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In this paper a structural similarity between a recent braid- and division algebraic description of the
unbroken internal symmetries of a single generation of Standard Model (SM) fermions is identified. This
unexpected connection between two independently motivated models provides the first step towards
unifying them into a unified theory based on braid groups and normed division algebras (NDA).
Each of the four NDAs over the reals is shown to contain a representation of a circular braid group. For
the complex numbers and the quaternions, the represented circular braid groups are B, and BS, precisely
those used to represent leptons and quarks as framed braids in the Helon model of Bilson-Thompson. It
is then shown that the twist structure of these framed braids representing fermions coincides exactly
with the states that span the minimal left ideals of the complex (chained) octonions, shown by Furey to
describe one generation of leptons and quarks with unbroken SU(3). and U (1) Ssymmetry.
This identification of basis states of minimal ideals with certain framed braids is possible because the
braiding in B, and B in the Helon model are interchangeable. It is shown that the framed braids in the
Helon model can be written as pure braid words in B§ with trivial braiding in By, something which is
not possible for framed braids in general.
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1. Introduction

The SM of particle physics, derived from quantum field theory
and the gauge principle provides a simple yet incredibly successful
means of classifying and understanding the constituents of mat-
ter and their interactions via the electroweak and strong nuclear
forces. However, despite its success, the theory remains incom-
plete. The gauge group of the SM, SU(3)¢c x SUR2)L x U(1)y, is
dictated by experiment, lacking a derivation from theoretical prin-
ciples. A further important shortcoming is that gravity is absent
from the SM.

One attempt to explain the mathematical structure of the SM
is to merge the gauge groups into a single semi-simple Lie group.
Two prominent examples of such grand unified theories (GUT) are
the SU(5) GUT due to Georgi and Glashow and Georgi’s theory
based on Spin(10), both discovered in 1974 [1]. One downside of
most GUTs, including the SU(5) and Spin(10) theories is that they
invariably predict additional gauge bosons, interactions, and proton
decay, none of which have thus far been observed.

A second idea is to assume that leptons and quarks are not
truly fundamental but contain substructure, in the form of a fewer
number of fundamental building blocks. The most famous of such
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preon models is the 1979 Harari-Shupe preon model which as-
sumes that all SM leptons and quarks are in fact composites of two
spin half fermions [2,3]. Although the Harari-Shupe model is able
to account for many of the observed SM symmetries it also raises
a number of problems. For one, the preons that compose lep-
tons and quarks must be confined but via what mechanism is not
known. Attempts to account for preon confinement via a QCD-like
confinement mechanism inevitably requires sacrificing the original
model’s simplicity.

In recent years, two alternative models to account for symme-
tries exhibited my SM fermions have been proposed, each mo-
tivated from very different lines of reasoning. One such model
encodes the SM fermions as framed braids embedded within quan-
tum geometry [4]. The other is a unified theory that is based not
on Lie groups, as is conventional, but rather on NDAs or Clifford
algebras [5,6].

Inspired by the Harari-Shupe model, in 2005 Bilson-Thompson
proposed the Helon model in which a single generation of leptons
and quarks are realized as braidings of three ribbons with two
crossings connected at the top and bottom via a node [4]. These
framed braids, with the additional structure that each ribbon can
be twisted clockwise or anticlockwise by 27 (interpreted phys-
ically as electric charge), and satisfying certain conditions, map
precisely to the first generation fermions of the SM. The origi-
nal model has since been expanded into a complete scheme for
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the identification of the SM fermions and weak vector bosons for
an unlimited series of generations [7-9]. The Helon model fits
naturally into the context of Loop Quantum Gravity (LQG) which
uses spin network graphs with edges labeled by representations
of SU(2). Instead labeling the edges by representations of the
quantum group SUg4(2) introduces a nonzero cosmological con-
stant and requires that the edges be thickened to ribbons [10].

Furey in 2015 proposed an alternative model to explain SM
symmetries based on the NDAs over the real numbers acting on
themselves [5]. Her work builds on the initial results involving
the octonions and particle physics by Gunaydin and Gursey in the
1970s [11,12]. Complementary studies that look at the connections
between NDAs and particle physics can be found in [13-16]. The
minimal ideals of the complex quaternions C ® H are shown to
contain exactly those representations of the Lorentz group cor-
responding to SM fermions. Furthermore, a Witt decomposition
of the complex octonions C ® 6 (notation from section 4.4) is
shown to decompose the algebra into ideals whose basis states
transform as a single generation of leptons and quarks under the
unbroken unitary symmetries SU(3) and U(1)en. Additional work
suggests that the same approach can give rise to exactly three
generations [17], and, at least for the case of leptons, automati-
cally account for parity being maximally violated in weak interac-
tions [18]. A similar model that merges both the spacetime and
internal symmetries into a single copy of the complex Clifford al-
gebra C£(6) has been proposed by Stoica in 2017 [6].

What this paper demonstrates is that despite coming from very
different lines of reasoning, there exist remarkable connections be-
tween the braid- and division algebraic descriptions. A 2016 result
by Kauffman and Lomonaco showed that Clifford algebras contain
representations of circular braid groups [19]. Extending their work,
in the first part of this paper, certain isomorphisms between the
NDAs and Clifford algebras are used to show that each of the four
NDAs contains a representation of a particular braid group. Un-
expectedly, the circular braid groups represented by the complex
numbers and quaternions are precisely those braid groups from
which the Helon model is constructed [20]. This is the first hint
that there may exist connections between the two models.

Encouraged by this result, in the second part of this paper
it is shown that the basis states of the minimal ideals of the
complex octonions (which transform as one generation of leptons
and quarks with unbroken SU(3). and U(1)ey, symmetry) may be
identified with precisely those framed braids that compose the
Helon model. This is the main result of the present paper and
establishes a clear connection between these two complementary
models. This identification of the basis states of minimal ideals
with framed braids is made possible as a result of the braiding
in B> and B in the Helon model being interchangeable. Although
it has previously been shown that any framed braid can always
be written in a pure twist form, it is the opposite process, that
is, writing the framed braids in a pure braid form that makes the
identification between Helon model framed braids and basis states
of ideals apparent. It is shown that the 42w twists on ribbons
(representing electric charge) can be written as products of cer-
tain braids in B instead. These braids are then identified with the
ladder operators from which the minimal ideals of the complex
octonions C ® 6 are constructed.

Following a review of the Helon model in section 2 and the
NDAs in section 3, we then find the braid group representations
admitted by each of the four NDAs in section 4. In section 4.5 we
demonstrate that the braid groups represented by the NDAs are
precisely those that appear in the Helon model. In section 5 it is
shown that the basis states that span the minimal left ideals of the
complex octonions coincide with the Helon braids.
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Fig. 1. The Helon model of Bilson-Thompson in which the first generation SM
fermions are represented as braids of three (possibly twisted) ribbons. Charged
fermions come in two handedness states whereas the neutrino and antineutrino
come in only one handedness state. The right hand side of the figure shows the
left-handed particles and right-handed antiparticles partaking in the weak interac-
tion. Used with permission.

Source, [4].

2. The Helon model

In this section we give the briefest of overviews of the Helon
model, sufficient for our purposes. The reader is directed to the
original paper in which the model was first presented [4] for an
in-depth presentation.

The Helon model of Bilson-Thompson maps the simplest non-
trivial braids consisting of three (twisted) ribbons and two cross-
ings to the first generation of SM fermions. Quantized electric
charges of particles are represented by integral twists of the rib-
bons of the braids, with a twist of £2m representing an elec-
tric charge of +e/3. The twist carrying ribbons, called Helons,
are combined into triplets by connecting the tops of three rib-
bons to each other and likewise for the bottoms of the ribbons.
The color charges of quarks and gluons are accounted for by the
permutations of twists on certain braids, and simple topological
processes are identified with the electroweak interaction, the color
interaction, and conservation laws. The lack of twist on the neu-
trino braids means they only come in one handedness, identified
as left-handed (right-handed antineutrino). The representation of
first generation SM fermions in terms of braids is shown in Fig. 1.

These braided structures may be embedded within a larger net-
work of braided ribbons. Such a ribbon network is a generalization
of a spin network, fundamental in LQG. The embedding of framed
braids into ribbon networks make it possible to develop a unified
theory of matter and spacetime in which both are emergent from
the ribbon networks [10].

Within ribbon networks, these braided structures correspond
to local noiseless subsystems which have been shown to exist in
background independent theories where the microscopic quantum
states are defined in terms of the embedding of a framed, or rib-
bon, graph in a three manifold and in which the allowed evolu-
tion moves are the standard local exchange and expansion moves
(Pachner moves). Such noiseless subsystems are given by braided
sets of n edges joined at both ends by a set of connected nodes.
The embedding into a ribbon network is possible by connecting (at
least) one of the nodes to the rest of the ribbon graph. What the
Helon model shows is that the simplest emergent local structures
of such theories, when n = 3, match precisely the first generation
leptons and quarks. The embedding of a framed braid into a ribbon
network is shown in Fig. 2.

Discrete symmetries have already been studied in the Helon
model and may be defined on the braid in such a way that per-
forming all three in any order leaves the braid unchanged [21].
Dynamics and interactions of braids have been studied in terms
of evolution moves on trivalent and tetravalent spin network. In
trivalent spin networks the braid excitations are too strongly con-
served, making annihilation and interaction impossible. Smolin and
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Fig. 2. The embedding of a Helon model braid into a ribbon network. Used with
permission.
Source, [10].

Wan [22] have shown that braid interactions in tetravalent spin
networks are understood in terms of dual Pachner moves. The
tetravalent scheme substantiates a rich dynamical theory of prop-
agation and interaction of braids [9]. These are ruled by topolog-
ical conservation laws. Wan has developed an effective theory of
the dynamics of these braid excitations based on Feynman dia-
grams [23].

2.1. The Artin braid groups

The Artin braid group on n strands is denoted by B, and is gen-
erated by elementary braids {o7q, ..., 05,1} subject to the relations

0i0j =0joj, whenever |i — j| > 1, (1)
0i0i4+10; = 0i4+10i0i41, fori=1,....,n — 2. (2)

The braid groups B, are an extension of the symmetric groups Sy
with the condition that the square of each generator being equal
to one lifted.

In the framed braid group, each strand is thickened to a rib-
bon with the additional structure that now each ribbon may be
twisted. Thus in addition to the braid generators o7, ..., 0,1 of By,
the framed braid group has the additional twist operators t1, ..., t;.
The framed braid group of B, is then defined by relations (1), (2)
and additional relations

tit; =tjt;, foralli, j, 3)
Oitj = tg;(j)0i, (4)

where o0;(j) denotes the permutation induced on (j) by oj. For
example 01(2) = (1) and 01(3) = (3).

Finally, the inverse of a braid is its vertical reflection. This
is an anti-automorphism so that, for example, (03(7102_1)*1 =

0201’103’1.

2.2. Semi-direct product structure of the Helon model

In general, the twisting of the ribbons and the braiding of
ribbons is not commutative, with the braidings inducing a per-
mutation on the twists of the ribbons. The mathematical struc-
ture of framed braids is therefore that of the semi-direct product
BS x (B2)>. Because B, = 17 this can be rewritten as (3Z)% x B§ =
(%Z X %Z X %Z) x B§. An element of (%Zx %Z X %Z) is denoted by
a vector [a1, az, as] of multiples of half integers as in [7,8]. A gen-
eral framed braid may then be written in standard from with the
twisting first followed by the braiding, as ([a1,az,as], A)! where
[a1,az,a3] € (%2)3 is the twist word and A € B is the braid word.

T We will often simply write [ay, az, a3]A, dropping the parentheses and comma.

Two framed braids may be multiplied together by first joining
the bottom of the ribbons of the first braid to the tops of the rib-
bon of the second braid and then sliding (isotop) the twists from
each component braid upward. Doing so, the twists carried by the
first braid will get permuted by the second braid. The composition
law may be written as

(a1, az, as], A1)([b1, bz, b3], A7)
= (Pa,([b1,b2,b3]) 4+ [a1, a2, a3], A1A2),
= ([br(ay)(1)> br(r2) @) br(an@) ]+ a1, a2, a3], A1Ap),
= ([bray) + a1, brane) + a2, bran@) +a3], A1A2)  (5)

where A1 and Aj are two braid words, P,; is the permutation
induced on [a, b, c] by the braid word A, and 7 : B§ — S3 with
7 (o1) = (12), m (o) = (23), w(03) = (31). One could instead slide
the twists to the bottom of the braid, thus writing (A, [aq, az, az])
but care must be taken to modify the composition law above
respectively. Unless otherwise stated, the standard form will be
considered to be the twist vector written first followed by the
braiding.

As an example, consider the u(3) up quark in the Helon model,
as depicted in Fig. 1. With the positive charges written at the
top of the braid this can be written using the current notation as
([0,1,1], 02_101). Similarly, one can write the anti up quark u(3)
with the negative charges written at the bottom of the braid as
(01‘102, [0, —1, —1]). To write this in the standard from with the
twisting first followed by the braiding (as for the example of the
up quark) we can slide the charges along the ribbons. In the pro-
cess they get permuted by the braiding, and one finds that

(07 102,10, 1, 1)) = ([—1,0, =11, 07 '02). (6)
3. Normed division algebras and Clifford algebras
3.1. Normed division algebras

A division algebra is an algebra over a field where division is
always possible, with the exception of division by zero. A normed
division algebra (NDA) is a division algebra where in addition
lab| = |a||b|.? Nature admits only four NDAs over the reals: the real
numbers R, the complex numbers C, the quaternions H, and the
octonions Q. Starting from the real numbers and generalizing to
the complex numbers, one has to give up the ordered property of
the reals. Generalizing in turn to the quaternions one furthermore
gives up the commutativity of the reals and complex numbers. The
quaternions are spanned by 1, I, J, K with 1 being the identity and
I, ], K satisfying

P=J=K*=1JK=-1. (7)

Finally, in moving to the octonions one has to give up the asso-
ciativity of the reals, complex numbers, and quaternions. The lack
of associativity of the octonions means their applications to physics
have not been studied in as much details as for the other NDAs. An
excellent introduction to the octonions, and in particular their re-
lation to Clifford algebras, is given by Baez [24]. The octonions are

2 More precisely, a division algebra is a vector space over a field (in our case we
are considering the field R) which is also a ring with an identity under multipli-
cation and in which ax = b can be solved uniquely for x unless a = 0. A normed
division algebra is also an integral domain, which means a ring in which ab =0
implies that a=0 or b =0.
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Fig. 3. Quaternion multiplication I = J2 = K2 =1 JK = —1, and octonion multipli-
cation represented using a Fano plane.

spanned by the identity 1 =eg and seven anti-commuting square
roots of minus one e; satisfying

ejej = —dijeo + €jjke, (8)
where
eieo = eoe; = e, €3 = eo, 9)

and ¢;jy is a completely antisymmetric tensor with value +1 when
ijk = 124, 156, 137, 235, 267, 346, 457. The multiplication of
quaternions and octonions is shown in Fig. 3. Each pair of dis-
tinct points lies on a unique line of three points that are cyclically
ordered. If e;, e; and ey are cyclically ordered in this way then

ejej = ey, ejej = —e. (10)

Every straight line in the Fano plane of the octonions (taken to-
gether with the identity) generates a copy of the quaternions, for
example {1, e4, eg, e3}. The circle {1, ey, e, e4} also gives a copy of
the quaternions, making for a total of seven copies of the quater-
nions embedded within the octonions.

Despite their non-associativity, the octonions have received
some interest in attempts to describe the origin of quark and lep-
ton structure and symmetry [11,12,16]. The automorphism group
of the octonions is the exceptional Lie group G, which contains
the physically important subgroup SU(3), corresponding to the
subgroup that holds one of the imaginary units (for example e7)
constant. This earlier work has recently been complemented and
extended by Furey [5,17] and also Stoica [6].

3.2. Clifford algebras

Clifford algebras are the result of an attempt by William Clifford
in 1876 to generalize the quaternions to higher dimensions and
since then they have found many applications in physics [25-29].
They appear whenever spinors do, suggesting they likely play an
important role in describing SM fermions.

A real Clifford algebra on the vector space RP9 equipped with
a degenerate quadratic form is defined as the associative algebra
generated by p + g orthonormal basis elements e; satisfying

eiej = —eje;, fori # j, (11)
e?=+1,1<i<p, (12)
e?=-1,p<i<p+q. (13)

One may likewise define complex Clifford algebras over com-
plex spaces C", denoted by C¢(n). However, doing so forfeits the
signature and thus by extension much of the underlying geome-
try. For this reason we restrict ourselves whenever possible to real
Clifford algebras over RP-9 which we write as C¢(p, q). The pair
(p, q) is called the signature of the underlying quadratic form.

A Clifford algebra C¢(p,q) has 2(P+9 elements of different
grades. We can write a general multivector M € C{(p, q) as

M = (M)o + (M)1 + (M)2 + ... + (M) (p1q). (14)

where (M), contain the grade n basis elements that are a product
of n distinct basis vectors e;.

The even elements of a Clifford algebra, those elements ob-
tained from the Clifford product of an even number of basis ele-
ments form a subalgebra which is denoted C¢*(p, q). There exists
an isomorphism between C¢*(p,0) and C£(0, p — 1) which we
will make use of in the next section. Explicitly, this isomorphism
is given by

¢:CL0,p—1)— CLT(p,0), (15)
¢ (ej) =ejep, 1<i<p-1 (16)

There also exist well-known isomorphisms between the associative
NDAs and Clifford algebras. These are

Ce(0,1)=C,

Furthermore, the chained octonions 6 defined below are isomor-
phic to C£(0, 6),

Ce(0,0) =R, Ce(0,2) = H.

CL0,6)= 0. (17)

The matrix representations of real Clifford algebras up to
p +q =28 as well as complex Clifford algebras can be found in
Lounesto [30]. The matrix representations of larger Clifford alge-
bras can be found using

Cl(p,q+8)=Cl(p,q) ® Mat(16,R), (18)
Ce(p +8,q) = Cl(p,q) ® Mat(16, R), (19)

that is, 16 x 16 matrices with entries in C{(p, q). Some of the ma-
trix representations relating to the larger Clifford algebras are

Ce(0,6) =R(8), Ce(6,0) =H@4),
CL(0,7) = 2R(8), Ce(7,0) = C(8),

where R(8) = Mat(8,R) and 2R(8) = R(8) @ R(8). For complex
Clifford algebras

Ce(6) =C(8), Ce() EZ(C(S).

Important in what follows is the isomorphism
<«

L) =Cx® 0.

Finally, there are three important involutions. These are defined
as follows

=

tej > —ej grade involution, (20)

U:ej...epr> €n...e reversion, (21)

u:ej...ept—> (—ep)....(—ej) Clifford conjugation, (22)

where u is general element of C¢(p, q). Whereas grade involution
is an automorphism, both reversion and Clifford conjugation are
anti-automorphisms. The effects of these involutions on the multi-
vectors of, for example, C£(0, 3) are

1= (u)g — (u)1 + (u)2 — (u)3 grade involution, (23)
o= (u)g+ (u); — (u)y — (u)3 reversion, (24)
= (u)og— (u)y1 — (u)2 + (u)3 Clifford conjugation (25)

3 More generally C£*(p,q) = Cl(q,p — 1) when p > 0.
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3.3. Minimal left ideals of the complex chained octonions

Two main results of Furey’s thesis are that the generalized ide-
als of the complex quaternions describe concisely all of the Lorentz
group representations found in the SM and that the minimal left
ideals of the complex octonions mirror the behavior of a sin-
gle generation of leptons and quarks with unbroken SU(3). and
U(1)em symmetry [5]. Relevant to what is to follow are the mini-
mal left ideals of the complex octonions, and for this reason we
review the construction of these ideals briefly. A more detailed
construction of minimal left ideals in general, and specifically for
the case of the complex octonions can be found in sections 4.5
and 6.6 of the above cited work.

The ideals are constructed using the Witt decomposition for

(complex) C¢(6) which is isomorphic to C ® 6 The first ideal is
written in terms of a primitive idempotent wew' = a1a2a3a§a;a;r
defined in terms of the basis vectors

1 . 1 .
o1 = 5(—65 +ieq), oy = f(_e3 +ieq),
1 .
o3 = 5(—ea +iey). (26)

These basis vectors satisfy the anticommutation relation

{ai,aj} =0, 27)

and can be identified with lowering operators. The hermitian con-

jugate simultaneously maps i — —i and e; — —e; so that
T 1 . 1— 1 T 1 .
a155(65+1e4), 255(e3+ze1) 3E§(es+zez),
(28)
satisfying the anticommutation relations
[o{j,o{” =0, [ai,a;r-] = djj. (29)
The first minimal left ideal is given by S¥ =C ® Ea)aﬂ
St =
voo! +
d'olwo’ + dBalwo’ + daloo’
ualadoo’ + utalalwo’ + uPaalwe'
+ e+a§a;a1wa (30)

where v, d" etc. are suggestively labeled complex coefficients. The
complex conjugate system analogously gives a second linearly in-
dependent minimal left ideal

sd=
vo'w +
d'ao'w + déayo’ow + dazo’®
i azonw’ o + ifajazo’ow + iParai o’ o
+ e_agazam)Ta). (31)

It can be shown that these representations of the minimal left
ideals are invariant to the color and electromagnetic symmetries
SU@3)c and U(1)em and each of the basis states in the ideals trans-
forms as a specific lepton or quark under these symmetries as
indicated by their suggestively labeled complex coefficients.

4. Normed division algebra representations of circular Artin
braid groups

4.1. The Clifford Braiding Theorem

In 2016 Kauffman and Lomonaco showed, in what they call the
Clifford Braiding Theorem (CBT), that Clifford algebras contain rep-
resentations of (circular) Artin braid groups [19].

For a Clifford algebra C¢(n, 0) over the real numbers generated
by linearly independent elements {eq, €3, ..., en} with e,% =1 for all

k and eye; = —ejey for k # 1, the algebra elements oy = %(1 +
ex+1ex) form a representation of the circular* Artin braid group Bj,.

This means that the set of braid generators {01, 02, ..., 0p} where
ox = —= (1 +egs1€r), whenever 1 <k <n, (32)
«/i K+
1
On = ﬁ(l +ejep), (33)

satisfy the braid relations (1). An important point is that the order
of the braid generators represented this way is eight. Although the
original theorem as found in [19] assumes that ei =1 for all k,
the proof likewise holds when eﬁ = —1, as is easily checked. The
important point is that it fails to hold for a general Clifford algebra
Ce(p, q) of mixed signature.

The braid generators are composed of the scalar and a sub-
set of the bivectors elements of C£(n, 0), and therefore live in the
even subalgebra C¢*(n,0) = C£(0,n — 1). In what follows we use
the known isomorphisms between the NDAs and Clifford algebras
listed earlier to determine which braid groups may be represented
by the NDAs.

4.2. Arepresentation of the Artin braid group By from C

The complex numbers C with basis {1, i} are isomorphic to the
Clifford algebra C¢(0,1) with e% = —1. Given this isomorphism
it means one also has an isomorphism with C¢*(2,0), the even
part of CI(2,0). Therefore, the complex number algebra C admits
a representation of the braid group B,. In this case the Artin braid
group is equivalent to the circular Artin braid group B§ = B;. The
single braid generator o7 can be represented in terms of the scalar
and bivector of C£(2,0), so that

1 1 1
o1=—=(0+ezer), o =—7(1-eze1), (34)
V2 tV2
with the inverse generators defined by inserting a minus sign in
front of the bivector terms. Alternatively, in C£(0, 1) the braid gen-
erator and its inverse take the form

1 1 1
or=—=(1~-e1), o =—=(0+e). (35)
V2 V2
Using the isomorphism C¢*(2,0) = C£(0,1) = C, C gives a repre-
sentation of B, with the braid generator expressed as

o1 = i(l +i), o;'= i(l — ). (36)

V2 V2
The map from o7 — (rf] can be seen as complex conjugation
x:1+ —i in C, as reversion in C¢(2,0), and Clifford conjugation
(or alternatively grade involution) in C£(0, 1).

4 A circular braid on n strings has n strings attached to the outer edges of two
circles which lie in parallel planes in R3.
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The order of o7 is eight, and one can readily check that

2_i_ -6
of =i=o0",

o1=1/vV2)A+i) =07,
o} =—1/N2)(1—i)=07>,  of=-1=0",
o} =—(1/VDA+D =073  of=—i=07?
of =N -h=0", of=1=0,"

o) =(1/V2)(1 +i)=o0y.

This means that the representation of By in terms of C is not faith-
ful, and in fact an infinite number of braids are represented by
the same complex number. Using C to represent B, partitions the

braid group into eight equivalence classes, each represented by one
of the above eight complex numbers.

4.3. Arepresentation of the circular Artin braid group BS from H

Moving on to the quaternions H, one can use the isomorphism
H = C£(0,2) = C¢*(3,0) to find a quaternionic representation of
the braid group B§. C£(0,2) is spanned by {1,e1, ez, e1ez = eq2}
with

2_ 2
=e5;=e], =erexep =—1, (37)
e1ey = —ezeq, e1€12 = —e1e1, €812 = —e€12€3. (38)
One can thus identify ey =1, e; = J, e = K to obtain a copy

of H. The even subalgebra of C£(3, 0) contains three bivectors (and
the scalar) which may be related to braid generators for B

1 1 1
01=—7=(1+ezeq1), 02 =—=(1+e3e3), 03=—1

1 .
NG NG «/5( +ere3)

(39)

It is readily checked that

010201 = 020102, 020302 = 030203, 030103 =010301. (40)

The representation in terms of C£(0,2) is given in the Appendix.
In terms of the quaternions we have

1 1 1
o1 ﬁ(l +1), o NG NG
with the inverses again obtained by inserting a minus sign, corre-
sponding to taking the quaternion conjugate which maps I, J, K to
their negatives. In C£7(3,0) and C£(0,2), the inverse braid gen-
erators are again obtained via reversion and Clifford conjugation
respectively.

A+ 1)), o3=—7(1+K),

4.4. Arepresentation of the circular Artin braid group BS from O

In addition to being non-commutative, the octonion algebra O
is also non-associative. However, it is possible to recover an asso-
ciate description of the octonions by considering one octonion’s
multiplication on another as a linear map. Multiple such maps
can be composed allowing for an alternative concept of multi-
plication which is associative. To illustrate, let n, m, p, and f be
four octonions. One defines the octonion chain pnm as the map
pn(_m . f = p(n(mf)). One can generalize this to a product of ar-
bitrary many octonions. The resulting algebra is the chained octo-
nions 6 which is associative and can be shown to be isomorphic
to CI(0, 6) [5].

Using the isomorphism 6 = (C¢(0,6) = C¢t(7,0) one finds a
representation of the braid group Bf in terms of the chained octo-
nions

7\ N\
/7 AN\ A AN
L Q/t J \\ \ / |\ r \. \
>>\\,\\ [/ ‘ “ 1\\ |
TAN ]% ]\ A
U4 Ut
! | L N L_J J
1 1 1
0-1 [5 2 T2 ]

Fig. 4. The twisting and braiding in ribbon braids (consisting of two or three rib-
bons) is interchangeable.

Source, [10].

cr_—l (1+ej11€i), o —1 (1+e1e7) (41)
i = i+1€i), 07 = 1€7),

i «/i i+1¢1 «/5

again with period eight. The explicit braid group representations
in terms of C¢*(7,0) and C£(0, 6) are given in the Appendix. Once
again, reversion and Clifford conjugation maps the braid generators
to their inverses for these two Clifford algebras respectively.

In summary, the NDAs provide the following (circular) braid
group representations:

C = Ce0,1)=Cet(2,0) — By,
H = Ce(0,2) = Ce*(3,0) — BS,
<

0 =C¢(0,6) = CL*(7,0) — BS.

4.5. Connecting the Helon model with normed division algebras

The framed braids that represent fermions in the Helon model
are constructed out of two braid groups, B> and BS. The twisting of
the ribbons, representing (quantised) electric charge corresponds
to elements of By. When the ribbon is twisted the two edges of
the ribbon braid one another. Additionally, the braiding of three
ribbons forms a braid word in BS. Furthermore, the individual rib-
bons of the braids are connected together at the top and bottom
via a node. This arrangement where ribbons are connected at both
ends is equivalent to two parallel disks connected by three rib-
bons. One therefore not only has B3 but rather the circular braid
group BS.

An interesting observation is that these two braid groups are
precisely those represented by the complex numbers C and the
quaternions H, suggesting it may be possible to connect the Helon
model with the NDA model. Indeed this is not the only hint at a
close connection between the two models and in the next section
it is shown that by identifying the ladder operators «; and aiT with
certain braids in BS, the basis states of the minimal left ideals of
the complex octonions become identical to the framed braids in
the Helon model. That is the main result of this paper.

5. Helon braids as basis states of minimal left ideals of C ® O
5.1. Interchanging between braiding and twisting

It was demonstrated in [7] that any braiding can always be
exchanged for twisting (in the case for three ribbon braids). This
means that any element ([a, b, c], A) € (B2)3 % Bg may always be
rewritten as [a’,b’, ¢'] € (B2)? in which the braiding in B is triv-
ial. The framed braids in the Helon model can therefore be written
purely in terms of twist vectors. For example, in Fig. 4, it is shown
how the braiding induced by the generator o; may be exchanged
for twisting.

The braid generators of the circular Artin braid group B can be
written as twist vectors as follows:
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11 1 . 1 11
R I E 1D (42)
2°2° 2 27272
111 L1 11 )
oy — |—=,=, = o, = |=,—=,—=
2 2’2721 2 25 25 21
. 1 11 - 11 1 1)
- = —=, = —>|—-=,=,—=.
37222 3 2'2° 72

In turning a general braid into a pure twist vector one has to be
careful to take into account the permutations induced by braidings.

Thus, for example
[0,1,0]0102:<Pm[010][ ! 1])02,
2°2° 2
<[1 00][l ! 1]>02,
2°2 2
31 1
=[ = z]oz,
111
o335 5 23]
11
:[5’ 2’ 2][_5’5’5}’

=[1,0,1], (45)

where by Pg,la,b,c] we denote the permutation on [a,b,c] in-
duced by the braiding o;. Unless otherwise stated the action is
always from left to right.

One might instead want to go the other way, that is write a
framed braid in pure braid form with trivial twisting ([0, 0, 0]).
This is in general not possible, but is possible for the particular
braids in the Helon model. To see this, notice that the twists on
an arbitrary Helon braid, ignoring the braiding for the time be-
ing, corresponds to one of the twist vectors [+1, 0, 0], [+1, +1, 0],
[+1, +1, £1] and cyclic.

We leave it for the reader to verify that

(0,0, 0](0203) =[1,0, 0],
[0, 0,0](0301) =10, 1, 0],
[0,0,0](0102) =10, 0, 1],
[0,0,0](o301)(0102) =[1,0, 1],
[0, 0, 0](0102)(0203) =[1, 1, 0],
[0, 0, 0](0203)(0301) = [0, 1, 1],

[0,0, 0] (0203)(0301)(0102) =[1,1,1], (46)

and similarly

[0,0,0](05 o5 ") =[~1,0,0],

[0, 0, 0](0;1 H=1[0,-1,0],

[0,0,0](0; 'o; 1) = 10,0, —1],
[0,0,0](05 'y (ol ) = [-1,0, 1],
[0,0,0](0‘] )(0'2 O‘ )_[ 1,-1,0],
[0,0,0](o, 63 )(03 H=[0,-1,-1],

[0,0,0] (0, ‘o3 Doy loy Doy oy H=1-1,-1,-11.  (47)

It should be noted that the representation of a twist vector in pure
braid from is in general not unique. For example, [0, 0, 0]0201 =
[1,0,0] also and [0,0,0](0; ‘o5 (o5 oy oy toyh)
[-1,-1,-1].

5.2. Braid representations of minimal left ideals of the complex chained
octonions

If we now consider the neutrino in the Helon model, written as
the braid 02_101 and with no twisting of the ribbons, then the up
quark, anti-down quark and positron can be considered excitations
of the neutrino in the sense that their representations are obtained
by adding twist to the ribbons that compose the neutrino but leav-
ing the underlying braid structure unchanged. One can then write
these fermions in braid-only form where the twisting has been re-
moved, using eqn. (46) and eqn. (47) as

v — [0,0,01(0; 'o1) = (05 'o1),

d"—[0,0,1)(0; '01) = (0102)(0; 'o1),

d® - [0,1,0](0;, '01) = (0301) (05 'o1),

d* — [1,0,01(05 'o1) = (0203) (05 '01),

u" = [0,1,11(0; 'o1) = (0203)(0301) (05 '07),

uf — [1,1,0(0; '01) = (0102)(0203) (05 ' 01),

u’ —[1,0,1(05 '01) = (a301)(0102) (05 ' 01),

et —[1,1,11(05 ' 01) = (0203)(0301) (0102) (05 'o1).  (48)

The main result of this paper is that if one now identifies
(0102) = ozf, (0301) > a} (0203) > a; (49)
together with

0‘2_10'1 - oo, (50)

and substitutes into equation (54), then the minimal left ideal S*
of the complex octonions (repeated below for convenience) is re-
covered

St =
voo! +
t_iroeTa)a)T + agoeTa)a)T + abaT

uragaTa)wT + ugotTaTwa + uboz];oﬁa)a)T

+ e+aTaTaIa)a) (51)

where the action of the basis states in the ideal is on the identity
[0, 0, 0] from left to right. Thus for example,

ué — [1,1,01(0, 'o1) = [0, 0, 01(0102)(0203) (0, '01)
=[0,0, O]a1a3wa

Next consider the antiparticles, corresponding (in the Helon
model) to the vertical reflections. The vertical reflection inverts
both the braidings, and the signs of the twists as well and fur-
ther moves the twists from the top of the braid to the bot-
tom of the braid. This is evident from Fig. 1. To illustrate con-
sider the ub quark written as a pure braid word in Eq. (48) as
(0301)(0102) (05 1o1). 1t follows that for its antiparticle, the pure
braid word must be

i’ — (o7 'o2) (05 'o Doy oy . (52)

The last two terms in parentheses are responsible for generating
the twist vector but because of the vertical reflection the action is
now from right to left. To be consistent this should be rewritten so
that the action is from left to right to give
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i’ — (o7 'o2) (0, Lo (o o5 HI0,0,0],
= (07 '02)[0,0,0](05 "oy oy 'y D,
= (07 'o2)[-1,0,-1]. (53)

Doing the same for the other antiparticles gives

b — (07 '02)[0,0,0] = (07 '02),

d"— (07'02)[0,0, =11 = (07 'o2)(07 "5 ),
d® — (07 '02)[0, —1,01 = (07 'o2) (05 oy ),
d” — (07 '02)[~1,0,0] = (07 '02) (05 o35 1),

1" — (07 '02)[0, 1, =11 = (07 'o2) (05 '3 (o5 oy D),
¥ — (07 'oa)[—1, —1,0] = (07 o) (07 'a; oy 'y ),
i’ > (07 '02)[-1,0, =11 = (07 'o2) (05 o7 (o7 oy ),
e~ — (o7 'o)[~1,-1,-1]

= (07 'o2)(0y o3 (o5 loy Doy oy . (54)

Identifying®

-1,_-1 -1,_-1
(00, )>aq, (03 01 )y,

(02’10371) — a3, 01’102 — a)Ta), (55)
the antiparticles can this time be written as a right ideal as
s =
bo'w +
do'wa; +déo’way +d? ol was
1wl wasay + 8w waias + o’ wasaq

T wasonay. (56)

+e w
Thus, the Helon braids correspond precisely to the basis states
of one left and one right ideal of the complex chained octonions
C® 6 The only exception here is the neutrino and anti-neutrino
states which are identified differently in the two models. We here
follow the identification as made by Furey, including the neutrino
in the same minimal left ideal as the positively charged fermions.
This is sensible because then all the fermions in a given ideal have
the same sign for their isospin.
In the construction of minimal left ideals (reviewed in sec-
tion 3.3), w and ol are nilpotents defined as w = a3 and
ol = a;aga;r. From these are constructed the idempotents ww'

and w'w. Using the identification of o; and a,T in terms of braid
generators above one has

o' =alalal =10,0,01(0203) (0301 (G102 =[1,1,11. (57)

5 A footnote is in order to avoid potential confusion regarding the action of the
conjugate T on braids. T:0; — o~ is simply the braid inverse which is an an-
tiautomorpism. In the definitions of «; and a? in Egs. (49) and (55), the order of
braid generators is not reversed making the conjugation look like an automorphism.
However, as shown in Eq. (53), the vertical reflection corresponding to the braid in-
verse also reverses the action of the «;s from left to right to right to left. Restoring
the left to right action then reverses the order again, giving the appearance of an
automorphism.

(10,0, Oloze)t = (er102)7[0, 0, 01,

=10,0,0laa].

Similarly,

w=asaar =[0,0,01(0; ‘o3 (o5 oy oy o7
=[-1.-1,-1]. (58)

Both @ and w' defined in this way are pure braids.° A pure braid
is one that does not permute the strands of the braids. They form a
subgroup of a braid group and in this case w and w' are the center
of BS. Furthermore w'w = ww' =[0,0,0], the untwisted unbraid
(the identity). This is indeed an idempotent but indicates a con-
flict with the Helon model where the framed braid representing
the neutrino (antineutrino) is not trivial, and is not an idempotent.
In the Helon model, the weak interaction is represented topolog-
ically as the braid product therefore requiring nontrivial braiding.
The symmetries of the minimal left ideals however are only the
unbroken symmetries SU(3), and U(1)em. For these symmetries,
the underlying braiding may be, and should be, trivial. Therefore
this conflict is expected and does not indicate a contradiction.

Furthermore, ¢; and o:lT commute with w'w = ww' and con-
sequently the right ideal can be rewritten as the left ideal S¢
(repeated here for convenience)

s =
volw +
d oo+ déaro'ow +daso’®
oz’ + 1w’ o + tParaio’o

+ e_oz3a2a1a)Ta). (59)

6. Discussion

One of the most prominent challenges in theoretical physics to-
day is understanding the theoretical origin of the SM gauge group
along with why only some of the representations of these gauge
groups are observed in Nature. Another is the unification of the
SM with gravity. Recent attempts to use the NDAs, in particular
the octonions to describe the symmetries of leptons and quarks
has led to progress in the first challenge. The topological represen-
tation of leptons and quarks as framed braids has led to progress
in the second challenge. This paper has shown that there is an un-
expected connection between these two radically different models.

In the first part of this paper the Clifford Braiding Theorem of
Kauffman and Lomonaco was used to show that each of the (hyper
complex) NDAs admits a representation of a braid group. The first
main result presented here is that the braid groups B§ and B; of
the Helon model are precisely those that can be represented using
H and C respectively.

Furey has shown that the minimal left ideals of the complex

octonions C ® 6 mirror the behavior of a single generation of
leptons and quarks under the unbroken SM symmetries SU(3).

and U (1)em. The minimal left ideals of C® 6 are written in terms
of products of nilpotent ladder operators that form the basis vec-
tors of maximal totally isotropic subspaces. The second main result
of this paper is that by appropriately defining these basis vectors
in terms of braid generators, the basis states of the minimal left
ideals coincide with the framed braids found in the Helon model.
An important difference however is that the braid group elements
representing the basis vectors are neither nilpotents nor ladder op-
erators in the usual sense.

6 The definition of w = oz differs by a minus sign from its definition of

® = o0 in [5]. Thus, with the definition used here, both wew' and wfw pick up
a physically irrelevant minus sign.
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Table 1

Table showing the generators of certain braid groups represented in terms of Clifford algebras isomor-

phic to C, H, and (chained) O.

et (2,0 Ce(0,1) Ctt (3,0 C¢(0,2) Cer(7,0) C¢(0,6)
or | s+en) | Js-e) | Js(+en) | +en) | +en) | J5(1+exn)
o H+en) | s-e) | J5(+en) | S(1+es)
03 %(14-913) %(1-%61) %(1+€43) %(1+€43)
[e2} %(1 + es4) %(1 + es54)
s %(1 +e65) %(1 +e65)
06 %(1 +e76) %(1 —es)
7 H+ern) | S +e)

The minimal left ideals are generated from the action of ba-
sis vectors on primitive idempotents representing the neutrino and
antineutrino. These idempotents, when written as a braid corre-
spond to the trivial braid. This indeed is an idempotent but in-
dicates a conflict with the Helon model where the framed braid
representing the neutrino (antineutrino) is not trivial, and is not an
idempotent. However this should be expected because the Helon
model has some structure that does not appear in the NDA model.
In the Helon model, the weak interaction is represented topologi-
cally as the braid product. The braid product is meaningless when
the braiding is trivial since it will inevitable result in another triv-
ial braid. Therefore a description of the weak force as a topological
process requires nontrivial braiding. The symmetries of the mini-
mal left ideals however are only the unbroken symmetries SU(3).
and U(1)em, not the electroweak symmetries. For these symme-
tries, the underlying braiding may be, and should be, trivial. This
is indeed what was found here.

This paper has presented a first attempt at unifying two
promising and interesting models attempting to explain the in-
ternal symmetries of leptons and quarks. The results obtained here
are encouraging and establish a connection between the two rad-
ically different approaches. There are however also a number of
important differences between these models that should be high-
lighted. For example, one model is based on a group whereas the
other on an algebra. In the former there is no obvious concept of
scalar multiplication or of addition. It is not yet clear how this will
affect, for example, amplitude calculations.

The Helon model is constructed out of two braid groups, B,
and B§, which can be represented using the complex numbers and
quaternions. Yet, it is the minimal left ideals of the complex oc-
tonions, not the complex quaternions, that describe the unbroken
symmetries of a generation of leptons and quarks. It remains to be
shown how exactly the Helon braids as complex quaternions sit in-
side the complex octonions. It may be that the minimal left ideals
pick out certain quaternionic subalgebras inside the octonions. At
the same time it begs the question of what the role of B which
finds a representation in the octonions might be. One may spec-
ulate that it might play a role in describing the color symmetry,
which in the Helon model is described in terms of ‘braid stacking’.
This remains to be investigated.

Braid groups are infinite, and the Helon mode has been general-
ized to an infinite number of generations obtained by increasingly
more complex braiding. The minimal ideals of the complex octo-
nions however gives exactly one generation of fermions, although
there is evidence this may be extended to exactly three genera-
tions [17]. One may wonder what mechanism is in place to select
the finite number of braids that are physically relevant and corre-
spond to observed particles. It may be that using NDAs provides
an answer to this question. Recall that the representations of braid
groups from NDAs are not faithful. This means that any braid in By

corresponds to one of eight complex numbers which define equiv-
alence classes of braids. A similar study needs to be carried out
for B§ and B¢ to identify the equivalence classes. This is currently
under investigation.
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Appendix. Braid group representations in terms of C{*(n, 0) and
ceo,n-1)

In Table 1, the notation e;e;j = e;; has been adopted.
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