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Abstract: We calculated the two-loop corrections in the primordial power spectrum in models of
single-field inflation incorporating an intermediate USR phase employed for PBH formation. Among
the overall eleven one-particle irreducible Feynman diagrams, we calculated the corrections from the
“double scoop” two-loop diagram involving two vertices of quartic Hamiltonians. We demonstrate
herein the fractional two-loop correction in power spectrum scales, like the square of the fractional
one-loop correction. We confirm our previous findings that the loop corrections become arbitrarily
large in the setup where the transition from the intermediate USR to the final slow-roll phase is very
sharp. This suggests that in order for the analysis to be under perturbative control against loop
corrections, one requires a mild transition with a long enough relaxation period towards the final
attractor phase.

Keywords: inflation; primordial black holes; loop corrections

1. Introduction

There have been intense debates in the recent literature on the nature of loop correc-
tions in single-field models of inflation involving an intermediate ultra slow-roll (USR)
phase [1-37]; for earlier works concerning the quantum loop effects in models of inflation,
see [38—42]. These models have been employed to generate primordial black holes (PBHs)
as candidates for the observed dark matter [43—46]; for a review on the mechanism of gen-
erating PBHs from a USR setup, see [47-51]. In the USR setup involving a flat potential, the
curvature perturbation grows on superhorizon scales. The enhancement in the power spec-
trum allows one to use this setup to generate PBHs on desired scales. However, the rapid
growth of the power spectrum during the intermediate USR stage can be problematic. More
specifically, Kristiano and Yokoyama argued in [1] that the one-loop corrections originating
from the small-scale USR modes can affect the CMB perturbations. Correspondingly, it was
originally concluded in [1] that the analysis is not under perturbative control and the setup
is not trusted for PBH formation. Following [1], the one-loop corrections in the curvature
perturbation power spectrum were studied with different (conflicting) conclusions. For
example, the results of [1] was criticized by Riotto [3,4], arguing that the one-loop correc-
tions can be small if the transition to the final attractor phase is smooth enough. Similarly,
in [13], employing 6N formalism, it was argued that the large loop effects in the models
with mild transitions are suppressed by the slow-roll parameters and the model is under
perturbative control for generating PBHs. In addition, the loop corrections were studied
numerically in [27] and also by employing the formalism of separate universe in [28].

In order to estimate the total one-loop corrections in the power spectrum, we need to
have both the cubic and quartic Hamiltonians. The cubic action was calculated originally by
Maldacena [52], but there is still no concrete result for the full quartic interaction including
the USR phase; for earlier studies on quartic action, however, see [53,54]. In [11], we
employed the formalism of the effective field theory (EFT) of inflation, which enabled us to
calculate the cubic and the quartic Hamiltonians in reasonable ease in the decoupling limit.
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Furthermore, we were able to incorporate the effects of the sharpness of the transition from
the USR stage to the final slow-roll phase as well. We showed in [11] that the one-loop
corrections can be dangerous in models with a sharp transition, supporting the conclusion
of [1].

Based on the physical intuitions and the expectation of the decoupling of scales, it
looks counterintuitive that the small USR modes can affect the long CMB scales in the
first place [4,25]. Motivated by this question, the conclusion of [1] was critically revisited
in [23,24], where it was claimed that the one-loop corrections are canceled. Specifically,
in [23], the contributions of the boundary terms, which were not taken into account in
previous works, were highlighted. On the other hand, it was argued in [24] that the
loop contributions vanish after the UV limit of the momentum is considered via some ie
prescription. However, in both [23,24], like many other previous works, only the cubic
interactions were considered. The conclusions of [23,24] were reviewed critically in [25],
highlighting the flaws in their arguments. More recently, there were new claims of loop
cancellation in [55-57]; we would like to return to the results of these claims elsewhere.

As for the physical origins of the loop corrections, the non-linear coupling between
the short and long modes induces a source term in the equation governing the evolution
of the long mode. At the same time, the spectrum of the short modes are modulated by
the long modes. The modulation effects becomes large if the power spectrum of the short
modes is highly scale-dependent which is the case in the USR model. The combined effects
of the non-linear coupling between the short and long modes and the modulation of the
short modes by the long mode backreacts on the long mode itself, causing loop corrections,
as highlighted in [3,15,25].

In light of the above discussions, in this work, we aim to calculate the corrections in
power spectrum at the two-loop order. As one may expect, the analysis at two-loop order
are significantly more complicated than in the one-loop case. First, we have more Feynman
diagrams involving not only the cubic and quartic interactions, but also the quintic and
sextic Hamiltonians. Secondly, most of these Feynman diagrams involve double- or higher-
order nested in-in integrals, which make the time integral very complicated. As we shall
see, there are in total eleven one-particle irreducible Feynman diagrams at the two-loop
level. Out of these eleven diagrams, we consider the case of the “double scoop” diagram,
which involves a double nested time integral containing two quartic Hamiltonians. We
believe that the results from this case are illustrative enough, which can shed light on the
structure of the two-loop corrections.

2. The Setup

In this section, we briefly review our setup. This is the same setup as employed in [1]
for PBH formation. It is a single-field inflation with three distinct phases, SR —+ USR — SR,
where the first and and the third stages are assumed to be in SR phases while the USR phase
is sandwiched in between. The observed CMB perturbations leave the horizon during
the first SR phase with the amplitude of power spectrum set by the COBE normalization.
However, the intermediate USR phase, engineered to produce the PBHs at the desired mass
scales, may start at about 30 e-folds after the CMB scales have left the Hubble horizon,
and it typically lasts for 2-3 e-folds. Finally, the intermediate USR phase is followed by the
second SR phase, where it is assumed that the system reaches its attractor stage.

As usual, during the SR phases, the curvature perturbation R is frozen after the
mode leaves the horizon. However, during the USR phase, it experiences an exponential
growth [58-64]. The rapid growth of the modes which become superhorizon during
the intermediate USR phase is the key idea behind the enhancement in the curvature
perturbation power spectrum to generate PBHs on the corresponding scales. In addition,
the superhorizon growth of curvature perturbation plays important roles in violating the
Maldacena non-Gaussianity consistency condition in the USR model [59-61,65-77].
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Starting with the FLRW metric,
ds? = —dt* 4 a(t)%dx?, (1)

the equations governing the dynamics of the background inflaton field ¢ and the scale
factor a(t) during the USR stage are

$(t) +3Hp(t) =0,  3M3H? ~V,, 2)

in which Mp is the reduced Planck mass, H is the Hubble expansion rate, and V} is the
constant potential during the USR stage.

Since H is very nearly constant during the USR phase, then ¢ « a~3. Correspondingly,
the first slow-roll parameter € = — % falls off like a—°, while the second slow-roll parameter
11 = iz is nearly constant, 7 ~ —6. It is assumed that the USR phase is extended in the

interval 7; < T < T, S0 €, at the time of the end of the USR, is given by €, = €; (%’)6, where
€; is the value of € at the start of the USR phase. Here, 7 is the conformal time, which is
related to cosmic time as usual via dt = dt/a(t), with the understanding that towards
the end of inflation, T — 0. Alternatively, working with the number of e-fold dN = Hdt
as the clock, the duration of the USR is determined by AN = N(t7,) — N(1), yielding
€. = €;e ®*N. For PBH formation, we typically require AN to be around 2 to 3 e-folds.

To simplify the analysis, we assume that the transitions SR — USR and USR — SR
happen instantaneously, at T = 7; and T = 7., respectively. However, it may take time to
end up in its attractor phase during the final SR phase. This is determined by the sharpness
(which is actually the relaxation) parameter #, initially defined in [77] via

_ ey
h= —6\/:8, )

in which ey is the value of € during the final slow-roll phase, which is determined as usual
by the first derivative of the potential. Note that by construction, # < 0. In our analysis,
we assume a sharp enough transition, so || > 1. For a mild transition, e.g., h, at the order
of slow-roll parameters, the mode function keeps evolving during the final phase and the
analysis become complicated. However, for a sharp transition, the system reaches the
attractor phase quickly and the errors in our analytical results are expected to be negligible.

For a very sharp transition with i — —oco, € approaches rapidly to a larger value such
that towards the end of inflation, e(1) ~ ey = 66(2)2. On the other hand, for an “instant”
sharp transition, which was assumed in [1,2], one has i = —6. In this situation, € in the
third SR phase is equal to its value at the time of the end of the USR, i.e., ey = €.

The evolution of the slow-roll parameters after the USR phase is studied in [77].
In particular, € is smooth across the transition point but # experiences a jump at T = .
Prior to the transition and close to the end of the USR, ## = —6, while right after the
transition, we have 7 = —6 — h. Following [77], we can approximate # near the transition
point as follows:

n=—6—ho(T—1,) T, <T<Tl, (4)
yielding to

d?j — +

E:fhé(r—fe), T, <T<7T, . )

As we shall see, the jump in 7, highlighted by the Dirac delta function above, plays a crucial
role in the loop corrections.

After presenting our background, we briefly review the perturbations in this setup.
To perform the in-in analysis, we need the mode function associated to the comoving
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Dék:

‘3(3)

ko gkor3d

curvature perturbation R during the USR and afterwards. In the Fourier space, the mode
function is

Rt = [ Ph_iexp, (1) ©)
y 2n) k(t),
where, as usual, the operator R (t) is expressed in terms of the creation and annihilation
operators a and af. via Ry (t) = Ry(t)ax + R (t)a’ . In this notation, Ry is a quantum
operator and Ry is the mode function. As usual, the creation and annihilation operators
satisfy the standard commutation relations [ay, ai,] = (27m)%6(k — K/).

The quantum initial condition is fixed by the Bunch-Davies vacuum with the mode function

H
- Mp~/ 4€ik3

During the intermediate USR phase, the mode function is parameterized via

R (1+ikt)e ®, (t<1). )

3
H T 2) (1 4 iy (2) (1 _ iy ik
R(z):<s> 2P (1 + ikr)e T 4 1 —ikT)e!" 7|, 8
k Mp\/w T |: k ( ) ﬁk ( ) :| ( )
in which the coefficients “’((2) and ,B]({z) are determined by imposing the continuity of the
mode function and its time derivative at T = T, yielding
_3i
2k373

3i

T \2,— 2k
T (1 + ikts)“e "% . )

o =14 (1+K22), pY=

On the other hand, imposing the matching conditions at 7, the outgoing mode function
during the final SR phase is given by [11]

H

T Mp/Ae(0)R3

and ,[3;{3) are determined to be

Ry [ (1 + ikr)e ™ 4 B3 (1 — ikr)eT], (10)

in which DC]((?’)

[311(1 — k)2 (1 + ks ) 22k () — (2033 + 3ik2T2 + 31) (4ik3 T3 — hkPT2 — h)},

and

[3(1 + ikTe)2(h + HKPT2 + 4ik3T3)e 2K k(1 + ik, )2(3i + 3ik2T2 + 2k373)e*2”@] .

With the mode functions given above, we can calculate the two-loop corrections in the
curvature perturbations’ power spectrum. We choose the convention that the momentum
associated to the long CMB modes are denoted by p; and p;, while the momentum corre-
sponding to the short modes that run inside the loops are denoted by q and k. There is the
vast hierarchy p; < g, k. In our analysis, we are interested in the loop corrections induced
from the short modes, which become superhorizon during the USR phase. Therefore, we
cut the momentum loop integrals in the range s < q < g., where g, = — le and g, = — T%
are the modes which leave the horizon at T = 7; and T = 7, respectively. Furthermore,
the duration of the USR period AN = N(t,) — N(1) is given in terms of gs and g, by

AN = 2= % (11)
S e

As mentioned previously, to generate PBHs with the desired mass scales, we require
AN ~2—3.

In order to simplify the analysis, we have assumed an instant transition at 7 = T,
to the final SR phase. However, the mode functions keep evolving for T > 7, before it
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assumes its final attractor value. This process is governed by the relaxation parameter
h. For example, for an instant and sharp transition, which was employed in [1,2] with
h = —6, at the end of inflation, R is smaller by a factor of 1/4 compared to its value at
T = T,. The reason is that the mode function is not frozen right after the transition and
it keeps evolving until it reaches its attractor value. However, for a very sharp transition
corresponding to i — —oo, the mode function is assumed to freeze immediately after ..
This is the situation considered in [59,61], which yields fn; = % But, as demonstrated
in [77], for a mild transition with |h| < 1, non-Gaussianity is mostly erased during the
second SR phase. Motivated by these discussions, we distinguish between an instant
transition and a sharp transition. For example, the assumption of an instant transition can
be relaxed, and one may consider the situation where the transition takes place within
some time interval [15,27]. However, this will complicate our theoretical analysis and is
beyond the scope of this work.

3. Two-Loop Feynman Diagrams and Interaction Hamiltonians

In order to obtain the loop corrections in the curvature perturbation power spectrum
Pr, we need the interaction Hamiltonians. Here we present the structure of two-loops
Feynman diagrams and the subset of interaction Hamiltonians necessary for our two-
loop calculations.

To understand the structure of Feynman diagrams associated at the two-loop level,
consider a general L-loop one-particle irreducible Feynman diagram associated to the
following scalar-type potential:

V=Y guop" (n>2), (12)

in which g, is the coupling (vertex) and # is the order of interaction. For example, for the
cubic and quartic interactions, we have n = 3 and n = 4, respectively. Suppose that we
have a Feynman diagram with L loops, P internal propagators, V;, vertices associated to
each power of interaction #, and N external lines. For example, in our case of interest, L = 2
(two-loops) and N = 2 (two external lines for power spectrum). Then, using the following
topological conditions [78]:

L=P-) V,+1 (13)
n

and

N+2P =Y nV,, (14)
n

we obtain the following relation between L, N and V/;:

2L=(2-N)+) (n—=2)V,. (15)

For the loop corrections in the power spectrum with N = 2, this further simplifies to

2L=) (n—2)V, (N =2). (16)

n
In particular, for one-loop corrections, the above condition allows for only two Feynman
diagrams, a single quartic vertex, and a diagram with two cubic vertices, as studied in
detail in [11].
Now, in our current case of interest with two-loop corrections (L = 2), Equation (16)
yields the following constraint:

4=V;+2Vy+3Vs+4V;. (17)
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Based on the allowed integer solutions of the above equation, one obtains the allowed
Feynman diagrams. Below are all possible allowed solutions:

:V6:V5=V3:0, V4=2,
:V6:V5:V4:O, V3:4,
Ve=V5=0, V4 =1,V3 =2, (18)
Ve=Va=0,V3=Vs=1,
:V3:V4=V5:0, V6=1.

A~ N /N /S
W N
— — — ~— ~—

5

The above solutions yield 11 distinct two-loop diagrams as plotted in Figure 1.
The Feynman diagrams in the first category involves two vertices of quartic Hamilto-
nian Hy (diagrams (a,b) in Figure 1), while the diagrams in the second category involve
four vertices of the cubic Hamiltonian H3 (diagrams (c,d)). The diagrams in the third
category contain three vertices, one from Hy and two from Hj (diagrams (e-h)). On the
other hand, the diagram in the fourth category involves two vertices, one from H3 and
one from the quintic interaction Hs (diagrams (k,1)). Finally, the diagram in the fifth cat-
egory involves a single vertex from the sextic Hamiltonian Hg (diagram (m)). From the
above discussions, we see that we need Hjz, Hy, Hs and Hg to calculate the full two-loop
corrections in Py.

0= 0O

@ (c) (d)

.

(e)

OO
P 0 0.

Figure 1. The one-particle irreducible Feynman diagrams for the two-loop corrections constructed

(Q
W/

(h)

(O =]

®

from the solutions of Equation (18). The diagrams (a,b) belong to category (1) in Equation (18),
diagrams (c,d) to category (2), diagrams (e-h) to category (3), diagrams (k,1) belong to categories (4),
and diagram (m) belongs to category (5).

The cubic action for the curvature perturbations R and the corresponding cubic
Hamiltonian were calculated in detail by Maldacena [52]. However, calculating the quartic
action and the corresponding quartic Hamiltonian in this method is a very difficult task.
Fortunately, the formalism of the EFT of inflation [79,80] provides a very useful alternative,
in which the interaction Hamiltonians can be calculated with reasonable ease. In particular,
in the decoupling limit where the gravitational backreactions can be neglected, the EFT
formalism was employed to calculate the cubic and quartic Hamiltonians in [11] (see
also [66] for the first work in this direction, calculating the cubic Hamiltonian). While the



Universe 2024, 10, 456

7 of 19

cubic and the quartic Hamiltonians were constructed in [11], one still needs to calculate Hs
and Hg to perform the full two-loop corrections. In principle, it is possible to calculate Hs
and Hg using the EFT approach, but it turns out that there are new technical complications
which require careful considerations [81].

The analysis of full two-loop corrections associated to the above 11 diagrams is a
demanding task. As a first step forward, we calculated the two-loop corrections from
the “double scoop” diagram (a), which are relatively easier to technically handle. This is
because this diagram involves two vertices, so one deals with double nested in-in integrals
(this is also true for diagram (b)). However, diagrams (c-h) contain nested integrals with
three-fold or four-fold time integrals involving H3 or Hy, which are far more complicated
than diagram (a). As we shall see, the analysis even for the simple-looking diagram (a) is
non-trivial. Having said this, physically, one expects that the result obtained from this
single diagram will shed light onto the structure of two-loop corrections, which should not
be vary different than the remaining diagrams.

Here, we briefly review the results of [11], which are required to calculate the quartic
Hamiltonian to calculate the loop corrections from diagram (a). We refer the reader to [11]
for further details.

The second-order action employed to quantize the free theory is

S, = M%/d‘fd3x azeHz(rc’z —(9;)%), (19)

in which the prime represents the derivative with respect to 7. Here, 7t(x*) is the Gold-
stone boson associated to time diffeomorphism breaking, which is related to curvature
perturbations R [79,80].

The cubic action is given by

S = M%H3/drd3x nea’ {nn’z - 71(871)2} , (20)
and the corresponding cubic interaction Hamiltonian is given by [66]

1
H; = — M2H3yea? /d3x [7171’2 + §n2827'c] . (21)

On the other hand, the quartic action is obtained to be

2
Sp= % /d'cd3x eaH? (n*aH +1') [7‘[271’2 — 712(871)2} : (22)
In particular, note that there is the term #’, which induces the delta contribution §(7 — 7.) in
the interaction Hamiltonian when # undergoes a jump at T = 1, as given by Equation (5).

As discussed in [11], in calculating the quartic Hamiltonian, care must be taken as the
time derivative interaction 7r’'7t? in H3 induces an additional contribution in the quartic
Hamiltonian [82,83]. As a result, one can not simply conclude that Hy = —L4. More
specifically, the quartic Hamiltonian receives additional contribution +M?2H*y?ea? n*n’ 2
from the cubic action. Combining all contributions, the total quartic Hamiltonian is given

by [11]
2
H, = %eaH3/d3x[(;72aH — 17’)7r27r’2 + (UZLIH +17') ﬂz(aﬁ)z} . (23)

The interaction Hamiltonians (21) and (23) have been used in [11] to calculate the one-loop
corrections to the power spectrum. We note that in obtaining the above Hamiltonian, we
have ignored total time derivatives in the form % (f(t)7*), where f(t) is a function of the
background quantity. However, as shown in [33], these boundary terms are harmless as they
do not involve 7t and their contributions can be absorbed via a canonical transformation in
phase space.
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The quantity of interest is the curvature perturbation R, while the above interaction
Hamiltonians are given in terms of the Goldstone field 7. The relation between R and 7 is
non-linear. For example, to cubic order in 7, they are related to each other via [53,54]

R = —H7T—|—(H7T7T—|——7T)+( Hrr? —gmr — Hrer? —%7{3)
1d 1 42
= —H7T+§E(H7'c2) gd—Z(Hn3) (24)

However, we calculate the loop corrections in power spectrum at the time of end of
inflation T = 1y — 0 when it is assumed that the system is in the slow-roll phase and the
long mode perturbations are frozen with 7t = 7t = 0. Fortunately, one can neglect the
non-linear corrections in R in Equation (24) in this limit and simply consider the linear
relation between them,

R =—-Hm, (T — 7). (25)

Since the relation between R and 7t is linear at 15, we can simply write (R(1)R (1)) =
H?{rt(19)7(19)). Consequently, one can use 7t and R interchangeably in the following
in-in analysis. More specifically, we will use the free mode function of R in the interaction
picture in place of the 7 perturbations in the following in-in integrals.

4. Loop Corrections in Power Spectrum

Employing the perturbative in-in formalism [84], the expectation value of the quantum
operator O[1] measured at the time of end of inflation 1 is,

(O(w) = { [Texp (i [ :O dt'Hin (7)) ] O(w) [Texp (i 1 jo ar'Hn(™))] ). (26)

Here, as usual, T and T represent the time ordering and anti-time ordering respectively and
Hin (t) is the interaction Hamiltonian. For our case of interest here O(19) = Ry, (T0)Rp, (T0),
while for the Feynman diagram (a) which we consider, we only need the quartic interactions
SO Hin = H4.

In order to calculate the two-loop corrections, one requires to expand the in-in formula
Equation (26) to second orders H;,. For this purpose, it is more convenient to use the
Weinberg commutator method associated to Equation (26). To the second order in Hj, = Hy,
we obtain [84],

O(n)) = / de/ dT1 Hin(11), [Hin(Tz)/O(To)]D (27)
- 2/%0 it LwdTlRe[<H4(T1)O(TO)H4(T2)> . <H4(Tl)H4(TZ)O(TO)>}, (28)

with O(19) = Rp, (1) Rp, (10)- A

Depending on the contractions of external leg operators O(1), there are two distinct
Feynman diagrams as shown by diagrams (a) and (b) in Figure 1. The diagram (a)
corresponds to the situation in which O(1p) contracts only with Hy(12), with no contractions
to Hy(t1). On the other hand, the diagram (b) corresponds to the case where O(t)
contracts jointly with both Hy (1) and Hg(77). AS mentioned before, as a first try for the
two-loop corrections, in this work, we only consider the “double scoop” diagram (a).

It turns out that it is very convenient to decompose the expectation values in terms
of sub-component Wick contractions. As an example, consider (Hs(11)O(1)Ha(12)) in

1

the second line in Equation (28). It involves three forms of contractions: Hy(7 )Ha(12),
o —
O(19)Hg(12), and Hy(71)Hy (7). Let us define

H4(T1)H4(T2) = ]’l(Tl,Tz) , OmHz;(TZ) = g(Tz) , H4(T1)H4(T1) = C(T1) . (29)
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With these definitions, considering both terms in the second line of Equation (28), we obtain

(O(1)) = —4 /7; it 1 :o dryImlg(1)] Im[c(t)h(m, ©2)] - (30)

Our job is now to calculate the functions g(7), ¢(71) and 1 (T, T2) for various possible contractions.
To perform the in-in integrals, we write Hy in Equation (23) as follows (neglecting the
non-linear relations between 7 and R as discussed before):

Hy = Ay(7) / PxR2R? + By(7) / PxR2(OR)?, (31)
with
1 h 1 h
Ay(T) = = M3y%ea? (1 - —5d(t— Tg)Tg> , By(7) = = M3ny?ea® (1 + —=d(t - Te)Te) . (32)
2 1 2 U
In particular, note the term 6(7 — 7. ) appearing above, which is originated from the term #’
in Hy; see Equation (5).
Depending on which term that Hy is contracted with each other and with O(ty), we
will have four different contributions, as follows:
(O(n)) = <O>A4A4 + <O>A4B4 + <O>B4A4 + <O>B4B4 / (33)
For example, for (O) A,4, We have
A o 2 3. [ 33 25512 A 27512
O, = [ v [~ dnAsm)As(n) [ [@y([RPR(x 1), [O(n), RPRA(y,w)]] ). (34)
Proceeding to the Fourier space, this is cast into
A 0 R ST 353 S 353
Ohna = [ v [ dustm)aie[T | g0 (Ca)] [T ] gm0 Tk
X < |:(7A?’q1 T‘A)’Clzﬁ/%ﬁ,%) (7)., |:(7A?‘P1 7-‘A)'Pz) (0), (ﬁkl 7?’1(27?’/1(37A2/k4) (TZ)} ] > . (35)

After performing the contractions and imposing the constraints from the delta functions,
in the soft limit where p < g, k, we end up with the following form of two-loop integrals

T0 %) 3 3
<RP1RP2(T0)>A4A4 = (2”)353(P1+P2)/wd72 /de1A4(Tl)A4(Tz)/(;17;1)3/(‘217_[1()3F(T1/72;k1@r

in which the function F(1y, ; k, q) is determined by different values of ¢(17), ¢(12) and
h (Tl , T ) .

There are nine different terms in F(1y, T; k, q) from different contractions. We list them
as follows:

(ao) : (_4)(2)21m[Rp(TO)ZR;(TZ)Z]Im[Rk/(Tl)lelc*<T2)2] 1Ry (1) P
(bo) : (—4)(2)Im[R, (10)*R}(12)*] Im [Rk(fl)zR;c*(Tz)z] IR ()|
(o)  (—4)(2)°Im[R(10)*R}y(12)*] Im [Rk(Tl)Rk/(Tl)R;c*(TZ)Z]Re [Rg(t1)R'g(m)"], (36)

and



Universe 2024, 10, 456 10 of 19
(do) : (—4)(2)4Im[Rp(To)ZRZ(TZ)R;*(TZ)]Im[Rk ()" Ry () RE( )] IRq(1)|
(eo) (_4)(2)4Im[RP<TO)2R*(TZ)R;*(TZ)]Im[Rk<T1) Rk B)Ri(1)] R 4 (11 (37)
(fo) (*4)(2)5Im[Rp(To)2R;(T2)R;*(Tz)]lm[Rk(ﬁ)Rk ()R ()R (Tz)}Re[Rq(Tl)R'q(Tl)*]f
and
(m) : (—4)(Z)ZIm[Qp(TO)ZR;*(E)z] Im [Ry(11)°Rf (12)*] | Rq (1) P,
2 2% (2 2o (N2 |7 2
(n) : (=4)(2)*Im[Rp(10)* R, (1) [Im[Ry(71) R ()] IR g(m) I,
) : (—4)(2)°Im [Rp(To)zR;*(Tz)z] Im[Ry (1) Ri' (11) R (12)*]Re[Ry (1) R/ g (11)"] - (38)

One subtle issue in the above expressions is the appearance of the term Re [Ry(71)R’4(11)*]

in terms (cg), (fo), and (rg). This term originates from the contraction of R and R’ in R*R’ 2
in A4(11). As R and R’ do not commute, we have symmetrized the ordering of R and R/
in A4(), which yields Re[R4(11)R/4(11)*] in terms (o), (fo), and (rp).

Looking at the above expressions, we notice that the terms containing momentum
q are separated from the terms containing the momentum k. This property is depicted
in Figure 2, where the momentum g runs in the top loop attached to time 7;, while the
momentum k runs in the lower loop attached to both 71 and 1. This is a simplifying
feature of the diagram (a) in our Feynman diagrams. Because of this separation of the two
momenta, it is technically easier to calculate the corrections from diagram (a) compared to
diagram (b) in Figure 1. While this is a simplification, calculating the time integrals is still
a non-trivial task. This is because we have two nested integrals over 7 and 1, involving
10 factors of R(7) and its derivatives.

q

R(py) R(Pp)

T

Figure 2. The arrangement of momenta inside each loop and the relative positions of 7; and 1.

The above three classes of contributions in Equations (36)—(38) are grouped by their
form of the function c¢(7), which depends only on the soft momentum p but not on the
loop momenta g and k. Now, calculating these common factors in each class, we obtain

—H4‘['56

3 3
2AMEHTI TP (h; + (6 —h)T°), (39)
1

m[Rp(To)ZR;(Tz)Z] =
H476

2% "% —
m[Rp(TO) RP(TZ)RP (Tz)} = W’ (40)

and
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e (2 Hfl(er) —1°
Im[R, (1)2R ) (12) | = M (41)
Comparing the above three expressions, we conclude that the term in Equation (41) is much
more suppressed compared to the terms in Equations (39) and (40) in the soft limit, where
p — 0. Correspondingly, we can neglect the contributions of the terms (m), (n) and ()
in Equation (38).

We present the details of the analysis concerning the remaining three contributions
(0) 4,5, (O)p, 4, and (O)p 5, in Appendix A.

Before presenting the final result, it is useful to have an estimate of the leading
contributions. Let us look at the contributions of terms (4¢) and (bg). The difference is

2
that in (a9), R’ comes with k inside the expression Im R} (Tl)ZR;(* () |, whilein (by), R’
involves the momentum g simply as |R/4(1;) 2. On the other hand, for the superhorizon
perturbations during the USR phase, we have that

3 _
Ry (7) ~ —;Rq(r) xT4, (42)
Therefore, the leading effects in the in-in integrals on the superhorizon limit where 7; —

0 are controlled by the contributions of R’. Since the term (by) involves [R/4(71)[?, it

scales like 7, 8, while in Im Ry (Tl)zR,/(*(Tz)z], the dependence cannot be steeper than
this. Indeed, calculating the leading terms on superhorizon limits of 79, 7, — 0, one can
show that the ratio (ag)/(by) scales like (kt1)?, which becomes smaller than unity on
superhorizon scales. Therefore, it is expected that the contribution of the term (by) is more
dominant than the term (ag). Indeed, calculating the in-in integrals for both terms (a9) and
(bo), and neglecting the numerical prefactors and the common (271)35°(p; + pz), we obtain
that they scale as follows:

(a0) : (Pcms)’ e**NAN, (bo) : (Pwp)’ e*ANAN? (43)
in which Pcyp is the tree-level CMB scale power spectrum:

H2

_ (44)
872e; M3

Pcvp =

For large enough AN, the contributions from (by) is typically larger than that of (ap),
as expected.

As we demonstrated in Appendix A, in total, there are 15 leading contributions (i.e.,
containing p~2) given by (a9), (bo), (co), (do), (e0), (fo), (a1), (b1), (e1), (2), (ba), (c2), (d2),
(e2), (f2), (a3), and (b3) presented in Appendix A. The contributions from these 15 terms
are either like the contribution from the (ag) term scaling like ¢! NAN or like that of
the (bp) term, scaling like e!22NANZ. It turns out that only the contributions from terms
(bo), (co), (do), (e0) and (fp) have the latter form.

In the limit of large enough AN, and adding the contributions of terms (by), (o), (do), (o),
and (fp) as the leading terms, we obtain the following fractional two-loop correction:

AP@2-loor)  27(23h2 + 1324 + 1152) 128N A N2

Pis,
PCMB 8h CMB

(45)

where we have neglected the subleading terms involving ANe!?AN. The fact that the leading
two-loop corrections scale as e!?*NAN? is both interesting and reassuring. In addition,
the two-loop corrections scale linearly with & for i — —co. Note that our result above
is obtained assuming a sharp enough transition with |i| > 1, where the effects of the
relaxation during the final SR phase are neglected.
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It is instructive to compare the above two-loop corrections associated to diagram (a)
with the full one-loop correction obtained in [11]:

AP(-loop) - 6(12 + 24h + 180)
Pcvs h

EPNANP M. (46)

Comparing Equations (45) and (46), we obtain

AP (2—loop) (Afp(l—loop) >2

47
Pcvs 47)

Pevs
This is an interesting result, indicating that the fractional two-loop corrections is typically
the square of the fractional one-loop correction.

For the loop effects to be under perturbative control, one requires that the successive
loop corrections to be hierarchical, i.e., Pcyvp > AP (1=loop) 5 Ap(2-loop) Neglecting the
numerical prefactors, from Equations (45) and (46), we obtain

AP(Zfloop) AP (1-loop)

6AN
AP (1—loop) PCMB e ANPCMB . (48)

This shows that if the fractional one-loop correction is not small, then the two-loop correc-
tions become significant as well, so the perturbative treatment quickly loses control. As
elaborated in [11], the one-loop correction becomes significant for a sharp transition when
|h| > 1, as can be seen in Equation (46). Therefore, we conclude that the two-loop correc-
tions become significant in a model of sharp transition, which can be seen in Equation (45)
as well. In order for the loop corrections to be under perturbative control, one has to either
have a mild transition with / at the order of slow-roll parameters, or to take the duration
of the USR phase to be reasonably short, e.g., AN < 1. However, the latter arrangement
may not be suitable for the PBH formation as we need a long enough period of the USR
phase to enhance the power spectrum in the first place. For example, with h = —6, we
need AN < 2.3 to enhance Py by 7 orders of magnitudes compared to the CMB scale for
the purpose of PBH formation, while still satisfying the perturbative bound from one-loop
correction in Equation (46). Therefore, the only safe strategy for PBH formation in this
setup is to employ a mild transition with |h] < 1.

There are two important comments in order. The first comment is that in this work, we
studied the corrections from the diagram (a) in Figure 1. Naturally, one may ask how the
two-loop corrections from the remaining ten diagram can be compared to the current result
given in Equation (45). In a work in progress [81], we are studying the correction from
diagram (m) in Figure 1 involving a single vertex of sextic Hamiltonian. We have confirmed
that it scales like Equation (45). On the physical ground, we expect the full two-loop
corrections to have the same general form as in Equation (45), i.e., scaling like ANZe!2AN,
The second comment is the the issue of regularization and renormalization. In the current
analysis, we have restricted the momentum in the range g, < q < k.. In principle, one
should integrate over the entire range q;r < q < gy, in which gjg is the lower IR limit,
while g represents the mode which leaves the horizon at the time of the end of inflation.
Alternatively, one may simply set 4y — oo. While the IR contributions are under control,
the UV contribution will diverge, which has to be regularized and renormalized. Having
said this, the peak of the power spectrum at the end of the USR, the dimensionless factor
eO*N'Deyip fixes the overall scale of the finite term after regularization. The fact that the
two-loop correction in Equation (45) is the square of the one-loop correction in Equation (46)
qualitatively supports this expectation. However, it is an important open question to study
the renormalization of the loop corrections in more detail.
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5. Summary and Discussion

In this work, we have looked at the quantum corrections in the primordial power
spectrum at two-loop orders in models of single-field inflation involving an intermediate
USR phase engineered for PBH formation. This is the natural continuation of the previous
works concerning the one-loop corrections. As the one-loop correction in models with
sharp transition to the final SR phase can be large [1,11], it is necessary to examine the
two-loop corrections for the severity of the loop contributions. As we have shown, there
are eleven distinct one-particle irreducible Feynman diagrams at the two-loop orders. They
require the cubic, quartic, quintic, and sextic interaction Hamiltonians.

As a first step forward, we have studied the corrections from the diagram (a) in Fig-
ure 1. This is because this diagram involves two vertices of quartic interaction, while their
momentum integrals over g and k are separable. This brings computational simplicities.
Other diagrams in Figure 1 are more complicated, either having higher-order nested inte-
grals or the momentum integrals are not separable. On the other hand, the in-in analysis
corresponding to diagram (m) would be easier to handle as it involves a single sextic Hamil-
tonian vertex. However, one has to calculate the action to a sixth order to construct Hg,
which involves additional technical complexities [81]. Our result shows that the two-loop

corrections scale as the square of the one-loop corrections, i.e., like (AN eOAN PCMB)Z. This
is interesting and physically expected. This result confirms the previous results [1,11] that
the loop corrections can quickly lose control if the transition to the final attractor phase is
very sharp and the duration of USR phase is long enough. In order for the loop corrections
to be under perturbative control, and at the same time, to generate PBHs with the desired
mass scales for dark matter purposes, it is necessary that the transition to the final attractor
regime is mild so the loop corrections are rendered harmless.

The current work can be extended in various directions. One natural direction to
proceed is to study the loop corrections from the remaining Feynman diagrams in Figure 1.
While this is an interesting and yet cumbersome task, we believe that the total two-loop

corrections would be similar to our current result, i.e., scaling like (AN eOAN PCMB)Z. The
other direction to investigate is to study the general case of non-attractor inflation and
the case of constant-roll inflation and see if the two-loop correction has a similar relation
compared to the one-loop correction. Finally, an interesting direction to investigate is the
question of regularization and renormalization at both one-loop and two-loop orders. We
would like to come back to this important question in the future.
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Appendix A. In-In Integrals

In this Appendix, we present the details of in-in analysis.
As explained in the main text, the two-loop corrections have the following contributions:

(O()) = (0) a,a, + (O a,p, + (O)p,a, + (O)p,p, - (A1)

In the main text, we have presented the results for (O) 4,4, which we report here as
well for concreteness:

(O agn, = /j:o k) /j; dT1A4(T1)A4(Tz)/dgx/dBYquR/z(X,ﬁ)/ [O(TO),RZRIZ(%D)]D- (A2)
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Proceeding to the Fourier space, and after performing the contractions and imposing the
constraints from the delta functions, in the soft limit where p < g, k, we obtain

33 T o) d3q d°k
(Rp1Rpy(10)) 4,4, = (271)°6”(P1 + P2) [m T /700 A1 Ay(11) As(T2) / @np / 7(27_[)3F(T1,Tz;k,q),
in which the function F(1y, 72; k, q) has the following nine contributions:

(a0) : (—4) (2)21m [Ry (19)2Ro ()2 Im[Ry! (1) "Ry (12) ][Ry (1) [

(bo) : (—4) (2)21m [R, (19)* Ry (1) Im [Rie (11 "Ry (1) ][R (1) 2

(co) : (—4)(2)3Im[Rp(To)2R;(T2)2}Im[Rk(Tl)Rk’(Tl)R;*(Tz) |Re[Ry(t1)R 4(11)"], (A3)
and

/

(do) : (—4)(2)*'Im[R(10)*R; (1) R, (12) | Im [Ry ()" Ry () RE( )]IRq(n

(eg) : (—4)(2)4Im[RP(TO)ZR;‘,(TZ)R;,*(Q)]Im[R ()? Rk )R (1)]|R (11 (A4)
(fo) : (*4)(2)5Im[RP(TO)ZR;(TZ)R;*(TZ)]Im[Rk(Tl)Rk ()R ()R} (¢ 2)] e[Rq(n)R’q(ﬁ)*],

and
(m) : (—4>(2)2Im[Rp(To>2R;*(Tz)2] m[Ry (1) Rji (12)*] | Ry (1) 2,
(n) : (—4)(2)21m[73p(fo)27€;*(Tz)z] Im Ry (11)* R (w)*] R g (n) %,
(r): (_4)(2)31m[RP(TO)2R;*(TZ)Z] Im [R(11) Ry’ (1) Rj: (2)*]Re [Ry (1) R g (1) "] - (A5)
Now, we consider the contribution (0) 4 5,, yielding

Bk,

(O) a,p, = /_T:O dt /_T; dt1Ay(t1)Bs(2) {ﬁ/ (ii_?)ig (2”)353(2%)] [ )

(27)%8 (L k)]

A A

><< {(ﬁ‘h ﬁﬂufz/%ﬁ/%) (1), |:(,R’Pl Rp,) (10), (ﬁ'h 7ékzﬁkgﬁh) (TZ)H >i2k3 kg (A6)

The leading contributions are those in which 7A2P (10) does not contract with 7@1(3 (12) and
Ry, (12). Correspondingly, the leading terms will be similar to terms (ag), (bp), and (co) in
the analysis of (O) A,A,- More specifically, the leading terms are

(a1) : (—4)(2)°Im[Ry (102 R ()" Im [ Ry (11) R (12)7] Ry (11) [ (—i%K2)
(Br) : (—4)(2)*Im[Ry (10)* R} (12) ] Im [Rye(11)* Ry (12)*] IR g (1) P (—7K2)
(c1) : (—4)(2)°’Im R (10)* Ry (2)* | Im [R (1) Ry (11) Rf (12)* ] Re [Ry (1) R (11) ] (—2K2). (A7)

Now consider (O) B4, yielding,

(O)p,n, = / drz/ dTlB4(T1)A4(T2)[H/ (L;:)l P8 (Ca) Hﬁ/ Pk, PRk

j i

X < [(7%‘117?4127%%7%‘14) (1), {(ﬁplﬁpz) (10), (7%1(17?'19 Ai(gfziq) (TZ)H >i2q3 “q4 - (A8)
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The leading contributions are (ag), (bo), (co), (do), (e0), and (fo) in (O) A4, Yielding
2)*Im[Ry(10)*R}(12)*] Im [Rk(T1)2R;<*(T2)2} [Rq(m)|*(—i%K?)

(2)2Im[Rp(10)*R}(12)*] Im [Re(m) Ry (Tz)z] [Ry(m) P(=%°)

—
§
N
N}
—
|
=~
N
—

()" Im[Ry (1)’ Ry () ] IRy (m) P (Pk - q) (A9)

(d2) - (—4)(2)"Im[Ry(10)* R,
(e2) : (—4)(2)*Im[R(10)* R} (1) R, ()] Im [Re(11)* Ry (22) R (12) ] | Ry (1) A (—i247)
(f2) : (=4)(2)°Im [Ry(10)* Ry (22) R F(0)]Im[Ri (1) Ry () Ry ()| R (1) (P - q) (A10)

From the six terms above, one can check that the terms (c;) and ( f,) make zero contributions
after performing the double momentum integrals of the form [ d®qd®k (q-k)F (11, 2;k, q),
which vanishes.

Finally, considering (O) 5,5, We have

(O)p,p, = /T;de/T;dTlei(Tl)BMTz)[f[/ é?;;])i (2)*6° (3 i) Hﬁ/ 2l 5 (27) 353(2 z)}
i j i

i

A A A A A

X < {(R%R%ﬁ%ﬁqzx) (Tl)' [(Rlepz) (TO)' (Rklﬁ)'kzﬁksﬁ’kz;) (TZ)H >(q3 : q4)(k3 ) k4> : (A11)

The leading contributions are the (a9) and (by) terms, yielding

—
hny
[*S)
~—
|
W
~—
—
N
~—
N
p—
—
&
—~
~—
&
*
—~
~—
N
[
3
—
&
=~
—~
iy
~—
N
&
=%
—~
S
~—
—
&
=
—~
fn)
~—
N
—
~
N
)
N
~—
—
-~
N
B
N
~—

(A12)

So, in total, we have 15 leading terms (i.e., containing p~3) given by (ag), (bo), (co), (do),
(eo), (fo), (a1), (b1), (c1), (a2), (b2), (d2), (e2), (a3) and (b3) listed above. Out of these 15 con-
tributions, only the terms (by), (co), (do), (e0), (fo) scale as AN2e!2AN, while the remaining
terms scale like ANe'?2N. In the limit of a large enough AN, we may neglect the latter
contributions as the subleading corrections.
Calculating the leading terms from (by), (co), (do), (e0), (fo), and neglecting the com-
(47)?

mon factor (277)36°(py + p2) and (25 from the double azimuthal integrals over momen-

tum, we obtain

27H®
by) : —————(h* 4 28h — 384)AN?e'?2N + O(AN), A13
( 0) 512M%€?h}73( + ) e + ( ) ( )
_27H6 2 2 12AN
P~i
(do) - 9711’6012 + 8h 4 48)ANZe!?2N L O(AN) (A15)
256 M$e3hp?
(eg) : i(hz +16h + 96)AN?e'?2N 1 O(AN) (A16)
256 M%e2hp?
_9H6 2 12AN
(fo) (h+ 6)AN?e + O(AN). (A17)

" 16MSEIhp?
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In comparison, we also present the remaining ten subleading terms (ay), (41), ..., (b3)

as well:
3H6AN€12AN
1) : ————————(346h —2997) + O(AN"), A18
(a0) 5600]\416)61‘3}1#.;( )+ O(ANY) (A18)
HéANeleN
(a1) - —— (8085004 + 51180091/ — 44241120) + O(AN"), (A19)
206976000M%e3hp3
3H6AN€12AN
b)) :———————(1544h — 33024) + O(AN"), A20
( 1) 71680M%€?h}73< ) ( ) ( )
3H6AN€12AN
D (2100h* + 82832/ — 344832) + O(AN"), A21
(Cl> 179200M163€?hp3 ( ) ( ) ( )
(@) - HOANeT2AY (78400H + 1628972h — 21780864) + O(ANP) (A22)
2 5017600M5 e hp3 ’
9H6AN€12AN
b2) : ———————(35h* — 246h — 10368) + O(AN?), A23
(b2) 17920M%€?hp3( )+ O(ANY) (A23)
6 12AN
(d2) % (4900K> — 162656h — 1374912) + O(ANY), (A24)
5017600Mb€3 p3
_ H6A 12AN
(e2) SHPAN 66 = (4900* — 178080 + 5806080) + O(AN?), (A25)
20070400M% €7 p3
HéA 12AN
(@3) : —LANE (4780600 — 3175200) + O(ANY), (A26)
3763200M%€3 p3
H6A 12AN
b3) - #(5863711 — 423360) + O(AN?). (A27)
313600M&e? p3

Combining the five leading contributions (by), (co), (do), (e0), (fo), and including all
numerical factors, we obtain our final result:

—27H®(477)?
512M8%e2hp3(2m)®

(RpyRp2)l 100ps = (270)°8° (p1+ p2) (2317 + 132% + 1152) AN2e'?2N - O(AN) .

3
Now, multiplying by the factor 2;7? to construct the dimensionless power spectrum, we
end up with our fractional two-loop correction as follows:

(2—loop) 2
AP . _ 27(23K* +132h + 1152) (2ANN2PZ 4 O(AN), (A28)
Pcems 8h

where Pcyp is the tree-level power spectrum for the CMB scale modes given in Equation (44).
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