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In this paper a structural similarity between a recent braid- and division algebraic description of the 
unbroken internal symmetries of a single generation of Standard Model (SM) fermions is identified. This 
unexpected connection between two independently motivated models provides the first step towards 
unifying them into a unified theory based on braid groups and normed division algebras (NDA).
Each of the four NDAs over the reals is shown to contain a representation of a circular braid group. For 
the complex numbers and the quaternions, the represented circular braid groups are B2 and Bc

3, precisely 
those used to represent leptons and quarks as framed braids in the Helon model of Bilson-Thompson. It 
is then shown that the twist structure of these framed braids representing fermions coincides exactly 
with the states that span the minimal left ideals of the complex (chained) octonions, shown by Furey to 
describe one generation of leptons and quarks with unbroken SU (3)c and U (1)em symmetry.
This identification of basis states of minimal ideals with certain framed braids is possible because the 
braiding in B2 and Bc

3 in the Helon model are interchangeable. It is shown that the framed braids in the 
Helon model can be written as pure braid words in Bc

3 with trivial braiding in B2, something which is 
not possible for framed braids in general.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The SM of particle physics, derived from quantum field theory 
and the gauge principle provides a simple yet incredibly successful 
means of classifying and understanding the constituents of mat-
ter and their interactions via the electroweak and strong nuclear 
forces. However, despite its success, the theory remains incom-
plete. The gauge group of the SM, SU (3)C × SU (2)L × U (1)Y , is 
dictated by experiment, lacking a derivation from theoretical prin-
ciples. A further important shortcoming is that gravity is absent 
from the SM.

One attempt to explain the mathematical structure of the SM 
is to merge the gauge groups into a single semi-simple Lie group. 
Two prominent examples of such grand unified theories (GUT) are 
the SU (5) GUT due to Georgi and Glashow and Georgi’s theory 
based on Spin(10), both discovered in 1974 [1]. One downside of 
most GUTs, including the SU (5) and Spin(10) theories is that they 
invariably predict additional gauge bosons, interactions, and proton 
decay, none of which have thus far been observed.

A second idea is to assume that leptons and quarks are not 
truly fundamental but contain substructure, in the form of a fewer 
number of fundamental building blocks. The most famous of such 
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preon models is the 1979 Harari–Shupe preon model which as-
sumes that all SM leptons and quarks are in fact composites of two 
spin half fermions [2,3]. Although the Harari–Shupe model is able 
to account for many of the observed SM symmetries it also raises 
a number of problems. For one, the preons that compose lep-
tons and quarks must be confined but via what mechanism is not 
known. Attempts to account for preon confinement via a QCD-like 
confinement mechanism inevitably requires sacrificing the original 
model’s simplicity.

In recent years, two alternative models to account for symme-
tries exhibited my SM fermions have been proposed, each mo-
tivated from very different lines of reasoning. One such model 
encodes the SM fermions as framed braids embedded within quan-
tum geometry [4]. The other is a unified theory that is based not 
on Lie groups, as is conventional, but rather on NDAs or Clifford 
algebras [5,6].

Inspired by the Harari–Shupe model, in 2005 Bilson-Thompson 
proposed the Helon model in which a single generation of leptons 
and quarks are realized as braidings of three ribbons with two 
crossings connected at the top and bottom via a node [4]. These 
framed braids, with the additional structure that each ribbon can 
be twisted clockwise or anticlockwise by 2π (interpreted phys-
ically as electric charge), and satisfying certain conditions, map 
precisely to the first generation fermions of the SM. The origi-
nal model has since been expanded into a complete scheme for 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the identification of the SM fermions and weak vector bosons for 
an unlimited series of generations [7–9]. The Helon model fits 
naturally into the context of Loop Quantum Gravity (LQG) which 
uses spin network graphs with edges labeled by representations 
of SU (2). Instead labeling the edges by representations of the 
quantum group SUq(2) introduces a nonzero cosmological con-
stant and requires that the edges be thickened to ribbons [10].

Furey in 2015 proposed an alternative model to explain SM 
symmetries based on the NDAs over the real numbers acting on 
themselves [5]. Her work builds on the initial results involving 
the octonions and particle physics by Gunaydin and Gursey in the 
1970s [11,12]. Complementary studies that look at the connections 
between NDAs and particle physics can be found in [13–16]. The 
minimal ideals of the complex quaternions C ⊗ H are shown to 
contain exactly those representations of the Lorentz group cor-
responding to SM fermions. Furthermore, a Witt decomposition 
of the complex octonions C ⊗ ←−

O (notation from section 4.4) is 
shown to decompose the algebra into ideals whose basis states 
transform as a single generation of leptons and quarks under the 
unbroken unitary symmetries SU (3)c and U (1)em . Additional work 
suggests that the same approach can give rise to exactly three 
generations [17], and, at least for the case of leptons, automati-
cally account for parity being maximally violated in weak interac-
tions [18]. A similar model that merges both the spacetime and 
internal symmetries into a single copy of the complex Clifford al-
gebra C�(6) has been proposed by Stoica in 2017 [6].

What this paper demonstrates is that despite coming from very 
different lines of reasoning, there exist remarkable connections be-
tween the braid- and division algebraic descriptions. A 2016 result 
by Kauffman and Lomonaco showed that Clifford algebras contain 
representations of circular braid groups [19]. Extending their work, 
in the first part of this paper, certain isomorphisms between the 
NDAs and Clifford algebras are used to show that each of the four 
NDAs contains a representation of a particular braid group. Un-
expectedly, the circular braid groups represented by the complex 
numbers and quaternions are precisely those braid groups from 
which the Helon model is constructed [20]. This is the first hint 
that there may exist connections between the two models.

Encouraged by this result, in the second part of this paper 
it is shown that the basis states of the minimal ideals of the 
complex octonions (which transform as one generation of leptons 
and quarks with unbroken SU (3)c and U (1)em symmetry) may be 
identified with precisely those framed braids that compose the 
Helon model. This is the main result of the present paper and 
establishes a clear connection between these two complementary 
models. This identification of the basis states of minimal ideals 
with framed braids is made possible as a result of the braiding 
in B2 and Bc

3 in the Helon model being interchangeable. Although 
it has previously been shown that any framed braid can always 
be written in a pure twist form, it is the opposite process, that 
is, writing the framed braids in a pure braid form that makes the 
identification between Helon model framed braids and basis states 
of ideals apparent. It is shown that the ±2π twists on ribbons 
(representing electric charge) can be written as products of cer-
tain braids in Bc

3 instead. These braids are then identified with the 
ladder operators from which the minimal ideals of the complex 
octonions C ⊗ ←−

O are constructed.
Following a review of the Helon model in section 2 and the 

NDAs in section 3, we then find the braid group representations 
admitted by each of the four NDAs in section 4. In section 4.5 we 
demonstrate that the braid groups represented by the NDAs are 
precisely those that appear in the Helon model. In section 5 it is 
shown that the basis states that span the minimal left ideals of the 
complex octonions coincide with the Helon braids.
Fig. 1. The Helon model of Bilson-Thompson in which the first generation SM 
fermions are represented as braids of three (possibly twisted) ribbons. Charged 
fermions come in two handedness states whereas the neutrino and antineutrino 
come in only one handedness state. The right hand side of the figure shows the 
left-handed particles and right-handed antiparticles partaking in the weak interac-
tion. Used with permission.
Source, [4].

2. The Helon model

In this section we give the briefest of overviews of the Helon 
model, sufficient for our purposes. The reader is directed to the 
original paper in which the model was first presented [4] for an 
in-depth presentation.

The Helon model of Bilson-Thompson maps the simplest non-
trivial braids consisting of three (twisted) ribbons and two cross-
ings to the first generation of SM fermions. Quantized electric 
charges of particles are represented by integral twists of the rib-
bons of the braids, with a twist of ±2π representing an elec-
tric charge of ±e/3. The twist carrying ribbons, called Helons, 
are combined into triplets by connecting the tops of three rib-
bons to each other and likewise for the bottoms of the ribbons. 
The color charges of quarks and gluons are accounted for by the 
permutations of twists on certain braids, and simple topological 
processes are identified with the electroweak interaction, the color 
interaction, and conservation laws. The lack of twist on the neu-
trino braids means they only come in one handedness, identified 
as left-handed (right-handed antineutrino). The representation of 
first generation SM fermions in terms of braids is shown in Fig. 1.

These braided structures may be embedded within a larger net-
work of braided ribbons. Such a ribbon network is a generalization 
of a spin network, fundamental in LQG. The embedding of framed 
braids into ribbon networks make it possible to develop a unified 
theory of matter and spacetime in which both are emergent from 
the ribbon networks [10].

Within ribbon networks, these braided structures correspond 
to local noiseless subsystems which have been shown to exist in 
background independent theories where the microscopic quantum 
states are defined in terms of the embedding of a framed, or rib-
bon, graph in a three manifold and in which the allowed evolu-
tion moves are the standard local exchange and expansion moves 
(Pachner moves). Such noiseless subsystems are given by braided 
sets of n edges joined at both ends by a set of connected nodes. 
The embedding into a ribbon network is possible by connecting (at 
least) one of the nodes to the rest of the ribbon graph. What the 
Helon model shows is that the simplest emergent local structures 
of such theories, when n = 3, match precisely the first generation 
leptons and quarks. The embedding of a framed braid into a ribbon 
network is shown in Fig. 2.

Discrete symmetries have already been studied in the Helon 
model and may be defined on the braid in such a way that per-
forming all three in any order leaves the braid unchanged [21]. 
Dynamics and interactions of braids have been studied in terms 
of evolution moves on trivalent and tetravalent spin network. In 
trivalent spin networks the braid excitations are too strongly con-
served, making annihilation and interaction impossible. Smolin and 
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Fig. 2. The embedding of a Helon model braid into a ribbon network. Used with 
permission.
Source, [10].

Wan [22] have shown that braid interactions in tetravalent spin 
networks are understood in terms of dual Pachner moves. The 
tetravalent scheme substantiates a rich dynamical theory of prop-
agation and interaction of braids [9]. These are ruled by topolog-
ical conservation laws. Wan has developed an effective theory of 
the dynamics of these braid excitations based on Feynman dia-
grams [23].

2.1. The Artin braid groups

The Artin braid group on n strands is denoted by Bn and is gen-
erated by elementary braids {σ1, ..., σn−1} subject to the relations

σiσ j = σ jσi, whenever |i − j| > 1, (1)

σiσi+1σi = σi+1σiσi+1, for i = 1, ....,n − 2. (2)

The braid groups Bn are an extension of the symmetric groups Sn
with the condition that the square of each generator being equal 
to one lifted.

In the framed braid group, each strand is thickened to a rib-
bon with the additional structure that now each ribbon may be 
twisted. Thus in addition to the braid generators σ1, ..., σn−1 of Bn , 
the framed braid group has the additional twist operators t1, ..., tn . 
The framed braid group of Bn is then defined by relations (1), (2)
and additional relations

tit j = t jti, for all i, j, (3)

σit j = tσi( j)σi, (4)

where σi( j) denotes the permutation induced on ( j) by σi . For 
example σ1(2) = (1) and σ1(3) = (3).

Finally, the inverse of a braid is its vertical reflection. This 
is an anti-automorphism so that, for example, (σ3σ1σ

−1
2 )−1 =

σ2σ
−1
1 σ−1

3 .

2.2. Semi-direct product structure of the Helon model

In general, the twisting of the ribbons and the braiding of 
ribbons is not commutative, with the braidings inducing a per-
mutation on the twists of the ribbons. The mathematical struc-
ture of framed braids is therefore that of the semi-direct product 
Bc

3�(B2)
3. Because B2 ∼= 1

2Z this can be rewritten as ( 1
2Z)3

� Bc
3 =

( 1
2Z × 1

2Z × 1
2Z) � Bc

3. An element of ( 1
2Z × 1

2Z × 1
2Z) is denoted by 

a vector [a1, a2, a3] of multiples of half integers as in [7,8]. A gen-
eral framed braid may then be written in standard from with the 
twisting first followed by the braiding, as ([a1, a2, a3], �)1 where 
[a1, a2, a3] ∈ ( 1

2Z)3 is the twist word and � ∈ Bc
3 is the braid word.

1 We will often simply write [a1, a2, a3]�, dropping the parentheses and comma.
Two framed braids may be multiplied together by first joining 
the bottom of the ribbons of the first braid to the tops of the rib-
bon of the second braid and then sliding (isotop) the twists from 
each component braid upward. Doing so, the twists carried by the 
first braid will get permuted by the second braid. The composition 
law may be written as

([a1,a2,a3],�1)([b1,b2,b3],�2)

= (P�1([b1,b2,b3]) + [a1,a2,a3],�1�2),

= ([bπ(�2)(1),bπ(�2)(2),bπ(�2)(3)] + [a1,a2,a3],�1�2),

= ([bπ(�2)(1) + a1,bπ(�2)(2) + a2,bπ(�2)(3) + a3],�1�2) (5)

where �1 and �2 are two braid words, P�i is the permutation 
induced on [a, b, c] by the braid word �, and π : Bc

3 → S3 with 
π(σ1) = (12), π(σ2) = (23), π(σ3) = (31). One could instead slide 
the twists to the bottom of the braid, thus writing (�, [a1, a2, a3])
but care must be taken to modify the composition law above 
respectively. Unless otherwise stated, the standard form will be 
considered to be the twist vector written first followed by the 
braiding.

As an example, consider the u(3) up quark in the Helon model, 
as depicted in Fig. 1. With the positive charges written at the 
top of the braid this can be written using the current notation as 
([0, 1, 1], σ−1

2 σ1). Similarly, one can write the anti up quark ū(3)

with the negative charges written at the bottom of the braid as 
(σ−1

1 σ2, [0, −1, −1]). To write this in the standard from with the 
twisting first followed by the braiding (as for the example of the 
up quark) we can slide the charges along the ribbons. In the pro-
cess they get permuted by the braiding, and one finds that

(σ−1
1 σ2, [0,−1,−1]) = ([−1,0,−1],σ−1

1 σ2). (6)

3. Normed division algebras and Clifford algebras

3.1. Normed division algebras

A division algebra is an algebra over a field where division is 
always possible, with the exception of division by zero. A normed 
division algebra (NDA) is a division algebra where in addition 
|ab| = |a||b|.2 Nature admits only four NDAs over the reals: the real 
numbers R, the complex numbers C, the quaternions H, and the 
octonions O. Starting from the real numbers and generalizing to 
the complex numbers, one has to give up the ordered property of 
the reals. Generalizing in turn to the quaternions one furthermore 
gives up the commutativity of the reals and complex numbers. The 
quaternions are spanned by 1, I, J , K with 1 being the identity and 
I, J , K satisfying

I2 = J 2 = K 2 = I J K = −1. (7)

Finally, in moving to the octonions one has to give up the asso-
ciativity of the reals, complex numbers, and quaternions. The lack 
of associativity of the octonions means their applications to physics 
have not been studied in as much details as for the other NDAs. An 
excellent introduction to the octonions, and in particular their re-
lation to Clifford algebras, is given by Baez [24]. The octonions are 

2 More precisely, a division algebra is a vector space over a field (in our case we 
are considering the field R) which is also a ring with an identity under multipli-
cation and in which ax = b can be solved uniquely for x unless a = 0. A normed 
division algebra is also an integral domain, which means a ring in which ab = 0
implies that a = 0 or b = 0.
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Fig. 3. Quaternion multiplication I2 = J 2 = K 2 = I J K = −1, and octonion multipli-
cation represented using a Fano plane.

spanned by the identity 1 = e0 and seven anti-commuting square 
roots of minus one ei satisfying

eie j = −δi je0 + εi jkek, (8)

where

eie0 = e0ei = ei, e2
0 = e0, (9)

and εi jk is a completely antisymmetric tensor with value +1 when 
i jk = 124, 156, 137, 235, 267, 346, 457. The multiplication of 
quaternions and octonions is shown in Fig. 3. Each pair of dis-
tinct points lies on a unique line of three points that are cyclically 
ordered. If ei , e j and ek are cyclically ordered in this way then

eie j = ek, e jei = −ek. (10)

Every straight line in the Fano plane of the octonions (taken to-
gether with the identity) generates a copy of the quaternions, for 
example {1, e4, e6, e3}. The circle {1, e1, e2, e4} also gives a copy of 
the quaternions, making for a total of seven copies of the quater-
nions embedded within the octonions.

Despite their non-associativity, the octonions have received 
some interest in attempts to describe the origin of quark and lep-
ton structure and symmetry [11,12,16]. The automorphism group 
of the octonions is the exceptional Lie group G2 which contains 
the physically important subgroup SU (3), corresponding to the 
subgroup that holds one of the imaginary units (for example e7) 
constant. This earlier work has recently been complemented and 
extended by Furey [5,17] and also Stoica [6].

3.2. Clifford algebras

Clifford algebras are the result of an attempt by William Clifford 
in 1876 to generalize the quaternions to higher dimensions and 
since then they have found many applications in physics [25–29]. 
They appear whenever spinors do, suggesting they likely play an 
important role in describing SM fermions.

A real Clifford algebra on the vector space Rp,q equipped with 
a degenerate quadratic form is defined as the associative algebra 
generated by p + q orthonormal basis elements ei satisfying

eie j = −e jei, for i �= j, (11)

e2
i = +1, 1 ≤ i ≤ p, (12)

e2
i = −1, p < i ≤ p + q. (13)

One may likewise define complex Clifford algebras over com-
plex spaces Cn , denoted by C�(n). However, doing so forfeits the 
signature and thus by extension much of the underlying geome-
try. For this reason we restrict ourselves whenever possible to real 
Clifford algebras over Rp,q which we write as C�(p, q). The pair 
(p, q) is called the signature of the underlying quadratic form.
A Clifford algebra C�(p, q) has 2(p+q) elements of different 
grades. We can write a general multivector M ∈ C�(p, q) as

M = 〈M〉0 + 〈M〉1 + 〈M〉2 + ... + 〈M〉(p+q), (14)

where 〈M〉n contain the grade n basis elements that are a product 
of n distinct basis vectors ei .

The even elements of a Clifford algebra, those elements ob-
tained from the Clifford product of an even number of basis ele-
ments form a subalgebra which is denoted C�+(p, q). There exists 
an isomorphism between C�+(p, 0) and C�(0, p − 1)3 which we 
will make use of in the next section. Explicitly, this isomorphism 
is given by

φ : C�(0, p − 1) → C�+(p,0), (15)

φ(ei) = eiep, 1 ≤ i ≤ p − 1. (16)

There also exist well-known isomorphisms between the associative 
NDAs and Clifford algebras. These are

C�(0,0) ∼= R, C�(0,1) ∼= C, C�(0,2) ∼= H.

Furthermore, the chained octonions 
←−
O defined below are isomor-

phic to C�(0, 6),

C�(0,6) ∼= ←−
O . (17)

The matrix representations of real Clifford algebras up to 
p + q = 8 as well as complex Clifford algebras can be found in 
Lounesto [30]. The matrix representations of larger Clifford alge-
bras can be found using

C�(p,q + 8) ∼= C�(p,q) ⊗ Mat(16,R), (18)

C�(p + 8,q) ∼= C�(p,q) ⊗ Mat(16,R), (19)

that is, 16 × 16 matrices with entries in C�(p, q). Some of the ma-
trix representations relating to the larger Clifford algebras are

C�(0,6) ∼= R(8), C�(6,0) ∼= H(4),

C�(0,7) ∼= 2
R(8), C�(7,0) ∼=C(8),

where R(8) = Mat(8, R) and 2
R(8) = R(8) ⊕ R(8). For complex 

Clifford algebras

C�(6) ∼= C(8), C�(7) ∼= 2
C(8).

Important in what follows is the isomorphism

C�(6) ∼= C⊗ ←−
O .

Finally, there are three important involutions. These are defined 
as follows

û : ei �→ −ei grade involution, (20)

ũ : ei ....en �→ en....ei reversion, (21)

ū : ei ...en �→ (−en)....(−ei) Clifford conjugation, (22)

where u is general element of C�(p, q). Whereas grade involution 
is an automorphism, both reversion and Clifford conjugation are 
anti-automorphisms. The effects of these involutions on the multi-
vectors of, for example, C�(0, 3) are

û = 〈u〉0 − 〈u〉1 + 〈u〉2 − 〈u〉3 grade involution, (23)

ũ = 〈u〉0 + 〈u〉1 − 〈u〉2 − 〈u〉3 reversion, (24)

ū = 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 Clifford conjugation (25)

3 More generally C�+(p, q) ∼= C�(q, p − 1) when p > 0.
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3.3. Minimal left ideals of the complex chained octonions

Two main results of Furey’s thesis are that the generalized ide-
als of the complex quaternions describe concisely all of the Lorentz 
group representations found in the SM and that the minimal left 
ideals of the complex octonions mirror the behavior of a sin-
gle generation of leptons and quarks with unbroken SU (3)c and 
U (1)em symmetry [5]. Relevant to what is to follow are the mini-
mal left ideals of the complex octonions, and for this reason we 
review the construction of these ideals briefly. A more detailed 
construction of minimal left ideals in general, and specifically for 
the case of the complex octonions can be found in sections 4.5 
and 6.6 of the above cited work.

The ideals are constructed using the Witt decomposition for 
(complex) C�(6) which is isomorphic to C ⊗ ←−

O . The first ideal is 
written in terms of a primitive idempotent ωω† = α1α2α3α

†
3α

†
2α

†
1

defined in terms of the basis vectors

α1 ≡ 1

2
(−e5 + ie4), α2 ≡ 1

2
(−e3 + ie1),

α3 ≡ 1

2
(−e6 + ie2). (26)

These basis vectors satisfy the anticommutation relation

{
αi,α j

} = 0, (27)

and can be identified with lowering operators. The hermitian con-
jugate simultaneously maps i �→ −i and ei �→ −ei so that

α
†
1 ≡ 1

2
(e5 + ie4), α

†
2 ≡ 1

2
(e3 + ie1), α

†
3 ≡ 1

2
(e6 + ie2),

(28)

satisfying the anticommutation relations{
α

†
i ,α

†
j

}
= 0,

{
αi,α

†
j

}
= δi j. (29)

The first minimal left ideal is given by Su ≡ C ⊗ ←−
Oωω†

Su ≡
νωω† +

d̄rα
†
1ωω† + d̄gα

†
2ωω† + d̄bα

†
3ωω†

urα
†
3α

†
2ωω† + ugα

†
1α

†
3ωω† + ubα

†
2α

†
1ωω†

+ e+α
†
3α

†
2α

†
1ωω†, (30)

where ν , d̄r etc. are suggestively labeled complex coefficients. The 
complex conjugate system analogously gives a second linearly in-
dependent minimal left ideal

Sd ≡
ν̄ω†ω +

drα1ω
†ω + dgα2ω

†ω + dbα3ω
†ω

ūrα3α2ω
†ω + ūgα1α3ω

†ω + ūbα2α1ω
†ω

+ e−α3α2α1ω
†ω. (31)

It can be shown that these representations of the minimal left 
ideals are invariant to the color and electromagnetic symmetries 
SU (3)c and U (1)em and each of the basis states in the ideals trans-
forms as a specific lepton or quark under these symmetries as 
indicated by their suggestively labeled complex coefficients.
4. Normed division algebra representations of circular Artin 
braid groups

4.1. The Clifford Braiding Theorem

In 2016 Kauffman and Lomonaco showed, in what they call the 
Clifford Braiding Theorem (CBT), that Clifford algebras contain rep-
resentations of (circular) Artin braid groups [19].

For a Clifford algebra C�(n, 0) over the real numbers generated 
by linearly independent elements {e1, e2, ..., en} with e2

k = 1 for all 
k and ekel = −elek for k �= l, the algebra elements σk = 1√

2
(1 +

ek+1ek) form a representation of the circular4 Artin braid group Bn . 
This means that the set of braid generators {σ1, σ2, ..., σn} where

σk = 1√
2
(1 + ek+1ek), whenever 1 ≤ k < n, (32)

σn = 1√
2
(1 + e1en), (33)

satisfy the braid relations (1). An important point is that the order 
of the braid generators represented this way is eight. Although the 
original theorem as found in [19] assumes that e2

k = 1 for all k, 
the proof likewise holds when e2

k = −1, as is easily checked. The 
important point is that it fails to hold for a general Clifford algebra 
C�(p, q) of mixed signature.

The braid generators are composed of the scalar and a sub-
set of the bivectors elements of C�(n, 0), and therefore live in the 
even subalgebra C�+(n, 0) ∼= C�(0, n − 1). In what follows we use 
the known isomorphisms between the NDAs and Clifford algebras 
listed earlier to determine which braid groups may be represented 
by the NDAs.

4.2. A representation of the Artin braid group B2 from C

The complex numbers C with basis {1, i} are isomorphic to the 
Clifford algebra C�(0, 1) with e2

1 = −1. Given this isomorphism 
it means one also has an isomorphism with C�+(2, 0), the even 
part of Cl(2, 0). Therefore, the complex number algebra C admits 
a representation of the braid group B2. In this case the Artin braid 
group is equivalent to the circular Artin braid group Bc

2
∼= B2. The 

single braid generator σ1 can be represented in terms of the scalar 
and bivector of C�(2, 0), so that

σ1 = 1√
2
(1 + e2e1), σ−1

1 = 1√
2
(1 − e2e1), (34)

with the inverse generators defined by inserting a minus sign in 
front of the bivector terms. Alternatively, in C�(0, 1) the braid gen-
erator and its inverse take the form

σ1 = 1√
2
(1 − e1), σ−1

1 = 1√
2
(1 + e1). (35)

Using the isomorphism C�+(2, 0) ∼= C�(0, 1) ∼= C, C gives a repre-
sentation of B2 with the braid generator expressed as

σ1 = 1√
2
(1 + i), σ−1

1 = 1√
2
(1 − i). (36)

The map from σ1 �→ σ−1
1 can be seen as complex conjugation 

∗ : i �→ −i in C, as reversion in C�(2, 0), and Clifford conjugation 
(or alternatively grade involution) in C�(0, 1).

4 A circular braid on n strings has n strings attached to the outer edges of two 
circles which lie in parallel planes in R3.
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The order of σ1 is eight, and one can readily check that

σ1 = (1/
√

2)(1 + i) = σ−7
1 , σ 2

1 = i = σ−6
1 ,

σ 3
1 = −(1/

√
2)(1 − i) = σ−5

1 , σ 4
1 = −1 = σ−4

1 ,

σ 5
1 = −(1/

√
2)(1 + i) = σ−3

1 , σ 6
1 = −i = σ−2

1 ,

σ 7
1 = (1/

√
2)(1 − i) = σ−1

1 , σ 8
1 = 1 = σ−8

1 ,

σ 9
1 = (1/

√
2)(1 + i) = σ1.

This means that the representation of B2 in terms of C is not faith-
ful, and in fact an infinite number of braids are represented by 
the same complex number. Using C to represent B2 partitions the 
braid group into eight equivalence classes, each represented by one 
of the above eight complex numbers.

4.3. A representation of the circular Artin braid group Bc
3 from H

Moving on to the quaternions H, one can use the isomorphism 
H ∼= C�(0, 2) ∼= C�+(3, 0) to find a quaternionic representation of 
the braid group Bc

3. C�(0, 2) is spanned by {1, e1, e2, e1e2 = e12}
with

e2
1 = e2

2 = e2
12 = e1e2e12 = −1, (37)

e1e2 = −e2e1, e1e12 = −e12e1, e2e12 = −e12e2. (38)

One can thus identify e1 = I, e2 = J , e12 = K to obtain a copy 
of H. The even subalgebra of C�(3, 0) contains three bivectors (and 
the scalar) which may be related to braid generators for Bc

3

σ1 = 1√
2
(1 + e2e1), σ2 = 1√

2
(1 + e3e2), σ3 = 1√

2
(1 + e1e3).

(39)

It is readily checked that

σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1. (40)

The representation in terms of C�(0, 2) is given in the Appendix. 
In terms of the quaternions we have

σ1 = 1√
2
(1 + I), σ2 = 1√

2
(1 + J ), σ3 = 1√

2
(1 + K ),

with the inverses again obtained by inserting a minus sign, corre-
sponding to taking the quaternion conjugate which maps I, J , K to 
their negatives. In C�+(3, 0) and C�(0, 2), the inverse braid gen-
erators are again obtained via reversion and Clifford conjugation 
respectively.

4.4. A representation of the circular Artin braid group Bc
7 from O

In addition to being non-commutative, the octonion algebra O
is also non-associative. However, it is possible to recover an asso-
ciate description of the octonions by considering one octonion’s 
multiplication on another as a linear map. Multiple such maps 
can be composed allowing for an alternative concept of multi-
plication which is associative. To illustrate, let n, m, p, and f be 
four octonions. One defines the octonion chain ←−−pnm as the map ←−−pnm : f �→ p(n(mf )). One can generalize this to a product of ar-
bitrary many octonions. The resulting algebra is the chained octo-

nions 
←−
O which is associative and can be shown to be isomorphic 

to Cl(0, 6) [5].

Using the isomorphism 
←−
O ∼= C�(0, 6) ∼= C�+(7, 0) one finds a 

representation of the braid group Bc
7 in terms of the chained octo-

nions
Fig. 4. The twisting and braiding in ribbon braids (consisting of two or three rib-
bons) is interchangeable.
Source, [10].

σi = 1√
2
(1 + ←−−−ei+1ei), σ7 = 1√

2
(1 + ←−−e1e7), (41)

again with period eight. The explicit braid group representations 
in terms of C�+(7, 0) and C�(0, 6) are given in the Appendix. Once 
again, reversion and Clifford conjugation maps the braid generators 
to their inverses for these two Clifford algebras respectively.

In summary, the NDAs provide the following (circular) braid 
group representations:

C ∼= C�(0,1) ∼= C�+(2,0) → B2,

H ∼= C�(0,2) ∼= C�+(3,0) → Bc
3,←−

O ∼= C�(0,6) ∼= C�+(7,0) → Bc
7.

4.5. Connecting the Helon model with normed division algebras

The framed braids that represent fermions in the Helon model 
are constructed out of two braid groups, B2 and Bc

3. The twisting of 
the ribbons, representing (quantised) electric charge corresponds 
to elements of B2. When the ribbon is twisted the two edges of 
the ribbon braid one another. Additionally, the braiding of three 
ribbons forms a braid word in Bc

3. Furthermore, the individual rib-
bons of the braids are connected together at the top and bottom 
via a node. This arrangement where ribbons are connected at both 
ends is equivalent to two parallel disks connected by three rib-
bons. One therefore not only has B3 but rather the circular braid 
group Bc

3.
An interesting observation is that these two braid groups are 

precisely those represented by the complex numbers C and the 
quaternions H, suggesting it may be possible to connect the Helon 
model with the NDA model. Indeed this is not the only hint at a 
close connection between the two models and in the next section 
it is shown that by identifying the ladder operators αi and α†

i with 
certain braids in Bc

3, the basis states of the minimal left ideals of 
the complex octonions become identical to the framed braids in 
the Helon model. That is the main result of this paper.

5. Helon braids as basis states of minimal left ideals of C ⊗O

5.1. Interchanging between braiding and twisting

It was demonstrated in [7] that any braiding can always be 
exchanged for twisting (in the case for three ribbon braids). This 
means that any element ([a, b, c], �) ∈ (B2)

3
� Bc

3 may always be 
rewritten as [a′, b′, c′] ∈ (B2)

3 in which the braiding in Bc
3 is triv-

ial. The framed braids in the Helon model can therefore be written 
purely in terms of twist vectors. For example, in Fig. 4, it is shown 
how the braiding induced by the generator σ1 may be exchanged 
for twisting.

The braid generators of the circular Artin braid group Bc
3 can be 

written as twist vectors as follows:
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σ1 →
[

1

2
,

1

2
,−1

2

]
, σ−1

1 →
[
−1

2
,−1

2
,

1

2

]
, (42)

σ2 →
[
−1

2
,

1

2
,

1

2

]
, σ−1

2 →
[

1

2
,−1

2
,−1

2

]
, (43)

σ3 →
[

1

2
,−1

2
,

1

2

]
, σ−1

3 →
[
−1

2
,

1

2
,−1

2

]
. (44)

In turning a general braid into a pure twist vector one has to be 
careful to take into account the permutations induced by braidings. 
Thus, for example

[0,1,0]σ1σ2 =
(

Pσ1 [0,1,0]
[

1

2
,

1

2
,−1

2

])
σ2,

=
(

[1,0,0]
[

1

2
,

1

2
,−1

2

])
σ2,

=
[

3

2
,

1

2
,−1

2

]
σ2,

= Pσ2

[
3

2
,

1

2
,−1

2

][
−1

2
,

1

2
,

1

2

]
,

=
[

3

2
,−1

2
,

1

2

][
−1

2
,

1

2
,

1

2

]
,

= [1,0,1], (45)

where by Pσi [a, b, c] we denote the permutation on [a, b, c] in-
duced by the braiding σi . Unless otherwise stated the action is 
always from left to right.

One might instead want to go the other way, that is write a 
framed braid in pure braid form with trivial twisting ([0, 0, 0]). 
This is in general not possible, but is possible for the particular 
braids in the Helon model. To see this, notice that the twists on 
an arbitrary Helon braid, ignoring the braiding for the time be-
ing, corresponds to one of the twist vectors [±1, 0, 0], [±1, ±1, 0],
[±1, ±1, ±1] and cyclic.

We leave it for the reader to verify that

[0,0,0](σ2σ3) = [1,0,0],
[0,0,0](σ3σ1) = [0,1,0],
[0,0,0](σ1σ2) = [0,0,1],

[0,0,0](σ3σ1)(σ1σ2) = [1,0,1],
[0,0,0](σ1σ2)(σ2σ3) = [1,1,0],
[0,0,0](σ2σ3)(σ3σ1) = [0,1,1],

[0,0,0] (σ2σ3)(σ3σ1)(σ1σ2) = [1,1,1], (46)

and similarly

[0,0,0](σ−1
2 σ−1

3 ) = [−1,0,0],
[0,0,0](σ−1

3 σ−1
1 ) = [0,−1,0],

[0,0,0](σ−1
1 σ−1

2 ) = [0,0,−1],
[0,0,0](σ−1

3 σ−1
1 )(σ−1

1 σ−1
2 ) = [−1,0,−1],

[0,0,0](σ−1
1 σ−1

2 )(σ−1
2 σ−1

3 ) = [−1,−1,0],
[0,0,0](σ−1

2 σ−1
3 )(σ−1

3 σ−1
1 ) = [0,−1,−1],

[0,0,0] (σ−1
2 σ−1

3 )(σ−1
3 σ−1

1 )(σ−1
1 σ−1

2 ) = [−1,−1,−1]. (47)

It should be noted that the representation of a twist vector in pure 
braid from is in general not unique. For example, [0, 0, 0]σ2σ1 =
[1, 0, 0] also and [0, 0, 0](σ−1

1 σ−1
3 )(σ−1

3 σ−1
2 )(σ−1

2 σ−1
1 ) =

[−1, −1, −1].
5.2. Braid representations of minimal left ideals of the complex chained 
octonions

If we now consider the neutrino in the Helon model, written as 
the braid σ−1

2 σ1 and with no twisting of the ribbons, then the up 
quark, anti-down quark and positron can be considered excitations 
of the neutrino in the sense that their representations are obtained 
by adding twist to the ribbons that compose the neutrino but leav-
ing the underlying braid structure unchanged. One can then write 
these fermions in braid-only form where the twisting has been re-
moved, using eqn. (46) and eqn. (47) as

ν → [0,0,0](σ−1
2 σ1) = (σ−1

2 σ1),

d̄r → [0,0,1](σ−1
2 σ1) = (σ1σ2)(σ

−1
2 σ1),

d̄g → [0,1,0](σ−1
2 σ1) = (σ3σ1)(σ

−1
2 σ1),

d̄b → [1,0,0](σ−1
2 σ1) = (σ2σ3)(σ

−1
2 σ1),

ur → [0,1,1](σ−1
2 σ1) = (σ2σ3)(σ3σ1)(σ

−1
2 σ1),

ug → [1,1,0](σ−1
2 σ1) = (σ1σ2)(σ2σ3)(σ

−1
2 σ1),

ub → [1,0,1](σ−1
2 σ1) = (σ3σ1)(σ1σ2)(σ

−1
2 σ1),

e+ → [1,1,1](σ−1
2 σ1) = (σ2σ3)(σ3σ1)(σ1σ2)(σ

−1
2 σ1). (48)

The main result of this paper is that if one now identifies

(σ1σ2) �→ α
†
1, (σ3σ1) �→ α

†
2, (σ2σ3) �→ α

†
3, (49)

together with

σ−1
2 σ1 �→ ωω†, (50)

and substitutes into equation (54), then the minimal left ideal Su

of the complex octonions (repeated below for convenience) is re-
covered

Su ≡
νωω† +

d̄rα
†
1ωω† + d̄gα

†
2ωω† + d̄bα

†
3ωω†

urα
†
3α

†
2ωω† + ugα

†
1α

†
3ωω† + ubα

†
2α

†
1ωω†

+ e+α
†
3α

†
2α

†
1ωω†, (51)

where the action of the basis states in the ideal is on the identity 
[0, 0, 0] from left to right. Thus for example,

ug → [1,1,0](σ−1
2 σ1) = [0,0,0](σ1σ2)(σ2σ3)(σ

−1
2 σ1)

= [0,0,0]α†
1α

†
3ωω†.

Next consider the antiparticles, corresponding (in the Helon 
model) to the vertical reflections. The vertical reflection inverts 
both the braidings, and the signs of the twists as well and fur-
ther moves the twists from the top of the braid to the bot-
tom of the braid. This is evident from Fig. 1. To illustrate con-
sider the ub quark written as a pure braid word in Eq. (48) as 
(σ3σ1)(σ1σ2)(σ

−1
2 σ1). It follows that for its antiparticle, the pure 

braid word must be

ūb → (σ−1
1 σ2)(σ

−1
2 σ−1

1 )(σ−1
1 σ−1

3 ). (52)

The last two terms in parentheses are responsible for generating 
the twist vector but because of the vertical reflection the action is 
now from right to left. To be consistent this should be rewritten so 
that the action is from left to right to give
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ūb → (σ−1
1 σ2)(σ

−1
2 σ−1

1 )(σ−1
1 σ−1

3 )[0,0,0],
= (σ−1

1 σ2)[0,0,0](σ−1
3 σ−1

1 )(σ−1
1 σ−1

2 ),

= (σ−1
1 σ2)[−1,0,−1]. (53)

Doing the same for the other antiparticles gives

ν̄ → (σ−1
1 σ2)[0,0,0] = (σ−1

1 σ2),

dr → (σ−1
1 σ2)[0,0,−1] = (σ−1

1 σ2)(σ
−1
1 σ−1

2 ),

dg → (σ−1
1 σ2)[0,−1,0] = (σ−1

1 σ2)(σ
−1
3 σ−1

1 ),

db → (σ−1
1 σ2)[−1,0,0] = (σ−1

1 σ2)(σ
−1
2 σ−1

3 ),

ūr → (σ−1
1 σ2)[0,−1,−1] = (σ−1

1 σ2)(σ
−1
2 σ−1

3 )(σ−1
3 σ−1

1 ),

ūg → (σ−1
1 σ2)[−1,−1,0] = (σ−1

1 σ2)(σ
−1
1 σ−1

2 )(σ−1
2 σ−1

3 ),

ūb → (σ−1
1 σ2)[−1,0,−1] = (σ−1

1 σ2)(σ
−1
3 σ−1

1 )(σ−1
1 σ−1

2 ),

e− → (σ−1
1 σ2)[−1,−1,−1]

= (σ−1
1 σ2)(σ

−1
2 σ−1

3 )(σ−1
3 σ−1

1 )(σ−1
1 σ−1

2 ). (54)

Identifying5

(σ−1
1 σ−1

2 ) �→ α1, (σ−1
3 σ−1

1 ) �→ α2,

(σ−1
2 σ−1

3 ) �→ α3, σ−1
1 σ2 �→ ω†ω, (55)

the antiparticles can this time be written as a right ideal as

Sd ≡
ν̄ω†ω +

drω†ωα1 + dgω†ωα2 + dbω†ωα3

ūrω†ωα3α2 + ūgω†ωα1α3 + ūbω†ωα2α1

+ e−ω†ωα3α2α1. (56)

Thus, the Helon braids correspond precisely to the basis states 
of one left and one right ideal of the complex chained octonions 
C ⊗ ←−

O . The only exception here is the neutrino and anti-neutrino 
states which are identified differently in the two models. We here 
follow the identification as made by Furey, including the neutrino 
in the same minimal left ideal as the positively charged fermions. 
This is sensible because then all the fermions in a given ideal have 
the same sign for their isospin.

In the construction of minimal left ideals (reviewed in sec-
tion 3.3), ω and ω† are nilpotents defined as ω ≡ α1α2α3 and 
ω† = α

†
3α

†
2α

†
1. From these are constructed the idempotents ωω†

and ω†ω. Using the identification of αi and α†
i in terms of braid 

generators above one has

ω† = α
†
3α

†
2α

†
1 = [0,0,0](σ2σ3)(σ3σ1)(σ1σ2) = [1,1,1]. (57)

5 A footnote is in order to avoid potential confusion regarding the action of the 
conjugate † on braids. † : σi �→ σ−1 is simply the braid inverse which is an an-
tiautomorpism. In the definitions of αi and α†

i in Eqs. (49) and (55), the order of 
braid generators is not reversed making the conjugation look like an automorphism. 
However, as shown in Eq. (53), the vertical reflection corresponding to the braid in-
verse also reverses the action of the αi s from left to right to right to left. Restoring 
the left to right action then reverses the order again, giving the appearance of an 
automorphism.

([0,0,0]α2α1)† = (α1α2)†[0,0,0],
= [0,0,0]α†

2α
†
1.
Similarly,

ω = α3α2α1 = [0,0,0](σ−1
1 σ−1

3 )(σ−1
3 σ−1

2 )(σ−1
2 σ−1

1 )

= [−1,−1,−1]. (58)

Both ω and ω† defined in this way are pure braids.6 A pure braid 
is one that does not permute the strands of the braids. They form a 
subgroup of a braid group and in this case ω and ω† are the center 
of Bc

3. Furthermore ω†ω = ωω† = [0, 0, 0], the untwisted unbraid 
(the identity). This is indeed an idempotent but indicates a con-
flict with the Helon model where the framed braid representing 
the neutrino (antineutrino) is not trivial, and is not an idempotent. 
In the Helon model, the weak interaction is represented topolog-
ically as the braid product therefore requiring nontrivial braiding. 
The symmetries of the minimal left ideals however are only the 
unbroken symmetries SU (3)c and U (1)em . For these symmetries, 
the underlying braiding may be, and should be, trivial. Therefore 
this conflict is expected and does not indicate a contradiction.

Furthermore, αi and α†
i commute with ω†ω = ωω† and con-

sequently the right ideal can be rewritten as the left ideal Sd

(repeated here for convenience)

Sd ≡
ν̄ω†ω +

drα1ω
†ω + dgα2ω

†ω + dbα3ω
†ω

ūrα3α2ω
†ω + ūgα1α3ω

†ω + ūbα2α1ω
†ω

+ e−α3α2α1ω
†ω. (59)

6. Discussion

One of the most prominent challenges in theoretical physics to-
day is understanding the theoretical origin of the SM gauge group 
along with why only some of the representations of these gauge 
groups are observed in Nature. Another is the unification of the 
SM with gravity. Recent attempts to use the NDAs, in particular 
the octonions to describe the symmetries of leptons and quarks 
has led to progress in the first challenge. The topological represen-
tation of leptons and quarks as framed braids has led to progress 
in the second challenge. This paper has shown that there is an un-
expected connection between these two radically different models.

In the first part of this paper the Clifford Braiding Theorem of 
Kauffman and Lomonaco was used to show that each of the (hyper 
complex) NDAs admits a representation of a braid group. The first 
main result presented here is that the braid groups Bc

3 and B2 of 
the Helon model are precisely those that can be represented using 
H and C respectively.

Furey has shown that the minimal left ideals of the complex 
octonions C ⊗ ←−

O mirror the behavior of a single generation of 
leptons and quarks under the unbroken SM symmetries SU (3)c

and U (1)em . The minimal left ideals of C ⊗←−
O are written in terms 

of products of nilpotent ladder operators that form the basis vec-
tors of maximal totally isotropic subspaces. The second main result 
of this paper is that by appropriately defining these basis vectors 
in terms of braid generators, the basis states of the minimal left 
ideals coincide with the framed braids found in the Helon model. 
An important difference however is that the braid group elements 
representing the basis vectors are neither nilpotents nor ladder op-
erators in the usual sense.

6 The definition of ω = α3α2α1 differs by a minus sign from its definition of 
ω = α1α2α3 in [5]. Thus, with the definition used here, both ωω† and ω†ω pick up 
a physically irrelevant minus sign.
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Table 1
Table showing the generators of certain braid groups represented in terms of Clifford algebras isomor-
phic to C, H, and (chained) O.

C�+(2,0) C�(0,1) C�+(3,0) C�(0,2) C�+(7,0) C�(0,6)

σ1
1√
2
(1 + e21) 1√

2
(1 − e1) 1√

2
(1 + e21) 1√

2
(1 + e21) 1√

2
(1 + e21) 1√

2
(1 + e21)

σ2
1√
2
(1 + e32) 1√

2
(1 − e2) 1√

2
(1 + e32) 1√

2
(1 + e32)

σ3
1√
2
(1 + e13) 1√

2
(1 + e1) 1√

2
(1 + e43) 1√

2
(1 + e43)

σ4
1√
2
(1 + e54) 1√

2
(1 + e54)

σ5
1√
2
(1 + e65) 1√

2
(1 + e65)

σ6
1√
2
(1 + e76) 1√

2
(1 − e6)

σ7
1√
2
(1 + e17) 1√

2
(1 + e1)
The minimal left ideals are generated from the action of ba-
sis vectors on primitive idempotents representing the neutrino and 
antineutrino. These idempotents, when written as a braid corre-
spond to the trivial braid. This indeed is an idempotent but in-
dicates a conflict with the Helon model where the framed braid 
representing the neutrino (antineutrino) is not trivial, and is not an 
idempotent. However this should be expected because the Helon 
model has some structure that does not appear in the NDA model. 
In the Helon model, the weak interaction is represented topologi-
cally as the braid product. The braid product is meaningless when 
the braiding is trivial since it will inevitable result in another triv-
ial braid. Therefore a description of the weak force as a topological 
process requires nontrivial braiding. The symmetries of the mini-
mal left ideals however are only the unbroken symmetries SU (3)c

and U (1)em , not the electroweak symmetries. For these symme-
tries, the underlying braiding may be, and should be, trivial. This 
is indeed what was found here.

This paper has presented a first attempt at unifying two 
promising and interesting models attempting to explain the in-
ternal symmetries of leptons and quarks. The results obtained here 
are encouraging and establish a connection between the two rad-
ically different approaches. There are however also a number of 
important differences between these models that should be high-
lighted. For example, one model is based on a group whereas the 
other on an algebra. In the former there is no obvious concept of 
scalar multiplication or of addition. It is not yet clear how this will 
affect, for example, amplitude calculations.

The Helon model is constructed out of two braid groups, B2
and Bc

3, which can be represented using the complex numbers and 
quaternions. Yet, it is the minimal left ideals of the complex oc-
tonions, not the complex quaternions, that describe the unbroken 
symmetries of a generation of leptons and quarks. It remains to be 
shown how exactly the Helon braids as complex quaternions sit in-
side the complex octonions. It may be that the minimal left ideals 
pick out certain quaternionic subalgebras inside the octonions. At 
the same time it begs the question of what the role of Bc

7 which 
finds a representation in the octonions might be. One may spec-
ulate that it might play a role in describing the color symmetry, 
which in the Helon model is described in terms of ‘braid stacking’. 
This remains to be investigated.

Braid groups are infinite, and the Helon mode has been general-
ized to an infinite number of generations obtained by increasingly 
more complex braiding. The minimal ideals of the complex octo-
nions however gives exactly one generation of fermions, although 
there is evidence this may be extended to exactly three genera-
tions [17]. One may wonder what mechanism is in place to select 
the finite number of braids that are physically relevant and corre-
spond to observed particles. It may be that using NDAs provides 
an answer to this question. Recall that the representations of braid 
groups from NDAs are not faithful. This means that any braid in B2
corresponds to one of eight complex numbers which define equiv-
alence classes of braids. A similar study needs to be carried out 
for Bc

3 and Bc
7 to identify the equivalence classes. This is currently 

under investigation.
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Appendix. Braid group representations in terms of C�+(n, 0) and 
C�(0, n − 1)

In Table 1, the notation eie j = ei j has been adopted.
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