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“[...] There is a crack, a crack in everything
That’s how the light gets in [...]”
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Abstract

This thesis centres on non-singular black-hole spacetimes derived in all three dif-
ferent approaches to black holes beyond General Relativity and their characteristic
image features. This topic has sparked considerable interest in past years with the
tremendous development of observational tests of General Relativity in the strongest
gravitational fields induced by neutron stars and black holes.

The thesis begins with a brief overview of the current classical theory of grav-
ity, General Relativity, and its main black-hole solutions. We then elaborate on the
successes and flaws of General Relativity for different gravitational field strengths,
which motivate the proliferation of both classical gravity and quantum gravity theo-
ries beyond General Relativity within the fundamental approach. We shortly describe
two complementary and largely theory-agnostic approaches to black holes beyond
General Relativity, the parameterised approach and the principled-parameterised approach,
and review horizonless compact objects as alternatives to black holes.

We then move on to describe the principles and outcomes of imaging compact
objects and apply them to non-singular black holes, horizonless spacetimes and
parameterised black holes. We find that spacetimes beyond General Relativity gener-
ically exhibit peculiar image features, especially imprinted in photon rings, which
distinguish them from the classical black holes. This serves as a motivation to analyse
the detectability of a second thin photon ring in synthetic image data produced with
a simple flux density profile by current and future radio telescope arrays. We find
that we can only tell apart two thin photon rings with the current array if we use
super-resolution techniques, while we can do so without restrictions with planned
extensions of the array on Earth and in space.

Next, we review a simple scenario of spherically symmetric gravitational collapse
in General Relativity and build on its shortcomings to perform a regular upgrade of
the classical dynamical spacetime in the fundamental approach and in the principled-
parameterised approach. We investigate their various properties which seem to indicate
that the upgraded dynamical spacetimes are future null-geodesically complete and
might allow (quantum) modifications to be visible by an asymptotic observer but
may suffer from a mass-inflation instability in their interior.

In the final part, we discuss the existing axisymmetric and stationary black-hole
metrics within the parameterised approach given their symmetry constraints and em-
phasise that circularity and an additional hidden constant of motion are superfluous.
We thus put forward a new parametric spacetime which does not assume those
superfluous symmetries while encompassing the existing parameterisations. We do
so in two coordinate sets and examine their pros and cons. Finally, we highlight the
connection between the absence of those two superfluous symmetries and the pres-
ence of peculiar image features, making a case for analyses of image data collected by
future radio telescope arrays to consider our more general parameterisation.





Resumé

Denne afhandling omhandler ikke-singulære rumtider af sorte huller udledt i alle
tre forskellige tilgange til sorte huller ud over den generelle relativitetsteori og deres
karakteristiske billedtræk. Dette emne har vakt stor interesse i de seneste år med
den enorme udvikling af observationelle tests af den generelle relativitetsteori i de
stærkeste tyngdefelter skabt af neutronstjerner og sorte huller.

Afhandlingen begynder med en kort oversigt over den nuværende klassiske teori
for tyngdekraft, generel relativitetsteori, og dens primære sorthuls løsninger. Derefter
uddyber vi den generelle relativitetsteoris succeser og utilstrækkeligheder for forskel-
lige tyngdefeltstyrker, hvilket motiverer udbredelsen af både klassisk tyngdekraft
og kvantegravitationsteorier ud over den generelle relativitetsteori inden for den
fundamentale tilgang. Vi beskriver kort to komplementære og stort set teori-agnostiske
tilgange til sorte huller ud over den generelle relativitetsteori, den parameteriserede
tilgang og principiel-parameteriserede tilgang, og gennemgår horisontløse kompakte
objekter som alternativer til sorte huller.

Derefter går vi videre til at beskrive principperne og resultaterne af billeddannelse
af kompakte objekter og anvender dem på ikke-singulære sorte huller, horisontløse
rumtider og parametriserede sorte huller. Vi finder, at rumtider uden for den generelle
relativitetsteori generelt udviser særlige billedegenskaber, især fotonringe, som ad-
skiller dem fra de klassiske sorte huller. Dette giver motivation for at analysere
muligheden for at opdage en anden tynd fotonring i syntetiske billeddata, der er
produceret med en simpel fluxtæthedsprofil af nuværende og fremtidige radiote-
leskoparrays. Vi kommer frem til, at vi kun kan skelne mellem to tynde fotonringe
med den nuværende opstilling, hvis vi bruger superopløsningsteknikker, mens vi
kan gøre det uden sådanne begrænsninger med planlagte udvidelser af arrays på
jorden og i rummet.

Dernæst gennemgår vi et simpelt scenarie med sfærisk symmetrisk gravita-
tionelt kollaps i GR og bygger på dets mangler for at udføre en regelmæssig op-
gradering af den klassiske dynamiske rumtid i den fundamentale tilgang og i den
principiel-parameteriserede tilgang. Vi undersøger deres forskellige egenskaber, som
tilsyneladende indikerer, at de opgraderede dynamiske rumtider er fremtidige nul-
geodætisk komplette og kan tillade at (kvante)modifikationer kan være synlige for en
asymptotisk observatør, men kan have problemer med en masse-inflations ustabilitet
i deres indre.

I den sidste del diskuterer vi de eksisterende aksesymmetriske og stationære
sorte hul-metrikker inden for den parameteriserede tilgang i betragtning af deres sym-
metribegrænsninger og understreger, at cirkularitet og en ekstra skjult bevægelseskon-
stant er overflødig. Vi fremlægger derfor en ny parametrisk rumtid, som ikke an-
tager disse overflødige symmetrier, mens den omfatter de eksisterende parametris-
eringer. Vi gør det i to koordinatsæt og undersøger deres fordele og ulemper. Endelig
fremhæver vi forbindelsen mellem fraværet af de to overflødige symmetrier og tilst-
edeværelsen af særegne billedegenskaber, hvilket taler for, at analyser af billeddata
indsamlet af fremtidige radioteleskoper skal tage vores mere generelle parameteriser-
ing i betragtning.
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VLBI on a world map. The current EHT sites are in black, existing
or near-future sites joining the EHT array are in red and prospective
sites for the next generation EHT array (ngEHT) are in magenta. Taken
from [Doe+23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 We show the EHT images of M87* (left panel) and SgrA* (right panel)
on different days in April in the 2017 observational campaign. Each
image is the average of three different image reconstruction methods
after convolving each method with a circular Gaussian kernel to match
current resolutions. The largest Gaussian kernel with Full Width at
Half Maximum (FWHM) FWHM = 20 µas is shown in the lower right.
The colour gives the specific intensity of each image, shown in units
of brightness temperature.The brightness temperature Tb is defined as
Tb =

Sλ2

2kBΩ , with S the flux density, λ the observing wavelength, kB the
Boltzmann constant and Ω the solid angle of the resolution element.
The inset bars in the right panel give the prevalence of each type of
image in the whole set of images of SgrA*. All but one reconstructed
image show a prominent bright ring morphology of angular size 42 ±
3 µas for M87* and 51.8 ± 2.3 µas for SgrA*. Taken from [Aki+19a;
Aki+22a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 We show the spatial frequencies u, v in units of Gλ = 109λ probed by
the EHT array in 2017, i.e. the interferometric uv-coverage of the current
EHT array at 230 GHz, for M87* (left panel) and SgrA* (right panel).
The outer and inner dashed grey circles mark baselines accessing fea-
tures with an angular scale of 25 µas and 50 µas respectively. Colours
indicate the spatial frequencies probed by each pair of radio telescopes
in the EHT array. Taken from [Aki+19a; Aki+22a]. . . . . . . . . . . . . 52

4.6 We show the calibrated discrete visibility amplitudes in units of Jansky
(Jy) as a function of the projected baseline for both M87* (left panel)
and SgrA* (right panel). The colour code is given in Fig. 4.5 in the
bottom left panel for M87* and in the top panel for SgrA*. The error
bars give the ±1σ thermal/statistical uncertainties. The grey dashed
lines correspond to the Fourier transform of an azimuthally symmetric
thin ring model with diameter 45 µas (54 µas) for comparison with
M87* (SgrA*) data. Right panel: the red and shaded region shows the
Root Mean Square (RMS) variability of the flux density and its corre-
sponding 68% credible interval over a selected range of baselines. The
blue horizontal lines at zero baseline delineate the range of variations
in the total flux density. Taken from [Aki+19a; Aki+22a]. . . . . . . . . 53

4.7 We show the interferometric uv-coverage of the current EHT array with
spatial frequencies u, v in units of Gλ = 109λ at two different radio
frequencies – 230 GHz in light orange and 345 GHz in green – and for
two supermassive BHs – M87* (left panel) and SgrA* (right panel). The
outer and inner dashed grey circles mark baselines accessing features
with an angular scale of 15 µas and 30 µas respectively. Taken from
[Doe+23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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4.8 We show the decomposition of a full BH shadow image with a bright
ring circling a shadow into its direct emission’s component (n = 0)
surrounding the inner shadow and its stacked set of photon subrings.
The leading n = 1 subring and its next-to-leading n = 2 subring are
represented, while the ellipsis indicates the presence of higher-order
photon subrings n > 2. Taken from [Joh+23]. . . . . . . . . . . . . . . . 56

4.9 We provide a schematic view of the formation of photon rings on
the image plane of an asymptotic, face-on observer located at r → ∞
(on the far right) for a spherically symmetric and static BH with a
simple accretion disk (in orange). The shadow is represented by a
black disk with radius rh and the photon sphere (blue circle) lies at rγ.
The emission from the accretion disk is dominated by the direct flux
(red curve labelled by n = 0) emitted at an effective radius re. Strongly
lensed photons emitted at re reach the observer after one half-orbit
(dashed blue curve labelled by n = 1) or two half-orbits (dashed green
curve labelled by n = 2), leading to the n = 1 and n = 2 subrings. The
n → ∞ subring defines the critical curve on the image with impact
parameter bc, which the n = 2 subring already tracks closely. Taken
and adapted from [Wie21]. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 We show the image cross-sections of a bright ring for a time-averaged
GRMHD simulation of M87* consistent with the 2017 EHT data. Top
panel (A): brightness cross-sections whose blue (red) curves corre-
spond to cross-sections perpendicular (parallel) to the projected spin
axis. Bottom panels (B and C): decomposition of the left perpendicular
peak (in blue) and the right parallel peak (in red) into the brightness
associated with direct emission and the first three photon rings labelled
by n = 1, 2, 3. Similar results are also seen in image cross-sections of
simple geometrical models of rings. Taken from [Joh+20]. . . . . . . . . 58

4.11 We show a full image of a non-circular regular BH (top panel) and a
detailed view of the prograde image side (spacetime spinning towards
the observer) for a non-circular (left panel) and a circular (right panel)
regular BH. The white dashed rectangle indicates the (prograde) region
in the full image where we focus on in the detailed views. Successive
photon rings stack exponentially towards the shadow boundary from
left to right in each image. The images are obtained by a numerical
ray tracing code developed by A. Held and radiative transfer of a
semi-analytical emission model, c.f. [EH21a, Eq. (3.4)]. The image
intensity is normalised to the brightest image point. The non-circular
and circular spacetimes are given in [DEH22, Eq. 6], with mass func-
tions Mnon−circular(KGR) = M e−(ℓ4

NPKGR(r,χ))1/6
and Mcircular(KGR) =

M e−(ℓ4
NPKGR(r,0))1/6

, respectively. We choose a large spin a = 0.9G0M
and a near-extremal new-physics scale ℓNP = 0.1188 G0M. All quan-
tities are given in units of G0M with M the classical asymptotic BH
mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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4.12 For each type of spacetimes discussed in the main text, we show three
shadow images generated in [DE24], from the ideal image (left col-
umn) to the ideal image along with a Gaussian blurring of variance
σblur = 5 µas (middle column) and finally with a Gaussian blurring of
variance σblur = 10 µas (right column). As FWHM = 2

√
2 ln 2 σblur, the

variances of the Gaussian blurrings correspond to FWHMs of ∼ 12 µas
and ∼ 24 µas (within the current nominal EHT resolution), respectively.
Top row: Kerr BH with spin a = 0.99 G0M. The image is generated
with a disk model as in [EH23, slow falloff model in Tab. 1]. Second
row: regular BH with exponential falloff function, see e.g. [EH21b,
Eq. (3)]. Third row: circular [Pap66] deformation in the KRZ parame-
terization [KRZ16] of a Kerr BH with spin a = 0.9 G0M and a single
deformation parameter b01 = 5. Bottom row: marginally overspun
(with a = 1.01 G0M) and thus horizonless regular spacetime, cf. [EGH23]. 65

4.13 We visualise the locations of our four motivating examples in the
(s, ∆F) projection of the 2-ring model’s parameter space: the differ-
ent markers correspond to the expected parameter values of the four
spacetimes in Fig. 4.12, i.e. Kerr, regular black holes, parametric de-
formations and horizonless objects, respectively. The data points are
obtained by minimising the divergence between a Gaussian two-ring
model, see App. A.1, and the obtained synthetic image. The black lines
indicate lines along which we perform our analysis in Subsec. 4.3.4. . 67

4.14 We show the analytic expressions of the visibility amplitude for in-
finitely thin rings with Ftot = 1 Jy, see Eq. 4.26, for three relative flux
densities ∆F = 1 (top panel), ∆F = 1

9 ≈ 0.1 (middle panel) and
∆F = 3

7 ≈ 0.4 (lower panel). An outer infinitely thin ring is repre-
sented by a red dashdotted line, an inner infinitely thin ring by a blue
dashed line and the combination of both by a magenta line. . . . . . . . 70

4.15 We show two examples of fits corresponding to the s = 12 µas ray in
the right-hand upper panel in Fig. 4.16. The left-hand panel shows
simulated data taken with the EHT 2022-230 array and finds no de-
tection of the presence of a second ring. The right-hand panel shows
simulated data taken with the ngEHT-230-low-SEFD array and finds a
detection of the presence of a second ring. . . . . . . . . . . . . . . . . 72

4.16 We show the 2-ring detectability (according to the p-value test, cf. Sub-
sec. 4.3.3) projected onto the four rays in the (s, ∆F) plane, cf. Fig. 4.13.
A transition of the p-value from (close to) one to (close to) zero indi-
cates the transition from non-detectable to detectable cases, see main
text. For visual purposes, we have added a p-value floor of 10−20

to all data points. The different lines therefore indicate the varying
detectability thresholds that we find for various arrays as in Tab. 4.1.
In all cases, we focus on the thin-ring limit, i.e., the remaining 2-ring
parameters are chosen as ω1 = 2 µas and ω2 = 1 µas. Moreover, we
generate and fit the data with a crescent profile, i.e., the conducted p-
value test implicitly assumes perfect knowledge about the ring profile.
No constraints, especially on the widths, have been added. The inset
hash shows the ray along which we perform the scan, as in Fig. 4.13. . 74

4.17 We show the 2-ring detectability (according to the p-value test, cf. Sub-
sec. 4.3.3) projected onto the four rays in the (s, ∆F) plane, cf. Fig. 4.13.
A strong constraint on the widths ω1,2 ≤ 2 µas has been added in the
fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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4.18 We show the logarithmic closure amplitudes as a function of the
perimeter of the independent quadrangles of a square array with Mst =
20 stations on each side (Nst = 400) and a size Lmax = 10 Gλ. Inde-
pendent quadrangles are selected following the algorithm in [Bla+20],
and perimeters up to 35 Gλ are represented. Closure amplitudes are
evaluated with the analytical expressions valid for the 1-ring crescent
model with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model with an
additional ring characterised by s = 5 µas, ω2 = 0.5 µas and ∆F = 0.5. 78

4.19 Schematic representation of the array used in the slicing procedure: a
square array with Mst = 5 stations on each side (circles) and maximum
baseline between adjacent corners Lmax, and 3 auxiliary stations (dia-
monds) with relative separation Laux, which we take as Laux = Lmax/Mst. 79

4.20 We show the logarithmic closure amplitudes as a function of the quad-
rangle perimeter for a square array with Mst = 200 stations on each
side (Nst = 40000) and a size Lmax = 10 Gλ, and with 3 auxiliary
stations with relative baseline Laux = Lmax/Mst. Quadrangles are
formed holding the 3 auxiliary stations fixed and choosing the 4th

to be each of the stations in the main array. Closure amplitudes are
evaluated with the analytical expressions for the 1-ring crescent model
with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model with an additional
ring characterised by s = 5 µas, ω2 = 0.5 µas and ∆F = 0.5. The 1-
and 2-ring models become more distinguishable for larger quadrangle
perimeters (baselines), as expected from the fact that larger baselines
allow for the detection of smaller features. . . . . . . . . . . . . . . . . . 79

4.21 We show the normalised logarithmic closure amplitudes in the uv-
plane for a square array with Mst = 200 stations on each side (Nst =
40000) and a size Lmax = 10 Gλ, with 3 auxiliary stations with relative
baselines Laux = Lmax/Mst (top panel) and Laux = 10× Lmax/Mst (bot-
tom panel). Closure amplitudes are evaluated for the 2-ring crescent
model with d1 = 42 µas, ω1 = 2 µas, s = 5 µas, ω2 = 0.5 µas and
∆F = 0.5. Logarithmic closure amplitudes are positive and formally
divergent within the regions marked as dark red, and negative and
formally divergent within the regions marked as dark blue. Informa-
tion about the model parameters is encoded in the location of these
divergences, and not the maximum values reached which depend on
the parameters of the array, thus we are normalising the logarithmic
closure amplitudes. The larger relative distance between auxiliary
stations in the bottom panel allows for better differentiation of the two
types of divergent behaviour. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.22 Schematic representation of a specific set of quadrangles formed by 3
fixed stations (diamonds) and one movable station (circles) around the
baseline b0. Values for the movable horizontal baseline are given by
the set {b0 + j∆b}J

j=−J , which in realistic settings would be naturally
provided by Earth’s rotation. . . . . . . . . . . . . . . . . . . . . . . . . 81
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4.23 We show the logarithmic closure amplitudes as a function of the
perimeter of the quadrangles depicted in Fig. 4.22, for the 1-ring cres-
cent model with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model with an
additional ring characterized by s = 5 µas, ω2 = 0.5 µas and ∆F = 0.5.
In all cases, ∆b = 0.6 Gλ and J = 50, while b0 = 3.85 Gλ for the top
panel, b0 = 9.0 Gλ for the middle panel, and b0 = 14.0 Gλ for the
bottom panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.24 Equivalent of the top panel of Fig. 4.21 but for Mst = 20 (one order
of magnitude lower) stations on each side (i.e. Nst = 400). The lower
density of stations leads to a less precise localisation of the divergences
of logarithmic closure amplitudes in the uv-plane. . . . . . . . . . . . . 83

4.25 We show the logarithmic closure amplitudes as a function of the
perimeter of the quadrangles formed by 3 Earth-based stations (ALMA,
APEX, LLAMA) and a space-based station (see Tab. A.4), for the 1-ring
crescent model with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model with
the second ring characterised by s = 5 µas and ω2 = 0.5 µas. In all
cases, the altitude of the space-based station varies between 500 kms
(i.e. 0.38 Gλ at 230 GHz) and 8000 kms (i.e. 6.15 Gλ) above Odense
(Denmark), by steps of 200 kms (i.e. 0.15 Gλ). . . . . . . . . . . . . . . . 85

4.26 Summary of three tentative pathways to improve the detectability of a
2-ring model, as suggested by the statistical analysis in Fig. 4.16 and
4.17. In all panels, the detectable (not detectable) parameter ranges are
marked as thicker green (thinner red/orange) lines. Here, detectability
refers to a p-value of 10−5. Top panel: results for the EHT 2022 array
without super-resolution constraints. Three bottom panels: different
ways of improving the detectability of a 2-ring model. Left bottom
panel: results for the EHT 2022 array but with a super-resolution con-
straint. Middle bottom panel: results for the ngEHT array, assuming
optimistic, i.e., low SEFD values. Right bottom panel: results for the
same ngEHT array with a single additional space-based telescope. All
arrays shown here observe at 230 GHz. For details, cf. notation and
figures in Subsec. 4.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 We show outgoing null geodesics near r = 0 in a Vaidya spacetime
Eq. 5.1 with linearly growing VKP mass Eq. 5.2 for G0µ > µc (left panel)
and G0µ < µc (right panel). Left panel: G0µ = 1/2 (green dashed
lines) and G0µ = 1 (blue continuous lines). Right panel: G0µ = 1/16.5
(magenta continuous lines) and G0µ = 1/15.5 (purple dashed lines)
and a tangent to a geodesic near the origin (r = 0, v = 0) (black
continuous line). The critical value is G0µc = 1/16, as a subcritical
geodesic crosses its tangent at the origin, while a supercritical geodesic
does not. Note that all plots in this chapter are in Planck units in which,
in addition to h̄ = c = 1, G0 = 1. . . . . . . . . . . . . . . . . . . . . . . 95

5.2 We show outgoing null radial geodesics near r = 0 in a Vaidya space-
time Eq. 5.1 with linearly growing VKP mass Eq. 5.2 with G0µ = 1

10
as a function of the affine parameter λ. The blue curve corresponds
to v(λ) and the red curve is r(λ). Top panel: r(0) = 1

4 , v(0) = 10−5,
v′(0) = 1

10 . Bottom panel: r(0) = 1
2 , v(0) = 10−5, v′(0) = 1

4 . The
dashed lines indicate the values λ, v(λ) when r(λ) falls back to the
centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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5.3 We show a graphical representation of the VKP mass function (black;
see Eq. 5.2), its smooth approximation with k = 30 (dashed cyan; see
Eq. 5.22) and the evolution of the photon surface for the latter mass
function with G0µ = 1

2 (magenta). The accretion stops at v̄ = 1.1 as
indicated by the horizontal dashed line. The radial location of the
Schwarzschild’s photon sphere is indicated by the vertical dashed line. 99

5.4 We show the (r, v)-spacetime diagrams of null geodesics for the clas-
sical VKP model for three different values of G0µ. In all panels, the
apparent horizon is represented by a straight red line, the event hori-
zon by a brown curve and the photon surface by a magenta curve. Top
left panel: for G0µ = 1

2 ≫ G0µc the curvature singularity is hidden
behind an event horizon. Top right panel: G0µ = 1

5 > G0µc (same
behaviour). Bottom panel: for G0µ = 1

20 < G0µc a globally naked sin-
gularity is present and the photon surface crosses the Cauchy horizon
(blue dash-dotted line) and the other conformal Killing horizon (blue
dashed line). The accretion stops at v̄ = 1.1 for all three cases. . . . . . 100

5.5 We show fNP(v, r = rAH) evaluated at the location of the apparent
horizon rAH Eq. 5.43, as a function of v for rNP = 10−3 (thick lines)
and rNP = 6 · 10−3 (thin lines). For each value of rNP we consider two
accretion rates: G0µ = 10−2 (blue lines) and G0µ = 2 · 10−2 (green
lines). The classical behaviour is recovered in the limit fNP → 1.
Conversely, the more fNP departs from 1, the stronger are the new-
physics effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 We show null geodesics near r = 0 for the upgraded case (magenta,
continuous lines) and the corresponding classical case (black dashed
lines) for G0µ = 1/2 and setting G0 = 1 for the plot. We choose
rNP = 10−2. The inset zooms in on a set of trajectories at finite v, but
very close to r = 0. The derivative dr

dv has the opposite sign in the
upgraded case to what it has in the classical case. . . . . . . . . . . . . . 110

5.7 We show the region plots of the violation of the NEC for arbitrary
k0 and G0µ = 1

10 , i.e. coloured regions for which ε < 0. Left panel:
region plot (r, v) of ε < 0 for rNP = 39

1000 together with classical (dashed
green) and upgraded (magenta) null geodesics. Right panel: region
plot (rNP, r) of ε < 0 from v = 1

2 (dark blue) to v = 10 (light blue). . . . 112
5.8 We show the region plots of the violation of the NEC for arbitrary

k0 and G0µ = 1
1000 , i.e. coloured regions for which ε < 0. Left panel:

region plot (r, v) of ε < 0 for rNP = 39
1000 together with classical (dashed

green) and upgraded (magenta) null geodesics. Right panel: region
plot (rNP, r) of ε < 0 from v = 1

2 (dark blue) to v = 10 (light blue). . . . 113
5.9 We show the real part (left column) and the imaginary part (right

column) of the apparent rAH (dashed line) and inner rIN (solid line)
horizons as functions of the new-physics scale rNP and n = 1, 2, 3, 4.
Top row: parameters are 0 ≤ rNP ≤ 1 , G0µ = 1

10 , G0 = 1 and v = 10.
Bottom row: parameters are 0 ≤ rNP ≤ 10 , G0µ = 1

10 , G0 = 1 and
v = 100. The coloured points indicate the locations of the critical points
rNP,crit,n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 We show the critical points rNP,c,n as a function of n for v = 10 with
either G0µ = 1

10 (continuous line), G0µ = 1
15 (dashed line) or G0µ = 1

20
(dotted line). Logarithmic fits have been displayed to guide the eyes of
the reader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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5.11 We show the (r, v) spacetime diagrams for null geodesics in the up-
graded spacetime with n = 1 and G0µ = 1

10 . Photon surfaces are in
magenta. Left panel: presence of an event horizon (brown), i.e. rNP <
min (rNP,c(v)), an apparent horizon (red) and an inner horizon (blue).
Right panel: horizonless spacetime, i.e. rNP > max (rNP,c(v)). . . . . . 117

5.12 We show the (r, v) spacetime diagrams for null geodesics in the up-
graded spacetime for n = 1 and G0µ = 1

20 . Photon surfaces are
in magenta. Left panel: presence of a horizon (brown), i.e. rNP <
min (rNP,c(v)), an apparent horizon (red) and an inner horizon (blue).
Right panel: horizonless spacetime, i.e. rNP > max (rNP,c(v)). . . . . . 118

5.13 We show zoomed-in regions near r = 0 of (r, v) spacetime diagrams
with n = 1 in the presence of an horizon, i.e. rNP < min (rNP,c(v)).
Inner horizons are in blue. Top left panel: G0µ = 1

10 and 1.4 ≤ v ≤ 2.2.
Top right panel: G0µ = 1

10 and 2.2 ≤ v ≤ 3.0. Bottom panel: G0µ = 1
20

and 1.1 ≤ v ≤ 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.14 We show the (r, v) spacetime diagrams for null geodesics in the clas-

sical VKP model (dashed grey lines) and in the upgraded Vaidya
model with n = 1 (continuous grey lines) in the presence of a horizon,
i.e. rNP < min (rNP,c(v)). The classical event horizon is represented by
a dashed orange curve and the classical apparent horizon by a dashed
black line. The upgraded event horizon is represented by a brown
curve, the upgraded apparent horizon by a red line and the upgraded
inner horizon by a blue line. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 We depict subclasses of stationary and axisymmetric metrics according
to their symmetries. “Circular” metrics refer to metrics satisfying
the circularity conditions spelled out in Eqs. 6.3 and 6.4. A subclass
of those circular metrics possess a hidden symmetry generated by a
rank-2 Killing tensor, a generalisation of the Carter constant given in
Eq. 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 We depict 2D surfaces of transitivity of 4D stationary and axisymmetric
spacetimes generated by its two Killing vectors ξt and ξϕ (red arrows)
in BL coordinates. The black arrow pointing out indicates the direction
of the 2D orthogonal surfaces spanned by r and θ. . . . . . . . . . . . . 128

A.1 We show the 2-ring detectability (according to the p-value test, cf. Sub-
sec. 4.3.3) projected onto the ray ∆F = 0.5, cf. Fig. 4.13, for the EHT
2022 array at 230 GHz. We vary the profile (either crescent or Gaus-
sian), the width of the outer ring (either ω1 = 2 µas or 8 µas) and the
constraint on the width of the outer ring in the fits (either none or
ω1 ≤ 10.5 µas). The remaining 2-ring parameter is chosen as ω2 = 1 µas.154
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Chapter 1

Introduction

Well ahead other fundamental forces, a first mathematical description of gravity
was provided by I. Newton in the late 17th century [New87], dubbed Newtonian
gravity. At that time, Newtonian’s gravity accurately described the mutual attraction
and motion of two massive bodies in the weak gravitational field of the Earth or
the Sun. However, new observations of the motion of planets in the solar system,
e.g. the precession of Mercury’s perihelion [LV59], were at odds with Newtonian’s
gravity, thus shedding light on discrepancies. In 1915, A. Einstein came up with
a new mathematical description of gravity, called General Relativity (GR) [Ein15b],
which accurately explained the rate of precession of Mercury’s perihelion [Ein15a]
and the bending of light [Ein16; KKS97]. General Relativity extended Newtonian’s
gravity by including Special Relativity (SR) [Ein05], which postulates that the the laws
of physics are identical in all inertial reference frames and that the speed of light in
vacuum is the same for all observers. Furthermore, Einstein’s original formulation
of GR differed from Newtonian’s gravity on the nature of gravity: while gravity was
expressed as a force between two massive bodies for Newton, it corresponded, for
Einstein, to a geometrical deformation of space and time – combined to form a four-
dimensional (4D) curved spacetime. The geometrical nature of gravity was manifest
in the Einstein tensorial field equations, whose left-hand side (LHS) involves the
curved spacetime’s geometry as sourced by matter fields in the right-hand side (RHS).

Since its derivation, GR has passed all observational tests [BCA24], from Earth
scales (i.e. laboratory and solar-system tests, reviewed in [Ciu24]) all the way up
to astronomical scales, e.g. in radio pulsars [FW24] and, more recently, in Neutron
Stars (NSs) and Black Holes (BHs) via Electromagnetic (EM) waves [Psa08; Aki+19a;
Aki+22a; AB24] and Gravitational Waves (GWs) [Abb+16a; Abb+17a; CY22; Afz+23].

The common denominator of tests on Earth scales is that they all probe weak
gravitational fields. Contrary to that, pulsar tests probe stronger gravitational regimes,
and NSs and BHs probe the strongest gravitational fields in the Universe.

The agreement of observations on cosmological scales with the current standard
model of cosmology based on GR and the Standard Model (SM) of particles, namely
ΛCDM, further strengthened GR to be the fundamental theory of gravity [Agh+20;
Abb+22; Ada+24]. Those tests, which probed the formation and the evolution of
our Universe, were in remarkable consistency with the predictions of ΛCDM re-
garding the expansion rate of the Universe, the morphology of large-scale structures
(e.g. galaxies) and the abundance of various particles.

However, they required the existence of an exotic “dark sector”, responsible for
95% of the total energy density in the Universe. This “dark sector” is composed of:
a “dark energy”, i.e. some form of dark energy component with negative pressure
driving the expansion of the Universe which, in its simplest form, can be accommo-
dated for as a cosmological constant Λ in the LHS of the Einstein field equations
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[FTH08; Wei+13]; a Cold Dark Matter (CDM) given by some weakly interacting
(apart gravitationally) cold, matter component sourcing the observed growth of cos-
mic structures [Hou+23] and rotation curves of galaxies [RTF80]. The necessity to
include exotic “dark” components within ΛCDM – which cannot be accounted for in
the SM – provides a first sign that (i) our current understanding and modelling of
the Universe is incomplete, and that (ii) it requires extensions and/or modifications.
Although the additional “dark” components are more easily understood as newly
defined, exotic particles beyond the SM, the modifications do not necessarily call
for extensions of the SM as, in the spirit of the Einstein field equations, new matter
contents can be traded for modifications of the gravitational dynamics. Another sign
of the incompleteness of ΛCDM might be provided by the tensions that recently
appeared between the early-time and late-time measurements of two parameters: the
Hubble expansion rate and the matter density fluctuations at a certain scale [Abd+22].

It is, therefore, clear that the current cosmological paradigm relying on GR and
the SM cannot explain our Universe without the addition of new physics.

Theoretical inconsistencies appearing in the strong-gravity regime also show that,
although GR is a remarkable effective field theory of gravity, it cannot be the end of
the story.

The GR vacuum BH solutions, such as the Kerr black hole, harbour curvature
singularities in their centre, signalling the presence of divergent tidal forces. More-
over, those curvature singularities often come together with another issue: as these
BHs form, causal geodesics on which observers may move are not extendible beyond
the BH’s centre, leading to the so-called geodesic incompleteness problem [Pen65]. Fur-
thermore, some GR BHs have both an event horizon (which endows BHs with an
outer boundary beyond which no return is possible) and an inner horizon (or Cauchy
horizon) which is exponentially unstable under generic, small energy perturbations
[PI89; PI90]. Due to the exponential growth of energy on that surface, the laws of de-
terminism break well ahead the central curvature singularity: the future evolution of
some initial data on spacelike hypersurfaces beyond the Cauchy horizon is unknown.

The success of the SM in the 20th century, which provides a unified Quantum
Field Theoretic (QFT) description of all other fundamental forces but gravity, namely
the EM, weak and strong interactions between particles [Gla61; Wei67; Sal68], yielded
a quest to marry gravity with the SM. However, it turned out that the usual QFT
quantisation methods were not applicable to GR, as the resulting theory was proven
to be perturbatively non-renormalisable [GS86; Sho07] and thus requiring an infinite
set of measurements to fix its infinite set of free parameters.

Altogether, the aforementioned issues triggered a search for beyond-GR theories
capable of fully resolving them or, at least, partially. The vast set of proposed new-
physics theories that have been put forward divides into:

• classical modifications of the gravitational dynamics within modified gravity
theories, initially put forward to solve the “dark sector” problem on large scales;

• Quantum Gravity (QG) theories, in which gravity is postulated to be intrinsically
quantum to resolve singularities on small scales and entirely new mathematical
principles may be assumed.

While UV-completion mainly drove the development of QG theories, not all QG
theories were shown to be predictive and a priori testable, though those are key
properties to make connections with observables. Among all QG theories that have
been developed, such as String Theory (ST), Loop Quantum Gravity (LQG), Causal
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set theory, Asymptotically Safe Quantum Gravity (ASQG) and Group Field Theory
(GFT), we will focus on ASQG for the following reasons. First, it admits a QFT
formulation and does not require entirely new physical principles apart from the
existence of quantum scale symmetry at very high energies. The latter requirement
translates into the presence of a fixed-point regime at transplanckian energy scales.
Second, it is non-perturbatively renormalisable and a simple one-loop-type equation
suffices to compute the behaviour of the couplings of the theory from transplanckian
to low-energy scales. Finally, it predicts that only finitely many couplings are free
parameters that require to be fixed by experiments, hence rendering it predictive. In
particular, it is particularly compelling that BHs inspired by ASQG results can be
made free of curvature singularities.

Concurrently, phenomenological models were developed as a way to overcome
the arduous challenges beyond-GR theories raised [CR+18]: the lack of possible
measurements at very small scales (e.g. the Planck scale) in some QG theories or the
difficulty in obtaining analytical solutions in modified gravity theories. While being
largely theory-agnostic, phenomenological models proposed in the context of BHs
were shown to accommodate numerous of these beyond-GR theories [KR20a].

Hence, theoretical progress on BH spacetime’s characterisation beyond GR can
be made faster following complementary top-down and bottom-up approaches, and
will be the core of Chapters 5 and 6 of this thesis.

The last decade has led to a tremendous progress in testing GR on small and large
scales and, first and foremost, in the strong-gravity regime.

On the cosmological side, the Planck collaboration released the most recent and
accurate early-Universe measurements of the cosmological parameters [Agh+20]
which, assuming ΛCDM, are in agreement with BAO, SNe, and some galaxy lensing
observations, but in tension with the Dark Energy Survey results including galaxy
clustering [Abb+22] and late-Universe measurements of the Hubble constant. This
was later complemented by the results of DESI [Ada+24], which could indicate that
DE is not constant but evolving over time. Further understanding of the formation,
evolution and structure of our Universe will be provided by the James Webb Space
Telescope (JWST) and the Euclid mission. JWST, launched in 2021, is sensitive to
EM waves in the IR-regime, thus allowing us to see deeper and further in the early-
Universe, while capturing the light emitted by fainter objects. While early results
show the presence of well-formed galaxies and supermassive BHs soon after the Big
Bang which challenge the timeline predicted by ΛCDM, observations in Cepheids re-
inforce the early- versus late-Universe tension on the Hubble expansion rate [Rie+24].
Concurrently, the Euclid mission started in 2023 will probe cosmological observables
to an unprecedented level of accuracy to primarily refine constraints on the current
cosmological parameters and test ΛCDM [Mel+24].

On the astrophysical side, the first detections of GWs by LIGO-Virgo in 2015-2017
indirectly confirmed the existence of (stellar-mass) BHs (in 2015) and NSs (in 2017)
in binaries as well as their gravitational dynamics as prescribed by GR [Abb+16a;
Abb+17a]. The Gamma-Ray Bursts (GRBs) which accompanied the detection of the
first NS binary in 2017 and were detected by the Fermi GRB Monitor [Gol+17] and
the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) inaugurated
the era of multimessenger astrophysics [Abb+17b], reviewed in [BMB22]. The field of
GW astronomy developed along the three observing runs of Advanced LIGO-Virgo
[Pog24], supplemented by the forthcoming detection of GWs with KAGRA. Thanks
to the Earth-based GW interferometers LIGO, Virgo and KAGRA, we can test GR and
examine potential deviations from it by constraining the post-Newtonian parameters
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that enter the gravitational waveforms fitting the GW inspiral of compact binaries.
Subsequently, the strong evidence for the detection of a Stochastic Gravitational
Wave Backround (SGWB) gathered by the NANOGrav through Pulsar Timing Arrays
(PTAs) in 2023 [Aga+23] shed new light on the superposition of GW signals that
may originate from mergers of Supermassive Black Hole Binaries (SMBHBs) or from
cosmological sources in the early-Universe. The characterisation of SMBHs via GWs
will be largely enhanced by the upcoming Laser Interferometer Space Antenna (LISA)
[Col+24b].

Recent observations in the EM spectrum have complemented the GW tests of
GR in the strong-gravity regime. Evidence for a SMBH sitting at the centre of the
Milky Way was collected by both GRAVITY and the Keck Observatory through
decades of astrometric measurements of the orbital motion of stars in the Galactic
centre [Gen+97; Ghe+98]. More recently, the EHT collaboration revealed shadow
images of two SMBHs: SgrA* in the Galactic centre [Aki+22a], and M87* in the galaxy
M87 [Aki+19a]. The images resulted from the acquisition of EM signals in the radio
frequency spectrum emitted in the accretion disk surrounding the SMBHs. While
the resolution and sensitivity of radio telescopes forming the EHT array limited the
accuracy of testing GR, constraints on the spacetime metric could be put [Aki+22f].
Ever-increasing constraints on spacetime metrics of SMBHs and their alternatives,
namely ECOs, are expected to be derived through imaging with next-generation EHT
(ngEHT) arrays [Joh+23; Doe+23; Aki+24c] and space-based radio antennas [Joh+24].

It is thus of particular relevance to derive reliable signatures of spacetimes beyond
GR in shadow images and gauge their detectability with future radio-telescope arrays.
This will be the scope of Chapter 4 of this thesis.

The present thesis is structured as follows. As a starting point, we provide in
Chapter 2 with a brief overview of GR and its main vacuum and non-vacuum BH
solutions. After reviewing all types of tests of GR that have been performed so far,
we build on the theoretical inconsistencies and incompleteness of GR, particularly
manifest in the strong gravitational fields of BHs, to motivate the need for QG theories
in Chapter 3. We then state the three ways of approaching BHs beyond GR that will
all be tackled in the subsequent chapters. In Chapter 4, we first explain the theoretical
and technical principles beyond BH imaging, before we exposit characteristic imprints
of beyond-GR spacetimes in shadow images. We then assert their detectability with
current and future radio-telescope arrays in a simplified geometric setting. In a
more theoretical part, we explore how to describe more general BH spacetimes
sourced by some new physics. In Chapter 5, we first report on a simple but singular
model for BH gravitational collapse within GR, before we investigate the collapse
of two upgraded spacetimes, each within a different approach to BHs beyond GR.
Next, we give the status of existing parameterisations of BHs beyond GR and their
symmetries in Chapter 6 and construct a more general parameterisation containing
fewer symmetries but which accounts for the more symmetric ones. Finally, we
conclude this thesis with some final remarks and promising research directions. We
gather some detailed calculations and auxiliary material in a set of three appendices.
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Chapter 2

Black hole spacetimes in General
Relativity

In this chapter, we give a short overview of the classical theory of General Relativity
(GR) which successfully describes all observed gravitational phenomena to date. We
then describe the properties of its vacuum, stationary black hole (BH) spacetime solu-
tion, namely the Kerr black hole, which admits as special case the static, spherically
symmetric Schwarzschild black hole. Finally, we move on to non-vacuum black-hole
solutions of the Einstein-Maxwell field equations and briefly consider the addition of
a non-zero cosmological constant.

2.1 Short overview of General Relativity

Alongside Quantum Mechanics (QM), the classical theory of GR has been a corner-
stone of physics since its construction by A. Einstein in 1915 [Lor+52]. It generalises
Newton’s theory of gravitation by encompassing the principles of Special Relativity
(SR) and describing the interplay between the geometry of 4-dimensional (4D) space-
time and the matter content within it [HE23; Wal84]. Its defining equations of motion,
dubbed Einstein field equations, are

Gµν + Λgµν = Rµν −
1
2

Rgµν + Λgµν =
8πG0

c4 Tµν (2.1)

in terms of the spacetime metric gµν, the Ricci tensor Rµν and the Ricci scalar R –
combined in the Einstein tensor Gµν – the cosmological constant Λ and the energy-
momentum tensor Tµν of matter. The left-hand side (LHS) characterises the space-
time’s geometry and curvature, while the right-hand side (RHS) specifies the type
of matter or radiation and its distribution. The cosmological constant allows for an
expanding or a contracting universe and is thus absent in vacuum spacetimes for
which Tµν = 0.

Newton’s law of gravitation is recovered by taking the Newtonian limit of GR,
namely by requiring (i) non-relativistic particles with speed v ≪ c, (ii) a stationary
spacetime metric and (iii) a weak gravitational field such that the spacetime metric
is almost-flat. Nonetheless, GR’s predictions extend beyond the Newtonian regime.
Using the geodesic equation, which arises from a principle of least action applied
to a curved line-element (i.e. a solution of the Einstein field equations), Einstein al-
ready predicted that the strength of light’s deflection by massive astronomical objects
would be twice the Newtonian one. This was later confirmed in solar eclipses in 1920s
[DED20; CT23]. Additionally, GR could solve one open astronomical problem of the
beginning of the 20th century: the anomalous precession rate of Mercury’s orbit. The
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confirmation of those two predictions of GR established GR as a scientifically viable
and solid.

Besides accurately describing the deflection of light by massive objects and the
perihelion precession of Mercury (and other planets), GR was also praised for its
elegant generally covariant, geometrical formulation. However, the non-linearity
of its field equations Eq. (2.1) made it very challenging to find solutions, unless
stringent assumptions on spacetime symmetries and matter content were formulated.
Solutions to the Einstein field equations could firstly be found in vacuum, i.e. for
Tµν = 0 and among those, the simplest is the flat Minkowski metric

ηµν = diag(−1,+1,+1,+1) (2.2)

with line element
ds2 = −dt2 + dx2 + dy2 + dz2 (2.3)

in Cartesian coordinates (t, x, y, z).

2.2 Main vacuum black-hole solutions

Other exact vacuum solutions to the Einstein field equations are known to date. They
are found by releasing the flat assumption and describe the most compact (dense)
objects in the Universe, namely black-hole spacetimes.

Historically, the first and simplest solution was found by K. Schwarzschild in
1915 [Sch16]. According to Birkhoff’s theorem [Jeb21; BL23; Jeb05], the Schwarzschild
solution is the unique spherically symmetric and asymptotically flat solution of the
Einstein field equations in vacuum. It describes spherically symmetric, static and
asymptotically flat black holes as well as the (approximate) exterior spacetime of any
(approximately) spherically symmetric star or planet. Its corresponding Lorentzian
metric1 is expressed in Schwarzschild coordinates as

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dΩ2, f (r) = 1 − 2G0M

r
, (2.4)

where
dΩ2 = dθ2 + sin θ2 (2.5)

is the metric on the 2-sphere, and M is the black-hole mass (as seen by an asymptotic
observer). The salient features of such a metric are:

• the presence of an event horizon at rEH = 2G0M (dubbed “Schwarzschild
gravitational radius” rg), i.e. when grr = f (r) = 0;

• for r < rEH, r becomes timelike and t spacelike;

• a photon sphere at rp = 3G0M = 3
2 rg;

• 4 Killing vector fields and their corresponding symmetries: a timelike Killing
vector field ξt =

∂
∂t (staticity) and three spacelike Killing vector fields ξϕ = ∂

∂ϕ ,

ξ1 = cos ϕ ∂
∂θ − cot θ sin ϕ ∂

∂ϕ and ξ2 = sin ϕ ∂
∂θ − cot θ cos ϕ ∂

∂ϕ (spherical symme-
try);

1We will use the words “metric” and “line-element” interchangeably.
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• a curvature singularity at the centre r = 0.

The apparent curvature singularity, a.k.a. coordinate singularity, at the event horizon
can be removed by a coordinate transformation, contrary to the curvature singularity
at r = 0. The latter central singularity expresses itself in the divergence of the
Kretschmann curvature invariant

K = RµναβRµναβ =
48G2

0 M2

r6 (2.6)

at the centre r = 0. Note that all other curvature invariants either reduce to the
Kretschmann scalar (e.g. those solely involving the Weyl tensor or its dual) or are
zero (because both the Ricci tensor Rµν and the Ricci scalar R are zero).

It is proven that spherically symmetric, static black holes, defined by their event
horizon, must be veiled by a photon sphere [CRE24] (see also earlier proofs in [CVE01;
HP02; Per04; Hod13; CH20]). The photon sphere at rp = 3

2 rg corresponds to a set of
circular, unstably bound null geodesics on which freely falling photons (not subject to
any other forces than gravity) orbit. Those orbits are unstable in the sense that, if one
slightly perturbs photons on those orbits, the latter photons either plunge into the
event horizon and get absorbed by the black hole or escape away from the black hole.
Only the photons that escape towards infinity might be detected by an asymptotic
observer.

About 50 years later, a more general exact vacuum solution of the Einstein equa-
tions was found by R. Kerr [Ker63]. The Kerr solution relaxes the spherical symmetry
to describe an axisymmetric (thus rotating), stationary, asymptotically flat black-hole
spacetime with metric

ds2 = −
(

1 − 2G0Mr
Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2G0Mra2

Σ
sin θ2

)
sin θ2dϕ2

−4G0Mra sin θ2

Σ
dtdϕ (2.7)

in Boyer-Lindquist (BL) coordinates (t, r, θ, ϕ) and

a =
J

M
(reduced spin)

Σ = r2 + a2 cos θ2

∆ = r2 − 2G0Mr + a2. (2.8)

The Kerr BH is proven to be the unique axisymmetric, stationary, asymptotically
flat solution of the Einstein equations in vacuum [Car71; Car73; Rob75; Maz82].
The Kerr black hole is solely characterised by two quantities: its mass M and its
angular momentum J (or reduced spin a), although its metric is more involved
than the Schwarzschild one, cf. Eq. (2.4). In the static limit a → 0, it reduces to
the Schwarzschild metric, while in the limit M → 0, we recover flat Minkowski
spacetime.
Its principal features are:

• the presence of an event horizon at rEH = G0M +
√

G2
0 M2 − a2 (which only

exists for a ≤ G0M) when grr = 0;

• the presence of an inner Cauchy horizon at rC = G0M −
√

G2
0 M2 − a2;
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• the presence of an ergoregion (see below for more detail) whose boundaries are

rerg,± = G0M ±
√

G2
0 M2 − a2 cos θ2,

solutions of gtt = 0;

• a 3D photon shell;

• 2 Killing vectors and their corresponding symmetries: ξt =
∂
∂t (stationarity) and

ξϕ = ∂
∂ϕ (axisymmetry);

• a curvature singularity at
(
r = 0, θ = π

2

)
whose topology is a ring.

Similarly to Schwarzschild, the central curvature singularity expresses itself in the
divergence of curvature invariants, such as the Kretschmann scalar

K =
48G2

0 M2 (r6 − 15a2r4 cos θ2 + 15a4r2 cos θ2 − a6 cos θ6)
(r2 + a2 cos θ2)6 . (2.9)

The latter is indeed divergent for r2 + a2 cos θ2 = 0, that is at
(
r = 0, θ = π

2

)
.2

The 3D photon shell, whose existence was proven in [CH20; CRE24], is the ax-
isymmetric generalisation of the 2D photon sphere surrounding a Schwarzschild BH.
Photons contained within the photon shell travel on unstable bound null geodesics
or “bound orbits” which, in BL coordinates, span a finite range in r, oscillate in θ,
and wind in ϕ as they complete a full orbit in the polar angle θ. Hence, the photon
shell for a typical stationary, axisymmetric BH, such as the Kerr BH, is the spacetime
region defined by [Joh+20]

rγ
− ≤ r ≤ rγ

+, θ− ≤ θ ≤ θ+, 0 ≤ ϕ ≤ 2π, (2.10)

where

rγ
± = 2G0M

(
1 + cos

(
2
3

arccos
(
± a

G0M

)))
, θ± = arccos (∓√

u+) (2.11)

with

u± =
r

a2(r − G0M2)

(
−r3 + 3G2

0 M2r − 2a2G0M

± 2
√

G0M∆(2r3 − 3G0Mr2 + a2G0M)
)

. (2.12)

On the boundaries of the photon shell, photons travel on circular equatorial bound
orbits: the latter is prograde at the inner boundary rγ

− and retrograde at the outer
boundary rγ

+. Thus, in principle, photons in the photon shell do not escape towards
infinity nor fall into the event horizon. However, those bound orbits are unstable,
meaning that, when slightly perturbed, photons on those trajectories either fall into
the event horizon or escape towards an asymptotic observer. “Nearly bound” pho-
tons on those trajectories that fall into the event horizon can never be seen by an
asymptotic observer. Being relatively close to the BH on nearly-bound orbits, the

2 The fact that the central curvature has the topology of a ring can be seen by writing the Kerr
metric in Kerr-Schild “Cartesian” coordinates (t, x, y, z). Those coordinates are expressed in terms of BL
coordinates as t = t, x + iy = (r − ia)eiϕ sin θ, z = r cos θ. In the new coordinates, the central singularity
reads (r = 0, θ = π

2 ), r2 + a2 cos θ2 = 0 ⇔ x2 + y2 = a2, i.e. it is a ring of radius a.
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escaping photons are strongly lensed: they wind around the BH a certain number of
times (up to infinitely many times when the photons approach fully bound orbits)
before escaping away and potentially reaching an asymptotic observer.

In addition to the symmetries generated by the aforementioned Killing vectors and
their corresponding constants of motion, namely the energy E and the z-component
of the angular momentum Lz, the Kerr spacetime possesses another (hidden) constant
of motion dubbed Carter constant C. It is built out of a rank-2 Killing tensor Kµν and
the test particle’s velocity uµ as

C = Kµνuµuν = p2
θ + cos θ2

(
a2 (m2 − E2)+( Lz

sin θ

)2
)

(2.13)

in BL coordinates. Together with the conserved mass m of test particles, those three
constants of motion render the geodesic equations

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0, (2.14)

for a test particle with position xµ(λ) and affine parameter λ, fully separable, a.k.a.
integrable.

The presence of an ergoregion is specific to rotating black holes. In the ergoregion,
the timelike wordlines become spacelike, i.e. gtt (or the Killing vector ξt) transitions
from positive (timelike) to negative (spacelike). For rotating black holes like Kerr,
this implies that observers within the ergoregion cannot stay stationary, whatever the
force is exerted on them: they must instead co-rotate spinward with the BH, i.e. on
prograde orbits, at an angular velocity

Ω = − gtϕ

gϕϕ
=

2G0Mra
Σ(r2 + a2) + 2G0Mra2 sin θ2 . (2.15)

This effect is an extreme version of the so-called frame-dragging effect [LT18]. Note that
the ergoregion closes up at the poles θ = 0 and θ = π, as shown in Fig. 2.1. Moreover,
the Kerr event horizon coincides with its (null) Killing horizon, as prescribed by the
Hawking rigidity theorem [HE23]. The null Killing horizon is a null hypersurface to
which the following Killing vector field

ξµ =

(
∂

∂t

)µ

+ Ω
(

∂

∂ϕ

)µ

(2.16)

is orthogonal, i.e.
gµνξµξν = 0. (2.17)

Note that the different surfaces in Kerr satisfy rerg,− ≤ rC < rEH ≤ rerg,+, with the first
and last inequalities being saturated at the poles θ = 0, π. A graphical representation
of those surfaces is visible in Fig. 2.1.

In addition to that, the existence of a Cauchy horizon rC is a new feature of
the Kerr spacetime. It delineates the boundary of the spacetime region in which
the future evolution of initial data on a spacelike hypersurface is not well-defined.
Within the Cauchy region, closed timelike curves can exist and signal a breakdown of
predictivity.

Finally, note that something special happens when a = G0M: the inner Cauchy
horizon and the event horizon coincide, i.e. rC = rEH ≡ rH, leading to a single
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FIGURE 2.1: We show a slice at y = 0 of the main surfaces of Kerr
spacetime with a = 0.99 G0M in Cartesian Kerr-Schild coordinates
(see Footnote 2): outer boundary of the ergoregion (dark blue), event
horizon (cyan), inner Cauchy horizon (orange), inner boundary of the
ergoregion (red). The central singularity lies at the kink in the inner

boundary of the ergoregion. Inspired by Fig. 3 of [Vis07].

degenerate horizon at rH. The resulting spacetime is extremal as the spin saturates,
and the whole spacetime is time-independent. Mathematically, this means that there
is no point in spacetime where all Killing vectors are spacelike: one or more must
be timelike or null. For larger spins a > G0M, the degenerate horizon disappears
and the spacetime is left horizonless. However, it harbours a naked singularity, thus
violating the cosmic censorship conjecture [Wal97].

2.3 Non-vacuum black-hole solutions

Apart from vacuum black-hole exact solutions, other solutions of the Einstein field
equations were found in the presence of certain matter contents, such as non-zero
Electromagnetic (EM) fields or a non-vanishing cosmological constant. A non-zero
and positive value of the cosmological constant is motivated by the accelerated ex-
pansion of the Universe confirmed in 1998 through Supernovae’s (SNe) observations
[Rie+98; Per+99b].

Shortly after A. Einstein formulated GR, a static solution to the Einstein-Maxwell
equations

Gµν =
8πG0

µ0

(
FµαFν

α +
1
4

gµνFαβFαβ

)
, (2.18)

where the EM field strength tensor is expressed in terms of the vector potential Aµ as

Fµν = ∂µ Aν − ∂ν Aµ, (2.19)

was discovered: the Reisser-Nordström solution [Rei16; Wey17b; Nor18; Jef21]. The
right-hand side of the field equations being the energy-momentum tensor for EM
fields in free space, a solution to Eq. (2.1) describes a static, spherically symmetric,
charged black-hole spacetime of mass M and charge Q with metric

ds2 = −
(

1 − 2G0M
r

+
Q2G0

4πϵ0r2

)
dt2 +

(
1 − 2G0M

r
+

Q2G0

4πϵ0r2

)
dr2 + r2dΩ2. (2.20)
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In the limit Q → 0, we recover the uncharged Schwarzschild metric, while the
Newtonian limit is reached for r → ∞. Although the Reisser-Nordström metric
resembles the Schwarzschild one when Q2

4πϵ0
≪ 2M, it has two horizons which are

solutions of grr = 0, namely

r± = G0M ±
√

G2
0 M2 − Q2G0

4πϵ0
. (2.21)

Those horizons only exist for Q2G0
4πϵ0

≤ G2
0 M2 and are degenerate when the inequality

is saturated, i.e. when the black hole is extremal. Similarly to Schwarzschild, the
Reisser-Nordström spacetime has a point-like singularity at the centre r = 0.

The Kerr-Newman black-hole spacetime, found in 1965 by E. T. Newman [NJ65;
New+65], is a generalisation of the Reisser-Nordström black hole to a rotating, ax-
isymmetric solution to the Einstein-Maxwell field equations. In BL coordinates, its
metric reads

ds2 = −
(

∆ − a2 sin θ2

Σ

)
dt2 +

Σ
∆

dr2 − 2a
(

r2 + a2 − ∆
Σ

)
sin θ2dtdϕ

+Σdθ2 +

(
(r2 + a2)2 − ∆a2 sin θ2

Σ

)
sin θ2dϕ2, (2.22)

with

∆ = r2 + a2 +
Q2G0

4πϵ0
− 2G0Mr

Σ = r2 + a2 cos θ2, (2.23)

supplemented with the EM vector potential

Aµ =

(
rQ2G0

4πϵ0Σ
, 0, 0,− arQ2G0 sin θ2

4πϵ0Σ

)
. (2.24)

As prescribed by the no-hair theorem [MTW73] and uniqueness theorem, the Kerr-
Newman metric is entirely characterised by its mass M, its charge Q and its angular
momentum J. Nonetheless, it can be extended to include an additional magnetic
charge QB.
In analogy with the Kerr black hole, the Kerr-Newman spacetime possesses:

• an event horizon at rEH = G0M +
√

G2
0 M2 − a2 − Q2G0

4πϵ0
and an inner Cauchy

horizon at rC = G0M −
√

G2
0 M2 − a2 − Q2G0

4πϵ0
, both solutions of grr = 0;

• an ergoregion whose boundaries are located at

rerg,± = G0M ±
√

G2
0 M2 − a2 cos θ2 − Q2G0

4πϵ0
;

• a central curvature singularity at
(
r = 0, θ = π

2

)
with the topology of a ring;

• 4 conserved quantities for test particles, namely their energy E, the z-component
of their angular momentum Lz, the Carter constant C and their mass.
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In addition to EM fields in free space, we can consider non-asymptotically flat
solutions, i.e. solutions with a non-zero cosmological constant Λ that is either positive
(de Sitter-like) or negative (anti-de Sitter-like). As an example, the anti-de Sitter
Schwarzschild metric is given by

ds2 = −
(

1 − 2G0M
r

− Λ
3

r2
)

dt2 +
1

1 − 2G0 M
r − Λ

3 r2
dr2 + r2dΩ2 (2.25)

with Λ < 0. This black-hole solution has only one horizon located at

rEH =

(
−3G0M

Λ

) 1
3

(1 +

√
−1

9ΛG2
0 M2

) 1
3

+

(
1 −

√
−1

9ΛG2
0 M2

) 1
3
 . (2.26)

In the limit where the cosmological horizon l2 = − 3
Λ approaches infinity, the space-

time becomes asymptotically flat and the horizon of the anti-de Sitter Schwarzschild
black hole asymptotes the Schwarzschild horizon rEH = 2G0M. Additionally, a
curvature singularity forms at the centre r = 0.
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Chapter 3

Theories and black hole spacetimes
beyond General Relativity

In this chapter, we introduce the successes and failures of GR in various regimes and
motivate the need to derive theories that go beyond GR and bridge the gap with
quantum matter, in particular in the strong-energy regime of BHs. While classical
modified theories of gravity can capture the leading-order corrections to GR, they
can only be considered as Effective Field Theories (EFTs) which break down at
high enough energy scales. Semiclassical gravity partially bridges the gap between
classical gravity and quantum matter by accounting for backreaction onto the classical
spacetime. In chapter Chapter 5, we will discuss the results of paper [DE24] that
explains how to motivate non-singular black-hole spacetimes from Asymptotically
Safe Quantum Gravity (ASQG). To provide background for that chapter, we give
an overview and motivation for Quantum Gravity (QG), focusing in particular on a
non-perturbative, UV-complete and predictive QG framework, namely ASQG.

3.1 The need to go beyond General Relativity

The advent of GR in the early 20th century opened a new era in gravitational physics,
in which the spacetime geometry and the matter content are interconnected. The
construction of GR led to a series of predictions that were later successfully confirmed
observationally. Besides GR, Quantum Mechanics (QM), subsequently developed as
Quantum Field Theory (QFT), marked the dawn of a new era in the description of the
other fundamental forces and the interactions of the fundamental matter constituents.
Since then, GR and QFT have been the two main pillars of theoretical physics.

However, those two theoretical paradigms suffer both from theoretical and obser-
vational cracks and reconciling them turns out to be especially challenging. Hence,
there is a need to go beyond GR, both in the weak- and strong-gravity regimes. This
can be done classically, through modified theories of gravity, or by extending gravity
to Quantum Gravity (QG).

3.1.1 General Relativity: successes and failures in the weak-field regime

GR has been extremely well tested in the weak-field regime, i.e. the regime in
which the strength of the gravitational field is weak. This occurs in laboratories and
in the solar system (1 µm ≤ l ≤ 1 AU ∼ 1011 m), and up to cosmological scales.
In the following, we distinguish tests in the low-energy regime according to their
length scale: laboratory and solar-system tests on one side, and cosmological tests
on the other side. Some of the weak-field astrophysical and cosmological probes
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FIGURE 3.1: We show the parameter space of astrophysical and cosmo-
logical systems in terms of the gravitational potential and curvature
strength they probe. Label abbreviations are: Cosmic Microwave
Background (CMB), planets of the Solar System (SS), Main Sequence
stars (MS), White Dwarfs (WD), binary pulsars (PSRs), individual
Neutron Stars (NS), stellar-mass Black Holes (BH), the Milky Way
(MW), Supermassive Black Holes (SMBH), Big Bang Nucleosynthesis
(BBN). The magenta curve labelled “Lambda” gives the curvature of a
Friedmann-Robertson-Walker universe completely dominated by the
cosmological constant, while the magenta line labelled “last scattering”
represents the curvature at redshift z ≈ 1100. The dotted yellow line
is the phenomenological acceleration scale. The cyan curve represents
the perturbative part of the Kretschmann curvature at redshift z = 0.

Taken from [BPS15] and reproduced with permission ©AAS.

are represented in Fig. 3.1 in terms of their potential ε and their curvature ξ. For
astrophysical probes, the latter quantities are defined as fractions of the Newtonian

potential ε = G0 M
r and the Schwarzschild Kretschmann scalar ξ = KS =

√
48G2

0 M2

r6

respectively. For cosmological probes, analogous expressions are obtained for the
potential ε(k, a) and the curvature ξ(a) (see Eqs. 11 and 14 of [BPS15]).

As GR relies on Special Relativity (SR) and thus Lorentz invariance, successful
tests of SR are a prerequisite for the viability of GR. Among all tests of SR, those
challenging the Weak Equivalence Principle (WEP)1, birefringence and anomalous
dispersion of photons are of particular relevance to gravitational theories. The cor-
responding tests and their successful results are reviewed in [Tin+20; Wil14] and
continue to be updated.

1The WEP is conjectured to imply the Einstein Equivalence Principle (EEP) in any complete and
consistent theory of gravity [Sch60].
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A. Einstein originally proposed three classical solar-system tests of GR in 19162: the
perihelion precession of Mercury, the deflection of light by the Sun and the gravita-
tional redshift of light. All three classical tests were successfully passed in the first
half of the 20th century [DED20; CT23; Pop54].

Another class of solar-system and laboratory tests consists of testing predictions of
GR, namely: gravitational lensing (first confirmed in [DED20]), light travel time delay
(measured by the Cassini probe [BIT03]), frame-dragging effects (see the recently
improved measurement in [Ciu+19]), the shape of the gravitational potential (well
constrained to the Newtonian potential, see recent results in [Lee+20]). They put
constraints on the slow-motion, weak-field limit of GR given by the Parameterised
Post Newtonian (PPN) formalism (described in detail in [WN72; Wil16]) governed by
ten post-Newtonian parameters encoded in the metric. The latter PPN parameters
have well-defined values in GR, c.f. Table 3 in [Wil16]. So far, the experimental val-
ues of the PPN parameters from solar-system experiments match those of GR with
very good accuracy. Thus, GR is compatible with all laboratory and solar system tests.

On cosmological scales, another prediction of GR was confirmed in clusters of
galaxies in 1990 [TWV90], namely weak gravitational lensing, i.e. the distortion of
images of background astronomical objects by other massive objects (or “lenses”) in
their foreground.

The ΛCDM model, which assumes GR, provides us with the standard description
of the formation and evolution of the Universe on cosmological scales. Assuming the
cosmological principles of homogeneity and isotropy for comoving observers, the
Einstein equations admit the Friedmann-Robertson-Lemaître-Walker spacetime as an
exact solution. The latter solution can describe the observable Universe as a spatially
flat, homogeneous and isotropic universe which undergoes an accelerated expansion
(driven by some form of matter with negative pressure, usually assumed to be a Dark
Energy (DE)) and contains baryonic matter, radiation and (cold) Dark Matter (DM) in
the proportions spelt out in [Agh+20].

ΛCDM passes most of the cosmological tests performed so far. The first confirma-
tion of the expansion of the Universe came out in 1929 by E. Hubble, who established
the redshift-distance law dubbed Hubble law [Hub29]. The homogeneity and isotropy
of the Universe on large scales were demonstrated with the detection of the largely
homogeneous and istrope polarisation of the Cosmic Microwave Background (CMB)
[Kov+02]. Baryon Acoustic Oscillations (BAO) have been predicted by GR and con-
firmed in 2005 [Eis+05; Col+05].
However, within the standard ΛCDM model, extra assumptions are required to fully
account for all cosmological observations:

• a DE component should be included to explain the late-time accelerated ex-
pansion of the Universe, whose energy density amounts to ∼ 68% of the total
energy density in the Universe. This DE component is usually introduced in
the Einstein field equations as a cosmological constant Λ (hence Λ in ΛCDM)
whose energy density – the zero-point energy density – follows an equation of
state ρΛ = −p with negative state parameter [Agh+20]. In QFT, the zero-point
energy corresponds to a renormalised coupling Λ which decomposes into its

2The word classical should be understood here as standard or foundational, in the sense that these tests
challenge the foundations of GR.
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bare value and quantum fluctuations. The component induced by quantum fluc-
tuations is computed to be of order O

(
M2

P

)
, with MP the Planck mass. To match

the experimentally observed value of Λ, i.e. Λ ∼ 10−122 l−2
P , the bare coupling

also has to be chosen as O
(

M2
P

)
, leading to a fine-tuned difference of the order

of the measured Λ. This fine-tuning leads to unusually small dimensionless
couplings, if one agrees that dimensionless couplings should be of order O(1),
and constitutes the so-called cosmological constant problem. Together with the
coincidence problem [Wei00], it motivates a modified cosmological model with
a dynamical description of DE. While the latest Dark Energy Spectroscopic
Instrument (DESI) results show a weak preference for a simple time-varying DE
equation of state [Ada+24], modified models that encapsulate such dynamical
DE (see e.g. [CK24]) usually predict a “fifth force” which needs to be screened
in the solar system in order not to be ruled out by solar-system tests of gravity;

• a DM component should be included to account for the large-scale structures
in the Universe, the shape of galaxies’ rotation curves and the (tiny) CMB
anomalies [Gre22; MEM24]. Indeed, the largest fraction of the matter energy
density in the Universe stems from DM with ∼ 27%, compared to ∼ 5% for
visible baryonic matter. Although the standard ΛCDM describes DM as being
cold (hence the name Cold Dark Matter; CDM), the exact nature of DM remains
unknown: it may be sourced by some exotic matter beyond the SM, such as
axions [O’H24; Nav+24], or encapsulated in alternative theories which replace
DM by some Modified Newtonian Dynamics (MOND) (see [FM12; Mil22] for a
review on simple MOND and covariant extensions such as Bimetric MOND
(BIMOND) models). According to current observations, MOND scenarios seem
to be disfavoured [Ban+24] but not BIMOND models [Bas+23];

• an early phase of accelerated exponential expansion of the Universe should be
included, to elucidate why the Universe today is so homogeneous, isotropic
and spatially flat. The standard candidate for this early-universe accelerated
expansion is cosmic inflation [Gut81], which dynamically solves the horizon
problem. While CMB observations are in agreement with cosmic inflation with
nearly-scale invariant power spectrum [Agh+20], it is yet unclear which scenario
of cosmic inflation is realised, see [Odi+23] for a discussion;

• if current tensions on the cosmological parameters H0 and σ8, dubbed H0- and
σ8-tensions, are to be confirmed, some new physics beyond ΛCDM should be
included as to explain the discrepancies between the early-Universe (e.g. CMB
[Agh+20]) and late-Universe (e.g. SNe [Gal+23]) measurements of H0 and σ8.
While systematic and experimental uncertainties are claimed to be under control
on both sides, the disagreement is as large as ∼ 5 σ for some combinations of
data sets, thus calling for new physics;

• a new theoretical description of the cosmic dipole should be provided, to
alleviate the cosmic dipole tension in which the amplitudes of the dipole in the
temperature anisotropies of the CMB and the angular distribution of sources
mismatch, see [PS22].

Therefore, ΛCDM – the standard fit to cosmological data relying on GR – cannot fully
explain the observed Universe on cosmological scales without including some new
physics: either in the form of new matter fields (within some extensions of the SM
and modifying the RHS of the Einstein equations) or as modified gravity dynamics
(modifications in the LHS of the Einstein equations).
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3.1.2 General Relativity: successes and failures in the strong-field regime

GR has evolved from the general theory of relativity at the beginning of the 20th century
to a more realistic EFT of gravity valid up to a cutoff scale usually taken to be the
Planck mass MP = 2.176 434(24)× 10−8 kg−1 .3 Beyond the cutoff scale, the standard
description of gravity provided by GR breaks down, as well as the SM.

Before elaborating on the failures of GR in the high-energy regime, where the
gravitational field is strong, let us highlight its successes.

As already described in Sections 2.2 and 2.3, various black-hole solutions to the
Einstein equations were derived in the 20th century and therefore predicted to exist.
Black holes are the most compact astronomical objects with the strongest gravitational
fields. They can either exist as isolated objects (e.g. at the centre of galaxies) or in
binaries (within galaxies). They are represented in Fig. 3.1 in terms of the strength of
their gravitational potential and their curvature.
The detection of the first Gravitational Wave (GW) signal from a binary black hole
merger in 2015 by the Laser Interferometer Gravitational Wave Observatory (LIGO)
and Virgo collaborations [Abb+16a] indirectly confirmed the existence of stellar mass
black holes. Subsequent observation runs with LIGO and Virgo corroborated the
existence of black holes with masses in the range 2M⊙ ≲ M ≲ 100M⊙, with two
predicted mass gaps4: 2M⊙ ≲ M ≲ 5M⊙ and 50M⊙ ≲ M ≲ 150M⊙.
Independently, a high-resolution Near Infrared (NIR) analysis of stellar dynamics
near the very centre of our Milky Way revealed in 2000 that the central compact
object was a supermassive black hole named SgrA* [Ghe+98; Gen+00] (see [Ale17;
Gen22] for a review). This discovery was awarded a Nobel prize in 2020. The analysis
determined and tracked during 16 years 28 orbits of stars, called S-stars, closely
orbiting the Galactic centre. The observation time was long enough for one of these
stars, namely S2, to complete a full orbit, thus providing enough data points to
compare with GR’s predictions [Gil+09]. The S-stars have been shown to revolve in
the gravitational potential of a supermassive black hole whose latest inferred mass
M = 4.297 × 106 M⊙ at a distance R = 8.277 kpc from the Earth are found by the
GRAVITY collaboration [Abu+23].
The existence of supermassive black holes was strengthened by the Event Horizon
Telescope (EHT) which provided the first direct detection of two isolated supermas-
sive black holes: M87* [Aki+19a] at the centre of the galaxy Messier 87 and SgrA*
[Aki+22a] at the centre of our Milky Way. This detection was based on the EM
emission in the radio frequency spectrum occurring in the vicinity of the two black
holes, out of which shadow images could be computed in 2019 for M87* [Aki+19a] and
in 2022 for SgrA* [Aki+22a].5 However, the resolution and sensitivity of the radio
telescopes forming the EHT during the observation campaign in 2017 were – and are
still – not high enough to confidently assert that the central object was indeed a Kerr
BH (see [Aki+19e; Aki+22f]). The ring-like bright emission encircling the shadow in

3Although the cutoff scale of GR as seen as an EFT is usually taken to be the Planck mass, especially
in QG approaches, there is no consensus on the Planck mass being the cutoff scale, see [Wea23].
Throughout this paper, we will adopt a more agnostic approach in which the (length) scale where
new-physics effects become important is set free.

4The two mass gaps are predicted by some models of stellar evolution and state that black holes in
these mass ranges cannot directly form by the gravitational collapse of a star. However, LIGO and Virgo
collaborations found several candidate events whose first-generation black-hole masses lied in one of
the two mass gaps, see e.g. [Aba+24; Abb+20].

5We will discuss shadow images in Chapter 4.
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the images is thought to result from the deflection of light in the presence of strong
gravitational fields, as predicted to occur near BHs in GR, while the shadow itself
can be explained by the presence of a BH’s event horizon absorbing light.Compared
to the stellar-mass BHs detected by LIGO-Virgo, M87* and SgrA* are supermassive
BHs, meaning that their masses lie in the higher mass range 105M⊙ ≲ M ≲ 1010M⊙,
and are isolated. Therefore, they cannot be detected indirectly by LIGO-Virgo.

Note that no intermediate-mass BH with mass 102M⊙ ≲ M ≲ 105M⊙ has been
reliably identified so far, although the set of potential candidates is growing [GSH20;
Häb+24].

Apart from black holes, Neutron Stars (NSs) are the second most compact astro-
nomical objects in the Universe, as shown in Fig. 3.1. They form after the gravitational
collapse of the core of massive Supernovae (SNe) (stars with mass M ≥ 8M⊙) and
are left fast rotating, very dense (denser than the atomic density in nuclei) and with a
complex internal structure modelled by an equation of state. The existence of NSs
has been reinforced by their detection in NS-BH or NS-NS binary systems by the
LIGO-Virgo collaboration [KKPM21].
The level of complexity of the equation of state of NSs remains unclear, because the
“correct” theoretical equation of state for cold, dense, neutron-rich matter in chemical
equilibrium is troublesome. Indeed, deriving a theoretical equation of state for NSs
requires dealing with complex, many-body, strongly interacting quantum systems in
the core of NSs, a regime that cannot be tested experimentally and in which standard
perturbative methods fail. Nonetheless, new theoretical and observational avenues
have come at help that are detailed in [Lat12; OF16; Lat21] and summarised in the
following: measurements of mass and radii of the most massive pulsars found up to
now, mass and radii estimates from X-ray observations of quiescent and isolated NSs
accompanied by developments of the cooling tail model, experimental measurements
of nuclear properties and nuclear collisions, advancements in many-body theory,
novel parameterisations of the equation of state of high-density matter revealing
semi-universal relations among global NS properties, gravitational wave observations
from the binary NS merger GW170817 and its γ-ray burst and optical follow-ups,
and X-ray pulse-profile measurements of rapidly rotating pulsars [Kum+24a].

The discovery of radio pulsars, which are highly magnetised rotating NSs emit-
ting periodic pulses of EM radiation, in binary systems in 1974 [Hul94] initiated a
new class of precision tests of gravity summarised in [Wex14; Kra+21]. The latter tests
include the analysis of: GW emissions and quadrupole formula (best constrained
by the Double Pulsar [Bur+03; Lyn+04]), the emission of dipolar radiation (with
relativistic systems made of a pulsar and a white dwarf, e.g. PSR J1738+0333), the
Strong Equivalence Principle (SEP) (tested with wide pulsar-white dwarf systems
[DS91]), the local Lorentz invariance (tested with isolated and binary pulsars [SW12;
Sha+13; Liu+20]), and the Stochastic Gravitational Wave Background (SGWB) – see
the recent results by the NANOGrav and International Pulsar Timing Array (IPTA)
collaborations [Aga+23; Afz+23; Ant+24]. Tests of GR with pulsars are much more
stringent than solar-system tests since they are also sensitive to the relatively strong
gravitational fields of neutron stars, as visible in Fig. 3.1.

As it turns out, GR has passed all these tests successfully. Nonetheless, uncer-
tainties remain (i) in accurately modelling the interior of neutron stars, in particular
their equation of state and phase transitions, see [Wex16] for a review, and (ii) in
the existence of GR signature of the SGWB, namely the Hellings-Downs correlation
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[HD83; Aga+23].

Although no clear observations have come in disagreement with GR and its predic-
tions so far, GR theoretically predicts its own breakdown in the strong-field regime.

On the cosmological side, a consistent theoretical description of the Big Bang
should be provided, in order to cure the Big Bang singularity. The latter singularity
can refer both to curvature singularities and past-incomplete non-spacelike curves,
see [Tri24] for a more in-depth discussion.

Regarding compact objects: firstly, all vacuum BH solutions within GR are
plagued by curvature singularities at their centre, signalled by the divergence of
one or more of their non-derivative curvature invariants, hence the presence of
diverging tidal forces. Secondly, GR vacuum BHs obey the Penrose-Hawking sin-
gularity theorems [Pen65; Pen69; HE23]. Those theorems state that BH spacetimes
unavoidably contain (future-) incomplete inextendible causal geodesics6, provided
that: (i) they satisfy some pointlike energy conditions, (ii) they are globally hyper-
bolic (equivalent to a non-compact Cauchy surface) and (iii) they contain a closed
future-trapped surface. The existence of a closed future-trapped surface is key: it
entails that both ingoing and outgoing geodesics contained within that surface shrink
under the strength of the gravitational pull. Mathematically, the expansions of a pair
of future-directed affine-parameterised geodesic null vector fields kµ

± (+ for outgoing,
− for ingoing geodesics) are given by

Θ± = ∇µkµ
±, (3.1)

with ∇µ the spacetime covariant derivative. A closed future-trapped surface thus has
strictly negative expansions

Θ+ < 0, Θ− < 0, (3.2)

confining both ingoing and outgoing geodesics within a surface whose boundary is a
marginally future-trapped surface defined as

Θ− < 0, Θ+ = 0. (3.3)

As GR BH solutions satisfy the requirements of the singularity theorems, they are
said to be geodesically incomplete. Note that, while a curvature singularity does not
imply geodesic incompleteness (and vice-versa), they are sometimes traded one for
another [Ger68] and often go hand in hand (as in the Kerr spacetime).

Additionally, the Kerr and Reisser-Nordström spacetimes possess a Cauchy hori-
zon located inwards with respect to their event horizon. It corresponds to a null
trapping surface which delineates the boundary of the spacetime region in which the
future evolution of the initial data is not well-defined. As an example of ill-defined
initial data, a set of closed timelike curves can form within a region of spacetime
bounded by a Cauchy horizon. Hence, determinism is broken past the Cauchy
horizon. Moreover, the Cauchy horizon is unstable to perturbations [SP73; BC95] –
triggering so-called mass inflation instabilities – which render numerical simulations of
BH formation challenging.

While all observations so far, whether in the strong-field or weak-field regime,
are in good agreement with GR, the existence of theoretical failures within it calls

6The term causal in “causal geodesics” is used as a synonym for non-spacelike geodesics.
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for a beyond-GR theories. In order to be consistent and viable, those theories should
resolve GR singularities and inconsistencies or, at least, weaken them [SJ22].

3.1.3 The need to account for time-dependent black hole spacetimes

Although they probe BHs in different mass ranges, both transient GW signals and
BH shadow images are presently consistent with BHs being described by the Kerr
solution. However, the Kerr black-hole hypothesis or Kerr paradigm – which postu-
lates that observed BHs are well described by the Kerr spacetime – theoretically fails
for the reasons mentioned in Subsec. 3.1.2. Moreover, as it starts to be challenged
observationally [Bam11; Psa19; Ber19], alternative spacetimes need to be developed.

In addition to presenting a central curvature singularity, an unstable Cauchy
horizon and incomplete inextendible causal geodesics, the Kerr spacetime is an
eternal, vacuum black hole solution.

Eternal black holes are stationary, which means they rotate with a constant angular
velocity Ω over time. While this assumption is valid for isolated black holes on
timescales of observations, it no longer holds for coalescing BHs in binaries or for
BHs on cosmological timescales. Astrophysical BHs must form dynamically, either as
end-states of gravitational collapse of massive stars or as remnants of NS-NS, NS-BH
or BH-BH binary mergers. Hence, it motivates time-dependent spacetimes describing
the gravitational collapse of astrophysically-motivated matter and the coalescence of
compact binaries.

Numerous classical analytical scenarios of gravitational collapse have been de-
veloped, assuming spherical symmetry: the Oppenheimer-Snyder-Datt model of
homogeneous dust cloud collapse [Dat38b; OS39], the Lemaître-Tolman-Bondi model
for inhomogeneous dust collapse [Lem33; Tol34; Bon47], the Vaidya model for null
dust collapse [Vai51; Vai66] and a model for adiabatic fluid collapse [JD92; JD93; DJ94;
JD99; Lak92]. Only a few models of gravitational collapse have been put forward be-
yond spherical symmetry, namely Kerr-Vaidya-like spacetimes [MT70; Her80; BH17;
DT20a] and the Einstein-Vlasov model [Ren02] (studied numerically in [AAR21]).

In GR, the Penrose-Hawking singularity theorems [Pen65; Pen69; HE23] imply
that gravitational collapse results in geodesic incompleteness. Simultaneously, sce-
narios of gravitational collapse usually form black-hole horizons which, by the weak
cosmic censorship conjecture [Pen69], shield geodesic singularities from asymptotic
observers. However, simple spherically symmetric models for gravitational collapse
such as the Vaidya-Kuroda-Papapetrou (VKP) model [Vai66; Kur84b; Pap85a] violate
both the weak and the strong cosmic censorship conjectures, as a naked singularity
can form in association with a Cauchy horizon. The unphysical nature of such a
simplistic model, discussed in [Wal97], exemplifies the need to study dynamical
spacetimes of gravitational collapse with fewer symmetries (than spherical symme-
try) and with more realistic matter contents (than null dust).

3.1.4 The need to account for accreting black hole spacetimes and backre-
action

Vacuum BH solutions in GR describe the exterior curved spacetimes outside a spheri-
cally symmetric or axisymmetric mass with no matter source, i.e. with a zero RHS
in the Einstein equations. However, BHs are gravitationally attractive due to their
strong gravitational fields, hence they accrete any matter present around them.
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Accretion onto supermassive black holes has been indirectly observed in Active
Galactic Nuclei (AGN) [MS16; HA24], whose quasars emit very bright EM radiation
across the whole spectrum as a result of inwardly spiralling gas accretion flows,
and directly observed in the shadow images computed from the radio emission in
the neighbourhood of the supermassive BHs SgrA* and M87* [Aki+19a; Aki+22a].
Relativistic astrophysics well establishes that BHs are surrounded by an accretion
disk composed of charged gas particles in a plasma, which heats up through radial an-
gular momentum transport, and strong poloidal magnetic fields [Aki+21b; Col+24a].
Angular momentum is transported radially from the centre of the accretion disk to its
exterior through turbulences called Magneto-Rotational Instabilities (MRIs). The latter
instabilities turn on as the relativistic charged fluid forming the accretion disk is in
differential rotation: it rotates faster near the centre of the disk than at larger radii.
In addition to pressure and gravity, the differentially rotating fluid is subject to the
Lorentz force. Hence, it undergoes shears which are prone to turn it into a turbulent
(unstable) flow with MRIs and drive the inward spiralling accretion flow.

At the same time, charged particles in the relativistic fluid heat up and emit
EM radiation across a broad range of frequencies. In the vicinity of supermassive
black holes, the strong magnetic field lines can collimate fast outflows of relativistic
particles in polar jets yielding powerful and variable EM radiation. The dynamics
of the accretion-ejection flows near SMBHs is thus governed by the strong poloidal
magnetic fields and MRIs.

The composition of the relativistic charged fluid and the influence of the strong
magnetic fields on it suggest to treat the accreting plasma with the formalism of rela-
tivistic Magnetohydrodynamics (MHD) [Alf42]. The effect of the matter distribution
on the background curved geometry of a supermassive BH, known as backreaction,
is typically small because the mass of the BH largely dominates over the mass of its
accretion disk. Therefore, we can assume within GR that the background spacetime
geometry is and remains a Kerr BH during accretion. Once combined with such
a GR background geometry, the dynamics of astrophysical BHs is best described
by state-of-the-art 3D GRMHD simulations, reviewed in [DT20b] for AGNs and in
[Gol19; CG24] for Massive and Supermassive Binary BHs ((S)MBBHs).

Extending the GRMHD formalism beyond GR, that is beyond Kerr geometries, to
test the Kerr paradigm is particularly challenging. Nonetheless, recent progress has
been made for generic metrics encoding parameterised deviations from Kerr [NYK22;
Koc+23].7

3.2 Classical modified theories of gravity

Classical modified theories of gravity are rooted in Lovelock’s theorem [Lov71;
Lov72], a uniqueness theorem for the Einstein field equations in 4D. The latter theo-
rem states that, in four dimensions (4D), the only possible second-order differential
equations of motion stemming from a local action are the Einstein field equations
Eq. (2.1). Hence, any consistent gravity theory that goes beyond GR needs to violate at
least one of Lovelock’s assumptions, i.e. it should feature either:

• extra spacetime dimensions, i.e. D > 4;

7An overview of generic metrics parameterising deviations from Kerr is given in Subsec. 3.6.2, while
an in-depth discussion of them is the matter of Chapter 6.
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• additional gravitational fields than the metric tensor gµν. Those fields can be
scalars ϕ, vectors Aµ or tensors fµν;

• higher-order equations of motion, i.e. e.o.m. for the metric field that contain
three or more derivatives;

• non-localities, e.g. manifest in the presence of inverse powers of the d’Alembertian
operator;

• non-general covariance (e.g. by breaking local Lorentz symmetry) and/or
non-invariance under diffeomorphisms.

Any modified theory of gravity which exhibits one or more of these features gener-
ally introduces additional d.o.f. to those present in GR, except if non-localities are
introduced. In the latter case, a non-local gravity theory does not lead to extra poles
in the propagator, and thus no new d.o.f. [BCR22].

The Einstein field equations follow from an action principle applied to the Einstein-
Hilbert (EH) action

SEH =
1

16πG0

∫
d4x
√
−g (R − 2Λ) + Sm =

M2
P

2

∫
d4x
√
−g (R − 2Λ) + Sm, (3.4)

where
√−g ≡

√
−det(g) and Sm denotes the matter action. Taking the variation of

the gravitational action with respect to the Lorentzian metric gµν, we obtain the LHS
of the Einstein equations, while the RHS is given by stress-energy tensor

Tµν = − 2√−g
δSm

δgµν
, (3.5)

which stems from the variation of the matter action. Classically, the EH term, a.k.a.
GR term, is expected to be the leading-order term in an infinite series of higher-order
curvature terms which become relevant at sufficiently high energies. GR should there-
fore be viewed as a consistent low-energy EFT of some yet unknown UV-complete
theory of gravity [Don23]. The perturbative non-renormalisability of GR is believed
to derive from its EFT nature.

In the following, we will focus on modified gravity theories with higher-order
curvature terms which are especially relevant for two reasons: (i) they possess desir-
able properties such as (perturbative) renormalisability or the absence of ghosts, and
(ii) they lead to a rich BH phenomenology which can differ from the GR one.

One way of modifying GR can be, for example, to consider higher spacetime’s
dimensions D than the usual four, i.e. D > 4. One relevant example in D = 5
dimensions is the Einstein-Gauss-Bonnet theory whose gravitational action

SEGB =
1

16πG0

∫
d5x
√
−g (R − 2Λ + αG) (3.6)

contains the Gauss-Bonnet term

G ≡ R2 − 4RµνRµν + RµνρσRµνρσ, (3.7)
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which is topologically invariant in D = 4 dimensions [Fer+22].8 Einstein Gauss-
Bonnet gravity is particularly interesting as its action appears in the context of low-
energy limits of String Theory [FKM96; Ant+97; Zwi85; GS87]. The appearance of the
Gauss-Bonnet term in string-related theories of gravity has motivated more general
theories in 4D, dubbed Einstein-scalar-Gauss-Bonnet (ESGB), of the form

SESGB =
M2

P
2

∫
d4x
√
−g
(

R − (∇ϕ)2 +
α

8
f (ϕ)G

)
, (3.8)

with non-minimal coupling between a scalar field ϕ and the Gauss-Bonnet term G set
by a dimensionless coupling α. Due to the non-minimal coupling, the Gauss-Bonnet
term contributes to the 4D e.o.m. and leads to theories with a rich BH phenomenology
[Bak20; Fer+22; KBP22] (among others). Remarkably, GR BH uniqueness theorems
can be broken in these theories for a finite high-mass range of BHs [Eic+23]. Hence,
stellar-mass BHs on the one hand, and supermassive BHs falling in this specific mass
range on the other hand, are expected to be different in nature, which provides the
ideal framework to compare the LIGO-Virgo observations with the EHT results.

Among modified theories of gravity in 4D that include additional higher-order
derivative terms, Stelle’s quadratic gravity

Squad =
∫

d4x
√
−g
(

M2
P

2
R + c1R2 + c2RµνRµν + c3RµνρσRµνρσ

)
, (3.9)

rewritten in terms of the Gauss-Bonnet invariant G and the Weyl tensor Cµνρσ as

SStelle =
∫

d4x
√
−g
(

M2
P

2
R +

c̃2

3c̃1
R2 − 1

2c̃1
CµνρσCµνρσ − c̃3G

)
, (3.10)

is particularly interesting as it contains higher-order (quadratic) curvature terms
while being perturbatively renormalisable for suitable values of the dimensionless
couplings c̃1, c̃2, c̃3 [Ste77].9 However, due to higher-order derivatives (i.e. more than
second derivatives) appearing in the e.o.m., the theory is non-unitary. This translates
into the presence of a scalar ghost d.o.f. and leads to instabilities [HZ23].

Changing the expansion in curvature terms can render a class of theories healthy.
An example is provided by the action of Starobinsky inflation [Sta80]

S∗ =
M2

P
2

∫
d4x
√
−g
(

R +
1

6G2
0 M2

R2
)

, (3.11)

which is a particular instance in the more general class of f (R)-theories whose actions
are expressed in terms of functions of the Ricci scalar R. The additional R2 term in
the action Eq. 3.11 introduces a new scalar d.o.f. compared to GR, which corresponds
to the conformal metric mode [BC88] and can account for cosmic inflation in the early
Universe. In other words, the additional curvature term ∝ R2 only kicks in in the
strong-gravity regime at the beginning of the Universe. The Starobinsky model with
a mass scale M

MP
∼ O(10−5) is currently in agreement with CMB data [Akr+20]. More

8The Gauss-Bonnet term can therefore be added to the EH action without contributing to the e.o.m.
in 4D.

9Einstein Gauss-Bonnet theory is recovered by choosing c1 = 1, c2 = −4, c3 = 1. Stelle’s gravity is
thus a generalisation of Einstein Gauss-Bonnet theory.
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interestingly, stable spherically symmetric BH solutions that do not belong to the
GR class exist within f (R)-theories, see e.g. [NC19]. While they are still singular, the
central singularity is generically weakened.

Finally, the ESGB theory, f (R)-theories and many more all belong to an even
broader class of scalar-tensor theories entitled (modern) Horndeski theories [Kob19;
HS24]. The Horndeski class defines the most general, four-dimensional scalar-tensor
theories with second-order equations of motion. The action depends on four arbitrary
functions of the scalar field ϕ and its kinetic term χ ≡ − 1

2∇µϕ∇µϕ. Fixing those
functions leads to different branches of the Horndeski class. In the case of the purely
geometrical action of ESGB gravity, the scalar field is only allowed to couple to the
Ricci scalar and the Gauss-Bonnet term. Horndeski theories encompass various
theories which attempt to provide viable DM and DE candidates, inflation scenarios
and spontaneously scalarised compact objects. They are not expected to alter predic-
tions in the weak-field regime where GR is well tested (see Subsec. 3.1.1), thanks to
screening mechanisms [Qui19; Kob19] and spontaneous scalarisation (which only
occurs in the strong-gravity regime near BHs and NSs) [Don+24].

The extensive web of modified theories is depicted in Fig. 3.2 according to the
assumption they break in Lovelock’s theorem.

3.3 Quantum matter on classical spacetimes: QFT on curved
background and semiclassical gravity

Remarkable discoveries and progress were made in particle physics in the 20th century,
which led to the Standard Model (SM) of particle physics [Sch14; Wor+22]. The latter
model remains the standard QFT description of strong, weak and EM interactions
between fundamental particles today, and thus governs the dynamics of quantum
matter.

In the SM, particles are quantum fields whose interactions obey the local SU(3)×
SU(2)×U(1) internal gauge symmetry: the strong force, or Quantum Chromodynamics
(QCD) with non-Abelian SU(3) symmetry, and the combined Electroweak forces,
c.f. the pioneering works [Gla61; SW64; Wei67; Sal68], with a spontaneously broken
SU(2)L × U(1) symmetry. From the unification of the weak and EM forces above
the electroweak scale (∼ 102 GeV), and their combination with QCD into a single
description, namely the SM, we can infer that the three interactions may all be unified
under a single, more complex gauge group at very high energies. Such scenarios
are outlined in QFT-based Grand Unified Theories (GUT) and universally predict the
unification scale to be ∼ 1016 GeV close to the Planck mass MP ∼ 1019 GeV [Wor+22].
Since accessing the GUT scale is out of reach for any hadron collider experiment,
one may look at the indirect detection of some phenomena allowed in GUT, such as
proton decay or electric dipole moments of elementary particles.10

Although numerous experimental tests have supported the validity of the SM
and its predictions, the latter model fails to account for several phenomena, e.g. the
elusive nature of DM and DE. These anomalies underline that the SM is merely the

10Note however that proton decay may be suppressed rather than enhanced if one considers quantum
gravitational fluctuations near the GUT scale on top of the strong, weak and EM forces, as shown in
[ER24] within Asymptotically Safe Quantum Gravity (ASQG). Furthermore, stringent bounds exist
on the electric dipole moments of quarks [LZG18], which limit the strength of CP-violating terms
implemented in GUT theories.
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leading-order term of a more general EFT [IWW24] and call for more comprehensive
extensions dubbed Beyond Standard Model (BSM) scenarios, as reviewed in [CM24;
Sai24].

Ordinary QFTs describe the interactions of quantum matter on a flat Minkowski
background, an approximation that applies to microscopic particles in weak grav-
itational fields. However, there are regions of spacetime in which the weak-field
approximation ceases to be valid, in particular in the neighbourhood of very compact
objects such as black holes. QFT on curved backgrounds came as a first attempt in rec-
onciling quantum matter fields with fixed, curved, classical background spacetimes
[Kay23] on sufficiently large scales l, i.e. lP

l ≪ α = e2

4πϵ0
. In this hybrid approximate

theory, quantum fields propagate on a fixed, classical, curved background and the
strong gravitational fields near a stationary BH are predicted to polarise the (quan-
tum) vacuum state, leading to particle-pair creation.11 However, the backreaction of
quantised fields on the spacetime geometry is ignored within QFT on curved space-
times. While QFT on curved background seems rather straightforward to implement,
some obstacles emerge:

• For a general non-stationary spacetime, the absence of a timelike Killing vector
is such that there is no unique quantum vacuum state but a set of compatible
quantum vacua;

• The notion of quantum vacuum is observer-dependent;

• The notion of asymptotic particles breaks down on non-asymptotically flat
spacetimes.

Those obstacles disappear when restricted to the asymptotically flat, stationary Kerr
and Schwarzschild spacetimes. In 1974, Hawking postulated a black-hole Unruh ef-
fect [Ful73; Dav75; Unr76], dubbed Hawking radiation or black-hole evaporation [Haw74].
The production of thermal radiation in the vicinity of a black hole can be understood
in the following (simple) way: the strong gravitational fields inside the event horizon
of a stationary black hole, where observers are forced to accelerate to stay at constant
radius, can induce the creation of pairs of particles with positive and negative en-
ergies from a regular quantum vacuum state.12 The particle with negative energy
tunnels through the event horizon and gets absorbed by the black hole, while the one
with positive energy escapes to infinity and corresponds to a black-body radiation
with finite Hawking temperature T = 1

8πG0 M proportional to the BH mass. That is,
an asymptotic observer could detect outgoing thermal radiation with a (redshifted)
temperature inversely proportional to the black-hole Arnowitt-Deser-Misner (ADM)
mass.13 As such, QFT on a curved classical background is not self-consistent and fails
to account for the backreaction of quantum matter (e.g. Hawking radiation) on the
classical background spacetime.

11The production of pairs of particles is prevented when at least one Killing vector is timelike
everywhere in the spacetime. As the timelike Killing vector becomes spacelike within the event horizon
of a stationary BH, particle-pair creation can take place.

12The quantum vacuum state needs to be regular in the Hadamard sense at the event horizon, see
[Car19].

13Because of the inverse mass factor in the Hawking temperature (c.f. T = 6.0 × 10−8
(

M⊙
M

)
K for a

Schwarzschild black hole [Car19]), the temperature of the Hawking radiation drops below the CMB for
astrophysical black holes and is therefore too faint to be detected.



3.3. Quantum matter on classical spacetimes: QFT on curved background and
semiclassical gravity

27

Semiclassical gravity arises as an upgrade of QFT on curved background in two
ways: the classical background spacetime is dynamical and quantum matter fields
backreact on it. The dynamics of semiclassical gravity is encoded in the modified
Einstein field equations

Gµν = 8πG0⟨T̂µν⟩ψ (3.12)

in which the LHS is the Einstein tensor of a dynamical classical metric gµν and
the RHS is the expectation value of the quantum stress-energy tensor operator T̂µν

evaluated on a quantum matter state ψ. The backreaction of quantum matter on the
classical background spacetime is usually treated in a perturbative approach. To
that end, the metric tensor gµν is decomposed into its classical background ḡµν and a
small perturbation ϵhµν assumed to result from quantum fluctuations. We find the
leading-order term in backreaction by solving

Hµν = 8πG0 ⟨T̂µν⟩|ḡµν (3.13)

for the first-order perturbation hµν. Hµν is the perturbed Einstein tensor and ⟨T̂µν⟩|ḡµν

is the expectation value of the quantum stress-energy tensor evaluated on a classical
background ḡµν. The validity of the perturbative treatment used in semiclassical
gravity is limited to the cases where the quantum states are quasi-coherent states and
the backreaction fo quantum matter on the geometry is small.

The Hawking radiation has severe consequences within semiclassical gravity
since it impacts the geometry of classical spacetimes. If the black hole is not accreting
matter while radiating away, the energy carried away by the outgoing Hawking
radiation decreases its mass. As a result, the black hole slowly evaporates and shrinks
to the Planck mass. Whether it eventually disappears on a finite (but extremely long)
timescale or not is subject to research.14

The Hawking effect, and the conjecture that black holes have an entropy propor-
tional to the area of their event horizon A [Bek72; Bek73; Haw75]

SBH =
A

4l2
P

, (3.14)

have launched an entirely new field that marries classical mechanics with quantum
thermodynamics and evolved into the formulation of the four laws of black-hole
thermodynamics [Car14]. Simultaneously, it sourced a paradox: the information loss
paradox [Haw76]. Let us consider some initial data to be some matter in a pure
quantum state (in the statistical sense) that collapses down to a black hole which later
evaporates via Hawking radiation. Upon full evaporation (i.e. the black hole entirely
disappears through radiation) and thermality of Hawking radiation, the quantum
state evolves from an initial pure state to a mixed thermal state, which violates the
quantum mechanical postulate of unitary evolution.

No evident solution exists within semiclassical gravity, as the full description of a
potential BH remnant would require a working theory of quantum gravity. Nonethe-
less, possible scenarios of the end-state of the evaporation process should belong
to the following three categories. In the case of full evaporation, the quantum state
ends up being mixed and this violates the unitarity principle rooted in QM. Unitarity
can be restored, but at the price of violating locality [ATV08; Mar17]. Hence, a final
mixed state either violates unitarity or locality. Another possible outcome is that

14Evaporation occurs on too long timescales (estimated as t ∼ 1067
(

M
M⊙

)3
[Lop03; Pag05; Tot16])

for the end-state to be ever observed, even for stellar-mass black holes.
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the evaporation process halts after a finite time, leaving a remnant BH of finite mass
M ≡ Mr ≳ MP and finite size. This remnant would be in a largely degenerate state,
an atypical feature for a quantum state, that would couple to standard matter and
modify the standard scattering processes in particle physics. Finally, the information
associated with the quantum state could be prevented by some mechanism from
crossing the event horizon or even from forming it in the first place. The nature of
such mechanism is elusive and the absence of matter absorption contrasts with the
essence of a BH event horizon.

In short, semiclassical gravity cannot be the final answer in reconciling quantum
matter fields with spacetime geometry at all scales. A more complex structure is
required, which would embed both the gravitational force and the three other forces
into a common quantum framework.
Naive attempts to apply the usual quantisation procedure from QFT to GR fail. GR is
non-linear in nature as it contains self-interactions governed by the Newton coupling
constant G0. It is because this coupling constant has a negative mass dimension for
D = 4 that GR is perturbatively non-renormalisable, as shown in two different ways
in [GS86; Sho07]. Concretely, this means that the loop expansion of the EH action
in the perturbation ϵhµν around a flat background ηµν introduces new types of UV-
divergent terms at every order. These terms must be renormalised by counterterms
to absorb their UV-divergences. The lack of perturbative renormalisability of GR
translates into an infinite number of these counterterms, each one coming with new
free couplings. These infinitely many free parameters must be fixed by experiments,
which is clearly out of reach experimentally: GR’s predictive power is lost. An EFT
of GR developed by J. Donoghue [Don95] gives a perturbative QFT of GR which is
predictive below the Planck scale, but remains UV-incomplete. Once we abandon
perturbative treatments or usual quantisation schemes, promising ways out appear
under the realm of Quantum Gravity (QG) approaches or, alternatively, postquantum
theories of stochastic classical gravity.

3.4 Postquantum theory of stochastic classical gravity

Alternative theories dubbed postquantum theories of classical gravity have been pro-
posed that assume gravity to be classical but modify the quantum field theory and/or
the classical dynamics. The postquantum theory of classical gravity put forward by J.
Oppenheim belongs to this class [Opp23].

Instead of changing the state space of quantum field theory, it postulates that the
classical gravitational dynamics is stochastic in nature and relaxes the measurement
postulate of quantum theory. Due to the stochastic nature of both the metric d.o.f.
and the quantum matter fields, this theory evades various no-go theorems which
usually speak in favour of quantising gravity, e.g. [MV17; GGS22]. Moreover, the
measurement postulate is superfluous as the classical-quantum interactions naturally
decohere the quantum d.o.f, providing an apparent mechanism for the collapse of
the wave function [Sch19].

In this theory, combined classical-quantum states described by a positive density
matrix evolve according to a master equation whose dynamics preserves linearity,
positivity and the trace of the density matrix. The theory satisfies the consistency
check that, in the classical limit, the Einstein equations supplemented by a backre-
action term are recovered. Despite this success, Oppenheim’s postquantum theory
does not yet provide a clear answer to the following issues:
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• renormalisation. Although it was shown in [Gru+24] that the theory was
renormalisable in the classical gravitational d.o.f., covariance may be lost and
renormalisation of the quantum matter d.o.f. remains to be addressed;

• the fate of singularities in black holes;

• the accelerated expansion of our Universe. While [OR24] finds both DE-like and
DM-like contributions from stochastic fluctuations of spacetime, it is unclear
whether the postquantum theory would pass independent tests ΛCDM does
well in.

3.5 Quantum Gravity

The general belief is that to remedy all singularities, paradoxes and open questions
raised in Sec. 3.1, gravity should be quantum in nature.15 This is the path followed
by QG approaches such as String Theory [Muk11; May20; Har+22; Cve+22], Loop
Quantum Gravity (LQG) [Rov08; AP17; Cas18; AB21] and its phenomenology titled
Loop Quantum Cosmology [AS17; AP17; AB21], Asymptotic Safety (AS) [Per07;
Bon+20; PR23], Causal Sets [Sur19], Causal Dynamical Triangulations [Lol20; Amb24],
Euclidean Dynamical Triangulations [Lai+17; Amb24], EFTs [Don23], Group Field
Theory (GFT) [Ori09], Spin foams [ES23], Quadratic Gravity [DM22] etc. Links
among distinct QG approaches are reviewed in [Boe+22]. Connections between QG
approaches on one side and phenomenology and observations on the other side are
accounted for in the Swampland program [Pal19; Agm+22; Eic+24] and in the broader
field of QG phenomenology [Add+22; AB+23].

3.5.1 Asymptotically Safe Quantum Gravity

In this thesis, we focus on QG approaches where gravity d.o.f. are quantised and,
among them, on Asymptotically Safe Quantum Gravity (ASQG).

ASQG is a quantum field theoretic approach to QG which assumes that non-
perturbative QFT methods are valid, in particular at transplanckian scales (i.e. at the
Planck scale and above). Its main features are:

1. UV-completion. It is postulated to be achieved at transplanckian scales thanks
to asymptotic safety: quantum scale symmetry is realised at an interacting UV
fixed point [Wei80; Reu98];16

2. Predictivity, i.e. non-perturbative renormalisability. In the UV-regime, all di-
mensionless couplings are driven towards their non-zero UV fixed-point values.
In the IR-regime, only a finite number of couplings are free and need to be
determined by performing a finite number of experiments. The other couplings
are driven towards their IR fixed-point values and are thus predictions of the
theory.

The presence of quantum scale symmetry at the UV fixed point implies that the
theory is scale-invariant or self-similar, in other words, that the properties of the theory

15What is meant by “gravity” here is intentionally ambiguous and varies from one QG approach to
another, as it sometimes refers to the gravitational field or, adopting the geometrical point of view, to
the spacetime itself [WR24].

16Asymptotic safety distinguishes itself from asymptotic freedom by the non-zero but constant values
of its couplings at the UV fixed point. An asymptotically safe UV fixed point is thus called interacting,
while an asymptotically free UV fixed point is trivial.
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do not change with scale.17 This is exemplified by the fact that the dimensionless
couplings of the theory stay constant once the UV fixed point of the Renormalisation
Group (RG) has been reached. Therefore, the finiteness of the dimensionless couplings
and their associated operators in the UV regime pertains to the existence of quantum
scale symmetry.

In addition to being UV-complete, ASQG is predictive, making it a viable QG
approach. Indeed, only QG approaches with finitely many free parameters in the
IR-regime can be tested, since we can only perform finitely many experiments to fix
the values of the free parameters. The free parameters in the low-energy regime turn
out to be associated with relevant directions and real positive critical exponents, as
detailed below.

There is by now compelling evidence for an interacting UV fixed point in gravity,
as well as in gravity plus suitable matter, in 4D in Euclidean signature18, see [Per17a;
Eic19; RS19b; Bon+20; ES22; Sau23; PR23].

Although ASQG is rooted in Weinberg’s idea of an interacting RG fixed point in
the UV-regime [Wei80], evidence for such a fixed point only started growing with
the development of Functional Renormalisation Group (FRG) techniques [Reu98].
These techniques are based on an RG equation for an effective average action, which
defines a flow on the theory space of all diffeomorphism-invariant functionals of the
(Euclidean) metric gµν.
Adopting the background field method to gauge-fix the fluctuations, the quantum
expectation value of the metric, i.e. gµν = ḡµν + hµν, is split into arbitrary large
fluctuations hµν on an auxiliary fixed background ḡµν. The effective average action
for gravity Γk[gµν] then reads

Γk[ḡµν, hµν, ξµ, ξ̄µ] =
∫

d4x
√

ḡ
(

Jµνhµν + σ̄µξµ + σµ ξ̄µ

)
− logZk[Jµν, σ̄µ, σµ]

−∆Sk[ḡµν, hµν] (3.15)

in terms of sources Jµν, σ̄µ, σµ and conjugated Faddeev-Popov ghost fields ξ̄µ, ξµ

[FP67]. The (regularised) generating functional Zk[Jµν] associated to Γk[gµν] is written
as

Zk[Jµν] =
∫

ΛUV

Dhµν e−S[ḡµν+hµν]−Sgf[ḡµν;hµν;ξ̄µ;ξµ]−Sr[ḡµν;hµν;ξ̄µ;ξµ]+Ss[ḡµν;hµν;ξ̄µ;ξµ]. (3.16)

In the exponent, the gauge-fixing term Sgf includes the Faddeev-Popov ghosts and
the source term Ss is

Ss[ḡµν; hµν; ξ̄µ; ξµ] =
∫

d4x
√

ḡ
(

Jµνhµν + σ̄µξµ + σµ ξ̄µ

)
. (3.17)

17The scale in Asymptotic Safety can be thought of as an energy that interpolates between the UV-
and the IR-regimes. However, we should rather consider it as an abstract mathematical quantity for
reasons that will be detailed thereafter [Bon+20].

18Within gravity, we usually work with Lorentzian metrics. However, non-perturbative methods in
ASQG require almost necessarily to start with Euclidean metrics, see [Feh+23; BN22; D’A+24; Bra+23;
D’A24] for the first gravity results in Lorentzian signature. Therefore, unless otherwise stated, we work
in Euclidean signature in the discussion of ASQG.
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Moreover, the expression

Sr[ḡµν; hµν; ξ̄µ; ξµ] = −1
2

∫
d4x
√

ḡ
(

hµνRµνκλ
h [−D̄2/k2]hκλ + ξ̄µRµν

ξ [−D̄2/k2]ξν

)
(3.18)

corresponds to the IR-regulator term which implements the Wilsonian idea [WK74]
of integrating quantum fluctuations shell by shell according to the values of their
generalised momentum, i.e. the eigenvalues of the background-covariant Laplacian
−D̄2. It means in practice that, when decomposing the fluctuation field hµν in terms of
the eigenmodes of −D̄2, those with eigenvalues p2 > k2 are integrated out first. Then,
by successively lowering the RG scale k, all fluctuations are integrated out. Hence, the
IR-regulator term ensures that: (i) at the UV-cutoff k ∼ ΛUV, Γk∼ΛUV ≈ SΛUV , i.e. the
microscopic bare action (which neglects all quantum fluctuations) is recovered; (ii) in
the deep IR-regime k = 0, Γk=0 = Γ, i.e. the full effective action including all quantum
fluctuations is obtained.

The scale dependence of Γk is encoded in the RG flow equation [Wet93; Mor94;
Ell94]

∂tΓk =
1
2

Tr
[
(Γ(2)

k + R̂k)
−1
hh

(
∂tR̂k

)
hh

]
−1

2
Tr
[{

(Γ(2)
k + R̂k)

−1
ξ̄ξ

− (Γ(2)
k + R̂k)

−1
ξξ̄

} (
∂tR̂k

)
ξ̄ξ

]
, (3.19)

derived for gravity by M. Reuter in his seminal work [Reu98]. In Eq. (3.19), the
“RG time” t is related to the RG scale k through ∂t ≡ k∂k. Γ(2)

k denotes the second
functional derivative of Γk with respect to all dynamical fields hµν, ξ̄µ, ξµ at fixed
background ḡµν, and the gravitational and ghost regulator matrices have entries

(
R̂k
)µνκλ

hh =
1

32πG0
Zgrav

k k2Rµνκλ
h

[
− D̄2

k2

]
,

(
R̂k
)µν

ξ̄ξ
=

√
2 Zgh

k k2Rµν
ξ

[
− D̄2

k2

]
, (3.20)

respectively. The RG flow equation is an exact and non-perturbative one-loop equa-
tion. Hence, we caution the reader that the one-loop structure of the RG flow equation
should not be understood as only encoding the perturbative one-loop effects, as Γ(2)

k
is the inverse propagator fully dressed by quantum fluctuations.

The gravitational effective average action Γk
[
ḡµν, hµν

]
in the path integral formal-

ism linearly decomposes into all operators of the metric fields Oi[ḡµν, hµν] compatible
with the symmetries of the theory and their associated scale-dependent dimensionful
couplings ḡi(k) as

Γk[gµν] =
∫

d4x
∞

∑
i=1

(
ḡi(k)Oi[ḡµν, hµν]

)
. (3.21)

This sum is in principle infinite and the associated couplings span an infinite-dimen-
sional theory space, on which the RG flow equation cannot be solved by current
techniques (unless a closed form for the flow of a certain effective average action ex-
ists). Therefore, the sum in the effective average action Eq. (3.21) is usually truncated
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FIGURE 3.3: We show in light blue a two-dimensional UV critical
surface in a three-dimensional coupling space spanned by (g1, g2, g3).
RG trajectories (dark blue) on this surface emanate from the UV fixed
point (dark blue point). Trajectories (magenta) not connected to the
fixed point never cross nor belong to the critical surface. The surface
and the flow are solely characterised by the relevant directions given
by g1 and g2, while the irrelevant direction g3 is a prediction of the

theory. Inspired by Fig. 2 of [Eic19].

at a finite order i = N < ∞19 and inserted in the flow equation to solve for a finite set
of couplings.
In practice, the RG flow equation is best written in terms of the dimensionless cou-
plings gi defined in terms of the dimensionful ones as ḡi = kdg gi with canonical mass
dimension dg of the bare coupling. This is because the finiteness of observables is
ensured by the finiteness of dimensionless couplings in the UV-regime, as argued in
[Wei80]. The RG flow equation leads to a non-trivial system of coupled equations

βgi(g1, g2, . . . , gN) = ∂tgi = k
∂gi

∂k
(3.22)

which involve all the dimensionless couplings gi, i = 1, . . . , N and their β-functions
determining how couplings “run” as a function of the RG scale k. Consequently,
quantum scale symmetry is realised if there exists an interacting fixed point g∗ ̸= 0 in
the UV-regime, i.e. if there is a set of constant couplings g∗ = (g1,∗, g2,∗, . . . , gN,∗) ̸= 0
such that

β|g∗ = 0. (3.23)

RG trajectories that belong to the UV critical surface start at such a fixed point in the
UV-regime, flow from the UV- to the IR-regime and determine how the couplings of
the theory change. For the theory to be predictive, the UV critical surface is spanned
by finitely many couplings which correspond to the relevant directions. The critical
exponents of relevant couplings are finite and have a positive real part near the fixed
point; hence, relevant couplings tend to depart from the UV fixed point as the scale is
lowered. See Fig. 3.3 for a visual representation of a finite-dimensional critical surface.
Couplings that are finite but have a negative real part near the fixed point are said to
be irrelevant; they tend to approach the fixed point when the scale is lowered. They

19In addition to performing computations in Euclidean signature, truncated Ansätze for the effective
average actions have constituted the major criticisms against Asymptotic Safety, see [Don20; Bon+20].
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are thus predictions of the theory and their low-energy values are given theoretically.
Finally, marginal couplings – whose critical exponents have a null real part – may or
may not contribute to the flow.

As an illustrative example of the FRG machinery in ASQG, let us briefly discuss
the Einstein-Hilbert truncation worked out in [Reu98].

In gravitational theories, the effective average action Γk = Γgrav
k + Γgf + Γgh de-

pends on the gravitational dynamics Γgrav
k , the gauge-fixing term Γgf and the Faddeev-

Popov ghost term Γgh. In the Einstein-Hilbert truncation, Γgrav
k is given by

Γgrav
k =

1
16πGk−2

∫
d4x

√
g
(
2Λk2 − R

)
, (3.24)

with G ≡ G0k2 and Λ = Λ̄k−2 the dimensionless Newton and cosmological constants
and gµν an Euclidean metric. After a split of the metric gµν into a fixed background
ḡµν and quantum fluctuations hµν, we can compute the remaining terms Γgf and Γgh

and derive the flow equation for Γk
[
ḡµν, hµν, ξ̄µ, ξµ

]
. The resulting β-functions can be

found in [RS02] for different choices of the regulator and the gauge-fixing parameter.
Whatever the gauge-fixing parameter and the type of regulator, two fixed points are
found for the couplings G and Λ: a trivial one at (G∗, Λ∗) = (0, 0) and an interacting
fixed point at (G∗, Λ∗) = (0.403, 0.330), assuming a sharp (exponential) IR-regulator
(see [Lit01]). While the exact values of the critical exponents of the two couplings
change with gauge-fixing parameters and IR-regulators, the positivity of their real
parts does not. Hence, both couplings define relevant directions in the RG flow, and
the IR-values of G0 and Λ̄ are to be set experimentally. This was considered a decisive
result favouring the existence of an interacting UV fixed point in the full theory (the
latter extending beyond the Einstein-Hilbert truncation).

Tremendous work has been done to extend the EH truncation to higher-order
derivative and curvature terms, as reviewed in [Per17a; Eic19; RS19b; Bon+20; ES22;
Sau23; PR23]. Those include the extension of the EH action up to all curvature-
squared terms in [FOP20], the inclusion of Ricci and Riemann terms in [CP06; CPR09;
BMS09; BMS10; OP14; Gie+16; Fal+18; FOP20], the study of f (R)-actions in [MS08;
CPR08; CPR09; BC12; DM13; Fal+16; DSZ15; OPV15; FLS19] and Rn terms in [LR02;
MS08; CPR09; Fal+13; Fal+16; Nag+18; FLS19].

3.6 Black holes: 3 approaches beyond General Relativity

As reviewed in Sections 2.2 and 2.3 and Subsec. 3.1.2, eternal GR black holes are
plagued by singularities and instabilities on scales smaller than their event horizon.
However, those singularities are conjectured to be hidden from any asymptotic ob-
server by the weak cosmic censorship [Pen69]. Dynamical spacetimes describing
black-hole formation through gravitational collapse are not left unscathed. Simple
classical models can exhibit a naked singularity associated with a Cauchy horizon
and, according to Penrose-Hawking singularity theorems, are geodesically incom-
plete, thus breaking the strong cosmic censorship. Sections 3.3 and 3.5 motivated the
necessity to go beyond GR and find a consistent, UV-complete QG theory that would
cure all the singularities classical BH spacetimes suffer from.
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Hence, a natural approach to finding BH spacetime solutions is the fundamental
approach, in which we pick each QG or classical modified gravity theory at hand,
and either derive their corresponding BH solutions through an action principle or
motivate their metrics. Although appealing, this “top-down” approach turns out to
be tremendously difficult, even restricted to spherical symmetry, and lacks compre-
hensiveness. Therefore, an alternative and complementary “bottom-up” approach,
dubbed parameterised approach, has been developed alongside. This theory-agnostic
approach parameterises generic deviations from GR black holes at the level of the
spacetime metric. Finally, an in-between approach is provided with the principled-
parameterised approach set forth in [EH21b; EH21a; EHJ23], which combines features
of the two other approaches.

3.6.1 The fundamental approach

In the fundamental approach, black-hole metrics are derived (through an action
principle) or motivated from a specific form of new physics. The latter can either
come from a “fundamental” QG theory and be quantum, or from a classical modified
theory of gravity, hence being classical.

This approach has been followed only in a handful of QG theories to find quantum-
(-inspired) black holes, namely LQG [Per17b; Boj20] and ASQG [EH22; Pla23]. In
both LQG and ASQG, the black-hole spacetimes are universally better-behaved as in
GR in the sense that either (i) the central gravitational singularity is weaker, or (ii) the
spacetime is free of curvature singularities, i.e. non-singular. In ST the picture is more
subtle, as the BH information loss paradox is usually resolved by fuzzballs [Mal96;
Mat05], i.e. quantum-sized compact objects without horizon whose surface radiates.
Those compact objects possessing no horizon but an outer surface belong to the class
of Exotic Compact Objects (ECOs) and will be discussed in Sec. 3.7.

Modified black-hole metrics have also been proposed within various classical
modified theories of gravity discussed in Sec. 3.2: in quadratic gravity [Pod+20], in
Einstein-dilaton-Gauss-Bonnet gravity [BS+16], in f (R)-theories [DFT10; CDL15], in
massive gravity [Rha14], more generally in Horndeski theories [BCL16] and in other
theories with modified dynamics [Cli+12].

BH shadow images can be derived in all three approaches beyond GR, thus
allowing to test GR and alternatives with EM radiation. However, it is only possible
to test GR and alternatives with GWs in the fundamental approach, since obtaining a
GW signal from a coalescing binary requires to solve the equations of motion for the
binary (exactly or numerically). In a nutshell, the main advantage of the fundamental
approach is to allow for tests of GR and alternatives with both EM and GW signals.

Nonetheless, several caveats remain when applying the fundamental approach.
First, it must be applied to each currently available QG proposal or modified theory
of gravity, which can assume vastly different forms of new physics. This is both
tedious and fails to be comprehensive. Second, most BH metrics proposed within
LQG and ASQG do not arise as solutions to an action but have been proposed inspired
by some characteristic results and/or equations. For example, most bounce-based BH
metrics proposed in LQG fail to preserve general covariance or determinism [Boj20].
General covariance can be restored by modifying the algebraic relations between
the modified Hamiltonian constraints, but this leads to signature changes in the BH
interior. As for ASQG, BH metrics are derived via an RG improvement procedure,
which promotes classical coupling constants to their running counterparts as given
by ASQG and can only capture leading-order deviations to GR. Additionally, vacuum
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BH metrics in modified theories of gravity might not satisfy Birkhoff’s (uniqueness)
theorem (see e.g. [DP19]) as well as the original no-hair theorem (when a non-trivial
scalar- or vector-field profile is present, see e.g. [XMS20]). Lastly, finding BH metrics
generally requires to rely on highly symmetric settings, such as spherical symmetry,
or extra assumptions. Finding BH spacetimes with slightly fewer symmetries, such
as stationary and axisymmetric BHs, remains tremendously difficult, although some
analytical and numerical examples have recently been derived [KKR11; Kle+16;
Cha+19; Bab+20; DHR20; BA+20; Gra24]. On the numerical side, new types of codes
have helped computing stationary and axisymmetric black hole solutions and their
properties. As an example, the code developed in [FM23] has been successfully
applied to ESGB gravity and EH coupled to an EM field and an axion field [Bur+23].
On the analytical side, approximate solutions have been derived by perturbatively
solving the e.o.m. up to a certain order in small spin and/or small coupling [YP09;
Pan+11; NC23]. For example, only the first eight terms in the spin-expansion in
quadratic gravity theories are necessary to compute observables with a better accuracy
than the statistical uncertainties of current and future experiments [CDY24],.

3.6.2 The parameterised approach

As opposed to the fundamental approach, the parameterised approach is “bottom-
up”. Being theory-agnostic, it does not specify the form of new physics and parame-
trises the deviations of metric elements from the Kerr ones by finitely many free
parameters. These parameters enter the metric in finitely many, new free functions
of the coordinates, such that the Kerr metric is recovered when they are set to zero.
By doing so, it aims at capturing leading-order deviations from the Kerr spacetime
introduced by new physics effects beyond GR, in the spirit of the PPN formalism. In
particular, observables can be analysed in terms of a few of the new free parameters,
allowing to put constraints on the new-physics parameters.

The main axisymmetric proposals that have been derived following this approach
are the bumpy-Kerr black holes [VH10; VYS11], the Johannsen-Psaltis parameterisa-
tion [JP11; Joh13a] and its generalisation [CPR14], a parameterisation suited for X-ray
tests [Lin+15], the Konoplya-Rezzolla-Zhidenko (KRZ) parameterisation [KRZ16],
parameterisations that preserve the symmetries of Kerr [PK18] such as the Carson-
Yagi parameterisation [CY20], and non-circular parameterisations [Min20; BA+20;
Ans+21; DEH22].20

Each parameterisation has its advantages and drawbacks. A common pitfall is
that they are “ad-hoc” metrics in the sense that they are not a priori solutions of some
dynamics beyond GR. Moreover, by construction, there is no one-to-one connection
between the deviation parameters and the corresponding new-physics phenomena,
and parameters are often degenerate with each other. This renders tests of those
parameterisations difficult to interpret.
Despite the aforementioned issues, many of the parameterised metrics match those
of solutions to beyond-GR theories. In particular, there are parameterised metrics
which correspond to non-singular spacetimes – spacetimes free of the central cur-
vature singularity – found within the fundamental approach. This is the case, for
example, for the Hayward [Hay06], Bardeen [Bar68a] and Simpson-Visser spherically
symmetric black holes [SV19b]. The main idea behind those non-singular parameter-
isations is that of the QG proposals and modified gravity theories: some (possibly

20The notion of circularity as well as non-circular parameterisations will be discussed in detail in
Chapter 6.
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quantum) new physics beyond GR counteracts the standard gravitational pull in the
deep strong-field regime and suppresses the central curvature singularity.

3.6.3 The principled-parameterised approach

The principled-parameterised approach derived in [EH21b; EH21a; EHJ23] is an in-
termediate and largely theory-agnostic approach that complementarily combines the
advantages of the parameterised and the fundamental approaches. It brings together
the direct connection between theoretical new-physics principles and the spacetime
properties of the fundamental approach, and the generality and comprehensiveness
of the principled approach.

The principled-parameterised approach relies on a set of four guiding principles,
common to theories beyond GR, that motivate specific properties of a family of
spacetime metrics. Starting from a singular classical spacetime, it aims at finding the
minimal modification of that spacetime which implements four principles: locality,
a Newtonian limit, regularity and simplicity. For stationary spacetimes, the mini-
mal modification amounts to upgrading the constant ADM mass parameter M to a
spacetime-dependent function enforcing the above four principles.

The locality principle is implemented by upgrading the ADM mass parameter M
not to a general function of spacetime coordinates, but to a function of a coordinate-
invariant local quantity, namely a suitable combination of local classical curvature
invariants. Because the argument of such a function must be dimensionless, the
upgrade necessarily introduces a new scale, namely a new-physics scale rNP. The
latter sets the length scale at which new-physics effects become important. Simplicity
is then fulfilled when no other scale is introduced in the spacetime. The last two
principles prescribe the asymptotic dependencies of the upgraded mass function: the
Newtonian limit at low curvatures and regularity (defined here as the absence of
curvature singularities) at high curvatures. Simplicity then ensures that the upgraded
mass function monotonically increases with r. Altogether, the four guiding principles
give rise to a family of regular metrics defined by a free function – the upgraded
mass MNP(xµ) – with well-defined asymptotic behaviours and a free length scale rNP
delineating the transition between the two asymptotic behaviours. The application of
the principled-parameterised approach to a particular model of gravitational collapse
will be discussed in Chapter 5.

The principled-parameterised approach is motivated by an EFT point-of view
in which modifications of gravity set in at large curvature scales, as they do in both
classical (see e.g. [DFT10; Car+18; Xie+21; CD24]) and quantum (see e.g. [BR89; Ven92;
EH22]) modifications of GR. While the approach seems general enough to encompass
many black-hole metrics beyond GR, the metric put forward in [EH21a; EH21b]
fails to be brought to a Boyer-Lindquist form (except in the weak-field regime) in
which most black-hole parameterisations are expressed. Another limitation of the
approach is that it upgrades the ADM mass to a mass function depending on the
curvature invariants of the classical spacetime we use as starting point. Obviously,
the upgraded spacetime will have curvature invariants which differ from the classical
ones, which can then be used to perform a new upgrade of the mass function etc.,
calling for an iterative sequence of mass upgrades. This turns out to be particularly
involved, c.f. [DE24], therefore limiting the approach to the first mass upgrade in
practice. Finally, the principled-parameterised approach suffers from the same ad
hocness as the parameterised approach: the spacetime metrics are postulated rather
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than arising from an action principle. [BP23] provides a first attempt to bridge the
gap with the fundamental approach.

3.7 Exotic compact objects and black-hole mimickers

To remedy the singularities GR BH spacetimes suffer from, modified BH metrics
have been postulated or derived within various modified theories of gravity and QG
proposals. Those metrics share a universal feature: their gravitational singularities are
weaker than in their classical counterparts, and some spacetimes are even partially or
fully non-singular.21

Although no observations have so far disproved the standard paradigm that the
dark compact objects emitting GWs and whose images have been captured by the
EHT are black holes, we can question their existence in the first place. On the one
hand, BH spacetimes are surprisingly simple in GR, and even in theories beyond
GR: they are only characterised by a few parameters and fields. On the other hand,
GR BHs harbour singularities behind their event horizon, c.f. Subsec. 3.1.2, and no
fully non-singular, spinning BH spacetime can be derived from an action principle
in a UV-complete and consistent beyond-GR theory yet. Therefore, BHs might not
be the only candidates for the most compact objects we observe in the Universe. On
the observational side, we have not yet reached the accuracy required to assert the
presence or the absence of an event horizon, but the situation will greatly improve
with the advent of the ngEHT and the 3rd generation GW observatories. Thereby,
nurturing horizonless alternatives (other than NSs) to BH spacetimes, dubbed Exotic
Compact Objects (ECOs), can provide the strongest tests of GR and its BH solutions
[CP19].

ECOs gather (super)massive horizonless objects enclosed within a surface of
radius r0 and for which their coordinate-invariant compactness – in spherical symmetry
– is given in terms of the “closeness” parameter 0 < ϵ ≤ 1 as

r0 = 2G0M(1 + ϵ). (3.25)

This guarantees that a Schwarzschild BH is recovered in the limit of maximal com-
pactness ϵ → 0. ECOs that are sufficiently compact possess a photon sphere. Thus,
they can be alternatively characterised by the time τ taken by a radially-directed light
signal to travel between the photon sphere and the surface of the object, i.e.

τ = G0M
(
1 − 2ϵ − ln

(
4ϵ2)) ϵ→0−→ −2G0M ln ϵ, (3.26)

which is measurable by detectors. As a result, massive compact objects in the zoo of
ECOs split according to the allowed range of values for ϵ or τ.
Besides compactness, ECOs largely differ in curvature scales. For BHs, the largest
curvature we can probe observationally is the curvature of the event horizon.22 For
a Schwarzschild BH, it corresponds to the square root of the Kretschmann scalar K

21The notion of full singularity-resolution here means that both curvature singularities and geodesic
incompleteness are absent of the considered spacetimes. If one of these issues remains, we talk about
partial singularity-resolution. For simplicity, we will call non-singular spacetimes those that are free
of curvature singularities (but can be geodesically incomplete) and comment about the past- and
future-extensibility of geodesics.

22Actually, the gravitational radius of the event horizon is at best inferred from the EHT data products
and not measured directly.
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evaluated at the event horizon, i.e.

K 1
2
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=

√
48G2

0 M2

r6
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√
3

4G4
0 M4

∼ 4.6 × 10−13
(

10M⊙
M

)2

cm−2,

(3.27)
while for an ordinary NS it is K 1

2 ∼ 10−14 cm−2 at its centre. Comparatively, ECOs
can be:

• soft, if their curvature is similar to the curvature of a Scharzschild BH at its
event horizon;

• hard if their curvature is significantly larger.

Soft and hard ECOs distinguish themselves in the following way: while the near-
surface geometry of soft ECOs smoothly approaches that of an event horizon in the
BH limit ϵ → 0, hard ECOs can exhibit large geometrical modifications at their surface
compared to BHs. Adding to their more complex structure, ECOs can have soft
interiors but hard surfaces (and vice-versa) resulting from curvature gradients that
stretch from their interior to their surface.

Finally, and more importantly for the derivation of observable signatures in
images, particularly compact classes of ECOs possess a photon sphere. As such, their
phenomenology closely resembles that of a BH, in particular in images derived from
EM signals. Hence, ECOs can also be classified according to the presence (or the
absence) of a photon sphere and its characteristics as [CP19]:

• compact objects if they display an Innermost Stable Circular Orbit (ISCO), i.e. if
r0 < 6G0M or ϵ < 2;

• Ultracompact Objects (UCOs) if, in addition to an ISCO, they possess a photon
sphere; in other words, if r0 < 3G0M or ϵ < 1

2 ;23

• Clean Photon Sphere Objects (ClePhOs) if, in addition to having an ISCO and a
photon sphere, the photon sphere is “clean”, that is r0 < 2.038G0M or ϵ ≲ 0.019.

In this thesis, we are mostly interested in horizonless objects that can mimick BHs
and, thus, we focus on UCOs and ClePhOs.

Without relying on any particular theory or model, spinning ECOs on near-
horizon scales are well approximated by rotating surfaces that absorb and/or reflect
radiation [Kle+23]. This simple description has been first developed in the context of
searches for gravitational wave echoes [ADA17; Wes+18], before it was transposed
to imaging [Aki+22f]. The description of ECOs in terms of rotating surfaces is con-
venient since these surfaces are described by only a few parameters: their mass M,
their spin a, their radius R or their compactness ϵ, their albedo A, and their intrinsic
brightness B (if the emission of radiation is included). The albedo A gives a measure
of the relative amount of incoming EM radiation that is reflected. That is, all incoming
radiation is transmitted or absorbed when A = 0, while perfect reflection corresponds
to A = 1. The reflection of light off the surface is usually restricted to be specular or
elastic. The intrinsic brightness B corresponds to a locally isotropic surface emission
due to a non-zero temperature. Image prospects of spherically symmetric and static
ECOs as well as stationary and axisymmetric ECOs described by reflecting surfaces

23Note that, as ϵ < 1
2 in UCOs, the parameter τ in Eq. 3.26 is positive and makes sense as a physical

time.



3.7. Exotic compact objects and black-hole mimickers 39

have been studied in [CRCY22; Kle+23]. Significant deviations w.r.t. GR BHs appear
inside the “shadow region” in the limit A → 1, hence such reflecting surface models
can already be excluded by the EHT.

Beyond their simple description in terms of reflecting surfaces, ECOs can arise
in specific theories beyond GR, sourced by new fields and particles beyond the SM
or by the violation of some assumptions of the Buchdahl’s theorem [Buc59]. Within
GR, the compactness of self-gravitating objects is bounded from above, i.e. G0 M

r0
≤

4
9 or ϵ ≤ 1

8 , assuming spherical symmetry and a mildly anisotropic perfect fluid
[Buc59]. However, if one (or more) assumption entering the theorem break down,
self-gravitating horizonless objects of lower compactness (larger ϵ) can exist. So
Buchdahl’s theorem is to ECOs what Lovelock’s theorem is to beyond-GR theories
as it provides a mean to classify ECOs according to which assumption is violated
among the following:

• GR is the correct theory of gravity;

• the solution is spherically symmetric and static;

• the matter content consists of a single perfect fluid;

• the fluid is (quasi-)isotropic or mildly anisotropic or, equivalently, its tangential
pressure is bounded from above by its radial pressure;

• the radial pressure and the energy density of the fluid are both positive;

• the fluid’s energy density decreases radially with r.

Giving up one or several of those assumptions enables us to bypass Buchdahl’s
theorem, hence allowing the existence of the zoo of ECOs depicted in Fig. 3.4.

Among the simplest examples of ECOs are the boson (Proca) stars (see [Vis21] for
a review on boson stars), where a massive real or complex scalar (vector) field ϕ (Aµ)
minimally couples to Einstein’s gravity as

Sboson =
1

16πG0

∫
d4x
√
−g
(

R − gµν∂µϕ̄∂νϕ − µsϕ̄ϕ

2

)
. (3.28)

The configuration of the boson star is controlled by the parameter µs related to the
mass of the scalar ms = µs: the larger µs is, the more compact and massive the boson
star is. Static boson stars are not compact enough to host a photon sphere. Boson
stars are of particular interest because of their simple structure, their stability across a
large portion of the parameter space and the fact that ultralight scalar fields provide
us with a good model of DM [Ant+22]. However, static boson stars are limited in
compactness, i.e. ϵ ≥ 0.44.

This limit in compactness if lifted, potentially leading to light rings and ergore-
gions, when: (i) spin is included, (ii) the scalar field self-interact non-linearly, or
(iii) considering both a massive real scalar field ϕ and a massive complex fermionic
field ψ that minimally couple to Einstein’s gravity – yielding soliton stars [DG+23].
Fermion soliton solutions exist for a wide range of parameters. Depending on which
degenerate fermion species dominates (neutron or electrons), a fermion soliton star
can be of subsolar mass or supermassive. Hence, soliton stars can exist in the all
mass ranges of known BHs, allowing for tests of the uniqueness theorem (in spherical
symmetry) [Isr67].
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FIGURE 3.4: Mindmap of the various possible exotic compact objects
according to their feature(s). Inspired by Fig. 4 of [CP19] and [CR+18].

Other classes of ECOs contain even more compact objects than soliton stars. This
is the case of anisotropic stars (reviewed in [KB21]), formed when the object is sub-
ject to large anisotropic stresses. Anisotropy can arise in many different contexts
(including in GR) and produce compact objects that are very close to the compactness
of BHs, i.e. ClePhOs (possessing a photon sphere). Additionally, anisotropic stars
exist across a wide range of masses (from solar mass to supermassive objects), thus
being ideal contenders for both GW and EM tests. ECOs that are so compact that they
closely resemble a BH for an asymptotic observer are dubbed BH mimickers. While
the near-horizon region of BH mimickers can be quite different from that of a BH,
they (almost) look like BHs for an asymptotic observer, thus being effectively (nearly)
indistinguishable.

All ECOs described so far are relatively simple: they come from (relatively) simple
theories with well-defined equations of motion governing their dynamics. However,
more peculiar compact objects are present in the taxonomy of ECOs which are theo-
retically well-motivated but for which the understanding of their formation scenarios
remains patchy.
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Novel horizonless configurations have appeared in modified gravity theories and
semiclassical gravity.

Horizonless solutions of (potentially infinite) higher-derivative theories, dubbed
2-2 holes, were derived in [HR17; Hol22]. The latter objects are extremely compact
(ClePhOs) (ϵ ∈

[
10−78, 10−92]), thus mimicking BHsand their associated photon

sphere (or shell if spinning), but are not well understood yet. Wormholes (introduced
in [ER35] and reviewed in [BS23; BS21]) also belong to the ClePhOs’ class. They
connect different patches of spacetimes via a throat of radius r0 > 2G0M and can be
stabilised by and built from reasonable matter content. Within semiclassical gravity,
dark stars [Arr+22] are thought to emerge either as the result of semiclassical effects
stopping the gravitational collapse of BHs or horizonless objects, or as dark massive
remnants left behind BHs’ partial evaporation. However, they seem unlikely accord-
ing to the counter-argument given in [Che+18], which states that apparent horizons
are unavoidable in a gravitational collapse, even in the presence of a “pre-Hawking
radiation”. Gravastars are compact objects that could arise as a hydrodynamical
description of one-loop QFT effects in classical curved spacetime [RSN20]. They are
made of one or several layers of anisotropic fluid(s) that are supported by a negative
pressure, thus violating some of the pointlike energy conditions. Hence, they can be
made stable and non-singular, see e.g. [Sha+24] for an example.

Within QG theories, String Theory has been one of the most prolific theories in
suggesting new types of ECOs. Fuzzballs give a regular, horizonless, geometrical
description of classical BHs [Mat05]. The interior of a static fuzzball, whose outer
radius matches the Schwarschild BH radius, contains a large number of (fuzzy) string
excitations or individual microstates. Averaging over a large number of coherent su-
perpositions of microstates, the BH geometry is thought to emerge as a result of
“coarse-graining”. However, matching coherent superposition of microstates with a
few BH-like global charges has only been performed in idealised spacetimes, such
as non-asymptotically flat spacetimes. Moreover, the fuzzball program as a viable
alternative to BHs has recently been criticised [RS19a]. Hence, another alternative
to fuzzballs, called “collapse polymers”, has come up in String Theory [BM23].24

Additionally, horizonless spacetimes can generically be formed by overspinning Kerr
black holes. These superspinars can be realised when the classical angular momentum
receives sizeable quantum corrections as, for example, in ST or in ASQG [EH23]. As
opposed to classical superspinars, which are plagued by singularities, QG super-
spinars may be regular and lead to an additional set of internal photon rings which
may be detected by future extensions of the EHT [Tor24]. They suffer, however, from
instabilities [Pan+10].

Finally, we provide a brief overview of the large variety of observable conse-
quences of ECOs which distinguish them from GR BH spacetimes, both dynamically
(in terms of GW signals) and stationarily (in terms of EM radiation). GW signals from
ECOs (particularly ClePhOs) may exhibit [CP19; Mag23]:

• a broken isospectrality of their Quasi-Normal Modes (QNMs) between the axial
and polar gravitational sectors;

• QNMs with lower frequencies and much longer lived (as they cannot leak into
an event horizon);

24The term “collapsed polymer” refers to the description of BH’s interior, and should not be mistaken
with polymer quantum black holes that are particular regular, spherically symmetric BH spacetimes in
LQG [M+̈23].
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• echoes, i.e. transient series of damped GW signals bouncing off ECO’s surface
or its centre;

• arbitrary multipole moments (for spinning Kerr-like ECOs);

• a broken equatorial symmetry (for spinning ECOs);

• small but non-zero tidal Love numbers.

The EM emission in stationary ECOs may give rise to:

• a second set of (inner) nested photon rings [EH23; EHJ23; EGH23] if they
possess a photon sphere (limited to UCOs and ClePhOs);

• a bright EM emission when tidally disrupted, if they have a hard surface;

• a bright spot within their “shadow”.

Altogether, these dynamical and stationary features dispense theoretical ways of
testing the Kerr hypothesis and, more generally, the very existence of BHs. However,
ECOs can only become astrophysical contenders to BHs if they are (numerically)
proven to form through a viable dynamical scenario, be stable against small perturba-
tions and long-lived [BSG24].
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Chapter 4

Current and future imaging tests of
spacetimes beyond General
Relativity

In this chapter, we show how future imaging capabilities of compact objects will help
us to test GR and alternative theories. This field of research has gained interest with
the recent observations and image reconstructions of two supermassive black holes,
namely M87* and SgrA*, by the Event Horizon Telescope (EHT) collaboration. Even
though M87* and SgrA* are, within 10% uncertainty on the observed image size of the
shadow boundary and within current resolution, consistent with GR Kerr BHs, they
are equally well explained by alternatives, see [Aki+19a; Aki+19b; Aki+19c; Aki+19d;
Aki+19e; Aki+19f; Aki+21a; Aki+21b; Aki+23; Aki+24d] for M87* and [Aki+22a;
Aki+22b; Aki+22c; Aki+22d; Aki+22e; Aki+22f; Aki+24a; Aki+24b] for SgrA*.

Below, we introduce the principle of gravitational lensing by compact objects,
the main supermassive black-hole targets of the EHT and the principle of Very Long
Baseline Interferometry (VLBI) with current EHT and future ngEHT arrays. We then
present photon rings as an ideal probe of spacetime geometry and describe their
characteristic features in alternative spacetimes beyond GR, as presented in [DEH22;
CR+24]. Finally, we assess whether we can tell apart two “clean” spacetime probes,
namely two (high-order) photon rings, with current and future VLBI observations of
compact objects using simple geometric modelling. This falls within the scope of our
work [CR+24].

4.1 Black hole shadow imaging

BH shadow imaging is based on the physical principle of deflection of light, a.k.a.
gravitational lensing, by a supermassive BH. Deflection of light is a fundamental
consequence of GR encoded in the null geodesic equations for a solution to the
Einstein field equations: compact (super)massive objects curve spacetime around
them and light gets lensed, thus deflected or bent, to follow the shortest paths on this
curved spacetime called geodesics. A geodesic generalises the notion of a “straight
line” in flat spacetime to the shortest arc in curved spacetime. A shadow image of a
BH is reconstructed by collecting the lensed light rays emitted (in the radio frequency
band) near a BH, then making them interfere and obtaining resulting interference
fringe patterns. This is enabled by VLBI, a powerful image reconstruction technique
which couples many radio telescopes spread across the Earth together to form a
single, effective radio telescope roughly the size of the Earth.
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4.1.1 The principle of black hole gravitational lensing

The idea that light could be bent by gravity was put forward by I. Newton in 1704
and the Newtonian deflection angle of photons grazing the surface of the Sun was
computed a century later by J. G. von Soldner to be α = 0.9 as.1 The computation
assumed Newton’s laws of gravity and the existence of (lightly) massive photons and
proved that very light particles are affected by gravity in the same way as ordinary
massive matter.

With the advent of General Relativity in 1915, freely moving particles (massive or
massless), i.e. not subject to any other forces than gravity, were shown to travel on
geodesics. Geodesics are solutions of the geodesic equation written in Eq. (2.14) and
define the shortest paths xµ(λ) parameterised by an affine parameter λ in 4D curved
spacetime. The spacetime curvature is understood to be sourced by the energy-
momentum tensor of some matter, as described by the Einstein field equations in
Eq. (2.1), or by the presence of a massive compact object. Assuming GR, the deflection
angle α of photons in a Schwarzschild BH spacetime is

α = 2
rEH,S

b
, (4.1)

with rEH,S the Schwarzschild radius of the event horizon and b = L
E the impact

parameter (only defined asymptotically). For photons grazing the surface of the Sun
(assumed to be spherically symmetric as Schwarzschild), α turned out to be twice
as big as the Newtonian value, i.e. α ≃ 1.8 as. The deflection of light by a massive
spherical body is depicted in Fig. 4.1.

FIGURE 4.1: Schematical illustration of the deflection of light (yellow
flash) by an angle α (in blue) passing by a massive body (the Sun;
yellow disk). The initial and final asymptotic lines of light form an
angle α w.r.t. the plane tangential to the black point at the surface of the
Sun, as light follows its geodesic (continuous red line) before reaching
the observer (dark eye). The apparent location of the incoming light is

given by the orange flash.

The deflection of light is significant when the gravitational field strength is large,
so particularly near NSs and BHs. The latter astrophysical objects are the most
compact in the Universe and, as such, exert the strongest gravitational pull on massive
particles and massless particles such as photons. This is best understood in terms
of the escape velocity at the event horizon of a BH: a photon can only escape the

1In astrophysics, angles are usually computed in arcseconds or as, with 1 as = 1
3600 · 1◦ = π

648000 rad.
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“gravitational pull” of the BH at the event horizon if its velocity exceeds the speed of
light, which is not allowed in SR. As GR includes SR, this also cannot occur in GR.

Photons composing the synchrotron radiation emitted in the vicinity of BHs by
ultra-relativistic charged particles all get gravitationally deflected by the BH they pass
by. Since the deflection angle in Eq. (4.1) is inversely proportional to the impact pa-
rameter b, light passing closer to the BH gets more deflected than light passing further
away from it. Hence, whether a photon is deflected away or absorbed the event hori-
zon of the central BH is determined by the critical impact parameter bc = 3

√
3G0M

(for a Schwarzschild black hole). Photons with b > bc are deflected away from the BH
and can reach an asymptotic observer, while photons with b < bc fall into the event
horizon. The absorbed photons are invisible to any external observer by definition
of an event horizon, thus creating a dark central region in the image called central
brightness depression or shadow. Photons that are deflected away by the BH can reach
an asymptotic observer and form a bright ring surrounding the shadow in the image,
as visible in the BH shadow images computed by the EHT collaboration, see Fig. 4.4.

4.1.2 Main EHT targets: M87* and SgrA*

The primary targets of the EHT collaboration are supermassive BHs with bright
synchrotron emission in the radio frequency range. Indeed, early simulations [Lum79]
predicted that the combination of:

• an event horizon;

• light bending in accreting black holes embedded in a geometrically thick, opti-
cally thin accretion disk

leads to the appearance of a shadow surrounded by a bright emission ring in im-
ages that should be detectable through VLBI experiments [FMA00]. This was later
confirmed by the shadow images of M87* and SgrA*, the two supermassive black
holes with the largest apparent angular sizes, produced by the EHT collaboration and
visible in Fig. 4.4. Those two shadow images indeed exhibit a dark central brightness
depression, the shadow, and a bright ring with modest, azimuthal, north-south bright-
ness asymmetry, a signature of clockwise rotation as seen by the observer. Altogether,
the observed images of M87* and SgrA* are consistent with the expected appearance
of Kerr BHs as predicted by GR.

The first BH to be imaged in 2019 was M87* [Aki+19a; Aki+19b; Aki+19c; Aki+19d;
Aki+19e; Aki+19f; Aki+21a; Aki+21b; Alg+21; Koc+21; Sat+22; Aki+23], the central
BH of the supergiant elliptic galaxy M87, one of the largest and most massive galaxies
in the local Universe. This supermassive BH has a mass M ∼ 6 × 109 M⊙ located at a
distance D = 16.8± 0.8 Mpc from the Earth. Assuming for simplicity that M87* can be
described by a Schwarzschild spacetime with photon capture radius rcap =

√
27rS,EH,

these mass and distance subtend a photon ring with angular size θ ∼ 36.5 µas.
Imaging M87* thus requires interferometric capabilities with a resolution down to
a few tens of µas; in other words, it requires VLBI. M87* was found by several
observations [Per+99a; BSM99; OEK00; Mar+02; Kov+07; LWJ07; Abr+12; Bei12;
Asa+13; Had+13; Alg+24] to emit a collimated jet of relativistic particles with an
inclination angle ι ∼ 17◦ with respect to the direction of the source, and emitting
across a wide EM frequency band, from radio to X-ray wavelengths. Due to the
emission of a powerful jet, its rather small inclination angle ι and the shape of the
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photon ring’s brightness asymmetry, M87* is found to be spinning clockwise. The
observed astrophysics of its accretion and ejection flows are consistent with a model
of magnetically arrested accretion flows [Aki+19a; Aki+19e; Aki+23].

The second BH to be imaged was SgrA* in 2022 [Aki+22a; Aki+22b; Aki+22c;
Aki+22d; Aki+22e; Aki+22f; Wie+22; Tor+23; Aki+24a; Aki+24b]. SgrA* is the su-
permassive BH with mass M ∼ 4 × 106 M⊙ that sits at the centre of our Milky Way
galaxy, i.e. at a distance D ∼ 8000 pc from the Earth. The existence of SgrA* was first
firmly established by two experiments: the GRAVITY collaboration [Gen+97] and
the Keck Observatory [Ghe+98] which performed Near-IR (NIR) interferometry with
adaptive optics in the galactic centre with a resolution down to ∼ 2 − 4 mas. The
GRAVITY collaboration could reconstruct the partial or full orbits of approximately
45 faints stars or S-stars around the central compact object. The latter was found so
massive that, assuming GR, it could only be a supermassive Kerr BH [GEG10; FM13;
Vin+16]. Similarly to M87*, assuming that SgrA* can be described by a Schwarzschild
spacetime, its mass and distance subtend a photon ring with angular size θ ∼ 51.1 µas.
This very small angular size explains why the GRAVITY interferometric experiment
could not directly resolve SgrA*. While no jet has been directly observed, SgrA* might
power a relatively weak one with an inclination angle < 50◦ [Aki+24b], which might
be visible with future VLBI capacities [Cha+24b]. SgrA*’s emission is characterised
by a low luminosity, a low radiative efficiency and a weak Faraday rotation, and is
thus consistent with a weakly bound, magnetised accretion flow [Aki+22a].

Although M87* and SgrA* share some similarities, they differ in many ways.
First, M87* is roughly 1500 times more massive than SgrA*. Second, M87* has much
larger bolometric luminosity L and accretion rate Ṁ than SgrA*: L = 1042 erg · s−1

(compared to L ≤ 1036 erg · s−1 for SgrA*) and Ṁ ∼ 10−3M⊙ · yr−1 (compared to
Ṁ ∼ 10−7 − 10−9M⊙ · yr−1 for SgrA*).2 These differences in luminosity and accre-
tion rates are likely connected to the presence (respectively, the absence) of a powerful
jet emitting at multiple wavelengths in the EM spectrum and across a wide range
of length scales for M87* (respectively, SgrA*) [Alg+21; Aki+22a]. The jet launched
by M87* constrains the inclination angle to ι ∼ 17◦, while no such constraints can
be derived for SgrA*. Finally, another stringent difference between M87* and SgrA*,
resulting from their mass difference, is their variability timescales gauged by the
period of the ISCO. While the latter period varies between 5 days and a month for
M87*, thus being nearly stationary during VLBI observational campaigns of a few
days, it only amounts to 4 − 30 minutes for SgrA*. This small period implies that
SgrA*’s structure changes within a single night of observation, thus providing the
strongest limitation on the imaging process.

Both M87* and SgrA* are supermassive BHs surrounded by an accretion disk and
magnetic fields, which define their astrophysical environment. The physics of the
accretion/ejection flows in the accretion disk depends on the content, characteristics
and dynamics of the latter environment, reviewed in [AF13]. Together with the
background spacetime geometry, the properties of the accretion disk are the two
pillars of GR Magnetohydrodynamical (GRMHD) simulations of black holes.

The accretion disk is delineated by its outer boundary, roughly set by the radial
fall-off of its density and whose location varies with the mass of the enclosed black

2The bolometric luminosity of an astrophysical object is defined as the total luminosity (or output
rate of energy) integrated over all wavelengths.
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hole, and its inner boundary is usually assumed to match with the ISCO.3 The ISCO
is defined as the smallest radius at which freely moving particles (not subject to any
other forces than gravity) can stably and circularly orbit the central black hole, thus
only unstable orbits exist for r < rISCO.

The accretion disk is made of a plasma of relativistic, charged particles, mainly
ions and electrons, that settle into a disk in the equatorial plane and orbit the central
BH. The accretion disk is surrounded and pierced by poloidal magnetic field lines
which, together with the centripetal force, make relativistic, charged particles emit
synchrotron radiation.
Particles forming the accretion disk are governed by four forces: (i) gravity (deter-
mined by the background black-hole spacetime), (ii) pressure, (iii) rotation and (iv)
electromagnetic Lorentz forces. Depending on the relative importance of each of these
forces, the accretion disk belongs to one of the four main types: thin (concentrated
near the equatorial plane, optically thick, low accretion rate), slim (moderately ex-
tended along the normal to the equatorial plane, optically thick, large accretion rate),
thick (extended along the normal to the equatorial plane, optically thick, very large
accretion rate) and advection-dominated accretion flows (concentrated near the equa-
torial plane, very low accretion rate, optically thin). Each of these types of accretion
disks possesses analytic models, which put restrictions on the various contributions
to the disk’s energy-momentum tensor, namely the fluid part (which distinguishes
between electrons and ions), the viscous/resistive or stress part (sourced by the
turbulences induced by the MRIs [BH91; BH98; Win19]), the Maxwell part (modelling
the magnetic fields, usually as ideal MHD, i.e. with infinite conductivity that freezes
the magnetic field lines into the fluid) and the radiation part (which carries energy
away from the disk).

MRIs sourcing MHD turbulences in the disk is the driving mechanism for (out-
wards) angular momentum transport. It occurs in weakly magnetised (i.e. low
magnetisation) disks in differential rotation, that is with an outwardly decreasing
angular velocity. The outwards angular momentum transport is then responsible for
the accretion flow onto the central BH.
Finally, the radiation part can be highly efficient, e.g. in a geometrically thin but opti-
cally thick disk – where the disk remains relatively cold – or inefficient, for example
in advection-dominated accretion flows whose corresponding accretion disks tend to
remain geometrically thick and optically thin. The possibility of the co-existence of
two (or more) phases in accretion flows, namely a corona (hot) and a disk (cold), has
been confirmed in GRMHD simulations [Jia+19], see [LQ22] for a review.

In ideal GRMHD simulations [PM21] where the conductivity is infinite, the plasma
is initialised to a prograde or retrograde, pressure-supported torus (or geometrically
thick disk) with seeds of weak poloidal magnetic fields, and two main types of
accretion/ejection flows are used: Magnetically-Arrested Disks (MAD, [NIA03]) and
Standard And Normal Evolution (SANE, [Nar+12]). In MAD models, the ordered
magnetic field lines significantly affect the dynamics of the flow and can episodically
stop the accretion on the BH, while SANE models have weaker and more turbulent
magnetic fields. It seems that M87* and SgrA* observations favour the MAD model
in simulations [Aki+21b; Aki+22a; Aki+22e; Aki+24b]. Both those accretion/ejection
flows give rise to synchrotron emission in radio and IR frequencies produced by
thermal and non-thermal electrons.

3The inner boundary of an accretion disk actually depends on its type, ranging from the event
horizon to the radius of the marginally bound orbit. More details are provided in [AF13].
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The jet launched by M87* strongly depends on the magnetic fields around it. It
might be powered either by magnetic fields threading the event horizon and extract-
ing the rotational energy from the BH – a process called Blandford-Znajek mechanism
[BZ77] – or directly from the accretion flow, i.e. à la Blandford-Payne [BP82]. Those
mechanisms, relevant for GRMHD simulations of jets, are reviewed in [Miz22].

Due to the high computational cost of 3D GRMHD simulations with detailed
disk models, magnetic fields and accretion/ejection flows, other routes have been
developed to derive black-hole shadow images accounting for the astrophysical
environment, namely semi-analytic models. These semi-analytic models assume a
background stationary and axisymmetric spacetime geometry and specify on top of
that a simple, non-dynamic emission model. The emission model aims to reproduce
the time-averaged emission from an accretion disk characterised by its emissivity and
absorptivity [Gol+20]. When using semi-analytical models to derive shadow images
for an optically thin, geometrically thick accretion disk around a supermassive BH,
the latter assumptions are made: (i) a finite, frequency-independent emissivity and
(ii) a vanishing absorptivity. Then, the radiative transfer equation is integrated along
null geodesics in the background spacetime, c.f. [Gol+20]. The latter null geodesics
on which photons travel are obtained by numerical ray tracing. We do not expect
such a simple model to accurately describe realistic astrophysical environments near
BHs, but to provide us with a phenomenological model which approximates well the
interplay between the spacetime geometry and the photon emission near the BH.

4.1.3 Very Long Baseline Interferometry with EHT and ngEHT arrays

Very Long Baseline Interferometry
The construction of the BH shadow images of M87* and SgrA* by the EHT collabora-
tion [Aki+19a; Aki+22a] relies on VLBI. The latter refers to an advanced technique in
radio astronomy that couples several radio telescopes spread across the Earth to form
a “radio telescope array”, i.e. a virtual effective radio telescope whose dish’s diameter
roughly corresponds to the diameter of the Earth. This enables us to substantially
increase the angular resolution in observing supermassive BHs. Indeed, the imaging
angular resolution θ of a radio telescope is inversely proportional to the diameter of
the dish d at a given wavelength λ of observation, as given by the Rayleigh criterion

θ ≈ 1.22
λ

d
as. (4.2)

A single radio telescope typically has a diameter of the order of d ∼ 10 meters, and
thus an angular resolution limited to θ ∼ 33 as at the radio wavelength λ = 1.3 mm.
However, a VLBI array with a virtual effective telescope of diameter matching the
diameter of the Earth d ∼ d⊕ ≈ 13000 kms has an angular resolution of θ ∼ 25 µas at
the same wavelength, hence resulting in an improvement by six orders of magnitude
in angular resolution. The latter resolution is needed to resolve the primary EHT
targets, namely M87* and SgrA*, as shown in Subsec. 4.1.2.

A schematic diagram of the VLBI technique used by the EHT collaboration is
shown in Fig. 4.2. The mechanism of Earth-based VLBI is as follows: first, each radio
telescope receives a radio signal from the observed compact object whose arrival time
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FIGURE 4.2: Schematic diagram of the VLBI mechanism, from the
acquisition of data to the reconstruction of a black hole shadow image.
Taken from [Vlb]. Credit: ALMA (ESO/NAOJ/NRAO), J.Pinto and

N.Lira.

is precisely measured thanks to a local atomic clock.4 Then, the analogue signal is
converted to a digital signal and stored locally on hard drives. The hard drives of
each radio telescope are later shipped to a single location where their data is synchro-
nised and processed by a supercomputer. After that, all processed data is combined,
i.e. the signals are correlated to produce interference fringe patterns. The last step
involves performing (inverse) Fourier transforms on the interference fringe patterns
and, together with data reduction techniques (i.e. image reconstructing algorithms),
it allows us to reconstruct an image of the observed compact object.

Seen from the compact radio source, a VLBI array of radio telescopes has an
effective dimension and orientation set by its projection onto the plane perpendicular
to the direction of the source. A curve on the surface of the Earth connecting two radio
telescopes at two different locations is called a projected baseline B once projected onto
a plane perpendicular to the direction of the source. Each such baseline is sensitive to
a particular length scale of structures in the source at a particular angular orientation,
i.e. each such baseline is sensitive to a particular spatial frequency in a particular
angular orientation in the space of Fourier transform of the intensity distribution

4As the radio telescopes are spread across the (curved) surface of the Earth, a radio signal emitted
by the observed compact object does not reach each of them at the same time. It is thus essential for
interferometry to synchronise the signals obtained at different locations, and thus to accurately measure
the arrival time of each radio signal at each radio antenna.
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coming from the source. Hence, in principle, correlating the data collected from N
stations at different locations on the Earth enables us to measure N(N−1)

2 independent
spatial frequencies in particular orientations in Fourier space.

Composition of the current EHT array
The current EHT array of radio telescopes consists of 8 + 3 radio telescopes shown
in black on the world map in Fig. 4.3. The first 8 telescopes are the Submillimeter
Telescope (SMT) in Arizona, USA, the Atacama Pathfinder Experiment (APEX) in
the Atacama desert in Chile, the IRAM telescope in Spain, the James Clerk Maxwell
Telescope (JCMT) in Hawaï, the Large Millimeter Telescope (LMT) in Mexico; the
Submillimeter Array (SMA) in Hawaï, the Atacama Large Millimeter/Submillimeter
Array (ALMA) in the Atacama desert in Chile and the South Pole Telescope (SPT)
in the South Pole. The 3 telescopes which joined the EHT array in 2018-2020 are the
Greenland Telescope (GLT) in Greenland, the IRAM Noema telescope in the French
Alps and the Kitt Peak Telescope (KP) in Arizona, USA. While some of those radio
telescopes are composed of a single radio antenna, e.g. the SMT, some are themselves
arrays of radio telescopes, e.g. ALMA which combines 66 radio antennas located up
to 16 kilometres apart from each other.

FIGURE 4.3: We show the locations of current and prospective radio
telescopes for VLBI on a world map. The current EHT sites are in
black, existing or near-future sites joining the EHT array are in red
and prospective sites for the next generation EHT array (ngEHT) are

in magenta. Taken from [Doe+23].

Both M87* and SgrA* BHs have a peak in their Spectral Energy Distribution (SED)
in the radio frequency range around 104 GHz (c.f. Fig. 13 in [Aki+22b]), corresponding
to a quiescent emission with millimetre wavelengths. This is the reason why the EHT
currently operates at (around) 230 GHz or, equivalently, at (around) a wavelength
of λ = 1.3 mm. For this wavelength, the longest EHT baselines such as LMT-PV
or JCMT/SMA-PV, give a theoretical value for the maximum angular resolution
of θ ∼ 25 µas, represented by the outermost dashed grey circle in both panels of
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FIGURE 4.4: We show the EHT images of M87* (left panel) and SgrA*
(right panel) on different days in April in the 2017 observational cam-
paign. Each image is the average of three different image reconstruc-
tion methods after convolving each method with a circular Gaussian
kernel to match current resolutions. The largest Gaussian kernel with
Full Width at Half Maximum (FWHM) FWHM = 20 µas is shown in
the lower right. The colour gives the specific intensity of each image,
shown in units of brightness temperature.The brightness temperature
Tb is defined as Tb = Sλ2

2kBΩ , with S the flux density, λ the observing
wavelength, kB the Boltzmann constant and Ω the solid angle of the
resolution element. The inset bars in the right panel give the preva-
lence of each type of image in the whole set of images of SgrA*. All but
one reconstructed image show a prominent bright ring morphology of
angular size 42 ± 3 µas for M87* and 51.8 ± 2.3 µas for SgrA*. Taken

from [Aki+19a; Aki+22a].

Fig. 4.5.5 The latter VLBI angular resolution is sufficient to resolve the shadows of
M87* and SgrA* whose angular sizes are inferred to be 42 ± 3 µas and 51.8 ± 2.3 µas,
respectively.

uv-coverage in Fourier space
Due to the small number of radio telescopes forming the current EHT array, i.e. 11,
the uv-coverage in Fourier space is sparse.6 Each pair of telescopes gives two (u, v)-
points in Fourier space, related by a point reflection of π. Considering 11 telescopes,
this leads to 11×10

2 = 55 independent (u, v)-points or spatial frequencies, c.f. Fig. 4.5.

5Note that the angular size is given in Fourier space, where large spatial frequencies correspond to
small source’s structures. Therefore, accessing larger and larger spatial frequencies in Fourier space
corresponds to resolving smaller and smaller structures in the source.

6The uv-coverage of the 2017 EHT array was even sparser because only 8 radio telescopes were
operating. Additionally, not all telescopes can “see” a given source due to their location on Earth, which
reduces even more the uv-coverage. As an example, SPT can receive signals from SgrA* but not from
M87*.
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FIGURE 4.5: We show the spatial frequencies u, v in units of Gλ =
109λ probed by the EHT array in 2017, i.e. the interferometric uv-
coverage of the current EHT array at 230 GHz, for M87* (left panel)
and SgrA* (right panel). The outer and inner dashed grey circles
mark baselines accessing features with an angular scale of 25 µas and
50 µas respectively. Colours indicate the spatial frequencies probed by
each pair of radio telescopes in the EHT array. Taken from [Aki+19a;

Aki+22a].

Notwithstanding, the sparsity of the EHT uv-coverage is naturally but partially coun-
teracted by the rotation of the Earth. Indeed, as the Earth rotates throughout a VLBI
observation, the projection of a given curve connecting two telescopes onto the plane
perpendicular to the direction of the source changes both in magnitude and in direc-
tion, thus sweeping arcs in the (u, v)-plane. This enables us to access structures with
different scales and orientations in the source and leads to a finer and more faithful
reconstruction of BH shadow images. The outcome of the interferometric fringe
patterns is the complex visibility amplitudes V(u, v), i.e. the Fourier components of
the brightness distribution on the sky at spatial frequencies (u, v) determined by the
projected baselines B =

√
u2 + v2 in units of Gλ.7 They are displayed in Fig. 4.6 for

M87* (left panel) and SgrA* (right panel).

The uv-coverage of a given source in Fourier space, and hence the image fidelity,
is increased by including new radio telescopes at different locations, creating new
baselines. While the uv-coverage with Earth-based only telescopes will remain sparse,
it will be enhanced if new Earth-based stations are added to the current EHT array
and if at least one space-based antenna is included (see the paragraph below). The
inclusion of a space-based station constitutes one lever arm to tell apart two thin
photon rings in shadow images, as discussed in [CR+24] and in Sec. 4.3.

7Due to the sparse uv-coverage, the obtained visibility amplitudes are discrete. A pair of radio
telescopes (i, j) in the array with baseline Bij =

√
u2

ij + v2
ij gives a visibility amplitude of Vij = V(uij, vij).

Note that a given pair of radio telescopes define several baselines thanks to Earth’s rotation, thus giving
a small set of points in the visibility amplitude.

7We may use different wordings to denote the visibility amplitude throughout this thesis, e.g.
brightness distribution or flux density. Those are all equivalent and given in units of Jansky (Jy)
corresponding to 1 Jy = 10−23 erg · s−1 · cm−2 · Hz−1 with 1 erg = 10−7 J.
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FIGURE 4.6: We show the calibrated discrete visibility amplitudes in
units of Jansky (Jy) as a function of the projected baseline for both
M87* (left panel) and SgrA* (right panel). The colour code is given in
Fig. 4.5 in the bottom left panel for M87* and in the top panel for SgrA*.
The error bars give the ±1σ thermal/statistical uncertainties. The grey
dashed lines correspond to the Fourier transform of an azimuthally
symmetric thin ring model with diameter 45 µas (54 µas) for compari-
son with M87* (SgrA*) data. Right panel: the red and shaded region
shows the Root Mean Square (RMS) variability of the flux density
and its corresponding 68% credible interval over a selected range of
baselines. The blue horizontal lines at zero baseline delineate the range
of variations in the total flux density. Taken from [Aki+19a; Aki+22a].

Towards combining multiple frequencies
Note in Fig. 4.7 that the angular resolution of a source increases with the frequency,
as prescribed by the Rayleigh criterion in Eq. 4.2. Hence, observing at ∼ 345 GHz
improves the angular resolution of the virtual effective telescope by up to 50%. There
are therefore two ways of increasing the angular resolution that can be combined to
improve the capabilities of the EHT array: (i) increasing the size of the virtual effective
telescope, and (ii) increasing the frequency of observation. Those improvements
define the scope of the future ngEHT array(s) [Ayz+23; Joh+23; Doe+23; Ray+24;
SP24; Aki+24c].

If one restricts to Earth-based telescopes only, the size of the virtual effective
telescope is limited by precisely the size of the Earth, and is almost reached by the
current EHT array. Increasing the frequency of observation is promising, in particular,
once combined with data acquired at lower frequencies, e.g. 86 GHz and 230 GHz,
c.f. [Cha+23; Iss+23], and is already available on a subset of radio telescopes in the
current EHT array [Doe+23]. However, atmospheric opacity strongly prevents the
observation at 345 GHz on most locations on Earth, thus restricting prospective sites
to lie on the highest and driest places that are often remote and drive high operating
costs.

An innovative way out consists of sending one or several radio telescopes into
space to operate in addition to the Earth-based array: this is dubbed “space-based
VLBI” and is reviewed in [TMS17; Gur20; Gur23]. Radio telescopes in space get rid of
all limitations associated with the atmosphere and the finite size of the Earth, but are
costly and trigger several technical challenges. Due to the enormous amounts of data
that will be recorded in space, it is especially challenging to transfer them at a fast
enough rate and reliably to the ground. The necessary high bandwidth of space-based
VLBI requires a downlink infrastructure with optical laser communications, which
may seem achievable with current technologies [Wan+24]. Several proposals for
space-based VLBI have been made in the past years, namely the Space VLBI [Roe+19;
Shl+24], the THEZA mission [Gur+21], the Black Hole Explorer (BHEX) programme
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[Joh+24] and others [FSA20; Haw+19; Pes+19; Pal+19] which, among other scientific
targets, aim to probe closer and closer to the event-horizon scale of BHs.

Simulations of distinct array configurations at different observation frequencies,
and with or without a space-based antenna are performed in [CR+24] (see also Sec. 4.3)
within the scope of disentangling two thin photon rings in shadow image products.

FIGURE 4.7: We show the interferometric uv-coverage of the current
EHT array with spatial frequencies u, v in units of Gλ = 109λ at two
different radio frequencies – 230 GHz in light orange and 345 GHz
in green – and for two supermassive BHs – M87* (left panel) and
SgrA* (right panel). The outer and inner dashed grey circles mark
baselines accessing features with an angular scale of 15 µas and 30 µas

respectively. Taken from [Doe+23].

Towards an increased sensitivity of arrays
In addition to strongly increasing the angular resolution, the proposals for future
VLBI arrays target a higher image dynamical range (from ∼ 10 with the current EHT
to ≥ 103)8 and time-resolved images of the dynamical activity in M87* and SgrA*
over hundreds-to-thousands of gravitational timescales. This will be allowed by
increasing the sensitivity of some of the radio telescopes forming the VLBI array,
and thus the Signal to Noise Ratio (SNR). Indeed, current VLBI observational data is
affected by thermal noise and systematic errors that result from the finite sensitivity
of radio telescopes. The thermal noise is dominated by the System Equivalent Flux
Density (SEFD) [Aki+19b] of the respective telescopes, given by

SEFD =
T∗

sys

DPFU × ηel
, (4.3)

where T∗
sys is the effective system noise temperature, DPFU the Degree Per Flux

density Unit and ηel the gain curve. More details on SEFD are provided in [Aki+19c].
A high SEFD value indicates a high thermal noise in the data and decreases the SNR

8The image dynamical range is defined as the ratio between the brightest and the dimmest pixels in
the image, the dimmest pixel lying within the central brightness depression or dark shadow.
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of a given pair (i, j) of radio telescopes as

SNRij =
ηQ

√
2∆νTintScor√

SEFDiSEFDj
. (4.4)

ηQ ∼ 0.88 is the digital loss due to sampling the received signal at each antenna
with finite precision, ∆ν is the bandwidth around the observing frequency ν, Scor
is the expected correlated flux on the baseline between stations i and j and Tint is
the integration interval of the VLBI signal. The SNR is thus limited by the SEFD on
the one side, and by both the bandwidth ∆ν around the frequency of observation
ν and the integration time Tint on the other side. As the integration time is itself
constrained by the coherence time set by atmospheric fluctuations, it is easier to
improve the sensitivity of radio telescopes by either decreasing the SEFD or increasing
the bandwidth, ideally reaching a ratio of 1 between the observing frequency and its
associated bandwidth. The importance of arrays with low-SEFD radio telescopes to
distinguish the presence of a second thin photon ring in shadow images is discussed
in [CR+24] and Sec. 4.3.

4.1.4 An ideal probe of spacetime geometry: photon (sub)rings

As presented in Sections 4.1.1 to 4.1.3, the BH shadow images result from bright radio
emission in the accretion disk surrounding the central BH – forming the astrophysical
environment – which propagates and is subject to gravitational deflection in the vicin-
ity of the BH – as prescribed by the spacetime geometry. If we assume that the central
compact object is well described by a Kerr BH as predicted in GR, the spacetime
geometry is well understood and the astrophysical environment can be investigated
through multiple GRMHD simulations (although with high computational costs
[DZ+24]).

Within the scope of testing the Kerr paradigm, we need to understand the inter-
play between the spacetime geometry and the astrophysical environment and be able
to disentangle one from the other [LVB21; OPY22; YPO23; KR22]. This turns out to be
much more complex beyond GR than in GR, because:

• no fully consistent and UV complete theory beyond GR is known to date, let
alone their analytical stationary and axisymmetric BH solutions;

• uncertainties remain on the modelling of the astrophysics of the accretion disk
and the magnetic fields;

• no clean beyond-GR MHD setups exist. Tentative procedures rely on approxi-
mations (e.g. spherical symmetry or the validity of the GR geodesic equation),
neglect backreaction, only allow to vary a few new-physics parameters and are
even more computationally costly than GRMHD simulations [Miz+18; WOR20;
NYK22];

• degeneracies exist between putative deviations from GR and both the modelling
of the accretion flow and the uncertainties on the BH mass and spin.

However, photon rings are increasingly coming into focus as the cleanest probe of
BH spacetimes in the context of shadow images [Vin+22; Pau+22; Bro+22b; Tie+22;
Koc+24; BSG23; Pal+23; Joh+23; SBG24; CAnL23; Lup+24; Gal+24; Jia+24; SP24]. The
VLBI images of M87* and SgrA* in Fig. 4.4 mainly capture the direct emission, i.e. the
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light rays emitted in the disk which are not winding around the BH but directly
reach the observer. The direct emission highly depends on the emission profile of the
disk, and thus the astrophysical environment of the BH. In contrast to that are the
(higher-order) photon subrings contained within the bright ring structure circling the
shadow, see Fig. 4.8 for a graphical representation.9

FIGURE 4.8: We show the decomposition of a full BH shadow image
with a bright ring circling a shadow into its direct emission’s com-
ponent (n = 0) surrounding the inner shadow and its stacked set of
photon subrings. The leading n = 1 subring and its next-to-leading
n = 2 subring are represented, while the ellipsis indicates the presence

of higher-order photon subrings n > 2. Taken from [Joh+23].

Photon rings are intimately connected to the presence of a 2D photon sphere (in
spherically symmetric and static BHs) or a 3D photon shell, its generalisation for
an axisymmetric and stationary spacetime. As an example in GR, the axisymmetric,
stationary and asymptotically flat Kerr BH possesses both an event horizon and a pho-
ton shell defined analytically in Eqs. 2.10 to 2.12 and discussed in Sec. 2.2. The proof
of the existence of photon shells extends beyond GR to any stationary, axisymmetric,
asymptotically flat BH spacetime in 4D in [CH20; CRE24].10 Additionally, photon
shells can exist around particularly compact ECOs, namely UCOs and ClePhOs, as
reviewed in Sec. 3.7.

Free-falling photons contained within a photon shell travel on unstable, bound
null geodesics or “bound orbits” which, once perturbed, can either fall into the
central compact object or escape towards infinity and potentially reach an asymptotic
observer. “Nearly bound” photons on those trajectories that fall into the event horizon
give rise to the shadow. Escaping photons on nearly-bound trajectories get strongly
lensed: they first wind around the BH a certain number of times (up to infinitely
many times when the photons approach fully bound orbits) before escaping from the
gravitational pull of the compact object and potentially reaching radio telescopes on
Earth. For geometrically thick, optically thin disks, those strongly lensed, escaping
photons lead to a nested set of lensed images of the compact objects’ surroundings
labelled by a set of integers n ∈ [1, ∞[. The integer label n can be defined as the
number of times a given photon emitted in the accretion disk and following a nearly-
bound, strongly lensed trajectory crosses the equatorial plane before escaping. For

9In the sequel, we will omit the prefix “sub” in “photon subrings” and use “photon rings” instead.
These should, however, not be mistaken for the bright photon ring circling the shadow, as the latter is
composed of both the photon rings and the direct lensed emission.

10The proof has only been given assuming circularity (see Chapter 6 for a discussion of that spacetime
isometry). It is yet unknown whether it extends to non-circular spacetimes.
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stationary and axisymmetric spacetimes, it amounts to counting the number of times
the polar angle θ takes the value θ = π

2 defining the equatorial plane.
The n = 0 contribution is usually referred to as the weakly lensed direct emission

and dominates the brightness of the ring feature in the shadow image. The direct
emission is thus highly sensitive to the physics of the accretion disk or, more broadly,
the astrophysical environment of the compact object. In contrast, the high-order
photon rings, i.e. n ≥ 1, are asymptotically insensitive to the astrophysics of the
emission region. The n → ∞ photon rings asymptote to the critical curve bounding
the shadow in the image. The critical curve is the theoretical curve in the image
plane delineating the boundary between photons captured by the source and lensed
photons winding around the source before escaping away. The critical curve thus
relates to the critical impact parameter bc, see Fig. 4.9 in spherical symmetry. It is
solely defined by the background spacetime geometry on which free-falling, nearly-
bound photons travel. Therefore, the fact that higher-order photon rings are quite
insensitive to the astrophysical environment, thus encoding direct information about
the background geometry, makes them suitable signatures of the spacetime metric.

FIGURE 4.9: We provide a schematic view of the formation of photon
rings on the image plane of an asymptotic, face-on observer located at
r → ∞ (on the far right) for a spherically symmetric and static BH with
a simple accretion disk (in orange). The shadow is represented by a
black disk with radius rh and the photon sphere (blue circle) lies at rγ.
The emission from the accretion disk is dominated by the direct flux
(red curve labelled by n = 0) emitted at an effective radius re. Strongly
lensed photons emitted at re reach the observer after one half-orbit
(dashed blue curve labelled by n = 1) or two half-orbits (dashed green
curve labelled by n = 2), leading to the n = 1 and n = 2 subrings. The
n → ∞ subring defines the critical curve on the image with impact
parameter bc, which the n = 2 subring already tracks closely. Taken

and adapted from [Wie21].

While higher-order photon rings are clean probes to test the Kerr paradigm with
alternatives, the way to reliably detect them is fraught with difficulties.

One of them arises as we do not yet have access to sufficiently large baselines to
narrow down the location and shape of the n ≥ 1 photon rings. Another difficulty
lies in the dimming and the reduced thickness of each subsequent photon ring as
it gets exponentially closer to the critical curve when n increases, as illustrated in
Fig. 4.10. While the intensity of each subsequent photon ring increases, the photon
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FIGURE 4.10: We show the image cross-sections of a bright ring for a
time-averaged GRMHD simulation of M87* consistent with the 2017
EHT data. Top panel (A): brightness cross-sections whose blue (red)
curves correspond to cross-sections perpendicular (parallel) to the
projected spin axis. Bottom panels (B and C): decomposition of the
left perpendicular peak (in blue) and the right parallel peak (in red)
into the brightness associated with direct emission and the first three
photon rings labelled by n = 1, 2, 3. Similar results are also seen in
image cross-sections of simple geometrical models of rings. Taken

from [Joh+20].

ring becomes narrower, thus leading to an exponential dimming in flux [Joh+20]

Fn+1

Fn
≈ e−γ (4.5)

controlled by the Lyapunov exponent γ. Higher-order photon rings being fainter and
fainter in GR, they require higher and higher sensitivity of radio telescopes and image
dynamical range. Alternative spacetimes might have photon rings with comparable
fluxes, c.f. Sec. 4.2.
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4.2 Characteristic image features of spacetimes beyond Gen-
eral Relativity

The BH shadow images of M87* and SgrA* in Fig. 4.4 are both consistent with a Kerr
black hole predicted by GR. However, as discussed in Sec. 4.1, we do not yet have
access to the resolution and sensitivity needed to gauge the existence of an event hori-
zon11 and the failures of GR in the interior of BHs motivate possible alternatives such
as regular BHs [Lam+18; Vin+21; KG21; EH21b; EH21a; EHJ23; KWGM22; KW23;
LW22; Isl+23; Guo+23; Olm+23; DMDMRG23; QWF24; Zar+24], horizonless (ultra)
compact objects [EH23; EHJ23; Cun+17; EGH23; Gue+22b; CRCY22], wormholes
[ORGG22; Gue+22a; NPP23; Olm+23] and BHs in theories beyond GR [Gyu+21;
Sen+23; Daa+23; HKM24], broadly reviewed in [Ayz+23].

Because images of compact objects result from the combination of a spacetime
geometry and an astrophysical environment, distinguishing a Kerr BH from an
alternative compact object remains difficult [LVB21; YPO23; KR22; CAnKL24]. As
discussed in Subsec. 4.1.4, this is where photon rings enter the scene as smoking guns
of new physics: they can shine a light on the underlying spacetime geometry of the
central compact object.

Photon rings of GR BH spacetimes are known analytically and their separation
and flux density decrease exponentially as their winding number n increases. This
makes them hard to detect by VLBI arrays with current capabilities. However, many
alternative compact objects produce photon rings’ structures which differ from the
ones predicted by GR. They can be distinct in at least four ways, which we focus on:

• there can be an additional (inner) set of photon rings arising from trajectories
that approach the photon sphere from the inside or bounce off the object’s
surface in horizonless spacetimes [Sha+19; Gyu+20; EH23; EHJ23; EGH23;
CRCY22; Gue+22a; Gue+22b; MS24];

• subsequent photon rings may have similar flux densities when absorptivity
is set to zero and the peak intensity increases with n, thus being more easily
detectable [CRCY22];

• photon rings may be more widely separated than in GR [Bro+22a; Pau+22;
Tie+22; LG22; CR+24; ATP24; MS24], thus being more easily resolvable;

• photon rings may simultaneously harbour cusps, dents and lack of (image) re-
flection symmetry in spacetimes with fewer symmetries than GR ones, e.g. non-
circular spacetimes [VH10; Vig10; HGE19; Min20; Ans+21; BA+20; EH21b;
EH21a; DEH22].

To produce simulated images12 of spinning spacetimes with those “smoking gun”
photon rings with a reasonable computational costs, we rely on one of the semi-
analytic emission models mentioned in Subsec. 4.1.2. In this model, e.g. used in

11Actually, event horizons are not observables that can be detected in a finite amount of time, contrary
to apparent horizons [Vis14]. However, the apparent and event horizons coincide for stationary black
holes whose event horizon is a Killing horizon, and one can thus loosely use one for another in that
case.

12Images of compact objects can be split into two main categories: real images that are reconstructed
from observational data and simulated images reconstructed from simulated data. The latter category
further divides into two subcategories: ideal simulated images at very high resolution and simulated
images reconstructed from simulated data through a simulated observation, i.e. taking into account the
limited capabilities of the VLBI arrays. In this thesis, we solely focus on simulated images, ideal or not.
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[DEH22; CR+24], the emission in the disk is accounted for in a disk profile defined by
a number density function (c.f. [Bro+22a; EH21a; EGH23])

n(r, θ) = n0r−αe−
cos θ2

2h2 ·


0, r < 0

e−
(r−rcut)

2

ω2 , 0 ≤ r ≤ rcut

1, r > rcut,

(4.6)

parameterised by the disk height h, the radial location rcut and the sharpness ω of
the exponential inner cutoff, the power-law exponent α of the large distance radial
falloff and a global normalisation factor n0. The rotation of the disk is set by the fluid
velocity (in BL coordinates)

uµ = u0
(
−1, 0, 0, ũϕ

)
, (4.7)

whose azimuthal part, a.k.a polar angular momentum, corresponds to ũϕ = R
3
2

1+R with
R = r

√
1 − cos θ2 and whose normalisation factor u0 is chosen such that uµuµ = −1.

The number density function enters the radiative transfer equation which, assuming
finite, frequency-independent emissivity and vanishing absorptivity (i.e. optically
thin disk), reads

d
dλ

(
Iν

ν3

)
= Cn(xµ(λ)). (4.8)

It is expressed in terms of a dimensionful global constant C and the emission fre-
quency ν. This equation describes how the frequency-dependent intensity Iν changes
along null geodesics xµ(λ) (affinely parameterised by λ) followed by light rays in
the relativistic fluid of the accretion disk. The global constant C · n0 drops out when
normalising the intensity profile on the image to the brightest point.

Geodesics on which photons travel are computed via analytical or numerical
(when the geodesic equations are not integrable) ray tracing whose principle is
the following: an observer located at (robs, θobs, ϕobs) (in BL coordinates) far away
from the central compact object (i.e. robs ≫ M) places their observational 2D screen
with coordinates (x, y) whose origin matches (robs, θobs, ϕobs). The image plane is
set perpendicularly to the vector starting at (robs, θobs, ϕobs) and pointing towards
the central compact object. Geodesics are sent perpendicularly to the screen of the
observer and integrated backwards in time, i.e. from the observer towards the central
compact object.13

Assuming that the central compact object is a spinning BH, all geodesics that fall
into the photon shell and end up crossing the event horizon without intersecting
the accretion disk will correspond to a point lying within the central brightness
depression in the image for small inclination angles.14 All geodesics falling into
the photon shell on unstable orbits and intersecting the accretion disk a certain
number of times before escaping to infinity will pick up emission from the disk
and give a bright point located outside of the central brightness depression in the
image. As a result, sending and ray-tracing sufficiently many geodesics with different
initial conditions will produce an image of the compact object with a generic central
brightness depression surrounded by a bright ring feature. If the compact object is
horizonless, additional features can occur in the image. Photons approaching the

13As a side note, a forward ray tracing method was proposed in [Zho+24] to better trace and track
hotspots in a Kerr BH.

14The shape and “darkness” of the central brightness depression of a rotating BH varies with the
inclination angle as the latter departs from 0◦, see e.g. [Psa19].
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object’s surface before escaping are highly gravitationally redshifted, such that they
can also appear “dark” in the image and produce a central brightness depression.
However, the “darkness” of the latter is (much) less pronounced than for a BH, see
e.g [EH23], as additional (inner) photon rings can form within the central brightness
depression and illuminate it. Those additional inner photon rings result from photons
approaching the photon shell from the inside, i.e. from smaller radii.

4.2.1 Non-circular spacetimes

Specific image features can be connected (though not necessarily in a one-to-one way)
to fundamental principles of spacetimes such as their symmetries. Hence, establish-
ing a connection between reduced symmetries of some spacetimes beyond GR and
specific photon ring features would tentatively give (though not necessarily conclu-
sively) insight as to whether or not M87* and SgrA* are described by the stationary,
axisymmetric and asymptotically flat – thus highly symmetric – Kerr spacetime.

As a first example, a distinguishing feature of stationary and axisymmetric space-
times is that their shadow boundary is flattened on the prograde side compared to
shadows of static and spherically symmetric spacetimes.

As another example, images of BH spacetimes based on the regularity and the
locality principle in [EH21b; EH21a] exhibit, c.f. left panel in Fig. 4.11:

• cusps in the shadow boundary and photon rings;

• a dent in (the photon rings surrounding) the shadow boundary, i.e. in the y = 0
image axis;

• a broken reflection symmetry about the y = 0 image axis at non-edge-on and
non-face-on inclinations.

Simulatenously, those axisymmetric and stationary spacetimes break circularity, a
symmetry defined as

ξ
[µ
1 ξν

2∇κξ
λ]
1 =0 at at least one point,

ξ
[µ
2 ξν

1∇κξ
λ]
2 =0 at at least one point, (4.9)

ξ
µ
1 R [ν

µ ξκ
2ξ

λ]
1 =0 everywhere,

ξ
µ
2 R [ν

µ ξκ
1ξ

λ]
2 =0 everywhere, (4.10)

in terms of the two commuting, spacetime Killing vectors ξ1,2 [Car70], the Ricci tensor
Rµν, the covariant derivative ∇µ and the antisymmetrisation of indices enclosed in
square brackets. For asymptotically flat spacetimes, which we consider, axisymmetry
implies the existence of an axis of rotation on which the Killing vector, e.g. ξ2, asso-
ciated with azimuthal rotations must vanish. Hence, for the considered spacetimes,
the two first conditions Eq. 4.9 always hold. Together with the latter two conditions
Eq. 4.10, they imply the existence of a spacetime isometry which, in BL coordinates,
corresponds to the invariance under the simultaneous transformations t → −t and
ϕ → −ϕ [ABCG06]. Owing to its Ricci-flatness Rµν = 0, the Kerr spacetime naturally
fulfils the circularity conditions Eqs. 4.9 and 4.10 and is thus circular.

Although no one-to-one correspondence has been established between these
specific three photon rings’ features and the breaking of circularity, we are only aware
of circular spacetimes that show none or one of the three image features, but not all



62Chapter 4. Current and future imaging tests of spacetimes beyond General Relativity

FIGURE 4.11: We show a full image of a non-circular regular BH
(top panel) and a detailed view of the prograde image side (spacetime
spinning towards the observer) for a non-circular (left panel) and a
circular (right panel) regular BH. The white dashed rectangle indicates
the (prograde) region in the full image where we focus on in the
detailed views. Successive photon rings stack exponentially towards
the shadow boundary from left to right in each image. The images
are obtained by a numerical ray tracing code developed by A. Held
and radiative transfer of a semi-analytical emission model, c.f. [EH21a,
Eq. (3.4)]. The image intensity is normalised to the brightest image
point. The non-circular and circular spacetimes are given in [DEH22,
Eq. 6], with mass functions Mnon−circular(KGR) = M e−(ℓ4

NPKGR(r,χ))1/6

and Mcircular(KGR) = M e−(ℓ4
NPKGR(r,0))1/6

, respectively. We choose a
large spin a = 0.9G0M and a near-extremal new-physics scale ℓNP =
0.1188 G0M. All quantities are given in units of G0M with M the

classical asymptotic BH mass.

three in combination [DEH22]. Thus, the detection of all three photon rings’ features
in a BH shadow image by future VLBI observation campaigns may indicate that BHs
are non-circular or, in other words, that circularity is a principle that characterises
BH spacetimes in nature. Moreover, as circularity appears in particular modified
gravity theories which deviate perturbatively from GR [Xie+21], observing signatures
of non-circularity in photon rings can help ruling out these theories and narrow down
the set of theories compatible with observations.
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4.2.2 Photon rings’ features

Apart from modifying their shape, new physics beyond GR can also impact the struc-
ture of photon rings and lead to substantial deviations. The latter may be detectable
by future VLBI arrays, provided that several of the following improvements are made
[CR+24]:

• the addition of a space-based radio telescope;

• the extension of the current VLBI array with many new sites;

• the increase in sensitivity of all radio telescopes in an extended array;

• the combination of observations at lower and higher frequencies than 230 GHz;

• the use of high-performance super-resolution techniques.

Photon rings in regular BHs are more widely separated than in GR, under the
conditions spelt out in [EHJ23], as shown by comparing the first two rows in Fig. 4.12.
Regular BHs, reviewed in [Tor22; Bam23; Lan+23], have been proposed as phe-
nomenological models for BH spacetimes beyond GR [Hay06; SV19a; CR+20; MFL21;
SV22; CR+23b]. In regular spinning BHs, the classical, central curvature singularity
is tamed by upgrading the ADM mass to a mass function which (i) asymptotes to
the Kerr ADM mass at infinity and (ii) goes to zero in the BH core. This phenomeno-
logical model captures the expected physics of singularity resolution beyond GR,
namely a weakening of gravity through quantum fluctuations or appropriate (exotic)
matter fields. As gravity is weakened, both the event horizon and the photon shell
are shifted inwards with respect to their classical locations. Thus, photons on null
geodesics circling a regular BH in its photon shell are pulled further inwards more
strongly if they orbit closer to the BH, leading to an increased relative separation
between photon rings [EHJ23].15

Photon rings can also be more widely separated in parameterised spacetimes
beyond Kerr, even if they have the same ADM mass and are embedded in the same
accretion disk as Kerr. In those parameterised spacetimes beyond GR, deviations from
the Kerr geometry are encoded in general deviation functions whose (new) parame-
ters relate to new-physics effects and spacetime symmetries. Within the parameter
space of the circular Konoplya-Rezzolla-Zhidenko (KRZ) parameterisation [KRZ16],
there are instances whose photon-ring separation is significantly larger than that of a
Kerr BH with the same mass and accretion disk, as shown in the third row of Fig. 4.12.
The fact that it is now the absolute separation between photon rings that increases and
not the relative one, as for regular BHs discussed above, originates from differences
in the construction of both underlying spacetimes. Whereas regular BHs discussed
above are constructed and regularised through a mass function encoding a weaken-
ing of gravity, a physical phenomenon, the KRZ parameterisation contains generic
deviation parameters which can be tuned to produce desirable results, e.g. enlarging
the photon shell.

Finally, horizonless spacetimes can feature a more complex photon ring structure
than the two previous BH spacetime types. Indeed, the absence of an event horizon

15We distinguish absolute separation from relative separation of photon rings. At a fixed ADM mass, the
shadow boundary of such regular BHs has a smaller diameter than of a Kerr BH, and so the absolute
separation of photon rings is not necessarily larger than in Kerr. However, if one picks a different (larger)
ADM mass so that the shadow boundary has the same diameter, then also the absolute separation of
photon rings increases. Hence, it is the relative separation, i.e. the separation normalised to the shadow
boundary diameter, that always increases.



64Chapter 4. Current and future imaging tests of spacetimes beyond General Relativity

allows for a secondary (inner) set of photon rings labelled by another integer m > 0.
There is an infinite number of secondary photon rings in the presence of a photon
shell, arising from strongly lensed photons on trajectories approaching the photon
shell from the inside. This can happen in regular black-hole spacetimes at supercritical
spin parameter or supercritical new-physics scale or naked singularities [Sha+19;
Gyu+20; ORGG22; EH23; EHJ23; EGH23; Gue+22a; Gue+22b] or in horizonless
spacetimes with a fully reflective surface [CRCY22]. In the absence of a photon shell,
only a finite number of secondary rings are formed [EHJ23]. Additionally, the n = 1
and m = 1 can be well separated and have comparable flux densities, c.f. the bottom
row of Fig. 4.12 or a perfectly reflective surface in [CRCY22].

4.3 Disentangling photon rings with future radio telescope
arrays

We have shown in Subsec. 4.1.4 that high-order photon rings are a clean probe of
the spacetime geometry photons travel on, and in Subsec. 4.2.2 that they could be
smoking guns of new physics beyond GR. Indeed, we highlighted in Subsec. 4.2.2 that,
beyond GR, images containing two or more photon rings that are widely separated
and with comparable flux densities can occur. These features motivate a study on
the ability of current and future VLBI arrays to detect two such rings, irrespective
of the theory beyond GR. We move one step forward in this direction in [CR+24] by
considering a simple geometric model of the flux density in two thin rings. In this
section, we thus assess whether we can disentangle two photon rings with current
and future radio telescope arrays in synthetic images using simple geometric models.
This is the scope of our work [CR+24].

4.3.1 Synthetic data and geometric ring models

Images of BHs are reconstructed from complex visibility data, which is directly re-
lated to the Fourier transform of the flux density collected by VLBI radio telescopes.
Each pair of radio telescopes defines (a series of) baselines, to which discrete, complex
visibilities are associated. We define our geometric model of two thin rings in the
image plane and map it to the Fourier plane, denoting it by synthetic data.

Our synthetic data depends on 6 parameters: 4 are left free and 2 are held fixed at
values inspired by the VLBI observations of M87* released by the EHT collaboration
[Aki+19a].
The first parameter entering our model is the total flux density Ftot in the image, which
is kept fixed to Ftot = 0.7 Jy inspired by the VLBI observation of M87* [Aki+19d].
The second parameter ∆F is the (dimensionless) relative flux density between the
two thin rings, i.e.

∆F =
F2

F1
, (4.11)

where Fi is the flux density in the ith-ring such that Ftot = F1 + F2. The respective flux
densities are thus

F1 =
Ftot

1 + ∆F
, F2 =

Ftot

1 + 1/∆F
. (4.12)
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FIGURE 4.12: For each type of spacetimes discussed in the main
text, we show three shadow images generated in [DE24], from the
ideal image (left column) to the ideal image along with a Gaussian
blurring of variance σblur = 5 µas (middle column) and finally with
a Gaussian blurring of variance σblur = 10 µas (right column). As
FWHM = 2

√
2 ln 2 σblur, the variances of the Gaussian blurrings cor-

respond to FWHMs of ∼ 12 µas and ∼ 24 µas (within the current
nominal EHT resolution), respectively. Top row: Kerr BH with spin
a = 0.99 G0M. The image is generated with a disk model as in [EH23,
slow falloff model in Tab. 1]. Second row: regular BH with exponential
falloff function, see e.g. [EH21b, Eq. (3)]. Third row: circular [Pap66]
deformation in the KRZ parameterization [KRZ16] of a Kerr BH with
spin a = 0.9 G0M and a single deformation parameter b01 = 5. Bottom
row: marginally overspun (with a = 1.01 G0M) and thus horizonless

regular spacetime, cf. [EGH23].

The four other parameters characterise the geometry of the rings in the image. The
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outer ring is kept at a fixed diameter d1 = 42 µas16 which matches the inferred
diameter of the bright ring feature in the image of M87* [Aki+19a].17 We do not vary
the widths ω1,2 of the two rings but keep them small, to match the expectation of thin
(higher-order) photon rings, which both holds in GR (c.f. first row in Fig. 4.12) and
beyond GR (c.f. all other rows in Fig. 4.12). Finally, we implicitly vary the diameter of
the second/inner ring d2 through the variation of the separation

s =
d1 − d2

2
(4.13)

between the two rings. The resulting synthetic data is thus radially symmetric which,
although producing a good approximation of spherically symmetric spacetimes
(apart from the brightness asymmetry in the ring, which we do not account for in the
present study), does not accurately describe highly spinning spacetimes in which the
shadow boundary and the photon rings flatten on the prograde side.

From the four motivation examples shown in Fig. 4.12, it appears that the relative
flux density ∆F and the separation s are the most relevant parameters to assess the
detectability of two rings, at least in the thin-ring limit that we adopt. We thus
mark the location of all four motivating examples of spacetimes on a (s, ∆F) plane in
Fig. 4.13.

To generate synthetic data, the above 6 parameters enter a flat flux density profile
for each of the two radially symmetric rings. The flat flux density profiles are defined
in terms of an auxiliary function

µ(r; d, ω) =
1

πdω
Θ
(

d+ω

2
−r
)

Θ
(

r− d−ω

2

)
, (4.14)

normalised such that ∫ ∞

0
dr 2πr

∫ 2π

0
dθ µ(r; d, ω) = 1. (4.15)

The resulting total flux density profile combines two flat rings given by a function of
the radius in the image plane as

FCresc(r) =
Ftot

1 + ∆F
µ(r; d1, ω1) +

Ftot

1 + 1/∆F
µ(r; d1 − 2s, ω2). (4.16)

The subscript refers to the crescent profile introduced in [KD13] on which the flat flux
density profile is based. Note that we parameterise the flux density profile in terms
of the total flux density in the image and the total flux density in each ring, instead of
peak flux densities. While our parameterisation is less simple than one using peak
flux densities, it is closer to the EHT observations which are sensitive to the total flux
density in the image. The prefactors correspond to the total flux density in each ring,
i.e. F1,2 defined in Eq. 4.12, such that∫ ∞

0
dr 2πr

∫ 2π

0
dθFCresc(r) = Ftot. (4.17)

16 Although lengths, such as diameters, are usually given in the SI unit of metres, here we adopt
astronomical conventions and explicitly write them in angular units of µas. This owes to the fact that
astrophysical objects, e.g. supermassive black holes, are located far away from us at a distance D such
that their characteristic lengths d subtend small angles θ ≈ tan θ = d

D expressed in µas.
17We use outer/1 and inner/2 interchangeably.
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FIGURE 4.13: We visualise the locations of our four motivating exam-
ples in the (s, ∆F) projection of the 2-ring model’s parameter space: the
different markers correspond to the expected parameter values of the
four spacetimes in Fig. 4.12, i.e. Kerr, regular black holes, parametric
deformations and horizonless objects, respectively. The data points are
obtained by minimising the divergence between a Gaussian two-ring
model, see App. A.1, and the obtained synthetic image. The black lines
indicate lines along which we perform our analysis in Subsec. 4.3.4.

With the total flat or crescent profile at hand, we produce a synthetic image
by discretising it on a grid. We define the image plane with Cartesian coordinates
(x, y), where x refers to the relative right ascension (rRA, in µas) and y to the relative
declination (rDEC, in µas), in which the origin (x0, y0) = (0, 0) matches the centre
of our two thin rings. We then construct synthetic image data by discretising the
flat flux density profile into an effective 2D square array of pixels (xk, yk, F(xk, yk)),
where the index k runs from 1 to the square of the number of pixels N2

pix. Hence, each
pixel in our effective square array carries a flux density F(xk, yk).
The Field of View (FOV, in µas) of our image is determined by the spans of the x-axis
(y-axis) which are symmetric, equal and centred on x0 = 0 (y0 = 0 respectively). It
corresponds to

FOV = (Npix − 1) · δθ, (4.18)

where δθ is the pixel “length” (in µas). As a result, our synthetic data are entirely
determined by the crescent profile in Eq. 4.16, which has an analytically known form
in the Fourier plane [KD13]. This naturally provides us with an analytical fitting
function in the Fourier plane, once the synthetic data are passed on to simulations
with chosen VLBI arrays.

We do not consider other total flux density profiles in our analysis because we
focus on the thin ring limit in which the widths of the two rings are small compared
to their diameters ωi ≪ di, and hence the type of radially symmetric profile does
not matter, c.f. Fig. A.1. Finally, we emphasise that we do not account for the broad,
diffuse direct emission from the accretion disk and discuss this limitation in the
conclusions in Subsec. 4.4.1.
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4.3.2 Visibilities in the Fourier plane

The complex visibility is defined as the Fourier transform of any continuous intensity
profile in the image plane

V(u, v) =
∫ ∫

dx dy I(x, y) e−
2πi(ux+vy)

λ , (4.19)

where λ is the wavelength of observation, (x, y) are angular coordinates on the sky,
(u, v) are projected (on the plane orthogonal to the direction of the source) baseline
coordinates in the Fourier plane. I(x, y), in units of 1026 Jy · sr−1, is the continuous
intensity profile related to the flux density profile by a dimensionless factor of solid
angle in steradian (sr), see below. It is standard to express the projected baselines
(u, v) in units of 109 · λ (i.e. Gλ).

In practice, a VLBI array does not sample V(u, v) continuously due to its sparse
uv-coverage. Thus we define the discrete visibility counterpart as

Vij = V(uij, vij), (4.20)

where (uij, vij) is the 2D vector of projected baselines associated with stations i and j
in the array.

Calculating the discrete visibility Vij analytically is only possible for particularly
simple choices of synthetic data such as the crescent model [KD13] on which our
fitting flux density profile FCresc is based. The discrete visibility Vij, Cresc of a single
disk of radius R is based on the Fourier transform of a constant intensity I0 in the
disk, namely

Vd(k, F0, R) = πR2 I0
2J1(k R)

k R
, (4.21)

where J1 is the Bessel function of the first kind of order 1. Because a disk produces a
radially symmetric flux density in the image plane, the resulting Fourier transform
does not depend on u and v separately, but only through the combination

k =
2π

λ

√
u2 + v2. (4.22)

Based on Eq. 4.21, [KD13] explicitly derives the visibility amplitude for a 1-ring, flat
flux density profile, by subtracting the visibility amplitude of two disks with outer
radius Router and inner radius Rinner as

V(k) =
2π I0

k

[
Router J1(kRouter)− Rinner J1(kRinner)

]
=

2F0

k
(

R2
outer − R2

inner

)[Router J1(kRouter)− Rinner J1(kRinner)
]

. (4.23)

The complex visibilities for the 2-ring model are obtained by adding two visibilities
of the type Eq. 4.23, resulting in

V(k) = V1(k) + V2(k)

=
2π I1

k

[
Router,1 J1(kRouter,1)− Rinner,1 J1(kRinner,1)

]
+

2π I2

k

[
Router,2 J1(kRouter,2)− Rinner,2 J1(kRinner,2)

]
. (4.24)
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where the intensities are related to the flux densities used in the previous section as
Ij = Fj/π(R2

outer,j − R2
inner,j) and the radii are expressed in µas (c.f. Footnote 16) in

terms of the physical parameters as

Router,1 =
d1 + ω1

2
,

Router,2 =
d1 − 2s + ω2

2
,

Rinner,1 =
d1 − ω1

2
,

Rinner,2 =
d1 − 2s − ω2

2
.

(4.25)

Since we restrict our analysis to the thin-ring regime, we can first gain some
intuition from the strict limit of infinitely thin rings in which the complex visibility is
[Joh+20]

Vthin rings(k) = F1 J0

(
k d1

2

)
+ F2 J0

(
k d2

2

)
. (4.26)

For large real argument, x ≡ k d1,2 ≫ 3/4, the 0th-order Bessel function of the first
kind J0 can be expanded as

J0(x) ≃
√

2
πx

[
cos

(
x − π

4

)
+O(|x|−1)

]
. (4.27)

For one infinitely thin ring, the visibility amplitude corresponds to a damped os-
cillation whose period is set by the inverse diameter 1/d1,2. For two infinitely thin
rings, where the separation s is not much smaller than the diameter (cf. Fig. 4.13), two
damped oscillations are superposed.

When the two infinitely thin rings have comparable flux densities, the zeros of
the total visibility amplitude can lie at rather distinct locations from those of the
two individual rings, see the top panel in Fig. 4.14. In such a case, it is easier to tell
the two rings apart. However, for some more challenging cases, e.g. the n = 1 and
n = 2 photon rings with ∆F = 0.1 in Fig. 4.13, the outer (e.g. n = 1) ring carries the
largest part of the flux density and thus dominates the visibility amplitude, as shown
in the middle panel in Fig. 4.14. In that case, the second ring only leads to a slight
modulation of the overall visibility amplitude and shifts the locations of the zeros
somewhat, but cannot fully remove them (at least in the range of k that we consider
and for ring diameters which are of the same order of magnitude as we consider
here), see the bottom panel in Fig. 4.14.

So far, we only discussed idealised situations in which the visibility amplitude
data was either continuous or discrete but dense, and where the baselines were not
particularly constrained. However, data from an actual observation with a VLBI array
such as the EHT differs from the above idealised cases in several ways. Firstly, the
combination of limited baselines (e.g. by the Earth) and observing frequency (by
the atmosphere and source) sets an effective cutoff on the sampling of the complex
visibilities, i.e. it limits the maximal resolvable uv-baseline. For any Earth-based VLBI
campaign, the baseline is necessarily limited by Earth’s diameter and the frequency by
atmospheric scattering, see e.g. [Aki+19b]. This constrains us to consider k ≲ 8.5 Gλ
at λ = 1.3 mm. Secondly, the finite number of telescopes forming the array leads
to a sparse sampling of the complex discrete visibility. Nonetheless, the projected
baselines change during an observation campaign thanks to the rotation of the Earth.
As a result, several data points in the uv-plane can be obtained from a single pair of
telescopes, improving the uv-coverage. Finally, the finite sensitivity of each telescope
causes additional thermal noise and systematic errors in each observational data point
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FIGURE 4.14: We show the analytic expressions of the visibility am-
plitude for infinitely thin rings with Ftot = 1 Jy, see Eq. 4.26, for three
relative flux densities ∆F = 1 (top panel), ∆F = 1

9 ≈ 0.1 (middle
panel) and ∆F = 3

7 ≈ 0.4 (lower panel). An outer infinitely thin ring is
represented by a red dashdotted line, an inner infinitely thin ring by a

blue dashed line and the combination of both by a magenta line.

which are encoded in the SEFD (see Eq. 4.3). As a result, the lower the SEFD, the
smaller the respective thermal noise. VLBI arrays also yield systematic errors that can
be factorised as frequency- and time-dependent multiplicative station-based “gains”.
Under some assumptions, we can get rid of those systematic gains using closure
amplitudes, see Subsec. 4.3.5.

To capture the effects departing from the ideal scenario and thereby gain first
quantitative insight into the detectability of multi-ring features, we: (i) take the
theoretical model defined above (i.e. the total flat flux density profile Eq. 4.16 and
its corresponding visibility Eq. 4.24), and (ii) generate synthetic visibility data that
would be obtained by a given telescope array. To do so, we use the ehtimaging toolkit
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[Cha22], cf. also [Cha+18] for further details of the capabilities of ehtimaging. We
summarise the set of radio telescope arrays used in our exploratory study in Tab. 4.1.
The detailed tables of telescope sites and SEFD values required to reproduce our
results are provided in App. A.3.

Arrays Total number of sites Frequencies νobs (GHz) SEFD values (Jy) of the new sitesa

EHT 2022 11 230 See values in Tab. A.1
EHT 2022 11 230 & 345 See values in Tab. A.1

ngEHT-230-low-SEFD 19 230 74 (low; ALMA value)b

ngEHT-230-high-SEFD 19 230 19300 (high; SPT value)c

ngEHT-dualfreq-low-SEFD 19 230 & 345 250 (low; ALMA value)b

ngEHT-dualfreq-high-SEFD 19 230 & 345 44970 (high; KPNO value)c

ngEHT-230-space 19 + 1d 230 74 (low; ALMA value) & 36600 (space)e

ngEHT-dualfreq-space 19 + 1d 230 & 345 250 (low; ALMA value) & 56000 (space)e

a The new sites are defined as all the Earth-based sites added to the EHT 2022 array.
b See the detail of all SEFD values in Tab. A.2.
c See the detail of all SEFD values in Tab. A.3.
d The “+1” refers to the space-based site.
e SEFD values for the space-based site at 230 and 345 GHz are estimated from Tab. 1 in [Roe+19].

TABLE 4.1: We tabulate the specifications of different VLBI arrays used
in the complex-visibility analysis. The number of sites determines how
sparse the sampling of the Fourier plane is. The frequency influences
the maximum uv-distance that is effectively resolved. The SEFD is a
measure of the sensitivity of each telescope, hence the quality of single
data points in the Fourier plane: high SEFD values thus correspond
to worse data quality. The labels “low” and “high” in the arrays
refer to the SEFD value of the new sites. More details on the array

specifications are given in App. A.3.

The first radio telescope array we consider is the one used in the 2022 observation
campaign of the EHT, hence the name EHT 2022. It includes 11 radio telescopes
operating at 230 GHz. However, as the SPT cannot “see” M87* due to the sky-location
of the latter, only 10 radio telescopes effectively contribute to acquire data. Next, we
consider upgrades of this array by adding 8 new telescope sites that are discussed
as part of the ngEHT proposal [Joh+23; Doe+23]. Finally, we also include a single
space-based telescope (ngEHT-space) to quantify the potential gain in detectability
as compared to purely Earth-based observation campaigns. In addition to alter the
number of sites and their locations, we also vary:

• the observation frequency from the current 230 GHz to 345 GHz, as proposed
by the ngEHT initiative [Joh+23], the BHEX mission [Joh+24] and planned for
any upgrade of the EHT;

• the SEFD values for the additional ngEHT sites (those of the EHT 2022 array are
known, c.f. [Aki+19b; Bro] and App. A.3). To investigate the effect of varying
SEFD values in the additional ngEHT sites, we distinguish between one set of
lower and one set of higher SEFD values, dubed low-SEFD and high-SEFD,
respectively. For the low-SEFD case, we assume that all future ngEHT sites can
reach the SEFD value of ALMA, the most sensitive site in the EHT 2022 array.
For the high-SEFD case, we assume that the future ngEHT sites are limited to
the SEFD value of SPT/KP, the least sensitive sites in the EHT 2022 array.

With this selection of reference arrays at hand, we use ehtimaging to generate syn-
thetic data for each set of model parameters corresponding to the 2-ring model
specified in Subsec. 4.3.1. In particular, we perform scans along each of the four rays
indicated in the (s, ∆F) plane in Fig. 4.13.
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4.3.3 Disentanglement’s method

To decide about the detectability of the second ring, we fit the synthetic dataset (i.e.
the visibility amplitude in Fourier space) with both a 1-ring and a 2-ring model.
To perform the fits of the visibility amplitude, we use the lmfit python package
[New+16] which minimises the least-square residuals between data points and fitting
function while taking into account the error budget at each data point. With the 1-ring
and 2-ring fits at hand, we perform a statistical test to quantify whether the 2-ring fit
is favoured over the 1-ring fit.

The non-linear nature of the problem, in the sense that a fit to visibility amplitude
data cannot be written as in [ASHM10, Eq. 4], makes using a reduced chi-squared
test questionable [ASHM10]. Alternatively, we choose to determine the respective
minimised residuals and perform a 2-sample Kolmogorov-Smirnov (KS) test. The
latter returns a p-value which, when compared to the set significance level α, quanti-
fies how confidently one can exclude the hypothesis that both sets of residuals are
drawn from the same probability distribution. In other words, the comparison of
the p-value with α quantifies with how much confidence given by 100 · (1 − α)%
the ‘1-ring hypothesis’ can be rejected. For instance, a p ≤ α = 0.01 = 1% rejects
the ‘1-ring hypothesis’ with 99% confidence. Two examples are shown in Fig. 4.15
displaying the synthetic data (denoted by black crosses), together with the best 1-ring
(in red) and 2-ring (in blue) fits. In the left panel, the p-value test states that the two
models cannot be distinguished. In the right panel, the data at the largest accessible
uv-distances sufficiently differ for the two fits to be able to distinguish them. In
particular, the second zeros of the 1-ring and 2-ring (visibility) fits are distinct, while
the first zeros match.
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FIGURE 4.15: We show two examples of fits corresponding to the
s = 12 µas ray in the right-hand upper panel in Fig. 4.16. The left-hand
panel shows simulated data taken with the EHT 2022-230 array and
finds no detection of the presence of a second ring. The right-hand
panel shows simulated data taken with the ngEHT-230-low-SEFD

array and finds a detection of the presence of a second ring.

4.3.4 Detecting new physics at sub-resolution scale in visibilities

Motivated by theoretical studies beyond GR, where photon rings are typically thin
just as in GR, see e.g. [Ayz+23; EHJ23; Sta+23], we focus on synthetic data in the limit
of relatively thin rings. Specifically, we now set ω1 = 2 µas and ω2 = 1 µas in all
simulated observations but expect that our results do not depend much on this exact



4.3. Disentangling photon rings with future radio telescope arrays 73

choice and would remain similar for other values of ω1,2, as long as ω1,2 ≪ d.

One might worry that using the same fitting profile that is also used to generate the
synthetic data could compromise the results. However, in the thin-ring limit, changes
in the flux density profile within a ring do not affect the (non-)detectability of the
second ring, because widths of 1 − 2 µas are sufficiently far below the resolution limit
of the VLBI arrays we investigate (except when a space-based station is included).
Thus, the simplest fitting profile, i.e. a flat flux density within the rings, described
by the crescent model in Eq. 4.16, suffices. To further strengthen this point, we have
explicitly checked in App. A.1 that using e.g. a Gaussian profile to generate synthetic
data does not alter our conclusions regarding the (non-)detectability, as shown in
Fig. A.1.
Thus, the two remaining parameters which determine whether or not a 2-ring model
can be distinguished from a 1-ring model indeed are the relative flux density ∆F
and the separation s between the rings; these two span our 2D parameter space. We
perform four scans through this parameter space, as indicated in Fig. 4.13, which
are motivated by the new-physics cases discussed in Sec. 4.3 and whose shadow
images were plotted in Fig. 4.12. For each scan, we consider the 8 different array
configurations specified in Tab. 4.1. The results of the p-value test are presented in
Fig. 4.16.

First, we observe that the 2022 EHT configuration is only sensitive to the presence
of a second ring if the separation between the two rings is larger than ∼ 12 µas, which
roughly corresponds to the expected resolution for this array configuration.18

Second, we find that a ring separation of ∼ 5 µas could be detectable with an
Earth-based array; this, however, requires high sensitivities and is therefore only
reachable with an optimistic ngEHT array design (c.f. ngEHT-low, in which the
SEFD is very low, thus the sensitivity is very high in all telescopes added beyond
the 2022 array). This is an important result because some of the motivating new-
physics cases have separations which are of the order of ∼ 5 µas. It suggests that – if
the results from our idealised study extended to simulated observations of beyond-
GR spacetimes – a ground-based array design with very low SEFD values could
potentially probe spacetimes beyond GR. As an alternative, we achieve similar results
when a space-based telescope (again with low SEFD) is added.

Third, we find an interplay between separation and relative flux: at higher values
of the relative flux density, the threshold in detecting a second ring is lower, at least
for the less advanced array configurations (cf. left and right upper panels in Fig. 4.16).
This is as expected: for less sensitive arrays, even structures separated further than
the nominal resolution cannot be resolved if the total flux density in one of them is
too low.

Fourth, we find that parameter scans at fixed separation and increasing relative
flux density show a somewhat surprising result: at some low value of relative flux
density, there is a detection threshold at which the p-value drops significantly below
10−3 or even 10−5. At higher values of the relative flux density, the p-value increases
again, i.e. it becomes more difficult to distinguish the 1- and 2-ring models. The
reason lies in the fact that at relative flux densities ∆F ≈ 1, the visibility amplitude
for low baselines k is nearly degenerate with that of a 1-ring model with a diameter
that is roughly the average of the diameters of the two rings. This degeneracy can
be lifted once higher baselines k are reached, which is achievable with a space-based

18The nominal resolution is well approximated by the Rayleigh criterion in Eq. 4.2. This works out
to 25 µas at 230 GHz and 16 µas at 345 GHz. These angular resolutions can be reduced by a factor of
roughly 2 by using regularised maximum likelihood imaging methods, see section 2.1 in [Aki+19b].
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FIGURE 4.16: We show the 2-ring detectability (according to the p-
value test, cf. Subsec. 4.3.3) projected onto the four rays in the (s, ∆F)
plane, cf. Fig. 4.13. A transition of the p-value from (close to) one to
(close to) zero indicates the transition from non-detectable to detectable
cases, see main text. For visual purposes, we have added a p-value
floor of 10−20 to all data points. The different lines therefore indicate
the varying detectability thresholds that we find for various arrays
as in Tab. 4.1. In all cases, we focus on the thin-ring limit, i.e., the
remaining 2-ring parameters are chosen as ω1 = 2 µas and ω2 = 1 µas.
Moreover, we generate and fit the data with a crescent profile, i.e., the
conducted p-value test implicitly assumes perfect knowledge about
the ring profile. No constraints, especially on the widths, have been
added. The inset hash shows the ray along which we perform the scan,

as in Fig. 4.13.

array. The lower left panel in Fig. 4.16 highlights that only the space-based array
confidently detects the presence of a second ring at the highest values of relative flux
density that we consider.

This result motivates the use of super-resolution techniques, which have been
pioneered for M87* in [Bro+22b] and which we here implement as a constraint on the
width of the rings.

Photon rings are typically thin compared to the shadow diameter, both in and
beyond GR. To fully demonstrate the power of super-resolution techniques in our
simplified setting, we now include a constraint on the width of the rings ω1,2 ≤ 2 µas
in the fits as a prior in our reconstruction and call it “super-resolution technique”.
We then investigate how strong such a prior has to be to significantly improve the
detectability of a second ring feature, especially for high-SEFD arrays. The width’s
prior brings the detection threshold for the separation between the two rings to below
2 µas for the better-performing arrays and 3 − 4 µas for the worse-performing arrays,
cf. Fig. 4.17. This highlights the presence of a nontrivial interplay between i) the scale
imposed by the super-resolution constraint, ii) the nominal resolution, and iii) the
sensitivity.
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FIGURE 4.17: We show the 2-ring detectability (according to the p-
value test, cf. Subsec. 4.3.3) projected onto the four rays in the (s, ∆F)
plane, cf. Fig. 4.13. A strong constraint on the widths ω1,2 ≤ 2 µas has

been added in the fits.

Overall, these results suggest that even current Earth-based arrays can distinguish
a 2-ring fit from a 1-ring fit at values of s and ∆F that are relevant to existing new-
physics cases, provided that super-resolution techniques (such as a wdith’s prior) are
used. Within the class of theories that produce thin photon rings, super-resolution
techniques can distinguish between one and two rings or, in other words, show
that the presence of a second ring is a better fit to the data than just a single ring at
sufficiently large separation. We caution that this result is not sufficient to rule out
new-physics cases with these parameters, because we only compare the performances
of a simple 1-ring and a simple 2-ring model fit and do not perform a more general
fit to our simulated data. It is, however, a result that motivates an in-depth future
study that systematically simulates images of such new-physics spacetimes and
analyses the simulated data with: (i) a larger class of fits and/or (ii) more general
image-reconstruction and data-analysis models. We also caution that restricting to
photon rings, we neglected any (direct) emission coming from the accretion disk,
which dominates the flux density in EHT observation campaigns.

4.3.5 Closure quantities

Thermal noise and systematic uncertainties impact visibility amplitudes, but can
be (partially) removed by using closure quantities. These are therefore important
EHT data products [Aki+19d; Aki+22c; Cha+18; TMS17; LG21]. We review closure
quantities and explore how the 1-ring and 2-ring flux density profiles discussed above
look like in terms of these variables.

For each pair of telescopes, labelled by indices i, j, there is actually not a single
notion of visibility, but two: an idealised visibility amplitude Vi,j and its measured
counterpart V̂i,j. The measurement is affected by complex gains gi and thermal noise
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ϵij as
V̂ij = gig∗j Vij + ϵij. (4.28)

Here, ϵij is a circularly symmetric (invariant under rotations in the complex plane
[Lap17]), complex, Gaussian random variable with zero mean and variance σij (de-
termined by the radiometer equation [TMS17; Cha+18]) describing thermal noise. gi
are station-based effects including limitations imposed by constituent interferometer
elements and atmospheric turbulence. The complex gains gi enter the observed
visibility amplitude data as multiplicative factors and constitute the dominant source
of systematic errors.

In contrast to thermal noise, systematic errors are difficult to calibrate: complex
gains may be determined from observations of calibration sources for which the
visibilities are known, but it is often not practicable in VLBI arrays. Complex closure
quantities are constructed to remove station gains from the data as much as possible,
and split into closure amplitudes – first defined in [TCL60] – and closure phases –
first defined in [Jen58]. They were first applied to the analysis of radio emission from
quasars in [Rog+74; Rea+80], later in VLBI in [Doe+01; Fis+16; Cha+18], and have
been generalised in [Lan91; BP20; SNT22; TNS22; ARMV23; Mü24].

We split the complex measured visibility V̂ij into its amplitude |V̂ij| and phase.
Closure phases vanish identically for symmetric sources (e.g., [PMM03]), and are
therefore not useful for the analysis of the idealised synthetic flux density profiles we
consider, thus we solely focus on closure amplitudes.

The variable |V̂ij| is statistically distributed according to a Rice distribution19

Rice
(
|gi||gj||Vij|, σij

)
(4.29)

as a direct consequence of Eq. 4.28. Its expectation value is given by

⟨|V̂ij|⟩ = |gi| · |gj| · |Vij| ·
[
1 +O(σ2

ij)
]

. (4.30)

Due to the O(σ2
ij) term, ⟨|V̂ij|⟩ is a biased estimator of the parameter |gi| · |gj| · |Vij| in

the Rice distribution. Thus, one introduces an unbiased estimator

Aij =
√
|V̂ij|2 − σ2

ij. (4.31)

Because the expectation values of both |V̂ij| and Aij are proportional to quadratic
combinations of gain factors, they are undesirably sensitive to uncertainties in these
factors. This sensitivity is removed by defining closure amplitudes. Closure am-
plitudes Zijkl can be defined for subsets of 4 stations {i, j, k, l} in a VLBI array. The
quantities

Z(1)
ijkl =

Aij Akl

Aik Ajl
, Z(2)

ijkl =
Aik Ajl

Ail Ajk
(4.32)

are independent of gain factors gi in the absence of thermal noise [MTC91].20 Their

19A Rice distribution is a probability distribution of the magnitude of a circularly-symmetric, bivariate,
normal random variable x with a potential non-zero mean µ. Its probability density function is expressed

as f (x|µ, σ) = x
σ2 e−

x2+µ2

2σ2 I0

(
xµ
σ2

)
in terms of the standard deviation σ and the modified Bessel function

of the first kind with order zero I0.
20We can also define Z(3)

ijkl = Ail Ajk/(Aij Akl), which does not add new information due to the

constraint Z(1)
ijkl Z

(2)
ijkl Z

(3)
ijkl = 1 [TMS17].



4.3. Disentangling photon rings with future radio telescope arrays 77

corresponding expectation values ⟨Z(1)
ijkl⟩ and ⟨Z(2)

ijkl⟩ are only affected by gain factors
at subleading order. This is a marked improvement over the visibility amplitude
and the main reason behind the use of these variables. As a final step, we take
the logarithm of closure amplitudes, which simplifies the propagation of thermal
errors [Bla+20; Bro+20].

The disadvantage of closure amplitudes is that, due to their dependence on four
stations, they are naturally represented in a five-dimensional space, making their
interpretation more involved than, e.g., the visibility amplitude. This is addressed in
Subsec. 4.3.6.

To prepare for the interpretation of synthetic data from an (ng)EHT array, we
first analyse an idealised setting with a very large, densely populated, even square
array. This idealised square array has Nst = Mst × Mst stations, so that there are
two adjustable parameters: the length of the baseline between adjacent corners Lmax
(setting the maximum baseline to kmax =

√
2Lmax), and the number of stations Mst

on each side of the square array, which determines the density of stations. For any
array with Nst stations, there are

Nst(Nst − 3)
2

(4.33)

independent quadrangles [TMS17], see for [Bla+20] a derivation, on which we evalu-
ate the closure amplitude. Using the total visibility amplitude V(k) of a total flat flux

density profile, defined in Eq. 4.24, and kij =
2π
√

u2
ij+v2

ij

λ , we have

ln
(

Z(1)
ijkl

)
≡ ln

(
Aij Akl

Aik Ajl

)
≃ ln

(
V(kij)V(kkl)

V(kik)V(k jl)

)
. (4.34)

This expression is thus indeed independent of the gains and can be evaluated numer-
ically once Lmax and Mst are fixed.

To display the 5D information on logarithmic closure amplitudes, we first repre-
sent it as a function of the quadrangle perimeter in the uv-plane, discarding all other
information on the distribution of stations in the array, see Fig. 4.18. This type of rep-
resentation of closure quantities has been used before, e.g. in [Aki+19f; Isb+22]. The
only distinguishable pattern in Fig. 4.18 is the existence of periodic peak structures
which are, however, somewhat obscured by the representation in terms of quad-
rangle perimeters. The analytical expressions in Eqs. 4.24 and 4.34 indicate that an
oscillatory pattern of divergences is expected due to the presence of Bessel functions
inside a logarithm: the zeros of the Bessel functions will induce positive and negative
divergences in the logarithmic closure amplitudes. The location of these divergences
thus matches the zeros of the Bessel functions and is controlled by the parameters
of the crescent model. By isolating the diverging features, we can therefore infer the
parameters of the 2-ring model. The complete set of logarithmic closure amplitudes
evaluated on the Nst(Nst−3)

2 independent quadrangles contains information about the
whole image. However, it is possible to identify and isolate subsets of quadrangles
containing information about the oscillatory pattern of divergences in logarithmic
closure amplitudes.
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FIGURE 4.18: We show the logarithmic closure amplitudes as a func-
tion of the perimeter of the independent quadrangles of a square
array with Mst = 20 stations on each side (Nst = 400) and a size
Lmax = 10 Gλ. Independent quadrangles are selected following the
algorithm in [Bla+20], and perimeters up to 35 Gλ are represented. Clo-
sure amplitudes are evaluated with the analytical expressions valid for
the 1-ring crescent model with d1 = 42 µas, ω1 = 2 µas, and a 2-ring
model with an additional ring characterised by s = 5 µas, ω2 = 0.5 µas

and ∆F = 0.5.

4.3.6 Isolating features in closure quantities with idealised arrays

We present a possible algorithm to identify subsets of quadrangles providing an alter-
native representation that isolates ring-like features in logarithmic closure amplitudes.
This representation is based on slicing the space of closure amplitudes by fixing 3
stations out of 4 and forming quadrangles by varying the remaining 4th station. We
first introduce this “peak slicing” procedure on purely theoretical grounds, based on
the structure of logarithmic closure quantities, before discussing practical implemen-
tations of this slicing procedure in Subsec. 4.3.7.

For a clear graphical representation, we introduce 3 “auxiliary stations” which
we place outside the previous ideal square array as illustrated in Fig. 4.19. This
slicing contains less information than the full set of closure amplitudes, but provides
a cleaner representation of the peak periodic structures for comparable data densities,
as illustrated in Fig. 4.20. Fig. 4.20 shows a clear interference pattern, with logarithmic
closure amplitudes becoming large (formally, divergent) at specific values of the
quadrangle perimeter.
The introduction of auxiliary stations outside of the square array also allows us to

represent logarithmic closure amplitudes as a function of projected baselines in the
uv-plane instead of the quadrangle perimeter, as the remaining stations span a square
subset of the uv-plane. In this representation, we associate the value obtained by
forming one quadrangle with the 3 auxiliary fixed stations and 1 movable station of
the main array to one point in the uv-plane. The result is presented in Fig. 4.21.

Both panels in Fig. 4.21 show the same interference pattern, and also illustrate
the existence of both positive and negative divergences of the logarithmic quantities.
Going back to the analytical expressions in Eqs. 4.24 and 4.34 allows for a clear
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FIGURE 4.19: Schematic representation of the array used in the slicing
procedure: a square array with Mst = 5 stations on each side (circles)
and maximum baseline between adjacent corners Lmax, and 3 auxiliary
stations (diamonds) with relative separation Laux, which we take as

Laux = Lmax/Mst.

FIGURE 4.20: We show the logarithmic closure amplitudes as a func-
tion of the quadrangle perimeter for a square array with Mst = 200
stations on each side (Nst = 40000) and a size Lmax = 10 Gλ, and with
3 auxiliary stations with relative baseline Laux = Lmax/Mst. Quadran-
gles are formed holding the 3 auxiliary stations fixed and choosing the
4th to be each of the stations in the main array. Closure amplitudes are
evaluated with the analytical expressions for the 1-ring crescent model
with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model with an additional
ring characterised by s = 5 µas, ω2 = 0.5 µas and ∆F = 0.5. The 1-
and 2-ring models become more distinguishable for larger quadrangle
perimeters (baselines), as expected from the fact that larger baselines

allow for the detection of smaller features.

interpretation of these features. As 3 of the stations forming quadrangles stay fixed,
e.g. {i, j, k}, there are only 2 baselines, namely kkl and k jl , that change as different
stations in the main array are chosen for the 4th station l. Depending on the position
of the 4th station, the Fourier transform along these baselines, namely the visibility
amplitude in Eq. 4.24, can be (close to) zero. In the argument of the logarithmic closure
amplitude in Eq. 4.34, one of these baselines, i.e. kkl , enters the Fourier transform in
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FIGURE 4.21: We show the normalised logarithmic closure amplitudes
in the uv-plane for a square array with Mst = 200 stations on each
side (Nst = 40000) and a size Lmax = 10 Gλ, with 3 auxiliary stations
with relative baselines Laux = Lmax/Mst (top panel) and Laux = 10 ×
Lmax/Mst (bottom panel). Closure amplitudes are evaluated for the
2-ring crescent model with d1 = 42 µas, ω1 = 2 µas, s = 5 µas,
ω2 = 0.5 µas and ∆F = 0.5. Logarithmic closure amplitudes are
positive and formally divergent within the regions marked as dark
red, and negative and formally divergent within the regions marked
as dark blue. Information about the model parameters is encoded
in the location of these divergences, and not the maximum values
reached which depend on the parameters of the array, thus we are
normalising the logarithmic closure amplitudes. The larger relative
distance between auxiliary stations in the bottom panel allows for

better differentiation of the two types of divergent behaviour.

the numerator and the other, i.e. k jl , in the denominator. As a result, the zero of V(kkl)
leads to a negative divergence, while V(k jl) vanishing leads to a positive divergence.
Although the specific location of these divergences depend on the underlying ring
model being used, the existence of these divergences is model-independent and is
based on robust interferometric features. We can then understand Fig. 4.18 as a
convolution of the aforementioned interference patterns and a choice of independent
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quadrangles that partially obscures these features.
To summarise, the full set of closure quantities in Fig. 4.18 contains information

about the whole image and is therefore the best possible choice for image recon-
struction using fitting procedures. However, some features are easier to see and
understand in the sparse representation in Fig. 4.20.

Moving on to the practical application of the slicing procedure, we can determine
the baseline distances needed to distinguish between 0-, 1- and 2-ring flat ring models,
using the form of the Bessel function of the first kind J1(x). The zeros of the Fourier
transform of the 0-ring model (i.e. a disk model with radius Router) are controlled by
a single parameter Router. Therefore, we would need to be able to resolve at least 2
zeros to falsify this model. The second zero of J1(x) is located at x ≈ 7 [AS68], which
yields a lower bound on the maximal baseline kmax

kmax ≳
7

2π
· λ

Router
. (4.35)

required to differentiate a 0-ring from a 1-ring model. To discriminate among a 1-ring
or 2-ring crescent models and potentially falsify the 1-ring model (characterised by an
inner Rinner and an outer Router radius), we would need to determine the location of
at least 3 divergences. We can visually check in Fig. 4.21 that this requirement is not
satisfied by the idealised square array with Lmax = 10 Gλ, since only two divergences
are visible.

The location of these divergences can be calculated more precisely from numerical
values of J1(x) for the 1-ring model, or by visually inspecting the behaviour of
logarithmic closure amplitudes. This can be performed in detail by focusing on a set
of quadrangles formed with three fixed auxiliary stations and one movable remaining
station, represented in Fig. 4.22, around a specific baseline b0. This procedure yields

FIGURE 4.22: Schematic representation of a specific set of quadrangles
formed by 3 fixed stations (diamonds) and one movable station (circles)
around the baseline b0. Values for the movable horizontal baseline are
given by the set {b0 + j∆b}J

j=−J , which in realistic settings would be
naturally provided by Earth’s rotation.

Fig. 4.23 which shows that to probe the first three peaks for 1-ring and 2 ring-models
characterised by d1 = 42 µas, ω1 = 2 µas, s = 5 µas, ω2 = 0.5 µas and ∆F = 0.5, it is
necessary to have quadrangles with 3 auxiliary stations close to each other and one
remaining movable station inducing baselines of about b0 = 3.9 Gλ, b0 = 9.0 Gλ and
b0 = 14 Gλ.

The maximum baseline kmax is not the only relevant parameter when assessing
the detectability of these features. While a minimum value of the latter is a necessary
condition to distinguish 0-, 1- and 2-ring models, it is also necessary to have enough
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FIGURE 4.23: We show the logarithmic closure amplitudes as a func-
tion of the perimeter of the quadrangles depicted in Fig. 4.22, for the
1-ring crescent model with d1 = 42 µas, ω1 = 2 µas, and a 2-ring model
with an additional ring characterized by s = 5 µas, ω2 = 0.5 µas and
∆F = 0.5. In all cases, ∆b = 0.6 Gλ and J = 50, while b0 = 3.85 Gλ for
the top panel, b0 = 9.0 Gλ for the middle panel, and b0 = 14.0 Gλ for

the bottom panel.

density of data points in the space of logarithmic closure amplitudes to be able to
determine the location of the divergences with enough confidence. In short, the
higher the density, the better constrained the location of these divergences will be.
This is exemplified in Fig. 4.24, which contains hundred times less stations than the
array used in Fig. 4.21. In the idealised situation we are describing, with a fixed,
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FIGURE 4.24: Equivalent of the top panel of Fig. 4.21 but for Mst = 20
(one order of magnitude lower) stations on each side (i.e. Nst = 400).
The lower density of stations leads to a less precise localisation of the

divergences of logarithmic closure amplitudes in the uv-plane.

evenly spaced, square array with respect to the source, the density of data points in
logarithmic closure amplitudes is only related to the density of stations with distinct
locations in the array. However, each (ng)EHT observation campaign lasts for an
extended period (i.e. a few hours per observation night) in which the position of the
array relative to the source changes due to Earth’s rotation, so that the density of data
points is a combination of the density of stations in the array and the resolution in
time. Both factors thus contribute to a better differentiation between 1-ring and 2-ring
models.

In summary, using the information about the location of the peaks to distinguish
between 1-ring and 2-ring models requires to know the location of the first three
peaks: the first two peaks allow us to falsify a 0-ring model and determine whether a
1-ring model provides a better fit, while the third peak enables us find out whether a
2-ring model provides a better fit than the 1-ring model.

4.3.7 Isolating features in closure quantities with a space-based telescope

The slicing procedure described in Subsec. 4.3.6 provides a clear way to isolate and
locate the three first divergent features in logarithmic closure amplitudes, and infer
which model among the 0-ring, 1-ring and 2-ring models gives the best fit to synthetic
data generated with an idealised array. We now explore a practical implementation of
the slicing procedure for a more realistic sparse array including a space-based station.

The latter array is formed by a single space-based antenna together with 3 stations
on Earth (ALMA, APEX and the planned site LLA(MA), see Fig. 4.3). BHEX mission
[Joh+24] is a concrete proposal of such an array, though it will include additional
Earth-based stations. As previously, synthetic data for both the 1-ring and 2-ring
model is generated for that array through the ehtimaging toolkit [Cha+18].

Probing the first peak structure in Fig. 4.23 requires a baseline of around 8 Gλ
that is attainable solely with Earth-based stations. For the second and third peaks
in Fig. 4.23, we require longer baselines. Here, we are not concerned with a realistic
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placement of the space-based antenna, e.g. on a certain low-Earth orbit. We assume
that a placement can be found such that the projected baseline subtended between
the space-based antenna and the 3 Earth-based stations can vary by a large amount
throughout an observation night. We mimic those displacements by running a set of
simulated observations in which the space-based station is moved “by hand” further
away from the Earth. We place the space-based telescope above Odense (Denmark) at
distances ranging from 500 kms (first simulation) to 8000 kms (last simulation) over
Earth’s surface.

The set of possible altitudes considered for the space-based antenna spans a large
range of quadrangle perimeters with ALMA, APEX and LLA(MA), but only a few
of those are necessary to target the second and third peaks in logarithmic closure
amplitudes with the slicing method. As Earth rotates during an observation period,
the projection of baselines between the Earth-based stations and the space-based
antenna onto the direction of the source (taken to be located as M87*) changes – as
implemented in the ehtimaging toolkit. Provided that the location and altitude of the
space-based station are chosen appropriately, i.e. such that they form near-to-peak
quadrangle perimeters, Earth’s rotation effectively sweeps out a limited but sufficient
range of quadrangle perimeters around the peaks. This effectively enables us to probe
the second or third peak, as shown in Fig. 4.25.

4.4 Conclusion and outlook

4.4.1 Conclusion

The EHT cannot detect photon rings with the features expected in GR without using
super-resolution techniques [Bro+22b; Him+20]. However, we showed that, beyond
GR, photon rings can be more abundant, more widely separated from each other and
also of comparative brightness. Among the four classes of beyond-GR spacetimes
discussed, one example is given by horizonless spacetimes with a photon sphere. In
that spacetime, both an inner and an outer set of photon rings exist, and the n = 1
photon ring can be at several µas distance21 from the first inner photon ring.

These observations motivated our study, in which we worked in a simplified
geometric setting to investigate detection capabilities of the EHT and potential future
upgrades [Joh+23; Ayz+23; Doe+23] for photon rings. We first generated synthetic
data that contained either one or two thin rings, geometrically parameterised by a
ring separation s, a relative flux density ∆F and the widths ω1,2 of the two rings.
We then used the ehtimaging toolkit [Cha+18; Cha22] to simulate an observation
and reconstruct the Fourier data of such a simulated observation for given array
configurations. With the simulated data at hand, we fitted the visibility amplitude
of both 1-ring and 2-ring crescent flux density profiles and statistically compared
their fit quality. We thereby obtained the detection threshold of a 2-ring model as a
boundary in the parameter space of interest, namely (s, ∆F). We also explored the
impact of super-resolution techniques for thin (compared to the diameter) rings by
imposing priors on the reconstructed widths ω1,2 of the rings.

First, we found that for our three new-physics spacetimes which motivated our
study, simulated data from the EHT 2022 configuration does not allow to infer the
presence of a second ring, see the uppermost panel in Fig. 4.26. Thus, current VLBI
arrays need to be improved. Two properties of VLBI arrays are critical to lower the

21This assumes a mass of and distance to the source roughly similar to M87*.
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FIGURE 4.25: We show the logarithmic closure amplitudes as a func-
tion of the perimeter of the quadrangles formed by 3 Earth-based sta-
tions (ALMA, APEX, LLAMA) and a space-based station (see Tab. A.4),
for the 1-ring crescent model with d1 = 42 µas, ω1 = 2 µas, and a
2-ring model with the second ring characterised by s = 5 µas and
ω2 = 0.5 µas. In all cases, the altitude of the space-based station varies
between 500 kms (i.e. 0.38 Gλ at 230 GHz) and 8000 kms (i.e. 6.15 Gλ)

above Odense (Denmark), by steps of 200 kms (i.e. 0.15 Gλ).

detection threshold towards rings with lower separation from each other and also a
second ring with low relative flux density: first, a high sensitivity (thus a low SEFD)
and second, a high resolution (thus a higher frequency than 230 GHz and/or much
larger baselines).

We found that the following setups bring the detection threshold to what is
needed to rule out some of the new-physics cases that motivated our study, see
Fig. 4.26. First, an ngEHT array in which 8 stations are added to the EHT 2022
array and all these stations have low SEFD values corresponding to those of the
ALMA station; and where 230 and 345 GHz frequencies are simultaneously used in
observations. This provides both the sensitivity and resolution needed. Second, a
space-based array in which an additional space-based station is added to the previous
ngEHT configuration, which results in larger baselines and thus a lower detection
threshold in terms of separation of the rings. Third, the EHT 2022 array combined
with super-resolution techniques. These provide a substitute for the resolution that is
needed.

The first two options are clearly more expensive and more technically challenging,
and may therefore be more difficult to realise. However, even the existing EHT array,
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FIGURE 4.26: Summary of three tentative pathways to improve the
detectability of a 2-ring model, as suggested by the statistical analysis
in Fig. 4.16 and 4.17. In all panels, the detectable (not detectable)
parameter ranges are marked as thicker green (thinner red/orange)
lines. Here, detectability refers to a p-value of 10−5. Top panel: results
for the EHT 2022 array without super-resolution constraints. Three
bottom panels: different ways of improving the detectability of a 2-
ring model. Left bottom panel: results for the EHT 2022 array but with
a super-resolution constraint. Middle bottom panel: results for the
ngEHT array, assuming optimistic, i.e., low SEFD values. Right bottom
panel: results for the same ngEHT array with a single additional space-
based telescope. All arrays shown here observe at 230 GHz. For details,

cf. notation and figures in Subsec. 4.3.1.

if combined with super-resolution techniques, can approach the region in param-
eter space where our new-physics examples are located. Using super-resolution
techniques implies that any statement about ruling out/detecting signatures of new
physics can only be valid within the class of spacetimes that generates photon rings
that are thin compared to their diameter. To the best of our knowledge, this is the
generic case and no counter-examples are known.
We caution that all our conclusions are to be understood within our simplified setting
in which the image consists of two geometric thin rings and the broad image feature
corresponding to foreground emission is not accounted for. It contrasts with realistic
observations, in which the foreground emission dominates the measured flux density
in the ring feature.

The visibility amplitude of a (simulated) observation is subject to systematic
uncertainties, some of which can be removed by considering closure quantities based
on ratios of four visibility amplitudes. Rings generically generate zeros in visibility
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amplitudes and, accordingly, divergences in closure quantities such as the logarithmic
closure amplitudes, obtained for each independent set of four stations in the array.

We first investigated an idealised, dense, evenly spaced, square array to which
three auxiliary stations are added and held fixed, while a fourth one is displaced in a
controlled way. In that setting, dubbed “peak slicing procedure”, divergences of the
logarithmic closure amplitudes of the 1-ring and 2-ring models can be separated from
each other. In a realistic setting, the (projected) baselines between all four stations
change throughout an observation, because of Earth’s rotation. Earth’s rotation thus
paves the way for practical implementation of this idealised setting, which can be
obtained when choosing three auxiliary stations as close as possible and the fourth
station placed so that it can target higher-order zeros for specific compact sources.
Using the ehtimaging toolkit, we have shown that such a setting enables one to probe
the first divergence of the logarithmic closure quantity by an Earth-based array, and
the second and third divergences by choosing a space-based station as the fourth sta-
tion. We argued that knowing the locations of the first three divergences is sufficient
to distinguish the 1-ring from the 2-ring model. This provides further motivation
for arrays featuring space-based stations such as, e.g., the BHEX mission [Joh+24;
Lup+24; Gal+24].

In summary, our study showed that in an idealised setting, simulated observations
with VLBI arrays can distinguish between one and two rings at parameter values
motivated by new physics beyond GR, if the array is sensitive enough and dual
-frequency capabilities are assumed. Existing arrays can distinguish between one and
two rings, if super-resolution techniques are used. This motivates future upgrades of
our investigation along the following lines:

• First, our simulated data does not come from ray-tracing photons in a given
spacetime geometry but consists of an ad-hoc geometric model which we used
to perform a first parameter study. Given the largely positive outcome of this
study, a more extensive study starting from given spacetime geometries is
warranted. In such a study, also the following additional points should be
addressed, that correspond to simplifying assumptions of our analysis;

• Second, our simulated data consists of images with either one or two rings, but
no diffuse (n = 0) emission is included. Investigating the detection capabilities
in the presence of a (broad) feature generated by a diffuse emission is one
important future direction. We expect that the detection threshold is shifted
towards higher separations and higher relative flux densities, once foreground
emission is accounted for. The extent of the shift depends on the properties of
the foreground emission: for a sufficiently broad image feature with approx-
imately constant flux density,22, from which two thin rings stand out in peak
flux density, our conclusions will likely not be altered much;

• Third, in such a study, accounting for uncertainties from the imperfectly un-
derstood astrophysics of the accretion disk is important; that is, such a study
must fit not only the parameters of the spacetime, but also the parameters
of a consistent accretion disk model to determine whether two rings can be
distinguished from one ring.

22We highlight that both shadow images of M87* and SgrA* possess a brightness asymmetry in the
broad feature, c.f. Fig. 4.4 which might obscure the thin rings.
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4.4.2 Outlook

To complement our study, we could investigate whether (optical) intensity interferom-
etry – pioneered in [HBT54] and revived in past years – can help lower the detection
threshold of a second ring feature in shadow images. Indeed, thanks to the tremen-
dous improvement in fast photodetectors, SNRs reached in intensity interferometry
now allow us to probe accreting supermassive black holes such as M87* and SgrA*
[Dal+24].

While radio interferometry, i.e. VLBI, relies on the analysis of correlations in visi-
bilities (proportional to the data of electric fields collected at two different locations),
intensity interferometry involves the analysis of correlations in the data of photon
counts collected at different locations. The latter photon count data is proportional
to the square of the visibility amplitude integrated in frequency, dubbed normalised
fringe visibility. Hence, both the amplitude and phase information can be extracted
in radio interferometry, whereas intensity interferometry is insensitive to phases.23

However, for radially symmetric intensity profiles such as the ones analysed in our
study [CR+24], only the closure amplitudes matter. Therefore, the lack of information
on phases does not seem to limit the scope of the analysis. Since it is possible to write
analytical expressions for the normalised fringe visibility for disk-like models, which
have similar features (in terms of oscillations and zeros) as the visibility amplitude,
we could analyse the feasibility of resolving two rings depending on array properties
with optimistic intensity interferometry.24

4.4.3 Synergy of shadow imaging with gravitational waves

The reason we focused on VLBI observations to probe BH beyond GR in this chapter
and, to a mild extent, also in Chapters 5 and 6, is twofold, as detailed below. Nonethe-
less, we stress that GW astronomy provides complementary results on testing the Kerr
paradigm, hence developing synergies between EM and GW observations is essential.

The theoretical reason is that we do not expect black-hole uniqueness theorems
generically to hold beyond GR, and thus that stellar-mass BHs probed by the LVK
collaboration and supermassive BHs probed by the EHT correspond to the same
branch of solutions of a theory beyond GR. There exists indeed simple BH examples
supporting this expectation: in quadratic gravity [Lu+15; L+̈15; Ste17], in semiclassi-
cal gravity [Fer23] and in ESTGB theory with scalarised black-hole solutions and the
Kerr solution being simultaneously present [DY18; Her+21; Dim+20; Don+24; Eic+23].
It is therefore crucial to make use of the complementarity of EM and GW probes to
test the Kerr paradigm in the strong-field regime. Once those probes are combined,
they allow to scrutinise BHs that differ by 6 or even 9 orders of magnitude in mass.
Second, their synergy will be enhanced with the advent of the Laser Interferometer
Space Antenna (LISA) as the latter will probe the coalescence of MBHBs in the mass
range [104, 107] M⊙ to which SgrA* belongs.

23The 2-point correlations (i.e. at 2 different stations) are blind to phase data, but 3-point correlations
allow the measurement of closure phases [TMS17; Law00].

24Applying the Rayleigh criterion Eq. 4.2 at the optical wavelength λ ≈ 500 nm and with baselines
D ≈ 104 kms achievable on Earth leads to an angular resolution of θ ≈ 0.01 µas, resulting in an
improvement by four orders of magnitude w.r.t. the current nominal resolution of the EHT. However,
in practice, unambiguously detecting two rings would require very high SNRs.
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The pragmatic reason is that deriving images of compact objects beyond GR via
VLBI observations only requires to know the underlying spacetime metric (on top of
the astrophysical environment) and the geodesic equations.

By contrast, GW observations necessarily call for the knowledge of the full dy-
namics beyond GR and computationally costly, numerical simulations of binary
black-hole mergers. Not only this subtends to know the action of a theory beyond
GR, but it also requires to find a well-posed initial-value formulation of the equations
of motion – pertaining to the action – that is amenable to numerical simulations.

Finding such a formulation remains a significant challenge in many theories
beyond GR that has only partially been met in a limited number of theories: in simple
scalar-tensor theories with a single, non-minimally coupled scalar field in the Jordan
frame [Sal06], in Einstein-aether theory [SBPL19], in a 4-derivative scalar-tensor
theory [ASCF22], in polynomial higher-derivative EFTs of vacuum gravity [FHK24]
and in Lovelock and Horndeski theories at weak coupling [Kov19; KR20b]. Among
the latter class of Horndeski theories at weak coupling, specific proofs were derived
for k-essence theories [Ren06] and ESGB in weak-coupling and spherically symmetric
regime [RRY23]. Finally, [HB24] derived a proof of the well-posedness of the initial
value problem for Unimodular Gravity (UG).25

The challenge arises because well-posedness of an initial value problem may be
spoiled if the equations of motion are not at most second order (due to the potential
apparition of Ostrogradsky instabilities [Ost50; PU50], reviewed in [Woo07; Woo15])
or if elliptic regions develop in the spacetime (see e.g. simulations of BHBs and
NSBs in ESGB gravity [ER21b; ER21a; EP22]). Those requirements are particularly
constraining for theories beyond GR, as many possess higher-derivative and higher-
curvature terms in their action, thus potentially leading to e.o.m. of third order or
more.

Although solving the full dynamical, nonlinear regime of modified theories of
gravity remains difficult, approximate numerical methods are often used.

The first type of approximate numerical methods exploits the fact that corrections
to GR ought to be subleading, such that we can incorporate their effects on the
dynamics order by order in a perturbative expansion and evaluate the corrections
w.r.t. the solution obtained at lower order. It was employed for example in [AY09;
Oko+17; Oko+19; Oko+20; Oko20].

The second type adopts an EFT point of view that a modified theory is only
valid up to some short length scale, and “fix” the evolution equations below this
scale, hence the name “fixing approach” used in [COL17; AL19; Bez+21; Ger+22].
This is performed by substituting high derivative terms in the original evolution
equations by new dynamical fields, while including the effect of corrections via
suitable coupling among relevant fields. These new fields are dynamically driven to
the values they would have in the original theory on some short length scale. Only
recently was an EFT put forward that introduces higher order modifications to GR
without adding new fields [End+17], applied in [CL20; Bez+22; LBB22; Fra+22].

When those methods are evaluated on a benchmark theory, their predictions
might differ and their solutions might not be fully consistent with the “true” solution
[Cor+24], thus requiring a more careful analysis of approximate methods and a
comparison to the full solution.

25Vacuum UG is classically equivalent to GR with a cosmological constant at the level of the equations
of motion, and GR is known to admit a well-posed initial value problem [CBG69]. Despite this
equivalence, demonstrating the well-posedness of UG is non-trivial, as its symmetries and constraint
structure are different from that of GR.
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Hence, it sounds more promising to first identify and constrain potential devia-
tions from the Kerr spacetime in VLBI data, before trying to elaborate the underlying
theory, find a tractable dynamical formulation amenable to numerical simulations
[Pre06; BR16; BSG24] and compare to GW data.

Finally, the synergy between EM and GW probes manifests, for example, in
the Lyapunov exponents, which govern the decay rate of the amplitude of a GW
ringdown signal, the damping time and frequencies of the Quasi Normal Modes
(QNMs) as well as the ratio of fluxes measured between successive photon rings,
see [Car+09; Yan21] and Subsec. 4.1.4. They thus constitute a good starting point to
bridge the gap between EM and GW observations.
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Chapter 5

The principled-parameterised
approach to gravitational collapse

In this chapter, we review a simple GR model of spherically symmetric gravitational
collapse, which exhibits a naked singularity for low enough accretion rates. This
motivates us to perform two regular upgrades of such a simple, classical dynamical
spacetime: one constructed through the RG improvement method from ASQG, and
one following the principled-parameterised approach put forward in [EH21b; EH21a;
EHJ23] for stationary spacetimes. These two upgrades are equivalent upon specific
choices within the principled-parameterised approach. We explore the consequences
of the upgrade on the spacetime’s structure and null geodesic motion.

We begin by reviewing a simple, classical model of spherically symmetric grav-
itational collapse of null dust dubbed Vaidya spacetime. To understand whether
singularities arise and, if yes, of which type, we compute the null energy condition,
determine the location of the various horizons and study the null geodesic motion as a
function of the ratio of the accretion rate to its critical value. Due to the appearance of
a naked singularity in this model, we generalise the Vaidya model and consider two
upgrades within the class of generalised Vaidya spacetimes. Both models implement
regular modifications which weaken gravity, and thus change the spacetime’s struc-
ture and geodesic motion. Similarly to the classical case, we check whether or not the
null energy condition is satisfied, determine the distinct horizons that form within
the upgraded spacetime and investigate the consequences of the modifications on
radial null geodesics near the centre. Finally, we conclude and sketch an outlook on
how to apply the principled-parameterised approach beyond the Vaidya spacetime.

5.1 A review: the classical Vaidya-Kuroda-Papapetrou model
for gravitational collapse

We start by reviewing a simple classical model for gravitational collapse to a black
hole, namely the Vaidya-Kuroda-Papapetrou (VKP) model [Vai66; Kur84a; Pap85b],
which gives rise to a naked singularity and thus violates Penrose’s cosmic censorship
conjecture [Pen69].

The classical advanced Vaidya spacetime is a generalisation of the static, spher-
ically symmetric Schwarzschild solution to a non-vacuum, dynamical, spherically
symmetric solution of GR. Its line element in advanced Eddington-Finkelstein (EF)
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coordinates (v, r, θ, ϕ) is1

ds2
EF = − f (v)dv2 + 2dv dr + r2dΩ2, f (v) = 1 − 2G0M(v)

r
. (5.1)

To encode the accretion of spherically symmetric shells of null dust, the time-varying
Misner-Sharp mass function satisfies M(v) ≥ 0. In the limiting case M(v) = const.,
the line element reduces to the Schwarzschild spacetime.

The VKP model encompasses all Vaidya metrics in which shells of null dust
are linearly accreted during a finite time, namely from v = 0 to v = v̄. Thus, the
dynamical mass function is a piecewise function with a phase of linear growth, that is

M(v) =


0, v ≤ 0
µ v 0 < v < v̄
M = µ v̄ v ≥ v̄.

(5.2)

At advanced times v ≤ 0, the spacetime is locally isometric to Minkowski spacetime.
At v = 0, ingoing shells of null dust start to collapse under their own gravity. The
amount of matter falling towards the centre at r = 0 is encoded in the accretion rate
µ.2 Theoretically, a critical value of µ lies at µc =

1
16G0

, because a singularity forms
in the spacetime before a horizon forms. Thus, the VKP model is one of the first
counterexamples [Kur84a] to Penrose’s cosmic censorship conjecture [Pen69]. In our
analysis, we will thus consider both µ > µc and µ < µc.
In all cases, the dynamical spacetime finally settles down to a static, spherically
symmetric black-hole spacetime, i.e. for v > v̄ the spacetime is locally isometric to a
Schwarzschild spacetime with ADM mass M = µ v̄.

5.1.1 Energy conditions for the VKP model

The Vaidya spacetime described by the metric Eq. 5.1 contains a curvature singularity
at r = 0 (for v > 0) and is geodesically incomplete, as we review below. Geodesic
incompleteness follows from singularity theorems that hold in GR, reviewed in
[Ong20; Lan22], which assume that the energy-momentum tensor describing the
infalling radiation satisfies certain energy conditions. We review these conditions
for the Vaidya spacetime because we later examine whether and how they fail in a
singularity-free, upgraded spacetime, c.f. Subsec. 5.6.2.

To describe the gravitational collapse of ingoing null dust, the energy-momentum
tensor constructed from the four-velocity nµ ≡ δ0

µ of the null dust must be pressure-
less.3 In terms of the energy density of the null dust

ρ ≡ T00 =
Ṁ(v)
4πr2 , where Ṁ(v) ≡ ∂M(v)

∂v
, (5.3)

we can write
Tµν = ρ nµnν. (5.4)

1The advanced null “time” coordinate v is defined in terms of the Schwarzschild time coordinate t as
v = t + r + 2G0 M ln

(
r

2G0 M − 1
)

.
2While astrophysically realistic accretion rates are estimated as G0µ ≤ 10−8, see [SP22], to simplify

our numerical studies we will consider larger values of G0µ throughout the rest of this chapter.
3It holds that nµnµ = 0, because for the line-element Eq. 5.1, g00 = 0.
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If the energy-momentum tensor Eq. 5.4 satisfies the appropriate pointlike energy
condition, the formation of a spacetime singularity, which renders the spacetime
geodesically incomplete, is inevitable [Pen65]. In particular, the weakest pointlike
energy condition is the Null Energy Condition (NEC) which requires

ε = Tµνkµkν ≥ 0 (5.5)

for every future-pointing null vector field kµ. It restricts the mass function of the
classical Vaidya spacetime to be

T00 ≡ ρ ≥ 0
Eq. 5.3⇐⇒ Ṁ(v) ≥ 0. (5.6)

This ensures that “well-behaved” null dust has to undergo gravitational collapse (as
opposed to the opposite process, namely evaporation, for which Ṁ(v) < 0). This
condition is satisfied (for all v) by the linearly growing mass function in Eq. 5.2 of the
VKP model, for which the NEC simply leads to positive accretion rates µ ≥ 0.

5.1.2 Behaviour of null geodesics near the centre

The classical Vaidya spacetime is geodesically incomplete, because it (i) describes
gravitational collapse, (ii) solves the non-vacuum Einstein field equations Eq. 2.1
and (iii) satisfies the pointlike NEC. In many spacetimes, geodesic incompleteness
goes hand in hand with curvature singularities at the centre. However, they are not
equivalent, nor one implies the other. For example, some analytical extensions of
non-singular black holes have been shown to be geodesically incomplete [ZM23],
while there are spacetimes, e.g. in some f (R)-theories, which are geodesically com-
plete but harbour curvature singularities [BORG17]. For those reasons, we review the
behaviour of null geodesics as well as curvature invariants near r = 0. To provide
a comprehensive overview of the starting point of our analysis, we also discuss its
horizons, photon sphere and photon surfaces.

It is sufficient to follow radial null geodesics to show the geodesic incompleteness
of the spacetime, as the latter only requires some geodesics to be incomplete. Null
geodesics in Vaidya spacetime solve the equation [MGM14]

dr
dv

− 1
2

(
1 − 2G0M(v)

r

)
= 0. (5.7)

This equation can be obtained from the general expression for null geodesic equation

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0, (5.8)

with λ an affine parameter and xµ(λ) = (v(λ), r(λ), θ(λ), ϕ(λ)) the photon’s position
in EF coordinates. Indeed, by specialising to radially infalling geodesics, i.e.

dθ(λ)

dλ
= 0 =

dϕ(λ)

dλ
, (5.9)



94 Chapter 5. The principled-parameterised approach to gravitational collapse

we obtain two equations which describe r(λ) and v(λ)

r
d2v
dλ2 +

G0M(v)
r

(
dv
dλ

)2

= 0,
dr
dλ

− 1
2

(
dv
dλ

)(
1 − 2G0M(v)

r

)
= 0. (5.10)

The separate dependence of r and v on the affine parameter λ can be traded for a
dependence of r on v, hence the two equations in Eq. 5.10 can be combined into
Eq. 5.7.

For any value of µ, it has been shown that Eq. 5.7 admits an analytical, implicit
general solution [BKP17] of the form

−
2 arctan

(
v−4 r(v)

v
√

−1+16G0µ

)
√
−1 + 16G0µ

+ 2 log (v) + log
(

2 µG0 −
r(v)

v
+

2 r2(v)
v2

)
= C, (5.11)

with C being an arbitrary integration constant that is potentially complex. A set of
outgoing null geodesics is obtained by varying the constant C. Whereas this solution
Eq. 5.11 holds for all values of µ, a simpler representation of the solutions exists for
µ ≤ µc =

1
16G0

, found in [Isr85; Isr86],

|r(v)− λ−v| λ−

|r(v)− λ+v| λ+
= C̃, (5.12)

with C̃ being an arbitrary real positive (due to the absolute values) constant and

λ± =
1 ±

√
1 − 16µG0

4
. (5.13)

From Fig. 5.1, the behaviour of null geodesics near r = 0 indicates that the
spacetime is indeed geodesically future incomplete.4 Outgoing null geodesics are
deflected towards r = 0, which they reach in a finite amount of advanced and affine
time, as confirmed in Fig. 5.2. The gravitational lensing that applies to null geodesics
gets stronger when either G0 or µ increases, i.e. when gravity becomes stronger or
the energy density is increased. This already provides us with a first hint on the
two alternatives of how to avoid geodesic incompleteness in a spacetime describing
gravitational collapse, namely (i) altering the effective mass function (or accretion
rate) or (ii) altering the strength of the Newton coupling. Both alternatives will be
explored, see Sec. 5.5.
We also see that the behaviour of null geodesics changes around µc = 1

16G0
, where

null geodesics starting at (r, v) = (0, 0) can actually escape to infinity. This results in
a naked singularity, which manifests itself in the divergence of curvature invariants.

5.1.3 Singular curvature invariants at the centre

Even though geodesic incompleteness and singular curvature invariants are two
independent concepts, they go hand in hand in many black-hole spacetimes in the

4 While future null geodesic incompleteness can be inferred from outgoing null geodesics reaching the
central singularity at finite advanced time v, it can only be confirmed by checking that r(λ) reaches zero
and v(λ) becomes constant at finite value of the affine parameter λ. The behaviour of null geodesics
in a Vaidya spacetime has been extensively studied, e.g. in [GP09; JM11]. Those studies confirm that,
in such a spacetime, outgoing null geodesics that reach the centre in a finite affine parameter λ, i.e.
future-incomplete null geodesics, do so in a finite advanced time v. See Fig. 5.2 for an illustration.
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FIGURE 5.1: We show outgoing null geodesics near r = 0 in a Vaidya
spacetime Eq. 5.1 with linearly growing VKP mass Eq. 5.2 for G0µ > µc
(left panel) and G0µ < µc (right panel). Left panel: G0µ = 1/2 (green
dashed lines) and G0µ = 1 (blue continuous lines). Right panel: G0µ =
1/16.5 (magenta continuous lines) and G0µ = 1/15.5 (purple dashed
lines) and a tangent to a geodesic near the origin (r = 0, v = 0) (black
continuous line). The critical value is G0µc = 1/16, as a subcritical
geodesic crosses its tangent at the origin, while a supercritical geodesic
does not. Note that all plots in this chapter are in Planck units in which,

in addition to h̄ = c = 1, G0 = 1.

sense that an infalling observer will experience both a finite future and diverging
tidal forces. Here, we confirm the singular behaviour of curvature invariants near
r = 0.

Under rather generic assumptions (spelt out in [CHP09]), a spacetime metric
can be characterised by an algebraically complete basis of seventeen non-derivative
curvature invariants, referred to as Zakhary-McIntosh (ZM) invariants [CM91; ZM97;
CZ02], built out of the Weyl tensor Cµνρσ, the (left-)dual Weyl tensor Cµνρσ = 1

2 ϵµνκλCκλ
ρσ

(with ϵµνκλ the totally anti-symmetric Levi-Civita tensor) and the Ricci tensor Rµν.
The set of invariants decomposes into four real Weyl-invariants I1−4, four real Ricci-
invariants I5−8 and nine real mixed invariants I9−17 as listed in App. B.1.

For spacetimes which admit Killing vectors, one typically finds that not all of the
non-zero invariants are independent. For the classical Vaidya spacetime with VKP
mass function, the only non-zero, non-derivative curvature invariants are

I1 = CµνρσCµνρσ =
48G2

0µ2v2

r6 ,

I3 = C ρσ
µν C αβ

ρσ C µν
αβ =

96G3
0µ3v3

r9 =
1

2
√

3
I3/2
1 (5.14)

for v < v̄. Because the invariant I3 can be expressed in terms of I1, I1 is the only
independent, non-zero, non-derivative curvature invariant. As I1 is clearly singular
at the centre r = 0 for all times v, the resulting spacetime indeed contains a curvature
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FIGURE 5.2: We show outgoing null radial geodesics near r = 0 in
a Vaidya spacetime Eq. 5.1 with linearly growing VKP mass Eq. 5.2
with G0µ = 1

10 as a function of the affine parameter λ. The blue curve
corresponds to v(λ) and the red curve is r(λ). Top panel: r(0) = 1

4 ,
v(0) = 10−5, v′(0) = 1

10 . Bottom panel: r(0) = 1
2 , v(0) = 10−5,

v′(0) = 1
4 . The dashed lines indicate the values λ, v(λ) when r(λ) falls

back to the centre.

singularity at r = 0.

5.1.4 Apparent, event, and Cauchy horizons

Stationary black-hole spacetimes are usually characterised by their event horizon.
To locate the event horizon, global knowledge of the entire spacetime is required,
because the event horizon is the boundary of the causal past of future null infinity. In
a time-dependent spacetime, another notion of horizon is often more useful, namely
that of an apparent horizon, reviewed in [AK04; Boo05; GJ08]. At an apparent
horizon, the expansion of both in- and out-going null geodesics is negative semi-
definite, i.e. gravitational lensing is so strong that locally, all geodesics are prevented
from reaching larger distances from the centre. For the VKP model, this condition
translates into [NV06; Far13]

grr
EF = gvv, EF = 0, (5.15)

see the derivation in App. B.4 in a form that can be generalised when we modify the
spacetime. For the VKP line element Eq. 5.1, this condition can be solved to obtain

gvv, EF = 0 ⇔ 1 − 2G0µv
rAH

= 0 ⇔ rAH = 2G0µv. (5.16)
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To find the event horizon for the VKP model, we use the initial condition

rEH[v = v̄] = rEH, Schw = 2G0 µ v̄ (5.17)

for the null geodesic equation Eq. 5.7 and numerically solve the equation backwards
in time to find the event horizon at v < v̄.

For µ < µc =
1

16G0
, a third notion of horizon is realised, namely that of a Cauchy

horizon. A Cauchy horizon exists when the initial-value problem is no longer well-
defined, i.e., when initial data defined on a spatial hypersurface is not sufficient to
determine the entire future evolution. The Cauchy horizon delineates the bound-
ary of the spacetime region in which the future evolution of the initial data is not
well-defined. Thus, Cauchy horizons appear in particular when there are naked
singularities. Fig. 5.1 already contains a hint that there is a (globally) naked, null
singularity for µ < µc because the right panel shows null geodesics emanating from
(r, v) = (0, 0) which are not focused back towards small r. This singularity is actually
only partially naked. It contains both a spacelike and a lightlike part, but only a
section of the lightlike part is naked while the rest of the singularity is shielded behind
the horizon [GP09, Fig. 9.19].

The Cauchy horizon can be found from Eq. 5.12, because it is itself a null surface.
Eq. 5.12 admits two linear solutions, r±(v) = λ± · v, which both emanate from the
point (r, v) = (0, 0) and extend to infinity. Those solutions derive from the existence
of a conformal Killing vector field ξµ defined by

∇µξν +∇νξµ =
1
2

gµν

(
∇ρξρ

)
∝ gµν (5.18)

and correspond to conformal Killing horizons. We check that the vector field ξµ =
(v, r, 0, 0) in EF coordinates is a conformal Killing vector field of the Vaidya spacetime
with VKP mass function by computing the left-hand side in Eq. 5.18, i.e.

∇µξν +∇νξµ = 2gµν +
2G0

r
(

M(v)− Ṁ(v)v
)

δv
µδv

ν

M(v)=µv
= 2gµν, (5.19)

which is indeed proportional to gµν. The two conformal Killing horizons delineate
a wedge in the (r, v)-spacetime diagram, see Fig. 5.4c. This wedge is bounded on
the left by r−, the degenerate conformal Killing horizon occurring at µ = µc which
is tangent to the event horizon at the centre (r, v) = (0, 0). Accordingly, the wedge
is bounded on the right by r+, which constitutes the Cauchy horizon of the Vaidya
spacetime. Therefore, all null geodesics that emanate from the point (r, v) = (0, 0)
and are not focused back towards r = 0 in the future lie within the wedge in between
r− and r+ and this wedge is non-empty.

5.1.5 Photon sphere and photon surfaces

To complete our discussion of the VKP model and null geodesic motion within it,
we review what is known about the photon sphere and photon surfaces – using the
nomenclature of [CVE01].5

5 We make the distinction between a photon sphere and a photon surface. A photon sphere is a sphere
within which photons are so strongly lensed that they can orbit the central compact object up to infinitely
many times and yield unbounded deflection angles. In a photon surface, photons may orbit the central
compact object a certain number of times but not arbitrarily many. Hence, photons are not trapped
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The VKP model is time-dependent, there is no Killing vector associated with
stationarity, and hence energy is not conserved for geodesic motion. However, as
seen in Subsec. 5.1.4, there is a conformal Killing vector field which makes the null
geodesic equations separable [NV06]. For subcritical accretion µ < µc, this conformal
Killing vector field is timelike, that is ξµξµ < 0, in the wedge bounded by r− and r+
given in Eq. 5.13. Due to the existence of a constant of motion associated with the
timelike conformal Killing vector, a photon sphere in the sense of [CVE01] exists in
the wedge and has been computed in [SP22]. This photon sphere is associated with
strong lensing and unbounded deflection angles.

We choose here not to restrict to a particular regime and consider all possible
accretion rates µ, for which a photon sphere might not always exist (e.g. for µ > µc).
Instead, we focus on solving the null geodesic equation explicitly to find the location
of the so-called “photon surfaces” – as defined in [CVE01]. This is also motivated
by the fact that when we will consider upgrades of the mass function M(v) to more
general mass functions of the form M(v, r) in Sec. 5.5, the conformal Killing vector
field will be lost and no photon sphere will exist, while the notion of photon surfaces
will remain.

Due to spherical symmetry, we can restrict ourselves to the equatorial plane to
solve the geodesic equation, without loss of generality. Note that in contrast to Eq. 5.7,
we are not considering radial geodesics and refer the reader to [MCS19] on how to
derive the appropriate geodesic equation. For the VKP model, it reads

r̈p(v)−
6G2

0v2µ2

r3
p(v)

+
G0vµ(5 − 9ṙp(v))

r2
p(v)

+
3ṙp(v)− 1 + G0µ − 2ṙ2

p(v)
rp(v)

= 0. (5.20)

Since accretion stops at v = v̄ and yields a spacetime locally isometric to Schwarzschild,
we have to impose the following initial condition at v > v̄: photon surfaces should
coincide with Schwarzschild’s photon sphere{

rp(v) = 3G0µv̄,
ṙp(v) = 0.

(5.21)

Numerically, we find that the sharp transition in M(v) at v = v̄ impacts the stability
of the evolution equation for the photon surface. Hence, in practice, we derive the
location of the photon surface for a smooth function that well approximates the VKP
mass, i.e.

MsVKP(v) =
µv

1 + e−2k(v̄−v)
+

µv̄
1 + e−2k(v−v̄)

, (5.22)

with k sufficiently large. Fig. 5.3 shows the original VKP mass function, its smooth
version corresponding to Eq. 5.22 and the corresponding photon surface for G0µ = 1

2 .

One may think of a photon surface as a location where photons undergo substan-
tial gravitational lensing, such that they may circle the central compact object finitely
many times, but without being unboundedly deflected, c.f. Footnote 5. For black
holes, a photon surface surrounds the apparent horizon at radii not much larger than
the radius of the apparent horizon. However, in a dynamical spacetime, gravitational
lensing may also occur where the local concentration of matter is high enough. In

for many orbits within a compact region surrounding the central compact object and will not lead to
unbounded deflection angles.
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FIGURE 5.3: We show a graphical representation of the VKP mass
function (black; see Eq. 5.2), its smooth approximation with k = 30
(dashed cyan; see Eq. 5.22) and the evolution of the photon surface
for the latter mass function with G0µ = 1

2 (magenta). The accretion
stops at v̄ = 1.1 as indicated by the horizontal dashed line. The radial
location of the Schwarzschild’s photon sphere is indicated by the

vertical dashed line.

particular, for the VKP model with a low enough accretion rate, the location of sub-
stantial gravitational lensing is initially not close to the centre at r = 0, but instead
at very large radii, where the infalling shell of null dust is located. Thus, for very
low accretion rates, the photon surface follows the infalling radiation and therefore
approaches the initial condition Eq. 5.21 from large r, c.f. Fig. 5.4c, see also [CVE01].
In contrast, for very large accretion rates 1 > G0µ ≫ G0µc, the situation is closer to
the case where the spacetime for v < 0 already contains a black hole which grows
through accretion for 0 < v < v̄, see e.g. [Kog+22]. In that case, a photon surface
grows from a finite value towards the initial condition given by Schwarzschild’s
photon sphere. Finally, the case µ ≳ µc is in between these two: a photon surface
starts at finite radius rp, but then moves inwards as it follows the accreting matter.
Only later does it move towards larger radii.

5.1.6 Spacetime diagrams

We can now summarise our review of the classical VKP model in the three spacetime
diagrams in Fig. 5.4. The spacetime diagrams show two distinct regimes, depending
on the value of the accretion rate µ compared to its critical value µc ≡ 1

16G0
. In both

regimes, the classical VKP model is geodesically incomplete, as indicated by the
finite advanced time v taken by light rays to fall back to the singularity located at
the centre r = 0 (see Footnote 4). This is consistent with the NEC condition and
the Einstein field equations, cf. Subsec. 5.1.1, as implied by the null version of the
Penrose-Hawking singularity theorems [Pen65].

The spacetime always possesses an apparent horizon given in Eq. 5.16 which
forms a straight line contained inside an event horizon, both forming at v = 0. The
apparent horizon loses its dynamical nature when accretion stops and corresponds to
the event horizon for v > v̄.

The curvature singularity in the centre r = 0 is always entirely covered by an
event horizon for µ > µc, i.e. for all v ≥ 0, satisfying the strong cosmic censorship
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FIGURE 5.4: We show the (r, v)-spacetime diagrams of null geodesics
for the classical VKP model for three different values of G0µ. In all
panels, the apparent horizon is represented by a straight red line,
the event horizon by a brown curve and the photon surface by a
magenta curve. Top left panel: for G0µ = 1

2 ≫ G0µc the curvature
singularity is hidden behind an event horizon. Top right panel: G0µ =
1
5 > G0µc (same behaviour). Bottom panel: for G0µ = 1

20 < G0µc a
globally naked singularity is present and the photon surface crosses
the Cauchy horizon (blue dash-dotted line) and the other conformal
Killing horizon (blue dashed line). The accretion stops at v̄ = 1.1 for

all three cases.

conjecture. However, for µ ≤ µc, shown in Fig. 5.4c, a globally naked singularity
with lightlike and spacelike sections forms: all null rays comprised between the
two linear solutions r±(v) emanate from the lightlike section of the singularity at
(r(v), v) = (0, 0) and can reach an observer at infinity. Thus the spacetime contains
a Cauchy horizon that forms the causal boundary of the region in which the initial-
value problem has a well-defined future evolution.

Hence, despite its simplicity, the VKP model for spherically symmetric gravi-
tational collapse can violate the strong cosmic censorship conjecture in the regime
µ ≤ µc.
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5.2 Beyond the simple VKP model

The Vaidya spacetime provides us with a simple example of a dynamical spacetime in
GR, as it is spherically symmetric and sourced only by the accumulation of null dust
over time. We focused on a particularly simple class of Vaidya spacetimes describing
gravitational collapse, namely the VKP model, in which the increasing mass function
M(v) grows linearly with v. However, the simplicity of the VKP model precludes
its astrophysical realisation: we do not expect astrophysically viable BH formation
scenarios to yield a curvature and/or a naked singularity.

Other spherically symmetric, idealised models of gravitational collapse in GR
share similar issues. The Oppenheimer-Snyder-Datt pressureless dust collapse
[Dat38a; OS39] can exhibit a naked singularity once inhomogeneities in the ini-
tial density profile are accounted for, and similarly for the Lemaître-Tolman-Bondi
isotropic but radially inhomogeneous collapse [Lem33; Tol34; Bon47]. Other dust
or self-similar, spherically symmetric collapse models also show locally or globally
naked singularities [Lak91; JD92; DJ92; JD93; Car00].

Hence, we expect that models of gravitational collapse with fewer symmetries
will exhibit a modified gravitational dynamics, e.g. as in the Kerr-Vaidya spacetime
[ST15], or more general matter content, e.g. a combination of null dust and non-null
fluid, sourcing dynamically increasing mass functions of the form M(v, r).
One example of such a more generalised dynamical spacetime within GR is the
generalised Vaidya spacetime [Hug71] given by the line element

ds2
EF = − f (v, r)dv2 + 2dv dr + r2dΩ2, f (v, r) = 1 − 2G0M(v, r)

r
. (5.23)

in EF coordinates. The energy-momentum tensor associated with null dust and
non-null fluid reads

Tµν = ρnµnν + (ϱ + p)(lµnν + lνnµ) + pgµν, (5.24)

where lµ and nµ are null vectors satisfying the condition lµnµ = −1, ρ is the energy
density of the null dust, and ϱ and p are the energy density and pressure of the
non-null fluid.

In Sec. 5.5, we will put forward a family of upgraded Vaidya metrics that we
construct by implementing a set of principles for phenomenological models of space-
times beyond GR, following the principled-parameterised approach. We use the VKP
model as our starting point and upgrade spacetimes within the class of generalised
Vaidya spacetimes in which M = M(v, r). Incidentally, one member of this fam-
ily of metrics can be constructed in a different, independent approach, namely by
Renormalisation-Group (RG) improvement within asymptotically safe gravity.

5.3 RG-improved black holes

RG improvement starts from a specific theory, typically asymptotically safe gravity
discussed in Subsec. 3.5.1, and is thus part of what one might call a “principled” or
“fundamental” approach to spacetimes beyond GR. RG improvement is a method to
incorporate loop corrections into the solutions of the equations of motion and is as
such well-established in quantum field theory [CW73]. Within asymptotically safe



102 Chapter 5. The principled-parameterised approach to gravitational collapse

gravity, it has first been used in [BR99; BR00]. However, in the context of gravity,
there are ambiguities in the procedure, see e.g. [Hel21], reviewed in [EH22]. Thus,
the resulting black-hole spacetimes have the status of toy models inspired by asymp-
totically safe gravity, rather than solutions to a full theory of quantum gravity.

In its simplest incarnation, RG improvement in gravity starts from a classical
spacetime and promotes the coupling constants to scale-dependent couplings that
“run” as a function of scale, as described by the RG. The final step consists of iden-
tifying the RG scale with a suitable physical scale of the spacetime. This step is
well-motivated in asymptotically safe gravity, in which the specific version of an RG
equation that is used is the functional RG, see [Dup+21] for a review. The functional
RG is based on an infrared cutoff in the path integral. This infrared cutoff is lowered
successively, such that fluctuations are integrated over step by step. The decoupling
mechanism (see [RW04] for its first use in gravity) causes fluctuations to decouple
once their mass scale is reached, i.e. fluctuations in a given field no longer impact
the effective dynamics once the infrared cutoff lies below their mass scale. Because
curvature can act as an effective mass, the identification of the RG scale with a cur-
vature scale is well-motivated, see [Pla23; BP23] for further discussion. There are,
however, examples in the literature in which the RG scale is instead equated to an
inverse length scale, e.g. the geodesic distance from the black hole’s centre, as in
[BR00; RT11; FLR12; Tor14]. This is not motivated by the decoupling mechanism,
because the geodesic distance does not enter the effective mass of modes. In settings
with a high degree of symmetry, e.g. in spherically symmetric black holes, the results
are equivalent with those obtained by using the curvature scale as the RG scale. In
settings with fewer Killing vectors, the results are no longer equivalent [EH22].

Taking as our starting point the Vaidya metric Eq. 5.1, the only coupling in that
metric is the Newton coupling G0, which will first be promoted to a running coupling
G and then chosen to depend on the curvature.6

5.4 The principled-parameterised approach

The principled-parameterised approach (see also Subsec. 3.6.3), developed in [EH21a;
EH21b; EHJ23], is largely agnostic with respect to the theory of gravity. It is a phe-
nomenological approach, in which the guiding question is: what is the minimal
modification of a given singular, classical spacetime that implements four principles,
namely locality, simplicity, regularity and a Newtonian limit?

In practice, for stationary black-hole spacetimes, the minimal modification con-
sists in an upgrade of the ADM mass parameter M to a function of the spacetime
coordinates M(xµ). Based on [EH21a; EH21b; EHJ23], this mass modification is
sufficient to implement all principles; based on [DEH22], an upgrade of the spin
parameter is not, see Subsec. 6.2.2.

6Even if the scale is chosen to be a function of curvature through non-derivative curvature invariants,
which are coordinate-invariant quantities, it does not remove all ambiguities. In particular, applying
such an RG improvement at the level of a given stationary, axisymmetric and asymptotically flat
spacetime written in two sets of coordinates renders the two RG-improved spacetimes inequivalent, as
shown in [Hel21]. This arises because the metric on which RG improvement is applied transforms as a
tensor and not as a scalar (invariant) quantity. Despite this ambiguity, RG improving spacetime metrics
may capture some of the salient features of the would-be BH solutions in full ASQG.



5.5. A regular metric for gravitational collapse in two approaches 103

To implement locality, the ADM mass M is not upgraded to a general function of
the spacetime coordinates xµ, but instead depends on a coordinate-invariant quantity,
namely a suitable choice of local curvature invariants. Because the upgraded mass
function must have a dimensionless argument, the upgrade introduces a new scale
into the spacetime, namely the new-physics scale rNP. Simplicity is achieved if
no second scale is introduced. The last two principles, regularity (i.e., absence of
curvature singularities) and the Newtonian limit dictate the asymptotic dependence
of the mass function on the curvature; simplicity dictates the monotonicity of the mass
function between the two asymptotic limits of low and large curvatures. Thereby, the
four principles are sufficient to arrive at a family of regular metrics. This family has
one free function MNP(xµ), of which the asymptotic behaviours are fixed and which
must satisfy monotonicity requirements, and one free scale rNP that determines the
transition between the two asymptotic behaviours.

5.5 A regular metric for gravitational collapse in two approaches

Restricting to static and spherically symmetric spacetimes, the constants G0 and M
always appear in combination with each other, e.g. in the Schwarzschild spacetime.
Hence, we can either apply the RG-improvement method to G0 and replace it with
its running counterpart, or implement the principled-parameterised approach to
upgrade the ADM mass M to a spacetime-dependent function M(xµ). It is thus not
surprising that RG improvement of static black-hole spacetimes results in a metric
that also arises in the principled-parameterised approach, see [EH22].

We discover that the correspondence found for static and spherically symmetric
spacetimes continues to hold when spacetimes become dynamical. That is, we find that
the RG-improved Vaidya metric is equivalent to one member in the family of regular
metrics constructed in the principled-parameterised approach. The reason is twofold:
first, as in the static case, the Newton coupling always appears as a multiplicative
factor in front of the mass function in the classical Vaidya metric. Thus, an upgrade
of the Newton constant G0 to a curvature-dependent function can be traded for an
upgrade of the Misner-Sharp mass M to a curvature-dependent function. Second,
the RG dependence of the Newton coupling satisfies two of the four principles of
the principled-parameterised approach automatically, namely simplicity and the
Newtonian limit. Simplicity holds because the only special scale in the running of the
Newton coupling is the Planck scale, where the transition between the asymptotically
safe scaling regime and the classical regime occurs.7 The second principle is the
Newtonian limit which is realised because, in the low-curvature regime, the Newton
coupling is constant to recover classical GR from asymptotic safety, thus the metric
is not modified in this regime. Non-trivially, the fixed-point scaling of the Newton
coupling is also just sufficient to make (non-derivative) curvature invariants regular;
thus the metric also satisfies regularity and is, therefore, one special choice in the
family of regular metrics.

Going from static to stationary spacetimes, the situation already becomes more
subtle, because the locality principle is not always respected when RG improvement
is implemented by choosing a non-local notion of scale [RT11; LN14; PS18], see the
discussion in [EH22]. This results in important differences, e.g. (non-)circularity of

7The presence of a single scale in ASQG, namely the Planck scale, is a non-trivial result which follows
from the compelling evidence of a single fixed-point in the UV-regime. If several distinct fixed points
were to be present, more than one scale would play a role in ASQG.
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the spacetime [DEH22]. Similarly, in time-dependent settings describing gravitational
collapse, the regularity principle is not obeyed in examples in which the locality
principle is neglected [BKP17; BP23]. Here, we thus aim at exploring whether or
not implementing the locality principle within a dynamical spacetime gives rise to a
regular spacetime.

5.5.1 In the principled-parameterised approach

. . . where the Misner-Sharp mass M(v) is upgraded to a generalised mass function M(v, r)
satisfying the locality, Newtonian limit, regularity and simplicity principles rooted in the
principled-parameterised approach.

Implementing the locality principle
We start from the Vaidya metric with the line element Eq. 5.1. In contrast to previously-
derived spacetimes in the principled-parameterised approach [EH21a; EH21b; EHJ23],
the considered spacetime is not stationary, and the mass is not a constant parameter,
but already depends on the advanced time v. We promote it to a more general
function of the coordinates

M(v) → MNP(xµ), (5.25)

where the subscript NP stands for “new physics” and indicates that this upgrade
should be understood as a phenomenological approach to a more complete theory
of gravity beyond GR. To implement locality, MNP(xµ) may only depend on the
spacetime coordinates through curvature invariants.8 This follows an EFT reasoning,
in which higher-order curvature invariants are expected to be present in the action
and to modify the metric at high enough values of the classical curvature [RSW20].

As discussed in Subsec. 5.1.3, the only independent, non-derivative curvature
invariant of the Vaidya spacetime is I1 and thus we choose

MNP(xµ) = MNP(I1 r4
NP) = MNP

(
48G2

0 M(v)2

r6 r4
NP

)
. (5.26)

The new-physics scale rNP appears to keep the argument of the mass function di-
mensionless.9 The upgraded mass function MNP also depends on the classical mass
function M(v). To avoid confusion between the original mass function M(v) and the
upgraded mass function, the latter always carries the subscript NP, i.e. MNP(I1r4

NP).

Implementing the Newtonian limit
At this stage, MNP is a completely arbitrary function. We now fix its asymptotic
behaviour at low values of the curvature.

We require that for I1r4
NP → 0, MNP → M(v), such that the classical spacetime

(which has the appropriate Newtonian limit for v > v̄) is recovered. This is easiest
implemented by writing

MNP

(
48G2

0 M(v)2

r6 r4
NP

)
= M(v) · fNP

(
48G2

0 M(v)2

r6 r4
NP

)
, (5.27)

8Because we work at the level of the spacetime metric and not the action or the equations of motion,
we do not know whether locality as we implement it here translates into a local action or not.

9Recall that we work in units in which c = 1 but G0 ̸= 1.
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where fNP is a function that parameterises the modifications and of which we now
require

lim
I1r4

NP→0
fNP

(
48G2

0 M(v)2

r6 r4
NP

)
= 1. (5.28)

In principle, subleading coefficients of fNP can be adjusted in the low-curvature
expansion to account for specific post-GR corrections, e.g. from the EFT approach to
QG [Don23], but we do not do so here and keep the subleading coefficients general.

Implementing regularity
The other asymptotic limit at large curvature, is fixed by the regularity principle, that
is the absence of curvature singularities.

To determine the correct fall-off of fNP(I1r4
NP) at large I1r4

NP, we first need to
evaluate the (non-derivative) curvature invariants with the upgraded mass function
Eq. 5.27. Because the upgraded mass function is also a function of r, not just v, the
upgraded spacetime is part of the class of generalised Vaidya spacetimes [Hug71],
see Eq. 5.23.

We study the complete set of 17 non-derivative curvature ZM invariants of a
generalised Vaidya spacetime. Their explicit dependence on the generalised mass
function M(v, r) is given in App. B.3. With the exception of I1 and I3, all curvature
invariants are polynomial in M′(v, r) ≡ ∂M(v,r)

∂r and M′′(v, r) ≡ ∂2 M(v,r)
∂r2 . This is con-

sistent with the fact that all curvature invariants except for I1 and I3 vanish for the
Schwarzschild spacetime, for which M(v, r) = M = const.

Because the curvature invariants are generically singular as r → 0, see App. B.3,
the mass function must acquire an r-dependence to lift the singularity. To determine
the minimal power of r required, we make a power-law ansatz for the small-r-limit
of the generalised mass function

MNP(v, r)
r→0≃ h(v) rα. (5.29)

The exact form of h(v) does not matter for the following argument. All non-vanishing
Weyl invariants (which include the Weyl tensor or its dual) of the upgraded spacetime
vanish for α = 2, 3 (unless h(v) = const., in which case α = 2 is still singular).
However, all Ricci invariants of the upgraded spacetime are singular for α < 3,
singling out

α = 3 (5.30)

as the critical case, i.e. the minimal power of r required to lift the singularity in
all polynomially independent, non-derivative curvature invariants. This agrees
with the limiting case of the modified Schwarzschild, static spacetime, reached for
h(v) → const., in which the curvature singularity of the Schwarzschild spacetime is
lifted if the mass is upgraded to a radially dependent function with leading-order
behaviour MNP(r) ∼ r3, cf. [EHJ23].

We now translate the results of this asymptotic analysis into a requirement on the
modification function fNP(I1r4

NP). To achieve MNP(v, r) ∼ r3 or higher powers of r,
we must have

fNP(I1r4
NP) ∼

1(
I1r4

NP

) n
2

, for I1r4
NP → ∞, (5.31)
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with n ≥ 1. Hereeafter, we mostly focus on the case n = 1, which is the minimal case
to make the spacetime regular.

Implementing simplicity
Simplicity requires that fNP(I1r4

NP) introduces only a single new physics scale into
the spacetime. This translates into two constraints on fNP: first, it must not depend
explicitly on any other scale than rNP; second, it must be a monotonic function of
I1r4

NP because any additional extremum introduces a second scale besides rNP. Hence,
fNP must be a monotonic function of a single argument, namely I1r4

NP.
A simple way to achieve all four principles is to choose

fNP(I1r4
NP) =

1

1 +
(

I1r4
NP

) n
2

, n ≥ 1. (5.32)

Other functions with the same asymptotic behaviour that fulfil the monotonicity
requirement, following e.g. a Dymnikova-profile [Dym92], are part of the same family
of upgraded Vaidya spacetimes. One notable example that is already contained in
Eq. 5.32 is Hayward’s regular gravitational collapse [Hay06], with the identification
ℓ2 ≡

√
6r2

NP and for n = 1.
Due to the monotonicity requirement and the two asymptotic constraints, fNP is

smaller than or equal to one everywhere. Thus, the upgraded mass is, at any given
advanced time v, smaller than or equal to the classical mass

MNP(v, I1 · r4
NP) = M(v) fNP(I1 · r4

NP) ≤ M(v) ∀v. (5.33)

As a result, the modified collapsing body is more compact than its classical coun-
terpart in the sense that, once a horizon is formed, the latter is more compact than
the classical horizon. This is a generic feature of regular black holes satisfying the
conditions spelt out in [EHJ23], for which the central curvature singularity is removed
by weakening gravity. The only way to avoid the resulting increase in compactness is
to introduce a second scale, such that MNP is larger than its classical counterpart in
the spacetime region around the apparent horizon, and thus to violate simplicity.

To illustrate the increase in compactness, we show fNP(v, r = rAH) as in Eq. 5.32
for n = 1 at the apparent horizon rAH given in Eq. 5.43 in Fig. 5.5.

fNP increases as a function of v, because the mass of the black hole grows, decreas-
ing the relative impact of new physics at the constant scale rNP over time. Smaller
accretion rates result in a smaller fNP at a given advanced time v because the black-
hole mass is smaller than for a larger accretion rate. These effects can also be read off
from the Taylor expansion of fNP in the dimensionless quantity G0µv

rNP
, which is

fNP(r = rAH) =
1
2
+

(G0µv)
2
3

2
5
3 · 3

1
6 · r

2
3
NP

+O
((

G0µv
rNP

) 4
3
)

. (5.34)

We will analyse further properties of the family of upgraded spacetimes below,
but we first explain how one member of the family can be constructed inspired by
asymptotically safe gravity.
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FIGURE 5.5: We show fNP(v, r = rAH) evaluated at the location of the
apparent horizon rAH Eq. 5.43, as a function of v for rNP = 10−3 (thick
lines) and rNP = 6 · 10−3 (thin lines). For each value of rNP we consider
two accretion rates: G0µ = 10−2 (blue lines) and G0µ = 2 · 10−2 (green
lines). The classical behaviour is recovered in the limit fNP → 1.
Conversely, the more fNP departs from 1, the stronger are the new-

physics effects.

5.5.2 Inspired by ASQG via RG improvement

. . . where the Newton constant is upgraded to its running counterpart from ASQG and chosen
to depend on a specific combination of curvature invariants.

As reviewed in Subsec. 3.5.1, ASQG is a quantum field theoretic approach to
quantum gravity. Gravity is asymptotically safe if there is quantum scale symmetry,
encoded in an interacting fixed point of the RG, above the Planck scale. This ensures
UV completion and (non-perturbative) renormalisability in the sense that only a finite
number of free parameters must be fixed to make the theory predictive. There is by
now compelling evidence for an interacting fixed point in gravity (as well as gravity
plus suitable matter) in four dimensions in Euclidean signature, see [Eic19; Bon+20;
ES22; Sau23; PR23] for reviews and [Per17a; RS19b] for textbooks. Most of these
results rely on the FRG [Wet93; Ell94; Mor94], reviewed in [Dup+21] and adapted to
gravity in the seminal paper [Reu98].

For our purposes, it is useful to consider the regularised generating functional on
which the method relies, namely Eq. 3.16 written in short form as

Zk[J] =
∫

ΛUV

Dhµνe−S[ḡµν+hµν]−Sgf[ḡµν;hµν]− 1
2

∫
d4x

√
ḡhµνRµνκλ[−D̄2/k2]hκλ+

∫
d4x

√
gJµνhµν

.

(5.35)
In here, the full metric gµν is split into an auxiliary background ḡµν and fluctuations
hµν. The background is used to gauge-fix the fluctuations through the gauge-fixing
term Sgf (understood to include the corresponding Faddeev-Popov ghost term). Be-
cause the fluctuations are not restricted to be small, Zk[J] is a fully non-perturbative
path-integral. Jµν is a source term and ΛUV indicates that the path integral has been
suitably regularised in the UV. Finally, Rµνκλ[−D̄2/k2] is an infrared cutoff term
which suppresses fluctuations according to their generalised momentum, i.e. the
eigenvalues of the background-covariant Laplacian −D̄2: decomposing a field config-
uration hµν(x) into eigenmodes of −D̄2, those with eigenvalues higher than k2 are
integrated out first. Successively lowering k, one integrates out all fluctuations in the
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path integral.

A functional differential equation for the Legendre transform of Zk[J] tracks
the resulting scale dependence of the couplings. For instance, the resulting scale
dependence of the Newton coupling is, in a simple approximation, given by [Reu00]

G(k) =
G0

1 + G0
G∗

k2
, (5.36)

where G∗ is a dimensionless number corresponding to the fixed-point value of the
dimensionless product Gk2 and we recall that G0 is the classical value of the Newton
constant. As a result, for k2 ≪ G0

G∗
, G(k) = G0 = const, i.e. at low scales, classical

gravity with a constant Newton coupling is recovered. For k2 ≫ G0
G∗

, we enter a
scaling regime with G(k) ∼ k−2. This can be understood as a weakening of gravity
through gravitational fluctuations. This weakening is a prerequisite for a quantum
field theory of gravity to make sense. Among other things, it also suggests that
classical curvature singularities could be resolved – at least, if one associates the
behaviour of the coupling at high k2 with the behaviour at high curvature scales.

This association brings us directly to the idea underlying RG improvement, in
which the Newton constant G0 is replaced by the scale dependence (5.36) in a classical
metric, and the RG scale k is matched onto a physical scale of the classical spacetime.
Before doing so, we clarify several points concerning both the level at which the RG
improvement is made and the scale identification.

Firstly, the upgrade of the classical coupling constants to their running counter-
parts can be made at three different levels, cf. the discussion in the reviews [EH22;
Pla23]: in the classical action, in the equations of motion or in the spacetime metric.
The three improvements are in general not equivalent, resulting in potentially dif-
ferent upgraded spacetime metrics. It is unclear which of them actually produces
results closest to the solution of the full quantum theory, however, the last one is the
most straightforward to implement. We thus apply the RG improvement method
at the level of the Vaidya metric. Secondly, classical gravitational systems usually
possess more than one characteristic scale, resulting in some freedom of choice for
the scale identification. Even in settings with a high degree of symmetry, where all
scales are related to each other, different choices can produce different results. For
instance, for spherically symmetric, static black holes, where the ADM mass M sets
the value of all other scales, identifying k with e.g. the local curvature scale [HGE19]
or the Hawking temperature [BHA23] produces different results.

There are many examples of classical gravitational-collapse spacetimes that have
been RG-improved within ASQG, see [CHM11; Tor14; TF14; TF15; BKP17; BKP18;
Pla19; BP23]. As highlighted, different RG-improvement procedures and scale identi-
fications indeed lead to somewhat different conclusions regarding the singularities
and the spacetime’s structure. However, as a universal result, the central singularity is
weakened, as first pointed out in [CHM11]. Whether the central curvature singularity
is made integrable or fully cured depends both on the type of RG improvement and
the choice of scale identification. For example, the central singularity is present but
made weaker in [BKP17; BKP18] when identifying the RG scale with the collapsing
fluid’s energy density. It is also found to be weakened in [BP23], where the scale is
determined via the decoupling mechanism [RW04] in an iterative sequence of RG
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improvements [Pla19]. Instead, the central curvature singularity can be fully regu-
larised by the effective repulsive forces generated by the running of the gravitational
coupling, as in [Tor14]. This conclusion still holds when backreaction from Hawking
radiation is included, see [TF14; TF15]. However, the absence of shell-focusing sin-
gularities does not entail that shell-crossing singularities are absent at larger radii,
as interactions of dust or fluid particles, which would prevent matter shells from
crossing, are usually ignored.

Due to the caveats related to the RG improvement procedure, we consider the
spacetime that we construct below as a spacetime inspired by asymptotically safe
gravity and expect that it may capture the main features that a solution to the full
quantum equations of motion has, but stress that this expectation can only be checked
a posteriori. We consider the scale identification with curvature invariants the most
physical choice and it is reassuring to see that this choice results in an absence of
curvature singularities for static black holes, stationary black holes (as reviewed in
[EH22]) and, as we show here, for at least one example of gravitational collapse.
Hence, we promote the classical Newton constant G0 to its dimensionful running
counterpart in Eq. 5.36 and identify k2 ∼ √

I1. Incidentally, this corresponds to a
particular choice of the upgraded mass function that is included in Eq. 5.27.

5.6 Properties of the regular upgraded dynamical spacetime

We now explore the consequences of a mass upgrade (discussed in Subsec. 5.5.1)
or an upgrade of the Newton coupling constant (discussed in Subsec. 5.5.2) on the
structure of the resulting upgraded, regular, dynamical spacetime. Similarly to the
classical case reviewed in Sec. 5.1, we first gain insight into geodesic (in)completeness
by determining the behaviour of null geodesics near the centre r = 0 and contrasting
it with the NEC. We then study the spacetime’s structure and null geodesic motion
within it from the centre r = 0 to larger radii.

5.6.1 Null geodesic motion near the centre

It is well established that regularity of (non-derivative) curvature invariants and
geodesic completeness are not contingent upon one another. It is therefore not
guaranteed that the upgraded spacetime we have constructed by requiring regular
curvature invariants is geodesically complete. To catch a first glimpse of geodesic
(in)completeness, we sketch the behaviour of null geodesics near the would-be classi-
cal singularity.

The radial null geodesic equation for the upgraded spacetime reads

dr
dv

=
1
2

(
1 − 2M(v, r)

r

)
. (5.37)

We consider its small-r-behaviour, where we can by construction write M(v, r) =
h(v)rα with α ≥ 3 and h(v) a positive but arbitrary function of v. We thus obtain

dr
dv

=
1
2

(
1 − 2h(v)rα−1

)
≈ 1

2
, for r → 0. (5.38)

Instead of a divergent, negative right-hand side, as in the classical case, the right-hand
side is positive and finite. Accordingly, null geodesics are repelled from the core at
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r = 0 and instead move towards larger r. We confirm this behaviour numerically,
cf. Fig. 5.6.
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FIGURE 5.6: We show null geodesics near r = 0 for the upgraded
case (magenta, continuous lines) and the corresponding classical case
(black dashed lines) for G0µ = 1/2 and setting G0 = 1 for the plot. We
choose rNP = 10−2. The inset zooms in on a set of trajectories at finite
v, but very close to r = 0. The derivative dr

dv has the opposite sign in
the upgraded case to what it has in the classical case.

The change of sign of the derivative dr
dv from negative in the classical case to

positive in the upgraded case suggests that geodesics are no longer future-incomplete,
but can instead be extended up to arbitrarily large v. In fact, null geodesics quickly
converge towards an attractor at finite r that we will investigate in more depth in
Subsec. 5.6.5.

As can be seen from the inset in Fig. 5.6, geodesics in classical and upgraded
spacetime can start at small r at finite v. Thus, it is not possible to set up an initial-
value problem in the spacetime, because there are always null geodesics to the future
of any spatial hypersurface, which do not intersect the hypersurface when extended
backwards in time. This suggests that the spacetime should be extended to r < 0.
Numerically, null geodesics can be tracked into this region, but we do not explore
this further. However, we emphasise that non-derivative curvature invariants of the
upgraded spacetime might change sign at r = 0, hence rendering them multiple-
valued, see App. B.3.

5.6.2 Energy conditions

Given the radically altered behaviour of null geodesics near r = 0 that we observe
numerically, we expect that energy conditions, which are prerequisites to prove
geodesic incompleteness, may be violated in the upgraded spacetime. In fact, all
pointlike energy conditions have counter-examples; e.g. in the form of classical scalar
fields with non-minimal scalar curvature coupling [Bek75; Des84; BV00; BV02] and
in semiclassical gravity, see e.g. [EGJ65; ZP71; PF73; Rom86; Vis96a; Vis96b; FW96;
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Vis97; BV02; KS20]. We expect them to break down in any QG-inspired spacetime,
see [KC20] for an example in QG using EFT methods and [LLZ21; Hos05] in LQG.
The violation of the pointwise energy conditions could then lead to geodesically com-
plete spacetimes beyond GR. We focus on the NEC because it is the weakest of the
pointlike energy conditions, i.e. if it is violated, all other pointlike energy conditions
are violated as well [Vis95]. We leave aside the question of whether averaged energy
conditions, reviewed in [Rom04; Cur17; KS20], hold or not.

The upgraded metric is actually a generalised Vaidya spacetime because the
upgrade results in a v- and r- dependence of the mass. Therefore, the effective
energy-momentum tensor associated with the upgraded metric through the Einstein
field equations Eq. 2.1 is that of a generalised Vaidya spacetime. A generalised
Vaidya spacetime, understood as a solution of the Einstein equations, describes the
gravitational collapse of shells of non-null fluid – additionally to shells of null dust
present in the classical case – flowing radially towards the centre. Outside of the
shells, the vacuum exterior spacetime is spherically symmetric and asymptotically
flat. Because in our case this spacetime arises as an upgrade of the Vaidya spacetime,
the additional component in the effective energy-momentum tensor is not due to
non-null fluid in the spacetime, but rather encodes new-physics effects at an effective
level. This is particularly useful when examining energy conditions.
The energy-momentum tensor of a generalised Vaidya spacetime reads

T eff
µν =

Ṁ(v, r)
4πr2 nµnν +

(
M′(v, r)

4πr2 − M′′(v, r)
8πr

) (
nµlν + nνlµ

)
− M′′(v, r)

8πr
gµν, (5.39)

with null vectors nµ = δ0
µ and lµ = 1

2

(
1 − 2G0 M(v,r)

r

)
δ0

µ − δ1
µ satisfying nµlµ = −1

[MGM14]. Here, the dots correspond to differentiation with respect to v, while the
primes refer to differentiation with respect to r.

The null energy condition requires

ε = Tµνkµkν = T00(k0)2 + 2 T01k0k1 ≥ 0 (5.40)

for every future-pointing null vector field kµ. The null condition on kµ translates as

kµkµ = 0 ⇔ k1 =
1
2

(
1 − 2G0M(v, r)

r

)
k0. (5.41)

We insert the upgraded mass function from Eq. 5.27, focusing on the choice n = 1
in the following. Substituting k1 by its expression in terms of k0 derived in Eq. 5.41 in
the mass-energy density Eq. 5.40, we obtain an expression in which k0 appears within
a positive prefactor. Since we are interested in regions of spacetime and parameter
space in which the NEC is violated, i.e. ε < 0, we can drop this positive prefactor and
obtain the following upper bound

0 ≤ r7 + 8
√

3 G0r4r2
NPµv − 36

√
3 G0r3r2

NPv2µ + 48 G2
0rr4

NPv2µ2

+ 72
√

3 G2
0r2r2

NPv3µ2 − 432 G2
0r4

NPv3µ2. (5.42)

This results in an upper bound on r, namely 0 ≤ r ≲ rNEC(v, µ, rNP).

Regions of negative mass-energy density, where the NEC is violated, are shown
as coloured-shaded regions in Fig. 5.7 for an accretion rate of µ = 1

10G0
> µc, where
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µc is the critical accretion rate delineating the two classical regimes discussed in Sub-
sec. 5.1.6. We observe that the attractor for null geodesics, which we already found in
Subsec. 5.6.1, coincides with the boundary of the spacetime region in which the NEC
is violated. The physics of the attractor may thus be understood as follows: for values
r > rNEC, gravity acts as an attractive force and thus focuses geodesics. For values
r < rNEC, the modification of the mass function implements a repulsive gravitational
force, expelling null geodesics from this region and resulting in a violation of the
NEC. As a consequence, the boundary of the region of violations of the NEC acts as
an attractor for null geodesics.
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FIGURE 5.7: We show the region plots of the violation of the NEC for
arbitrary k0 and G0µ = 1

10 , i.e. coloured regions for which ε < 0. Left
panel: region plot (r, v) of ε < 0 for rNP = 39

1000 together with classical
(dashed green) and upgraded (magenta) null geodesics. Right panel:
region plot (rNP, r) of ε < 0 from v = 1

2 (dark blue) to v = 10 (light
blue).

For this rather large value of µ, the last two terms in Eq. 5.42 dominate and lead to
a constant upper bound rNEC = 3

1
4
√

2rNP for r, represented by the red straight line in
the left panel of Fig. 5.7. At small values of v, the other terms in Eq. 5.42 start playing
a role and are responsible for the tail to larger values of r visible in the left panel of
Fig. 5.7. The behaviour of the mass-energy density ε as a function of r and rNP in
the right panel of Fig. 5.7 interpolates between a linear regime at very small values
of rNP given by the contributions of the last two terms in Eq. 5.42, and a quadratic
polynomial at larger values of rNP due to the contributions of the additional terms.

We find a qualitative difference in the shape of the regions where the NEC is
violated for small accretion rates, e.g. G0µ = 1

1000 ≪ G0µc, in Fig. 5.8. This stems from
the fact that, when µ is very small, the first three terms in Eq. 5.42 dominate. Indeed,
considering only the first three terms in Eq. 5.42 and solving for r(v), we obtain a very
good approximation of the outer boundary of the grey shaded region in the left panel
of Fig. 5.8, represented by a red curve. Similarly, we can find rNEC(rNP) for every
chosen value of v in the right panel of Fig. 5.8, and the resulting curves delineate the
outer boundary of the shaded blue regions where the NEC is violated. As displayed
in the left panel of Fig. 5.8, the motion of geodesics is not correlated with the region
in which the NEC is violated. This is because for G0µ = 1

1000 and rNP = 39
1000 , the

new-physics scale is larger than the critical value rNP > rNP,c(v) ≡ 2
√

2vµ

3
7
4

. Hence,

the upgraded spacetime is horizonless and the behaviour of null geodesics does not
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FIGURE 5.8: We show the region plots of the violation of the NEC for
arbitrary k0 and G0µ = 1

1000 , i.e. coloured regions for which ε < 0. Left
panel: region plot (r, v) of ε < 0 for rNP = 39

1000 together with classical
(dashed green) and upgraded (magenta) null geodesics. Right panel:
region plot (rNP, r) of ε < 0 from v = 1
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change compared to the classical horizonless case; that is, null geodesics in both
classical and upgraded horizonless spacetimes can escape from r = 0.

5.6.3 Inner, apparent, and event horizons

As explicitly demonstrated in App. B.4, the location of the apparent horizon in
the upgraded spacetime is found by solving the equation grr

EF = 0. This equation
generically admits two real solutions. The first, given for the mass function Eq. 5.27
with n = 1 by

rAH =
1
3

[
2G0µv +

2 · 2
2
3 (G0µv)

5
3(

4G2
0µ2v2 + 3

√
3 rNP

(
−9 rNP +

√
81r2

NP − 8
√

3 G2
0µ2v2

)) 1
3

+

(
8G3

0µ3v3 + 6
√

3 rNPG0µv
(
−9rNP +

√
81r2

NP − 8
√

3 G2
0µ2v2

)) 1
3
]

(5.43)

is the apparent horizon. As discussed in Subsec. 5.5.1, the upgraded collapsing
object is more compact than its classical counterpart, which can be inferred from
the additional new-physics terms proportional to rNP present in the denominator of
Eq. 5.43.
The second solution

rIN =
1
6

[
4G0µv +

4 · (−1 + i
√

3)(G0µv)
5
3(

8G2
0µ2v2 + 6

√
3rNP

(
−9rNP +

√
81r2

NP − 8
√

3G2
0µ2v2

)) 1
3

(5.44)

+
(
−1 − i

√
3
)(

8G3
0µ3v3 + 6

√
3rNPG0µv

(
−9rNP +

√
81r2

NP − 8
√

3G2
0µ2v2

)) 1
3
]
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is a new, inner apparent horizon. This last expression is real up to the critical point

rNP = rNP,c(v) ≡ 2
√

2vµ

3
7
4

, after which it becomes complex. The reason the inner hori-

zon appears is the following: the modification function fNP(I1r4
NP) which enters

the equation App. B.4 determining the location of horizons is very small at small r,
such that the equation grr

EF = 0 accommodates another solution. This behaviour is
well-known in stationary regular black-hole spacetimes, see e.g. the conventional ex-
amples [Dym92; Hay06], and can be argued for on general grounds [CR+20; CR+23a;
CR+23b].

Solutions to algebraic equations such as grr
EF = 0 become complex in pairs. Thus,

at rNP,c, the outer and inner apparent horizons merge and subsequently become
complex, leaving behind a horizonless spacetime. These results mirror those obtained
for the event horizon in the stationary limit with a constant mass [EHJ23].
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FIGURE 5.9: We show the real part (left column) and the imaginary
part (right column) of the apparent rAH (dashed line) and inner rIN
(solid line) horizons as functions of the new-physics scale rNP and
n = 1, 2, 3, 4. Top row: parameters are 0 ≤ rNP ≤ 1 , G0µ = 1

10 , G0 = 1
and v = 10. Bottom row: parameters are 0 ≤ rNP ≤ 10 , G0µ = 1

10 ,
G0 = 1 and v = 100. The coloured points indicate the locations of the

critical points rNP,crit,n.

Fig. 5.9 shows both the real and imaginary parts of the two solutions to grr
EF = 0 as

a function of rNP, for the different powers n = 1, 2, 3, 4 in the mass function Eq. 5.27.
For each power n there is, as expected, one solution which decreases with rNP until
the critical point rNP,c,n and corresponds to the apparent horizon; and another solution
which increases with rNP, corresponding to a (new) inner horizon. They merge at
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the critical point where they become complex. Beyond the critical point, the two
solutions acquire an imaginary part, rendering the spacetime horizonless.

As opposed to the stationary case, the critical value of the new-physics scale
rNP,crit,n is not a constant but increases linearly with v, i.e.

rNP,c,n ≡ rNP,c,n(v) = cn µv, cn = const. ∀n. (5.45)

As v is taken to very small values, rNP,c,n approaches zero. Therefore, the formation
of the apparent horizon is delayed by the new-physics effects: for early enough times,
i.e. small enough v, rNP (which is a fixed constant) is always larger than rNP,c (which
grows linearly in v). Accordingly, the apparent horizon cannot exist for these very
early times and its formation can only proceed once rNP < rNP,c(v).

This effect is of particular interest in situations where the classical spacetime
exhibits a naked singularity. New physics effects resolve the singularity and limit the
maximum value of curvature invariants. The spacetime region which is thus affected
is not hidden behind an apparent horizon, given that horizon-formation is delayed
by the same new-physics effects. An asymptotic observer may therefore (in principle)
access this spacetime region through observations. This is an interesting distinction
to the stationary case, where rNP,c is a constant and there are thus always choices of
rNP < rNP,c which result in large modifications of the spacetime being hidden behind
its event horizon.

The dependence of rNP, c,n on n is non-linear, cf. Fig. 5.10. The reason is that
increasing n in the upgraded mass function in Eq. 5.27 leads to a faster approach of
fNP(I1r4

NP) → 1. Thus, the relative modification of the spacetime is smaller at the
classical location of the apparent horizon the larger n is, and the location of the inner
horizon is closer to r = 0 for larger n. Therefore, the merging of the two horizons is
delayed to larger rNP for larger n.
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FIGURE 5.10: We show the critical points rNP,c,n as a function of n for
v = 10 with either G0µ = 1

10 (continuous line), G0µ = 1
15 (dashed line)

or G0µ = 1
20 (dotted line). Logarithmic fits have been displayed to

guide the eyes of the reader.

As in the classical case, in addition to the apparent horizon, there is also an event
horizon. To determine its location rEH(v), we use that for v ≥ v̄ the spacetime is
locally isometric to a modified Schwarzschild black hole with constant mass

M ≡ µv̄

rEH(v̄) + r2n
NP

(
48 G2

0 µ2 v̄2 rEH(v̄)(
2
n−6)

) n
2

. (5.46)
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Thus, for v > v̄, an event horizon is located at a constant radius rEH(v̄) satisfying
ṙEH(v) = 0, providing an initial condition. In practice, we determine this initial
condition by solving 1 − 2G0 M

rEH(v̄) = 0 for rEH(v̄) with M being the constant mass
of a modified Schwarzschild BH given in Eq. 5.46. Then, starting from the initial
condition rEH(v̄) and ṙEH(v) = 0 at v > v̄, we numerically solve the geodesic equation
backwards in advanced time, i.e. for 0 < v < v̄, for rEH(v).

5.6.4 Photon surface

Contrary to the classical VKP model, the upgraded spacetime does not admit any
photon sphere, even for µ < µc. This is because the upgraded spacetime with mass
function Eq. 5.27 fits within the class of generalised Vaidya spacetimes Eq. 5.23, for
which the vector field ξµ = (v, r, 0, 0) in EF coordinates fails to satisfy the conformal
Killing equation

∇µξν +∇νξµ = 2gµν +
2G0

r
(

M(v, r)− Ṁ(v, r)v
)

δv
µδv

ν ̸∝ 2gµν, (5.47)

where Ṁ(v, r) ≡ ∂M(v,r)
∂v . Hence, we instead follow [MCS19] and write the evolution

equation for the location of a photon surface rp(v) for a general mass function M(v, r)
as10

0 =r̈p(v) +
1

rp(v)

(
3ṙp(v) + G0m′(3ṙp(v)− 1)− 2

(
ṙp(v)

)2
+ G0Ṁ − 1

)
+

1
r2

p(v)
(
−9G0Mṙp(v) + 2G2

0 MM′ + 5G0M
)
− 6G2

0 M2

r3
p(v)

. (5.48)

As we do not find an analytical solution to this evolution equation for rp(v), we solve
it numerically and supplement it with the appropriate initial conditions at v > v̄. As
the collapsing compact object locally settles down to a modified Schwarzschild (thus
static) black hole starting from v = v̄, with a photon sphere located at a fixed radius,
the initial conditions are given by the solution to the following equation (see [EHJ23,
Eq. (2.21)])

1 − 3G0µv̄
rp(v̄)

fNP(I1 · r4
NP)

∣∣∣∣
r=rp(v̄)

+ G0µv̄
∂ fNP(I1 · r4

NP)

∂r

∣∣∣∣
r=rp(v̄)

= 0, (5.49)

and the requirement that ṙp(v) = 0 for v ≥ v̄. While finding the location of a photon
surface rp(v) for 0 < v < v̄ now seems straightforward, there is a remaining caveat:
the upgraded mass function in Eq. 5.27 has the same sharp transition at v = v̄ as the
(classical) VKP mass function described in Eq. 5.2, which can cause instabilities in the
numerical solution. We instead implement a smooth approximation to the full mass
function by using the same approximation for M(v) as in the classical case, namely
Eq. 5.22.

The resulting upgraded photon surface for both G0µ = 1
10 and G0µ = 1

20 are
displayed in magenta in Fig. 5.11 and Fig. 5.12. For both cases, the accretion rate
is low enough that the photon surface initially starts at infinity together with the
matter shells, and moves inwards before reaching its final radial location given by
a real solution of Eq. 5.49. Comparing with Fig. 5.4, the behaviour of the upgraded

10As previously, we define M ≡ M(v, r), Ṁ ≡ ∂M(v,r)
∂v and M′ ≡ ∂M(v,r)

∂r .
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photon surface differs for G0µ = 1
10 . This is likely due to the increased compactness,

and thus weaker mass, of the upgraded collapsing body at equal advanced time
v. Furthermore, the photon surface for the horizonless spacetime only exists for a
limited range rNP,c,− < rNP < rNP,c,+ of new-physics scales, as was shown for the
stationary case in [EHJ23]. If the new-physics scale rNP is too large, in other words if
rNP > rNP,c,+, then the inner and outer photon surfaces merge and the solutions to
the differential equation Eq. 5.48 all become complex.

5.6.5 Spacetime diagrams

The (r, v) spacetime diagrams which summarise our analysis of the upgraded space-
time’s structure are shown in Fig. 5.11 (for G0µ = 1

10 ) and Fig. 5.12 (for G0µ = 1
20 ).

For each value of the accretion rate µ, we study two distinct regimes that corre-
spond to different choices of rNP: the first one corresponds to a spacetime with an
event horizon (left panel), while the second one is horizonless (right panel). Since
the presence of an event horizon depends on the ratio rNP

rNP,c(v)
, the above statement

can be reformulated as follows: the upgraded spacetime has an event horizon as long
as rNP < min

v
(rNP,c(v)) for 1 ≤ v ≤ 10, and is horizonless if rNP > max

v
(rNP,c(v)) for

1 ≤ v ≤ 10.

FIGURE 5.11: We show the (r, v) spacetime diagrams for null geodesics
in the upgraded spacetime with n = 1 and G0µ = 1

10 . Photon
surfaces are in magenta. Left panel: presence of an event hori-
zon (brown), i.e. rNP < min (rNP,c(v)), an apparent horizon (red)
and an inner horizon (blue). Right panel: horizonless spacetime,

i.e. rNP > max (rNP,c(v)).

In the spacetime diagrams, it is again apparent that there is an attractor for null
geodesics inside the apparent horizon which lies close to the inner horizon. However,
we do not expect that an inner horizon acts as an attractor for outgoing null geodesics
and confirm numerically that the attractor is close to, but not in agreement with, the
inner horizon, cf. Fig. 5.13. Instead, we expect that an inner photon surface forms,
as it does for the upgrade of the Schwarzschild spacetime [EHJ23]. Generically, the
inner photon surface is marginally stable and thus acts as an attractor.
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FIGURE 5.12: We show the (r, v) spacetime diagrams for null geodesics
in the upgraded spacetime for n = 1 and G0µ = 1

20 . Photon surfaces
are in magenta. Left panel: presence of a horizon (brown), i.e. rNP <
min (rNP,c(v)), an apparent horizon (red) and an inner horizon (blue).

Right panel: horizonless spacetime, i.e. rNP > max (rNP,c(v)).

This, in turn, likely causes a problem: the energy carried by photons trapped on
an inner photon surface accumulates, leading the spacetime curvature to rise11 and
triggering a potential instability [DF+22]. Because we do not account for backreaction
in our analysis, this effect is not visible in our spacetime diagrams. Future investiga-
tions of this point will be crucial to determine whether or not the upgraded Vaidya
spacetime can stay regular also in the fully dynamical case. The outcome of such an
analysis of course depends on the assumed dynamics; the intuition that an attractor
for geodesics may result in the build-up towards a spacetime singularity may not
hold in dynamics beyond GR.

However, an inner photon surface also has a desired consequence, namely that it
solves the predictivity problem connected to geodesics that emanate at (r = 0, v > 0).
These geodesics are not past complete within the spacetime region with r ∈ [0, ∞).
Thus, they pose a problem with setting up an initial value problem. However, be-
cause those geodesics get trapped by an inner photon surface, it effectively shields
the external spacetime from a breakdown of predictivity. These comments, of course,
only apply to radial geodesics as we do not investigate more general null geodesics
here.

A comparison of the behaviour of upgraded and classical null geodesics near the
centre is shown in Fig. 5.14. As expected, the largest deviations occur for relatively
small r, whereas the apparent and event horizons of the classical and the upgraded
spacetime already lie nearly on top of each other.

11This, of course, assumes that the GR equations of motion continue to hold. However, new physics
effects that limit the maximum value of curvature invariants in the upgraded spacetime and that
are implemented through the regularity principle might modify that picture. We namely expect that
new-physics effects can alter the response of the upgraded spacetime metric to an increase in the
energy-momentum tensor, at least beyond a critical value of the energy/momentum.
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FIGURE 5.13: We show zoomed-in regions near r = 0 of (r, v) space-
time diagrams with n = 1 in the presence of an horizon, i.e. rNP <

min (rNP,c(v)). Inner horizons are in blue. Top left panel: G0µ = 1
10

and 1.4 ≤ v ≤ 2.2. Top right panel: G0µ = 1
10 and 2.2 ≤ v ≤ 3.0.

Bottom panel: G0µ = 1
20 and 1.1 ≤ v ≤ 2.2.

5.7 Conclusion and outlook

We first reviewed the VKP model, a simple classical GR model describing the gravita-
tional collapse to a black hole of spherically symmetric, linearly accreting null dust.
This model forms a subclass of the dynamical accreting Vaidya spacetimes which, in
EF coordinates, have increasing mass functions M(v). We pointed out that, as implied
by the null version of the Penrose singularity theorem [Pen65], this model fulfiling
the null energy condition is singular. The singularity of the VKP model manifests
itself in three ways: divergent curvature invariants at the spacetime’s centre r = 0,
future-incomplete null geodesics, and the formation of a partially-naked singularity
for low-enough accretion rates µ < µc.

As the singular VKP model does not provide us with a viable description of the
formation of astrophysical black holes, we briefly reported on a more general class
of classical dynamical spacetimes: the generalised Vaidya spacetimes with mass
functions M(v, r). We then proposed two models of regular, upgraded dynamical
spacetimes that are embedded into the generalised Vaidya spacetimes. Following the
RG improvement method [EH22; Pla23], one model results from the upgrade of the
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FIGURE 5.14: We show the (r, v) spacetime diagrams for null geodesics
in the classical VKP model (dashed grey lines) and in the upgraded
Vaidya model with n = 1 (continuous grey lines) in the presence of a
horizon, i.e. rNP < min (rNP,c(v)). The classical event horizon is repre-
sented by a dashed orange curve and the classical apparent horizon
by a dashed black line. The upgraded event horizon is represented by
a brown curve, the upgraded apparent horizon by a red line and the

upgraded inner horizon by a blue line.

Newton constant G0 to a running coupling dictated by ASQG, and the identification
of the RG scale with the square root of the first classical curvature invariant. An
equivalent model is found by following the principled-parameterised approach
[EH21b; EH21a; EHJ23], where the classical mass function M(v) is upgraded to a
mass function depending on v, r through a massless combination of the first classical
(local) curvature invariant and a new-physics scale. The form of the latter mass
function follows from the four physical principles implemented in the principled-
parameterised approach which, among others, ensure regularity of the upgraded
spacetime, as in the stationary case [EH21b; EH21a; EHJ23].

We verified that the regular upgraded spacetime fails to satisfy the null energy
condition and documented the impact on null geodesics, particularly near the would-
be classical curvature singularity. Although upgraded null (radial) geodesics are
past-incomplete, they are no longer future-incomplete; instead, they are repelled
from the core and lensed towards a marginally stable, inner photon surface which
acts as an attractor. The latter attractor solves the predictivity problem of geodesics
emanating at (r = 0, v > 0) by capturing them, thus providing us with a “cosmic
censorship of quantum gravity”. However, it can trigger a potential instability due
to the accumulation of the energy carried by trapped photons. Additionally, the
upgraded spacetime is horizonless at small v for any accretion rate. Hence, for
µ < µc, the regularisation of the naked singularity and thus the – possibly quantum –
modifications of GR may be visible to asymptotic observers.

5.7.1 Outlook

The analysis performed in this chapter motivates future work along the following
lines.
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First, within the modified Vaidya spacetime, it is interesting to explore timelike
and null geodesics in more detail, without the restriction to radial null geodesics.
Additionally, exploring geodesic motion at r < 0 can shed more light on the question
of past and future geodesic completeness.

Second, we can extend the principled-parameterised approach to dynamical
spacetimes with fewer symmetries, i.e. axisymmetric dynamical spacetimes such as
the Kerr-Vaidya spacetime [ST15], and learn more about the universality of mass
functions that render spacetimes with Killing vectors regular. However, this analysis
might be complicated by the foliation-dependence of the apparent horizon in the
Kerr-Vaidya spacetime [ST15; Dah21]. A possible generalisation, in which we start
with a generalised Vaidya spacetime instead of a Vaidya spacetime, is sketched in
Subsec. 5.7.1.

Furthermore, the question of the impact of backreaction on the stability of the up-
graded spacetime remains open. This requires to understand the relevant timescales,
to determine whether the upgraded spacetime we have explored may be viable de-
spite the presence of an inner photon surface.

So far, we have extended the principled-parameterised approach to black-hole
spacetimes beyond GR from the stationary case [EH21a; EH21b; EHJ23] to the time-
dependent setting of gravitational collapse. We have focused on the simple VKP
model and now sketch how the approach may also be employed in less simple mod-
els, e.g. in the generalised Vaidya spacetime. In other words, instead of considering a
generalised Vaidya spacetime as the endpoint of the upgrade procedure, we determine
whether it can be considered as a starting point.

To that end, we need to consider the non-derivative curvature invariants, be-
cause a suitable measure of local curvature is the key ingredient in the principled-
parameterised approach.

Among the full set of the 17 ZM invariants in App. B.3 for the generalised Vaidya
spacetime, eleven are non-zero. Most of those non-zero invariants cannot be written
as powers of each other unless it is explicitly indicated how to do so in App. B.3.
However, this does not mean that the remaining seven non-zero invariants are all
algebraically independent of each other. Syzygies, which are polynomial relations
between the curvature invariants, may be found. We do find a non-trivial syzygy,
namely

I11

I1
+

I2
5

12
− I6

3
= 0, (5.50)

which reduces the number of polynomially independent curvature invariants to at
most six.

We postulate that, if the modulus of any of the non-zero, independent curvature
invariants exceeds a critical value, modifications to the spacetime become sizeable.
We thus construct a measure of the local curvature as follows: we take the absolute
value of each classical curvature invariant to an appropriate power so that it has
the same dimensionality as the Kretschmann scalar I1. We then form the average
of these quantities, i.e. the RMS of the sum of appropriate powers of the classical
curvature invariants. By using the RMS, we avoid a bias with respect to the sign
of the curvature, assuming that new physics kicks in at large positive or negative
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curvatures. This amounts to considering a local curvature K of the general form

K =
1
N

√√√√ N

∑
j=1

|Ij|αj , αj ∈ Q, (5.51)

with Ij being the non-zero, polynomially independent, curvature invariants of the
classical non-upgraded spacetime. This corresponds to the case (ii) in App. B.5.

Using only the independent curvature invariants, the local curvature scale of a
generalised Vaidya spacetime takes the form

K =
1
6

√
|I1|+ |I5|2 + |I6|+ |I7|

2
3 + |I8| 1

2 + |I13|
2
5 , (5.52)

where the implicit dependence of K in M(v, r) and its r-derivatives M′(v, r), M′′(v, r)
is hidden in the curvature invariants.

In practice, this expression is significantly more complicated than simply K =√
I1, which we could use for the Vaidya spacetime. As a result, the principled-

parameterised approach should be applicable to a generalised Vaidya spacetime, but
we expect the numerical analysis of the spacetime to be significantly more involved
than starting from a Vaidya spacetime.
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Chapter 6

Towards a general parameterisation
of non-circular black-hole
spacetimes

In this chapter, we discuss parameterisations of BH spacetimes which provide a
theory-agnostic way of writing down deviations from GR and then testing them,
c.f. the existing parameterisations [BF79; VH10; Vig10; VYS11; JP11; Joh13b; KRZ16;
CY20]. We argue that more general parameterisations of BH spacetimes are needed
to fully account for all potential deviations from the Kerr paradigm. Those parame-
terisations may possess fewer symmetries than those of GR and, in particular, should
include non-circular spacetimes. There is indeed no reason to expect that circularity
holds beyond GR, where spacetimes are no longer Ricci-flat. Additionally, the regular,
spinning BH spacetimes proposed in [EH21b; EH21a] are non-circular and result in
peculiar image features, namely cusps, a dent and an asymmetry in the photon rings
surrounding the black-hole shadow.

We start by pointing out that BH parameterisations beyond GR that exist in the
current literature make unnecessary additional symmetry assumptions which need
not hold on general grounds: first, circularity; second, a hidden constant of motion.
Then, we demonstrate that promoting the classical mass to a mass function can
lead to families of regular black-hole spacetimes that break circularity, c.f. [EH21b;
EH21a], while we show for the first time how a similar upgrade of the classical
spin fails to regularise the curvature singularity, c.f. [DEH22]. This motivates us to
go beyond upgrading classical mass and spin constants to particular functions and
propose a more general, non-circular, stationary, axisymmetric and asymptotically
flat parameterisation in two sets of coordinates, namely horizon-penetrating and
Boyer-Lindquist coordinates. We explicitly check that this new parameterisation
includes existing circular and non-circular BH spacetimes, and explain why horizon-
penetrating coordinates may be more suitable to parameterise non-circular deviations
from the Kerr geometry.

6.1 The parameterised approach to black holes beyond GR

The EHT results from the 2017 observation campaign show that both M87* and SgrA*
are consistent with a Kerr BH within current nominal resolution and systematic
uncertainties [Aki+19a; Aki+22a]. Hence, if M87* and SgrA* were to be different
from s Kerr BH, their spacetime geometries would need to deviate only slightly
from that of Kerr. Capturing deviations from the Kerr BH is the idea behind the
parameterised approach to BHs beyond GR. Given the difficulty of obtaining stationary,
axisymmetric, asymptotically flat BH solutions to theories beyond GR, the latter
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parameterised approach aims to capture all possible deviations with respect to the
Kerr (or Schwarzschild) BH in a theory-agnostic way.

The parameterised approach goes beyond promoting the classical mass and spin
to particular functions which, although successfully leading to non-singular BH
spacetimes for families of locality-based mass upgrades M → M(r, χ) ≡ M(K · l4

NP)
depending on the local curvature scale K1, c.f. Subsec. 6.2.1, fails to regularise space-
times via a spin function, c.f. Subsec. 6.2.2.

Based on our work [DEH22], we first review that existing parameterisations of
BH spacetimes beyond GR can be split into different symmetry classes, depicted in
Fig. 6.1. We then review the main two symmetry classes existing parameterisations
belong to, namely circular spacetimes with an additional hidden constant of motion
in Subsec. 6.1.2 and circular spacetimes only in Subsec. 6.1.3. Next, we motivate
and propose a more general parameterised spacetime that is non-circular in two
relevant sets of coordinates, namely Horizon-Penetrating (HP) in Subsec. 6.3.2 and
Boyer-Lindquist (BL) coordinates in Subsec. 6.3.5. Finally, we take a closer look at
one example included in the newly proposed, non-circular parameterisation and
conclude.

6.1.1 Symmetry classes of parameterised spacetimes beyond GR

The parameterised approach starts from a vacuum GR BH metric, either Kerr or
its subcase Schwarzschild, and introduces a set of additional functions of the (non-
Killing) coordinates parameterised by additional parameters. The latter additional
functions are such that the parameterised metric reduces to Kerr (or Schwarzschild)
for specific values of those functions, when appropriate limits are taken or when
deviation parameters vanish. It thus follows a similar reasoning as the Parameterised
Post-Newtonian (PPN) formalism, in which weak-field and low-velocity deviations
with respect to Newtonian’s gravity are introduced order by order in the Einstein’s
field equations (see [Hoh21] for a recent review on the PPN formalism). However,
the parameterised approach contrasts with the PPN formalism in three ways:

• no systematic expansion in small parameters is performed;

• deviation parameters can be of order O(1);

• there is not always a one-to-one or direct connection between the newly added
deviation parameters and their physical relevance.

In particular, it is generally not possible to relate a given deviation parameter in a
parameterised metric to a single PPN parameter as was done in [Psa+21].

The various sets of possible deviation functions define classes of parameterisations
that share similar features, in particular common symmetries, depicted in Fig. 6.1.
Starting from the GR Schwarzschild metric, one may preserve staticity and spherical
symmetry when parameterising deviations from it, to stay within the most symmetric
class of circular, static, spherically symmetric metrics with a hidden constant of
motion. If we relax the spherical symmetry to axisymmetry, we move on to the class
of static and axisymmetric parameterisations which are based on the GR Weyl metrics

1Here, the symbol K appearing in the mass function does not correspond to the Kretschmann scalar,
but to the local curvature scale expressed in terms of a suitable combination of curvature invariants, as
defined in App. B.5.
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FIGURE 6.1: We depict subclasses of stationary and axisymmetric met-
rics according to their symmetries. “Circular” metrics refer to metrics
satisfying the circularity conditions spelled out in Eqs. 6.3 and 6.4. A
subclass of those circular metrics possess a hidden symmetry gener-
ated by a rank-2 Killing tensor, a generalisation of the Carter constant

given in Eq. 2.13.

[Wey17a].2 If we relax staticity, we end up in the orange box in Fig. 6.1 containing all
circular, stationary, axisymmetric spacetimes with a hidden constant of motion, to
which the Kerr solution belongs.

Indeed, while possessing fewer symmetries than the Schwarzschild spacetime
which lies in the central box in Fig. 6.1, the Kerr spacetime is highly symmetric. Apart
from its stationarity and its axisymmetry, it is circular in the sense that it fulfils the
circularity conditions

ξ
[µ
1 ξν

2∇κξ
λ]
1 = 0 at at least one point, (6.1)

ξ
[µ
2 ξν

1∇κξ
λ]
2 = 0 at at least one point, (6.2)

ξ
µ
1 R [ν

µ ξκ
2ξ

λ]
1 = 0 everywhere, (6.3)

ξ
µ
2 R [ν

µ ξκ
1ξ

λ]
2 = 0 everywhere (6.4)

involving the two Killing vector fields ξ1 and ξ2, the Ricci tensor Rµν and the covariant
derivative ∇µ of the Kerr spacetime.

Independently of the choice of coordinates, circularity imposes some restrictions
on the Ricci tensor in the directions of the two Killing vectors, hence implying
an isometry of the spacetime. In BL coordinates, where the Killing vectors are
ξt = ∂t and ξϕ = ∂ϕ, circularity simplifies to the invariance under the simultaneous
transformations t → −t, ϕ → −ϕ. As such, circularity is manifest in the Kerr metric
Sec. 2.2, as the infinitesimal elements dt and dϕ only appear with themselves or with
each other.

Circularity also appears to be related to the existence of closed photon orbits.
Indeed, every stationary, axisymmetric and asymptotically flat BH spacetime that is
also circular must admit at least two planar closed photon orbits – one with (prograde)
and one against (retrograde) the rotation of the BH [CH20; CHN24]. Whether the
proof extends beyond circularity remains an open question, because the proof shows

2More detail on Weyl metrics is provided in App. C.3, but since metrics of that form are often
unphysical, we will not discuss them further.
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that circularity implies two planar closed photon orbits, but it is not clear whether
circularity is a sufficient or necessary condition.

On top of circularity, the Kerr spacetime also possesses a hidden symmetry associ-
ated with the presence of a rank-2 Killing tensor (see Eq. 6.5 for the defining equation
of Killing tensors). The latter hidden symmetry gives rise to a constant of motion,
known as the Carter constant, c.f. Eq. 2.13. Killing tensors of rank n ≥ 2 are manifest
in the local dynamics of test particles. In particular, together with the other constant
of motions, the Carter constant leads to the separability of Kerr’s geodesic equation.

Starting from the GR Kerr metric, one may: (i) preserve all Kerr symmetries –
thus staying in the orange box in Fig. 6.1 – or (ii) relax some of them – thus gaining
in generality by gradually moving towards less and less symmetric spacetimes,
i.e. towards the outer blue boxes in Fig. 6.1.

Constraints on the deviation parameters from observations allow us to quantify
possible deviations from the no-hair theorem and from the vacuum GR symmetries
(those of Schwarzschild, Weyl or Kerr spacetimes), and thus to select relevant classes
of parameterised spacetimes, upon lifting the degeneracies that may occur among
deviation parameters [Psa+21].

6.1.2 Circular parameterised spacetimes with an additional hidden con-
stant of motion

Moving on to metrics beyond GR, stationary, axisymmetric and circular parame-
terised spacetimes may also contain an additional hidden constant of motion or
generalised Carter constant. Those hidden constants of motion are associated to Killing
tensors, the higher-rank generalisation of Killing vectors. The Killing equation
∇(µξν) = 0 defining a Killing vector ξµ in fact generalises to a rank-n Killing tensor
Kµ1...µn as

∇(µKµ1...µn) = 0, (6.5)

where round brackets denote complete symmetrisation. As such, a Killing vector
is a rank-1 Killing tensor, and the metric is itself a rank-2 Killing tensor, as follows
from the metric compatibility of the covariant derivative based on the Christoffel
connection. However, metric compatibility does not generate constants of motion but
rather ensures the absence of non-metricity d.o.f.

While Killing vectors encode an explicit isometry of the underlying spacetime,
higher-rank Killing tensors manifest themselves in the local dynamics of tests parti-
cles: they imply a hidden constant of motion. Supplemented with sufficiently many
other constants of motion, this leads to the separability of the geodesics equations.
The existence of a hidden constant of motion along a geodesic parameterised by
its proper time τ and with tangent vector uµ = dxµ(τ)

dτ stems from the generalised
Killing equation Eq. 6.5, which implies that C = Kµ1 ...µn uµ1 . . . uµn is conserved along
a geodesic, i.e. dC

dτ = 0.

The most general (inverse) metric with two independent Killing vectors and one
non-trivial rank-2 Killing tensor takes the form [BF79]

gµν∂µ∂ν =
1

S1(x1) + S2(x2)

[ (
Gij

1 (x1) + Gij
2 (x2)

)
∂xi∂xj + ∆1(x1)∂x2

1 + ∆2(x2)∂x2
2

]
,

(6.6)
where i, j refer to the two Killing coordinates, and 1, 2 to the two non-Killing coor-
dinates. While the form Eq. 6.6 seems to have more free functions than the four (or
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five) free functions of circular metrics, c.f. Eq. 6.12, functions S1(x1), S2(x2), Gij
1 (x1),

Gij
2 (x2), ∆1(x1) and ∆2(x2) only depend on one coordinate at a time, either x1 or x2.

The resulting rank-2 Killing tensor Kµν and the associated generalised Carter constant
C are [BF79]

Kµν∂µ∂ν =
1

S1(x1) + S2(x2)

[ (
S1(x1)G

ij
2 (x2)− S2(x2)G

ij
1 (x1)

)
∂xi∂xj

− S2(x2)∆1(x1)∂x2
1 + S1(x1)∆2(x2)∂x2

2

]
, (6.7)

C =Kµνuµuν, (6.8)

with uµ the 4-velocity of a test particle.
The parameterisation in Eq. 6.6 is fully equivalent to the one presented in [Joh13a,

Eq. (10)], as explicitly demonstrated in App. C.2. While we have not verified the
consistency of the parameterisation in Eq. 6.6 with the parameterisations in [VYS11,
Eqs. (30) and (56)] because those parameterisations are implicitly given in terms of
differential equations, the latter parameterisations are in fact built from a rank-2
Killing tensor for which [BF79] claims generality. We easily recognise that the Kerr
metric is of the above form Eq. 6.6 in BL coordinates and that it has a hidden constant
of motion, namely the Carter constant Eq. 2.13.

While [BF79] does not assume circularity, we have explicitly checked that all such
metrics are circular. Due to their additional hidden constant of motion, they form
a subclass of the most general circular parameterisation in Eq. 6.12 represented in
orange in Fig. 6.1.

In principle, additional hidden constants of motion can occur when Killing tensors
with a high-order rank, i.e. rank > 2, are present. We are not aware of a proof that
precludes their existence, although searches for them have not been successful so far
in 4D (see [OYW21] for a systematic order-by-order – in small spin-parameter and
small beyond-GR coupling constant – search for Killing tensors up to rank 6 in two
quadratic gravity theories). Hence, it is to the best of our knowledge not excluded
that axisymmetric, stationary spacetimes with higher-rank (i.e. rank > 2) Killing
tensors are non-circular, e.g. in dimensions higher than four [GK22].

6.1.3 Circular parameterised spacetimes

When relaxing the presence of a hidden symmetry leading to a hidden constant
of motion, we end up in the more general class of stationary, axisymmetric and
asymptotically flat spacetimes which are circular in the above sense of Subsec. 6.1.1.

Most existing parameterisations beyond GR belong to that subclass, as reviewed
in [DEH22; HP23]: the Benenti-Francaviglia parameterisation [BF79], the bumpy-Kerr
parameterisations [VH10; Vig10; VYS11], the Johannsen-Psaltis (JP) parameterisation
[JP11; Joh13a] and the KRZ parameterisation [KRZ16]. Note that the bumpy-Kerr
parameterisations in [VH10; Vig10] contain some non-circular spacetimes but are
not exhaustive, because they only introduce two and three free functions, respec-
tively. Moreover, the parameterisation in [Joh13a] as well as the implicitly defined
spacetimes in [VYS11, Eqs. (30) and (56)] are circular but additionally assume the
existence of a hidden constant of motion, thus falling into the category described in
Subsec. 6.1.2.
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The construction of a general metric that follows from circularity [Wey17b; Pap66;
KT66], see also [Wal84, Sec. 7.1], proceeds as follows. A general stationary and axisym-
metric metric gµν in 4D has ten non-vanishing and independent metric components to
start.3 These metric components are only functions of the two non-Killing coordinates
since we impose that the Killing symmetries must be manifest. Because we are free to
perform four coordinate transformations in 4D, we can always reduce the number of
non-vanishing metric components to six in some well-chosen set of coordinates. As
in [DEH22], we review how the symmetries of a circular, axisymmetric and stationary
spacetime lead to only five non-vanishing metric components in one particular set of
coordinates, and that those are all but one off-diagonal component.

To perform the explicit construction of a general circular metric, we work in BL
coordinates (t, r, θ, ϕ), in which the two Killing vectors are ξt = ∂t and ξϕ = ∂ϕ.4

Circularity imposes an additional isometry, by which metric components can be set to
zero or become functions of one another [Pap66; KT66; Wal84]. Every axisymmetric
and stationary spacetime possesses “surfaces of transitivity”, labelled by constant
values of r and θ, which are generated by ξt and ξϕ in the sense that those are tangent
to the surfaces of transitivity (except at the rotation axis where ξϕ vanishes). If the
spacetime is circular, then there is a family of 2D surfaces which are everywhere
orthogonal to the surfaces of transitivity, dubbed meridional surfaces. The distinctive
feature of circular spacetimes is not that those meridional surfaces exist, as they
also appear in non-circular spacetimes, but that they exist globally [Pap66; KT66].
Circularity indeed implies an additional isometry, that is the invariance under the

FIGURE 6.2: We depict 2D surfaces of transitivity of 4D stationary
and axisymmetric spacetimes generated by its two Killing vectors ξt
and ξϕ (red arrows) in BL coordinates. The black arrow pointing out
indicates the direction of the 2D orthogonal surfaces spanned by r and

θ.

simultaneous transformation t → −t and ϕ → −ϕ. At the level of the metric, it

3In full generality, an arbitrary rank-2 tensor in 4D has 16 non-vanishing components. However,
a metric is a symmetric rank-2 tensor, thus reducing the number of potentially non-vanishing metric
components to 10.

4This choice of coordinate is unique for spacetimes in which deviations from Kerr are small enough.
In other words, spacetimes for which the Kerr limit can only be taken in a unique way. For larger
deviations, unicity is lost and the Kerr spacetime can occur more than once in the resulting configuration
space of metrics. This is similar to the Gribov ambiguity [Gri78] in non-Abelian gauge theories and also
affects the gravitational configuration space [EPZ04].
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imposes that four metric components vanish, namely

0 = gtr = gtθ = gϕr = gϕθ . (6.9)

Hence, within BL coordinates, the most general circular, axisymmetric and stationary
spacetime has at most six non-vanishing metric components.

However, we can perform two additional simplifications in the free functions
entering these non-vanishing metric components. To show that, we focus on the 2D
meridional surfaces, labelled by constant values of t and ϕ and spanned by ∂r and
∂θ . Since those surfaces exist globally thanks to circularity, we can write a global line
element ds2 for them. Given that every 2D metric is conformally flat, we can always
transform BL coordinates (r, θ) to coordinates (r̃, θ̃), in which the two-dimensional
line element within the meridional surfaces can be written as

ds2
mer = gr̃r̃

(
dr̃2 + r̃2dθ̃

)
, (6.10)

with just one free function gr̃r̃ multiplying the flat 2D line element in 2D spherical
coordinates. Thus, gr̃θ̃ = 0, reducing the number of non-vanishing metric components
to five. Moreover, gθ̃θ̃ = r̃2gr̃r̃ is parameterised by the same free function as gr̃r̃. As
a result, a general metric for circular, stationary and axisymmetric spacetimes has
five non-vanishing metric components parameterised by four free functions. This is
known as the Lewis-Papapetrou form of a circular metric [Pap66; KT66; Wal84].

As an example, the Kerr metric in the Lewis-Papapetrou form reads

ds2 =− dt2 +
4G0Mr̃

(
(G0M + r̃)2 − a2)

(a2 − (G0M + r̃)2)2 + 4a2r̃2 cos2(θ)

(
dt − a sin2(θ)dϕ

)2

+

((
a2 − (G0M + r̃)2)2

4r̃2 + a2

)
sin2(θ)dϕ2

+

((
a2 − (G0M + r̃)2)2

+ 4a2r̃2 cos2(θ)
)

4r̃4

(
dr̃2 + r̃2dθ2) , (6.11)

with the transformation r(r̃) given by the condition gθθ = r̃2gr̃r̃. More details on
the derivation of Eq. 6.11 are provided in App. C.1. While it is possible to write
the Kerr metric in Lewis-Papapetrou form, i.e. the most reduced form, the resulting
coordinates are unconventional and unnecessarily complicated.

This highlights that it can be advantageous to work in a parameterisation in BL
coordinates, where grr and gθθ are two different free functions. Such a general param-
eterised, rotating, black-hole metric (i.e. axisymmetric, stationary and asymptotically
flat metric) that respects circularity has been proposed in [KRZ16]. It takes the form

ds2
KRZ = − f (r, θ)− ω(r, θ)2 sin2 θ

κ2(r, θ)
dt2 − 2ω(r, θ)r sin2 θdtdϕ + κ2(r, θ)r2 sin2 θdϕ2

+ σ(r, θ)

(
β2(r, θ)

f (r, θ)
dr2 + r2dθ2

)
, (6.12)

with five free functions of the non-Killing coordinates f (r, θ), ω(r, θ), κ(r, θ), σ(r, θ)
and β(r, θ). Owing to the five free functions, this is not the most reduced form. In-
deed, Eq. 6.12 makes only partial use of the coordinate freedom in the 2D surfaces of
transitivity by setting grθ = 0. We confirm that one of the five free functions in Eq. 6.12
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is superfluous – meaning that it can be removed by a coordinate transformation – by
explicitly checking that the circularity conditions Eqs. 6.3 and 6.4 hold for any choice
of the five free functions.

So far, we have discussed existing stationary, axisymmetric and asymptotically
flat parameterisations in view of their symmetry constraints, namely circularity
and the existence of a hidden constant of motion [BF79; VH10; Vig10; VYS11; JP11;
Joh13a; KRZ16]. While those parameterisations generally assume a non-vanishing
(asymptotic) spin parameter a, spherical symmetry and staticity are usually imposed
on them once used in specific applications, e.g. the derivation of QNMs [RZ14;
Car+19; McM+19] or photon orbits [HGE19; KR20a; Tos22]. Due to those symmetry
restrictions, the extent of the obtained results is limited and calls for more generality.

6.2 Promoting a classical hair to a “quantum hair”

The no-hair conjecture [MTW73] proposes that classical black holes should be well-
described by the Kerr metric with asymptotic mass M and (reduced) spin a. Thus,
promoting those classical hair to “quantum” hair in otherwise classical spacetime
metrics might provide us with a test of the no-hair conjecture and the Kerr paradigm.

“Quantum” hair naturally arise within the principled-parameterised approach
Sec. 5.4, in which regularisation of the central classical singularity occurs through
a weakening of gravity. The latter effect is encoded in a coordinate-dependent
“quantum” mass hair tied to the local curvature of the classical spacetime. Firstly, we
show how families of locality-based, “quantum” mass hair functions in the principled-
parameterised approach can cure the central curvature singularity. Secondly, we
investigate for the first time, see [DEH22], whether a similar regularisation can occur
for “quantum” spin hair functions.

6.2.1 Mass upgrade in the principled-parameterised approach

The principled-parameterised approach has been applied to stationary, axisymmetric
and asymptotically flat spacetimes in [EH21b; EH21a]. It led to families of spacetime
metrics in which the constant ADM mass parameter M was upgraded to a mass func-
tion depending only on the non-Killing coordinates r, χ in ingoing Kerr coordinates
(u, r, χ ≡ cos θ, ϕ), i.e. M(r, χ), in a specific way, by satisfying the four principles
spelt out in Sec. 5.4: the regularity, locality and simplicity principles together with the
Newtonian limit. This corresponds to modifying a classical hair to a “quantum” hair.

The line element associated with those metrics is part of the Kerr-Schild class
[KS09] and corresponds to

dsreg, local = − r2 − 2G0M(r, χ)r + a2χ2

r2 + a2χ2 du2 + 2 du dr − 4
G0M(r, χ)ar

r2 + a2χ2

(
1 − χ2) du dϕ

− 2a
(
1 − χ2) dr dϕ +

r2 + a2χ2

1 − χ2 dχ2 (6.13)

+
1 − χ2

r2 + a2χ2

((
a2 + r2)2 − a2 (r2 − 2G0M(r, χ)r + a2) · (1 − χ2)) dϕ2,

and fulfils the regularity, simplicity, and locality principles and has the correct New-
tonian limit for r → ∞. By choosing the exact form of M(r, χ), distinct families of
spacetimes can be derived.
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Metrics obtained within the principled-parameterised approach are such that
the mass function depends on the coordinates r, χ only through the dimensionless
product K · l4

NP involving a suitable choice of the classical local curvature K and a
new-physics length scale lNP. The local curvature for Kerr can be approximated to

K ≈ KKerr =
√

I2
1 + I2

2 =
48G2

0 M2

(r2 + a2χ2)3 , (6.14)

with I1 and I2 the two classical, independent, non-zero, non-derivative curvature
invariants of the Kerr spacetime, see Appendices B.1, B.2 and B.5 for more detail.

Hence, different choices of M(r, χ) = M(K · l4
NP) define distinct families of space-

times. Those can, for example, be [EH21b]

M(K · l4
NP) =

M

1 + (K · l4
NP)

β
2

, β > 1, (6.15)

M(K · l4
NP) = Me−(K·l4

NP)
β
, β ≥ 1

6
, (6.16)

where the minimal value of β is set by the requirement of a well-defined geometry
with neither singular (as prescribed by the regularity principle discussed in Sub-
sec. 5.5.1) nor multi-valued curvature invariants. Note that a subset of spacetimes
in Eq. 6.13 fulfil the circularity conditions Eqs. 6.3 and 6.4, namely those with mass
functions M(r) [DEH22].

The mass functions in Eqs. 6.15 and 6.16 have a fast enough fall-off at small
r, which encodes a weakening of gravity that can be interpreted as an effective
repulsive force produced by quantum gravity fluctuations. The line element Eq. 6.13
thus plays an important role in quantum-gravity scenarios where quantum gravity
fluctuations are thought of regularising spacetime singularities and, accordingly,
all non-derivative curvature invariants [BR00; RT06; Nic09; MN10; HR15; AOS18;
HGE19; NSW19; Pla19; Con+20; EH21b; EH21a; EH22; Pla23].

6.2.2 Failure of a spin upgrade in and beyond the principled-parameterised
approach

Building on the “quantum” mass hair, an interesting question to raise is: can an
alternative variant of such a “quantum” hair be produced by upgrading the spin
parameter a to a function a(r, χ), such that the resulting rotating black hole is non-
singular? In other words, is the mass upgrade singled out by quantum gravity, or can
another upgrade, e.g. spin upgrade, lead to non-singular rotating black holes?
If the answer to the first question is positive, then we should determine to which
subclass of stationary and axisymmetric spacetimes the upgraded spacetime with
“quantum” spin hair belongs, c.f. Fig. 6.1. If the answer is negative, it supports the
special status of the “quantum” mass hair.

A rotating black hole (axisymmetric and stationary) can acquire a “quantum” spin
hair by promoting the constant spin parameter a to a spin function a(r, χ), resulting
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in the line element

ds2 = −
(

1 − 2G0Mr
r2 + a(r, χ )2χ2

)
du2 + 2 du dr − 4G0M a(r, χ ) r

r2 + a(r, χ )2χ2 (1 − χ2) du dϕ

− 2a (1 − χ2) dr dϕ +
r2 + a(r, χ )2χ2

1 − χ2 dχ2 +
1 − χ2

r2 + a(r, χ )2χ2

[
(a(r, χ )2 + r2)2

− a(r, χ )2(r2 − 2G0M r + a(r, χ )2) · (1 − χ2)

]
dϕ2. (6.17)

Similarly to Subsec. 6.2.1, different choices of a(r, χ) lead to different families of
spacetimes and circularity, see Eqs. 6.3 and 6.4, is recovered only for a(r, χ) → a(r).

We first explore spin upgrades within the principled-parameterised approach,
that is spin functions a(r, χ) which, among others, obey the locality principle and
depend on r, χ only through the local curvature defined in Eq. 6.14.

We require that such locality-based spin functions a(K · l4
NP) satisfy the correct

Newtonian limit to leading order, i.e.

a(K · l4
NP)

K·l4
NP→0−→ a∞ ≡ a = const. (6.18)

Additionally, to fulfil the regularity principle, we demand that all non-derivative,
upgraded curvature invariants are finite everywhere in spacetime, in particular at the
location of the classical singularity (r = 0, χ = 0). Focusing first on the first invariant
I1 = CµνρσCµνρσ, c.f. App. B.2, we require that

lim
r→0

lim
χ→0

I1
!
= lim

χ→0
lim
r→0

I1 < ∞, (6.19)

since, away from the classical singularity (r = 0, χ = 0), no singularities can occur in
any of the invariants as long as a(K · l4

NP) is itself regular. To evaluate this condition,
we split I1 into its “classical part” I1,c – containing no derivatives of a(K · l4

NP) – and its
“quantum” counterpart I1,d – which depends on the derivatives of a(K · l4

NP) – such
that I1 = I1,c + I1,d. We further assume that the regularity condition Eq. 6.19 applies
separately to I1,c and I1,d, otherwise delicate cancellations of divergences would have
to occur between I1,c and I1,d. The “classical part” I1,c is given by

I1,c =
48G2

0 M2 (r6 − 15 a2(K · l4
NP) r4χ2 + 15 a4(K · l4

NP) r2χ4 − a6(K · l4
NP) χ6)(

r2 + a2(K · l4
NP) χ2

)6 .

(6.20)
Following our assumption, if divergences occur in I1,c, those cannot be cancelled in
I1,d and, as such, make I1 divergent. In the limit r → 0, we get

lim
r→0

I1,c = − 48G2
0 M2

a6(K · l4
NP

∣∣
r=0)χ

6
. (6.21)

The limit χ → 0 of Eq. 6.21 is finite if the leading behaviour of limχ→0 a(K · l4
NP

∣∣
r=0)

is of the form
lim
χ→0

a(K · l4
NP
∣∣
r=0) ∼

1
χn , n ≥ 1, (6.22)

in other words, if a(K · l4
NP) ∼ a∞ · (K · l4

NP)
p, p ≥ 1.
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In the limit χ → 0 and assuming that the spin function takes the form a(K · l4
NP) ∼

a∞ · (K · l4
NP)

p, p ≥ 1, we get

lim
χ→0

I1,c =
48G2

0 M2

r6 , (6.23)

which clearly diverges in the limit r → 0.

Hence, we conclude that under the assumptions specified above, a “quantum”
spin hair a(K · l4

NP) derived within the principled-parameterised approach cannot
lead to a resolution of the classical curvature singularity. This is intriguing, as it
implies a certain degree of uniqueness to a “quantum” mass hair that consists in
a mass function M(K · l4

NP). One can of course imagine scenarios in which both
upgrades M(K · l4

NP) and a(K · l4
NP) are present simultaneously in regular black holes,

but the upgrade a(K · l4
NP) is insufficient on its own if the locality principle is to

simultaneously be satisfied.

This result suggests to generalise the above procedure. We thus abandon the
locality principle encoded in the principled-parameterised approach to find regular,
non-derivative curvature invariants, and look for less constrained spin functions
a(r, χ) depending independently on r and χ.

Near the classical singularity (r = 0, χ = 0), i.e. for small r and χ, let us assume
that a(r, χ) has a series expansion starting with a(r, χ) ∼ rαχβ, α, β ∈ Z. Then, the
choice

a(r, χ) = χβ, β ≤ −3, (6.24)

renders the full curvature invariant I1 finite and single-valued in the limit r, χ → 0.
This result relies on the absence of subleading terms in r. However, the form Eq. 6.24
contradicts Eq. 6.18, i.e. the Newtonian limit of a constant spin a at large r, and thus
the choice a(r, χ) ∼ χβ, β ≤ −3 cannot be a valid spin function.

This suggests to add an r-dependence to Eq. 6.24 without spoiling its behaviour in
the leading-order expansion for small r and χ. We can, for instance, consider rational
functions like

a(r, χ) = a∞
r

r + 1
+

1
χ4(r3 + 1)

, (6.25)

with a∞ the constant spin parameter obtained in the Newtonian limit. The latter
spin function indeed satisfies both conditions Eqs. 6.18 and 6.24. Nonetheless, the
sequence of limits limr→0 limχ→0 for the Ricci scalar and I1 is either indeterminate or
divergent, due to the presence of subleading terms in the series expansion around
r = 0 which still depend on r.

Instead, we can consider a spin function with exponential suppression in r, such
as, e.g.

a(r, χ) =
a∞

e
1
r
· r

r + 1
+

1
χ4

(
1 − 1

e
1
r

)
. (6.26)

For this spin function, we observe that subleading terms in r remain in the series
expansion, rendering the invariants multi-valued and potentially divergent. Indeed,
our tests of various functions (with even stronger suppression at small r than in
Eq. 6.26) beyond those reported here suggest that any subleading dependence on r
beyond the choice a(r, χ) = χβ renders some curvature invariants ill-defined.
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To summarise, we do not find an example of a spin modification that renders non-
derivative curvature invariants finite, neither within the principled-parameterised
approach, nor when abandoning the locality principle. As we have not comprehen-
sively explored the space of functions a(r, χ) that do not satisfy the locality principle,
there may potentially be a choice of spin function that results in singularity resolution.
However, we note that the spin function enters both denominators and numerators of
different metric coefficients in Eq. 6.17 and of curvature invariants, hence rendering
all non-derivative, curvature invariants finite seems unachievable.

6.3 Going beyond circularity, separability and spherical sym-
metry

To comprehensively understand how black holes beyond GR “look like”, e.g. in terms
of shadow images and properties, the parameterised approach of deviations from the
Kerr metric is best used. But achieving comprehensiveness requires the parameterisa-
tions to be as general as necessary to include all relevant cases. First, stationary and
axisymmetric parameterisations should be favoured over the simplistic static and
spherically symmetric ones, as astrophysical black holes do rotate. Second, parame-
terisations that are “too symmetric”, i.e. that make too many symmetry assumptions,
should be replaced by more general – thus less symmetric – ones for two reasons.
On purely theoretical grounds, we aim to be as general as necessary to capture all
leading-order deviation effects from GR in parameterised metrics. Hence, param-
eterised black holes beyond GR need not be as symmetric as GR ones. On more
pragmatic grounds, we aim to describe already-known spacetimes (solutions or not
of a certain theory) and there are already examples of non-circular spacetimes, both
within non-vacuum GR [IS03; IS04; BSM11; Ury+14; SG23] and beyond GR [HGE19;
Min20; Ans+21; BA+20; EH21a; EH21b; Fer23].

6.3.1 Non-circular spacetimes

In vacuum GR, the Einstein field equations Eq. 2.1 give Rµν = 0. As the circularity
conditions Eqs. 6.3 and 6.4 directly involve the Ricci tensor Rµν, circularity is trivially
satisfied in vacuum GR, i.e. for the Kerr black hole. However, circularity needs
not hold beyond vacuum GR. Indeed, the coexistence of toroidal magnetic fields
and convective motion result in meridional flows and thus non-circular metrics for
neutron stars [IS03; IS04; BSM11; Ury+14; SG23]. In addition to that, [Ver03] suggests
that non-circular interior solutions for compact rotating bodies can be matched onto
circular external solutions in GR.

Beyond GR, non-circular spinning black holes were obtained in various settings:
first, as disformal solutions5 to modified gravitational dynamics within scalar-tensor
or vector-tensor theories [Min20; Ans+21; BA+20]; second, as black-hole spacetimes

5Disformal transformations [Bek93; BEF07; BL13] are used in ghost-free scalar-tensor and vector-
tensor theories (e.g. Horndeski theories), as a way to obtain other ghost-free theories. Within
scalar-tensor theories, a disformal transformation maps a pair (gµν, ϕ) composed of a metric gµν

and a scalar field ϕ to another pair (g̃µν, ϕ), where g̃µν = A(ϕ, X)gµν + B(ϕ, X)∇µϕ∇νϕ and
X ≡ gµν∇µϕ∇νϕ. It corresponds to a generalisation of a conformal transformation for which
B(ϕ, X) = 0. A disformal transformation is invertible as long as A(ϕ, X) ̸= 0, A(ϕ, X) + XB(ϕ, X) ̸= 0
and A(ϕ, X)− X∂X A(ϕ, X)− X2∂X B(ϕ, X) ̸= 0. Hence, an invertible disformal transformation maps a
given action S[gµν, ϕ] to a new action S̃[gµν, ϕ] ≡ S[g̃µν, ϕ] without changing the number of physical
d.o.f. However, once minimally-coupled matter fields are included, the two actions are no longer related
by an invertible transformation in general, and hence they can be inequivalent.
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inspired by ASQG [HGE19; EH21a]; third, in the framework of “bumpy Kerr metrics”
in [VH10, Eq. (2.36)] and [Vig10, Eq. (1.5)]; fourth, as solutions in semiclassical grav-
ity when well-known quantum gravitational effects are considered [Fer23]; finally,
within a principled-parameterised approach developed in [EH21b; EH21a]. The latter
non-circular, regular, rotating spacetimes fulfil the locality principle. As argued in
[Hel21], any other regularisation that is circular would violate the locality principle,
indicating a possible connection between the locality principle and non-circularity.

Non-circular spacetimes often exhibit peculiar GW and EM features. As for the
EM signatures in “shadow” images, ASQG-inspired black holes can have a dent,
cusps and a lack of reflection symmetry [EH21b; EH21a; DEH22], see Subsec. 4.2.1,
while a “pedicel”-like structure [Lon+20] and cusp-like features [VGY18] can appear
in disformal Kerr black holes. Peculiar non-circular signatures of a disformal Kerr
background manifest in the motion of a S2-like pulsar and on the associated time of
arrival of emitted photons [Tak+21] as well as in the globally accumulated phase of an
EMRI’s gravitational waveform [Bab+24]. Those effects could in principle be detected
by future EM (e.g. the Square Kilometre Array) and GW (e.g. LISA) missions.

6.3.2 Non-circular parameterisation in horizon-penetrating coordinates

Horizon-Penetrating (HP) coordinates can be used to set up black-hole parameterisa-
tions in and beyond circularity. There is a strong reason to favour HP coordinates
such as ingoing Kerr coordinates (u, r, χ, ϕ), where u is a lightcone time. These coor-
dinates make it easy to avoid accidental introductions of coordinate singularities at
the horizon. The reason is that Kerr spacetime in HP coordinates

ds2
HP =−

(
r2 − 2G0Mr + a2χ2

r2 + a2χ2

)
du2 + 2dudr − 4

G0Mar
r2 + a2χ2 (1 − χ2)dudϕ

− 2a(1 − χ2)drdϕ +
r2 + a2χ2

1 − χ2 dχ2

+
1 − χ2

r2 + a2χ2

((
a2 + r2)2 − a2 (r2 − 2G0Mr + a2) (1 − χ2)

)
dϕ2 (6.27)

does not feature coordinate singularities at the horizons r± = G0M ±
√

G2
0 M2 − a2.

Therefore, a spacetime that parametrically deviates from the Kerr spacetime does not
feature curvature singularities at the horizon, as long as the functions that encode
these parameterised deviations are non-singular and invertible. In contrast, BL coor-
dinates require additional non-trivial conditions on the metric coefficients to achieve
the same, cf. [Joh13a; Joh13b; CPR14; Hel21].
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To encode parametric deviations ∆HP, j(r, χ), i = 1, . . . , 6, from the Kerr spacetime
in a more general, non-circular spacetime, we write

ds2
HP =−

(
r2 − 2G0Mr + a2χ2

r2 + a2χ2

)
(1 + ∆HP, 1(r, χ)) du2 + 2 (1 + ∆HP, 2(r, χ)) dudr

− 4
G0Mar

r2 + a2χ2 (1 − χ2)(1 + ∆HP, 3(r, χ))dudϕ − 2a(1 − χ2)(1 + ∆HP, 4(r, χ))drdϕ

+
r2 + a2χ2

1 − χ2 (1 + ∆HP, 5(r, χ))dχ2 (6.28)

+
1 − χ2

r2 + a2χ2

((
a2 + r2)2 − a2 (r2 − 2G0Mr + a2) (1 − χ2)

)
(1 + ∆HP, 6(r, χ))dϕ2.

In contrast to the circular parameterisations we have discussed in Sections 6.1.2
and 6.1.3, we write non-circular spacetimes in terms of deviations from the Kerr
spacetime. The reason is phenomenological: there is currently – within the obser-
vational uncertainties – no indication for deviations of BHs from the Kerr solution,
thus deviations are already constrained, see e.g. [HGE19; Koc+21] for constraints
in the context of shadow images. Therefore, writing a parameterisation in terms of
deviations from Kerr spacetime connects most directly to observations.

We first require that the spacetime is asymptotically flat. For ∆HP, i = 0, i =
1, . . . , 6, i.e. in the Kerr-limit, this is the case. To preserve this property for generic
deviation functions, we demand that

lim
r→∞

∆HP, i(r, χ) = 0. (6.29)

Additionally, one may require that the O
( 1

r

)
terms agree with those of the Kerr

spacetime, such that the Newtonian limit is preserved at leading order. To achieve
this, the corrections arising from ∆HP, i, i = 1, . . . , 6, must only set in at higher order,
i.e.

∆HP, i(r, χ) ∼ O
(

1
r2

)
. (6.30)

Similarly, if agreement with the PM expansion to higher orders is to be achieved,
constraints may be pushed to higher orders in r.

Next, we consider the limit of flat Minkowski spacetime. For Kerr spacetime,
this limit is reached for G0M → 0, which results in a Riemann tensor that is iden-
tically zero in all its components. For the metric Eq. 6.28, this is no longer the case.
For instance, it suffices to set ∆HP, 2(r, χ) ̸= 0, with all other ∆HP, i ̸=2 = 0, for the
spacetime to no longer be Ricci flat and feature a non-vanishing Ricci scalar. To
preserve the property that the spacetime is flat in the limit M → 0, one may demand
that ∆HP, i ∼ G0M. Alternatively, the compact objects described by Eq. 6.28 may be
characterised by additional (“quantum”) hair, such that even in the limit G0M → 0, a
non-trivial spacetime geometry exists. Whether or not the parameter G0M preserves
its interpretation as the ADM mass of the compact object is left for future work.

Similarly, we consider the limit a → 0, which results in spherical symmetry
(i.e. Schwarzschild) in the case of Kerr spacetime. This is no longer the case for
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Eq. 6.28 which, in that limit, reduces to

lim
a→0

ds2
HP =−

(
1 − 2G0M

r

)
(1 + ∆HP, 1(r, χ)) du2 + 2 (1 + ∆HP, 2(r, χ)) dudr

+
r2

1 − χ2 (1 + ∆HP, 5(r, χ))dχ2 +
(
1 − χ2) r2(1 + ∆HP, 6(r, χ))dϕ2. (6.31)

The remaining χ-dependence in guu and gur is a clear sign of the breaking of spherical
symmetry, as is the deviation of the angular line element from its canonical form
ds2

angular =
r2

1−χ2 dχ2 + (1 − χ2)r2dϕ2. One may object that four coordinate transfor-
mations can absorb the additional χ-dependence introduced by the four functions
∆HP, 1,2,5,6(r, χ). However, these coordinate transformations can, in general, not be
done without introducing new off-diagonal terms in the line element. This can be
seen, for example, by inspecting the curvature invariants of Eq. 6.31. As an example,
the Ricci scalar is non-vanishing and depends on χ and r explicitly, as well as through
derivatives of ∆HP, 1,2,5,6(r, χ). Therefore, curvature invariants in this limit are in
general not spherically symmetric. Accordingly, there are two sources of breaking
of spherical symmetry to axisymmetry: one is the presence of spin, a, the other
is, broadly speaking, additional (“quantum”) hair encoded in the χ-dependence of
∆HP, 1,2,5,6(r, χ).

For arbitrary deviations ∆HP, i(r, χ), i = 1, . . . , 6, changes of the spacetime signa-
ture can occur. The metric determinant is given by

det(gHP) =
1 + ∆HP, 5

1 − χ2

[
(1 + ∆HP, 4) a2 (1 − χ2)2

(
2(1 + ∆HP, 2)(1 + ∆HP, 3)G0M r

+ (1 + ∆HP, 1)(1 + ∆HP, 4)
(
−2G0M r + r2 + a2χ2)) (6.32)

+ (1 + ∆HP, 2)(1 − χ2)

(
2(1 + ∆HP, 3)(1 + ∆HP, 4)G0Ma2r(1 − χ2)

− (1 + ∆HP, 2)(1 + ∆HP, 6)
(

r4 + χ2 a2(1 + r2) + 2G0M r a2(1 − χ2)
))]

,

such that the signature translates into conditions on the ∆HP, i(r, χ), i = 1, . . . , 6.
If all ∆HP i(r, χ) ∼ ϵ = const., i = 1, . . . , 6, the determinant Eq. 6.32 simplifies to
det(gHP) = −(1 + ϵ)4(r2 + a2χ2)2, which means that the signature does not change
as long as ϵ > −1. In fact, the eigenvalues of the metric change sign at ϵ = −1, such
that the Lorentzian metric signature flips by a global minus sign from (−,+,+,+)
for ϵ > −1 to (+,−,−,−) for ϵ < −1. This global sign flip is physically mean-
ingless as it just turns the mostly-plus convention for Lorentzian metrics into the
mostly-minus convention, and they are equivalent. We thus caution that the change
in metric signature arising here differs from those which mark the transition between
a Lorentzian and a Euclidean metric (and vice-versa) in QG settings, see e.g. [Sak84;
MSV07; Amb+15; BB17; SX18].

The non-circular parameterisation in Eq. 6.28 reduces to a parameterisation of
circular black holes if conditions on the ∆HP, i(r, χ), i = 1, . . . , 6 hold. The circularity
conditions in Eqs. 6.3 and 6.4 amount to lengthy differential conditions that are not
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straightforward to solve. The only two conditions that we find straightforward to
solve are: i) ∆HP, 5(r, χ) can deviate from zero while preserving circularity, if all other
∆HP, i ̸=5(r, χ) = 0; ii) ∆HP, i(r, χ) = ϵ = const. ∀ i preserves circularity, but as soon
as ∆HP, 1(r, χ) is chosen to differ from the other deviation functions, circularity is
broken. Accordingly, an explicit restriction to circular spacetimes appears to be quite
non-trivial in HP coordinates. Instead, the parameterisation in Eq. 6.12 appears to
be the preferred one for circular spacetimes, because circularity is straightforward to
implement in BL coordinates.

6.3.3 From a non-circular parameterisation to a circular one

As it seems that non-circular and circular spacetime favour two different sets of
coordinates, it is interesting to understand how the more general, non-circular pa-
rameterisation in Eq. 6.28 and the circular parameterisation in Eq. 6.12 are related.

An explicit transformation of Eq. 6.28 into the parameterisation of circular black-
hole spacetimes in BL coordinates is challenging to provide. Instead, we use a
counting argument to plausibilise the existence of such a coordinate transformation.
To summarise, this counting argument adds all available free functions and subtracts
the non-trivial conditions that must be satisfied either for the metric to be of the form
Eq. 6.12 or for a coordinate transformation to exist.

There are 14 free functions to start with, out of which 6 are the deviation func-
tions ∆HP, i(r, χ), i = 1, . . . , 6, in the parameterisation Eq. 6.28 and 8 are the free
functions resulting from coordinate transformations which preserve the manifest
Killing coordinates. These 14 free functions are subject to 9 constraints, namely 4
differential constraints on the 8 free functions from coordinate transformations, and
5 constraints arising from the vanishing of some metric components in the circular
metric parameterisation in Eq. 6.12.

That four coordinate transformations, which preserve manifest Killing coordi-
nates, provide 8 free functions, subject to 4 differential constraints, can be seen as
follows. In 4D, a general coordinate transformation from coordinates xµ to coordi-
nates yµ can be written as

dyµ = Fµ
ν dxν. (6.33)

The 16 functions Fµ
ν need to form exact differentials and, hence, are subject to the

differential constraints ∂αFµ
ν = ∂νFµ

α . Thus, there are 16 free functions subject to 6
differential constraints in this general case, i.e. one differential constraint per pair
of indices (α, ν) with α, ν ∈ {1, 2, 3, 4} labelling coordinates xµ = (x1, x2, x3, x4).
To preserve manifest Killing coordinates, the transformations of r and χ must not
involve the coordinates t and ϕBL. Indeed, if r and χ were functions of t and ϕBL,
the metric components would depend on the two Killing coordinates, therefore the
Killing symmetries would no longer be manifest in the metric. Further, it must
hold that du = dt + . . . and dϕ = dϕBL + . . . , such that the transformation of u
and ϕ only contains 2 free functions of r, χ each. Together, this reduces the 16 free
functions from the general coordinate transformation to 8 free functions of the non-
Killing coordinates, and the number of differential constraints from 6 to 4, cf. [GB93,
Eq. (2.2)].

In addition, 6 free deviation functions ∆HP, i(r, χ), i = 1, . . . , 6 are given in the
initial form of the metric and 5 constraints arise from the final form of the metric,
namely the fact that all but one off-diagonal metric element in Eq. 6.12 vanishes.
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As a result of 14 (= 8 + 6) free functions with 9 (= 4 + 5) constraints, at least
5 free functions remain (more if not all constraints are linearly independent) that
solely depend on r and χ. Five free functions of r and χ are exactly what is needed
to parameterise circular black holes in BL coordinates in the form Eq. 6.12, and are
even one function too many if one does not insist on BL coordinates but want the
Lewis-Papapetrou form, cf. Subsec. 6.1.3.

6.3.4 Example: a non-circular and regular spacetime through mass upgrade

We have discussed in Subsec. 6.2.1 families of regular spacetimes constructed in the
principled-parameterised approach from an upgrade of the ADM mass parameter
to a “quantum” mass hair. The regularisation of those spacetimes occurs through a
weakening of gravity encoded in a locality-based mass function M(r, χ) ≡ M(K · l4

NP).
The resulting regular spacetime is non-circular for M(r, χ), and circular for M(r).

We now explicitly show that these two families of regular black-hole spacetimes,
given by the metric Eq. 6.13 with M(r, χ) and M(r), are included in the more general,
non-circular parameterisation in HP coordinates postulated in Eq. 6.28.

The correspondence between the general parameterisation Eq. 6.28 in HP coordi-
nates and the non-circular, regular black-hole with “quantum” mass hair in Eq. 6.13,
is given by

∆HP, 2 =0, (6.34)
∆HP, 4 =0, (6.35)
∆HP, 5 =0, (6.36)

∆HP, 1 =
2rG0 (M − M(r, χ))

r2 + a2χ2 − 2G0Mr
, (6.37)

∆HP, 3 =
M(r, χ)− M

M
, (6.38)

∆HP, 6 =− 2a2G0 (M(r, χ)− M) r(χ2 − 1)
r4 + a4χ2 + a2r (2G0M + r(r − 2G0M)χ2)

. (6.39)

The regular, rotating black holes in e.g. [RT06; Abd+16; Tor17; KSG20; KG21; He+20;
SV22] can be brought into the general form Eq. 6.28 for the special case M(r, χ) =
M(r) in Eqs. 6.34 to 6.39, followed by a coordinate transformation into BL coordinates
(where for clarity we denote the azimuthal angle ϕBL in BL coordinates) according to

t =u −
∫

dr
r2 + a2

r2 + a2 − 2G0M(r)r
,

ϕBL =ϕ −
∫

dr
a

r2 + a2 − 2G0M(r)r
. (6.40)

The fact that the spacetime described by Eqs. 6.34 to 6.39 and M(r, χ) = M(r) is a very
special choice in the general class Eq. 6.28 suggests that the regular black holes that
have been discussed in the literature are a special subclass of a more general family of
rotating regular black holes. Indeed, the black-hole spacetimes with M(r, χ) = M(r)
all fulfill the circularity condition, and are thus all circular.

Despite having shown examples of non-circular black-hole spacetimes in the
parameterisation Eq. 6.28, we do not provide a general proof that all non-circular
black-hole spacetimes can be written in this form as it is beyond the scope of this
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thesis. Instead, we motivate the non-circular parameterisation Eq. 6.28 by the follow-
ing observations: (i) it contains the Kerr spacetime in the limit ∆HP, i(r, χ) → 0; (ii)
it includes both circular and non-circular spacetimes, in particular those that have
recently been motivated from a locality principle for new physics in a principled-
parameterised approach [EH21b; EH21a].

We conjecture that the choice of six free functions in the non-vanishing metric
components is sufficient to describe all axisymmetric, stationary and asymptotically
flat black-hole spacetimes that can be reached as deformations of the Kerr spacetime.
The argument underlying this conjecture is the following: from the initial ten metric
components, four free functions can be removed by a change of spacetime coordi-
nates, thus six free functions are enough to fully describe a given spacetime. This,
however, assumes that the number of free functions corresponds to the number of
non-vanishing metric components in HP coordinates.

An interesting example to test this conjecture is the non-circular black holes found
in particular scalar-tensor or vector-tensor theories [Min20; Ans+21; BA+20]. While
these non-circular black holes have been constructed in BL coordinates, they are
transformed (by a combination of coordinate and disformal transformations) to a
specific choice of HP coordinates with seven non-vanishing metric components, see
[Ans+21, App. A].

It remains an open question whether other suitable coordinate transformations
can be constructed which cast these non-circular black holes to the HP form in
Eq. 6.28. If such a coordinate transformation cannot be found, then Eq. 6.28 needs to
be generalised by adding the appropriate deviation function.

Despite this open question, we argue that Eqs. 6.34 to 6.39 with either M(r, χ) or
M(r) are particularly relevant from a quantum-gravity point of view, e.g. [BR00; RT06;
Nic09; MN10; HR15; AOS18; Pla19; NSW19; Con+20; HGE19; EH21b; EH21a]. The
latter metrics make three of the initial six deviation functions ∆HP,i(r, χ) irrelevant,
thus highlighting that Eq. 6.28 does not require further generalisation to encode
the effects of several quantum-gravity scenarios. The argument is based on the
assumption that QG must regularise spacetime singularities and thus regularise all
(non-derivative) curvature invariants. A priori, this could occur in distinct ways.
One way which has been explored extensively is captured by Eqs. 6.34 to 6.39 and
discussed in Subsec. 6.2.1: it relies on an effective weakening of gravity through a
fast-enough fall-off of the mass function at small r. This can be interpreted as an
effective repulsive force coming from quantum gravity. From the point of view of
black-hole “hair", the constant mass parameter is modified to a function, i.e. the
corresponding classical “hair" is modified.

6.3.5 Non-circular parameterisation in Boyer-Lindquist coordinates

BL coordinates are widely used in parameterisations of black-hole spacetimes, and
they are well-suited to implement circularity (though not to prevent curvature sin-
gularities at the horizon). Therefore, we now explore how to describe non-circular
spacetimes in BL coordinates instead of HP coordinates.

To describe non-circular black holes in BL coordinates, one has to go beyond the
Boyer-Lindquist form of the metric, which means we need to allow some metric
functions, which vanish for a Kerr black hole, to be non-zero. Because circularity
implies the invariance under the simultaneous mapping t → −t, ϕBL → −ϕBL,
breaking circularity can be achieved by allowing gtχ ̸= 0, gχϕBL ̸= 0, gtr ̸= 0 or
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grϕBL ̸= 0. Adding these four free functions to the four free functions of circular,
axisymmetric, stationary spacetime in the Lewis-Papapetrou form would provide
eight free functions.

What also differs in non-circular spacetimes (compared to circular ones) is that
meridional surfaces are only locally orthogonal to the surfaces of transitivity, but
no longer guaranteed to be (globally) integrable. Thus, the argument used in Sub-
sec. 6.1.3 that reduces the number of free functions in the meridional sector to just
one no longer holds, and that sector has two additional free functions. Thus, in the
most general case, we expect the more general, non-circular parameterisation to have
ten free functions in BL coordinates. However, it might be possible to extend the
local patch in which ds2

mer = gr̃r̃

(
dr̃2 + r̃2

1−χ2 dχ2
)

holds far enough to cover the entire
region of a spacetime that one is interested in.

Because we have the freedom to perform four coordinate transformations, we
expect that a metric should never have more than six free functions in some set of
coordinates. [ABCG07] states that there is indeed such a coordinate choice in which
six free functions are enough. This choice of coordinates could in general depend on
the chosen metric.

However, this argument does not take into account that one might want to work
in coordinates in which the Killing symmetries are manifest in the metric. The latter
condition limits the available coordinate transformations, or indeed fixes the coor-
dinate system to be the BL one as we do here. Insisting on coordinates in which the
Killing symmetries are manifest (and assuming an extension of the local patch, see
above) leads to eight free functions, cf. [GB93] in the context of global hyperbolicity
and a 3+1 decomposition.

As a result, we propose that such a non-circular spacetime in BL coordinates is
described by the line element

ds2 =−
(

1 − 2G0Mr
r2 + a2χ2

)
(1 + δ1(r, χ)) dt2 + 2δ2(r, χ)dt dr + 2δ3(r, χ)dt dχ

− 4G0Mr a (1 − χ2)

r2 + a2χ2 (1 + δ4(r, χ))dt dϕBL +
r2 + a2χ2

r2 − 2G0Mr + a2 (1 + δ5(r, χ)) dr2

+ 2γ(r, χ)dr dχ + 2δ6(r, χ)dr dϕBL +
r2 + a2χ2

1 − χ2 (1 + δ7(r, χ))dχ2 (6.41)

+ 2δ8(r, χ)dχdϕBL +

(
r2 + a2 +

2G0Mr a2(1 − χ2)

r2 + a2χ2

)
(1 − χ2)(1 + δ9(r, χ))dϕ2

BL.

with ten free functions given by δi(r, χ), i = 1, . . . , 9 and γ(r, χ). If the choice
ds2

mer = grr

(
dr2 + r2−2G0 Mr+a2

1−χ2 dχ2
)

, which is always possible locally, is available
in a large enough patch of spacetime, then γ(r, χ) = 0 and additionally δ5(r, χ) and
δ7(r, χ) are related to each other, leaving a total of 8 free functions.

For δi(r, χ) = 0 ∀i, the metric reduces to the Kerr metric in BL coordinates.
Increasing values of δi(r, χ), i = 1, . . . , 9, parameterise deviations from the Kerr
spacetime.

To ensure that the spacetime remains asymptotically flat, we require

lim
r→∞

δi(r, χ) = 0. (6.42)
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Regularity imposes differential conditions on the δi(r, χ), both at the classical
location of the curvature singularity r = 0 = χ as well as at the event horizon r = r+.
Whereas conditions at (r, χ) = (0, 0) might have been expected, conditions at finite
r = r+ are not immediately obvious. These arise because for δi(r, χ) = 0 ∀i, the
metric Eq. 6.41 contains the well-known coordinate singularities of Kerr spacetime in
BL coordinates, but these singularities cancel in curvature invariants. Because this
cancellation requires that different metric functions are delicately balanced, arbitrary
deformations of metric functions, i.e. arbitrary choices of δi(r, χ), can easily introduce
curvature singularities lying on the horizon. Those correspond to naked singularities
[Joh13a; Joh13b; CPR14; Hel21].

We now show explicitly that the non-circular parameterisation Eq. 6.41 contains
all circular black holes as subcases, and also several examples of non-circular black
holes.

The more specialised parameterisation from [KRZ16], namely Eq. 6.12, that re-
spects circularity is of course included in Eq. 6.41. This is easiest to see by switching
from χ = cos θ back to θ. Then, the mapping between Eq. 6.12 and Eq. 6.41 is given
by

ω(r, θ) =
2aG0M (1 + δ4(r, θ))

r2 + a2 cos2 θ
,

κ2(r, θ) =
1 + δ9(r, θ)

r2

(
a2 + r2 +

2G0M r a2 sin2 θ

r2 + a2 cos2 θ

)
,

σ(r, θ) =

(
a2 cos2 θ

r2 + 1
)
· (1 + δ7(r, θ)) ,

f (r, θ) =
1

r2 (r2 + a2 cos2 θ)2

{
r3(a2 + r2) [r − 2G0M(1 + δ1(r, θ))] (1 + δ9(r, θ))

+ a2

[
a2(a2 + r2)(1 + δ9(r, θ)) cos4 θ − r(1 + δ9(r, θ)) cos2 θ

[
2r2(G0M − r

+G0Mδ1(r, θ)) + a2(G0M − 2r + 2G0Mδ1(r, θ)) + a2 cos(2θ)G0M
]

+ 2G0Mr2(r(1 + δ9(r, θ))− 2G0M
[
δ1(r, θ)− 2δ4(r, θ)− δ2

4(r, θ) + δ9(r, θ)

+δ1(r, θ)δ9(r, θ))] sin2 θ

]}
,

β2(r, θ) =
1 + δ5(r, θ)

(a2 + r(r − 2G0M))(1 + δ7(r, θ))(r2 + a2 cos2 θ)2

·
{

r3(r2 + a2) [r − 2G0M(1 + δ1(r, θ))] (1 + δ9(r, θ))

+ a2

[
a2(a2 + r2)(1 + δ9(r, θ)) cos4 θ − r(1 + δ9(r, θ)) cos2 θ

[
2r2(G0M − r

+G0Mδ1(r, θ)) + a2(G0M − 2r + 2G0Mδ1(r, θ)) + a2G0M cos(2θ)
]

+ 2G0Mr2(r(1 + δ9(r, θ))− 2G0M [δ1(r, θ)− 2δ4(r, θ)

−δ2
4(r, θ) + δ9(r, θ) + δ1(r, θ)δ9(r, θ))

]
sin2 θ

]}
, (6.43)
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with δ2,3,6,8(r, θ) = 0.

Next, we consider the spacetime from [EH21b; EH21a] given by the metric Eq. 6.13.
This spacetime cannot be represented in Boyer-Lindquist form (i.e. with five non-
vanishing metric components) as in [KRZ16], because it is non-circular, as we have
confirmed by an explicit calculation. Here, we show that it can be written in BL
coordinates if gtχ ̸= 0 and gχϕ ̸= 0 and that it is thus contained in Eq. 6.41. We first
write an ansatz for a coordinate transformation

du =dt + Fu
r dr + Fu

χ dχ, (6.44)

dϕ =dϕBL + Fϕ
r dr + Fϕ

χ dχ, (6.45)

from the HP coordinates (u, r, χ, ϕ) to BL coordinates (t, r, χ, ϕBL). We then require
that grχ = 0 = grϕBL , i.e. δ6(r, χ) = 0 (in addition to γ(r, χ) = 0). These conditions
can be solved by requiring that

Fu
r =

r2 + a2

r2 + a2 − 2r G0M(r, χ)
, Fϕ

r =
a

r2 + a2 − 2r G0M(r, χ)
. (6.46)

Because Fu
χ and Fϕ

χ are unrestricted, they can be chosen such that ∂rFu
χ = ∂χFu

r and
∂rFϕ

χ = ∂χFϕ
r . This means that the differential forms in Eq. 6.45 are exact. However,

this already fails in the case where we additionally require gtχ = 0, see [EH21a,
App. A.5]. In our case, we can write the explicit coordinate transformation as

dt =du − r2 + a2

r2 + a2 − 2G0M(r, χ)r
dr − 2G0a

(∫
dr

rM(0,1)(r, χ)

r2 + a2 − 2G0M(r, χ)r

)
dχ,

dϕBL =dϕ − a
r2 + a2 − 2G0M(r, χ)r

dr − 2G0a

(∫
dr

rM(0,1)(r, χ)

r2 + a2 − 2G0M(r, χ)r

)
dχ

(6.47)

which, for the case M(r, χ) = M = const., reduces to the standard transformation
between ingoing Kerr and BL coordinates and results in gtχ = 0. In addition, the
coordinates (t, r, χ, ϕBL) form the standard coordinate system of asymptotically flat
spacetime in Boyer-Lindquist form, obtained by taking the limit limr→∞ M(r, χ) =
M = const. Applying the explicit coordinate transformation Eq. 6.47, the non-circular,
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locality-based black-hole spacetime in [EH21a] can thus be written as

ds2
reg, local =−

[
1 − 2G0M(r, χ)r

Σ(r, χ)

]
dt2 +

[
Σ(r, χ)

∆(r, χ)

]
dr2 +

[
4G0M(r, χ) r a(χ2 − 1)

Σ(r, χ)

]
dtdϕBL

+

[
− Σ(r, χ)

χ2 − 1
−M2(r, χ)2 +M1(r, χ)2 (r2 + a2) (χ2 − 1)

+
2G0M(r, χ)r

Σ(r, χ)
M(r, χ)2

]
dχ2

+

[ (
r2 + a2) (χ2 − 1

)
− 2G0M(r, χ)r a2 (χ2 − 1

)2

Σ(r, χ)

]
dϕ2

BL (6.48)

+

[
4G0M(r, χ) rM(r, χ)

Σ(r, χ)
− 2M2(r, χ)

]
dtdχ

+

[
4G0M(r, χ) r aM(r, χ)(χ2 − 1)

Σ(r, χ)
− 2(χ2 − 1)(r2 + a2)M1(r, χ)

]
dχdϕBL.

with

Σ(r, χ) = (r2 + a2χ2) , M(r, χ) = M2(r, χ) +M1(r, χ)(χ2 − 1) a ,

∆(r, χ) = (r2 − 2 G0M(r, χ) r + a2) , M1(r, χ) =
d

dχ

∫
dr

a
r2 − 2 G0M(r, χ) r + a2 ,

M2(r, χ) =
d

dχ

∫
dr

r2 + a2

r2 − 2 G0M(r, χ) r + a2 . (6.49)

This form of the metric exemplifies that, to avoid the generation of curvature sin-
gularities at the event horizon, deviations from the Kerr spacetime have to take a
somewhat intricate form in BL coordinates, because delicate cancellations are neces-
sary. In comparison, the metric in HP coordinates, cf. Eq. 6.13, takes a much simpler
form, therefore also enabling faster and more efficient manipulations such as the
calculation of curvature invariants.

6.4 Conclusion and outlook

We reviewed parameterisations of axisymmetric, stationary and asymptotically flat
black-hole spacetimes that exist in the literature and pointed out that many of those,
e.g. [Joh13a; KRZ16], are circular and may possess an additional hidden constant
of motion. Circular spacetimes, due to the additional isometry that is implied by
circularity, parameterise black-hole spacetimes with just four free metric functions
that occur in five non-vanishing metric components.

Because those symmetry assumptions need not hold in non-vacuum GR and
beyond GR, we generalised to a parameterisation of black-hole spacetimes beyond
circularity. We first wrote the metric in the preferred set of horizon-penetrating
coordinates with just six metric functions, which allows to write deviations from the
Kerr metric without introducing spurious coordinate singularities at the horizon. We
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derived the correspondence between the proposed non-circular parameterisations
and the existing circular parameterisations.

We discovered that the locality-based black-hole spacetimes introduced in [EH21a],
which lead to a combination of three image features, are not circular and motivated
a potential correspondence between the specific deviations from circularity and the
image features discovered in [EH21b; EH21a]. Additionally, we explored for the first
time an alternative to a popular class of modifications: instead of promoting the mass
parameter to a mass function to regularise the curvature singularity as in [Bar68b;
Dym92; BR00; Hay06; SV19b], we tested whether the same could be achieved by
promoting the spin parameter to a spin function. We found indications that it fails,
highlighting the special role played by regular black holes based on a mass function.

Finally, we provided a more general, non-circular parameterisation in Boyer-
Lindquist coordinates containing, in general, ten non-zero metric components.

Several questions for future work follow from our investigations.
A first open question is: what is the minimal, general parameterisation of axisym-
metric, stationary and asymptotically flat BH spacetimes? It is at present unclear,
whether the parameterisation in terms of ten (or, under additional assumptions,
eight) deviation functions that we presented in BL coordinates, overparameterises
the configuration space of these spacetimes. Similarly, it is also unclear whether the
parameterisation in terms of six deviation functions in HP coordinates we proposed
is general enough to capture all such spacetimes. We gave a general counting argu-
ment that corroborates its generality, but it did not take consider that a given set of
coordinates may not cover the full spacetime, but just a patch of it. However, we used
as guiding rationale the necessity to find a parameterisation which can account for
the BH spacetimes in [EH21b; EH21a].

A second open question is: how do the two parameterisations of non-circular
spacetimes we have provided relate to each other? We provided parameterisations
in both HP and BL coordinates, because those coordinates have both pros and cons.
Circularity is best imposed in BL coordinates, but those introduce spurious coordinate
singularities at the horizon which, in general, results in differential constraints on
metric components. Those complications are absent in HP coordinates, but it is not
straightfoward to express circular spacetimes in them. However, it was not possible
to provide a general coordinate transformation relating the two parameterisations
without specifying the deviation functions. Thus, we do not know how the six devia-
tion functions in HP coordinates transform into the ten (or eight) deviation functions
in BL coordinates, except in special cases.

A third open question is: may non-circular spacetimes have hidden constants
of motion based on higher-rank, i.e. n > 2, Killing tensors? The presence of a rank-
two Killing tensor automatically implies circularity as well as the separability of the
geodesic equation of a test particle and, hence, its analytical solvability. Nonetheless,
this may be different for rank higher than two. While the absence of separability
might be viewed as a drawback from a calculational point of view, it does not imply
that non-circular spacetimes are not phenomenologically relevant. Their phenomenol-
ogy may just be more challenging to characterise.

Finally, on a phenomenological level, we do not know whether the connection
between deviations from circularity and the dent- and cusp-like image features as
well as the image asymmetry (cf. Fig. 4.11) is more general than just for the family of
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non-circular spacetimes in [EH21b; EH21a]. Some circular spacetimes in the literature
do exhibit one of these features, e.g. [CHR17; WCJ17; KLM21], but we are not aware
of a circular spacetime having all three features in combination. It is thus relevant to
understand whether or not the combination of all three image features is a marker
of specific deviations from circularity. Apart from the particular non-circular cases
in [EH21b; EH21a], first steps in this direction have recently been made in circular
spacetime metrics which respect post-Newtonian constraints from observations in
the solar-system [Wil14].

In [MPO20; YPO23; Ayz22; HP23], the authors obtained images of the black-hole
shadow and photon rings with current EHT capabilities. In [YPO23; Ayz22], they
provided models to account for astrophysical uncertainties linked to parameters
in the accretion disk, and placed constraints on parameters characterising circular
deviations from Kerr, accounting for astrophysical uncertainties linked to parameters
of the accretion disk.

In [CANY20; SB22; DBB23; AKN24; GC24; Kum+24b], constraints on deviation
parameters were derived using gravitational wave data from the LIGO-Virgo-KAGRA
collaboration on the inspiral and ringdown phases of black-hole mergers.

Going forward, both approaches may be useful. However, it has to be kept in
mind that constraints obtained from binary-black-hole mergers only constrain the
metrics of supermassive black holes observed by the EHT if one assumes that a
black-hole uniqueness theorem holds. In theories beyond GR, this may not be the
case, see e.g. [Eic+23], thus constraints from both types of observations are valuable.
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Chapter 7

Final remarks

The classical theory of gravity, GR, along with the framework of quantum field theory,
QFT, is a cornerstone of modern theoretical physics. GR remarkably describes all
observed gravitational phenomena so far to an exquisite precision, across a wide
range of length (and thus curvature) scales [BCA24]. It also postulates that the
most compact spinning objects, namely BHs, are surprisingly simply characterised
by two parameters in vacuum, their mass M and (reduced) spin a, see Chapter 2.
While the agreement of GR with observations was previously obtained in the weak-
field regime, i.e. on laboratory, solar-system and cosmological scales, the picture
changed with the advent of tests in the strong-field regime, first with the detection
of transient GW signals by the LIGO-Virgo collaboration in 2015 [Abb+16a], second
with the first shadow images of M87* produced by the EHT collaboration in 2019
[Aki+19a] and third with the compelling evidence for a Stochastic Gravitational
Wave Background (SGWB) with Pulsar Timing Arrays (PTAs) [Aga+23]. Together
with the future planned missions – ET [Mag+20], CE [Eva+23], LISA [Col+24b],
DECIGO [Kaw23] and the Square Kilometer Array (SKA) [Ren+22] for GWs and
BHEX [Joh+24], ngEHT [Ayz+23] for EM signals – these new observational capabilities
offer the unprecedented possibility to test GR on higher curvature scales and for
strong gravitational fields.

One can thus raise the question that S. Chandrasekhar addressed to C. Will:
“why do you spend so much time and energy testing GR? We know that the theory is right”
[Ber+15]. There are two answers to that question: on the observational side, the short
answer is because we now can; on the theoretical side, the short answer is because we
should.
Theoretically, it is indeed not a question of whether GR breaks down, but a question
of where and how it does so. We discussed the failures of GR in the strong-field
regime – especially in black holes – in Subsec. 3.1.2; to cite a few of them, GR black
holes are plagued by curvature singularities at their centre, unstable inner (Cauchy)
horizons and future-incomplete geodesics. Evading those singularities requires to
go beyond GR by considering classical modified gravity theories which violate one
or more assumptions of the Lovelock theorem [Lov71; Lov72]. Those may introduce
undesirable components, such as ghosts (leading to non-unitarity) or a fifth force,
c.f. Sec. 3.2. We can go further beyond GR by including quantum matter fields on a
curved classical background as in semiclassical gravity, see Sec. 3.3, but this fails to
provide a consistent picture of the interplay of quantum matter fields and spacetime
geometry on all scales. Furthermore, applying the usual QFT quantisation method
to GR is inadequate, as GR turns out not to be perturbatively renormalisable [GS87;
Sho07]. Hence, we might shift our paradigm and require gravity to be quantum in
nature so as to resolve all (or, at least, some) classical singularities, see Sec. 3.5. In
particular, we may focus on QG theories that admit a QFT formulation and can
make predictions that can be tested in the IR-regime, to connect with observations.
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This is the case of the QG theory of asymptotic safety. In ASQG, UV-completion at
transplanckian scales is achieved via non-perturbative renormalisability, in which
quantum scale symmetry is realised at an interacting fixed point. Additionally,
predictivity beyond the Planck scale is ensured by the presence of only a finite
number of free couplings (or parameters) in the IR-regime whose values need to be
fixed experimentally. The compelling evidence for an interacting UV fixed-point in
gravity alone and in gravity with suitable matter content in 4D Euclidean signature
[Per17a; Eic19; RS19b; Bon+20; ES22; Sau23; PR23] marks a significant step in the
quest of consistent, UV-finite and predictive fundamental theories of quantum gravity.

Black holes lie at the core of testing GR in the strong-field regime, for multiple
reasons that we exposit in the following.
Firstly, they are the most compact astrophysical objects in our Universe, meaning
that they have the deepest gravitational potential wells. Secondly, GR postulates
their existence, and in simple terms: spinning black holes are solely defined by their
event horizon – the boundary of no-return – and their mass and spin. This apparent
simplicity thus offers an ideal playground to test the validity of Birkhoff’s uniqueness
theorem [BL23] and the no-hair theorem [MTW73] up to near-horizon scales. Thirdly,
they appear in different settings and we now have the ability to probe many of their
facets: isolated and in their stationary regime as probed by the EHT or in binaries and
in their dynamical regime as probed by LIGO-Virgo-KAGRA; through EM signals
such as radio, X-rays and GRBs or through GW signals emitted during the inspiral,
merger and ringdown phases of coalescing binaries; in the stellar-mass range with
LIGO-Virgo-KAGRA or in the supermassive range with the EHT and PTAs.

When viewing black holes through the prism of beyond-GR theories, and espe-
cially QG theories like ASQG, both theoretical and observational challenges emerge.
On the theoretical side, we need to:

T1. find a consistent, UV-finite and predictive (quantum) gravity theory, c.f. Sec. 3.5
and Subsec. 3.5.1;

T2. make sure this theory contains viable BH solutions that accurately describe
astrophysical BHs, see Chapters 5 and 6;

T3. adopt both top-down and bottom-up approaches and bridge the gap between
them, due to the difficulty of finding BH solutions beyond GR, see Chapters 4
to 6.

On the observational side, we aim to:

O1. find manifest characteristic imprints, e.g. in shadow images, see Chapter 4, and
symmetries of BHs in beyond-GR theories and approaches, c.f. Chapter 6;

O2. lift the degeneracies among beyond-GR parameters and features, see Chapter 4;

O3. increase both the resolution, sensitivity and noise mitigation of observational
capabilities, c.f. Chapter 4;

O4. enhance synergies between different probes of the strong-gravity regime, namely
GWs and EM signals, e.g. thanks to the future mission LISA (see Subsec. 4.4.2).

In this thesis, we embarked on a journey which combined theoretical and phenomeno-
logical approaches to gain deeper insights into BH spacetimes beyond GR. While
the approaches we followed all assumed the existence of some new physics inspired
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from or within QG theories, the nature of the latter could as well be classical.

We started this thesis by reviewing the properties and singularities of GR vacuum
and non-vacuum BH solutions in Chapter 2.

In Chapter 3, we motivated the need to go beyond GR, from classical modified
theories of gravity to QG theories by way of semiclassical gravity. We especially
focused on ASQG, a QFT-based QG theory which postulates a new quantum scale
symmetry ensuring both the non-perturbative renormalisability and predictivity of
the theory. We then sketched three ways of approaching BHs beyond GR, from the
fundamental (top-down) approach – to which ASQG belong – to the parameterised approach
(bottom-up) by way of the principled-parameterised approach. Finally, we provided an
overview of alternative objects to black holes, namely ECOs.

In Chapter 4, we recalled the notion of gravitational lensing near compact objects
and discussed its role in BH imaging. Next, we outlined how the images of the
supermassive BHs M87* and SgrA* were derived by the EHT thanks to VLBI. We in-
troduced the notions of shadow and photon rings which play a key role in characterising
the spacetime geometry and, thus, the nature of the imaged compact object. Based on
the observation that spacetimes beyond GR exhibit peculiar imprints in their shadow
boundary and photon rings, in particular an increased separation between consecu-
tive photon rings, we assessed whether two thin, radially-symmetric photon rings
in synthetic images could be told apart with current and future VLBI arrays. Using
data from both visibility and closure amplitudes, we drew the following conclusions:
(i) the EHT 2022 array cannot make the difference between one or two thin rings,
unless (ii) super-resolution techniques are used on top of it; a ngEHT array can tell the
rings apart, provided that (iii) the sensitivity of the whole array is largely increased
and observations at 230 and 345 GHz are combined or (iv) a space-based station is
added to it on a well-chosen orbit. Despite the limitations of our study – among
others, the use of simple geometric ring models, the thin-ring assumption and the
exclusion of foreground emission – we made one step forward in the aforementioned
key directions O1, O2 and O3 on the observational side.

In Chapter 5, we made progress towards more astrophysical BHs beyond GR by
exploring their dynamical formation, in line with the theoretical research objectives
T2 and T3. We first reviewed the VKP model, a particularly simple model of the
classical Vaidya spacetime describing the formation of a spherically symmetric BH
via linear accretion of shells of null dust. We highlighted the issues associated with
such a simple model, that is the formation of curvature and naked singularities in
combination with future-incomplete null geodesics. To regularise these classical
singularities we performed two upgrades of the VKP model: one following the RG-
improvement method, in which we promoted the Newton coupling constant in the
metric to the running coupling derived in ASQG and identified the RG scale with the
first classical curvature invariant; the other by following the principled-parameterised
approach and upgrading the Misner-Sharp mass to a mass function depending on
the spacetime coordinates through the first classical curvature invariant and a new-
physics scale. The two upgrades were found to be equivalent upon a specific choice
on the class of mass functions in the principled-parameterised approach. While the
upgraded spacetimes were free of singularities by construction, we showed that
radial null geodesics were all future-complete but not past-complete. Additionally,
we found that modifications beyond GR translated into a repulsive gravitational force
repelling null geodesics from the core which balanced out the standard attractive
gravitational force at the external boundary of the region violating the NEC, yielding
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a marginally stable attractor. We emphasised that this attractor could trigger mass-
inflation instabilities within a horizon. Finally, we found that there were values of
the new-physics scale for which the upgraded spacetimes were horizonless, thus not
shielding beyond-GR modifications to asymptotic observers.

In Chapter 6, we adopted a more general – hence theory-agnostic – approach
to BHs beyond GR to more comprehensively capture all possible BH spacetime ge-
ometries. It aimed to complement the more simple spherically symmetric upgrade
carried out in Chapter 5 through RG improvement and the principled-parameterised
approach, and thus fit within the research objectives O1, T2 and T3. We first reviewed
existing parameterisations and pointed out that they made unnecessary assumptions
about two spacetime symmetries, namely circularity and an additional hidden con-
stant of motion. Next, we determined whether promoting classical mass or spin
hair to “quantum” hair – which naturally appear in QG theories – was sufficient
to regularise classical singularities, and found that regularisation only occurred for
a “quantum” mass hair. Since some non-vacuum GR and beyond-GR spacetimes
do not satisfy circularity and hidden constant of motion, we put forward a more
general, non-circular parameterisation in two sets of coordinates. We exemplified
that connecting one to the other was difficult, because circular (non-circular) param-
eterisations favour one (the other) set of coordinates, respectively. Although this
new, non-circular parameterisation accounts for significantly more general spacetime
metrics with fewer symmetries, it is unknown whether it is minimal, and whether
there is a clear link between the absence of circularity and the presence of the three
image features presented in Subsec. 4.2.1.

We conclude this thesis by underlining how bright the future looks for finding
and characterising compact objects beyond GR, and how promising the synergies
between distinct QG and modified gravity theories are for constructing a consistent,
UV-finite and predictive fundamental theory of gravity.

On the observational side, numerous missions are designed and planned in the
coming years to better test GR in the strong-field regime with compact objects. The
number of detections of GWs from stellar-mass coalescing binaries will be enhanced
by a factor of nearly thousand with the third generation of ground-based laser interfer-
ometers [Cha+24a], namely advanced LIGO-Virgo-KAGRA [Abb+16b], ET [Mag+20]
and CE [Eva+23], thanks to a ten-fold increase in sensitivity and a substantial im-
provement in noise mitigation. Equipped with such a network of ground-based GW
detectors, we will be capable of detecting almost all binary BH mergers and half of
binary NS mergers in the current observable Universe [BS22]. Simultaneously, LISA, a
space-based laser interferometer will be launched in the mid-2030s [Col+24b] and will
allow us, among others, to probe the dynamical regime of supermassive BH binaries
[Bar+20] and, thus, compare with the EHT results. Regarding EM probes of dark
compact objects, several proposals have been put forward to upgrade the current EHT
array into an ngEHT array (most probably in two phases) with new sites, an increase
in sensitivity for some of the existing sites and a combination of multiple observation
frequencies [Joh+23; Ayz+23; Doe+23]. Furthermore, there are current incentives to
place one or several VLBI antennas into space and combine them with the current
EHT or an ngEHT array [Roe+19; Pes+19; Pal+19; Haw+19; FSA20; Gur+21; Shl+24;
Joh+24]. Upon overcoming the underlined technical challenges, the boost in angular
resolution with BHEX mission will enable us to probe down to the first photon ring
of M87* and SgrA* [Lup+24; Gal+24], and sharpen our understanding of accretion
physics [Kaw+24].

On the theoretical side, synergies are growing among different QG theories
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[Boe+22]. This is best exemplified with the Swampland program [Vaf05; OV07], re-
viewed in [BCV17; Pal19; Bee+22; GnH21; Agm+22], whose goal is to identify and
discard the consistent-looking EFTs that do not admit a UV-completion with the
addition of gravity, i.e. those that can not be obtained from a quantum theory of
gravity. The latter theories belong to the so-called “Swampland”, while those that
do admit such a UV-completion in QG are said to be part of the “Landscape”. To
identify the non-healthy theories, the Swampland program puts forward a set of
criteria or conjectures motivated by ST and more basic physics such as unitarity,
black-hole physics etc., such as the “no-global symmetries conjecture”. However,
there are different definitions of what the Swampland is, depending on the QG theory
one is especially interested in. Those Swamplands may or may not, partially or
fully overlap, see [Eic+24] for a discussion of Swamplands from the point of view of
ASQG. Finding and comparing Swamplands within different QG theories can help to
understand to what extent Swampland conjectures hold for any QG, or only for some
sharing a similar UV framework.
Besides that, more and more progress is made on finding analytical BH-like solutions
(or models) within (or inspired by) QG theories (see [Per17b] for LQG, [EH22; Pla23]
for ASQG, [Ben+22] for ST) and in modified gravity theories (see [KK23], [BA+20] in
DHOST theories, [Pod+20] for quadratic gravity and [Tor23] for regular rotating black
holes), and determining whether theory-agnostic BH spacetimes could be solutions
of some QG-motivated actions [KP22]. Thanks to the advances in numerical relativity,
numerical rotating black hole solutions can also be obtained, see e.g. [SYS21; FM23;
Gar+23; Gra24], and complement our understanding of the analytical derivations,
which are often limited to spherical symmetry.

In closing, although falsifying QG theories and modified gravity theories through
BH phenomenology remains a tremendously difficult task, studying – possibly quan-
tum – modified gravitational effects and understanding their implications on obser-
vations can provide us with observational signatures of those theories. Equipped
with such observational signatures, we might put constraints on the set of allowed
theories and discriminate among them.
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Appendix A

Disentangling photon rings with
future radio telescope arrays

A.1 Gaussian profile

In order to check that, in the thin-ring regime, the type of flux density profiles has
no impact on the detectability of a second ring (see Fig. A.1), we use another profile.
This profile is Gaussian and based on the auxiliary function

ν(r; d, ω) =
1
N

e−(d−2r)2/2ω2
, (A.1)

normalised such that ∫ ∞

0
dr 2πr

∫ 2π

0
dθ ν(r; d, ω) = 1, (A.2)

which leads to the normalisation factor

N =
π

4

{√
2πdω

[
erf
(

d/
√

2ω
)
+ 1
]
+ 2ω2e−d2/2ω2

}
, (A.3)

where erf(x) is the error function.
The resulting total Gaussian flux density profile combines two Gaussian rings

and is thus given by

FGaussian(r) =
Ftot

1 + ∆F
ν(r; d1, ω1) +

Ftot

1 + 1/∆F
ν(r; d1 − 2s, ω2).

The total flux density is Ftot, and the total flux densities for the two rings correspond
to the prefactors in Eq. (A.4), i.e.

F1 =
Ftot

1 + ∆F
, F2 =

Ftot

1 + 1/∆F
. (A.4)

A.2 Comparison of two profiles in a quantitative test of de-
tectability

We still focus on synthetic data in the limit of relatively thin rings and use the
same flat fitting profile as in Subsec. 4.3.1. However, we construct synthetic data
with two different profiles, namely the crescent profile Eq. 4.16, and the Gaussian
profile App. A.1, with or without a loose constraint on the width of the outer ring
ω1 ≤ 10.5 µas in the fits, and for ω1 = 2 µas (thin) or ω1 = 8 µas (relatively thin). The
detectability test for the 2022 EHT array at 230 GHz as a function of the separation is
shown in Fig. A.1. As curves for the Gaussian and crescent profiles are superposed
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for equal values of the parameters, we deduce that the type of profile does not matter
within the thin ring assumption. Note that this assumption remains valid for a
relatively thin outer ring, i.e. when ω1 = 8 µas.
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FIGURE A.1: We show the 2-ring detectability (according to the p-value
test, cf. Subsec. 4.3.3) projected onto the ray ∆F = 0.5, cf. Fig. 4.13, for
the EHT 2022 array at 230 GHz. We vary the profile (either crescent
or Gaussian), the width of the outer ring (either ω1 = 2 µas or 8 µas)
and the constraint on the width of the outer ring in the fits (either
none or ω1 ≤ 10.5 µas). The remaining 2-ring parameter is chosen as

ω2 = 1 µas.

A.3 Array specifications

We provide details (see Tables A.1 to A.4) on the stations in the VLBI arrays considered
in this work and summarised in Tab. 4.1.

Facility Location Xa(m) Ya(m) Za(m) SEFDb at 230 GHz (Jy) SEFDc at 345 GHz (Jy)
ALMA Chile 2225061.164 -5440057.37 -2481681.15 74 250
APEX Chile 2225039.53 -5441197.63 -2479303.36 4700 8880
GLT Greenland 541547.0 -1387978.6 6180982.0 5000 14390

JCMT Hawaii, USA -5464584.68 -2493001.17 2150653.98 10500 5780
KPNO Arizona, US -1995954.4 -5037389.4 3357044.3 13000 44970
LMT Mexico -768713.9637 -5988541.7982 2063275.9472 4500 2040

NOEMA France 4524000.4 468042.1 4460309.8 700 1410
PV 30 m Spain 5088967.9000 -301681.6000 3825015.8000 1900 3850

SMA Hawaii, USA -5464523.400 -2493147.080 2150611.750 6200 5730
SMT Arizona, USA -1828796.200 -5054406.800 3427865.200 17100 17190
SPT Antarctica 0.01 0.01 -6359609.7 19300 25440

a Geocentric coordinates with X pointing to the Greenwich meridian, Y pointing 90◦ away in the equatorial plane (eastern
longitudes have positive Y), and positive Z pointing in the direction of the North Pole.

b SEFD values at 230 GHz from [Aki+19b]
c SEFD values at 345 GHz from [Bro]

TABLE A.1: Array specifications for EHT 2022 at 230 and 345 GHz
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Facility Location Xa(m) Ya(m) Za(m) SEFDb at 230 GHz (Jy) SEFDc at 345 GHz (Jy)
ALMA Chile 2225061.164 -5440057.37 -2481681.15 74 250
APEX Chile 2225039.53 -5441197.63 -2479303.36 4700 8880
BAJA Baja California, Mexico -2352576.0 -4940331.0 3271508.0 74 250
CNI La Palma, Canary Islands, Spain 5311000.0 -1725000.0 3075000.0 74 250

GAM Gamsberg, Namibia 5627890.0 1637767.0 -2512493.0 74 250
GLT Greenland 541647.0 -1388536.0 6180829.0 5000 14390
HAY Masachussetts, USA 1521000.0 -4417000.0 4327000.0 74 250
JCMT Hawaii, USA -5464584.68 -2493001.17 2150653.98 10500 5780

KP 12 m Arizona, USA -1994314.0 -5037909.0 3357619.0 13000 44970
KVN-YS Korea -3042280.9137 4045902.7164 3867374.3544 74 250

LAS Chile 1818163.826 -5280331.162 -3074870.820 74 250
LLAMA Argentina 2325327.209 -5341469.111 -2599682.209 74 250

LMT Mexico -768713.9637 -5988541.7982 2063275.9472 4500 2040
NOEMA France 4523998.40 468045.240 4460309.760 700 1410
OVRO California, USA -2409598.0 -4478348.0 3838607.0 74 250

PV 30 m Spain 5088967.9000 -301681.6000 3825015.8000 1900 3850
SMA Hawaii, USA -5464523.400 -2493147.080 2150611.750 6200 5730
SMT Arizona, USA -1828796.200 -5054406.800 3427865.200 17100 17190
SPT Antarctica 0.01 0.01 -6359609.7 19300 25440

a Geocentric coordinates with X pointing to the Greenwich meridian, Y pointing 90◦ away in the equatorial plane (eastern longitudes have
positive Y), and positive Z pointing in the direction of the North Pole.

b SEFD values at 230 GHz from [Aki+19b] for EHT 2022 sites, and taken as ALMA’s (lowest) SEFD value for ngEHT planned and phase-1 sites
from [Joh+23]

c SEFD values at 345 GHz from [Bro] for EHT 2022 sites, and taken as ALMA’s (lowest) SEFD value for ngEHT planned and phase-1 sites from
[Joh+23]

TABLE A.2: Array specifications for ngEHT-low (low SEFD values) at
230 and 345 GHz.

Facility Location Xa(m) Ya(m) Za(m) SEFDb at 230 GHz (Jy) SEFDb at 345 GHz (Jy)
ALMA Chile 2225061.164 -5440057.37 -2481681.15 74 250
APEX Chile 2225039.53 -5441197.63 -2479303.36 4700 8880
BAJA Baja California, Mexico -2352576.0 -4940331.0 3271508.0 19300 44970
CNI La Palma, Canary Islands, Spain 5311000.0 -1725000.0 3075000.0 19300 44970

GAM Gamsberg, Namibia 5627890.0 1637767.0 -2512493.0 19300 44970
GLT Greenland 541647.0 -1388536.0 6180829.0 5000 14390
HAY Masachussetts, USA 1521000.0 -4417000.0 4327000.0 19300 44970
JCMT Hawaii, USA -5464584.68 -2493001.17 2150653.98 10500 5780

KP 12 m Arizona, USA -1994314.0 -5037909.0 3357619.0 13000 44970
KVN-YS Korea -3042280.9137 4045902.7164 3867374.3544 19300 44970

LAS Chile 1818163.826 -5280331.162 -3074870.820 19300 44970
LLAMA Argentina 2325327.209 -5341469.111 -2599682.209 19300 44970

LMT Mexico -768713.9637 -5988541.7982 2063275.9472 4500 2040
NOEMA France 4523998.40 468045.240 4460309.760 700 1410
OVRO California, USA -2409598.0 -4478348.0 3838607.0 19300 44970

PV 30 m Spain 5088967.9000 -301681.6000 3825015.8000 1900 3850
SMA Hawaii, USA -5464523.400 -2493147.080 2150611.750 6200 5730
SMT Arizona, USA -1828796.200 -5054406.800 3427865.200 17100 17190
SPT Antarctica 0.01 0.01 -6359609.7 19300 25440

a Geocentric coordinates with X pointing to the Greenwich meridian, Y pointing 90◦ away in the equatorial plane (eastern longitudes have
positive Y), and positive Z pointing in the direction of the North Pole.

b SEFD values at 230 GHz from [Aki+19b] for EHT 2022 sites, and taken as SPT’s (highest) SEFD value for ngEHT planned and phase-1 sites from
[Joh+23]

c SEFD values at 345 GHz from [Bro] for EHT 2022 sites, and taken as KP’s (highest) SEFD value for ngEHT planned and phase-1 sites from
[Joh+23]

TABLE A.3: Array specifications for ngEHT-high (high SEFD values)
at 230 and 345 GHz.
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Facility Location Xa(m) Ya(m) Za(m) SEFDb at 230 GHz (Jy) SEFDb at 345 GHz (Jy)
ALMA Chile 2225061.164 -5440057.37 -2481681.15 74 250
APEX Chile 2225039.53 -5441197.63 -2479303.36 4700 8880
BAJA Baja California, Mexico -2352576.0 -4940331.0 3271508.0 74 250
CNI La Palma, Canary Islands, Spain 5311000.0 -1725000.0 3075000.0 74 250

GAM Gamsberg, Namibia 5627890.0 1637767.0 -2512493.0 74 250
GLT Greenland 541647.0 -1388536.0 6180829.0 5000 14390
HAY Masachussetts, USA 1521000.0 -4417000.0 4327000.0 74 250
JCMT Hawaii, USA -5464584.68 -2493001.17 2150653.98 10500 5780

KP 12 m Arizona, USA -1994314.0 -5037909.0 3357619.0 13000 44970
KVN-YS Korea -3042280.9137 4045902.7164 3867374.3544 74 250

LAS Chile 1818163.826 -5280331.162 -3074870.820 74 250
LLAMA Argentina 2325327.209 -5341469.111 -2599682.209 74 250

LMT Mexico -768713.9637 -5988541.7982 2063275.9472 4500 2040
NOEMA France 4523998.40 468045.240 4460309.760 700 1410
OVRO California, USA -2409598.0 -4478348.0 3838607.0 74 250

PV 30 m Spain 5088967.9000 -301681.6000 3825015.8000 1900 3850
SMA Hawaii, USA -5464523.400 -2493147.080 2150611.750 6200 5730
SMT Arizona, USA -1828796.200 -5054406.800 3427865.200 17100 17190
SPT Antarctica 0.01 0.01 -6359609.7 19300 25440

space-basedd Above Odense (Denmark) at 35786 km 23560747.282 4319365.430 34681814.518 36600 56000
a Geocentric coordinates with X pointing to the Greenwich meridian, Y pointing 90◦ away in the equatorial plane (eastern longitudes have positive Y), and

positive Z pointing in the direction of the North Pole.
b SEFD values at 230 GHz from [Aki+19b] for EHT 2022 sites, and taken as ALMA’s (lowest) SEFD value for ngEHT planned and phase-1 sites from

[Joh+23]
c SEFD values at 345 GHz from [Bro] for EHT 2022 sites, and taken as ALMA’s (lowest) SEFD value for ngEHT planned and phase-1 sites from [Joh+23]
d SEFD values for the space-based telescope at 230 and 345 GHz estimated from Tab. 1 in [Roe+19]

TABLE A.4: Array specifications for ngEHT-space (low SEFD values)
at 230 and 345 GHz.
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Appendix B

The principled-parameterised
approach to gravitational collapse

B.1 Algebraically complete basis of non-derivative curvature
invariants

The algebraically complete basis of non-derivative curvature invariants for arbitrary
spacetimes is given by the 17 Zakhary-McIntosh (ZM) invariants [CM91; ZM97; CZ].
Those are constructed from the Weyl tensor Cµνρσ, its dual C̄µνρσ = 1

2 ϵµναβCαβ
ρσ with

ϵµναβ the totally antisymmetric Levi-Civita tensor, and the Ricci tensor Rµν. They form
four real Weyl-invariants (solely built from the Weyl tensor) I1−4, four Ricci-invariants
I5−8 and nine real mixed Ricci-Weyl invariants I9−17.

I1 = CµνρσCµνρσ (B.1)

I2 = CµνρσCµνρσ
(B.2)

I3 = C ρσ
µν C αβ

ρσ C µν
αβ (B.3)

I4 = C ρσ
µν C αβ

ρσ C µν
αβ (B.4)

I5 = R (B.5)

I6 = R ν
µ R µ

ν (B.6)

I7 = R ν
µ R ρ

ν R µ
ρ (B.7)

I8 = R ν
µ R ρ

ν R σ
ρ R µ

σ (B.8)
I9 = RµνRρσCµρνσ (B.9)

I10 = RµνRρσCµρνσ (B.10)

I11 = RνρRγδ

(
CµνρσCµγδσ − CµνρσCµγδσ

)
(B.11)

I12 = 2RνρRγδCµνρσCµγδσ
(B.12)

I13 = R γ
µ R ρ

γ R δ
ν R σ

δ Cµν
ρσ (B.13)

I14 = R γ
µ R ρ

γ R δ
ν R σ

δ Cµν
ρσ (B.14)

I15 =
1
16

RνρRγδ

(
CµνρσCµγδσ + CµνρσCµγδσ

)
(B.15)

I16 =
1
32

RρσRγδCµκλν
(
CµρσνCκγδλ + CµρσνCκγδλ

)
(B.16)

I17 =
1
32

RρσRγδCµκλν (CµρσνCκγδλ + CµρσνCκγδλ

)
. (B.17)
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B.2 Kerr algebraically complete basis of non-derivative cur-
vature invariants

In the case of the Kerr spacetime, only the pure Weyl invariants I1−4 do not vanish,
namely

I1 =
48M2

(r2 + a2χ2)6

(
r6 − 15r4a2χ2 + 15r2a4χ4 − a6χ6

)
(B.18)

I2 =− 96M2

(r2 + a2χ2)6

(
3r4 − 10r2a2χ2 + 3a4χ4

)
(B.19)

I3 =
96M3

(r2 + a2χ2)9

(
r9 − 36r7a2χ2 + 126r5a4χ4

)
(B.20)

I4 =− 96M3

(r2 + a2χ2)9

(
9r8aχ − 84r6a3χ3 + 126r4a5χ5 − 36r2a7χ7 + a9χ9

)
. (B.21)

In fact, not all those four invariants are independent, because they obey the following
polynomial relations called syzygies

I1(I2
1 − 3I2

2 ) = 12(I2
3 − I2

4 ), (B.22)
I2(3I2

1 − I2
2 ) = 24I3 I4, (B.23)

which lower the number of independent, non-derivative curvature invariants to two.
The two independent invariants can be chosen to be I1 and I2.

B.3 Algebraically complete basis of non-derivative curvature
invariants in a generalised Vaidya spacetime

The 17 ZM polynomial curvature invariants of a generalised Vaidya spacetime in
Eq. 5.23, containing a generalised mass function M(v, r) with dependencies on both
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advanced time and radial coordinates, correspond to

I1 =
4G2

0
3r6

(
6M(v, r) + r

(
−4M(0,1)(v, r) + rM(0,2)(v, r)

))2
, (B.24)

I2 = 0, (B.25)

I3 =
4G3

0
9r9

(
6M(v, r) + r

(
−4M(0,1)(v, r) + rM(0,2)(v, r)

))3
=

1
2
√

3
I3/2
1 , (B.26)

I4 = 0, (B.27)

I5 = G0 ·
4M(0,1)(v, r) + 2r M(0,2)(v, r)

r2 , (B.28)

I6 = G2
0 ·

8
(

M(0,1)(v, r)
)2

+ 2r2
(

M(0,2)(v, r)
)2

r4 , (B.29)

I7 = G3
0 ·

16
(

M(0,1)(v, r)
)3

+ 2r3
(

M(0,2)(v, r)
)3

r6 , (B.30)

I8 = G4
0 ·

32
(

M(0,1)(v, r)
)4

+ 2r2
(

M(0,2)(v, r)
)4

r8 , (B.31)

I9 =
2G3

0
3r7

(
−2M(0,1)(v, r) + rM(0,2)(v, r)

)2
· (B.32)(

6M(v, r) + r
(
−4M(0,1)(v, r) + rM(0,2)(v, r)

))
, (B.33)

I10 = 0, (B.34)

I11 =
G4

0
3r4

(
−2M(0,1)(v, r) + rM(0,2)(v, r)

)2
I1 =

I9
√

I1√
3

, (B.35)

I12 = 0, (B.36)

I13 =
G5

0√
3r8

(
−4
(

M(0,1)(v, r)
)2

+ r2
(

M(0,2)(v, r)
)2
)2√

I1, (B.37)

I14 = 0, (B.38)

I15 =
1

16
I11, (B.39)

I16 =
1

8
√

3
I11
√

I1, (B.40)

I17 = 0, (B.41)

where M(0,n)(v, r) = ∂n M(v,r)
∂rn and no partial derivatives with respect to the advanced

time v appear.

B.4 Defining equation for the apparent horizon in a gener-
alised Vaidya spacetime

Here we derive the defining equation for the location of the apparent horizon in a
generalised Vaidya spacetime Eq. 5.23 in two different ways and discuss its solutions.

In a first approach, we use the fact that an apparent horizon is a marginally
trapped surface to find its location. Hence, the apparent horizon is determined by
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finding the null outgoing Θout and null ingoing Θin expansions such that

Θout = 0, Θin < 0. (B.42)

It has been shown in [Dah21]1 that the null expansions in a generalised Vaidya
spacetime take the form

Θout =
1
r

(
1 − 2G0M(v, r)

r

)
, Θin = −2

r
. (B.43)

Hence, finding the location of the apparent horizon through the conditions in Eq. B.42
amounts to satisfy

1 − 2G0M(v, r)
r

= 0, r > 0. (B.44)

We subsequently show how to arrive to the same conclusion following another
method based on a change of coordinates at the level of the metric.
We start from the result derived in [NV06; Far13], where the authors argue that
any spherically symmetric line element can be written in Painlevé-Gullstrand (PG)
coordinates in the form2

ds2
PG =gtt, PG dt2 + 2gtr, PG dt dr + dr2 + r2dΩ2

=−
(
c(r, t)2 − v1(r, t)2) dt2 + 2v1(r, t) dt dr + dr2 + r2dΩ2. (B.45)

The apparent horizon is found from the expansions of the in- and outgoing radial
null geodesics. In the above form of the line element, it is simple to see where both
expansions vanish. Radial null geodesics fulfil the condition

0 = −
(
c(r, t)2 − v1(r, t)2) dt2 + 2v1(r, t) dt dr + dr2, (B.46)

leading to
dr
dt

= −v1(r, t)± c(r, t). (B.47)

For c(r, t) < v1(r, t), outgoing null geodesics are no longer moving towards larger r,
such that the apparent horizon is defined by the condition

c(r, t) = v1(r, t). (B.48)

In turn, this condition can be rewritten in the form [Far13]

grr
PG = 0. (B.49)

We now show that if a coordinate transformation into ingoing EF coordinates
exists3, then this condition implies grr

EF = 0. Starting from PG coordinates, we make
the transformation

t = h(v, r), (B.50)

1We recover the expansions of a generalised Vaidya spacetime by taking the limit a → 0 of the null
expansions in Kerr-Vaidya.

2We use v1(r, t) instead of the notation v(r, t) in [NV06] to avoid confusion with the coordinate v.
3[NV06] argues that any spherically symmetric metric can be written in the form Eq. B.45. Ac-

cordingly, starting from a spherically symmetric metric in EF coordinates, the transformation must in
principle exist, even if in practice it may take a form that is difficult to solve explicitly.
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with a function h(v, r) that is to be determined. We arrive at

ds2 = gtt, PG

(
h(1,0)(v, r)

)2
dv2 +

(
gtt, PGh(0,1)(v, r) + 2gtr, PGh(0,1)(v, r) + 1

)
dr2

+
(

2gtt, PGh(1,0)(v, r)h(0,1)(v, r) + 2gtr, PGh(1,0)(v, r)
)

dr dv + r2 dΩ2, (B.51)

where h(1,0)(v, r) ≡ ∂h(v,r)
∂v and similarly h(0,1)(v, r) ≡ ∂h(v,r)

∂r . To correspond to the
form Eq. 5.1, we require

2 = 2gtt, PGh(1,0)(v, r)h(0,1)(v, r) + 2gtr, PGh(1,0)(v, r), (B.52)

0 = gtt, PGh(0,1)(v, r) + 2gtr, PGh(0,1)(v, r) + 1, (B.53)

which, in turns, leads to

h(1,0)(v, r) =
∂h(v, r)

∂v
=

gtt, PG + 2gtr, PG

gtt, PG (gtr, PG − 1) + 2g2
tr, PG

,

h(0,1)(v, r) =
∂h(v, r)

∂r
=

−1
gtt, PG + 2gtr, PG

. (B.54)

Assuming that the two conditions can be solved to provide an h(v, r), we can relate
grr

PG to grr
EF by

grr
EF = −gtt, EF = −gtt, PG

(
h(1,0)(v, r)

)2
= grr

PG (gtt, PG − gtr, PG)
(

h(1,0)(v, r)
)2

. (B.55)

Accordingly, grr
PG = 0 implies grr

EF = 0.
We now evaluate the condition grr

EF = 0 for the generalised Vaidya metric in
Eq. 5.23 with upgraded mass Eq. 5.27:

grr
EF = gvv, EF,

= 1 − 2G0

r
M(v, r),

= 1 − 2G0

r
M(v) fNP

(
I1r4

NP

)
. (B.56)

As we have discussed in Subsec. 5.5.1, fNP ≤ 1 holds for all r. This implies that the
apparent horizon lies at smaller radii, i.e. the black hole is more compact.

Further, the condition grr
EF = 0 generically has two real solutions. The first is the

shifted apparent horizon; the second is a new, inner apparent horizon, which occurs
because fNP → 0 for small r. If rNP is large enough, the two horizons merge; for larger
rNP, the spacetime is horizonless, because the solutions to grr = 0 are all complex in
this regime.
These results mirror similar results in the stationary limit with a constant ADM mass
M. This is because in the stationary case, grr = 0 is the condition for the event horizon.
Upon the identification M = µv̄, the two equations become identical and thus the
time-dependent case must agree with the stationary case for each fixed value v̄.
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B.5 Construction of a local curvature

Stationary and axisymmetric spacetimes like Kerr have a lower degree of symme-
try than static, spherically symmetric spacetimes like Schwarzschild. As a result,
they possess several independent, non-zero, non-derivative curvature invariants, see
e.g. App. B.2 for Kerr. These independent curvature invariants can be of different
signs, and can change sign themselves since they are no longer monotonic functions
of the radial coordinate r, unlike in the Schwarzschild case.

Following an EFT point of view, we expect deviations from GR to show up at
large values of the local curvature K. In order for the latter to be coordinate-invariant,
it must depend on coordinates only through the N independent, non-derivative
curvature invariants of the classical spacetime we start with. Note that there exist
both non-derivative curvature invariants (solely built from the Riemann tensor) and
derivative curvature invariants (built from the Riemann tensor and its covariant
derivatives). While the number of algebraically independent invariants is finite (as
the set of ZM invariants is finite), the number of algebraically independent derivative
invariants increases with the number of covariant derivatives, thus being infinite.
This is why we restrict the local curvature scale to the independent, non-derivative
curvature invariants. Since arbitrary axisymmetric and stationary spacetimes can
have several independent, non-zero such invariants, and that those can change sign,
we may define the local curvature in two ways: (i) either as the maximum of the
absolute values of all independent curvature invariants Ij at a given spacetime point,
or (ii) as the RMS of all independent curvature invariants Ij.

Case (i), used in [EH21a; EH21b; DEH22], amounts to write

K = max
j

(
|Ij|
)

, j = 1, . . . , N. (B.57)

For Kerr, the local curvature K = max
(
|I1|, |I2|, 1

2 |I3|, 1
2 |I4|

)
is well approximated by

the envelope function K =
√

I2
1 + I2

2 , as only the invariants I1, I2 are independent.

Case (ii), used in [DE24], corresponds to

K =
1
N

√√√√ N

∑
j=1

|Ij|αj , j = 1, . . . , N, αj ∈ Q. (B.58)
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Appendix C

Towards a general parameterisation
of non-circular black-hole
spacetimes

C.1 Kerr metric in Lewis-Papapetrou form

We explicitly show that Kerr spacetime can be written in Lewis-Papapetrou form
with coordinates (t, r̃, θ, ϕ), i.e. no transformation is applied to θ. In particular, we
demand that, besides the three non-vanishing metric components gtt, gtϕ and gϕπ, the
line element on the meridional surfaces takes the form ds2

mer = gr̃r̃
(
dr̃2 + r̃2dθ2), with

just one free function gr̃r̃. The coordinates (t, r̃, θ, ϕ) differ from the BL coordinates by
the condition that relates the metric components gr̃r̃ and gθθ , namely

gθθ = r̃2gr̃r̃. (C.1)

We start from the Kerr spacetime in BL coordinates and allow for an unknown
coordinate transformation r(r̃) of the radial BL coordinate r. Under the transformation
r → r̃, the condition in Eq. C.1 translates into a differential equation for r(r̃), i.e.(

dr(r̃)
dr̃

)2

=
∆(r(r̃))

r̃2 , (C.2)

with ∆(r(r̃)) = r(r̃)2 − 2G0Mr(r̃) + a2. Eq. C.2 admits two solutions, but only the
following one is physical

r(r̃) =
e−c1

2r̃
(
G2

0 M2 − a2 + 2 ec1 G0M r̃ + e2 c1 r̃2) , (C.3)

with c1 a constant of integration. Picking c1 = 0 for simplicity in Eq. C.3, there are two
possible inverse coordinate transformations r̃(r), but only the following is invertible
outside the event horizon,

r̃(r) = r − G0M +
√

r2 − 2G0Mr + a2 (C.4)

−a2dr2 =
a2 − G2

0 M2 + r̃2

2r̃2 dr̃2, (C.5)
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spacetimes

and explicitly relates BL coordinates (t, r, θ, ϕ) to coordinates (t, r̃, θ, ϕ). Hence,
App. C.1 enables us to write the Kerr metric in Lewis-Papapetrou form as

ds2 =− dt2 +
4G0Mr̃

(
(G0M + r̃)2 − a2)

(a2 − (G0M + r̃)2)2 + 4a2r̃2 cos2(θ)

(
dt − a sin2(θ)dϕ

)2

+

((
a2 − (G0M + r̃)2)2

4r̃2 + a2

)
sin2(θ)dϕ2

+

((
a2 − (G0M + r̃)2)2

+ 4a2r̃2 cos2(θ)
)

4r̃4

(
dr̃2 + r̃2dθ2) . (C.6)

C.2 Equivalence of parameterisations with a hidden constant
of motion

We explicitly derive the correspondence between the most general parameterisation
of circular, stationary, axisymmetric and asymptotically flat spacetimes with a hidden
constant of motion, namely Eq. 6.6, and the one given in [Joh13a, Eq. (10)]. The latter
parameterisation reads in BL coordinates

gµν∂µ∂ν =− 1
∆ Σ̃

[
(r2 + a2)A1(r)∂t + aA2(r)∂ϕ

]2
+

∆
Σ̃

A5(r) (∂r)
2 +

1
Σ̃

A6(θ) (∂θ)
2

+
1

Σ̃ sin(θ)2

[
A3(θ)∂ϕ + a sin(θ)2A4(θ)∂t

]2
(C.7)

where f (r), g(θ), Ai(r), i = 1, 2, 5 and Aj(θ), j = 3, 4, 6 are functions of the two
non-Killing coordinates only, i.e. r and θ. ∆(r) = r2 − 2G0Mr + a2 and Σ(r, θ) =
r2 + a2 cos(θ)2 denote the common functions appearing also in the Kerr metric in
Boyer-Lindquist coordinates (with M and a the asymptotic black hole mass and spin,
respectively) and Σ̃(r, θ) = Σ(r, θ) + f (r) + g(θ).

Identifying xi, xj with the two Killing coordinates t, ϕ and (x1, x2) = (r, θ), the
relations

Sr(r) + Sθ(θ) = Σ̃(r, θ) = Σ(r, θ) + f (r) + g(θ), (C.8)
∆r(r) = ∆(r) A5(r), (C.9)
∆θ(θ) = A6(θ), (C.10)

Gtt
r (r) = − (r2 + a2)2A1(r)2

∆(r)
, (C.11)

Gtϕ
r (r) = − (r2 + a2)a A1(r) A2(r)

∆(r)
, (C.12)

Gϕϕ
r (r) = − a2 A2(r)2

∆(r)
, (C.13)

Gtt
θ (θ) = a2 sin(θ)2 A4(θ)

2, (C.14)

Gtϕ
θ (θ) = a A3(θ) A4(θ), (C.15)

Gϕϕ
θ (θ) =

A3(θ)2

sin(θ)2 , (C.16)

establish the full equivalence of the two parameterisations.
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C.3 Static and axisymmetric solutions in GR: Weyl metrics

The complete class of circular, static and axisymmetric GR solutions of the (non-
vacuum, i.e. sourced) Einstein field equations Eq. 2.1 were derived in 1917 by H.
Weyl [Wey17a]. Metrics belonging to that class are written in a well-suited set of
coordinates (t, r, z, ϕ) as ([Wal84, Sec. 7.1])

ds2 = −e2U(r,z)dt2 + e−2U(r,z)
(

e2γ(r,z) (dr2 + dz2)+ r2dϕ2
)

. (C.17)

The symmetries of those metrics are manifestly given by the two Killing vectors
ξt = ∂t and ξϕ = ∂ϕ. Because the dt2 component of the metric is strictly negative,
thus timelike, and there are no cross-terms between the time coordinate t and the
spatial coordinates (r, z, ϕ), the metric is indeed static.

The potential U(r, z) is an arbitrary, axisymmetric solution of the ordinary Laplace
equation ∆U(r, z) = 0 in an unphysical 3D flat spacetime with metric ds2 = dr2 +
r2dϕ2 + dz2. The other potential γ(r, z) satisfies the partial differential equations

∂γ(r, z)
∂r

= r

[(
∂U(r, z)

∂r

)2

−
(

∂U(r, z)
∂z

)2
]

∂γ(r, z)
∂z

= 2r
∂U(r, z)

∂r
∂U(r, z)

∂z
. (C.18)

Finding direct solutions for U(r, z) and γ(r, z) is especially difficult, although two
solutions were found in [Zip66] (in vacuum) and in [Cha83] in different coordinates
than r, z. Moreover, most of the metrics of the Weyl-form are unphysical in the sense
that they are not asymptotically flat or have naked curvature singularities on their axis
of symmetry (z-axis). Nonetheless, the metric Eq. C.17 contains the Schwarzschild
metric as a subcase, when U(r, z) is the potential of a finite-length rod located on the
z-axis, centered at the origin and with constant mass per unit length.
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