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Izvlecek 

Tvorbo petih pionov pri dvofotonskih interakcijah smo proucevali na podatkih, 

zbranih s spektrometrom ARGUS. Z metodo maksimalne zanesljivosti smo dolocili 

prispevke reakcij 'Y'Y --t wp0
, 'Y'Y --> w,r+,r-, 'Y'Y --t p°,r+,r0,r- in 'Y'Y --t ,r+,r+,r0 ,r-,r-. 

Posebej pomemben je presek za dvofotonsko produkcijo para vektorskih mezonov wp0
, ki 

smo ga izmerili z manjso napako kot drugi eksperimenti. Dolocili smo tudi prispevke valov 

z razlicnim spinom ter parnostjo k reakciji 'Y'Y --> wp0 • Analiza kotnih porazdelitev kaze 

na dorninanco prispevka stanja s spinom in parnostjo (JP, J,) = (2+, 2) na obmocju dvo­

fotonske invariantne mase med 1.5 in 2.3 GeV. Razen tvorbe parov vektorskih mezonov 

wp0 smo studirali tudi reakciji 'Y'Y --t p°ef, --t ,r+,r-K+ K- in 'Y'Y --t wef, --t ,r+,r0 ,r-K+ K-. 

Prvi smo dolocili presek za tvorbo parov p0 ¢, pri dvofotonskih interakcijah. Presek za to 

reakcijo je najvecji na intervalu dvofotonske energije med 1.5 in 2.5 GeV. Izmerili smo 

tudi stiri dogodke, ki kazejo na obstoj reakcije 'Y'Y --> wef,. 

Abstract 

The production of five pions in two-photon interactions was studied with the AR­

GUS detector. By using the maximum likelihood method the contributions of reactions 

'Y'Y --twp°, 'Y'Y --t w,r+,r-, 'Y'Y --t p0 ,r+,r0,r-, and 'Y'Y--, ,r+,r+,r0,r_,r_ were determined. Of 

particular interest is the cross section for TY --t wp0 which is measured with better preci-

. sion than in previous measurements. The spin-parity composition of the wp0 system was 

determined using the partial-wave analysis. A dominance of the wave (JP,Jz) = (2+,2) 

is found in the region of center-of-mass energies between 1.5 and 2.3 Ge V. Beside wp° 
production also p0 ¢, and wef, channels were studied. The process 'Y'Y --t p°ef, was observed 

for the first time. Its cross section is highest in the region of center-of-mass energies 

between 1.5 and 2.5 GeV. We also found an evidence for the reaction 'Y'Y --t wef,. 
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Introduction 

Two-photon physics is a relatively new branch of experimental particle physics, closely 

related to high energy e+ e- storage rings. Bunches of electrons and positrons surrounded 

by clouds of virtual photons circulate in a storage ring in the opposite directions. In­

teractions between photons of different clouds offer an opportunity to study two-photon 

reactions in a wide kinematical region. Two-photon interactions with leptons in the final 

state provide a test of quantum electro-dynamics up to the fourth order of fine structure 

constant a. But the interest has lately turned to reactions with hadrons in the final state. 

Particularly interesting is the two-photon production of vector meson pairs, which 

enables a study of meson scattering on mesons. Due to equal quantum numbers, virtual 

photons can convert into neutral vector mesons which then mutually hadronically interact. 

Experimental studies of the gamma-gamma production of two vector mesons have revealed 

an interesting structure. It was found that the cross section for 11 ---t p0 p0 exhibits a peak 

near the reaction threshold. The reaction was first measured by the TASSO collaboration 

[l] at PETRA storage ring in Hamburg. Later, it was found by JADE collaboration that 

the cross section for the production of an isospin related pair 11 ---t p+ p- is more than 

four times smaller. This ratio cannot be explained by production of a pure isospin state. 

Since two P° mesons can only combine to isospin l=O or 1=2, the ratio for production of 

isospin pure state can only assume the values 1/2 or 2, respectively. If these predictions 

are compared to the experimental results, it is clear that we are dealing with a coherent 

mixture of both l=O and 1=2 states. Measurement of a resonant origin of the reaction 

11 ---t pp would probably confirm an existence of exotic qqqq states, since bound states 

of pairs quark anti-quark cannot have an isospin 2. The origin of the reaction 11 ---t pp 

can be found by partial wave analysis, which requires a large data sample. With the high 

statistics collected by the ARGUS detector, the analysis of 11 ---, p0 p0 showed a clear 

dominance of the (JP, J,) = (2+, 2) wave [2], hinting the formation of a resonance. It is 
believed that analysis of other vector meson pairs may contribute to better understanding 

of pp production. 

Resonant four-quark structures are expected [3] also in production of vector mesons 

3 
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wp and pq,. The cross section for wp0 production has already been measured by several 

groups, first by ARGUS collaboration in 1987[4]. An enhanced cross section was found at 

1.9 GeV. Near threshold, where resonant structure is expected by the four quark model [3], 

no enhancement has been observed. For better understanding of the reaction "Y"Y --+ wp0
, it 

is important to make a partial wave analysis. Due to lack of experimental data, the partial 

wave decomposition of this reaction has not been performed. In this thesis we present 

the results of a partial wave analysis of the reaction "Y"Y -> wP° -> ,r+,r+,r0 ,r_,r_ using 

the data sample collected by the ARGUS detector. The detector provides a good particle 

identification, precise measurement of their momenta and consequently a low contribution 

of the background reactions. This turns out to be very important, particularly because 

no cut on two and three-pion invariant masses can be used. In addition, many waves can 

contribute to the studied reaction even further intensifying difficulties. Particularly high 

statistics is needed in the case none of the waves dominates. This thesis includes also 

the study of reactions "Y"Y -, p0q, and "Y"Y -, wq,. The production rate for both reactions 

is small, and this is the first time that they were detected. Previously, only the upper 

limits for the cross sections were set by collaborations TPC/Two-Gamma, TASSO and 

ARGUS [5, 6]. 

The thesis is organized as follows. In the first chapter a brief review of the kine­

matics for the two-photon interactions is given. It includes also all the relevant formulas 

describing general features of all three studied reactions: "Y"Y -, wP°, "Y"Y -, p0¢,, and 

"Y"Y -, w<f,, The third chapter describes the detector with an emphasis on the drift cham­

bers and the calorimeter, i.e. components that are extensively used in the analysis. This is 

followed by a description of the trigger system and methods of charged particle identifica­

tion. The Monte Carlo simulation of the physical processes and particle tracking through 

the detector is described in chapter 3. Using the simulation we determine the experimen­

tal resolution of all quantities needed in partial-wave analysis. In chapter 4 we present 

a selection of the five pion final state and estimate the background contribution to the 

selected 5,r events used in "Y"Y -, wp0 analysis. A brief description of the maximum likeli­

hood method and the acceptance calculation is given in chapter 5. The final results and 

determination of systematic errors can be found in chapter 6. Chapters 7 and 8 describe 

the analysis of reactions "Y"Y -, p0 ¢, -, ,r+,r-K+ K- and "Y"Y -, w<f, --+ ,r+,r01r- K+ K-. 

They are organized in a similar way as the presentation of the "Y"Y-, wp0 -, 1r+1r+1r01r_1r_ 

analysis. A short summary of the results can be found in the last chapter. In entire work 

we use the convention c = 1 and Ii = 1. 



Chapter 1 

The Physics of Two-Photon 
Interactions 

1.1 General Discussion 

In a two-photon process at an e+ e- collider electron and positron interact by radiating 

space-like virtual photons that in turn produce a final state X. The kinematic variables 

of a two-photon reaction e+ e- -> 

EB - beam energy 
PB - beam momentum 

e+e- X are shown in fig. 1.1 where all particles are 

X 

e­
P2= ( Es,0,0,-Psl 

Figure 1.1: Kinematics of the two-photon process 

described by four-vectors: incoming leptons by p;, scattered ones by p; and photons by 

5 



6 CHAPTER 1. THE PHYSICS OF TWO-PHOTON INTERACTIONS 

q, = p; -p:. The z-axis in the laboratory frame points in direction of the incident positron. 

The x-axis has an arbitrary direction perpendicular to the beam line. 

The transition matrix element for the process consists of electron and positron 

vertices represented by i(±e)1'µ, two photon propagators -igµv /q; and the matrix element 

T,,.(3 describing the formation of the final state X by two photons. The amplitude can be 

written as [7]: 

where by u(p,, s,) and v(p;, s,) we denote the spinor of leptons with four-momenta p; and 

spin s,. By introducing an unnormalized photon density flux matrix 

µv _ 1 ~ "( I ') µ ( i-c ) v ( I ') Pi = -2 LJ u Pt, Si I u Pi, Si u Pi, Si I u Pi, Si 
qi spin~ 

the expression for the cross section can be written as: 

2E; (21r )3 

where dLips is the Lorentz invariant phase space of the final state X 

. ( i• •c ~ l II d3k, dL,ps = 2,r o qi + q2 - L.J k, E ( )3 
l l 2 1 27f 

(1.2) 

(1.3) 

(1.4) 

Due to gauge invariance only three of the four Lorentz indices are independent. It is 

suitable to express the unnormalized photon density flux matrix p,:V and the matrix 

element T,,.13 in the helicity basis of photons. The transformations of the quantities Tµv, 
pfµ' and p'/ are of the following form: 

(1.5) 

The indices a, b take the values +, - and O corresponding to the photon polarization 

. vectors E:,+, f:,_ and g,0 • Transversely polarized photons (T) have helicity +1 or -1, and 

longitudinally polarized photons (L) helicity 0. For later convenience we introduce the 

abbreviation 

Z aba 1b1 aa1 bb'T• = P1 P2 a'b'Tab, (1.6) 

with no summation over double indices. The Z matrix is symmetrical against the sub­

stitution ab <--t a'b' due to time invariance. In the following we shall consider only the 

case where none of both scattered leptons is detected, the so called "no-tag" mode. In 

this case the azimuthal angle <p; between lepton scattering planes and the x-axis in the 
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laboratory frame cannot be measured, so an implicit integration over both angles rp1 , rp2 

can be performed. One can see from the photon density matrix [7] 

with 

IPt-1 
1Pi01 
IP~bl 

(1.7) 

that only diagonal elements of this matrix do not vanish after integration over the az­

imuthal angle rp;. It is useful to factorize the matrix element Tab, in order to separate the 

two photon formation of intermediate state from its decay 

(1.8) 

The Mab is in this definition the helicity amplitude for the two photon coupling to the 

intermediate state R, and DJ, is describing the decay of that state into the final state X. 

J, stands for the spin projection of the state Ron the helicity axis in the 11 center-of-mass 

system. The 5 functions in the expression ensure angular momentum conservation. For a 

resonance formation the propagator PR of the intermediate state R is of the Breit-Wigner 
form 

1 
PR= 2 w2 . r , 

mR - - imR R 
(1.9) 

while for continuum reactions it is expected to vary weakly with two-photon invariant 

mass. Now we can collect all Z matrix elements that do not vanish in no-tag condition. 

They are listed in table 1.1. Inserting only terms listed in table 1.1 into eq. 1.3 one can 

obtain Budnev formula [7], the basic equation for 11 physics, 

du = a? [ ( q, q2)2 - qiq~ ] 1/2 

l61r4qiqi . (P1P2) 2 - mrmi . 
d3 I d3 I 

[4 ++ ++ 2 ++ oo 2 oo ++ oo oo ] P1 P2 
P1 P2 UTT+ Pr P2 UTL + P1 P2 ULT+ P1 P2 ULL E' ' E' 

I 2 
(1.10) 
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helicity ab, a'b' zab,a'EI 

0 ++,++ .,..,. .,.,M. M P'P D'D 
Pt P2 ++ ++ R R O 0 

0 --,-- ++ ++ M' M P* P D' D Pt P2 -- -- R R O 0 
+2 +-,+- ++ ++ M' M P' P D' D Pt P2 +- +- R R +2 +2 
-2 -+,-+ ++ ++ M* M P' P D* D Pt P2 -+ -+ R R -2 -2 
+1 0-,0- 00 ++ M* M P* P D* D P, P2 0- 0- R R +I +1 
-1 o+,o+ 00 ++ M' M P' P D* D P, P2 o+ o+ R R -1 -1 
-1 -0,-0 ++ 00 M' M P* P D* D P1 P2 -0 -0 R R - 1 - 1 
+1 +o,+o ++ 00 M' M P* P D* D P1 P2 +o +o R R +I +1 
0 00,00 oo oo M* M. P* p D* D P1 P2 00 00 R R O 0 

Table 1.1: Nonzero terms in the differential cross section formula for 
no-tag two-photon interactions 

without a further symmetry requirement. In the formula 1.10 all interference terms that 

cannot be measured in no-tag mode are omitted. To obtain eq. 1.10 from eq. 1.3 we have 

used the following expressions of cross sections [7]: 

UTT S~ j(T~+T++ + T~_T+-)dLips(X) 

O"TL 4~ / T~0T+0 dLips(X) 

O"LT 4~ / T~+To+dLips(X) 

O"LL = 
4

~ / T~0ToodLips(X) 

where :i: is the M!llller flux factor"' = (q1q2 )
2 

- qiqr Due to parity conservation in the 

two-photon vertex 

(1.11) 

and the inability to distinguish two states with different sign of helicity by their decay 

in the integral form, we combine terms T06 obtained by substitution + <--> - to the same 

cross section. 

From eq. 1.10 we can define the luminosity function as a function that connects the 

cross section O'e+e--e+e- x with the two-photon cross section u,T,T-x where both photons 

are transverse! y polarized 

dL ---- 1 2 1 2 4 ++ ++ 1 2 a? [ (q q )2 _ q'q' ] 1/2 d3p' d'p' 
- . p p -,-
- l6,r4qfoi (P1P2)2 - m?m~ 1 2 E\ E~ 

(1.12) 



1.1. GENERAL DISCUSSION 9 

Eq. 1.3 takes for the no-tag mode the following form: 

dL ~ aba'b'dL" (X) due+e--e+ .-x = r,;; ++ ++ LJ Z ' ips 
l6v:z:P1 P2 

(1.13) 

where only the elements listed in table 1.1 are included in the sum E zab,a'b'. 

The two-photon vertex, in general described with helicity amplitudes M.b, is sub­

ject to several constraints [8, 9) imposed by cltarge conjugation invariance, gauge and 

Lorentz invariance, Bose statistics and conservation of parity and angular momentum. 

The conservation of charge conjugation implies that in a two-photon process, only states 

of positive charge conjugation can be produced. We have already reduced the number of 

independent matrix elements Ta/3 by invoking the gauge invariance, but there is another 

feature of helicity amplitudes that can be concluded from gauge invariance. It turns out 

that for all spin-parity JP states the following relation is valid [10]: 

Mo,b( q;, q~) ~ FJ ( as q; ---> 0) 

M.,o( q;, qi) H ( as q~ ---> 0) 

(1.14) 

(1.15) 

Therefore, it is convenient to expand the amplitudes Mab in terms of covariant gauge 

invariant tensors written in the helicity basis. The simplest functional forms of gauge 

invariant tensors, describing the coupling of a two-photon system to a state with well 

defined spin and parity JP are called Born amplitudes. Depending on the value of JP, 

up to five independent form factors (Frro, Frn, FLL, FrL, F.h), generally marked with 

FabJ., are needed in addition to Born amplitudes to describe the two-photon formation 

of intermediate state Mab· The explicit forms of the amplitudes Mab/ FabJ, for the lowest 

spin states are given in table 1.2. The form factors are functions of q; of both photons and 

the invariant mass of the two-photon system. Due to Bose symmetry the form factors are 

required to be symmetrical in qf and qr Since the q; dependence of helicity amplitudes 

Mab as q; ---> 0 is already described with Born amplitudes, form factors are expected to 

be constant as qf ---> 0. 

It turns out to be convenient to write the form factors FabJ, as a product of two 

terms 

(1.16) 

where f(-qr, -qD describes the -qf dependence and F.bJ,(0, 0) the form factor value for 

point like particles. Clearly, J( -qr, -qi) is normalized to 1 as -q; and -qi go to zero. 

Since form factors are not known from first principles, models are applied to describe -qf 

dependence. In the vector meson dominance model (VMD) [11] photons are assumed to 

convert into virtual vector-mesons before they interact with each other. Therefore, form 
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helicity 
JP 

JP -

o+ 

1-

2+ 

JP -

o-

1+ 

2-

CHAPTER 1. THE PHYSICS OF TWO-PHOTON INTERACTIONS 

0 0 +1 +2 
M++/Frro Moo/FLL Mo-/(FrL - (q~ - qDF·h) M+-/ Frr2 

J+(-1)' 

1 
yq~q~ 
q,.., 0 0 

2(q~ - qi)~ 2( q2 - q2phlql Yi_ Y-q~ 0 
2 ] Q1Q2 W q1'12 

a X ~ -./2 A-=-- 1 B X 

76~ 7s~w2 Q1Q2 W 

J-(-1)-' 

..fi 0 0 0 

q2-q2 
0 y-q; ..fi 0 - "'-----""-w q, '12 

-76..fi 0 _,12R Yi_ 
q1q2 W 2(q~ - qi)..fi 

Table 1.2: Helicity amplitudes for the two photon coupling to the state 
with JP spin and parity. 

factors f are approximated with product of two single photon form factors. A decrease 

of the single photon form factor with increasing I - q; I, is described with a pole curve 

(1.17) 

where the pole mass is equal to the mass of a vector meson mv. Usually p meson pole is 

used ( mv = m.). For description of the form factor q; dependence also the prediction of 

a leading order QCD calculation (12] or a finite size model [13] are frequently used. 

We would like to study two-photon reactions where both photons are almost real. 

The helicity amplitudes Mab with one or both photons longitudinaly polarized are in this 

case negligible compared to amplitudes of transversely polarized photons. To ensure low 

q; for both photons it is necessary to require small transverse momentum of the two­

photon system as it is shown in fig. 1.2. The typical value for two-photon transverse 

momenta cut is 100 MeV. 



1.2. SELECTION RULES IN TWO-PHOTON REACTIONS 

4.0 
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Figure 1.2: Distribution of transverse momentum of two-photon system 
versus Q2 = -q2 of the photons. 

1.2 Selection Rules in Two-photon Reactions 

11 

In order to show which spin-parity states can interfere we have to find the rotation prop­

erties of a helicity amplitude M for two-photon coupling to the intermediate state with 

well defined JP ( eq. 1.8). For our purpose we will use the helicity formalism [14, 15]. Since 

helicity is invariant under rotations, the plane-wave state of a free photon lk,0,4',; A,) with 

helicity A, and momentum k, in an arbitrary direction ( 0,, 4>,) is obtained by rotation of 

a free photon wave function lk, A,} with the same helicity and the momentum k, pointing 

into the positive z-direction 

lk,0,4>,; A,} = R4,,,o,,-4,, lk, A,). (1.18) 

With R4,,,o,,-,J,, we denote a finite rotation of the photon momentum by Euler angles 

4>,, 0,, -4>,. The two-photon state is constructed as a direct product of both photon plane­

wave functions 

In the two-photon center-of-mass system where the momenta of photons point in opposite 

directions, the two rotations R(l) and R(2) can be replaced by a single rotation R that 
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acts on both states. Denoting the first photon momentum in this system with magnitude 

k and polar angles 0 and </> we arrive at 

(1.19) 

where lk >.;) is a helicity function for photons moving up the z axis. An extra minus sign 

in front of the magnitude k in the second photon helicity function is introduced due to the 

convention that the second photon moves down the z axis. Since the momentum k and the 

helicities ).1 and ).2 are invariant against rotation, it is possible to assign definite values 

to them, together with total angular momentum J and its projection J,. We construct a 

wave function for two photons with well defined J, J,, k and both helicities >.1, 
superposition [16] of plane-wave functions from eq. 1.19: 

(1.20) 

where). - >.1 - ).2 and NJ is a normalization factor. Using relation 1.20, one can write 

elements of the transformation matrix between plane-wave functions and functions with 

well defined total angular momentum J and its projection J, as: 

(1.21) 

The matrix elements are particularly simple in the TY helicity system, with z axis along 

the first photon momentum, where both polar angles 0' and </>' are zero, and so the 

rotation matrices DJ.>. are equal to 1. As a consequence the elements of the matrix 

(k'OO; >.~>.;lk; JJ,; >.1>.2) are just products of o functions. 

The advantage of using wave-functions with well defined helicities for each particle 

( eq. 1.20) is obvious in describing the reaction a + b -> c + d. The S matrix for this 

reaction 

(1.22) 

is reduced to submatrices SJ(E), belonging to definite values of energy E and angular 

momentum J. In the equation are E, J, J, together with the helicities >.0 , ).b quantum 

numbers for the initial state, and similarly E', J', J;, >.c, ).d quantum numbers for the 

final state. One can see that for parity conserving reactions 

p-l Sp = S (1.23) 

final states differing only in sign of helicity are equally probable if the initial particles are 

unpolarized, as is the case in two-photon interactions at an e+ e- collider with unpolarized 
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beams. Applying the relation 1.23 to the submatrix SJ(E) in the (J, J,)-representation 

and using the behaviour of states with well defined helicities under inversion 

(1.24) 

where 1/ is a phase factor, one finds 

(1.25) 

Thls means that the cross section is equal for both signs of helicity. 

In the helicity basis the cross section d<Te+e--e+e-X is proportional to the sum 

( eqs. 1.3, 1.5) 

(1.26) 

Summation indices a, a', b, b' indicate photon helicities. As we have already mentioned 

(page 7) the off-diagonal elements of the unnormalized photon density flux matrix ( eq. 1. 7) 

vanish in the no-tag case due to integration over the scattered electron and positron 

azimuthal angles. This leads us to the incoherent summation of the T matrix elements 

for different photon helicities 

due+e--e+e-x CX: LPr0 PtblTab] 2
. (1.27) 

a,b 

Since the two-photon helicity ,\ = a - b coincides with Jz, only the interference between 

states with equal J, projection can be studied in the no-tag case. 

Helicity matrix elements Mab for two-photon formation of states with total angular 

momentum J smaller then two-photon helicity difference la - bl are zero: 

M±'°(J = 0,1) = 0 

Mo±(J = 0) = 0. 

(1.28) 

(1.29) 

Some further reduction of independent matrix elements can be done also due to parity 

conservation. For helicity amplitudes Mab, the following behaviour under helicity-flip can 

be shown [10]: 

M.b - M_. -b for JP = o+, 1-, 2+, J+(-1)',... (natural states) (1.30) 

This leads to zero matrix element for formation of unnatural spin-parity states with two 

longitudinaly polarized photons 

0. (1.32) 
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Different behaviour of natural and unnatural spin-parity states under helicity-flips pre­

vents an interference between states with different naturality 1/· For description of an 

interaction between two real photons only four terms have to be considered in a no-tag 

reaction: 

(1.33) 

Each T matrix element can be split into terms describing production of states with positive 

and negative naturalities 

(1.34) 

Applying the relations 1.30, 1.31 on combined terms T++T++ + T:._T __ and T+-T+- + 
T:.+T-+ one can see that products of T matrix elements with different naturalities cancel. 

So the relation 1.33 transforms to 

d ++ ++(T"=+•r•=+ + T"=-•Ta=- + T"=+•r•=+ + T"=-•Ta=- ) (1.35) o-e+e--e+e-x ex: Pr P2 ++ ++ ++ ++ +- +- +- +-

It means that in no-tag interactions of two real photons, there is no interference between 

states of different naturalities. 

For real photons, some further restrictions on helicity matrix elements Mab can be 

derived from the principle of invariance under space rotation and inversion (8]. There are 

four helicity functions for two real photons in their center-of-mass system, propagating in 

the opposite directions along the z-axis 

,v++ 

iv-- -
,v+-

,v-+ 

lk + 1) I - k + 1) 

lk - 1) I - k - 1) 

lk + 1) I - k - 1) 

lk - 1) 1- k + 1). 

(1.36) 

A single photon helicity function Jk).) transforms under a rotation R¢ around the z-axis 

by an angle <P, a rotation Rx around the x-axis for 180° and a parity transformation P in 

the following ways: 

Hq,Jk).) e;A'"lk).) 
Rx lk).) - I - k).) ( 1.37) 

Using these relations, two-photon eigenstates of R¢ and P can be constructed from helicity 

functions 1.36 

lk + 1) I - k + 1) + lk - 1) I - k - 1) 
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Rq, 

p 

q;++ + q;--

1 

1 

1 

q;++ - q;--

1 

1 

-1 

q;+-

1 

q;-+ 

1 

Table 1.3: Eigenvalues of the rotations R<t,, Rx and the inversion P for 
four two-photon helicity states. 

q;++ - q;-­

q;+-
lk + 1) I - k + 1) - lk - 1) I - k - 1) 

- lk + 1) I - k - 1) 

q;-+ - lk -1) 1- k + 1). 
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{1.38) 

The behaviour of these states under both rotations Ref,, Rx and inversion P is listed in 

table 1.3. Only the function q;++ - q;-- can be used to describe a formation of a state 

with negative parity while other three functions q;++ + q;--, q,+- and q;-+ describe 

a formation of a state with positive parity. From table 1.3 it is possible to see that 

functions q;++ + q;-- and q;++ - q,-- are both simultaneous eigenstates of Ref, and Rx 

with eigenvalue one. On the contrary, eigenvalues of intermediate states with an odd total 

angular momentum J are not equal to one for both rotations R<t, and R., simultaneously. 

The rotation properties of these states (J = 1,3,5, ... ) are described with the spherical 

harmonics Y1o and therefore the sign is changed under the rotation Rx for J = 1, 3, 5, .... 

So the formation of an intermediate states with an odd total angular momentum can 

only be described with functions q;+- and q;-+. Considering also that the helicity of 

two photons should not exceed the total angular momentum J of the intermediate state 

{ eqs. 1.28, 1.29), only a small number of helicity amplitudes remains nonzero: 

M±±(JP = o±, 2±, 4±, ... ) cf O with J, = 0 

M±'f'(JP = 2+, 3+, 4+, ... ) cf O with J, = ±2. 

All other matrix elements vanish. 

{1.39) 

(1.40) 
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1.3 Decay of states with well defined JP into wp0 

The rotation properties for a decay of a state with well defined spin-parity JP into two 

vector mesons, w and p0
, are described by a wave function if!~/ J,. The function is written 

as a sum of products between both meson spin functions Ii..,, m..,), lip, mp) and a spherical 

function yLM describing an orbital angular momentum in the wp0 system 

m,M mw,mp 
na+M=J11. mw+rnp=m 

The wave function if!~j J, is constructed by first combining the spins of the vector mesons 

and subsequently adding the orbital angular momentum to obtain the total spin J. In 
the equation Clebsch-Gordon coefficients are marked with C. Angles 0 and ef, in eq. 1.41 

are polar and azimuthal angles of the w meson in the ''f'Y helicity system. The system lies 

in the 11 center-of-mass, having the z a.xis along one of the photons. 

The p0 meson is a spin one particle with negative parity. At its dominant decay 

into two spinless pions its total angular momentum coincides with the orbital angular 

momentum of the two pions in the p0 rest frame. Therefore, the p0 spin function lip, mp) 
is represented by the spherical function YtP(0p,¢,p) 

{1.42) 

The angles 0P and ¢,p define the direction of ,r+ in the p0 center-of-mass system where 

coordinate axes are parallel to the axes in the 11 helicity system. 

The w meson is also a spin one particle with negative parity and so represented by a 

vector. For its dominant decay into three pions the wave function is written as a product 

of a spatial function with intrinsic functions of all three pions. Since pions are spinless 

particles with negative intrinsic parity, the spatial function corresponds to an axial vector 

with JP = 1+. There is only one independent axial vector that can be formed from 

the pion momenta in the w rest system, namely a cross product of two pion momenta. 

Therefore, the w spin function is written as 

I 
. ) - N . (p~+ x JJ,c-) - N ~ 

)w - - •n 
Ii~+ x JJ,c-1 

(1.43) 

where ii is the unit vector normal to the decay plane in the w rest frame. The constant 

N is obtained from normalization of the spin function. By using the helicity basis vectors 

(1.44) 
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we arrive at the helicity representation of the spin function 

(1.45) 

where Bn, ,Pn denote the angles of the vector ii. 

Both vector mesons w and p are short lived particles with a finite width of mass 

distribution. To describe their mass distributions, we factorize the decay matrix element 

DJ,(R---> X) 

DJ,(R---> ,r+,r-,r+1r01r-) = M(p0 ---> ,r+,r-) [m!- 8 2.- -imprp]_, 

M(w---> ,r+,ro,r-) [m~ - s 3.- - imwrw]-' M(R---> P°w) (1.46) 

into the matrix element describing production of w and p0 M(R ----+ p0w), elements for 

their decays M(p0 ----+ ,r+,r-), M(w----+ ,r+,r0,r-) and relativistic propagators of both vector 

mesons [17, 18]. In the equation above 8 2.- and s3 .- denote squares of ,r+,r- and ,r+,r0,r­

invariant mass, respectively. 

The decay matrix element M(p0 ----+ ,r+,r-) linearly depends on the p0 meson polar­

ization vector e. As the matrix element has to be Lorentz invariant, e occurs in a scalar 

product with pion four-momenta. Due to gauge invariance (P.-+ + P.--) · e = 0, only one 

coupling constant Gp.-.- is needed to describe the matrix element M(p0 ----+ ,r+,r-) 

(1.47) 

where the last expression is valid only in the P° meson center-of-mass system. For the 

polarization e describing a p0 meson with well defined spin projection mp, the above 

relation leads us to the same angular distribution as jt is described with the p0 spin 

function lip, mp) 

(1.48) 

Applying the Fermi golden rule, we arrive at the partial width for the p0 decay into two 

p10ns 

r( o 2) lG2 P;+ 
mp P p -4 7f = - p.-.- -- • 

6,r ~ 

Thls enables us to express the decay matrix element M(p0 ----+ 

width r p(p0 ----+ 2,r) 

(1.49) 

,r+,r-) with the partial 

M(p0 ----+ ,r+,r-) = 2V6,r~ Jmprp(p0 ----+ 2,r) lip,mp) 
,ff,;+ 

(1.50) 
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Combining the decay matrix element M(p0 -+ ,r+,r-) with the p0 propagator, we arrive 

at the relativistic Breit-Wigner amplitude 

P _ • Jmprp(pO-+ 2,r) • ~ 
Asw - ( 2 • r ) ~ 

1r mp - s2'ff' - imp P v P1r+ 
( 1.51) 

where the angular distribution Jjp, mp) and some numerical factors are omitted. Since the 

p0 meson is a broad resonance with nominal mass mp= 768 MeV and width rP = 149 

MeV (19], the ,r+,r- invariant mass distribution deviates from the one obtained from the 

relativistic Breit-Wigner amplitude A~w· The disagreement can be removed by intro­

ducing the width dependence on the two-pion invariant mass [20, 18] 

( 
4 2 )3/2 r (s) = r ( 2) 8 - m,,. mp 

P P mp m2 - 4 m2 1s 
p ,r ya 

(1.52) 

The decay matrix element for thew decay into three pions M(w-> 3,r) is obtained 

in a similar way as the one for the p0 decay. The negative C-parity of thew requires an odd 

relative orbital angular momentum for the ,r+,r- pair, while parity and angular momentum 

conservations require the same for orbital angular momentum between ,r0 and the ,r+,r­

pair. So, the decay matrix element is described by multiplying the antisymmetric tensor 

En/J-y5 with the polarization vector of the w meson and the momenta of all three pions [18] 

(1.53) 

The last expression is valid only in thew meson center-of-mass system, where A equals to 

A = IE,,.+ (p,,.o X p---..-) + E,,.o (p,,.- X p,,.+) + E,,.- (p,,.+ X p,,.o) I (1.54) 

and ii is a unit vector normal to the three-pion decay plane. In the product f.' · ii one 

can recognize spin functions Jjw, mw) from eq. 1.45. It turns out that the assumption of 

a constant Gw3,,. is in good agreement with the measured Dalitz plot for the w decay into 

three pions [21]. That leads us to a relativistic Breit-Wigner amplitude 

Aw _ Gw3,r A 
BW - ( 2 • r ) , 7r mw - SJrr - imw w 

( 1.55) 

obtained by combining the matrix element M(w-> ,r+,r0,r-) and thew propagator, also 

here the angular distribution is omitted. Due to the narrowness of the w resonance, the 

width r w can be taken as constant. 

Finally, we can express the decay matrix element DJ, introduced in the eq. 1.8. 

Because the pions with the same charge are identical bosons with spin zero, the matrix 
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element is sy=etrical against the interchange of two like-sign pions. Taking into account 

this symmetry property we obtain by adding up all the pion permutations P;, the following 

expression for the decay matrix element D 

4 ) ""' A"' AP ,T,L j =L.J BW BW"JPJ • 
~ +-0+-

;=1 ( P;(.-1 "2 " ", "• } 
(1.56) 

It is assumed that the matrix element M( R ---> p0w) describing the production of vector 

mesons w and p0
, does not depend on the two and three-pions invariant masses. 

1.4 Decay of the two-photon 
1r+1r+1r01r-1r- final state 

state into a 

In addition to the wp" production, five pion final states are accessible in two-photon 

interactions also through other channels. In our analysis we include incoherent contri­

butions of W'l!"+'I!"-, p011"+1!"-1!"o and 1!"+1!"+1!"01!"-1!"- uniformly distributed in phase space. 

This assumption is unphysical for the w'l!"+'I!"- channel, where requirement of odd two­

pion orbital angular momentum, due to C-parity conservation, forbids isotropic angular 

distributions [3]. However, it will be shown later ( chapter 6) that contributions of w'l!"+'I!"-, 

p
0
1!"+1!"-1!"o and 1!"+1!"+1!"

0
1!"-1!"- channels are well separated from wp0 due to different distri­

butions of 11"+1!"- and 1!"+1!"-1!"
0 invariant mass. Adding up all the pion permutations, the 

decay matrix elements for all three channels are 

Dw1r+1r- (1.57) 

4 

= L(A~w )P(.-+.--,..o,..+,..-i 
, I 1 2 3 4 
i=l 

(1.58) 

(1.59) 

The notation corresponds to the one in eq. 1.56. 
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1.5 

CHAPTER 1. THE PHYSICS OF TWO-PHOTON INTERACTIONS 

Decay of a two-photon state into vector mesons 
p0</> and w</> 

Beside the partial wave analysis of the five-pion final state, also a study of the two­

photon production of vector meson pairs p0q, and wq, will be presented. Both reactions 

are analysed by using the dominant decay mode of each vector meson, so the final states 

for reactions 'Y'Y ---t p0 q, and 'Y'Y ---t wq, are ,r+,r- K+ K- and ,r+,r-,r° K+ K-, respectively. 

Due to very few events observed, for neither of the two reaction the partial wave analysis 

could be performed. Therefore, a uniform, phase space distribution of p0q, and wt/, is 

used. Since particles in the final state are not identical, the decay matrix elements are 

not symmetrized: 

A~w A!w 

A11w A!w, 

(1.60) 

(1.61) 

where the Breit-Wigner amplitude A!w for </, is of the same form as for the p meson, 

except for the width that we take as constant. 



Chapter 2 

The ARGUS Detector 

The ARGUS detector [22) is a solenoidal magnetic spectrometer (fig. 2.1), assembled in 

the south interaction region of DORIS e+e- storage ring [23]. The detector provides 

momentum measurements of charged particles, their identification and measurements of 

neutral particle direction and energy. It covers over 90 % of the full solid angle. In 

a magnetic field of 0.8 T [24) inside solenoidal magnet coils are installed a vertex drift 

chamber [25), a main drift chamber [26], time-of-flight counters [27] and an electromag­

netic calorimeter [28, 29]. Further outwards follow an iron flux return yoke and three 

layers of proportional tubes [30) serving for muon identification. Most hadrons are ab­

sorbed in the electromagnetic calorimeter, magnet coils or in the flux return yoke before 

they reach the proportional tubes, the so called muon chambers. Around the beam tube 

are placed compensation coils shielding mini-beta quadrupoles from the detector's longi­

tudinal magnetic field. The two mini-beta quadrupoles focus the beams on the interaction 

point. A luminosity of up to 2 · 1031 cm-2s- 1 is achieved. 

2.1 Main Detector Components 

The vertex drift chamber is a lm long cylindrical chamber, with inner and outer radii of 

50 and 140mm, respectively. All wires, i.e. 594 sense and 1412 field wires, are parallel to 

the chamber axis, hence the coordinate in the beam direction is not measured. They are 

arranged in a close-packed hexagonal cell pattern. The spatial resolution of the vertex 

drift chamber is about 90 µm. 

The main drift chamber represents the central track detector of ARGUS. Its length 

equals to 2m, inner radious to 15 cm and outer radious to 85cm. The chamber contains 

5940 sense wires and 24588 potential wires arranged in 36 concentric layers of 18.0 mm 

x 18.8 mm large drift cells. The spatial resolution of around 190 µm reflects in a good 

21 
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1 Muon Chambers 
4 Main Drift Chamber 
7 Magnet Coils 
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2 Electromagnetic Calorimeter 
5 Vertex Drift Chamber 
8 Compensation Coils 

w' 

3 Time-of-flight Counters 
6 Iron Yoke 
9 Mini-beta Quadrupols 

Figure 2.1: The ARGUS detector 
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resolution of transverse momentum u(pr)/PT - Jo.OI2 + (0.009 PT[GeV/c])2 Tilted 

sense wires in every second layer allow a determination of the track coordinates along the 

beam direction. The chamber is filled with the gas mixture of 97% propane, 3% methylal 

and 0.2% H20. This results in a good resolution in the measurement of specific ionization, 

u(dE/dz)/(dE/dz) ~ 5% for charged hadrons. 

The time-of-flight counters, made of 20mm thick NEllO scintillator, are tightly 

packed between the main drift chamber and the calorimeter modules. Each of the 64 

barrel counters is read out by two photomultipliers while, due to the geometric restrictions, 

the 2 X 48 endcap counters are read out from one end only. The time resolution of the 

time-of-flight system for hadrons is 220 ps (r.m.s.). 

The electromagnetic calorimeter consists of 1760 modules arranged into two hemi­

spheres with 10 rings of 64 modules in the barrel region and 5 concentric rings containing 

64, 56, 48, 40 and 32 modules in the endcap region. The modules are of the lead-scintillator 

sandwich type, with alternating layers of 5 mm scintillator and 1 mm lead in the barrel 

modules, while lead layers in the endcap region are 1.5 mm thick. The overall depth of each 

module corresponds to 12.5 radiation lengths, and its width to 1.0 (0.9) Moliere radius for 

the barrel ( endcap) modules. In the calorimeter, only electron and photon energy can pre­

cisely be measured. The energy resolution achieved is trE/ E = Jo.0722 + 0.0652 / E[GeVJ 

in the barrel part of the detector and trE/E = J0.0752 + 0.0762 /E[GeV) in the endcap 

parts. The photon production angle derived from center-of-energy of the shower is mea­

sured with precision of u = 13 mrad and o- = 10 mrad in the barrel and endcap regions, 
respectively. 

The muon chambers consist of 1744 proportional tubes arranged in three layers, 

one inside the iron yoke and two outside. Only muons with momentum greater than 

1.1 GeV /c can penetrate the iron yoke and produce signals in the outer layers. The 

momentum cutoff for the inner chambers is only 0. 7 Ge V / c. The muon chambers operate 

with a gas mixture of 92% argon and 8% propane. 

2.2 The Trigger System 

The first level trigger relies entirely on fast scintillator counters, the time-of-flight counters 

and the electromagnetic calorimeter. It is followed by a slower second level trigger system 

called Little Track Finder (LTF). The LTF microprocessor searches for charged tracks in 

the main drift chamber, covering a pattern of hit wires with predefined track masks [31). 

If a number of found tracks exceeds the required threshold, the event is selected and read 

out. The on-line computer PDP 11/45 receives the event data from a CAMAC system 
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and transfers them on an event-by-event basis to the VAX 11/780, which stores the data 

on a disc unit. After extracting monitoring information, the VAX 11/780 sends the data 

to the IBM main computer. 

The event is accepted if one of the following trigger conditions is fulfilled: 

ETOT: The Total Energy Trigger requires that the sum of the energies deposited in ei­

ther calorimeter hemisphere exceeds 0.7 GeV. This is the only trigger applying the endcap 

calorimeter modules. 

HESH: The High Energy Shower trigger requires the deposited energy in a single HESH 

group of modules to exceed 1 GeV. Each of 16 HESH groups contains barrel modules of 

the same hemisphere covering about 70° in the azimuth. In addition the LTF processor 

has to find at least one charged track. 

CPPT: The Charged Particle Pre-Trigger is designed to trigger on events with several 

charged particles. At least one charged track has to be found in each hemisphere. On 

the pretrigger level a track is defined as a coincidence between signals coming from time­

of-flight counters and calorimeter modules of the same CPPT group. Each CPPT group 

consists of 6 time-of-flight counters in the barrel region and 6 x 10 calorimeter modules 

lying behind them in the same hemisphere. Also the LTF processor has to find at least 

two charged tracks in the ma.in drift chamber. 

CMT: The Coincidence Matrix Trigger uses the same groups as CPPT trigger to rec­

ognize charged track. Instead of crossing different hemispheres, tracks are required to 

produce signals in two groups separated by more than 90° in the azimuthal angle. Also 

in this case the LTF processor is required to recognize two charged tracks. 

COSMIC: The Cosmic Ray Trigger is a test trigger. It searches for cosmic muons re­

quiring a coincidence between two opposite groups of four barrel time-of-flight counters. 

RANDOM: The Random Trigger is the second test trigger. It gives a random gate to 

read out electronics at a predefined average rate of, normally 0.1 Hz. During data acqui­

sition it is usually switched on in order to record events needed for off-line estimation of 

noise in the detector. 

The first four triggers have to be in coincidence with the bunch-crossing signal. 

2.3 Identification of Charged Particles 

Charged particle identification is based on two independent methods. Electrons, muons, 

pions, kaons and protons can be identified by measuring their specific energy loss dE/dx 

due to ionization in the drift chamber gas. Measurements of the time-of-flight (TOF) 



2.3. IDENTIFICATION OF CHARGED PARTICLES 25 

together with the information on momentum from the drift chamber, allows the recon­

struction of particle's mass. For both methods we compare the measured values with 

values calculated for each particle hypothesis. The calculations base on measured particle 

momenta. For measured energy loss dE / dx the difference xH dE / dx) is calculated as 

2(dE/d ) = (dE/dx - dE/dx)h)
2 

X, X 2 2 
q dE/dx + u,h 

(i = e, µ, 1r, K, p) (2.1) 

where dE / dxlh is the specific energy loss calculated for the i-th particle hypothesis. u;h is 

the uncertainty of the calculated dE/dx value introduced by the momentum uncertainty 

while u~E/dx is the uncertainty of the specific ionization measurements. Analogously, the 

xHTOF) is calculated by comparing the measured particle velocity f3 with predicted ones 

/3th 
x;(TOF) = (1/~ - l//3r)2 . 

,;TOF + u,h 
(2.2) 

Here G'TOF and u,h are the uncertainties of measured and expected velocities, respec­

tively. The xHdE/dx) and the xHTOF) are added up to give a single charged particle 

identification x 2 

xr = x:(dE/dx) + x:(TOF) . (2.3) 

If one of both measurements, dE / dx or TOF, is not performed well, only the other is used 

for particle identification. In case of no signal in the muon chambers, the x2 for muons 

is increased proportionally to the probability that a track treated as a muon, reaches the 

muon chambers. From dE/dx and TOF measurements we calculate the probability L't 
for particular mass hypotheses m; 

L'f = exp(-xr /2) . (2.4) 

In addition to dE/dx and TOF measurements, there are two further independent 

methods for lepton identification. Electrons with momenta greater than 400 Me V / c can 

be separated from other charged particles using the information from the calorimeter. 

In contrast to other charged particles, electrons deposit in the calorimeter almost all 

energy. It is spread only among modules that surround the impact point. This property 

is used to calculate the probability Pe that the particle is an electron. The calculation is 

described in details in reference [32]. Since electrons with momenta above 400 Me V / c can 

be unambiguously identified only by the information from the calorimeter, the likelihood 

function for such particles Le equals to Pe 

(p > 400MeV /c). (2.5) 



26 CHAPTER 2. THE ARGUS DETECTOR 

Also other four functions L; have to be redefined 

L; = 1- Pe . L~ 
Lk,oe L% ' 

(i = µ, 1r, K, p) (2.6) 

where L't denotes likelihood functions obtained from dE/dx and TOF measurements 

(eq. 2.4). 

Muons deposit in the calorimeter only a small fraction of their energy. It is concen­

trated in even narrower clusters as they are observed for electrons. The three layers of 

muon chambers are important for muon identification. Positions of hits in these chambers 

are compared with the impact point of extrapolated track from the drift chamber. All 

this information inclucling the energy loss dE / dx in the drift chamber is applied in the 

calculation of muon probability Pµ [33]. In case of signal in the muon chambers Pµ > 0, 

the likelihood functions L, are introduced as 

Lµ = Pµ (Pµ > 0) 

L.- = 1 - Pµ . Lo (. K ) 
i = e, 1r, , p 

Lk,<µ L% ' 
(2.7) 

while a relative normalization between different identification methods is even more com­

plicated if both probabilities, Pe and Pµ, are used for particle identification 

1 - (1 - Pe)(l - Pµ) . P-L, = -~-------'--'------'--'- , (i = e, µ) 
Pe +Pµ 

Li = _,_(l_-_Pe'---'--)_,_(l_-_P--'µ-'-) . L~ (j = 1r, K, p) . 
Lk,oe,µ L% 1 (2.8) 

From the likelihood functions L; we construct normalized probabilities >., for par­

ticular mass hypotheses m, 

where the w' are a pnon known average particle abundances. 

· particle production typically used at ARGUS are we : wµ : w" : 

(2.9) 

The relative rates for 

WK : wP = 1 : 1 : 5 

: 1 : 1. A track is considered to be consistent with a certain mass hypothesis m;, if the 

probability >., for the same hypothesis exceeds 1 %. 
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Monte Carlo Simulation 

To determine the cross section of any process, it is crucial to know the detector acceptance 

and its dependence on the measured quantities. As the acceptance for the detectors used 

in high energy physics cannot be calculated analytically, a numerical calculation, based 

on the Monte Carlo method, is applied. The Monte Carlo method is used to describe 

two-photon interactions using eq. 1.3, behaviour of particles traversing various detector 

components, the triggering system, and finally also the reconstruction and selection of 

events. This will be the subject of the following sections. 

3.1 Event Generation 

We are interested in reactions e+e- -> e+e-·rr -> e+e- X (fig. 1.1), in which the two 

photons are almost real. Therefore, the no-tag luminosity formula of eq. 1.12 will be 

used. Using the explicit form of the phase-space factor for the scattered electron and 

positron [7], we arrive at 

(3.1) 

where 8 is the square of the e+ e- center of mass energy. Since the incoming electrons and 

positrons are unpolarized, only five variables are independent. As a set of independent 

variables we choose the invariant mass of both photons -qf and -q~, their energies w1 , 

w2 and the angle between the e+ and e- scattering planes ¢,. 

Due to strong dependence of the luminosity function on -q; and energy w; ( see 

fig. 3.1), a standard hit or miss Monte Carlo method is highly inefficient. To improve the 

Monte Carlo efficiency, a new set of variables is introduced, so that the luminosity function 

would be as flat as possible with respect to the new variables. As we see from the -q; 
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dL/dQ2 [GeV- 2 ] dL/dE-y [Mev- 1 ] 
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Figure 3.1: Luminosity function as a function of photon invariant mass 
Q2 = -qf (left) and photon energy w; (right) 

4.0 5.0 

and w, distributions of the luminosity function in fig. 3.1, they can be well approximated 

with a distribution 
dN n 

dx x' 
(3.2) 

where :z: stands for -qf or w,. The optimum value for r is obtained by fitting distributions 

in fig. 3.1, and n is a normalization factor. Due to the simple form of the distribution 3.2 

one can find a new variable y so that the relation 

dN 
-=1 
dy 

{3.3) 

is fulfilled. The variable y lies between O and 1. Since differential dN is equal in both 

eqs. 3.2 and 3.3, the variable y is obtained by integrating both sides of the relation 

n 
dy = -dx. 

x' 
{3.4) 

For r fc 1 we arrive at the expression 

1-r 1-r 
::C - Xmin 

Y = 1-r 1-r ' 
Xmax - Xmin 

{3.5) 

where :Z:min and :Z:maz are boundary values of the old variable x. By inverting the upper 

relation and introducing the boundary values for w; and -qf, the old set of variables is 
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expressed with the new one (u;, v; i=l,2) as 

(3.6) 

_,_ 
. _ [ 1-rw + ( 1-rw 1-rw ) . ] 1-•w w. - wmin wmax - wmin . v. (3.7) 

The optimal values for r0 and r.., are 1.005 and 0.98, respectively. There is no need to 

replace the variable q, since the luminosity function depends only slightly on this variable. 

The differential luminosity function is written with the new variables as a product 

where the Jacobian determinant :f is given for this substitution as 

:r = 8( -q:) 8( -qn 8w1 8w2 
8u1 8u2 8v1 8v2 

[ (-q;..x)1-rq _ (-q;.;n)1-rq r 
1- r0 

The maximal energy of each photon Wmax depends on the beam energy EB 

(3.8) 

{3.10) 

while the minimum energy Wm;n is related to a two-photon invariant mass W.,.., calculated 

from the four momenta of both photons q1 and q2 

{3.11) 

The invariant mass W,, in two-photon interactions is distributed between the threshold 

energy W,, m;n for production of a final state X and the kinematical limit at 

W,, max = 2(EB - me), (3.12) 

Using the relation 3.11 one can obtain from the threshold energy W,, m;n the minimum 

photon energy 

w~'Y min 

Wmin = 4(En - me) (3.13) 

The invariant mass of each photon -qf is greater than 

(3.14) 
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and smaller than 

(3.15) 

In the single photon plane defined with u; and v;, there are also unphysical regions where 

the photon momentum is greater than the momentum of impact electron or positron. To 

reject these cases it is sufficient to require cosine of the scattered electron and positron to 

lie between -1 and 1. 

For the calculation of the two-photon cross section u.,.,-x we have to calculate the 

differential luminosity function dL/dW.,., as a function of the two-photon invariant mass 

W.,,,. It is obtained by numerical integration of eq. 3.8. All variables u 1 , u2 , v 1 , v 2 , q, 
are uniformly generated as it is required for event generation. Number of trails N; with 

W,, inside the i-th W.,., interval is obtained by the hit or miss method by comparing the 

values of the luminosity function for generated variables with its maximal value fmax• An 

integral of the luminosity function over the i-th W.,,, interval is a product of the ratio 

N;/ N between accepted N; and all generated events N with its maximal function value 

!max and a generation volume V 

+":n dL -
[,,.:,, dW.,,, (W;,, + W)dW = V · !max 

N • 
N' (3.16) 

where W~,, and ll. W,,,, denote the center value and the width of the i-th interval, re· 

spectively. For independent variables, the volume V equals to a product of all variable 

intervals. In our case V = 2,r. Dividing the above relation by the interval width ll. W,,,,, 

we approximate the differential two-photon luminosity function 

dL(;) N; 1 
dW W,,,, = V · fmax N L'.l.W. 

i"I 'Yi 

(3.17) 

The function dL/ dW,,,, is shown in fig. 3.2. In a similar way we find also a projection of 

the luminosity function on two-photon transverse momentum PT (fig. 3.3). Sharp peaking 

of this projection at low values of transverse momentum is essential for the analysis of 

interactions between two almost real photons. 

Once the kinematical variables describing the scattered leptons and the momentum 

of the two-photon center-of-mass system are calculated, the event generation continues 

with a simulation of two-photon reaction. To describe this part of the interaction e+ e- ----, 

e+e- X we use the expressions, needed for the two-photon cross sections u,,,,-x, from 

chapter 1. Matrix elements Mab listed in table 1.2 and form factors ( eq. 1.17) predicted 

by the VMD model are used to describe two-photon formation of a state with well defined 

JP. To describe the formation of intermediate states where no exact JP is required, we 

use a dependence on photon qf predicted by the VMD form factors. The matrix elements 
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Mab are neither calculated from the first principles nor experimentally determined, so 

one should find out how much the acceptance calculation really depends on the matrix 

elements Mab applied. To find this out, the acceptance has been determined also for a 

constant matrix element Mab· In comparison with acceptance calculated with Mab as 

suggested in chapter 1, the clifference is found to be negligible ( chapter 6). 

The decay of the intermecliate state is generated accorcling to the phase space of 

final state particles weighted by the square of the decay matrix elements D explained in 

chapter 1. The exact expressions for the square of the wp0 decay matrix elements are 

given in appenclix A. For the simulation of the decay the "hit or miss" method_ is applied. 

3.2 Detector and Trigger Simulation 

Particles produced by the event generator are traced through the detector components 

shown in fig. 2.1. For detector simulation, the program SIMARG (34] is used as a frame. 

It is based on the program GEANT (35] that constitutes a framework for handling detec­

tor geometry and particle tracking. The energy loss along tracks of charged particles is 

generated accorcling to a truncated Landau distribution (36] in all detector components 

except in the drift chambers where the spectrum measured in the chamber prototype, 

is used instead. The electromagnetic interactions are described by using the EGS pro­

gram package (37] while hadronic interactions with the detector material are generated 

by routins from the program GHEISHA (38]. The simulation of drift times in the cham­

bers is made accorcling to measured drift time-space relations. New particles, obtained 

as a result of an interaction in the detector or a particle decay, are treated in the same 

way as the original ones. Finally, the deposited energies and measured times in detector 

components are converted to a digital form and stored using the same format as at the 

data acquisition. 

The SIMARG output serves as the input for event reconstruction. The same pro­

gram is used for the reconstruction of Monte Carlo events as it is used for measured 

events. Passing the simulated events through the same preselection criteria and analysis 

cuts as experimental data enables us to calculate the detector acceptance and resolution 

of physically interesting measured quantities. 

In the case of two-photon interactions, where events have typically low multiplicity, 

it is in addition to detector acceptance crucial to determine the efficiency of the trigger. 

To study the efficiency we choose two-prong reactions that are the most sensitive to trigger 

conditions (39]. From this sample Bhabha tracks are excluded. The trigger simulation 

is divided into several periods of stable triggering conditions. The stability of triggering 
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system can be estimated from acceptance uncorrected cross section of two-prong reactions 

presented as a function of run number. For each trigger period we determine thresholds, 

trigger logic and efficiencies of trigger components. These quantities are obtained from 

the experimental data and taken as an input for a trigger simulation. The simulated 

trigger efficiencies have been compared with trigger efficiencies deduced directly from the 

measured data in the following way. In the transition T{2S) ---> T{1S),r+,r- followed by 

i{1S) ---> e+e- the trigger conditions are almost always fulfiled, due to the hlgh energy 

of both leptons (ETOT trigger section 2.2). The ratio between events where pions alone 

had also set a trigger and all events with ETOT set has been compared with trigger 

efficiency for Monte Carlo events of the same T{2S) transition followed by i(1S) decays 

to noninteracting particles. The two trigger efficiencies agree withln statistical error. For 

the two-photon collisions with 2,r+2,r-,r0 in the final state, the systematic error of the 

trigger simulation is estimated to amount to 5% [22). 

3.3 Experimental Resolution 

For the partial wave analysis, it is essential to determine the experimental resolution of 

all quantities used as an argument of the decay matrix element. In the case of the five 

pion final state these are invariant masses of ,r+,r- and ,r+,r-,r0 combinations as well as 

all polar angles used in the wave function w~j J. (eq.1.41). The generated and measured 

values of these parameters are collected in vectors ( and (', respectively. The difference 

between both vectors fl.( is expected to be distributed normally 

(3.18) 

where V is the covariance matrix and .6.( the bias of ('. K is the number of variables. 

Due to one-to-one correspondence between quantities that correspond to different pion 

permutations ( eq. 1.56), we have to find only a covariance matrix for the quantities of 

one of the pion permutations. In this case, the number of variables K amounts to 8. The 

elements of the covariance matrix V are determined from simulation, where both values, 

generated and reconstructed, are known for all variables 

V;j = ! f,(c - (,)n ((; - (;)n 
n:::::l 

fl.(; . .6.(;. {3.19) 

The summation is performed over all accepted simulated events. We have assumed the 

covariance matrix V to be constant inside the two-photon invariant mass intervals used 
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in our further analysis. Resolutions, i.e. square roots of the diagonal elements of V are 

listed in table 3.1. 

Resolution u 

m1r+7r- m1'+1r-n-O .X cos(B) cos(Bn) cos(Bp) <p - 'Pn <p-<pp 

[GeV] [GeV] [GeV 3
] 

0.010 0.024 0.0020 0.026 0.038 0.020 0.078 0.044 

Table 3.1: Experimental resolution of quantities used in partial wave 
analysis of five pions final state for W,., interval between 1.4 and 1.8 
GeV. 



Chapter 4 

Event Selection 

4.1 Data selection for the 1r+1r-1r0 1r+1r- final state 

The data sample used for this analysis represents an integrated luminosity of 472.7 pb-1 at 

an average e+ e- center-of-mass energy of 10.2 Ge V. Since in interactions of two almost real 

photons both scattered leptons mostly escape detection, we require exactly four charge 

tracks pointing to the main vertex. The charged tracks have to be consistent with the 

pion mass hypothesis, i.e. their probabilities for being pions >.,.. ( eq. 2.9) should exceed 

1%. We further reduce the probability of misintepretation of pions as electrons or muons 

by taking advantage of probabilities Pe and P,. introduced in section 2.3. Both quantities 

are required to be less than 10 %. 

The neutral pion is obtained as a two-photon combination, where photons are taken 

as showers in the calorimeter unconnected with any charged track from the drift chamber. 

For this we use only showers not recognized as calorimeter noise. To construct neutral 

pions we use also converted photons, obtained as e+e- pairs with invariant masses less 

than 30 MeV and opening angles between both leptons cos0 > 0.98. Due to different 

energy resolution for converted photons and photons obtained from calorimeter showers, 

also requirements on the neutral pion invariant mass depend on the pion construction. 

The pair with both photons detected as unconnected showers is considered as neutral 

pion if the two-photon invariant mass lies between 70 MeV and 200 MeV. The maximum 

difference between pion nominal mass and invariant mass of pairs with one converted 

photon is 50 MeV and it is only 40 MeV for pairs with both photons converted. 

Beside the selected four charged pions no other charged track is allowed to originate 

from a common vertex at the interaction point. Also neutral particles identified with 

a secondary vertex as K~, A or converted photons which are not used for neutral pion 

selection, are not allowed in the events. But it is possible to find additional unconnected 

35 
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showers due to noise or particle interactions in the calorimeter, although no real photon 

is expected beside the ones from the neutral pion. 

Noise in the calorimeter can he classified in three categories: hot showers, low energy 

noise and high energy noise. 

Hot showers are modules of the calorimeter, which in a certain period almost con­

stantly respond as being hit. These periods are determined from unbiased measured data. 

A repetition of five hits in the same module, separated by not more than 10 events rep­

resent the minimal condition for a module to he considered as "hot". This criterion is 

found to be very safe. An average separation between two successive hits is less than four. 

In order to reduce the number of periods we combine them in a single one, if they are 

separated by less than 500 events. 

The low energy noise is studied with randomly triggered events, where no showers 

in the calorimeter are expected due to real photons or charged particles. This data sample 

is used to obtain an upper limit of noise energy in each module. Values are determined 

so that the number of noise hits with energy above the chosen values are equal in all 

modules. The energy limits are calculated for several running periods. The length of each 

period depends on the number of randomly triggered events recorded during data taking. 

The allowed number of noise hits with energy above the obtained upper limits is 2 · 10-5 

hits per module per event. 

In order to recognize the high energy noise in the calorimeter it is crucial that noisy 

modules are separated from each other and from other hit modules. It was found from 

studies on measured data with well identified photons that, for example, less than 5 % 
of all photons with energy between 350 and 360 Me V hit just one module. This fraction 

is even lower for photons with higher energy. Therefore, five pion events are selected 

despite additional unconnected showers with energy above 350 Me V and cluster size of 

one module. Such showers are, in contrary to hot showers and low energy noise, used for 

neutral pion construction. 

Additional unconnected showers can also be produced by interactions of final state 

particles in the calorimeter. Such showers are called fake photons. In the neighbourhood 

of a charged particle shower further showers can appear due to "shower splitting". In 

the case of leptons this is mainly caused by dead modules at the particle impact point 

Xv or insufficient energy deposition in some modules. For hadrons, shower splitting can 

also appear due to charge exchange interactions, where neutrons and neutral pions are 

produced. So, unconnected showers due to shower splitting, are spread wider around 

hadron than around lepton impact points (fig. 4.1). This leads also to different criteria 

for fake photons connected to hadrons and fake photons connected to leptons. The cosine 



4.1. DATA SELECTION FOR THE ,,.+,,.-,,.o,,.+,,.- FINAL STATE 

dp/dcos1ll7 p 

1.5 
dp/dcos"lll-yp 

2.5 

1.0 

0.5 

a.a 
a.a 

a.) b.) 

2.0 

1. 5 

1.0 

0.5 

a.a 
0.2 0.4 0.6 0.8 i. a a.a 0.2 0.4 0.6 0.8 

cos-clyp COS~p 

Figure 4.1: Distribution (dp/dcos0-,p) of photons according to cosine of 
opening angle between photon momenta and impact point position of 
a) - electrons and b) - pions in the calorimeter. The distributions are 
obtained by Monte Carlo simulation. 
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i. a 

of opening angle cos0-,p between unconnected shower and charge particle impact point 

Xp is therefore required to be greater than 0.9 for fake photons in the case of leptons 

and greater than 0.8 for hadrons. Due to a very broad region in the case of hadrons, we 

additionally require also that total energy E,h deposited in this part of the calorimeter 

should not exceed the hadron energy Ep for more than 250 Me V 

E,h = (Ep)sh + L E-, < Ep + 250MeV, ( 4.1) 
cosO-yp>O.B 

where (Ep)sh is the energy of the shower corresponding to charged hadron. The shift of 

250 Me V is obtained from Monte Carlo studies of hadron behaviour in the calorimeter 

(fig. 4.2). By this criterion less than 0.1 % of simulated pions are lost. 

Additional photons can appear in events also when neutral pions produced at in­

teractions of charge hadrons in the calorimeter scatter back into the drift chamber. In 

order to recognize such photons we try to reconstruct neutral pions from photon pairs 

considering the charged hadron impact points as an origin of photon pairs. A two-photon 

invariant mass is required to lie between 90 and 180 MeV. The interval is narrower than 

the one used for the selected neutral pion because background coming from two-photon 
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Figure 4.2: The correlation between pion energy E,, and deposited en­
ergy E,h in the part of the calorimeter with cosine of opening angle 
around pion impact point greater than 0.8. The unconnected showers 
within this area are treated as fake photons only if the energy E,h lies 
below the shown line. The correlation is obtained from simulation of the 
five pion final state in two-photon interactions. 

interactions with more neutral pions in the final state should be kept low. The neutral 

pion energy E.,,o has to be smaller than undetected energy Eu at hadron impact point 

L E7 + 250MeV ( 4.2) 
C030-yp>O.B 

even further reducing the background. 

In interactions of hadrons in the calorimeter also neutrons can be scattered back 

into the detector volume. Unfortunately, neutron showers are hard to separate from 

photon showers and even harder from overlapped showers of photons coming from the 

same neutral pion. In order to identify neutrons, a lateral function fiat [40] 

( 4.3) 

has to be introduced. E 1 and E 2 are the highest two energy deposited in the single module 
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of the studied shower, while E10 , labels the second moment 

E1a, = (4.4) 

where r, is a distance of i-th module from the shower center-of-energy and < /),.r > is the 

average distance between two modules. In average, neutrons have higher lateral function 

than photons while their energy inside showers is distributed usually more uniformly than 

the energy of photons. In photon showers, most of the energy is deposited in modules 

along the photon line, so that the lateral function depends on polar angle of the photon 

momentum. Using measured data with well identified photons, an envelope /10 ,(max), 
determined by requiring that 95 % of all photons have a lower value of lateral function, 

is found as a function of polar angle [41] (table 4.1). Values f1a,(max) from table 4.1 

ring number 1 2 3 4 5 6 7 8 
f1a,( max)[%] 21 21 21 23 29 35 40 44 

I 
9 10 11 12 13 14 15 

40 25 55 58 54 43 38 

Table 4.1: The envelope value /1a,(maz ), given as a function of calorime­
ter ring number N R· In both hemispheres ring numbers increase from a 
detector equator Nn = 1 towards the beam tube Nn = 15. 

are used as a lower boundary for lateral functions of unconnected showers recognized as 

neutrons. In addition, a total shower energy En of a neutron candidate should not exceed 

the maximal undetected energy Eu in the event 

En< max{(Eu);}-200 MeV 
t=l,4 

( 4.5) 

where i runs over all charged pions. An energy shift of -200 Me V is obtained from a 

simulation with neutrons in the final state applying the same method as for the shift at 

charged pions (fig. 4.2). Only in some energy regions it is possible to separate neutrons 

from overlapped showers of photons coming from the same neutral pion. The majority 

of neutral pions with energy between 1.5 GeV and 2.5 GeV produce showers with lateral 

function above the values listed in table 4.1 [41]. Since there is no other way to distinguish 

these showers from showers of neutrons, the neutron candidates from the above energy 

region are not treated as fake photons. 

In the analysis we use three kinematic criteria. The first criterion is the already 

mentioned cut on two-photon transverse momentum PT (section 1.1). We require the total 

transverse momentum of all five selected pions to be smaller than PT < 60MeV. The 
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second criterion is derived from momentum conservation of all particles involved in the 

studied reaction, including undetected leptons. Since incoming electron and positron have 

opposite momenta (fig. 1.1}, particles produced at studied interaction e+e- ---t e+e-5:,r 

have a vanishing total momentum and energy equal to e+e- center-of-mass energy E,+,- = 
2·EB, so that the four-vector of the system amounts top,+,- = (0, E,+,-). In the no-tag 

analysis only particles of two-photon final state are observed, while electron and positron 

scatter along the beam tube and escape detection. Therefore, a polar angle 0,± between 

scattered lepton and the beam axis lies within an interval of cosine icos0,± I ;::,: 0.92, where 

charged particles cannot be detected. To recognize selected five pions as two-photon final 

state particles, their four-momentum p5,, = (p5,,, E 5,,) is required to sum up into the four­

vector (0, E,+,-} with four-momentum of at least one lepton pair, where both leptons are 

scattered within the above interval of polar angle1 • In order to reduce the background 

coming from two-photon reactions 11 ---> ,r+,r-,r+,r- with low total transverse momentum 

we require the transverse momentum of all selected charged particles to exceed 20 Me V / c. 

After applying these selection criteria a sample of 2717 events remains, out of which 

2547 lie in the studied region of invariant mass between 1.0 and 3.5 GeV /c2 (fig. 4.3). 
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Figure 4.3: Invariant mass distribution of accepted ,r+,r-,r0,r+,r- events. 
Dotted histogram shows estimated background for this data sample. 

1This criterion is particularly useful for studies of interactions of two virtual photons. 
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For the subsample of 2547 events distributions of 11"+11"-11"0 and 11"+11"- invariant masses are 

shown in fig. 4.4. Due to permutations of like-sign pions, each event contributes at least 

four entries to each histogram presenting the above distributions. In spite of that, clear 

signals can be seen at w and p0 masses in distributions of 11"+11"-11"
0 and 11"+11"- invariant 

masses, respectively. 

4.2 Background Estimation for the 7r+7f-7ro7r+7r- se­

lected sample 

The main source of background are other two-photon interactions with incompletely re­

constructed events or missidentified particles. In order to estimate their contribution to 

selected 11"+11"-11"011"+11"- events, we developed a program that simulates the major part of 

known two-photon interactions. The e+e- scattering process is simulated with respect to 

the luminosity function as it is described in section 3.1. Particles produced in the two­

photon reactions are generated isotropically in two-photon center-of-mass system while 

the frequency of particular reaction TY-> X, depends on its cross section O'n-x;(Wn)· 
Values of the cross sections are taken from already published measurements. The event 

generator is followed by the detector simulation, event reconstruction, and trigger simula­

tion (section 3.2). Since noise in the calorimeter is not included in the detector simulation, 

it is added from measured data triggered by the COSMIC test trigger. In these events fake 

photons can appear only at the muon impact points due to shower splitting. Removing 

showers with cosine of the opening angle between their center-of-energy and muon impact 

points greater than cos7,, > 0.9, we are left with showers resulting from calorimeter noise. 

So selected noisy showers are added to the simulated events on an event by event basis. 

Scaling the number of simulated events to the luminosity of the measured data sample 

used for the 11"+11"-11"011"+11"- analysis, we estimate the background from other two-photon 

reactions to be 601 events in the 11 invariant mass region between 1.0 and 3.5 GeV. 

Background from 7 decays is estimated in the same way using Monte Carlo simulated 

e+ e- -> 7+7- events [42]. Scaling the number of 7 events to the above luminosity, only 

3 events fulfill the same selection criteria as they are used in 11"+1!'-1!'
0

1!'+1!'- analysis. 

Background due to incompletely reconstructed events e+ e- -> hadrons is in a similar way 

estimated to be 16 events. 

Also beam gas reactions can fulfill the 1!'+1!'-1!'011"+11"- selection criteria. Their contri­

bution to the selected events is estimated using the selected events themselves. Detected 

beam gas reactions are in the vicinity of the interaction point distributed along the beam 

fairly uniformly, while particles produced at two-photon reactions mainly originate from 
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background reaction number of events 
1.0 :S: W~~ :S: 3.5GeV/c2 

'Y'Y -+ w1r+ 1r"1r- 217 

'Y'Y -+ 7r+7r+7ro1ro1r-1r- 181 

'Y'Y -> Xothers 203 

TY-+ X.u 601 

e+e- ---+ r+r- 3 

e+e- -+ hadrons 16 

beam gas 18 

the interaction point. So, the measured distribution of the common vertex position along 

the z-ax:is is fitted by a sum of the Gaussian function describing the studied reaction, and 

a constant. From the fitted value of the constant we have estimated the background due 

to the beam gas reactions, to be less than 18 events. All contributions of background 

to the selected data are collected in table 4.2 while the distribution of background with 

respect to 'Y'Y invariant mass is shown in fig. 4.3. 
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Chapter 5 

The Analysis of the 1r+1r+1ro1r-1r­

Final State 

5.1 Maximum Likelihood Method 

The maximum likelihood method is applied in the analysis of the five pion final state, 

because it is the most efficient method to determine the unknown parameters from experi­

ments involving only a small number of events. The data are used in the form of complete 

events. So, there is no need to project experimental data on a binned multidimensional 

histogram. It also turns out that for the analysis with maximum likelihood method only 

acceptances averaged over all kinematic quantities are needed. 

In order to perform the maximum likelihood method on the five pion final state, 

we have to calculate the probability distribution of measured events as a function of 

momenta of all particles produced in a two-photon interaction. Combining the expression 

of the cross section CTee-ees" for two-photon production of five pions, detector efficiency 

and integrated e+ e- luminosity Lee, we arrive at the distribution of measured events 

dN = L dCTee-ee5" (() = L dL,1 dCT ,,-s,., (() 
dWd( ee d( T/ eedW d( T/ • 

II Ii 
(5.1) 

The distribution is normalized to a total number of observed events N. Vector ( includes 

all kinematic variables used to describe the decay matrix element D from eq. 1.56 for a 

fixed W,..,. Certainly, acceptance q((), the cross section dCT,,_ 5,,,/d( and the luminosity 

function dL-,-,/dW-,-, depend also on two-photon invariant mass W-,-, as well as on un­

measured independent quantities ( related to scattered electron and positron. Since the 

maximum likelihood method is applied in each W-,-, bin separately, we determine these 

three quantities by averaging over all variables except ( inside each W-,-, bin. For fixed 

W-,-,, the differential cross section dCT-,-,-s, / d( is expressed as a sum over all decay channels 
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k, r with decay matrix elements Dk and D, and unknown parameters Ak 

du -,-,-s.r °" . ( ) d( = L., Ak Dk(() Pk,, A, D, ( 
k,r 

(5.2) 

The summation includes also interference terms with k =/ r, 

are stored as off-diagonal elements of Hermitian matrix P. 
where phase shifts e'6" 

The selection rules in 

two-photon production of wp allow only interferences between channels (JP, J,, S) = 
(2-,0,1), (2-,0,2), (o-,O,l) and between channels (JP,J,) = (2+,o) and (o+,o). The 

only non-zero off-diagonal elements are between channels of these two groups. Diagonal 

elements of matrix P are equal to one. 

It is worth noting that instead of trying to subtract contributions of w2,r, p3,r and 

isotropic 5..- production from selected data, we rather include them in the summation 

( eq. 5.2) as incoherent contributions. 

Using the averaged decay matrix elements 

the relation 5.2 transforms to 

du7 ..,-s1r 
d( 

= L Ak DZ(() Pk., A, D,(() ' 
k,r 

( 5.3) 

(5.4) 

with redefined unknown parameters Ak = Ak · IDkl and normalized decay matrix elements 

Dk(()= Dk(()/!Dkl· Due to orthonormality of decay matrix elements Dk, the integration 

of the relation above leads to 

u-,-,-s" = L Ak · Ak , (5.5) 
k 

where A% is the cross section of channel k. This suggests an introduction of unknown 

parameters as ratios between square roots of cross sections 

(5.6) 

with the condition 

LAi = 1. (5.7) 
k 

With this new notation the distribution from eq. 5.1 becomes equal to 

d?N dL,, 
dW di' = Lee dW <T-,-,-S,r1J((). 

TI \ -YI 

[~>.% DZ(() bk(() + ~>.k>., cos(ok,) (b;;(() b,(() + b;(() bk(o)], (5.8) 
•>• 
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where interference terms are separately writ.ten. The normalization of distribution d;{:NdC 
n 

is obtained from the integration 

dN 

dW,.,, 

where 

1/k = 
d'L • ' 

I11(e,() ;m;::;:;Te n;;(onk<o ded( 

I d:,~d{de 

(5.9) 

{5.10) 

is the average detector acceptance for channel k, given as a function of W,.,,. Similarly 

can also 

= _1_. / (< ,,.) d2L (D;;(()D,(() + b;(()ih(O) d<d,,. 
1/kr ...!!!,_ 1/ ''' dW de 2 c, c, 

dW..,.-, T"t 

(5.11) 

be interpreted as an average acceptance for the interference term of channels k and r. 

In relations 5.10 and 5.11 the dependence of acceptance and of the luminosity function 

on unmeasured quantities e is explicitly written. dN / dW-,., is the number of all observed 

events in a given W.,., bin. Due to experimental resolution of the detector, the exact 

values of kinematic variables ( needed for calculation of the distribution 5.8, have to be 

replaced by measured values ('. In order to use values (', also products of decay matrix 

elements DZ( ()D,( () have to be substituted by a convolution 

(5.12) 

where ti.(; are normally distributed according to relation 3.18, and Nr is the number of 

tries. 

Now we can write the likelihood function L from the probability density function 

(,,., A 6) = _!__ dN 
g,,' Nd( 

as a product of 9((I, X, 6) for all our selected events i [43] 

N 

L(A,5) = ITg((!,X,5). 
i=l 

Usually, it is convenient to consider the logarithm of the likelihood function 

N 

£'(A,6) = lnL(A,6) = Lin g((;,X,5). 
i=l 

(5.13) 

(5.14) 

(5.15) 
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As it is seen from relation 5.13, the likelihood function £' is invariant under simultaneous 

multiplication of all parameters Ak. This reduces the efficiency of MINUIT program [ 44 J 

used to find the function maximum, so we redefine the likelihood function to 

N - -

£( X, 5) = :E ln [ :E ,\r bkk( (') + :E AkA,cos( Ok,) ih,( (') ] 
i:;;I k k#:-r 

N [ L A%1/k + 2 L ,\k,\, cos( Ok,) 1/kr] (5.16) 
k k>r 

which conserves the ratios between parameters ,\k· The second summation in the above 

relation represents a constraint that number of fitted events coincide with number of 

measured events. The factor N in front of the sum is analytically calculated Lagrange 

multiplier [45, 43]. The most probable values of X and 5 are obtained by maximizing the 

function £. Since the acceptance 77( (') depends only on kinematic quantities (', it is equal 

for all decay channels k. So, the position of maximum can be found although the precise 

value of acceptance 77( (') as a function of kinematic variables (' is not known, only the 

value of the likelihood function itself depends on 77(('). 

Due to small number of measured events, several local maxima can appear in the 

likelihood function. This can certainly mislead the program, searching for an absolute 

maximum. To minimize this effect, W,,,, bins are chosen wide enough to contain a reason­

able number of events. Once the fractions ,\k and phase shifts Ok, are obtained, the cross 

section U-r-r-s" is calculated from relation 5.9 

(5.17) 

while cross sections for particular decay channels are given as 

(5.18) 

For all wp0 channels the cross sections have to include also branching ratios Br( w ---t 3,r) 

and Br(p ---t 21r) for thew ---t ,r+,r-,r0 and p0 ---t ,r+,r- decays 

( 
0) Un-5,c . ,\% 

O"k "f"f ---t W p = , 
Br( w ---t 3,r) · Br(p -> 2,r) 

(5.19) 

while cross sections of reactions 'Y'Y ---t w,r+,r- and 'Y'Y -> p0,r+,r-,r0 are determined by 

using relations 

u,,-s1r · A~21r 

Br(w-> 3,r) ' 

u,,_,s1r . A.!311'" 

Br(p -> 2,r) 
. (5.20) 
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5.2 The Acceptance Calculation 

The acceptance 1/ is mainly studied by Monte Carlo simulation described in section 3.2. 

With simulated events it is possible to determine the detector and trigger efficiencies and 

the efficiencies of most selection criteria. The exceptions are studies of fake photons, 

which require also description of noise in the calorimeter. Since this is not included 

in the simulation, we add the calorimeter noise from measured data triggered by the 

COSMIC test trigger. The procedure is exactly the same as the one described in the case 

of background studies (section 4.2). 

A proper description of fake photons in the simulation has been checked by analyzing 

measured data of cascade decay [46] 

Y(2S) -, Y(lS) 71"+ 11"-

Y(lS) -> e+ e- or µ,+ µ,- , (5.21) 

where no real photons are expected in the event. It is found that photon contribution 

predicted by hadronic interactions inside the calorimeter used in Monte Carlo simulation 

properly describe the measured photon contribution in Y(2S) cascade decay. 

Fortunately, only an acceptance averaged over kinematic quantities ( is needed in 

our analysis (section 5.1). The average acceptance 1/k depends on the decay channel 

k. To determine 'f/k we have used generated events of channel k with added calorimeter 

noise. Performing the complete event selection on the generated events, the acceptance is 

obtained as a ratio between accepted NA and generated Na events in each W.,,.,, bin. The 

acceptances 1/k for various spin-parities of wp production are collected in fig. 5.1, while 

acceptances for isotropic wp, w7r+7r-, p7r+7r-7ro and 7r+7r+7ro7r-7r- channels are shown in 

fig. 5.2. To lower the statistical error on acceptances, we use in the analysis results of the 

fit shown in both figures as solid line curves. 

An acceptance averaged over kinematical quantities ( is introduced also for the 

interference between two decay channels k and r (eq. 5.11). This acceptance 1/kr is cal­

culated using Monte Carlo events where the decay of two-photon intermediate state is 
generated according to interference term 

(5.22) 

The sample of events is divided into two parts with different signs of interference term. 

For each part we calculate a ratio between number of events passing the whole events 

selection Ni and all generated events Nb. Index i denote the sign of interference term. 
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Figure 5.2: Acceptances for isotropic channels wp, w..-+..--, p..-+..--..-0 , 

and ..-+..-+..-0..--..-- (crosses) and fitted curves (solid lines). 

The average acceptance 1/kr is than obtained as a difference 
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+ 
+ 

3.0 3.5 

(5.23) 

In fig. 5.3 are shown ratio of average acceptances T/kr / .jrii:ii; for all possible interferences 

in study of wp0 production in two-photon interactions. 

There are two sources of systematic errors on the acceptances. The systematic error 

coming from the detector simulation is estimated to be 6% [34]. As already discussed 

(section 3.2) the systematic error on trigger simulation amounts to 5% [22]. We estimate 

the overall error on acceptances 1/k and 1/kr, shown in figs. 5.1, 5.2, and 5.3 as error bars, by 

adding in quadrature the statistical error, the systematic error coming from the detector 

simulation, and the systematical error from trigger simulation. 
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Chapter 6 

Results of the 1r+1r+1r01r-1r- Analysis 

The selected sample of five pions has been analyzed in two ways. In the first analysis 

we determine the cross sections of the two-photon reactions 11 -t wp0 , 11 -t w,r+,,.-, 

11 -t p
0,r+,,.o,,.-, and 11 -t ,,.+,,.+,,.o,,.-,,.-. In all reactions five pions are assumed to be 

isotropically distributed in two-photon center-of-mass system. Therefore, the reactions 

can be distinguished only by invariant-mass distributions. In the second analysis we try 

to determine also a spin-parity structure of the reaction 11 -t wp0 • The wp0 production 

includes six contributions of different spin-parities. To determine all cross sections includ­

ing cross sections of reactions 11 -t w,r+,,.-, 11 -t p0 ,,.+,,.o,,.-, and 11 -t ,,.+,,.+,,.0,,.-,,.­

we apply a nine parameter fit. 

6.1 Results of a Fit to Invariant-Mass Distributions 

In order to determine the cross sections of reactions 11 -t wp0 
11 -t w,r+,,.-, 11 -t 

p0 ,,.+,,.o,,.-, and 11 -t ,,.+,,.+,,.o,,.-,,.- a four parameter fit is applied. In reaction 11 -t 

,,.+,,.+,,.o,,.-,,.- the final state particles are uniformly distributed in phase space. The fit 

procedure is performed in 12 bins, covering the W~~ interval between 1.1 and 3.5 GeV. A 

distribution of the selected events within this interval is shown in fig. 6.1. The observed 

,,.+,,.+,,.o,,.-,,.- final state is assumed to be an incoherent sum of the upper four reactions. 

In the reaction 11 -t wp0 a production of final state hadrons is described by a decay 

matrix element 

{6.1) 

where A'aw and A~w are Breit-Wigner amplitudes for wand p0 mesons, respectively. The 

decay matrix elements used for description of reactions 11 -t w,r+,,.-, 11 -t p
0,r+,,.o,,.-, 

and 11 -t ,,.+,,.+,,.o,,.-,,.- have already been introduced in chapter 1 eqs. 1.57, 1.58, 1.59, 
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Figure 6.1: Invariant mass distribution of selected ,r+,r+,r0,r_,r_ events. 

respectively. Using the maximum likelihood method we determine the relative contribu­

tions >.i of all four reactions simultaneously. Since the fitted parameters are contributions 

>.% and not the amplitudes Ak, the obtained contributions and therefore also the cross 

sections can in principle be negative. The cross sections are calculated according to rela­

tions 5.17, 5.18, 5.19 and 5.20. They are shown in fig. 6.2. 

Background contributions to the studied reactions have been determined by using 

the sample of Monte Carlo simulated background events (section 4.2) that have passed 

the five pion selection criteria. These events have been added to the data sample. A 

background contribution to the studied reactions is then obtained as a shift in the cross 

sections due to added background sample (fig. 6.3). The main part of background events 

migrates in to the channel TY ---> ,r+,r+,r0
..-- ... -. By subtracting these cross sections from 

the correspondent cross sections shown in fig. 6.2 we obtain cross sections for all four 

reactions (fig. 6.4). All results are listed in table 6.1. The fit procedure includes all four 

reactions at WT, greater than 1.3 GeV (figs. 6.2 and 6.3). Below 1.3 GeV the ..-+..-­
invariant mass is, due to limited phase space, similarly distributed in reactions 11 ---> 

w,r+,r- and 11 ---> wp0 • This makes it impossible to distinguish between both reactions. 

A similar difficulty appears also for reactions 11 ---> p0 ..-+ ... 0 ..-- and 11 ---> ,r+,r+,r0 ... -..--. 
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Figure 6.2: Cross sections for reactions TY-> wp0 , TY-> w,r+,,.-, 'Y'Y-> 
p0,,.+,,.o,,.-, and 'Y'Y -, ,,.+,,.+,,.o,,.-,,.- obtained by a 4 parameter fit. 
Below 1.3 GeV the production of w,r+,,.- and p0 ,,.+,,.o,,.- is excluded 
from the fit. Plotted errors are statistical only. 
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Therefore, only contributions of reactions 'Y'Y -> wp0 and 'Y'Y -> ,,.+,,.+,r0,r_,r_ are included 

in the fit procedure for W.,., energy below 1.3 GeV. 

The statistical error includes the error on fitted parameters, acceptance and lumi­

nosity function. The major part comes from the first contribution because all others can 

be sufficiently reduced by increasing the Monte Carlo sample. 

The major contributions to the systematic error are related to the Monte Carlo 

generation of physical processes and the description of the particle detection. One source 

of the systematic error comes from the incomplete description of two-photon reactions, 
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Figure 6.3: Background contribution to reactions TY -> wp0 , 11 -> 

w,r+,..-, 11 -> p0,r+,ro,r-, and 11 -> ,r+,r+,r0,r-,..- obtained by the 4 
parameter fit. Contributions are given as a cross sections for suitable 
reaction. Below 1.3 GeV the production of w,r+,..- and p0 ,r+,..o,..- is 
excluded from the fit. Plotted errors are statistical only. 
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hidden in the form factors ( eq. 1.16). The error is estimated by calculating the cross 

sections for two cases: 

• form factors are p meson poles (eq. 1.17) predicted by the VMD model [11], 

• form factors are equal 1. 

Assuming these values as extreme cases between which the measured cross section is 

uniformly distributed, we estimate the systematic error as the standard deviation to be 
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There are two contributions to the systematic error connected with the acceptance 

calculation. The systematic errors on detector simulation and trigger simulation are 6% 

and 5% (section 5.2), respectively. Both errors influence only the calculation of the cross 

sections while the determination of the relative contributions A% should be insensible 

to the systematic multiplication of all acceptances. The simultaneous variation of all 
acceptances changes only the absolute value of the likelihood function but leaves the 

position of the maximum unchanged. In the four parameter fit we have assumed an 

isotropic production of five pions in the final state. However, if the final states are 
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W-r-r (GeV) <T,r-w1po O" TI-w,r+ ,.- U "("(-p01r+ ,rO 'ff'- (T ""/"'(_71"+ ,r+ 71"0 11'"-11'"-

1.1 -1.3 2.8 ± 1.2 ± 0.6 0.4 ± 1.6 ± 0.8 
1.3 - 1.5 10.3 ± 3.9 ± 1.6 1.9 ± 4.1 ± 0.7 0.8 ± 2.0 ± 0.6 2.2 ± 3.9 ± 1.9 
1.5 - 1. 7 17.3 ± 3.1 ± 1.7 -1.2 ± 2.9 ± 0.2 0.3 ± 3.5 ± 0.4 2.0 ± 4.6 ± 2.2 
1.7 - 1.9 11.6 ± 3.4 ± 1.3 11.0 ± 3.9 ± 1.9 10.4 ± 2.3 ± 1.0 -0.9 ± 2.2 ± 1.8 
1.9 - 2.1 9.3 ± 2.7 ± 1.4 14.5 ± 3.6 ± 2.0 11.4± 3.1 ± 1.2 1.0 ± 3.0 ± 0.5 
2.1 - 2.3 4.1 ± 2.2 ± 1.1 5.9 ± 2.6 ± 2.2 13.8 ± 2.0 ± 1.5 1.0 ± 2.0 ± 0.1 
2.3 - 2.5 3.0 ± 3.1 ± 0.5 10.0 ± 4.2 ± 2.1 13.6 ± 4.2 ± 1.5 -3.2 ± 3.5 ± 0.7 
2.5 - 2.7 5.8 ± 2.2 ± 0.6 5.2 ± 2.6 ± 0.6 5.6 ± 2.3 ± 0.6 4.1 ± 1.8 ± 0.8 
2.7 - 2.9 2.7 ± 2.2 ± 0.4 8.0 ± 2.4 ± 1.3 -0.7 ± 1.5 ± 0.3 4.2 ± 1.6 ± 0.6 
2.9 - 3.1 3,8 ± 2.4 ± 0.6 1.7±2.1±0.4 -1.6 ± 2.7 ± 0.3 6.9 ± 3.2 ± 1.0 
3.1 - 3.3 0.9 ± 1.8 ± 0.1 5.4 ± 2.1 ± 0.9 0.7 ± 1.5 ± 0.1 5.6 ± 2.0 ± 0.9 
3.3 - 3.5 5.5 ± 2.7 ± 1.0 2.4 ± 2.2 ± 0.4 -2.3 ± 2.7 ± 0.4 5.9 ± 3.7 ± 1.0 

Table 6.1: Cross sections (in nanobarns) of reactions 11 --> wp0
, 11 --> 

w,r+,r-, 11 --> p01r+1r01r-, and 11 --> ,r+,r+,ro,r-,r- obtained by fit 
described in text. Statistical (first) and systematic (second) errors are 
presented. 

produced with a definite spin-parity, the acceptances would change. The systematic error 

on the acceptance determination due to unknown spin-parity structure, is calculated for 

each W'l''l' bin separately. It is taken as a standard deviation of a uniform distribution 

between extreme acceptances of all possible spin-parities for the studied reaction. For the 

reaction "Y"Y --t wp0 the average systematic error over all W'l''l' bins is 9.6%. 

The systematic errors due to background contributions are determined for each of 

the four studied reactions separately. They are proportional to the cross sections from 

fig. 6.3. Systematic errors on these cross sections are obtained from errors on measured 

cross section of reaction that dominate the background contribution to the studied reac­

tion. Background to reactions "Y"Y --t wp0 and "Y"Y --t w,r+,r- is dominated by two-photon 

production of w,r+,r-,r0
, A major contribution to other two reactions comes from reaction 

"Y"Y --t ,r+,r+,r0,r0,r_,r_. For cross section of both background reactions we use the ARGUS 

results [47]. 

The ARGUS integrated luminosity Lee is determined with a precision of 1.8% [22] 

while the branching ratio Br(w --t 3,r) for w --t ,r+,r0,r- decay is uncertain by 0.6% [19]. 
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6.2 Results of a Partial-Wave Analysis 

From the previous analysis where only invariant-mass distributions were used, the number 

of measured events corresponding to the reaction 'Y'Y ----+ wp0 is shown in fig. 6.5. Due to 

the small number of events, we determine the partial wave structure of reaction 'Y'Y ----+ wp 
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Figure 6.5: Number of measured events corresponding to 1'Y --> wP° 
obtained from four parameter fit. 

only in six bins between 1.3 and 2.5 Ge V. A fit to the data includes 9 parameters >.% that 

represent relative contributions of: 
'Y'Y ----+ wpo : 

(JP,J,) = (o+,o) 
(_JP,J,) = (2+,0) 
(JP,J,,S) = (2-,0,1) 

'Y'Y ----+ w,r+,r­

'Y'Y ----+ po1r+1ro1r-
'Y'Y ----+ 7r+,r+,ro,r_1r_ 

(JP,J,) = (o-,o) 
(JP, J,) = (2+, 0) 
(JP,J,,S) = (2-,0,2) 

The results of the fit are presented in figs. 6.6 and 6. 7. Cross sections shown in fig. 6. 7 are 

already subtracted for the background contribution that is obtained by four parameter fit 

(fig. 6.3). In both figures only statistical errors are shown. A complete result including 

systematic errors is collected in table 6.2. The cross sections in fig. 6.7 agree with the 
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Figure 6.6: Cross sections for different JP states of wp0. All cross sec­
tions are obtained by a 9 parameter fit. Plotted errors are statistical 
only. 
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results of the four parameter fit. The cross section for the two-photon production of wp0 

is obtained as a sum of all spin-parity contributions. The results of spin-parity analysis 

show a dominance of the (JP,J,) = (2+,2) wave. The only exception is the dominance 

of (JP, J,) = (o+, 0) in the first bin with W77 between 1.3 and 1.5 Ge V. Even in this bin, 

however, the dominance of (2+, 2) cannot be excluded, as discussed in section 6.4. The he­

licity O component of JP = 2+ is suppressed over helicity 2 component. The contribution 

of negative parities is small. 

The statistical and systematical errors are calculated in the same way as in the four 
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I WTI (GeV) II (O+,O) co-, 0) 

1.3 - 1.5 14.6 ± 1.6 ± 1.6 2.3 ± 0.9 ± 0.2 4.9 ± 2.5 ± 0.5 
1.5 - l. 7 0.4 ± 1.6 ± 0.05 0.9 ± 1.7 ± 0.1 15.9 ± 2.8 ± 1.7 
1.7 - 1.9 -2.4 ± 2.2 ± 0.3 3.6 ± 2.9 ± 0.4 13.9 ± 4.1 ± 1.5 
1.9 - 2.1 -3.2 ± 1.5 ± 0.3 -4.8 ± 1.5 ± 0.5 11.1 ± 2.3 ± 1.2 
2.1 - 2.3 -4.7 ± 1.3 ± 0.5 -4.0 ± 1.8 ± 0.4 5.0 ± 2.5 ± 0.5 
2.3 - 2.5 -2.5 ± 1.6 ± 0.3 0.1 ± 0.1 ± 0.01 1.6 ± 2.5 ± 0.2 

I W77 (GeV) II (2-,0,s = 1) 

1.3 - 1.5 -6.6 ± 0.9 ± 0.7 5.7 ± 1.4 ± 0.6 -2.4 ± 0.6 ± 0.3 
1.5 - 1.7 -0.2 ± 1.8 ± 0.02 4.0 ± 1.9 ± 0.4 1.6 ± 1.4 ± 0.2 
1.7 - 1.9 1.0 ± 2.2 ± 0.1 -0.6 ± 2.2 ± 0.1 3.2 ± 2.2 ± 0.3 
1.9 - 2.1 4.2 ± 1.8 ± 0.5 0.0 ± 1.4 ± 0.0 6.2 ± 1.6 ± 0.7 
2.1 - 2.3 2.8 ± 1.4 ± 0.3 0.9 ± 1.5 ± 0.1 4.4 ± 1.5 ± 0.5 
2.3 - 2.5 2.7 ± 2.0 ± 0.3 0.7 ± 1.5 ± 0.1 0.0 ± 1.1 ± 0.0 

I W77 (GeV) II 
1.3 - 1.5 0.2 ± 1.5 ± 0.6 -1.4± 1.0 ± 0.6 0.5 ± 1.6 ± 1.8 
1.5 - 1.7 -1.6 ± 2.4 ± 0.2 -0.9 ± 3.2 ± 0.4 3.0 ± 4.3 ± 2.2 
1.7-1.9 5.3 ± 3.1 ± 1.7 7.9 ± 3.4 ± 0.8 1.4 ± 4.0 ± 1.8 
1.9 - 2.1 14.0 ± 2.7 ± 1.9 11.4 ± 2.1 ± 1.1 1.0 ± 2.0 ± 0.5 
2.1 - 2.3 9.2 ± 3.3 ± 2.3 14.6 ± 2.4 ± 1.5 -0.3 ± 2.1 ± 0.1 
2.3 - 2.5 11.9 ± 4.1 ± 2.2 14.2 ± 4.1 ± 1.6 -3.7 ± 3.3 ± 0.7 

Table 6.2: Cross sections (in nanobarns) of reactions 11 --> wp0
, 11 --> 

w,r+,r-, 11 --> p0,r+,ro,,.-, and '"/'"/ --> ,,.+,,.+,,.o,,.-,,.- obtained by a four 
parameter fit. The presented errors are statistical and sistematical. 

parameter fit. The only exceptions appear in wP° production. For this reaction, there is 

no systematic error in the acceptance calculation due to unknown spin parity structure. 

Unknown angular distributions of some background interactions unable us to determine 

background contribution to each wp0 partial wave. Therefore, for all partial waves a ratio 

of background events to the total number of wp0 events is taken as a systematic error due 

to background reactions. Using the result of background determination by four parameter 
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Figure 6.8: Cross sections for different JP states of wp0 obtained by a 
9 parameter fit. All cross sections were required to be positive. Plotted 
errors are statistical only. 
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fit ( 6.1) we obtain the systematic error to be 7%. 

Some cross sections in the present partial-wave analysis obtain negative values be­

cause no constraint was imposed on relative contributions >.z. For comparison we calculate 

also cross sections with constraint that all of them have to be positive. The result of this 

analysis is collected in fig. 6.8. 

6.3 Angular and Invariant Mass Distributions 

One-dimensional distributions can provide a simple check of partial-wave analysis. In 

what follows, some measured distributions are compared with results of the 9 parameter 

fit. In fig. 6.9 mass spectra of two pions recoiling against the w meson are shown for all 

Wn intervals used in the fit procedure. As w mesons we take three pion combinations 

with invariant mass differing for less than 25 Me V / c2 from w mass. It turns out that mass 

spectra are in all Wn intervals correctly described by results of the fit. 

Some angular distributions are shown for Wn interval between 1.3 and 2.1 GeV 

in figs. 6.10 and 6.11. All measured distributions are compared with results of the fit 

and simulated distributions of wp° production for all spin-parities. For wp° events the 

invariant mass of two pions recoiling against the w meson is required to be less than 870 

MeV/c2
• Due to the vicinity of the threshold for wp0 production, there is no lower limit 

on two-pion invariant mass. Fig. 6.10 shows the distributions of cos0n and cos0P where 

polar angles 0n and 0P have already been defined in section 1.3. In fig. 6.11 distributions 

of two angles are shown, which are only weakly affected by the acceptance. The first 

distribution shows the angle 0n,, between pion momenta measured in the p° rest frame 

and normal vector ii (section 1.3) defined in thew rest frame. Coordinate axes are chosen 

to be parallel in both frames. The second angle X is defined in the w rest frame. The 

momentum of p° meson and the momentum of one of its pions define the p0 decay plane. 

The normal vector ii together with the p0 momentum defines another plane. The angle 

between these two planes is X· 

6.4 Test of the Likelihood Method 

The likelihood method is checked using the Monte Carlo simulated data sample. From 

samples generated according to studied reactions 'Y'Y -, wp0
, 'Y'Y -, w,r+,r-, 'Y'Y -, 

p0,r+,r0 ,r-, and 'Y'Y -> ,r+,r+,r0 ,r_,r_, we combine a sample with the same composition 

and number of events as expected from results of the 4 parameter fit on the real data. All 

four reactions have been generated isotropically. Using such a data sample, we perform a 
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fit (histogram). The comparison is shown for all W,, intervals used in 
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Figure 6.10: Angular distributions of measured events ( circles with error 
bars) and results of the 9 parameter fit (histogram). The definition of 
the angles is given in the text. In pictures are also shown the simulated 
distributions of all wp0 spin-parities included in the fit procedure: JP = 
o± (dotted line), JP = 2+ (dashed line), JP = 2- (dash-dotted line) 
and isotropic production ( solid line). All distributions are shown for 
W~~ between 1.3 and 2.1 GeV. 
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Figure 6.12: Fit results (circles) are compared with the input Monte 
Carlo data (histogram). The events are generated for reactions rt --> 
wp0 , 11 --> w,r+,r-, ')'')'--> p0,r+,r0 ,r-, and,,--> ,r+,r+,r0,r-,r-. Five 
pions are isotropically distributed in two-photon rest frame. Number of 
the simulated events used in above study coincides with the number of 
events in the measured data sample. 

3.0 3.5 

4 parameter fit. The results of the fit are compared with the input data composition in 

fig. 6.12. In all cases the input data are correctly reproduced. 

In the case of 9 parameter fit, the likelihood method is tested by Monte Carlo data 

sample where reaction')'')' -t wµ° has the same spin-parity composition as it is determined 

from the real data by the constrained fit (fig. 6.8). Reactions ')'')' -t w,r+,r-, ')'')' -t 

p0,r+,r0 ,r-, and ')'')' -t .,,.+.,,.+.,,.o.,,.-.,,.- are also in this data sample simulated isotropically 

in two-photon center-of-mass system. Results of 9 parameter fit, performed on this data 
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Figure 6.14: Continuation of fig. 6.13 

1.5 2.0 

sample, reproduce the composition of the sample correctly (figs. 6.13 and 6.14). 

2.5 

To test a possible origin of o+ over (2+, 2) dominance as observed in the W~~ interval 

of 1.3 to 1.5 Ge V (fig. 6.6) the 9 parameter fit was performed on Monte Carlo data 

where production of wp0 is pure (JP,J,) = (2+,2). The number of wp0 events in the 

sample correspond to the total number of wp0 events obtained by the 9 parameter fit 

on measured data. Also number of events for reactions TY -+ w,r+,r-, 11 -+ p",r+,ro,r-, 

and 11 -+ ,r+,r+,r0,r_,r_ are determined by the same fit procedure. In fig. 6.15 fit results 

are compared with the composition of the Monte Carlo sample for all wp" spin-parities. 

Results of the fit are similar to the one determined on measured data. The large migration 

of the (2+, 2) contribution into the o+ contribution could only be observed in the first 
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Figure 6.15: Comparison between simulated number of events (his­
togram) and results of the fit (crosses) for all wp0 spin-parities. Pro­
duction of wp0 is simulated purely 2+, 2 while reactions TY --> w,,-+,,--, 

11 --> p0 ,,-+,,-o,,.-, and 11 --> ,,-+,,-+,,-o,,.-,,.- are simulated isotropically. 

The simulated number of events for all reactions correspond to the num­
bers obtained by the 9 parameter fit on measured data. Number of 2+, 2 
events equals to the total number of wp0 events determined in measured 
data. 
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and -5% (dashed line). The 9 parameter fit is performed on Monte 
Carlo data where production of wP° is pure 2+, 2 wave (fig. 6.15). 
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W.,,.,, interval (1.3-1.5 GeV). A possible explanation for such a behaviour is that the wp" 
system is below the nominal threshold where the uncertainties in matrix elements and 

acceptances become very important. We therefore conclude that the data are consistent 

with a dominance of the (2+, 2) wave over the whole invariant mass range. 

The same Monte Carlo sample was also used to find the influence of acceptance 

accuracy on fit results. The acceptance of 2+, 2 wave was changed for ±5%. In fig. 6.16 

a shift of fitted number of events due to changed acceptance, is shown for all wp0 waves. 

Since we have assumed isotropic production of w,r+,r-, p0 ,r+,r0 ,r-, and ,r+,r+,r0,r-,r­

in our analysis, it is necessary to check the migration of possible non-isotropic angular 

distribution of these channels to wp0 waves. For this reason we use a Monte Carlo data 
sample where reactions 11 -, w,r+,r-, 11 -, p0,r+,r0,r-, and 11 -, ,r+,r+,r0 ,r_,r_ have 

a definite spin parity. The simulation of wp" production remains the same as in the 

sample used for the test of 9 parameter fit. A difference between fit results obtained by 
data where production of w,r+,r-, p0,r+,r0,r-, and ,r+,r+,r0 ,r_,r_ is pure (JP, J,) = (2+, 2) 

and data with isotropic production of these three final states is shown in figure 6.17. 

Most of migration to the wp0 partial-wave with spin-parity (JP, J,) = (2+, 2) comes from 

w,r+,r- channel. It seems that the Breit-Wigner form of the invariant masses is more 

restrictive than the angular distributions. This leads to conclusion that the contribution 

of w,r+,r-, p0 ,r+,r0 ,r-, and ,r+,r+,r0 ,r_,r_ can be reliably estimated using an isotropic 

angular distribution in the fit. 
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Figure 6.17: A difference between number of events obtained by 9 pa­
rameter fit on Monte Carlo data sample with production of w,r+,r-, 
p0,r+,r0,r-, and ,r+,r+,ro,r_,r_ according to pure (JP, Jz) = (2+, 2) and 

data with isotropic production of these three final states. 
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Chapter 7 

Analysis of the reaction 

11 -T p0¢ -T 1r+1r-x+ x-

The two-photon production of the vector meson pair p0 ,p is analyzed on the data sample 

corresponding to an integrated luminosity of 472.7 pb-1 • Both vector mesons P° and </J 

are reconstructed by their dominant decay channels ,r+,r- and K+ K-, respectively, so 

four charged particles ,r+,r- K+ K- are required in the final state. The event selection 

includes similar criteria as we have used in section 4.1: 

• Four charged particles with zero net charge have to fit to a common vertex at the 

interaction point. Two of them with opposite charge have to be identified as pions 

with ).~ > 1%, and the other two as kaons AK > 1%. For these particles the 

probabilities for being electron P0 and muon Pµ should not exceed 10%. 

• No other charged particle is allowed to point to the common vertex at the interaction 

point. 

• Events with neutral particles recognized by secondary vertex, as K~, A or converted 

photon, are rejected. 

• Unconnected showers are not allowed in the calorimeter unless they are recognized 

as: 

calorimeter noise, 

fake photons due to shower splitting, 

- photons produced by back scattered neutral pions which come from hadron 

interactions in the calorimeter, and 

- back scattered neutrons. 
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Figure 7.1: Scatter plot of the ,r+,r- invariant mass versus the invari­
ant mass of K+ K- pairs for selected ,r+,r- K+ K- combinations with 
invariant mass between 1.5 and 3.5 Ge V / c2• 

Due to similar behaviour of kaons and pions in the calorimeter, the same criteria 

are used for fake photons of both particles. 

• The total transverse momentum of selected particles ,r+,r- K+ K- 1s smaller than 

200 MeV /c. 

• The momentum conservation has to be fulfilled for all particles involved m the 

reaction, including undetected electron and positron. 

After applying these criteria we obtain a scatter plot of the ,r+,r- versus K+ K- invariant 

masses where an enhancement is seen in the p"<f, region (fig. 7.1). 

The <f, mesons are identified by the two-kaon invariant mass mK K, which should not 

differ from the <p nominal mass for more than 12 MeV /c2
• Since the resolution UmKK is 

4 MeV, such a criterion rejects a negligible amount of <f, mesons. In fig. 7.2 the invariant 

mass distribution of K+ K- pairs is shown. A clear peak is seen that corresponds to the 

mass of the <f, meson. Figure 7.3 shows the distribution of two-pion invariant masses for all 
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Figure 7.2: Two-kaon invariant mass distribution for selected 
,r+,r-K+ K- events with Wn < 3.5 Ge V / c2 

77 

,r+,r- K+ K- events where <f, mesons were recognized. Since P° is a broad resonance, the 

distribution of the ,r+,r- invariant mass depends on the two-photon energy W7 -,. This is 

particularly noticeable at the p0 <f, threshold where, due to lack of energy, the ,r+,r- invari­

ant mass shifts to the values below the p0 nominal mass. Therefore, a cut on ,r+,r- has to 

depend on the Wn invariant mass. To determine the criterion on the ,r+,r- mass we use 

the simulation of the reaction 11 ----> p0 <f,, The simulation is done in a similar way as the 

one for the reaction 11 ----> wp0 
( chapter 3). The only difference between both simulations 

is in the decay of two-photon intermediate state. Final state particles ,r+,r- K+ K- are 

generated according to their phase space in two-photon center-of-mass system weighted 

by the square of the decay matrix element Dp<t, from eq. 1.60. The event generation is fol­

lowed by the detector and trigger simulation and finally by the event reconstruction. This 

Monte Carlo sample is used for the determination of the invariant masses of pion pairs 

that correspond to the p0 meson. The cut is defined in the following way: at each Wn 

energy only 10% of the simulated events are allowed to lie outside the ,r+,r- interval, i.e. 

5% on each side of the area. The obtained area is marked in a double plot (fig. 7 .3) show­

ing the distribution of measured ,r+,r- K+ K- events with recognized <f, mesons. Events 

within this area are treated as p0 <f, events. Their dependence on W77 is shown in his­

togram (fig. 7.4). We tried to determine the background contribution using a Monte 
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Figure 7.3: Two-pion invariant mass m~~ distribution for the selected 
,r+,r-K+ K- events with¢, candidates (lmKK-m,,;I < 12M eV/c2 } (left), 
and the distribution of these events in the mn, W,, plane (right}. ,r+,r­

pairs are recognized as p0 decay products if they lie between both curves 
in the scatter plot. The cut was derived from Monte Carlo simulation. 
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Carlo simulation of other two-photon interactions, tau pair production e+ e- ---t rr and 

reactions e+e- ---+ hadrons (section 4.2). The number of simulated events corresponding 

to a particular background process depends on its cross section and the integrated lumi­

nosity of measured data sample. For reactions -y-y---+ wp, 'Y'Y ---+ w,r+,r-, 'Y'Y ---t p1r+1r-1r0 , 

and -y-y ---t ,r+,r-,r0,r+,r- we use the cross sections determined in chapter 6 while for 

other reactions the cross sections from already published measurements are taken. Due 

to severe requirements on ,r+,r- and K+ K- invariant masses, a large sample of Monte 

Carlo data is needed to determine the background contribution to the studied reaction 

-y-y ---t p<p with sufficient precision. Since simulation of all background processes is com­

puter time consuming, it is used to determine only the composition of background in the 

region shown in fig. 7.1. 40% of all background events are produced in -y1 ---t ,r+,r-K+ K­

reactions with final state particles generated according to phase space. Other important 

contributions come from reactions -y-y ---t K*° K±1r'f and -y-y ---t K*0 k•0 with 30% and 

23%, respectively. Such a composition of the background suggests a determination of the 

background contribution to the selected p0 ¢, events by using the simulation of the reaction 

-y-y ---t ,r+,r-K+ K-. The number of simulated events is normalized to the number of mea­

sured events within the region shown in fig. 7.1. Of course, the area around the p</> region 
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that fulfill the selection criteria for reaction "/'Y -> p0 q,. The dotted 
histogram shows the expected background predicted by simulation. 
b.) The acceptance for this reaction obtained by simulation. 
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Figure 7.5: Cross section of the reaction "/"/ --> p°tf,. 

(1.008 < mKK < 1.032, 0.45 < mu < 0.97) was excluded from the normalization. We 

determine the background contribution to the selected p°tj, events (fig. 7.4) by counting 

the properly scaled simulated ,r+,r- K+ K- events passing the selection criteria. 

The acceptance for the reaction "/"/ --> p<p is calculated from the same sample of 

simulated data that was used for the determination of the limits imposed to the p region 

of the two-pion invariant mass distribution. The calculation is similar to the one described 

in section 5.2. The acceptance dependence on Wn is shown in fig. 7.4. Using the relation 

N, -NF 
(7.1) 

we obtain the cross section for two-photon reaction "/"/ --> p0 tj, shown in fig. 7.5. In the 

above relation, N,, NF, and '7; are number of selected events, expected background, and 

selection acceptance, respectively. All quantities are related to a specific W,.,. interval 

i. The L;.,. denotes the average luminosity function. Decay fractions Br(p --> 2,r) and 

Br( <p --> 2K) for p0 --> ,r+,r- and tj, --> K+ K- decays respectively, are taken from [19]. 

The errors in fig. 7.5 are statistical only. The complete results are listed in table 7.1 

where also systematical errors are presented. The main contributions to the systematic 



W-,-, (GeV) u-,-,-p•,t, [nb] 

1.50 - 1.75 1.1 ± 1.8 ±0.1 
1.75 - 2.00 2.2 ± 1.1 ±0.3 
2.00 - 2.25 1.2 ± 0.4 ± 0.1 
2.25 - 2.50 0.57 ± 0.28 ± 0.07 
2.50 - 2.75 0.04 ± 0.16 ± 0.01 
2.75 - 3.00 0.63 ± 0.31 ± 0.08 
3.00 - 3.25 0.30 ± 0.21 ± 0.04 
3.25 - 3.50 0.16 ± 0.16 ± 0.02 

Table 7.1: Cross section of reaction TY-> p0 ¢,. The presented errors are 
statistical and systematical. 

uncertainty come from 
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• incomplete description of the two-photon reaction, hidden in the form factors (1.5%) 

• detector simulation ( 6%) 

• trigger simulation (5%) 

• determination of ARGUS integrated luminosity (1.8%) 

• branching ratio Br( <P--+ 2K) (1.6%) and 

• unknown spin-parity structure of p0 ,p production (around 9%, see below). 

All contributions to the systematic error are calculated similarly as in chapter 6. The 

systematic error due to unknown spin-parity of p°<t,, is calculated for each W-,, bin sepa­

rately. Using the Monte Carlo sample for the isotropic production of p°,p at two-photon 

interaction, we determine the acceptance for various spin-parity k with relation 

LA l'1ik(xA)l2 

7/k = Le l'1.ik(xc)l 2 • 
(7.2) 

Index A runs over all accepted events in a given W-,-, bin passing the p0 ,p selection criteria 

while index G runs over all generated events in the same W-,, bin. The angular distribu­

tions '1.ik(x) coincide with the distributions calculated for the wp0 waves (Appendix A). 

Only the definition of polar angles "' related to the w meson changes. The angles 0" 
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and </>n define the direction of K+ in the ¢, meson rest frame. Similarly as in chapter 6 

the systematic error is then calculated as a standard deviation of a uniform distribution 

between two extreme acceptances 1/k in each bin. The average over all W.,,., bins is 9%. 



Chapter 8 

Analysis of the reaction 
'Y'Y ~ wcp ~ 1r+ 1r-1rO K+ K-

As previous two analyses also this one is based on a collected data sample of an integrated 

luminosity of 472.7 pb-1
• The wcp production is studied in the channel 1r+1r-1r°K+K­

using the dominant decays of both vector mesons. Candidate events for the reaction 

-y-y---, 1r+1r-1r° K+ K- are selected with almost the same criteria as in section 4.1. 

• Two oppositly charged particles pointing to a common vertex have to be identified 

as pions .>.,,. > 1%, and two as kaons AK> 1%. Their probabilities for being electron 

Pe and muon P,, have to be less than 10%. No other charged particle is allowed to 

originate from the common vertex. 

• Neutral pion is identified as a photon pair with the invariant mass mn lying at the 

pion nominal mass m"o. The allowed mass difference lm77 - m,,.o I is 75 Me V / c2 for 

pairs with both photons identified by calorimeter showers, 50 MeV /c2 for pairs with 

one converted photon, and 40 MeV/c2 for pairs of converted photons. 

• Beside photons from the 1r0
, unconnected showers are not allowed in the calorimeter 

unless they are recognized as noise or fake photons due to hadron interactions in 

the calorimeter. 

• The total transverse momentum of selected particles 1r+1r-,r° K+ K- has to be less 

than 100 MeV /c, while charged particles have to have the total transverse momen­

tum of more than 20 Me V / c. 

• The momentum conservation has to be fulfilled for all particles involved in the 

reaction, including undetected electron and positron (section 4.1). 
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Figure 8.1: Invariant mass of K+ x- pairs for selected ,r+,r-,ro x+ x-
events. 
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Figure 8.3: a.) Invariant mass of ,r+,r-,r° K+ K- for all events that fulfil 
the w¢ selection. 
b.) The acceptance for this reaction obtained by simulation. 
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3.5 

The distribution of K+ K- invariant masses mKK is plotted for the selected ,r+,r-,r° K+ K­

events in (fig. 8.1). At the mass of the vector meson ef, an enhancement is seen. Keeping 

only the events whose K+ K- invariant mass does not differ more than 12 MeV / c2 from 

the mass of the ef, meson, we obtain the spectrum of ,r+,r-,r0 invariant masses shown 

in fig. 8.2. Of total 9 events 4 events .lie in the mass region of w, i.e. the difference 

between their ,r+,r-,r0 invariant mass and w nominal mass is less than 50 Me V / c2 , twice 

the detector resolution u(m3~) on three-pion invariant mass. 

The resolution u( m 3~) is obtained by making use of the simulated data sample of 

the reaction TY ---> wef, ---> ,r+,r-,r° K+ K-. The scattering of the electron and positron 

is described in the simulation by the luminosity function (eq. 3.1) while the phase-space 

final state particles ,r+,r-,r° K+ K- are weighted by the square of the decay matrix element 

Dwef, (eq. 1.61). The generation of the reaction"/"/ --t wef, is followed by a detector and 

trigger simulation as described in chapter 3. The simulation is used also to calculate the 

acceptance for the reaction "/"/ -, wef,. Cuts on masses mK K and m 3~ are also included in 

the acceptance calculation. The acceptance dependence on the two-photon invariant mass 

W,, is shown in fig. 8.3. It is averaged over bins of 250 Me V / c2
• Although the detector 

resolution on ,r+,r-,ro K+ K- invariant mass is only 45 MeV / c2, we chose this binning 
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due to the small number of w,f, events (fig. 8.3). The contribution of background to the 

selected events is estimated by Monte Carlo simulation. Due to very severe cuts on the 

two-kaon and two-pion masses, the selection criteria reject all events from the simulated 

data sample of two-photon interactions, tau pair production e+ e- -+ TT and reactions 

e+e- -+ hadrons (section 4.2). The number of events in this sample corresponds to 

the integrated luminosity of the measured data. Using fewer restrictive cuts on ,..+,..o,..­
and K+ K- masses, the reaction TY -t ,..+,..o,..- K+ K- is found to have a dominant 

contribution to selected events. Therefore, we generate a large Monte Carlo sample of 

this reaction. Although the generated sample corresponds to five times the integrated 

luminosity of the measured data, no event has fulfiled the w,f, selection criteria. So, an 

upper limit on background contribution is obtained to be 0.6 {95% confidence level). For 
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the W.,,.,, bin with all four events we calculate the cross section using the relation 

(8.1) 

N, - number of selected events Br(w-+ 3'11') - decay fraction for decay w-+ '1!'+'1!'-'1!'0 

1/i - acceptance Br( ef, -+ 2K) - decay fraction for decay ef, -> K+ K­
L!,,, - average luminosity function in i-th Wn interval 

The values used for decay fractions Br( w -+ 3'1!') and Br( ef, -+ 2K) can be found in [19]. 

The calculated cross section is plotted in fig. 8.4. Upper limits for the reaction T"/ -+ w<f, 
at 95 % confidence level are also shown. 
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·Chapter 9 

Summary 

The five pion production in two-photon interactions was studied using the ARGUS experi­

mental data. The analysis of this production includes contributions of reactions TY --t wP°, 
'"Y'"Y --t W7r"+7r"-, '"Y'"Y --+ p0

1r:+7r"
0
7r"-, and '"Y'"Y--+ 1r+7r"+7r"o7r"-7r"-. The data analysis of these re­

actions was performed in the range of Wn energies between 1.1 GeV and 3.5 GeV. The 

cross sections were determined by using the maximum likelihood method. A sum of cross 

sections for both reactions with w meson in the final state is compared with results of 

previous experiments (fig. 9.1). The obtained cross section is in agreement with previ-
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Figure 9.1: Comparison of the cross section for the reaction // ---------. 
w1r+1r- with results of previous experiments. Production of w1r+1r­

includes resonant and non resonant production of 1r+11"- pairs. 
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Figure 9.2: Cross sections for the reaction 'Y'Y _, wp0 • The result of the 
9 parameter fit is compared with cross sections of other experiments. 

ous measurements of ARGUS [4] and CELLO results [48]. The cross section for reaction 

TY -, wp0 is compatible with results of JADE [49] and TPC/21 [50] (fig. 9.2). Also a 

spin-parity analysis of the wp0 system was performed. Using the partial-wave method a 

dominance of the (JP, J,) = (2+, 2) wave is found in the region of W~~ between 1.5 and 

2.3 GeV. 

Two-photon production of vector meson pair p0 </, has been studied in the reaction 

11 -> ,r+,r-K+ K- where both vector mesons are reconstructed by their dominant decays. 

The cross section for the reaction 11 -> p0 ,t, has been measured for the first time. The 

measured cross section is consistent with ARGUS previous limit [5]. 

Two-photon production of wq, has also been found for the first time. A cross section 

of 1.65 ± 0.86 nb obtained for the W77 energy range between 1.9 and 2.3 GeV is consistent 

with the previous upper limit for this reaction [6]. For the region above 2.3 GeV an upper 

limit of 0.7 nb is obtained thus improving the upper limit set by ARGUS with the smaller 

data sample [6]. 



Appendix A 

The Angular Wave Functions for wpo 

Using the relation (1.41) 

w~j ], = L L Cf:.: L M cLmmw, jp mp Y/;1(0,<j,) · liw,mw) · lie,me) 
m+M=J,.. m..,+mp=m 

and expresions for liw,mw) and lie,me) (equations (1.42), (1.45)), wave functions w~j 1,, 
describing the rotational properties of decay into vector mesons w and µ° are evaluated 

for all spin parity states with spin J S 2, that can be produced by interaction of two real 
photons: 

Wo+ o Y,,0 (0,¢) · [~11,1) · 11,-1) - ~11,0) · 11,0) + ~11,-1) · 11,1)] 

oc [cos0ncos0e +sin0nsin0ecos(</Jn -<Pe)] (A.1) 

1 I [1 1 l Wo- o - v'3y; (0,¢,) · v'211,0) · 11,-1) - v'211,-1) · 11,0) 

- ~¥;0
(0,¢)·[~11,1)·11,-1)- ~11,-1)·11,1)] 

1 -1 [ 1 1 l + v'3y; (0,¢,) · y'211,l) · ll,O)- y'211,0) · ll,1) 

oc [cos0sin0nsin0esin(</Jn -<Pe)+ sin0sin0ncos0esin(<f,- <Pn) 

+ sin 0 cos 0n sin 0e sin (<Pe - ¢)] (A.2) 

Y,,0 (0, ¢,) · 11, 1). 11, 1) 

oc sin0nsin0e · e±i(¢n+<Pp)) (A.3) 
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[
1 v'2 1 ] 

W2+ o - ½°(O,<f,) · v'611,1) · 11,-1) + vf:111,0) · 11,0) + v'611,-1) · 11,1) 

ex [2 cos On cos OP - sin On sin OP cos (cf>n - c/>p)] (A.4) 

w~~=il - ~Y,1 (0,4>) · [~11,0) -11,-1) - ~11,-1) -11,0)] 

v'2 0 [1 1 ] + vf:j"Y, (0,cf>) • v'211,1) · 11,-1)- v'211,-l) · 11,1) 

+ ~:v,-1(0,q,). [~11,1) · 11,0)- ~11,0) -11,1)] 

ex [2 cos 0 sin On sin OP sin (cf>n - c/>p) - sin O sin On cos OP sin (cf> - cf>n) 

+ sin 0 cos On sin Op sin (cf> - q>p)] (A.5) 

-1 [ 1 1 ] v'2Y;1(0,c/>) · v'211,0) · ll,-1) + v'211,-1) · ll,O) 

+ ~Y,-1(0,4>). [~11,1) · 11,0) + ~11,0) · 11, 1)] 

ex sinO[cos0nsin0psin(cf>-cf>e)+sinOncosOPsin(cf>-cf>n)] (A.6) 

The wave functions are calculated only for lowest orbital angular momentum L = 0 and 

L = 1, assuming that contribution of others can be neglected close to wp0 threshold. A 

variable Sin equations (A.5) and (A.6) marks vector sum of wand p spins. 
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