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ABSTRACT

This dissertation presents results of experiment E94-010 performed at Jefferson 
Laboratory (simply known as JLab) in Hall A.

The experiment aimed to measure the low Q2 evolution of the Gerasimov-Drell- 
Hearn (GDH) integral from Q2 =  0.1 to 0.9 GeV2. The GDH sum rule at the 
real photon point provides an important test of Quantum Chromodynamics (QCD). 
The low Q2 evolution of the GDH integral contests various resonance models, Chiral 
Perturbation Theory (xPT) and lattice QCD calculations, but more importantly, it 
helps us understand the transition between partonic and hadronic degrees of freedom. 
At high Q2, beyond 1 GeV2, the difference of the GDH integrals for the proton and 
the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In 
addition, results of the measurements for the spin structure functions gi and g<i, cross 
sections, and asymmetries are presented.

E94-010 was the first experiment of its kind at JLab. It used a high-pressure, 
polarized 3He target with a gas pressure of 10 atm and average target polarization 
of 35%. For the first time, the polarized electron source delivered an average beam 
polarization of 70% with a beam current of 15 gk. The limit on the beam current 
was only imposed by the target. The experiment required six different beam energies 
from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV. 
Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned 
at 15.5° each.
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Chapter 1 

PHYSICS MOTIVATION

1.1 In troduction

Jefferson Laboratory experiment E94-010 [1], also known as the GDH experiment, 

with co-spokepersons Z.-E. Meziani, G. Cates, and J.-P. Chen (for a complete list 
of collaborators and institutions represented, see the addendum) was an experiment 
with many firsts: It was the commissioning experiment for the newly formed polarized 

3He collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson 

Laboratory), in Newport News, Virginia. It was the first experiment to run at this 

laboratory requiring both polarized beam and a polarized target from September 25 
to December 24, 1998. The purpose of this experiment was to explore the connection 
between two powerful sum rules of hadronic physics, a Gerasimov-Drell-Hearn (GDH) 

sum rule I (0) applicable to the real photon limit corresponding to a vanishing four- 
momentum transfer squared (Q2 =  0) and a virtual photon Bjorken sum rule valid 
at high Q2. It was the successor of the high energy work at SLAC, involving many 
of the same people, which studied both neutron and proton scattering at high Q2 
to test the fundamental Bjorken sum rule. The present experiment proposed to test 

the Q2 evolution of a generalized GDH sum rule I(Q'2) to see if the gap between 
the low energy and high energy theorems could be bridged. In 3He, the two protons 
couple to zero spin as a first approximation. Therefore, polarized 3He is a good 
approximation to a free neutron target; see Fig. 1.1. As compared to the other choice 
of using polarized deuterium as a source for polarized neutrons, 3He targets are easier 
to make and require a weak holding field compared to current deuterated ammonia

2
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n

4

Figure 1.1: The 3 He nucleus is composed of two protons with opposite spins most of 

the time and one neutron whose spin dictates the overall spin of the nucleus. Thus, to 
a fair approximation, a polarized 3He nucleus behaves much like a polarized neutron.

targets, which must be brute force polarized by using superconducting magfnets at 

high fields which can have the effect of distorting incident and outgoing electron 

momenta. Furthermore, the targets can be made in relatively pure form, avoiding 

the severe dilution effects of ND3 ammonia cells. However, the nuclear corrections 
are more pronounced in 3 He and require sophisticated corrections to the data.

Three essential pieces of apparatus were needed to carry out this effort: first the 
high intensity polarized electron source of the Continuous Electron Beam Accelerator 
Facility (CEBAF) at Jefferson Laboratory was used to provide electrons of the desired 
energies (1-5 GeV) with the needed high currents. Secondly, a polarized target of 
sufficient density and polarization had to be developed by this collaboration. Finally, 

the Hall A High Resolution Spectrometers were employed to detect the data. In order 
to acquire data over an extended region of Q2 and energy transfer u =  E  — E',  the 
run plan called for measurements of data at multiple beam energies and spectrometer 
settings, as shown in the kinematics diagram of Fig. 1.2. Data were acquired at six
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incident beam energies of 0.86, 1.7, 2.6, 3.4, 4.2, and 5.1 GeV, and interpolations were 

made to extract results at six constant Q2 values ranging from 0.1 to 0.9 GeV2. The 
average target polarization was 35%, while the average beam polarization was 70%.

Kinematic coverage of JLab E94-010 Experiment

1.00

E: = 4.255 GeV

E,= 3.384 Ge

E:= 5.070 GeV

nE, = 2.591 GeV

>OJ
S

' a

E, =1.720 GeV

0.10  -

E; = 0.862162 G e v ^ \
0.01

0.50 1.00 1.50
W (GeV)

2.00 2.50

Figure 1.2: Kinematic coverage of Jefferson Laboratory experiment E94-010. Plotted 

in the figure are the Q2, W  range of our experiment with each bin indicating different 

setting of E, E ' . The different colored bands represent the six different beam energies. 
The nominal scattering angle was fixed throughout the experiment at 15.5°. Each 
block represents one E, E'  spectrometer setting.

Because any discussion of sum rules is deeply theoretical in nature and requires 
a basic understanding of quantum electrodynamics, the remainder of this chapter 
will be spent on the development of the mathematical formalism and a review of 
the essential physical concepts. The second chapter will then present a detailed 
description of the physical apparatus. The third chapter will present the analysis of
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the data, which forms the core subject m atter of this Ph.D. dissertation, while the 

final chapter presents a discussion of the experimental results and their significance.

The success of this experiment has opened the door to a large, active experimental 
program of polarized 3He studies at Jefferson Laboratory. The present and future 
directions of this program will be briefly reviewed as part of the concluding remarks.

1.2 K inem atics

u(k, s

u(X)

Figure 1.3: Kinematics for inelastic electron-nucleon scattering in the one-photon 
exchange approximation. Here the four-momentum transfer is carried by the virtual 

photon and is absorbed on a nucleon of mass M  leading to an excited system of 
invariant mass W  which is in the continuum.

Fig. 1.3 shows a typical Feynman diagram for inclusive inelastic electron-nucleon 
scattering. The incident electron has four-momentum k = (E,  k) and spin four-vector 
s. The scattered electron has four-momentum k' = (E1, k') and spin four-vector s'.
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CHAPTER 1. PHYSICS M OTIVATION 6

The scattering angle 9 is with respect to the incident momentum direction. The 
exchanged virtual photon has four-momentum q = ( za q). The energy transfer or 

energy loss is v. The preferred Lorentz frame is the lab frame where the target 
nucleon is at rest before the collision and has four-momentum p = (M, 0 ) and spin 

four-vector S  satisfying S 2 =  — 1 and S  • p = 0. M  is the target nucleon rest mass. 
The recoiling hadronic system X  has four-momentum W  known as the invariant mass. 

Energy-momentum conservation at the leptonic vertex requires q =  k — k', that is,

q2 =  (k — k')2 = k2 +  k12 — 2k ■ k! = m 2 + m 2 — 2EE'  + 2 |k ||k / | cos#, (1.1)

where m  =  0.511 MeV is the mass of the electron. The lowest beam energy for E94- 
010 was 862 MeV which is much larger than the rest mass of the electron. Therefore 

the mass terms can be safely dropped from Eq. (1.1). Einstein’s energy-momentum 
relation E 2 =  |k |2 +  m 2 may also forgo the mass term at high energies and becomes 

E  =  |k|. The net result is a simpler expression for Eq. (1.1):

q2 =  - 2 EE'  +  2E E '  cos 9 = - 2 EE ' (1  -  cos 9) = - 4 EE'  sin2 (1.2)
£

It is customary to introduce a new Lorentz invariant Q2 to do away with the minus 
sign in Eq. (1.2):

Q2 = - q 2 =  4 £ £ / sin2 ^. (1.3)
£

Energy-momentum conservation at the hadronic vertex gives:

W 2 = (p + q)2 = p2 + q2 + 2p ■ q = M 2 — Q2 +  2Mu.  (1.4)

1.3 C ross Section

The differential cross section for the scattering process A +  B  —> 1 +  2 +  • — |-n is [2]

da = y \ M { A  + B  -»• {pi})\2dHn (1.5)

where F  = |v^ — v s |2E a • 2EB — 4 {{pa ■ Pb ) ~  is the incident flux for a
general collinear collision between A and B,

n  n  ,3

dHn = (2n)454(pA + p B -  J 2 Pi) (1.6)
i = i  i = i
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is the relativistically invariant n-body phase space or Lorentz invariant phase space, 

and M ( pa +  Pb —> {Pi}) is the invariant amplitude. The amplitude A4 isolates the 
dynamics of the particular scattering process under study from the kinematics in the 
cross section, and vb  are the velocities of the initial states in the laboratory frame.

1.4 L eptonic and H adronic Tensors

The Feynman rules of quantum electrodynamics (QED) for Dirac particles summa­

rized in [2] give, for the differential cross section of the inelastic electron-nucleon 

scattering process of Fig. 1.3

da =  (2E)(2M)  ?  ^  s' ) (~ieY ) u ( k : s) u { X) { - i e Tv)u{p, S)
'  '  '  ' s p in s  X  \  '

where the sum Y x  E lu d e s  all possible many-particle states X .  u and u are Dirac
spinors and the structure of the hadron vertex is encapsulated in Tv. The phase space

factor for the scattered electron is

d?k’ E ,2dE'dQ E'dE'dO  
( 2 t t ) 3 2 E ' ~  ( 2 t t ) 3 2 E ' ~  2 ( 2 t r ) 3 '  ̂ '

Futhermore, the invariant amplitude can be separated into the leptonic tensor L^v 
and the hadronic tensor W ^  [3] where

Lnv =  ^  \u(k ' , s ' )Yu(k, s) \2 , (1.9)
s ,s '

^  = S T M E E d W r M P . s )!2 f f l  ^
sp in s  N

( 2 ^ 2 ^

(2 w)*54{p +  ? - ^ p j ) .  (1.10)
N

/ _   ̂ A ~/l - '
X V

1 = 1

Finally, the differential cross section can be written as

d2a a 2 E'
i M E '  =  V E 1™ ' "  d .H )

where the definition of the fine-structure constant a = e2/ 47r was used.
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1.4.1 L epton ic  T ensor L ^

The leptonic tensor can be completely calculated in QED since the electron is a Dirac 

point particle. In polarized experiments, the incident electron is ususally polarized 
along the beam direction (Transverse polarizatin states are smaller by a factor of 1 /7  

relative to the longitudinal part). Let J, denote the helicity of a left-handed electron 
and |  denote the helicity of a right-handed electron. The corresponding projection 
operators PL =  (1 — y5)/2 and Pr = (1 +  y5)/2 must be applied to the spinor u(k, s ) 

to obtain the respective helicity states. The leptonic tensor is then summed over all 
final spin states since the detectors are typically insensitive to polarization. Eq. (1.9), 

with the aid of trace technology, is transformed into [2]
.5 \  2

i r  a )  = ^  s' h “ ( A t  i «(*,«
c? c-t ' 2 (L 12)
s,s'

= 2(k»k'v + k'^ku -  g ^ k -  k’ + ie‘u/af3kak'(}), (1.13)

where all mass terms were dropped in the high energy limit. 6/i,y“/3 is the totally 
antisymmetric tensor. The leptonic tensor can be separated into symmetric and 
antisymmetric parts under //, v interchange.

L f ( j )  =  2{k^k,v+ W  -  g ^ k -  fc'), (1.14)

2 .7 (1 )  =  2 (1.15)

Similarly, for a right-handed incident electron,

L f ( | )  =  2{k^k'v +  k ^ k u -  g ^ k  • £/), (1.16)

U%{ |)  =  - 2 i e ^ a0kak'p. (1.17)

1.4.2 H adron ic Tensor

The form of the hadronic tensor is constrained by gauge invariance and symmetry 
principles. It can be formulated as [4]

= W 1(is,Q2) ( - g ^  +
q2

w 2{v, Q 2) (  p - q  \  (  p - q
M2 \ PlJ* q2 %)  V q2 q‘

+ie)lva0qaS l3M G i{u , Q2)

+R»vapqa(p • qS^ — q • Spp) G^ V̂  ^, (1.18)
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where W\ and W 2 are the spin-averaged structure functions. Gy and G2 are the spin- 
dependent structure functions. All structure functions depend only on the variables 

v and Q2. G\ and G2 are the only structure functions multiplying terms with the 
nucleon spin S,  hence the nomenclature. In analogy to the leptonic case, the hadronic 

tensor also lends itself to partition into symmetric and antisymmetric sections,

, W 2(u,Q2) f  p- q  \  (  p - q  \  

W *  = iefj,vapqa MG\(u,  Q2)

+ i e ^ apqa(p- qsl3 ~  q- Spp) ^ j ^ - .  (1.19)

Note that the symmetric part involves the unpolarized structure functions while the 

antisymmetric part involves the polarized structure functions only.

1.4 .3  C on traction  o f  and W,jiv

The cross section is proportional to the contraction of the leptonic and hadronic 

tensors (1.11). The contraction of a symmetric and antisymmetric tensor is zero, 
that is, — 0 , resulting in,

= L f W t  +  L ^ W t -(1 V flW ( 1 .20 )

First, contraction of the symmetric (spin-averaged) tensors is considered.

= 2{kPk'v +  k'^ku -  g ^ k  ■ k')

x 2w t ( - , „ „  +  ^

Wo
M 2 Pm

p - q
Pu p - q

—2"9i/
q2

=  21T1 

2VF2

k - k '  +
2{k-q){k! -q)

+ M 2

(k ■ k') ( p

2 ( k ■ p —
(p-q)(k-q)

k! ■ p {p-q)(k'  - q)

(p ■ q f

(1.21 )

(1.22 )

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 1. PHYSICS M OTIVATION 10

In the high energy limit and in the target nucleon rest frame, k2 =  k /2 =  0, and 
|k| =  E  and |k'| =  E '. Therefore,

AEE' sin2 (1.23)
a

Q 2 =

k - k '  = - Q 2,2

k • q = - - Q 2

k' ■ q = - Q 2,2
k ■ p = M E,

k! • p = M E ',

p - q  = Mu,

p2 = M 2.

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

The contraction becomes

L ^ W S = m xE E ' sin2 +  4W2E E ' cos2 (1.31)^   2

The spin-averaged cross section is then 

d2a 4ck2
-E /2 2W1(u, Q2) sin2 d-  +  W 2(u, Q2) cos2 °-

dt tdE1 Q4

Second, contraction of the antisymmetric (spin-dependent) tensors yields

(1.32)

L% W * = ± i e ^ k ak'0 i t llvpaqpS aM G x +  iepi/p(7qp(p ■ qSa -  q ■ SPa)-j^

= ± 4 p  • q){k' ■ S) -  (k ■ S){k' ■ q)\MGi

± 4 p  • q){k' ■ S)(p ■ q) — (k ■ S)(k/ • q)(p • q)

- { k  ■ q)(k' ■ p)(q ■ S)  +  (k-p)(k '  ■ q)(q ■ S ) } ^ .  (1.33)

where +  (-) stands for a left-handed (right-handed) incident electron. In a typical 
double-polarization experiment, the spin of the incident electron is flipped pseudo-
randomly along the beam line. The spin of the target nucleon is held stationary
in a direction parallel or perpendicular to the beam line. Thus the four polarized 
cross sections of interest are (jP, a ' \  cd-*, and where the first arrow superscript 

denotes electron polarization and the second arrow superscript denotes target nucleon 
polarization. For the case of a longitudinally polarized target and left-handed
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Figure 1.4: Incident (k) and scattered (k') electron momentum with nucleon spin (S) 
longitudinal with respect to beam line in nucleon rest frame.

Figure 1.5: Incident (k) and scattered (k') electron momentum with nucleon spin (S) 

transverse with respect to beam line in nucleon rest frame.

electron, the nucleon spin can be chosen to be S  — (0, 0,0,1) as shown in Fig. 1.4. It 

follows that

k - S  = —E,  (1.34)

k ' - S  = - E '  costf, (1.35)

q ■ S  = — E  + E'cos9.  (1.36)

The contraction of the spin-dependent leptonic and hadronic tensors becomes

L 7 ( l ) K M )  =  2Q2(E + E'  cos 6)MGl -  2QAG2. (1.37)

The right-handed electron counterpart differs only by a minus sign,

L a (T)W^(T) =  ~2Q2(E + E ' cos0) MG1 +  2Q4G2. (1.38)

For the case of a transversely polarized target and left-handed electron, the nucleon 
spin can be chosen to be either S  = (0,1, 0, 0) or S  = (0, 0,1, 0) as shown in Fig. 1.5.
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This time, it follows that

k - S

k ' - S

q - S

0,

—E'  sin0, 

E'  sin 0.

(1.39)

(1.40)

(1.41)

The contraction of the spin-dependent leptonic and hadronic tensors now becomes 

L a =  2Q2E , s m 9 (M G 1 + 2EG2). (1.42)

Again, the right-handed counterpart differs only by a minus sign,

l a ^ ) W uV{~*) = - 2 Q 2E , s m 6 ( M G 1 + 2 E G 2). (1.43)

For the purpose of forming asymmetries, the sum and differences of polarized cross 
sections are of interest.

Act || 

E<7|, 

A<7j_ 

Eer i

d2a An2 E'( I T  -  T T )  =  +  E' cos») MG1 -  Q2G2]d M E '
d2a

dOdE'
d2a

dQdE'
d2a

( I T  +  T T )  =

Q2 E
8a 2

Q4
■E/2 2W\ sin2 j- + W2 cos2 ^

Aa2 E '2
( I—► — T—0  =  ~PE>—~  Axid\MG\ +  2EG2]i

dOdE7(1—>■ +  T —0 —

Q2 E
8a2
Q4

E /2 2W\  sin2 ^  +  W 2 cos2 -  
2 2

(1.44)

(1.45)

(1.46)

(1.47)

Note E(j|| =  Ecrj_ because they do not dependent on beam and target polarizations 

(involve only unpolarized structure functions W\  and W2).

1.5 V irtual P h oton -N u cleon  Total Cross Section

Consider real photon-nucleon scattering as shown in Fig. 1.6. For an incident real 
photon (q2 — 0) with energy K,  transverse polarization e^(q), and helicity A =  ±1, 
the cross section defined in section 1.3 and the Feynman rules of QED [2] yield

AU =  ( 2K) (2M) \ ^ i H X K - i e r ,)u(p, S)\2 J  f [

N

x(2tt )4S4(p + q - ^ 2 p ,i). (1.48)
i = 1
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u(X)

ieTpfap, S )

Figure 1.6: Real photon-nucleon scattering. X  can be any excited final state.

Using the definition of the hadronic tensor in Eq. (1.10), the total cross section is 
written as

-+ X )  = (1.49)

The invariant mass W of the final state is:

W 2 = (p +  q f  = M 2 + 2 M K .  (1.50)

Real photons possess two transverse polarization states. A common convention is to 
use [2]:

e+ =  -L (0 ,1 A ,0 ), (1.51)

e_ =  - L ( 0 , l , - i , 0 ) .  (1.52)

Virtual photons have an additional polarization state chosen as:

eo =  ^ = f ( v W Q 2, 0,0, u). (1.53)

Generalizing the total cross section to virtual photon-nucleon scattering (q2 ^  0) 
raises one difficulty: the flux factor 4M K  is ill-defined or arbitrary. One particular
convention is to preserve Eq. (1.50) in defining the virtual photon flux:

W 2 - M 2 Q2 ,
2M  ~ U~ 2 M '   ̂ ^
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This is known as the Hand convention [5]. Another convention commonly used is the 
Gilman convention [6]:

K =  |q| =  y/u2 +  Q2. (1.55)

The leptonic tensor is well-known and completely computable in QED. The interesting 
hadronic physics happens at the hadronic vertex. By way of the optical theorem, 

the virtual photon-nucleon (photoabsorption) total cross section may be related to 

the imaginary (absorptive) part of the forward virtual Compton amplitude, A4ab-*cd, 
where a, b, c and d represent helicities of the incident virtual photon and nucleon 
and scattered virtual photon and nucleon respectively. The forward virtual Compton 

amplitudes are related to the hadronic tensor by helicity decomposition:

M ab̂ cd = e^(Xc) W ^ ( X a), (1.56)

where e/;(A) is the photon polarization four-vector of helicity A. The virtual photon
of spin 1 has three helicity states: two transverse, + 1  and -1, and one longitudinal, 0 .
The nucleon of spin 1/2 has two helicity states: +1/2  and -1/2. Angular momentum 

conservation restricts the number of possible amplitudes to ten. Additional symme­

try laws futher reduce the number of independent amplitudes to four, the number 
of independent structure functions. There are three helicity-preserving amplitudes 

(A41i ^ 1i , A41_ i ^ 1_i and A40i ^ 0i)  and one helicity-flip amplitude (A40i_>1_ i ) with 
respect to nucleon polarization. The relationships between the photoabsorption cross 
sections and the structure functions result from combining (1.49) and (1.56):

47r2rv Air r̂v
0-1/2 =  —  = —  [W1 + M vG i  -  Q2G2] , (1.57)

4-71”̂  C\ AtT̂  (V
TV2 =  - ^ M 1i ^ 1i = - — [W1 - M v G l + Q2G2\ ,  (1.58)K 2 2 K

47t20! 47T2q: V2

w A 1 + W - w \
(1.59)

°LT =  ^ + „ ^ m = ^ x / ^ [ M G 1 +  ,G 2]. (1.60)

The numerical subscripts, 1/2 and 3/2, on the transverse photoabsorption cross sec­
tions designate the total angular momentum projection along the q axis. The lon­
gitudinal photoabsorption cross section is aL and the photoabsorption cross section 
resulting from transverse and longitudinal interference is aur- The total transverse
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photoabsorption cross section is defined by:

I 4n2a
aT — - ( 0 1 / 2  +  ^ 3 / 2 )  — ~ k ~W\- (1-61)

The transverse-transverse interference photoabsorption cross section is defined by: 

c t t  — ^{^1/2 ~  0 3 / 2 ) =  (MuG\ — Q2G2). (1.62)

1.6 V irtual P h oton -N u cleon  A sym m etries

Having introduced virtual photoabsorption cross sections, these may be used to define 
virtual photoabsorption asymmetries Ai  and A 2:

Ai  =  ^  =  °_rr =  J _ (MyGl _  q ^G2), (1.63)
^ 1/2 +  03 /2  T r  I T i

A 2 =  — ^ —  = —  = ^ - ( M G 1 + uG2). (1.64)
& 1 / 2  +  0 3 / 2  0 T  r b i

1.7 E xperim ental Cross Sections and A sym m etries

The longitudinal, A\\, and transverse, A± asymmetries are defined as:

(T-d — (jb A(J||
II =  a b  +  a b  =  E o^’ (L65)

_  _  A(T_i_
x +  ^L66)

The measured asymmetries and cross sections can be related to the corresponding 
virtual photoabsorption quantities with:

A\\ —  D(Ai  +  77 4̂ .2 ) 7 (1-67)

A± = d(A2 - ( A 1), (1.68)

and

d t i l V  ~  +  (1.69)
d^ <7

( l i l d E ' ^ 1' ~  ? ? )  =  2 T T ) ( 1  +  e R ) ( a TT  +  V ^ l t ) ,  ( 1- 70 )

d 9 d E /<ŷ  ~  T ^ )  =  2T d ( l  +  e R ) ( a LT -  (<jT t ) ,  ( 1 - 71 )
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where

r  =
a K  E' 2 

4tr2 Q2 E l - e
(1.72)

i

e 1 +  2 +  ^ 2)  tan2 2 ’ (1.73)

7 = Vo~2/ c (1.74)

D(l  + eR) = 1 -  E'e/E, (1.75)

d{ 1 +  eR) — -\/2e/ (1 +  e), (1.76)

V = ey/Q~2/ ( E - E ' e ) , (1.77)

c  = 77(l +  e)/2e, (1.78)

R  = 0 l / aT- (1.79)

The polarization of the virtual photon in the laboratory frame is e and the photon 

depolarization factor is D. A typical doubly-polarized experiment would measure 

crb, and from which cttt and &lt can be extracted using the set of
equations above. Note gtt is needed for the GDH sum rule.

1.8 T he Bjorken Sum  R ule

A sum rule is a comparison between an integral over all excitation energies invoking 

closure, which is then compared to a specific experimental result. For example, the 
Bjorken sum rule is a sum of inelastic electron scattering from the nucleon which, 
in the infinite Q2 limit, can be related to the (5 decay of the nucleon. In the limit 

Q2 —> oo and v —► oo, yet finite Bjorken scaling variable x = Q2 j 2 M v , the structure 
functions scale as:

MW\{v, Q2) --  F^x) , (1.80)

vW2(v,Q 2) --  F2(x ), (1.81)

M 2vG\{y1 Q2) --* 9i(x), (1.82)

M v2G2{p,Q 2) -->■ g2{x). (1.83)

The Bjorken sum rule, radiatively corrected to finite Q2, is fundamental to our under­

standing of Quantum Chromodynamics (QCD). The importance of QCD sum rules is 
that they are model-independent. The Bjorken sum rule relates the first moments of
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Experiment Q 2 FP _  pn Bjorken sum rule

CERN SMC [11] 5 GeV2 n 1S51 +0.012+0.018+0.015 U.lOl—0.011—0.018—0.006 0.181 ±0.003
SLAC E154 [12] 5 GeV2 0.171 ±0.005 ±0.010 ±0.006 0.181 ±0.003

Table 1.1: Tests of the Bjorken sum rule [10]. The errors for T  ̂— T" are statistical, 

systematic, and theoretical. The Bjorken sum rule is calculated to order a 2 [13].

the polarized spin structure functions with the ratio of axial to axial-vector coupling 
constants of neutron (3-decay [7]:

r i -  r ? = J  (9i(x) -  9i(x)) dx = ^ 9a

9v
(1.84)

where g f (x )d x  is the first moment of the structure function <+ for the

nucleon N, Qa and gy are the axial and vector neutron /5-decay coupling constants, 

respectively. Their ratio is gA/9v =  —1.2601 ±  0.0025 [8]. The Bjorken sum rule was 
initially derived in the framework of U{Q)®U(6) current algebra of Gell-Mann, Feyn­

man, and Zweig [9], then was later rederived in QCD under the Operator Product 
Expansion (OPE) formalism. Historically, its is rather amusing to note that Bjorken 
referred to his sum rule as a “worthless equation” due to the absence of polarized ex­
periments at the time. In an attem pt to “salvage” the sum rule, he chose to emphasize 

an inequality involving unpolarized cross sections instead [7]. Nowadays, with the aid 

of rapid technological advances in both polarized sources and targets, the Bjorken sum 

rule has been verified to better than 10% [10]. Experiments are always performed at 

finite Q2. The OPE method can be used to extend the validity of the Bjorken sum 
rule to finite Q2 [4]. In fact, QCD radiative corrections to the Bjorken sum rule have 
been calculated to third order in the strong coupling constant [13]. In this respect, 

the Bjorken sum rule provides validation for the QCD radiative corrections:

r? n {Q2) = /  (g{{x,Q2) -  g^(x ,Q2))dx

1 9a

6 9v
1 — ( — ) — 3.58337T ( V ) 2 -  20.2153 ( S ) ‘ (1.85)

where a s(Q2) = 12n/(33 — 2rif) ln(Q2/A 2) is the strong coupling constant, n f  = 3 
is the number of flavors: u, d, and s. A is a free parameter fixed by experiment. 
It determines the transition from quark and gluonic degrees of freedom to hadronic
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and mesonic degrees of freedom. A is believed to lie in the range 0.1 to 0.5 GeV [3]. 

Estimates of QCD corrections to order a A have been made in Ref. [14].

Conversely, assuming the validity of the Bjorken sum rule, a value for the strong 
coupling constant can be extracted. It is standard convention to quote this value at 

the mass of the Z boson M z — 91.19 GeV [15],

a s{Mz ) = 0.1181°;™ (1.86)

1.9 T he G erasim ov-D rell-H earn Sum  R ule

1.9.1 In trod u ction

In the limit Q2 — 0 (real photon scattering), the Gerasimov-Drell-Hearn sum rule [16] 
relates the helicity structure of the sum over all nucleon photo-excitations with its 
anomalous magnetic moment. It is based on general physics principles: Lorentz and 
gauge invariance, crossing symmetry, causality, and unitarity.

f°° dv 27r2o o f —204.5 jjb for the proton
I g d h  =  /  — ( c r i / 2  —  0 3 / 2 )  =  — — 7- / c  =  <  , (1-87)

Jvthr v M  y —232.8 fib for the neutron

where uthr = m2/2 M  + ~  150 MeV is the threshold energy for pion photopro­
duction. a i/ 2  and ( J 3 / 2  are the photoabsorption cross sections of total helicity 1/2 

and 3/2, respectively, a  =  e2/ 47r ~  1/137 is the fine structure constant, M  is the 

nucleon mass (Mp = 938.3 MeV/c2 and M n = 939.6 MeV/c2), and k  is the anomalous 

magnetic moment of the nucleon defined by nP/Hn = 1 + kp = 2.793 for the proton 
and Hn//qv =  nn = —1.913 for the neutron. nP and fxn are the proton and neutron 
magnetic moment, respectively, =  eh/2Mpc is the nuclear magneton.

1.9.2 D erivation

The starting point for deriving the GDH sum rule is the forward Compton ampli­
tude [17,18] depicted in Fig. 1.7. The form of the amplitude used is that of Drell and 
Hearn [16].

T(v) = • e +  i v f 2{v)<r • (e* X e)]y, (1.88)
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N(p, s )

Figure 1.7: Feynman diagram for forward Compton scattering. The photon 7  has 

four-momentum q and spin e, and the nucleon N  has four-momentum p and spin s.

where u is the photon energy, y is the spin of the nucleon, e is photon polarization 
vector, and cr is the Pauli spin matrices vector. Crossing symmetry requires that 

f i{v)  and /^(z^) are even.
Consider a photon of helicity A =  +1 and polarization four-vector

e+ =  (0 ,M ,0)/> /2 . (1.89)

It follows that:

e* • e =  1, (1.90)

e* X e =  «e3, (1-91)

For a nucleon with spin axis quantized along the photon polarization vector, y + =  (0) 
for spin + |  and y_ =  (°) for spin — Therefore the amplitudes T3/ 2 and Xi/ 2 where 

the photon and nucleon spins are parallel and antiparallel, respectively, are:

T3 / 2  = f i  — vf i ,  (1.92)

T\ji — f i  + v f 2 - (1.93)

The Low Energy Theorem (LET) of Low, Gell-Mann, and Goldberger [19] asserts 
that the forward Compton amplitude can be expanded in powers of the frequency 
and the expansion coefficients are expressed in terms of macroscopic properties of the 
nucleon [20]:

(Y
h i y )  = - J j  +  K  +  Pm)v2 +  0 ( z / ) ,  (1.94)

(ykp"
m  = + (1-95)
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E

Figure 1.8: Feynman diagram for the optical theorem. The total cross section is 

related to the absorptive (imaginary) part of the forward amplitude.

where a#  and (5m  are the electric and magnetic polarizabilities of the nucleon, re­

spectively. k  is the anomalous magnetic moment of the nucleon and 7  is the vector 
polarizability of the nucleon.

The optical theorem [2] connects the forward Compton amplitude to the total 
photoabsorption cross section:

v
Im T\j 2 ( 3 / 2 )  

This is illustrated in Fig. 1.8. Thus,

47r 0"l/2(3/2)-

V
I m / l  =  ^ (^ 1 /2  +  0-3/2),

Im h  =  ^ ( ^ 1/2 - 03/2)-

(1.96)

(1.97)

(1.98)

If the additional assumption is made that | / 2(^)| —1> 0 as v  —>■ 00 (no subtraction 
hypothesis) so that the half-circles at 00 do not contribute to the Cauchy integral, 

then an unsubtracted dispersion relation emerges for / 2(j'):

2 v'di/
** f M  =  -  /  Im f 2(v>).vr J Vthr v'z -  v2

(1.99)

Combining Eqs. (1.95), (1.98) and (1.99), and taking the limit v —» 0 results in:

~2 1 roo dvan
2 M 2

1 r°° 
= Re M ° )  = J^2

J Vt h r
V

( o - l / 2  —  O - 3 / 2 ) . ( 1.100)

In a similar fashion, other sum rules may be derived [21]. Baldin’s sum rule [22] is:

OiE  +  (5m  — 27r2
'" t h r

dv
7  O't o ta l ,vz (1.101)
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where <Jtotai =  {(J1/2 +  ct3/2) / 2. The forward spin polarizability [18] is:

7 s 4 4 (<Tl/2"  f f 3 / 2 ) ‘

( 1 .102)

1.9 .3  E x p er im en ta l V erification

Up until very recently, the only experimental verification of the GDH sum rule avail­
able was from phase shift analysis of pion photoproduction data. Recently real photon 

experiments have been completed at both Mainz and Bonn, but the data is not yet 
analyzed or published. Karliner [23] used isospin decomposition of the anomalous 

magnetic moments of the proton and neutron:
1

Aw
-  2 Ks + 2 Kv'

Kn =  2,Ks ~  2 KV)

(1.103)

(1.104)

into isoscalar (Ks) and isovector (/%-) components. Three GDH sum rules immediately 
follow. They are the isovector-isovector (VV), isoscalar-isoscalar (SS), and isovector- 

isoscalar (VS) interference or mixed sum rules. They may be written down as:

Ivv  —

Iss =

Ivs =

' V th r  ^

r  ~
hnr u 
r°° dv

n V V1/2 n V V3 /2 ) =
2iPa (1
M 2

- k,v ] =  —218.5 nb,

27T2q: (1

^ t h r

vs
1/2

M 2 \ 2  
2n2a ( 1

M 2 V 2

Ks ] =  —0.3 /ib, 

KyKs ) =  +14.7 /ib.

(1.105)

(1.106) 

(1.107)

The proton and neutron GDH sum rules can be recovered from the individual isospin 
components:

Ip = Ivv  +  Iss + Iv s , 
I n =  IVv  +  Iss ~ Ivs-

(1.108)

(1.109)

Single-pion photoproduction amplitudes can be decomposed into amplitudes of defi­
nite isospin [23-25]:

M ( 7  +  p —> 7T+  +  n) =  —= — V2 (M™ — M ^ )
V3 L

T f ( y  +  p —> 7T° +  p) =
Vs L

y/2M (3) +  (M (1) -  M (0))

M ( 7  +  n  —> 7r  +p)  =  —= — \pl ( M (1) +  M 4
V3 L

(1.110)

(1.111)

(1 .112)
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Figure 1.9: Feynman diagram for pion photoproduction 7  +  N  — > it  +  N.

where M^> is the amplitude for isospin 3/2, M^> for isospin 1/2, and M^> is the 

isoscalar amplitude. The cross sections for different isospin states are related to the 

isospin amplitudes:

<tw  oc |M (3)|2 +  |M (1)|2, (1.113)

crss oc |M (0)|2, (1-114)

a vs  oc - [ (M (0))*M(1)+  M (0)(Af(1))*]. (1.115)

The cross sections of definite helicity can be separated into terms with amplitudes 
of definite parity and angular momentum [23]:

a i/2 =  - r -  +  1) ( l^ + |2 +  |^4(z+i)-|2) > (1.116)
1=0

0 3 / 2  =  - - - [ / ( /  +  !)(/ +  2)] (\Bt+\2 +  |ff(;+i)_|2) , (1-117)
1=0

where Ai± and Bi± are amplitudes for a state with pion orbital angular momentum 

I, parity P  = (—l) i+1, and total angular momentum j  = I ±  1/2. See Fig. 1.9 for a 

definition of kinematic variables. Isospin and angular momentum decomposition as 
outlined above permit us to estimate the GDH sum rule from pion photoproduction 
cross sections. Table 1.2 summarizes the experimental situation at the time. Clearly, 
the isovector-isovector sum rule is saturated and the isoscalar-isoscalar sum rule is 
small. Only the interference term seems in disagreement and even carries the wrong 
sign! Nonetheless the conclusion was that the GDH sum rule held and more precise 

measurements were needed.
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GDH Experiment Theory

Integral (Mb) (Mb)

Ivv -219 -218.5

Iss -2.92 -0.3

Ivs -39 +14.7

P -261 -204.1

I n -183 -233.5

Table 1.2: Early experimental tests of the GDH sum rule from analysis of pion photo­
production data [23]. The column titled Experimental is an evaluation of the integral

dv/v(<Ji/ 2  — cr3/2) from v  =  0.8 GeV to v =  1.2 GeV. The column titled Theory 
represents the quantity —2it2 a n 2 /  M 2.

1.10 T he G eneralized G D H  Integral

Let us recall the definitions of the virtual photoabsorption cross sections defined 
earlier:

&T =  2 (a3/2 +  crl/2), (1.118)

o ' t t  =  ^ (03/2 - 01/2), (1.119)

and their relations to the structure functions:

0+ —
Aix2a  
M K  u

(1.120)

0+ =
47T2a

K [?(■+ 1

1 
i

(1.121)

u 'l t  =
47x2a .
MA.7 (S i+ 9 ,) , (1.122)

(7 --
47T2Q! . 0 
M K  7

(1.123)

where 7  =  s f C p / i a ' LT — —glt , and a'TT =  —aTT. The virtual photon flux factor 
is:

( v( l  — x) for the Hand convention [5]
V    L J . (1.124)

V\J 1 +  y2 for the Gilman convention [6]
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Different model dependent conventions exist. However, here we use the Hand conven­
tion because it is related to the Compton amplitude. Drechsel et al. [26] generalized 

the GDH integral with the following Q2-dependence:

h ( Q 2) =  r  a(*. 0 2) *  -  {  7^  , (1.125)
Q 2 Jo 1 2- § - T x +  0 ( l / Q A) for Q ooQ2

where x 0 — Q2/ (2M m n +  m 2 +  Q2) is the threshold of single-pion production. The 

integral I\ can be recast in terms of the virtual photoabsorption cross sections:

r , 2. M 2 1 - x  . n , sdv
h { Q  ] = 8a T  t t 7 (<Ti/2 “ 173/2 ” 7<7tr)v -  (L126)

where z/o =  m -K +  (m2 +  Q2)/2M  is the threshold energy for single-pion production.
The term 7 a'LT is of order Q2 and vanishes in the real photon limit. At finite Q2,
however, the contribution of a'LT to h ( Q 2) is significant. To remedy this situation, 
several alternate definitions of the GDH integral have been proposed [17,26]:

r M 2 f T  . . .dv
I a { q )  = ( i - ' K ^ - ^ v

7 m 2 rx°
=  ~q T  Jo ( 9 i ~ l 292)dx, (1.127)

r M 2 1 - x  . .dv
Ib (Q — 2 / —===(<71/2 -  <J3/2) 

87t2q; JVo ^ 1  +  72 v
2 M 2 Px° 1 

=  ~TP~ /T— ^ ( 9 i - 'Y 292)dx, (1.128)
V  J o  y t l  +  Y

r M 2 (°°.  .dv
I c [ Q )  ~  8 ('7l/2_<73/2)V

2M 2 r °  1/■zo 1

/  i (51 -  l 2Q2 )dx. (1.129)
Jo i — xQ 2

Plots of the different GDH integrals, as produced with MAID 2000 extended ver­

sion [27], are shown in Fig. 1.10. Note that variations between the different GDH 
integrals are significant. Therefore when comparing results from various theoretical 
models and experimental data, it is paramount to specify which definition is being 
employed.
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Figure 1.10: The GDH integrals R, I  a , I b , and Ic  for the neutron, integrated up to 

Hdnax =  2 GeV, generated with MAID 2000 extended version [27]. The x at the real 
photon point (Q2 = 0) is the value of the GDH sum rule.
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1.11 Chiral P erturbation  T heory

1.11.1  C hiral S y m m etry

The Lagrangian for a massless Dirac particle is [28]

£  =  xjjiptj). (1.130)

The Dirac wave function i\) can be separated into components of definite chirality 

(handedness),

which follow from properties of the Dirac 7 -matrices [3]. A massless particle’s chirality 

is a Lorentz-invariant. Two observers in different frames of reference will see the same 
chirality for a particle. A typical example in the Standard Model is the neutrino which 

always appears left-handed. The Lagrangian C is invariant under the global chiral 

phase transformations

where <xl,r  are arbitrary real constants. By virtue of Noether’s theorem, the following 

conserved currents result:

ip =  ?pL +  ipR , ipLtR =  r y ^ , (1.131)

where Tl ,r = (1 ± 7 5) /2  are the left- and right-handed chirality projection operators 

respectively. They obey the following relationships:

(1.132)

iPl ,r (X) -*■ eXP (-i<XL,R)lpL,R(x ) (1.133)

JL,R = ^L,rY^L,R- (1.134)

The corresponding chiral charges are defined as

(1.135)

Linear combinations of the chiral currents provide the vector current

v »  = r L + r R = ip ' f i ’, (1.136)

and the axial-vector current,

A» = r L - r R = ^ y t y . (1.137)
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In a similar fashion, the vector charge Q and axial-vector charge Q5 are

Q = Ql + Qr , Q§ =  Ql Qr - (1.138)

The vector charge Q and axial-vector charge Q5 are simply the sum and difference, 

respectively, of left- and right-handed particles.

1.11.2  C hiral P ertu rb a tio n  T h eory

Chiral Perturbation Theory (ChPT) [28,29] is an effective field theory that requires 

global chiral symmetry of the Lagrangian. The quarks are considered massless par­

ticles. Pions and kaons are the Goldstone bosons under SU(3) symmetry breaking. 

They are the degrees of freedom of the effective theory. In Heavy Baryon Chiral 
Perturbation Theory (HByPT) the nucleons are considered infinitely heavy.

1.11 .3  T h e G D H  Sum  R u le at Low Q 2

From Q2 = 0 to about 0.2 GeV2, the GDH sum rule can be described in the language 
of ChPT in terms of hadronic degrees of freedom. Bernard et al. [30] calculated the 

slope of Ic  at Q2 =  0 in ChPT to order p3 where p is an arbitrary external momentum. 
They obtained1:

^0) = M 4 ^ ) 2 = 9'1GeV" (i-i39)
where ga =  1.26 is the axial coupling constant, f n =  92.4 MeV is the pion decay 
constant, M  — 938 MeV is the proton mass, and m n =  138 MeV is the pion mass. Ji

1The exact relationship between I c  and Bernard et a l. [30] GDH integral is I c ( Q 2) =  

I b k m ( q 2)- Moreover, their slope for the GDH integral is taken with respect to q2 = —Q 2. 

Hence, the sign flip.
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et al. [31] performed the order p'1 calculation and found:

— 14.5 GeV-2 for the proton

— 10.3 GeV-2 for the neutron

/;(0) =  | ^ [ l  +  3K„ +  2r3(l +  3Ks)]

7.0 GeV-2 for the proton 

5.7 GeV-2 for the neutron

(1.140)

(1.141)

where Ky — 3.706 and Ks — —0.120 are the isovector and isoscalar components of the 
anomalous magnetic moment, respectively. The isospin r3 is +1 and -1 for the proton 

and neutron, respectively. The difference between the (D(p3) and 0 (p 4) calculations is 
quite significant. In fact, the next-to-leading order contribution to the GDH integral 
is more than twice the leading order and of opposite sign! This explains the sign 

reversal of the slope when going from order p3 to order p4.

1.12 G D H  Integral from  3H e

1.12.1 In trod u ction

C. Ciofi degli Atti and S. Scopetta [32,33] pointed out that the neutron spin structure 

function p” (x), asymmetry A n(x), and Gerasimov-Drell-Hearn (GDH) integral may be 

reasonably extracted from those of 3 He in the resonance and deep inelastic scattering 
(DIS) region if nuclear effects are taken into account.

1.12 .2  N o  N u clear  E ffects

To a good approximation, the 3He nucleus sits in a pure symmetric S state and the 
spin structure functions and asymmetries are simply:

£iHe(T) =  9i(x),  (1.142)

A 3ne(x) = f nAn(x), (1.143)

where x = Q2/2 M v  is the Bjorken variable, A n(x) =  2xg™(x)/F^x)  is the neutron 
asymmetry, and f n = F^x) /(2F% (x) + F ^ x ) )  is the neutron dilution factor.
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1.12 .3  T h e E ffective N u cleon  P o lariza tion s

In a more realistic model of the 3He nucleus, the 3He wave function is an admixture of 
a symmetric S state, a state S’ of mixed symmetry, and a state D of mixed symmetry. 

The 3 He nucleus has even parity (J p — | +). Conservation of parity requires that 
the P-state only enters in second order in the wave function. Hence the P-state 

contribution is negligible (see pp. 180-190 of Ref. [34] and p. 320 of Ref. [35]). 

If Fermi motion and binding effects are ignored, the spin structure functions and 

asymmetries are written:

glHe{x) = 2ppgp1( x ) + p ng^(x),  (1.144)

As He(a;) =  2fpPpAp + f npnA n, (1.145)

where

h  =  F 2n ( x ) / ( 2 F ? ( x ) +  F Z ( x ) ) ,  ( 1 . 146 )

A n {x ) — 2 x g ^ ( x ) / F ^ ( x ) .  (1.147)

Here, is the nucleon dilution factor, A N{x) is the nucleon asymmetry, and pN is 
the effective nucleon polarization given by:

Pp = p(+) -  p C )  = -0 .0 2 8  ±  0.004, (1.148)

pn = p W  -  p C )  =  0.86 ±  0.02, (1.149)

where Pn+> — 1 — A and P-i  ̂= A are the probabilities of having a neutron with spin
parallel and antiparallel with the spin of the 3He nucleus, respectively. Pp^  =  A'

are the equivalent quantities for the proton. The quantities A  =  ^(Ps1 +  2Pd) and 

A' =  \{Pd — Ps ') are model-dependent. A fit on world calculations of the three- 
nucleon system yields A =  0.07 ±  0.01 and A' =  0.014 ±  0.002 [36]. Afnan and 

Birrell [37] solved the Faddeev equations [38-41] in momentum space with a unitary 

pole expansion (UPE) of a Reid soft core (RSC) nucleon-nucleon potential [42] using 
the partial wave decomposition of Derrick and Blatt [35] involving basis states of 
definite symmetry (S=symmetric, A=antisymmetric, and M=mixed) for the 3He wave 
function. They obtained the percentage probabilities Pg = 89.2%, Pg> = 1.6%, and 
Pd — 9.1% for the three-body system. The 3He nucleus is mostly in the S state, 
in which both protons carry opposite spins and cancel each other. The effective 
polarization of the neutron contributes the most to the overall nuclear polarization.
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1.12 .4  T h e C on volu tion  A pproach

Fermi motion and binding effects are included by using the convolution approach of 

C. Ciofi degli Atti et al. [32] in which the spin structure functions of the individual 

nucleons are weighted by the nuclear spectral functions of 3He, integrated over en­
ergy, momentum, and the Bjorken variable, then finally summed over all constituent 
nucleons. The full expression is presented in Ref. [32]. The formula is based on two 
different prescriptions from Refs. [41] and [44], that nonetheless yield the same re­

sult in the Bjorken limit. The nuclear spectral functions are related to the effective 

nucleon polarizations. The spin structure functions obtained with the convolution 

approach differ from those of Eq. (1.144) by at most 4% for x  < 0.9 in the DIS 

region. The disagreement is more pronounced in the resonance region where Fermi 
motion smears the peaks of the dominant resonances (see Fig. 1.11).
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Figure 1.11: Comparison of g][He calculated with Fermi motion and binding effects 

(solid curve) vs. effective nucleon polarizations only (dashed curve) in (a) DIS at 

Q2 =  10 GeV2 and (b) resonance at Q2 = 1 GeV2. The figure is taken from Ref. [33].

1.12.5  F irst M om en t and th e  G D H  In tegral

The first moment VN = g^(x)dx  of the structure function g^(x)  is of interest 
because it enters the expression for the Bjorken sum rule [7]:

u  -  r  =  r « ( x ) - » ? W )  *  =  - ) - ( ! - — ) (1.150)
Jo bgv \ it J

where gA and gy are the axial and vector coupling constants respectively from neutron 
beta decay, and as  is the strong coupling constant. The importance of the Bjorken
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Sum Rule as a proving ground for our present knowledge of Quantum Chromody- 
namics (QCD) in the high Q2 regime can hardly be overemphasized. At low Q2, the 

integrated quantity of interest is the Gerasimov-Drell-Hearn sum rule [16]:

fjij C?7r'̂ ‘(Y
Igt>u{Q2 = o) =  /  —  (<xi/2(g  Q2 =  0) -  <73/2(zq Q2 =  0)) =  — J p K 2 (1-151)

<1 v t h r  ^

where vthr — (Q2 +  +  m 2) /2 M  is the pion production threshold energy, cq/2

and (J3/2 are the virtual photoabsorption cross sections with photon-nucleon total 

helicity 1/2 and 3/2, respectively, a  is the fine structure constant, M  is the hadron 
mass, and k is the anomalous magnetic moment of the nucleon. The GDH integral:

I gdr(Q2) = /  — (cri/2(G Q2) — Q2)) (1.152)
Jvthr V

is measured at finite Q2 and can be related to the spin structure function g i{v ,Q 2) 
of a spin 1/2  target A  by:

/ - * ( « = ^  r  d.153)
J  v t h r

where K  is the virtual photon flux. The integrated quantities, r jY(Q2) and I A(Q2), 
differ by at most 5% when Fermi motion and binding effects are compared with the 

nuclear effects of effective nucleon polarizations only. See Fig. 1.12. Therefore the 
following expressions:

f » ( Q 2) =  1  / r 3He(g2) _  2 p p rP (g 2 ) \  (L154)
Pn   ̂ /

i n(Q2) = —  ( i 3Ke(Q2) -  2pPi p(Q2)) (1-155)
Pn  '  '

were used to extract integrated quantities of the neutron from 3He. g\ from the MAID 
model [27] was used as input.

1.13 T he G D H  Integral for th e  P roton

The GDH integral for the proton has recently been measured at MAMI (Mainz) by 
direct measurement of the total photoabsorption cross section of circularly polarized 
real photons produced by bremsstrahlung of longitudinally polarized electrons, in the
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Figure 1.12: The crosses represent the GDH integral for the neutron I n(Q2) obtained 
with Eq. (1.155) where the model of Burkert et al  [45] was used for g{ and the 

convolution formula of Ciofi degli Atti et al. [33] for rq110 coupled with Eq. (1.153) to 
get I P(Q2) and / 3He(Q2). respectively. The solid curve represents the GDH integral 

for the neutron I n(Q2) obtained with the model of Burkert et al  [45] for g[l and 
Eq. (1.153). The dots represent the GDH integral for 3He as acquired previously. 

Note I n(Q2) and I n(Q2) differ only by at most 5%. The figure is taken from Ref. [33].

energy range 200 < E1 < 800 MeV, on longitudinally polarized protons [46]. The 
GDH sum rule for the proton is

J  ^-(<D/2 -  cr1/2) = = 205 /xb, (1.156)

where the integral on the left is adopted for the GDH integral. The Mainz measure­

ment for the GDH integral between 200 and 800 MeV was 226 ±5  (stat)±12 (syst) /ib. 
Outside the measured range of energies, theoretical models may be reasonably em­
ployed to predict the missing contributions to the GDH integral. The UIM model [27] 
(also known as the MAID model) gives —30 /ib below 200 MeV and 40 /ib in the range 
800 < < 1650 MeV. Beyond 1650 MeV, Bianchi and Thomas [47] predict a contri­
bution of —26 /ib. The resulting GDH integral is 210 /ib, a value consistent with the 
GDH sum rule of 205 /ib within experimental errors. Fig. 1.13 shows the GDH inte-
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Figure 1.13: GDH integrand for the proton (left) and running GDH integral (right). 

“This work” refers to the data of Mainz [46] and “Ref.[l]” is a reference to an earlier 
measurement by the same group but at a more restricted range of photon energies. 

HDT [48] and SAID [49] are multipole analysis models and UIM [27] is a unitary 
isobar model.

grand (left) and the running GDH integral (right) along with some theoretical model 

predictions. Notice that the MAID model (curve labeled UIM in Fig. 1.13) gives a 

reasonable fit over the bulk of the data region. The contribution to the GDH integral 

at higher photon energies, where the theory begins to diverge from the data, is in fact 
suppressed by a factor of 1/u. This gives us confidence that we can make a reason­

able correction to the 3He data using the MAID model. In the final result, systematic 
errors due to this correction are included in the analysis of the GDH integrand for 
the neutron.
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EXPERIMENTAL SETUP

2.1 C ontinuous E lectron  B eam  A ccelerator Facil­

ity

2.1 .1  In jector, L inac, and A R C

The Continuous Electron Beam Accelerator Facility (CEBAF), shown in Figure 2.1 is 

an electron accelerator with a 45-MeV injector and two 500-MeV linear accelerators 
(linacs) that can deliver high duty cycle, polarized electron beams simultaneously in 

three end stations (Hall A, B, and C) after a maximum of five recirculation passes. 
The polarized beam is produced by a strained GaAs photocathode. A chopper with 
slits of different sizes is placed in front of the beam to allow for delivery of different 

currents in each hall. The chopper’s frequency is 1.497 GHz. After the chopper, 

the beam enters the injector, a set of two and a quarter cryomodules, where it is 
accelerated to 45 MeV. Each cryomodule consists of eight superconducting niobium 
cavities maintained at 2 K by liquid helium supplied by the Central Helium Liquefier. 
The beam then enters the North Linac, a set of twenty cryomodules, where it is 

accelerated by an additional 0.5 GeV. Before entering the recirculation arcs, the beam 
is split into components of different momenta (from different number of recirculation 
passes). This is done because each momentum requires a different bending magnetic 
field. Hence, there are five separate arcs with different magnet settings. The beam, 

as a whole, is bent by the East Arc in a half-circle. The beam is then recombined and 
enters the South Linac, another string of twenty cryomodules, where it is accelerated

34
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M a c h in e  C o n f ig u r a t io n
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FEL Facility

0.4-GeV Linac 
(20 Cryomodules)

45-M eV Injector  ^  C C A  
(2 1/4 Cryomodules) \

_  0.4-GeV lin a c  
(20 Cryomodules)■■'Helium ^  

Refrigerator
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Elements

End
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Figure 2.1: The Continuous Electron Beam Accelerator Facility (CEBAF) features a 
45-MeV injector and two 500-MeV linear accelerators (linacs) that can deliver high 

duty cycle, polarized electrons beam simultaneously in three end stations (Hall A, B, 
and C) after a maximum of five recirculation passes.

by an additional 0.5 GeV. Now, the beam is bent in another half-circle, the West 

Arc, back to the North Linac. The cycle is repeated up to a total of five recirculation 
passes or until the desired beam energy is achieved. At which point the beam is 
extracted from the accelerator and split among the halls at the Beam Switch Yard 
(BSY).

2.1 .2  B ea m  E n ergy  and Spin  P recesssion

The actual relationship between single linac energy and final beam energy at an end 
station is:

E  — (2 n  +  a) Ei, (2-1)

with some minor corrections due to synchrotron radiation at the recirculating arcs. 

Ei is the single linac energy, n is the number of recirculation passes, and a = 0.1125
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is the ratio of injector energy to linac energy. In addition, the spin of the electron in 

its rest frame will precess due to Thomas precession [52]:

where Ad  is the precession of the spin in the electron rest frame, 7  =  E / m e(? and 

m e =  0.510998902 MeV/c2 is the electron rest mass, — 2)/2 =  (115965.77 ± 0 .35) x

of the momentum in the lab frame. The single linac energy can be conveniently 
adjusted anywhere from 200 to 600 MeV in order to allow for maximal longitudinal 

polarization of the beam in all three halls [53-55].

The Mott polarimeter is a device used to measure beam polarization at the injector. 

It is based on the principle of Mott polarimetry in which the left-right asymmetry 

in the cross sections of the scattered electrons is exploited to infer the polarization

MeV Mott polarimeter [57-59]. The projectile is a polarized electron beam and the 
target is a gold foil (Au, Z=79) of thickness 1 pin. The rate achieved is 1 kHz/pA. 

The scattering angle is at 172.6° where the analyzing power is at a maximum, -0.52, 

but there is a dilution factor of 0.006 due to multiple scatterings. A schematic of 
the polarimeter is shown in Fig. 2.2. The polarimeter is equipped with two detectors 
shown in Fig 2.3.

Principle o f O peration

The differential cross section for Mott scattering of a polarized electron from a heavy 
nucleus is given by [60]:

(2.2)

10 8 is the anomalous magnetic moment of the electron, and A<p is the rotation angle

2 .1 .3  M o tt P o larim eter

of the initial incident beam. The Injector Group [56] at Jefferson Lab operates a 5

a(9,4>) = H6)[\ + S {e )P -n ] , (2.3)

where 1(9) = \ f \2 +  \g\2 is the differential cross section for a beam with no initial 
transverse polarization.

=  2
u  l/l2 + M2 \ f \ 2 +  \g\2

(2.4)
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collimator /

viewport aluminum-1 iners

Figure 2.2: Cross section of the Jefferson Lab 5 MeV Mott polarimeter. The polarized 
electron beam enters through an entrance on the left and travels along the central 

axis. The beam is scattered by a gold foil target lowered into the scattering chamber 
with a target ladder. The scattered electrons are registered by two detectors placed 
at ±172.6° from the incident beam direction.

is real and is the so-called Sherman function [61] or analyzing power. It establishes 

the link between asymmetry and polarization. Plots of the Sherman function S(9) 
for several electron kinetic energies are graphed in Fig. 2.4. Note the location in 
scattering angle 0 =  172.6° of the Jefferson Lab Mott polarimeter which corresponds 
to a maximum analyzing power S(9). The complex scattering amplitudes /  and g, 
defined in Ref. [60], are matrix elements of the scattering matrix, and P  is the initial 
polarization vector of the electron. Other useful combinations of the functions /  and 
g are the so-called spin-rotation functions:

I f  P — igp

=  W T W -  (2-5)

TT(f)\ = ~  f * 9 =  2 R e(/g*) (n
( )  l/l2 + lsl2 l/P + lsl2' ( }

S, T  and U satisfy the identity S 2 + T 2 + U2 — 1. Together they determine how the 
polarization P  is altered by scattering.

A derivation of the differential cross section for Mott scattering has traditionally 

been carried out by solving the Dirac equation with a Coulomb potential. The am-
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Figure 2.3: Cross section of a detector for the Jefferson Lab 5 MeV Mott polarimeter. 

The scattered electron enters through an aluminum collimator, with an angular ac­

ceptance of 1° in 6 and 40° in </>, on the right and triggers a signal in a NE102a plastic 
scintillator attached to a phototube. A second phototube is mounted at right angle 
to the primary one. Its signal is used as a trigger and serves to eliminate background 
noise from stray radiation.

plitudes are broken down in partial-wave analysis. The literature on the subject is 
extensive; see Refs. [60,63-65].

Experim ental Technique

Consider the equipment setup shown in Fig. 2.5 for a Mott polarimeter. Assume 
perfect alignment and negligible instrumental errors. The number of counts in Di 

and D2 for a spin-up electron e T is [60]

Lt =  n N e lLLlI{6){l + PS{8)), (2.7)

Rt =  nNe2n 2I ( 9 ) { l - P S ( 6 ) ) ,  (2.8)

respectively. Here, n  is the number of incident electrons, N  is the number of target 
nuclei per unit area, and P  is the polarization of the incident beam, e and Q, are 
the detector efficiency and angular acceptance, respectively. If the polarization of the 

incident electron beam is reversed, the number of counts for a spin-down electron e j
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Figure 2.4: Plots of the Sherman function S(8) for electron kinetic energies of 5.0, 

2.0, 1.0, 0.4 and 0.1 MeV generated with Formula (1A-402) of Ref. [62] for a point 
nucleus with no screening.

is

L l = n ' N ' e & J i e X l -  PS { 6 ) ) ,  (2.9)

=  n ,N le2n 2I ( 6 ) ( l  + PS(0)).  (2.10)

By introducing the quantities N + and N~,

N + =  ^ jL ^R l =  y / n n ' N N ' t xe2t o \ S k I { l  +  P S ) ,  (2.11)

N~ = y /fy T i = ^/nn'NN'exe2fiifi2/ ( l  -  PS),  (2.12)

the asymmetry A  can be written as

_ JV+ -  TV- (1 +  P S )  -  (1 -  P S )
N+ + N -  (1 +  P S )  +  (1 -  P S )  { '

This equation is affectionately called the “APS rule” and relates the polarization P  to

the asymmetry A  via the Sherman function S. Note that all instrumental systematics
cancel out.
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%

d2

Figure 2.5: Detector arrangement for Mott polarimetry. The incident electron e~ 
with polarization P  is elastically scattered from nuclei in a gold foil and picked up by 

detectors D { and D2 at an angle 9 to the left and right of the beam line, respectively.

Using the 5 MeV Mott polarimeter, the Injector Group can measure beam polar­
ization at the injector with an instrumental precision of 0.5% and with an instrumental 

helicity-correlated false asymmetry of (4 ±  6) x 10~4 [59].

2.2 B eam line in H all A

Hall A [50], the largest of the three end stations, has a diameter of 53 m. The layout 
of the Hall showing the two High Resolution Spectrometers is shown in Fig. 2.6. The 
electron beam from the beamline is incident upon the target on the target platform in 
the center of the hall. The beam is then scattered into one of the spectrometers. The 

two spectrometers were designed for coincidence (e,e’X) experiments with the nominal 
Electron arm to the left looking from above and the Hadron arm to the right. For 
this experiments both spectrometers were used to detect electrons in single arm data 
acquisition (DAQ) mode and the Electron and Hadron arms will be referred to as the
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Figure 2.6: Layout of Hall A showing the beamline, the target platform in the center, 
and the Electron and Hadron spectrometers.

Left and Right spectrometers, respectively. The scattered electrons are then detected 

in detectors housed in the detector hut of each spectrometer. The left spectrometer 

can be moved to a central scattering angle from 12.5° to 165° from the beamline. The 
Right spectrometer has an angular range of 12.5° to 130°.

2.2 .1  B eam lin e

Fig. 2.7 shows the schematic of the main elements of the beamline. The beam pa­
rameters are summarized in Table 2.1 [66].

2.2 .2  A b so lu te  B ea m  E n ergy  M easu rem en t

The ARC M ethod

The beam enters Hall A through a 40-m arc section with a bend angle 0 — 34.3318° 
as shown in Fig. 2.8. A series of eight dipoles and nine quadrupolcs arc stationed 
along the arc section to bend and focus the beam, respectively. The beam energy can 
be calculated from accurate knowledge of the bend angle and magnetic field in the
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Figure 2.7: Hall A beamline elements from shield wall to target chamber.

Energy 0.8 -  6.0 GeV

Energy spread 2.5 x 10“5

Current 1 -  190 pA

Emittance 2 x 10-9 m-rad

Duty cycle 100% CW
Instantaneous size 35 pm

Table 2.1: Beam parameters.

dipoles.

An electron carrying charge e and velocity v  in a magnetic field B  is subject to 
the Lorentz force F:

F  = ^  = e v x B .  (2.14)

The incremental change in momentum Ap for a small time increment At is

Ap = eAl\\B±, (2.15)

where Aty is the component of the displacement along the path length and B± is the 
magnetic field component orthogonal to the path length. The change in momentum 
defines a small angle 9 =  Ap/p.  In addition, at high enough energy, the energy of the
electron E is simply E  =  pc. It therefore follows that

e = R29T792 f  dl^  (2 i6)
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where distances are measured in meters, magnetic fields in teslas, angles in radians, 

and the resulting energy is in GeV. ARC energy measurements taken in Hall A during 

E94-010 are shown in Table 2.2. The ARC method covers a beam energy range of 0.5

Figure 2.8: ARC equipment for absolute beam energy measurement in Hall A.

to 6 GeV with an accuracy of Ap/p  <  2 x 10-4 (FWHM). The ARC equipment was 

built and installed by a group from CEA/DAPNIA of Saclay, France. Much technical 
information about the ARC apparatus in Hall A is available in Ref. [67].

The eP  M ethod

The eP method for measuring beam energies utilizes the elastic reaction p(e,e'p). 
The target is a rotating tape of CH2 of thickness 10-30 pm. The electron and proton 

are detected in coincidence in silicon strip detectors with pitch 100 pm,  augmented 

with scintillators and gas Cherenkov counters (C 0 2). The eP equipment was built 
and installed by a group from CNRS/IN2P3 of Clermont-Ferrand, France. The beam 
energy is given by

where 6e and 6P are the angles from the beamline of the scattered electron and scat­
tered proton, respectively. The angle 6P is fixed at 60° and 0e varies with incident

Cr.TtffWi. £ /

(2,17)
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beam energy from 9° to 41°. The energy range covered is 0.5 to 6 GeV. The accuracy 

achieved is Ap/p  <  2 x 10-4 (FWHM). A schematic of the eP apparatus is shown in 

Fig 2.9.

'v\ \ \ \  'A,/ %

Figure 2.9: eP equipment for absolute beam energy measurement in Hall A. Beam 

enters from the right and exits from the left. The scattered electrons and protons are 
detected in the two vertical detection chambers.

2 .2 .3  B ea m  P o sitio n  M on itors

The beam position monitors (BPMs) measure the beam position in the xy -plane 

(transverse to the beamline). This measurement is noninvasive, thus allowing con­
tinuous monitoring and adjustement of the beam position. Five BPMs are located 
between the Hall A shield wall and the target. However, the BPMs of primary interest 
for Hall A are IPM1H03A, located 7.524 m upstream of the target, and IPM1H03B, 
located 1.286 m upstream of the target. A BPM consists of a cavity with a four-wire 
antenna array tuned to the fundamental beam frequency of 1.497 GHz. Two wires are 
for the ^-position and the other two for the y-position. A beam of charged particles

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 2. EXPERIMENTAL SETUP 45

Hall A Beam  Energy M easurem ents 

E94-010 O ct-D ec 1998

Date Mode -^nom inal Ee p A a r c

Oct 24 Disp 3385 3379.7
Nov 3 Disp 1709.1
Nov 6 Disp 4255 4236.2 4232.64

Nov 20 Achr 4233.2

Dec 8 Disp 2594 2581.1 2578.8
Dec 8 Achr 2594 2582.33
Dec 17 Achr 5055.16
Dec 22 Achr 5055.82

Table 2.2: Table of energy measurements made in Hall A during E94-010. The mode 

indicates whether the energy tune was dispersive (Disp) or achromatic (Achr). All 
energies are in MeV.

(current) induces a signal in each wire. The asymmetry between the induced signals 

from the wires is proportional to the distance from the beam. The beam position can 

be determined within 100 /im for currents above 1 fiA. A  diagram of the Hall A BPM 
subsystem and its associated electronics is shown in Fig. 2.10.

2 .2 .4  B ea m  C urrent M on itors

The beam current monitors (BCMs) allow measurement of the beam current in Hall 

A. The Hall A beam current monitors consist of one Unser (Parametric Current 

Transformer) and two radio-frequency (RF) cavity monitors tuned at 1.497 GHz 

(beam frequency). The Unser has an absolute accuracy of ±  300 nA at 100 /iA. The 
RF cavities have a non-linearity of less than 0.2%. A block diagram of the Hall A 
beam current monitors are shown in Fig. 2.11 and currents obtained with the BCMs 
during a typical run is shown in Fig. 2.12.
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Hall A BPM Readout
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Figure 2.10: Hall A beam position monitors. The wire strip chambers use four wires 
pickup coils. Sums and differences are taken from the outputs to determine the 
average current and the mean beam x  and y displacements from the central axis.
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Figure 2.11: Block diagram of the Hall A beam current monitors.

2.2 .5  M 0ller P o larim eter

M0ller polarimetry [68] is a method for measuring beam polarization at high energies 
at the target based on the reaction e +  e —> e +  e, known as Mpller scattering. The 

Mpller spin-dependent cross section is

da
dVL

da0
dLl i  + ^ p U i j P , (2.18)
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Figure 2.12: Beam current in Hall A during E94-010 for a typical run. Note that 
the beam is relatively constant except at dips occuring at 23 and 40 minutes usually 
caused by RF trips.

where

da-Q
dVL

A Zz =  

A —^XX

A —**-xy

£ =

i j  =

a 2 1 (4 — sin2 0)2 
4m 2 £2 sin4 9 ’

(7 +  cos2 6) sin2 6 
(3 +  cos2 9)2 ’

_  12 sin3 9 cos 9
W =  _ £(3 +  cos20)2’

Ayx 2̂ -yz =  2̂ -zy = 0)
E  +  m

2m 
x ,y , z ,

(2.19)

(2 .20 )

(2 .21 )

(2 .22 )

(2.23)

(2.24)

where da0/dfl  is the unpolarized cross section in the ultrarelativistic limit (E 3> 
m ). The quantities P]* and P- are components of the beam and target polarizations 
respectively. The Aij are asymmetry parameters. The asymmetry parameters assume
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Figure 2.13: Tree-level Feynman diagrams for M0ller scattering e +  e —> e +  e.

maxima at 9 = 90°:

A =  — -
zz 9 ’

A -  - A  -  - -ST-XX — Slyy — gj

(2.25)

(2.26)

at which point dao/dQ — 9a2/Am2 = 0.179 barn/sr. A xx and A yy are suppressed by 
a factor of l/£ . Therefore, at high energy, A zz becomes the dominant term. A Monte 

Carlo simulation of the Mpller spectrometer acceptance gives A zz = 0.76. The raw 

asymmetry along the longitudinal beam direction is:

A —■̂-raw
a TT a U

PbAzzPt cos 0f, (2.27)a d  -p (jTl

where the arrow superscripts denote target and beam polarizations respectively, and 

6t is the angle between the beam direction and the target foil. The beam polarization 
can then be inferred:

Ar
*  -  r a r  (2 28)

The Hall A Mpller polarimeter is situated 17.5 m upstream of the Hall A target 

platform. The target is a foil made of Supermendur, a ferromagnetic Fe-Co alloy 
(49% Fe, 49% Co, 2% V by weight), with thickness 12.5 /j,m. Polarization is induced 
on the target electrons by applying an external magnetic field of 300 Gauss which 
forces alignment of the electron spins along the field direction. The target polarization 
is obtained from:

M  o' -  1 (h.
P t =

ne^B g' 9e -  1 ’
(2.29)
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Figure 2.14: The optics of the Mpller polarimeter is QQQD. The target on the left is 
a foill of ferromagnetic Fe-Co alloy called Supermendur. The detector on the right is 

a lead-glass calorimeter.

where M  is the foil magnetization, ne is the electron density, ge =  2.002319 is the free 

electron g-factor, g,B =  9.273 x 10-21 G cm3 is the Bohr magneton, and g' = 1.916 ±

0.002 is the magnetomechanical ratio due to the orbital contribution to magnetization 
for a 50-50 Fe-Co alloy, assuming the Vanadium’s contribution to be negligible. A 

target polarization of 7.60 ±  0.23% was achieved. The scattered electrons are focused 
by a QQQD spectrometer and detected in coincidence in lead-glass calorimeters. The 
optics of the Mpller polarimeter is shown in Fig. 2.14. A Mpller measurement is an 
invasive procedure that takes about an hour and an additional forty minutes to alter 

magnet settings. The results of the Mpller polarimeter measurements along with the 
Mott polarimeter measurements from the injector, for comparison, obtained during 
E94-010 are displayed in Fig. 2.15. The average beam polarization was about 72% 
during this experiment.
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Figure 2.15: M0ller and Mott polarimeter measurements taken during E94-010. The 
average beam polarization is about 72%. The Moller measurements were carried out 

in the Hall A end station, whereas the Mott measurements were made at the injecter.

2.2 .6  Fast R aster

The Hall A fast raster is a couple of horizontal (X) and vertical (Y) air-core dipole 
magnets located 23 m upstream of teh target. It rasters the beam on target with an 
amplitude of several millimeters to prevent overheating due to prolonged application 
of the beam at a single spot. The fast raster can be operated in either sinusoidal or 
amplitude modulated mode.

In sinusoidal mode, both the X and Y dipole pairs are driven with pure sine waves. 
The ratio of frequencies is irrational (not a ratio of integers) so that the beam sweeps 
the targeted area in a non-Lissajous pattern, i.e., the entire phase space is filled at a
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Figure 2.16: Target ladder containing the main polarized target cell (top), the seven 
12C foils (center middle), the BeO target window (front middle), and the reference 
cell (bottom).

pseudo-random but predictable way.

In the amplitude modulated scheme, both the X and Y dipole pairs are driven at 

18 kHz with a 90° relative phase. The resulting pattern is circular. Furthermore, the 
radius is modulated at 1 kHz.

For this experiment, the amplitude modulated scheme was used to raster the 
beam.

2 .2 .7  T arget S ca tter in g  C ham ber

The targets are enclosed in the target scattering chamber which is made of a high- 
density polymer. Inside the target scattering chamber are several targets:

• The polarized 3 He cell is the main target used throughout most of the produc­
tion runs. The target is a 40-cm long gas cylinder oriented along the beam 
axis. In addition to helium, the target cell contains traces of nitrogen gas used 
to quench depolarization of helium from photons emitted during the optical 

pumping process and traces of rubidium. The target cell is described in more 
detail in a later section.
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•  The reference cell is of identical construction to the main target cell. It is used in 
one of two modes. When used as an empty reference cell, it maintains a vacuum 

and is used to estimate the backgound from the glass windows. When used as 
a nitrogen reference cell, it is filled with nitrogen gas and used to estimate the 

backgound from nitrogen contamination.

•  The BeO (beryllium oxide) target is used as a bull’s-eye for beam position and 
spot size alignment before any production run is taken.

•  The optics alignment target consists of an array of seven 12C foils. Since this 

was the first time that such a long cell had been used in Hall A, additional optics 
studies were required to extend the optics database used to map the particle 

trajectories. Results of measurements made with this target will be shown in 
the section discussing spectrometer optics.

A diagram of the target ladder is shown in Fig. 2.16.

2 .2 .8  B ea m  E x it C hannel and B eam  D u m p

After the target chamber the beam is channeled into the beam dump. This exit beam 

pipe is made of a thin walled aluminum spiral corrugated pipe of welded construction. 
The diameter varies from 6 inches to 36 inches. The pipe is maintained at a vacuum 
of 10-5 Torr with a turbomolecular pump. A diffuser with a beryllium window is 
connected via a 12-inch port to this exit of the pipe. The beam dump can sustain 1 

MW of power (200 / ih  at 5 GeV).

2.3 H igh R esolu tion  Spectrom eters

The High-Resolution Spectrometers (HRS) [69] consist of nearly identical Electron 
and Hadron arms shown in Fig. 2.6, and can be operated in singles or coincidence 
mode. Each arm has a QQDQ configuration of magnetic elements shown in Fig. 2.17. 
All quadrupole (Q) and dipole (D) magnets are superconducting magnets. General 
characteristics of the HRS are summarized in Table 2.3. The layout of the detector 
package in both spectrometer arms are displayed in Figs. 2.18 and 2.19. In the Elec­

tron arm, E94-010 utilized the Vertical Drift Chamber (VDC) for reconstruction of
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Momentum range 0.3-4.0 GeV/c

Configuration QQDQ

Bend angle 45°

Optical length 23.4 m

Momentum acceptance ±4.5%
Dispersion (D) 12.4 cm/%

Radial linear magnification (M) 2.5

D/M 5

Momentum resolution (FWHM) 1 x 10"4

Angular acceptance:

Horizontal ±28 mr
Vertical ±60 mr

Solid angle:
Rectangular approximation 6.7 msr

Elliptical approximation 5.3 msr

Angular resolution (FWHM):

Horizontal 0.6 mr
Vertical 2.0 mr

Transverse length acceptance ±5 cm
Transverse position resolution (FWHM) 1.5 mm

Spectrometer angle determination accuracy 0.1 mr

Table 2.3: Hall A HRS general characteristics.
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High Resolution Spectrometers

Figure 2.17: QQDQ configuration of magnetic elements for HRS in Hall A.

particle tracks, the scintillator planes SI and S2 for triggering, the gas Cherenkov 

for pion rejection, and the preshower and shower counters for scattered energy mea­

surement. The aerogel Cherenkov was not used for this experiment; see Fig. 2.18. 

In the Hadron arm, the experiment used the Vertical Drift Chamber (VDC) for re­
construction of particle tracks, the scintillator planes SI and S2 for triggering, and 

the gas Cherenkov for pion rejection. The aerogel Cherenkov, the carbon analyzer 
or focal-plane polarimeter (FPP), and the scintillator plane S3, typically used in co­
incidence experiments, were not utilized in this experiment. However, a lead glass 

calorimeter (not shown in the figure) was added in the rear for particle identification; 
see Fig. 2.19.

2.3.1  C oord in ate  S ystem s

The spectrometer optics allows one to reconstruct physical variables at the target from 
physical quantities measured at the focal plane in the detector hut, as illustrated in 
Fig. 2.20. Even though five different coordinate systems are described in the ESPACE 
manual [70], only two will be considered here.
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Figure 2.18: Hall A HRS Electron arm detector package. E94-010 made use of the Ver­

tical Drift Chamber (VDC) for reconstruction of particle tracks, the scintillator planes 
SI and S2 for triggering, the gas Cherenkov for pion rejection, and the preshower and 

shower counters for scattered energy measurement. The aerogel Cherenkov was not 
used for this experiment.

Spectrom eter R econstructed Coordinate System

The origin of this coordinate system is defined as a point at a distance of 1.25 m from 

the center of the central sieve-slit hole. The 2-axis z tg points from the origin to the 
center of the central sieve-slit hole. The x-axis x tg is orthogonal to the 2-axis and 

points downwards. The angle in the horizontal plane (r/2-plane) is <j>tg and the angle 
in the vertical plane (x2-plane) is 9tg. The spectrometer angle between the beam line 
and the 2-axis is 0o- The spectrometer reconstructed coordinate system is illustrated 
in Fig. 2.21.

Spectrom eter Focal-Plane Coordinate System

The origin of this coordinate system is defined by the intersection of wire 184 in the 
first wire plane of the drift chamber and the projection on the first wire plane of wire 
184 in the second plane. The z-axis Zfp is the projection of the central ray in the 
vertical plane. The x-axis Xfp is perpendicular to the z-axis and points downward.
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Figure 2.19: Hall A HRS Hadron arm detector package. E94-010 made use of the 

Vertical Drift Chamber (VDC) for reconstruction of particle tracks, the SI and S2 

scintillator planes for triggering, and the gas Cherenkov for pion rejection. The carbon 

analyzer or focal-plane polarimeter (FPP) was not utilized in this experiment. Neither 

was the aerogel Cherenkov nor the S3 scintillator plane, typically used in coincidence 
experiments. However, a lead glass calorimeter (not shown in the figure) was added 
in the rear for particle identification.

As a result, the x- and z-axis vary with fractional momentum A p/p  of the charged 
particle. The spectrometer focal-plane coordinate system is illustrated in Fig. 2.22.

2.3 .2  T ransport

Kinematic variables at the focal plane can be mapped to kinematic variables at the 
target using the spectrometer optics tensor [71,72]. Assuming mid-plane symmetry
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Zfp

Figure 2.20: The spectrometer central ray is scattered at the target. The central ray 

is then deflected by an angle of 45° at the dipole magnet (not shown). The position 

of the central ray is finally measured at the focal plane with the aid of the vertical 
drift chamber (VDC). The matrix elements of the spectrometer optics tensor map 

the kinematic variables at the focal plane (fp)  to those at the target (tg).

beam line

sieve slit

Figure 2.21: Spectrometer reconstructed coordinate system. The origin is a point 
1.25 m from the center of the sieve slit located at the entrance of the spectrometer.
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wire plane

particle track

Figure 2.22: Spectrometer focal-plane coordinate system, 

and setting x tg =  0, a first-order approximation to this matrix is:

' 5 ' ’ (5\x) (<f|0) 0 0 X

e

ooTT5̂
- e

y o o 'S" y

. $ . tg
0 0 (<%) (010) _ . 0

where 5 = (p—po)/po is the fractional momentum of the particle, p is the momentum, 
and p0 is the central momentum of the spectrometer. This simple matrix assumes a 

block-diagonal form because of mid-plane symmetry. In practice, the matrix above 

poorly describes the spectrometer optics. Instead, each target variable is expanded 
as a power series (up to fifth order) in the focal plane variables. That is:

ytg =  T , YM rV f A r
j,k,l

(2.31)

@tg =  £ r i « « W A .
j,k,l

(2.32)

(ptg
j,k,l

(2.33)

Stg
? k I

(2.34)

(2.35)
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where the transfer tensors Yjki, Tjki, Pjkh and Djm are polynomials in X f p , i . e .  Yjki =  
CiXlfp. The subscripts j ,  k ,  and I  of the transfer tensors are just powers of the focal 

plane variables 6fp, yfp, and d /p, respectively. The Q ’s are the matrix elements of 
the spectrometer optics tensor. Optimum values for the transfer tensors are obtained 

by minimizing the y 2 of the following aberration functions:

= v- \T.j,k.,yiu^ry/P’t’,f p - v V

H e  A )

m

E
S

E
S

+E 

E

T j k l 9 Jf p y f p <t>fp Ofg

S j,k,i pjkiOfPyfPftfP

(2.36)

(2.37)

(2.38)

where a is the resolution of the subscript variable.

2.3 .3  O p tics

The evolution of the transport matrix elements as a function of optical path length 

( z )  is shown in Fig. 2.23. The { x \ 0 q )  term is large in the dipole to provide good 

momentum resolution at the moderate bending angle of 45°. The (y\yo) term remains 

small inside the entire spectrometer to allow the use of extended targets (10 cm at 
90°). The spectrometer is a double-focusing design providing point-to-point focus 

in the dispersive direction, ( x \ 6 q )  =  0 , and point-to-point focus in the transverse 
direction, 3) =  0, at the focal plane, z ~  20 m. There is a transverse crossover in 
the middle of the dipole to keep the transverse elements small.

2 .3 .4  E x ten d ed  T arget O ptics S tu d ies

In previous measurements, the longest target used in Hall A was a 15-cm long hydro­
gen cryotarget. The polarized 3 He target cells are limited in density due to the need 
to obtain long polarization lifetimes. This led us to the design of a 40-cm long cell 
to obtain the desired luminosity. This, in turn, requires a new set of optics measure­
ments to obtain a database over a larger range of ytg. Measurements were undertaken
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Figure 2.23: Evolution of the first-order transport matrix elements along the optical 
path length of the HRS.
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at the beginning of our experiment using an array of thin 12 C foils spanning the tar­
get length of helium in conjunction with the installation of a sieve slit collimator in 

front of the first quadrupole of the spectrometer. Measurements were taken on elas­
tic scattering on 12C at various positions of the focal plane. The methodology used 

was to obtain a simultaneous bid to a collection of dispersive, angular, and extended 

target matrix elements. Although the measurements were taken simultaneously, the 

experimental procedure conceptually can be broken down into three tasks:

1. Measurements of the elastic scattering from 12C at the center of the focal plane 

were used to obtain the best momentum focus, then the peak was scanned to 

obtain a set of dispersive matrix elements. By this mean, a central momentum 
resolution better than 10-4 was obtained.

2. The angular matrix elements were constrained by the passage of the electrons 
through the holes in the sieve slit as shown in Fig. 2.24. The fitting routine 

required both a good resolution of the virtual image and a proper spacing of the 
holes in the spectrum. As shown in the figure, the sieve slit consists of a 7 x 7 

array of small holes machined through a lead collimator. Two of the holes were 
enlarged to resolve ambiguities in the orientation of the collimator coordinate 

system. As shown in the reconstructed image in the right of the collimator, 
these two holes are clearly resolved. After correcting the matrix elements, the 

holes are aligned exactly as predicted.

3. The critical item for this set of measurements was to obtain an extended set 
of ytg matrix elements. This requires a simultaneous fit to optimize ytg. As 
shown in Fig. 2.25 only the central five foils are visible in the acceptance of 

the spectrometer. At a forward scattering angle of 15.5°, the resolution along 
the z direction is not very good, only about 1.5 cm (FWHM). However, this 

corresponds to a 4 mm (FWHM) resolution in the ytg direction. Again the 
observed array spacing is exactly as predicted.

The target is sufficiently long that the end windows are usually out of the acceptance. 
Although in some cases, one or both of the target windows can be seen. Using the new 
set of matrix elements, we can cut the windows out of the analysis using the analysis 
software. This totally eliminates the major source of background to the experiment. 
Further details on spectrometer optics can be found in Ref. [50].
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Figure 2.24: Geometric (left) and reconstructed (right) configurations of the sieve slit. 

The two large holes, which allow for an unambiguous identification of the orientation 

of the image at the focal plane, can be clearly identified in the right figure.

2.4 Focal P lane Instrum entation

2.4 .1  V ertica l D rift C ham ber

The Vertical Drift Chamber (VDC) [73], designed and constructed by the Nuclear 
Interactions Group at the MIT Laboratory for Nuclear Science, is used for particle 

tracking. Each spectrometer has one VDC mounted on rails and inserted between 
the exit of the quadrupole magnet Q3 and the entrance of the detector hut. Each 

VDC is capable of achieving a resolution of 145 fj,m FWHM when operated at —4.8 
kV or 225 nm FWHM at —4.0 kV.

D escription

A layout of a VDC is shown in Figs. 2.26 and 2.27. Each VDC has a lower and an 
upper chamber. The lower chamber is upstream of the central ray and the upper 
chamber is downstream. The dimensions of the active area of each chamber are 211.8 
cm (dispersive direction ) x 28.8 cm (transverse direction). The distance between 
corresponding planes in each chamber is 33.5 cm. The placement of each chamber is 
such that the central ray passes through the center of the active area. Each chamber
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Figure 2.25: Reconstructed position along the beam line (.2react) for 862 MeV electrons 

scattered from the set of 12C foil targets. The lines indicate the expected positions of 
the foils. The central five of seven thin foils are visible within the ytg acceptance of 
the HRS.
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nominal 45° particle trajectory

Figure 2.26: Layout of the Hall A VDC. The lower and upper chambers lie in the 

horizontal plane and are aligned in such a way that the central ray passes through 

the center of the active area of each chamber.

has three high-voltage planes in the horizontal. Sandwiched between two high-voltage 
planes is a wire plane. Each wire planes contains 368 sense wires at 45° from the 
dispersive direction; wires from different wire planes are orthogonal to each other. 
Each sense wire is made of gold-plated tungsten and is 20 n m in diameter. The sense 
wire-to-sense wire distance is 4.243 mm.

Principle o f O peration

A VDC consists of a plane of evenly spaced, anode wires. Directly above and below the 

wires are two conducting planes kept at a negative high voltage. A l / r  electric field 
is generated near each wire; see Fig. 2.29. The entire chamber is filled with an argon- 
ethane gas mixture at 50%/50% proportion by volume. A charged particle traveling 
through the chamber leaves behind a trail of electrons and ions from the gas mixture. 
As these electrons approach the anode wires along the electric field lines, an avalanche 
of electrons and ions is created that induces a negative signal in the conducting wire. 
This signal is captured by dedicated electronics, amplified, discriminated, and read
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Figure 2.27: Side and top view of the Hall A VDC. The lower and upper chambers 

lie in the horizontal plane of the hall. The central ray is angled at 45° from each 
chamber and crosses the center of the active area of each chamber. Each chamber 

has two wire planes where one set of sense wires is angled at 45° from the particle 
trajectory and the other set is angled at —45°. The lower (upstream) wire plane is 

identified as the U-plane and the upper (downstream) wire plane is identified as the 
V-plane.
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Figure 2.28: Cross-sectional view of a Vertical Drift Chamber (VDC). A VDC has 

three high-voltage (HV) planes (solid lines) and two wire planes (dashed lines). The 
flow of the argon-ethane gas mixture is indicated by the wiggly line. The wire frames 

are labelled WF. The printed circuit boards (PCB) relay the signals to the readout 
electronics.

out by the data acquisition system. The VDC readout electronics is pictured in 
Fig. 2.30. The particle track is angled at 45° from the wire plane and typically 
induces signals in five neighboring wires. By using the triggers from the scintillators 

and some Time-to-Digital Converters (TDC), the drift time of the electrons from the 
particle track to the anode wire can be estimated, and subsequently the distance of 

the particle track to the anode wire. A single-wire drift-time spectrum is shown in 
Fig. 2.31. The number of events per time bin is

d N  dN ds
~dt =  I s d t ’ 2̂'39)

where dN/ds  is constant. The relationship between drift distance and drift time is 
shown in Fig. 2.32. Finally, a drift-distance spectrum is shown in Fig. 2.33.

2.4 .2  S cin tilla tor  P lan es

Each HRS contains two scintillator planes, SI and S2. Each scintillator plane in 
turn consists of six paddles. The active area on each SI paddle is 29.cm x 35.5 cm. 
The active area on each S2 paddle is 54.0 cm x 37.0 cm. Each paddle is made of 5
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cross-over point

geodetic

perpendicular distance (ycorr)

Figure 2.29: A particle track through a VDC wire plane resulting in avalanches of 
drift electrons in five sense wires. The paths of the drift electrons are the paths of 
least time and are called geodetics. The ellipses drawn around each sense wires are 
loci of transition where the electric fields change from linear to 1/r. The drift times 
measured and knowledge of the drift velocities due to properties of the gas mixture 

provide the perpendicular distances from the charged particle track to each sense 

wire. A least square fit of these distances is finally used to reconstruct the particle 
track.
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Figure 2.30: VDC readout electronics block diagram. The pulse induced by the 

charged particle in the sense wire is first amplified, then discriminated. This signal 
is used as a START signal to a time-to-digital converter (TDC). The STOP signal 

comes from the event trigger in the S2 scintillator plane. The output of the TDC is 
the drift time, the interval of time between initial ionization in the drift chamber and 
induction of the signal in the sense wire.

mm-thick BICRON 408 plastic scintillator and use multi-strip adiabatic light guides 
ending in a long cylindrical spool. At both ends of each paddle, at the cylindrical 

spools, are 2-inch Burle 8575 photomultiplier tubes (PMT). There is a 10 mm overlap 
between Si paddles and a 5 mm overlap between S2 paddles.

O peration

Each PMT in a S2 scintillator paddle registers about 400-500 photons per passage of 
a single charged particle. This yields about 80-100 photoelectrons in a fresh PMT. 

The discriminator threshold is typically set to 45 mV. A typical PMT gain is 3 x 106. 

The high voltage (HV) is set to about 1.8-2.0 kV. The time resolution achieved is 
about 0.2 ns.

2.4 .3  G as C herenkov C ounter  

Principle

The Hall A CO2 gas Cherenkov counters, built by Saclay and INFN, operate by de­
tecting Cherenkov radiation. Cherenkov radiation is emitted when a charged particle 
travels faster than light in a medium (in this case carbon dioxide) with a certain index 
of refraction {n = 1.00041 at atmospheric pressure). This radiation is emitted in a 
forward cone about the particle’s track at a well-defined angle as shown in Fig. 2.34. 
After a time t, the charged particle has traveled a distance Set and electromagnetic
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Figure 2.31: A single-wire drift-time spectrum.

radiation emitted from the moving particle forms a coherent wavefront with radius 

ct/n.  The angle 0 of the cone is related to the speed of the particle by:

ct /n  1
cos# = (2.40)

/3d (In

The threshold of production for Cherenkov radiation is f3 = 1/n, i.e., 6 =  0. The 

threshold momentum for a particle of mass m  is p — 7/3me, where 7  =  1/ \ / l  — P2- 
Using m e = 0.511 MeV/c2 for the electron and m n = 139.6 MeV/c2 for the charged 

pion, the threshold momenta for emission of Cherenkov radiation are 17.84 MeV/c 
and 4.875 GeV/c for electrons and pions, respectively. In E94-010, the momentum 

settings never exceeded the threshold for pions. Therefore, the Cherenkov counters 

can be used effectively, in theory, for pion rejection. The Cherenkov counters were 
designed achieve pion rejection of 1000:1.

D escription

The Electron spectrometer detector is a tank filled with CO2 of dimension 1.996 m 
x 0.558 m x 1.5 m. The Cherenkov light is reflected by 10 spherical mirrors and

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 2. EXPERIMENTAL SETUP  71

14

12

10

8

6

4

2

0
9 0 0 1100 1200 1300 16001500 1700

d rill tlrri* (TDC c h a n  r e .a )

Figure 2.32: Drift distance vs. drift time conversion. The dotted curves represent the 
possible range of fits for different angles of incidence.

collected by 5-inch PMTs of type Burle 8854. The signals are discriminated and sent 
to scalers and the trigger electronics.

2 .4 .4  L ead-glass C alorim eter  

Principle

An electron hitting a lead-glass calorimeter or shower counter will trigger an electro­
magnetic shower in the detector. This happens when a high-energy electron enters 
the lead-glass and emmits bremstrahlung radiation. These photons in turn create 

electron-positron pairs that emits more photons by bremstrahlung radiation. The 
cycle is repeated until there is not enough energy left to create any electron-positron 
pair. Visible light emitted by Cherenkov radiation is detected by PMTs at the end 
of each lead-glass block.
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Figure 2.33: Drift-distance spectrum. Show is the drift time spectrum for Fig. 2.31 

after making the drift-distance to drift-time conversion shown in Fig. 2.32. The re­
sulting spectrum is flat as expected when scattering in the structureless deep inelastic 
region.

D escription

The Electron arm has two layers of lead-glass blocks. The first layer constitutes the 
preshower and the second layer the shower counter. Together, these two layers make 
a total absorption calorimeter, i.e. the electron will lose all of its kinetic energy in 

the detector in the form of radiation. A similar lead-glass detector was built for the 
Hadron arm but unlike the Electron arm it was not total absorption.

2.5 D ata  A cquisition

Upon completion of E94-010, over 4 terabytes of raw data were successfully archived in 
mass storage. A schematic of the Hall A DAQ (Data Acquisition) system is shown in 
Fig. 2.35. The workhorse behind the data acquisition process is the CODA (CEBAF
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ct/n,

Figure 2.34: Cherenkov radiation. A charged particle in a medium with index of 

refraction n  travels from left to right at speed (5c greater than the speed of light c/n  
in that medium. A shock wave is created and propagates in a coherent wavefront 

defined by the angle 0.

Online Data Acquisition) [74] software package.

2.5 .1  D escr ip tio n

The Electron arm has one FASTBUS crate and the Hadron Arm has two FASTBUS 

crates. The second FASTBUS crate in the Hadron Arm houses the FPP (Focal Plane 

Polarimeter) electronics. The FPP was not used during this experiment. The crates 
provide power to their modules and coordinate the flow of data between modules. 
The crates house different types of modules:

• LeCroy 1877 TDCs operating in common-stop mode with 0.5 ns resolution for 
the vertical drift chambers

• LeCroy 1875A TDCs operating in common-start mode with 0.1 ns resolution 
for the trigger scintillators and Cherenkov counters

• LeCroy 1881M ADCs for the trigger scintillators, Cherenkov counters, and lead 
glass counters
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HALL A DATA ACQUISITION SYSTEM
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Figure 2.35: The passage of a charged particle through one of the spectrometers 

causes the Trigger Supervisor to initiate readouts of all ADCs, TDCs, and scalers in 

the corresponding FASTBUS and VME crates. The Event Builder then assembles 
the many fragments into a single event. Events are written into a CODA file which is 

later sent to mass storage. The user controls the data acquisition system via a GUI 
(Graphical User Interface) called Run Control running on a Unix workstation located 
in the Counting House.
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Each spectrometer is equiped with a VME crate for BPM (Beam Position Monitor) 
and raster data. The following nomenclature is used for refering to the readout 
controllers (ROCs) in different crates in Hall A:

• ROC1: FASTBUS on E-arm

• ROC2: FASTBUS on H-arm

• ROC3: FASTBUS on H-arm for FPP (not used during E94-010)

• ROC14: VME on H-arm

• ROC15: VME on E-arm

The Trigger Supervisor is an electronic module developed by the Jefferson Lab Data 

Acquisition Group to synchronize readouts and prescale trigger inputs. Each spec­
trometer has its own TS and can therefore be run independently. Experiments can 

choose to run in 1-TS or 2-TS mode. In single Trigger Supervisor mode, only the 

Trigger Supervisor in the Hadron Arm is operated. The naming scheme for Trigger 
Supervisors is:

• TSO: TS on E-arm

•  TS1: TS on H-arm

2.5 .2  C O D A

The CODA software package [74] is a toolkit developed by the Jefferson Lab Data 
Acquisition Group to control complex data acquisition systems. The User’s Manual 
for CODA 1.4 is a rich source of information about elementary concepts in CODA [74].

A charged particle incident upon one of the spectrometers generates electronic sig­
nals in the detectors (vertical drift chambers, trigger scintillators, Cerenkov counters, 

and lead glass counters). These signals are sent to ROCs (Readout Controllers). Af­
ter suitable discrimination, signals from SI and S2 scintillator planes, and Cherenkov 
counters are utilized by the trigger electronics to classify the event as a possible trig­
ger type; T1 or T2 for the Electron Arm, and T3 or T4 for the Hadron Arm. In case 
an event was registered, the Trigger Supervisor initiates readouts from all ROCs as 
well as scaler in VME crates. The CODA Event Builder then bundles the multitude
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Figure 2.36: CODA physical record format. Shown here is the header for a CODA 

physical structure. The actual elements of the data block are self-describing as to 
type of data and length of arrays.

of readouts into a CODA event. Finally, the event is saved into a CODA file to be 
archived later in mass storage. The CODA Data Distribution system can be used 

effectively as a powerful tool that allows real-time display of scalers and histogram- 
ming of detector signals to monitor the quality of data during the running of the 

experiment. In addition, the codes DHIST and DATASPY, based on the DD system, 
are used in Hall A for real-time data monitoring [75].

2.5 .3  C O D A  F ile  Form at

A CODA file is a series of fixed-size physical records. Typically a physical record 
would have size of 32,768 words where a word is 4 bytes (32 bits), thus the record 
size is 128 KB. Each physical record has the structure shown in Fig. 2.36.
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HBOOK files

Figure 2.37: ESPACE reads in a raw data file, a header file, a database file, and a 
detector map, then writes several HBOOK files to disk.

2 .5 .4  E S P A C E

ESPACE (Experiment Scanning Program for hall A Collaboration Experiments) [70] 
is the de facto off-line analyzer for Hall A. ESPACE was originally developed by Eddy 
Offermann and based on an earlier analyzer from Mainz. Much documentation about 
ESPACE can be found on its website [70]. ESPACE accepts the following files for 
input:

• Raw data file as output by CODA during each run

• H eader file which contains information needed to construct some of the vari­
ables
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•  D atabase file which contains spectrometer constants and detectors

•  D etector map which catalogs a comprehensive mapping between detector 

readouts and electronic channels.

A KUMAC file is a macro file for the KUIP [76] command interpreter which provides 

ESPACE with a PAW-like [77] interface. ESPACE executes the commands in the 

KUMAC file then outputs several HBOOK files with ntuples and histograms. The 
entire process is diagrammed in Figure 2.37.

2.6 Polarized  3H e Target

2.6 .1  In trod u ction

Experiment E94-010 utilized a polarized 3He target cell as a source of polarized neu­

trons. Polarization of the target cell is a two-step process: optical pumping and spin 
exchange.

2.6 .2  O p tica l P u m p in g

Alkali metals have a single electron in their outer shell. The ground state of that 

electron is denoted 2S'i/2- In the spectroscopic notation n2S+1L j  with n  the principal 
quantum number, S  is the spin, L  is the orbital angular momentum, and J  is the 
total angular momentum. 2S + 1 is the multiplicity of the state. Electrons have 
spin S  = 1/2 so the multiplicity is 2. L takes on the values S  — 0, P  = 1, D = 2, 
F  — 3, G =  4, etc. J  = \L ±  S\ is the sum of the orbital and spin angular momenta. 

So for a P-state electron, J = | l ± l / 2 |  =  l / 2 o r 3 / 2 .  It follows that alkali metals 

also have an excited state split by spin-orbit coupling: 2P i/2 and 2Pi/2 - These states 

undergo further Zeeman splitting by the introduction of an external magnetic field. 
An electron in one of the excited states will drop down to the ground state via optical 

transitions Di  (2P i/2 —1" 2S'i/2) and D2 CP3 /2  —> 2<S'i/2)* These spectral lines are 
termed a doublet (see Fig. 2.38), the most famous of which is the sodium doublet 
appearing in the optical spectrum as two distinct lines at Di  =  589.59 nm and Z)2 =  
588.96 nm. In optical pumping of alkali metals, right circularly polarized photons, 
tuned to the wavelength of the Di  line are applied to a sample in a holding magnetic
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Figure 2.38: The doublet D\ and D2 of alkali metals are optical transitions from the 

excited states 2P \ / 2  and 2P^/2 respectively to the ground state 2S\/2 -
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Figure 2.39: A circularly polarized beam of light tuned to the D\ line forces atoms 
from the rrij =  —1/2 ground state to the m j  =  + 1/2  excited state. They in turn decay 

back to both levels m j  =  —1/2 and nij  = +1/2  of the ground state. Eventually, the 
pumping cycle depopulates the m j  =  —1/2 ground state in favor of the m j  =  +1/2 
ground state. This technique is known as optical pumping.
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field. These pumping photons must be in the direction of the applied magnetic field. 
Because of selection rules in optical transitions, only transitions from the ground state 

251/2, m J = —1/2 to the excited state 2Pi/2 , rnj =  +1/2  are induced. Transitions 
back to the ground states 2Si/2, vnj =  +1/2  and 2Si/2, raj =  —1/2 occur by emission 

of linearly polarized light 7r and right circularly polarized light cr+, respectively, as 

shown in Fig. 2.39. In time, the pumping cycle will depopulate the ground state 

rrtj = —1/2 in favor of rrij = +1/2. The polarization of the alkali metal can be 
reduced by relaxation processes that include collisions between atoms and collisions 
with the wall of the container. Moreover, when the excited electrons radiatively 

decay back to the ground state, they do so by emitting unpolarized fluorescence 
photons at the Di or D2 line. That is they would tend to populate the m j  = +1/2  
and m j  = —1/2 ground state equally. To quench this depolarization process, trace 

amounts of a buffer gas, in this case nitrogen (N2), are introduced into the target 
cell. This way, the excited electrons are able to decay radiationlessly, by transferring 
energy to the vibrational, rotational, and translational degrees of freedom of the 

N2 molecule, to the ground state. Unfortunately, since the introduction of nitrogen 
dilutes the 3He cross section, there is a tradeoff between its quenching ability and 
its polluting of the 3 He cross section. Typically, the nitrogen to 3 He number density 

ratio is about 1:80. The alkali metal used in E94-010 was rubidium. Its Di line is at 
795 nm and D2 line at 780 nm [78]. The natural abundance of the two stable isotopes 

of rubidium is 72.165% for 85Rb ( /  =  5/2) and 27.835% for 87Rb (I  =  3/2) [43].

2.6 .3  Sp in  E xchan ge

The spin exchange process involves the hyperfine interaction of the electronic spin of 
Rb with the nuclear spin of 3He. Schematically, the reaction is

The magnetic dipole moment /rn of the neutron in the 3He nucleus is [79,80]

where gn is the neutron g-factor, I is the nuclear spin, and /iN =  e/2m p is the nuclear 
magneton. The magnetic dipole moment fie of the rubidium valence electron is

R b (T )+ 3H e ( i ) ^ R b ( | )  +  3He(T). (2.41)

(2.42)

/+ ^ — 2//^jSm e
(2.43)
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where S is the electronic spin and Hb — e/ 2me is the Bohr magneton. The magnetic 
field generated by /in is [52]

3(//n • f) -  firB + y M ( r ) (2.44)

The potential energy of a dipole in an external magnetic field is U =  — /i-B , therefore 
the interaction Hamiltonian is

H se = ~
3(/7i ' f)(jUe • f) -  (/in • /ie)

y ( / i n ‘ fle)S(r) (2.45)

For an electron in a spherically symmetric s state, the expectation value of the first 
term vanishes and the spin exchange Hamiltonian becomes [81]

167T
H se = —  gnLNLBl • S |^ e(0)|/ 

The time evolution of the 3He polarization is [81,89]

(2.46)

PHe(t) — (PRb)
1 S E

[i _ p-CsE+Vl >.] (2.47)
_ l S E  +  Ti _

where (Pm) is the average Rb polarization, 7se  is the spin exchange rate, and T1 is 
the 3He polarization relaxation rate excluding spin exchange.

2 .6 .4  N M R  P o larim etry

Consider a magnetic dipole with moment n  immersed in a magnetic field B. The
torque r  experienced by the magnetic dipole in the presence of the magnetic field is
given by

t  = 11 x  B. (2.48)

If S is the spin that gives rise to the dipole, then

ix =  7 S (2.49)

where 7  is the gyromagnetic ratio. Since torque is the rate of change of angular 
momentum,

^  =  I P  x B. (2.50)
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In a macroscopic medium with many dipoles, it is customary to introduce the mag­
netization M  as the magnetic dipole moment per unit volume. The magnetization is 
given by [82]

—  =  y M x B  (2.51)
(Jib

Eq. 2.51 describes the vector M  as precessing in an inertial frame with angular veloc­

ity uj — yB. In a physical sample, spin-lattice relaxation or longitudinal relaxation 
involves the exchange of energy with other degrees of freedom (lattice). This relax­
ation mode is characterized by a relaxation time Ti and relaxes Mz to an equilibrium 

value Mq. Spin-spin relaxation or transverse relaxation involves destructive interfer­

ence with other spins. This relaxation mode is characterized by a relaxation time 
T2 and relaxes Mx and My to 0 [83]. Phenomenologically, the equation of motion is 

modified to provide the Bloch equations, first introduced by Felix Bloch in 1946 [84]:

dMx/dt  = ~i(MyB z -  MzB y) -  Mx/T 2 j
dMy/dt  = ^{MZB X -  MXB Z) -  M y/T 2 \  (2.52)

dMz/dt  = ~i(MxB y -  MyB x) -  (Mz -  M0)/Ti  J
2.6 .5  E P R  P o larim etry  

Principle

The EPR (Electron Paramagnetic Resonance) sometimes known as ESR (Electron 
Spin Resonance) principle is very similar to NMR (Nuclear Magnetic Resonance). 

Whereas NMR relies on the interaction of the nuclear spin with an external magnetic 
field, EPR is a result of the electronic spin of paramagnetic substances interacting with 

an external magnetic field. A paramagnetic material is one possessing an unpaired 

outer shell electron producing a net, non-zero electronic spin. The case of paired 
outer shell electrons with zero net spin or closed shell atoms is termed a diamagnetic 

substance. The energy splitting A E  in the presence of the magnetic field B  provides 
the fundamental equation of EPR [85]

hu = A E  = gsHsB  (2.53)

where h =  4.135 667 27(16) x 10-15 eV s is the Planck constant, v  is the frequency 
in Hz, gs =  —2.002 319 304 3737(82) is the Lande g-factor of the electron, and
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Hb =  e/j/2m e =  5.788 381 749(43) x 10-5 eV T -1 is the Bohr magneton [86-88]. 
During E94-010, the holding field was set around 18 G. This puts the resonance 

frequency at about 50 MHz, in the RF (Radio Frequency) region.
EPR polarimetry involves measuring the shift of the Rb Zeeman resonance line 

induced by the magnetic field created by polarized 3 He [89]. There are two processes 

responsible for shifting the Rb Zeeman resonance: Rb-He spin exchange and 3He 

magnetization. The hyperfine structure Hamiltonian for an atom in a magnetic field 

B is [90,91]

H  = h A l - S  + B
3(1 • S)2 +  | ( I  • S) -  1(1 +  1 )S (S  +  1)

21(21 -  1)S(2S -  1)
+9s Î b S • B +  g m NI • B (2.54)

where I is the nuclear spin and S is the electronic spin. A  is the magnetic dipole 

interaction constant and B  is the electric quadrupole interaction constant. Its is zero 

for S  = 0 or 1/2 because the electron distribution is spherically symmetric for these 

cases, gi is the Lande g-factor of the Rb nucleus. The quantity (x^ =  e.h/2mv = 

3.152 451 238(24) x 10-8 eV T -1 is the nuclear magneton [86]. The ratio Hi/un — 
+1.353 351 5 and I  =  5/2 for 85Rb [43]. Furthermore, since fii = g i j i^ I  [85], 
gi =  0.541 340 6. The Rb-He spin-exchange process contributes a K  • S term to the 
Hamiltonian [78]

TL = hAl  • S +  h a K  • S +  gsLB& • B +  <?//qvI • B (2.55)

where K  is the nuclear spin of 3He and a  is the frequency shift parameter. The bulk 

magnetization of the polarized 3He adds an effective static field SB to the external 
magnetic field B

SB = G/j,He[He\PHe (2.56)

where PHe is the polarization of 3He, [He] is the 3He number density, g,He is the mag­
netic moment of 3He, and G is a geometrical factor characterizing the target cell. For 
example, G = 87r/3 for spherical volumes. The term I • S dominates the Hamiltonian. 
A — 1012 MHz in comparison to g s g s B /h  = 50 MHz at B  = 18 G. The I • B  term is 
even more diminutive since /jLn/hb = rne/ m p «  1/1836. Consequently, in considering 
eigenstates of TC, it is reasonable to invoke the eigenstates of total angular momentum 
F  =  I +  S. Their energies are given exactly by the Breit-Rabi formula [90-92] for an
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intermediate field, that is the interaction between the external magnetic field and the
atom is comparable to the hyperfine interaction,

hA h A
E{F  = I  ± 1 / 2 , M f ) = - — - 9lgNB M F ± — (2I + l)

I 4Mp
x y 1 + W T i x + x 2  (2-57)

where x  =  2(gsfJ-BB +  gigFB  +  ha(K )) /hA (2 I  +  1). The energy difference between 
adjacent energy levels is

AE  = E(F, M F) — E(F, MF — 1) (2.58)

(2.59)
1 + ^ i x + x 2 - y 1+AAm r r x + x 2

x  <C 1 at low magnetic field, so x 2 can be dropped in expanding the radical terms in 
Taylor series.

hl, = A E = — x =  (g s H B + 9 , M ) ( B  + 6B) + ha (K)  (2 M)
2 21 "I- 1

where the classical magnetic field SB of the polarized 3He is shown explicitly. The 

frequencies for each polarization direction are

T _  gsLB(B +  SB) +  ha(K)
(2.61)

 ̂ _  gsyB(B -  SB) -  ha{K)
h(2I  +  1)

h a (K ) (2 62) 
h(2I  + 1 )  1 1

where the gif^N term was ignored since it is much smaller then the corresponding 
gsLB term. The EPR frequency shift is then

* T l 9sLb , a{K)X vepr — v — v = —— ---- -SB  H-----------
h ( 2 I  +  1) 21 +  1

The EPR frequency shift is usually written as [93]

(2.63)

where «0 is a constant that depends on temperature only [94]

T  -  100°<?
K0 = (5.17 ±0.37) 1 + (2.65)

Measuring the 3He polarization is reduced to measuring the difference in EPR fre­
quencies for each polarization orientation.
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Figure 2.40: Instrumentation for EPR polarimetry. The p-i-n diode picks up the 

EPR signal from a window on top of the oven. That signal is extracted with a lock- 
in amplifier, then sent to a PI controller box which outputs the frequency at which 

the signal is zero (EPR resonance frequency). The resulting signal is mixed with a 
modulation source, then sent to a VCO to provide the frequency that drives the EPR 
coil. The EPR coil provides the RF excitation to induce EPR transitions of Rb in 
the target cell.
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I n t e n s i t y

I n t e n s i t y

F r e q u e n c y

F r e q u e n c y

Figure 2.41: EPR lineshape.
Figure 2.42: First derivative of EPR 
lineshape.

Instrum entation

The apparatus to detect the EPR resonance of rubidium is shown in Fig. 2.40. A RF 

field of 6 kHz modulated at 200 Hz was applied via the EPR coil. The field is trans­
verse to the main holding field. The effect of the RF field is to induce the transition 
Mp  =  3 —> 2 in rubidium. The electrons in the state Mp = 2 are then optically 

pumped to the excited P-states. Most of these excited electrons decay back to the 

ground S-state radiationlessly with the help of the buffer gas (nitrogen). However, a 
small minority, typically 3 to 5%, decays by emitting a D\ =  795 nm or D2 =  780 nm 

fluorescence photon. Due to frequency modulation of the magnetic field, the intensity 

of the fluorescence is proportional to the first derivative of the EPR resonance with 
respect to the excitation frequency [95]. The EPR lineshape and its first derivative 
are shown in Figs. 2.41 and 2.42. To avoid stray Di radiation from the pumping 

lasers, a Do filter is placed in front of the p-i-n diode or photodiode that monitors 

the fluorescence of the pumping chamber. The EPR signal from the photodiode is 
extracted with a lock-in amplifier, then sent to a PI (proportional-integral) controller. 

The PI controller locks in to the EPR resonance frequency which is the frequency at 

which the first derivative of the EPR lineshape is zero. The resonance frequency is 
mixed with a low frequency modulation source, then fed to a frequency counter and 
a VCO (voltage-controlled oscillator) to drive the EPR coil. The purpose of the feed­
back circuit (PI controller) is to account for drifts in the holding field and hence drifts 
in the EPR resonance frequency. The particulars of the feedback circuit are exposed 
in Fig. 2.43. A typical EPR data taking session consisted of sweeping the frequency 
through EPR resonance using the technique of AFP (Adiabatic Fast Passage) to flip
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Figure 2.43: The proportional-integral controller output coupled with the modulation 

source Vmoct adjusts the input to the voltage-controlled oscillator at Vout to keep the 
input to the lock-in amplifier Vin at zero [89].
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Figure 2.44: Representative EPR frequency shift data set taken on 9/28/1998 at 9:53 
pm. The difference in the EPR resonance frequencies between the alternate spin 
directions is proportional to the 3He polarization. Here the EPR frequency shift is 
roughly 21 kHz out of 12 MHz.
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Figure 2.45: Schematic of the polarized 3He target used during E94-010. The upper 
right features a set of high-power lasers. The upper left displays the polarizing optics. 

Only one set of Helmholtz coils is shown. The RF drive coils are used for both EPR 

and NMR measurements. The target cell sits at the center with its pumping chamber 
located inside an oven.

the spins at intervals of about a minute. A sample EPR data set is shown in Fig. 2.44. 

The difference in EPR resonance frequencies is proportional to the 3He polarization.

2.6 .6  P o larized  3H e T arget S etu p

The setup of the polarized 3He target is shown in Fig. 2.45. A set of high-power diode 
lasers is shown on the upper right. They are used for optical pumping of the target 
cell. Four lasers are used for each pumping direction: longitudinal and transverse. In 
the upper left is shown the polarizing optics which consists of focusing lenses, mirrors, 

half-wave plates and quarter-wave plates. The latter are used to polarize the laser
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beam. The beam polarization achieved is close to 100%. The oven, in the center of 

the diagram, holds the pumping chamber. The oven is used to bring the rubidium 
in the pumping chamber to a temperature of 170°C and in its gaseous state, to be 
used in spin-exchange collisions with the helium in the target cell. There are two sets 

of Helmholtz (main holding) coils, but only one set is shown in the diagram. The 
other set is perpendicular to the first one. The combination of all four Helmholtz 

coils provide a main holding magnetic field in any direction in the horizontal plane. 

The field is utilized to define the polarization direction. The RF drive coils provide 

a radio frequency field of 91 kHz during a NMR target polarization measurement. 

The EPR drive coils achieve a similar purpose but for the EPR target polarization 
measurement technique. The EPR p-i-n diode reads the shift in the rubidium optical 
transition which is proportional to polarization. The pick-up coils, along the length 
of the target chamber, are used to read the induced signal during an AFP/NM R 
measurement of the target polarization. Not shown is the target ladder that includes 

the reference cell and other targets used for calibration.
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Chapter 3

ANALYSIS

There are two fundamental quantities of interest that are sought after in many ex­

perimental nuclear and particle physics experiments: cross section and asymmetry. 
From these two observables, much of the physics being investigated can be readily

The experimental differential cross section is obtained with the following formula:

where a is the total cross section, AQ = AdAcp is the angular acceptance of the 

spectrometer, AE'  is the bin size in scattered electron energy, N  is the number of 
scattered electrons, N-mc = Q/e  is the number of incident electrons and is simply 

the accumulated charge Q normalized by the electronic charge e, and Atarget is the 

number of target nuclei per unit area. The experimental asymmetry is calculated 
with the following formula:

where /  is a dilution factor introduced by unpolarized nuclei in the target cell, notably 

nitrogen, Pb is the beam polarization, Pt is the target polarization, and is the

number of detected scattered electrons with positive (negative) helicity.

3.1 P rocedure o f A nalysis

A grand overview of the analysis procedure is illustrated in Fig. 3.1. The raw count­
ing rates N + and N~  for particles detected in the spectrometers may contain pions

extracted. These quantities bridge the gap between experiment and theory in physics.

A n  A E ’’inc-''target
(3.1)

^ exp f P hPt N+/Q+ + N - / Q ~ '
1 N+/Q+ -  N - / Q -

(3.2)

90
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and other unwanted particles besides electrons. Thus, the events are subjected to 

particle identification with the shower and Cherenkov counters. Events that fail to 

provide a good track reconstruction by the drift chambers are also eliminated. In 
addition, each detector introduces a detection efficiency which must be corrected for. 

Normalizing the resulting scattered electrons counting rates iV+ and T Vb y  the total 

beam charge, the dilution factor, the beam and target polarization, the target density, 

the angular acceptance of the spectrometer obtained by Monte Carlo simulations, the 
beam energy, and the radiative corrections provide the cross sections and asymme­

tries. Suitable combinations of the cross sections and various kinematical factors give 
the structure functions and GDH sum rule for 3He. The corresponding physics quan­
tities for the neutron are extracted from 3 He by accounting for nuclear effects with 
the convolution approach of C. Ciofi degli Atti et al. [32].

1
P a rt ic le  ID  

D e te c t io n  E f f ic ie n c y

N+'̂ corr N itro g e n
D ilu tio n

Ncorr n ;

Q+

Q'

t
n t A£2 E.

1 ta rg e t

C u r re n t 
C a lib ra t io n

B e a m  a n d  T a rg e t 
P o la r im e try

T a rg e t A n a ly s is

S p e c tro m e te r  
S im u la tio n

B e a m  E n e rg y  
M e a s u re m e n ts

Gir

°n'

ax '

3He

g1(x,Q2)
g2(x,o2)
Sum Rule

I  N u c le a r  

I  S t ru c tu r e

neutron

g1(x,Q2) 
g2(x,o2) 
Sum Rule

Figure 3.1: Analysis flowchart from raw counting rates to neutron structure functions 
and the GDH sum rule.

3.2 D ata  R eduction

The event mode data goes through several stages of filtering in the process of extract­
ing cross sections and scattering asymmetries. These stages include:
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1. Event acquisition is limited by the data readout and data transferred rates, 
requiring normalization to the raw trigger rate, as described in a later section.

2. Events are selected for processing by requiring the reconstruction of a good 

event track in the wire chamber. Multiple tracks are rejected by the algorithm. 

The results are renormalized to account for the events not analyzed and other 
deadtime corrections.

3. “Good events” are further filtered by geometrical cuts and particle ID cuts 
discussed further in the following sections.

4. The cross section generated must then be normalized for luminosity and accep­

tance. Most of these corrections are standard to event mode in Hall A HRS 
event analysis.

Here only the cuts specific to this experiment will be discussed.

3.2 .1  G eom etr ica l C uts

The main purpose of the geometrical cuts is to get rid of events coming from the 

target windows and to cut off the edges of the spectrometer acceptance. That is, it is 
desirable to stay within a well-understood part of the acceptance and keep away from 

regions such as the edges of the acceptance where poor statistics yield large errors 
and the acceptance is not well understod. The geometrical cuts are applied on target 

variables 9, </>, y, and S. Two two-dimensional cuts were applied to the data from 
both the Electron and Hadron spectrometers. The first is a cut on the transverse 

acceptance variables <f) and y. The second is a cut on the bend plane observables 9 
and S. The geometrical cuts used in the final analysis are shown in Fig. 3.2.

3.2 .2  E lectron  A rm  Show er C ounters

Calibration of the shower counters is essential in order to determine pion rejection 
rates ( tv/ e  ratio). Cuts on the lead glass calorimeters along with cuts on the Cherenkov 
counters can separate pions from electrons by several orders of magnitude. An un­
derstanding of the issues associated with these detectors such as detector efficiencies 

and pion suppression abilities is of paramount importance. The calibration of the
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Figure 3.2: Geometrical cuts on target variables 0 (Theta), <p (Phi), y (Y-target), and 
8 (Dp) used in the final analysis. The concentration of events in the lower right-hand 

quadrant outside the cut region in the left figure is due to the target windows.

shower counters for both the Electron and Hadron Arms during E94-010 is detailed 

in Ref. [96]. The technique employed is described in detail in Ref. [97].

Calibration

Einstein’s relation, E 2 = p2 +  m 2, simplifies to E  «  p or E /p  «  1 for electrons 

(me — 0.511 MeV) at the high beam energies of E94-010 (0.862-5.070 GeV). This is 
verified in the plot of E /p  vs. p in Fig. 3.3. The low data points come from runs 
taken near the end of the experiment when the scintillator threshold was lowered 

due to efficiency problems. It is believed that some of the helium which was used to 
fill the target chamber escaped and corrupted the vacuum of the phototubes of the 
scintillator counters thereby lowering their efficiency. The immediate solution was 
to lower the threshold of the trigger scintillators which caused some noise in trigger. 
However, after final cuts, this was no longer a problem. The high data points come 

from runs with momentum settings near the limits of the spectrometers. The NMR 
probe of the dipole proves unreliable and a gaussmeter must be used instead. The 
difference can be attributed in part to a systematic error between the NMR probe 
and the gaussmeter. The fractional resolution a / E  scales inversely as the square root
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of energy E. This is because electromagnetic showers obey a Poisson distribution, for 
which the variance a2 is equal to the mean energy E. A shower counter’s fractional 
resolution is then:

a \/~E 1

e  = - e = 7 e - ( 3 ' 3 )
An additional factor is needed to account for various fundamental processes that 

lead to energy deposition in the detector [98,99]. In particular for lead-glass shower 

counters, c / E  5% /\[E  as indicated in Table 27.5 of Ref. [100]. This agrees well 

with the measured values shown in Fig. 3.3 (c/p  ~  5.3%/y/p) and Fig. 3.7 {c/p ~  
4.2%/^/p) for the Electron Arm and Hadron Arm, respectively.

D etection  Efficiency

A T1 event is recorded when paddles from scintillator planes SI and S2 fire in an 

acceptable pattern, and the Cherenkov counter fires. The recipe for calculating the 
efficiency of the calorimeter after selecting T1 events that pass the geometrical cuts 
described above is:

. events registered in preshower, shower, and Cherenkov counters . .
efficiency = ------------------------------ :------- ———------   . (3.4)

events registered m Cherenkov counter

As can be seen in Fig. 3.4, the detection efficiency is consistently better than 99% 

except at low energy (862 MeV) where a few events are omitted by the cluster forma­
tion algorithm. This fact is dramatically illustrated in Fig. 3.5. Many events to the 
left of the histogram never enter the data acquisition system. A possible remedy for 
the situation is to use the output of the raw ADCs instead. The E /p  and preshower/p 

cuts introduced in Fig. 3.5 excludes certain good electron events. Nonetheless, the 

inefficiency of these cuts was kept below 1%. [

Pion Suppression

The estimate for pion contamination is achieved by applying cuts on different detec­
tors:

1. Cut on the preshower: An initial anti-Cherenkov cut, i.e. selection of all par­

ticles that fail to trigger the Cherenkov, is submitted. Ideally, no electrons are 
left in the histogram. A cut is now made on the preshower where the pion peak
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Figure 3.3: Plots of E / p  (top) and a/p  (bottom) vs. p showing proper calibration of 
the shower counters in the Electron Arm.
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Figure 3.4: Detection efficiency for the Electron Arm. At low energy (862 MeV) the 

cluster formation algorithm drops a few events.

is much more pronounced since not all of the pion energy is absorbed in this first 

stage of the shower counter. The ratio of pions before to after the preshower 

cut is the preshower pion suppression factor. It is typically around 4-5.

2. Cut on the Cherenkov: An E /p  plot reveals two peaks. Pions are on the left 

and electrons on the right. An E /p  cut then separates pions from electrons. A 
further anti-Cherenkov cut then selects pions. The ratio of pions before to after 
the anti-Cherenkov cut is the Cherenkov pion suppression factor.

to obtain suppression factors. The results are shown in Fig. 3.6. The final pion 

contamination is the ratio of pions to electrons inside the E / p  cut, divided by the 
preshower and Cherenkov suppression factors.

3 .2 .3  H adron  A rm  Show er C ounter

A calorimeter consisting of 32 (16x2) lead-glass blocks was added to the rear of the 
detector stack in the Hadron Arm prior to E94-010.

r  ""..........!.....
.............................. ;.......... A  .... - •  : .X................ "

|XV-XT---kY------ ▼............

: TT
~ ............... .......• ......... i.................. :........i ....... ...................

A ^  *  : T

- ............... |.................X...................; .................. ;................... ................... ...................

..............  A------------ r............. f : -------------- ...................
> t > t»111111111111 • >:> > A 862 MeV 

O 1720 MeV 
•  2591 MeV 
X 3384 MeV 
V  4240 MeV 
11 5070 MeV

■ ..............1 ..................1...............  i. ............... i...............

- 1 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 3. ANALYSIS 97

Lost events
1.4

1.2

0.6

0.4

0.2 prsh/p cut

0.60.2 0.4 1.2 1.4

Show er/ P

Figure 3.5: Two-dimensional histogram of preshower/p vs. shower/p  at 862 MeV 

showing E /p  and preshower/p cuts, where E  =preshower+shower. The cluster forma­
tion algorithm drops some events on the left as is discussed in the left hand spectrum, 
resulting in a reduced efficiency.

Calibration

The shower counter in the Hadron Arm is not a total absorption calorimeter. The 

method used to calibrate the Electron Arm calorimeter cannot be used here. For 
calibration purpose, only events that fire in a single block are examined. This is to 

avoid miscalibration with events that pass through fissures between adjacent blocks in 
the calorimeter. The method of analysis is fully described in Ref. [96]. The software 

gain of each block is then manually adjusted to normalize the shower output by 
particle momentum to unity. The results are displayed in Fig. 3.7. The detector 
resolution a / E  of the Hadron Arm calorimeter is worse than that of the Electron 
Arm by about 1%.
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Figure 3.6: (A) Pion suppression with a preshower cut. An anti-Cherenkov cut is 
applied to the initial data sample to isolate pions. A preshower cut is made on the 
pion population. A factor of 4-5 is obtained in this fashion for the ratio of pions 
before to after the preshower cut. (B) Pion suppression with a Cherenkov cut. Pions 

are identified as those particles to the left of the E /p  cut. An anti-Cherenkov cut is 
then applied to the pion sample. The resulting ratio of pions before and after the 

anti-Cherenkov cut is of a couple of orders of magnitude.

D etection  Efficiency

The detection efficiency of the Hadron Arm shower counter is reduced by the loss of 
electrons that pass through the spacing between adjacent lead-glass blocks. However, 
the detector efficiency is kept higher than 99%. The result is shown in Fig. 3.8.

Cut Efficiency

The cut on the Hadron shower was chosen in such a way to preserve inefficiency below 
0.5%. The 7r/e ratios and detector efficiencies for both the Electron and Hadron Arms 
are tabulated in Ref. [96].
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Figure 3.7: Plots of E /p  and a/p  vs. p for the Hadron Arm. Note the shower counter 
in the Hadron Arm is not a total absorption calorimeter.

3 .2 .4  C herenkov D etec to rs  

Calibration

Calibrating the Cherenkov detectors entails adjusting the offsets and gains of the 
individual phototube ADCs. Since some electrons will fire several phototubes, one 

needs to sum over all phototubes to obtain a good collection efficiency. Histograms 
of the raw and calibrated Cherenkov ADCs are shown in Figs. 3.9 and 3.10. Note 
the location of the single photoelectron peak on the left before and after calibration.

Stability

It was found that the output of the Cherenkov ADCs was reasonably stable over the 
momentum range of E94-010 (see Fig. 3.11).
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Figure 3.8: Detection efficiency of the Hadron Arm shower counter. Electrons lost 
in the spacing between blocks effectively reduce the detector efficiency. Nevertheless, 
an efficiency of better than 99% is maintained throughout.

D etection  Efficiency

The detection efficiency e for a Poisson process like the emission of Cherenkov radia­
tion is:

e =  1 -  (3.5)

where /i is the average number of photoelectrons produced per meter, e_/i is the 

probability of emitting no photoelectron, and fi fa 9 [102] yields e «  99.99%. The 
method used to calculate efficiencies in the Electron and Hadron Arms is illustrated 

in Figs. 3.12 and 3.13. For the Electron Arm (Fig. 3.12), a tight two-dimensional cut 

is applied to the preshower vs. shower to select good electrons, followed by a cut on 

the Cherenkov signal. The Cherenkov detection efficiency is the is the ratio of events 
that pass the Cherenkov cut to these that pass the two-dimensional preshower vs. 
shower cut:

„  , ,. . events registered in the Cherenkov detector
Detection efficiency = ----------     . (3.6)

events that pass the preshower vs. shower 2-D cut

For the Hadron Arm (Fig. 3.13), a shower/ p cut is made to select good electrons. 
The Cherenkov detection efficiency is the number of events that fire the Cherenkov
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Figure 3.9: Raw Cherenkov ADC spectra.

counter to the number of events that pass the shower/p cut:

_ . . events registered in the Cherenkov detector
Detection efficiency = -----------------------------------------------------------. (3.7)

events that pass the shower cut

The efficiencies as a function of momentum were also investigated with the results 
shown in Fig. 3.14. Pion contamination is more pronounced at lower momenta. See 
tables in Ref. [96]. This degrades the detection efficiency.

Cut Efficiency

Values for detection and cut efficiencies are tabulated for all kinematics in the ap­
pendix of Ref. [101].
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Figure 3.10: Calibrated Cherenkov ADC spectra.
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Figure 3.11: Stability of the Electron and Hadron Arm Cherenkov detectors. The 

data points are averages of the 10 single photoelectron peaks. The low data points 
in the top plot are mostly from the 2.591 GeV and 5.070 GeV runs near the end of 

the experiment when the threshold on the trigger scintillators had to be lowered.
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Figure 3.12: Detection efficiency of the Cherenkov detector for the Electron Arm. 
The plot in the upper left shows preshower vs. shower output without any cuts. A 

tight two-dimensional cut is applied to the preshower vs. shower histogram resulting 
in the plot in the upper right. The bottom plot shows the output of the Cherenkov 
counter with the previous cut. The efficiency is the number of electrons that fire the 
Cherenkov counter to the number of events that pass the preshower vs. shower cut.
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Figure 3.13: Detection efficiency of the Cherenkov detector for the Hadron Arm. The 

upper plot shows the cuts used to select good electron events. The lower graph shows 
the output of the Cherenkov with the previous cut. The efficiency is the number of 
events that fire the Cherenkov to the number of events that pass the shower cut. The 
events in the hashed area are pions obtained with an anti-Cherenkov cut and serve 
only to illustrate the amount of pion contaminants.
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Figure 3.14: Cherenkov detection efficiency vs. momentum p. The top plot is for the 
Electron Arm and the bottom plot is for the Hadron Arm. The efficiency is decreased 
at lower momenta because of pion contamination [96].
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3.3 C harge D eterm in ation

The beam charge is determined from a particular V /F  (voltage-to-frequency) scaler 
as the product of the current and the duration of the run:

T
Q = I  x T  =  R y /f  x — , (3.8)

Oil

where R y /F is the V /F  rate and a f is a calibration constant. The charge is accurate 
to better than 1%.

3.4 A cceptance

In order to understand the acceptance of the spectrometer, a simulation of the 12C 

data was done and subsequently compared with data runs. The results are shown in 
Fig. 3.15.

3.5 M onte Carlo Techniques

The Monte Carlo method is a powerful tool to simulate electron scattering on a com­

puter. Such a program was developed by A. Deur [103,104] and subsequently used to 

understand the acceptance of the Jefferson Lab Hall A High Resolution Spectrometers 
during E94-010 [105]. Often, in a Monte Carlo simulation, it is desired to generate 

some distribution with a certain probability density function. Of particular interest 
is the Gaussian or normal distribution. A popular algorithm for generating two inde­

pendent, normally distributed random numbers Zi and z2 with mean 0 and variance 
1 is to generate two uniformly distributed random variables U\ and u2 in the interval 
(0,1), then calculate z\ =  cos 2itui\ / —2 Inu2 and z2 =  sin2txui^/—2 Inu2 [87,106-108]. 

Repeated evaluations of the trigonometric functions is somewhat inefficient, so faster 
algorithms have been developed and implemented. See for instance the Fortran rou­
tine RNO RM L (V120) from CERNLIB [109],

3.6 P assage o f E lectrons Through M atter

The dominant physical processes for energy loss by electrons traversing a layer of 
material at the incident energies of E94-010 are:
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Figure 3.15: Fractional momentum S = dp/p spectra of carbon data for experimental 
data (in green) and simulation (in red) as measured in the Electron Arm.
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• Ionization

• External bremsstrahlung

• Internal bremsstrahlung

3.6 .1  Ion iza tion

Energy loss by ionization is a consequence of inelastic collisions with the atomic 
electrons of the material. The expression for the average energy loss per unit path 

length also known as stopping power was first worked out using classical arguments 

by Bohr. Later Bethe, Bloch and others developed a formula based on quantum 

mechanics. The Bethe-Bloch formula [87,98] is

N a is Avogadro’s number 6.02214199(47) x 1023 mol-1 . 

r e is the classical electron radius 2.817940285(31) x 10-13 cm. 

m e is the mass of the electron 0.510998902(21) MeV/c2. 

p is the density of the material.

Z  is the atomic number of the material.

A  is the atomic weight of the material. 

z is the charge of the incident particle in e.

(3 = v/c  is the speed of the incident particle.

27t N Ar2em ec2 p
2mec2/3272Tr

P
max -2 /3 2 (3.9)

where

2nNArlmec2 =  0.1535 MeV/g cm 2 (3.10)

and

7 = l / y / l = P

Tmax is the maximum kinetic energy per collision.
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I  = IqZ  is the mean excitation potential and I0 ~  13.5 eV.

The energy loss by ionization of particles crossing a thin absorber, where the energy 

lost by the particle is small compared to its incident energy, is a statistical process 

and spread out according to a distribution which was first calculated by Landau. This 

Landau straggling follows a distribution [98,110, 111]:

A) =  (3.11)
£

where

£ =  2-7T N Ar lm ec2p ^  (3.12)

i  r t+ io o

0(A) = —  /  ezlnz+Xzdz (3.13)
2m '

X

' e—ioo
1 '

£
A -  £ ^ln ^ +  1 -  7e 

P_
2mec2/3272

(3.14)

lll£ =  111 I , 2 ^ , 2  I +  I3* P - 15)

and

x  is the thickness of the absorber.

A is the energy loss.

£ is approximately the mean energy loss.

A is a dimensionless variable.

£>(A) is the probability density function.

7 e is the Euler-Mascheroni constant 0.577216.

Often in Monte Carlo simulations of the energy loss it is desired to generate random
numbers according to the Landau distribution. It is useful to introduce a distribution
function <3>(A) of the density 0(A), and its inverse T(x):

$(A) =  [  0(A,)dA/ (3.16)
J — OC

^(x) =  <3>-1(x) (3.17)
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Figure 3.16: Landau density Figure 3.17: Landau distribution

If x  is a random variable distributed uniformly between 0 and 1, then T(:r) is the 

corresponding is distributed according to the Landau density (1>(A). The energy loss 

can then be deduced from A using Eq. (3.14). Figs. 3.16 and 3.17 show the Landau 
density and distribution, respectively. The Landau density peaks at A =  —0.222782 

with 0(A) =  0.180655. The corresponding most probable energy loss is:

A mp
£In -  +  0.200002
e

(3.18)

For the purpose of evaluating 0(A) a couple of integral representations of the Landau 
distribution function have been derived [112]:

0(A) = -  e
7T

COS

exp
Jo

2

a . f u “ \ u
— In ( 1 H— - — u arctan

o l ) a
u

u + a arctan — 
a

du

i r0(A) =  -  /  
K Jo

u “ sin7rudu

where a = e_A_1 and the first formula is used for negative A while the second formula 

is used for positive A. The CERNLIB program library contains the L A N D A U  (G110) 

package which includes the Fortran routines D EN LA N , DISLAN, and R A N L A N  
for evaluating 0(A), $(A), and \k(a:) respectively [109].

3.6 .2  E xtern a l B rem sstrah lu n g

The emission of radiation by scattering from nuclei other than the target nucleon is 
termed external bremsstrahlung [113]. Let Ie( E ,A , t )  dA  represent the probability
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of an electron with incident energy E  traversing a material with thickness t in units 

of radiation length to lose energy between A and A + dA.  The density function 

Ie(E ,A , t )  is [114,115]:

Ie(E, A, t) T ^ A y E j  <i>yE )  (3-19)

where

b =  ^ { l  + gKZ + l V ^  +  O lM liB Z - 1/3)]-1} (3.20)

£ =  ln(1440Z-2/3)/ln(183Z“ 1/3) (3.21)

4>{v) =  1 -  v +  ^ v2 (3.22)

and (f)(v) is due to the screening of nuclear potentials by atomic electrons. For the

purpose of Monte Carlo simulations the integral of Ie(E, A, t) is:
/•A  \  bt /  \  1 -\-bt

I  « £ ' A ' f ) d A ' =  f ( T T M ) U J  + 0 U J  P '23)

Following the transformation method [106,107], if R is a random number in [0,1] let 
R  = ( A / E ) bt. Therefore the formula:

A =  ER^t (3.24)

will generate energy losses A according to the external bremsstrahlung distribution 
Ie( E ,A , t )  provided:

1 , / A \ 1+m /  A \ bt , .
- 1  and -  «  -  . (3.25)

T(l  + bt) \ E  J  \ E

3 .6 .3  In tern al B rem sstrah lu n g

Internal bremsstrahlung refers to the real photons emitted during scattering with 

the target nucleon. The scattering process has an angular distribution of 1 /7  and 
therefore strongly peaked along the direction of the incident and outgoing electrons. 
The Feynman diagrams representing these processes are displayed in Fig. 3.18. This 
effect can be approximated by placing an effective or virtual before and after the 
target, each of thickness [114]:

In ( J )  -  l] ( 3 ^ )

where Q'2 is the momentum transfer squared.

a
bt =  —

7T
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Figure 3.18: Lowest order Feynman diagrams for real bremsstrahlung.

3 .6 .4  M u ltip le  S ca tter in g  T h rou gh  Sm all A n gles

Charged particles traveling through a certain material suffer deflections due to multi­

ple Coulomb scatterings from nuclei. The distribution of scattering angles is described 

by the theory of Moliere and is approximately Gaussian for small angles with a tail 
that follows a 1/ sin4(9/2) dependence as a result of Rutherford single scatterings. 

The width of the central Gaussian is given by [87,116]:

e° = i 4 ^ ^ [1 + a 0 3 8 1 n < 1  ( 3 ' 2 7 )

where t is the target thickness in radiation lengths.

3.7  R adiators

In order to be able to calculate radiation loss by electrons going through various ma­

terials, a list of materials and some of their atomic and nuclear properties is required. 
Such a list was originally compiled by F. Xiong [118] and reproduced in Fig. 3.19, 
and Table 3.1 and 3.2. Corning 1720 [119] is an aluminosilicate glass used for the 
construction of the reference cell. GE 180 [120] is another type of glass used for the 
construction of the target cell Armageddon. The composition of both glasses and 
some of their properties are listed in Table 3.4 and 3.5. The effective atomic num­

ber, atomic weight, and Xq for compounds and mixtures were calculated using the
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Figure 3.19: Radiators for E94-010.
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Material Length

(cm)
Thickness

(g/cm2)
Thickness 

(radiation length)

Beryllium

Air

Aluminum 

Helium 
Corning 1720 

or GE 180 
Nitrogen

0.0254

2.54

0.0254

25.7
0.013

0.013
20

4.694 x 10~2 

3.060 x 10"3 

6.855 x 10~2 
4.274 x 10“3 
3.302 x 10“2 

3.588 x 10“2 
2.331 x 10"2

7.200 x 10“4 

8.347 x 10~5 

2.855 x 10“3 
4.532 x 10~5 

1.229 x 10~3 

1.846 x 10~3 
6.135 x 10“4

Table 3.1: Radiators before scattering for Electron and Hadron arms.

following formulas [98]:

ZeS (3.28)

A efi y   ̂0>i Ai, (3.29)
1

Ao
_  wi 
~  ^  X  ’

(3.30)

where a* is the number of atom of the ith  element in the compound, wt =  (ij A J A eff 
is the fraction by weight of the ith  element, Zl is the atomic number of the ith 

element, and A{ is the atomic weight of the ith element. Values of Z, A, and X0 for 

elements are taken from Table III.6 of Ref. [121], Their densities are from Ref. [122]. 

Compositions and densities of air and kapton were obtained from Ref. [123] and 

reproduced in Table 3.6 and 3.7. X0 for air and kapton are taken from Ref. [87].
The data and simulation are displayed in red and blue respectively in Figs. 3.20 and 
3.21. The simulation is normalized by area to the data. and yig of the simulation 

are slightly shifted to the left with respect to the data. 9tg and </>tg yield rather good 

agreement between simulation and data. The excitation energy Ex  is defined by:

Ex  = W - M , (3.31)

W  = v /M 2 -  Q2 +  2Mu,  (3.32)

Q2 = 4 £ £ 's in 2 ^, (3.33)
£

u =  E - E ' ,  (3.34)
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Material Length

(cm)
Thickness
(g/cm2)

Thickness 
(radiation length)

Corning 1720 0.4865 1.236 4.602 x 10“2
or GE 180 0.4865 1.343 6.908 x 10"2
Helium 42 6.985 x 10“3 7.406 x 10"5
Aluminum 0.0254 6.855 x 10-2 2.855 x 10~3
Air (Electron Arm) 65.2 7.855 x 10“2 2.143 x 10~3
Air (Hadron Arm) 64.2 7.735 x 10“2 2.110 x 10“3
Kapton 0.0178 2.528 x 10“2 6.232 x 10~4
Titanium 0.0102 4.631 x 10“2 2.864 x 10“3

Table 3.2: Radiators after scattering for Electron and Hadron arms

Material Z A Density
(g/cm3)

X0
(g/cm2)

Helium 2 4.002602 1.6632 x 10“4 94.32
Beryllium 4 9.012182 1.848 65.19
Nitrogen 7 14.00674 1.1653 x 10~3 37.99
Aluminum 13 26.981538 2.6989 24.01
Titanium 22 47.867 4.54 16.17
Kapton 6.35993 12.70147 1.42 40.56
Air 7.372747 14.801088 1.20479 x 10~3 36.66
Corning 1720 33.0586 66.7270 2.54 26.86
GE 180 33.5138 82.9943 2.76 19.44

Table 3.3: Atomic and Nuclear Properties of Materials.
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Material Weight

Percentage

Z A X0

(g/cm2)

S i02 60.7 30 60.0843 27.05

AI2O3 17.3 50 101.961276 17.29

B2O3 5.0 34 69.6202 38.42

Na20 1.0 30 61.97894 29.17
k 2o 0.2 46 94.196 18.90

MgO 7.4 20 40.3044 28.03

CaO 8.6 28 56.0774 19.01
As203 0.5 90 197.8414 14.18

Table 3.4: Composition of Corning 1720.

Material Weight
Percentage

Z A X0

(g/cm2)

S i02 60.3 30 60.0843 27.05
CaO 6.5 28 56.0774 19.01

BaO 18.2 34 153.3264 9.02
SrO 0.25 46 103.6194 12.04

AI2O3 14.3 50 101.961276 17.29

Table 3.5: Composition of GE 180.

Material Fraction by weight

Carbon

Nitrogen
Oxygen

Argon

0.000124

0.755267
0.231781
0.012827

Table 3.6: Composition of 
air.

Material Fraction by weight

Hydrogen

Carbon
Nitrogen
Oxygen

0.026362

0.691133
0.073270
0.209235

Table 3.7: Composition of kap­
ton.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 3. ANALYSIS 118

1400

2500 1200

10002000

800
1500

600
1000

400

500 200
q  _ j  L y f i  i i I i i i I i i i I i \ V i

- 0.01  1 — 0.01  - 0 . 009 - 0 . 008 - 0 . 007 - 0.006 - 0.04  - 0.02 0 0.02  0.04

d p / p  y

18001200
1 600

1000 1400

1200800
1000

600
800

600400

400
200

200

0 - 0 .0 2  - 0.01- 0.04  - 0.02 0.02 0.04 0 0.01 0.02

t h e t a  p h i

Figure 3.20: <5tg, Vtg, #tg, and 0tg for nitrogen elastic peak at i?beam=l-7169 GeV.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 3. ANALYSIS 119

2 0 0 0

750

D a t a  I 
S i m u l a t i o n

1500

1250

1000

750

500

250

0 0.001 0.002 0.003 0.004 0.005 0.006

e x c i t a t i o n  e n e r g y  (GeV)

Figure 3.21: Excitation energy spectrum in GeV for nitrogen elastic peak at
£ beam=1.7169 GeV.
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where W  is the missing mass, M  is the target mass (in this case nitrogen), Q2 is 

the four-momentum transfer squared, E  is the beam energy, E'  is the scattered en­

ergy, 6 is the scattering angle, and v  is the energy loss. The simulated excitation 
energy spectrum agrees well with the data, with the provision that the beam energy 
dispersion be 3 x 10-4.

3.8 R ad iative C orrections

The measured cross section contains radiative effects. The method utilized to extract 

the Born cross section from the experimentally measured cross section consists of 
three main steps:

1. Subtract the elastic radiative tail.

2. Subtract the radiative tails of discrete levels such as the quasielastic and the A.

3. Unfold the Born cross section from the continuous spectrum by considering 

external and internal radiative effects.

The contribution of the elastic radiative tail to the cross section is much more signif­

icant than that of the discrete levels. The elastic radiative tail runs throughout the 
entire spectrum whereas the effects of the radiative tails of the discrete levels are only 
felt by neighboring levels.

3.8 .1  E lastic  R ad ia tiv e  Tail

Following the treatment of Stein et al. [125], the elastic radiative tail in the peaking 
approximation may be written as:

Ĉpk tail (o"p T soft) (3.35)

where <rp is the elastic radiative tail in the angle-peaking approximation with internal 
radiation only and crb is the elastic radiative tail with straggling caused by target 
bremsstrahlung and ionization loss only (external radiation). These cross sections

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 3. ANALYSIS 121

are calculated by:

/  cPa \
\ d M E p)  p

Mt +  (Es -  o>s)(l -  cos 6)
Mj'

+crei (Es

Ep( 1 — cos0) 
'btr<f>(vp)

0"el ( L s U)s

UJn

(Pa
\d f ld E p/  b 
Mt +  (Es -  cjs)(1 -  cos 6) 

Mt — Ep( 1 — cos#) °e\{Es

U)c --

+ d ei (Es

E s -  —

btr<p(vp
(jJn

+
2a*

En
(Ep/ Mt )(1 - c o s  9) ’
E.q

UJri —

£ =

1 +  (Es/ M t )( 1 -  cos 6)
u s/ E s,

Up/(EP +  up), 
irm ta + tb

Bp,

2a (Z +  r/)ln(183Z-1/3 ’

btrcj){vs
UJc

btr<f)(vs) £
a;.. 2u*

b = -1  
3 ■[(z +  i j / i z  +  ^ H i s s z - 1/3]- i

r] = ln(1440Z-2/3)/ln(183Z“ 1/3),
1 a  
b 7r

In Q2 -  1

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

where ae\(E) =  F(Q2)ae\(E) is the elastic cross section corrected by a factor F(Q2). 
The function <j){v) =  1 — v + |u 2 characterizes the shape of the bremsstrahlung 

spectrum. The variables tb and ta designate the total path lengths in units of radiation 
lengths before and after scattering, respectively.
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Figure 3.22: Vacuum polarization. Figure 3.23: Vertex correction.

F ac to r F(Q2)

The factor F(Q2) represents all other corrections independent of A E  =  Ejf'dk — E™m. 
It is given by:

F(Q2) = 1 +  7e FF
2a 

+ —  
7r 9 12 mt

27T
a

+ -
7T

Ep
7T2 _ /  2 6

(3.46)

where 7e  ~  0.577216 is the Euler-Mascheroni constant [126]. The first term is an 
approximation:

l / r ( l  +  bT) «  1 +  7i?6T. (3.47)

The second term is the sum of the vacuum polarization (Fig. 3.22) and vertex cor­
rection (Fig. 3.23) diagrams:

-'vertex

2a
7T

2a
7T mi

(3.48)

(3.49)
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Spence Function O(x)
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Figure 3.24: The Spence function 4>(x). Note the logarithmic scale on the x-axis. 

The third term is an approximation to the sum of a couple of Spence functions:

The last term is the Schwinger correction. The definition of the Spence function, 
shown in Fig. 3.24, is

f x — In II — 2/I T . ,
4>(x) =  / ---------------dy. (3.51)

Jo V
Below are properties of the Spence function used in computer codes for the purpose 

of its evaluation:

*(1) =  j ,  (3.52)

* ( -1 )  =  (3.53)

*<*> = E ^  = * + t  + t  + -  if | l | s l - (3-54)
n = l

4>(x) =  - ^ l n 2 |x| +  -̂— <f> if x > 1, (3.55)
^ o \cc/

4>(x) =  —- l n 2 |x| —^ — 4> ( if x < — 1. (3.56)
2 6 \  x J
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Elastic Cross Section

The elastic cross section is defined as

_  ( d a \  E'
  I  1   0 " l \ / T r v t t  ___êl —  I J  —  0 " M o tt | F ( Q  , 0 ) |  , (3.57)

where the Mott cross section in the ultrarelativistic limit and the recoil factor are

d a \  Z 2c? cos2(0/2)
(™ott “  1 dn

E
~E

M o tt AE2 sin4(0/2)
- l, 2E , 6

1 +  7 7 -  s m  7M t  2

(3.58)

(3.59)

respectively. The form factor F(Q2,6) depends on the target.

3 .8 .2  E lastic  Form  Factor o f  14N

The elastic form factors of 14N used in the simulation are those of Ref. [124], where 
data was taken at incident beam energy 250 MeV and scattering angles from 40 to 

90°, and incident beam energy 400 MeV and scattering angles from 32 to 85°. The 
data was then analyzed with a harmonic-well shell model in the Born approximation. 

The Q2 and 0 dependence of the elastic form factor can be explicitly separated by 
introducing two separate form factors:

F 2(Q2,9) = F 2(Q2) +
1 0
-  +  tan - F |(Q 2), (3.60)

where F 2(Q2) is the longitudinal or Coulomb form factor and F 2(Q2) is the transverse 
form factor. Multipole expansions of the form factors gives:

F i m

F 2(Q2)

Y , F 2cx( Q \
A =0

oo

£ K a(C2) +  f U Q 2))-

(3.61)

(3.62)
A = 1
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In the case of elastic scattering, only the CO, C2, and Ml terms contribute:

2

F ^ m  = 

f 2C2{Q2) -  

f U Q 2) =

i  -
2c r

2 T 3 a
0- { x + d )

Q‘ (J  +  l)(2 J  +  3) ( Q V  _2( 
180 J (2J  — 1) \ Z )

X + d )

a
3 J  a2m 2 VZ

2 2 '
3X + a 3X

3—2 (x + d )

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

3 V x * p / >  (3-68)

where the parameters for 14N are summarized in Table 3.8. The experimental

2 J  +  1 x
3

1 Q2- 2 

1 a

an = {r,

Parameter Value

a 1.75 ±  1.2 fm

N 30 ±  65 /itat

a 0.44 ±  0.35

Q 1.52 ±  4.2 fm2

Up 0.63 fm
J 1
Z 7
A 14

Table 3.8: Parameters of elastic form factors for 14N.

points along with the corresponding calculated values for the 14N form factor are 

displayed in Tables 3.9 and 3.10 for incident energies 250 and 400 MeV, respectively. 
Figs. 3.25 and 3.26 are graphs of the data along with two theoretical fits. Both fits are 
harmonic-well models. The fit by Ref. [124] uses the electric monopole (CO), electric 
quadrupole (C2) and magnetic dipole (Ml) terms. The fit by Ref. [125] only uses the 
electric monopole term.
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e

(deg)
q

(fm-1)
104 x F 2(q2) 

(experimental)

104 x F 2(q2) 

(calculated)

40 0.86 1643 ±  63 1840
50 1.07 637 ±  16 679
60 1.26 195 ± 6 209
70 1.45 42.3 ±  1.2 44.4

80 1.62 7.25 ±  0.54 7.84
90 1.78 3.50 ±0.31 3.34

Table 3.9: Elastic form factors of 14N at E})e;iim = 250 MeV.

e

(deg)
q

(fm-1)
104 x F 2(q2) 

(experimental)
104 x F 2(q2) 
(calculated)

32 1.12 500 ±  15 496
35 1.22 261 ± 7 262
38 1.32 120 ± 4 126
40 1.38 73.2 ±2. 3 76.6
43 1.48 28.8 ± 0 .9 30.0
45 1.55 14.7 ± 0 .5 14.4

48 1.64 6.18 ±0.19 5.67
50 1.70 3.56 ±0.10 3.72
53 1.80 3.03 ±0.13 3.33
55 1.86 3.32 ±0.11 3.67
65 2.16 3.43 ±0.15 3.39
75 2.44 1.72 ±0.11 1.34
80 2.58 0.799 ±  0.076 0.686
85 2.70 0.310 ±  0.060 0.354

Table 3.10: Elastic form factors of 14N at E\>eam = 400 MeV.
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Elastic form factor of 14N at Ebeam=250 MeV

Dally e ta l .  (1970) ---------
Stein e ta l .  (1975) -  — -

Experiment
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0.001

0.0001

1e-05

1e-06 0 0.5 1 1.5 2.52 3

q (fm’1)

Figure 3.25: Elastic form factor of 14N at Ebeam =  250 MeV. The fits by Dally et 
al. [124] and Stein et al. [125] are harmonic-well models.

Elastic form factor of U N at Ebeam=400 MeV
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Figure 3.26: Elastic form factor of 14N at Eheam =  400 MeV. The fits by Dally et 
al [124] and Stein et al. [125] are harmonic-well models.
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Electric Magnetic

a=0.675 ±  0.008 fm 
b=0.366 ±  0.025 fm 
c=0.836 ±  0.032 fm 
d=(-6.78 ±  0.83) x 10“3 

q0=3.98 ±  0.09 fm”1 

p=0.90 ±  0.16 fm” 1

a=0.654 ±  0.024 fm 

b=0.456 ±  0.029 fm 
c=0.821 ±  0.053 fm

Table 3.11: Parameters for 3He elastic form factors.

3 .8 .3  E lastic  Form  Factor o f 3H e

In order to estimate the contribution of the 3He elastic radiative tail in the raw cross 

section the 3 He elastic form factor must be known. The 3 He elastic form factor is 

taken from Refs. [128] and [129]. Here, the differential cross section is given by:

W2{q2) + 2Wi{q2) tan2 ^

W2(q2)

W 1(q2)

E'
"̂el —

F W )  + TF l t f ) ( l  + K f
1  +  T

- r F U q 2)(l  + K ) 2, 

t  =  q2/A M 2,
= e- V _ 6 V e- cV;F(q2) 

A F =  dexp qo
P

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

where 1 +  K  =  —2.127624857 is the anomalous magnetic moment of the 3He nu­
cleus [43]. Here, F(q2) is the form factor and A F(q2) is a modification to the electric 

form factor needed to reproduce the diffraction minimum in the fit. The parameters 

used to fit the form factors are shown in Table 3.11. The experimental points with 
errors are graphed in Figs. 3.27 and 3.28, and tabulated in Tables 3.12 and 3.13.

3 .8 .4  E lastic  R a d ia tiv e  Tail C on trib u tion s

Using the elastic form factors of 14N and 3He established in the previous sections, 
the amount of contamination in the raw data by the elastic radiative tails can be
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3He electric form factor
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Figure 3.27: 3He electric form factor.

3He magnetic form factor
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Figure 3.28: 3He magnetic form factor.
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q2 (fm-2) F?(q2) q2 (fm“2) W )
0.347 (6.82 ±0.17) x 10” 1 3.50 (2.72 ±0.09) x 10“2
0.400 (6.51 ±0.16) x 10-1 4.00 (1.70 ±0.06) x 10“2
0.451 (6.02 ±0.15) x 10-1 4.50 (1.08 ±  0.05) x lO"2
0.500 (5.82 ±0.15) x 10” 1 5.00 (6.76 ±  0.23) x 10-3
0.542 (5.48 ±0.14) x 10” 1 5.50 (4.07 ±0.14) x 10“3
0.600 (5.16 ±0.13) x 10-1 6.00 (2.64 ±  0.08) x 10“3
0.639 (4.87 ±0.12) x H T1 6.50 (1.67 ±0.10) x 10-3
0.700 (4.55 ±0.11) x lO” 1 7.00 (1.05 ±  0.06) x 10“3
0.800 (4.26 ±0.11) x K T1 7.50 (6.61 ±  0.80) x 10~4
0.900 (3.85 ±0.10) x lO” 1 8.00 (4.09 ±  0.59) x lO"4
1.000 (3.32 ±  0.08) x 10” 1 9.00 (1.69 ±0.39) x lO '4
1.100 (2.97 ±0.08) x 10” 1 9.50 (1.07 ±0.34) x 10-4
1.200 (2.69 ±  0.07) x 10"1 10.00 (3.75 ±3.15) x 10“5
1.500 (1.93 ±0.05) x lO” 1 11.00 (0.0 ±  2.29, -0.00) x 10~5
1.800 (1.39 ±0.04) x 10-1 11.50 (3.6 ±  15 ,-3 .6) x 10"6
2.000 (1.15 ±0.03) x lO” 1 12.50 (0.0 ±  1.5,-0.0) x 10“5

2.20 (9.43 ±  0.24) x 10“2 13.50 (2.55 ±0.91) x 10“5
2.50 (6.91 ±0.18) x 10“2 14.00 (4.95 ±  1.62) x 10“5
2.70 (5.71 ±0.17) x 10“2 16.00 (3.05 ±  0.62) x 10“5
2.80 (4.94 ±0.16) x 10"2 18.00 (3.51 ±0.99) x lO’ 5
3.00 (4.19 ±0.11) x 10“2 20.00 (3.06 ±  0.64) x 10"5

Table 3.12: 3He electric form factors.
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q2 (fm”2) W ) q2 (fm”2) K i o 2)
2.00 (1.03 ±0.35) x lO” 1 7.50 (1.06 ±0.46) x 10~3
2.80 (4.90 ±  0.97) x 10“2 8.00 (3.80 ±3.13) x 10-4
3.00 (3.88 ±  0.35) x lO”2 9.00 (2.04 ±  1.53) x 10-4
3.50 (1.42 ±  0.85) x lO”2 9.50 (1.20 ±  1.18) x 10“4
4.00 (1.39 ±  0.36) x lO-2 10.00 (1.93 ±  1.05) x 10"4
4.50 (1.04 ±0.13) x lO”2 11.00 (1.46 ±0.73) x lO”4
5.00 (5.28 ±  1.57) x 10“3 11.50 (5.66 ±4.71) x 10"5
5.50 (5.56 ±  0.85) x 10“3 12.50 (4.2 ± 5 .3 ,-4 .2 )  x 10"5
6.00 (3.07 ±0.33) x 10“3 14.00 (0.5 ± 0 .9 ,-0 .5 )  x 10~5
6.50 (2.13 ±0.69) x lO"3 16.00 (0.3 ± 0 .7 ,-0 .3 )  x 10“5
7.00 (1.29 ±  0.39) x 10"3

Table 3.13: 3He magnetic form factors.

estimated. Fig. 3.29 shows such an example for Ebeam=862 MeV and 0=15.5°. The 
14N cross section has been normalized by the factor 2[N]/[He] where the factor of 2 
is a correction for nitrogen being a diatomic molecule, and [N] and [He] represent the 

partial pressures of nitrogen and helium, respectively. Notice that the rise of the tail 
in the raw data at high energy loss is not due to the elastic radiative tails of 14N or 

3He. The rise of the tail was later proved to originate from multiple scattering of 
electrons in the target materials [130].

3.8 .5  R a d ia tiv e  Tail o f  a D iscre te  Level

The radiative tails of excited states was investigated and found to be negligible. In 
addition, the contribution of rubidium to the radiative corrections is insignificant 
since only trace amounts of the element enter the target cells.

3 .8 .6  C ontin uu m  R ad ia tiv e  C orrections  

External Brem sstrahlung

External bremsstrahlung is the result of energy loss by electrons due to bremsstrahlung 
in the field of atomic nuclei other than the nucleus causing the large angle scattering.
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Comparison of Cross Sections 
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Figure 3.29: Raw cross section at Z?beam=862 MeV.

This process is illustrated in the Feynman diagrams of Figs. 3.30 and 3.31 where 
the electron traverses a radiator before and after scattering, respectively. In order 

to remove external radiation to the continuum state, the following prescription of 
Mo and Tsai [115] was employed:

arad(Es,E p,T)  = f  j ;
f  E s f*Er)

dE '
AK)

dE:'
sm in (E p ) "' Ev

x I e(Es, E'a, t )a(E 's, E' t)Ie(E' Ep, T - t ),

Ie(Eo,E,t)  —

Esmin{Ep) — 

Epmax{Es) =

bt
En — E

E_ 3
E0 4

p

'E0 - E
Eq

In Eo
~E

bt

m l  +  2 M m n +  2 M E P 
2M - 2 E p( l -  cos 0) ’ 

2 M E '  — 2 M m n — m l

(3.75)

(3.76)

(3.77)

(3.78)2M  +  2E'S{1 — cos#) ’

where Ie(Eo, E , t )d E  is the probability of finding an electron in the energy interval 
dE  after an electron with initial energy E 0 and final energy E  travels a distance t 
in units of radiation lengths. The unradiated cross section o is the quantity sought.
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w v w x

Figure 3.30: External 
bremsstrahlung before scattering.

w w x

Figure 3.31: External 
bremsstrahlung after scattering.

w w x

Figure 3.32: Internal 

bremsstrahlung before scattering.
Figure 3.33: Internal 
bremsstrahlung after 
scattering.
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The unfolding procedure consists of solving for a by iteration. The technique goes as 

follows. The experimentally measured cross section crexp is used as a starting guess 

for a and inserted into the multidimensional integral above. A radiated cross section 
crrad is obtained in this fashion. Next, the unradiated cross section a is corrected by 
a factor creXp /arar].

The integration process is restarted and the entire unfolding procedure is repeated a 

number of times until a satisfactory convergence is achieved. Typically, five passes 
are sufficient [127].

Internal Brem sstrahlung

Internal bremsstrahlung constitutes the emission of a real photon before and after 

scattering as in Figs. 3.32 and 3.33, respectively. Internal radiative corrections were 

treated using a modified version of POLRAD [131] to account for the polarizations 
of the beam and target.

x a. (3.79)
f f ia d
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RESULTS

4.1 E xperim ental Cross Sections and A sym m etries

4.1 .1  In clu sive S p in -A veraged  C ross S ection s

The spin-averaged inclusive inelastic cross section can be expressed in terms of two 
invariant structure functions as follows [133-135]:

The structure functions W\{y, Q2) and W2(i', Q2) embody the physics of interest. 
The inclusive unpolarized inelastic cross sections for the six incident beam energies 

of this experiment (862, 1717.9, 2580.5, 3381.8, 4238.6, and 5058.2 MeV) are shown 

in Fig. 4.1. Displayed are the unpolarized cross sections after averaging over both 
spectrometer arms and after removal of the elastic peak and its radiative tail. The 
solid lines show the raw inelastic cross section before radiative corrections whereas the 
dashed lines indicate cross sections after inelastic radiative corrections are applied. 
The spectra are characterized by several important features, namely, the quasielastic, 
resonance and deep inelastic regions. The quasielastic peak, centered at v — Q2/2M,  
dominates the spectrum at the lower energies. The width of this peak is due to Fermi 
motion of the constituent nucleons. As the beam energy is increased, contribution

(4.1)

(4.2)

(4.3)

135
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Figure 4.1: Inclusive spin-averaged inelastic cross sections before (solid red lines) 
and after (dashed blue lines) radiative corrections for the six beam energies of this 
experiment. Indicated on the plots are the quasielastic, the first and second resonance 
regions, and the deep inelastic scattering region. The elastic tail has already been 
removed from this figure.
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from the first resonance region dominated by the A(1232) or P33 resonance becomes 
apparent at an energy loss u ~  Q2 /  2 A1 +  300 MeV. As beam energy increases further, 

additional resonances at increasing excitation energies become visible. At yet higher 

energies, the quasielastic peak and resonance peaks diminish due to the falloff with 

Q2 of their respective form factors. For W  > 2 GeV scattering from point-like partons 

occurs. In the deep inelastic scattering (DIS) region, as v, Q2 —> 00 but finite Q2/v,  
the form factors W\(u, Q2) and W2{u. Q2) follow simple scaling limits to first order in 
QCD:

M W ^ Q 2) -  F^x) ,  (4.4)

v W 2[ y , Q 2) F 2(x ). (4.5)

Fi(x) and F2(x) are now functions of a single dimensionless variable x  =  Q2/2 M v  
known as the Bjorken scaling variable. Moreover, in the quark parton model, the 

scaling structure functions Fi(x) and F2(x) obey the Callan-Gross relation [136]:

2xFi(x) = F 2(x ). (4.6)

Nowadays, these partons are identified as due to point-like quark constituents. Note 

that even below this point, the overlapping resonances appear to scale as predicted 
by the Bloom-Gilman duality arguments. At the highest beam energies of 4.2 and 
5.1 GeV, the contribution from the scaling region dominates the spectra.

4.1 .2  S ca tter in g  A sy m m etr ies

Traditionally, the asymmetries have been the easier physical quantities to extract, 

chiefly, because various normalization factors cancel each other out. The asymmetries 
were defined in the theory chapter as:

^ iT- ^ TT X
11 ~  al T +  aTV  ̂ ^

(4-8)a + a

where the first arrow superscript on the polarized cross sections refers to the beam 
polarization and the second arrow superscript refers to the target polarization. For the 
parallel asymmetry Ay, the target polarization is kept fixed along the beam direction 
and the beam polarization, longitudinal to the beamline, is pseudo-randomly flipped.
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Figure 4.2: Parallel (red circles) and perpendicular (blue triangles) asymmetries as a 
function of energy loss. The error bars are statistical only.
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For the perpendicular asymmetry A±, the target polarization is maintained transverse 

to the beam direction and the beam polarization is again pseudo-randomly flipped. 

A\i has a large negative value at the A (~  2%) and is Q2-independent. Similarly A± 
has a large positive value at the A. It is interesting to note that A\\ and A x are rough 

mirror images of each other in the resonance region. In the deep inelastic scattering 
regime, A\\ becomes large whereas A± quickly dies out. The measured asymmetries 

are diluted by contribution from unpolarized backgrounds such as nitrogen. However, 
the results presented here have been corrected for dilution and radiative corrections.

4.2 Polarized  Spin Structure Functions g \  and g 2

The polarized structure functions Gi(u, Q2) and G2(u, Q2) are related to the measured 
polarized cross sections in the following way [133]:

c}̂1 (7 FJ
-  T T )  =  J p Q 2 ^ M (E  + E  C0S°)Gi -  Q G2], (4.9)

=  - ^ ^ s m 0 [ M G 1 +  2£G 2]. (4.10)

Like their unpolarized counterparts, in the scaling limit, the polarized structure func­
tions Gi(u, Q2) and G2(u, Q2) are replaced by the scaling polarized structure functions 
gi(x) and g2(x) [133]:

^ G x{v,Q2) -»• gi(x), (4.11)

j ^ G 2(u,Q 2) ^  g2{x). (4.12)

Plots of the gi and g2 structure functions for 3 He as a function of energy loss v are

shown in Fig 4.3. It is to be noted that the quasielastic region does not contribute 
significantly to the structure functions. However, the A and resonance regions play a 

major role for both gi and g2. In the scaling region, g\ dominates. Plots of g\ and g2 
as a function of the Bjorken scaling variable x  are shown in Fig. 4.4 at the six beam 

energies of this experiment and at six chosen and equally spaced Q2: 0.10, 0.26, 0.42, 
0.58, 0.74, and 0.90 GeV2. The evaluation of g\ and g2 from constant beam energy to 
constant Q2 was done by interpolation and in a few instances by extrapolation [137].
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Figure 4.3: The 3He polarized structure functions gi (red circles) and g2 (blue trian­
gles) as a function of invariant mass. The error bars are statistical only.
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Figure 4.4: gi(x) (blue solid circles) and gi{x) (red solid circles) as a function of the 
Bjorken scaling variable x  at the six beam energies of this experiment (left plot) and 
at six chosen fixed Q2 (right plot).
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4.3 E xtraction  o f N eu tron  from  3H e

In this experiment, all measurements were performed on a polarized 3He target. Hence 
spin structure functions and asymmetries extracted so far are those of 3He. However, 
in a naive model of the 3He nucleus, all nucleons sit in a S-wave state. In this picture, 
both protons carry opposite’ spins and cancel each other out. W hat is left is the 

spin of the neutron. Thus, to a large extent, the neutron may be approximated by 

a 3He nucleus. The spin structure functions and asymmetries for 3He and the neu­

tron are then identical. Unfortunately, the scenario just described is not completely 

accurate. In a realistic model of the 3He wave function, where effective nucleon po­

larizations are taken into account but not nuclear effects, the S state is augmented by

an admixture of S’- and D-wave components, with a negligible P-wave contribution. 
World calculations on the three-body system for the extra wave function percentages 
give Pn =  9.8% and Ps> =  1.4%. The prescription for getting at the neutron spin 
structure functions and asymmetries from those of 3He and the proton is [33]:

2iHe =  2pPgPi ( x ) + p ng^(x), (4.13)

■̂3He =  2/pPpv4p* +  fnPn-Afi, (4.14)

Here the important quantities are the effective nucleon polarizations pp and pn of 
the proton and neutron, respectively. Their values from world calculations are pp — 

—0.028 ±  0.004 and pn = 0.86 ±  0.02. The dilution factor of the proton(neutron) is 

defined as / p(n) =  /(2F% + F.'£), and the asymmetry is — 2 x ( / ^ / F f ('n\  In
the same fashion, a formula for the GDH integral is developed [33]:

f He(Q2) = 2 PpI p(Q2) + p nI n(Q2). (4.15)

In order to introduce nuclear effects, namely Fermi motion and binding effects, a 

convolution approach [33] is employed. The method consists of defining the spin 
structure function of 3He as a convolution of the spin structure function of the nu­
cleon and its spectral functions, summed over the constituent nucleons. This last 
convolution approach differ from the method of effective nucleon polarizations by at 
most 5%. However, the correction to the GDH integral of the neutron from 3He may 

be as large as 30%. All the cross sections, asymmetries, and structure functions pre­
sented in this thesis do not include corrections for nuclear effects. However, results 
for the GDH integral are presented for both the neutron in 3He (no correction for
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nuclear effects) and the free neutron (corrections for nuclear effects included). The 
extraction of the neutron GDH integral from 3He was obtained by multiplying by a 

factor /3 dh/ 4 dh acquired from Ref. [33].

4.4  G D H  Integrand

The polarized cross sections measured in this experiment are connected to the transverse- 
transverse interference term a 'T T  and the longitudinal-transverse interference term g 'l t  

by [138]:

M  I T  /̂2 TT

f f l T - f f T T  s  5 ^ - ^ = 2 r B <1 + £ i ^ + ^ > '  <4-16>

s  <417>
where

a K  E'  2
(4.18)4?r2 Q2 E l - t '

The photon depolarization factor D =  (1 — eE'/ E ) / ( l  +eR), d =  2e/(l +  e), rj =
ev^ / ( E - e E ' ) ,  (  =  77 (l +  e)/2e, e_1 =  l  +  2 ( l + 7 “2) tan2(6l/2), 7  =  2Mx/^JCE, R  = 

g l / g t , and A  is the photon flux and is convention-dependent. In this experiment, the 
convention picked is the so-called Hand convention and is defined as K  = v — Q2/ 2 M . 
Substituting D  and d in the equations for the differences of polarized cross sections 
above yield a new set of linear equations:

_ (jTT = 2 T ( l - e E ,/E)(a'TT + W ,LT), (4.19)

=  2 T ( l - e E ,/E ) (a ,LT- ( a ,TT). (4.20)

This removes the dependency of R  and obviates the need to obtain experimentally 

measured values for R  = g l /g t -  This experiment measured the quantities cA, m b 
cH- *, and a I- ". All the other factors (T, e, 77, and £) depend only on the kinemat­
ics. The GDH integrand a'TT and o'LT may now be extracted from the set of linear
equations above. For completeness sake, the spin-averaged cross section in the above 
formalism is simply:

(Eg

dfldE' — L(gt +  €Gl ). (4-21)
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Thus, having measured the polarized cross sections, the interference terms required 
by the GDH sum rule are readily extracted. Fig. 4.5 shows cr'TT as a function of 

invariant mass W  at the six constant beam energies of this experiment (left plot) 

and a'TT as a function of energy loss v as a function of six chosen and equally spaced 

Q2 values. All values are averaged over both the Electron and Hadron arms. The 
dominant feature of a'TT is the A(1232) or P33 resonance. It is by far the single largest 

contributor to the GDH integral.

4.5 G D H  Sum  R ule and Integral

The GDH sum rule links the total photoabsorption cross-section difference to the nu­
cleon anomalous magnetic moment [16]. This relationship is captured in the following 
equation:

dv 2n2a  2
J[ — (°i/2 -  03/2) = ' (422)

cri/2(3/2) is the total photoabsorption cross section where the index represents the 
projection of total angular momentum along the quantization axis for the photon- 
nucleon pair. Here, v  is the energy loss and vq is the threshold of pion production. M  

is the mass of the nucleon and k is the anomalous magnetic moment of the nucleon. 
The prediction of the GDH sum rule is restricted to real photons only, that is Q2 = 0. 
In this experiment, a beam of electrons interacted with the target nucleons via virtual 

photons. Thus it is necessary to extend the GDH sum rule to virtual photons if 

a meaningful dialogue between theory and experiment is to be engaged. This is 
traditionally done by redefining the GDH integral for finite Q2. Several definitions of 
the GDH integral exist in the literature [26,31]. The one chosen for this experiment 
is [139]:

/(Q 2) =  2 f °  — (1 -  x)a'TT. (4.23)
J  VO V

x = Q2/2 M v  is the Bjorken scaling variable. As defined above, the real photon limit 
for the GDH integral is:

, . 271" Gi n
m  = -u rK • (4-24)
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Figure 4.5: a'TT as a function of invariant mass W  at the six beam energies of this 
experiment (left) and a'TT  as a function of energy loss v  for six chosen, equally spaced 
Q2 values (right). Statistical errors are represented by the error bars on the data 
points and systematic errors are represented by the error bands on the horizontal 
axes. The open circles represent interpolated points.
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Q2 (GeV2) -̂ GDH (fib) Statistical (fib) Systematic (fib)

0.10 -187.50 5.23 28.43

0.26 -109.92 2.04 13.77

0.42 -53.51 1.21 5.48

0.58 -31.68 0.74 3.72

0.74 -18.27 0.64 2.42

0.90 -10.47 0.46 1.52

Table 4.1: Experimentally measured values for / gdh(Q ) before nuclear corrections 
along with their corresponding statistical and systematic errors; see Ref. [1].

On the other side of the momentum spectrum,

1fi 2 r ! ( q 2)167T ai m
Q 2

as Q oo, (4.25)

where Ti((32) =  Jq g i (x ,Q2)dx. This experiment measured values of the GDH inte­
gral for the neutron from 3He. If, in addition, measurements of the GDH integral for 
the proton are obtained, the difference,

c*s(Q2)r?(Q2) -  r?(Q2) = -
6

9a

9v
1 -

7T
(4.26)

is the well-known Bjorken sum rule [7] and has been calculated to high accuracy in 

the fundamental theory of quantum chromodynamics (QCD). Here, qa!9v is the ratio 
of the axial to vector coupling constant in the (3 decay of the neutron and a s is the 
strong coupling constant. Table 4.1 contains values for the GDH integral measured 
in this experiment. These values have been evaluated at fixed Q2 by interpolating 
between values of constant beam energies. In addition, alongside the experimental 

points, theoretical predictions for both the GDH sum rule and integral are plotted in 

Fig. 4.6. Note the GDH integral of the model of Ref. [26] does not match the GDH 
sum rule at Q2 =  0. This is possibly due to some missing resonances or insufficient 
strengths of certain resonances in their model.
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Figure 4.6: GDH integral as a function of Q2 for this experiment. The red solid 

circles represent / g d h  without any nuclear corrections. The blue hollow squares rep­
resent / g d h  corrected for nuclear effects but with resonance contribution only. The 
blue solid squares represent / g d h  corrected for nuclear effects including resonance and 

DIS contributions. The hollow diamonds are DIS data from the HERMES collabo­
ration [140]. The star is the value of the GDH integral for the neutron. The solid 

blue curve is a calculation based on the MAID model [26]. The red dashed line in 
the lower left corner represents ChPT calculations of Ref. [31]. The red solid line and 

pink band represent ChPT calculations of Ref. [141], The band includes uncertainties 

in resonance parameters used. The green error band on the horizontal axis represents 
systematic errors. The statistical errors are represented by error bars on the data 
points. When absent, the error bars are simply smaller than the data points shown. 

Note that beyond a Q2 of 1 GeV2, the data points are plotted with a semi-log scale.
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4.6 C onclusion  and O utlook

This dissertation describes the first experiment to measure gi, g2 , cr^T, and /qdh(Q 2) 
in the low Q2 range of 0.1 to 0.9 GeV2. The low Q2 evolution of the GDH integral 
may be compared with model predictions from different phenomenologies: chiral per­

turbation theory, lattice quantum chromodynamics (when available), and high twist 

expansion. Future experiments at Jefferson Lab aim to extend these measurements to 
lower Q2 [142] to answer the question whether the GDH integral makes the expected 

dramatic turnover at Q2 below 0.1 GeV2 and meets the predicted value for the GDH 

sum rule of 1(0) = —232.8 fib.
Experiment E94-010 is the first of a series of many successful experiments in 

Hall A to use the polarized 3He target. As part of that programme, a polarized 
3He target facility has been built at Jefferson Laboratory and a target cell building 

facility has been setup at the College of William and Mary under the auspices of T. 
Averett. The latter is an ongoing active research effort and target cells with record 
ever increasing polarization have been developed. In addition, the accelerator group 

has been breaking new grounds by achieving ever higher beam polarization at high 

luminosity and reliability. One can only wait with anticipation at the physics results 
pouring out of this program in the next few years.
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Chapter 5

Tables of g \ ( x ), g 2 ( x ) ,  and a 'T T

Presented in this chapter are tables of the physics quantities measured in this ex­
periment. Tables 1-9 include values of g\(x) at constant beam energy. Tables 10-18 
include values of g2 (x) at constant beam energy. Tables 19-24 include values of gi(x) 

at constant Q2. Tables 25-30 include values of g2 (x) at constant Q2. Tables 31-39 

include values of a'TT vs. W  at constant beam energy. Tables 40-48 include values of 

a'TT vs. v  at constant Q2. The last column of each table represents statistical errors 
only.
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CHAPTER 5. TABLES OF Gi(X) ,  G2{X),  AND a'TT

X 0i 0*0 Statistical

1.12 0.14182250E-01 0.26234046E-02

0.35 0.91571636E-01 0.60040797E-02

0.20 0.11382457E-01 0.82934806E-02

0.13 0.10658792E-02 0.81755072E-02
0.09 -0.49901415E-01 0.40711936E-01
0.07 -0.13679247E+00 0.24238409E-01
0.06 -0.22968970E+00 0.33332061E-01
0.04 -0.17004804E+00 0.47813617E-01
0.03 -0.10828505E+00 0.50857317E-01
0.03 -0.33049781E-01 0.59056628E-01
0.02 -0.90949327E-01 0.16542999E+00
0.02 -0.23331431E+00 0.30727485E+00

Table 5.1: g\{x) at E^eam =  0.86 GeV
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X 9 i ( x ) Statistical

4.51 -0.16306395E-02 0.10699913E-03

1.46 -0.22705919E-02 0.21377730E-02

0.85 0.34619238E-01 0.79466505E-02

0.59 0.41623883E-01 0.72399811E-02

0.44 0.34726663E-02 0.59218481E-02

0.35 -0.16102279E-01 0.77965166E-02

0.29 -0.18617181E-01 0.89896452E-02
0.24 -0.11674576E+00 0.13463100E-01

0.20 -0.13845623E+00 0.22265524E-01
0.17 -0.10323865E-01 0.25535723E-01

0.15 0.19927669E-01 0.16946007E-01

0.13 0.14430597E-01 0.18075427E-01
0.12 -0.42113303E-02 0.16524276E-01
0.10 -0.34073610E-01 0.21528162E-01
0.09 0.51094666E-01 0.28412353E-01
0.08 -0.13106216E-01 0.25847560E-01
0.07 -0.20000676E-02 0.29022532E-01

0.06 -0.63624866E-01 0.39962627E-01
0.06 0.70814778E-04 0.39350338E-01
0.05 -0.12766827E-01 0.77100240E-01

0.05 -0.72170891E-01 0.51351890E-01
0.04 0.57972752E-01 0.44542219E-01
0.04 0.50687820E+00 0.19393364E+00
0.03 0.10037500E+01 0.27364549E+00
0.03 0.14831458E+01 0.21846020E+00
0.02 0.19500046E+01 0.33972446E-01

Table 5.2: g\(x) at E^eam = 1.7 GeV
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X 9 i ( x ) Statistical

10.22 0.36296681E-01 0.63235092E-03
3.34 0.35186585E-02 0.10241738E-04

1.96 0.32382572E-03 0.20288014E-03

1.37 -0.13550362E-02 0.11910818E-02

1.05 0.26851977E-03 0.35099837E-02
0.84 0.17225698E-02 0.46784608E-02

0.69 0.20381914E-01 0.39229984E-02

0.59 0.14061023E-01 0.40358393E-02

0.51 -0.94419662E-02 0.55401931E-02

0.44 -0.44636104E-01 0.98728212E-02

0.39 -0.53154502E-01 0.12776713E-01

0.35 -0.82318485E-01 0.13364040E-01
0.31 -0.59743538E-01 0.16884565E-01

0.28 -0.58646314E-01 0.14159492E-01
0.26 -0.42269982E-01 0.12391546E-01
0.23 0.18245949E-02 0.15401202E-01
0.21 0.22452618E-02 0.16328041E-01
0.19 0.15153727E-01 0.15674304E-01
0.18 -0.60126376E-02 0.20183455E-01

0.16 0.10961683E-01 0.20105746E-01

Table 5.3: gi{x) at Ebearn =  2.6 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

X 0i 0*0 Statistical

0.15 0.16520057E-01 0.18633366E-01

0.14 0.23036931E+00 0.22658363E-01

0.13 0.55162704E+00 0.21369396E-01

0.12 0.84337813E+00 0.24912560E-01

0.11 0.12172891E+01 0.21434600E-01

0.10 0.15553987E+01 0.23642356E-01

0.09 0.19741496E+01 0.22993388E-01

0.09 0.16165129E+01 0.24930939E-01

0.08 -0.13816418E+00 0.25629917E-01

0.07 -0.16858179E-01 0.28302766E-01

0.07 -0.40372554E-01 0.28958468E-01

0.06 -0.68981551E-01 0.33252705E-01

0.06 -0.90578087E-01 0.33722520E-01

0.05 -0.73108234E-01 0.29512106E-01

0.05 -0.54406628E-01 0.40314399E-01

0.05 -0.15339199E+00 0.54153755E-01

0.04 0.21072589E+00 0.13131882E+00

0.04 -0.18311450E+00 0.50190572E-01

0.03 -0.16698907E+00 0.18729267E+00

Table 5.4: gi(x) at -Ebeam =  2.6 GeV (continued)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND o’TT

X 9 i ( x ) Statistical

1.84 -0.26862817E-04 0.54414594E-03

1.48 -0.69356535E-03 0.34488586E-03

1.23 -0.21423807E-03 0.74801873E-03

1.05 0.28862262E-02 0.14576418E-02

0.91 0.58034372E-01 0.22032454E-02

0.80 0.68118731E-02 0.21556602E-02

0.71 0.38112768E-02 0.31887873E-02

0.64 -0.95562711E-02 0.38042590E-02

0.58 -0.23624588E-01 0.48740194E-02

0.53 -0.37551660E-01 0.66223340E-02

0.48 -0.46644263E-01 0.65085799E-02

0.44 -0.23888119E-01 0.62438259E-02

0.41 -0.21869641E-01 0.65440098E-02

0.38 -0.82710752E-03 0.79535833E-02

0.35 0.18345626E-01 0.79408344E-02

0.32 -0.17569920E+00 0.84132487E-02
0.30 -0.57906967E+00 0.92388699E-02

0.28 -0.71906912E+00 0.11570845E-01
0.26 -0.79048979E+00 0.10951820E-01
0.25 -0.73019654E+00 0.11092637E-01
0.23 -0.59086710E+00 0.13427658E-01
0.22 -0.40579370E+00 0.14305437E-01
0.20 -0.20995156E+00 0.14672418E-01
0.19 0.64403981E-01 0.15120492E-01
0.18 -0.12374887E-01 0.17340321E-01

Table 5.5: gi{x) at £7>eam =  3.4 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF Gi (X) ,  G2(X),  AND a'TT

X 9 i ( x ) Statistical

0.17 -0.23902573E-01 0.15521068E-01
0.16 -0.22538722E-01 0.15925694E-01
0.15 -0.41337423E-01 0.21149745E-01
0.14 -0.22313419E+00 0.15706538E+00
0.13 -0.14013819E+00 0.55227943E-01
0.13 -0.82780495E-01 0.31293456E-01
0.12 -0.62498111E-01 0.18735601E-01
0.11 -0.83540969E-01 0.23571163E-01
0.11 -0.18613680E+00 0.59740413E-01
0.10 -0.10718542E+00 0.37500184E-01
0.09 -0.69411345E-01 0.31711966E-01

0.09 -0.80979288E-01 0.23585496E-01
0.08 -0.99490821E-01 0.35758894E-01
0.08 -0.11014149E+00 0.45921136E-01
0.07 -0.11045226E+00 0.45349233E-01
0.07 -0.93336336E-01 0.27916530E-01
0.06 -0.82355820E-01 0.47905438E-01
0.06 -0.61615016E-01 0.40889718E-01
0.06 -0.56889951E-01 0.38737681E-01
0.05 -0.48980452E-01 0.48134804E-01

Table 5.6: gi(x) at EheaiXa = 3.4 GeV (continued)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

X 9i(x) Statistical

1.30 0.80808077E-03 0.16237996E-02

1.16 -0.62457827E-03 0.18325783E-02

1.05 0.52421396E-02 0.34310624E-02

0.95 0.19452974E-01 0.38110972E-02

0.87 0.53533177E+01 0.52270875E-02

0.80 -0.95838638E+02 0.40947930E-02

0.73 -0.72953491E+02 0.24826899E-02

0.68 -0.53496925E+02 0.24193737E-02

0.63 -0.43318588E+02 0.33312179E-02

0.59 -0.36649883E+02 0.38725245E-02

0.55 -0.31842117E+02 0.54022931E-02

0.52 -0.28248373E+02 0.56709526E-02

0.48 -0.25304966E+02 0.55362713E-02

0.45 -0.22956518E+02 0.52327006E-02
0.43 -0.20864058E+02 0.53148521E-02

0.40 -0.15755212E+02 0.65190136E-02

0.38 0.76201224E+00 0.72898748E-02

0.36 0.71846750E-02 0.79123322E-02

0.34 0.16173370E-03 0.74368124E-02
0.32 -0.42652260E-02 0.83301868E-02
0.31 -0.73306621E-02 0.10533367E-01
0.29 -0.17781585E-01 0.11892070E-01
0.28 0.81141023E-02 0.11807044E-01
0.26 0.14994864E-01 0.11533692E-01
0.25 -0.11311520E-03 0.14761130E-01

Table 5.7: gi(x) at T̂ beam =  4.2 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

X 9i{x) Statistical

0.24 -0.32201316E-01 0.16177498E-01

0.23 -0.48282448E-01 0.16572295E-01

0.22 -0.31293787E-01 0.15804337E-01

0.21 -0.15409846E-01 0.20686787E-01

0.20 -0.68948515E-01 0.38399711E-01

0.19 0.15892087E-01 0.49721401E-01

0.18 0.53825393E-01 0.64382814E-01

0.17 0.35791159E-01 0.46547893E-01

0.16 -0.31354681E-01 0.20832958E-01

0.16 -0.68346553E-01 0.18339409E-01
0.15 -0.71198612E-01 0.24392886E-01

0.14 -0.10926700E+00 0.50926276E-01

0.14 -0.36866434E-01 0.90590693E-01

0.13 -0.81900870E-02 0.50177231E-01

0.12 -0.63442580E-01 0.25287675E-01
0.12 -0.36305726E-01 0.23834264E-01
0.11 0.68128407E-02 0.30182019E-01
0.11 -0.32328241E-01 0.57840478E-01
0.10 0.23692858E+00 0.14878465E+00

0.10 0.98638915E-01 0.14331158E+00
0.09 -0.13922465E-01 0.17079030E+00

0.09 -0.66735268E-01 0.12662871E+00
0.08 -0.64184606E-01 0.44997573E-01

0.08 -0.13073483E+00 0.46533972E-01
0.07 -0.13420624E+00 0.47769587E-01

Table 5.8: g\{x) at E^eam =  4.2 GeV (continued)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

X 9 i ( x ) Statistical

0.35 -0.10876932E-01 0.38251005E-01

0.33 -0.17921032E-01 0.17171517E-01

0.32 -0.39308652E-01 0.15422063E-01

0.31 -0.25113815E-01 0.15015876E-01

0.29 -0.38317807E-01 0.13653855E-01

0.28 -0.23837000E-01 0.15711963E-01

0.27 -0.32783128E-01 0.24473397E-01

0.26 -0.46943195E-01 0.37591878E-01

0.25 -0.28414562E-01 0.32654881E-01
0.24 -0.72196223E-01 0.34150403E-01

0.23 -0.47591273E-01 0.27213020E-01
0.22 -0.51551163E-01 0.29033868E-01

0.21 -0.42569071E-01 0.28567731E-01

0.20 -0.34861658E-01 0.27691448E-01

0.20 -0.30992478E-01 0.25501471E-01

0.19 -0.35756044E-01 0.23836128E-01

0.18 -0.78248248E-01 0.24240701E-01

0.17 -0.57427771E-01 0.23874903E-01

0.17 -0.72669260E-01 0.27138056E-01
0.16 0.63001132E-02 0.38236555E-01

0.15 -0.71755931E-01 0.40560432E-01

0.15 -0.72652660E-01 0.40890533E-01

0.14 -0.37801217E-01 0.32166842E-01
0.14 -0.27906664E-01 0.29541388E-01

0.13 -0.57806838E-02 0.28385323E-01
0.13 -0.43886282E-01 0.33899467E-01

Table 5.9: g i ( x )  at £̂ beam =  5.1 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF Gi(X) ,  G2(X),  AND o'TT

X 9 2 ( x ) Statistical

1.12 0.27885041E-02 0.47925930E-03

0.35 -0.65823947E-03 0.26677263E-02

0.20 0.18484594E-01 0.48397072E-02

0.13 0.11621362E-01 0.94528040E-02

0.09 0.25718626E-01 0.62590532E-01

0.07 0.94635196E-01 0.38580269E-01

0.06 0.22264320E+00 0.81016377E-01

0.04 0.33829698E+00 0.13896564E+00

0.03 0.19557568E+00 0.19038598E+00

0.03 0.31593511E+00 0.31553167E+00

0.02 -0.70127529E+00 0.11809517E+01
0.02 -0.13266039E+01 0.27056563E+01

Table 5.10: g2{x)  at Ebeam =  0.86 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

X 32 0 ) Statistical

4.51 0.13113629E-03 0.67125989E-05

1.46 -0.25170215E-02 0.60995331E-03

0.85 -0.47840908E-01 0.34291146E-02

0.59 -0.88774245E-02 0.39000800E-02

0.44 -0.54638605E-02 0.33809291E-02

0.35 0.22773990E-01 0.53295195E-02

0.29 0.55060979E-01 0.80480902E-02

0.24 0.11348634E+00 0.13998950E-01

0.20 0.19289444E+00 0.22120127E-01

0.17 0.17270193E+00 0.29828928E-01

0.15 0.17572418E+00 0.28791560E-01

0.13 0.96148312E-01 0.34437601E-01

0.12 0.95983885E-01 0.39344389E-01

0.10 0.10395623E+00 0.52595701E-01

0.09 0.89846887E-01 0.57348460E-01

0.08 0.33866489E+00 0.84321029E-01

0.07 0.17358233E+00 0.10964624E+00

0.06 0.10261069E+00 0.13286522E+00

0.06 0.93905151E-01 0.13542095E+00

0.05 0.64683771E+00 0.29728234E+00

0.05 0.83249402E+00 0.29097408E+00
0.04 -0.29760832E+00 0.27344880E+00
0.04 -0.24869750E+01 0.54956543E+00
0.03 -0.49600582E+01 0.71932501E+00

0.03 -0.72450256E+01 0.65940708E+00
0.02 -0.93047047E+01 0.61662209E+00

Table 5.11: g 2{x)  at E^eam =  1-7 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF Gx{X), G2{X), AND a'TT

X 9 2 { x ) Statistical

10.22 -0.10347107E-02 0.61112063E-04

3.34 0.35251534E-03 0.18192650E-05

1.96 -0.40775496E-04 0.10988500E-03
1.37 -0.25275792E-02 0.44954079E-03

1.05 -0.21270551E-01 0.15252163E-02
0.84 -0.37918430E-01 0.27365880E-02

0.69 -0.29802185E-01 0.30924613E-02
0.59 -0.46039494E-02 0.36086801E-02

0.51 0.18219635E-01 0.41933530E-02
0.44 0.47052942E-01 0.77798334E-02

0.39 0.58717731E-01 0.11652213E-01

0.35 0.37495442E-01 0.12453332E-01

0.31 0.75240046E-01 0.18154012E-01
0.28 0.10294256E+00 0.19714605E-01

0.26 0.52345145E-01 0.18813258E-01
0.23 0.76889649E-01 0.26884345E-01
0.21 0.70254341E-01 0.30220868E-01
0.19 0.44259496E-01 0.31125495E-01

0.18 0.28168401E-01 0.44181269E-01

Table 5.12: g 2{x)  at Ebeam =  2.6 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2{X), AND a'TT

X 02 (z) Statistical

0.16 0.73325068E-01 0.52295960E-01

0.15 -0.10655407E+00 0.52053329E-01
0.14 -0.20818665E+01 0.75569667E-01

0.13 -0.47278953E+01 0.85708342E-01

0.12 -0.76890163E+01 0.93827710E-01

0.11 -0.10788750E+02 0.73560975E-01

0.10 -0.13958464E+02 0.90141393E-01

0.09 -0.17440351E+02 0.12539820E+00

0.09 -0.15735399E+02 0.14307803E+00

0.08 0.81296331E+00 0.15095492E+00

0.07 0.24216191E+00 0.18065728E+00

0.07 0.35254613E+00 0.18235725E+00

0.06 -0.19724467E+00 0.31993115E+00

0.06 -0.51721507E+00 0.45744944E+00

0.05 0.38586816E+00 0.34145319E+00

0.05 0.63905513E+00 0.41788423E+00

0.05 -0.48829159E+00 0.53447092E+00
0.04 0.25086136E+01 0.20694494E+01
0.04 -0.81686592E+00 0.63964081E+00

0.03 -0.22445283E+01 0.28045101E+01

Table 5.13: g 2{x)  at E'beam =  2.6 GeV (continued)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF Gi(X) ,  G2(X),  AND a'TT

X 92 { x ) Statistical

1.84 0.29848295E-03 0.17503301E-03

1.48 -0.34626466E-03 0.12407143E-03

1.23 -0.42937514E-02 0.33455272E-03

1.05 -0.20335959E-01 0.77853008E-03

0.91 -0.11331205E+00 0.13307380E-02

0.80 -0.26349830E-01 0.15091615E-02

0.71 -0.10966114E-01 0.22690326E-02

0.64 0.20481190E-01 0.27423869E-02

0.58 0.38339611E-01 0.38444058E-02

0.53 0.50096646E-01 0.58071609E-02

0.48 0.50954200E-01 0.65254192E-02

0.44 0.55072680E-01 0.73112561E-02

0.41 0.66082060E-01 0.81934277E-02

0.38 0.64914674E-01 0.10758860E-01

0.35 0.13039641E+00 0.11625396E-01

0.32 -0.17603824E+01 0.12963668E-01

0.30 -0.68226404E+01 0.14430132E-01

0.28 -0.11640256E+02 0.20093977E-01

0.26 -0.16408232E+02 0.20593785E-01

0.25 -0.20772755E+02 0.22581417E-01

0.23 -0.25280010E+02 0.28784575E-01

0.22 -0.29810057E+02 0.31858865E-01

0.20 -0.23608360E+02 0.33077598E-01

0.19 0.12676399E+01 0.36305796E-01
0.18 0.27158186E-01 0.47217242E-01

Table 5.14: g 2(x)  at E beam =  3.4 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF GRX) ,  G2(X),  AND a'TT

X 9 2 ( x ) Statistical

0.17 0.15589987E+00 0.60150422E-01
0.16 0.94048403E-01 0.64455770E-01
0.15 0.45180198E-01 0.88895760E-01
0.14 0.10360028E+00 0.13962804E+00
0.13 0.11749584E+00 0.18079364E+00
0.13 0.15545757E+00 0.13835025E+00
0.12 0.22148925E+00 0.88642843E-01
0.11 0.45845095E-01 0.11474291E+00
0.11 -0.12874320E+00 0.27480280E+00
0.10 -0.25832298E+00 0.21276821E+00
0.09 -0.17790152E+00 0.19411911E+00

0.09 0.14818901E+00 0.14897765E+00
0.08 0.12458502E+00 0.23466431E+00

0.08 0.17584492E+00 0.32869774E+00
0.07 0.10173831E+00 0.34428817E+00
0.07 -0.87773368E-01 0.22449318E+00
0.06 0.22429270E+00 0.40544233E+00
0.06 0.11109690E+00 0.46351609E+00
0.06 0.22788687E+00 0.48341268E+00
0.05 0.63306129E+00 0.64937007E+00

Table 5.15: .92 (-x) at Ebeam =  3.4 GeV (continued)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF Gi(X) ,  G2(X),  AND a'TT

X 02 (ar) Statistical

1.84 0.29848295E-03 0.17503301E-03
1.48 -0.34626466E-03 0.12407143E-03

1.23 -0.42937514E-02 0.33455272E-03

1.05 -0.20335959E-01 0.77853008E-03
0.91 -0.11331205E+00 0.13307380E-02

0.80 -0.26349830E-01 0.15091615E-02

0.71 -0.10966114E-01 0.22690326E-02
0.64 0.20481190E-01 0.27423869E-02

0.58 0.38339611E-01 0.38444058E-02

0.53 0.50096646E-01 0.58071609E-02

0.48 0.50954200E-01 0.65254192E-02
0.44 0.55072680E-01 0.73112561E-02
0.41 0.66082060E-01 0.81934277E-02

0.38 0.64914674E-01 0.10758860E-01
0.35 0.13039641E+00 0.11625396E-01
0.32 -0.17603824E+01 0.12963668E-01
0.30 -0.68226404E+01 0.14430132E-01
0.28 -0.11640256E+02 0.20093977E-01
0.26 -0.16408232E+02 0.20593785E-01

0.25 -0.20772755E+02 0.22581417E-01

Table 5.16: g2(x) at Ebeam =  4.2 GeV
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X 02 (z) Statistical

0.23 -0.25280010E+02 0.28784575E-01

0.22 -0.29810057E+02 0.31858865E-01

0.20 -0.23608360E+02 0.33077598E-01

0.19 0.12676399E+01 0.36305796E-01

0.18 0.27158186E-01 0.47217242E-01

0.17 0.15589987E+00 0.60150422E-01

0.16 0.94048403E-01 0.64455770E-01

0.15 0.45180198E-01 0.88895760E-01
0.14 0.10360028E+00 0.13962804E+00

0.13 0.11749584E+00 0.18079364E+00

0.13 0.15545757E+00 0.13835025E+00

0.12 0.22148925E+00 0.88642843E-01

0.11 0.45845095E-01 0.11474291E+00

0.11 -0.12874320E+00 0.27480280E+00

0.10 -0.25832298E+00 0.21276821E+00

0.09 -0.17790152E+00 0.19411911E+00

0.09 0.14818901E+00 0.14897765E+00

0.08 0.12458502E+00 0.23466431E+00
0.08 0.17584492E+00 0.32869774E+00

0.07 0.10173831E+00 0.34428817E+00

0.07 -0.87773368E-01 0.22449318E+00

0.06 0.22429270E+00 0.40544233E+00

0.06 0.11109690E+00 0.46351609E+00

0.06 0.22788687E+00 0.48341268E+00
0.05 0.63306129E+00 0.64937007E+00

Table 5.17: g2{x)  at -Ebeam =  4.2 GeV (continued)
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X 9 2 { x ) Statistical

0.35 0.52131038E-01 0.91907576E-01
0.33 -0.57930150E-02 0.41470263E-01

0.32 -0.23541455E-02 0.37955854E-01

0.31 0.16747264E-01 0.36695741E-01

0.29 0.27337383E-01 0.35714973E-01

0.28 0.14536730E-01 0.39873265E-01

0.27 0.19663107E+00 0.72203971E-01
0.26 0.19686541E+00 0.11647356E+00

0.25 -0.70491433E-01 0.10067608E+00
0.24 0.15292150E+00 0.10452728E+00

0.23 -0.13596360E+00 0.12561518E+00
0.22 -0.68554848E-01 0.19777824E+00
0.21 -0.99554108E-02 0.29942465E+00

0.20 0.35385232E-01 0.33802202E+00

0.20 0.59309892E-01 0.30401003E+00
0.19 0.63493766E-01 0.19983892E+00

0.18 0.36037505E-01 0.18797620E+00

0.17 0.32597390E+00 0.20682092E+00

0.17 0.25173798E+00 0.20582953E+00

0.16 0.42220491E+00 0.20934789E+00

0.15 0.43642411E+00 0.19858848E+00
0.15 -0.32202285E-01 0.18603705E+00
0.14 0.21568009E+00 0.17659219E+00
0.14 -0.31669974E+00 0.18677635E+00

0.13 0.41004401E+00 0.21848904E+00
0.13 -0.49650133E-01 0.23953831E+00

Table 5.18: g2(x)  at E hP!im =  5.1 GeV
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X 9 i { x ) Statistical

0.10 -0.11158335E+00 0.33910330E-01

0.15 0.91623388E-01 0.19273477E-01

0.20 0.87445276E-02 0.14562094E-01

0.25 -0.40141199E-01 0.11834145E-01

0.30 -0.73109843E-01 0.12622668E-01

0.35 -0.88818818E-01 0.89337444E-02

0.40 -0.36289845E-01 0.62139235E-02

0.45 -0.59278817E-02 0.46057347E-02

0.50 -0.21221477E-03 0.44207717E-02

0.55 0.94467849E-02 0.37835811E-02

0.60 0.19764334E-01 0.38501890E-02

0.65 0.29139536E-01 0.41699368E-02

0.70 0.35288587E-01 0.53482326E-02

0.75 0.33862803E-01 0.49535735E-02

0.80 0.31187534E-01 0.49312972E-02

0.85 0.29211586E-01 0.55696662E-02

0.90 0.26823286E-01 0.66894284E-02

0.95 0.22984846E-01 0.61996030E-02

Table 5.19: g ^ x )  at Q 2 =  0.10 GeV2
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X 9 i { x ) Statistical

0.10 -0.10570808E+00 0.25326915E-01
0.15 0.52386034E+00 0.12479737E-01

0.20 -0.37882370E+00 0.10843997E-01

0.25 0.66024768E+00 0.11966434E-01

0.30 0.50666946E+00 0.93274387E-02

0.35 0.34497440E+00 0.11277024E-01

0.40 0.20483106E+00 0.12257409E-01

0.45 0.46421710E-01 0.96706720E-02

0.50 -0.12514859E-01 0.51027434E-02

0.55 0.56925188E-02 0.38009030E-02

0.60 0.15419142E-01 0.36185225E-02

0.65 0.19628642E-01 0.29490222E-02

0.70 0.20956535E-01 0.35138694E-02

0.75 0.18645603E-01 0.32254371E-02

0.80 0.13134829E-01 0.35591449E-02

0.85 0.87130368E-02 0.41020927E-02

0.90 0.76945447E-02 0.37823445E-02

0.95 0.67869220E-02 0.34091338E-02

Table 5.20: g i ( x )  at Q 2 =  0.26 GeV2
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X 9 i { x ) Statistical

0.10 0.13680476E+00 0.12765191E+00

0.15 -0.74600279E-01 0.23415986E-01

0.20 -0.12037601E+00 0.11956813E-01

0.25 -0.65469432E+00 0.86461101E-02

0.30 0.97238129E+00 0.66386112E-02

0.35 0.11716455E+01 0.63631930E-02

0.40 0.13357460E+01 0.76234397E-02

0.45 0.15121013E+01 0.73071662E-02

0.50 0.17252523E+01 0.64880042E-02

0.55 0.20518212E+01 0.38151927E-02

0.60 0.23197465E+01 0.31982264E-02

0.65 0.23596463E+01 0.30912017E-02

0.70 0.12295235E+01 0.25412766E-02

0.75 -0.97585849E-01 0.30892177E-02

0.80 -0.29237071E+00 0.28113280E-02

0.85 -0.19934699E+00 0.37345823E-02

0.90 0.12203064E-01 0.36789952E-02

0.95 0.16542977E-01 0.30200544E-02

Table 5.21: g i ( x )  at Q 2 =  0.42 GeV2
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X 0i (z) Statistical

0.20 -0.86336493E-01 0.47594175E-01

0.25 -0.19080795E-01 0.33664674E-01
0.30 0.26197352E-02 0.14296498E-01

0.35 0.14267374E+01 0.35996050E-01

0.40 0.17098308E+01 0.17387846E-01

0.45 -0.28271429E+02 0.91032395E-02

0.50 -0.29098772E+02 0.57925927E-02

0.55 -0.30869200E+02 0.52279127E-02

0.60 -0.33662571E+02 0.36466890E-02

0.65 -0.37869530E+02 0.34515772E-02

0.70 -0.45245285E+02 0.29849573E-02

0.75 -0.54063557E+02 0.28785029E-02

0.80 -0.48988483E+02 0.34480547E-02

0.85 -0.37596872E+01 0.35678432E-02

0.90 0.80572739E+01 0.31267202E-02

0.95 -0.67427512E-02 0.35038802E-02

Table 5.22: g i (x)  at Q 2 =  0.58 GeV2
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X 9 i ( x ) Statistical

0.05 0.63121833E-01 0.41306160E-01

0.10 -0.77485493E-02 0.45814771E-01

0.15 -0.21547560E+00 0.22742502E-01
0.20 -0.53406775E-01 0.25159264E-01

0.25 -0.77850656E-02 0.99901194E-02

0.30 0.10345538E-01 0.67646303E-02

0.35 0.18542362E-01 0.79092160E-02

0.40 0.52164655E-01 0.65356041E-02

0.45 0.80583312E-01 0.57434482E-02

0.50 0.10205472E+00 0.62014181E-02

0.55 0.10617282E+00 0.63711382E-02

0.60 0.97173735E-01 0.57250606E-02

0.65 0.87161496E-01 0.51632957E-02
0.70 0.77240378E-01 0.47535789E-02

0.75 0.67876227E-01 0.44901352E-02

0.80 0.59203159E-01 0.43141469E-02

0.85 0.51386595E-01 0.42469059E-02

0.90 0.44400983E-01 0.42559928E-02

0.95 0.38186539E-01 0.43122913E-02

Table 5.23: g \ { x )  at Q 2 =  0.74 GeV2
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X 9 i { x ) Statistical

0.05 -0.14199643E+00 0.60775027E-01

0.10 0.29183605E+00 0.23046233E-01

0.15 -0.23845188E-01 0.15655419E-01

0.20 -0.34096723E-02 0.13631987E-01

0.25 -0.13730502E+00 0.17146252E-01
0.30 -0.55133384E-01 0.81176423E-02

0.35 -0.79683028E-02 0.63012172E-02

0.40 -0.94402311E-02 0.64572166E-02

0.45 0.21825559E-02 0.52648708E-02

0.50 0.16462233E-01 0.51988554E-02

0.55 0.30430946E-01 0.53742323E-02

0.60 0.41934077E-01 0.71663549E-02

0.65 0.43159720E-01 0.64593698E-02
0.70 0.42208087E-01 0.59206695E-02

0.75 0.40133584E-01 0.60364809E-02

0.80 0.37483141E-01 0.68156514E-02
0.85 0.34600057E-01 0.79451595E-02
0.90 0.30443974E-01 0.74470900E-02

0.95 0.26665734E-01 0.67661600E-02

Table 5.24: g i (x)  at Q 2 =  0.90 GeV2
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X 9 2 ( x ) Statistical

0.10 0.12194709E+00 0.13832770E+00

0.15 -0.31062260E+01 0.61504032E-01

0.20 0.99042714E-01 0.27027769E-01

0.25 0.10783166E+00 0.17068695E-01

0.30 0.82483746E-01 0.12050298E-01

0.35 0.89692600E-01 0.79599964E-02

0.40 0.49045198E-01 0.49481601E-02

0.45 0.22050608E-01 0.33259396E-02

0.50 0.56787180E-02 0.29660200E-02

0.55 -0.87576769E-02 0.23893828E-02

0.60 -0.16801247E-01 0.22787480E-02

0.65 -0.19467810E-01 0.25289252E-02

0.70 -0.21609116E-01 0.30398797E-02

0.75 -0.31646512E-01 0.26643896E-02

0.80 -0.40825237E-01 0.26116108E-02

0.85 -0.48648432E-01 0.29014924E-02

0.90 -0.53878304E-01 0.33300612E-02

0.95 -0.47613263E-01 0.29236584E-02

Table 5.25: g2{x)  at Q 2 =  0.10 GeV2
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X 92 ( x ) Statistical

0.10 0.16111828E-02 0.14529759E+00
0.15 -0.37826653E+01 0.50831605E-01

0.20 -0.95934515E+01 0.26241340E-01
0.25 0.33655887E+01 0.20694267E-01

0.30 0.22607601E+01 0.12930835E-01

0.35 0.13544909E+01 0.11195152E-01

0.40 0.74159914E+00 0.11143207E-01

0.45 0.25076681E+00 0.75538391E-02

0.50 0.20902367E-01 0.38793965E-02

0.55 0.38774167E-02 0.29397334E-02

0.60 -0.93250489E-02 0.30979468E-02

0.65 -0.21647885E-01 0.23475040E-02

0.70 -0.29490806E-01 0.26431421E-02

0.75 -0.32160521E-01 0.21674030E-02

0.80 -0.36253773E-01 0.21135961E-02

0.85 -0.38868431E-01 0.22891257E-02

0.90 -0.40171839E-01 0.20224652E-02

0.95 -0.37741497E-01 0.17327776E-02

Table 5.26: g2{x)  at Q 2 =  0.26 GeV2
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X 92 ( x ) Statistical

0.10 -0.13044302E+00 0.51859683E+00

0.15 0.14145450E+00 0.89858763E-01

0.20 -0.17344654E+02 0.27359808E-01

0.25 -0.11961409E+02 0.16797574E-01

0.30 0.46070409E+01 0.10490685E-01

0.35 0.45887179E+01 0.83883340E-02

0.40 0.43412995E+01 0.75572166E-02

0.45 0.41858869E+01 0.65618176E-02

0.50 0.41406817E+01 0.50992812E-02

0.55 0.43159342E+01 0.28813274E-02

0.60 0.43877325E+01 0.24303959E-02

0.65 0.40861335E+01 0.26875539E-02

0.70 0.19300663E+01 0.21031226E-02

0.75 -0.22757466E+00 0.24280045E-02

0.80 -0.49474898E+00 0.19682252E-02

0.85 -0.34057862E+00 0.23155320E-02

0.90 -0.48821401E-01 0.21489353E-02

0.95 -0.31104621E-01 0.16467809E-02

Table 5.27: g2{x) at Q 2 — 0.42 GeV2
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X 9 2 ( x ) Statistical

0.20 -0.57851095E-01 0.30260411E+00

0.25 0.99303648E-01 0.10016484E+00

0.30 -0.31412456E-01 0.34675408E-01

0.35 0.44941292E+02 0.76308027E-01

0.40 0.17895435E+02 0.30597277E-01

0.45 -0.12956802E+03 0.13536014E-01

0.50 -0.11001259E+03 0.74252598E-02

0.55 -0.99715714E+02 0.54675457E-02

0.60 -0.95487503E+02 0.35912110E-02

0.65 -0.96324020E+02 0.30817136E-02

0.70 -0.10476864E+03 0.24369508E-02

0.75 -0.11589037E+03 0.23065964E-02

0.80 -0.98393379E+02 0.28031957E-02

0.85 -0.65585346E+01 0.27594806E-02

0.90 0.14679336E+02 0.22682690E-02

0.95 -0.21313158E+00 0.24980090E-02

Table 5.28: g 2(x)  at Q 2 =  0.58 GeV2
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X 9 2 { x ) Statistical

0.05 -0.13976388E+00 0.20013879E+00

0.10 0.75830728E-01 0.13706098E+00
0.15 0.17025550E+00 0.33826094E-01
0.20 0.37782088E-01 0.28502582E-01

0.25 0.12376348E-01 0.90431813E-02

0.30 0.93531236E-02 0.47495365E-02

0.35 0.11848436E-01 0.38457653E-02

0.40 0.65943873E-02 0.29525224E-02

0.45 0.79393742E-03 0.26272102E-02

0.50 -0.45842249E-02 0.27438232E-02

0.55 -0.58788061E-02 0.25815379E-02

0.60 -0.46865167E-02 0.21555198E-02

0.65 -0.34723934E-02 0.18461179E-02
0.70 -0.23865860E-02 0.16425387E-02
0.75 -0.12635161E-02 0.15110556E-02

0.80 0.21950458E-03 0.14135010E-02

0.85 0.13833352E-02 0.13489298E-02
0.90 0.22817883E-02 0.13027670E-02

0.95 0.29650258E-02 0.12658676E-02

Table 5.29: g2(x)  at Q 2 =  0.74 GeV2
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X 9 2 { x ) Statistical

0.05 0.18815590E+00 0.50781012E+00

0.10 -0.73557359E+00 0.88587388E-01

0.15 0.88600405E-01 0.32265611E-01

0.20 0.15494074E+00 0.19301601E-01

0.25 0.15451050E+00 0.15492702E-01

0.30 0.68237647E-01 0.72828676E-02

0.35 0.30764911E-01 0.47556204E-02

0.40 0.11073907E-01 0.40764292E-02

0.45 -0.39705583E-02 0.30529476E-02

0.50 -0.92766648E-02 0.28173872E-02

0.55 -0.10068273E-01 0.30287791E-02

0.60 -0.10345665E-01 0.38474146E-02

0.65 -0.21109315E-01 0.32337641E-02

0.70 -0.30541271E-01 0.28591915E-02

0.75 -0.38111959E-01 0.28577512E-02

0.80 -0.43877102E-01 0.31086362E-02

0.85 -0.47907863E-01 0.34308776E-02

0.90 -0.42536244E-01 0.30367081E-02

0.95 -0.36688864E-01 0.26140495E-02

Table 5.30: g 2(x)  at Q 2 =  0.90 GeV2
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W  (MeV) ( 7 (/ib) Statistical

935.30 0.00000000E+00 0.00000000E+00

985.77 0.23872638E+03 0.58040337E+02

1033.79 -0.51506783E+02 0.19571472E+02

1079.66 -0.12003312E+02 0.11697751E+02

1123.67 -0.41153759E+02 0.35602165E+02

1166.02 -0.85515076E+02 0.13989582E+02

1206.88 -0.11695153E+03 0.15533202E+02

1246.40 -0.81075706E+02 0.17916586E+02

1284.71 -0.40148804E+02 0.16091085E+02

1321.91 -0.17325794E+02 0.16250257E+02

1358.09 -0.86456604E+01 0.39949593E+02

1393.33 -0.34033348E+02 0.65946007E+02

Table 5.31: a'TT vs. W  at i?beam =  0.86 GeV
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W  (MeV) (J]*y ( jj)0 j Statistical

846.01 0.00000000E+00 0.00000000E+00

903.22 0.00000000E+00 0.00000000E+00

957.01 0.40638672E+04 0.27370477E+03

1007.94 0.16117961E+03 0.41239220E+02

1056.42 0.22450829E+02 0.12935129E+02

1102.77 -0.46995949E+02 0.98287964E+01

1147.25 -0.56235802E+02 0.80386019E+01

1190.06 -0.10546619E+03 0.87497435E+01

1231.39 -0.10960032E+03 0.10481890E+02

1271.38 -0.39343872E+02 0.99150219E+01

1310.14 -0.20133341E+02 0.59196520E+01

1347.80 -0.64882026E+01 0.53764439E+01

1384.42 -0.81688213E+01 0.43842978E+01

1420.11 -0.12585336E+02 0.49459610E+01

1454.92 0.54177108E+01 0.56496258E+01

1488.91 -0.13339189E+02 0.48546782E+01

1522.15 -0.47516394E+01 0.49905319E+01

1554.67 -0.11339153E+02 0.62061977E+01

1586.53 -0.14793873E+01 0.56571012E+01

1617.76 -0.97990427E+01 0.10354173E+02

1648.40 -0.17177513E+02 0.65067768E+01

1678.48 0.91022625E+01 0.52986503E+01

1708.03 0.71789955E+02 0.21749601E+02

1737.08 0.13083112E+03 0.29167950E+02

1765.65 0.17838147E+03 0.22186171E+02
1793.77 0.21737479E+03 0.31750927E+01

Table 5.32: a'TT vs. W  at Tbeam =  1-7 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

W  (MeV) ( j (/^b ̂ Statistical

669.02 0.00000000E+00 0.00000000E+00
742.16 0.00000000E+00 0.00000000E+00
808.71 0.00000000E+00 0.00000000E+00
870.19 0.00000000E+00 0.00000000E+00
927.60 0.00000000E+00 0.00000000E+00
981.66 0.58845844E+03 0.42722424E+02
1032.89 0.16803969E+03 0.14988063E+02
1081.70 0.21362612E+02 0.84011898E+01
1128.40 -0.28664665E+02 0.60918913E+01
1173.25 -0.57396259E+02 0.75078468E+01
1216.44 -0.50613792E+02 0.76114731E+01
1258.15 -0.39880058E+02 0.61663799E+01
1298.52 -0.36283302E+02 0.65777822E+01
1337.67 -0.34385960E+02 0.49771271E+01
1375.71 -0.17039873E+02 0.37420244E+01
1412.72 -0.83510008E+01 0.41390100E+01
1448.79 -0.58426433E+01 0.38519399E+01
1483.98 -0.56841964E+00 0.33018134E+01
1518.36 -0.25546432E+01 0.38618681E+01
1551.98 -0.18014046E+01 0.35818310E+01

Table 5.33: a'TT vs. W  at EyK.;im — 2.6 GeV

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER 5. TABLES OF G i ( X ) ,  G2(X),  AND a'TT

W  (MeV) a'TT (/ub) Statistical

1584.88 0.63375568E+01 0.30369565E+01

1617.11 0.95541229E+02 0.34748108E+01
1648.72 0.19172987E+03 0.31008217E+01

1679.73 0.26702914E+03 0.32705314E+01

1710.17 0.33400858E+03 0.25785139E+01

1740.09 0.38192947E+03 0.26843841E+01

1769.50 0.42971164E+03 0.25357070E+01

1798.42 0.33322974E+03 0.25845962E+01

1826.89 -0.20523111E+02 0.25033047E+01

1854.93 -0.34975870E+01 0.26249590E+01
1882.54 -0.59243984E+01 0.25464399E+01

1909.76 -0.43723145E+01 0.28281002E+01
1936.59 -0.43302326E+01 0.27573090E+01

1963.06 -0.72732735E+01 0.22794085E+01

1989.17 -0.64762383E+01 0.29798372E+01

2014.95 -0.91607323E+01 0.38520107E+01

2040.40 0.70946126E+01 0.88742371E+01
2065.54 -0.10084033E+02 0.33070204E+01
2090.37 -0.59392753E+01 0.11871027E+02

Table 5.34: a'TT vs. W  at Ebeam =  2.6 GeV (continued)
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CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

W  (MeV) (JryFT ( /ib j Statistical

725.29 0.00000000E+00 0.00000000E+00

795.09 0.00000000E+00 0.00000000E+00

859.24 0.00000000E+00 0.00000000E+00

918.92 0.00000000E+00 0.00000000E+00

974.96 0.16423141E+04 0.18086731E+02

1027.95 0.11481177E+03 0.64880748E+01

1078.33 0.25211567E+02 0.51368699E+01

1126.47 -0.30182846E+02 0.39203565E+01

1172.63 -0.40859558E+02 0.36994786E+01

1217.04 -0.41318871E+02 0.39545796E+01

1259.88 -0.34874180E+02 0.32229073E+01

1301.32 -0.22792971E+02 0.26629767E+01

1341.48 -0.20222073E+02 0.23579597E+01

1380.47 -0.11609659E+02 0.24799991E+01

1418.38 -0.14610475E+02 0.21773667E+01

1455.31 0.16673625E+03 0.20347669E+01

1491.33 0.53138525E+03 0.19729800E+01

1526.50 0.77244006E+03 0.22643285E+01

1560.87 0.92287390E+03 0.19633154E+01

1594.51 0.10029381E+04 0.18332040E+01

1627.44 0.10580249E+04 0.20444658E+01

1659.73 0.10878901E+04 0.20132287E+01

1691.40 0.74621735E+03 0.19114623E+01

1722.48 -0.28635044E+02 0.18479316E+01

1753.02 -0.19229591E+01 0.20126452E+01

Table 5.35: a'TT vs. W  at Ebearn =  3.4 GeV
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CHAPTER 5. TABLES OF G ^ X ) ,  G2(X),  AND a'TT

W  (MeV) a T T  ( P ) Statistical

1783.03 -0.56074438E+01 0.17863615E+01

1812.55 -0.38219185E+01 0.17206304E+01

1841.59 -0.44121585E+01 0.21510484E+01

1870.18 -0.20560553E+02 0.14024057E+02

1898.34 -0.12980453E+02 0.48807950E+01

1926.09 -0.82439232E+01 0.26929195E+01

1953.45 -0.68931818E+01 0.15421171E+01

1980.43 -0.65441875E+01 0.18537123E+01
2007.04 -0.12286748E+02 0.44809809E+01

2033.31 -0.56621461E+01 0.27235620E+01
2059.24 -0.35772011E+01 0.22172558E+01

2084.85 -0.60161457E+01 0.15869985E+01

2110.15 -0.68256893E+01 0.23201444E+01

2135.15 -0.74445133E+01 0.28795536E+01

2159.86 -0.69192796E+01 0.27498357E+01

2184.29 -0.50861406E+01 0.16387496E+01

2208.45 -0.52798953E+01 0.27254982E+01
2232.34 -0.36576624E+01 0.22489214E+01

2255.99 -0.35621371E+01 0.20636330E+01

2279.39 -0.38600247E+01 0.24866321E+01

Table 5.36: a'TT vs. W  at Ebeam =  3.4 GeV (continued)
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CHAPTER 5. TABLES OF G i ( X ) ,  G2(X),  AND a'TT

W  (MeV) T tt1 (fR>) Statistical

781.89 0.00000000E+00 0.00000000E+00

848.88 0.00000000E+00 0.00000000E+00

910.95 0.00000000E+00 0.00000000E+00
969.06 0.33305702E+02 0.30901402E+02

1023.88 -0.30003561E+05 0.13140122E+02

1075.90 0.25850167E+06 0.62946572E+01

1125.53 0.12826684E+06 0.25537138E+01

1173.05 0.68435883E+05 0.18545702E+01

1218.73 0.42741395E+05 0.20131516E+01

1262.75 0.29155834E+05 0.18945949E+01

1305.29 0.21110795E+05 0.21555500E+01

1346.49 0.16033922E+05 0.19566722E+01

1386.46 0.12582608E+05 0.17186161E+01
1425.31 0.10180604E+05 0.14431522E+01

1463.13 0.83677607E+04 0.13112220E+01

1500.00 0.56980332E+04 0.14445028E+01

1535.98 -0.19754628E+03 0.14573374E+01

1571.14 -0.24642427E+01 0.14214426E+01

1605.53 -0.39629109E+01 0.12263510E+01

1639.20 -0.10454947E+01 0.12600607E+01

1672.19 -0.22424088E+01 0.14865228E+01
1704.54 -0.15933988E+01 0.15961498E+01

1736.29 0.40521827E+00 0.14933943E+01

1767.47 -0.25750408E+00 0.13623844E+01
1798.10 0.29280770E+00 0.16400646E+01

Table 5.37: a'TT vs. W  at E be-dm =  4.2 GeV
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CHAPTER 5. TABLES OF G i(X), G2(X), AND a'TT

W  (MeV) uTT (fib) Statistical

1828.23 -0.31437540E+01 0.16900610E+01

1857.87 -0.33141983E+01 0.16232817E+01

1887.04 -0.39910483E+01 0.14678764E+01

1915.76 -0.29133797E+01 0.18222896E+01

1944.07 -0.65906911E+01 0.32124660E+01

1971.96 0.29129739E+01 0.40505409E+01

1999.47 0.58340383E+01 0.50280604E+01

2026.60 0.25919595E+01 0.34879522E+01

2053.38 -0.46365991E+01 0.15199368E+01

2079.81 -0.57374058E+01 0.12798226E+01

2105.91 -0.45197983E+01 0.16373482E+01

2131.69 -0.42621431E+01 0.33028479E+01

2157.16 -0.11484808E+01 0.55676789E+01

2182.33 -0.54382908E+00 0.30194767E+01

2207.22 -0.44589071E+01 0.14911675E+01

2231.83 -0.32495971E+01 0.13601984E+01

2256.17 0.17455764E+00 0.16622009E+01

2280.25 -0.82317406E+00 0.31232882E+01

2304.08 0.12863067E+02 0.77130637E+01

2327.67 0.52200379E+01 0.72459517E+01

2351.02 -0.68557596E+00 0.84128628E+01
2374.14 -0.32480986E+01 0.60836191E+01

2397.03 -0.29474616E+01 0.21072907E+01

2419.71 -0.57322569E+01 0.21256075E+01
2442.18 -0.57593422E+01 0.21294460E+01

Table 5.38: a'TT vs. W  at -Ebeam =  4.2 GeV (continued)
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CHAPTER 5. TABLES OF G i(X), G2(X), AND a'TT

W  (MeV) a'TT (fih) Statistical

1765.07 -0.29578459E+01 0.47500529E+01

1796.58 -0.15268990E+01 0.19875954E+01
1827.54 -0.35153534E+01 0.16763963E+01

1857.99 -0.26131589E+01 0.15307620E+01

1887.95 -0.38210886E+01 0.13279629E+01

1917.44 -0.22077000E+01 0.14373534E+01

1946.48 -0.61478081E+01 0.21728075E+01

1975.10 -0.67587619E+01 0.31911206E+01

2003.31 -0.97094178E+00 0.26340632E+01
2031.13 -0.70761366E+01 0.26248944E+01

2058.57 -0.14885625E+01 0.21282835E+01

2085.65 -0.25550830E+01 0.23797996E+01

2112.38 -0.25611489E+01 0.26111257E+01

2138.78 -0.24483323E+01 0.25379467E+01

2164.85 -0.23355691E+01 0.21450121E+01
2190.62 -0.25456409E+01 0.16540686E+01
2216.09 -0.46114674E+01 0.15689034E+01
2241.26 -0.52678785E+01 0.15079292E+01
2266.16 -0.53606730E+01 0.15992177E+01

2290.79 -0.20403736E+01 0.20963972E+01

2315.15 -0.58384333E+01 0.21389573E+01

2339.26 -0.33935263E+01 0.20863252E+01
2363.13 -0.27438452E+01 0.16048216E+01

2386.76 -0.22350153E-01 0.14392922E+01
2410.15 -0.17873483E+01 0.13541114E+01
2433.32 -0.17810215E+01 0.15661767E+01

Table 5.39: a'TT vs. W  at -Ebeam =  5.1 GeV
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CHAPTER 5. TABLES OF G i(X), G2(X), AND a'TT

u (MeV) (j ] (/Lb) Statistical

25.00 0.00000000E+00 0.00000000E+00

75.00 0.23872638E+03 0.58040337E+02

125.00 -0.51506783E+02 0.19571472E+02

175.00 -0.12003312E+02 0.11697751E+02

225.00 -0.41153759E+02 0.35602165E+02

275.00 -0.85515076E+02 0.13989582E+02

325.00 -0.11695153E+03 0.15533202E+02

375.00 -0.81075706E+02 0.17916586E+02

425.00 -0.40148804E+02 0.16091085E+02

475.00 -0.17325794E+02 0.16250257E+02

525.00 -0.86456604E+01 0.39949593E+02

575.00 -0.34033348E+02 0.65946007E+02

Table 5.40: a'TT vs. u at Q2 = 0.10 GeV2
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CHAPTER 5. TABLES OF G ^ X ) ,  G2{X), AND a'TT

v (MeV) (7r]*rj' (/To) Statistical

25.00 0.00000000E+00 O.OOOOOOOOE+OO

75.00 0.00000000E+00 O.OOOOOOOOE+OO

125.00 0.40638672E+04 0.27370477E+03

175.00 0.16117961E+03 0.41239220E+02

225.00 0.22450829E+02 0.12935129E+02

275.00 -0.46995949E+02 0.98287964E+01

325.00 -0.56235802E+02 0.80386019E+01

375.00 -0.10546619E+03 0.87497435E+01

425.00 -0.10960032E+03 0.10481890E+02

475.00 -0.39343872E+02 0.99150219E+01

525.00 -0.20133341E+02 0.59196520E+01

575.00 -0.64882026E+01 0.53764439E+01

625.00 -0.81688213E+01 0.43842978E+01

675.00 -0.12585336E+02 0.49459610E+01

725.00 0.54177108E+01 0.56496258E+01

775.00 -0.13339189E+02 0.48546782E+01

825.00 -0.47516394E+01 0.49905319E+01

875.00 -0.11339153E+02 0.62061977E+01

925.00 -0.14793873E+01 0.56571012E+01

975.00 -0.97990427E+01 0.10354173E+02

1025.00 -0.17177513E+02 0.65067768E+01

1075.00 0.91022625E+01 0.52986503E+01

1125.00 0.71789955E+02 0.21749601E+02

1175.00 0.13083112E+03 0.29167950E+02

1225.00 0.17838147E+03 0.22186171E+02
1275.00 0.21737479E+03 0.31750927E+01

Table 5.41: o'TT vs. u at Q2 = 0.26 GeV2
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CHAPTER 5. TABLES OF Gx{X), G2(X), AND a'TT

^ (MeV) a'TT (//b) Statistical

25.00 0.00000000E+00 O.OOOOOOOOE+OO
75.00 0.00000000E+00 O.OOOOOOOOE+OO

125.00 0.00000000E+00 O.OOOOOOOOE+OO

175.00 0.00000000E+00 O.OOOOOOOOE+OO

225.00 0.00000000E+00 O.OOOOOOOOE+OO
275.00 0.58845844E+03 0.42722424E+02

325.00 0.16803969E+03 0.14988063E+02

375.00 0.21362612E+02 0.84011898E+01
425.00 -0.28664665E+02 0.60918913E+01
475.00 -0.57396259E+02 0.75078468E+01
525.00 -0.50613792E+02 0.76114731E+01
575.00 -0.39880058E+02 0.61663799E+01
625.00 -0.36283302E+02 0.65777822E+01

675.00 -0.34385960E+02 0.49771271E+01
725.00 -0.17039873E+02 0.37420244E+01
775.00 -0.83510008E+01 0.41390100E+01
825.00 -0.58426433E+01 0.38519399E+01

875.00 -0.56841964E+00 0.33018134E+01
925.00 -0.25546432E+01 0.38618681E+01
975.00 -0.18014046E+01 0.35818310E+01

Table 5.42: a'TT vs. u at Q2 = 0.42 GeV2
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CHAPTER 5. TABLES OF G i(X), G2(X), AND a'TT

v (MeV) (j'f']" (/ib) Statistical

1025.00 0.63375568E+01 0.30369565E+01

1075.00 0.95541229E+02 0.34748108E+01

1125.00 0.19172987E+03 0.31008217E+01

1175.00 0.26702914E+03 0.32705314E+01

1225.00 0.33400858E+03 0.25785139E+01

1275.00 0.38192947E+03 0.26843841E+01

1325.00 0.42971164E+03 0.25357070E+01

1375.00 0.33322974E+03 0.25845962E+01

1425.00 -0.20523111E+02 0.25033047E+01

1475.00 -0.34975870E+01 0.26249590E+01

1525.00 -0.59243984E+01 0.25464399E+01

1575.00 -0.43723145E+01 0.28281002E+01

1625.00 -0.43302326E+01 0.27573090E+01

1675.00 -0.72732735E+01 0.22794085E+01

1725.00 -0.64762383E+01 0.29798372E+01

1775.00 -0.91607323E+01 0.38520107E+01

1825.00 0.70946126E+01 0.88742371E+01

1875.00 -0.10084033E+02 0.33070204E+01

1925.00 -0.59392753E+01 0.11871027E+02

Table 5.43: a'TT vs. v at Q2 — 0.42 GeV2 (continued)
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CHAPTER 5. TABLES OF G i(X), G2{X), AND o'TT

v (MeV) ( J r p r p  (//b) Statistical

225.00 0.00000000E+00 0.00000000E+00

275.00 0.00000000E+00 O.OOOOOOOOE+OO

325.00 0.00000000E+00 O.OOOOOOOOE+OO

375.00 0.00000000E+00 O.OOOOOOOOE+OO

425.00 0.16423141E+04 0.18086731E+02

475.00 0.11481177E+03 0.64880748E+01

525.00 0.25211567E+02 0.51368699E+01

575.00 -0.30182846E+02 0.39203565E+01

625.00 -0.40859558E+02 0.36994786E+01

675.00 -0.41318871E+02 0.39545796E+01

725.00 -0.34874180E+02 0.32229073E+01

775.00 -0.22792971E+02 0.26629767E+01

825.00 -0.20222073E+02 0.23579597E+01

875.00 -0.11609659E+02 0.24799991E+01
925.00 -0.14610475E+02 0.21773667E+01

975.00 0.16673625E+03 0.20347669E+01

1025.00 0.53138525E+03 0.19729800E+01

1075.00 0.77244006E+03 0.22643285E+01

1125.00 0.92287390E+03 0.19633154E+01

1175.00 0.10029381E+04 0.18332040E+01
1225.00 0.10580249E+04 0.20444658E+01
1275.00 0.10878901E+04 0.20132287E+01

1325.00 0.74621735E+03 0.19114623E+01

1375.00 -0.28635044E+02 0.18479316E+01

1425.00 -0.19229591E+01 0.20126452E+01

Table 5.44: a'TT vs. v at Q2 = 0.58 GeV2
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CHAPTER 5. TABLES OF G ^ X ) ,  G2(X), AND a'TT

v (MeV) o'TT (/ib) Statistical

1475.00 -0.56074438E+01 0.17863615E+01

1525.00 -0.38219185E+01 0.17206304E+01

1575.00 -0.44121585E+01 0.21510484E+01

1625.00 -0.20560553E+02 0.14024057E+02

1675.00 -0.12980453E+02 0.48807950E+01

1725.00 -0.82439232E+01 0.26929195E+01
1775.00 -0.68931818E+01 0.15421171E+01

1825.00 -0.65441875E+01 0.18537123E+01

1875.00 -0.12286748E+02 0.44809809E+01

1925.00 -0.56621461E+01 0.27235620E+01
1975.00 -0.35772011E+01 0.22172558E+01

2025.00 -0.60161457E+01 0.15869985E+01
2075.00 -0.68256893E+01 0.23201444E+01

2125.00 -0.74445133E+01 0.28795536E+01
2175.00 -0.69192796E+01 0.27498357E+01

2225.00 -0.50861406E+01 0.16387496E+01
2275.00 -0.52798953E+01 0.27254982E+01

2325.00 -0.36576624E+01 0.22489214E+01
2375.00 -0.35621371E+01 0.20636330E+01
2425.00 -0.38600247E+01 0.24866321E+01

Table 5.45: a'TT vs. u at Q2 — 0.58 GeV2 (continued)
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v  (MeV) T t t 1 Statistical

475.00 0.00000000E+00 0.00000000E+00

525.00 0.00000000E+00 0.00000000E+00

575.00 0.00000000E+00 O.OOOOOOOOE+OO

625.00 0.33305702E+02 0.30901402E+02

675.00 -0.30003561E+05 0.13140122E+02

725.00 0.25850167E+06 0.62946572E+01

775.00 0.12826684E+06 0.25537138E+01

825.00 0.68435883E+05 0.18545702E+01

875.00 0.42741395E+05 0.20131516E+01

925.00 0.29155834E+05 0.18945949E+01

975.00 0.21110795E+05 0.21555500E+01

1025.00 0.16033922E+05 0.19566722E+01

1075.00 0.12582608E+05 0.17186161E+01

1125.00 0.10180604E+05 0.14431522E+01
1175.00 0.83677607E+04 0.13112220E+01

1225.00 0.56980332E+04 0.14445028E+01
1275.00 -0.19754628E+03 0.14573374E+01

1325.00 -0.24642427E+01 0.14214426E+01

1375.00 -0.39629109E+01 0.12263510E+01

1425.00 -0.10454947E+01 0.12600607E+01
1475.00 -0.22424088E+01 0.14865228E+01
1525.00 -0.15933988E+01 0.15961498E+01

1575.00 0.40521827E+00 0.14933943E+01

1625.00 -0.25750408E+00 0.13623844E+01

1675.00 0.29280770E+00 0.16400646E+01

Table 5.46: a'TT vs. v at Q2 =  0.74 GeV2
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V  (MeV) (7r[ r[' (/./,b) Statistical

1725.00 -0.31437540E+01 0.16900610E+01

1775.00 -0.33141983E+01 0.16232817E+01

1825.00 -0.39910483E+01 0.14678764E+01

1875.00 -0.29133797E+01 0.18222896E+01

1925.00 -0.65906911E+01 0.32124660E+01

1975.00 0.29129739E+01 0.40505409E+01

2025.00 0.58340383E+01 0.50280604E+01

2075.00 0.25919595E+01 0.34879522E+01

2125.00 -0.46365991E+01 0.15199368E+01
2175.00 -0.57374058E+01 0.12798226E+01

2225.00 -0.45197983E+01 0.16373482E+01

2275.00 -0.42621431E+01 0.33028479E+01

2325.00 -0.11484808E+01 0.55676789E+01

2375.00 -0.54382908E+00 0.30194767E+01

2425.00 -0.44589071E+01 0.14911675E+01

2475.00 -0.32495971E+01 0.13601984E+01

2525.00 0.17455764E+00 0.16622009E+01

2575.00 -0.82317406E+00 0.31232882E+01

2625.00 0.12863067E+02 0.77130637E+01

2675.00 0.52200379E+01 0.72459517E+01

2725.00 -0.68557596E+00 0.84128628E+01
2775.00 -0.32480986E+01 0.60836191E+01

2825.00 -0.29474616E+01 0.21072907E+01

2875.00 -0.57322569E+01 0.21256075E+01

2925.00 -0.57593422E+01 0.21294460E+01

Table 5.47: a'TT vs. v at Q2 =  0.74 GeV2 (continued)
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u (MeV) a'TT (/To) Statistical

1825.00 -0.29578459E+01 0.47500529E+01

1875.00 -0.15268990E+01 0.19875954E+01

1925.00 -0.35153534E+01 0.16763963E+01

1975.00 -0.26131589E+01 0.15307620E+01

2025.00 -0.38210886E+01 0.13279629E+01
2075.00 -0.22077000E+01 0.14373534E+01

2125.00 -0.61478081E+01 0.21728075E+01

2175.00 -0.67587619E+01 0.31911206E+01

2225.00 -0.97094178E+00 0.26340632E+01

2275.00 -0.70761366E+01 0.26248944E+01

2325.00 -0.14885625E+01 0.21282835E+01

2375.00 -0.25550830E+01 0.23797996E+01

2425.00 -0.25611489E+01 0.26111257E+01

2475.00 -0.24483323E+01 0.25379467E+01

2525.00 -0.23355691E+01 0.21450121E+01
2575.00 -0.25456409E+01 0.16540686E+01

2625.00 -0.46114674E+01 0.15689034E+01

2675.00 -0.52678785E+01 0.15079292E+01

2725.00 -0.53606730E+01 0.15992177E+01
2775.00 -0.20403736E+01 0.20963972E+01
2825.00 -0.58384333E+01 0.21389573E+01
2875.00 -0.33935263E+01 0.20863252E+01
2925.00 -0.27438452E+01 0.16048216E+01

2975.00 -0.22350153E-01 0.14392922E+01

3025.00 -0.17873483E+01 0.13541114E+01
3075.00 -0.17810215E+01 0.15661767E+01

Table 5.48: a'TT vs. z/ at Q2 = 0.90 GeV2
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ADDENDUM

An experiment of this magnitude involves a large collaborative effort and many years 

of preparation. I would like to thank the co-spokepersons, Prof. Z.-E. Meziani, 
Prof. G. Cates, and Dr. J.-P. Chen, for proposing the experiment and for the dedica­

tion and effort to bring the experiment to fruition and build the required polarized 

3He target system specifically needed for this measurement. I would like to acknowl­
edge Jefferson Laboratory Accelerator Division for providing high-quality polarized 

beam using the Continuous Electron Accelerator Facility. Thanks also to the entire 
Hall A Collaboration and its leader Dr. Kees de Jaeger for providing the standard 

experimental High-Resolution Spectrometers and additional apparatus needed, and 

the manpower.
Such a large experiment is, of necessity, a collective endeavor of numerous people, 

not the least significant of which is the work of my fellow Ph.D. thesis students, 
K. Slifer, A. Deur, S. Jensen, and I. Kominis, and a cadre of postdocs, notably, 

Drs. D. Pripstein, S. Choi, and X. Jiang. A complete list of collaborators is presented 
at the end of this section, extracted from the first publication of the work described 

in this thesis. Space prohibits my mentioning all by name.
In the work of this magnitude, the question arises as to the specific contribution 

of any one individual, namely myself. At the request of Prof. J.D. Walecka, I would 
like to acknowledge a partial list of specific contributions I have made to this project:

1. I participated in the initial construction and installation of the polarized 3He 
target and its initial calibration. Some specific contributions I made include: 

cabling for target ladder controller, building of the oven by working closely with
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the design team, and assisting with early water polarimetry.

2. I also made very significant contributions of both the commissioning and pro­

duction run for E94-010. This includes taking 55 shifts on the experiment, more 
than any other individual collaborator. My primary contribution during data 

acquisition was that of Target Operator and Data Acquisition Shift Worker.

3. Contributions to the subsequent analysis included much of the work needed to 

obtain the absolute cross section, including extraction scintillator inefficiencies, 

nitrogen dilution factors, deadtime analysis, and elastic radiative tail correc­

tions. Normalized cross sections are important for extracting the GDH inte­
grand. In addition, I did a thorough investigation of all the runs to check the 

scaler data and cross-check target polarization orientations, as well as eliminat­

ing bad data.

4. Last, but not least important, is my work and love of this thesis which has 
taken so many years of my time and from which I have learned so much. In 
the process, I have learned to write an important document, and I would like 
to thank the members of my thesis committee for their feedback and patience. 

These people are College of William and Mary Profs. J.M. Finn, T.D. Averett, 

D.S. Armstrong, K.A. Griffioen, Distinguished Prof. J.D. Walecka, and the 

external examinator Dr. J.-P. Chen from Jefferson Laboratory.
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Q2 Evolution of the Generalized Gerasimov-Drell-Hearn Integral 
for the Neutron using a 3He Target
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T. B. Humensky,15 S. Incerti,20 M. Iodice,5 S. Jensen,1 X. Jiang,17 C. Jones,1 G. M. Jones,8 M. Jones,23 C. Jutier,4'14 
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D. Prout,7 R, Ransome,17 Y. Roblin,4 D. Rowntree,11 M. Rvachev,11 F. Sabatie,14 A. Saha,6 K. Slifer,20 P. A. Souder,19 
T. Saito,21 S. Strauch,17 R. Suleiman,7 K. Takahashi,21 S. Teijiro,21 L. Todor,14 H. Tsubota,21 H. Ueno,21 G. Urciuoli,5 

R. Van der Meer,6'16 P. Vernin,18 H. Voskanian,24 B. Wojtsekhowski,6 F. Xiong,11 W. Xu,11 J.-C. Yang,2
B. Zhang,11 and R Zolnierczuk8

(Jefferson Lab E94010 Collaboration)
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24Yerevan Physics Institute, Yerevan 375036, Armenia 
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We p re sen t d a ta  o n  th e  in c lu s iv e  s c a t te r in g  o f  p o la r iz e d  e le c tro n s  fro m  a  p o la r iz e d  3H e  ta rg e t a t 
en e rg ies  f ro m  0 .862  to  5 .06  G eV  o b ta in e d  a t a  s c a tte r in g  an g le  o f  15 .5°. O u r d a ta  in c lu d e  m e asu rem en ts  
fro m  th e  q u as ie la s tic  p e a k , th ro u g h  th e  nu c leo n  re so n an ce  re g io n , an d  b ey o n d , a n d  w ere  u sed  to  
d e te rm in e  th e  v i r tu a l  p h o to n  c ro ss -se c tio n  d iffe re n c e  r r 1/2 — W e ex trac t th e  e x ten d ed  G e ra s im o v - 
D re ll-H e a rn  in te g ra l fo r th e  n eu tro n  in  th e  ra n g e  o f  fo u r-m o m en tu m  tra n s fe r  sq u a re d  Q2 o f  
0 .1 -0 .9  G eV 2.

DOI: 10.1103/PhysRevLett.89.242301

Sum rules involving the spin structure of the nucleon 
offer an important opportunity to study quantum chro­
modynamics (QCD). At long distance scales or in the 
confinement regime, a sum rule of great interest is that

242301-1 0031-9007/ 02/89(24) / 242301(6)$20.00

PACS numbers: 25.30.-c, 11.55.Hx

due to Gerasimov, Drell, and Hearn (GDH) [1,2]. The 
GDH sum rule relates an integral over the full excitation 
spectrum of the spin-dependent total photoabsorp­
tion cross section to the nucleon’s anomalous magnetic

© 2002 The American Physical Society 242301-1

Figure 6.1: Cover page from initial publication of this work showing the Jefferson 
Laboratory E94-010 collaborators and their respective institutions.
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