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Abstract. We present a review of the development of a

fields. Instead of a mathematical model based in a mathematical group, we show that we
can actually develop a theory which, as a consequence, points to a mathematical structure.
Clifford algebra is used as the basic tool.

We show that an extended representation of the Multivector Clifford algebra allows,
first, a series of factorizations of the Laplacian operator, and, second, generates 3 families
of elementary particles with the experimentally observed lepton and quark content for
each family and the experimentally observed electroweak color interactions and other

related properties. The factorizations V? = (rg‘,)aﬁ"))'(r( ,)aﬁ:‘)) and the related Dirac-
like equations

d
Tt 0 W4,y = 0

are studied, its symmetries given. The I‘f‘ 1) 8enerate the 3 families, the af;’) generate the

observed lepton and quark content of the families.

In contrast to the usual approach to the standard model the properties for the different
fields of the model are consequences of the relative properties of the equations, among
themselves and in relation to spacetime, and therefore, they do not need to be postulates
of the theory.

1. Introduction

In the years 1980-1983 it became apparent that besides the accepted

SU(3)®SU(2)®U(1) structures of the elementary fields corresponding to a
family of elementary particles, there were 3 possible families, and perhaps
more, each one repeating the group structure of the fundamental family. All
the experimental analysis, in the decade elapsed since that time, confirms
that scheme. The construction of the basic field as composite of other, more
fundamental fields, pointed to the need of combining the gauge, or interac-
tion, fields with the study of the basic fields and moreover to the need of
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incorporating basic concepts like “confinement” and “colorless composites”
together with the consequences of the basic group. Of paramount impor-
tance is violation of parity in weak interactions, the massless character of
neutrinos and their associated left (right) handedness.

For us all the phenomenological concepts and models fit together in such
a way that, if an appropriate mathematical framework is used, we could
develop a theory of elementary particles and their interaction fields which
should then be the foundation of the set of phenomenological laws.

Here we show that this task is now possible and that a useful mathemat-
ical tool which reduces the need for additional, or ad hoc definitions, is the
Clifford algebra approach to the mathematical formulation of spacetime and
the basic fields.

In fact a usual approach in mathematical physics is to use the concept
of spacetime as a frame of reference for the description of the matter and
their interaction fields. Spacetime, having a multivector structure and con-
taining a spinor (and dual spinor) space, not only describes our perception
of the physical nature but is also a powerful mathematical tool. Adopting
spacetime as a basic frame of reference for physical phenomena should imply
that its structure and symmetries corresponds to the observed characteris-
tics of the matter and interaction fields. If a contradiction or insuficience
were found a wider reference frame should then be constructed and used,
but this does not seem to be the actual case.

We have several motivations for the analysis presented here which follow
from studies we have performed in the last 14 years [Keller 1991]:

1. Given spacetime and its multivector Clifford algebra, C¢; 3 or its com-
plexification Cfp 5, we can ask: which fields may exist in it obeying the
Klein-Gordon wave equation Ay = —a?y , with: (e* > 0)? Introducing
the fields from first principles and guiding our analysis of thore fields
(to make connection with experiment) from the accepted form of the
rtandard phenomenology.

2. In the standard model, if we consider the fields that may exist in space-
time according to 1): do we need to add isospace to spacetime? After all
the natural tangent space Ths to spacetime R'( contains 16 elements
and the T to the complex spacetime Clg 5 contains 32 elements.

The elements y4 of Ry 3 are the dimentionless Grassmann numbers

1, Yur YuVv = Guv + Yuvy Guv = dz'ag(l, "1’—11 —1)?
Yuv = —Yous YoYuv = GouTv = GovVu + Youv
and  YaVuvp = GuTvp = I3 Vup + PAoTuw + 95 OF Y5 = Yo123,
all {p,v,A,p} =0,1,2,3.

The complexification of C¢; 3 — Cfgs can be denoted by
{v4 +iv*; 44 C Cty3}. All multivectors act as operators among them-




A THEORY OF ELEMENTARY PARTICLE FIELDS 381

selves and on the ’s describing the matter and interaction fields, the def-
initions are such that 4°,iy'? and iy® are hermitian. Multivectors are de-
fined from the vectors 4# through their Grassmann outer product y#V =
4% A4” A ... (See Chisholm and Common (1986) or Micali, Boudet and
Helmstetter (1992)).

We have discussed elsewhere the use of multivectors as generators of Lie
groups, see for example [Keller and Rodriguez-Romo 1990, 1991a] where we
analyse the construction within C¢q 5 of frequently used groups as for exam-
ple $0(2,3), SU(3) or SU(2). Also the integration of spinors and multivectors
into a geometric superalgebra [Keller and Rodriguez 1992].

Here we show that the basic phenomenology, and the essential lefthand-
edness of the neutrino, can all be combined in a generalization of the Dirac
equation and the postulate that all physical possibilites implied should be
included.

2. Chiral symmetry in spacetime

We assume that a local observer describes spacetime by an orthonormal
tetrad a) (%)% = -(71)? = —-(9?)? = ~(7®)? = 1. In this frame b)
4% = 49414243 is both the duality transform operator and the pseudoscalar
(7®)? = —1. It is important that if another observer uses a differcnt co-
ordinate system, related by a Lorentz transformation L, the fundamental
properties (17%)2 = 1 and y°y* = —v#45 are also preserved, together with
a).

The handedness operator H = i7% can be used to construct the chirality
projectors Pg and Pp:

Pp+ P =1, PRPp = Pg; PLP, = P, PRP;, = PLPg =0,

where Pr = (14 i7°%), Pp = }(1 - i7®) or, as discussed here below,

Ppr = %(1 + H).

If a coordinate transformation v® — (¥°)' is allowed where a), and con-
sequently b), is not preserved (that is if the determinant ¢ of the transfor-
mation is not ¢ = +1) then H # i(y°) showing that a chirality operator
H = i(v%) [s,with H? = 1 in all frames has to be used.

H is in fact an invariant dimentionless quantity, it obeys H? = 1 in all
frames of reference. Even if the handedness of the frame F’ is changed rel-
ative to frame F’ because (7°)' = ¢4°. Given that ¢ = ¢2g and then the
effect of the sign of ¢ is lost, we cannot define H in terms of \/[g], we have
to define it in relation to the “handedness (F)” of a given frame F and then
the use of ¢ ensures that in a change to F' we obtain
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handedness(F') = sign(c)e handedness(F'). In terms of this, relative, hand-
edness definition we could write

H = handedness (F)ir*/1/lg| (A1)

which is equivalent to our definition H = iy% when and only when the
conditions mentioned in the text are satisfied. v° and /[g[ could both, si-
multaneously, be considered to have (length)* dimention and H still would
be a dimentionless quantity.

Here we will assume H = 7%, because of the restriction a) and the
assumption that we have selected a “right” handeded frame of reference,
The Pr and P;, can better be considered numbers of a new mathematical
field, with basis 1 and H, in an hypercomplexification of the Clifford algebra.
H(= H) is coordinate invariant.

3. Chiral symmetry theory of elementary particles

Using spinors, vectors and multivectors [Fock and Ivanenko (1929), see also
Keller 1991, Keller and Rodriguez-Romo 1991b, Hestenes 1966, Casanova
1976, Keller and Viniegra 1992, Keller and Rodriguez 1992] we will now
construct a theory for lepton and quark fields using the possible multivec-
tor generalization of the Dirac factorization of the Laplacian (d’Alembert
operator V2 = 8#0,). We start, as a guiding concept, by considering the
Klein-Gordon equation operator and its factorization

(00, + m?) = (D' 4+ mi)(D - mi) (1)

which requires that

-D'm4mD=0 and D'D=0"9, =V? (2)

we can have then a set of choices, either
1. any value of m and Dt = D (the standard Dirac operator Dy), or
2. for the case where m = 0 the possibility D! # D also becomes
acceptable. Here we will use the field generated by 1 and H.

In multivector algebra the Dirac operator is the standard vector operator
(using the vectors v#) D — Do = 4#9,,. (Sometimes D — y°Dy = 7%49,, is
used).

The basic requirement D'D = DD' = 9#8,, limits the choices of D, it
can be taken to be written in the Lorentz invariant form

D,y =T(ol", also Dy pdas =0, 3)
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in order to show the relation to the Dirac’s original factorization in the
simplest possible form. Here the I“(‘f) are operators on the ¢ which can be
represented by generalized Dirac ¥# matrices, see below. The limitation is
so strong that the only possible choice is where the multivector iy® (or the
invariant H), which has the same action on all 4#, that is iy3y# = —y#i75,
is used see [Keller 1982, 1984, 1986 and 1991, pag. 158 and following], this
is particularly interesting because chirality comes naturally into the theory.

We construct the following (Lorentz invariant but coordinate system de-
pendent) operator

a‘(‘d) = {1 cos(n + tﬁ)g- + Hsin(n + t‘:‘)g-} oy - (4)

condition (2) requires n and t2 integer and it results in the simplest multi-
vectors. Here, to take the electron as reference we use n = —1.
With this choice of presentation we can have the “diagonal” structure:

8, ifn+ 4 are even
oh = { ’ 5)

%0, if n+ tf, are odd

The standard ¥# = T}, matrices which correspond to an irreducible
representation of C'f¢y 3 are found to be useful to write the wave equations
of the first or fundamental family (eg,ef,vr,{uL,dr;color}) of elementary
particles. The electron requires a combination of two fields e™ = (eg,er)
for the standard phenomenology of electroweak-color interactions.

The study of families other than the electron family suggested that, a
more general, non reducible representations of C; 3, could in fact be needed.
They are collectively denoted by I‘z‘ 1) In Clifford algebra their Lorentz trans-

formations I'; — (T%)' do not change the, 99 From our basic postulates

the T# can all be written as exterior products of the y#,7% i7® and 1, . A
fundamental representation would be for example [see Krélikowski 1990]

P‘; —- ‘y” ® (1 ® 1 ®.. -)2(f—l)products (6)

other equivalent, but different, representations, being also possible. We call
these representations of the Clifford algebra “capital representation” [see
Keller 1993]. The corresponding spinors would then be the, totally antisym-
metric, exterior products

Il/)(f) = ¢(z) A (d)l Ao A ')2(f—1)p1'oducts'

For a local theory (assumed here) the first factor ¢(z) is the only one
that carries spacetime position dependence.



384 JAIME KELLER

Then the i; are 2(f — 1) non null, normalized constant Dirac spinors
which correspond to extra, mathematical, internal degrees of freedom of the
diracon fields. For the fundamental s = 1/2 fields their spin should add to
zero (f odd integer). The total antisymmetry of ¢y limits the value of f
to f =1,2,3 otherwise the exterior product is null.

The degeneracy ns of the representations of the I'f 1) Bives statistical
weight to each family: ny = 1, ng = 4 and nz = 24. This will result in
factors for the terms of the mass matrix.

The elementary fields thus described are mathematically composite, but
still elementary in the sense that they cannot be decomposed experimentally
into their components. No size of the particle is required by the theory, they
are representations of the basic elementary fermion equations, no spacetime
structure is involved, there is only the mathematical complexity of the wave
function. Each family has an internal relationship identical to the funda-
mental family f = 1 and the same SU(3)cotor ® SU(2) @ U(1) symmetry. No
additional gauge interaction field is needed to relate the different families.
They are algebraic families of otherwise structureless leptons and quarks.
The algebra of the I‘é‘f) has been developed and studied by Krélikowski
(1990), as well as the consequences for the phenomenology of the elemen-
tary particle families. ¥

4. Chiral geometry theory of charge isospin and color

For the quarklike diracons, an introductory analysis to study the conse-
quences of (3), we use a reference frame F in such a way that a local reference
direction is defined to be ¢ = (1 + 72 +73)v3 and the notation 7}? = 1757,
is used. Such that we can explicitly exhibit the vector-(imaginary) axial vec-
tor momentum admixture and show that it is a constant (independent of
the “color” of the diracon field).

Let us write in detail the “energy momentum multivector” p of every
diracon field d, including the different “colors” red (r), blue (b), or green (g)
of the quarks, according to Table I, (pair = p%y0 + p%7§"):
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electrone: pe = p%y0 + /(71 + 72 + 73)/V3
p; =70+ (P +72+73)/V3
quark @:  py =00+ p(n + 77 +73)/V3
P =+ (n+n+18)/V3
p; =r"n+r'm+17+13)/V3
quarkd:  pg =70 +p (00 +72+95)/V3
P =1+ (" + 1P +73)/V3
neutrinov: py, = p"y0+p' (W + 98 +8)/V3 M

Here p? is the three-momentum and p° is the energy. We can see that
the energy-momentum vectors are all in different phases of the p, — pB
rotations, with none, one, two or three vector rotations.

Let us now consider a gauge energy-momentum vector field A#7,, in the
Coulomb gauge A° = 0, added to the diracon fields with coupling constant
proportional to @, modifying the vector part of the momentum, with the
energy-momentum components given in the same proportion to the time
part and to the spatial parts (calling 7 a vector perpendicular to the di-
rection of motion 7,). For the electron

P’ =70+ (0" + QAW + QAL (8)
has components

timelike 7o - p = p°, spacelike parallel 7, - p’ = p’ + Q. A%,
spacelike perpendicular v, - p’ = Q.A™*. (9)

All of them are scalar quantities.
However, for a @ quark (taking, for example, a red quark, the result being
invariant with respect to color),

Ve v = %(71 +72+73)" %(”f{) +124+7) = % + %i"ls (10)
the scalar components will be affected by a factor of 323-, and following the
same procedure for a down quark, the scalar components will be affected by
a factor of :}5-, and for a neutrino the scalar components will be affected by a
factor 0.

Then if we make the obvious definition that the scalar part of the gauge
field, treated on an equal basis for the electrons and for the quarks of the
neutrino, is to be considered as gauged by the electromagnetic field A, the
“electric charges” have to be Q,, %Qe, %Qe, and 0, respectively. The pseu-
doscalar (proportional to iys) parts are to be treated on a different basis,
and will be shown to correspond to the weak and color interactions.
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In the full Lagrangian, introduced and discussed in [Keller 1991}, a first
term equivalent to the standard Dirac matter-field Lagrangian

Lo = ipy" D, (here 8, — D after gauging) (11)

is to be replaced by the corresponding expression for diracons:

Lq= i"l_”Y:i‘Dud’ (12)

It is in this term of the Lagrangian where we have to introduce an elec-
tromagnetic gauging with a coefficient e for the electron field, 2¢/3 for the
(anti) up-quark field, e/3 for the down-quark fiéld, and 0 for the neutrino
field. Then in the gauge theory we are constructing, the charges for the
U(1) part of the gauge fields are the (postulated usually) integer, fractional,
or zero values of the standard theory. In general our method will allow us
to develop a gauge theory instead of postulating it as in the standard ap-
proaches. In this form we are showing the physical origin of the various
couplings of the gauge fields, and the role played by 75 in it, as a part of
the symmetry-constrained Dirac particle theory.

For this purpose the A field discussed above will have to be enlarged and
split into contributions, usually called B and W3 in the literaturz, and new
“charges” T3 and Y are introduced with the standard notation

Q=T3+Y/2 (13)

but the assignment of 72 and Y to give our values of Q will be straightfor-
ward and its physical origin clear.

It is convenient to start with a rearrangement of the set of diracon fields
in groups which will show an explicit SU(2) x SU(3) C spin(8) symmetry
as shown in Table I on page 387.

To start, we explore the SU(2) relations; for each given family we can see
that the addition of a set of symmetry coefficients {W~} = (0,-1,-1,-1),
modulus -2, to the first row produces the last row and tieir addition to any
one of the first group of three up-quark fields produces one of the group of
three down-quark fields. That is: the same chiral phase change that takes
the neutrino field into a left electron field will change an up quark into a
down quark. The reverse process proceeds in the corresponding way. The
“neutral” interaction will arise from a change in the phaseé of one of the
partner fields canceling that of the change of the other.

In the language of bilinear spinor operators, creation-anihilation, we could
write all these processes in terms of spinors: if {X,, Xu) Xd; Xe} = Xa represent
the neutrino, up-quark, down-quark, and electron fields, respectively, and
their respective dual fields are {x},x}, xL, xt} = x!, with the orthogonality
condition x{ 1 = 6,5, then the processes above can be described by




A THEORY OF ELEMENTARY PARTICLE FIELDS 387
W™ = w” (xex} + xaxh) (14)
Wt = wt (xuxt + xuxd) (15)

and the neutral interaction (to be combined with the electromagnetic) is

W3 = W35 (WHW™ - W-W) (16)

provided that, in order to account for the spin h/2x of the gauge fields,
in all cases the spins of each spinor operator of the product are opposite,
i.e., that the spinor of the electron field created is opposite to that of the
neutrino field annihilated, etc. Then these processes correspond to vector
interactions with total spin one, equal to the change in spin of the field
during the interaction.

What we will show below is the correspondence between the interaction
fields and each product of an interaction operator, written here in a formal
way. We should add at this stage that, besides spin, energy-momentum is
being exchanged during the interaction; for example, a photon interacting
with an electron, with energy-momentum exchange ¢, could be written

A= Z)Ze(p+q,$ail))2et(p$ ZFS) (17)
P

stating that the electromagnetic interaction annihilates an electron of mo-
mentum p and spin component s and creates an electron of momentum p+q
and of opposite spin.

The color interaction will change oné of the spacelike ¢¢ indexes of the
quarks from the value 1 to 0 and produce a value 1 for one of the other
indexes (which was zero previously), or change the axial vector momentum
of two of those indexes simultaneously to a total of the eight operations
{1-21 - 32-32->13->13- 211 - 22,22 — 33},
corresponding to the SU(3) color symmetry; we can also write these results
in a formal operator way if we add a color subindex to the quark fields; then

CA;'ab = )Zq,agz,b (18)

will correspond to a gluonic interaction changing color b into color a.
All these interactions in our diracon fields and in our chiral phase lan-
guage correspond to a change in the free particle wave function

Py = uexp(pd cz+ ¢3) = uexp(pq) (19)

with u a spinor and the de Broglie phases ¢4 being the sum of the scalar and
the pseudoscalar parts of the products of the vector  with the momenta
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given by equations (12). The de Broglie phases are gauged by the ¢3 which
also contain scalar and pseudoscalar parts. For the leptons the de Broglie
phases are

Pelectron = P“il?u + ¢2 s (20)

Preutrino = Poxo + i’)’spkxk + ¢37 k=123 (21)

The spinor u for the electron can be left- or right-handed, whereas for
the neutrino, in order to satisfy equations (2-3), only the left-handed field
is possible.

In order to preserve rotational symmetry, for each one of the quarks
we need to show explicitly the gauge phase ¢2,a ensuring that the overall
de Broglie phase is space-symmetric. This requires a complicated vector
notation. If a space index is k (with values 1,2,3), a references space index
is 7 = 1,2,3, and a color index is a or b (with values r,b,g), we have a set
of three multivectors [vector +i axial vector, i = (—=1)!/?],

el = cg’ ¥r; cg” = coswyk[cos (mtf [2) + i sin (ntd /2)] (22)

for each color @ of a given quark, direction & in space, and quantum number
t* in Table I, for reference space direction r, this reference space direction at
an angle w,; with the observer’s space coordinates k. This is a more general
notation than that of equation (7), where, for simplicity, the particle was
taken to move in a direction with all cosw,, = 1 /\/5 The ¢}” are then the
sum of a scalar and (¢ times) a pseudoscalar.

For the purpose of our formalism we need a duality-symmetric set of
coefficients b" such that ¢}” + bf" = cosw,k, the ordinary cosine directors
(no axial vector mixing).

In terms of the multivectors (22) the de Broglie phases for the quarks are

up quark  ¢u,e = P00 + cf'pFz, + b Pk, + 41, (23)

down quark  ¢qp = peo + ' pFz, + O ke, + b4 (24)

The constants ci” are different for up quarks and for down quarks, corre-
sponding to the t3 quantum numbers.

Now, the phase angles ¢J can either change the scalar-pseudoscalar struc-
ture of the de Broglie phases or leave them with the same structure. In the
first case we have a change of the particle’s nature (the resulting wave func-
tion will obey a different wave equation), and in the second case we have
a type-conserving interaction. For this purpose we construct a Lagrangian
which is invariant to the changes of the phase structure of the different
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TABLE 1. Allowed Sets of Symmetry-Constfained Quantum Numbers {tﬁ‘ = tf, + n}
for Chiral Fields Corresponding to the Electron Family. Satisfying the Generalized Dirac
Equation D(s,a)¥(s,4) = 0. The quantum numbers n, tﬁ, and operator Dy q) are defined
in equations (3)-(4) in the text. They correspond to the choice of e™ as reference. The
charges are given by the average value {t] + 5 4 3)/3t; as described .bs' the explanativn
of (72) in [Keller 1991]. The isospin pairs are connected by a change in the ¢, such that
Itﬁ' —~ 4] = (2,1,1,1) mod 2, and the color triplets by a change in the t}, such that

g d' d
d.._tg =1, —1,.

ty
t ty 4 tn Q 20 Color Name
-1 -1 -1 -1 -1 -1 - electron
1 0 1 1 +% 1 r
1 1 0 1 +2%2 1 b up quark
1 1 1 0 +% 1 g
-4 -1 6 0 -3 0 r
-1 0 -1 0 - -;- 0 b down quark
-1 0 o0 -1 -1 0 g
1 06 o0 0 0 0 - neutrino

#d.= pixu + ¢3 shown above. We have done this in [Keller 1991] using ma-
trix notation for isospin to conform to the usual expression of the standard
theory.

Here we should remember that the idempotents 1(1+i7°) correspond to
the operators selecting handedness (or chirality) in spacetime algebra. The
set of tﬁ are then restricted forms of handling the chiral symmetry of the
different fields. The relative chiral symmetries of the fields are the rele-
vant quantities. The properties are relative properties, only the relations are
meaningful not the actual components which are frame of reference depen-
dent (or even coordinate dependent if general transformations are allowed).
The group of these relations (see Table I) is the mathematical structure of
physical interest. It is a SU(2) ® SU(3). structure for each f. The U(1)
additional symmetry is related to the standard gauge freedom of the wave
function.
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In Table I Q = charge and I = isospin. Color and name refer to standard
nomenclature. See [Close 1979 , Field 1979, Okun 1982, or Halzen and Martin
1984].

The basic equations for the set of spinor fields being (with D4, ;) explicitly
defined above)

D(d’j)‘lﬁ(d'f) =0 y ¢(d,f) = ‘Dzd,f)¢ and 3“6”(1) =0 (25)

where the subindex d stands for symmetry constrained Dirac fields
(Diracons), it is given the values (electron )z, electronyigns,
Uy, Uby Ug, dr,dp,dg and v, for the first family, to conform to standard phe-
nomenology and the subindex f refers to the family number.

We have shown [Keller 1991] that they constitute a set with all the known
properties of each elementary particle’s family, the fields they represent can
be:

— massless or massive in the particular case of ef, + eg
— charged (integer or fractional).
and it is discussed in [Keller 1991, pages 158 and following], that the collec-

tion of the fields constructed with (5( and (6) have weak charge and color,
and in general the characteristics usually postulated on phenomenological
basis, like composites being colorless, confinement, etc. these being immedi-
ate consequences of the defining equations.

Because of the appearance, or not, of the i7® factors in (5), the fields
have definite chiral properties. Only one type (for each family) of field in
the theory may have simultaneously both chiralities and therefore can be,
as a free field, massive, charged (reference charge + 1) and weak charged:
this is, for the first family, identified as the electron field.

We should stress, again, that in Table I properties are not assigned they
are relative and are properties of the gauged Lagrangian. See [Keller 1991
pages 161 and following] for a full discussion of this point.

— The resulting theory is a chiral geometry theory of charge, isospin
and color.

The theory has a Lagrangian formulation that reproduces all aspects of
the standard theory. Higgs particles have not, in its first approximation (see
below) the same motivation as in the standard theory. Confinement results,
within the theory, from the requirement that the Lorentz symmetry should
not be broken even at local level. The same requirement gives rise to the
colorless condition for hadrons, the new feature is that hadrons should be
both globally and locally colorless. Fractional charges are also a natural
consequence of the gauging properties of the Lagrangian.
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Mass results from vector and axial vector gauging, this procedure con-
serves the succesfull role of the Higgs field in the standard theory, weak
bosons acquiring the same mass.

The theory shows the reason for chirality being a basic property of nature
as shown by the set of elementary particles. This can be clearly seen with
the gauging of the diracons equations

e
Dag) = T{,[08 - Iz Afy ()] (26)

the gauging fields having the multivector composition

Blae) — A# ]
Ad(z) - Ad,scalar (electromagnetic) + vy As,pseudosc&lar (weak, color) ( )
27
5
+A‘o‘1ﬁ,tensor(gmvity)7aﬂ +7 Agypoincaré +7 7[3 Ag, poincaré
That is, the gauging has electromagnetic, weak, color and gravity parts.
Then the wave function becomes upon gauging (¢ a reference spinor).

Ya(e) = Bexp{I(pgz, + da(2))}p (28)

with the phase factor being a multivector

¢d(z) = ¢d,scalar(x)1 + ¢d,pseudosc&lar($)i75 + d’d,aﬁ(z)'raﬁ + ¢d, poincaré (29)

the particular, relative, combinations for the phase factor of the iy terms
generate isospin and color and the v*# generate the local Lorentz transfor-
mations which are a consequence of gravity. To get a more common for-
mulation of the theory we take first I = 4% and second replace it by its
eigenvalues + i. The usefullness of 75 stems from the fact that it com-
mutes with 1, v*# and i7®, (or H = handededness (F)iv®/\/]g]). The
symmetries of @gecalar(Z) + Pd pseudoscalar(T) 17° generate the well known
SU(3)c ®[SU(2)® U(1)]ew standard theory. The mass matrix for the f > 1
families of elementary particles has a very interesting form in its first ap-
proximation:

(s,4) = Nymq(5.75 + effect of nondiagonal terms) (30)

with Ny = nyc} and mq = my(n.)4Q3, where ny is the degeneracy of the
family’s wave function, ¢; = 2f — 1 the number of spinors in the outer prod-
uct of 4, m, the electron mass, n, the number of color degrees of freedom:
1 (for v and e~) and 3 (for the quarks) and Q4 the charge of the lepton
or quark field. Then the masses are all, in a first approximation, propor-
tional to the electron mass. The factor Q3 suggests that the mass matrix is
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directly related to the electromagnetic, gauge, field as of a self interaction
origin. The creation of a pair of elementary particles at a given point, and
its subsequent separation, involves the creation of their gauge fields, Q% is
the factor for the energy required to create the particle’s electromagnetic
field, an inseparable field from the concept of the existence of the particle,
whereas Q§ should correspond to self interaction.

The phase factor (29) may contain additional terms in the vector + axial
vector part of the Clifford algebra. In particular the possibility of a vector
contribution (m/4)yy#x, will result in the term called the “frame field® by
Chisholm and Farwell (1992) generating the mass of the matter field.

5. The basic set of equations

It is interesting that the fundamentals of the theory can be summarized in
the set of equations (25 and 26) labeled by (f,d) which should be treated
together and with the corresponding equations for the gauge fields.

The comparison of the matter fields to see their relative properties is
mathematically a spin (8) @ spin (1) model for each family of elementary
particles. This substantiates the work of Chisholm and Farwell as a further
evidence that we have presented here a theory of elementary particles.

6. Conclusions

In the theory we have presented here the physical properties are now a
constitutive part of the wave equations. The relative properties are clearly
shown [Keller 1991] when supermatrices describe a collection of fields. Off
diagonal terms couple them among themselves.

We have seen that spacetime and its Tps (complex) allows enough de-
grees of freedom to construct a theory of elementary particles and their
interactions. Specially important is that all known interactions are properly
described. No additional isospin space is therefore needed.

Nucleons like proton or neutron and mesons are, within this theory, com-
posite fields but elementary particles. In fact these composite “elementary”
particles cannot, even if enough energy is available, be split into smaller
components; the requirement of rotational invariance forces the “colorless”
combination of quarks, even to the smallest possible experimental probe size.
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