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Intelligent certification for quantum simulators via machine
learning
Tailong Xiao1, Jingzheng Huang 1, Hongjing Li1, Jianping Fan2 and Guihua Zeng1✉

Quantum simulation is a technology of using controllable quantum systems to study new quantum phases of matter. Certification
for quantum simulators is a challenging problem whereas identification and properties estimation are two crucial approaches that
can be resorted to. In this work, we propose Ab initio end-to-end machine learning certification protocol briefly named MLCP. The
learning protocol is trained with a million-level size of randomized measurement samples without relying on the assistance of
quantum tomography. In the light of MLCP, we can identify different types of quantum simulators to observe their
distinguishability hardness. We also predict the physical properties of quantum states evolved in quantum simulators such as
entanglement entropy and maximum fidelity. The impact of randomized measurement samples on the identification accuracy is
analyzed to showcase the potential capability of classical machine learning on quantum simulation results. The entanglement
entropy and maximum fidelity with varied subsystem partitions are also estimated with satisfactory precision. This work paves the
way for large-scale intelligent certification of quantum simulators and can be extended onto an artificial intelligence center to offer
easily accessible services for local quantum simulators in the noisy intermediate-size quantum (NISQ) era.
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INTRODUCTION
Quantum simulation providing access to theoretical investigations
that are currently impossible is the most promising application of
the NISQ devices1–3. Quantum simulation technologies are
beneficial for the study of quantum metrology4–6 and quantum
computation7–11. In the NISQ era, the random circuit sampling and
Boson sampling problems are realized to achieve quantum
supremacy (also called quantum advantage) based on super-
conducting quantum circuit and photonics platform, respec-
tively9–11. These machines are dedicated to solving specific
problems and we call them quantum simulation machines (QSMs)
or quantum simulators.
Even though the research boom in quantum simulation, the

practical challenges of manipulating large-scale quantum matter
still prevent progress from constructing a fault-tolerant quantum
computer. In addition, due to the absence of universal quantum
error correction which is generally hard to be implemented both
in digital and analog quantum simulation, the certification for
QSMs is necessary and urgent. Currently, there are a large number
of studies that concentrate on quantum validation and certifica-
tion12, such as quantum Hamiltonian learning13, quantum
tomography14, direct fidelity estimation15, random benchmark-
ing16, and quantum cross-platform verification17. As an example,
quantum tomography requires exponential quantum measure-
ments (~ 4N, N is the number of qubits) to reconstruct the full
quantum states although it can obtain all the information about
the quantum state12 thereby preventing its application in large-
scale QSMs. Without using tomography, previous seminal
researches18 have proposed methods including estimating the
overlap of two quantum states from different platforms19, and the
cross-platform verification protocol based on measurement-based
quantum computation20. These methods extract statistical infor-
mation from measurement records of QSMs to estimate the
maximum fidelity or cross-correlation such that can intuitively

evaluate the reliability of computational results. Notably, exploring
the hidden pattern from a large-scale dataset is highly suited for
machine-learning methods. Numerous works demonstrate that
machine learning plays a crucial role in quantum physics and
simulation, such as state discrimination21, tomography22–26 and
parameter estimation5, whereas machine learning-based certifica-
tion for QSMs that does not resort to state tomography is rarely
investigated. In ref. 27, a neural network classifier is constructed to
directly estimate the fidelity using positive operator value
measurements (POVM). Machine-learning approach for certifica-
tion via randomized measurement has a potential advantage and
is required to be studied.
In this regard, we devise a generic machine-learning certifica-

tion protocol (MLCP) by leveraging the advanced LSTM-
Transformer hybrid framework from natural language processing.
Through investigating two critical approaches of certification, i.e.,
identification and quantum properties estimation for QSMs, the
MLCP model achieves impressive performance, particularly in
terms of identification accuracy. More specifically, the MLCP can
automatically classify different types of QSMs with the randomized
measurement results gathered from different simulated or
experimental implementations by mapping the sparse measure-
ment results into a high-dimensional embedding. The learned
mapping can further be applied to quantum properties estimation
such as entanglement entropy28 and maximum fidelity prediction
by using the regression method. The identification accuracy
showcases the distinguishability hardness of different types of
QSMs through training a million-level number of samples.
Interestingly, the impact of repeated measurement settings on
the ultimate accuracy provides a straightforward witness for the
potential capability of classical machine learning in discriminating
quantum channels/states, which also provides essential guidance
for practical measurements in QSMs. The estimation of physical
properties in small-scale quantum systems achieves satisfactory
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precision, especially when estimating maximum fidelity. As for
relatively larger sizes, the entanglement entropy can also be
predicted without using strictly exponentially scaled measure-
ment samples based on the MLCP model. The entanglement
entropy and maximum fidelity can be predicted with polynomial
number of measurements at the inference stage to diagnose the
evolution of the QSMs. The model can be readily extended and
transferred into an artificial intelligence cloud center such that
local QSMs can upload their measurement data to obtain
certification via the machine-learning model.

RESULTS
Machine-learning certification protocol
We present two functions of the MLCP based on the classification
and regression methods in machine learning. The procedures of
the protocol can be seen in Fig. 1 where four main steps are
presented to accomplish the certification. The first step is to
generate quantum simulation data, which can collect the
experiments or classical simulations based on matrix product
state or density matrix simulator. The quantum Hamiltonians can
be different types such as disorder/ordered. Besides, quantum
evolution can consist of different evolution times that generate
the measurement records for different quantum states.
In this work, we investigate the long-range XY model29 in the

presence of a transverse field as a case study of our protocol
shown in Fig. 1a. We remark that the analog system can also be a
two-dimensional many-body systems and the protocol can be
feasible in digital quantum evolution with a variational quantum
circuit in different physical platforms such as superconducting and
cold ion systems as depicted in Fig. 1a. The quantum Hamiltonian
of the XY model is given by

HXY ¼ _
X

i<j

Jijðσþ
i σ

�
j þ σ�

i σ
þ
j Þ þ _B

X

j

σz
j ; (1)

where ℏ is Planck’s constant divided by 2π, σβ
i ðβ ¼ x; y; zÞ

denotes the spin-12 Pauli operators, σþ
i ðσ�

i Þ are the spin-raising
(lowering) operators acting on site i, and Jij � J0= i � jj jα are the
coupling coefficients with an approximate power-law decay and
0 < α < 330. Alternatively, a locally disordered potential can be
added to realize the Hamiltonian H= HXY+ HD where HD ¼
_
P

jΓjσ
z
j and Γj is the magnitude of disorder acting on site j. To

investigate larger sizes of quantum systems, we also conduct
classical simulations for the one-dimensional Heisenberg model.
The Hamiltonian is given by
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where the model only consists of nearest-neighbor interactions,
which can be efficiently simulated based on matrix product state
time evolution. Two typical couplings are chosen: J= 1 or
uniformly sampled J ∈ (0, 1]. Note that the Planck constant ℏ is
normalized into the coupling coefficients Jj. A common quantum
computation process is composed of three steps: (1) the quantum
probe state preparation denoted as ψ0j i, (2) the quantum
evolution or a series of gate operations which can be represented
as a quantum operation or channel U ¼ expð�iHtÞ as shown in
Fig. 1. The analog quantum evolution can be quench dynamics or
thermalization. The digital quantum evolution can be represented
by a variational circuit composed of interleaved multi-rotation and
entangled layers. (3) Randomized measurement unitaries are
written as U= U1⊗⋯⊗ UN on a computational basis for each
local qubit. There are two typical randomized unitary measure-
ments: (i) circular unitary ensemble (CUE)31, (ii) random Pauli
measurement (also referred as classical shadow32). The final
measurement operation generates bit string s∈ {0, 1}N with
probability PðsÞ ¼ sh jUρUy sj i, where ρ is the quantum state to

be measured. The repeated measurement collects the statistical
properties of the evolved quantum states.
The physical probe state in both models is prepared as the Néel

ordered state denoted by ρ0 ¼ ψ0j i ψ0h j with ψ0j i ¼ 0101 � � � 01j i.
This state was subsequently time-evolved under the specified
Hamiltonian into the final state ρ(t). The initial product state will
be entangled with various types under the coherent interactions.
Subsequently, randomized measurements are performed on ρ(t)
through local rotations of each qubit i.e., Ui, uniformly sampled
from the CUE or Pauli group. In reality, each Ui can be
decomposed into three rotations Rz(θ3)Ry(θ2)Rz(θ1), and this
sandwich structure can ensure that drawing of the Ui is stable
against small drifts of physical parameters controlling the rotation
angles θi

29. Random Pauli measurement that performs x, y, z
operations before the final z-measurement is easier to be
implemented compared to sampling unitaries from CUE. Finally,
computational basis measurements are performed on each local
qubit to generate the measurement bit strings. For each set of
applied unitaries U, the measurement is repeated NM times and
we implement NU unitaries, thus generating NUNM measurement
samples. In reality, repeating NM is much easier to be implemented
compared to switching the measurement settings NU since the
latter requires constantly producing external control pulse to
manipulate the qubits, which will introduce quantum noise and
measurement errors and slow down the speed of data acquisition.
The former, however, only requires repeating the same quantum
evolution and measuring the quantum state. More details about
the randomized measurement scheme can be found in Supple-
mentary Note 2.
The one-dimensional XY Hamiltonian of Eq. (1) is a representa-

tive model for studying many-body localization (MBL). The
disorder Hamiltonian terms in this model have an impact on the
entropy growth of different subsystems. In addition, the
Hamiltonian with different field couplings Jij has distinct evolution
characteristics. We consider two different field couplings:
J= 370 s−1, α= 1.01 and J= 420 s−1, α= 1.24 with and without
disorder effect, thus giving rise to four categories of QSMs. In
addition, for different total evolution times, the quantum system
undergoes a different evolution with a distinguishable variation
pattern of entanglement entropy. MLCP learns from the quantum
simulation data with different evolution times by given supervised
signals such as the true categories of the data or the theoretical
entanglement and maximum fidelity. Besides, the noisy time
evolution of quantum simulators can be regarded as a quantum
channel. Therefore, identifying different types of quantum
simulators can be viewed as quantum channel discrimination
which is also a basic problem in quantum information.
To study the performance of MLCP in properties estimation in

large system sizes, we conduct additional quantum simulations
based on the one-dimensional Heisenberg model to generate
randomized measurement data with different time evolutions. We
note Hamiltonian (2) only has short-range interactions so that the
matrix product state can effectively simulate the evolutions even if
the system size is large. The non-Hermitian evolution is relatively
hard to simulate in a matrix product state such that we only
consider the unitary evolutions.
Through large amounts of numerical simulation for the XY

model and Heisenberg model, we collect the randomized
measurement samples to construct the training dataset. It turns
out that generating the quantum simulation data is highly
expensive, particularly in those long-range systems where tensor
network states are hard to simulate as the bond dimension
increases dramatically. The generated quantum simulation dataset
can be used to assist the real quantum simulation experiments.
Compared to estimating the fidelity or entropy of the states
directly, the information gained from distinguishing the states
from different physical conditions is not much stronger. However,
the following quantum properties estimation can fulfill this
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deficiency. The details of the physical system, the randomized
measurement, and the training dataset generation can be found
in Supplementary Notes 1 and 2.

Identification phase
The first function of the protocol is to identify different types of
QSMs based on different Hamiltonians e.g., distinguishing the final
state belonging to different field couplings and whether the
system is clean or disordered, as described procedures in Fig. 1c.
The identification process can be implemented by using an LSTM-
Transformer-LSTM (LTL) encoder with a sandwich architecture (see
“Methods”). First, we conduct quantum simulations for the noisy
XY model to collect the randomized measurement records. Digital
quantum simulation such as the variational quantum circuit is also
feasible. Secondly, we construct a batch-style computational
tensor by concatenating the measurement bit strings where the
row dimension denotes the number of qubits N and the column
denotes the measurement dimension with NM and the batch
dimension denotes shuffled measurement settings. The encoder
learns the high-dimensional representation of the measurement
records ensemble (as Fig. 1b shows) via supervised learning in
which the labels are determined by the varied evolution times and
the type of the QSMs. The details of the label settings can be
found in Supplementary Note 1. The qubit site matters in our

protocol as the physical properties are closely related to the
partition of the many-body system. Remarkably, the number of
recurrent neurons scales linearly with N since each local site is
regarded as a time slot in time-series modeling implying that
MLCP has flexible scalability over system sizes. Note that the
number of measurements required to accomplish the identifica-
tion process in the classical computer still scale exponentially with
N where the demonstration can be found in Supplementary Note
3. This inherent sample inefficiency is due to the quantum and
classical separation gap33 demonstrating only using classical
processing is hard to complete specific quantum tasks such as
identifying topological phases and estimating non-linear proper-
ties. Even though, MLCP is more concentrated on the practical
applicability in the quantum certification when given a large
number of training samples (which may be exponentially
sufficient) combining pre-training techniques. In this function,
we aim to apply the MLCP model to study the distinguishability of
different types of QSMs. In addition, we also study the impact of
different measurements NU, NM on the ultimate performance of
the machine-learning model to analyze the capability of the
classical learning model. As a result, we can leverage the LTL
encoder to map the measurement records into the high-
dimensional embedding and then identify the different physical
conditions. The identification phase can pre-train the LTL model

z

z

z

z

U1

U2

U3

UN

Randomized 
measurements

U1 UN

Digital quantum simula�on

1b. Analog quantum simula�on

M
ea

su
re

m
en

t B
it 

St
rin

g 
Fl

ow
 

Batch

# Measurements

# 
Q

ub
its

Measurement records ensembling

(0) (1)

Spin system (example)

En
ta

ng
le

d 
La

ye
r

En
ta

ng
le

d 
La

ye
r

Rx Ry

Ry

Ry

Ry

Rx

Rx

Rx

• Classical shadow (randomized Pauli measurement)
• CUE (randomized Haar measurement)
• Other measurement scheme (e.g. derandomized
     measurements)

Flow chart of MLCP 
Quantum simula�on data 
genera�on (training dataset)

Machine learning model 
design and training

Quantum simulator 
iden�fica�on

Quantum proper�es 
es�ma�on

• Matrix product state,
• Density matrix simulator,
• Different Hamiltonian,
• Different evolu�on �mes,
• Order/disorder, 
...

• Hybrid LSTM-transformer model,
• Randomized measurements from 
   quantum states as input,
• Order/disorder as the catogories,
• Different Hamiltonian parameters 
    as catogoryies,
...  

• Pre-training based on
simulator iden�fica�on,
• Order/disorder iden�fy,
• Field coupling iden�fy,
• Topological phases 
   iden�fy, 
...

• Fine tune pre-trained 
    model,
• Entanglement 
    entropy,
• Maximum fidelity ,
...

a b

c

Fig. 1 Ab initio end-to-end machine-learning certification protocol (MLCP) for quantum simulation machines (QSMs). a The digital
quantum evolution represented by variational quantum circuit, or the analog quantum evolution such as quantum Ising spin model or
Bose–Hubbard model is prepared. Both two evolutions adopt randomized unitaries to collect the measurement records. b Reshaping the
measurement records and concatenating them into one batch computational tensor. Each row denotes records of the total number of
measurements repeated for one qubit. Each column represents the full-size qubit records with single-shot measurement. c The flowchart of
MLCP works. Our protocol consists of four procedures: quantum simulation data generation, machine-learning design and training, quantum
simulator identification, and properties estimation. For the large-scale quantum simulation in classical computers, matrix product states are
highly suitable for simulating states with entanglement entropy growth limited to logD with D denoting the maximum bond dimension.
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according to specified criteria such as order/disorder. The learned
model contains the prior information about the quantum system,
which is likely to be beneficial for the downstream estimation
phase. In addition, the protocol can uncover the unknown
physical evolution conditions of the final quantum state to
provide quantum certification.

Property estimation phase
The protocol can also be used to estimate the quantum properties
of the quantum state under various QSMs such as the purity p and
the second-order Rényi entropy S(2). We regard the estimation
process as the quantum downstream task, a concept motivated by
the classical machine-learning research field34–36. The downstream
estimation task can be referred to as transfer learning which uses
the prior knowledge of the pre-trained model to improve the
performance of the specific task. Physical properties such as
entropy and mutual information can be utilized to provide an
insightful diagnostic tool for QSMs. We make use of single-state
estimation to predict entanglement entropy. The cross-correlation
of quantum states from different platforms (also called maximum
fidelity) is also defined to evaluate the reliability of QSMs. The
maximum fidelity of two quantum states can be estimated by two-
state estimation with the assistance of the LTL model. In the case
of single-state estimation, we are required to estimate the purity
p ¼ Tr½ρ2� which only involves a single final quantum state ρ. Thus,
we only collect the measurement records under each random
unitary U and map the data into the feature embedding through
the LTL encoder, and finally feed the feature embedding into the
multi-hidden ANN to estimate the purity sampled from a learned
Gaussian distribution Nðμ; σÞ (see “Methods”, Fig. 7b). The
second-order Rényi entropy can further be calculated analytically
by using the formula

Sð2ÞðρÞ ¼ �log2Tr½ρ2�: (3)

The theoretical value such as the entanglement entropy can be
calculated during the numerical simulation by directly calculating
the trace of the density matrix square. The loss function is selected
as the root mean square error (RMSE) between the true entropy
and the predicted entropy. Entropy estimation is generally a
complex problem and there are numerous unsupervised machine-
learning methods37. In our model, we leverage supervised
learning to investigate the feasibility of entropy estimation via
randomized measurements.
In two-state estimation, we aim to solve the cross-correlation

property of two quantum states ρ1, ρ2 given by

Fmax ¼ Tr½ρ1ρ2�
maxfTr½ρ21�; Tr½ρ22�g

: (4)

The common physical quantities are the fidelity and the overlap
normalized over the maximum purity between two quantum
states. The two-state estimation can be treated as the cross-
platform verification where two quantum states share the same
randomized unitary U and measurement shots NM in case we have
no access to the theoretical quantum states. The learning process
requires the true label (theoretical properties of the quantum
states) of the measurement records. The theoretical overlap
between two QSMs should be 1 but in reality, finite measurements
cannot guarantee the calculated overlap of two states simulated
by two QSMs to be 1 when the quantum noise of different
platforms exists. Therefore, we make use of the conventional
cross-validation estimator to numerically calculate the estimated
overlap as the label of our supervised learning model. A detailed
description can be found in Supplementary Note 1B. In addition,
we equally split our measurement records into two parts and
separately feed the records into the same model to obtain two
embeddings. Then we obtain the difference between these two

embeddings. This operation is quite similar to the siamese
network architecture38,39. Eventually, we feed the difference into
the multi-hidden ANN to obtain the ultimate physical properties
estimation sampled from a Gaussian distribution with mean μ and
variance σ. The probability sampling from the distribution can
enhance the robustness of the model against noisy data samples.
We note that the MLCP does not require the quantum state
tomography technique to reconstruct the full density matrix to
calculate the overlap. In our protocol, we directly input the
measurement records into the machine-learning model and
obtain the final physical properties estimation. The whole process
constitutes a unified end-to-end framework to provide quantum
certification for QSMs. A detailed analysis of machine-learning
architecture and its realizations can be found in Methods and
Supplementary Notes 2 and 3A.

Identification results of QSMs
We simulate two sets of physical parameters for Hamiltonian
quench dynamics. Specifically, case (1) specifies: the maximum
coupling J0= 420 s−1, α= 1.24 with and without disorder term HD;
case (2) specifies: the maximum coupling J0= 370 s−1, α= 1.01
with and without disorder term. The number of qubits N= 10 in
both two simulations. We can regard these two cases of physical
parameters as a category set C ¼ fCi; i ¼ 1; 2; 3; 4g where each
category Ci denotes one specific physical condition. In category C1
with clean system and case (1) condition, we simulate 11 equal-
spaced evolution times t ∈ [0, 10] ms. In class C2 with disorder and
case (1) condition, we simulate 21 equal-spaced evolution times
t∈ [0, 20] ms. In category C3 with clean and case (2) condition and
C4 with disorder and case (2) condition, we simulate 11 equal-
spaced evolution times t ∈ [0, 10] ms. The detailed dataset
description can be found in Supplementary Notes 1 and 3B.
We do not adopt four categories identification process. Instead,

we merge category C1, C3 into one category Cclean and C2, C4 as
another category Cdisorder. This operation transforms a multi-class
classification problem into a binary classification problem.
Naturally, we can also merge C1, C2 into one category C420 and
C3, C4 into another category C370. The binary classification
emphasizes the difference in the physical model between the
field coupling strength and disorder or clean. We may obtain
some useful and intuitive findings by analyzing the ultimate
classification accuracy of these two binary classifications. We use a
binary cross entropy loss function to train the model. The
simulation results of the identification Cclean, Cdisorder and
C420, C370 are presented in Fig. 2. Figure 2a, b demonstrates the
performance of the identification on Cclean, Cdisorder. Figure 2d, e
shows the performance of the identification on C420, C370. Figure
2c, f shows the performance of two identification problems when
NU and NM given a set of decreased values. The hyperparameters
such as the batch size, the learning rate adjustment, and the
network parameters can be found in Supplementary Note 5. The
Micro-F1 and weighted-F1 scores are calculated to evaluate the
accuracy40 in the imbalanced dataset as class C2 owns more data
samples than other classes in our simulation dataset. The LTL
model is trained without the information of randomized unitary U
sampled from CUE and achieves a high identification accuracy
implying that U is not the necessary component in our model.
Note that, adding the information of U is possible to further
enhance the accuracy by designing an appropriate model but it is
beyond the scope of our work. Due to the probabilistic feature of
the measured bit strings, the LTL model requires burning a few
epochs to find a good network initialization in both identifications
as Fig. 2a, d shows. The accuracy increases smoothly after the
burning period implying the network finds a good direction of
parameter optimization. We note that the burning epochs are
varied with the batch size and the learning rate when fixing the
network parameters. Generally, a large batch size will consume
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more epochs to find a good starting point for parameter
optimization. We remark that the fact that the validation loss is
smaller than the training loss is caused by two possibilities: (1) a
relatively large dropout rate (0.5 in our model). In the training
phase, the dropout will freeze the neurons but in the validation
phase, all neurons are activated. This technique is used to avoid
overfitting. (2) sample noise. Since the evolution is simulated with
quantum noise, the measurement data is also noisy. The validation
set contains less noise than the training set, thus leading to a
smaller loss value. In Fig. 2b, e, the box plot shows the distribution
of the validation accuracy of each epoch during the whole training
process. Particularly in Fig. 2b, only a small portion of the accuracy
is less than 2/3 (outliers denoted as circles) which demonstrates
that our model can show satisfiable performance even with small
training epochs. On the contrary, Fig. 2e, d shows a more balanced
distribution of validation accuracy. The ultimate precision can
reach 85% when identifying disorder or clean of QSMs in our
large-scale dataset.
When identifying the physical system with different couplings,

i.e., binary classification on C420, C370, we also adopt the same
MLCP architecture and dataset to train the LTL learning model.
From Fig. 2d, e, it turns out that the model is harder to be trained
and the ultimate identification accuracy that the model can reach
is lower compared to the case of identifying disorder or clean. As a
consequence, the final performance of the LTL model reveals that
the quench dynamics under disorder or clean is easier to be
distinguished than the dynamics under different couplings. The
finding is well consistent with the experimental result of ref. 29,
where the z-magnetization of qubits hσz

i i is calculated to show a
more distinct feature between disorder and clean systems. On the
contrary, the magnetization of different couplings shares a similar
variation pattern which is relatively hard to be distinguished. From
this perspective, the LTL model does not rely on any specific

observable to make the classification. It absorbs the observable
selection process into a neural network in a black-box fashion.
Thus, the LTL model can automatically identify patterns hidden in
seemingly random measurement bit strings thereby providing the
certification for QSMs although the information gain is not
highly large.
In Fig. 2c, f, we present the performance of the LTL model when

varying the measurements NU and NM to investigate the impact of
the dataset size on the ultimate accuracy. The LTL model is a
classical machine-learning algorithm and the measured data is not
mapped into quantum memory. Therefore, the required number
of samples should scale exponentially as the number of
qubits41,42. In Fig. 2c, the validation accuracy varied with NM,
and basically, large NM generates higher accuracy as we expect.
For the disorder or clean identification, we can divide the set of NM

into three phases: NM ∈ {1− 10}, {10− 75}, {75− 300}. In the first
phase, the increase of NM can lead to the largest accuracy
enhancement compared to the other two phases. In the second
phase, the accuracy enhancement rate decrease compared with
the first phase when continuously increasing NM. In the last phase,
the accuracy enhancement rate is continued to slow down when
we increase NM. On the contrary, in the field coupling identifica-
tion task, the accuracy obeys a linear increase when we increase
NM in a nearly linear schedule although the enhancement rate is
lower than the first identification task. The simulation results
demonstrate that repeated measurement is necessary when given
a local random unitary to enhance the identification accuracy of
QSMs. In Fig. 2f, we present the validation accuracy varied with NU.
In disorder or clean identification, the accuracy is linearly
increased as we exponentially increase NU. The results imply the
classical machine-learning algorithm is not sample-efficient in
handling quantum simulation (computation) measurement data if
we do not resort to quantum memory. In contrast, in the field

a b

d e

c

NM

f

NU

Burnning Period

Fig. 2 Machine-learning performance characterized by the loss and accuracy during the training and validation process as well as the
Mirco-F1 and weighted-F1 scores for identifying Cdisorder, Cclean and C420, C370. a The losses continuously decrease as the training epoch
increases both in the training and validation dataset. On the contrary, the training and validation accuracy increase correspondingly. The
measured bit strings are simulated with NU= 1024, NM= 300. b The Micro-F1 and weighted-F1 scores are demonstrated in a box plot with the
maximum accuracy approaching 90%. The box plot is a graphical way to depict data through their quartiles. The small circles in (b) and (e)
denote the actual validation accuracy during training processing. c The performance of two identification tasks is varied with NM when given
NU= 1024. d The losses decrease smoothly after the burning period and the ultimate validation accuracy reaches 68% when given
NU= 1024, NM= 300. e The box plot of Micro-F1 and weighted-F1 score of each epoch during 200 epochs. The maximum weighted-F1 and
accuracy can reach approximately 75%. f The performance of two identification tasks varies with different NU when given NM= 300. The error
bar in (e, f) denotes the standard variance over repeated simulations.

T. Xiao et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022)   138 



coupling identification task, the exponential increase of sample
still leads to a linear increase in validation accuracy although the
linear increase is highly small and is nearly 1%. In Supplementary
Note 4, we provide a detailed description of the performance
analysis when varying the measurements NU, NM and we also
present a detailed analysis of model selection and hyperpara-
meters adjustment.

Properties estimation results
To simplify the model training hardness and convince the
estimation results, we separately train the samples in categories
C1, C2 to estimate the Rényi entropy of the probability distribution
hidden in measurement bit strings and the maximum fidelity.
During training, for different forward partition NA, the correspond-
ing measurement bit string sA is fed into the neural network to
make the prediction. We note that the unitary information is not
necessary when estimating the entanglement entropy and
maximum fidelity. Both properties can be estimated by extracting
the auto-correlation and cross-correlation of the measured bit
strings. The exponentially scaled measurement samples can
guarantee the information completeness of randomized measure-
ments43. On the contrary, when reconstructing the quantum
states, the local unitary matrix is necessary when using classical
shadow. More details can be found in Supplementary Note 2.
As for entanglement entropy estimation, it turns out that the

entropy is maximum when the spin chain is equally partitioned
(see Supplementary Note 4B). When we consider different
evolution times, the value of the entropy distributes in [0, 4]
through observing the theoretical value of our data samples.
However, the distribution of the measurement data and the target
value are discrete since our evolution is discretized leading to a
high-resolution distribution of final quantum states. Therefore, our
dataset may not be fully sufficient to train the model well to
estimate the entropy precisely especially when the value of the
entropy is distributed in a wide range. This effect becomes more
prominent when the subsystem is closer to equally partitioned. On
the contrary, the ground-truth maximum fidelity distributes in a
smaller range regardless of the subsystem partition, which means
the measurement data can be viewed as a continuous distribution
over the target space. The visualization and the detailed analysis
can be found in Supplementary Note 4B.
The numerical results of estimating the entropy for two systems

are presented as Fig. 3 shows. When estimating the entropy, large
NA has a smaller validation error both for clean and disorder
systems, which meets our expectations. It turns out that large NA

has a more compact entropy distribution for different evolution
times. Conversely, half-partition with NA= 5 has the largest error
up to 0.98 as can be seen in Fig. 3a. The error is almost linearly
decreased as NA increases. The tendency is consistent with the
theoretical observation where the entropy is decreased when
NA > 5 and continuously increases. From Fig. 3b, it turns out that
the error has no linear relation with NA in the disorder system. The
theoretical calculation of the entropy in the disorder system also
has no clear relation with NA among different evolution times. The
extra disorder term in XY Hamiltonian may lead to the irregular
increase of the entropy. We note that since the number of
evolution times is highly limited, the measurement records
obtained from different quantum states are not enough to make
a precise estimation, especially when the system is half-
partitioned. Entropy estimation is a highly important problem in
quantum many-body physics. Our work presents the first try
based on supervised learning to demonstrate the feasibility of
only using randomized measurement records. However, the
performance of the model can be further improved by increasing
the samples measured from different quantum states. We mention
that supervised entropy estimation may be physical system-
specific i.e., the different systems may have to train different

models. But recently, the transfer learning approach44 has been
demonstrated to alleviate this shortcoming.
As for estimating the maximum fidelity of two quantum states,

the error is smaller than estimating the entropy both for clean and
disorder systems as Fig. 4a, b shows. The true value of the
maximum fidelity is distributed in a relatively compact range
according to its definition which naturally leads to small losses. In
addition, a larger forward partition has a larger loss in both clean
and disorder systems. Moreover, in a disordered system, the loss
increase is not as regular as in a clean system. Since the maximum
fidelity estimation adopts the Siamese network structure, some
inherent noises can be canceled out which may beneficial for
precise estimation. The maximum fidelity estimation aims to
present a cross-correlation property of two quantum states rather
than characterizing the inherent attribute of the quantum state.
Therefore, the maximum fidelity estimation may be empirically
easier to be accurately estimated compared to estimating the
entanglement entropy based on the MLCP model in a supervised
learning fashion. The validation loss in certain cases is smaller than
the training loss is highly likely due to the relatively large dropout
and sample noise as we speculate in the identification phase.
The RMSE losses evaluate the prediction precision of the model

when estimating physical properties. We further conduct simula-
tions on clean systems to generate measurement records for
testing with NU= 512, NM= 300. The time evolutions are chosen
as t= {0, 3, 5} ms. When estimating Fmax, the measurements are

a

b

Fig. 3 The RMSE of the MLCP model in estimating the second-
order Rényi entropy of varied subsystem sizes. a The model is
trained with the sub-dataset of category C1 given NU= 512,
NM= 300. b The model is trained and validated with the sub-
dataset of category C2 given the same measurement settings. The
error bar denotes the standard variance of repeated runs with
different randomization.
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divided into two equal parts to mimic two independent
measurements from two QSMs. The estimated entropy holds a
similar overall tendency compared with its theoretical value
although the error is not negligible when NA= 5, 6, 7 as Fig. 5a
shows. Note that t= 0ms, the gap between estimation and true
value is relatively smaller than other times. The theoretical entropy
of t= 0 and NA= 10 should be zero, however, the effect of the
imperfections leads to nonzero entropy. The variation tendency of
entanglement entropy is still useful in scenarios of qualitative
assessment. Estimated Fmax also shows an overall consistent
tendency compared with the conventional method as Fig. 5b
shows. The merit of the MLCP model for predicting physical
properties is more efficient at the inference phase compared to
conventional methods. The estimation accuracy is limited by the
training samples. Besides, the model is system-specific and the
transferability can enhance its applicability.
To investigate the performance of MLCP in large system sizes,

we simulate the time evolution t= 0.5, 1, 3 for N= 20, 30. The time
slot is Δt= 0.01 and for each time slot, we measure the matrix
product state and obtain the randomized samples. The system
size of N= 30 is chosen with uniformly sampled couplings and
N= 20 is chosen with constant couplings. The randomized
measurements are chosen to be NU= 200, NM= 500 for each
quantum state. We train the model for N= 20, 30 separately. We
only concentrate on estimating the second-order Réyni entropy in
the short-range Hamiltonian to explore the performance of MLCP.
To study the impact of measurement samples on the estimation
performance, we present three measurement settings with

NM= 5, 50, 500 to study the impact of the number of samples
on the final estimation accuracy as Fig. 6 shows. It can be found in
Fig. 6a–c that when increasing the evolution time from 0.5→ 3,
the estimation accuracy is decreased as the quantum state in
longer time evolution has larger entanglement entropy. Although
the total number of training samples is increased accordingly, the
validation error has a gap compared with smaller evolution times.
We require further increasing the training samples when
estimating the entanglement entropy in longer evolution times
to enhance the estimating accuracy. We also found that
NUNM= 3 × 105 measurement samples also achieve satisfactory
mean absolute error (MAE) as Fig. 6c shows. We note that our
training samples are still exponentially scaled as O(2N) which also
implies approximate informationally-complete randomized mea-
surements. When we increase NM regardless of evolution times
and system sizes, all the estimation errors of MLCP prediction
show decreased tendency demonstrating that more randomized
measurement samples can enhance the estimation accuracy. This
observation is consistent with the results in ref. 32. The standard
method can achieve highly accurate estimations with the number
of samples super-exponentially scaled. However, in large-scale
systems, collecting sufficiently large samples is resource-intensive.
On the other hand, the collected number of samples also can be
used to reconstruct the quantum state such that the estimation
accuracy is notably high. Therefore, in case one dose does not
require high precision estimation, MLCP can provide coarse-
grained estimation without using a strictly exponential number of
measurement samples such as state tomography.

a

b

Fig. 4 The numerical performance of the MLCP model in
estimating the maximum fidelity of varied subsystem sizes.
a The model is trained based on the samples in C1. b The model
is trained based on the samples in C2. In (a, b), the measurement
setting are set to be NU= 512, NM= 150. The error bar denotes the
standard variance of repeated runs with different randomization.

a

b

Fig. 5 The estimation performance of the MLCP model when
evaluating independent measurements with t= 0, 3, 5 ms. a The
entropy estimation compared with its theoretical value. b The
maximum fidelity compared with conventional method19. The error
bar denotes the standard variance over repeated simulations.
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As for considering uniformly sampled couplings in the
Heisenberg model, the entanglement entropy growth rate is not
large as the case in constant couplings. The quantum states have a
relatively smaller entanglement entropy compared to the state in
constant coupling when we observe at the same evolution time.
The training samples in N= 30 are still set to be as NUNM= 105

~ 107. The training and validation error still show satisfactory
precision as Fig. 6d–f shows. We conceive that although the
number of qubits increases, the quantum state has a smaller
entanglement entropy such that MLCP is easier to learn the
hidden relations in bit strings. Moreover, the consecutive quantum
states in neighboring time evolutions have more similar structures.
MLCP can make use of this information in the time dimension.
These two possibilities lead to the fact that MLCP does not require
strictly exponentially scaled number measurement samples to
estimate entanglement entropy. We note that in ref. 45, GHZ state
is measured to study the law of training samples v.s. the number
of qubits. The GHZ state is maximally entangled such that its
scaling law can be an upper bound of other entangled states with
smaller entanglement entropy. Besides, standard methods do not
consider estimating the entanglement entropy with measurement
samples by using the time-evolved data cooperatively. MLCP can
collect all the evolved training samples to estimate the property
which is likely to extract the information of quantum states in the
time dimension. Therefore, our method is of more practical
interest that aims to identify the quantum phases of matter and

estimate the properties in a unified framework based on the end-
to-end MLCP model.

DISCUSSION
In summary, we propose an end-to-end supervised learning
protocol called MLCP by integrating the advanced LSTM and
Transformer encoder models. The protocol can be readily
extended to a different number of qubits by increasing the
sequence length of the recurrent model. To train the model, we
construct a large-scale dataset by collecting randomized measure-
ment outcomes from different types of QSMs, including the one-
dimensional long-range XY model and short-range
Heisenberg model.
In the identification phase, we conduct a binary identification to

distinguish whether the QSM is clean or disordered and two QSMs
from different field couplings. The numerical results demonstrate
that identifying the clean or disorder is easier than two different
field couplings. The accuracy of the former reaches up to 85% and
the latter reaches 68%. More significantly, by increasing repeated
measurements for one local randomized unitary setting, the
identification accuracy can be polynomially enhanced. On the
contrary, increasing the number of local random unitary leads to a
linear accuracy enhancement. The results provide a straightforward
witness that classical machine learning is not sample-efficient in

a b c

d e f

Fig. 6 The mean absolute error (MAE) of different evolution times for estimating the second-order Rényi entropy of half-partition
subsystem. a–c are the training and validation MAE with N= 20, J= 1, and evolution times t= {0.5, 1, 3}, respectively. d–f are the training and
validation MAE with N= 30, J ~ U(0, 1], and evolution times t= {0.5, 1, 3}, respectively. The error bar denotes the standard variance of repeated
runs with different randomization.
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handling quantum simulation data which may be viewed as an
indirect implication of quantum advantage.
In properties estimation for small system size (N= 10) in long-

range model, the overall variation tendency of the estimated
entanglement entropy and maximum fidelity is coincident with
the theoretical calculation. The machine-learning estimation for
maximum fidelity achieves competitive performance with the
conventional method. The accuracy of the physical properties
estimation can be further improved by controlling the smaller
evolution time of QSMs to enrich the measurement samples.
When estimating the entanglement entropy in short-range large
system size (N= 20, 30), the estimation accuracy still achieves
satisfactory precision without strictly using an exponential number
of training samples. We deliberate that the short-range system has
a smaller entanglement entropy growth rate, and the quantum
states are easier to be learned. Besides, the additional information
on quantum states in the time dimension can be further leveraged
to reduce the number of training samples. The two methods of
certification generate weak-to-strong information gain, which is
flexible in the practical certification of QSMs.
Learning from measurement bit strings by extracting their

hidden patterns can be used to identify or predict quantum states
or properties. Handcrafted features in ref. 46 may be incorporated
into the MLCP model and further enhance its capability in
quantum certification such as reducing measurement samples. We
also remark that the MLCP model does not rely on specific
measurement schemes such as randomized Haar measurements,
randomized Pauli measurements, and different types of
informationally-complete POVM (IC-POVM). We notice that recent
SIC-POVM measurement is experimentally realized to achieve a
single setting POVM by using a four-level quantum state, which
can dramatically accelerate the data acquisition speed43. The
different scheme has their merits and demerits. (De)randomized
measurement is relatively easier to be implemented in actual
experiments. IC-POVM however is necessary for reconstructing
quantum states but also costs a lot of resources. The described
measurement schemes based on post-processing cannot over-
come the quantum-classical separation gap44. However, machine
learning is highly likely to reduce the practical measurement
samples by using an important sampling technique45. Our method
can incorporate the identification and estimation phases into a
unified framework to identify the quantum phases of matter and
estimate core-grained properties estimation in large-scale system
size. Our model can also be extended to the AI cloud center to
provide accessible services for local QSMs. In future work, we will
continue to investigate the feasibility of our model in two-
dimensional many-body QSMs.

METHODS
Quantum simulation dataset generation
Our work mainly makes use of a supervised learning approach to
train the numerically simulated quantum simulation dataset. We
generate a large-scale dataset and the number of samples is
1,824,768. The total time we cost to simulate the randomized
measurement data is 30 days. There are 5 days consumed in
profiling the raw data. The profiled data can accelerate the
training process of the standard machine-learning library. We then
randomly divide the whole dataset into two independent subsets:
a training set and a validation set. The ratio of the number of
samples in the training set to the validation set is 99:1, which is
commonly used in the large-scale dataset. The quantum simula-
tion of the XY Hamiltonian model is accomplished by numerically
solving the quantum master equation. We simulate the quantum
evolution of 10 qubits. The larger size of qubits is not supported in
naive density matrix representation in the evolution by using the
quantum master equation. Different evolution time t is simulated

to enrich the dataset. To reflect the practical quantum simulation
experiment, we consider the state preparation and measurement
(SPAM) error. Specifically, the initial Néel state is not perfectly
prepared and has errors. In addition, the measurement is still not
perfect. We absorb the local unitary rotation error into the local
depolarization error and then regard the randomized measure-
ment as the perfect one. The state evolution error in our
implementation consists of the spin-flip error and the sponta-
neous emission error. These two errors are the main source of
error in spin quantum simulation. Finally, there are mainly two
types of randomized measurements. In analog quantum simula-
tion, a randomized Haar measurement operator from CUE is
usually used. However, we also provide a short introduction to the
classical shadow method for randomized measurement, which is
commonly used in digital quantum simulation. The detailed
dataset construction can be found in Supplementary Note 3B.
More description about the physical model, the quantum master
equation characterization, the errors modeling and the rando-
mized measurements can be found in Supplementary Note 1A,
Note 2A, and 2B. In addition, the numerical data generation
process is implemented based on the Qutip quantum package47.
The reference python code can be found in ref. 29.

Machine-learning model design and training
After the training and validation dataset are constructed, we build
the LTL model and then train the model by using the constructed
dataset. We divide all the data samples into four main categories.
Then we further regard the data samples as the categories of
disorder or clean and J370 and J420. We view the certification
process as a binary classification problem. The categories can be
increased by adding more different physical Hamiltonian models.
The backbone of the LTL model is displayed in Fig. 7. We use the
LSTM as the trainable embedding layer to map the discrete
measurement records into continuous space as shown in Fig. 7a
shows. Subsequently, the embedded data is processed by the
transformer encoding layer. Finally, the encoder output is further
processed by an LSTM layer. The learned encoder can be regarded
as the pre-trained model which is trained by the measurement
data under various types of Hamiltonians and different evolution
times. The quantum simulation certification can be viewed as an
identification problem or a physical property estimation problem
solved by the regression process based on the pre-trained LTL
model as shown in Fig. 7b. We remark that the pre-training
process can learn much useful prior information and may render
the property estimation process more efficient. The chosen pre-
training criteria are not unique and can be engineered more
universally for downstream property estimations tasks. A detailed
description of the machine-learning model and the realization
methods can be found in Supplementary Note 3. The machine-
learning hyperparameters and model selection can be found in
Supplementary Note 5.

Matrix product states
Matrix product states (MPS) are well summarized in the
literature48,49, so we only introduce the important aspects for
discussion in this work. MPS methods can approximate the
physical state by a linear tensor network with N tensors one at
each site. The MPS approximation is controlled by the maximum
bond dimension D, which limits the maximum entanglement
degree between continuous subsystems. For example, an MPS
with maximum dimension D can only represent a quantum state
with entanglement entropy with S ¼ logðDÞ for the bipartition of
two connected subsystems.
For the unitary time evolution, we use time evolution block-

decimation (TEBD) to simulate the one-dimensional quantum
many-body systems, characterized by at most nearest-neighbor
interactions. A detailed clarification of MPS time evolution can be
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found in Supplementary Note 1. The one-dimensional Heisenberg
model is suitable simulated based on the TEBD method. To
generate the randomized measurement samples, we require
sampling from the MPS wavefunction. Before generating statisti-
cally independent samples of a given MPS wavefunction on a
computational basis, we require applying local site operations to
each site tensor. Then we follow a Monte Carlo process to
generate the bit strings. (1) Choose an arbitrary site i among the N
unprojected sites of the normalized MPS and obtain the diagonal
elements of the single site reduced density matrix pðiÞ0 and pðiÞ1 . (2)
Generate a random number r ∈ [0, 1] and select 0j i if r � pðiÞg
otherwise 1j i. Applying the single-site projector for the selected
state and normalizing the remaining MPS with N− 1 unprojected
sites to the value of pðiÞ0j1 depending on the randomly selected
state. (3) Repeat the process until all sites are projected. We note
the sampling procedure can guarantee each sample is drawn
anew and not from a Markov chain seeded by the previous
sample. Therefore, the samples have no auto-correlation. The
source code in ref. 23 also provides different measurement
schemes such as IC-POVM and randomized measurements for
matrix product states. Our sampling procedure is motivated by the
provided source code in ref. 50. For three typical time evolutions,
we cost 6 days to generate the randomized measurement bit
strings.

DATA AVAILABILITY
The quantum simulation data for the short-range Heisenberg model are available at
https://github.com/XiaoTailong/short-range-Hisenberg-model.

CODE AVAILABILITY
The code to generate the long-range XY model is available at https://github.com/
TiffBrydges/Renyi_Entanglement_Entropy/tree/v0. The code to preprocess the
dataset and analyze the experimental results is available from the corresponding
author on reasonable request.
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