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Izvleéek

Tvorbo petih pionov pri dvofotonskih interakcijah smo proucevali na podatkih,
gbranih s spektrometrom ARGUS. Z metodo maksimalne zanesljivosti smo doloéili
prispevke reakcij vy — wp’, 77 — wrtr™, 9y - PPt 7% in vy - wtatalrow.
Posebej pomemben je presek za dvofotonsko produkcijo para vektorskih mezonov wp?, ki
smo ga izmerili z manj3o napako kot drugi eksperimenti. Doloéili smo tudi prispevke valov
z razli¢nim spinom ter parnostjo k reakciji 4y — wp®. Analiza kotnih porazdelitev kaze
na dominanco prispevka stanja s spinom in parnostjo (J¥,J;) = (2%,2) na obmo&ju dvo-
fotonske invariantne mase med 1.5 in 2.3 GeV. Razen tvorbe parov vektorskih mezonov
wp® smo tudirali tudi reakeiji vy — p% — 1tr KTK~ in vy - w¢ — wtx’n " KTK".
Prvi smo doloéili presek za tvorbo parov p°¢ pri dvofotonskih interakcijah. Presek za to
reakcijo je najveéji na intervalu dvofotonske energije med 1.5 in 2.5 GeV. Izmerili smo

tudi stiri dogodke, ki kaZejo na obsto] reakcije vy — w¢.

Abstract

The production of five pions in two-photon interactions was studied with the AR-

GUS detector. By using the maximum likelihood method the contributions of reactions

¥y = wp®, 9y 2 wrtr™, 9y — pPr a0, and 4y — 7ttt 1~ were determined. Of

particular interest is the cross section for vy — wp® which is measured with better preci-

“sion than in previous measurements. The spin-parity composition of the wp® system was
determined using the partial-wave analysis. A dominance of the wave (JF,J,) = (2t,2)

is found in the region of center-of-mass energies between 1.5 and 2.3 GeV. Beside wp®

production also p°¢ and w¢ channels were studied. The process vy — p°¢ was observed

for the first time. Its cross section is highest in the region of center-of-mass energies

between 1.5 and 2.5 GeV. We also found an evidence for the reaction 7y — we.
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Introduction

Two-photon physics is a relatively new branch of experimental particle physics, closely
related to high energy e*e™ storage rings. Bunches of electrons and positrons surrounded
by clouds of virtual photons circulate in a storage ring in the opposite directions. In-
teractions between photons of different clouds offer an opportunity to study two-photon
reactions in a wide kinematical region. Two-photon interactions with leptons in the final
state provide a test of quantum electro-dynamics up to the fourth order of fine structure

constant a. But the interest has lately turned to reactions with hadrons in the final state.

Particularly interesting is the two-photon production of vector meson pairs, which
enables a study of meson scattering on mesons. Due to equal quantum numbers, virtual
photons can convert into neutral vector mesons which then mutually hadronically interact.
Experimental studies of the gamma-gamma production of two vector mesons have revealed
an interesting structure. It was found that the cross section for vy — p°p° exhibits a peak
near the reaction threshold. The reaction was first measured by the TASSO collaboration
[1] at PETRA storage ring in Hamburg. Later, it was found by JADE collaboration that
the cross section for the production of an isospin related pair 4y — p*p~ is more than
four times smaller. This ratio cannot be explained by production of a pure isospin state.
Since two p° mesons can only combine to isospin I=0 or 1=2, the ratio for production of
isospin pure state can only assume the values 1/2 or 2, respectively. If these predictions
are compared to the experimental results, it is clear that we are dealing with a coherent
mixture of both I=0 and 1=2 states. Measurement of a resonant origin of the reaction
¥y — pp would probably confirm an existence of exotic q¢gq states, since bound states
of pairs quark anti-quark cannot have an isospin 2. The origin of the reaction vy — pp
can be found by partial wave analysis, which requires a large data sample. With the high
statistics collected by the ARGUS detector, the analysis of vy — p°p” showed a clear
dominance of the (J7,J,} = (2%,2) wave {2], hinting the formation of a resonance. It is
believed that analysis of other vector meson pairs may contribute to better understanding

of pp production.

Resonant four-quark structures are expected [3] also in production of vector mesons
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wp and pd. The cross section for wp® production has already been measured by several
groups, first by ARGUS collaboration in 1987[4]. An enhanced cross section was found at
1.9 GeV. Near threshold, where resonant structure is expected by the four quark model [3],
no enhancement has been observed. For better understanding of the reaction vy — wp?, it
is important to make a partial wave analysis. Due to lack of experimental data, the partial
wave decomposition of this reaction has not been performed. In this thesis we present
the results of a partial wave analysis of the reaction vy — wp® — atxTx% 7~ using
the data sample collected by the ARGUS detector. The detector provides a good particle
identification, precise measurement of their momenta and consequently a low contribution
of the background reactions. This turns out to be very important, particularly because
no cut on two and three-pion invariant masses can be used. In addition, many waves can
contribute to the studied reaction even further intensifying difficulties. Particularly high
statistics is needed in the case none of the waves dominates. This thesis includes also
the study of reactions v — p°¢ and vy — w¢. The production rate for both reactions
is small, and this is the first time that they were detected. Previously, only the upper
limits for the cross sections were set by collaborations TPC/Two-Gamma, TASSO and
ARGUS [5, 6}.

The thesis is organized as follows. In the first chapter a brief review of the kine-
matics for the two-photon interactions is given. It includes also all the relevant formulas
describing general features of all three studied reactions: 7y — wp®, vv — p°4, and
vy — w¢. The third chapter describes the detector with an emphasis on the drift cham-
bers and the calorimeter, i.e. components that are extensively used in the analysis. This is
followed by a description of the trigger system and methods of charged particle identifica-
tion. The Monte Carlo simulation of the physical processes and particle tracking through
the detector is described in chapter 3. Using the simulation we determine the experimen-
tal resolution of all quantities needed in partial-wave analysis. In chapter 4 we present
a selection of the five pion final state and estimate the background contribution to the
selected 5w events used in vy — wp® analysis. A brief description of the maximum likeli-
hood method and the acceptance calculation is given in chapter 5. The final results and
 determination of systematic errors can be found in chapter 6. Chapters 7 and 8 describe
the analysis of reactions vy — p%¢ — n#¥r~K*K~ and vy — w¢ — v nn~K+*K-.
They are organized in a similar way as the presentation of the vy — wp® — wtnt 2%z~ 7~
analysis. A short summary of the results can be found in the last chapter. In entire work

we use the convention ¢ =1 and k& = 1.



Chapter 1

The Physics of Two-Photon

Interactions

1.1 General Discussion

In a two-photon process at an ete™ collider electron and positron interact by radiating
space-like virtual photons that in turn produce a final state X. The kinematic variables

of a two-photon reaction ete~™ — ete~X are shown in fig. 1.1 where all particles are

Py =(E{,P{)

Eg - beam energy
Pg - beam momentum

Figure 1.1: Kinematics of the two-photon process
described by four-vectors: incoming leptons by p;, scattered ones by p! and photons by

5



6 CHAPTER 1. THE PHYSICS OF TWO-PHOTON INTERACTIONS

g; = pi—p;. The z-axis in the laboratory frame points in direction of the incident positron.
The x-axis has an arbitrary direction perpendicular to the beam line.

The transition matrix element for the process consists of electron and positron
vertices represented by #(d-e}y,, two photon propagators —ig*’/q? and the matrix element

T.p describing the formation of the final state X by two photons. The amplitude can be
written as [7]:

_ g 9%,
M=—¢. {“(P'n3’1)’7#“(P1s31)}?Taﬁq—2{U(P2,-‘32)%%‘(?'2, 52)} (1.1)
: 1 2

where by u(pi, s;) and v(p;, s;) we denote the spinor of leptons with four-momenta p; and
spin s;. By introducing an unnormalized photon density flux matrix
ps 1

ot = —= ) alpl, sy ulps, siu(p:, sy u(pl, st) (1.2)

4 spins
the expression for the cross section can be written as:

4na)? o e dLips d*p! d*p,
do = (_)pﬁ'“ py T T, 1 2

, } . 1.3
qiql vl 4{(p1p2) -—m%m%}”z 2E{(2x)* 2Ei(27)3 (1.3)

where dLips is the Lorentz invariant phase space of the final state X

: 4’k
szpS = (271') ih + ¢ — Z k H W (]..4:)

Due to gauge invariance only three of the four Lorentz indices are independent. It is
suitable to express the unnormalized photon density flux matrix p** and the matrix
element T,s in the helicity basis of photons. The transformations of the quantities T},
P and p¥' are of the following form:

N T T aa' __ _p _p' ! by e
Top = €10t T »  PY" = €1aE70PY" o Py = E5E005" (1.5)

The indices a, b take the values +,— and 0 corresponding to the photon polarization
- vectors €;,, €;_ and €. Transversely polarized photons (T) have helicity +1 or —1, and
longitudinally polarized photons (L) helicity 0. For later convenience we introduce the
abbreviation )

22 = i Ty T, (1.6)

with no summation over double indices. The Z matrix is symmetrical against the sub-
stitution ab < a'b’ due to time invariance. In the following we shall consider only the
case where none of hoth scattered leptons is detected, the so called "no-tag” mode. In

this case the azimuthal angle ¢, between lepton scattering planes and the x-axis in the
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laboratory frame cannot be measured, so an implicit integration over both angles ¢, ¢,
can be performed. One can see from the photon density matrix [7]

pt —ilp?"le"‘"" —|pd~ |
p:'."" = | i|pfl|e—i¥ o —i|p}0|e* (1.7)
—|pf e dlpf0let pit
with
17(2 — z 4m?
P;H_ — _(( P1Q22 9132)2 14 ze)
: (0192)? - g3 5
poo — (2P1 g2 — QIQ'Z)2 _
1 (4191'2)2 ~ qia3
i~ = -1
Il = \/(p + 1)l
o5’ = |P1 (1o 2)]

that only diagonal elements of this matrix do not vanish after integration over the az-
imuthal angle ;. It is useful to factorize the matrix element T, in order to separate the
two photon formation of intermediate state from its decay

Tu = Mu(yy — R) - 622,85% - Pa - Di,(R > X) . (18)

The M, is in this definition the helicity amplitude for the two photon coupling to the
intermediate state R, and D, is describing the decay of that state into the final state X.
J.; stands for the spin projection of the state R on the helicity axis in the vy center-of-mass
system. The § functions in the expression ensure angular momentum conservation. For a
resonance formation the propagator Pp of the intermediate state R is of the Breit-Wigner
form

1
—W? —impl'y’

while for confinuum reactions it is expected to vary weakly with two-photon invariant

Pr=—; (1.9)
m

mass. Now we can collect all Z matrix elements that do not vanish in no-tag condition.
They are listed in table 1.1. Inserting only terms listed in table 1.1 into eq. 1.3 one can
obtain Budnev formula (7], the basic equation for 4y physics,

b - _ [ (112)* ~ diq; ]”2.
1679795 L(p1p2)? — mim2

3.7 d3

[4p++ ptopr + 201t pQ0ry, + 2% pF Your + pPpLay ]F —
1 2

2 (1.10)
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l he]icity | ﬂb, a't’ I 7 zab,a'b' —I

0 ++,++ PP My, My PrPrD;Do
0 —e—— | pttpitM* M__PyPeD;Do

+2 +y i Pz My My PpPpDi; Dy

-2 —+, ~+ Pipr M2, M_y PRPrD, D,

+1 0—,0— PPt My My PRPRDY, Dy

1 0+,0+ PP " M3, Moy PRPrD™ D,

-1 -0, ~0 Pt P2 MM _o PpPrD~, D,

+1 +0,+0 It P2 MioMio PiPrD} Doy
0 00, 00 P°Pa’ Mo Moo P PrDi Do

Table 1.1: Nonzero terms in the differential cross section formula for -
no-tag two-photon interactions

without a further symmetry requirement. In the formula 1.10 all interference terms that
cannot be measured in no-tag mode are omitted. To obtain eq. 1.10 from eq. 1.3 we have

used the following expressions of cross sections [7]:

1 . . :

ary = m-/(T++T++ + T7_T,_)dLips(X)
1 .

or, = meioT+odL3P5(X)
1 . _

oLT = m/TmTMdLEPS(X)

1o
o = e [ TasToodLips(X)

where z is the Mgller flux factor z = (g1¢2)® — ¢fq2. Due to parity conservation in the
two-photon vertex

M, M_,_, = MM, (1.11)

a

and the inability to distinguish two states with different sign of helicity by their decay
in the integral form, we combine terms Ty obtained by substitution 4+ + — to the same

cross section.

From eq. 1.10 we can define the luminosity function as a function that connects the
cross section og+e-_,ete~x With the two-photon cross section o.,.,—,x where both photons

are transversely polarized

dL o . (n192) — dias }1/2 ++ 4+ 8P 'd3p'2

= pLrp
167tqiqs  L(p1p2)? — mim} ' OEB) B

(1.12)
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Eq. 1.3 takes for the no-tag mode the following form:

dL "
A0t o oto-x = gt ¥ 20V dLips(X 1.13
teTmetenX lﬁx/-'?pﬁpﬁz (%) (1.13)

where only the elements listed in table 1.1 are included in the sum ¥ Zoba't’

The two-photon vertex, in general described with helicity amplitudes M, is sub-
ject to several constraints [8, 9] imposed by charge conjugation invariance, gauge and
Lorentz invariance, Bose statistics and conservation of parity and angular momentum.
The conservation of charge conjugation implies that in a two-photon process, only states
of positive charge conjugation can be produced. We have already reduced the number of
independent matrix elements 7,5 by invoking the gauge invariance, but there is another
feature of helicity amplitudes that can be concluded from gauge invariance. It turns out
that for all spin-parity J? states the following relation is valid [10):

Mos(gi,q;) ~ /-qt (as ¢f —0) (1.14)
2 2 2 2
Mao(q,9) ~ -4 (as ¢, = 0) (1.15)

Therefore, it is convenient to expand the amplitudes M,; in terms of covariant gauge
invariant tensors written in the helicity basis. The simplest functional forms of gauge
invariant tensors, describing the coupling of a two-photon system to a state with well
defined spin and parity J¥ are called Born amplitudes. Depending on the value of J7,
up to five independent form factors (Frro, Frre, Frr, Fri, Fr;), generally marked with
Fui5,., are needed in addition to Born amplitudes to describe the two-photon formation
of intermediate state M,;. The explicit forms of the amplitudes M,/ Fyp;, for the lowest
spin states are given in table 1.2. The form factors are functions of ¢? of both photons and
the invariant mass of the two-photon system. Due to Bose symmetry the form factors are
required to be symmetrical in ¢} and ¢3. Since the ¢’ dependence of helicity amplitudes
M, as g7 — 0 is already described with Born amplitudes, form factors are expected to
be constant as g — 0.

It turns out to be convenient to write the form factors F,,;, as a product of two

terms
Foos,(— &, — @) = Faus,(0,0) - f(—d},—a3) , (1.16)

where f(—q7, —q?) describes the —g? dependence and F,(0,0) the form factor value for
point like particles. Clearly, f(—g;, —¢2) is normalized to 1 as —¢? and —¢? go to zero.
Since form factors are not known from first principles, models are applied to describe —g?
dependence. In the vector meson dominance model (VMD) [11] photons are assumed to

convert into virtual vector-mesons before they interact with each other. Therefore, form
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helicity 0 0 +1 12

J? My+/Frro Moo/ Frr Mo_[(Fri — (63 — @)FrL) | Mi—/Froe
JE = JH=1)f

0+ 1 lg 0 0

2.2 ]
1= |2 — )% | 2e2 - qf)-‘%%’f %l% 0
T qu'é T -q} x

2 %WE 785 algz W2 —V2 ‘h‘hl w 1

JP = g

1+ _%-q 0 ﬂﬁ 0

w q1q2

2" —7VE 0 ~VZYAYE 2(4; — a})ve

q132

Table 1.2: Helicity amplitudes for the two photon coupling to the state
with JF spin and parity.

factors f are approximated with product of two single photon form factors. A decrease
of the single photon form factor with increasing | — ¢7|, is described with a pole curve

2 2y 1
Tt =) = GGty (L= ) (17

where the pole mass is equal to the mass of a vector meson my. Usually p meson pole is

- used (my = m,). For description of the form factor ¢ dependence also the prediction of

a leading order QCD calculation [12] or a finite size model [13] are frequently used.

We would like to study two-photon reactions where both photons are almost real.
The helicity amplitudes M, with one or both photons longitudinaly polarized are in this
case negligible compared to amplitudes of transversely polarized photons. To ensure low
g? for both photons it is necessary to require small transverse momentum of the two-
photon system as it is shown in fig. 1.2. The typical value for two-photon transverse
momenta cut is 100 MeV.
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1-1.0 r i+, v o T T r 11

2.0

[GeV3/c*]

v v 1 T | I T T T T

Qz
f—
O

I H 1 ] 1 I'I‘l i 1 I H 1 1 d l I 1 1 1

0.0 1.0 2.0 3.0 4.0
PZ [GeV?/ct]

Figure 1.2: Distribution of transverse momentum of two-photon system
versus Q% = —¢q? of the photons.

1.2  Selection Rules in Two-photon Reactions

In order to show which spin-parity states can interfere we have to find the rotation prop-
erties of a helicity amplitude M for two-photon coupling to the intermediate state with
well defined J7 (eq. 1.8). For our purpose we will use the helicity formalism [14, 15]. Since
helicity is invariant under rotations, the plane-wave state of a free photon |k;8,¢;; A;) with
helicity A; and momentum k; in an arbitrary direction (8;, ¢;) is obtained by rotation of
a free photon wave function |k; A;) with the same helicity and the momentum k; pointing
into the positive z-direction

|kifidis i) = Ryppi—0 [Ri X)- (1.18)

With Ry, 9,4 we denote a finite rotation of the photon momentum by Euler angles
&i,0i, —¢i. The two-photon state is constructed as a direct product of both photon plane-

wave functions

RBglo, —a Thid1) - RE)y, 4y 1o da) .

In the two-photon center-of-mass system where the momenta of photons point in opposite
directions, the two rotations R(!) and R(® can be replaced by a single rotation R that
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acts on both states. Denoting the first photon momentum in this system with magnitude
k and polar angles 8 and ¢ we arrive at

k065 Mdg) = Rpp-g Ik} | — kA, (1.19)

where |k A;} is a helicity function for photons moving up the 2z axis. An extra minus sign
in front of the magnitude k in the second photon helicity function is introduced due to the
convention that the second photon moves down the z axis. Since the momentum % and the
helicities Ay and A, are invariant against rotation, it i1s possible to assign definite values
to them, together with total a.nguiar momentum J and its projection J,. We construct a
wave function for two photons with well defined J, J,, k and both helicities A\;, A; as a

superposition [16] of plane-wave functions from eq. 1.19:

T 27
ki T 0 Mada) = Ny [* [ D3.5(6,6,¢) k045 0020) sind 8 dp (1.20)

where A = A; — A; and N; is a normalization factor. Using relation 1.20, one can write
elements of the transformation matrix between plane-wave functions and functions with
well defined total angular momentum J and its projection J, as:

(KOS X Xolk; T T2 Mde) = Ny 8(K' — k) x5, 8ia, Dy 5(8,6,—¢) (1.21)

The matrix elements are particularly simple in the v helicity system, with z axis along
the first photon momentum, where both polar angles §' and ¢’ are zero, and so the
rotation matrices D7 , are equal to 1. As a consequence the elements of the matrix
(K'00; Ay X | k; JJ2; A As) are just products of & functions. '

The advantage of using wave-functions with well defined helicities for each particle

(eq. 1.20) is obvious in describing the reaction @ + b — ¢ + d. The S matrix for this
reaction

(E'T'T5 0l S |BT T Aade) = §(E' — E) 8501 650, (Aeha| SY(E) [Aake)  (1.22)

. is reduced to submatrices $/(E), belonging to definite values of energy E and angular
momentum J. In the equation are E, J, J, together with the helicities A,, Ay quantum
numbers for the initial state, and similarly E', J', J!, A., Ay quantum numbers for the

final state. One can see that for parity conserving reactions
PtsSp =275 (1.23)

final states differing only in sign of helicity are equally probable if the initial particles are

unpolarized, as is the case in two-photon interactions at an ete™ collider with unpolarized
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beams. Applying the relation 1.23 to the submatrix $7(E) in the (J, J.)-representation
and using the behaviour of states with well defined helicities under inversion

P 'EJJz; AIAQ) = M2 'EJJZ; —Al — Az), (1.24)
where 7 is a phase factor, one finds
(A = Xal SY(E) | = Aa — ) = featlab(AcAa] S7(E) |Aads) (1.25)

This means that the cross section is equal for both signs of helicity.
In the helicity basis the cross section do.+¢-_o+e-x is proportional to the sum
(egs. 1.3, 1.5)
dOetem—ete-Xx X 9. P o T T, (1.26)

aa’ b
Summation indices a,a’,b,b’ indicate photon helicities. As we have already mentioned
(page 7) the off-diagonal elements of the unnormalized photon density flux matrix (eq. 1.7)
vanish in the no-tag case due to integration over the scattered electron and positron
azimuthal angles. This leads us to the incoherent summation of the T' matrix elements
for different photon helicities

A0 ot - yete—x X Zp?apg”TabIz. (1.27)
ab
Since the two-photon helicity A = a — b coincides with J,, only the interference between
states with equal J, projection can be studied in the no-tag case.
Helicity matrix elements M, for two-photon formation of states with total angular
momentum J smaller ther two-photon helicity difference |a — b| are zero:
Myo(J =0,1)=0 (1.28)
Mos(J =0)=0. (1.29)
Some further reduction of independent matrix elements can be done also due to parity
conservation. For helicity amplitudes M,;, the following behaviour under helicity-flip can
be shown [10]:
My = M_,_y for JP=0%17,2%, J*C0 | (natural states)  (1.30)
My = —M_, . for JP = U_,1+,2_,J_(_1)J,... (unnatural states) (1.31)

This leads to zero matrix element for formation of unnatural spin-parity states with two

longitudinaly polarized photons

My(JP =07,1%,27,...) = 0. (1.32)
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Different behaviour of natural and unnatural spin-parity states under helicity-flips pre-
vents an interference between states with different naturality 5. For description of an
interaction between two real photons only four terms have to be considered in a no-tag
reaction:

dogteete-x < ptpdH (T, Thy + T2 T + Tr Tyo + T, T-,).  (1.33)

Each T matrix element can be split into terms describing production of states with positive
and negative naturalities

T =Top *+Top - (1.34)

Applying the relations 1.30, 1.31 on combined terms T} T4} + T*_T._ and T} _Ty_ +
T, T_, one can see that products of T matrix elements with different naturalities cancel.
So the relation 1.33 transforms to

d0tem eremx o< pTHpH(TITHTITH 4+ TIETTI5™ 3+ TISVTISF 4 T0=—"T0=" ) (L.35)

It means that in no-tag interactions of two real photons, there is no interference between
states of different naturalities.

For real photons, some further restrictions on helicity matrix elements AM,; can be
derived from the principle of invariance under space rotation and inversion [8]. There are
four helicity functions for two real photons in their center-of-mass system, propagating in

the opposite directions along the z-axis

T = k1) =k +1)
T = k-1 |-k —1)
Ut = k41 |-k 1) (1.36)
Ut = k-1 |-k +1)

A single photon helicity function |kA) transforms under a rotation Ry around the z-axis
by an angle ¢, a rotation R, around the x-axis for 180° and a parity transformation P in

the following ways:
Rylkd) = €**k})
Ry |kA) | — kA (1.37)
PlEAY = |—k—-A)

Using these relations, two-photon eigenstates of Ry and P can be constructed from helicity
functions 1.36

P40 = k4D |-kt k-1 —k—1)
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Pt+ + ¥ gt _ - gt ov—t
Ry 1 1 e?i® e~ %
R, 1 1
P 1 -1 1 1

Table 1.3: Eigenvalues of the rotations Ry, Ry and the inversion P for
four two-photon helicity states.

UH — 07" = k41 |-k+D)—|k-1)|-k-1)
wt- = |k+1)|-k-1) (1.38)
gt = |k—1)|—k+1).

The behaviour of these states under both rotations R;, R, and inversion P is listed in
table 1.3. Ounly the function ¥+* — ¥~ can be used to describe a formation of a state
with negative parity while other three functions ¥++ 4+ ¥—— ¥+~ and ¥+ describe
a formation of a state with positive parity. From table 1.3 it is possible to see that
functions ¥*+ 4+ ¥~ and ¥** — ¥~ are both simultaneous eigenstates of B; and R,
with eigenvalue one. On the contrary, eigenvalues of intermediate states with an odd total
angular momentum J are not equal to one for both rotations R4 and R,, simultaneously.
The rotation properties of these states (J = 1,3,5,...) are described with the spherical
harmonics Yjo and therefore the sign is changed under the rotation B, for J = 1,3,5,....
So the formation of an intermediate states with an odd total angular momentum can
ounly be described with functions ¥*~ and ¥~*. Considering also that the helicity of
two photons should not exceed the total angular momentum J of the intermediate state

(eqs. 1.28, 1.29), only a small number of helicity amplitudes remains nonzero:

My (JP = 0%, 2% 4%,

) # 0 with J,=0 (1.39)
My (JF =2%,3%,4%,..) # 0

with J, = 12. (1.40)

All other matrix elements vanish.
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1.3 Decay of states with well defined J¥ into wp"

The rotation propertles for a decay of a state with well deﬁned spin-parity J into two
vector mesons, w and p°, are described by a wave function ¥% J¢ ;.- The function is written
as a sum of products between both meson spin functions |j,,m.), |j,, m,) and a spherical
function YM describing an orbital angular momentum in the wp® system

‘I'JP Je = Z: Z CJJr;!Iz L M C;wmmw' Jp mp YL].\J(G’ ¢) : ij,mw} - |jp:mp) . (1'41)

e, A Wi, ,Mp
miM=Jy Mwitmp=m

The wave function \Ilﬂ‘p" 7, is constructed by first combining the spins of the vector mesons
and subsequently adding the orbital angular momentum to obtain the total spin J. In
the equation Clebsch-Gordon coeflicients are marked with C. Angles 8 and ¢ in eq. 1.41
are polar and azimuthal angles of the w meson in the ¢ helicity system. The system lies
in the 4y center-of-mass, having the z axis along one of the photons.

The p® meson is a spin one particle with negative parity. At its dominant decay
into two spinless pions its total angular momentum coincides with the orbital angular
momentum of the two pions in the p” rest frame. Therefore, the p° spin function |3,,m,)
is represented by the spherical function ¥"*(6,, ¢,)

]jm'mp) = Ylmp(am ¢’p) . (1'42)

The angles 8, and ¢, define the direction of #* in the p" center-of-mass system where
coordinate axes are paralle]l to the axes in the 4y helicity system.

The w meson is also a spin one particle with negative parity and so represented by a
vector. For its dominant decay into three pions the wave function is written as a product
of a spatial function with intrinsic functions of all three pions. Since pions are spinless
particles with negative intrinsic parity, the spatial function corresponds to an axial vector
with J& = 1%, There is only one independent axial vector that can be formed from
the pion momenta in the w rest system, namely a cross product of two pion momenta.

~ Therefore, the w spin function is written as

(ﬁ.-r"' X ﬁ?r_)

|j“’) = N T 1= —
|p‘n'+ X pwr—l

=N-#A (1.43)

where 7 is the unit vector normal to the decay plane in the w rest frame. The constant

N is obtained from normalization of the spin function. By using the helicity basis vectors

1 1 0 -
_‘+ == ) 3 E_ - —1 ’ _‘0 = 0 (144)
1
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we arrive at the helicity representation of the spin function
liormu) = N &+ &y = Y™ (01, ) (1.45)

where 6,,, ¢,, denote the angles of the vector 7.

Both vector mesons w and p are short lived particles with a finite width of mass

distribution. To describe their mass distributions, we factorize the decay matrix element
D; (R — X)

: -1
Dy (R— ntrata%z") = M(p° — ntn7) [mf, — 837 — impI‘p]
-1
M(w — 7t 7%17) [mf, — 83 — imwl",,,] M(R — pow)‘ (1.46)

into the matrix element describing production of w and p° M(R — p°w), elements for
their decays M(p° — nt7~), M(w — wt7%~) and relativistic propagators of both vector
mesons [17, 18]. In the equation above s;, and s3, denote squares of 7*7~ and n¥ 7%~
invariant mass, respectively.

The decay matrix element M{p® — nt7~) linearly depends on the p® meson polar-
ization vector e. As the matrix element has to be Lorentz invariant, £ occurs in a scalar
product with pion four-momenta. Due to gauge invariance (p,+ + pr-) - € = 0, only one

coupling constant G,xr is needed to describe the matrix element M(p° — ntx")
M(Po — 77T7) = Gprr €4 (ot — Pr= ) = 2 Gorr €+ Pt . (147)

where the last expression is valid only in the p° meson center-of-mass system. For the
polarization ¢ describing a p° meson with well defined spin projection m,, the above
relation leads us to the same angular distribution as it is described with the p® spin
function [j,, m,)

M(p° = 7t 17) = 2 Gurr Det 90y m,) - (1.48)

Applying the Fermi golden rule, we arrive at the partial width for the p° decay into two

pions

1 g Pu (1.49)
6r T /Sax ’ ’

This enables us to express the decay matrix element M(p® — wtx~) with the partial
width T,(s° — 2r)

mPFP(PO - 2r) =

M(p® - =atx7) = 2V6x

V/S2x .
L o i) (160
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Combining the decay matrix element M{p® — w*x~) with the p® propagator, we arrive
at the relativistic Breit-Wigner amplitude

r I\/mpFP(PO—’z"’r) .\‘/-52_1 (1.51)

BW — (M2 — 89 —im,T,)  /Par

where the angular distribution |j,,m,) and some numerical factors are omitted. Since the
p° meson is a broad resonance with nominal mass m, = 768 MeV and width T', = 149
MeV [19], the #7x~ invariant mass distribution deviates from the one obtained from the
relativistic Breit-Wigner amplitude A%;,. The disagreement can be removed by intro-
ducing the width dependence on the two-pion invariant mass [20, 18]

_ 2 \3/2 ,
2 4m’*) T (1.52)

Nz

The decay matrix element for the w decay into three pions M{w -» 37) is obtained

Iyfe) = Tyt (

2 _ 2
m? 4 m?

in a similar way as the one for the p° decay. The negative C-parity of the w requires an odd
relative orbital angular momentum for the #¥ 7~ pair, while parity and angular momentum
conservations require the same for orbital angular momentum between #° and the x+= =
pair. So, the decay matrix element is described by multiplying the antisymmetric tensor

€apvs With the polarization vector of the w meson and the momenta of all three pions [18]
M(w — 775%7) = Guax Ea‘g,}.gpz+pf_op‘;_ e = GuaA € 7. (1.53)
The last expression is valid only in the w meson center-of-mass system, where A equals to
A= |Ext(Pro X Pr-) + Exo(fa- X Prt) + Er- (Pt X Po)| (1.54)

and 7 is a unit vector normal to the three-pion decay plane. In the product €. % one
can recognize spin functions |j,,m,} from eq. 1.45. It turns out that the assumption of
a constant Ga, is in good agreement with the measured Dalitz plot for the w decay into
three pions [21]. That leads us to a relativistic Breit-Wigner amplitude

Gw37r A

r(m2 — 53, —im,I,)

EW = ’ (155)
obtained by combining the matrix element M(w — x¥x°r~) and the w propagator, also
here the angular distribution is omitted. Due to the narrowness of the w resonance, the
width Iy, can be taken as constant.

Finally, we can express the decay matrix element D, introduced in the eq. 1.8.

Because the pions with the same charge are identical bosons with spin zero, the matrix
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element is symmetrical against the interchange of two like-sign pions. Taking into account
this symmetry property we obtain by adding up all the pion permutations P;, the following
expression for the decay matrix element D

IR0 p L j
pr - ( ‘EWABW‘I,JP J,)

w i Lj
‘|‘( swAswY,F ;5

+ ( "éwApBw‘I’,[ij J,)

+ (Apw A ¥,

+

(wi" w;nuw;' 7, ) (w;"lr; LAE A

)(w?w:w"r: ) ) AR A

4
= Z( swAzw U5 J,) (1.56)
=1

P,‘(‘u‘i" rz_w“'rr;" )

It is assumed that the matrix element M(R — p%) describing the production of vector

mesons w and p°, does not depend on the two and three-pions invariant masses.

1.4 Decay of the two-photon state into a
atrtadn—7~ final state

In addition to the wp® production, five pion final states are accessible in two-photon

interactions also through other channels. In our analysis we include incoherent contri-

butions of wrtx~, p’7z 771 and ntata%r 7~ uniformly distributed in phase space.

This assumption is unphysical for the wa™n~ channel, where requirement of odd two-
pion orbital angular momentum, due to C-parity conservation, forbids isotropic angular

distributions [3]. However, it will be shown later (chapter 6) that contributions of wa+x™,

P’ x% and 7t ntar 7~ channels are well separated from wp® due to different distri-

0

butions of 7¥7~ and x*#x~#° invariant mass. Adding up all the pion permutations, the

decay matrix elements for all three channels are

4

Dunr‘l'qr— = Z('A’%W)P[(W;I-W;Tﬂﬂ':ﬂ;) (1.57)
=1
4

Dpar"'rr“:ro =Z(APBW)P;(W;|'W;N°W;W;] (158)
=1

Drt ot aoz-n- = L (1.59)

The notation corresponds to the one in eq. 1.56.
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1.5 Decay of a two-photon state into vector mesons

p’¢ and we

Beside the partial wave analysis of the five-pion final state, also a study of the two-
photon production of vector meson pairs p°¢ and w¢ will be presented. Both reactions
are analysed by using the dominant decay mode of each vector meson, so the final states
for reactions 7y — 0% and 1y — w¢ are 7tr" K+t K~ and 7#tr~7°Kt K, respectively.
Due to very few events observed, for neither of the two reaction the partial wave analysis
could be performed. Therefore, a uniform, phase space distribution of p°¢ and w¢ is
used. Since particles in the final state are not identical, the decay matrix elements are

not symmetrized:

Doy = Aby Aby (1.60)
Dwé = EW A?;w’ (1-61)

where the Breit-Wigner amplitude .A%W for ¢ is of the same form as for the p meson,
except for the width that we take as constant.



Chapter 2

The ARGUS Detector

The ARGUS detector [22] is a solencidal magnetic spectrometer (fig. 2.1), assembled in
the south interaction region of DORIS e*e™ storage ring {23]. The detector provides
momentum measurements of charged particles, their identification and measurements of
neutral particle direction and energy. It covers over 90 % of the full solid angle. In
a magnetic field of 0.8 T [24] inside solenoidal magnet coils are installed a vertex drift
chamber [25], 2 main drift chamber [26], time-of-flight counters [27] and an electromag-
netic calorimeter [28, 29]. Further outwards follow an iron flux return yoke and three
layers of proportional tubes [30] serving for muon identification. Most hadrons are ab-
sorbed in the electromagnetic calorimeter, magnet coils or in the flux return yoke before
they reach the proportional tubes, the so called muon chambers. Around the beam tube
are placed compensation coils shielding mini-beta quadrupoles from the detector’s longi-
tudinal magnetic field. The two mini-beta quadrupoles focus the beams on the interaction

point. A luminosity of up to 2 - 10%cm~2s~! is achieved.

2.1 Main Detector Components

The vertex drift chamber is a 1m long cylindrical chamber, with inner and outer radii of
50 and 140mm, respectively. All wires, i.e. 594 sense and 1412 field wires, are parallel to
the chamber axis, hence the coordinate in the beam direction is not measured. They are
arranged in a close-packed hexagonal cell pattern. The spatial resolution of the vertex
drift chamber is about 90 um.

The main drift chamber represents the central track detector of ARGUS. Its length
equals to 2m, inner radious to 15 cm and outer radious to 85cm. The chamber contains
5940 sense wires and 24588 potential wires arranged in 36 concentric layers of 18.0 mm
x 18.8 mm large drift cells. The spatial resolution of around 190 um reflects in a good

21
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Figure 2.1: The ARGUS detector
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resolution of transverse momentum o(pr)/pr = \/0.012 + (0.009 pr[GeV/c])? . Tilted
sense wires in every second layer allow a determination of the track coordinates along the
beam direction. The chamber is filled with the gas mixture of 97% propane, 3% methylal

and 0.2% H,O. This results in a good resolution in the measurement of specific jonization,
o(dE/dz)/(dE/dz) ~ 5% for charged hadrons.

The time-offlight counters, made of 20mm thick NE110 scintillator, are tightly
packed between the main drift chamber and the calorimeter modules. Each of the 64
barrel counters is read out by two photomultipliers while, due to the geometric restrictions,
the 2x48 endcap counters are read out from one end only. The time resolution of the
time-of-flight system for hadrons is 220 ps (r.m.s.).

The electromagnetic calorimeter consists of 1760 modules arranged into two hemi-
spheres with 10 rings of 64 modules in the barrel region and 5 concentric rings containing
64, 56, 48, 40 and 32 modules in the endcap region. The modules are of the lead-scintillator
sandwich type, with alternating layers of 5 mm scintillator and 1 mm lead in the barrel
modules, while lead layers in the endcap region are 1.5 mm thick. The overall depth of each
module corresponds to 12.5 radiation lengths, and its width to 1.0 (0.9) Moliere radius for
the barrel (endcap) modules. In the calorimeter, only electron and photon energy can pre-
cisely be measured. The energy resolution achieved is og/E = \/ 0.0722 + 0.0652/ E[GeV]

in the barrel part of the detector and oz /E = \/0.0752 + 0.0762/E[GeV] in the endcap
parts. The photon production angle derived from center-of-energy of the shower is mea-

sured with precision of ¢ = 13 mrad and ¢ = 10 mrad in the barrel and endcap regions,
respectively.

The muon chambers consist of 1744 proportional tubes arranged in three layers,
one inside the iron yoke and two outside. Only muons with momentum greater than
1.1 GeV/c can penetrate the iron yoke and produce signals in the outer layers. The
momentum cutoff for the inner chambers is only 0.7 GeV/c. The muon chambers operate

with a gas mixture of 92% argon and 8% propane.

2.2 The Trigger System

The first level trigger relies entirely on fast scintillator counters, the time-of-flight counters
and the electromagnetic calorimeter. It is followed by a slower second level trigger system
called Little Track Finder (LTF}. The LTF microprocessor searches for charged tracks in
the main drift chamber, covering a pattern of hit wires with predefined track masks {31].
If a number of found tracks exceeds the required threshold, the event is selected and read
out. The on-line computer PDP 11/45 receives the event data from a CAMAC system
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and transfers them on an event-by-event basis to the VAX 11/780, which stores the data
on a disc unit. After extracting monitoring information, the VAX 11/780 sends the data
to the IBM main computer.

The event is accepted if one of the following trigger conditions is fulfilled:
ETOT: The Total Energy Trigger requires that the sum of the energies deposited in ei-
ther calorimeter hemisphere exceeds 0.7 GeV. This is the only trigger applying the endcap
calorimeter modules.
HESH: The High Energy Shower trigger requires the deposited energy in a single HESH
group of modules to exceed 1 GeV. Each of 16 HESH groups contains barrel modules of
the same hemisphere covering about 70° in the azimuth. In addition the LTF processor
has to find at least one charged track.
CPPT: The Charged Particle Pre-Trigger is designed to trigger on events with several
charged particles. At least one charged track has to be found in each hemisphere. On
the pretrigger level a track is defined as a coincidence between signals coming from time-
of-flight counters and calorimeter modules of the same CPPT group. Each CPPT group
consists of 6 time-of-flight counters in the barrel region and 6§ x 10 calorimeter modules
lying behind them in the same hemisphere. Also the L'TF processor has to find at least
two charged tracks in the main drift chamber.
CMT: The Coincidence Matrix Trigger uses the same groups as CPPT trigger to rec-
ognize charged track. Instead of crossing different hemispheres, tracks are required to
produce signals in two groups separated by more than 90° in the azimuthal angle. Also
in this case the LTF processor is required to recognize two charged tracks.
COSMIC: The Cosmic Ray Trigger is a test trigger. It searches for cosmic muons Te-
quiring a coincidence between two opposite groups of four barrel time-of-flight counters.
RANDOM: The Random Trigger is the second test trigger. It gives a random gate to
read out electronics at a predefined average rate of, normally 0.1 Hz. During data acqui-
sition it is usually switched on in order to record events needed for off-line estimation of

noise in the detector.

" The first four triggers have to be in coincidence with the bunch-crossing signal.

2.3 Identification of Charged Particles

Charged particle identification is based on two independent methods. Electrons, muons,
pions, kaons and protons can be identified by measuring their specific energy loss dE/dz

due to ionization in the drift chamber gas. Measurementis of the time-of-flight (TOF)
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together with the information on momentum from the drift chamber, allows the recon-
struction of particle’s mass. For both methods we compare the measured values with
values calculated for each particle hypothesis. The calculations base on measured particle
momenta. For measured energy loss dE/dz the difference x?(dE/dz) is calculated as

(dE/dz — dE/dzh)?

2
x;(dE/dz) =
CiE/ds Tt Tin

(i=e p, 7, K, p) (2.1)

where dE/dz!" is the specific energy loss calculated for the i-th particle hypothesis. o3, is
the uncertainty of the calculated dE/dz value introduced by the momenfum uncertainty
while a3, /dz 18 the uncertainty of the specific ionization measurements. Analogously, the
x?(TOF) is calculated by comparing the measured particle velocity 8 with predicted ones
g |
(1/8 — 1/B*)

2

2
x*(TOF) =
( ) o%or + o5,

(2.2)

Here oror and oy, are the uncertainties of measured and expected velocities, respec-
tively. The x?(dE/dz) and the x}(TOF) are added up to give a single charged particle
identification x?

Xi = xi(dE/dz) + xi(TOF}) . (2.3)

If one of both measurements, dE/dz or TOF, is not performed well, only the other is used
for particle identification. In case of no signal in the muon chambers, the x? for muons
is increased proportionally to the probability that a track treated as a muon, reaches the
muon chambers. From dE/dz and TOF measurements we calculate the probability L?

for particular mass hypotheses m;
12 = cop(—x3/2) (2.0

In addition to dE/dz and TOF measurements, there are two further independent
methods for lepton identification. Electrons with momenta greater than 400 MeV/c can
be separated from other charged particles using the information from the calorimeter.
In contrast to other charged particles, electrons deposit in the calorimeter almost all
energy. It 1s spread only among modules that surround the impact point. This property
is used to calculate the probability P, that the particle is an electron. The calculation is
described in details in reference [32]. Since electrons with momenta above 400 MeV /c can
be unambiguously identified only by the information from the calorimeter, the likelihood

function for such particles L, equals to P,

L. = P. (p>400MeV/c). (2.5)
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Also other four functions L; have to be redefined

1- P
- 'L:') 1= y T, K:p 2.6
Son Lt (i=p ) (2.6)

where L? denotes likelihood functions obtained from dE/dz and TOF measurements
(eq. 2.4).

Muons deposit in the calorimeter only a small fraction of their energy. It is concen-

L,

trated in even narrower clusters as they are observed for electrons. The three layers of
muon chambers are important for muon identification. Positions of hits in these chambers
are compared with the impact point of extrapolated track from the drift chamber. All
this information including the energy loss dE/dz in the drift chamber is applied in the
calculation of muon probability P, [33]. In case of signal in the muon chambers P, > 0,
the likelihood functions L; are introduced as

L,=P, (£ > 0)

1-P, .
L] i=e, T, K, p 2.7
S B (imem KD (27)

while a relative normalization between different identification methods is even more com-
plicated if both probabilities, P. and P,, are used for particle identification

L =

1-(1—P)(1—P,)

L; = P (i=e
P 1P, (i=e, p)
(1—P)(1-P,) . |
L; = I8 (j=m, K, p). 2.8
E) Ek:ﬁe,p Lz k) (J P) ( )

From the likelihood functions L; we construct normalized probabilities A; for par-
ticular mass hypotheses m; _
I.Ll_
i = el B
Zk:e,p,w,}'{,pw Lk

(2.9)

where the w' are a priori known average particle abundances. The relative rates for
- particle production typically used at ARGUS are w® : w* : w™: w® : w? = 1:1:5
: 1: 1. A track is considered to be consistent with a certain mass hypothesis m;, if the

probability A; for the same hypothesis exceeds 1 %.
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Monte Carlo Simulation

To determine the cross section of any process, it is crucial to know the detector acceptance
and its dependence on the measured quantities. As the acceptance for the detectors used
in high energy physics cannot be calculated analytically, a numerical calculation, based
on the Monte Carlo method, is applied. The Monte Carlo method is used to describe
two-photon interactions using eq. 1.3, behaviour of particles traversing various detector
components, the triggering system, and finally also the reconstruction and selection of
events. This will be the subject of the following sections.

3.1 Event Generation

We are interested in reactions ete™ — ete 7y — ete”X (fig. 1.1), in which the two
photons are almost real. Therefore, the no-tag luminosity formula of eq. 1.12 will be
used. Using the explicit form of the phase-space factor for the scattered electron and

positron (7], we arrive at

aL — o’ . [(qIQ2)2 - ngg]1/2 .5 P++P++
d(—qi)d(—gi)dwidwadd  87¢iqs [(pyp,)? — m2mZP? T 71 7

(3.1)

where s is the square of the e*e™ center of mass energy. Since the incoming electrons and
positrons are unpolarized, only five variables are independent. As a set of independent
variables we choose the invariant mass of both photons —¢? and —gZ, their energies w;,

wy and the angle between the et and e~ scattering planes ¢.

Due to strong dependence of the luminosity function on —¢? and energy w; (see
fig. 3.1), a standard hit or miss Monte Carlo method is highly inefficient. To improve the
Monte Carlo efficiency, a new set of variables is introduced, so that the luminosity function
would be as flat as possible with respect to the new variables. As we see from the —g?

27
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Figure 3.1: Luminosity function as a function of photon invariant mass
Q% = —¢? (left) and photon energy w; {right)

and w; distributions of the luminosity function in fig. 3.1, they can be well approximated

with a distribution
dN _n

dz @

where z stands for —¢? or w;. The optimum value for r is obtained by fitting distributions

in fig. 3.1, and n is a normalization factor. Due to the simple form of the distribution 3.2
one can find a new variable y so that the relation

dN

dy

(3.2)

1 (3-3)

is fulfilled. The variable y lies between ( and 1. Since differential dN is equal in both
eqs. 3.2 and 3.3, the variable y is obtained by integrating both sides of the relation

dy = T ie . (3.4)
2:"
For r # 1 we arrive at the expression
2" — Ty
Y oo 9

where 2.,;, and @4, are boundary values of the old variable z. By inverting the upper

relation and introducing the boundary values for w; and —gq}, the old set of variables is
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expressed with the new one (u;, v; i=1,2) as

1
- q|2 = [ (_qu_n)1—rq + ( (—qzr:ﬂ.:l':)l—’ﬂ‘i - (_qrzm'n)l_rq ) Ui ] T (36)
1
w; = [waln?:;” + (Wi — Wpn® ) - s ] s (3.7)

The optimal values for r, and r, are 1.005 and 0.98, respectively. There is no need to
replace the variable ¢ since the luminosity function depends only slightly on this variable.
The differential luminosity function is written with the new variables as a product

dL _ dL 7
du1 d‘l.l'.g d’Ul d’Ug d¢ - d( - q12) d( — q% )dw1 d&)z d¢

(3.8)

where the Jacobian determinant J is given for this substitution as

8(=a}) B(=g3) Ouwn By _

J - au’l auz a'Ul B'U2
2 1-r 2 3l1-r 1—r 1—ry
~ maz - ~min 12w aa:w — Whin 2 r T Fu, Tuw .
| : ! 1 —'r( ) = g |- (=gl (—gd) wivwy (3.9)
q W

The maximal energy of each photon w,,., depends on the beam energy Ep
Wmaez = EB — Mg (3.10)

while the minimum energy wp,y, is related to a two-photon invariant mass W, calculated

from the four momenta of both photons g; and ¢,
W1 ={(a+e). (3.11)

The invariant mass W.,, in two-photon interactions is distributed between the threshold

energy W, min for production of a final state X and the kinematical limit at
Wy maz = 2(Eg — m.). (3.12)

Using the relation 3.11 one can obtain from the threshold energy W.., ;in the minimum

photon energy
w2 .
min — e JL TR . 313
“min = 4(Ep — me) (313)

The invariant mass of each photon —¢? is greater than

Wi
2 = o (3.14)

— Gyin es(s—WZ )

4y min
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and smaller than
- qrzna:r = (2EB)2 - (3'15)

In the single photon plane defined with u; and v;, there are also unphysical regions where
the photon momentum is greater than the momentum of impact electron or positron. To
reject these cases it is sufficient to require cosine of the scattered electron and positron to
lie between —1 and 1.

For the calculation of the two-photon cross section o.._,x we have to calculate the
differential luminosity function dL/dW., as a function of the two-photon invariant mass
W,,. It is obtained by numerical integration of eq. 3.8. All variables uy, us, vy, va, @
are uniformly generated as it is required for event generation. Number of trails N; with
W, inside the i-th W.,, interval is obtained by the hit or miss method by comparing the
values of the luminosity function for generated variables with its maximal value f... An
integral of the luminosity function over the i-th W, interval is a product of the ratio
N;/N between accepted N; and all generated events N with its maximal function value
finaz and a generation volume V

& Wyy

/-+ dL
_ A W'T"f d‘W‘TT

2

=2

(We, + W)W =V« finas (3.16)

'ﬁ ’

where W) and AW,, denote the center value and the width of the i-th interval, re-
spectively. For independent variables, the volume V equals to a product of all variable
intervals. In our case V = 2x. Dividing the above relation by the interval width AW..,,
we approximate the differential two-photon luminosity function

dL N, 1
aw., N AW,

(W’;T) =V. fma:::

(3.17)

The function dL/dW,, is shown in fig. 3.2. In a similar way we find also a projection of
the luminosity function on two-photon transverse momentum pr (fig. 3.3). Sharp peaking
of this projection at low values of transverse momentum is essential for the analysis of

interactions between two almost real photons.

Once the kinematical variables describing the scattered leptons and the momentum
of the two-photon center-of-mass system are calculated, the event generation continues
with a simulation of two-photon reaction. To describe this part of the interaction ete™ —
ete~X we use the expressions, needed for the two-photon cross sections o,_x, from
chapter 1. Matrix elements M., listed in table 1.2 and form factors (eq. 1.17) predicted
by the VMD model are used to describe two-photon formation of a state with well defined
JP. To describe the formation of intermediate states where no exact J” is required, we

use a dependence on photon g? predicted by the VMD form factors. The matrix elements



3.1. EVENT GENERATION 31
- O . 1 5 7 T L A T T T T T T
> 0.10
=i
o
3
o
cl:?\;9 0.05
0.0 L ' —
1.0 1.5 2.0 2.5 3.0 3.5
W, [GeV]
Figure 3.2: The differential two-photon luminosity function obtained by
numerical integration. The beam energy is Eg = 5.2 GeV.
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Figure 3.3: Projection of two-photon luminosity function on the trans-

verse momenturn pr of the two-photon system.
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M, are neither calculated from the first principles nor experimentally determined, so
one should find out how much the acceptance calculation really depends on the matrix
elements M,, applied. To find this out, the acceptance has been determined also for a
constant matrix element M,,. In comparison with acceptance calculated with M, as

suggested in chapter 1, the difference is found to be negligible (chapter 6).

The decay of the intermediate state is generated according to the phase space of
final state particles weighted by the square of the decay matrix elements D explained in
chapter 1. The exact expressions for the square of the wp® decay matrix elements are

given in appendix A. For the simulation of the decay the "hit or miss” method is applied.

3.2 Detector and Trigger Simulation

Particles produced by the event generator are traced through the detector components
shown in fig. 2.1. For detector simulation, the program SIMARG [34] is used as a frame.
It is based on the program GEANT [35] that constitutes a framework for handling detec-
for geometry and particle tracking. The energy loss along tracks of charged particles is
generated according to a truncated Landau distribution [36] in all detector components
except in the drift chambers where the spectrum measured in the chamber prototype,
is used instead. The electromagnetic interactions are described by using the EGS pro-
gram package {37] while hadronic interactions with the detector material are generated
by routins from the program GHEISHA [38]. The simulation of drift times in the cham-
bers is made according to measured drift time-space relations. New particles, obtained
as a result of an interaction in the detector or a particle decay, are treated in the same
way as the original ones. Finally, the deposited energies and measured times in detector
components are converted to a digital form and stored using the same format as at the

data acquisition.

The SIMARG output serves as the input for event reconstruction. The same pro-
gram is used for the reconstruction of Monte Carlo events as it is used for measured
- events. Passing the simulated events through the same preselection criteria and analysis
cuts as experimental data enables us to calculate the detector acceptance and resolution

of physically interesting measured quantities.

In the case of two-photon interactions, where events have typically low multiplicity,
it is in addition to detector acceptance crucial to determine the efficiency of the trigger.
To study the efficiency we choose two-prong reactions that are the most sensitive to trigger
conditions [39]. From this sample Bhabha tracks are excluded. The trigger simulation
is divided into several periods of stable triggering conditions. The stability of triggering
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system can be estimated from acceptance uncorrected cross section of two-prong reactions
presented as a function of run number. For each trigger period we determine thresholds,
trigger logic and efficiencies of irigger components. These quantities are obtained from
the experimental data and taken as an input for a trigger simulation. The simulated
trigger efficiencies have been compared with trigger efficiencies deduced directly from the
measured data in the following way. In the transition T(25) — T(18)r*#~ followed by
T(15) — e*e™ the trigger conditions are almost always fulfiled, due to the high energy
of both leptons (ETOT trigger section 2.2). The ratio between events where pions alone
had also set a trigger and all events with ETOT set has been compared with trigger
efficiency for Monte Carlo events of the same T(25) transition followed by T(15) decays
to noninteracting particles. The two trigger efficiencies agree within statistical error. For
the two-photon collisions with 27t27~ 7% in the final state, the systematic error of the
trigger simulation is estimated to amount fo 5% [22].

3.3 Experimental Resolution

For the partial wave analysis, it is essential to determine the experimental resolution of
all quantities used as an argument of the decay matrix element. In the case of the five
pion final state these are invariant masses of 77~ and #t7~#° combinations as well as
all polar angles used in the wave function \Ilgpj s, (eq. 1.41). The generated and measured
values of these parameters are collected in vectors { and (', respectively. The difference
between both vectors A is expected to be distributed normally

etV e e[ S(AC-BOFVAC-RD)],  (319)

where V is the covariance matrix and A{ the bias of ¢/. K is the number of variables.

p(AC) =

Due to one-to-one correspondence between quantities that correspond to different pion
permutations (eq. 1.56), we have to find only a covariance matrix for the quantities of
one of the pion permutations. In this case, the number of variables K amounts to 8. The
elements of the covariance matrix V are determined from simulation, where both values,

generated and reconstructed, are known for all variables

Vii= 2 2 (G = (G- Gl — AG-AG. (3.19)

n=1

The summation is performed over all accepted simulated events. We have assumed the

covariance matrix V to be constant inside the two-photon invariant mass intervals used
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in our further analysis. Resolutions, i.e. square roots of the diagonal elements of V are

listed in table 3.1.

Resolution o

Mybrg= | Myt o A cos(8) | cos(8,) | cos(8,) | ¢— o | ¢ — ¢,

[GeV] | [GeV] |[GeV ?

0.010 0.024 0.0020 | 0.026 | 0.038 | 0.020 | 0.078 | 0.044

Table 3.1: Experimental resolution of quantities used in partial wave
analysis of five pions final state for W, interval between 1.4 and 1.8
GeV.



Chapter 4

Event Selection

4.1 Data selection for the nt7 #°nTr~ final state

The data sample used for this analysis represents an integrated luminosity of 472.7 pb~? at
an average et e center-of-mass energy of 10.2 GeV. Since in interactions of two almost real
photons both scattered leptons mostly escape detection, we require exactly four charge
tracks pointing to the main vertex. The charged tracks have to be consistent with the
pion mass hypothesis, i.e. their probabilities for being pions A, (eq. 2.9) should exceed
1%. We further reduce the probability of misintepretation of pions as electrons or muons
by taking advantage of probabilities P, and P, introduced in section 2.3. Both quantities
are required to be less than 10 %.

The neutral pion is obtained as a two-photon combination, where photons are taken
as showers in the calorimeter unconnected with any charged track from the drift chamber.
For this we use only showers not recognized as calorimeter noise. To construct neutral
plons we use also converted photons, obtained as ete™ pairs with invariant masses less
than 30 MeV and opening angles between both leptons cosf > 0.98. Due to different
energy resolution for converted photons and photons obtained from calorimeter showers,
also requirements on the neutral pion invariant mass depend on the pion construction.
The pair with both photons detected as unconnected showers is considered as neutral
pion if the two-photon invariant mass lies between 70 MeV and 200 MeV. The maximum
difference between pion nominal mass and invariant mass of pairs with one converted
photon is 50 MeV and it is only 40 MeV for pairs with both photons converted.

Beside the selected four charged pions no other charged track is allowed to originate
from a common vertex at the interaction point. Also neutral particles identified with
a secondary vertex as K, A or converted photons which are not used for neutral pion

selection, are not allowed in the events. But it is possible to find additional unconnected

35
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showers due to noise or particle interactions in the calorimeter, although no real photon
is expected beside the ones from the neutral pion.

Noise in the calorimeter can be classified in three categories: hot showers, low energy
noise and high energy noise.

Hot showers are modules of the calorimeter, which in a certain period almost con-
stantly respond as being hit. These periods are determined from unbiased measured data.
A repetition of five hits in the same module, separated by not more than 10 events rep-
resent the minimal condition for a module to be considered as "hot”. This criterion is
found to be very safe. An average separation between two successive hits is less than four.
In order to reduce the number of periods we combine them in a single one, if they are
separated by less than 500 events.

The low energy noise is studied with randomly triggered events, where no showers
in the calorimeter are expected due to real photons or charged particles. This data sample
is used to obtain an upper limit of noise energy in each module. Values are determined
so that the number of noise hits with energy above the chosen values are equal in all
modules. The energy limits are calculated for several running periods. The length of each
period depends on the number of randomly triggered events recorded during data taking.
The allowed number of noise hits with energy above the obtained upper limits is 2-107°
hits per module per event.

In order to recognize the high energy noise in the calorimeter it is erucial that noisy
modules are separated from cach other and from other hit modules. It was found from
studies on measured data with well identified photons that, for example, less than 5 %
of all photons with energy between 350 and 360 MeV hit just one module. This fraction
is even lower for photons with higher energy. Therefore, five pion events are selected
despite additional unconnected showers with energy above 350 MeV and cluster size of
one module. Such showers are, in contrary to hot showers and low energy noise, used for

neutral pion construction.

Additional unconnected showers can also be produced by interactions of final state
- particles in the calorimeter. Such showers are called fake photons. In the neighbourhood
of a charged particle shower further showers can appear due to “shower splitting”. In
the case of leptons this is mainly caused by dead modules at the particle impact point
X, or insufficient energy deposition in some modules. For hadrons, shower splitting can
also appear due to charge exchange interactions, where neutrons and neutral pions are
produced. So, unconnected showers due to shower splitting, are spread wider around
hadron than around lepton impact points (fig. 4.1). This leads also to different criteria

for fake photons connected to hadrons and fake photons connected to leptons. The cosine
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Figure 4.1: Distribution (dp/dcosf,,) of photons according to cosine of
opening angle between photon momenta and impact point position of
a) - electrons and b) - pions in the calorimeter. The distributions are
obtained by Monte Carlo simulation,

of opening angle cosf,, between unconnected shower and charge particle impact point
X, is therefore required to be greater than 0.9 for fake photons in the case of leptons
and greater than 0.8 for hadrons. Due to a very broad region in the case of hadrons, we
additionally require also that total energy E,; deposited in this part of the calorimeter
should not exceed the hadron energy E, for more than 250 McV

En = (B + Y. E, < E, + 250MeV (41

cosfl,;>0.8

where (E, ), is the energy of the shower corresponding to charged hadron. The shift of
250 MeV is obtained from Monte Carlo studies of hadron behaviour in the calorimeter

(fig. 4.2). By this criterion less than 0.1 % of simulated pions are lost.

Additional photons can appear in events also when neutral pions produced at in-
teractions of charge hadrons in the calorimeter scatter back into the drift chamber. In
order to recognize such photons we try to reconstruct neutral pions from photon pairs
considering the charged hadron impact points as an origin of photon pairs. A two-photon
invariant mass is required to lie between 90 and 180 MeV. The interval is narrower than

the one used for the selected neutral pion because background coming from two-photon
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Figure 4.2: The correlation between pion energy E, and deposited en-
ergy E,, in the part of the calorimeter with cosine of opening angle
around pion impact point greater than 0.8. The unconnected showers
within this area are treated as fake photons only if the energy E,; lies
below the shown line. The correlation is obtained from simulation of the
five pion final state in two-photon interactions.

interactions with more neutral pions in the final state should be kept low. The neutral

pion energy E,o has to be smaller than undetected energy F, at hadron impact point

Ew < Ey, = E, — (E))an — Y, E, + 250MeV (4.2)

coslyp>0.8

even further reducing the background.

In interactions of hadrons in the calorimeter also neutrons can be scattered back
into the detector volume. Unfortunately, neutron showers are hard to separate from
photon showers and even harder from overlapped showers of photons coming from the

same neutral pion. In order to identify neutrons, a lateral function f.; {40]

Efal
Ei+ Ey + B

flat = (4.3)

has to be mmtroduced. E, and F; are the highest two energy deposited in the single module
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of the studied -shower, while £, labels the second moment

- E,' 1'?
Epoe = Z<A—r>2 ’ (4.4)

i=3
where r; is a distance of i-th module from the shower center-of-energy and < Az > is the
average distance between two modules. In average, neutrons have higher lateral function
than photons while their energy inside showers is distributed usually more uniformly than
the energy of photons. In photon showers, most of the energy is deposited in modules
along the photon line, so that the lateral function depends on polar angle of the photon
momentum. Using measured data with well identified photons, an envelope fi.(maz),
determined by requiring that 95 % of all photons have a lower value of lateral function,
is found as a function of polar angle [41] (table 4.1). Values fioi(maz) from table 4.1

ringnumber | 1 | 2 | 3[4 |5 | 6|78
frat(maz)[%)] || 21 | 21 [ 21 |23 |29 | 35 [ 40 | 44

9 [10)11)12 |13 |14 |15
40 | 25 | 55 [ 58 | 54 | 43 | 38

Table 4.1: The envelope value fi,,(maz), given as a function of calorime-
ter ring number Np. In both hemispheres ring numbers increase from a
detector equator Ny = 1 towards the beam tube Np = 15.

are used as a lower boundary for lateral functions of unconnected showers recognized as
neutrons. In addition, a total shower energy F, of a neutron candidate should not exceed
the maximal undetected energy E,, in the event

E, < ma.:qc{ (E.):} — 200 MeV (4.5)

=1,

where ¢ runs over all charged pions. An energy shift of —200 MeV is obtained from a
simulation with neutrons in the final state applying the same method as for the shift at
charged pions (fig. 4.2). Only in some energy regions it is possible to separate neutrons
from overlapped showers of photons coming from the same neutral pion. The majority
of neutral pions with energy between 1.5 GeV and 2.5 GeV produce showers with lateral
function above the values listed in table 4.1 [41]. Since there is no other way to distinguish
these showers from showers of neutrons, the neutron candidates from the above energy

region are not treated as fake photons.

In the analysis we use three kinematic criteria. The first criterion is the already
mentioned cut on two-photon transverse momentum pr (section 1.1). We require the total

transverse momentum of all five selected pions to be smaller than pr < 60MeV. The
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second criterion is derived from momentum conservation of all particles involved in the
studied reaction, including undetected leptons. Since incoming electron and positron have
opposite momenta (fig. 1.1), particles produced at studied interaction ete™ — ete™5x
have a vanishing total momentum and energy equal to e* e~ center-of-mass energy E.+.- =
2. Ep, so that the four-vector of the system amounts to pe+e— = (0, Eo+-). In the no-tag
analysis only particles of two-photon final state are observed, while electron and positron
scatter along the beam tube and escape detection. Therefore, a polar angle 8.+ between
scattered lepton and the beam axis lies within an interval of cosine |cosf 2| > 0.92, where
charged particles cannot be detected. To recognize selected five pions as two-photon final
state particles, their four-momentum ps, = (Fsx, £sx) is required to sum up into the four-
vector (6, E.+.-) with four-momentum of at least one lepton pair, where both leptons are
scattered within the above interval of polar angle!. In order to reduce the background
coming from two-photon reactions yy — m¥x~n¥x~ with low total transverse momentum

we require the transverse momentum of all selected charged particles to exceed 20 MeV/c.

After applying these selection criteria a sample of 2717 events remains, out of which
2547 lie in the studied region of invariant mass between 1.0 and 3.5 GeV/c? (fig. 4.3).
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Figure 4.3: Invariant mass distribution of accepted a7~ n%r* 7~ events.
Dotted histogram shows estimated background for this data sample.

LThis criterion is particularly useful for studies of interactions of two virtual photons.
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GeV/c?
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For the subsample of 2547 events distributions of #tx~#° and #*#~ invariant masses are
shown in fig. 4.4. Due to permutations of like-sign pions, each event contributes at least
four entries to each histogram presenting the above distributions. In spite of that, clear
signals can be seen at w and p° masses in distributions of #*x~7® and #*#x~ invariant
masses, respectively.

4.2 Background Estimation for the n*7r #’zr*7n~ se-
lected sample

The main source of background are other two-photon interactions with incompletely re-
constructed events or missidentified particles. In order to estimate their contribution to
selected 77~ 77w~ events, we developed a program that simulates the major part of
known two-photon interactions. The ete™ scattering process is simulated with respect to
the luminosity function as it is described in section 3.1. Particles produced in the two-
photon reactions are generated isotropically in two-photon center-of-mass system while
the frequency of particular reaction 79 — X; depends on its cross section oyy— x;,{W;,).
Values of the cross sections are-taken from already published measurements. The event
generator is followed by the detector simulation, event reconstruction, and trigger simula-
tion (section 3.2). Since noise in the calorimeter is not included in the detector simulation,
it is added from measured data triggered by the COSMIC test trigger. In these events fake
photons can appear only at the muon impact points due to shower splitting. Removing
showers with cosine of the opening angle between their center-of-energy and muon impact
points greater than cos., > 0.9, we are left with showers resulting from calorimeter noise.
So selected noisy showers are added to the simulated events on an event by event basis.
Scaling the number of simulated events to the luminosity of the measured data sample

0

used for the m#¥w~7°rTx~ analysis, we estimate the background from other two-photon

reactions to be 601 events in the 47 invariant mass region between 1.0 and 3.5 GeV.

Background from 7 decays is estimated in the same way using Monte Carlo simulated
- ete™ — 777 events [42]. Scaling the number of T events to the above luminosity, only
3 events fulfill the same selection criteria as they are used in w7~ 7%r*#x~ analysis.
Background due to incompletely reconstructed events ete™ — hadrons is in a similar way

estimated to be 16 events.

Also beam gas reactions can fulfill the #* 7~ 7% 7~ selection criteria. Their contri-
bution to the selected events is estimated using the selected events themselves. Detected
beam gas reactions are in the vicinity of the interaction point distributed along the beam

fairly uniformly, while particles produced at two-photon reactions mainly originate from
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background reaction number of events
1.0 < W,, <3.5GeV/c?

vy — wrtar— 217
vy = wtat 0% 0% 7~ 181
77 = Xothers 203
¥y — Xan | 601

ete” - rHr- 3
ete™ — hadrons 16
beam gas 18

Table 4.2: Background contributions in the #ta~#%r+x~ sample.

the interaction point. So, the measured distribution of the common vertex position along
the z-axis is fitted by a sum of the Gaussian function describing the studied reaction, and
a constant. From the fitted value of the constant we have estimated the background due
to the beam gas reactions, to be less than 18 events. All contributions of background
to the selected data are collected in table 4.2 while the distribution of background with
respect to 4y invariant mass is shown in fig. 4.3.
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Chapter 5

The Analysis of the ntata0r— 7~
Final State

5.1 Maximum Likelihood Method

The maximum likelihood method is applied in the analysis of the five pion final state,
because it is the most efficient method to determine the unknown parameters from experi-
ments involving only a small number of events. The data are used in the form of complete
events. So, there is no need to project experimental data on a binned multidimensional
histogram. It also turns out that for the analysis with maximum likelihood method only

acceptances averaged over all kinematic quantities are needed.

In order to perform the maximum likelihood method on the five pion final state,
we have to calculate the probability distribution of measured events as a function of
momenta of all particles produced in a two-photon interaction. Combining the expression
of the cross section geocesr for two-photon production of five pions, detector efficiency

and integrated e*e” luminosity L., we arrive at the distribution of measured events

dN daee-teefu'zr

Lee T W(C) = Lee

_ dLyy doyy—sr
AW, d¢ d¢

AT n(¢) -

(5.1)

The distribution is normalized to a total number of observed events N. Vector ¢ includes
all kinematic variables used to describe the decay matrix element D from eq. 1.56 for a
fixed W,,. Certainly, acceptance 7(¢), the cross section doy,_s5./d(¢ and the luminosity
function dL,,/dW.,, depend also on two-photon invariant mass W,, as well as on un-
measured independent quantities ¢ related to scattered electron and positron. Since the
maximum likelihood method is applied in each W., bin separately, we determine these
three quantities by averaging over all variables except ¢ inside each W.., bin. For fixed

W, the differential cross section do..,_,5,/d( is expressed as a sum over all decay channels
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k,r with decay matrix elements D; and D, and unknown parameters A,

drose _ S~ 4, Di(C) Pen 4. DUC) - (5.2)
dc k.

The summation includes also interference terms with k # r, where phase shifts e+

are stored as off-diagonal elements of Hermitian matrix P. The selection rules in
two-photon production of wp allow only interferences between channels (J%,J,,5) =
(2-,0,1), (27,0,2), (07,0,1) and between channels (J7,J,) = (2*,0) and (0+,0). The
only non-zero off-diagonal elements are between channels of these two groups. Diagonal

elements of matrix P are equal to one.

It is worth noting that instead of trying to subtract contributions of w2r, p3r and
isotropic 5w production from selected data, we rather include them in the summation

(eq. 5.2) as incoherent contributions.

Using the averaged decay matrix elements

Dl = [ Di(¢) Du(0) dC (5.3)

the relation 5.2 transforms to

Lot - 5 A D) P A DO (5.4)
kr

with redefined unknown parameters Ap = Ap- |Di] and normalized decay matrix elements
bk(() = D(¢)/|Dx|- Due to orthonormality of decay matrix elements Dy, the integration
of the relation above leads to

O'-ry-—oﬁ‘.‘n’ = ng M f-ik 3 (5.5)
k

where A~i is the cross section of channel k. This suggests an introduction of unknown

parameters as ratios between square roots of cross sections

A
Ap = —e (5.6)
‘\/a-‘y’}'—DSTr

© with the condition
Y A=1. (5.7)
With this new notation the distribution from eq. 5.1 becomes equal to

’N dLyy ©)
AW, d¢ ~ = dw,, Tt

ZA? Dx(¢) De(¢) + 2 Mo cos(biy) (Dr(0) D-(¢) + Dr(Q) Dk(o)] , (5.8)

k)r
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where interference terms are separately written. The normalization of distribution d—-—vi",i f %
is obtained from the integration
dN d&*N dLy~y
“Tar . ET T == ee “grar — 5 Az r r rl s N
dW.,, dWﬂdcdc L aw,, T Xk: ke + 22 AeAr cos(8kr) e | 5 (5.9)
k>r
where
In(¢,¢) dW.,.,,dE Dk(C)Dk(C) dgdg
T = (5.10)
I oz dwﬁdf dg
is the average detector acceptance for channel k, given as a function of W,,. Similarly
can also
&L (D)D) + Dr(¢)Dul¢
e = f"EC)dW f(k() ()2 (<) ())dEdC (5.11)

dWoy

be interpreted as an average acceptance for the interference term of channels k and r.
In relations 5.10 and 5.11 the dependence of acceptance and of the luminosity function
on unmeasured quantities { is explicitly written. dN/dW.,, is the number of all observed
events in a given W,, bin. Due to experimental resolution of the detector, the exact
values of kinematic variables { needed for calculation of the distribution 5.8, have to be
replaced by measured values ¢’. In order to use values {’, also products of decay matrix
elements D;(¢)D,(¢) have to be substituted by a convolution

Dinl¢) = - Z|D* D.(¢' - AG)

(5.12)

where A(; are normally distributed according to relation 3.18, and Ny is the number of
tries.

Now we can write the likelihood function L from the probability density function

.. A Dy (¢ Lcos(6) D (¢
g(C’, A, 6) — 1 dN — 'f](cf) . Ek k k’;(C) + Ek;ﬁr AkA COS( k ) k (C) (5‘13)
N dC kAL T 2 ks ARAS cos(&”) Nier
as a product of g(¢!, X, é) for all our selected events i [43]
— = N — =
L8 = TIo(e3.8). SNCRTY

Usually, it is convenient to consider the logarithm of the likelihood function

- — -

L£'(X,8) = InL(X,8) Zln g(¢h, X, 8) . (5.15)
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As it is seen from relation 5.13, the likelihood function £’ is invariant under simultaneous
multiplication of all parameters Ar. This reduces the efficiency of MINUIT program [44]
used to find the function maximum, so we redefine the likelihood function to

—

£(,8) = Sim[ A Bu(€) + 3 Aedveos(sir) Dinl0) ]

i=1 k#r

— N[ Mm+2Y M cos(ber) mir| (5.16)
k k>r
which conserves the ratios between parameters A;. The second summation in the above
relation represents a constraint that number of fitted events coincide with number of
measured events. The factor N in front of the sum is analytically calculated Lagrange
multiplier [45, 43]. The most probable values of X and § are obtained by maximizing the
function £. Since the acceptance 7(({’') depends only on kinematic quantities {’, it is equal
for all decay channels k. So, the position of maximum can be found although the precise
value of acceptance 9((’) as a function of kinematic variables {’ is not known, only the

value of the likelihood function itself depends on 5({").

Due to small number of measured events, several local maxima can appear in the
Likelihood function. This can certainly mislead the program, searching for an absolute
maximum. To minimize this effect, W,, bins are chosen wide enough to contain a reason-
able number of events. Once the fractions A; and phase shifts 8, are obtained, the cross

section 0.yy_5. is calculated from relation 5.9

dN -1
AWy '
0'—71—.511’ - L—dL? - Z Aink + 2 Z AkAr Cos(ak,-) 'qkr 3 (5.17)
€€ dWory k kk;r

while cross sections for particular decay channels are given as
Ok = Oyyosn -/\i . (5.18)

For all wp® channels the cross sections have to include also branching ratios Br(w — 3r)

. and Br(p — 2x) for the w — w¥w~ 7% and p® — 77~ decays

2
Oyymsm " Ag

Br(w — 3r) - Br(p — 2m) ’

oy - wp®) = (5.19)

0

while cross sections of reactions vy — wntn™ and 9y — p’xrT7~ 7" are determined by

using relations
2
Tyy—sm * Auzr

. - - Ty T
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5.2 The Acceptance Calculation

The acceptance 7 is mainly studied by Monte Carlo simulation described in section 3.2.
With simulated events it is possible to determine the detector and trigger efficiencies and
the efficiencies of most selection criteria. The exceptions are studies of fake photons,
which require also description of noise in the calorimeter. Since this is not included
in the simulation, we add the calorimeter noise from measured data triggered by the
COSMIC test trigger. The procedure is exactly the same as the one described in the case
of background studies (section 4.2).

A proper description of fake photons in the simulation has been checked by analyzing
measured data of cascade decay [46]

T(25) - YT(18) =t n~
T(1S) — ete or ptp, (5.21)

where no real photons are expected in the event. It is found that photon contribution
predicted by hadronic interactions inside the calorimeter used in Monte Carlo simulation

properly describe the measured photon contribution in Y(25) cascade decay.

Fortunately, only an acceptance averaged over kinematic quantities ¢ is needed in
our analysis (section 5.1). The average acceptance 7; depends on the decay channel
k. To determine 7; we have used generated events of channel k with added calorimeter
noise. Performing the complete event selection on the generated events, the acceptance is
obtained as a ratio between accepted N, and generated N events in each W, bin. The
acceptances 7y for various spin-parities of wp production are collected in fig. 5.1, while
acceptances for isotropic wp, wr¥n~, prt7r 2% and 7txta% ~ 7~ channels are shown in
fig. 5.2. To lower the statistical error on acceptances, we use in the analysis results of the
fit shown in both figures as solid line curves.

An acceptance averaged over kinematical quantities ¢ is introduced also for the
interference between two decay channels k and r (eq. 5.11). This acceptance 7, is cal-
culated using Monte Carlo events where the decay of two-photon intermediate state is

generated according to interference term
D, D, + D! Dy . (5.22)

The sample of events is divided into two parts with different signs of interference term.
For each part we calculate a ratio between number of events passing the whole events

selection N4 and all generated events Ni.. Index i denote the sign of interference term.



acceptance 7y

50

0.02

g.0u

0.02

0.0

1

CHAPTER 5. THE ANALYSIS OF THE stata®r~n~ FINAL STATE

LIL I L R L A B N N N B N N N B B D L B B | LN A N A R A B (L L B L R B

- O

1 l 1 1 1 I i H 1 I 1

-
I IO ST S i B H TAT R I AT AR A S -llllllllllllll1lllll.ll-‘
III|II|II"II'IIIIII]]I]4 ]llllllllllll‘lllll]llll
(2+.2) 1 (%0

- . -
P I SO AT T R T T SN W A NSO WA NS N S N A v e by v by v B o b

1 1 1 l 1 1 1 l 1 1 1 I 1

LINNLINRL A LI S B S N L B NN BN B B B HRL A B | LI B L N L S I N B B B

- (27.0,8=1) . (27,0,5=%)

PR N T T N R S B

PRI R T RN S U I B S ST U SR SR BT R TR T

LA B B B

IJlllll

.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5

W, [GeV]
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Figure 5.2: Acceptances for isotropic channels wp, wrtn~, prta =Y,
and 7T 7t x%7 =7~ (crosses) and fitted curves (solid lines).

The average acceptance 7, is than obtained as a difference

NP N
L= A A 5.23
In fig. 5.3 are shown ratio of average acceptances i,/ /77, for all possible interferences
in study of wp® production in two-photon interactions.

There are two sources of systematic errors on the acceptances. The systematic error
coming from the detector simulation is estimated to be 6% [34]. As already discussed
(section 3.2) the systematic error on trigger simulation amounts to 5% {22]. We estimate
the overall error on acceptances 7 and 7., shown in figs. 5.1, 5.2, and 5.3 as error bars, by
adding in quadrature the statistical error, the systematic error coming from the detector

simulation, and the systematical error from trigger simulation.

5
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between wp’ channels:
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(J¥,J.,8) = (0-,0,1) and (27,0,1)
(J¥,7.,8) = (07,0,1) and (27,0,2)
(J%,1.,8) = (27,0,1) and (27,0,2)



Chapter 6

Results of the n 7t 7z0x—7— Analysis

The selected sample of five pions has been analyzed in two ways. In the first analysis

we determine the cross sections of the two-photon reactions vy — wp?, vy —» wrta-

vy — p°xta%r~, and vy — #TaT 2%~ 7. In all reactions five pions are assumed to be

isotropically distributed in two-photon center-of-mass system. Therefore, the reactions
can be distinguished only by invariant-mass distributions. In the second analysis we try
to determine also a spin-parity structure of the reaction vy — wp®. The wp® production
includes six contributions of different spin-parities. To determine all cross sections includ-
ing cross sections of reactions yy — watnr™, 9y — p%7r 1%, and vy — wtata®nr—x"

we apply a nine parameter fit.

6.1 Results of a Fit to Invariant-Mass Distributions

In order to determine the cross sections of reactions vy — wp® vy — wrtz™, vy —
pPlr¥a®n~, and 49 — w¥ata%r 7~ a four parameter fit is applied. In reaction vy —
wtntx®7-x~ the final state particles are uniformly distributed in phase space. The fit
procedure is performed in 12 bins, covering the W.., interval between 1.1 and 3.5 GeV. A
distribution of the selected events within this interval is shown in fig. 6.1. The observed
wtatx%n "7~ final state is assumed to be an incoherent sum of the upper four reactions.
In the reaction ¥y — wp” a production of final state hadrons is described by a decay

matrix element
4

Dise =35 A ) 6.1)

i=1 Pi(xf my o0 wp)
where AZy, and A%y, are Breit-Wigner amplitudes for w and p® mesons, respectively. The
decay matrix elements used for description of reactions vy — watx™, vy — pontnlr,

and yy — #Tnt a7~ have already been introduced in chapter 1 egs. 1.57, 1.58, 1.59,

53
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Figure 6.1: Invariant mass distribution of selected 77T n%r~ 7~ events.

respectively. Using the maximum likelihood method we determine the relative contribu-
tions A? of all four reactions simultaneously. Since the fitted parameters are contributions
A and not the amplitudes Ay, the obtained contributions and therefore also the cross
sections can in principle be negative. The cross sections are calculated according to rela-
tions 5.17, 5.18, 5.19 and 5.20. They are shown in fig. 6.2.

Background contributions to the studied reactions have been determined by using
the sample of Monte Carlo simulated background events {section 4.2) that have passed
the five pion selection criteria. These events have been added to the data sample. A
background contribution to the studied reactions is then obtained as a shift in the cross
~ sections due to added background sample (fig. 6.3). The main part of background events

0

migrates in to the channel yy — n#txt 7% ~x~. By subtracting these cross sections from

the correspondent cross sections shown in fig. 6.2 we obtain cross sections for all four
reactions (fig. 6.4). All results are listed in table 6.1. The fit procedure includes all four
reactions at W,, greater than 1.3 GeV (figs. 6.2 and 6.3). Below 1.3 GeV the nt#~

invariant mass is, due to limited phase space, similarly distributed in reactions vy —

+

wrtnx~ and vy — wp®. This makes it impossible to distinguish between both reactions.

A similar difficulty appears also for reactions vy — p’x*7%~ and vy — ntnt 2%z 7.
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Figure 6.2: Cross sections for reactions vy — wp?, 77 —» wrtr—, vy —

'+, and 4y — wtatx%z 7~ obtained by a 4 parameter fit.

Below 1.3 GeV the production of watax™ and pPxt#l7r~ is excluded
from the fit. Plotted errors are statistical only.

Therefore, only contributions of reactions vy — wp® and vy — wtat 7% 7~ are included
in the fit procedure for W., energy below 1.3 GeV.

The statistical error includes the error on fitied parameters, acceptance and lumi-
nosity function. The major part comes from the first contribution because all others can

be sufficiently reduced by increasing the Monte Carlo sample.

The major contributions to the systematic error are related to the Monte Carlo
generation of physical processes and the description of the particle detection. One source

of the systematic error comes from the incomplete description of two-photon reactions,
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Figure 6.3: Background contribution to reactions Ty — wp, vy —
wrtx~™, vy - pP7T7% ", and v —» x#Ta T2 "7~ obtained by the 4
parameter fit. Contributions are given as a cross sections for suitable
reaction. Below 1.3 GeV the production of wrtx~ and p'ztx'~ is
excluded from the fit. Plotted errors are statistical only.

~ hidden in the form factors (eq. 1.16). The error is estimated by calculating the cross
sections for two cases:

o form factors are p meson poles (eq. 1.17) predicted by the VMD model [11],

o form factors are equal 1.

Assuming these values as exireme cases between which the measured cross section is

uniformly distributed, we estimate the systematic error as the standard deviation to be
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Figure 6.4: Cross sections for reactions vy — wp? vy — watr—,
¥y — p’ntx%~, and yy — xtxtx%7~r~ after background subtrac-
tion. Plotted errors are statistical only.
1.3%.

There are two contributions to the systematic error connected with the acceptance
calculation. The systematic errors on detector simulation and trigger simulation are 6%
and 5% (section 5.2), respectively. Both errors influence only the calculation of the cross
sections while the determination of the relative contributions A? should be insensible
to the systematic multiplication of all acceptances. The simultaneous variation of all
acceptances changes only the absolute value of the likelihood function but leaves the
position of the maximum unchanged. In the four parameter fit we have assumed an

isotropic production of five pions in the final state. However, if the final states are

5
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W"r"( (Gev) " Ty —itarp? O yyawnt o T qqy—pPnt xOm— Cyqantrtaln—n—
11-1.3 28+124+0.6 04+£16+038
13-15 10.3+39+16| 1.94+414+0.7 084+20406 22+39+1.9
1.5-1.7 1734+£31+£1.7(-12+294+02| 03+£35+04 20+46+22
1.7-19 116+344+1311.0+39+19 | 104+231+10 | -09+£221L1.8
1.9-21 934+27+14 | 145+36+20 | 11.44+3.1+1.2 1.0 £3.0+0.5
2.1-23 41+224+1.1 59+26+22 } 13.8+204+15 | 1.0£+2.040.1
2.3-25 3.04+3.1+05 | 10.0+42+21 | 136+42+15 | -32+£354+0.7
2.5-27 5.8+22+0.6 521+2.6+0.6 56+231+0.6 41+18+08
2.7-29 27+22+04 80+24+1.3 | -07£151+03] 42+ 176 T 0.6
29-31 38+241406 1.74221+£04 | -164+274+03)| 69+£3.24+1.0
3.1-3.3 0.9+18+0.1 544+214+0.9 0.7+£1.5+0.1 5.6 +£2.04+0.9
3.3-35 554£27+£1.0 244+224+04 | —231+27+£04 ) 5.91+3.7£1.0

Table 6.1: Cross sections (in nanobarns) of reactions vy — wp?, vy —
wrtr™, v7 — p%7rtx%r~, and 77 — wtxta%7—x~ obtained by fit
described in text. Statistical (first) and systematic (second) errors are
presented.

produced with a definite spin-parity, the acceptances would change. The systematic error
on the acceptance determination due to unknown spin-parity structure, is calculated for
each W, bin separately. It is taken as a standard deviation of a uniform distribution
between extreme acceptances of all possible spin-parities for the studied reaction. For the

reaction 4y — wp® the average systematic error over all W, bins is 9.6%.

The systematic errors due to background contributions are determined for each of
the four studied reactions separately. They are proportional to the cross sections from
fig. 6.3. Systematic errors on these cross sections are obtained from errors on measured
 cross section of reaction that dominate the background contribution to the studied reac-
tion. Background to reactions vy — wp® and 49 — wr*7r~ is dominated by two-photon
production of wr*w~#°. A major contribution to other two reactions comes from reaction
¥y — 7t atr%7 %~ 7 ~. For cross section of both background reactions we use the ARGUS
results [47].

The ARGUS integrated luminosity L., is determined with a precision of 1.8% [22]
while the branching ratio Br{w — 37) for w — nt7%~ decay is uncertain by 0.6% [19].
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6.2 Results of a Partial-Wave Analysis

From the previous analysis where only invariant-mass distributions were used, the number
of measured events corresponding to the reaction vy — wp® is shown in fig. 6.5. Due to

the small number of events, we determine the partial wave structure of reaction yy — wp

30 ——m—— 17—

200 B T

| + -
100 F n

dN/dW.,,., [(200 MeV)~1]

1.0 1.5 2.0 2.5
W, [GeV]

Figure 6.5: Number of measured events corresponding to vy — wp?
obtained from four parameter fit.

only in six bins between 1.3 and 2.5 GeV. A fit to the data includes § parameters A2 that
represent relative contributions of:
Y = wp’
(JF,J:) = (0%,0) (J7,J:) = (07,0)
(J*,J.) =(2%,0) - (JPT) = (2,0)
(JF,J.,8) = (27,0,1) (J*,J.,8) = (27,0,2)
vy = wrtw
vy = POt alrT
7y = wtetalr—a-
The results of the fit are presented in figs. 6.6 and 6.7. Cross sections shown in fig. 6.7 are
already subtracted for the background contribution that is obtained by four parameter fit
(fig. 6.3). In both figures only statistical errors are shown. A complete result including

systematic errors is collected in table 6.2. The cross sections in fig. 6.7 agree with the
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Figure 6.7: Cross sections for wp?, wrtr—, pPxtxCzx— and

wtata%r~x~. Cross section for wp® is obtained by swmming up cross
sections of all spin-parity contributions 6.6. All cross sections are the
result of a 9 parameter fit. Shown error bars are of statistical origin.

results of the four parameter fit. The cross section for the two-photon production of wp®
is obtained as a sum of all spin-parity contributions. The results of spin-parity analysis
show a dominance of the (J¥,J,) = (2%,2) wave. The only exception is the dominance
of (J¥,J.) = (0%,0) in the first bin with W.,, between 1.3 and 1.5 GeV. Even in this bin,
however, the dominance of (2%,2) cannot be excluded, as discussed in section 6.4. The he-
licity 0 component of J¥ = 2% is suppressed over helicity 2 component. The contribution
of negative parities is small.

The statistical and systematical errors are calculated in the same way as in the four
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Wo, (GeV) (0%,0) (07,0) (2*,2)
13-1.5 146+16+4+1.6 | 23+0.9+0.2 49125105
1.5-1.7 04+16+9005 | 09£1.7+0¢1 | 15.9+281+1.7
1.7-1.9 —24+224+03 | 362904 | 13.9£41£15
19-21 -324£15+03 | —48£15+£05| 11.1+£23+1.2
2.1-23 —47+£13%£05 [ —40:18+£04 | 5.0£25%+05
23-25 —25+1.6+03 | 0.1+£011+0.01 | 1.6 +2.5+0.2

W‘r*r (GCV) (2+10) (2-!0: S = 1) (2_.!01‘5' = 2)
1.3-1.5 6609107 | 5.7+14£06 | -241+061£03
1.5- 1.7 —02+£184+002| 40+19+04 1.6 4+1.44+0.2
1.7-1.9 1.0+22+£01 |-06+22+£01} 3.2+22+03
1.9-21 4.2+t18x 0.5 0.0+1.44+0.0 6.2+1.6 0.7
21-23 28114103 0.9+1.5x0.1 444+15+05
23-25 274£2.0£03 0.7+£1.5+01 0.04+£1.1+4+0.0

W, (GeV) wrtr™ pPortain rtatelen™
1.3-1.5 02+£15+06 —14+10+£06| 05+16+18
1.5-1.7 -16+£24£02 | -094+£32L£04| 3.04£43£22
1.7-1.9 5.3+3.1+£1.7 79+34+08 1.4+4.04+1.8
19-21 140x27+£19 | 114+£214+11 | 1.0+£2.04+0.5
21-23 9.2+33+£23 | 146424415 | —-034+£214£01
23-25 119+41+22 | 1424+41+£1.6 | -3.7£3.3+0.7

Table 6.2: Cross sections (in nanobarns) of reactions yy — wp’, vy —

w1r+

7, vy — plnTx%~, and vy — wTatx’

m~w~ obtained by a four

parameter fit. The presented errors are statistical and sistematical.

parameter fit. The only exceptions appear in wp® production. For this reaction, there is
no systematic error in the acceptance calculation due to unknown spin parity structure.
Unknown angular distributions of some background interactions unable us to determine
background contribution to each wp® partial wave. Therefore, for all partial waves a ratio
of background events to the total number of wp® events is taken as a systematic error due

to background reactions. Using the result of background determination by four parameter
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Figure 6.8: Cross sections for different J states of wp® obtained by a
9 parameter fit. All cross sections were required to be positive. Plotted
errors are statistical only.
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fit ( 6.1) we obtain the systematic error to be 7%.

Some cross sections in the present partial-wave analysis obtain negative values be-
cause no constraint was imposed on relative contributions A2, For comparison we calculate
also cross sections with constraint that all of them have to be positive. The result of this
analysis is collected in fig. 6.8.

6.3 Angular and Invariant Mass Distributions

One-dimensional distributions can provide a simple check of partial-wave analysis. In
what follows, some measured distributions are compared with results of the 9 parameter
fit. In fig. 6.9 mass spectra of two pions recoiling against the w meson are shown for all
W, intervals used in the fit procedure. As w mesons we take three pion combinations
with invariant mass differing for less than 25 MeV/c* from w mass. It turns out that mass

spectra are in all W, intervals correctly described by results of the fit.

Some angular distributions are shown for W, interval between 1.3 and 2.1 GeV
in figs. 6.10 and 6.11. All measured distributions are compared with results of the fit
and simulated distributions of wp® production for all spin-parities. For wp® events the
invariant mass of two pions recoiling against the w meson is required to be less than 870
MeV/c?. Due to the vicinity of the threshold for wp® production, there is no lower limit
on two-pion invariant mass. Fig. 6.10 shows the distributions of cosf, and cosf, where
polar angles 6, and f, have already been defined in section 1.3. In fig. 6.11 distributions
of two angles are shown, which are only weakly affected by the acceptance. The first
distribution shows the angle 8, between pion momenta measured in the p° rest frame
and normal vector 7 (section 1.3) defined in the w rest frame. Coordinate axes are chosen
to be parallel in both frames. The second angle x is defined in the w rest frame. The
momentum of p® meson and the momentum of one of its pions define the p® decay plane.
The normal vector 7 together with the p° momentum defines another plane. The angle

between these two planes is .

6.4 Test of the Likelihood Method

The likelihood method is checked using the Monte Carlo simulated data sample. From
samples generated according to studied reactions vy — wp’, vy — wrtnr™, vy —
plrta%r~, and vy — wtata% " x~, we combine a sample with the same composition
and number of events as expected from results of the 4 parameter fit on the real data. All

four reactions have been generated isotropically. Using such a data sample, we perform a
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Figure 6.9: Comparison between measured mass spectra of the two pions
recoiling against the w meson (crosses) and results of the 9 parameter
fit (histogram). The comparison is shown for all W.,, intervals used in
the fit.
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and isotropic production (solid line). All distributions are shown for
W, between 1.3 and 2.1 GeV.
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Figure 6.12: Fit results (circles) are compared with the input Monte
Carlo data (histogram). The events are generated for reactions 7y —
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pions are isotropically distributed in two-photon rest frame. Number of
the simulated events used in above study coincides with the number of
events in the measured data sample.

4 parameter fit. The results of the fit are compared with the input data composition in
fig. 6.12. In all cases the input data are correctly reproduced.

In the case of 9 parameter fit, the likelihood method is tested by Monte Carlo data
sample where reaction 77 — wp” has the same spin-parity composition as it is determined
from the real data by the constrained fit (fig. 6.8). Reactions vy — wrts™, vy —
0

PPrtx%~, and vy - wtxTx% ~7~ are also in this data sample simulated isotropically

in two-photon center-of-mass system. Results of 9 parameter fit, performed on this data
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Figure 6.14: Continuation of fig. 6.13

sample, reproduce the composition of the sample correctly (figs. 6.13 and 6.14).

To test a possible origin of 07 over (2, 2) dominance as observed in the W, interval
of 1.3 to 1.5 GeV (fig. 6.6) the 9 parameter fit was performed on Monte Carlo data
where production of wp® is pure (J¥,J,) = (2+,2). The number of wp® events in the
sample correspond to the total number of wp’ events obtained by the 9 parameier fit
on measured data. Also number of events for reactions 7y — wrtn™, yy — p'nFTnlr~,
and yy — 77t 7%~ 7~ are determined by the same fit procedure. In fig. 6.15 fit results
are compared with the composition of the Monte Carlo sample for all wp® spin-parities.
Results of the fit are similar to the one determined on measured data. The large migration

of the (2%,2) contribution into the 0% contribution could only be observed in the first
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Figure 6.15: Comparison between simulated number of events (his-
togram) and results of the fit (crosses) for all wp® spin-parities. Pro-
duction of wp® is simulated purely 2,2 while reactions ¥y = wrtwT,
v7 — p%xtr% 7, and vy — 7atxt 2% x5~ are simulated isotropically.
The simulated number of events for all reactions correspond to the num-
bers obtained by the 9 parameter fit on measured data. Number of 2+, 2
events equals to the total number of wp® events determined in measured
data.
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Figure 6.16: Shifts of fitted number of events due to variation of accep-
tance for 21,2 wp® wave. The acceptance is changed for +5% (full line)
and —5% (dashed line). The 9 parameter fit is performed on Monte
Carlo data where production of wp® is pure 27,2 wave (fig. 6.15).
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W,, interval (1.3-1.5 GeV). A possible explanation for such a behaviour is that the wp®
system is below the nominal threshold where the uncertainties in matrix elements and
acceptances become very important. We therefore conclude that the data are consistent

with a dominance of the (2%,2) wave over the whole invariant mass range.

The same Monte Carlo sample was also used to find the influence of acceptance
accuracy on fit results. The acceptance of 2¥,2 wave was changed for +5%. In fig. 6.16
a shift of fitted number of events due to changed acceptance, is shown for all wp® waves.

Since we have assumed isotropic production of wr*x~, o7+ 7%, and wtatrnr 7~
in our analysis, it is necessary to check the migration of possible non-isotropic angular
distribution of these channels to wp® waves. For this reason we use a Monte Carlo data
sample where reactions vy — wntn™, vy — p’7t7x%~, and vy — 7t t2%r %~ have
a definite spin parity. The simulation of wp® production remains the same as in the
sample used for the test of 9 parameter fit. A difference between fit results obtained by
data where production of wr*x~, p®z*x%~, and 7t = #x %~ 7x" is pure (J7,J,) = (2+,2)
and data with isotropic production of these three final states is shown in figure 6.17.
Most of migration to the wp® partial-wave with spin-parity (J¥,J.) = (2*,2) comes from
wrtr™ channel. It seems that the Breit-Wigner form of the invariant masses is more
restrictive than the angular distributions. This leads to conclusion that the contribution
of wrtw™, p®ntn%r~, and 7txTx%7 "7~ can be reliably estimated using an isotropic

angular distribution in the fit.
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Chapter 7

Analysis of the reaction
vy — V¢ - ta KT K™

The two-photon production of the vector meson pair p°¢ is analyzed on the data sample
corresponding to an integrated luminosity of 472.7 pb~!. Both vector mesons p° and ¢
are reconstructed by their dominant decay channels =t~ and Kt K, respectively, so
four charged particles 77~ K+ K~ are required in the final state. The event selection

includes similar criteria as we have used in section 4.1:

e Four charged particles with zero net charge have to fit o a common vertex at the
interaction point. Two of them with opposite charge have to be identified as pions
with A > 1%, and the other two as kaons Ax > 1%. For these particles the
probabilities for being electron P, and muon P, should not exceed 10%.

e No other charged particle is allowed to point to the common vertex at the interaction

point.

¢ Events with neutral particles recognized by secondary vertex, as K7, A or converted

photon, are rejected.

o Unconnected showers are not allowed in the calorimeter unless they are recognized
as:
— calorimeter noise,
— fake photons due to shower splitting,

- photons produced by back scattered neutral pions which come from hadron

interactions in the calorimeter, and

— back scattered neutrons.
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Figure 7.1: Scatter plot of the # %~ invariant mass versus the invari-
ant mass of K+ K~ pairs for selected ntx~ K+ K~ combinations with
invariant mass between 1.5 and 3.5 GeV/c2.

Due to similar behaviour of kaons and pions in the calorimeter, the same criteria
are used for fake photons of both particles.

o The total transverse momentum of selected particles 777~ K* K~ is smaller than

200 MeV/c.

¢ The momentum conservation has to be fulfilled for all particles involved in the

reaction, including undetected electron and positron.

After applying these criteria we obtain a scatter plot of the #*#~ versus KT K~ invariant

masses where an enhancement is seen in the p°¢ region (fig. 7.1).

The ¢ mesons are identified by the two-kaon invariant mass mg g, which should not
differ from the ¢ nominal mass for more than 12 MeV/c?. Since the resolution op, ., is
4 MeV, such a criterion rejects a negligible amount of ¢ mesons. In fig. 7.2 the invariant
mass distribution of K+ K~ pairs is shown. A clear peak is seen that corresponds to the

mass of the ¢ meson. Figure 7.3 shows the distribution of two-pion invariant masses for all
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Figure 7.2: Two-kaon invariant mass distribution for selected
xtx”"KtK™ events with W, < 3.5 GeV/c?

wtw~ K+ K~ events where ¢ mesons were recognized. Since p° is a broad resonance, the
distribution of the 777~ invariant mass depends on the two-photon energy W.,,. This is
particularly noticeable at the p°¢ threshold where, due to lack of energy, the #¥x~ invari-
ant mass shifts to the values below the p® nominal mass. Therefore, a cut on 7+7~ has to
depend on the W,, invariant mass. To determine the criterion on the 7*7~ mass we use
the simulation of the reaction 7y — p°¢. The simulation is done in a similar way as the
one for the reaction vy — wp® (chapter 3). The only difference between both simulations
is in the decay of two-photon intermediate state. Final state particles 7t7# K+t K~ are
generated according to their phase space in two-photon center-of-mass system weighted
by the square of the decay matrix element D,; from eq. 1.60. The event generation is fol-
lowed by the detector and trigger simulation and finally by the event reconstruction. This
Monte Carlo sample is used for the determination of the invariant masses of pion pairs
that correspond to the p° meson. The cut is defined in the following way: at each W,,
energy only 10% of the simulated events are allowed to lie outside the #+#~ interval, i.e.
5% on each side of the area. The obtained area is marked in a double plot (fig. 7.3) show-
ing the distribution of measured #¥x~ K+ K~ events with recognized ¢ mesons. Events
within this area are treated as p¢ events. Their dependence on W, is shown in his-

togram (fig. 7.4). We tried to determine the background contribution using a Monte
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Figure 7.3: Two-pion invariant mass m,, distribution for the selected
ntx~ KT K~ events with ¢ candidates (|mgx —my| < 12MeV/¢?) (left),
and the distribution of these events in the m,,, W, plane (right). # ¥z~
pairs are recognized as p® decay products if they lie between both curves
in the scatter plot. The cut was derived from Monte Carlo simulation.

Carlo simulation of other two-photon interactions, tau pair production e*e”™ — 77 and
reactions ete™ — hadrons (section 4.2). The number of simulated events corresponding
to a particular background process depends on its cross section and the integrated lumi-
nosity of measured data sample. For reactions yy — wp, 7 — wr¥x™, yv — prtr~ =0,
and vy — 7ta 7% *r~ we use the cross sections determined in chapter 6 while for
other reactions the cross sections from already published measurements are taken. Due
to severe requirements on 7*7x~ and K¥K~ invariant masses, a large sample of Monte
Carlo data is needed to determine the background contribution to the studied reaction
¥y — p¢ with sufficient precision. Since simulation of all background processes is com-
* puter time consuming, it is used to determine only the composition of background in the
region shown in fig. 7.1. 40% of all background events are produced in vy — atx~K+tK~
reactions with final state particles generated according to phase space. Other important
contributions come from reactions vy — K**K*zF and vy — K°K*° with 30% and
23%, respectively. Such a composition of the background suggests a determination of the
background contribution to the selected p°¢ events by using the simulation of the reaction

vy — mtx" KT K~. The number of simulated events is normalized to the number of mea-

sured events within the region shown in fig. 7.1. Of course, the area around the p¢ region
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Figure 7.4: a.) Distribution of #7#~ Kt K~ invariant mass for all events
that fulfill the selection criteria for reaction vy — p°p. The dotted
histogram shows the expected background predicted by simulation.

b.) The acceptance for this reaction obtained by simulation.
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Figure 7.5: Cross section of the reaction vy — p%¢.

(1.008 < mgg < 1.032, 0.45 < m,, < 0.97} was excluded from the normalization. We
determine the background contribution to the selected p°¢ events (fig. 7.4) by counting
the properly scaled simulated 777~ KT K~ events passing the selection criteria.

The acceptance for the reaction 4y — p¢ is calculated from the same sample of
simulated data that was used for the determination of the limits imposed to the p region
of the two-pion invariant mass distribution. The calculation is similar to the one described

in section 5.2. The acceptance dependence on W., is shown in fig. 7.4. Using the relation

~ N, N
Trr=ets = iLee L2 Br(p — 27)Br(¢ — 2K) ’

(7.1)

we obtain the cross section for two-photon reaction 4y — p%@ shown in fig. 7.5. In the
above relation, N;, N?, and #; are number of selected events, expected background, and
selection acceptance, respectively. All quantities are related to a specific W, interval
i. The L denotes the average luminosity function. Decay fractions Br(p — 2x) and
Br(¢ — 2K} for p° - wtn~ and ¢ — K+ K~ decays respectively, are taken from [19].

The errors in fig. 7.5 are statistical only. The complete results are listed in table 7.1

where also systematical errors are presented. The main contributions to the systematic



81

W (GeV) Tyy—p%¢ [nb]

1.50 - 1.75 1.1+1.8+0.1
1.75 - 2.00 22+11+03
2.00 - 2.25 1.2+ 04101
2.25 - 2.50 || 0.57 £ 0.28 £ 0.07
2.50-2.75 | 0.04£0.16 £ 0.01
2.75-3.00 || 0.63 +0.31 - 0.08
3.00 - 3.25 || 0.30 £0.21 +0.04
3.25-3.50 || 0.16 £ 0.16 4 0.02

Table 7.1: Cross section of reaction vy — p®¢. The presented errors are
statistical and systematical.

uncertainty come from

¢ incomplete description of the two-photon reaction, hidden in the form factors (1.5%)

¢ detector simulation (6%)

trigger simulation (5%)

determination of ARGUS integrated luminosity (1.8%)

branching ratio Br(¢ — 2K) (1.6%) and

e unknown spin-parity structure of p°¢ production (around 9%, see below).

All contributions to the systematic error are calculated similarly as in chapter 6. The
systematic error due to unknown spin-parity of p°¢, is calculated for each W, bin sepa-
rately. Using the Monte Carlo sample for the isotropic production of p°¢ at two-photon

interaction, we determine the acceptance for various spin-parity k& with relation

e = 2oA |‘I’k(w:‘l)l2
Yo [ ¥e(za)l?

Index A runs over all accepted events in a given W, bin passing the p°¢ selection criteria

(7.2)

while index G runs over all generated events in the same W.,., bin. The angular distribu-
tions Wi(z) coincide with the distributions calculated for the wp® waves (Appendix A).
Only the definition of polar angles z related to the w meson changes. The angles 6,
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and ¢, define the direction of Kt in the ¢ meson rest frame. Similarly as in chapter 6
the systematic error is then calculated as a standard deviation of a uniform distribution
between two extreme acceptances 7 in each bin. The average over ali W, bins is 9%.



Chapter 8

Analysis of the reaction
VY — wp — rta—aOK T K~

As previous two analyses also this one is based on a collected data sample of an integrated
luminosity of 472.7 pb~!. The w¢ production is studied in the channel #t7 7°K+ K-
using the dominant decays of both vector mesons. Candidate events for the reaction

vy — 7tx~ 2K+ K~ are selected with almost the same criteria as in section 4.1.

¢ Two oppositly charged particles pointing to a common vertex have to be identified
as pions A, > 1%, and two as kaons Ag > 1%. Their probabilities for being electron
P, and muon P, have to be less than 10%. No other charged particle is allowed to

originate from the common vertex.

o Neutral pion is identified as a photon pair with the invariant mass m.., lying at the
pion nominal mass m.o. The allowed mass difference |n,, —m,o0| is 75 MeV/c? for
pairs with both photons identified by calorimeter showers, 50 MeV/¢? for pairs with

one converted photon, and 40 MeV/c? for pairs of converted photons.

o Beside photons from the n%, unconnected showers are not allowed in the calorimeter
unless they are recognized as noise or fake photons due to hadron interactions in

the calorimeter.

o The toial transverse momentum of selected particles 7w~ 7°K+ K~ has to be less
than 100 MeV /c, while charged particles have to have the total transverse momen-
tum of more than 20 MeV/c.

¢ The momentum conservation has to be fulfilled for all particles involved in the

reaction, including undetected electron and positron (section 4.1).
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Figure 8.2: 7+~ #z° invariant mass for selected #tx~7*K+K~ events

of which Kt K~ invariant mass differs for less than 12 MeV/c? from ¢
mass.
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Figure 8.3: a.) Invariant mass of x Tn " x"K* K~ for all events that fulfil
the w¢ selection.
b.) The acceptance for this reaction obtained by simulation.

The distribution of K* K~ invariant masses mg is plotted for the selected #t 7 #° KT K~
events in (fig. 8.1). At the mass of the vector meson ¢ an enhancement is seen. Keeping
only the events whose K+ K~ invariant mass does not differ more than 12 MeV/c? from
the mass of the ¢ meson, we obtain the spectrum of #t7 7" invariant masses shown
in fig. 8.2, Of total 9 events 4 events lie in the mass region of w, i.e. the difference
between their 7+~ 7° invariant mass and w nominal mass is less than 50 MeV/c?, twice

the detector resolution o(mas.) on three-pion invariant mass.

The resolution o(ms,) is obtained by making use of the simulated data sample of
the reaction vy — w¢ — wta~a’K K-, The scattering of the electron and positron
is described in the simulation by the luminosity function (eq. 3.1) while the phase-space
final state particles # 7~ 7K+ K~ are weighted by the square of the decay matrix element
D.4 (eq. 1.61). The generation of the reaction y7 — w¢ is followed by a detector and
trigger simulation as described in chapter 3. The simulation is used also to calculate the
acceptance for the reaction vy — w¢. Cuts on masses mgg and ma, are also included in
the acceptance calculation. The acceptance dependence on the two-photon invariant mass
W, , is shown in fig. 8.3. It is averaged over bins of 250 MeV/c?. Although the detector

tesolution on 7t~ w°K+ K~ invariant mass is only 45 MeV/c?, we chose this binning
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Figure 8.4: Cross section and upper limits at 95 % confidence level for
the reaction 7y — we.

due to the small number of w¢ events (fig. 8.3). The contribution of background to the
selected events is estimated by Monte Carlo simulation. Due to very severe cuts on the
two-kaon and two-pion masses, the selection criteria reject all events from the simulated
data sample of two-photon interactions, tau pair production efe”™ — 77 and reactions
ete” — hadrons (section 4.2). The number of events in this sample corresponds to
the integrated luminosity of the measured data. Using fewer restrictive cuts on w¥7%r~
and K+ K~ masses, the reaction vy — wtx°# " K*K~ is found to have a dominant
contribution to selected events. Therefore, we generate a large Monte Carlo sample of
this reaction. Although the generated sample corresponds to five times the integrated
luminosity of the measured data, no event has fulfiled the w¢ selection criteria. So, an
upper limit on background contribution is obtained to be 0.6 {95% confidence level). For
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the W, bin with all four events we calculate the cross section using the relation

N;
Trr—wd = 9L Li Br{w — 37) - Br(¢ — 2K) ’

(8.1)

N; - number of selected events Br(w — 3r) - decay fraction for decay w — ntx~x°

7; - acceptance Br(¢ — 2K) - decay fraction for decay ¢ — KTK~
L - average luminosity function in i-th W., interval

The values used for decay fractions Br{w — 37) and Br(¢ — 2K) can be found in [19].
The calculated cross section is plotted in fig. 8.4. Upper limits for the reaction yy — w¢
at 95 % confidence level are also shown. ‘
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Chapter 9

Summary

The five pion production in two-photon interactions was studied using the ARGUS experi-
mental data. The analysis of this production includes contributions of reactions yy — wp?,
vy = wrte™, gy — p’xT 7%, and vy — 7wtat 7% "7, The data analysis of these re-
actions was performed in the range of W,, energies between 1.1 GeV and 3.5 GeV. The
cross sections were determined by using the maximum likelihood method. A sum of cross
sections for both reactions with w meson in the final state is compared with results of

previous experiments (fig. 9.1). The obtained cross section is in agreement with previ-

L}G | T T T T 1 T T T T T L | T T T T T T T T T
yy—wntm”
a0 | 4 ARGUS 93
: S ARGUS 87

4 % JADE
20 %ﬁ L TPC/2y
10 — A 4 ‘i

i ]

1.0 1.5 2.0 2.5 3.0 3.5
W, [GeV]

o(yy-wp®) [nb]

l‘l]lllll]_LJ.l[llll

Figure 9.1: Comparison of the cross section for the reaction vy —
wrtr~ with results of previous experiments. Production of wrtr™
includes resonant and non resonant production of #*«~ pairs.
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Figure 9.2: Cross sections for the reaction 4y — wp®. The result of the
9 parameter fit is compared with cross sections of other experiments.

ous measurements of ARGUS [4] and CELLO results [48]. The cross section for reaction
vy — wp® is compatible with results of JADE [49] and TPC/2y [50] (fig. 9.2). Also a
spin-parity analysis of the wp® system was performed. Using the partial-wave method a
dominance of the (JF,J,) = (2+,2) wave is found in the region of W,, between 1.5 and

2.3 GeV.

Two-photon production of vector meson pair p°¢ has been studied in the reaction
v — 7¥x~ K+ K~ where both vector mesons are reconstructed by their dominant decays.
The cross section for the reaction ¥y ~» p°¢ has been measured for the first time. The

measured cross section is consistent with ARGUS previous limit [5].

Two-photon production of w¢ has also been found for the first time. A cross section
of 1.65 £0.86 nb obtained for the W.,, energy range between 1.9 and 2.3 GeV is consistent
with the previous upper limit for this reaction [6]. For the region above 2.3 GeV an upper
limit of 0.7 ab is obtained thus improving the upper limit set by ARGUS with the smaller
data sample [6].



Appendix A

The Angular Wave Functions for wp”

Using the relation (1.41)

Lj . i m . )
.'I’JPJ -Iz = 2 Z -_;r;:‘ L M ij My, jp mp YLM(9,¢) ‘ |Jwimw) ' |Jp’mp)

m+M=J, mutmp=m

Lj
JP g
describing the rotational properties of decay into vector mesons w and p° are evaluated

and expresions for |j,,m.) and {j,,m,} (equations (1.42), (1.45)), wave functions ¥

for all spin parity states with spin J < 2, that can be produced by interaction of two real

photons:
‘IIO"' 0 = }’60('9; 96) * {_‘}E‘llil) - |1:-1) - %II,O) * |1;0) + \/Lgll!_l) * llzl)]
o [cos f,. cos 8, + sin 8, sin @, cos (P, — q’)p)] (A1)
1, 1 1
Voo = ¥ (8,6)- [0 IL-1) ~ =l -1)-11,0)

1, 1 1
- Zg0.4) [ -1 -1) - i1, -1) )]

1 1 1
— Y18, [— 1,1) -j1,0) — —|1,0) - 1,1]
#7081 1L0) — 11,01,
o [cos fsin 6, sin 8, sin ($, — ¢,) + sin B sin 6,, cos §, sin (¢ — ¢,.)

+ sin 8 cos 8, sin 8, sin (¢, — ¢) (A.2)

Vot 4o = Y0,0)-[1,1)-|1,1)
o sinﬂnsinﬂp-eii("s"w’f’)) {A.3)
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Vo = ¥0,8) [So 01 + 200 1,0+ S, -1 -1,
[2cos Bncosﬂp—sinﬂnsingpcos(ga';n—d;p)] (A.4)
(s=) _ 1y 1 oy = Ly oy,
W) = 09 [0 -1) - -1 11,0

Vi 1
f” °6.9)- |5 i 251 -fL1)]

1
— —] - — - —_— — -
+J¥0,6) [ 510 10) - F201,0) 1)
o [2 cos 0sin 6, sin 8, sin (¢, — @,) — sin sin d,, cos G, sin (¢ — ¢,.)

+sin 8 cos 8, sin 8, sin (¢ — gbp)] (A.5)

(s=2) _ v 1 B 1 e
¥ = X8 [IL0 L1+ Sl -1 15,0)]
1., 1 1
+EY1 (9195) ' [ﬁllan ) |1:0) + 7‘§|110> * |1a 1)]

x sinf [cos 6, sin 0,sin (¢ — ¢,) + sin 6, cos 8, sin (¢ — ¢, )] (A.6)
The wave functions are calculated only for lowest orbital angular momentum L = 0 and

L = 1, assuming that contribution of others can be neglected close to wp® threshold. A

variable S in equations {A.5) and (A.6) marks vector sum of w and p spins.
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