
CLIFFORD ALGEBRA AND 
THE CONSTRUCTION OF A THEORY 
OF ELEMENTARY PARTIC1.iE FIELDS 

JAIME KELLER 
Division de Ciencias Basicas, F.Q. 
and Quantum Theory of Matter Project 
Facultad de Estudios Superiores-Cuautitlcin, 
Universidad Nacional Aut6noma de Mexico 
A. Postal 70-528, 04510 Mexico, D. F., MEXICO 
keller@redvax.unam.mx1 

(Received: April, 1994) 

Abstract. We present a review of the development of a theory of elementary particle 
fields. Instead of a mathematical model based in a mathematical group, we show that we 
can actually develop a~ which, as a consequence, points to a mathematical stmcture. 
Clifford algebra. is used as the basic tool. 

We show that an extended representation of the Multivector Clifford algebra. allows, 
first, a series of factorizations of the La.placia.n opera.tor, and, second, generates 3 families 
of elementary particles with the experimentally observed lepton and quark content for 
each family and the experimentally observed electroweak color interactions and other 
related properties. The factorizations V2 = (f(n8~d))*(f(n8~d)) and the related Dirac­
like equations 

rr/)a~d)tP(d,J) = 0 

are studied, its symmetries given. The f(n generate the 3 families, the a~d) generate the 
observed lepton and quark content of the families-. 

In contrast to the usual approach to the standard model the properties for the different 
fields of the model a.re conseauences of the relative properties of the equations, among 
themselves and in relation to spacetime, and therefore, they do not need to be postulates 
of the theory. 

1. Introduction 

In the years 1980-1983 it became apparent that besides the accepted 
SU(3)@SU(2)©U(l) structures of the elementary fields corresponding to a 
family of elementary particles, there were 3 possible families, and perhaps 
more, each one repeating the group structure of the fundamental family. All 
the experimental analysis, in the decade elapsed since that time, confirms 
that scheme. The construction of the basic field as composite of other, more 
fundamental fields, pointed to the need of combining the gauge, or interac­
tion, fields with the study of the basic fields and moreover to the need of 
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incorporating basic concepts like "confinement" and "colorless composites" 
together with the consequences of the basic group. Of paramount impor­
tance is violation of parity in weak interactions, the massless character of 
neutrinos and their associated left (right) handedness. 

For us all the phenomenological concepts and models fit together in such 
a way that, if an appropriate mathematical framework is used, we could 
develop a theory of elementary particles and their interaction fields which 
should then be the foundation of the set of phenomenological laws. 

Here we show that this task is now possible and that a useful mathemat­
ical tool which reduces the need for additional, or ad hoc definitions, is the 
Clifford algebra approach to the mathematical formulation of spacetime and 
the basic fields. 

In fact a usual approach in mathematical physics is to use the concept 
of spacetime as a frame of reference for the description of the matter and 
their interaction fields. Spacetime, having a multivector structure and con­
taining a spinor (and dual spinor) space, not only describes our perception 
of the physical nature but is also a powerful mathematical tool. Adopting 
spacetime as a basic frame of reference for physical phenomena should imply 
that its structure and symmetries corresponds to the observed characteris­
tics of the matter and interaction fields. If a contradiction or b.suficience 
were found a wider reference frame should then be constructed and used, 
but this does not seem to be the actual case. 

We have several motivations for the analysis presented here which follow 
from studies we have performed in the last 14 years [Keller 1991]: 

1. Given spacetime and its multivector Clifford algebra, C£1,3 or its com­
plexification Cfo,5, we can ask: which fields may exist in it obeying the 
Klein-Gordon wave equation b.'I/; = -a2 '1/; , with: ( a2 2'. O)? Introducing 
the fields from first principles and guiding our analysis of thore fields 
(to make connection with experiment) from the accepted form of the 
rtandard phenomenology. 

2. In the standard model, if we consider the fields that may exist in space­
time according to 1): do we need to add isospace to spacetime? After all 
the natural tangent space TM to spacetime R1(3 contains 16 elements 
and the TM to the complex spacetime C£0,5 contains 32 elements. 

The elements IA of R1,3 are the dimentionless Grassmann numbers 

1, Iµ, lµlv = gµv + lµv, gµv = diag(l, -1,-1, -1), 
lµv = -lvµ1 lplµv = gpµlv - gpvlµ + lpµv 

and 1>.lµvp = g>.µlvp - g>.vlµp + g>.plµv + 15 or 15 = 10123, 

all {µ,v,.X,p} = 0,1,2,3. 

The complexification of Cf1,3--+- Cfo,5 can be denoted by 
{IA+ i/A; IA C C£1,3}. All multivectors act as operators among them-
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selves and on the 1/J's describing the matter and interaction fields, the def­
initions are such that 1°, if12 and i/5 are hermitian. Multivectors are de­
fined from the vectors 111 through their Grassmann outer product 11111 

... = 
1 11 A 1" /\ ... (See Chisholm and Common (1986) or Micili, Boudet and 
Helmstetter ( 1992)). 

We have discussed elsewhere the use of multi vectors as generators of Lie 
groups, see for example [Keller and Rodriguez-Romo 1990, 1991a] where we 
analyse the construction within Clo,5 of frequently used groups as for exam­
ple 80(2,3), SU(3) or SU(2). Also the integration of spinors and multivectors 
into a geometric superalgebra [Keller and Rodriguez 1992]. 

Here we show that the basic phenomenology, and the essential leftha.nd­
edness of the neutrino, can all be combined in a generalization of the Dirac 
equation and the postulate that all physical possibilites implied should be 
included. 

2. Chiral symmetry in spacetime 

We assume that a local observer describes spacetime by an orthonormal 
tetrad a) (1°)2 = -(11

)
2 = -(12

)
2 = -(13

) 2 = 1. In this frame b) 
15 = 1°111 213 is both the duality transform operator and the pseudoscalar 
( 15) 2 = -1. It is important that if another observer uses a differ':)nt co­
ordinate system, related by a Lorentz transformation L, the fundamental 
properties ( i/5

) 2 = 1 and 151 11 = -11115 are also preserved, together with 
a). 

The handedness operator H = if5 can be used to construct the chirality 
projectors PR and PL: 

PR+ PL= 1, PRPR =PR; PLPL =PL, PRPL = PLPR = O, 

where Pn = ~(1 + if5), PL= ~(1 - if5) or, as discussed here below, 

1 
PR,L = 2(1 ± H). 

If a coordinate transformation 15 -+ (15 )' is allowed where a), and con­
sequently b ), is not preserved (that is if the determinant .;- of the transfor­
mation is not .;- = + 1) then H ::f. i( 15 )' showing that a chirality opera.tor 
H = i(l5 )' /.;-,with H 2 = 1 in all frames has to be used. 

H is in fact an invariant dimentionless quantity, it obeys H2 = 1 in all 
frames of reference. Even if the handedness of the frame F' is changed rel­
ative to frame F' because (15)' = q 5 • Given that g' = i;-2g and then the 
effect of the sign of.;- is lost, we cannot define H in terms of Jl9f, we have 
to define it in relation to the "handedness (F)" of a given frame F a.nd then 
the use of .;- ensures that in a change to F' we obtain 
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handedness(F') = sign(\)• handedness(F). In terms of this, relative, hand­
edness definition we could write 

H = handedness (F)i/5 Jjl;i (Al) 

which is equivalent to our definition H = if5 when and only when the 
conditions mentioned in the text are satisfied. 1 5 and Jl9T could both, si­
multaneously, be considered to have (length)4 dimention and H still would 
be a dimentionless quantity. 

Here we will assume H = if5 , because of the restriction a) and the 
assumption that we have selected a "right" handeded frame of reference. 
The PR and PL can better be considered numbers of a new mathematical 
field, with basis 1 and H, in an hypercomplexification of the Clifford algebra. 
H( = H) is coordinate invariant. 

3. Chiral symmetry theory of elementary particles 

Using spinors, vectors and multivectors [Fock and Ivanenko (1929), see also 
Keller 1991, Keller and Rodriguez-Romo 1991b, Hestenes 1966, Casanova 
1976, Keller and Viniegra 1992, Keller and Rodriguez 1992] we will now 
construct a theory for lepton and quark fields using the possible multivec­
tor generalization of the Dirac factorizat!on of the Laplacian ( d 'Alembert 
operator V'2 = {)JJ{),,). We start, as a guiding concept, by considering the 
Klein-Gordon equation operator and its factorization 

({)JJ{),, + m2
) = (Dt + mi)(D - mi) 

which requires that 

-Dtm+ mD = 0 and 

we can have then a set of choices, either 

(1) 

(2) 

1. any value of m and Dt = D (the standard Dirac operator D0 ), or 
2. for the case where m = 0 the possibility Dt :j:. D also becomes 

acceptable. Here we will use the field generated by 1 and H. 
In multivector algebra the Dirac operator is the standard vector operator 

(using the vectors /JJ) D-+ Do= 'YJJ{),,. (Sometimes D-+ 1° Do= 1°,,&,, is 
used). 

The basic requirement DtD = DDt = {)JJ{),, limits the choices of D, it 
can be taken to be written in the Lorentz invariant form 

D - r,, a<d> 
(d,J) - (/) µ ' also D(d,J)'l/J(d,J) = 0, (3) 
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in order to show the relation to the Dirac's original factorization in the 
simplest possible form. Here the r(n are operators on the 1/7 which can be 
represented by generalized Dirac /µ matrices, see below. The limitation is 
so strong that the only possible choice is where the multivector i/5 (or the 
invariant H), which has the same action on all 1µ, that is if5 /µ = -1µi/ 5 , 

is used see [Keller 1982, 1984, 1986 and 1991, pag. 158 and following], this 
is particularly interesting because chirality comes naturally into the theory. 

We construct the following (Lorentz invariant but coordinate system de­
pendent) operator 

o~d) = {lcos(n+t~)~+Hsin(n+t~)~}aµ · (4) 

condition (2) requires n and t~ integer and it results in the simplest multi­
vectors. Here, to take the electron as reference we use n = -1. 

With this choice of presentation we can have the "diagonal" structure: 

if n + t~ are even 
(5) 

if n + t~ are odd 

The standard /µ = r(l) matrices which correspond to an irreducible 
representation of Cf1 ,3 are found to be useful to write the wave equations 
of the first or fundamental family ( eji, e[,, VL, { uL, dL; color}) of elementary 
particles. The electron requires a combination of two fields e- = ( eji, e[,) 
for the standard phenomenology of electroweak-color interactions. 

The study of families other than the electron family suggested that, a 
more general, non reducible representations of Cf1,3 , could in fact be needed. 
They are collectively denoted by r(f). In Clifford algebra their Lorentz trans-

formations r/ ~ (rj)' do not change the. lJ(d). From our basic postulates 
the rµ can all be written as exterior products of the /µ, 1 5, if5 and 1, . A 
fundamental representation would be for example [see Krolikowski 1990] 

r/ = /µ 0 (1010 · · ·h(f-l)product& (6) 

other equivalent, but different, representations, being also possible. We call 
these representations of the Clifford algebra "capital representation" [see 
Keller 1993]. The corresponding spinors would then be the, totally antisym­
metric, exterior products 

?/Ju) = 1/7( x) /\ ( 1/71 /\ 1/72 /\ · · · hu-1 )product&· 

For a local theory (assumed here) the first factor 1/7( x) is the only one 
that carries spacetime position dependence. 
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Then the 1/Ji are 2(! - 1) non null, normalized constant Dirac spinors 
which correspond to extra, mathematical, internal degrees of freedom of the 
diracon fields. For the fundamental s = 1/2 fields their spin should add to 
zero (!odd integer). The total antisymmetry of '1/J(j) limits the value of J 
to f = 1, 2, 3 otherwise the exterior product is null. 

The degeneracy n I of the representations of the f{/) gives statistical 
weight to each family: n1 = 1, n2 = 4 and n3 = 24. This will result in 
factors for the terms of the mass matrix. 

The elementary fields thus described are mathematically composite, but 
still elementary in the sense that they cannot be decomposed experimentally 
into their components. No size of the particle is required by the theory, they 
are representations of the basic elementary fermion equations, no spacetime 
structure is involved, there is only the mathematical complexity of the wave 
function. Each family has an internal relationship identical to the funda­
mental family J = 1 and the same SU(3)color®SU(2)®U(l) symmetry. No 
additional gauge interaction field is needed to relate the different families. 
They are algebraic families of otherwise structureless leptons and quarks. 
The algebra of the f{f) has been developed and studied by Krolikowski 
(1990), as well as the consequences for the phenomenology of the elemen-
tary particle families. i 

4. Chiral geometry theory of charge isospin and color 

For the quarklike diracons, an introductory analysis to study the conse­
quences of (3), we use a reference frame Fin such a way that a local reference 
direction is defined to be /l = ( /1 + /2 + /3 )/3 and the notation /~ = its/µ 
is used. Such that we can explicitly exhibit the vector-(imaginary) axial vec­
tor momentum admixture and show that it is a constant (independent of 
the "color" of the diracon field). 

Let us write in detail the "energy momentum multivector" p of every 
diracon field d, including the different "colors" red (r), blue (b), or green (g) 
of the quarks, according to Table I, (Pdir = p0 /o + l1fir): 
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electron e: Pe = P010+p'-(11+12+13)/vJ 
p~ = P010+p'-(1f+12+13)/vJ 

quark u: p~ = P01o + pe(t1+if+13)/vJ 
p~ = P010+lb1+12+1f)/y'3 
p;J = P010 + pe(t1+if+1f)/V3 

quark d: p~ = P01o + Pe(1f + 12+1f)/vJ 
p~ = P010 + pe(tp +if+ 13)/vJ 

neutrino v: p,, = P01o + Pt(1f +if+ 1fl/y'3 (7) 

Here p( is the three-momentum and p0 is the energy. We can see that 
the energy-momentum vectors are all in different phases of the Pµ - p{? 
rotations, with none, one, two or three vector rotations. 

Let us now consider a gauge energy-momentum vector field AµIµ, in the 
Coulomb gauge A0 = 0, added to the diracon fields with coupling constant 
proportional to Qe, modifying the vector part of the momentum, with the 
energy-momentum components given in the same proportion to the time 
part and to tlie spatial parts (calling l.L a vector perpendicular to the di­
rection of motion le). For the electron 

(8) 

has components 

timelike lo· p = p0, spacelike parallel le· p' =pl+ QeAl, 

spacelikeperpendicular1.L ·p' = QeA.L. (9) 

All of them are scalar quantities. 
However, for au quark (taking, for example, a red quark, the result being 

invariant with respect to color), 

(10) 

the scalar components will be affected by a factor of i, and following the 
same procedure for a down quark, the scalar components will be affected by 
a factor of i, and for a neutrino the scalar components will be affected by a 
factor 0. 

Then if we make the obvious definition that the scalar part of the gauge 
field, treated on an equal basis for the electrons and for the quarks of the 
neutrino, is to be considered as gauged by the electromagnetic ·field A, the 
"electric charges" have to be Qe, ~Qe, iQe, and 0, respectively. The pseu­
doscalar (proportional to its) parts are to be treated on a different basis, 
and will be shown to correspond to the weak and color interactions. 
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In the full Lagrangian, introduced and discussed in [Keller 1991], a first 
term equivalent to the standard Dirac matter-field Lagrangian 

Cm = i"irr'"' Dµ'l/I (here 8µ ~ Dµafter gauging) (11) 

is to be replaced by the corresponding expression for diracons: 

(12) 

It is in this term of the Lagrangian where we have to introduce an elec­
tromagnetic gauging with a coefficient e for the electron field, 2e/3 for the 
(anti) up-quark field, e/3 for the down-quark field, and 0 for the neutrino 
field. Then in the gauge theory we are constructing, the charges for the 
U(l) part of the gauge fields are the (postulated usually) integer, fractional, 
or zero values of the standard theory. In general our method will allow us 
to develop a gauge theory instead of postulating it as in the standard ap­
proaches. In this form we are showing the physical origin of the various 
couplings of the gauge fields, and the role played by i-y5 in it, as a part of 
the symmetry-constrained Dirac particle theory. 

For this purpose the A field discussed above will have to be enlarged and 
split into contributions, usually called B and W 3 in the literatur'.!, and new 
"charges" T 3 and Y are introduced with the standard notation 

(13) 

but the assignment of T3 and Y to give our values of Q will be straightfor­
ward and its physical origin clear. 

It is convenient to start with a rearrangement of the set of diracon fields 
in groups which will show an explicit SU(2) x SU(3) C spin(8) symmetry 
as shown in Table I on page 387. 

To start, we explore the SU(2) relations; for each given family we can see 
that the addition of a set of symmetry coefficients {W-} = (0, -1, -1, -1), 
modulus -2, to the first row produces the last row and ljl(eir addition to any 
one of the first group of three up-quark fields produces one of the group of 
three down-quark fields. That is: the same chiral phase change that takes 
the neutrino field into a left electron field will change an up quark into a 
down quark. The reverse process proceeds in the corresponding way. The 
"neutral" interaction will arise from a change in the phase of one of the 
partner fields canceling that of the change of the other. 

In the language of bilinear spinor operators, creation-anihilation, we could 
write all these processes in terms of spinors: if {x 11 , Xu, Xd, Xe} = Xa represent 
the neutrino, up-quark, down-quark, and electron fields, respectively, and 
their respective dual fields are {xt. xt. x~, xn = xL with the orthogonality 
condition x! 'I/lb = Cab• then the processes above can be described by 
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(14) 

(15) 

and the neutral interaction (to be combined with the electromagnetic) is 

(16) 

provided that, in order to account for the spin h/27r of the gauge fields, 
in all cases the spins of each spinor operator of the product are opposite, 
i.e., that the spinor of the electron field created is opposite to that of the 
neutrino field annihilated, etc. Then these processes correspond to vector 
interactions with total spin one, equal to the change in spin of the field 
during the interaction. 

What we will show below is the correspondence between the interaction 
fields and each product of an interaction operator, written here in a formal 
way. We should add at this stage that, besides spin, energy-momentum is 
being exchanged during the interaction; for example, a photon interacting 
with an electron, with energy-momentum exchange q, could be writtP.n 

A = L Xe(p+q,'fs±l)X!(p, =fS) (17) 
p 

stating that the electromagnetic interaction annihilates an elecfron of mo­
mentum p and spin components and creates an electron of momentum p+ q 
and of opposite spin. 

The color interaction will change one of the spacelike tf indexes of the 
quarks from the value 1 to 0 and produce a value 1 for one of the other 
indexes (which was zero previously), or change the axial vector momentum 
of two of those indexes simultaneously to a total of the eight operations 
{1 --.. 2, 1 --.. 3, 2 --.. 3, 2 --.. 1, 3 --.. 1, 3 --.. 2, 11 --.. 22, 22 --.. 33}, 
corresponding to the SU(3) color symmetry; we can also write these results 
in a formal operator way if we add a color subindex to the quark fields; then 

G' ' 't 
ab = Xq,aXq,b (18) 

will correspond to a gluonic interaction changing color b into color a. 
All these interactions in our diracon fields and in our chiral phase lan­

guage correspond to a change in the free particle wave function 

'¢d = uexp(pd · x + </>~) = uexp(¢>d) (19) 

with u a spinor and the de Broglie phases ¢>d being the sum of the scalar and 
the pseudoscalar parts of the proqucts of the vector x with the momenta 
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given by equations (12). The de Broglie phases are gauged by the </>~ which 
also contain scalar and pseudoscalar parts. For the leptons the de Broglie 
phases are 

(20) 

,i.. 0 · k ,i..O 
'/'neutrino = P Xo + l/5p Xk + 'l'v' k = 1,2,3 (21) 

The spinor u for the electron can be left- or right-handed, whereas for 
the neutrino, in order to satisfy equations (2-3), only the left-handed field 
is possible. 

In order to preserve rotational symmetry, for each one of the quarks 
we need to show explicitly the gauge phase </>~,a ensuring that the overall 
de Broglie phase is space-symmetric. This requires a complicated vector 
notation. If a space index is k (with values 1,2,3), a references space index 
is r = 1,2,3, and a color index is a orb (with values r,b,g), we have a set 
of three multi vectors [vector +i axial vector, i = ( -1 )112], 

er = cos Wrk [cos ( 1l't~ /2) + i/5 sin ( 1l't~ /2)] (22) 

for each color a of a given quark, direction k in space, and quantum number 
ta in Table I, for reference space direction r, this reference space direction at 
an angle Wrk with the observer's space coordinates k. This is a more general 
notation than that of equation (7), where, for simplicity, the particle was 
taken to move in a direction with all cos Wrv = 1/ ,,/3. The er are then the 
sum of a scalar and ( i times) a pseudoscalar. 

For the purpose of our formalism we need a duality-symmetric set of 
coefficients br such that er + br = COS Wrk, the ordinary cosine directors 
(no axial vector mixing). 

In terms of the multi vectors (22) the de Broglie phases for the quarks are 

k ,;. _ 0 + ar k + bar ,i..k + ,i..O up quar 'l'u,a - p Xo ck p Xr k 'I' Xr 'l'u,a (23) 

d k ,i.. 0 + br k + bbr ,1..k + ,i..O own quar 'i'd,b = p Xo ck p Xr k 'I' Xr 'l'd,b (24) 

The constants er are different for up quarks and for down quarks, corre­
sponding to the td quantum numbers. 

Now, the phase angles</>~ can either change the scalar-pseudoscalar struc­
ture of the de Broglie phases or leave them with the same structure. In the 
first case we have a change of the particle's nature (the resulting wave func­
tion will obey a different wave equation), and in the second case we have 
a type-conserving interaction. For this purpose we construct a Lagrangian 
which is invariant to the changes of the phase structure of the different 
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TABLE I. Allowed Sets of Symmetry-Constrhlned Quantum Numbers {t~d = t~ + n} 
for Chiral Fields Corresponding to the Electron Family. Satisfying the Generalized Dirac 
Equation D(J,d)tP(f,d) = 0. The quantum numbers n, t~, and operator D(J,d) are defined 
in equations (3)-{4) in the text. They correspond to the choice of e- as reference. The 
charges are given by the average value {t; + t; + t&)/3t!i as described by the explanation 
of (72) in [Keller 1991). The isospin pairs are connected by a change in the t~ such that 

It~' - t~I = (2, 1, 1, 1) mod 2, and the color triplets by a change in the t~ such that 
d d1 d

1 
td t,_. - t,_. = t,, - ,,. 

tii t; t~ t~ Q 21 Color Name 

-1 -1 -1 -1 -1 -1 - electron 

1 0 1 1 +~ 1 r 

1 1 0 1 +1 
3 1 b up quark 

1 1 1 0 +i 3 1 g 

-1 -1 0 0 - l 0 r 3 

-1 0 -1 0 1 0 b down quark - 3 

-1 0 0 -1 - l 0 g 3 

1 0 0 0 0 0 - neutrino 

</>d .=Phµ+</>~ shown above. We have done this in [Keller 1991] using ma­
trix notation for isospin to conform to the usual expression of the standard 
theory. 

Here we should remember that the idempotents !(l±if5) correspond to 
the operators selecting handedness (or chirality) in spacetime algebra. The 
set of t~ are then restricted forms of handling the chiral symmetry of the 
different fields. The relative chiral symmetries of the fields are the rele­
vant quantities. The properties are relative properties, only the relations are 
meaningful not the actual components which are frame of reference .depen­
dent (or even coordinate dependent if general transformations are allowed). 
The group of these relations (see Table I) is the mathematicai structure of 
physical interest. It is a SU(2) 0 SU(3)c structure for each /. The U(l) 
additional symmetry is related to the standard gauge freedom of the wave 
function. 
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In Table I Q = charge and I = isospin. Color and name refer to standard 
nomenclature. See [Close 1979, Field 1979, Okun 1982, or Halzen and Martin 
1984]. 

The basic equations for the set of spinor fields being (with D(d,/) explicitly 
defined above) 

where the subindex d stands for symmetry constrained Dirac fields 
(Diracons ), it is given the values (electron )left, electronright, 

(25) 

Ur, ub, u9 , dri db, d9 and v, for the first family, to conform to standard phe­
nomenology and the subindex f refers to the family number. 

We have shown [Keller 1991] that they constitute a set with all the known 
properties of each elementary particle's family, the fields they represent can 
be: 

- massless or massive in the particular case of eL + eR 

- charged (integer or fractional). 
and it is discussed in [Keller 1991, pages 158 and following], that the collec-

tion of the fields constructed with (5( and (6) have weak charge and color, 
and in general the characteristics usually postulated on phenomenological 
basis, like composites being colorless, confinement, etc. these being immedi­
ate consequences of the defining equations. 

Because of the appearance, or not, of the i/5 factors in (5), the fields 
have definite chiral properties. Only one type (for each family) of field in 
the theory may have simultaneously both chiralities and therefore can be, 
as a free field, massive, charged (reference charge ± 1) and weak charged: 
this is, for the first family, identified as the electron field. 

We should stress, again, that in Table I properties are llQ1 assigned they 
are relative and are properties of the gauged Lagrangian. See [Keller 1991 
pages 161 and following] for a full discussion of this point. 

- The resulting theory is a chiral geometry theory of charge, isospin 
and color. 

The theory has a Lagrangian formulation that reproduces all aspects of 
the standard theory. Higgs particles have not, in its first approximation (see 
below) the same motivation as in the standard theory. Confinement results, 
within the theory, from the requirement that the Lorentz symmetry should 
not be broken even at local level. The same requirement gives rise to the 
colorless condition for hadrons, the new feature is that hadrons should be 
both globally and locally colorless. Fractional charges are also a natural 
consequence of the gauging properties of the Lagrangian. 
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Mass results from vector and axial vector gauging, this procedure con­
serves the succesfull role of the Higgs field in the standard theory, weak 
bosons acquiring the same mass. 

The theory shows the reason for chirality being a basic property of nature 
as shown by the set of elementary particles. This can be clearly seen with 
the gauging of the diracons equations 

D(d.J) = f{'n[atdl - I~A(d,f)(x)] 
the gauging fields having the multivector composition 

A~( X) = A~,scalar (electromagnetic) + i/5 A~,pseudoscalar (weak, color) 

+Aµ af3 + a Aµ + 5 f3 Aµ 
a{J,tensor(gravity)l 1' a,poincarti 1' 1' /J, poincare 

(26) 

(27) 

That is, the gauging has electromagnetic, weak, color and gravity parts. 
Then the wave function becomes upon gauging ( i.p a reference spinor ). 

1/Jd(x) = Bexp{l(p~xµ + </>d(x))}i.p 

with the phase factor being a multivector 

(28) 

</>d(x) = </>d,scalar(x)l + </>d,pseudoscalar(x)i/
5 + </>d,a{J(x)Ja/J + </>d,poincare (29) 

the particular, relative, combinations for the phase factor of the if5 terms 
generate isospin and color and the 1af3 generate the local Lorentz transfor­
mations which are a consequence of gravity. To get a more common for­
mulation of the theory we take first I.= 1 5 and second replace it by its 
eigenvalues ± i. The usefullness of 15 stems from the fact that it com­
mutes with 1, /a/J and if5

, (or H = handededness ( F)i/5 / Jjgf ). The 
symmetries of </>d,sca!ar( x) + </>d,pseudosca!ar( x) i/5 generate the well known 
SU(3)c 0 [SU(2) 0 U(l)]ew standard theory. The mass matrix for the f > 1 
families of elementary particles has a very interesting form in its first ap­
proximation: 

m(f,d) = N fmd( 5. 75 + effect of nondiagonal terms) (30) 

with N1 = n1c} and md = m0(nc)dQ~, where n1 is the degeneracy of the 
family's wave function, CJ = 2/ -1 the number of spinors in the outer prod­
uct of 1/J, m 0 the electron mass, nc the number of color degrees of freedom: 
1 (for v and c) and 3 (for the quarks) and Qd the charge of the lepton 
or quark field. Then the masses are all, in a first approximation, propor­
tional to the electron mass. The factor Q~ suggests that the mass matrix is 
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directly related to the electromagnetic, gauge, field as of a self interaction 
origin. The creation of a pair of elementary particles at a given point, and 
its subsequent separation, involves the creation of their gauge fields, Q2 is 
the factor for the energy required to create the particle's electromagnetic 
field, an inseparable field from the concept of the existence of the particle, 
whereas Q~ should correspond to self interaction. 

The phase factor (29) may contain additional terms in the vector+ axial 
vector part of the Clifford algebra. In particular the possibility of a vector 
contribution ( m/ 4}rµXµ will result in the term called the "frame field" by 
Chisholm and Farwell (1992) generating the mass of the matter field. 

5. The basic set of equations 

It is interesting that the fµndamentals of the theory can be summarized in 
the set of equations (25 and 26) labeled by (!, d) which should be treated 
together and with the corresponding equations for the gauge fields. 

The comparison of the matter fields to see their relative properties is 
mathematically a spin (8) E1J spin (1) model for each family of elementary 
particles. This substantiates the work of Chisholm and Farwell as a further 
evidence that we have presented here a theory of elementary particles. 

6. Conclusions 

In the theory we have presented here the physical properties are now a 
constitutive part of the wave equations. The relative properties are clearly 
shown [Keller 1991] when supermatrices describe a collection of fields. Off 
diagonal terms couple them among themselves. 

We have seen that spacetime and its TM (complex) allows enough de­
grees of freedom to construct a theory of elementary particles and their 
interactions. Specially important is that all known interactions are properly 
described. No additional isospin space is therefore needed. 

Nucleons like proton or neutron and mesons are, within this theory, com­
posite fields but elementary particles. In fact these composite "elementary" 
particles cannot, even if enough energy is available, be split into smaller 
components; the requirement of rotational invariance forces the "colorless" 
combination of quarks, even to the smallest possible experimental probe size. 
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