced by a factor M. This reduction
will depend on the degree of the polynomial and the number of AUs instantiated in parallel.

Algorithm 3 Parallelizing the polynomial multiplication considering nonzero elements and
avoiding timing attacks

M← Parallelization parameter
nzm = maxcoe f −numbernon−zero

for i = 0 : N−1 do
if ri = 0 then

nz = nz+1
end if
if nz≤ nzm or (ri ̸= 0 and nz > nzm) then

for k = 0 : M : N−1 do
j1 = mod(k− i,N)
ek = ek +(h j1 · ri)
j2 = mod(k− i+1,N)
ek+1 = ek+1 +(h j2 · ri)
...
jM = mod(k− i+M−1,N)
ek+M−1 = ek+M−1 +(h j1 · ri)

end for
end if

end for

4.2 NTRU 111

Therefore, the number of total clock cycles of the parallel operation, CC∗op, including both the
loading and reading of the coefficients as well as the multiplication operation, CC∗mult , is reduced
according to Equation 4.13. In this case, the estimation of the total number of total clock cycles
is directly related to the M parameter. Large values of M involve a considerable reduction in
the number of clock cycles used for coefficient multiplication. Thus, the times required for
writing and reading the coefficients to and from the module should not be underestimated when
evaluating the total time for the module operation.

CC∗op = CCload +CC∗mult +CCread

= 2N +

⌈
N
M

⌉
·maxcoe f +(N−maxcoe f)

= 3N +maxcoe f ·
(⌈

N
M

⌉
−1

) (4.13)

In Figure 4.4, a theoretical calculation to compare both strategies in terms of total clock
cycles required to perform the multiplication operation in the function of M is shown. For its
representation, a continuous function of the number of clock cycles as a function of M has

0 5 10 15 20 25 30 35 40
M

0

2

4

6

8

10

12

14

Cl
oc

k
Cy

cl
es

10 4

19.6

19.8

20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n
(%

)

CC(max
coef

) = N

CC(max
coef

) = 400

CCs Reduction (%)

(a) N = 509 , maxcoe f = 400

0 5 10 15 20 25 30 35 40
M

0

0.5

1

1.5

2

2.5

Cl
oc

k
Cy

cl
es

10 5

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

23.8

24

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n
(%

)

CC(max
coef

) = N

CC(max
coef

) = 516

CCs Reduction (%)

(b) N = 677 , maxcoe f = 519

0 5 10 15 20 25 30 35 40
M

0

0.5

1

1.5

2

2.5

3

3.5

Cl
oc

k
Cy

cl
es

10 5

22.6

22.8

23

23.2

23.4

23.6

23.8

24

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n
(%

)

CC(max
coef

) = N

CC(max
coef

) = 625

CCs Reduction (%)

(c) N = 821 , maxcoe f = 625

0 5 10 15 20 25 30 35 40
M

0

0.5

1

1.5

2

2.5

Cl
oc

k
Cy

cl
es

10 5

22.5

23

23.5

24

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n
(%

)

CC(max
coef

) = N

CC(max
coef

) = 533

CCs Reduction (%)

(d) N = 701 , maxcoe f = 533

Figure 4.4 Comparison in terms of clock cycles between strategies versus M.

112 Post-Quantum Cryptography

been taken into account. Essentially, it is the representation of the expression presented in
Equation 4.13. It can be seen how the number of cycles decays very fast until about M = 10,
where the clock cycles needed for loading and reading the coefficients begin to be significant.
Furthermore, the yellow line shows the difference of clock cycles between the two strategies of
maxcoe f in terms of percentage. The method detailed in Section 4.2.4 allows for a reduction
around the 20% of the operation time in parallelized solutions.

Since the acceleration strategy is based on the parallelization of the operation, at the
hardware level, it is necessary to replicate the AUs M times. This also involves a replication
of the Memory block, which increases the size in order to provide both the addresses and
coefficients to complete the multiplication correctly. The implementation strategy followed for
the AUs, bus sizes, and Memory block replication was detailed in [138]. The Control Unit must
be also modified in order to generate the index addresses, taking into account that there is more
than one coefficient operating in the same clock cycle. The block diagram of the hardware
implementation considering acceleration is shown in Figure 4.5.

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

in_e

r(i)

h(j)

e(k)

AU [1]

r(i)

h(j)

e(k)

e_out

control

AU [2]

r(i)

h(j)

e(k)

e_out

control

AU [M]

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

Figure 4.5 Block diagram of the hardware polynomial multiplier architecture considering
parallelization.

4.2 NTRU 113

4.2.5.4 Embedded System Integration

The hardware architecture detailed above must be interconnected with a PS to build an hybrid
implementation. The IP module and the PS are connected using standard interconnection buses
that facilitate design reusability. In this case, the cryptosystem defined at the software level and
executed on a general-purpose processor sends the coefficients of the input polynomials; thus,
this communication protocol also has to be designed following these considerations. In order
to use the proposed multiplier on SoC solutions—for example, those that incorporate an ARM
processor—the most suitable option is to use the AXI bus.

The AXI interconnection interface is implemented through AXI4-Stream interface. For
a correct synchronization between the data sent by the processor and the IP module, it is
necessary to instantiate First-In, First-Out (FIFO) structures both at the input and output. Figure
4.6 shows the final multiplication module, in which the FIFOs have been integrated into the
blocks called Data In and Data Out. The memory addresses used to store the r(x) and h(x)
coefficients in the Load phase and to read the e(x) coefficients in the Read phase are internally
provided by the Control Unit.

The use of standard communication protocols such as AXI4-Stream makes the module
fully integrable with other devices. Apart from that, the design of the IP module is completely
reusable, being able to change implementation parameters related to the cryptosystem, such

AU [1]

r(i)

h(j)

e(k)

e_out

control

AU [2]

r(i)

h(j)

e(k)

e_out

control

AU [M]

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

in_r

in_h

out_r

out_h in_e out_e

read

Data Out

data_out_e

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

in_e

r(i)

h(j)

e(k)

load

load

read

Data In

Figure 4.6 Block diagram of the hardware polynomial multiplier architecture, considering
parallelization and including AXI4-Stream interconnection interfaces.

114 Post-Quantum Cryptography

as the degree of the polynomial, N, as well as others that influence the timing performance,
such as maxcoe f or M. Figure 4.7 shows the IP integrator window in which can be observed the
variety of parameters the final user can modify. Therefore, first, it is fully functional on any of
the parameter sets defined in the NTRU Round 3 version, and second, the implementation can
be adapted to be more or less restrictive in terms of area and timing performance depending
on the constraints imposed on the system to be implemented. The IP module is located in the
NTRU repository [143] with the name of ntru_ms2xs_8.0.

At the hardware level, to complete the interconnection scheme between the PS and the IP
module, shown in Figure 4.8, some extra modules are required: the Direct Memory Access
(DMA), AXI Interconnect, and AXI SmartConnect blocks handle the exchange of information
related to the polynomial coefficients. The IP module receives the coefficients of the input
operands at the beginning of the operation and sends the coefficients of the result at the end
of the operation from/to the DMA blocks, respectively. For the design and implementation of
the IP module, the Vivado 2023.1 design tool was used. This facilitates both the design and its
integration in embedded systems, making the design of a parametrizable IP module possible.

Specifically, this dissertation has used the development board PYNQ-Z2, which integrates
the Xilinx Zynq-7000 SoC (XC7Z020-1CG400C). The device consists of a PS that operates at

Figure 4.7 IP Integrator window

4.2 NTRU 115

AXI_Interconnect

AXI_Smartconnect
S00_AXI
S01_AXI

S00_AXI M00_AXI

M00_AXI

AXI Direct Memory Access

S_AXI_LITE

S_AXIS_S2MM

M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S

Zynq7 Processing System

DDR
FIXED_IO

M_AXIS_GP0

S_AXI_HP0

IP Module

IN OUT

Figure 4.8 Block diagram of the complete embedded system and the necessary blocks to
interconnect the IP module with the Zynq Processor.

650 MHz and includes a dual-core ARM-Cortex-A9, along with PL from the Xilinx Artix-7
FPGA family. The selected development board supports the PYNQ environment [98]. This
describes a framework for Python, which operates on an embedded Linux operating system. The
framework streamlines the process of connecting hardware modules with software components.

At the software level, the NTRU Round 3 version implementation used was the optimized
one presented in [131]. This is a complete C implementation of the NTRU KEM scheme
presented in the third round of the NIST contest. For this dissertation, a completely new set
of tests was designed, directly providing results relative to the acceleration of the encryption
and decryption scheme using dedicated hardware. The implementation of NTRU in C was
adjusted for the PYNQ environment by utilizing C-API, which is made available in [99]. This
C-API offers a comprehensive set of C routines that can be compiled to produce executable
code. PYNQ C-API includes features that make it easier to load bitstreams and communicate
with hardware blocks located on the PL of the Zynq device through memory-mapped and
shared memory mechanisms. The utilization of these features not only simplifies the creation of
software drivers required to manage the hardware multipliers, but also eases the programming
of a series of tests to validate and characterize their operation.

The software repository is included in [143] in the compressed file NTRU_3Round.rar. In
these files there are two versions of the NTRU hardware-accelerated version: Test_XXX and
Demo_XXX, where XXX corresponds to the N parameter in each NTRU parameter set. The first
one was developed to perform different types of tests in which it is possible to evaluate the
NTRU parameters set adding the ability to select the parallelization degree, M or the maxcoe f

parameter. For that, there is a set of bitstreams already generated that contain the NTRU IP
module of the particular specifications defined in the section above. And, the second one is

116 Post-Quantum Cryptography

a demonstration demo in which it is possible to generate the pair of keys, encapsulate and
decapsulate using the HW module.

4.2.6 Results

In this Section, the multiplication module is evaluated in terms of resource consumption, and
the acceleration factors in both multiplication and encryption processes are analyzed. Different
versions of the multiplication module for NTRU Round 3 were implemented in this dissertation
for multiple values of M and considering or not the limit established by maxcoe f .

4.2.6.1 Resource Consumption

Using the parametrizable IP Module, it is possible to modify the degree of the polynomial,
N, and the number of AUs in parallel, M, as well as the maximum number of coefficients for
acceleration, maxcoe f as it was shown above. For the evaluation, the complete NTRU parameter
set was used. Thus, The IP module was implemented, varying the values of N, maxcoe f and M
for each specific parameter set. Although it is possible to select any value, for the evaluation
and in order to comprehensively cover the entire possible range of the parallelization coefficient,
M, that generates the different parallel implementations, the first sixteen values and all powers
of two starting from 32 up to 256, both inclusive, were used.

Appendix D.1 shows the tables of the use of LUTs, FFs, and BRAMs of the implementations
as combination of maxcoe f and N already presented in Table 4.2. For the case of maxcoe f = N
there is an increase in execution time of around 10%, while the resource occupation is slightly
lower with respect to the maxcoe f =CL. In terms of the parallelization coefficient, M, results
show that as the value doubles, the resource consumption close to doubles in the case of LUTs
and BRAMs, but not in the case of FFs, where the trend is simply upward. For the highest value
of M, 256, while there is hardly any variation in occupancy relative to FFs, around 30% of
LUTs and 90% of BRAMs are occupied in a Zynq-7000 platform. With the increase in M, the
resources required for the implementation also increase, being even more critical to resource
consumption. Summarizing the results, up to an index M = 32, occupancy is approximately
below 10%, being even around 0.5%-2% in total for M = 4.

With respect to the embedded system integration, there is a minimum use of resources
necessary to instantiate the DMAs and the communication infrastructure, adding a resource
consumption of approximately 2400 LUTs, 3200 FFs, and 2 BRAMs. The percentage of
occupation due to all these connections in the embedded system is independent of the size of
the IP module and clearly notable for the small values of M.

4.2 NTRU 117

Table 4.4 firstly shows the comparison in terms of area occupation and timing performance
for ntruhps2048509, with respect to the work presented in [154], which is based as is this
dissertation on the NTRU submitted to NIST PQC Round 3. The comparison between the two
implementations shows that the one presented in this section has less resource occupation with
the same timing performance. Moreover, this dissertation provides both a detailed analysis of
the potential risks of timing attacks associated with this NTRU version and a balance between
cost and performance, which is crucial in the context of IoT. Thus, our contribution in this
regard is a strong and reliable version for IoT that requires minimal additional resources. In
fact, 256 AUs were used for the comparison. However, this number can be reduced to any
value that satisfies the occupancy constraints of a particular IoT device. Additionally, Table 4.4
includes several works in the literature, such as [137], [138], [152], and [153], which present
implementations for the NTRU version standardized in IEEE-1363.1, different from the one
used in this dissertation. The works presented in [137], [152], and [153] implement parallel
structures to perform the NTRU multiplication, while the work presented in [138] shows a
serial implementation that is very close to this dissertation.

Table 4.4 Resources and timing performance comparison between this dissertation for
ntruhps2048509, a recent work of the latest NTRU version, and other works of the previous
standard.

NTRU Version Work LUT FF #CC Latency µs #AU

Round-3
This dissertation 16707 2992 1018 12.90 256

[154] 56218 21406 821 12.32 509

IEEE-1363.1

[137] 29194 19096 245 3.23 541
[138] 603 90 7107 71.07 8
[152] 30300 - 343 3.62 541
[153] 38240 - 541 - 541

4.2.6.2 Analysis of Acceleration Factors

Another aspect that requires detailed analysis is the time reduction that the IP module achieves
in the multiplication process as well as in the encryption and decryption of the NTRU Round 3
software version. That is, how much it allows the operation of the multiplication to speed up
when comparing a full software version, executed on the embedded system processor, versus
the use of the hardware IP module. The set of tables contained in Appendix D.2 shows the
acceleration produced by the use of the IP module with both strategies of maxcoe f for each
parameter set for the multiplication, and the complete encryption and decryption process,

118 Post-Quantum Cryptography

respectively. For each value of M, 1000 tests were performed, with software and hardware
mean times obtained. The values of both the multiplication and the encryption time in the
software are the mean values of the whole tests performed.

Using this IP module in the NTRU Round 3 version as the value of M increases, the
hardware operation time is reduced, also increasing the acceleration in the multiplication
operation, and in the encryption and decryption scheme. This impact in the acceleration
is slightly reduced in the case of decryption in which only one of the three multiplication
performed is the one that is accelerated using the IP Module. For M = 1 of all implementations,
accelerations around 5 are obtained in both multiplication and encryption, being slightly higher
in the case of the multiplication. In the case of decrryption in which only one multiplication is
accelerated, the accelerations of the complete decryption process are over 1.3.

For the multiplication case in the set of tables, the maximum acceleration factors range
between 70 and 120 depending on the selected set of parameters with the use of the maximum
degree of parallelization. The results also reveal that the differences between both strategies
(maxcoe f =CL and maxcoe f = N) are more significant for intermediate M values. The strategy
of maxcoe f = CL presents certain temporal advantages, reducing around 10% of the time
required with respect to the second one, maxcoe f = N. As is also observed, a limit in the
acceleration is reached when M is increased (i.e., there are 128 different values between
M = 128 and M = 256 in which the acceleration barely changes). This is mainly due to the
fact that the operating time accelerates to such an extent that the times required to exchange
coefficients to and from the IP Module are no longer insignificant. This behavior was already
predicted earlier in Figure 4.4.

In the case of the encryption scheme, since the software time required for multiplication is
equivalent to about 95% of the software time required for encryption, the time reductions follow
the same trend. This can be verified where as in the case of multiplication—the central values
of M are where the difference between the use of both values (maxcoe f =CL and maxcoe f = N)
is the greatest. On the other hand, as the degree of parallelization increases, a limit as in the case
of multiplication is reached. In this case, the acceleration factor obtained range between 35 and
70. The difference with respect to multiplication is mainly due to the fact that in the encryption
process of the NTRU Round-3 version, other software functions different from the polynomial
multiplication are executed, which are necessary and should not be disregarded. No matter
how much the multiplication function is accelerated, the execution of these operations requires
time that cannot be avoided. This is particularly evident in the set of parameters ntruhrss701
in which the operations around the encryption process involve much more time than the rest
of parameters sets based on hps. In the case of the decryption scheme, the reduction of time
carried out by the IP module in the multiplication is faded out by the amount of operations

4.2 NTRU 119

performed in the decryption process. The increase in the parallelization degree gets a maximum
acceleration of around 1.4 for any solution presented in this dissertation.

4.2.6.3 Optimizing Area and Acceleration

In constrained devices, it is especially important to analyze the resources required to implement
a function. In other words, evaluating how the specific use of each resource is capable of
separately speeding up the algorithm to a greater or lesser extent is fundamental for establishing
certain design decisions regarding area optimization. Since in this section, results have been
presented related to LUT, FF, and BRAM occupancy, as well as accelerations as a function
of the parallelization index M, it is possible to study how this parameter M jointly affects the
resources used and acceleration obtained. For this purpose, a new figure of merit, Efficiency, E,
is defined for each type of resource as the quotient between the acceleration obtained and the
resources (LUTs, FFs, and BRAMs) used for each M:

ELUT (M) =
Acc.(M)

LUT (M)
(4.14)

EFF(M) =
Acc.(M)

FF(M)
(4.15)

EBRAM(M) =
Acc.(M)

BRAM(M)
(4.16)

Optimization of this figure of merit occurs when few resources are used and high acceleration
is obtained. This combination causes the efficiency to tend towards higher values. For simplicity
in evaluating these results, only the resources used to implement the IP module are used. An
analogy could easily be drawn in terms of occupancy with the embedded system. Thus, using
the results presented in the set of tables contained in Appendix D.1 concerning the number of
resources used to implement the IP module, as well as the data in Appendix D.2 concerning the
acceleration of multiplication, it is possible to quantify the efficiency parameter defined above.
Results are shown in the set of tables contained in Appendix D.3. The maximum Efficiency of
each resource type and of each strategy is in bold taking as a reference the value only in the
multiplication (marked in red).

Table 4.5 collects all the most efficiency implementations of Appendix D.3 using the
multiplication acceleration as reference. It is shown the maximum efficiency in terms of LUTs,
FFs and BRAMs of each configuration. All cases are delimited of a M value between 4 and 13,
which are the medium-low part of the all generated M. Apart from that, the majority of cases
share the same optimized M value between the strategy of maxcoe f = CL and maxcoe f = N.
For the LUTs case, the maximum optimization occurs between a M value of 4 and 8. For that

120 Post-Quantum Cryptography

Table 4.5 Summary of the M selected for the maximum efficiency in terms of resource
occupancy and timing performance of the IP module.

N maxcoef Max. Eff. M LUTs FFs BRAM Acc. (x)

509

400
LUT 4 285 119 4.5 20.67

FF 7 437 124 7.5 30.28

BRAM 8 584 205 4.5 32.81

509
LUT 6 348 105 6.5 23.40

FF 7 399 106 7.5 26.00

BRAM 8 556 187 4.5 28.35

677

516
LUT 8 476 128 8.5 37.46

FF 10 582 133 10.5 43.08

BRAM 11 801 251 6.0 45.49

677
LUT 8 451 108 8.5 31.23

FF 10 558 113 10.5 36.40

BRAM 11 773 231 6.0 38.64

821

625
LUT 8 510 129 8.5 40.06

FF 12 713 133 12.5 51.89

BRAM 13 981 287 7.0 54.25

821
LUT 8 481 109 8.5 32.94

FF 12 679 113 12.5 43.74

BRAM 13 929 267 7.0 45.99

701

533
LUT 6 433 130 6.5 32.26

FF 10 634 133 10.5 43.54

BRAM 11 881 273 6.0 46.32

701
LUT 6 403 110 6.5 25.52

FF 10 605 113 10.5 36.62

BRAM 11 854 253 6.0 39.18

values of M, the resource expenditure associated with LUTs are the ones that provides the
highest accelerations with the lowest occupancy. Following the same analogy, FFs and BRAMs,
seem to follow the same trend in which the optimum M is a bit higher than the LUTs optimized
value. In this case, the M value are between 7 and 12, and 8 and 13 for the FFs and BRAMs
case respectivetly.

4.3 Single-Power Analysis in NTRU AU 121

From this selection of implementations, it is necessary to decide which is the most limited
resource in a future cryptographic implementation where this module fulfills a given function.
It can be seen that LUTs and FFs are kept at around 1% and 0.20%, respectively, a significantly
low occupancy value. Additionally, the high efficiency of the BRAMs has its origin in the fact
that the number of BRAMs used does not follow a linear tendency, with fluctuations when M is
not a power of 2.

4.3 Single-Power Analysis in NTRU AU

4.3.1 Introduction

One crucial aspect among the PQC study and implementation is to guarantee that no sensitive
information is leaked. Additionally, several post-quantum constructions are particularly
vulnerable to SCAs that exploit specifically chosen ciphertexts to amplify the observed leakage,
known as Chosen-Ciphertext Side-Channel Analysis, [155]. The security evaluation of post-
quantum schemes against attacks and the development of effective countermeasures to mitigate
them are open research topics [156].

In passive attacks, sensitive information is inferred by observing physical characteristics of
the device such as execution time, power consumption, or electromagnetic emanation during
the normal operation mode [157]. In the case of power SCAs, two categories are distinguished
SPA and Differential Power Analysis (DPA) attacks. SPA is based on visual inspection of
one or few power consumption measurements collected over a period of time. DPA is a
method for analyzing large number of power consumption traces using statistical analysis
and error correction techniques. This approach takes multiple power consumption power
traces during the normal operation of the device for different input plaintexts for the same key.
Calculating the correlation between the hypothetical power consumption and the measured
power consumption for an attacked intermediate value, the secret key can be obtained with the
maximum correlation value. Given enough traces, even tiny correlations can be detected. Using
DPA, an adversary can obtain secret keys by analyzing correlations obtained from multiple
cryptographic operations. DPA is a more complex and powerful technique than SPA, but the use
of SPA is very useful when data-dependent features in the power traces are significant. Based
on the SPA, a designer can make decisions to achieve an efficient and secure implementation of
a cryptographic algorithm.

The study presented in this Section is focused on the NTRU submitted to the NIST
post-quantum standardization project. Some of the proposed NTRU implementations in the
literature are vulnerable to both power [158] and timing analysis [159]. A simple and effective

122 Post-Quantum Cryptography

countermeasure to timing attacks is to perform implementations that run in constant time,
whereas the protection against power analysis attacks is usually more complex.

Several power analysis attacks using various techniques have been reported on the different
NIST PQC candidates. A side-channel assisted chosen ciphertext attack on KYBER is presented
in [160], a SCA on the masked implementation of SABER is detailed in [161], and two
vulnerabilities in the NTRU algorithm and a side-channel assisted attack to exploit them are
reported in [162]. Finally, single-trace SCAs on the message encoding of several of the NIST
PQC finalists are described in [163].

This Section addresses the issue of SPA performed on PQC, with a particular focus on
the NTRU cryptosystem already presented in Section 4.2. The main objective is to analyze
the effectiveness of these information gathering measures in the context of PQC. The study
includes experimental analysis of polynomial multiplication based on the NTRU cryptosystem,
which can be susceptible to SCAs using power measurements. Several countermeasures and
strategies are also suggested to reduce potential information leakage in this scenario. Overall,
this Section aims to focus on the importance of securing systems that use PQC that are still
vulnerable to side-channel attacks.

The AU used is the one described in Figure 4.2, whose mode of operation is described in
Table 4.3. To hardware description, the Verilog HDL was employed, while the RTL-based
design flow provided by Xilinx Vivado tools was utilized in developing the multiplier module.
In terms of occupation, the AU implementation requires 22 LUTs in Xilinx Spartan6 family
series. As can be observed in Table 4.3, when the AU is operating using the coefficients of
r(x), ri = 01 and ri = 11, it performs the addition or the subtraction of the coefficient of h(x),
h j, respectively. However, when a zero coefficient of r(x) (ri = 00) acts as input of the AU, no
operation is performed, maintaining at the output the same result as at the input. Therefore, it
is evident that, since there is a clear difference in the behavior of the AU, there must also be
a difference in the power consumption of the arithmetic module depending on the coefficient
of r(x) it has at its input. This may constitute an input vector for an attacker who wants to
obtain information regarding the obfuscation polynomial, r(x). To do this, a SPA of the power
consumption of the arithmetic circuit would be sufficient to see if there are differences in power
consumption corresponding to different values of the coefficients of r(x).

4.3.2 Experimental Setup

To analyze the SPA flaws of different hardware proposals, the design has been implemented in
FPGA. It has been used the SAKURA-G board [164], specifically designed to test cryptographic
hardware implementations against SCAs. The SAKURA-G board, is composed by 2 FPGAs,
namely controller FPGA and crypto FPGA (both Xilinx Spartan6 FPGA), where the cryptogra-

4.3 Single-Power Analysis in NTRU AU 123

phic module can be isolated from the rest of the design to measure its power consumption with
high precision. SAKURA-G has specific circuitry to measure the power consumption traces,
which, along with a PC and an oscilloscope, allows the SPA attack to be carried out.

Figure 4.9 shows an scheme of the used experimental setup. The Device Under Test (DUT)
is the attacked hardware module implemented on the crypto Spartan6 FPGA of SAKURA-G
board. The used PC (i7, 64 RAM, Windows 10) runs Matlab and the software to control the
oscilloscope. The used oscilloscope is the PicoScope 3406D, with bandwidth of 200MHz and
250MS/s. Several power-consumption traces have been experimentally measured for each
implementation and then processed under Matlab to perform the SPA attack.

4.3.3 SPA of the NTRU AU

The results of the power analysis of the AU used in this section are shown in Figure 4.10,
where the analyzed power trace is shown in blue in the upper graph. These data correspond
to a selection of a few cycles of operation. Specifically, about 45 coefficients of r(x) being
operated each of them N times by the coefficients of h(x). The bottom graph is used to clarify
the data presented in the power trace using findchangepts Matlab function. The orange line
represents the jumps that are occurring in the power consumption of the module. Just below
this line are represented the ri coefficients that are being used in each cycle (framed by vertical
black lines) to operate in the arithmetic module. As can be seen, firstly, there is a difference in
the power consumption of the multiplication module and secondly, this difference is exclusively
due to when null coefficients in r(x) are being used.

The above can be summarized as follows: two thresholds of power consumption correspon-
ding to null elements and non-null elements could be clearly established. This is a clear

Figure 4.9 Experimental setup scheme.

124 Post-Quantum Cryptography

1.5 1.55 1.6 1.65 1.7
 t(s)

0

1

2

3

4

5

6

 P
(m

W
)

1.5 1.55 1.6 1.65 1.7
 t(s)

0

1

2

3

4

5

6

 P
(m

W
)

0 0 -1 1 -1 0 0 0 0 -1 1 1 0 -1 1 1 1 -1 1 1 -1 0 -1 -1 1 0 0 1 -1 1 1 0 1 0 -1 0 1 0 1 0 1

Figure 4.10 SPA of the NTRU multiplication module

vulnerability that allows knowing not only the number of null elements, but also their position in
r(x), which would mean a reduction of the search space for a possible attack on the cryptosystem.
Therefore, several countermeasures are proposed that could mitigate the problem in advance.

4.3.4 SPA of the countermeasures proposed

The design of countermeasures in this dissertation seeks to mitigate the differences in power
consumption that affect the current AU by maintaining the functionality. The first proposed
countermeasure tries to obfuscate the power consumption instantiating a dummy AU, without
considering its output as can be observed in Figure 4.11. The function of this AU is to operate
in the opposite way than the original one, thereby maintaining equal power consumption when
working with 0 (then the dummy would act as a −1) as when not (then the dummy would act
as a 0). The second proposed countermeasure tries to mitigate the differences in the power
consumption instantiating 3 AUs whose inputs are the three possible values of the coefficients
of r(x), as it can be observed in Figure 4.12. The output of the operation is controlled by a
multiplexer that uses the coefficient ri to select between inputs. In this case, since the 3 AUs are
operating at the same time, the power consumption should not suffer great differences beyond
the difference in consumption that may occur in the selection of the multiplexer. In terms of
occupation, the first proposed countermeasure requires 45 LUTs, while the second one 110
LUTs in Xilinx Spartan6 family series.

4.3 Single-Power Analysis in NTRU AU 125

XOR

ADD

ADD

AND

hj ri

e_outk

ri

ri

1

0

11

11
11 11

2

11

11

11{ }

e_ink

AU

r(i)

h(j)

e(k)

e_out

AU

r(i)

h(j)

e(k)

e_out

hj

ri

e_outk
e_ink

AU dummy

Figure 4.11 First countermeasure proposed.

AU

r(i)

h(j)

e(k)

e_out

AU

r(i)

h(j)

e(k)

e_out

00

01

10

11

hj

ri

e_outk

e_ink

2’b00

2’b01

AU

r(i)

h(j)

e(k)

e_out2’b11

AU for r = 0

AU for r = 1

AU for r = -1

Figure 4.12 Second countermeasure proposed.

SPAs are also performed to corroborate if there are still differences in the power consumption
of these two proposed countermeasures. The results are shown in Figure 4.13. In these graphs it
is possible to visualize the power traces in blue, as well as, over them, an orange line that allows
to clarify and observe the existence of changes in the power due to changes in the coefficients
of r(x), for which the same Matlab function used in Figure 4.10 has been applied. In order from
top to bottom, the power consumption of the NTRU multiplication module with the original
AU, with the first countermeasure and, with the second countermeasure are shown. The last
graph shows the comparison between the different power consumption of the three designs.
As can be observed, there is hardly any difference in the power consumption either between

126 Post-Quantum Cryptography

0

2

4

6

 P
(m

W
)

0

2

4

6

 P
(m

W
)

0

2

4

6

 P
(m

W
)

1.5 1.55 1.6 1.65 1.7
 t(s)

0

2

4

6

 P
(m

W
)

0 0 -1 1 -1 0 0 0 0 -1 1 1 0 -1 1 1 1 -1 1 1 -1 0 -1-1 1 0 0 1 -1 1 1 0 1 0 -1 0 1 0 1 0 1

NO COUNTERMEASURE
COUNTERMEASURE 1
COUNTERMEASURE 2

Figure 4.13 SPA of the NTRU multiplication module with the original AU and the two
countermeasures proposed.

different countermeasures or between the countermeasures and the original case. This supposes
that the proposed countermeasures are continuing to produce a noticeable impact on the power
usage, even when a null coefficient is employed. As a result, it is still feasible to determine
the quantity and location of the zero coefficient of r(x), not being effective in mitigating the
differences in power consumption, and therefore, generating information leaks. This may be
because the extra circuitry added (the inverter in one case and the multiplexer in another) is
very sensitive to changes in the input bits and therefore their inclusion still leaks information.
The control logic could also have some effect when operating with zero elements. At this point,
from the algorithmic point of view, it is interesting to study the SPA of the recently-published
accelerated version of the NTRU cryptosystem.

4.3.5 SPA of the accelerated algorithm

Since the previously formulated countermeasures have not been successful in reducing the
differences in power consumption that may lead to information leakage, a new analysis is

4.3 Single-Power Analysis in NTRU AU 127

proposed to corroborate if the latest version of the hardware implementation of the algorithm
first presented in [150] still produces this type of information leakage. The idea behind this
countermeasure is to hide the most sensitive coefficients without affecting the operation. As
previously mentioned, the number of cycles required to perform the multiplication operation
would be N ·N, however, when ri = 0 no operation is performed, so at the algorithmic level not
operating or operating with 0 it is exactly the same. This was already applied in [138] or [124]
to reduce the number of cycles in the complete operation of the NTRU cryptosystem.

Regarding this idea, the SPA can corroborate if there are still differences in the power
consumption. The results can be shown in Figure 4.14. In the same way as in the previous
figures, the power traces are in blue and a line is shown in orange that makes it easier to see
if there are jumps in power consumption. In the upper graph, the power consumption of the
NTRU multiplier with the original AU presented in Figure 4.2 is shown while, in the middle
graph, the application of the algorithm acceleration is displayed. Although the accelerated
algorithm must be applied from the start of the multiplication operation, in this case, to illustrate
the change in power consumption, such acceleration is applied to the middle of the display
window.

0

2

4

6

 P
(m

W
)

0

2

4

6

 P
(m

W
)

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7
0

2

4

6

 P
(m

W
)

 Applying Acceleration
ORIGINAL ALGORITHM
ACCELERATED ALGORITHM

 t(s)

 Applying Acceleration

Figure 4.14 SPA of the NTRU multiplication module with the original algorithm versus the
application of the accelerated version.

128 Post-Quantum Cryptography

When applying the acceleration, it can be observed how when jumping the null coefficients
there is no longer a difference in power between different values of ri. Apart from that, Figure
4.15 shows one of the operation cycle in detail from the previous analysis. Since a jump is
occurring when a null-coefficient appears in the accelerated version of the algorithm, it is
conceivable that the null-coefficient jump itself may cause some information leakage. In the
detail it can be seen how it is impossible to locate where the null-coefficient jump is occurring
in the accelerated version. In this way, an attacker who is carrying out a SCA attack, through
the use of a SPA, will not be able to obtain any type of internal information, either the number
or the position of the null coefficients. This solution, therefore, is not only faster but also avoids
information leaks caused by AU.

0

2

4

6

 P
(m

W
)

0

2

4

6

 P
(m

W
)

1.611 1.612 1.613 1.614 1.615 1.616 1.617 1.618
 t(s)

0

2

4

6

 P
(m

W
)

ORIGINAL ALGORITHM
ACCELERATED ALGORITHM

Figure 4.15 Detail of the SPA of the NTRU multiplication module with the original algorithm
versus the application of the accelerated version.

4.4 Conclusions 129

4.4 Conclusions

In conclusion, this dissertation has delved into the critical realm of Post-Quantum Cryptography,
with a particular focus on the NTRU algorithm as one of the selected candidates. Recognizing
the imperative to reduce the execution time of these algorithms, a pivotal strategy emerged: the
implementation of hardware-based operations.

To this end, a comprehensive library of the latest version of NTRU was meticulously
developed and released. The acceleration approach was twofold: first, the parallelization of the
AU was determined by the discretion of the designer, and second, a strategy was employed to
considering only nonzero coefficients in the blind polynomial. However, it was also revealed
that this strategy could potentially introduce vulnerabilities to timing attacks. To address this
concern, an exhaustive analysis of vulnerabilities was conducted, resulting in the proposition
of a countermeasure involving controlled zero-jumping, effectively establishing a security
threshold. Subsequently, a comprehensive study was undertaken to determine the most efficient
strategy, weighing both acceleration and resource utilization, with and without countermeasures.

Another vulnerability came to light in the AU, presenting a challenge that resisted resolution
despite the introduction of several proposed countermeasures. Consequently, the advocated
strategy was a resolute commitment to zero-jumping. Nevertheless, further evaluations in the
domain of SCA remain imperative. An in-depth assessment employing methodologies such as
Machine Learning within SPA holds promise. Additionally, DPA could be a viable avenue of
exploration within the proposed design.

Furthermore, in consideration of the latest published draft of NIST PQC standards, a
noteworthy advancement emanates from this dissertation: the successful hardware implementation
of the ML-KEM algorithm. This achievement not only contributes to the evolving landscape of
post-quantum cryptographic solutions but also underscores the significance of robust hardware
implementations in fortifying digital security.

In summary, this section represents a significant contribution to the burgeoning field of
PQC, particularly in the context of NTRU and hardware-based operations. The methodologies,
strategies, and countermeasures proposed and evaluated herein lay a valuable foundation for
future advancements in cryptographic protocols and implementations. This dissertation not
only addresses current challenges but also paves the way for more secure digital communication
in the post-quantum era.

Chapter 5

Final RoT design: Use Cases

5.1 Introduction

This chapter is essentially a practical demonstration, or a PoC, of the RoT that has been designed
in this dissertation. The primary objective here is to validate and verify the interoperability of
each module when they are put to test in real-world scenarios. This is crucial as it helps in
understanding how each module interacts with others and functions in a live environment. After
the individual modules of the RoT have been meticulously designed, the next step involves
their integration into a unified RoT. This integration is visually represented in Figure 5.1. This
figure serves as a graphical representation of the integrated modules, providing a clear and
concise view of the entire RoT structure.

The ultimate goal is to utilize the RoT in conjunction with a processor. To achieve this,
a SoC architecture, specifically the Zynq-7000, has been chosen. The board selected for
that was the Pynq-Z2 since it is a versatile platform that offers on the one hand, the ability

PUF
TRNG

Polynomial Multiplier

Hash Functions

SHA-256

SHA-512

SHA3-256

SHA3-512

HW Root-of-Trust

Processor
(CPU)

Figure 5.1 Schematic of the PoC RoT

132 Final RoT design: Use Cases

to easily integrate digital designs into the built-in FPGA, and on the other hand, allowing a
straightforward connection with the processor, facilitating the integration between them. These
primitives form the building blocks of many cryptographic algorithms and protocols, to that
end, they are fundamental elements that can be used in various scenarios. Those primitives are:

• PUF/TRNG: The significance of PUFs and TRNGs in cryptography necessitates their
inclusion in the RoT. Although the digital design of the RoT on FPGA makes it impossible
to incorporate the PUF developed in this dissertation, the section serves as a PoC.
Therefore, the conclusions drawn from this are applicable to the use of an RTN-based
PUF. The PUF and TRNG used in this PoC are the ones presented in the referenced work
[165].

• Hash Function: The RoT incorporates widely used hash functions in cryptographic
implementations. These include SHA-2 based functions (SHA-256 and SHA-512)
and SHA-3 based functions (SHA3-256 and SHA3-512), which are developed in the
respective sections 3.2 and 3.4, respectively.

• Polynomial Multiplier: The inclusion of this module has resulted in a substantial
performance enhancement in the domain of PQC, particu-larly within the NTRU algorithm.

The integration process was carried out using the IP Integrator tool available in Vivado
2023.1. The schematic of this integration, which serves as a visual representation of the design,
is illustrated in Figure 5.2. Each module within the design has its own resource occupancy,
in terms of LUTs, FFs and BRAMs, which refers to the amount of hardware resources it

SHA-256

SHA-512

SHA3-256

SHA3-512

SHA3-512

POLY_MULT

Processor

Interconnection

Figure 5.2 Block diagram of the PoC RoT

5.2 Message verification: HMAC 133

consumes on the FPGA. The resource occupancy of each individual module is detailed in
Table 5.1. The final RoT design requires various interconnection modules. These modules
serve as the communication infrastructure, enabling data transfer between different IP cores
within the design. However, these interconnection modules also consume hardware resources,
leading to an increase in the overall resource occupancy of the final RoT. This is an important
consideration in the design process, as it impacts the scalability and complexity of the system.

Table 5.1 Resources occupancy of each module in the final RoT design.

Module LUTs FFs BRAMs

Processor 24 0 0
Interconnection 4095 5688 2.5

SHA-256 1612 1196 0.5
SHA-512 3192 2097 1

SHA3-256 3859 3046 0
SHA3-512 3618 2532 0

NTRU Polynomial Multiplier 359 130 4.5
PUF / TRNG 367 390 0

Total 17126 15079 8.5

5.2 Message verification: HMAC

The Hash-based Message Authentication Code (HMAC) is a widely recognized scheme within
the Message Authentication Code (MAC) family. It’s designed to verify the integrity and
authenticity of a message simultaneously. The HMAC process involves two main components:
a cryptographic hash function and a secret cryptographic key. The combination of these two
components in HMAC provides robust security features. The secret key ensures that only a
sender and receiver who have access to the same secret key can generate or verify the HMAC
respectively. The cryptographic hash function guarantees that even minor changes to the
message will result in a significantly different hash, making it nearly impossible for attackers to
modify the message undetected. Therefore, HMAC is a powerful tool in ensuring data integrity
and authenticity, making it a cornerstone of secure communications in the digital world.

It was first introduced in [166] as a mechanism for message authentication across various
hash functions and standarized by NIST in FIPS 198-1 [167]. It is used in several modern
protocols such as Internet Protocol security (IPsec) [168] or in the standard for key derivation
functions known as Password-Based Key Derivation Function 2 (PBKDF2) being part of
Public-Key Cryptography Standards (PKCS) series, specifically PKCS #5 v2.0 [169]. PBKDF2

134 Final RoT design: Use Cases

is a key derivation function that takes a password as input and generates a cryptographic key
as output. The key derivation process is designed to be computationally expensive, making it
difficult for an attacker to guess the original password. This added computational work makes
password cracking much more difficult, and is known as key stretching.

There are many variants of HMAC, which are HMAC-SHA1, HMAC-SHA2, HMAC-MD5,
that corresponds to the use of SHA-1, SHA2, and Message-Digest 5 (MD5) hash functions.
Since there are many collisions attacks on SHA-1 [170] and MD5 [171] reported in the literature,
they have been discarded to be used in this RoT. For that, the hash functions selected have been
SHA-2 and SHA-3 to perform the HMAC function. Although SHA-3 is not recognized in FIPS
198-1 as hash function to use in HMAC, NIST expectes to incluide it in the standard NIST SP
800-224 in the future.

For the better understanding of the proposed implementation, the mathematical expression
of the HMAC taken from FIPS 198-1 is provided:

HMAC(K,m) = H
((

K′⊕opad
)
∥ H

((
K′⊕ ipad

)
∥ m

))
(5.1)

K′ =

H(K) if K is larger than block size

K otherwise
(5.2)

where

• H is the SHA-2 (256) cryptographic hash function.

• m is the message to be authenticated.

• K is the secret key.

• K′ is a block-sized key derived from the secret key, K; either by padding to the right with
0s up to the block size, or by hashing down to less than or equal to the block size first
and then padding to the right with zeros.

• ∥ denotes concatenation.

• ⊕ denotes bitwise exclusive or (XOR).

• opad is the block-sized outer padding, consisting of repeated bytes valued 0x5c.

• ipad is the block-sized inner padding, consisting of repeated bytes valued 0x36.

In the context of the proposed RoT, the key generation of this HMAC implementation can be
done by means of a PUF that can function as an identity generator or as a randomness generator

5.2 Message verification: HMAC 135

via a TRNG. The HMAC function developed in this dissertation can be found in [172]. This
function allows performing HMAC for a hexadecimal message (-m) and a hexadecimal key
(-k). The use of different hash functions within HMAC is selected with -s. The SHA-256 is
selected with -s = 1; SHA-512 with -s = 2; SHA3-256 with -s = 3 and SHA3-512 with -s
= 4. The PUF can be used with the selection as ID generator (-p) or as TRNG (-t). The long
of the key in bits is selected with -n, with a maximum of 256 bits. Some execution example
are shown in Figures 5.3 and 5.4, in which it is possible to observe how different calling return
an improvement in the execution time versus the HMAC software implementation.

Figure 5.3 Execution example of the HMAC function

(a) HMAC with PUF (b) HMAC with TRNG

Figure 5.4 Execution example of the HMAC function using the PUF/TRNG.

136 Final RoT design: Use Cases

5.3 Adding new functionalities to the NTRU cryptosystem

The primary objective of this section is to accomplish a comprehensive hardware integration
of the cryptographic functions inherent in the NTRU cryptosystem. The aim is to ensure
that as many cryptographic functions as possible are thoroughly implemented in hardware.
This comprehensive approach not only enhances the robustness of the cryptosystem but also
ensures its reliability and security. To that end, in the NTRU implementation utilized in this
dissertation, there are certain functions that continue to be executed in software. These include
hash functions based on SHA3, specifically SHA3-256 and SHA3-512. These functions play a
crucial role in the overall operation of the NTRU algorithm. On the other hand, the generation
of keys in this implementation requires a seed. This seed can be produced using the TRNG
which ensures that the keys generated are truly random and secure. The polynomial multiplier,
a key component of the NTRU algorithm, is applied in the same manner as described in the
NTRU section of the dissertation. This consistency in application ensures the integrity and
security of the cryptographic process.

As depicted in Figure 5.5, the TRNG plays a role as a seed generator in the process of key
pair generation. This use of TRNG ensures the generation of truly random and secure keys,

Figure 5.5 Completing the NTRU hardware implementation.

5.3 Adding new functionalities to the NTRU cryptosystem 137

which is a fundamental aspect of the NTRU cryptosystem. In addition to this, the figure also
illustrates how, within the context of ntruhps2048509, certain hash functions such as SHA3-
256 have been transitioned to a hardware implementation. This transition to hardware not only
enhances the efficiency of these functions but also contributes to the overall performance and
security of the NTRU cryptosystem. The hardware implementation of these cryptographic
functions is a significant step towards achieving a fully integrated hardware-based NTRU
cryptosystem.

Chapter 6

Conclusions

The establishment of a hardware RoT significantly bolsters the security of an embedded system.
This enhancement is not only robust but also efficient, making it a critical component in the
design of secure systems. The considerations for implementation within the framework of the
IoT have led to a streamlined design of the RoT. This design is mindful of the constraints of
IoT devices, particularly the size of transistors or the occupancy of logic resources in terms
of FPGA implementations. The result is a compact yet powerful RoT that fits within the
limited resources of IoT devices while providing robust security. In addition to the primary
conclusion, there are several other insights extracted from this dissertation. These insights
shed light on various aspects of the cryptosystem and contribute to our understanding of its
design and implementation. They serve as valuable outcomes that can guide future research
and development in this field. These conclusions are:

• Taking inspiration of the CIA triad as model designed to guide policies for information
security, the design of a RoT that encompasses a set of crypto primitives is a suitable
solution. The approach taken in this dissertation is primarily from a hardware-oriented
perspective. This proposed RoT has included a PUF, which can be used as an identifier
generator. They also incorporate hash functions, represented by SHA-2 and SHA-3,
which are essential for ensuring data integrity. Moreover, it includes a cryptographic
primitive that can securely accelerate the computation of PQC algorithms. One such
PQC algorithm is NTRU, which is known for its security and efficiency. The integration
of these components within a RoT provides a robust and secure hardware solution for
addressing the principles of the CIA Triad in the IoT framework.

• The initial module developed in this dissertation was a PUF based on a typically
undesirable phenomenon known as RTN. Several architectures were proposed in which,
basically, the response of the PUF is obtained comparing one metric that encapsulate all

140 Conclusions

the RTN information, the MPF. The initial stages involved designing and evaluating the
PUF from a software perspective, which included conducting several simulations. Once
positive results were obtained from these simulations, the next phase involved integrating
this PUF into an ASIC. This process followed an analog design flow, culminating in
the creation of the first silicon-based RTN-PUF, referred to as MILESTONE-I. The
successful results of this endeavor led to the filing of an international patent.

• The following modules developed were those associated with hash functions. After
studying the mathematical background of both selected hash functions (SHA-2 and
SHA-3), the first step involved implementing the RTL in an FPGA. To this end, a
comprehensive set of parameters was incorporated into the integration of these hash
functions into IP modules, allowing the implementation of any of the hash versions
collected in the standards. One of these designs, specifically SHA-256, was chosen for
integration into an ASIC, following a fully digital design flow.

• The final module that was developed was related to the acceleration of one of the
algorithms selected by NIST in the third round of the PQC contest: the NTRU. In that
algorithm, the critical component is the polynomial multiplication. To address this, a RTL
design was developed, incorporating all the parameter sets outlined in the documentation.
Consideration was given not only to performance but also to potential information leakage
associated with timing and power attacks. The results demonstrated that it is feasible to
enhance the speed of the algorithm while adding an additional layer of security against
SCAs.

• Lastly, a final design of the RoT was proposed, integrating all modules into a single
hardware platform. This comprehensive design was evaluated in various scenarios,
demonstrating the reusability of each module. The results were highly promising,
underscoring the effectiveness of this integrated approach in enhancing the security
and efficiency of the embedded systems.

References

[1] A. G. Rodríguez, “A quantum cybersecurity agenda for europe,” https://www.epc.eu/
en/publications/A-quantum-cybersecurity-agenda-for-Europe~526b9c, 2023, accessed:
Jan. 12, 2024.

[2] UpGuard, “Why is cybersecurity important?” https://www.upguard.com/blog/
cybersecurity-important, 2023, accessed: Jan. 12, 2024.

[3] D. Gritzalis, M. Theocharidou, and G. Stergiopoulos, Critical Infrastructure Security
and Resilience: Theories, Methods, Tools and Technologies. Springer International
Publishing, 2019.

[4] D. J. Solove, Understanding Privacy. Harvard University Press, 2008, gWU Legal
Studies Research Paper No. 420, GWU Law School Public Law Research Paper No.
420. [Online]. Available: https://ssrn.com/abstract=1127888

[5] J. Brenner, America the Vulnerable: Inside the New Threat Matrix of Digital Espionage,
Crime, and Warfare. Penguin Press, 2011.

[6] J. S. Nye Jr., The Future of Power. PublicAffairs, 2011.

[7] E. Times, “Personal data of almost entire population of us state of maine
hacked,” https://ciso.economictimes.indiatimes.com/news/data-breaches/
personal-data-of-almost-entire-population-of-us-state-of-maine-hacked/105140471,
2023, accessed: Jan. 12, 2024.

[8] ——, “El gobierno revela que los teléfonos de pedro sánchez y margarita
robles han sido infectados con pegasus,” https://www.eldiario.es/politica/
gobierno-revela-telefonos-pedro-sanchez-margarita-robles-han-sido-infectados-pegasus_
1_8959353.html, 2022, accessed: Jan. 12, 2024.

[9] ——, “Ciberataque en sevilla: un mes de penumbra en la web del ayuntamiento,”
https://www.diariodesevilla.es/sevilla/Ciberataque-Sevilla-mes-web-Ayuntamiento_0_
1836116663.html, 2023, accessed: Jan. 12, 2024.

[10] E. U. A. for Cybersecurity, “European union agency for cybersecurity,” https://www.
enisa.europa.eu/, 2023, accessed: Jan. 12, 2024.

[11] N. I. of Standards and Technology, “Computer security resource center,” https://csrc.nist.
gov/, 2023, accessed: Jan. 12, 2024.

[12] I. E. T. Force, “Internet engineering task force,” https://www.ietf.org/, 2023, accessed:
Jan. 12, 2024.

https://www.epc.eu/en/publications/A-quantum-cybersecurity-agenda-for-Europe~526b9c
https://www.epc.eu/en/publications/A-quantum-cybersecurity-agenda-for-Europe~526b9c
https://www.upguard.com/blog/cybersecurity-important
https://www.upguard.com/blog/cybersecurity-important
https://ssrn.com/abstract=1127888
https://ciso.economictimes.indiatimes.com/news/data-breaches/personal-data-of-almost-entire-population-of-us-state-of-maine-hacked/105140471
https://ciso.economictimes.indiatimes.com/news/data-breaches/personal-data-of-almost-entire-population-of-us-state-of-maine-hacked/105140471
https://www.eldiario.es/politica/gobierno-revela-telefonos-pedro-sanchez-margarita-robles-han-sido-infectados-pegasus_1_8959353.html
https://www.eldiario.es/politica/gobierno-revela-telefonos-pedro-sanchez-margarita-robles-han-sido-infectados-pegasus_1_8959353.html
https://www.eldiario.es/politica/gobierno-revela-telefonos-pedro-sanchez-margarita-robles-han-sido-infectados-pegasus_1_8959353.html
https://www.diariodesevilla.es/sevilla/Ciberataque-Sevilla-mes-web-Ayuntamiento_0_1836116663.html
https://www.diariodesevilla.es/sevilla/Ciberataque-Sevilla-mes-web-Ayuntamiento_0_1836116663.html
https://www.enisa.europa.eu/
https://www.enisa.europa.eu/
https://csrc.nist.gov/
https://csrc.nist.gov/
https://www.ietf.org/

142 References

[13] C. C. Nacional, “Centro criptológico nacional,” https://www.ccn-cert.cni.es/es/, 2023,
accessed: Jan. 12, 2024.

[14] A. J. Neumann, N. Statland, and R. D. Webb, “Post-processing audit tools and
techniques,” pp. 11–3–11–4, 1977. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nbsspecialpublication500-20.pdf

[15] H. Smith, T. Dinev, and H. Xu, “Information privacy research: An interdisciplinary
review,” MIS Quarterly, vol. 35, pp. 989–1015, 12 2011.

[16] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage:
Techniques and applications,” in Proceedings of the 2005 ACM Workshop on
Storage Security and Survivability, ser. StorageSS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 26–36. [Online]. Available:
https://doi.org/10.1145/1103780.1103784

[17] S. Qadir and S. M. K. Quadri, “Information availability: An insight into the most
important attribute of information security,” Journal of Information Security, vol. 7, pp.
185–194, 2016.

[18] W. D. Casper and S. M. Papa, Root of Trust. Boston, MA: Springer US, 2011, pp.
1057–1060. [Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5_789

[19] L. Chen, J. Franklin, and A. Regenscheid, “Guidelines on hardware-rooted security in
mobile devices,” https://csrc.nist.gov/pubs/sp/800/164/ipd, 2012.

[20] International Organization for Standardization, “Information processing systems —
open systems interconnection — basic reference model — part 2: Security architecture,”
https://www.iso.org/standard/14256.html, 1989.

[21] Trusted Computing Group, “Trusted computing group glossary,” http://www.
trustedcomputinggroup.org/developers/glossary, 2016, accessed: Jan. 12, 2024.

[22] M. Alioto, “Trends in hardware-security: from basics to asics,” IEEE Solid-State Circuits
Magazine, vol. 11, no. 3, pp. 56–74, 2019.

[23] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79,
aug 2018. [Online]. Available: https://doi.org/10.22331%2Fq-2018-08-06-79

[24] IBM, “Ibm quantum platform,” https://quantum-computing.ibm.com/, 2021.

[25] J. Martinis and S. Boixo, “Quantum supremacy using a programmable superconducting
processor,” Google AI Blog, October 2019.

[26] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 01 2002.

[27] National Institute of Standards and Technology, “Advanced encryption standard (aes),”
https://csrc.nist.gov/pubs/fips/197/final, 2001.

https://www.ccn-cert.cni.es/es/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-20.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-20.pdf
https://doi.org/10.1145/1103780.1103784
https://doi.org/10.1007/978-1-4419-5906-5_789
https://csrc.nist.gov/pubs/sp/800/164/ipd
https://www.iso.org/standard/14256.html
http://www.trustedcomputinggroup.org/developers/glossary
http://www.trustedcomputinggroup.org/developers/glossary
https://doi.org/10.22331%2Fq-2018-08-06-79
https://quantum-computing.ibm.com/
https://csrc.nist.gov/pubs/fips/197/final

References 143

[28] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
ser. STOC ’96. New York, NY, USA: Association for Computing Machinery, 1996, p.
212–219. [Online]. Available: https://doi.org/10.1145/237814.237866

[29] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p. 120–126, feb 1978.
[Online]. Available: https://doi.org/10.1145/359340.359342

[30] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and S. Simon, “Recommendation
for pair-wise key-establishment using integer factorization cryptography,” https://csrc.
nist.gov/pubs/sp/800/56/b/r2/final, 2019, accessed: Nov. 12, 2023.

[31] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134.

[32] N. I. of Standards and T. (NIST), “Post-quantum cryptography | csrc,” 2023,
accessed: Nov. 20, 2023. [Online]. Available: https://csrc.nist.gov/projects/
post-quantum-cryptography

[33] National Institute of Standards and Technology, “Selected algorithms and key sizes for
post-quantum cryptography,” 2022, accessed: September 29, 2023. [Online]. Available:
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[34] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128610001568

[35] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot): A literature
review,” Journal of Computer and Communications, vol. 3, pp. 164–173, 04 2015.

[36] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed internet of things,” Computer Networks,
vol. 57, no. 10, pp. 2266–2279, 2013, towards a Science of Cyber Security
Security and Identity Architecture for the Future Internet. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128613000054

[37] M. El-Haii, M. Chamoun, A. Fadlallah, and A. Serhrouchni, “Analysis of cryptographic
algorithms on iot hardware platforms,” in 2018 2nd Cyber Security in Networking
Conference (CSNet), 2018, pp. 1–5.

[38] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip Designs.
Springer US, 01 2002.

[39] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 1–19.

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/359340.359342
https://csrc.nist.gov/pubs/sp/800/56/b/r2/final
https://csrc.nist.gov/pubs/sp/800/56/b/r2/final
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.sciencedirect.com/science/article/pii/S1389128613000054

144 References

[40] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[41] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey on
physical unclonable function (PUF)-based security solutions for Internet of
Things,” Computer Networks, vol. 183, p. 107593, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128620312275

[42] S. P and P. M. Krishnammal, “Study of different silicon physical unclonable functions,”
in 2016 International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), 2016, pp. 81–85.

[43] J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, “A technique to build a
secret key in integrated circuits for identification and authentication applications,” in 2004
Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525),
2004, pp. 176–179.

[44] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and
secret key generation,” in 2007 44th ACM/IEEE Design Automation Conference, 2007,
pp. 9–14.

[45] The reliability of sram puf. [Accessed: Oct. 25, 2023].
[Online]. Available: https://www.intrinsic-id.com/resources/whitepapers/
landing-page-white-paper-reliability-sram-puf/

[46] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A PUF taxonomy,”
Applied Physics Reviews, vol. 6, no. 1, p. 011303, 02 2019. [Online]. Available:
https://doi.org/10.1063/1.5079407

[47] M. S. Mispan, B. Halak, Z. Chen, and M. Zwolinski, “Tco-puf: A subthreshold physical
unclonable function,” in 2015 11th Conference on Ph.D. Research in Microelectronics
and Electronics (PRIME), 2015, pp. 105–108.

[48] M. S. Mispan, B. Halak, and M. Zwolinski, “Nbti aging evaluation of puf-based
differential architectures,” in 2016 IEEE 22nd International Symposium on On-Line
Testing and Robust System Design (IOLTS), 2016, pp. 103–108.

[49] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random functions,”
in Proc. of the 9th ACM Conference on Computer and Communications Security, 2002,
pp. 148–160.

[50] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic pufs and their
use for ip protection,” in Proc. of the 9th International Workshop on Cryptographic
Hardware and Embedded Systems, 2007, pp. 63–80.

[51] H. Zhuang, X. Xi, N. Sun, and M. Orshansky, “A strong subthreshold current array puf
resilient to machine learning attacks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 67, no. 1, pp. 135–144, 2020.

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.sciencedirect.com/science/article/pii/S1389128620312275
https://www.intrinsic-id.com/resources/whitepapers/landing-page-white-paper-reliability-sram-puf/
https://www.intrinsic-id.com/resources/whitepapers/landing-page-white-paper-reliability-sram-puf/
https://doi.org/10.1063/1.5079407

References 145

[52] E. Camacho-Ruiz, R. Castro-Lopez, E. Roca, P. Brox, and F. V. Fernandez, “A novel
physical unclonable function using rtn,” in 2022 IEEE International Symposium on
Circuits and Systems (ISCAS), 2022, pp. 160–164.

[53] A. B. Manut, J. F. Zhang, M. Duan, Z. Ji, W. D. Zhang, B. Kaczer, T. Schram,
N. Horiguchi, and G. Groeseneken, “Impact of hot carrier aging on random telegraph
noise and within a device fluctuation,” IEEE Journal of the Electron Devices Society,
vol. 4, no. 1, pp. 15–21, 2016.

[54] J. Chen, T. Tanamoto, H. Noguchi, and Y. Mitani, “Further investigations on traps
stabilities in random telegraph signal noise and the application to a novel concept
physical unclonable function (puf) with robust reliabilities,” in Proc. Symposium on
VLSI Technology (VLSI Technology), 2015, pp. T40–T41.

[55] J. Brown, “Designing, implementing, and testing hardware for cybersecurity,” Ph.D.
dissertation, Liverpool John Moores University, 2020.

[56] M. Yoshinaga, H. Awano, M. Hiromoto, and T. Sato, “Physically unclonable function
using rtn-induced delay fluctuation in ring oscillators,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), 2016, pp. 2619–2622.

[57] T. Grasser and et al., “Switching oxide traps as the missing link between negative
bias temperature instability and random telegraph noise,” in Proc. IEEE International
Electron Devices Meeting, 2009, pp. 1–4.

[58] P. Saraza-Canflanca, J. Martin-Martinez, R. Castro-Lopez, E. Roca, R. Rodriguez, F. V.
Fernandez, and M. Nafria, “Statistical characterization of time-dependent variability
defects using the maximum current fluctuation,” IEEE Transactions on Electron Devices,
vol. 68, no. 8, pp. 4039–4044, 2021.

[59] E. Camacho-Ruiz, F. J. Rubio-Barbero, R. Castro-Lopez, E. Roca, and F. V. Fernandez,
“Design considerations for a cmos 65-nm rtn-based puf,” in 2023 19th International
Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD), 2023, pp. 1–4.

[60] A. Ortiz-Conde, F. García-Sánchez, J. Muci, A. Barrios, J. Liou, and C.-S. Ho,
“Revisiting mosfet threshold voltage extraction methods,” Microelectronics and
Reliability, vol. 53, pp. 90–104, 09 2013.

[61] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to evaluate and compare
the performance of physical unclonable functions,” in Embedded Systems Design with
FPGAs, P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds. Springer New York, 2013,
pp. 245–267.

[62] P. Saraza-Canflanca, E. Camacho-Ruiz, R. Castro-Lopez, E. Roca, J. Martin-Martinez,
R. Rodriguez, M. Nafria, and F. V. Fernandez, “Simulating the impact of random
telegraph noise on integrated circuits,” in SMACD / PRIME 2021; International
Conference on SMACD and 16th Conference on PRIME, 2021, pp. 1–4.

[63] V. Bhatia, M. Madan, B. Kaur, N. Pandey, and A. Bhattacharyya, “A novel cc-ii based
current comparator and its application as current mode flash adc,” in IMPACT-2013,
2013, pp. 217–222.

146 References

[64] V. Thrivikramaru and R. K. Baghel, “High speed low power cmos current comparator,”
in 2012 International Conference on Communication Systems and Network Technologies,
2012, pp. 764–768.

[65] A. Santana-Andreo, P. Saraza-Canflanca, H. Carrasco-Lopez, P. Brox, R. Castro-Lopez,
E. Roca, and F. Fernandez, “A drv-based bit selection method for sram puf key
generation and its impact on eccs,” Integration, vol. 85, pp. 1–9, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167926022000220

[66] M. J. Kirton and M. J. Uren, “Capture and emission kinetics of individual Si:SiO2
interface states,” Applied Physics Letters, vol. 48, no. 19, pp. 1270–1272, 05 1986.
[Online]. Available: https://doi.org/10.1063/1.97000

[67] A. Tataridou, G. Ghibaudo, and C. Theodorou, ““pinch to detect”: A method to increase
the number of detectable rtn traps in nano-scale mosfets,” in 2021 IEEE International
Reliability Physics Symposium (IRPS), 2021, pp. 1–5.

[68] P. Martín-Lloret, A. Toro-Frías, R. Castro-López, E. Roca, F. Fernández, J. Martin-
Martinez, R. Rodriguez, and M. Nafria, “Case: A reliability simulation tool for analog
ics,” in 2017 14th International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD), 2017, pp. 1–4.

[69] X. Chen and N. A. Touba, “Chapter 2 - fundamentals of cmos design,” in
Electronic Design Automation, L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng,
Eds. Boston: Morgan Kaufmann, 2009, pp. 39–95. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780123743640500096

[70] G. De Geronimo, P. O’Connor, and A. Kandasamy, “Analog cmos peak detect and
hold circuits. part 1. analysis of the classical configuration,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 484, no. 1, pp. 533–543, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168900201020599

[71] ——, “Analog cmos peak detect and hold circuits. part 2. the two-phase
offset-free and derandomizing configuration,” Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 484, no. 1, pp. 544–556, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168900201020605

[72] F. J. Rubio-Barbero, E. Camacho-Ruiz, R. Castro-Lopez, E. Roca, and F. Fernandez, “A
peak detect & hold circuit to measure and exploit rtn in a 65-nm cmos puf,” in 2023 19th
International Conference on Synthesis, Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD), 2023, pp. 1–4.

[73] R. Hogervorst, J. Tero, R. Eschauzier, and J. Huijsing, “A compact power-efficient 3 v
cmos rail-to-rail input/output operational amplifier for vlsi cell libraries,” IEEE Journal
of Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, 1994.

[74] R. Coughlin and F. Driscoll, Operational Amplifiers and Linear Integrated
Circuits. Prentice Hall, 2001. [Online]. Available: https://books.google.es/books?id=
d-VHPgAACAAJ

https://www.sciencedirect.com/science/article/pii/S0167926022000220
https://doi.org/10.1063/1.97000
https://www.sciencedirect.com/science/article/pii/B9780123743640500096
https://www.sciencedirect.com/science/article/pii/S0168900201020599
https://www.sciencedirect.com/science/article/pii/S0168900201020605
https://books.google.es/books?id=d-VHPgAACAAJ
https://books.google.es/books?id=d-VHPgAACAAJ

References 147

[75] R. Poujois and J. Borel, “A low drift fully integrated mosfet operational amplifier,” IEEE
Journal of Solid-State Circuits, vol. 13, no. 4, pp. 499–503, 1978.

[76] P. Allen and D. Holberg, CMOS Analog Circuit Design. Oxford University Press,
2016. [Online]. Available: https://books.google.es/books?id=SWBKnQAACAAJ

[77] G. Traversi, F. D. Canio, L. Gaioni, M. Manghisoni, L. Ratti, and V. Re, “Design
of bandgap reference circuits in a 65 nm cmos technology for hl-lhc applications,”
Journal of Instrumentation, vol. 10, no. 02, p. C02004, feb 2015. [Online]. Available:
https://dx.doi.org/10.1088/1748-0221/10/02/C02004

[78] W. Stallings, Cryptography and Network Security: Principles and Practice, 8th ed.
USA: PEARSON Education Limited, 2022.

[79] “FIPS 180-4 The Secure Hash Standard (SHS),” August 2015, https://doi.org/10.6028/
NIST.FIPS.180-4.

[80] National Institute of Standards and Technology (NIST), “FIPS 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions,” Federal Information
Processing Standards Publication, 2015, Available online: https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf.

[81] “Hash Functions,” https://csrc.nist.gov/projects/hash-functions, accessed: Sep. 5, 2023.

[82] J. Docherty and A. Koelmans, “A flexible hardware implementation of SHA-1 and
SHA-2 Hash Functions,” in 2011 IEEE International Symposium of Circuits and Systems
(ISCAS), 2011, pp. 1932–1935.

[83] Y. Zhang, Z. He, M. Wan, M. Zhan, M. Zhang, K. Peng, M. Song, and H. Gu, “A New
Message Expansion Structure for Full Pipeline SHA-2,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 68, no. 4, pp. 1553–1566, 2021.

[84] M. Macchetti and L. Dadda, “Quasi-pipelined hash circuits,” in 17th IEEE Symposium
on Computer Arithmetic (ARITH’05), 2005, pp. 222–229.

[85] H. Michail, G. Athanasiou, V. Kelefouras, G. Theodoridis, T. Stouraitis, and C. Goutis,
“Area-Throughput Trade-Offs for SHA-1 and SHA-256 Hash Functions Pipelined
Designs,” Journal of Circuits, Systems and Computers, vol. 25, p. 1650032, 12 2015.

[86] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Cost-Efficient SHA Hardware
Accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 8, pp. 999–1008, 2008.

[87] SOG-IS Crypto Working Group, “SOG-IS Crypto Evaluation Scheme Agreed
Cryptographic Mechanisms,” https://www.sogis.eu/documents/cc/crypto/
SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf, accessed: Jan. 12, 2024.

[88] M. M. Wong, J. Haj-Yahya, S. Sau, and A. Chattopadhyay, “A new high throughput and
area efficient sha-3 implementation,” in 2018 IEEE International Symposium on Circuits
and Systems (ISCAS), 2018, pp. 1–5.

https://books.google.es/books?id=SWBKnQAACAAJ
https://dx.doi.org/10.1088/1748-0221/10/02/C02004
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/projects/hash-functions
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf

148 References

[89] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Improving SHA-2 Hardware
Implementations,” in 8th International Workshop in Cryptographic Hardware and
Embedded Systems - CHES 2006, 10 2006, pp. 298–310.

[90] H. Michail, G. Athanasiou, A. Kritikakou, C. Goutis, A. Gregoriades, and
V. Papadopoulou, “Ultra high speed sha-256 hashing cryptographic module for ipsec
hardware/software codesign,” in 2010 International Conference on Security and
Cryptography (SECRYPT), 2010, pp. 1–5.

[91] H. Mestiri, F. Kahri, B. Bouallegue, and M. Machhout, “Efficient FPGA Hardware
Implementation of Secure Hash Function SHA-2,” International Journal of Computer
Network and Information Security (IJCNIS), vol. 7, no. 1, pp. 9–15, 2015.

[92] M. Padhi and R. Chaudhari, “An optimized pipelined architecture of SHA-256 hash
function,” in 7th International Symposium on Embedded Computing and System Design
(ISED), 2017, pp. 1–4.

[93] V. D. Phan, H. L. Pham, T. H. Tran, and Y. Nakashima, “High Performance Multicore
SHA-256 Accelerator using Fully Parallel Computation and Local Memory,” in IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS), 2021, pp. 1–3.

[94] S.-H. Lee and K.-W. Shin, “An efficient implementation of SHA processor including
three hash algorithms (SHA-512, SHA-512/224, SHA-512/256),” in International
Conference on Electronics, Information, and Communication (ICEIC), 2018, pp. 1–
4.

[95] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodriguez, and P. Brox, “SHA-2
Repository of this dissertation,” https://gitlab.com/hwsec/sha2.

[96] “SHA-2 Hash Function Test Vectors for Hashing Byte-Oriented Messages,” https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/
documents/shs/shabytetestvectors.zip, accessed: Sep. 4, 2023.

[97] “SHA-2 Hash Function Test Vectors for Hashing Bit-Oriented Messages,” https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/
documents/shs/shabittestvectors.zip, accessed: Sep. 4, 2023.

[98] “PYNQ—Python Productivity for Zynq,” http://www.pynq.io, accessed: Sep. 24, 2023.

[99] N. Brown, “PYNQ API: C API for PYNQ FPGA Board,” https://github.com/mesham/
pynq_api, accessed: Sep. 24, 2023.

[100] “SHA2 of Oryx Embedded,” https://www.oryx-embedded.com/doc/dir_
a9aab978e0be629e504b25df915d67e8.html, accessed: Sep. 4, 2023.

[101] European Commission, “Secure platform for ict systems rooted at the silicon
manufacturing process (spirs),” 2021, grant Agreement Number: 952622. [Online].
Available: https://cordis.europa.eu/project/id/952622

[102] “Cryptographic Algorithm Validation Program (CAVP),” October 2016, https://csrc.nist.
gov/Projects/Cryptographic-Algorithm-Validation-Program/Secure-Hashing#shavs.

https://gitlab.com/hwsec/sha2
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabytetestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabytetestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabytetestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabittestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabittestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/shs/shabittestvectors.zip
http://www.pynq.io
https://github.com/mesham/pynq_api
https://github.com/mesham/pynq_api
https://www.oryx-embedded.com/doc/dir_a9aab978e0be629e504b25df915d67e8.html
https://www.oryx-embedded.com/doc/dir_a9aab978e0be629e504b25df915d67e8.html
https://cordis.europa.eu/project/id/952622
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Secure-Hashing#shavs
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Secure-Hashing#shavs

References 149

[103] National Institute of Standards and Technology, “Nistir 8413, cybersecurity framework
version 1.1 (final),” https://csrc.nist.gov/publications/detail/nistir/8413/final, accessed:
September 29, 2023.

[104] S.-J. Chang, R. Perlner, W. Burr, M. Turan, J. Kelsey, S. Paul, and L. Bassham, “Third-
Round Report of the SHA-3 Cryptographic Hash Algorithm Competition, (NIST,” http:
//nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf, 2012.

[105] S. M. Jungk B., “Hobbit - smaller but faster than a dwarf: revisiting lightweight sha-
3 fpga implementations,” in 2016 IEEE International Conference on Reconfigurable
Computing and FPGAs - ReConFig ’16, 2016.

[106] B. Jungk and M. Stöttinger, “Serialized lightweight sha-3 fpga implementations,”
Microprocessors and Microsystems, vol. 71, p. 102857, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933117302818

[107] L. Ioannou, H. E. Michail, and A. G. Voyiatzis, “High performance pipelined fpga
implementation of the sha-3 hash algorithm,” in 2015 4th Mediterranean Conference on
Embedded Computing (MECO), 2015, pp. 68–71.

[108] F. Kahri, H. Mestiri, B. Bouallegue, and M. Machhout, “High speed fpga implementation
of cryptographic keccak hash function crypto-processor,” Journal of Circuits, Systems
and Computers, vol. 25, no. 04, p. 1650026, 2016.

[109] G. S. Athanasiou, G.-P. Makkas, and G. Theodoridis, “High throughput pipelined
fpga implementation of the new sha-3 cryptographic hash algorithm,” in 2014 6th
International Symposium on Communications, Control and Signal Processing (ISCCSP),
2014, pp. 538–541.

[110] M. Sundal and R. Chaves, “Efficient fpga implementation of the sha-3 hash function,” in
2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp. 86–91.

[111] X. Zhou, L. Wu, and X. Zhang, “Hardware design of sha-3 for pqc classic mceliece,”
in 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and
Identification (ASID), 2021, pp. 140–144.

[112] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodríguez, and P. Brox, “A
complete sha-3 hardware library based on a high efficiency keccak design,” in 2023
IEEE Nordic Circuits and Systems Conference (NorCAS), 2023, pp. 1–7.

[113] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Keccak. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013.

[114] A. Arshad, D.-e.-S. Kundi, and A. Aziz, “Compact implementation of sha3-512 on fpga,”
in 2014 Conference on Information Assurance and Cyber Security (CIACS), 2014, pp.
29–33.

[115] H. S. Jacinto, L. Daoud, and N. Rafla, “High level synthesis using vivado hls for
optimizations of sha-3,” in 2017 IEEE 60th International Midwest Symposium on Circuits
and Systems (MWSCAS), 2017, pp. 563–566.

https://csrc.nist.gov/publications/detail/nistir/8413/final
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
https://www.sciencedirect.com/science/article/pii/S0141933117302818

150 References

[116] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodriguez, and P. Brox, “SHA-3
Repository of this dissertation,” https://gitlab.com/hwsec/sha3_shake.

[117] “SHA-3 Hash Function Test Vectors for Hashing Bit-Oriented Messages,” https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/
documents/sha3/sha-3bittestvectors.zip, accessed: Nov. 24, 2023.

[118] “SHA-3 Hash Function Test Vectors for Hashing Byte-Oriented Messages,” https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/
documents/sha3/sha-3bytetestvectors.zip, accessed: Nov. 24, 2023.

[119] “Tiny-SHA3 of mjosaarinen,” https://github.com/mjosaarinen/tiny_sha3, accessed: Jul.
24, 2023.

[120] European Union Agency for Cybersecurity, “Enisa - research and innovation,” https://
www.enisa.europa.eu/topics/research-and-innovation/research-and-innovation, accessed:
September 29, 2023.

[121] National Institute of Standards and Technology. (2022) Fips 203: Standard for personal
identity verification (piv) of federal employees and contractors. Accessed: September
29, 2023. [Online]. Available: https://csrc.nist.gov/publications/detail/fips/203/ipd

[122] V. Kostalabros, J. Ribes-González, O. Farràs, M. Moretó, and C. Hernandez, “Hls-based
hw/sw co-design of the post-quantum classic mceliece cryptosystem,” in 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL), 2021,
pp. 52–59.

[123] D. B. Roy, T. Fritzmann, and G. Sigl, “Efficient hardware/software co-design for post-
quantum crypto algorithm sike on arm and risc-v based microcontrollers,” in 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020, pp.
1–9.

[124] E. Camacho-Ruiz, M. C. Martínez-Rodríguez, S. Sánchez-Solano, and P. Brox,
“Timing-attack-resistant acceleration of ntru round 3 encryption on resource-constrained
embedded systems,” Cryptography, vol. 7, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2410-387X/7/2/29

[125] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T. Nguyen, and K. Gaj,
“Implementation and benchmarking of round 2 candidates in the nist post-quantum
cryptography standardization process using hardware and software/hardware co-design
approaches,” IACR Cryptol. ePrint Arch., vol. 2020, p. 795, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:220249576

[126] IEEE, “Ieee standard specification for public key cryptographic techniques based on
hard problems over lattices,” IEEE Std 1363.1-2008, pp. 1–81, 2009.

[127] American National Standards Institute. (2010) Ansi x9.98-2010 - financial services -
corporate treasury management. Accessed: September 29, 2023. [Online]. Available:
https://webstore.ansi.org/standards/ascx9/ansix9982010

https://gitlab.com/hwsec/sha3_shake
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bittestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bittestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bittestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bytetestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bytetestvectors.zip
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/sha3/sha-3bytetestvectors.zip
https://github.com/mjosaarinen/tiny_sha3
https://www.enisa.europa.eu/topics/research-and-innovation/research-and-innovation
https://www.enisa.europa.eu/topics/research-and-innovation/research-and-innovation
https://csrc.nist.gov/publications/detail/fips/203/ipd
https://www.mdpi.com/2410-387X/7/2/29
https://api.semanticscholar.org/CorpusID:220249576
https://webstore.ansi.org/standards/ascx9/ansix9982010

References 151

[128] National Institute of Standards and Technology, “Ntruencrypt submission,” Available
at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
round-1/submissions/NTRUEncrypt.zip, accessed: September 29, 2023.

[129] ——, “Ntru-hrss-kem submission,” Available at https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_
HRSS_KEM.zip, accessed: September 29, 2023.

[130] ——, “Ntru-round2 submission,” Available at https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/
NTRU-Round2.zip, accessed: September 29, 2023.

[131] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck, T. Saito,
P. Schwabe, W. Whyte, K. Xagawa, T. Yakamaka, and Z. Zhang, “NTRU: Algorithm
Specifications And Supporting Documentation (version 3),” 2020.

[132] O. M. Guillen, T. Pöppelmann, J. M. Bermudo Mera, E. F. Bongenaar, G. Sigl, and
J. Sepulveda, “Towards post-quantum security for iot endpoints with ntru,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 698–703.

[133] F. Farahmand, M. U. Sharif, K. Briggs, and K. Gaj, “A high-speed constant-time
hardware implementation of ntruencrypt sves,” in 2018 International Conference on
Field-Programmable Technology (FPT), 2018, pp. 190–197.

[134] M. Imran, Z. U. Abideen, and S. Pagliarini, “An experimental study of building blocks
of lattice-based nist post-quantum cryptographic algorithms,” Electronics, vol. 9, no. 11,
2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/11/1953

[135] F. Farahmand, D. T. Nguyen, V. B. Dang, A. Ferozpuri, and K. Gaj, “Software/hardware
codesign of the post quantum cryptography algorithm ntruencrypt using high-level
synthesis and register-transfer level design methodologies,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), 2019, pp. 225–231.

[136] E. Camacho-Ruiz, M. C. Martínez-Rodríguez, S. Sánchez-Solano, and P. Brox,
“Accelerating the development of ntru algorithm on embedded systems,” in 2020 XXXV
Conference on Design of Circuits and Integrated Systems (DCIS), 2020, pp. 1–6.

[137] E. Camacho-Ruiz, S. Sánchez-Solano, P. Brox, and M. C. Martínez-Rodríguez,
“Timing-optimized hardware implementation to accelerate polynomial multiplication in
the ntru algorithm,” J. Emerg. Technol. Comput. Syst., vol. 17, no. 3, may 2021. [Online].
Available: https://doi.org/10.1145/3445979

[138] S. Sánchez-Solano, E. Camacho-Ruiz, M. C. Martínez-Rodríguez, and P. Brox,
“Multi-unit serial polynomial multiplier to accelerate ntru-based cryptographic schemes
in iot embedded systems,” Sensors, vol. 22, no. 5, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/5/2057

[139] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks on
masked lattice-based encryption,” Cryptology ePrint Archive, Paper 2017/594, 2017,
https://eprint.iacr.org/2017/594. [Online]. Available: https://eprint.iacr.org/2017/594

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTRU-Round2.zip
https://www.mdpi.com/2079-9292/9/11/1953
https://doi.org/10.1145/3445979
https://www.mdpi.com/1424-8220/22/5/2057
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2017/594

152 References

[140] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky, “Horizontal side-channel
vulnerabilities of post-quantum key exchange protocols,” in 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2018, pp. 81–88.

[141] E. Karimi, Y. Fei, and D. Kaeli, “Hardware/software obfuscation against timing side-
channel attack on a gpu,” in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2020, pp. 122–131.

[142] National Institute of Standards and Technology, “Ntru-round3 submission,” Available
at https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/
round-3/submissions/NTRU-Round3.zip, accessed: September 29, 2023.

[143] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodriguez, and P. Brox, “NTRU
Round 3 repository,” https://gitlab.com/hwsec/ntru_3round.

[144] E. E. Targhi and D. Unruh, “Post-quantum security of the fujisaki-okamoto and oaep
transforms,” in Theory of Cryptography, M. Hirt and A. Smith, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 192–216.

[145] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based public key cryptosystem,”
in Algorithmic Number Theory, J. P. Buhler, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 267–288.

[146] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware architectures and fpga
benchmarking of crystals-kyber, ntru, and saber,” IEEE Transactions on Computers,
vol. 72, no. 2, pp. 306–320, 2023.

[147] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman, and A. D. Woodbury, “Ntru in
constrained devices,” in Cryptographic Hardware and Embedded Systems — CHES
2001, Ç. K. Koç, D. Naccache, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 262–272.

[148] A. C. Atici, L. Batina, J. Fan, I. Verbauwhede, and S. Berna Ors Yalcin, “Low-cost
implementations of ntru for pervasive security,” in 2008 International Conference on
Application-Specific Systems, Architectures and Processors, 2008, pp. 79–84.

[149] A. A. Kamal and A. M. Youssef, “An fpga implementation of the ntruencrypt
cryptosystem,” in 2009 International Conference on Microelectronics - ICM, 2009,
pp. 209–212.

[150] X. Zhan, R. Zhang, Z. Xiong, Z. Zheng, and L. Zhenglin, “Efficient implementations of
ntru in wireless network,” Communications and Network, vol. 05, pp. 485–492, 01 2013.

[151] B. Liu and H. Wu, “Efficient architecture and implementation for ntruencrypt system,” in
2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS),
2015, pp. 1–4.

[152] ——, “Efficient multiplication architecture over truncated polynomial ring for
ntruencrypt system,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, pp. 1174–1177.

https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/NTRU-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/NTRU-Round3.zip
https://gitlab.com/hwsec/ntru_3round

References 153

[153] K. Braun, T. Fritzmann, G. Maringer, T. Schamberger, and J. Sepúlveda, “Secure
and compact full ntru hardware implementation,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), 2018, pp. 89–94.

[154] Z. Qin, R. Tong, X. Wu, G. Bai, L. Wu, and L. Su, “A compact full hardware
implementation of pqc algorithm ntru,” in 2021 International Conference on
Communications, Information System and Computer Engineering (CISCE), 2021, pp.
792–797.

[155] M. Azouaoui, Y. Kuzovkova, T. Schneider, and C. van Vredendaal, “Post-quantum
authenticated encryption against chosen-ciphertext side-channel attacks,” Cryptology
ePrint Archive, Paper 2022/916, 2022, https://eprint.iacr.org/2022/916. [Online].
Available: https://eprint.iacr.org/2022/916

[156] J. Park, N. N. Anandakumar, D. Saha, D. Mehta, N. Pundir, F. Rahman, F. Farahmandi,
and M. M. Tehranipoor, “Pqc-sep: Power side-channel evaluation platform for post-
quantum cryptography algorithms,” IACR Cryptol. ePrint Arch., vol. 2022, p. 527,
2022.

[157] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its publication
and the impacts on cryptographic module security testing,” Cryptology ePrint
Archive, Paper 2005/388, 2005, https://eprint.iacr.org/2005/388. [Online]. Available:
https://eprint.iacr.org/2005/388

[158] P. Ravi, A. Chattopadhyay, and S. Bhasin, “Practical side-channel and fault attacks on
lattice-based cryptography,” in 2021 IFIP/IEEE 29th International Conference on Very
Large Scale Integration (VLSI-SoC), 2021, pp. 1–2.

[159] B. Liu and H. Wu, “Efficient multiplication architecture over truncated polynomial ring
for ntruencrypt system,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, pp. 1174–1177.

[160] P. Ravi, S. Sinha Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-channel attacks
on cca-secure lattice-based pke and kems,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 3, p. 307–335, Jun. 2020. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8592

[161] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack on a
masked ind-cca secure saber kem,” Cryptology ePrint Archive, Paper 2021/079, 2021,
https://eprint.iacr.org/2021/079. [Online]. Available: https://eprint.iacr.org/2021/079

[162] A. Askeland and S. Rønjom, “A side-channel assisted attack on ntru,” Cryptology ePrint
Archive, Paper 2021/790, 2021, https://eprint.iacr.org/2021/790. [Online]. Available:
https://eprint.iacr.org/2021/790

[163] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T. Lee, J. Han, H. Yoon, J. Cho, and D.-G. Han,
“Single-trace attacks on the message encoding of lattice-based kems,” Cryptology ePrint
Archive, Paper 2020/992, 2020, https://eprint.iacr.org/2020/992. [Online]. Available:
https://eprint.iacr.org/2020/992

https://eprint.iacr.org/2022/916
https://eprint.iacr.org/2022/916
https://eprint.iacr.org/2005/388
https://eprint.iacr.org/2005/388
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://eprint.iacr.org/2021/079
https://eprint.iacr.org/2021/079
https://eprint.iacr.org/2021/790
https://eprint.iacr.org/2021/790
https://eprint.iacr.org/2020/992
https://eprint.iacr.org/2020/992

154 References

[164] H. Guntur, J. Ishii, and A. Satoh, “Side-channel attack user reference architecture board
sakura-g,” in IEEE 3rd Global Conference on Consumer Electronics (GCCE’14). IEEE,
2014, pp. 271–274.

[165] L. F. Rojas-Muñoz, S. Sánchez-Solano, M. C. Martínez-Rodríguez, and P. Brox,
“On-line evaluation and monitoring of security features of an ro-based puf/trng
for iot devices,” Sensors, vol. 23, no. 8, 2023. [Online]. Available: https:
//www.mdpi.com/1424-8220/23/8/4070

[166] M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using hash functions—
the hmac construction,” CryptoBytes, vol. 2, 02 1998.

[167] N. I. of Standards and Technology, “Fips 198-1, the keyed-hash message authentication
code (hmac),” https://csrc.nist.gov/pubs/fips/198-1/final, 2008, accessed on November
15, 2023.

[168] S. Kelly and S. Frankel, “Using hmac-sha-256, hmac-sha-384, and hmac-sha-512 with
ipsec,” https://datatracker.ietf.org/doc/html/rfc4868, 2007, accessed on November 15,
2023.

[169] K. Moriarty, B. Kaliski, and A. Rusch, “Pkcs #5: Password-based cryptography
specification version 2.1,” https://datatracker.ietf.org/doc/html/rfc8018, 2017, accessed
on November 15, 2023.

[170] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in Advances
in Cryptology – CRYPTO 2005, V. Shoup, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 17–36.

[171] X. Wang and H. Yu, “How to break md5 and other hash functions,” in Advances in
Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 19–35.

[172] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodriguez, and P. Brox, “HMAC
Repository of this dissertation,” https://gitlab.com/hwsec/hmac_swhw.

https://www.mdpi.com/1424-8220/23/8/4070
https://www.mdpi.com/1424-8220/23/8/4070
https://csrc.nist.gov/pubs/fips/198-1/final
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc8018
https://gitlab.com/hwsec/hmac_swhw

Appendix A

Brief CV

Eros Camacho-Ruiz received the B. Sc. Degree in Physics from the University of Córdoba,
Spain, in 2017, and the M. Sc. Degree in Microelectronics from the University of Seville,
Spain, in 2020. Since 2020, he is a predoctoral researcher at Instituto de Microelectrónica de
Sevilla (IMSE), Centro Nacional de Microelectrónica (CNM), CSIC / University of Seville.
He has been funded by an FPU grant from the Spanish Government. His main research
interest is the study and development of PUFs in analog and digital devices; and the design and
implementation of Post-Quantum algorithms in embedded systems.

A.1 Journal Papers

[J1] E. Camacho-Ruiz, S. Sánchez-Solano, P. Brox, and M. C. Martínez-Rodríguez. “Timing-
Optimized Hardware Implementation to Accelerate Polynomial Multiplication in the
NTRU Algorithm”. J. Emerg. Technol. Comput. Syst. 17, 3, Article 35, 2021.

[J2] M. C. Martínez-Rodríguez, E. Camacho-Ruiz, P. Brox, and S. Sánchez-Solano, “A
Configurable RO-PUF for Securing Embedded Systems Implemented on Programmable
Devices,” Electronics, vol. 10, no. 16, p. 1957, Aug. 2021.

[J3] S. Sánchez-Solano, E. Camacho-Ruiz, M. C. Martínez-Rodríguez, and P. Brox, “Multi-
Unit Serial Polynomial Multiplier to Accelerate NTRU-Based Cryptographic Schemes
in IoT Embedded Systems,” Sensors, vol. 22, no. 5, p. 2057, Mar. 2022.

156 Brief CV

[J4] M. C. Martínez-Rodríguez, L. F. Rojas-Muñoz, E. Camacho-Ruiz, S. Sánchez-Solano,
and P. Brox, “Efficient RO-PUF for Generation of Identifiers and Keys in Resource-
Constrained Embedded Systems,” Cryptography, vol. 6, no. 4, p. 51, Oct. 2022.

[J5] E. Camacho-Ruiz, M. C. Martínez-Rodríguez, S. Sánchez-Solano, and P. Brox, “Timing-
Attack-Resistant Acceleration of NTRU Round 3 Encryption on Resource-Constrained
Embedded Systems,” Cryptography, vol. 7, no. 2, p. 29, Jun. 2023.

A.2 Conference Papers

[C1] E. Camacho-Ruiz, M. C. Martínez-Rodríguez, S. Sánchez-Solano and P. Brox,
“Accelerating the Development of NTRU Algorithm on Embedded Systems,” 2020
XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia,
Spain, 2020, pp. 1-6.

[C2] E. Camacho-Ruiz, P. Saraza-Canflanca, R. Castro-Lopez, E. Roca, P. Brox and F. V.
Fernandez, “A study of SRAM PUFs reliability using the Static Noise Margin,” SMACD
/ PRIME 2021; International Conference on SMACD and 16th Conference on PRIME,
online, 2021, pp. 1-4.

[C3] P. Saraza-Canflanca et al., “Simulating the impact of Random Telegraph Noise on
integrated circuits,” SMACD / PRIME 2021; International Conference on SMACD and
16th Conference on PRIME, online, 2021, pp. 1-4.

[C4] M. C. Martínez-Rodríguez, E. Camacho-Ruiz, S. Sánchez-Solano and P. Brox, “Design
Flow to Evaluate the Performance of Ring Oscillator PUFs on FPGAs,” 2021 XXXVI
Conference on Design of Circuits and Integrated Systems (DCIS), Vila do Conde,
Portugal, 2021, pp. 1-6.

[C5] E. Camacho-Ruiz, R. Castro-Lopez, E. Roca, P. Brox and F. V. Fernandez, “A novel
Physical Unclonable Function using RTN,” 2022 IEEE International Symposium on
Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 160-164.

[C6] E. Camacho-Ruiz, A. Santana-Andreo, R. Castro-Lopez, E. Roca and F. V. Fernandez,
“On the use of an RTN simulator to explore the quality trade-offs of a novel RTN-
based PUF,” 2022 18th International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD), Villasimius, Italy,
2022, pp. 1-4.

A.3 Other merits 157

[C7] E. Camacho-Ruiz, R. Castro-Lopez, E. Roca and F. V. Fernandez, “High-level design
of a novel PUF based on RTN,” 2022 18th International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), Villasimius, Italy, 2022, pp. 1-4.

[C8] F. J. Rubio-Barbero, E. Camacho-Ruiz, R. Castro-Lopez, E. Roca and F. V. Fernandez,
“A Peak Detect & Hold circuit to measure and exploit RTN in a 65-nm CMOS PUF,”
2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), Funchal, Portugal, 2023, pp.
1-4.

[C9] E. Camacho-Ruiz, F. J. Rubio-Barbero, R. Castro-Lopez, E. Roca and F. V. Fernandez,
“Design considerations for a CMOS 65-nm RTN-based PUF,” 2023 19th International
Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD), Funchal, Portugal, 2023, pp. 1-4.

[C10] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodríguez and P. Brox, “A
complete SHA-3 hardware library based on a high efficiency Keccak design,” 2023
IEEE Nordic Circuits and Systems Conference (NorCAS), Aalborg, Denmark, 2023,
pp. 1-7.

[C11] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodríguez, E1 Tena-Sanchez
and P. Brox, “A Simple Power Analysis of an FPGA implementation of a polynomial
multiplier for the NTRU cryptosystem,” 2023 38th Conference on Design of Circuits
and Integrated Systems (DCIS), Málaga, Spain, 2023, pp. 1-6.

A.3 Other merits

[O1] E. Camacho-Ruiz, R. Castro-Lopez, E. Roca, P. Brox, and F. V. Fernandez, “Method
and device for physical unclonable function (puf) based on randome telegraph noise
(rtn),” Universidad de Sevilla (40 %), CSIC (60 %). PCT Patent PCT/EP2023/057 799,
2023.

[O2] Predoctoral stay at “Network and Information Security Group (NISEC)” of the Tampere
University, Finland. 11 June 2023 - 8 September 2023. Tampere. Finland.

158 Brief CV

A.4 Projects

TOGETHER Towards Trusted Low-Power Things: Devices, Circuits and Architectures
(TEC2016-75151-C3-3-R); PI: Dr. Francisco V. Fernández Fernández and
Dr. Rafael Castro López; Supported by Ministerio de Economía, Industria y
Competitividad; 2016 - 2021.

VIGILANT The Variability Challenge in Nano-CMOS: From device Modeling to IC Design
for Mitigation and Exploitation (PID2019-103869RB-C31); PI: Dr. Francisco
V. Fernández Fernández and Dr. Rafael Castro López; Supported by Ministerio
de Ciencia e Innovación; 2020 - 2023.

SPIRS Secure Platform for ICT systems Rooted at the Silicon manufacturing process
(GA: 952622); PI: Dr. Piedad Brox Jiménez; Supported by EU H2020 research
and innovation programme, European Commission; 2021 - 2024.

QUBIP Quantum-oriented Update to Browsers and Infrastructures for the PQ
Transitions (GA: 101119746); PI: Dr. Andrea Vesco; Supported by EU Horizon
Europe research and innovation programme, European Commission; 2023 -
2026.

Appendix B

RTN-based PUF ASIC integration

B.1 Layout images

DIGITAL CONTROL

SWITCHES

COL. DECODER#1 COL. DECODER#2

RO
W

 D
EC

O
D

ER
#1

RO
W

 D
EC

O
D

ER
#2

SE
RI

A
LI

ZE
R#

2
SE

RI
A

LI
ZE

R#
1

Unit Cell

TRANSISTOR

Figure B.1 Layout of the array of 4,096 transistors and inset showing the layout of the unit cell.

160 RTN-based PUF ASIC integration

Figure B.2 Layout design of the PDHMAX circuit.

COMPARATOR

BUFFER

Figure B.3 Comparator final layout implementation.

B.1 Layout images 161

Figure B.4 Final layout of the ASB.

Appendix C

SHA2

C.1 Mathematical Equations

SHRn(x) = x >> n (C.1)

ROT Rn(x) = (x << (w−n) | (x >> n)) w-bit word (C.2)

σ
{256}
0 (x) = ROT R7(x)⊕ROT R18(x)⊕SHR3(x) (C.3)

σ
{256}
1 (x) = ROT R17(x)⊕ROT R19(x)⊕SHR10(x) (C.4)

∑
{256}
0 (x) = ROT R2(x)⊕ROT R13(x)⊕ROT R22(x) (C.5)

∑
{256}
1 (x) = ROT R6(x)⊕ROT R11(x)⊕ROT R25(x) (C.6)

σ
{512}
0 (x) = ROT R1(x)⊕ROT R8(x)⊕SHR7(x) (C.7)

σ
{512}
1 (x) = ROT R19(x)⊕ROT R61(x)⊕SHR6(x) (C.8)

∑
{512}
0 (x) = ROT R28(x)⊕ROT R34(x)⊕ROT R39(x) (C.9)

∑
{512}
1 (x) = ROT R14(x)⊕ROT R18(x)⊕ROT R41(x) (C.10)

Ch(x,y,z) = (x & y) ⊕ (!x & z) (C.11)

Ma j(x,y,z) = (x & y) ⊕ (x & z) ⊕ (y & z) (C.12)

164 SHA2

C.2 SHA-2 Constants

Table C.1 SHA-224 and SHA-256 list of constants from upper-left to bottom-right

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

Table C.2 SHA-384, SHA-512, SHA-512/224 and SHA-512/256 list of constants from upper-
left to bottom-right

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

C.3 SHA-2 Initial Values 165

C.3 SHA-2 Initial Values

Table C.3 SHA-224 and SHA-256 initial hash values

Initial values SHA-224 SHA-256

H0
0 c1059ed8 6a09e667

H0
1 367cd507 bb67ae85

H0
2 3070dd17 3c6ef372

H0
3 f70e5939 a54ff53a

H0
4 ffc00b31 510e527f

H0
5 68581511 9b05688c

H0
6 64f98fa7 1f83d9ab

H0
7 befa4fa4 5be0cd19

Table C.4 SHA-384 and SHA-512 initial hash values

Initial values SHA-384 SHA-512

H0
0 cbbb9d5dc1059ed8 6a09e667f3bcc908

H0
1 629a292a367cd507 bb67ae8584caa73b

H0
2 9159015a3070dd17 3c6ef372fe94f82b

H0
3 152fecd8f70e5939 a54ff53a5f1d36f1

H0
4 67332667ffc00b31 510e527fade682d1

H0
5 8eb44a8768581511 9b05688c2b3e6c1f

H0
6 db0c2e0d64f98fa7 1f83d9abfb41bd6b

H0
7 47b5481dbefa4fa4 5be0cd19137e2179

166 SHA2

Table C.5 SHA-512/224 and SHA-512/256 initial hash values

Initial values SHA-512/224 SHA-512/256

H0
0 8C3D37C819544DA2 22312194FC2BF72C

H0
1 73E1996689DCD4D6 9F555FA3C84C64C2

H0
2 1DFAB7AE32FF9C82 2393B86B6F53B151

H0
3 679DD514582F9FCF 963877195940EABD

H0
4 0F6D2B697BD44DA8 96283EE2A88EFFE3

H0
5 77E36F7304C48942 BE5E1E2553863992

H0
6 3F9D85A86A1D36C8 2B0199FC2C85B8AA

H0
7 1112E6AD91D692A1 0EB72DDC81C52CA2

Appendix D

NTRU

D.1 IP module resource occupation and timing performance
results

Table D.1 IP module resource occupation and timing performance results for N = 509 and
maxcoe f = 400.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 147 96 1.5 96.01 203709 2121.83
2 207 121 2.5 97.46 102109 1047.74
3 257 125 3.5 96.22 68109 707.86
4 285 119 4.5 97.68 51309 525.25
5 336 124 5.5 94.61 40909 432.41
6 381 123 6.5 98.03 34109 347.95
7 437 124 7.5 96.62 29309 303.35
8 584 205 4.5 97.00 25709 265.03
9 634 222 5 94.98 22909 241.21

10 704 232 5.5 97.24 20509 210.91
11 767 244 6 91.78 18909 206.03
12 810 253 6.5 94.36 17309 183.44
13 892 266 7 94.30 16109 170.82
14 946 276 7.5 94.02 14909 158.57
15 997 288 8 91.79 13709 149.36
16 921 291 8.5 93.99 12909 137.34
32 1747 472 16.5 92.45 6509 70.41
64 4115 828 32.5 87.36 3309 37.88

128 7951 1546 64.5 79.18 1709 21.58
256 16159 3070 128 77.86 909 11.68

168 NTRU

Table D.2 IP module resource occupation and timing performance results for N = 509 and
maxcoe f = 509.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 119 78 1.5 101.29 259081 2557.64
2 176 103 2.5 98.46 129795 1318.19
3 228 107 3.5 99.59 86530 868.84
4 260 101 4.5 99.22 65152 656.60
5 316 106 5.5 93.43 51918 555.67
6 348 105 6.5 96.49 43265 448.35
7 399 106 7.5 96.51 37157 384.98
8 556 187 4.5 97.94 32576 332.60
9 603 204 5 95.31 29013 304.37

10 678 214 5.5 95.45 25959 271.94
11 739 226 6 92.61 23923 258.29
12 785 235 6.5 94.31 21887 232.06
13 872 248 7 94.28 20360 215.93
14 923 258 7.5 94.63 18833 199.00
15 971 270 8 92.18 17306 187.73
16 897 273 8.5 94.53 16288 172.29
32 1721 454 16.5 90.27 8144 90.21
64 4088 816 32.5 90.08 4072 45.20

128 8097 1540 64.5 83.78 2036 24.29
256 16707 2992 128.5 78.86 1018 12.90

D.1 IP module resource occupation and timing performance results 169

Table D.3 IP module resource occupation and timing performance results for N = 677 and
maxcoe f = 516.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 167 104 1.5 97.03 349493 3601.87
2 238 132 2.5 95.76 175085 1828.41
3 272 132 3.5 95.28 116777 1225.57
4 309 130 4.5 95.00 87881 925.04
5 364 135 5.5 93.85 70337 749.44
6 398 130 6.5 95.50 58469 612.23
7 444 131 7.5 93.34 50213 537.93
8 476 128 8.5 94.30 44021 466.84
9 531 134 9.5 93.36 39377 421.77

10 582 133 10.5 93.21 35249 378.15
11 801 251 6 93.34 32153 344.49
12 851 260 6.5 94.10 29573 314.27
13 935 273 7 91.68 27509 300.04
14 988 283 7.5 91.85 25445 277.02
15 1037 295 8 91.11 23897 262.29
16 1103 302 8.5 93.70 22349 238.51
32 1823 484 16.5 90.25 11513 127.56
64 4205 846 32.5 82.31 5837 70.91

128 8206 1562 64.5 81.65 3257 39.89
256 17454 3044 128.5 75.15 1709 22.74

170 NTRU

Table D.4 IP module resource occupation and timing performance results for N = 677 and
maxcoe f = 677.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 137 84 1.5 96.85 349493 3608.52
2 198 112 2.5 97.71 175085 1791.82
3 241 112 3.5 97.04 116777 1203.39
4 291 110 4.5 94.66 87881 928.37
5 332 115 5.5 93.74 70337 750.36
6 366 110 6.5 93.90 58469 622.69
7 419 111 7.5 92.76 50213 541.30
8 451 108 8.5 94.73 44021 464.69
9 500 114 9.5 91.50 39377 430.35

10 558 113 10.5 93.32 35249 377.73
11 773 231 6 91.18 32153 352.62
12 824 240 6.5 90.93 29573 325.21
13 906 253 7 91.82 27509 299.60
14 959 263 7.5 91.64 25445 277.66
15 1025 275 8 93.34 23897 256.03
16 1068 282 8.5 91.97 22349 243.00
32 1787 464 16.5 91.52 11513 125.80
64 4176 826 32.5 84.92 5837 68.74

128 8356 1552 64.5 78.34 3257 41.58
256 17389 3039 128.5 74.81 1709 22.85

D.1 IP module resource occupation and timing performance results 171

Table D.5 IP module resource occupation and timing performance results for N = 821 and
maxcoe f = 625.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 166 105 1.5 96.36 349493 3627.04
2 237 133 2.5 99.40 175085 1761.36
3 290 137 3.5 97.24 116777 1200.93
4 326 131 4.5 94.64 87881 928.55
5 373 136 5.5 97.41 70337 722.08
6 419 135 6.5 94.11 58469 621.29
7 472 132 7.5 93.08 50213 539.49
8 510 129 8.5 94.70 44021 464.86
9 562 135 9.5 95.04 39377 414.32

10 612 134 10.5 94.40 35249 373.39
11 656 135 11.5 92.88 32153 346.16
12 713 133 12.5 93.42 29573 316.55
13 981 287 7 92.66 27509 296.88
14 1033 298 7.5 93.95 25445 270.84
15 1087 311 8 93.34 23897 256.03
16 1159 319 8.5 92.28 22349 242.17
32 1919 518 16.5 91.98 11513 125.17
64 4458 914 32.5 86.89 5837 67.17

128 8725 1697 64.5 84.04 3257 38.76
256 18091 3283 128.5 77.63 1709 22.02

172 NTRU

Table D.6 IP module resource occupation and timing performance results for N = 821 and
maxcoe f = 821.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 150 85 1.5 98.61 349493 3544.21
2 207 113 2.5 98.37 175085 1779.91
3 260 117 3.5 95.54 116777 1222.30
4 306 111 4.5 98.51 87881 892.08
5 347 116 5.5 95.62 70337 735.58
6 390 115 6.5 93.35 58469 626.32
7 442 112 7.5 93.03 50213 539.74
8 481 109 8.5 96.70 44021 455.22
9 532 115 9.5 93.19 39377 422.55

10 590 114 10.5 93.22 35249 378.12
11 640 115 11.5 91.72 32153 350.56
12 679 113 12.5 92.78 29573 318.74
13 929 267 7 91.79 27509 299.68
14 1005 278 7.5 92.20 25445 275.98
15 1064 291 8 92.94 23897 257.13
16 1134 299 8.5 93.99 22349 237.77
32 1893 497 16.5 92.23 11513 124.82
64 4418 892 32.5 85.21 5837 68.50

128 8640 1660 64.5 80.59 3257 40.41
256 18233 3277 128.5 77.91 1709 21.94

D.1 IP module resource occupation and timing performance results 173

Table D.7 IP module resource occupation and timing performance results for N = 701 and
maxcoe f = 533.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 176 104 1.5 96.64 349493 3616.55
2 255 132 2.5 96.81 175085 1808.63
3 293 132 3.5 97.02 116777 1203.62
4 330 130 4.5 97.37 87881 902.54
5 390 135 5.5 93.06 70337 755.84
6 433 130 6.5 93.40 58469 626.03
7 487 131 7.5 93.08 50213 539.49
8 529 128 8.5 94.30 44021 466.80
9 581 134 9.5 93.17 39377 422.63

10 634 133 10.5 93.99 35249 375.01
11 881 273 6 93.41 32153 344.23
12 932 284 6.5 91.95 29573 321.61
13 1025 299 7 92.13 27509 298.58
14 1089 311 7.5 93.05 25445 273.46
15 1159 325 8 91.22 23897 261.98
16 1225 334 8.5 91.95 22349 243.05
32 2068 550 16.5 90.91 11513 126.64
64 4708 970 32.5 84.88 5837 68.77

128 9441 1830 64.5 80.75 3257 40.33
256 19587 3562 128.5 74.77 1709 22.86

174 NTRU

Table D.8 IP module resource occupation and timing performance results for N = 701 and
maxcoe f = 701.

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 148 84 1.5 94.97 349493 3680.16
2 222 112 2.5 97.94 175085 1787.62
3 261 112 3.5 95.15 116777 1227.33
4 298 110 4.5 94.98 87881 925.21
5 367 115 5.5 92.28 70337 762.24
6 403 110 6.5 95.95 58469 609.36
7 462 111 7.5 94.79 50213 529.75
8 506 108 8.5 92.83 44021 474.19
9 553 114 9.5 92.27 39377 426.77

10 605 113 10.5 91.87 35249 383.69
11 854 253 6 93.89 32153 342.46
12 921 264 6.5 92.44 29573 319.92
13 1009 279 7 92.47 27509 297.48
14 1076 291 7.5 88.95 25445 286.05
15 1138 305 8 92.06 23897 259.59
16 1205 314 8.5 92.14 22349 242.55
32 2070 529 16.5 89.97 11513 127.97
64 4694 955 32.5 84.27 5837 69.27

128 9430 1805 64.5 77.66 3257 41.94
256 19643 3588 128.5 72.49 1709 23.58

D.2 Multiplication, encryption and decryption acceleration using the hardware implementation
with respect to the time required for the software results 175

D.2 Multiplication, encryption and decryption acceleration
using the hardware implementation with respect to the
time required for the software results

Table D.9 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 509 and
maxcoe f = 400.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

14337

2218 6.47

14451

2346 6.16

44638

32564 1.37
2 1201 11.92 1327 10.88 31512 1.41
3 861 16.63 987 14.62 31173 1.43
4 693 20.67 818 17.64 30999 1.44
5 589 24.32 714 20.20 30896 1.44
6 521 27.55 646 22.37 30827 1.45
7 473 30.28 600 24.06 30781 1.45
8 436 32.81 563 25.62 30749 1.45
9 409 35.04 535 26.98 30721 1.45

10 385 37.16 511 28.23 30699 1.45
11 369 38.82 494 29.19 30672 1.45
12 353 40.57 479 30.13 30662 1.45
13 340 42.07 467 30.93 30650 1.45
14 329 43.58 456 31.67 30635 1.45
15 317 45.14 443 32.54 30627 1.46
16 309 46.45 436 33.14 30616 1.46
32 244 58.71 369 39.06 30545 1.46
64 212 67.47 340 42.42 30517 1.46

128 196 73.11 321 44.89 30494 1.46
256 189 75.88 315 45.87 30495 1.46

176 NTRU

Table D.10 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 509 and
maxcoe f = 509.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

14337

2770 5.17

14451

2896 4.98

44638

33074 1.35
2 1478 9.69 1604 9.00 31786 1.40
3 1045 13.71 1171 12.32 31349 1.42
4 830 17.24 956 15.09 31132 1.43
5 698 20.50 824 17.51 31001 1.44
6 612 23.40 738 19.55 30919 1.44
7 551 26.00 677 21.30 30855 1.44
8 505 28.35 631 22.88 30812 1.45
9 469 30.50 595 24.25 30777 1.45

10 439 32.63 565 25.54 30747 1.45
11 419 34.21 544 26.50 30727 1.45
12 398 35.96 524 27.55 30702 1.45
13 383 37.35 509 28.34 30690 1.45
14 368 38.92 494 29.19 30674 1.45
15 352 40.62 478 30.19 30660 1.45
16 342 41.87 468 30.83 30650 1.45
32 261 54.89 387 37.28 30567 1.46
64 221 64.92 346 41.67 30529 1.46

128 200 71.70 325 44.36 30507 1.46
256 189 75.64 315 45.82 30494 1.46

D.2 Multiplication, encryption and decryption acceleration using the hardware implementation
with respect to the time required for the software results 177

Table D.11 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 607 and
maxcoe f = 516.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

25320

3730 6.79

25471

3904 6.52

78046

56513 1.38
2 1986 12.74 2160 11.78 54759 1.42
3 1403 18.04 1576 16.15 54180 1.44
4 1114 22.72 1287 19.78 53890 1.45
5 939 26.96 1113 22.88 53712 1.45
6 820 30.88 993 25.63 53594 1.46
7 737 34.32 911 27.93 53512 1.46
8 676 37.46 849 29.98 53446 1.46
9 629 40.26 802 31.73 53403 1.46
10 588 43.08 761 33.46 53364 1.46
11 556 45.49 730 34.86 53330 1.46
12 531 47.65 705 36.12 53306 1.46
13 510 49.61 684 37.22 53284 1.46
14 490 51.67 663 38.37 53259 1.46
15 474 53.38 648 39.31 53249 1.47
16 459 55.18 632 40.27 53230 1.47
32 350 72.21 524 48.57 53123 1.47
64 294 86.11 468 54.45 53069 1.47

128 268 94.60 441 57.70 53040 1.47
256 253 100.14 426 59.73 53043 1.47

178 NTRU

Table D.12 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 607 and
maxcoe f = 607.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

25320

4819 5.25

25471

4993 5.10

78046

57615 1.35
2 2530 10.01 2704 9.42 55335 1.41
3 1765 14.34 1939 13.13 54546 1.43
4 1387 18.25 1561 16.31 54172 1.44
5 1156 21.89 1330 19.14 53939 1.45
6 1002 25.30 1176 21.68 53836 1.45
7 893 28.34 1067 23.86 53701 1.45
8 811 31.23 985 25.87 53600 1.46
9 750 33.76 924 27.57 53594 1.46

10 695 36.40 869 29.29 53478 1.46
11 655 38.64 829 30.72 53436 1.46
12 621 40.74 795 32.02 53408 1.46
13 594 42.62 768 33.17 53377 1.46
14 567 44.67 740 34.40 53351 1.46
15 546 46.33 720 35.35 53332 1.46
16 526 48.12 700 36.37 53339 1.46
32 384 65.93 558 45.69 53173 1.47
64 309 81.84 483 52.72 53090 1.47

128 276 91.82 449 56.65 53064 1.47
256 255 99.12 429 59.35 53041 1.47

D.2 Multiplication, encryption and decryption acceleration using the hardware implementation
with respect to the time required for the software results 179

Table D.13 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 821 and
maxcoe f = 625.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

37214

5417 6.87

37385

5618 6.65

114180

82460 1.38
2 2855 13.03 3055 12.23 79876 1.43
3 1998 18.62 2198 17.00 79025 1.44
4 1572 23.66 1773 21.08 78592 1.45
5 1317 28.25 1517 24.64 78337 1.46
6 1142 32.57 1343 27.83 78171 1.46
7 1022 36.39 1222 30.57 78048 1.46
8 929 40.06 1130 33.09 77985 1.46
9 861 43.23 1061 35.23 77888 1.47

10 805 46.24 1005 37.20 77835 1.47
11 754 49.33 955 39.15 77774 1.47
12 717 51.89 917 40.75 77745 1.47
13 686 54.25 886 42.19 77715 1.47
14 654 56.89 855 43.73 77682 1.47
15 629 59.13 830 45.05 77657 1.47
16 611 60.85 812 46.02 77639 1.47
32 448 83.00 648 57.64 77477 1.47
64 367 101.38 567 65.89 77420 1.47

128 329 112.96 530 70.53 77356 1.48
256 310 119.85 511 73.18 77349 1.48

180 NTRU

Table D.14 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 821 and
maxcoe f = 821.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

37214

7025 5.30

37385

7224 5.17

114180

84056 1.36
2 3658 10.17 3858 9.69 80692 1.42
3 2534 14.68 2734 13.67 79632 1.43
4 1975 18.84 2175 17.19 79007 1.44
5 1638 22.71 1837 20.34 78663 1.45
6 1409 26.41 1608 23.24 78443 1.46
7 1252 29.71 1452 25.74 78287 1.46
8 1130 32.94 1329 28.13 78163 1.46
9 1039 35.80 1239 30.16 78070 1.46

10 965 38.56 1165 32.09 77989 1.46
11 900 41.35 1100 33.99 77933 1.46
12 851 43.74 1050 35.59 77888 1.47
13 809 45.99 1009 37.06 77847 1.47
14 768 48.47 967 38.64 77798 1.47
15 736 50.56 935 39.96 77781 1.47
16 711 52.35 910 41.06 77766 1.47
32 497 74.80 698 53.56 77517 1.47
64 390 95.39 591 63.29 77416 1.47

128 341 109.09 541 69.07 77368 1.48
256 316 117.55 517 72.33 77344 1.48

D.2 Multiplication, encryption and decryption acceleration using the hardware implementation
with respect to the time required for the software results 181

Table D.15 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 701 and
maxcoe f = 533.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

27134

3981 6.82

27633

4509 6.13

83897

60834 1.38
2 2116 12.82 2642 10.46 58965 1.42
3 1492 18.18 2018 13.69 58342 1.44
4 1183 22.94 1709 16.17 58052 1.45
5 997 27.23 1524 18.14 57865 1.45
6 868 31.26 1394 19.82 57725 1.45
7 783 34.67 1309 21.11 57635 1.46
8 714 38.02 1240 22.28 57566 1.46
9 661 41.07 1187 23.27 57511 1.46
10 623 43.54 1150 24.03 57472 1.46
11 586 46.32 1112 24.85 57433 1.46
12 559 48.51 1086 25.44 57408 1.46
13 533 50.88 1060 26.07 57398 1.46
14 518 52.43 1045 26.44 57372 1.46
15 496 54.73 1022 27.03 57350 1.46
16 480 56.58 1006 27.45 57329 1.46
32 362 74.94 889 31.09 57212 1.47
64 304 89.34 830 33.27 57150 1.47

128 277 98.05 803 34.39 57126 1.47
256 260 104.25 787 35.09 57113 1.47

182 NTRU

Table D.16 Multiplication, encryption and decryption acceleration using the hardware
implementation with respect to the time required for the software results for N = 701 and
maxcoe f = 701.

Multiplication Encryption Decryption

M SW HW Acc. SW HW Acc. SW HW Acc.
(us) (us) (x) (us) (us) (x) (us) (us) (x)

1

27134

5157 5.26

27633

5685 4.86

83897

62009 1.35
2 2703 10.04 3231 8.55 59568 1.41
3 1883 14.41 2411 11.46 58729 1.43
4 1477 18.37 2004 13.78 58319 1.44
5 1231 22.04 1758 15.71 58078 1.44
6 1063 25.52 1590 17.38 57908 1.45
7 951 28.53 1478 18.69 57796 1.45
8 860 31.54 1388 19.92 57722 1.45
9 790 34.36 1317 20.98 57634 1.46
10 741 36.62 1268 21.78 57587 1.46
11 692 39.18 1220 22.64 57534 1.46
12 657 41.29 1184 23.33 57500 1.46
13 623 43.58 1150 24.02 57464 1.46
14 601 45.16 1129 24.49 57468 1.46
15 573 47.37 1100 25.13 57438 1.46
16 551 49.22 1078 25.62 57398 1.46
32 397 68.28 924 29.90 57270 1.47
64 320 84.80 847 32.63 57167 1.47

128 285 95.16 813 33.98 57136 1.47
256 264 102.80 791 34.92 57127 1.47

D.3 Optimizing area and acceleration results 183

D.3 Optimizing area and acceleration results

Table D.17 Multiplication, encryption and decryption efficiency of each resource for N = 509
and maxcoe f = 400.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.044 0.067 4.310 0.042 0.064 4.106 0.009 0.014 0.914
2 0.058 0.099 4.769 0.053 0.090 4.351 0.007 0.012 0.566
3 0.065 0.133 4.752 0.057 0.117 4.177 0.006 0.011 0.408
4 0.073 0.174 4.594 0.062 0.148 3.920 0.005 0.012 0.319
5 0.072 0.196 4.421 0.060 0.163 3.673 0.004 0.012 0.262
6 0.072 0.224 4.238 0.059 0.182 3.442 0.004 0.012 0.222
7 0.069 0.244 4.038 0.055 0.194 3.207 0.003 0.012 0.193
8 0.056 0.160 7.290 0.044 0.125 5.693 0.002 0.007 0.322
9 0.055 0.158 7.008 0.043 0.122 5.396 0.002 0.007 0.290
10 0.053 0.160 6.757 0.040 0.122 5.133 0.002 0.006 0.264
11 0.051 0.159 6.470 0.038 0.120 4.866 0.002 0.006 0.242
12 0.050 0.160 6.242 0.037 0.119 4.635 0.002 0.006 0.224
13 0.047 0.158 6.010 0.035 0.116 4.419 0.002 0.005 0.208
14 0.046 0.158 5.810 0.033 0.115 4.223 0.002 0.005 0.194
15 0.045 0.157 5.643 0.033 0.113 4.068 0.001 0.005 0.182
16 0.050 0.160 5.464 0.036 0.114 3.899 0.002 0.005 0.171
32 0.034 0.124 3.558 0.022 0.083 2.367 0.001 0.003 0.088
64 0.016 0.081 2.076 0.010 0.051 1.305 0.000 0.002 0.045

128 0.009 0.047 1.134 0.006 0.029 0.696 0.000 0.001 0.023
256 0.005 0.025 0.593 0.003 0.015 0.358 0.000 0.000 0.011

184 NTRU

Table D.18 Multiplication, encryption and decryption efficiency of each resource for N = 509
and maxcoe f = 509.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.043 0.066 3.446 0.042 0.064 3.322 0.011 0.017 0.898
2 0.055 0.094 3.876 0.051 0.087 3.600 0.008 0.014 0.561
3 0.060 0.128 3.916 0.054 0.115 3.521 0.006 0.013 0.406
4 0.066 0.171 3.830 0.058 0.149 3.353 0.006 0.014 0.318
5 0.065 0.193 3.727 0.055 0.165 3.183 0.005 0.014 0.261
6 0.067 0.223 3.599 0.056 0.186 3.008 0.004 0.014 0.222
7 0.065 0.245 3.467 0.053 0.201 2.841 0.004 0.014 0.193
8 0.051 0.152 6.299 0.041 0.122 5.084 0.003 0.008 0.321
9 0.051 0.150 6.101 0.040 0.119 4.851 0.002 0.007 0.290
10 0.048 0.152 5.933 0.038 0.119 4.644 0.002 0.007 0.264
11 0.046 0.151 5.701 0.036 0.117 4.417 0.002 0.006 0.242
12 0.046 0.153 5.532 0.035 0.117 4.239 0.002 0.006 0.223
13 0.043 0.151 5.335 0.033 0.114 4.049 0.002 0.006 0.207
14 0.042 0.151 5.190 0.032 0.113 3.892 0.002 0.006 0.194
15 0.042 0.150 5.077 0.031 0.112 3.773 0.001 0.005 0.182
16 0.047 0.153 4.926 0.034 0.113 3.628 0.002 0.005 0.171
32 0.032 0.121 3.326 0.022 0.082 2.260 0.001 0.003 0.088
64 0.016 0.080 1.998 0.010 0.051 1.282 0.000 0.002 0.045

128 0.009 0.047 1.112 0.005 0.029 0.688 0.000 0.001 0.023
256 0.005 0.025 0.589 0.003 0.015 0.357 0.000 0.000 0.011

D.3 Optimizing area and acceleration results 185

Table D.19 Multiplication, encryption and decryption efficiency of each resource for N = 677
and maxcoe f = 516.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.041 0.065 4.524 0.039 0.063 4.348 0.008 0.013 0.921
2 0.054 0.097 5.096 0.050 0.089 4.714 0.006 0.011 0.570
3 0.066 0.137 5.155 0.059 0.122 4.615 0.005 0.011 0.411
4 0.074 0.175 5.050 0.064 0.152 4.395 0.005 0.011 0.322
5 0.074 0.200 4.902 0.063 0.169 4.160 0.004 0.011 0.264
6 0.078 0.238 4.750 0.064 0.197 3.944 0.004 0.011 0.224
7 0.077 0.262 4.576 0.063 0.213 3.725 0.003 0.011 0.194
8 0.079 0.293 4.407 0.063 0.234 3.527 0.003 0.011 0.172
9 0.076 0.300 4.238 0.060 0.237 3.340 0.003 0.011 0.154
10 0.074 0.324 4.103 0.057 0.252 3.186 0.003 0.011 0.139
11 0.057 0.181 7.582 0.044 0.139 5.810 0.002 0.006 0.244
12 0.056 0.183 7.331 0.042 0.139 5.557 0.002 0.006 0.225
13 0.053 0.182 7.087 0.040 0.136 5.317 0.002 0.005 0.209
14 0.052 0.183 6.890 0.039 0.136 5.116 0.001 0.005 0.195
15 0.051 0.181 6.673 0.038 0.133 4.914 0.001 0.005 0.183
16 0.050 0.183 6.491 0.037 0.133 4.738 0.001 0.005 0.172
32 0.040 0.149 4.376 0.027 0.100 2.944 0.001 0.003 0.089
64 0.020 0.102 2.650 0.013 0.064 1.675 0.000 0.002 0.045

128 0.012 0.061 1.467 0.007 0.037 0.895 0.000 0.001 0.023
256 0.006 0.033 0.779 0.003 0.020 0.465 0.000 0.000 0.011

186 NTRU

Table D.20 Multiplication, encryption and decryption efficiency of each resource for N = 677
and maxcoe f = 677.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.038 0.063 3.503 0.037 0.061 3.401 0.010 0.016 0.903
2 0.051 0.089 4.005 0.048 0.084 3.769 0.007 0.013 0.564
3 0.059 0.128 4.096 0.054 0.117 3.751 0.006 0.013 0.409
4 0.063 0.166 4.056 0.056 0.148 3.625 0.005 0.013 0.320
5 0.066 0.190 3.981 0.058 0.166 3.480 0.004 0.013 0.263
6 0.069 0.230 3.893 0.059 0.197 3.335 0.004 0.013 0.223
7 0.068 0.255 3.779 0.057 0.215 3.182 0.003 0.013 0.194
8 0.069 0.289 3.674 0.057 0.240 3.043 0.003 0.013 0.171
9 0.068 0.296 3.554 0.055 0.242 2.902 0.003 0.013 0.153
10 0.065 0.322 3.467 0.052 0.259 2.789 0.003 0.013 0.139
11 0.050 0.167 6.440 0.040 0.133 5.121 0.002 0.006 0.243
12 0.049 0.170 6.268 0.039 0.133 4.926 0.002 0.006 0.225
13 0.047 0.168 6.088 0.037 0.131 4.738 0.002 0.006 0.209
14 0.047 0.170 5.956 0.036 0.131 4.586 0.002 0.006 0.195
15 0.045 0.168 5.791 0.034 0.129 4.419 0.001 0.005 0.183
16 0.045 0.171 5.661 0.034 0.129 4.279 0.001 0.005 0.172
32 0.037 0.142 3.996 0.026 0.098 2.769 0.001 0.003 0.089
64 0.020 0.099 2.518 0.013 0.064 1.622 0.000 0.002 0.045

128 0.011 0.059 1.424 0.007 0.036 0.878 0.000 0.001 0.023
256 0.006 0.033 0.771 0.003 0.020 0.462 0.000 0.000 0.011

D.3 Optimizing area and acceleration results 187

Table D.21 Multiplication, encryption and decryption efficiency of each resource for N = 821
and maxcoe f = 625.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.041 0.065 4.580 0.040 0.063 4.436 0.008 0.013 0.923
2 0.055 0.098 5.213 0.052 0.092 4.894 0.006 0.011 0.572
3 0.064 0.136 5.320 0.059 0.124 4.857 0.005 0.011 0.413
4 0.073 0.181 5.258 0.065 0.161 4.685 0.004 0.011 0.323
5 0.076 0.208 5.137 0.066 0.181 4.480 0.004 0.011 0.265
6 0.078 0.241 5.010 0.066 0.206 4.281 0.003 0.011 0.225
7 0.077 0.276 4.853 0.065 0.232 4.076 0.003 0.011 0.195
8 0.079 0.311 4.713 0.065 0.257 3.893 0.003 0.011 0.172
9 0.077 0.320 4.551 0.063 0.261 3.709 0.003 0.011 0.154
10 0.076 0.345 4.404 0.061 0.278 3.542 0.002 0.011 0.140
11 0.075 0.365 4.289 0.060 0.290 3.404 0.002 0.011 0.128
12 0.073 0.390 4.151 0.057 0.306 3.260 0.002 0.011 0.117
13 0.055 0.189 7.750 0.043 0.147 6.026 0.001 0.005 0.210
14 0.055 0.191 7.585 0.042 0.147 5.831 0.001 0.005 0.196
15 0.054 0.190 7.391 0.041 0.145 5.631 0.001 0.005 0.184
16 0.053 0.191 7.159 0.040 0.144 5.414 0.001 0.005 0.173
32 0.043 0.160 5.030 0.030 0.111 3.494 0.001 0.003 0.089
64 0.023 0.111 3.119 0.015 0.072 2.027 0.000 0.002 0.045

128 0.013 0.067 1.751 0.008 0.042 1.093 0.000 0.001 0.023
256 0.007 0.037 0.933 0.004 0.022 0.570 0.000 0.000 0.011

188 NTRU

Table D.22 Multiplication, encryption and decryption efficiency of each resource for N = 821
and maxcoe f = 821.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.035 0.062 3.532 0.034 0.061 3.450 0.009 0.016 0.906
2 0.049 0.090 4.070 0.047 0.086 3.876 0.007 0.013 0.566
3 0.056 0.126 4.196 0.053 0.117 3.907 0.006 0.012 0.410
4 0.062 0.170 4.187 0.056 0.155 3.819 0.005 0.013 0.321
5 0.065 0.196 4.130 0.059 0.175 3.698 0.004 0.013 0.264
6 0.068 0.230 4.064 0.060 0.202 3.575 0.004 0.013 0.224
7 0.067 0.265 3.961 0.058 0.230 3.432 0.003 0.013 0.194
8 0.068 0.302 3.876 0.058 0.258 3.309 0.003 0.013 0.172
9 0.067 0.311 3.768 0.057 0.262 3.175 0.003 0.013 0.154
10 0.065 0.338 3.673 0.054 0.282 3.056 0.002 0.013 0.139
11 0.065 0.360 3.596 0.053 0.296 2.956 0.002 0.013 0.127
12 0.064 0.387 3.499 0.052 0.315 2.847 0.002 0.013 0.117
13 0.050 0.172 6.570 0.040 0.139 5.294 0.002 0.005 0.209
14 0.048 0.174 6.463 0.038 0.139 5.151 0.001 0.005 0.196
15 0.048 0.174 6.321 0.038 0.137 4.996 0.001 0.005 0.183
16 0.046 0.175 6.159 0.036 0.137 4.830 0.001 0.005 0.173
32 0.040 0.151 4.533 0.028 0.108 3.246 0.001 0.003 0.089
64 0.022 0.107 2.935 0.014 0.071 1.947 0.000 0.002 0.045

128 0.013 0.066 1.691 0.008 0.042 1.071 0.000 0.001 0.023
256 0.006 0.036 0.915 0.004 0.022 0.563 0.000 0.000 0.011

D.3 Optimizing area and acceleration results 189

Table D.23 Multiplication, encryption and decryption efficiency of each resource for N = 701
and maxcoe f = 533.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.039 0.066 4.544 0.035 0.059 4.086 0.008 0.013 0.919
2 0.050 0.097 5.130 0.041 0.079 4.183 0.006 0.011 0.569
3 0.062 0.138 5.196 0.047 0.104 3.911 0.005 0.011 0.411
4 0.070 0.176 5.098 0.049 0.124 3.592 0.004 0.011 0.321
5 0.070 0.202 4.950 0.047 0.134 3.298 0.004 0.011 0.264
6 0.072 0.240 4.809 0.046 0.152 3.049 0.003 0.011 0.224
7 0.071 0.265 4.622 0.043 0.161 2.815 0.003 0.011 0.194
8 0.072 0.297 4.473 0.042 0.174 2.621 0.003 0.011 0.171
9 0.071 0.306 4.323 0.040 0.174 2.450 0.003 0.011 0.154
10 0.069 0.327 4.147 0.038 0.181 2.288 0.002 0.011 0.139
11 0.053 0.170 7.720 0.028 0.091 4.142 0.002 0.005 0.243
12 0.052 0.171 7.463 0.027 0.090 3.914 0.002 0.005 0.225
13 0.050 0.170 7.268 0.025 0.087 3.724 0.001 0.005 0.209
14 0.048 0.169 6.990 0.024 0.085 3.525 0.001 0.005 0.195
15 0.047 0.168 6.841 0.023 0.083 3.378 0.001 0.005 0.183
16 0.046 0.169 6.656 0.022 0.082 3.230 0.001 0.004 0.172
32 0.036 0.136 4.542 0.015 0.057 1.884 0.001 0.003 0.089
64 0.019 0.092 2.749 0.007 0.034 1.024 0.000 0.002 0.045

128 0.010 0.054 1.520 0.004 0.019 0.533 0.000 0.001 0.023
256 0.005 0.029 0.811 0.002 0.010 0.273 0.000 0.000 0.011

190 NTRU

Table D.24 Multiplication, encryption and decryption efficiency of each resource for N = 701
and maxcoe f = 701.

Multiplication Encryption Decryption

M ELUT EFF EBRAM ELUT EFF EBRAM ELUT EFF EBRAM

1 0.036 0.063 3.508 0.033 0.058 3.241 0.009 0.016 0.902
2 0.045 0.090 4.015 0.039 0.076 3.421 0.006 0.013 0.563
3 0.055 0.129 4.117 0.044 0.102 3.275 0.005 0.013 0.408
4 0.062 0.167 4.082 0.046 0.125 3.063 0.005 0.013 0.320
5 0.060 0.192 4.008 0.043 0.137 2.857 0.004 0.013 0.263
6 0.063 0.232 3.927 0.043 0.158 2.673 0.004 0.013 0.223
7 0.062 0.257 3.804 0.040 0.168 2.492 0.003 0.013 0.194
8 0.062 0.292 3.711 0.039 0.184 2.343 0.003 0.013 0.171
9 0.062 0.301 3.617 0.038 0.184 2.208 0.003 0.013 0.153
10 0.061 0.324 3.488 0.036 0.193 2.074 0.002 0.013 0.139
11 0.046 0.155 6.530 0.027 0.089 3.774 0.002 0.006 0.243
12 0.045 0.156 6.353 0.025 0.088 3.589 0.002 0.006 0.224
13 0.043 0.156 6.225 0.024 0.086 3.431 0.001 0.005 0.209
14 0.042 0.155 6.022 0.023 0.084 3.265 0.001 0.005 0.195
15 0.042 0.155 5.921 0.022 0.082 3.141 0.001 0.005 0.183
16 0.041 0.157 5.791 0.021 0.082 3.014 0.001 0.005 0.172
32 0.033 0.129 4.138 0.014 0.057 1.812 0.001 0.003 0.089
64 0.018 0.089 2.609 0.007 0.034 1.004 0.000 0.002 0.045

128 0.010 0.053 1.475 0.004 0.019 0.533 0.000 0.001 0.023
256 0.005 0.029 0.800 0.002 0.010 0.272 0.000 0.000 0.011

	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Cybersecurity Context
	1.2 The deployment of an information system: the CIA Triad
	1.3 Root-of-Trust. From hardware perspective
	1.4 The Quantum menace
	1.5 Dissertation Overview

	2 Physical Unclonable Functions
	2.1 Introduction
	2.2 RTN-based PUF
	2.2.1 The entropy source: RTN
	2.2.2 How to extract information: The Maximum Parameter Fluctuation
	2.2.3 Conceptual architecture of the RTN-based PUF
	2.2.4 The bit selection method for the RTN-based PUF
	2.2.5 Metrics to evaluate the RTN-based PUF
	2.2.6 Verifying the PUF performance
	2.2.7 Studying the impact of the size and biasing condition of the entropy-generating transistors
	2.2.8 Evaluating the non-idealities in the building blocks of the RTN-based PUF
	2.2.9 Summary of the RTN-based PUF realization results

	2.3 RTN-based PUF low-level design
	2.3.1 Floorplan of the RTN-based PUF integration scheme
	2.3.2 Transistors Array design
	2.3.3 Analog Sensing block implementation
	2.3.4 Biasing blocks
	2.3.5 Final layout design
	2.3.6 Conclusions of the low-level design

	2.4 Conclusions

	3 Hash Functions
	3.1 Introduction
	3.2 SHA-2
	3.2.1 Introduction
	3.2.2 Mathematical background
	3.2.3 Proposed scheme
	3.2.4 Implementation of all SHA-2 versions
	3.2.5 Embedded system integration and results

	3.3 SHA-2 low-level design
	3.3.1 Description of the SHA-256 ASIC implementation
	3.3.2 Synthesis and Validation
	3.3.3 ASIC layout and tapeout

	3.4 SHA-3 family
	3.4.1 Introduction
	3.4.2 Keccak Function Background
	3.4.3 Keccak Core Design
	3.4.4 IP Module Integration
	3.4.5 Embedded System Design
	3.4.6 Results

	3.5 Conclusions

	4 Post-Quantum Cryptography
	4.1 Introduction
	4.2 NTRU
	4.2.1 Introduction
	4.2.2 The NTRU Encryption Scheme
	4.2.3 Hardware Implementation of Polynomial Multiplication
	4.2.4 Robust Acceleration Against Timing Attacks
	4.2.5 IP Module Design and Integration
	4.2.6 Results

	4.3 Single-Power Analysis in NTRU AU
	4.3.1 Introduction
	4.3.2 Experimental Setup
	4.3.3 SPA of the NTRU AU
	4.3.4 SPA of the countermeasures proposed
	4.3.5 SPA of the accelerated algorithm

	4.4 Conclusions

	5 Final RoT design: Use Cases
	5.1 Introduction
	5.2 Message verification: HMAC
	5.3 Adding new functionalities to the NTRU cryptosystem

	6 Conclusions
	References
	Appendix A Brief CV
	A.1 Journal Papers
	A.2 Conference Papers
	A.3 Other merits
	A.4 Projects

	Appendix B RTN-based PUF ASIC integration
	B.1 Layout images

	Appendix C SHA2
	C.1 Mathematical Equations
	C.2 SHA-2 Constants
	C.3 SHA-2 Initial Values

	Appendix D NTRU
	D.1 IP module resource occupation and timing performance results
	D.2 Multiplication, encryption and decryption acceleration using the hardware implementation with respect to the time required for the software results
	D.3 Optimizing area and acceleration results

