
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Cuts, discontinuities and the coproduct
of Feynman diagrams

T
H

E
U

N I V E
R

S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Samuel François Souto Gonçalves de Abreu
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Lay Summary

Comparing physical theories to experimental results is fundamental to test

the validity of said theories. To make this comparison, a widely used method

relies on the evaluation of so-called Feynman diagrams. These are a graphical

representation of complicated mathematical expressions. Evaluating them

requires the computation of specific integrals, called Feynman integrals. In this

thesis, we develop new methods to study these diagrams and the functions they

evaluate to.

Computing Feynman integrals is a very complicated task and the focus of a

lot of ongoing research. We make use of some recently developed mathematical

formalism to shed new light on the analytic structure of the functions these

integrals evaluate to. We show how purely graphical operations on Feynman

diagrams capture the analytic structure of Feynman integrals, and how this allows

to find new and more efficient ways of computing these integrals.
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Abstract

We study the relations among unitarity cuts of a Feynman integral computed

via diagrammatic cutting rules, the discontinuity across the corresponding branch

cut, and the coproduct of the integral. For single unitarity cuts, these relations

are familiar, and we show that they can be generalized to cuts in internal masses

and sequences of cuts in different channels and/or internal masses. We develop

techniques for computing the cuts of Feynman integrals in real kinematics.

Using concrete one- and two-loop scalar integral examples we demonstrate that

it is possible to reconstruct a Feynman integral from either single or double

unitarity cuts.

We then formulate a new set of complex kinematics cutting rules generalising

the ones defined in real kinematics, which allows us to define and compute cuts of

general one-loop graphs, with any number of cut propagators. With these rules,

which are consistent with the complex kinematic cuts used in the framework of

generalised unitarity, we can describe more of the analytic structure of Feynman

diagrams. We use them to compute new results for maximal cuts of box diagrams

with different mass configurations as well as the maximal cut of the massless

pentagon.

Finally, we construct a purely graphical coproduct of one-loop scalar Feynman

diagrams. In this construction, the only ingredients are the diagram under

consideration, the diagrams obtained by contracting some of its propagators,

and the diagram itself with some of its propagators cut. Using our new definition

of cut, we map the graphical coproduct to the coproduct acting on the functions

Feynman diagrams and their cuts evaluate to. We finish by examining the

consequences of the graphical coproduct in the study of discontinuities and

differential equations of Feynman integrals.
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Chapter 1

Introduction

The Standard Model of particle physics has been extremely successful

in describing data collected in a wide range of collider experiments to an

unprecedented level of accuracy. This makes it one of the best tested theories in

physics. The ever increasing precision of the experimental measurements must

be matched by an increase in the accuracy of theoretical predictions.

Scattering amplitudes are fundamental tools in making the connection

between quantum field theories, like the Standard Model, and experimental

observations. Roughly speaking, squared amplitudes describe the (differential)

probability of a given process to happen. They allow to determine the cross-

sections of scattering processes, which can be measured in collider experiments,

from the underlying theory that governs them.

In the framework of perturbative quantum field theory, amplitudes are written

as an expansion over so-called Feynman diagrams. Feynman diagrams are a

graphical representation of the terms appearing in the Taylor expansion of the

generating functional of the theory, defined in terms of its Lagrangian density.

The Taylor expansion is an expansion in powers of some small coupling constant

of the theory. Feynman graphs with a certain number of loops first appear at

a specific order in this expansion. It is thus common to refer to the accuracy

of theoretical predictions by either counting the power of the coupling at which

we truncate the expansion, or by counting the maximal number of loops of the

Feynman diagrams we consider.

For most processes, the state of the art is next-to-leading order (NLO)

accuracy (although for some inclusive processes we can reach much higher

1



Chapter 1. Introduction

accuracy, a notable example being the recent determination of the Higgs

production by gluon fusion at three-loops (N3LO) [1]). This was possible to

achieve thanks to the development of powerful methods to efficiently evaluate

one-loop amplitudes. These methods build on the observation that one-loop

amplitudes can be written in terms of a small number of scalar Feynman diagrams,

i.e., Feynman diagrams with unit numerators.

The fact that diagrams with complicated numerators can be rewritten in

terms of scalar diagrams was first noticed by Passarino and Veltman [2]. The

calculation of one-loop amplitudes was then done by expanding it in terms of

Feynman diagrams, reducing all diagrams to scalar integrals, and then computing

all contributing integrals. However, even at one-loop, the number of diagrams

soon becomes unmanageable as one increases the number of particles taking part

in the interaction.

In more recent methods [3–17], using modern unitarity techniques, one-loop

amplitudes are themselves projected onto a small basis of scalar integrals, the

only integrals that must be evaluated, thus bypassing the expansion in terms

of complicated Feynamn diagrams and their reduction to scalar ones. In four

dimensions, only diagrams with one, two, three or four propagators are necessary

(diagrams with five propagators can also be necessary to obtain the so-called

rational parts of the amplitudes). These methods are called unitarity methods

because they use discontinuities to project the amplitude onto the basis of scalar

integrals.

The work in this thesis builds on two main lessons learnt in the development of

these techniques. The first lesson is that scalar Feynman integrals constitute the

fundamental building blocks of amplitudes at one loop. This is not true beyond

one loop as some of the numerator structures that appear cannot be reduced in

the sense of [2], but it is still true that scalar diagrams play a fundamental role.

Throughout this thesis, we will thus focus on scalar Feynman diagrams. Although

we will not always be explicit about it, every time we mention Feynman diagrams

we will be referring to scalar Feynman diagrams.

The second lesson is that understanding the discontinuity structure of

Feynman diagrams (and more generally amplitudes) is important to find efficient

ways of computing them. Indeed, discontinuities of amplitudes are interesting

to study as physical objects. It was realised a long time ago [18–20] that
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they can be given a physical interpretation in terms of so-called unitarity cuts,

corresponding to the original diagrams with some of the propagators put on-

shell. Some years later, it was shown that the same can be said for individual

Feynman diagrams [21–23]. In a nutshell, discontinuities appear at the threshold

for production of on-shell physical states. From these observations, important

tools were developed, such as the S-matrix theory [20], the optical theorem

which relates the discontinuity of forward-scattering amplitudes to the total cross-

section, or the largest time equation [21,23].

More recently, the calculation of Feynman integrals was revolutionised by

new developments in the study of a specific class of transcendental functions,

the so-called multiple polylogarithms (MPLs). Indeed, a large class of Feynman

diagrams can be expressed in terms of these functions, in particular all one-loop

diagrams. Multiple polylogarithms are defined as iterated integrals, and carry a

lot of unexpected algebraic structure. They form a Hopf algebra [24, 25], which

turns out to be a natural tool to capture their discontinuities. In this thesis, we

will thus study the discontinuities of scalar Feynman diagrams using tools drawn

from the Hopf algebra of multiple polylogarithms, in particular its coproduct.

To be clear about the scope of this thesis, we will mostly be concerned with

scalar and planar Feynman integrals, with generic configurations of internal and

external masses, computed in dimensional regularisation. Some of our discussion

can be generalised to non-planar diagram, but we did not investigate this type of

diagrams in detail. Beyond one loop, we will restrict our discussion to diagrams

that evaluate to MPLs, although it is known that generic Feynman integrals can

involve other types of transcendental functions [26–35]. In the latter parts of

this thesis, chapters 5 and 6, we will further specialise our discussion to one-loop

diagrams.

In chapter 2, we will start by explaining in detail how discontinuities are

captured by the coproduct of the Hopf algebra of MPLs. For that, we will be

concrete about what we mean by discontinuity, by defining an operator Disc. This

operator acts on MPLs, and can be iterated to compute sequential discontinuities.

We will then show that this operator can be related to specific entries of the

coproduct of MPLs, computed through the action of an operator δ. We will

establish precise relations between these two operations, thus making it apparent

3



Chapter 1. Introduction

that the coproduct is a natural tool to study the discontinuities of Feynman

integrals that evaluate to MPLs.

Following [18–23], in chapter 3 we will then show that the discontinuities of

Feynman integrals can be computed through a specific set of so-called cutting

rules, that define the unitarity cuts of Feynman diagrams. These rules have

already been established for single discontinuities, and in this thesis we build

on this to propose a consistent set of generalised rules reproducing multiple

discontinuities. We will thus define an operator Cut, acting on Feynman

diagrams, which computes multiple unitarity cuts. These can be cuts on external

massive channels, or on internal massive propagators. We will then relate this

operator to the other two operators which compute discontinuities, Disc and δ.

We will thus conjecture a relation between unitarity cuts, discontinuities and

specific coproduct entries.

To check our relations, we had to develop techniques to compute cut diagrams.

We did so for a variety of triangle diagrams, with or without internal masses, as

well as for a two-loop example, the three-point ladder integral with three-external

massive legs. We verified that our conjectured relations between Cut, Disc and δ

were satisfied in all the examples we investigated.

In chapter 4, we explore the question of whether Feynman diagrams can be

computed from the knowledge of their cuts. The idea for this was based on

[21–23], where it was shown that individual Feynman diagrams have a dispersive

representation (it had been known for a while that amplitudes have a dispersive

representation [20]). We were able to verify that unitarity cuts greatly constrain

the analytic structure of Feynman diagrams.

As we will make clear in our discussion, while the operator Cut is enough to

reproduce the discontinuities across physical branch cuts of Feynman diagrams, it

is not enough to capture the full structure of the coproduct of Feynman integrals.

In chapter 5 we will thus develop a new set of cutting rules, which is consistent

with Cut when both are applicable, but captures as much as possible of the

analytic structure of Feynman diagrams. These rules will be developed in the

context of one-loop Feynman diagrams. Unlike Cut, which was defined strictly in

real kinematics, these new rules are defined in complex kinematics which allows

us to compute new types of cuts. For instance, with the new set of rules we will

be able to compute the four-propagator cut of the fully massless box diagrams to

4



all orders in ε, which is beyond what can be achieved with Cut.

Finally, we will address what was our main motivation for the study of cut

diagrams, discontinuities and the coproduct of Feynman diagrams. It started

from the realisation that some coproduct entries, the ones corresponding to

discontinuities, have a diagrammatic representation. It was then natural to

ask ourselves whether it would be possible to have a completely diagrammatic

representation of the full coproduct of Feynman diagrams. In this thesis, we show

that this is possible for one-loop Feynman diagrams. We explain how a purely

graphical coproduct acting on one-loop Feynman graphs can be constructed,

and how its action on Feynman graphs matches the action of the coproduct

of MPLs on Feynman integrals. This representation of the coproduct has

practical applications given the way the coproduct interacts with discontinuity

and differential operators. In particular, we will show that differential equations

of one-loop Feynman integrals are determined by their cuts, and can be easily

obtained from their graphical coproduct.

Chapters 2, 3 and 4 of this thesis form a coherent whole by themselves. They

correspond to work that was published in two papers, [36] and [37]. Chapter 5

contains work that has not yet been published. Although it should be contrasted

with the work presented in chapter 3, it can be read on its own. Chapter 6 is

also unpublished work. It is largely self contained, although it uses many results

established in chapter 5. In chapter 7 we summarise the conclusions of our work

and discuss directions for further study.

In the appendices, we summarise our notations and conventions, appendix

A, and include most of the explicit results of our calculations of uncut and cut

Feynman diagrams, appendices B and C. These include some calculations and

proofs that do not belong in the main body but we thought should be present,

such as section B.3 where we compute triangles with three external massive legs

and one or two massive propagators, and section B.4.8 where we compute the

box with four massive external legs. Finally, in appendix D we briefly comment

on how some of our results generalise in the case where some masses are equal

but non-zero, which we always assume not to be the case in the main body of

this thesis.
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Chapter 1. Introduction

We finish this introduction by noting that some of the results necessary to

perform the checks of the diagrammatic coproduct are not explicitly included in

this thesis, as some diagrams evaluate to rather large expressions. However, all

of them are available in a separate MATHEMATICA package [38], which we believe

is a more suitable format to present such large expressions. This package can be

downloaded from:

http://www2.ph.ed.ac.uk/~s1039321/resultsOfDiagramsDiagCoprod.zip.
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Chapter 2

Multiple polylogarithms and

discontinuities of Feynman

diagrams

2.1 Introduction

In this first chapter we will introduce concepts and tools which will be

important throughout this thesis. The content covered here is also presented

in refs. [36] and [37].

We will start by introducing a specific class of transcendental functions, the

so-called multiple polylogarithms (MPLs). We will define MPLs and review some

of their properties. This will not be a complete review of the subject as it is a

very broad field of study. Instead, we will focus on what will be used in the

remaining of this thesis, in particular the Hopf algebraic structure of MPLs and

the associated coproduct.

The reason we are interested in this particular class of functions is that

many Feynman integrals evaluate to MPLs. In particular, it is conjectured, and

observed in a wide variety of examples, that all one-loop diagrams can be written

in terms of these functions. Beyond one-loop, elliptic functions can appear but

MPLs still play an important role, specially for diagrams depending on few scales.

We will introduce and review several topics which have allowed to make progress

in the understanding of the analytic structure of Feynman integrals over recent

years, such as the concept of symbol and symbol alphabet or the so-called first-
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

entry condition.

It is well known that the branch cuts of Feynman integrals are related to

discontinuities which have a physical meaning, as they are associated to thresholds

for the production of on-shell physical states [18,20]. The position of the branch

points of Feynman integrals can be found through the so-called Landau conditions

[18] (see e.g. [39] for a modern discussion of the Landau conditions in the context

of one-loop diagrams. We also give a very short review of the Landau conditions in

the introduction of chapter 6, section 6.1). Understanding the analytic structure

of Feynman integrals thus benefits from having a physical perspective on these

functions, and not only a purely mathematical approach.

In this chapter, we will give a precise definition of Disc, an operator computing

discontinuities across physical branch cuts of Feynman integrals which evaluate

to MPLs, and will argue that the coproduct of the Hopf algebra of MPLs is a

natural tool to study these discontinuities. For this purpose, we will define an

operator δ which corresponds to a truncation of the coproduct tensor.

We will explain how to identify the kinematic region where the Feynman

integral is away from any branch cut, the so-called euclidean region, and how by

moving away from that region in a controlled way we can select the discontinuities

associated with specific kinematic invariants. We will then establish precise

relations between discontinuities and coproduct entries, i.e., relations between

Disc and δ, and explain in detail how these can be obtained. We will finish

by giving an example to make our discussion more concrete: we will get the

relations between discontinuities and coproduct entries for three-point functions

with massive external legs and massless propagators.

This chapter is a mixture of well established results—section 2.2—and work

developed during the course of my PhD, in collaboration with Ruth Britto, Claude

Duhr, my supervisor Einan Gardi, and Hanna Grönqvist for the study of diagrams

with internal masses—section 2.3.

2.2 The Hopf algebra of multiple polylogarithms

Feynman integrals in dimensional regularisation usually evaluate to transcen-

dental functions whose branch cuts are related to the physical discontinuities

of S-matrix elements. Although it is known that generic Feynman integrals
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2.2. The Hopf algebra of multiple polylogarithms

can involve elliptic functions [26–35], large classes of Feynman integrals can be

expressed through the classical logarithm and polylogarithm functions,

log z =

∫ z

1

dt

t
and Lin(z) =

∫ z

0

dt

t
Lin−1(t) with Li1(z) = − log(1−z) , (2.1)

and generalisations thereof (see, e.g., refs. [40–46], and references therein). In this

work we will concentrate exclusively on integrals that can be expressed entirely

through the so-called multiple polylogarithms (MPLs), and in the rest of this

section we will review some of their mathematical properties.

2.2.1 Multiple polylogarithms

Multiple polylogarithms (MPLs) are defined by the iterated integral [25,47]

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1

G(a2, . . . , an; t) , (2.2)

with ai, z ∈ C. In the special case where all the ai’s are zero, we define, using the

obvious vector notation an = (a, . . . , a︸ ︷︷ ︸
n

),

G(0n; z) =
1

n!
logn z . (2.3)

The number n of integrations in eq. (2.2), or equivalently the number of ai’s, is

called the weight of the multiple polylogarithm, denoted w. As simple cases, we

have

G(0; z) = log z, G(a; z) = log
(

1− z

a

)
, G(0, a; z) = −Li2

(z
a

)
,

G(a, b; z) = Li2

(
b− z
b− a

)
− Li2

(
b

b− a

)
+ log

(
1− z

b

)
log

(
z − a
z − b

)
, (2.4)

where the last equality holds for a and b different and nonzero [48]. Note that

some constants, corresponding to specific values of MPLs, inherit the weight from

the functions that define them. For instance,

log(−1) = ±iπ ⇒ w(π) = 1 , Lin(1) = ζn ⇒ w(ζn) = n. (2.5)
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

In the following we denote by H the Q-vector space spanned by all multiple

polylogarithms. In addition, H can be turned into an algebra. Indeed, iterated

integrals form a shuffle algebra,

G(~a1; z)G(~a2; z) =
∑

~a∈~a1 qq~a2

G(~a; z) , (2.6)

where ~a1qq~a2 denotes the set of all shuffles of ~a1 and ~a2, where ~a1 =

(a1,1, . . . , a1,n) and ~a2 = (a2,1, . . . , a2,m), i.e., the set of all permutations of

their union that preserve the relative orderings inside ~a1 and ~a2. It is obvious

that the shuffle product preserves the weight, and hence the product of two

multiple polylogarithms of weight n1 and n2 is a linear combination of multiple

polylogarithms of weight n1 +n2. We can formalise this statement by saying that

the algebra of multiple polylogarithms is graded by the weight,

H =
∞⊕
n=0

Hn with Hn1 · Hn2 ⊂ Hn1+n2 , (2.7)

where Hn is the Q-vector space spanned by all multiple polylogarithms of weight

n, and we define H0 = Q.

The coproduct of the Hopf algebra of MPLs: Multiple polylogarithms

can be endowed with more algebraic structures. If we look at the quotient space

H = H/(πH) (the algebra H modulo π), then H is a Hopf algebra [24, 25].

In particular, H can be equipped with a coproduct ∆ : H → H ⊗ H, which is

coassociative,

(id⊗∆) ∆ = (∆⊗ id) ∆ , (2.8)

respects the multiplication,

∆(a · b) = ∆(a) ·∆(b) , (2.9)

and respects the weight,

Hn
∆−→

n⊕
k=0

Hk ⊗Hn−k . (2.10)
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2.2. The Hopf algebra of multiple polylogarithms

The coproduct of the ordinary logarithm and the classical polylogarithms are

∆(log z) = 1⊗ log z + log z ⊗ 1, (2.11)

or, more generally,

∆(logn z) =
n∑
k=0

(
n

k

)
logk(z)⊗ logn−k(z), (2.12)

and

∆(Lin(z)) = 1⊗ Lin(z) +
n−1∑
k=0

Lin−k(z)⊗ logk z

k!
. (2.13)

For the definition of the coproduct of general multiple polylogarithms we refer to

refs. [24, 25].

The coassociativity of the coproduct implies that it can be iterated in a unique

way. If (n1, . . . , nk) is a partition of n, we define

∆n1,...,nk : Hn → Hn1 ⊗ . . .⊗Hnk . (2.14)

Note that the maximal iteration of the coproduct, corresponding to the partition

(1, . . . , 1), agrees with the symbol of a transcendental function F [49–53]

S(F ) ≡ ∆1,...,1(F ) ∈ H1 ⊗ . . .⊗H1 . (2.15)

Since every element of H1 is a logarithm, the ‘log’ sign is usually dropped when

talking about the symbol of a function. Note that not every element in H1⊗ . . .⊗
H1 corresponds to the symbol of a function in H. Instead, one can show that if

we take an element

s =
∑
i1,...,in

ci1,...,in log xi1 ⊗ . . .⊗ log xin ∈ H1 ⊗ . . .⊗H1 , (2.16)

where the coefficients ci1,...,in ∈ Q are rational numbers, then there is a function

F ∈ Hn such that S(F ) = s if and only if s satisfies the integrability condition∑
i1,...,in

ci1,...,in d log xik∧d log xik+1
log xi1⊗. . .⊗log xk−1⊗log xk+2⊗. . .⊗log xin = 0 ,

(2.17)

11



Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

where ∧ denotes the usual wedge product on differential forms.

While H is a Hopf algebra, we are practically interested in the full algebra

H where we have kept all factors of π. Based on similar ideas in the context of

motivic multiple zeta values [54], it was argued in ref. [48] that we can reintroduce

π into the construction by considering the trivial comodule H = Q[iπ]⊗H. The

coproduct is then lifted to a comodule map ∆ : H → H ⊗ H which acts on iπ

according to

∆(iπ) = iπ ⊗ 1. (2.18)

For n even, ζn is proportional to πn, and we thus also have

∆(ζn) = ζn ⊗ 1 for n even, (2.19)

while

∆(ζn) = ζn ⊗ 1 + 1⊗ ζn for n odd, (2.20)

as follows naturally from eq. (2.13). In the following we will, by slight abuse of

language, refer to the comodule as the Hopf algebraH of multiple polylogarithms.

Note that forH (more preciselyH) to be a Hopf algebra, it has to be equipped

with more structures such as a counit and an antipode, see e.g. [48,55]. These will

not play a role in the remaining of this thesis, so we will not study them further.

Let us conclude this review of multiple polylogarithms and their Hopf algebra

structure by discussing how differentiation and taking discontinuities interact

with the coproduct (see section 2.3.1 for a precise definition of discontinuity in

this work). In ref. [48] it was argued that the following identities hold:

∆
∂

∂z
=

(
id⊗ ∂

∂z

)
∆ (2.21a)

∆ Disc = (Disc⊗ id) ∆ . (2.21b)

In other words, differentiation only acts in the last entry of the coproduct, while

taking discontinuities only acts in the first entry.

Let fn be an element of weight n in H. The derivative of fn is thus a product

of a rational function and a function which is an element of weight n − 1 in H,

12



2.2. The Hopf algebra of multiple polylogarithms

given by
∂fn
∂z

= µ

[(
id⊗ ∂

∂z

)
∆n−1,1fn

]
, (2.22)

where µ : H⊗H → H denotes the multiplication in H.

Since discontinuities are proportional to iπ, which appears only in the first

entry of the coproduct, it follows from eq. (2.21b) that for an element fn of weight

n in H,

Disc fn ∼= µ [(Disc⊗id) ∆1,n−1fn] , (2.23)

i.e. we simply multiply the two factors in the coproduct, and ∼= denotes

equivalence modulo π2, because the weight (n − 1) part of the coproduct in

the right-hand side is only defined modulo π.

The two relations in eq. (2.21) will play a central role in the remaining of this

work. The relation between discontinuities and the coproduct will be important

throughout, and the relation between differential operators and the coproduct

will allow us to relate cuts and differential equations in chapter 6.

2.2.2 Pure Feynman integrals

Throughout this thesis, we will be concerned with connected planar Feynman

integrals in dimensional regularisation. In D = d− 2ε dimensions, for d even, an

L-loop Feynman integral F (L) defines a Laurent series,

F (L)(ε) =
∞∑

k=−2L

F
(L)
k εk . (2.24)

In the following we will concentrate on situations where the coefficients of the

Laurent series can be written exclusively in terms of multiple polylogarithms

and rational functions, and a well-known conjecture states that the weight of the

transcendental functions (and numbers) that enter the coefficient F
(L)
k of a L-loop

integral is such that

w
(
F

(L)
k

)
≤ dL

2
+ k. (2.25)

If all the polylogarithms in F
(L)
k have the same weight, the integral is said to have

uniform (transcendental) weight. In addition, we say that an integral is pure if

the coefficients F
(L)
k do not contain rational or algebraic functions of the external

kinematical variables.
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It is clear that pure integrals are the natural objects to study when trying to

link Hopf algebraic ideas for multiple polylogarithms to Feynman integrals. For

this reason we will only be concerned with pure integrals in the rest of this thesis.

However, the question naturally arises of how restrictive this assumption is. In

ref. [56] it was noted that if a Feynman integral has unit leading singularity [57],

i.e., if all the residues of the integrand, obtained by integrating over compact

complex contours around the poles of the integrand, are equal to one, then the

corresponding integral is pure. Furthermore, it is well known that Feynman

integrals satisfy integration-by-parts identities [58], which, loosely speaking, allow

one to express a loop integral with a given propagator structure in terms of a

minimal set of so-called master integrals. In ref. [59] it was conjectured that it

is always possible to choose the master integrals to be pure integrals, and the

conjecture was shown to hold in several nontrivial cases [60–63]. Hence, if this

conjecture is true, it should always be possible to restrict the computation of the

master integrals to pure integrals, which justifies the restriction to this particular

class of integrals.

In practice, in this thesis we will always work with Feynman integrals

evaluating to functions of uniform weight, with a single rational factor. This

will require to choose the value of d according to the number of propagators. For

one-loop diagrams with n propagators, we will choose d to be the even number

such that d − 2 < n ≤ d. For instance, tadpoles and bubbles are computed

in D = 2 − 2ε, triangles and boxes in D = 4 − 2ε, pentagons and hexagons in

D = 6 − 2ε, etc. The coefficient F
(1)
0 of one-loop integrals will then evaluate to

functions of weight d/2. It is not yet clear to us how to generalise this procedure

to general diagrams at higher loop order, but for the two-loop diagram we will

analyse in this work choosing D = 4 − 2ε gives a uniform weight function, of

weight 4, which saturates the upper bound in eq. (2.25).

We finish with two comments. First, we only require to have integrals

evaluating to functions of uniform weight because it makes our discussion simpler.

Indeed, most of our conclusions are still valid for functions of non-uniform weight,

but we would need to treat separately the components of different weights.

Second, it will be convenient to think of the dimensional regularisation parameter

ε as having weight −1. We can then assign a weight to a diagram in dimensional

regularisation (instead of only to the coefficients in its Laurent expansion): given
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our choice of varying the dimensions with the number of propagators for one-loop

diagrams, they have weight d/2. This will mean that in its Laurent expansion,

the coefficient of the order εk is a function of weight d/2 + k.

2.2.3 The symbol alphabet

The most natural kinematic variables for a given integral might be complicated

functions of the momentum invariants. Indeed, it is known that the Laurent

expansion coefficients in eq. (2.24) are periods (defined, loosely speaking,

as integrals of rational functions), which implies that the arguments of the

polylogarithmic functions are expected to be algebraic functions of the external

scales [64]. In practice it is more convenient to find a parametrisation of the

kinematics such that the arguments of all polylogarithmic functions are rational.

More precisely, if we have a Feynman integral depending on n independent scales

si (e.g. Mandelstam invariants), we want to find n − 1 independent variables zi

such that

si/sn = fi(z1, . . . , zn−1) , (2.26)

where the fi are rational functions such that all the arguments of the polylog-

arithms are rational functions of the zi variables. While no general algorithm

is known that allows one to find the parametrisation eq. (2.26), such a

parametrisation exists for a wide variety of diagrams. The inverse relations to

eq. (2.26), expressing zi in terms of the Mandelstam invariants {sj}, are algebraic

functions, often involving square roots of polynomials of the invariants {sj}.
In this thesis, we will focus on diagrams for which we have found a rational

parametrisation and simply comment on some borderline cases in sections B.3.5

and B.4.8. Let us give some concrete examples of rational parametrisations.

For three-point diagrams with massless propagators and three massive external

channels, let’s say p2
1, p2

2 and p2
3, a very useful parametrisation was introduced

in [65]. We start by defining two dimensionless ratios

ui =
p2
i

p2
1

, for i = 1, 2, (2.27)

and then define the variables z and z̄ as

u2 = zz̄, u3 = (1− z)(1− z̄). (2.28)
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As mentioned above, the inverse relations involve algebraic functions:

z =
1 + u2 − u3 +

√
λ(1, u2, u3)

2
, z̄ =

1 + u2 − u3 −
√
λ(1, u2, u3)

2
, (2.29)

where λ(a, b, c) is the usual Källén function,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (2.30)

In the following, we will sometimes write λ ≡ λ(1, u2, u3), when there is no

ambiguity about the arguments.

In [37], the same idea was applied to integrals with massive internal

propagators. If an external massive leg of mass p2
1 is attached to two internal

massive propagators of masses m2
12 and m2

13, then simply by working out the

kinematics of such a vertex one can see that it is convenient to introduce the

analogue of eq. (2.29) in the following way. We define the two dimensionless

ratios

µij =
m2
ij

p2
1

, for i = 1, j = 2, 3, (2.31)

and then define the variables w1 and w̄1 as

µ12 = w1w̄1, µ13 = (1− w)(1− w̄1). (2.32)

The inverse relation is then

w1 =
1 + µ12 − µ13 +

√
λ(1, µ12, µ13)

2
, w̄1 =

1 + µ12 − µ13 −
√
λ(1, µ12, µ13)

2
.

(2.33)

Throughout this work, most of our examples will be three-point functions,

and so these sets of variables will appear very often. Other examples of rational

parametrisations can be found in the literature. These can be obtained either by

intuition (e.g. [66]), a connection with twistor theory (e.g. [67,68]), or a connection

with scattering equations [69].

If a parametrisation of the type (2.26) has been determined for a given

Feynman integral, it is easy to see that the entries of the symbol of this

integral will be rational functions of the zi. Moreover, due to the additivity

of the symbol, we can assume that the entries of the symbol are polynomials

16



2.2. The Hopf algebra of multiple polylogarithms

with integer coefficients1 in the variables zi, which without loss of generality

we may assume to be irreducible over Z. In other words, once a rational

parametrisation (2.26) has been determined, we can assign to every Feynman

integral a set A ⊂ Z[z1, . . . , zn−1] of irreducible polynomials. In the following

we call the set A the symbol alphabet of the integral, and its elements, which

we generically denote by xi, will be called the letters of the alphabet. Some

comments are in order: First, we note that the symbol alphabet A is not unique,

but it is tightly connected to the choice of the rational parametrisation (2.26).

A different choice for the rational functions fi may result in a different symbol

alphabet A. Second, we emphasise that although the parametrisation (2.26) only

involves the external scales, its form is in general dependent on the loop order

and/or the order in the expansion in the dimensional regulator ε and the topology

of the integral under consideration. Third, it is easy to see that once a symbol

alphabet A is fixed, the symbol of a polylogarithmic function of weight k takes

values in Q ⊗Z Z[A]⊗k, the k-fold tensor product (with rational coefficients) of

the free abelian group of rational functions whose generators are the polynomials

in the set A. Finally, we note that it is expected that the arguments of the

polylogarithms take values in a subset of the free abelian group Z[A], and an

explicit (conjectural) construction of this subset was presented in ref. [53].

In practical applications it is often advantageous to know the symbol

alphabet underlying a specific problem a priori. For example, if the alphabet

is determined, it is possible to write ansätze for the symbols and/or the function

spaces for Feynman integrals or amplitudes, which can then be fixed using

additional physical information (e.g., behaviour in certain limits) [65, 70–76].

Unfortunately, as already mentioned, no general algorithm to determine a rational

parametrisation (2.26), and thus the letters xi ∈ A is known. One possible way

to determine the alphabet is to analyze the differential equations satisfied by

Feynman integrals [59, 77–80], where the letters xi appear as the singularities

of the differential equations.2 In the rest of this paper we argue that another

way of determining the letters xi consists in analyzing (iterated) unitarity cuts of

Feynman integrals. Indeed, as we will argue in the next section, cut integrals are

tightly connected to the entries in the coproduct (and hence the symbol) and the

1We allow the polynomials to be constants.
2We note, however, that also in that case a rational parametrisation has to be determined

by independent means.
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

discontinuities of a Feynman integral, but they are sometimes easier to compute

because the transcendental weight is reduced.

This review of the properties of multiple polylogarithms is a very short

summary of an interesting and broad subject, that we tailored to the needs of

this thesis. To learn this subject, we mainly benefited from studying references

[48] and [53], as they present the subject in a manner more suited to non-

mathematicians. Furthermore, the lectures in [81] are a very good review of

the subject as well as a good source of references. More recently, we found [55]

useful as a short summary of the properties of Hopf algebras. Finally, for a

reference which deals exactly with the subject of polylogarithms and Feynman

integrals from the mathematics community, but which we found to be accessible

nevertheless, we refer to [82].

2.3 Iterated discontinuities and coproduct en-

tries

Having given a succinct introduction to the analytic structure of multiple

polylogarithms in the previous section, we now focus on discontinuities of MPLs

and how they are related to coproduct entries. We will start by giving our

definition of discontinuity, and then define an operator δ that truncates the

coproduct tensor of MPLs. Finally, we show how iterated discontinuities and

the action of δ are related. These two operations are defined for general

polylogarithms, and our next step is to make the discussion more specific to

Feynman integrals by commenting on their analytic structure. In particular, we

will introduce the concept of first entry condition. This will allow us to determine

the natural kinematic region in which discontinuities should be evaluated.

2.3.1 Discontinuities and coproduct entries

Disc: Discontinuity across branch cuts

We define an operator Discs F giving the direct value of the discontinuity of

F as the variable s crosses the real axis. By convention we choose the branch cut

of the logarithm function to be the negative real axis. If there is no branch cut
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2.3. Iterated discontinuities and coproduct entries

in the region of s for which F (s) is defined, or if F does not depend on s, then

the value is zero. Concretely,

Discs [F (s± i0)] = lim
ε→0

[F (s± iε)− F (s∓ iε)] , (2.34)

where the iε prescription must be inserted correctly in order to obtain the

appropriate sign of the discontinuity, and we assume s to be real valued. For

example, Discs log(s+i0) = 2πi θ(−s). Understanding the correct sign of the ±i0
associated to a given variable in detail is important, but we leave that discussion

for when we relate Disc to diagrammatic cuts in the next chapter.

The sequential discontinuity operator Discr1,...,rk is defined recursively:

Discr1,...,rk F ≡ Discrk
(
Discr1,...,rk−1

F
)
. (2.35)

In the context of Feynman diagrams, we should think of the ri as associated to

kinematic invariants, either Mandelstam invariants or (squared) internal masses.

Note that Disc may be computed in any region after careful analytic

continuation. In particular, sequential Disc will be computed in different regions

at each step. We will sometimes write

Discr1,...,rk;R F (2.36)

to make explicit the region R in which Discr1,...,rk is to be computed, after having

analytically continued F to this same region.

δ: Entries of the coproduct

If F is of transcendental weight n and has all its symbol entries drawn from

the alphabet A, then we can write without loss of generality

∆1,1,...,1︸ ︷︷ ︸
k times

,n−kF =
∑

(xi1 ,...,xik )∈Ak
log xi1 ⊗ · · · ⊗ log xik ⊗ gxi1 ,...,xik , (2.37)

and we define

δxj1 ,...,xjkF
∼=

∑
(xi1 ,...,xik )∈Ak

δi1j1 . . . δikjk gxi1 ,...,xik , (2.38)
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

where the congruence symbol indicates that δxj1 ,...,xjkF can be defined only

modulo π. If the integral contains overall numerical factors of π, they should

be factored out before performing this operation.

The definition of δxj1 ,...,xjkF is motivated by the relation in eq. (2.23) between

discontinuities and coproducts. In particular, if δxF ∼= gx, then Discx F =

±2πi gx. The sign is determined by the i0 prescription of x in F . The precise

form of the relation between the Disc and δ operations will be discussed in more

detail in the following subsection.

Relation between iterated discontinuities and coproduct entries

Recall from eq. (2.23) that for an element F of weight n of the Hopf algebra,

DiscF ∼= µ [(Disc⊗id)(∆1,n−1F )] , (2.39)

To be precise, F should not include overall factors of π. If it does, these are

stripped out before performing the operation on the right-hand side, and then

reinstated. It follows from this relation that the discontinuity of any element of

the Hopf algebra is captured by the operation δ as defined in eq. (2.38). To apply

the relation, we must take great care with the sequential analytic continuation of

the discontinuities and the locations of the branch cuts. Finally, since the first

entries of ∆1,n−1F are of weight 1, the Disc operation on the right-hand side is

computing discontinuities of ordinary logarithms.

Let us specialise to the discontinuity computed in a given variable r. We can

expand the coproduct in terms of the full symbol alphabet by writing

(Discr⊗id)(∆1,n−1F ) ∼= (Discr⊗id)
∑
x∈A

(log(±x)⊗ δxF ) . (2.40)

Note that this relation applies generally, so it also applies to the case where F is

the sequential discontinuity of some other function F̃ . We stress for a last time

that, as noted below eq. (2.39), overall factors of π in F are handled separately:

this is particularly noteworthy if F is a sequential discontinuity where powers of

π will have been generated from previous discontinuities.

For Feynman diagrams, we require Disc to be computed in a specific kinematic

region. We then require that the sign in the argument of the logarithm in
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2.3. Iterated discontinuities and coproduct entries

eq. (2.40) be chosen so that the argument is positive and the expression is thus

real-valued in the kinematic region for which F is away from its branch cut in

r. In taking Discr, the coproduct will be analytically continued to the region

in which there is a branch cut in r. In this new region, the arguments of the

logarithms may become negative, and if the letter x depends on the invariant r,

then there will be a nonzero contribution to Disc.

Sequential discontinuities of F are computed by the sequential use of

eq. (2.40). We thus claim they are captured by δ in the relation

Discr1,...,rk F
∼= Θ

∑
(x1,...,xk)∈Ak

(
k∏
i=1

ai(ri, xi)

)
δx1,...,xkF, (2.41)

where the sum runs over all ordered sequences (x1, . . . , xk) of k letters. We recall

that the congruence symbol in eq. (2.41) indicates that despite the fact that the

discontinuity function Discr1,...,rk F is unique, the right-hand side only captures

terms whose coproduct is nonvanishing, and it therefore holds modulo (2πi)k+1.

Furthermore, since the coproduct is the same in all kinematic regions (because it

is defined modulo π, it is invariant under analytic continuation), we have inserted

the schematic factor Θ to express the restriction to the region where the left-hand

side is computed. Finally, the factors ai(ri, xi) are related to the discontinuity

of a real-valued logarithm after analytic continuation from one kinematic region

(Ri−1) to another (Ri). Specifically,

ai(ri, xi) = Discri;Ri
[[

log(±xi)
]]
Ri−1

, (2.42)

where the double-bracket means that the sign of the argument of the logarithm

should be chosen so that the argument is positive in the region Ri−1, or

equivalently,

[[
log(±xi)

]]
Ri−1

= log(xi)|Ri−1∩{xi>0} + log(−xi)|Ri−1∩{xi<0} (2.43)

In the simplest cases, each ai(ri, xi) will simply take one of the values ±2πi

or 0. In more complicated cases, one might find a further division into nonempty

subregions of phase space.

We note that although we focus on Feynman integrals in the remaining of this
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

work, the mathematical relation between Disc and δ applies in a more general

context. The essential requirement is that the function has no branch cut in ri

in region Ri−1, but does in region Ri.

In section 2.3.3 we make eq. (2.41) more concrete by looking at an example.

We will compute the coefficients ai(ri, xi) of eq. (2.42) in detail for single and

double discontinuities of three-point functions with massless propagators.

2.3.2 Euclidean region and the first-entry condition

The operations Disc and δ are defined for any multiple polylogarithm.

However, as we will now see, the branch cut structure of Feynman integrals is

constrained by physical considerations which allow to state some general results

for the relation between discontinuities and the coproduct of Feynman integrals.

We start by discussing the case where all propagators are massless. In this

case, it is known that the branch points of the integral, seen as a function

of the invariants sij = (pi + pj)
2, where pi are the external momenta (which

can be massive or massless), are the points where one of the invariants is

zero or infinite [18]. It follows then from the second relation in eq. (2.21b)

(or equivalently (2.23)) that the first entry of the coproduct of a Feynman

integral can only have discontinuities in these precise locations. In particular,

this implies the so-called first entry condition, i.e., the statement that the first

entries of the symbol of a Feynman integral with massless propagators can only

be (logarithms of) Mandelstam invariants [36, 83]. This observation, combined

with the fact that Feynman integrals can be given a dispersive representation,

provided the motivation for a lot of the work presented here, namely the study

of the discontinuities of Feynman integrals through the lens of the Hopf algebraic

language reviewed in the previous section.

In [37], we extended the first-entry condition to cases with internal masses.

We argued that the coproduct can always be written in such a form where: (i)

the first entries of the coproduct component ∆1,n−1 are either consistent with the

thresholds of Mandelstam invariants or are internal masses ; (ii) the second entry

is the discontinuity across the branch cut associated with the corresponding first

entry, as is the case for diagrams with no internal masses.3

3We remark that property (ii) does not follow from property (i), as we shall see in an
example at the end of this section.
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2.3. Iterated discontinuities and coproduct entries

Feynman integrals with massive propagators have a much more intricate

analytic structure than in the massless case. Let us then be a bit more

specific about them. Planar Feynman integrals are most easily computed in the

kinematic region of the invariants where the integral is well-defined independently

of the ±i0-prescription of the propagators [18]. This region is characterised by

having the Mandelstam invariants below their threshold for production of on-shell

physical states, and the (squared) masses of internal propagators being positive.

In this region, the euclidean region, we are away from any branch cut.

As an example, the euclidean region for a triangle diagram with massive

propagators is (see appendix A for the notation):

p2
1 <

(√
m2

12 +
√
m2

13

)2

, p2
2 <

(√
m2

12 +
√
m2

23

)2

, p2
3 <

(√
m2

13 +
√
m2

23

)2

,

m2
12 > 0 , m2

23 > 0 , m2
13 > 0 . (2.44)

For triangles where some of the masses vanish, the euclidean region can be

obtained from the above by taking the appropriate limit. For instance, as already

mentioned above, in the absence of internal masses the euclidean region is the

region where all external invariants are negative.

As we depart from the euclidean region, we are sensitive to branch cuts of the

integral, and the ±i0-prescription indicates which side of the branch cut we are

on. The discontinuity, as defined in eq. (2.34), corresponds to the difference of

the results computed with different prescriptions.

Eq. (2.21b) implies that the first entries of the coproduct tensor of a Feynman

diagram must have the same branch cut structure as the Feynman diagram itself.

In particular, this means that when looking at the ∆1,n−1 component, the weight

one cofactors appearing in the first entries must be simple logarithms with branch

points at the boundaries of the euclidean region.

From this observation, and by looking at eq. (2.44), we see two ways in which

the first entry condition of [83] must be generalised in the presence of internal

masses. The first is that we no longer have logarithms of Mandelstam invariants

themselves, but instead logarithms with branch cuts at the mass threshold for the

corresponding invariant. The second is that the squared masses of the propagators

themselves appear as first entries.

As predicted by eq. (2.21b), the second entries of the ∆1,n−1 component of the
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

coproduct of a Feynman diagram then correspond to the discontinuities associated

to the branch cut identified in the corresponding first entry. These discontinuities

can be associated either to Mandelstam invariants going above their thresholds,

or to internal masses becoming negative.

In this thesis, we will give ample evidence illustrating this observation.

However, we should make a comment related to how apparent the first entry is

depending on the variables used. As we discussed above, we prefer to have symbol

alphabets with rational letters. If that is the case when using the Mandelstam

invariants themselves as variables (or ratios of them, if we want to work with

dimensionless quantities), the above properties are very easy to check. In more

complicated cases where we need to change variables to have a rational symbol

alphabet, let’s say by using variables as defined in eqs. (2.29) or (2.33), the

situation is not as clear. We claim that even though the first entry condition might

not be apparent in the most compact expressions for the symbol (or, equivalently,

the coproduct), we can always rearrange the different terms of the symbol tensor

so that they are in the form described above by using logarithmic identities. We

now give two examples, one for each type of behaviour.

Example 1: Consider the triangle T (p2
1, 0, 0;m2

12, 0, 0), whose symbol is given

in eq. (B.11) up to order ε0. The first term of the finite contribution has log(m2
12)

as its first entry, and the second term has log(m2
12 − p2

1) as its first entry. The

latter is written in a form in which the argument of the logarithm is positive in

the euclidean region where the integral is originally evaluated.

Example 2: As another example, consider the triangle T (p2
1, 0, 0;m2

12, 0,m
2
13),

whose symbol is given in eq. (B.21). We have changed variables according to

eq. (2.33) to have a rational symbol alphabet. Because the new variables have a

more complicated relation to the Mandelstam invariants, the first entry condition

is not as apparent as in the previous example. However, as mentioned above, the

symbol of T (p2
1, 0, 0;m2

12, 0,m
2
13) can be rewritten as

S
[
T (p2

1, 0, 0;m2
12, 0,m

2
13)
]

= (w1w̄1)⊗ w1

1− w1

+ ((1− w1)(1− w̄1))⊗ 1− w̄1

w̄1

+ (w1(1− w̄1))⊗ w̄1(1− w1)

w1(1− w̄1)
. (2.45)
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2.3. Iterated discontinuities and coproduct entries

The first entry of the first term is log(m2
12/p

2
1), and its second entry is associated

with the discontinuity in the variable m2
12. The first entry of the second term

is log(m2
13/p

2
1), and its second entry is associated with the discontinuity in the

variable m2
13. The first entry of the third term corresponds to the threshold at

p2
1 = (

√
m2

12 +
√
m2

13)2, and its second entry is associated with the discontinuity

in the variable p2
1. The argument of the logarithm in the first entry of this term

is not a direct change of variables of p2
1− (

√
m2

12 +
√
m2

13)2, which would not be a

rational function. Nevertheless, one can verify that the condition w1(1− w̄1) > 0

is exactly equivalent to the condition p2
1 > (

√
m2

12 +
√
m2

13)2, whenever p2
1 > 0.

In this analysis, we have neglected the denominators p2
1 in each of the first

entries of eq. (2.45). We did this because the denominators are simply used

to normalise the variables to be dimensionless: as we know, the physically

meaningful first entry is the one including the mass threshold, which is nonzero

for the p2
1 channel. Indeed, since the three corresponding second entries sum to

zero, we see that the term whose first entry would be p2
1 has zero as its second

entry.

We finish with a word of caution. Our claim is that one can generally

write symbols of Feynman integrals in a form such as eq. (2.45), where (i) the

first entries are directly identified with kinematic invariants and thresholds, and

(ii) the second entries are the corresponding discontinuities, but that these two

properties do not follow from one another. To see that property (ii) does not

follow from property (i), consider Example 2 above. The symbol of this triangle

can also be written in the form

(w1w̄1)⊗ w̄1

1− w̄1

+ ((1− w1)(1− w̄1))⊗ 1− w1

w1

+ ((1− w1)w̄1)⊗ w1(1− w̄1)

w̄1(1− w1)
.

Here, the first entries have the same properties as in eq. (2.45), but the second

entries do not correspond to the expected discontinuities. (In this case, the

discrepancy is due to the choice of branch of the square root in the definitions of

the variables w1 and w̄1; the kinematics of the cut require a consistent choice of

the positive branch.)

It is now clearer in which kinematic region it is natural to evaluate the

discontinuity associated to a given kinematic invariant (this is also the region

where discontinuities will be related to cuts of Feynman diagrams): it is the region
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

in which that particular invariant, be it a Mandelstam invariant or a squared

internal mass, is outside of the euclidean region, while all other invariants remain

in the euclidean region. Of course Disc is defined for any region: if we were to

compute it in the region where all invariants remain in the euclidean region we

would get zero. Conversely, the choice of taking only one of the invariants out of

the euclidean region is made for simplicity, as we are thus sure that all branch

cuts we probe are related to that particular invariant.

For iterated discontinuities, eq. (2.35), we simply iterate our procedure: we

evaluate the iterated discontinuity in the region where all the invariants we are

taking the discontinuity on are outside the euclidean region. In the relation

between iterated discontinuities and the coproduct, eq. (2.41), the coefficients ai

are evaluated in the region Ri which is the region where the invariants r1, . . . , ri

have been moved away from the euclidean region.

To make the calculation of discontinuities and their relation with the

coproduct completely precise, we still have to say how the ±i0 of the invariants

is determined. This will be done in the next chapter when the connection with

cuts of Feynman diagrams is established.

2.3.3 Example

We close this section with a simple example of the proposed relation in

eq. (2.41) to make it more concrete.

Consider a three-point planar Feynman integral in D = 4 dimension with no

massive propagators. After normalisation to unit leading singularity, it will be a

dimensionless function of two ratios of Mandelstam invariants,

F

(
p2

2

p2
1

,
p2

3

p2
1

)
. (2.46)

We define variables z, z̄ as in eq. (2.29),

p2
2

p2
1

= zz̄,
p2

3

p2
1

= (1− z)(1− z̄), z > z̄. (2.47)

Suppose that we know that the symbol alphabet can be taken to be

A4 = {z, z̄, 1− z, 1− z̄}. (2.48)
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This is, in fact, the alphabet of the three-point ladder in D = 4 dimensions with

massless propagators and any number of rungs [72, 84], and thus illustrates the

parametrisation of eq. (2.26) for this class of diagrams.

The integral F is originally defined in the euclidean region where all p2
i < 0,

i.e., in the massless limit of eq. (2.44). In terms of real-valued z, z̄, there are

three separate components of the euclidean region [65],

z̄ < z < 0 , 0 < z̄ < z < 1, and 1 < z̄ < z.

For concreteness, we choose the component R0,< = {z̄ < z < 0}, but the relations

work equally well starting from either of the other components.

Let us take the first discontinuity in the channel s1 = p2
2. We analytically

continue F to the region R1 of the first cut, where p2
2 > 0 and p2

1, p
2
3 < 0. In

terms of z and z̄, R1 = R2
4 = {z̄ < 0 < z < 1}, see table 2.1. For each letter

x1 ∈ A4, the logarithms log x1 in the definition of a1(p2
2, x1) are written with

positive arguments in the region R0,<. For example, in a1(p2
2, z) we compute

the discontinuity of the analytic continuation of log(−z) rather than log(z).

According to the usual Feynman rules the invariants have a positive imaginary

part, p2
2 + i0. We can thus deduce the corresponding imaginary parts in z + i0

and z̄ − i0 for the symbol alphabet, and we get:

a1(p2
2, z) = Discp2

2;R1
log(−z − i0) = −2πi ,

a1(p2
2, z̄) = Discp2

2;R1
log(−z̄ + i0) = 0 ,

a1(p2
2, 1− z) = Discp2

2;R1
log(1− z − i0) = 0 ,

a1(p2
2, 1− z̄) = Discp2

2;R1
log(1− z̄ + i0) = 0 .

(2.49)

The discontinuities Discp2
2;R1

have been computed directly using the definition in

eq. (2.34). According to eq. (2.41), our relations among Disc and the coproduct

is then

Discp2
2
F ∼= −(2πi) Θ δzF . (2.50)

Let us take the second discontinuity in the channel s2 = p2
3. We analytically

continue F to the region R2 where p2
2, p

2
3 > 0 and p2

1 < 0. In terms of z and

z̄, R2 = R2,3
4 = {z̄ < 0, z > 1}, see table 2.1. The a1’s are the same as above.

To compute the a2(p2
3, x2)’s, we write the logarithms of the alphabet, x2 ∈ A4,
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Name Region of the p2
i Region of z, z̄

R1
4 p2

1 > 0, p2
2, p

2
3 < 0

z̄ < 0, 1 < z
R2,3
4 p2

1 < 0, p2
2, p

2
3 > 0

R2
4 p2

2 > 0, p2
1, p

2
3 < 0

z̄ < 0 < z < 1
R1,3
4 p2

2 < 0, p2
1, p

2
3 > 0

R3
4 p2

3 > 0, p2
1, p

2
2 < 0

0 < z̄ < 1 < z
R1,2
4 p2

3 < 0, p2
1, p

2
2 > 0

R∗4 p2
1, p

2
2, p

2
3 > 0, and λ < 0 z∗ = z̄

Table 2.1: Some kinematic regions of 3-point integrals, classified according to
the sign of the Mandelstam invariants. In the first six rows, λ > 0, so that z and
z̄ are real-valued, and we take z > z̄ without loss of generality. z and z̄ are

defined in eq. (2.29)

with positive arguments in the region R1 = R2
4. We will now decide that the

imaginary part of p2
3 should be conjugated when taking the second discontinuity

(the reason for this will become clear when the connection with cut diagrams is

established), so we deduce the signs of the imaginary parts in z − i0 and z̄ − i0
from p2

3 − i04.

a2(p2
3, z) = Discp2

3;R2
log(z − i0) = 0 ,

a2(p2
3, z̄) = Discp2

3;R2
log(−z̄ + i0) = 0 ,

a2(p2
3, 1− z) = Discp2

3;R2
log(1− z + i0) = 2πi ,

a2(p2
3, 1− z̄) = Discp2

3;R2
log(1− z̄ + i0) = 0 .

(2.51)

The only surviving term is a1(p2
2, z) a2(p2

3, 1 − z) = −(2πi)2, and the iterated

discontinuity is then related to the coproduct according to:

Discp2
2,p

2
3
F ∼= −(2πi)2 Θ δz,1−zF . (2.52)

Finally, we could consider taking discontinuities in all three channels with

the operation Cutp2
2,p

2
3,p

2
1
. The region in which we would hope to detect this

triple discontinuity has all p2
i > 0. Because F is a function of ratios of the

Mandelstam invariants, eq. (2.46), this region is indistinguishable from the branch

4Determining the ±i0 of symbol letters is not always as simple as we seem to suggest here.
We comment on this issue in section 3.4.2.
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2.4. Summary and discussion

cut-free euclidean region in D = 4. Therefore the function does not have any

discontinuities in this region.

For completeness and for future reference, we close with the full list of relations

for single and double discontinuities of this class of integrals.

Discp2
1
F ∼= (2πi) Θ [δz + δ1−z]F , (2.53a)

Discp2
2
F ∼= −(2πi) Θ δzF , (2.53b)

Discp2
3
F ∼= −(2πi) Θ δ1−zF , (2.53c)

Discp2
1,p

2
2
F ∼= (2πi)2 Θ [δz,z̄ + δ1−z,z̄]F , (2.54a)

Discp2
2,p

2
1
F ∼= (2πi)2 Θ [δz,z̄ + δz,1−z]F , (2.54b)

Discp2
1,p

2
3
F ∼= (2πi)2 Θ [δz,1−z + δ1−z,1−z]F , (2.54c)

Discp2
3,p

2
1
F ∼= (2πi)2 Θ [δ1−z,z̄ + δ1−z,1−z]F , (2.54d)

Discp2
2,p

2
3
F ∼= −(2πi)2 Θ δz,1−zF , (2.54e)

Discp2
3,p

2
2
F ∼= −(2πi)2 Θ δ1−z,z̄F . (2.54f)

In the next chapter, we will show how these discontinuities are related to cuts

of Feynman diagrams. There, we will also give further support for the relation

between Disc and the coproduct by considering Feynman integrals with internal

masses.

2.4 Summary and discussion

In this chapter we reviewed some important properties of MPLs that will

be useful throughout this thesis. In particular, we discussed in some detail the

coproduct of their Hopf algebra, which we saw was a natural tool to study the

discontinuities of these functions. We introduced concepts such as the symbol and

the symbol alphabet, which will play an important role in several of the following

chapters.

We defined an operator Disc which computes discontinuities across physical

branch cuts of Feynman integrals. We explained how one could define a kinematic

region where we are away from any discontinuities, the euclidean region, which
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

is thus the natural region to evaluate Feynman integrals. We then saw that by

moving away from the euclidean region we started to be sensitive to branch cuts

associated with specific kinematic invariants. This allowed us to define a natural

kinematic region where each discontinuity should be computed, depending on

which branch cuts they were probing.

Finally, we established precise relations between the discontinuity operator

Disc, and an operator δ, acting on the coproduct tensor, which selects specific

truncations of this tensor. These relations contain the so-called first-entry condi-

tion (which we generalised to cases with massive propagators), corresponding

to the evaluation of a single discontinuity, but were generalised to allow for

iterated discontinuities. In section 2.3.3, we finished with explicit examples of

these relations for three-point Feynman diagrams with massless propagators.

Some questions raised in this chapter were left unanswered, as for instance how

to keep track of the imaginary part associated with each kinematic invariant when

taking multiple discontinuities. Another question we did not address was whether

all coproduct entries could be given an interpretation as multiple discontinuities

on kinematic invariants. In the next chapter we will answer the first question,

and make progress in answering the second. This will be achieved by giving a

diagrammatic representation to the discontinuities of Feynman integrals, the so-

called cut Feynman diagrams, and defining a set of rules to interpret and evaluate

these diagrams.
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Chapter 3

Cuts as iterated discontinuities

3.1 Introduction

In chapter 2, we studied the discontinuities of Feynman integrals evaluating

to multiple polylogarithms across physical branch cuts, and related them to the

coproduct of these functions. We established precise relations between multiple

discontinuities and specific truncations of the coproduct tensor. In this chapter,

we will give a diagrammatic representation to these discontinuities. The work

presented here is covered in refs. [36, 37].

This subject has a long history. Indeed, soon after the formulation of the

Landau conditions that identify the positions of branch points of Feynman

integrals, a diagrammatic solution of these conditions was proposed in ref. [19].

This led to the development of so-called unitarity methods [20], which aimed

at computing amplitudes and cross-sections by the study of their analytic

properties, in particular their discontinuities, even in non-perturbative quantum

field theories. Because of the successes of perturbation theory in the study of

phenomenologically relevant quantum field theories in the late 70’s, the 80’s and

the 90’s, the interest of the community in unitarity based methods decreased.

However, it was then realised that these methods allowed to find very efficient

ways of studying the properties of amplitudes at the loop level or even of

computing them, both numerically and analytically. This led to the development

of so called generalised unitarity methods [4, 5, 85, 86]. These are now widely

used to make predictions for LHC phenomenological studies (see e.g. the reviews

[87–90]).
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Chapter 3. Cuts as iterated discontinuities

In this chapter, we will look at unitarity in a form closer to the original

formulation of [18, 19], with a similar approach to that of [21, 23]. In these

references, the authors showed that a lot of the unitarity-based results obtained

in the study of cross-sections and amplitudes were valid for individual Feynman

diagrams. In particular, we will be interested in the observation that the

discontinuity of Feynman integrals can be given a diagrammatic representation,

through the so called largest time equation. The diagrams that evaluate to

discontinuities of Feynman diagrams are called cut diagrams.

In this chapter, we review the work of [21, 23] about single unitarity cuts of

Feynman diagrams. We then extend their results by defining multiple unitarity

cuts. In [21,23] and [36], only cuts in external invariants were considered. In [37],

rules were developed for cuts in internal masses. In sections 3.2 and 3.3 we

present explicit rules for interpreting and evaluating the cut Feynman integrals

in both cases. These rules will make clear how to determine the i0-prescription

of invariants, a question we had left open in chapter 2.

We will then relate multiple unitarity cuts to discontinuities of Feynman

integrals across physical channels. Using the results of the previous chapter,

this implies a relation between unitarity cuts and coproduct entries. In section

3.4 we thus obtain a relation between Cut, the operator computing unitarity

cuts of Feynman diagrams, Disc, the operator computing discontinuities across

physical branch cuts of Feynman integrals, and δ, a well defined truncation of the

coproduct tensor. These relations were first presented in [36] for diagrams with

massless propagators and in [37] for diagrams with massive propagators.

To test our relations we had to develop efficient ways to compute cut diagrams.

In section 3.5 we explain our methods in the context of a variety of one-loop

examples. Then, in section 3.6 we study a two-loop example, the two-loop

three-point ladder with three external massive legs. We checked the conjectured

relations hold for all these examples. In appendices B and C we collected the

explicit expressions we obtained for the cuts of the examples we investigated.

This chapter starts by reviewing the work of [21,23], but most of it corresponds

to work done during my PhD, in collaboration with Ruth Britto, Claude Duhr,

my supervisor Einan Gardi, and Hanna Grönqvist for the study of diagrams with

internal masses.
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3.2. Cuts in kinematic channels

3.2 Cuts in kinematic channels

We start by defining a cut in a kinematic channels: the operator Cuts gives

the sum of cut Feynman integrals, in which some propagators in the integrand of

F are replaced by Dirac delta functions. These propagators themselves are called

cut propagators. The sum is taken over all combinations of cut propagators that

separate the diagram into two parts, in which the momentum flowing through

the cut propagators from one part to the other corresponds to the Mandelstam

invariant s. Furthermore, each cut is associated with a consistent direction of

energy flow between the two parts of the diagram, in each of the cut propagators.

In this work, we follow the conventions for cutting rules established in refs. [21,23],

and extend them for sequential cuts.

First cut. Let us first review the cutting rules of refs. [21, 23]. We start by

enumerating all possible partitions of the vertices of a Feynman diagram into

two sets, coloured black (b) and white (w). Each such coloured diagram is then

evaluated according to the following rules:

• Black vertices, and propagators joining two black vertices, are computed

according to the usual Feynman rules.

• White vertices, and propagators joining two white vertices, are complex-

conjugated with respect to the usual Feynman rules.

• Propagators joining a black and a white vertex are cut with an on-shell

delta function, a factor of 2π to capture the complex residue correctly, and

a theta function restricting energy to flow in the direction b→ w.

For a massless scalar theory, the rules for the first cut may be depicted as:

= i = −i (3.1)

p
=

i

p2 + iε

p
=

−i
p2 − iε (3.2)
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Chapter 3. Cuts as iterated discontinuities

p
= 2π δ

(
p2
)
θ (p0) (3.3)

The dashed line indicating a cut propagator is given for reference and does not

add any further information. We write Cuts to denote the sum of all diagrams

belonging to the same momentum channel, i.e., in each of these diagrams, if p is

the sum of all momenta through cut propagators flowing in the direction from

black to white, then p2 = s. Note that cut diagrams in a given momentum

channel will appear in pairs that are black/white colour reversals — but of each

pair, only one of the two can be consistent with the energies of the fixed external

momenta, giving a potentially nonzero result.

We note that Cuts F (z1, . . . , zk) is a function of the variables zi mentioned

in eq. (2.26), which we recall can be complicated algebraic functions of the

Mandelstam invariants. Finding the correct zi in which to express a given

Feynman integral is a nontrivial problem. Since cut Feynman integrals depend

on the same variables as uncut diagrams but are simpler functions, the zi can be

more easily identified by computing cuts.

Sequential cuts. The diagrammatic cutting rules of refs. [21, 23] reviewed so

far allow us to consistently define cut integrals corresponding to a single unitarity

cut. These rules are insufficient for sequences of cuts, as they only allow us to

partition a diagram in two parts, corresponding to connected areas of black and

white vertices. In [36], the rules were then generalised to allow multiple unitarity

cuts in different channels, and we now review the rules presented there. At this

stage, we only state the rules, whose consistency is then backed up by the results

we find in the remainder of this work.

In a sequence of diagrammatic cuts, energy-flow conditions are overlaid, and

complex conjugation of vertices and propagators is applied sequentially. We

continue to use black and white vertex colouring to show complex conjugation.

We illustrate an example in fig. 3.1, which will be discussed below.

Consider a multiple-channel cut, Cuts1,...,sk I. It is represented by the sum

of all diagrams with a colour-partition of vertices for each of the cut invariants

si = p2
i . Assign a sequence of colours (c1(v), . . . , ck(v)) to each vertex v of the

diagram, where each ci takes the value 0 or 1. For a given i, the colours ci
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3.2. Cuts in kinematic channels

θ(p0)θ(−p0) = 0

θ(−p0)θ(p0) = 0 θ(−p0)θ(−q0)θ(−r0)

{0, 1} {1, 0}

{1, 1}

first cut second cut

p

q r

θ(p0)θ(q0)θ(r0)

{0, 0} {1, 1}

{1, 0}

first cut second cut

p

q r

{1, 0} {0, 1}

{0, 0}

first cut second cut

p

q r

{1, 1} {0, 0}

{0, 1}

first cut second cut

p

q r

Figure 3.1: Sequential cuts of a triangle diagram, whose vertices v are labelled
by all possible colour sequences (c1(v), c2(v)) encoding the cuts. Energy flows

from 0 to 1 for each cut, giving the restrictions listed below each diagram.
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Chapter 3. Cuts as iterated discontinuities

partition the vertices into two sets, such that the total momentum flowing from

vertices labeled 0 to vertices labeled 1 is equal to pi. A vertex v is finally coloured

according to c(v) ≡ ∑k
i=1 ci(v) modulo 2, with black for c(v) = 0 and white for

c(v) = 1. The rules for evaluating a diagram are as follows.

• Black vertices are computed according to the usual Feynman rules; white

vertices are computed according to complex-conjugated Feynman rules.

• A propagator joining vertices u and v is uncut if ci(u) = ci(v) for all i.

Then, if the vertices are black, i.e. c(u) = c(v) = 0, then the propagator

is computed according to the usual Feynman rules, and if the vertices are

white, i.e. c(u) = c(v) = 1, then the propagator is computed according to

complex-conjugated Feynman rules.

• A propagator joining vertices u and v is cut if ci(u) 6= ci(v) for any i. There

is a theta function restricting the direction of energy flow from 0 to 1 for

each i for which ci(u) 6= ci(v). If different cuts impose conflicting energy

flows, then the product of the theta functions is zero and the diagram gives

no contribution.

• We exclude crossed cuts, as they do not correspond to the types of

discontinuities captured by Disc and δ.1 In other words, each new cut

must be located within a region of identically-coloured vertices with respect

to the previous cuts. In terms of the colour labels, this is equivalent to

requiring that for any two values of i, j, exactly three of the four possible

distinct colour sequences (ci(v), cj(v)) are present in the diagram. We give

an example of a crossed cut we exclude in figure 3.2.

• Likewise, we exclude sequential cuts in which the channels are not all

distinct. This restriction is made only because we have not found a general

relation between such cuts and Disc or δ. In principle, there is no obstacle

to computing these cut diagrams.

• We restrict ourselves to the use of real kinematics, both for internal and

external momenta2. This implies, in particular, that diagrams with on-shell

1A similar restriction was proposed in refs. [91–93]. In chapter 5, we will see how crossed
cuts can be computed as residues.

2This restriction will also be lifted in the generalised definition of cut given in 5.
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3.2. Cuts in kinematic channels

massless three-point vertices must vanish in dimensional regularisation. The

consistency of this choice will be verified in the examples considered in

subsequent sections.

For massless scalar theory, the rules for sequential cut diagrams may then be

depicted as follows:

= i = −i (3.4)

p
=

i

p2 + iε

p
=

−i
p2 − iε (3.5)

p

u v
=

p

u v
=

p

u v
=

p

u v

=2π δ
(
p2
) ∏
i:ci(u)6=ci(v)

θ ([ci(v)− ci(u)]p0) (3.6)

Let us make some comments about the diagrammatic cutting rules for multiple

cuts we just introduced. First, we note that these rules are consistent with the

corresponding rules for single unitarity cuts presented at the beginning of this

section. Second, using these rules, it is clear that sequential cuts are independent

of the order of cuts. Indeed, none of our rules depends on the order in which

the cuts are listed. Finally, the dashed line is an incomplete shorthand merely

indicating the location of the delta functions, but not specifying the direction of

energy flow, for which one needs to refer to the colour indices. Our diagrams

might also include multiple cut lines on individual propagators, such as

p . (3.7)

We also introduce notation allowing us to consider individual diagrams

contributing to a particular cut, and possibly restricted to a particular kinematic

region. When no region is specified for the planar examples given in this thesis,

it is assumed that the cut invariants are taken to be above their threshold, i.e.,

outside of the euclidean region, while all other consecutive Mandelstam invariants
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Chapter 3. Cuts as iterated discontinuities

{0, 0}

{0, 1}

{1, 0}

{1, 1}

first cut

second cut

Figure 3.2: An example of crossed cuts, which we do not allow.

are below threshold, i.e., in the euclidean region, see the discussion in section

2.3.2. We write

Cuts,[e1···ew],RD (3.8)

to denote a diagram D cut in the channel s, in which exactly the propagators

e1 · · · ew are cut, and computed in the kinematic region R. Rules of complex

conjugation and energy flow will be apparent in the context of such a diagram.

Examples of sequential cuts. We briefly illustrate the diagrammatics of

sequential cuts. Consider taking two cuts of a triangle integral. At one-loop

order, a cut in a given channel is associated to a unique pair of propagators.

We list the four possible colour partitions {c1(v), . . . , ck(v)} in fig. 3.1. The first

graph is evaluated according to the rules above, giving

eγEε
∫

dDk

πD/2
i2(−i)(2π)3 δ(p2)δ(q2)δ(r2) θ(p0)θ(q0)θ(r0). (3.9)

The second and third graphs evaluate to zero, since the colour partitions give

conflicting restrictions for the energy flow on the propagator labeled p. The

fourth graph is similar to the first, but with energy flow located on the support of

θ(−p0)θ(−q0)θ(−r0). Just as for a single unitarity cut, in which only one of the

two colourings is compatible with a given assigment of external momenta, there

can be at most one nonzero diagram for a given topology of sequential cuts subject

to fixed external momenta. In the examples calculated in the following sections

of this paper, we will thus omit writing the sequences of colours (c1(v), . . . , ck(v)).

We may also omit writing the theta functions for energy flow in the cut integrals.

We include an example of crossed cuts, which we do not allow, in fig. 3.2.
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3.3. Cuts in internal masses

Notice that there are four distinct colour sequences in the diagram, while we only

allow three for any given pair of cuts.

Vanishing of cuts with on-shell massless three-point vertices. We now

show more explicitly why a cut isolating a massless three-point vertex should

vanish in dimensional regularisation. Let’s look at an example, the box with two

adjacent massive external legs (legs 1 and 2) and two massless ones (legs 3 and

4), the so-called two-mass-hard box. We consider the cut in the t = (p2 + p3)2

channel and in the p2
2 channel, see figure 3.3. This cut isolates a massless three-

point vertex at the top right corner.

It is well known that this vertex, considered in real Minkowski space,

requires collinear momenta. Let us see how this property manifests itself in

the computation of the cut integral. Parametrise the loop momentum by

` = xp3 + yp4 + w~q, where q is integrated over all values satisfying q2 = −1

and q · pi = 0 for i = 3, 4. Then∫
dD` δ(`2) δ((`− p4)2) f(`) =

∫
s

2
dx dy wD−3dw dΩD−3 δ(xys− w2)

δ((x(y − 1)s− w2) f(`)

=
1

4

∫
dy dΩD−3 dw δ(w) wD−4 f(`).

The delta functions set x = w = 0, so that ` = yp4, which is the familiar

collinearity condition. We see that this cut vanishes for D > 4, which is what

is required to regularise the infrared divergences appearing in massless diagrams.

We will come back to this example in more detail in section 3.5.7, and will see

how one can make sense of some cuts isolating massless three-point vertices in

chapter 5.

3.3 Cuts in internal masses

In [37] we introduced a new kind of cut, a single-propagator cut, corresponding

to discontinuities across branch cuts related to internal masses. Our discussion

will be in the context of one-loop diagrams, but this is solely for the simplicity

of the expressions, and all the results can be straightforwardly generalised to the

planar multi-loop case.
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Chapter 3. Cuts as iterated discontinuities

p2

p1

p3

p4

Figure 3.3: Cut isolating on-shell massless three-point vertices.

Let F be a one-loop diagram with n external legs of momentum pi, with

i = 1, . . . , n, all incoming, massive or not, and with internal masses m2
i,i+1 between

legs i and i+ 1, which we assume are all distinct (we comment on the degenerate

case in appendix D). Furthermore, we define qj =
∑j

i=1 pi, for j = 1, . . . , n, so

that qn = 0. Then, according to our Feynman rules,

F (qi ·qj;m2
1,2, . . . ,m

2
1,n) = (−1)neγEε

∫
dD/2k

πD/2

n∏
i=1

1

(k + qi)2 −m2
i,i+1 + i0

. (3.10)

The integral F is evaluated away from any branch cut in the euclidean region

of all kinematic invariants. The +i0 of the propagator can be reabsorbed into the

squared mass, which means we can associate a −i0 prescription to the masses:

m2
i,i+1 → m2

i,i+1 − i0 .

Although it does not correspond to a physical region, we can analytically

continue F to a region where the square of one of the masses is negative (without

loss of generality, say m2
1,n < 0), while keeping all the other kinematic invariants

in the euclidean region. In this region, following the definition of eq. (2.34), we
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3.3. Cuts in internal masses

isolate the discontinuity associated with m2
1,n:

Discm2
1,n
F = F (qi · qj;m2

1,2, . . . ,m
2
1,n − i0)− F (qi · qj;m2

1,2, . . . ,m
2
1,n + i0)

= (−1)neγEε
∫
dD/2k

πD/2

(
1

k2 −m2
1,n + i0

− 1

k2 −m2
1,n − i0

) n−1∏
i=1

1

(k + qi)2 −m2
i,i+1

= (−1)n+1eγEε
∫
dD/2k

πD/2
(2πi)δ(k2 −m2

1,n)
n−1∏
i=1

1

(k + qi)2 −m2
i,i+1

≡ Cutm2
1,n
F ,

(3.11)

which shows that mass discontinuities do indeed correspond to single-particle

cuts. We again stress that although we are discussing one-loop integrals, this

is just for simplicity of the expressions. The same result holds for a multi-loop

diagram.

Furthermore, we notice that F can also be a cut Feynman diagram as long

as the propagator with mass m2
1,n has not been cut previously. Cuts in internal

masses can then be combined with cuts in external channels to compute sequential

discontinuities in internal masses and external channels.

We can thus deduce the rules for single-propagator cuts, corresponding to

mass discontinuities: we simply replace the cut propagator by a delta function,

according to
±i

p2 −m2 ± i0 → 2πδ(p2 −m2) , (3.12)

without any condition on the energy flow or any further conjugation of other

parts of the diagram. Unlike cuts in kinematic channels, the black and white

colourings are unaffected by these cuts, as there is no notion of separation into

two regions where one is complex-conjugated.

Diagrammatically, we will denote cuts in internal masses with a thick (thicker

than for channel cuts) dashed line,

p
= 2π δ

(
p2 −m2

)
. (3.13)
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Chapter 3. Cuts as iterated discontinuities

3.4 Cuts, discontinuities and coproduct entries

In the previous chapter, we introduced two operators giving consistent results

for discontinuities, Disc, which computes discontinuities explicitly, and δ, which

computes discontinuities by truncating specific components of the coproduct

tensor. In the previous section, we introduced another type of discontinuity,

corresponding to cut diagrams. We now show how these three types of

discontinuities are related.

3.4.1 Cut diagrams and discontinuities

The rules for evaluating cut diagrams are designed to compute their disconti-

nuities. For single cuts in internal masses, the relation is straightforward as can

be seen from eq. (3.11). For cuts in external channels, there are some subtleties

which we now review.

The original relation for the first cut in an external channel follows from the

largest time equation [21–23], and the derivation may be found in refs. [21, 23].

The original relation is

F + F ∗ = −
∑
s

Cuts F, (3.14)

where the sum runs over all momentum channels. In terms of diagrams with

coloured vertices, the left-hand side is the all-black diagram plus the all-white

diagram. The right-hand side is -1 times the sum of all diagrams with mixed

colours. We can isolate a single momentum channel s by analytic continuation

into a kinematic region where among all the invariants, only s is away from the

euclidean region. There, the left-hand side of eq. (3.14) can be recast3 as Discs F ,

while the right-hand side collapses to a single term:

Discs F = −Cuts F. (3.15)

In this relation, the discontinuity is evaluated with s = s + i0. Indeed, for an

uncut diagram, the +i0-prescription of the propagators translates into a +i0-

prescription for Mandelstam invariants.

3The apparent difference in relative sign between eq. (2.34) and eq. (3.14) is due to an explicit
overall factor of i in every diagram, due to the Fourier transform from position to momentum
space. Note therefore that eq. (2.34) should not be interpreted as the imaginary part of the
function, and is in fact typically real-valued.

42



3.4. Cuts, discontinuities and coproduct entries

For sequential cuts in external channels, we argued in ref. [36] that the relation

could be generalised so that Cuts1,...,sk F captures discontinuities through the

relation

Cuts1,...,sk F = (−1)k Discs1,...,sk F, (3.16)

where Cuts1,...,sk F is to be computed according to the rules given above for

multiple cuts.

Eq. (3.16), like eq. (3.15), is valid in a specific kinematic region. As mentioned

in the previous section, Cuts1,...,sk F is evaluated in the region where s1, . . . , sk

are above their respective thresholds, the remaining external channels are below

their thresholds, and all internal masses are positive. On the right-hand side,

we proceed step by step according to the definition in eq. (2.35): each Discs1,..., si
is evaluated after analytic continuation to the same region in which Cuts1,...,si F

is evaluated4. The ±i0-prescription associated to each si is read from the cut

diagram in which the cuts correspoding to Cuts1,...,si−1
F have been taken.

The relation between cuts in internal masses and discontinuities is trivial.

For a single cut, the relation is given in eq. (3.11). It can be straightforwardly

generalised as

Cutm2
1,...,m

2
k
F = Discm2

1,...,m
2
k
F. (3.17)

We can now combine cuts in internal masses and external channels through

Cuts1,...,sl,m2
1,...,m

2
k
F = (−1)l Discs1,...,sl,m2

1,...,m
2
k
F . (3.18)

In order for eq. (3.18) to produce the correct signs, the ±i0 associated to the

internal masses on the right hand side are determined from the cut diagram in

which all l of the channel cuts have been taken. (We recall that according to our

rules, channel cuts imply complex conjugation of certain regions of the diagram,

which affects the i0-prescription of the internal propagators. Hence we make it

a rule to take channel discontinuities before mass discontinuities.) Furthermore,

on the right hand side, we take a specific order of the listed invariants. Indeed,

while sequential cuts are independent of the order in which the invariants are

listed, the correspondences to Disc are derived in sequence so that the right-hand

4As mentioned in the discussion below eq. (2.41), we now see how the region where Disc
should be evaluated follows from the region where Cut is evaluated.
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(a) T (p2
1;m2

12,m
2
13) (b) Cutp2

1
T (p2

1;m2
12,m

2
13) (c) Cutm2

12,m
2
13
T (p2

1;m2
12,m

2
13)

Figure 3.4: The uncut and two-propagator cuts of the triangle T (p2
1;m2

12,m
2
13)

side of eq. (3.18) takes a different form when channels and masses on the left-

hand side are permuted. Thus, eq. (3.18) implies relations among the different

Discs1,...,sl,m2
1,...,m

2
k
F .

We note one restriction: the cut integrals reproduce sequential discontinuities

through the above relations only if each additional invariant in the subscript—

whether a momentum channel or a mass—introduces at least one new cut

propagator in the Feynman diagrams. For example, we would not consider

Cutp2
1,m

2
12

of a one-loop triangle, since the propagator of mass m2
12 was already

cut in the first step, Cutp2
1
.

A limit on multiple mass cuts

Cuts in multiple massive propagators vanish if the diagram is equivalent to

the complete cut in a momentum channel. Consider for instance two massive

propagators attached to the same external massive leg of a one-loop integral, as

for example in fig. 3.4. Then the double discontinuity in those two internal masses

will vanish. Let us now see why this is the case. Without loss of generality, we

consider the cut in m2
1,2 of Cutm2

1,n
F as given in eq. (3.11). The integral with cuts

of the two propagators of masses m2
1,n and m2

1,2, which is given by

(−1)n
∫
dD/2k

πD/2
(2πi)2δ(k2 −m2

1,n)δ((k + p1)2 −m2
1,2)

n−1∏
i=2

1

(k + qi)2 −m2
i,i+1

,

(3.19)
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3.4. Cuts, discontinuities and coproduct entries

can be used for either of the cut integrals Cutm2
1,n,m

2
1,2
F as in fig. 3.4c, or Cutp2

1
F

as in fig. 3.4b, depending on the kinematic region where it is evaluated.5 If

p2
1 6= 0, then the uncut integral F has a branch cut in p2

1. As a consequence of the

largest time equation, the integral Cutp2
1
F is proportional to the discontinuity of

F across this branch cut [21,23]. In particular, the discontinuity is zero when we

are below the threshold of p2
1, which can be realised either for m2

1,2,m
2
1,n > 0 or

m2
1,2,m

2
1,n < 0, and in this case the integral eq. (3.19) vanishes as well.

Now, the double-cut integral Cutm2
1,n,m

2
1,2
F must be evaluated in the region

where m2
1,2,m

2
1,n < 0 and all other invariants are below their thresholds. In

particular, since p2
1 is below its threshold, i.e. p2

1 < m2
1,2+m2

1,n+2
√
m2

1,2m
2
1,n where

we note that the right-hand-side is still real despite the masses being imaginary,

the integral vanishes by the argument given above. We will see an example of

this type of vanishing double cut in T (p2
1, 0, 0;m2

12, 0,m
2
13) in Section 3.5.4.

However, if p2
1 = 0, then F has no branch cut associated with this external

channel, and the largest time equation does not give any constraint on the result

of eq. (3.19). In this case, the double discontinuity in the masses m2
1,2 and m2

1,n

can indeed be nonzero. We will see an example of this type of nonvanishing

double cut in T (p2
1, 0, 0;m2

12,m
2
23, 0) in Section 3.5.2.

This argument will hold for any pair of massive propagators in a one-loop

diagram, not necessarily adjacent, provided that the corresponding momentum

channel p satisfies p2 6= 0. At higher loops, one needs to be more careful: indeed,

one might have more than one cut diagram contributing to the cut in a given

channel, so it is no longer true that a cut diagram by itself must vanish if not

evaluated in the region where the corresponding channel is below threshold.

3.4.2 Cuts and the coproduct

Having related cuts to discontinuities in the previous section and discontinu-

ities to coproduct entries in section 2.3.1, it is now straightforward to relate cuts

to coproduct entries. Combining the relations eq. (2.41) and eq. (3.18), we arrive

at:

5For the first cut in a given timelike momentum channel, the consistent direction of energy
flow in the cut propagators is an automatic consequence of the on-shell conditions.
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Chapter 3. Cuts as iterated discontinuities

Cuts1,...,sl,m2
1,...,m

2
k
F ∼=

Θ
∑

(x1,...,xl,y1,...,yk)∈Ak+l

(−1)l

(
l∏

i=1

ai(si, xi)
k∏
j=1

aj(m
2
j , yj)

)
δx1,...,xl,y1,...,ykF . (3.20)

We recall that on the left-hand side the si and the m2
j may be written in any order,

and correspondingly permuted on the right-hand side, but we require that we act

first with all the si and then with the m2
j . It is not obvious that permutations

of the sets {si} and {m2
j} give equivalent results on the right-hand side, but this

property follows from the commutativity of cuts. This implies nontrivial relations

among coproduct entries.

±i0-prescription of symbol letters

In most examples considered in this thesis, it is simple to determine the sign

of the i0-prescription of a given symbol letter once we know the prescription

of the invariant to which it is associated and the kinematic region in which we

are working (we recall the i0-prescription is read from the Feynman rules of

cut diagrams). Indeed, whenever the symbol letters are linear combinations of

invariants, this is a trivial problem. However, we observe that in more complicated

cases there can be an ambiguity in the sign of the imaginary part of some symbol

letters (more precisely, we encounter this problem for diagrams which require the

use of eq. (2.29) to get a rational alphabet and have internal massive propagator).

We need to resolve this ambiguity, because this sign is needed to obtain the correct

sign in eq. (2.41).

The simplest case where we observe this problem is the triangle with three

external masses and one internal mass, T (p2
1, p

2
2, p

2
3;m2

12, 0, 0), whose symbol is

given in eq. (B.64). For instance, when considering the double cut first in p2
2 and

then in p2
1, we need to determine the sign of the imaginary part of z̄ − µ12, as

inherited from the prescription of the second cut invariant, p2
1−i0. One can easily

check that this sign is the same as the sign of the quantity

z̄(1− z̄)− µ12(z − z̄)

z − z̄ .

which can be either positive or negative in the region where the double cut is
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3.5. Examples — One-loop

computed,

z > 1 , 0 < z̄ < 1 , 0 < µ12 < 1 , z̄ − µ12 > 0 .

If the imaginary part of z̄ − µ12 is negative, then we are in the subregion

z > 1 , 0 < z̄ < 1 ,
z̄(1− z̄)

z − z̄ < µ12 < z̄ ,

and if it is positive, in the subregion

z > 1 , 0 < z̄ < 1 , 0 < µ12 <
z̄(1− z̄)

z − z̄ .

We note that if we are in the first situation we cannot smoothly take the internal

mass (µ12) to zero. However, if we are in the second situation, corresponding to a

positive imaginary part of z̄ − µ12, we can take µ12 to zero without any problem,

which is naturally a desirable property. We thus associate a positive imaginary

part to the symbol letter z̄−µ12. We can confirm this is indeed the correct result

by considering the same double cut in the opposite order, where there are no sign

ambiguities. We treat this example in detail in section 3.5.

All other cases where we have found sign ambiguities can be solved in the same

way: we always require being in a kinematic region where massless limits can be

taken smoothly. Furthermore, we have found in all of our examples of multiple

cuts that there is always an ordering of the cuts where there is no ambiguity. We

have then verified that any possible ambiguities were correctly lifted through the

method just described.

3.5 Examples — One-loop

We now give a range of examples of one-loop diagrams for which we have

verified that the relations between cuts, discontinuities and the coproduct,

eqs. (2.41), (3.18) and (3.20), give consistent results. Most of our examples will

be three-point functions, with two exceptions: we will explore the two-mass-hard

box as it shows we must be careful with choosing the right kinematic region

when comparing cuts with discontinuities, and we will also look at the box with

four external masses which in four dimensions turns out to be related to the

triangle with three external masses. We will start by outlining the method used
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Chapter 3. Cuts as iterated discontinuities

to compute cuts, both in external channels and external masses, and then apply

our methods to concrete examples.

3.5.1 Calculation of cut diagrams

We now outline our strategy for the calculation of cuts of the three-point

functions studied in this section. For cuts in external channels, we use the method

presented in ref. [36]. For the single-propagator cuts, we use the method presented

in ref. [37]. All cuts given in appendices B.1, B.2 and B.3 were obtained through

the methods described here.

Cuts in external channels. When computing a single cut in the channel p2
i ,

we work in the region where p2
i is above its threshold, all other external channels

are below threshold, and all masses are positive. We parametrise the external

momenta as

pi =
√
p2
i (1, 0,0D−2), pj =

√
p2
j

(
α,
√
α2 − 1,0D−2

)
, (3.21)

where α is trivial to determine in terms of the kinematic variables. If p2
j = 0,

then an equivalent parametrisation is trivial to find.

We route the loop momentum so that the propagators of momentum k and

(pi − k) are cut, and if possible the propagator of momentum k is massless. We

parametrise k as

k = k0(1, β cos θ, β sin θ 1D−2) , (3.22)

where θ ∈ [0, π], and k0, β > 0, and 1D−2 ranges over unit vectors in the

dimensions transverse to pi and pj. If the propagator of momentum k is massless,

then β = 1.

In the most general case we need to consider for this thesis, using the delta

function that puts the propagator of momentum k on-shell, the integration

measure becomes∫
d4−2εk δ(k2 −m2)θ(k0) =

=
21−2επ1−ε

Γ(1− ε)

∫ ∞
0

dk0

(√
k2

0 −m2

)1−2ε ∫ 1

0

dx(1− x)−εx−ε , (3.23)
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p2 − k

k

p1 + k

p3

p1

p2

(a) T (p2
1, p

2
2, p

2
3)

p2 − k

k

p1 + k
p1

p2

p3

(b) Cutp2
2
T (p2

1, p
2
2, p

2
3)

p1

p2

p3 p2 − k

k

p1 + k

(c) Cutp2
2,p

2
3
T (p2

1, p
2
2, p

2
3)

Figure 3.5: The triangle integral, with loop momentum defined as in the text;
and with cuts in the p2

2 and p2
3 channels.

where we made a change of variables from cos θ to

x =
1 + cos θ

2
. (3.24)

The k0 integral can be trivially performed using the delta function putting the

propagator of momentum (pi − k) on-shell.

The remaining uncut propagator, of momentum (pj + k), is linear in the x

variable, and so the most complicated result we will get for the single cut of

a one-loop three-point function can be written to all orders in ε as a Gauss

hypergeometric function, eq. (A.13), as can be seen in the several examples

collected in appendices B.1, B.2 and B.3.

If the triangle has two or three external masses (say p2
i 6= 0 and p2

j 6= 0), we

can compute its sequential cuts in the external channels p2
i and p2

j , in the region

where they are both above threshold, while the remaining external channel is

below threshold and all internal masses are positive. The extra delta function

makes the x integration in eq. (3.23) trivial (note, however, that it might restrict

the kinematic region in which the cut is nonzero). The most complicated functions

we get as a result are invariants raised to powers that are linear in ε, producing

powers of logarithms upon expansion in ε. Again, our examples are collected in

appendices B.1, B.2 and B.3.

Let’s apply the procedure we just discussed to the triangle with three external

masses and no internal massive propagators, T (p2
1, p

2
2, p

2
3; 0, 0, 0). We will compute

the cut in the p2
2 channel and then the double cut in the p2

2 and p2
3 channels, see

figure 3.5. We will use the variables in eq. (2.29).
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Chapter 3. Cuts as iterated discontinuities

For the cut in p2
2, the integral we have to compute is

Cutp2
2
T (p2

1, p
2
2, p

2
3) = −(2π)2 e

γEε

π2−ε

∫
d4−2εk

δ+ (k2) δ+ ((p2 − k)2)

(p1 + k)2
(3.25)

We parametrise the momenta as

p2 =
√
p2

2 (1,0D−1) , p1 =
√
p2

1

(
α,
√
α2 − 1,0D−2

)
. (3.26)

Working out the kinematics,

√
p2

1

√
p2

2α = p2
1

u3 − 1− u2

2
,

√
p2

1

√
p2

2

√
α2 − 1 = −p2

1

√
λ(1, u2, u3)

2
. (3.27)

The loop momentum is parametrised as discussed above. Because one of the

Dirac δ-functions sets k2 = 0, β = 1. The other δ-functions fixes k0 =
√
p2

2/2.

After changing variables as in eq. (3.24), we then have

(p1 +k)2 = p2
1

(
1 + u3 − u2 −

√
λ

2
+ x
√
λ

)
= p2

1(1−z)

(
1− x(z − z̄)

z − 1

)
, (3.28)

with z and z̄ as defined in eq. (2.29). We note that these variables appear

naturally in the calculation of the cut, simply as the variables that rationalise

the parametrisation of the kinematics. The integral that remains to be computed

is

Cutp2
2
T (p2

1, p
2
2, p

2
3) = −2π

eγEε

Γ(1− ε)
(p2

2)−ε

p2
1(1− z)

∫ 1

0

dx
(x(1− x))−ε(

1− x(z−z̄)
z−1

) . (3.29)

It is easy to see that in the region where p2
2 > 0 and p2

1, p
2
3 < 0 this integral is

well defined—see table 2.1 for the translation to a region for z and z̄—and that

it reproduces the result given in eq. (B.56).

For the double cut in the p2
2 and p2

3 channels, we now work in the region where

p2
2, p

2
3 > 0 and p2

1 < 0, and we again refer to table 2.1 for the equivalent in terms

of z and z̄. We are now evaluating the integral

Cutp2
2,p

2
3
T (p2

1, p
2
2, p

2
3) =

=i(2π)3 e
γEε

π2−ε

∫
d4−2εk δ+

(
k2
)
δ+
(
(p2 − k)2

)
δ+
(
(p1 + k)2

)
. (3.30)
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We proceed exactly as for the cut in p2
2, but the last equation is now trivial

because of the new δ-function:

δ
(
(p1 + k)2

)
= − 1

p2
1(z − z̄)

δ

(
x+

1− z
z − z̄

)
. (3.31)

Performing the integrations over k0 and β as for the single cut, the remaining

integral is

Cutp2
2,p

2
3
T (p2

1, p
2
2, p

2
3) =

=− 4π2i
eγEε

Γ(1− ε)
(p2

3)−ε

p2
1(z − z̄)

∫ 1

0

dxδ

(
x+

1− z
z − z̄

)
(x(1− x))−ε (3.32)

which reproduces the result in eq. (B.58).

We should note that for one-loop integrals, a three-propagator cut has

previously been interpreted as a discontinuity of a diagrammatic unitarity cut.

In ref. [94], it was used in a double dispersion relation to verify the region of

integration in phase space for semileptonic D decay. More recently, in ref. [8],

a similar interpretation was given, in the spirit of the Feynman Tree Theorem

[95–97], capitalizing on progress in unitarity methods for one-loop amplitudes.

Cuts in internal masses. Cuts in internal masses are harder to compute than

cuts in external channels. We present two ways of computing them. In either case,

we compute discontinuities, which are trivially related to cuts through eq. (3.11).

The first way is a brute-force method that works in all cases considered here.

The second way is more elegant, but only suitable for special configurations of the

external and internal masses. Because we do not have a proof that it should work,

we present it as an observation. In all cases where both can be applied we find

they agree, giving evidence for the validity of the second way. We will illustrate

both in the context of the triangle T (0, p2
2, p

2
3;m2

12, 0, 0), see section B.2.3.

The first method relies on getting a Feynman parameter representation for the

diagram, and then computing the discontinuity of the integrand across the branch

cut associated with the internal mass. It is of course valid for any configuration
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of the internal and external masses. As an example, we have:

T (p2
2, p

2
3;m2

12) = i
eγEεΓ(1 + ε)

ε

∫ 1

0

dx(1− x)−ε
((−p2

3x)−ε − (m2
12 − p2

2x)−ε)

m2
12 + x(p2

3 − p2
2)

,

(3.33)

which we obtain by computing the trivial and the first non-trivial Feynman

parameter integrals. We then use

Discm2
12

[
(m2

12 − p2
2x)−ε

]
=

2πiε

Γ(1− ε)Γ(1 + ε)
(p2

2x−m2
12)−εθ

(
m2

12

p2
2

− x
)
,

where we recall m2
12 = m2

12 − i0 and we are in the region p2
2 < m2

12 < 0, to get

Cutm2
12
T (p2

2, p
2
3;m2

12) = Discm2
12
T (p2

2, p
2
3;m2

12)

=
2πeγEε

Γ(1− ε)

∫ m2
12/p

2
2

0

dx(1− x)−ε
(p2

2x−m2
12)−ε

m2
12 + x(p2

3 − p2
2)
. (3.34)

which is trivial to evaluate to any desired accuracy in ε, see eq. (B.47).

The second way only works if there is a massive external leg non-adjacent to

the massive internal leg being cut. More precisely, in our notation, if we look

at the cut in the internal propagator of mass m2
ij, we need p2

k 6= 0. We can

then compute a three-propagator cut corresponding to Cutp2
k,m

2
ij

in the region

where m2
ij < 0 and p2

k is above threshold. This is trivial to evaluate because

all propagators are cut. The single-propagator cut is finally obtained through a

dispersive integration in the p2
k-channel of the three-propagator cut. This is not

guaranteed to work a priori, because we have no proof that the m2
ij-discontinuity

function has a dispersive representation. However, it does give the correct answer

in all the cases we have considered. The reason why this method is not valid for

any configuration of internal and external masses is because there is no sequential

cut associated to an external mass and an internal mass if they are adjacent.

For our example, we have (i, j, k) = (1, 2, 3). The three-propagator cut is

computed in the region where p2
3 > 0 and m2

12 < 0 and is given by

Cutm2
12,p

2
3
T (p2

2, p
2
3;m2

12) =

=− 4π2ieγEε

Γ(1− ε)
(p2

3)−ε(−m2
12)−ε

(p2
3 − p2

2)1−ε (p2
3 +m2

12 − p2
2)−εθ(p2

3 +m2
12 − p2

2) , (3.35)
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Through a standard dispersive integral, see e.g. the brief discussion in section 4.2,

we obtain

Cutm2
12
T (p2

2, p
2
3;m2

12) = Discm2
12
T (p2

2, p
2
3;m2

12)

=− 2π
eγEε

Γ(1− ε)(−m2
12)−ε

∫ ∞
0

ds

s− p2
3

s−ε

(s− p2
2)1−2ε

(s+m2
12 − p2

2)−ε . (3.36)

The integral is trivial to compute at any order in ε, and matches the result

obtained in eq. (3.34).

In appendices B.1, B.2 and B.3, we collect several examples of cuts in massive

internal legs. Whenever possible, the cuts were computed in both ways described

above, and the results agreed.

Now that we have presented our methods for evaluating cuts of one-loop three

point functions, we verify their predicted relations with discontinuities and the

coproduct in a variety of examples, chosen to illustrate specific features we found

relevant. All expressions will be written only up to finite terms of order ε0, but

we have checked their agreement to higher orders in ε.

3.5.2 T
(
p2

1, 0, 0;m2
12,m

2
23, 0

)
In this example, we illustrate iterated cuts in internal masses and iterated

cuts in one external channel and one internal mass. Expressions for the integral,

its symbol and cuts can be found in appendix B.1.4. The euclidean region, which

we denote by R0, is

R0 : m2
12 > 0 , m2

23 > 0 , p2
1 < m2

12. (3.37)

Single cuts: For the single cut in the invariant r, where r ∈ {p2
1,m

2
12,m

2
23}, we

will move away from the euclidean region and into region Rr
1. These regions are,

respectively,

R
p2

1
1 : m2

12 > 0 , m2
23 > 0 , p2

1 > m2
12 ,

R
m2

12
1 : m2

12 < 0 , m2
23 > 0 , p2

1 < m2
12 ,

R
m2

23
1 : m2

12 > 0 , m2
23 < 0 , p2

1 < m2
12 . (3.38)

53



Chapter 3. Cuts as iterated discontinuities

Recalling the prescriptions p2
1 + i0 and m2

ij − i0, we can compute the coefficients

a1(r, x1) as defined in eq. (2.42). They are computed respectively in R
p2

1
1 , R

m2
12

1

and R
m2

23
1 , and turn out to be equal. We find:

a1(p2
1,m

2
12 − p2

1) = a1(m2
12,m

2
12) = a1(m2

23,m
2
23) = −2πi .

We then get:

Cutp2
1
T = −Discp2

1
T ∼= −2π

p2
1

Θδm2
12−p2

1
T =

2π

p2
1

log

(
1− m2

12 − p2
1

m2
23

)
,

Cutm2
12
T = Discm2

12
T ∼= 2π

p2
1

Θδm2
12
T = −2π

p2
1

log

(
m2

23

m2
23 −m2

12

)
,

Cutm2
23
T = Discm2

23
T ∼= 2π

p2
1

Θδm2
23
T =

2π

p2
1

log

(
1− p2

1

m2
12 −m2

23

)
, (3.39)

which are consistent with the results in appendix B.1.4.

All relations for single cuts follow the same pattern, so we will simply list them

without further details in the remaining examples, unless we wish to illustrate

some particularity in a given case.

Double cuts: According to our rules, there are two different cuts to consider:

Cutp2
1,m

2
23

and Cutm2
12,m

2
23

= Cutm2
23,m

2
12

. We start with Cutp2
1,m

2
23

, for which we go

from the region R
p2

1
1 to the region

R
p2

1,m
2
23

2 : m2
12 > 0 , m2

23 < 0 , p2
1 > m2

12 . (3.40)

Given our conventions for multiple cuts, we now have the prescription m2
23 + i0.

Then,

a2

(
m2

23,m
2
23

)
= 2πi , a2

(
m2

23, p
2
1 +m2

23 −m2
12

)
= 2πiθ

(
m2

12 − p2
1 −m2

23

)
,

where we have only listed the coefficients leading to nonzero contributions. We

finally find

Cutp2
1,m

2
23
T = −Discp2

1,m
2
23
T

∼= −4π2i

p2
1

Θ
[
δm2

12−p2
1,m

2
23

+ θ
(
m2

12 − p2
1 −m2

23

)
δm2

12−p2
1,m

2
12−p2

1−m2
23

]
T
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= −4π2i

p2
1

θ(m2
23 + p2

1 −m2
12) , (3.41)

which matches the result of the direct calculation in B.1.4. Interestingly, even

the theta functions are correctly reproduced, which is a feature observed in all

our examples. We recall that when computing multiple cuts in external channels

and internal masses, we insist on taking the discontinuity first in the external

invariants, and then in the masses. It can easily be checked that if we had taken

the opposite order, we would have had the opposite sign in the above equation.

We now consider the double cut in the internal masses. This is an example of

the behaviour described in section 3.4.1, where a double cut in internal masses

attached to the same external massless leg is nonzero. We only give details for

one order of the invariants, first m2
12 and then m2

23. The opposite order can be

done in exactly the same way.

To compute Cutm2
12,m

2
23

, we must go from R
m2

12
1 to

R
m2

12,m
2
23

2 : m2
12 < 0 , m2

23 < 0 , p2
1 < m2

12 .

Because mass cuts do not require complex conjugation of any region of the

diagram, we still have the prescription m2
23 − i0. The coefficients a2(m2

23, x2)

giving nonzero contributions are

a2(m2
23,m

2
23) = −2πi , a2(m2

23,m
2
23 −m2

12) = −2πiθ(m2
12 −m2

23).

We then find

Cutm2
12,m

2
23
T = Discm2

12,m
2
23
T

= −4π2i

p2
1

Θ
[
δm2

12,m
2
23

+ θ(m2
12 −m2

23)δm2
12,m

2
23−m2

12

]
T

=
4π2i

p2
1

θ(m2
12 − p2

1 − p2
23)θ(m2

23 −m2
12) , (3.42)

which matches the result of the direct calculation in B.1.4. Taking the

discontinuities in the opposite order, we would have found
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Chapter 3. Cuts as iterated discontinuities

Cutm2
23,m

2
12
T = Discm2

23,m
2
12
T

= −4π2i

p2
1

Θ
[
θ(p2

1 +m2
23 −m2

12)δm2
23,m

2
12−p2

1−m2
23

+ θ(m2
23 −m2

12)δm2
23,m

2
23−m2

12

]
T

=
4π2i

p2
1

θ(m2
12 − p2

1 − p2
23)θ(m2

23 −m2
12) , (3.43)

which also matches the direct calculation.

While it is obvious that Cutm2
12,m

2
23
T = Cutm2

23,m
2
12,
T , we see that they

are related to different coproduct entries. This is an example of how the

underlying relation between coproduct entries and cut diagrams constrains the

symbol/coproduct of Feynman diagrams.

We finish this example with a comment. As mentioned previously, for triangle

integrals we cannot set up a double cut in an external momentum and an internal

mass attached to it, like p2
1 and m2

12 in this example, because there is no additional

propagator to cut at the second stage. Correspondingly, if we were to attempt

to relate Disc and the coproduct for this double cut as in the above exercise,

we would be stuck when taking the second discontinuity, as the ±i0 prescription

of the second invariant is not well-defined. Thus, even in this case, there is no

conflict among Cut, Disc and the coproduct.

3.5.3 T
(
0, p2

2, p
2
3;m

2
12, 0, 0

)
In this example, we illustrate iterated cuts in external channels, and we give

another example of iterated cuts in one external channel and one internal mass.

Expressions for the integral, its symbol and cuts can be found in appendix B.2.3.

The euclidean region, which we denote R0 (we reuse the same notation as above

for all examples, since there is no ambiguity and to avoid having too many

indices), is

R0 : m2
12 > 0 , p2

2 < m2
12 , p2

3 < 0. (3.44)

The single discontinuities are treated as above and obey the expected relations,

so we will not go through the derivation. The result for the cuts can be found

in eqs. (B.45), (B.46) and (B.47). For double discontinuities, we consider two

different double cuts: Cutp2
3,m

2
12

and Cutp2
2,p

2
3

= Cutp2
3,p

2
2
. The first one is very

similar to what we did before so we will not address it in detail here, the result
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for this double cut is found in eq. (B.49). The second one is a new kind. In

particular, we will show that both orders of taking the discontinuities give the

same result.

(p2
2, p

2
3) : We must analytically continue the function from

R
p2

2
1 : m2

12 > 0 , p2
2 > m2

12 , p2
3 < 0 , (3.45)

to

R
p2

2,p
2
3

2 : m2
12 > 0 , p2

2 > m2
12 , p2

3 > 0. (3.46)

In this region, the nonvanishing coefficients a2(p2
3, x2) are

a2(p2
3, p

2
3) = 2πi , a2(p2

3, p
2
2 −m2

12 − p2
3) = 2πiθ(m2

12 − p2
2 + p2

3).

We then find

Cutp2
2,p

2
3
T = Discp2

2,p
2
3
T

∼= 4π2i

p2
2 − p2

3

Θ
[
δp2

2−m2
12,p

2
3

+ θ(m2
12 − p2

2 + p2
3)δp2

2−m2
12,p

2
2−m2

12−p2
3

]
T

=
4π2i

p2
2 − p2

3

θ(p2
2 −m2

12 − p2
3) . (3.47)

(p2
3, p

2
2) : We now start in the region

R
p2

3
1 : m2

12 > 0 , p2
2 < m2

12 , p2
3 < 0 (3.48)

and go to the same region R
p2

3,p
2
2

2 as above. The coefficients a2(p2
2, x2) are

a2(p2
2,m

2
12 − p2

2 + p2
3) = 2πiθ(p2

2 −m2
12 − p2

3)

and thus

Cutp2
3,p

2
2
T = Discp2

3,p
2
2
T

∼= 4π2i

p2
2 − p2

3

Θ
[
θ(p2

2 −m2
12 − p2

3)δp2
3,m

2
12−p2

2+p2
3

]
T

=
4π2i

p2
2 − p2

3

θ(p2
2 −m2

12 − p2
3) , (3.49)
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as above.

As expected, the two orderings of taking discontinuities match the direct

calculation of the double cut, and we again find non-trivial relations between

coproduct entries.

3.5.4 T
(
p2

1, 0, 0;m2
12, 0,m

2
13

)
In this example, we show how the relations between discontinuities and the

coproduct generalise when we must use variables such as the ones defined in

eq. (2.33) to get a symbol with rational letters. In particular, we hope to make

clearer the discussion below eq. (2.45). Finally, we also illustrate the discussion

in section 3.4.1: as predicted, we show that the double cut in the two internal

masses vanishes.

Expressions for the integral, its symbol, and its cuts can be found in appendix

B.1.5. The euclidean region is

R0 : m2
12 > 0 , m2

13 > 0 , p2
1 <

(√
m2

12 +
√
m2

13

)2

. (3.50)

To simplify our discussion, we will restrict the euclidean region to the subregion

R0∗, defined by

R0∗ : m2
12 > 0 , m2

13 > 0 , p2
1 < 0 ⇒ w̄1 < 0 , w1 > 1.

(3.51)

Our discussion would be similar if we had started from the other subregion of the

euclidean region (i.e., the region where p2
1 is positive but below threshold).

Single cuts: For the single cut in the invariant r, with r ∈ {p2
1,m

2
12,m

2
23}, we

will move away from the euclidean region and into region Rr
1. These three regions

are

R
p2

1
1 : m2

12 > 0 , m2
13 > 0 , p2

1 >

(√
m2

12 +
√
m2

13

)2

⇒ 0 < w̄1 < w1 < 1,

R
m2

12
1 : m2

12 < 0 , m2
13 > 0 , p2

1 < 0 ⇒ 0 < w̄1 < 1 < w1,

R
m2

13
1 : m2

12 > 0 , m2
13 < 0 , p2

1 < 0 ⇒ w̄1 < 0 < w1 < 1 . (3.52)
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For the discontinuity in the p2
1 channel, we first note that, in region R

p2
1

1 , p2
1+i0

implies w1 + i0 and w̄1 − i0. Then, the nonzero coefficients a1(p2
1, x1) are

a1(p2
1, w̄1) = 2πi , a1(p2

1, 1− w1) = 2πi . (3.53)

The relation between Cut, Disc and the coproduct is

Cutp2
1
T =−Discp2

1
T

∼=2π

p2
1

Θ [δw̄1 + δ1−w1 ] T

=
2π

p2
1

(
log

(
w1

1− w1

)
− log

(
w̄1

1− w̄1

))
. (3.54)

Similarly, for the discontinuity in the mass m2
12, we note that, in region R

m2
12

1 ,

m2
12 − i0 implies w1 + i0 and w̄1 + i0. The nonzero coefficients a1(m2

12, x1) are

a1(m2
12, w̄1) = −2πi , (3.55)

and we then find

Cutm2
12
T = Discm2

12
T ∼= 2π

p2
1

Θδw̄1T =
2π

p2
1

log

(
w1

w1 − 1

)
. (3.56)

Finally, for the discontinuity in the mass m2
13, we note that, in region R

m2
13

1 ,

m2
13 − i0 implies w1 − i0 and w̄1 − i0. The nonzero coefficients a1(m2

13, x1) are

a1(m2
13, 1− w1) = −2πi , (3.57)

and we find

Cutm2
13
T = Discm2

13
T ∼= 2π

p2
1

Θδ1−w1T = −2π

p2
1

log

( −w̄1

1− w̄1

)
. (3.58)

We finish the discussion of these single cuts with three comments. First, we

note that eqs. (3.54), (3.56) and (3.58) reproduce the direct calculation of the

cuts in eqs. (B.22), (B.23) and (B.24) as expected. Second, we have confirmed

eq. (2.45) as, in that form, we can indeed read the correct (symbol of the)

discontinuity across the branch cut of each of the invariants appearing in the
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Chapter 3. Cuts as iterated discontinuities

first entry. Finally, we have shown that writing the symbol in the special form of

eq. (2.45) is not necessary or even natural from the point of view of the relations

between Disc and δ, as the relations are formulated in terms of individual symbol

letters and not some particular combination of them. In other cases where similar

variables are needed, we prefer to present the most compact expression of the

symbol.

Double cuts: The only double cut we can consider is the double cut in the

internal masses. Since the two masses are connected to an external massive leg,

we claimed in section 3.4.1 that these double cuts should vanish. We now show

this observation agrees with what one gets from the coproduct.

The double cut Cutm2
12,m

2
13
T = Cutm2

13,m
2
12
T is computed in the region

R
m2

12,m
2
13

2 : m2
12 < 0 , m2

13 < 0 , p2
1 <

(√
m2

12 +
√
m2

13

)2

. (3.59)

In terms of the variables w1 and w̄1, this region is split into two disconnected

subregions R
m2

12,m
2
13

2a and R
m2

12,m
2
13

2b ,

R
m2

12,m
2
13

2a : w̄1 < w1 < 0 ; R
m2

12,m
2
13

2b : 1 < w̄1 < w1. (3.60)

For Cutm2
12,m

2
13
T , we start in region R

m2
12

1 . In R
m2

12,m
2
13

2a , m2
13−i0 implies w1 +i0,

and the nonvanishing coefficients a2(m2
13, x2) are

a2(m2
13, w1) = 2πi , a2(m2

13, 1− w1) = 2πi .

We then get

Cutm2
12,m

2
13
T = Discm2

12,m
2
13
T ∼= −4π2i

p2
1

Θ [δw̄1,w1 + δw̄1,1−w1 ] T = 0 . (3.61)

In R
m2

12,m
2
13

2b , all the coefficients a2(m2
13, x2) vanish so that we again find

Cutm2
12,m

2
13
T = Discm2

12,m
2
13
T = 0 . (3.62)

For Cutm2
13,m

2
23
T , we start in region R

m2
13

1 . In R
m2

12,m
2
13

2a , all the coefficients
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a2(m2
13, x2) vanish and we get

Cutm2
13,m

2
12
T = Discm2

12,m
2
13
T = 0 . (3.63)

In R
m2

12,m
2
13

2b , m2
12 − i0 implies w̄1 + i0. The nonvanishing coefficients a2(m2

13, x2)

are

a2(m2
12, w̄1) = 2πi , a2(m2

12, 1− w̄1) = 2πi

and we get

Cutm2
13,m

2
12
T = Discm2

12,m
2
13
T ∼= 4π2i

p2
1

Θ [δ1−w1,w̄1 + δ1−w1,1−w̄1 ] T = 0 . (3.64)

We thus find consistent results in all subregions and for either order of the

discontinuities: in all cases, the result of the double discontinuity is zero. As

already mentioned, this result illustrates the discussion in 3.4.1.

3.5.5 T (p2
1, p

2
2, p

2
3; 0, 0, 0)

Single cuts: We already discussed the relations between discontinuities and

the coproduct of the three-mass triangle in some detail in section 2.3.3. What

was missing there was the relation with cuts, but we can now complete these

relations (we keep F as a function describing a general three-point function with

massless propagators and three-massive external legs):

Cutp2
1
F = −Discp2

1
F ∼= −(2πi) Θ [δz + δ1−z]F , (3.65a)

Cutp2
2
F = −Discp2

2
F ∼= (2πi) Θ δzF , (3.65b)

Cutp2
3
F = −Discp2

3
F ∼= (2πi) Θ δ1−zF , (3.65c)

These relations can be checked with the results in eq. (B.3.1), and by taking

F = T (z, z̄) as defined in eq. (B.53).

Double cuts: As for single cuts, the relation between coproduct and discon-

situies for double discontinuities as already been described in section 2.3.3. We
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Chapter 3. Cuts as iterated discontinuities

now complete them by relating them to cuts.

Cutp2
1,p

2
2
F = Discp2

1,p
2
2
F ∼= (2πi)2 Θ [δz,z̄ + δ1−z,z̄]F , (3.66a)

Cutp2
2,p

2
1
F = Discp2

2,p
2
1
F ∼= (2πi)2 Θ [δz,z̄ + δz,1−z]F , (3.66b)

Cutp2
1,p

2
3
F = Discp2

1,p
2
3
F ∼= (2πi)2 Θ [δz,1−z + δ1−z,1−z]F , (3.66c)

Cutp2
3,p

2
1
F = Discp2

3,p
2
1
F ∼= (2πi)2 Θ [δ1−z,z̄ + δ1−z,1−z]F , (3.66d)

Cutp2
2,p

2
3
F = Discp2

2,p
2
3
F ∼= −(2πi)2 Θ δz,1−zF , (3.66e)

Cutp2
3,p

2
2
F = Discp2

3,p
2
2
F ∼= −(2πi)2 Θ δ1−z,z̄F . (3.66f)

These relations can be checked with the results in eq. (B.3.1), and by taking

F = T (z, z̄) as defined in eq. (B.53).

We see once more that because cuts act simultaneously in the various channels,

there are nontrivial relations among entries of the coproduct. For example,

Cutp2
2,p

2
3
F = Cutp2

3,p
2
2
F implies that δz,1−zF ∼= δ1−z,z̄F .

The relations between cuts, discontinuities and the coproduct given in this

section will also be relevant for the two-loop example we will study below—see

section 3.6.

3.5.6 T
(
p2

1, p
2
2, p

2
3;m

2
12, 0, 0

)
With our last example of three-point functions at one-loop, we come back

to the case already mentioned in section 3.4.2 to show that we have lifted the

ambiguity of the imaginary part in some symbol letters correctly.

The relations among cuts, discontinuities and the coproduct in this example

are straightforward to obtain. Indeed, the nonzero internal mass is a simple

generalisation of the previous example. We give the full set of relations for cuts

in external channels, to verify that the procedure described in section 3.4.2 to fix

this ambiguity does indeed give the correct result. We will not present cuts in

the internal mass here, because we have already given several examples of this

type of discontinuity, and they would not teach us anything new.

To get rational symbol letters, we use the variables defined in eq. (2.29), and

also define as usual µ12 = m2
12/p

2
1. Expressions for the integral, its symbol, and its

cuts can be found in appendix B.3.3. The regions where single cuts are computed
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are

R
p2

1
1 : p2

1 > m2
12 , p2

2 < 0 , p2
3 < 0 , m2

12 > 0 ,

R
p2

2
1 : p2

1 < 0 , p2
2 > m2

12 , p2
3 < 0 , m2

12 > 0 ,

R
p2

3
1 : p2

1 < 0 , p2
2 < 0 , p2

3 > 0 , m2
12 > 0 . (3.67)

We note that these regions are not the complete regions in which single cuts

are nonzero. For instance, in R
p2

1
1 we could have allowed 0 < p2

2 < m2
12. This

complicates the discussion in terms of the z and z̄ variables, so in this discussion

we restrict the cut regions to the subregions defined above, although we have

performed some checks that the relations are consistent for the full euclidean

region and other parts of the cut regions. In terms of z, z̄ and µ12, the chosen

euclidean subregion and the subregions for single cuts listed above are

R0∗ : 0 < z̄ < z < 1 , µ12 < 0 , zz̄ − µ12 > 0 (3.68)

R
p2

1
1 : z > 1 , z̄ < 0 , 0 < µ12 < 1 , z − µ12 > 0 , z̄ − µ12 < 0 , zz̄ − µ12 < 0

R
p2

2
1 : 0 < z < 1 , z̄ < 0 , µ12 < 0 , z − µ12 > 0 , z̄ − µ12 < 0 , zz̄ − µ12 < 0

R
p2

3
1 : z > 1 , 0 < z̄ < 1 , µ12 < 0 , z − µ12 > 0 , z̄ − µ12 > 0 , zz̄ − µ12 > 0 .

For single cuts, knowing that p2
i = p2

i+i0, there is no ambiguity in determining the

sign of the imaginary part of the relevant symbol letters in the relevant kinematic

region. We then find

Cutp2
1
T = −Discp2

1
T ∼= 2π

p2
1(z − z̄)

Θ [δ1−z + δµ12 + δzz̄−µ12 ] T

= − 2π

p2
1(z − z̄)

Θδ1−µ12T ,

Cutp2
2
T = −Discp2

2
T ∼= − 2π

p2
1(z − z̄)

Θδzz̄−µ12T ,

Cutp2
3
T = −Discp2

3
T ∼= − 2π

p2
1(z − z̄)

Θδ1−zT . (3.69)

For the p2
1 channel cut, we used the fact that there is no branch point at p2

1 = 0

to find a simpler relation.
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The double cuts are computed in the regions

R
p2

1,p
2
2

2 : p2
1 > m2

12 , p2
2 > m2

12 , p2
3 < 0 , m2

12 > 0 ,

R
p2

1,p
2
3

2 : p2
1 > m2

12 , p2
2 < 0 , p2

3 > 0 , m2
12 > 0 ,

R
p2

2,p
2
3

2 : p2
1 < 0 , p2

2 > m2
12 , p2

3 > 0 , m2
12 > 0 . (3.70)

Determining the signs of the symbol letters and their imaginary parts in each of

these regions is straightforward for all double discontinuities, except for Cutp2
2,p

2
1
T ,

in which case the imaginary part of z̄ − µ12 does not have a definite sign in the

cut region. We showed how this issue could be addressed in section 3.4.2, where

we also mentioned that the result can be cross-checked by comparing Cutp2
2,p

2
1
T

and Cutp2
1,p

2
2
T .

The full set of relations among cuts, discontinuities and the coproduct is

Cutp2
1,p

2
2
T = Discp2

1,p
2
2
T ∼= 4π2i

p2
1(z − z̄)

Θδ1−µ12,z̄−µ12T ,

Cutp2
2,p

2
1
T = Discp2

2,p
2
1
T ∼= −4π2i

p2
1(z − z̄)

Θ [δzz̄−µ12,1−z + δzz̄−µ12,z̄ + δzz̄−µ12,z̄−µ12 ] T ,

Cutp2
1,p

2
3
T = Discp2

1,p
2
3
T ∼= 4π2i

p2
1(z − z̄)

Θδ1−µ12,1−zT ,

Cutp2
3,p

2
1
T = Discp2

3,p
2
1
T ∼= − 4π2i

p2
1(z − z̄)

Θδ1−z,z̄−µ12T ,

Cutp2
2,p

2
3
T = Discp2

2,p
2
3
T ∼= 4π2i

p2
1(z − z̄)

Θδzz̄−µ12,1−zT ,

Cutp2
3,p

2
2
T = Discp2

3,p
2
2
T ∼= 4π2i

p2
1(z − z̄)

Θδ1−z,z̄−µ12T . (3.71)

Using these results and the expressions given in appendix B.3.3, we indeed verify

that Cutp2
1,p

2
2
T = Cutp2

2,p
2
1
T . We have also checked that all the relations are

satisfied for all pairs of external channels.

3.5.7 Two-mass-hard box

We now look at the two-mass-hard box, a box integral (having massless

propagators) with two adjacent external massless legs p2
3 = p2

4 = 0, and two

massive ones. The symbol alphabet consists exclusively of linear functions of the

invariants because we will only study the function up to terms that vanish when

64



3.5. Examples — One-loop

ε = 0 (at higher orders, having a rational symbol alphabet requires using variables

like in eq. (2.29), see section B.4.6). Our main reason for including this example

is that despite this apparent simplicity, understanding the relations between Cut,

Disc and δ requires some care regarding the kinematic regions. Furthermore, the

two-mass-hard box analysed here will also be needed for our two-loop calculations

that follow, where it appears as a subdiagram in some cuts.

We use the result of ref. [98], with an additional factor of ieγEε inserted to

match our conventions. In the euclidean region, the box is given by

Bh(s, t; p2
1, p

2
2) ≡ eγEε

π2−ε

∫
d4−2εk

1

k2(k + p2)2(k + p2 + p3)2(k − p1)2
(3.72)

= icΓ
(−p2

1)ε(−p2
2)ε

(−t)1+2ε(−s)1+ε

[
1

ε2
+ 2Li2

(
1− t

p2
1

)
+ 2Li2

(
1− t

p2
2

)]
+O(ε) ,

where s = (p1 + p2)2 and t = (p2 + p3)2 and cΓ is defined in eq. (A.12). In the

following equations, we drop the O(ε) terms. The coproduct (or symbol, which

are almost equivalent for the weight 2 functions we are concerned with here) is

evaluated order by order in the Laurent expansion in ε. At order 1/ε2, it is trivial

and there is clearly no discontinuity. At order 1/ε, the coproduct is simply the

function itself,

∆1 B
h
∣∣
1/ε

=
i

stε

[
log(−p2

1) + log(−p2
2)− log(−s)− 2 log(−t)

]
. (3.73)

At order ε0, we are interested in the ∆1,1 term of the coproduct, which is given

by

∆1,1 B
h
∣∣
ε0

=

=
i

st

[
log(−p2

1)⊗ log(−p2
2) + log(−p2

2)⊗ log(−p2
1)− log(−p2

1)⊗ log(−s)

− log(−s)⊗ log(−p2
1)− 2 log(−p2

1)⊗ log(−t)− 2 log(−t)⊗ log(−p2
1)

−2 log

(
t

p2
1

)
⊗ log

(
1− t

p2
1

)
+ log(−p2

1)⊗ log(−p2
1)− log(−p2

2)⊗ log(−s)

− log(−s)⊗ log(−p2
2)− 2 log(−p2

2)⊗ log(−t)− 2 log(−t)⊗ log(−p2
2)

−2 log

(
t

p2
2

)
⊗ log

(
1− t

p2
2

)
+ log(−p2

2)⊗ log(−p2
2) + 2 log(−s)⊗ log(−t)

+2 log(−t)⊗ log(−s) + log(−s)⊗ log(−s) + 4 log(−t)⊗ log(−t)] . (3.74)
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Figure 3.6: Cut integral diagrams for sequential discontinuities of the
two-mass-hard box, where legs 3 and 4 have null momenta.

(a) Channel pairs (s, p2
1), (s, p2

2), or (p2
1, p

2
2). (b) Channel pair (t, p2

1).
(c) Channel pair (t, p2

2). (d) Channel pair (s, t).

Up to order O(ε), the symbol alphabet can then be chosen to be

Ah =
{
p2

1, p
2
2, t, s, t− p2

1, t− p2
2

}
. (3.75)

Discontinuity in the t-channel: The discontinuity of Bh in the t-channel,

with t > 0 and all other invariants negative, can be straightforwardly computed

according to the definition (2.34) starting with the expression for the function

B2mh in (3.72), obtaining:

DisctB
h = 4πcΓ

(−p2
1)ε(−p2

2)ε

t1+2ε(−s)1+ε

[
1

ε
+ log

(
1− t

p2
1

)
+ log

(
1− t

p2
2

)
+O(ε)

]
= −4π

st

[
1

ε
+ log

(−p2
1)(−p2

2)

(−s)t2 + log

(
1− t

p2
1

)
+ log

(
1− t

p2
2

)
+O(ε)

]
. (3.76)

Considering instead the coproduct relation (2.41) and using the coproduct entry

given in eq. (3.74), we find

δtB
h ∼= i

st

[
− 2

ε
− 2 log(−p2

1) − 2 log

(
1− t

p2
1

)
− 2 log(−p2

2)− 2 log

(
1− t

p2
2

)
+ 2 log(−s) + 4 log(−t) +O(ε)

]
, (3.77)

and thus DisctB
h ∼= −2πiΘ δtB

h, as expected.

Sequential discontinuities: Since the two-mass-hard box has four momentum

channels, there are six pairs to consider as sequential discontinuities. Cutting

any of the pairs of channels (s, p2
1), (s, p2

2), or (p2
1, p

2
2) cuts the same set of three

propagators, as shown in fig. 3.6a, and gives the leading singularity . The result
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3.5. Examples — One-loop

of the integral in the respective kinematic regions is −4π2i/(st), which matches

the value computed from the coproduct, eq. (3.77), or the direct evaluation of

discontinuities (we will compute these cuts explicitly in section 5.5.7).

Let us now consider the sequential discontinuities on the channel pair (t, p2
i ),

where i = 1 or 2. For concreteness we focus on the case i = 2. We first discuss

the relation of the discontinuity to the coproduct as in eq. (2.41); finally we will

verify that the result is consistent with the iterated cut integral in the region

where the latter is defined.

Specializing (2.41) to the case of interest, we have

Disct,p2
2;R2

Bh = Θ
∑

(x1,x2)∈A2
h

a1(t, x1)a2(p2
2, x2)δx1,x2B

h , (3.78)

where R1 is the region where t > 0 and p2
2 < 0 and R2 is the one where both t > 0

and p2
2 > 0. The relevant letters for x1 can a priori be t and t− p2

i , however, by

the first entry condition we know that δt−p2
i
Bh = 0 so we only need to consider

x1 = t. We find:

a1(t, t) = Disct;t>0 log(−t− i0) = −2πi (3.79)

For x2 the relevant letters are p2
2 and t− p2

2, and both potentially contribute:

a2(p2
2, p

2
2) = Discp2

2;R2
log(−p2

2 + i0) = 2πi

a2(p2
2, t− p2

2) = Discp2
2;R2

log(t− p2
2 + i0) = 2πiθ(p2

2 − t) .
(3.80)

However using the coproduct of eq. (3.74) we have δt,p2
2
Bh = 0, so we get

Disct,p2
2;R2

Bh = −(2πi)2θ(p2
2 − t)δt,t−p2

2
Bh = −8π2i

st
θ(p2

2 − t) . (3.81)

Next consider the sequential discontinuity in the reverse order:

Discp2
2,t;R2

Bh = Θ
∑

(x1,x2)∈A2
h

a1(p2
2, x1)a2(t, x2)δx1,x2B

h , (3.82)

where R1 is now the region where p2
2 > 0 and t < 0 and R2 is the one where both

t > 0 and p2
2 > 0. Taking into account the first entry condition, there is only one
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Chapter 3. Cuts as iterated discontinuities

relevant letter for the first discontinuity, x1 = p2
2, and we find:

a1(p2
2, p

2
2) = Discp2

2;p2
2>0 log(−p2

2 − i0) = −2πi . (3.83)

For the second discontinuity x2 can either be t or t− p2
i for i = 1 and 2.

a2(t, t) = Disct;R2 log(−t+ i0) = 2πi

a2(t, t− p2
i ) = Disct;R2 log(p2

i − t+ i0) = 2πi θ(t− p2
i ) .

(3.84)

Using the coproduct component in eq. (3.74) we find that δp2
2,t−p2

2
Bh vanishes and

we finally obtain:

Discp2
2,t;R2

Bh = −(2πi)2
(
δp2

2,t
Bh + δp2

2,t−p2
2
Bh
)

= −8π2i

st
θ(p2

2 − t) . (3.85)

We thus obtain the same result irrespectively of the order in which the two

discontinuities are taken,

Disct,p2
2
Bh = Discp2

2,t
Bh . (3.86)

Consider now the cut diagrams in the channel pairs (t, p2
1) and (t, p2

2). This

cut involves an on-shell massless three-point vertex, as shown in fig. 3.6, diagrams

(b) and (c). For D > 4, as needed to regularise the infrared divergences of the

integral, the integral over w vanishes

Cutp2
1,t
B2mh = Cutp2

2,t
B2mh = 0 . (3.87)

It should be emphasised that this result is in fact only valid for t > p2
2, which is

consistent with real external momenta (the complimentary region is unphysical;

it can only be realised for complex external momenta). Given that the iterated

cut Cutp2
2,t

is only defined for t > p2
2, where it was shown to vanish identically, and

the discontinuities (3.81) and (3.85) also vanish in that region, we have verified

that

Cutp2
2,t
B2mh = Discp2

2,t
B2mh = −(2πi)2Θ

(
δp2

2,t
B2mh + δp2

2,t−p2
2
B2mh

)
= 0 .

(3.88)

Exactly the same conclusion holds for the double discontinuity on p2
1 and t.
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Finally, a comment is due concerning the channel pair (s, t). This double

discontinuity is excluded because the cuts cross in the sense described in the

cutting rules of the previous section. Indeed the relation between Cut and Disc

does not apply for crossed cuts because the second Disc operation would not have

an unambiguous i0 prescription. Note however that in the coproduct, eq. (3.74),

there are terms proportional to log(−s) ⊗ log(−t) and log(−t) ⊗ log(−s). If we

were to compute the cut integral, it would be zero, not only because of the on-

shell three-point vertices, but also because there is no real-valued momentum

solution for any box with all four propagators on shell, even in D = 4. We will

see in chapter 5 a way to consistently compute these cuts.

3.5.8 Four-mass box

Let us now look at the four mass box. In D = 4 dimensions, this diagram is

very similar to the three-mass triangle because of its conformal symmetry [99].

We give the result for the uncut function in section B.4.8, eq. (B.123), computed

as a parameter integral in what we believe is a new derivation of this result.

Here, our goal is to study its cuts and their relation with the discontinuities

and the coproduct. When computing the cuts, we will see that the variables

in terms of which the result is best written appear naturally. There are two

different types of single unitarity cuts: cuts that isolate one vertex (in one of the

p2
i ), and cuts that isolate a pair of vertices (in either the s or the t channels).

We will look at one example of each configuration: the cut in the p2
3 channel

and the cut in the s channel. Because of the long list of arguments, we write

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) ≡ B4m.

Calculation of single unitarity cuts: Following the cutting rules we estab-

lished in the previous section, and working in D = 4, we have

Cutp2
3
B4m =4

∫
d4k

δ+ (k2) δ+ ((k − p3)2)

(k + p2)2(k + p1 + p2)2
(3.89)

=4

∫ ∞
0

da1

∫ ∞
0

da2 δ

(
1−

∑
i∈S

ai

)∫
d4k

δ+ (k2) δ+ ((k − p3)2)

((a1 + a2)k2 + 2k · η + β2)2 ,
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Chapter 3. Cuts as iterated discontinuities

where in the last line we combined the two uncut propagators using Feynman

parameters, and we have defined the four-vector η and the invariant β2 as

η = a1p2 + a2(p1 + p2) , β2 = a1p
2
2 + a2s .

Following the Cheng-Wu theorem, for which we provide a proof in section B.4.8,

since the denominator of the integrand is homogeneous of degree 2 in (a1, a2), we

may take S to be any nonempty subset of {1, 2}. As far as the integration of the

cut loop momentum is concerned, we are in a situation similar to the one of the

three-mass triangle, and we thus use a similar parametrisation of the momenta,

p3 =
√
p2

3(1, 0,02), η =
√
η2(α,

√
α2 − 1,02),

k = (k0, |k| cos θ, |k| sin θ 12),

where now α and η2 are functions of the Feynman parameters. The integration

over the cut loop-momentum can be done easily and we get

Cutp2
3
B4m = 2π

∫ ∞
0

da1

∫ ∞
0

da2

δ
(
1−∑i∈S ai

)
p2

3η
2 + β4 + 2β2p3 · η

= 2π

∫ ∞
0

da1

∫ ∞
0

da2

δ
(
1−∑i∈S ai

)
a2

1p
2
2t+ a2

2p
2
4s+ a1a2 (st− p2

1p
2
3 + p2

2p
2
4)
. (3.90)

Choosing S = {2} so that a2 = 1, and changing variables to y = a1
p2

2

s
,

Cutp2
3
B4m =

2π

st

∫ ∞
0

dy
1

(Z + y)(Z̄ + y)

= −2π

st

1

Z − Z̄ log
Z̄

Z
.

(3.91)

where

Z =
1

2

(
1 + U − V +

√
λ(1, U, V )

)
,

Z̄ =
1

2

(
1 + U − V −

√
λ(1, U, V )

)
, (3.92)

with

U =
p2

2p
2
4

st
, V =

p2
1p

2
3

st
. (3.93)
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3.6. Two-loop three-point three-mass ladder

As for the three-mass triangle, Z and Z̄ appear naturally in the calculation of

the cut of the four-mass box diagram, and it is fair to say that this calculation is

simpler than the evaluation of the uncut diagram.

The cut in the s-channel can be computed following exactly the same steps.

We only quote the result,

CutsB
4m =

2π

st

1

Z − Z̄

(
log

1− Z
1− Z̄ + log

Z̄

Z

)
. (3.94)

Discussion: As expected, we find that both cuts verify the relations we

anticipated

Cutp2
3
B4m = −Discp2

3
B4m ∼= (2πi) Θ δ1−ZB

4m, (3.95)

and

CutsB
4m = −DiscsB

4m ∼= −(2πi) Θ
(
δZB

4m + δ1−ZB
4m
)
. (3.96)

Similar results can be obtained for the other external massive channels of the

box.

The analysis of multiple cuts is more complicated. Following the methods

we have developed, the calculation of the three- and four-propagator cuts is not

hard. The difficulty lies in identifying the correct region where the cuts and

discontinuities should be related. Indeed, as we already saw in the previous

example, identifying this kinematic region for box diagrams is not trivial. It

becomes even harder in the case of the four-mass box, given the required change

of variables to Z and Z̄. This is a technical issue only, but makes this example

not particularly enlightening as an illustration of the Disc-Cut-δ relations, so we

will not discuss it further.

3.6 Two-loop three-point three-mass ladder

The two-loop, three-point, three-mass ladder diagram with massless internal

lines, fig. 3.7, is finite in four dimensions [99]. In terms of the variables z, z̄ defined
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p1

p2

p3
1

2

3

4

5

6

Figure 3.7: Two-loop three-mass ladder.

in eq. (2.29), it is given by a remarkably simple expression:

TL(p2
1, p

2
2, p

2
3) ≡ − i

π4

∫
d4k1

∫
d4k2

1

k2
1 (p3 − k1)2(k1 + p1)2 k2

2 (p3 − k2)2(k1 − k2)2

= i
(
p2

1

)−2 1

(1− z)(1− z̄)(z − z̄)
F (z, z̄) ,

(3.97)

where we have defined the pure function

F (z, z̄) =6
[
Li4 (z)− Li4(z̄)

]
− 3 log (zz̄)

[
Li3 (z)− Li3(z̄)

]
+

1

2
log2(zz̄)

[
Li2(z)− Li2(z̄)

]
.

(3.98)

Because the two-loop three-point ladder in four dimensions is given by weight-

four functions, its coproduct structure is much richer than the one-loop cases

of the preceding section. Since one of our goals is to match the entries in the

coproduct to the cuts of the integral, we list below for later reference all the

relevant components of the coproduct, of the form ∆1, . . . , 1︸ ︷︷ ︸
k times

,n−k. We have

∆1,3(F (z, z̄)) = log(zz̄)⊗ [−3 Li3(z) + 3 Li3(z̄) + log(zz̄) (Li2(z)− Li2(z̄))]

+ log((1− z)(1− z̄))⊗ 1

2
log z log z̄ log

z

z̄
, (3.99)
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3.6. Two-loop three-point three-mass ladder

∆1,1,2(F (z, z̄)) = log((1− z)(1− z̄))⊗ log z ⊗
(

log z log z̄ − 1

2
log2 z̄

)
− log((1− z)(1− z̄))⊗ log z̄ ⊗

(
log z log z̄ − 1

2
log2 z

)
− log(zz̄)⊗ log(1− z)⊗

(
log z log z̄ − 1

2
log2 z

)
+ log(zz̄)⊗ log(1− z̄)⊗

(
log z log z̄ − 1

2
log2 z̄

)
+ log(zz̄)⊗ log(zz̄)⊗ [Li2(z)− Li2(z̄)] , (3.100)

∆1,1,1,1(F (z, z̄)) = log((1− z)(1− z̄))⊗ log
z

z̄
⊗ (log z̄ ⊗ log z + log z ⊗ log z̄)

− log((1− z)(1− z̄))⊗ log z ⊗ log z̄ ⊗ log z̄

+ log((1− z)(1− z̄))⊗ log z̄ ⊗ log z ⊗ log z

+ log(zz̄)⊗ log
1− z̄
1− z ⊗ log z ⊗ log z̄ + log(zz̄)⊗ log

1− z̄
1− z ⊗ log z̄ ⊗ log z

− log(zz̄)⊗ log(1− z̄)⊗ log z̄ ⊗ log z̄ + log(zz̄)⊗ log(1− z)⊗ log z ⊗ log z

− log(zz̄)⊗ log(zz̄)⊗ log(1− z)⊗ log z

+ log(zz̄)⊗ log(zz̄)⊗ log(1− z̄)⊗ log z̄ . (3.101)

Notice that the first entry of ∆1,1,1,1 is (the logarithm of) a Mandelstam invariant,

in agreement with the first entry condition.

In the rest of this section we evaluate the standard unitarity cuts of the ladder

graph of fig. 3.7, which give the discontinuities across branch cuts of Mandelstam

invariants in the time-like region. Our goal is, first, to relate these cuts to specific

terms of ∆1,3 of TL(p2
1, p

2
2, p

2
3), and, in the following section, to take cuts of these

cuts and relate them to ∆1,1,2.

In contrast to the one-loop case, even if the uncut diagram is finite, individual

cut diagrams are infrared divergent: even though TL(p2
1, p

2
2, p

2
3) is finite in D = 4

dimensions, its unitarity cuts need to be computed in D = 4 − 2ε dimensions.

The finiteness of TL(p2
1, p

2
2, p

2
3) for ε = 0 imposes cancellations between ε-poles of

individual cut diagrams. These cancellations can be understood in the same way

as the cancellation of infrared singularities between real and virtual corrections

in scattering cross sections.

For practical reasons, the cut diagrams will be computed in the region R∗4,
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Chapter 3. Cuts as iterated discontinuities

where z̄ = z∗ and all the Mandelstam invariants are timelike. This restriction

is consistent with the physical picture of amplitudes having branch cuts in the

timelike region of their invariants. When comparing the results of cuts with δ,

but particularly with Disc, we will be careful to analytically continue our result

to the region where only the cut invariant is positive, as this is where Cut is to

be compared with Disc.

Before we start computing the cut integrals, we briefly outline our approach

to these calculations. We will compute the cuts of this two-loop diagram by

integrating first over a carefully chosen one-loop subdiagram, with a carefully

chosen parametrisation of the internal propagators. We make our choices

according to the following rules, which were designed to simplify the calculations

as much as possible:

• Always work in the center of mass frame of the cut channel p2
i . The

momentum pi is taken to have positive energy ;

• The routing of the loop momentum k1 is such that k1 is the momentum of

a propagator, and there is either a propagator with momentum (pi− k1) or

a subdiagram with (pi − k1)2 as one of its Mandelstam invariants ;

• The propagator with momentum k1 is always cut ;

• Whenever possible, the propagator with momentum (pi − k1) is cut ;

• Subdiagrams are chosen so to avoid the square root of the Källén function

as their leading singularity. This is always possible for this ladder diagram.

These rules, together with the parametrisation of the momenta

pi =
√
p2
i (1, 0,0D−2), pj =

√
p2
j

(
α,
√
α2 − 1,0D−2

)
,

k1 = (k1,0, |k1| cos θ, |k1| sin θ 1D−2), (3.102)

where θ ∈ [0, π], |k1| > 0, and 1D−2 ranges over unit vectors in the dimensions

transverse to pi and pj, make the calculation of these cuts particularly simple. It

is easy to show that

α
√
p2
i

√
p2
j =

p2
l − p2

i − p2
j

2
and

√
p2
i

√
p2
j

√
α2 − 1 =

1

2

√
λ(p2

i , p
2
j , p

2
l ) . (3.103)
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p1
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(a) Cut [45]

p1

p2

p3

k2

k1
p1 − k2k1 + k2

p3 + k2

p3 − k1

(b) Cut [12]

Figure 3.8: Two-particle cuts in the p2
3-channel.

The changes of variables

cos θ = 2x− 1 and k1,0 =

√
p2
i

2
y , (3.104)

are also useful (the y variable is useful mainly when (pi − k1) is not cut).

3.6.1 Unitarity cut in the p2
3 channel

We present the computation of the cuts in the p2
3 channel in some detail,

in order to illustrate our techniques for the evaluation of cut diagrams outlined

above. We follow the cut rules in section 3.2. We then collect the different

contributions and check the cancellation of divergent pieces and the agreement

with the term δ1−zF (z, z̄) in eq. (3.99) as predicted in eq. (3.65c).

There are four cuts contributing to this channel,

Cutp2
3
TL(p2

1, p
2
2, p

2
3) =

=
(

Cutp2
3,[45] + Cutp2

3,[12] + Cutp2
3,[234] + Cutp2

3,[135]

)
TL(p2

1, p
2
2, p

2
3) , (3.105)

and our aim is to show that

Cutp2
3
TL(p2

1, p
2
2, p

2
3) = −Discp2

3
TL(p2

1, p
2
2, p

2
3)

∼= −Θ
2π

p4
1

1

(1− z)(1− z̄)(z − z̄)
δ1−zF (z, z̄). (3.106)

Two-particle cuts: There are two two-particle cut diagrams contributing to

the p2
3-channel unitarity cut, Cutp2

3,[45]TL(p2
1, p

2
2, p

2
3) and Cutp2

3,[12]TL(p2
1, p

2
2, p

2
3),

shown in fig. 3.8.
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We start by considering the diagram in fig. 3.8a, which is very simple

to compute because the cut completely factorises the two loop momentum

integrations into a one-mass triangle and the cut of a three-mass triangle:

Cutp2
3,[45],R∗4

TL(p2
1, p

2
2, p

2
3) = −i

[
eγEε

π2−ε

∫
d4−2εk1(2π)2 δ (k2

1) δ ((p3 − k1)2)

(k1 + p1)2 − i0

]
[
eγEε

π2−ε

∫
d4−2εk2

1

k2
2 + i0

1

(p3 − k2)2 + i0

1

(k1 − k2)2 + i0

]
=i T (p2

3) Cutp2
3,R
∗
4
T (p2

1, p
2
2, p

2
3) . (3.107)

We can find expressions for T (p2
3) and Cutp2

3,R
∗
4
T (p2

1, p
2
2, p

2
3) in sections B.1.1

and B.3.1. We note that the one-mass triangle is evaluated for space-like p2
3, while

in this calculation we have p2
3 > 0, given that we are cutting in this channel. We

can make sense of terms like log(−p2
3) by recalling that given the +i0 prescription

of the propagators contributing to the one-mass triangle, we have p2
3 = p2

3 + i0.

As expected, the result is divergent for ε → 0: the origin of the divergent

terms is the one-loop one-mass triangle subdiagram. Expanding up to O(ε), we

get

Cutp2
3,[45],R∗4

TL(p2
1, p

2
2, p

2
3) = (3.108)

= i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε2
f

(−2)
[45] (z, z̄) +

1

ε
f

(−1)
[45] (z, z̄) + f

(0)
[45](z, z̄)

}
+O(ε) .

Expressions for the coefficients f
(i)
[45](z, z̄) are given in appendix C.1.

We now go on to fig. 3.8b. We can see diagrammatically that the integration

over k2 is the (complex-conjugated) two-mass-hard box with external masses p2
1

and p2
2 and s = p2

3, t = (p1 + k1)2. We give the result for this diagram up to the

needed power of ε in eq. (B.105). More precisely, we have

Cutp2
3,[12],R∗4

TL(p2
1, p

2
2, p

2
3) = (3.109)

=
eγEε

π2−ε i

∫
d4−2εk1(2π)2δ

(
k2

1

)
δ
(
(p3 − k1)2

) (
Bh(p2

3, (p1 + k1)2; p2
1, p

2
2)
)†
.

To proceed, we parametrise the momenta as in eq. (3.102), with (i, j) = (3, 1).
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3.6. Two-loop three-point three-mass ladder

Then, we rewrite the momentum integration as

eγEε

π2−ε

∫
d4−2εk1(2π)2δ

(
k2

1

)
δ
(
(p3 − k1)2

)
=

=
4π

Γ(1− ε)

∫
dk1,0

∫
d |k1|2 |k1|1−2ε δ(k2

1,0 − |k1|2)δ(p2
3 − 2p3 · k1)∫ 1

−1

d cos θ(1− cos2 θ)−ε .

The two delta functions allow us to trivially perform the k1,0 and |k1| integrations.

For the remaining integral, it is useful to change variables to cos θ = 2x − 1, as

in eq. (3.104), and we get,

(p1 + k1)2 = p2
1 (z − x(z − z̄)) .

We finally have

Cutp2
3,[12],R∗4

TL(p2
1, p

2
2, p

2
3) =

=2π
cΓ

Γ(1− ε)(p2
1)−2−2εe−iπεuε2u

−1−2ε
3

∫ 1

0

dx
x−ε(1− x)−ε

(z − x(z − z̄))1+2ε[
1

ε2
+ 2Li2(1− z + x(z − z̄)) + 2Li2

(
1− z − x(z − z̄)

zz̄

)]
+O(ε) , (3.110)

where cΓ is defined in eq. (A.12). The factor e−iπε was determined according

to the i0 prescription of the invariants. After expansion in ε, all the integrals

above are simple to evaluate in terms of multiple polylogarithms. We write this

expression as:

Cutp2
3,[12],R∗4

TL(p2
1, p

2
2, p

2
3) = (3.111)

= i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε2
f

(−2)
[12] (z, z̄) +

1

ε
f

(−1)
[12] (z, z̄) + f

(0)
[12](z, z̄)

}
+O(ε) ,

and give the expressions for the coefficients f
(i)
[12](z, z̄) in appendix C.1.

Three-particle cuts: There are two three-particle cut diagrams contributing

to the p2
3-channel unitarity cut, Cutp2

3,[234]TL(p2
1, p

2
2, p

2
3) and Cutp2

3,[135]TL(p2
1, p

2
2, p

2
3),

shown in fig. 3.9. As these two cuts are very similar, we only present the details

for the computation of the cut in fig. 3.9a, and simply quote the result for fig. 3.9b.
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p1

p2

p3

k1

p3 − k1

p2 + k1
k2

p3 − k1 − k2

k1 + k2

(a) Cut [234]

p1

p2

p3

k1
k2

k1 + k2

p1 + k1

p3 − k1

p3 − k1 − k2

(b) Cut [135]

Figure 3.9: Three-particle cuts in the p2
3-channel.

In both cases, we note that the integration over k2 is the cut in the (p3 − k1)2-

channel of a two-mass one-loop triangle, with masses p2
3 and (p3 − k1)2. More

precisely, for the cut in fig. 3.9a we have

Cutp2
3,[234],R∗4

TL(p2
1, p

2
2, p

2
3) =

eγEε

π2−ε

∫
d4−2εk1(2π)

δ (k2
1)

((p2 + k1)2 − i0) ((p3 − k1)2 − i0)

×Cut(p3−k1)2T
(
p2

3, (p3 − k1)2
)
. (3.112)

We take the result for the cut of the two mass triangle given in appendix B.2.1

and insert it into eq. (3.112),

Cutp2
3,[234],R∗4

TL(p2
1, p

2
2, p

2
3) = (3.113)

= 2
e2γEε

π−ε
Γ(1− ε)
εΓ(1− 2ε)

∫
d4−2εk1

δ (k2
1)

(p2 + k1)2

θ ((p3 − k1)2)

p3 · k1

(
1

(p3 − k1)2

)1+ε

θ(k1,0) ,

where we have used the δ-function to set k2
1 = 0, and we have dropped the ±i0

of all propagators. We have included the θ-functions because the cut of the two-

mass triangle is only nonzero when the (p3 − k1)2-channel is positive. It is also

important to recall that the positive energy flow across the cut requires k1,0 > 0,

so we have included this θ-function explicitly. We use the parametrisation of

eq. (3.102), with (i, j) = (3, 2) and both changes of variables in eq. (3.104), since

the propagator with momentum (p3−k1) is not cut. The two conditions imposed

by the θ-functions imply that

0 ≤ y ≤ 1 . (3.114)
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3.6. Two-loop three-point three-mass ladder

We get

Cutp2
3,[234],R∗4

TL(p2
1, p

2
2, p

2
3) = −2πe2γEεΓ(1− ε)

ε2Γ(1− 3ε)
(p2

1)−2−2εu
−1−2ε
3

u2

(3.115)∫ 1

0

dx x−ε(1− x)−1−ε
2F1

(
1, 1− 2ε; 1− 3ε; 1− z − x(z − z̄)

u2

)
.

We can now expand the hypergeometric function into a Laurent series in ε using

standard techniques [100], and we then perform the remaining integration order

by order. As usual, we write the result in the form

Cutp2
3,[234],R∗4

TL(p2
1, p

2
2, p

2
3) =

= i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε2
f

(−2)
[234] (z, z̄) +

1

ε
f

(−1)
[234] (z, z̄) + f

(0)
[234](z, z̄)

}
+O(ε) .

(3.116)

The diagram of fig. 3.9b can be calculated following exactly the same steps,

the only difference being that when using the parametrisation of eq. (3.102) we

have (i, j) = (3, 1). The result is

Cutp2
3,[135],R∗4

TL(p2
1, p

2
2, p

2
3) = −2πe2γEεΓ(1− ε)

ε2Γ(1− 3ε)
(p2

1)−2−2εu−1−2ε
3∫ 1

0

dx x−ε(1− x)−1−ε
2F1 (1, 1− 2ε; 1− 3ε; 1− z + x(z − z̄)) (3.117)

= i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε2
f

(−2)
[135] (z, z̄) +

1

ε
f

(−1)
[135] (z, z̄) + f

(0)
[135](z, z̄)

}
+O(ε) .

Explicit expressions for the f
(i)
[234](z, z̄) and f

(i)
[135](z, z̄) are given in appendix C.1.

Summary and discussion. Let us now combine the results for each p2
3-channel

cut diagram and compare the total with Disc and the relevant terms in the

coproduct. We observe the sum is very simple, compared to the expressions

for each of the cuts.

Note that, as imposed by the fact that the two-loop ladder is finite in four

dimensions, the sum of the divergent terms of each diagram vanishes. In fact,

this cancellation happens in a very specific way: the sum of the two-particle cuts
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Chapter 3. Cuts as iterated discontinuities

cancels with the sum of the three-particle cuts. If we write

f
(−2)
[45] + f

(−2)
[12]

ε2
+
f

(−1)
[45] + f

(−1)
[12]

ε
≡ f

(−2)
virt

ε2
+
f

(−1)
virt

ε1
, (3.118)

f
(−2)
[234] + f

(−2)
[135]

ε2
+
f

(−1)
[234] + f

(−1)
[135]

ε
≡ f

(−2)
real

ε2
+
f

(−1)
real

ε1
, (3.119)

then this cancellation can be written as

f
(−2)
virt = −f (−2)

real and f
(−1)
virt = −f (−1)

real . (3.120)

We call the divergent contribution of two particle cuts a virtual contribution

because it is associated with divergences of loop diagrams, whereas the divergent

contribution of three particle cuts, the real contribution, comes from integrating

over a three-particle phase space. This cancellation is similar to the cancellation

of infrared divergences for inclusive cross sections, although in this case we are

not directly dealing with a cross section, but merely with the unitarity cuts of

a single finite Feynman integral. A better understanding of these cancellations

might prove useful for the general study of the infrared properties of amplitudes,

and it would thus be interesting to understand how it generalises to other cases.

As expected, the sum of the finite terms does not cancel. We get

f
(0)
[45](z, z̄) + f

(0)
[12](z, z̄) + f

(0)
[234](z, z̄) + f

(0)
[135](z, z̄) = iπ log z log z̄ log

z

z̄
. (3.121)

Since all divergences have cancelled, we can set ε = 0 and write the cut-derived

discontinuity of the integral as

Cutp2
3,R
∗
4
TL(p2

1, p
2
2, p

2
3) = − π(p2

1)−2

(1− z)(1− z̄)(z − z̄)
log z log z̄ log

z

z̄
. (3.122)

For comparison with Disc, we now analytically continue this result to the region

R3
4 where only the cut invariant is positive: p2

3 > 0 and p2
1, p

2
2 < 0. In terms of

the z and z̄ variables, the region is: z > 1 > z̄ > 0, see table 2.1. None of the

functions in eq. (3.122) has a branch cut in this region, and thus there is nothing

to do for the analytic continuation and the result is valid in this region as it is
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3.6. Two-loop three-point three-mass ladder

p3

p2

p1

p3 + k2

k1 − k2

k2

p3 + k1

p2 − k1

k1

(a) Cut [46]

p1

p2

p3

p3 + k2

p2 − k2

k2

k2 − k1

p3 + k1

k1

(b) Cut [136]

Figure 3.10: Cuts in the p2
2-channel

given above,

Cutp2
3,R

3
4
TL(p2

1, p
2
2, p

2
3) = Cutp2

3,R
∗
4
TL(p2

1, p
2
2, p

2
3) .

This is consistent with the expectation that the discontinuity function would be

real in the region where only the cut invariant is positive [21, 23].

The relations with Disc and δ are now easy to verify. As expected, we find,

Cutp2
3,R

3
4
TL(p2

1, p
2
2, p

2
3) = −Discp2

3
TL(p2

1, p
2
2, p

2
3) (3.123)

∼= −2π
(
p2

1

)−2
Θ

1

(1− z)(1− z̄)(z − z̄)
δ1−zF (z, z̄) .

We can write this equation diagrammatically as

δ1−zTL(p2
1, p

2
2, p

2
3) =

1

2πi

(
+

+ +

)
.

3.6.2 Unitarity cut in the p2
2 channel

We now turn to the calculation of the cuts in the p2
2 channel, in order to

reproduce the δzTL(p2
1, p

2
2, p

2
3) entry of the coproduct in eq. (3.99) as predicted in

eq. (3.65b). Only two cut diagrams contribute to this channel,

Cutp2
2
TL(p2

1, p
2
2, p

2
3) =

(
Cutp2

2,[46] + Cutp2
2,[136]

)
TL(p2

1, p
2
2, p

2
3) . (3.124)
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Chapter 3. Cuts as iterated discontinuities

The computation of the two cuts diagrams follows the same strategy as before,

i.e., we compute the cut of the two-loop diagram by integrating over a carefully

chosen one-loop subdiagram.

Computation of the cut diagrams. We start with Cutp2
2,[46]TL(p2

1, p
2
2, p

2
3). As

suggested by the momentum routing in fig. 3.10a, we identify the result of the

k2 integration with the complex conjugate of an uncut two-mass triangle, with

masses (p3 + k1)2 and p2
3:

Cutp2
2,[46],R∗4

TL(p2
1, p

2
2, p

2
3) =

= −i e
γEε

π2−ε

∫
d4−2εk1(2π)2 δ (k2

1) δ ((p2 − k1)2)

(p3 + k1)2 − iε
(
T (p2

3, (p3 + k1)2)
)†
. (3.125)

Using the result for the triangle given in appendix B.2.1 and proceeding in the

same way as with the p2
3-channel cuts, we get (setting (i, j) = (2, 3) in eq. (3.102))

Cutp2
2,[46],R∗4

TL(p2
1, p

2
2, p

2
3) = 2π

cΓe
γEε

ε2Γ(1− ε)u
−ε
2 e−iπε(p2

1)−2−2ε

∫ 1

0

dx (1− x)−εx−ε

(u3 + z − u2 − x(z − z̄))−ε − u−ε3

(u3 + z − u2 − x(z − z̄)) (z − u2 − x(z − z̄))

= i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε
f

(−1)
[46] (z, z̄) + f

(0)
[46](z, z̄)

}
+O(ε) , (3.126)

where cΓ is defined in eq. (A.12).

The cut integral Cutp2
2,[136]TL(p2

1, p
2
2, p

2
3) is slightly more complicated. Using

the routing of loop momenta of fig. 3.10b, we look at it as the k1-integration over

the cut of a three-mass box,

Cutp2
2,[136],R∗4

TL(p2
1, p

2
2, p

2
3) =

=− eγEε

π2−ε

∫
d4−2εk1

2πδ (k2
1)

(p3 + k1)2 − iεCuttB
(
s, t; l22, l

2
3, l

2
4

)
, (3.127)

where CuttB (s, t, l22, l
2
3, l

2
4) is the t-channel cut of the three-mass box with masses

l2i , for i ∈ {2, 3, 4}, l21 = 0, s = (l1 + l2)2 and t = (l2 + l3)2. In our case:

l22 = (p3 + k1)2− i0, l23 = p2
1− i0, l24 = p2

2 + i0, s = p2
3− i0, t = (p2− k1)2 .
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3.6. Two-loop three-point three-mass ladder

The result for the t-channel cut of the three-mass box is given in eq. (B.110) in the

region where the uncut invariants are negative and t is positive. Since we work

in the region where all the p2
i are positive, some terms in the expression (B.110)

need to be analytically continued using the ±i0 prescriptions given above. Using

eq. (3.102) with (i, j) = (2, 3) and introducing the variables x and y according to

eq. (3.104), we have:6

log(−s) = log p2
1 + log u3 + iπ ,

(−l22)−ε =
(
eiπp2

1

)−ε
(u3 + y (z − u2 − x(z − z̄)))−ε ,

(−l23)−ε =
(
eiπp2

1

)−ε
,

log

(
1− l24

t

)
= log y − log(1− y)− iπ ,

log

(
1− l22l

2
4

st

)
= log (u3 + z − u2 − x(z − z̄)) + log y − log u3 − log(1− y)− iπ .

Combining everything, Cutp2
2,[136],R∗4

TL(p2
1, p

2
2, p

2
3) is given by

Cutp2
2,[136],R∗4

TL(p2
1, p

2
2, p

2
3) =

=2π
e2γEε

Γ(1− 2ε)
u−ε2 (p2

1)−2−2ε

∫ 1

0

dx (1− x)−εx−ε
∫ 1

0

dy y−2ε

1

u3 + z − u2 − x(z − z̄)

1

u3 + y (z − u2 − x(z − z̄))

[
2 log u2 +

2

ε
u−ε2 (1− y)−ε

+ 2 log(1− y)− uε2
ε

(1− y)ε (u3 + y (z − u2 − x(z − z̄)))−ε

− 2 log (u3 + z − u2 − x(z − z̄))

]
+O(ε)

=i
(p2

1)−2−2ε

(1− z)(1− z̄)(z − z̄)

{
1

ε
f

(−1)
[136] (z, z̄) + f

(0)
[136](z, z̄)

}
+O(ε) . (3.128)

Explicit results for f
(i)
[46](z, z̄) and f

(i)
[136](z, z̄) are given in appendix C.1.

Summary and discussion. Similarly to the p2
3-channel cuts, we first analyze

the cancellation of the singularities in the sum of the two cuts contributing to the

6Strictly speaking, this analytic continuation is valid for z̄ = z∗, with Re(z) < 1. For the
case of Re(z) > 1, the factors of iπ are distributed in other ways among the different terms,
but the combination of all terms is still the same.
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Chapter 3. Cuts as iterated discontinuities

p2
2 channel, and check the agreement with δzTL(p2

1, p
2
2, p

2
3) given in eq. (3.99). In

this case we only have single poles, and we see that the poles cancel, as expected:

f
(−1)
[46] (z, z̄) + f

(−1)
[136] (z, z̄) = 0 . (3.129)

This cancellation can again be understood as the cancellation between virtual

(from cut [46]) and real contributions (from cut [136]).

Adding the finite contributions, we find

f
(0)
[46](z, z̄)+f

(0)
[136](z, z̄) = 2πi

{
3
[
Li3(z̄)−Li3(z)

]
+
(

log(zz̄)−iπ
)[

Li2(z)−Li2(z̄)
]}

.

(3.130)

Hence, the cut of the two-loop ladder in the p2
2 channel is

Cutp2
2,R
∗
4
TL(p2

1, p
2
2, p

2
3) =− 2π(p2

1)−2

(1− z)(1− z̄)(z − z̄)

{
3
[
Li3(z̄)− Li3(z)

]
+
(

log(zz̄)− iπ
)[

Li2(z)− Li2(z̄)
]}

. (3.131)

Since this result was computed in the region where all invariants are positive, we

now analytically continue to the region R2
4 where p2

2 > 0 and p2
1, p

2
3 < 0. For the

z and z̄ variables, this corresponds to 1 > z > 0 > z̄, see table 2.1. The analytic

continuation of the Li2 and Li3 functions is trivial, because their branch cuts lie in

the [1,∞) region of their arguments. However, the continuation of log(zz̄) needs

to be done with some care, since (zz̄) becomes negative. We can determine the

sign of the i0 associated with (zz̄) by noticing that

log

(
− p2

2

p2
1 − i0

)
= log (−zz̄ − i0) ,

where we associate a −i0 to p2
1 because it is in the complex-conjugated region of

the cut diagrams. We thus see that the −iπ term in eq. (3.131) is what we get

from the analytic continuation of log (−zz̄ − i0) to positive (zz̄). In region R2
4,

we thus have

Cutp2
2,R

2
4
TL(p2

1, p
2
2, p

2
3) =− 2π(p2

1)−2

(1− z)(1− z̄)(z − z̄)

{
3
[
Li3(z̄)− Li3(z)

]
+ log(−zz̄ − iε)

[
Li2(z)− Li2(z̄)

]}
. (3.132)
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p1

p2

p3

(a) Cut [56]

p2

p1

p3

(b) Cut [236]

Figure 3.11: Cuts in the p2
1-channel

This agrees with the expectation that the discontinuity function should be real

in the region where only the cut invariant is positive [21, 23]. Furthermore, we

again observe the expected relations with Disc and δ,

Cutp2
2,R

2
4
TL(p2

1, p
2
2, p

2
3) = −Discp2

2
TL(p2

1, p
2
2, p

2
3)

∼= −2πΘ
(
p2

1

)−2 1

(1− z)(1− z̄)(z − z̄)
δzF (z, z̄) . (3.133)

Diagrammatically, the relation can be written as follows:

δzTL(p2
1, p

2
2, p

2
3) =

1

2πi

(
+

)
. (3.134)

3.6.3 Unitarity cut in the p2
1 channel

Given the symmetry of the three-point ladder, the cut in the p2
1 channel shown

in fig. 3.11 can be done in exactly the same way as the p2
2 channel, so we will be

brief in listing the results.

For the sum of the two cut integrals, the reflection symmetry can be

implemented by exchanging p1 and p2 in eq. (3.131), along with transforming

z → 1/z̄ and z̄ → 1/z. The total cut integral is then

Cutp2
1,R
∗
4
TL(p2

1, p
2
2, p

2
3) =− 2π(p2

1)−2

(1− z)(1− z̄)(z − z̄)

{
3

[
Li3

(
1

z

)
− Li3

(
1

z̄

)]
−
(

log(zz̄) + iπ
) [

Li2

(
1

z̄

)
− Li2

(
1

z

)]}
. (3.135)

We now analytically continue p2
2 and p2

3 to the region R1
4 where we should match

Cut with Disc. In this region, we have z̄ < 0 and z > 1, see 2.1. Similarly to the
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previous case, we take p2
2− i0 to find that log(zz̄− i0)→ log(−zz̄)− iπ, and thus

Cutp2
1,R

1
4
TL(p2

1, p
2
2, p

2
3) =− 2π(p2

1)−2

(1− z)(1− z̄)(z − z̄)

{
3

[
Li3

(
1

z

)
− Li3

(
1

z̄

)]
− log(−zz̄)

[
Li2

(
1

z̄

)
− Li2

(
1

z

)]}
=−Discp2

1
TL(p2

1, p
2
2, p

2
3). (3.136)

In the last line, we have confirmed that the cut result agrees with a direct

evaluation of the discontinuity of TL(p2
1, p

2
2, p

2
3) in the region R1

4.

The δ discontinuity evaluated from the coproduct is simply related to the

discontinuities in the p2
2 and p2

3 channels. Indeed, we can rewrite eq. (3.99) as

∆1,3(F (z, z̄)) = log
(
−p2

2

)
⊗ δp2

2
F (z, z̄) + log

(
−p2

3

)
⊗ δp2

3
F (z, z̄)

+ log
(
−p2

1

)
⊗ δp2

1
F (z, z̄),

where

δp2
2
F (z, z̄) = δzF (z, z̄) , δp2

3
F (z, z̄) = δ1−zF (z, z̄) ,

δp2
1
F (z, z̄) = −δzF (z, z̄)− δ1−zF (z, z̄) . (3.137)

Explicitly,

(−2πi)δp2
1
TL =− 2π(p2

1)−2

(1− z)(1− z̄)(z − z̄)

{
3
[
Li3(z̄)− Li3(z)

]
+ log(−zz̄)

[
Li2(z)− Li2(z̄)

]
+

1

2
log z log z̄ log

z

z̄

}
, (3.138)

which agrees with Discp2
1
TL from eq. (3.136) modulo π2.

3.6.4 Double unitarity cuts

In this section we describe the computation of the sequences of two unitarity

cuts corresponding to Cutp2
1
◦Cutp2

3
and Cutp2

1
◦Cutp2

2
; see fig. 3.12 and fig. 3.13.

All the cut integrals can be computed following similar techniques as the ones

outlined in sections 3.6.1 and 3.6.2, so we will be brief and only comment on some

special features of the computation. Details on how to compute the integrals can
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3.6. Two-loop three-point three-mass ladder

p1

p2

p3

k1

p1 − k1

p3 + k1

k2

k1 + k2

p3 − k2

(a) Cut [456]

p1

p2

p3

k2

p3 − k2

k1 + k2

p3 + k1

k1

p1 − k1

(b) Cut [1256]

p1

p2

p3

k1

p3 − k1

k2

k1 + k2

p1 − k2

p3 + k2

(c) Cut [1236]

p1

p2

p3

p3 − k1 − k2

k2
k1 + k2

k1

p3 − k1

p2 + k1

(d) Cut [2346]

p1

p2

p3

(e) Cut [23456]

p1

p2

p3
p1 + k2

p3 − k1 − k2

k1 + k2

p2 + k1

p1 − k1
k1

(f) Cut [1356]

Figure 3.12: Cut diagrams contributing to the Cutp2
1
◦ Cutp2

3
sequence of

unitarity cuts.

be found in appendix C.2.1, and the explicit results for all the cuts in fig. 3.12

and fig. 3.13 are given in appendices C.2.2 and C.2.3 respectively.

First, we note that, since we are dealing with sequences of unitarity cuts, the

cut diagrams correspond to the extended cutting rules introduced in section 3.2.

In particular, in section 3.2 we argued that cut diagrams with crossed cuts should

be discarded, and such diagrams are therefore not taken into account in our

computation. (In this example, all possible crossed cut diagrams would vanish

anyway, for the reason given next.)

Second, some of the cut integrals vanish because of energy-momentum

constraints. Indeed the cut in fig. 3.12e vanishes in real kinematics because it

contains a three-point vertex where all the connected legs are massless and on

shell. Hence, the cut diagram cannot satisfy energy momentum conservation in

real kinematics with D > 4. We will set this diagram to zero, and we observe
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Chapter 3. Cuts as iterated discontinuities

p1

p2

p3
k2

p3 + k2

p1 + k1

p2 − k1 − k2

p2 − k1

k1

(a) Cut [456]

p1

p2

p3

p1 + k1

k1k2

p3 − k2

p1 + k1 + k2

p2 − k1

(b) Cut [2346]

p1

p2

p3

k1

p1 − k1

p2 + k1 − k2

p3 + k2

k2

p2 + k1

(c) Cut [1356]

p1

p2

p3

k1

p3 + k1

p1 − k1 + k2

p2 − k2

p1 + k2

k2

(d) Cut [1236]

Figure 3.13: Cut diagrams contributing to the Cutp2
1
◦ Cutp2

2
sequence of

unitarity cuts.

a posteriori that this is consistent with the other results, again supporting our

approach of working in real kinematics.

We make one further remark on kinematic restrictions. Recall that the

generalised cutting rules allow for all possible directions of energy flow across

each cut (as illustrated in fig. 3.1 for the triangle). In this example of the ladder

cut in channels p2
1 and p2

3, all diagrams except fig. 3.12b would vanish if the

energy components of p1 and p3 had the same sign. However, it follows from the

conditions of the cut region (p2
1, p

2
3 > 0, p2

2 < 0), in real kinematics, that the

energy components of p1 and p3 must have opposite signs. Thus we will find that

we always have nonvanishing contributions from all diagrams except fig. 3.12e.

It is important to be aware of these types of restrictions on the existence of the

cut region, since they do not necessarily show up explicitly in the cut integrals.

Let us now focus on the cuts that do not vanish. As we mentioned previously,

the cuts are computed by integrating over carefully chosen one-loop subdiagrams.

In particular, for simplicity we avoid integrating over three-mass triangles, cut

or uncut, because the leading singularity of this diagram is the square root of

the Källén function, which leads to integrands that are not directly integrable

using the tools developed for multiple polylogarithms. In Tables 3.1 and 3.2 we

summarise the preferred choices of subdiagrams for the first loop integration. We
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3.6. Two-loop three-point three-mass ladder

Cut – computed in R1,3
4 One-loop subdiagram

Cutp2
1,[56] ◦ Cutp2

3,[45] = Cut[456],R1,3
4

One-mass triangle, mass p2
3, fig. 3.12a

(this cut completely factorises).
Cutp2

1,[56] ◦ Cutp2
3,[12] = Cut[1256],R1,3

4
Cut two-mass triangle, masses p2

3 and

(p3 + k1)2, in p2
3 channel, fig. 3.12b.

Cutp2
1,[236] ◦ Cutp2

3,[12] = Cut[1236],R1,3
4

Cut two-mass-hard box, masses p2
1

and p2
2, in t = (p1 − k1)2 channel,

fig. 3.12c.
Cutp2

1,[236] ◦ Cutp2
3,[234] = Cut[2346],R1,3

4
Cut two-mass triangle, masses p2

3 and

(p3 − k1)2, in (p3 − k1)2 channel,
fig. 3.12d.

Cutp2
1,[56] ◦ Cutp2

3,[135] = Cut[1356],R1,3
4

Cut two-mass triangle, masses p2
3 and

(p3 − k1)2, in (p3 − k1)2 channel,
fig. 3.12f.

Table 3.1: Nonvanishing cuts contributing to the Cutp2
1
◦ Cutp2

3
sequence of

unitarity cuts.

observe that it is insufficient to define a cut integral by the subset of propagators

that are cut. Indeed, some cut integrals in the two tables have the same cut

propagators, but are computed in different kinematic regions due to the rules of

section 3.2, leading to very different results.

Finally, depending on the cut integral and the kinematic region where the

cut is computed, the integrands might become divergent at specific points, and

we need to make sense of these divergences to perform the integrals. In the

case where the integral develops an end-point singularity, we explicitly subtract

the divergence before expanding in ε, using the technique known as the plus

prescription. For example, if g(y, ε) is regular for all y ∈ [0, 1], then, for ε < 0,

we have: ∫ 1

0

dy
g(y, ε)

(1− y)1+ε
=
g(1, ε)

ε
+

∫ 1

0

dy
g(y, ε)− g(1, ε)

(1− y)1+ε
. (3.139)

The remaining integral is manifestly finite, and we can thus expand in ε under

the integration sign. However, we also encounter integrands which, at first

glance, develop simple poles inside the integration region. A careful analysis

however reveals that the singularities are shifted into the complex plane due to

the Feynman i0 prescription for the propagators. As a consequence, the integral
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Chapter 3. Cuts as iterated discontinuities

Cut – computed in R1,2
4 One-loop subdiagram

Cutp2
1,[56] ◦ Cutp2

2,[46] = Cut[456],R1,2
4

One-mass triangle, mass p2
3, fig. 3.13a

(this cut completely factorises).
Cutp2

1,[236] ◦ Cutp2
2,[46] = Cut[2346],R1,2

4
Cut two-mass triangle, masses p2

3 and

(p1 + k1)2, in (p1 + k1)2 channel,
fig. 3.13b.

Cutp2
1,[56] ◦ Cutp2

2,[136] = Cut[1356],R1,2
4

Cut two-mass triangle, masses p2
3 and

(p2 + k1)2, in (p2 + k1)2 channel,
fig. 3.13c.

Cutp2
1,[236] ◦ Cutp2

2,[136] = Cut[1236],R1,2
4

Cut two-mass-hard box, masses p2
1

and p2
2, in t = (p1 − k1)2 channel,

fig. 3.13d.

Table 3.2: Cuts contributing to the Cutp2
1
◦ Cutp2

2
sequence of unitarity cuts.

develops an imaginary part, which can be extracted by the usual principal value

prescription,

lim
ε→0

1

a± iε = PV
1

a
∓ iπ δ(a), (3.140)

where PV denotes the Cauchy principal value, defined by

PV

∫ 1

0

dy
g(y)

y − y0

= lim
η→0

[∫ y0−η

0

dy
g(y)

y − y0

+

∫ 1

y0+η

dy
g(y)

y − y0

]
, (3.141)

where g(y) is regular on [0, 1] and y0 ∈ [0, 1]. Note that the consistency

throughout the calculation of the signs of the i0 of uncut propagators and

subdiagram invariants, as derived from the conventions of the extended cutting

rules of section 3.2 (see also appendix A), is a nontrivial consistency check of

these cutting rules.

Summary and discussion

Let us now look at explicit results for Cutp2
3,p

2
1
TL and Cutp2

2,p
2
1
TL. From the

explicit calculations collected in Appendix C.2, we get

Cutp2
3,p

2
1
TL
(
p2

1, p
2
2, p

2
3

)
=

4π2i(p2
1)−2

(1− z)(1− z̄)(z − z̄)

(
log(z) log(z̄)− log2(z)

2

)
,

(3.142)
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3.6. Two-loop three-point three-mass ladder

and

Cutp2
2,p

2
1
TL
(
p2

1, p
2
2, p

2
3

)
=

4π2i(p2
1)−2

(1− z)(1− z̄)(z − z̄)

(
log(z) log(z̄)− 1

2
log2(z)

− Li2(z) + Li2(z̄)

)
. (3.143)

Comparing with the coproduct in eq. (3.100), we verify from these results

that the relations of eq. (3.20) between Cut and δ, as written in eqs. (3.66),

are satisfied. We have confirmed by direct calculation from the original ladder

function, eq. (3.97), that the Disc operation gives the expected results as well.

Diagrammatically, for the specific cuts considered above, we have

[δ1−z,z̄ + δ1−z,1−z]TL(p2
1, p

2
2, p

2
3)

=
1

(2πi)2

(
+ +

+ + +

)
R1,3
4

,

and,

[δz,z̄ + δz,1−z]TL(p2
1, p

2
2, p

2
3) =

1

(2πi)2

(
+

+ +

)
R1,2
4

.

One could wonder about a sequence of three unitarity cuts in the three distinct

channels of the ladder. As argued in Section 2.3.3, the region where one would

hope to compute this triple cut has all p2
i > 0. Since F is only a function of

the ratios of the p2
i , this region is indistinguishable from the euclidean region, so

the triple cut must vanish and contains no nontrivial information on the analytic

structure of the function.
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Chapter 3. Cuts as iterated discontinuities

3.7 Summary and discussion

For the class of Feynman integrals with massless propagators that may be

expressed in terms of the iterated integrals known as multiple polylogarithms,

we have formulated precise relations between discontinuities across their physical

branch cuts, their unitarity cuts, and their coproduct.

Taking a step beyond the familiar case of a single unitarity cut, in sections

3.2 and 3.3 we developed the concept of a sequence of unitarity cuts. To define

this notion consistently, we extended the cutting rules of [21,23] to accommodate

multiple cuts in different channels or in a combination of channels and internal

masses, in an appropriately chosen kinematic region. The cutting rules specify a

unique prescription for complex conjugation of certain vertices and propagators,

dictated by the channels on which cuts are taken. Importantly, the result does

not depend on the order in which the cuts are applied (aside from the minor

detail discussed below eq. (3.18)).

Having specified the definition of a sequence of unitarity cuts, we find the

following correspondences, which we conjecture to be general, among

• the sum of all cut diagrams in the kinematic invariants r1, ..., rk, where the

ri can be either external channels or internal masses, which we denote by

Cutr1,...,rk ;

• a sequence of discontinuity operations, which we denote by Discr1,...,rk ;

• the weight n − k cofactors of the terms in the coproduct of the form

∆1,1,...,1,n−k, where each of the k weight one entries of a specific term in

∆1,1,...,1,n−k is associated with the ri in a well defined manner.

The precise relations are given in section 3.4, and were illustrated by a variety

of one—see section 3.5—and two-loop examples—see section 3.6. In establishing

the relations given in section 3.4, we had to settle several small issues related

to the order in which discontinuities are taken and the determination of the i0-

prescription of symbol letters. We will not review them here, but it is important

to have them in mind when determining the relations in specific examples. We

also found an interesting result about cuts of massive propagators that isolate an

external channel, see the discussion around eq. (3.19).
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3.7. Summary and discussion

In sections 3.5.1 and 3.6, we explained the techniques we developed to compute

cut diagrams. This was one of the most challenging parts of the work presented

in this chapter, as techniques to compute cut diagrams are far less well developed

than techniques to compute uncut diagrams. We note that individual cuts of

multi-loop integrals that are themselves finite in four dimensions may be divergent

when the internal propagators that are put on shell are massless. However,

because the diagram is finite, the combination of cuts contributing to the unitarity

cut in a given channel must be finite. This situation was encountered here upon

taking unitarity cuts of the two-loop ladder graph, where we saw that the pattern

of cancellation is similar to the familiar real-virtual cancellation mechanism in

cross sections, although this example does not correspond to a cross section.

Understanding this pattern of cancellation is useful for the general program of

developing efficient subtraction procedures for infrared singularities, and it would

be interesting to explore how this generalises for other multi-loop integrals.

Unfortunately, in this section we observed that unitarity cuts are not enough

to describe the full structure of the coproduct of Feynman diagrams. This is

perhaps most apparent in the two-loop example where we could not go deeper

than ∆1,1,2. Another shortcoming of our method is that it does not allow cuts

in crossed channels, which means we have no way of reproducing the iterated

discontinuity on the s and t channels of a box diagram. Finally, we insisted on

using real kinematics in computing the cut diagrams, and although it allowed

us to reproduce the results computed with Disc, even in the two-loop case, it is

known that cuts computed in complex kinematics capture information about the

analytic structure of Feynman diagrams [4, 5, 9, 56, 57, 85, 86, 101]. It is of course

interesting to understand if one can relax some of the rather strict conditions we

imposed in a systematic way, and this question will be addressed in chapter 5.

However, before that, in the next chapter we will discuss the question of

whether we can use the information obtained by computing cuts to reconstruct

the uncut Feynman integral.
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Chapter 4

Reconstruction from cut

diagrams

4.1 Introduction

In the previous chapter we introduced computational tools to compute cut

integrals, and we showed that extended cutting rules in real kinematics lead to

consistent results. Furthermore, we argued that the entries in the coproduct of

a Feynman integral can be related to its discontinuities and cut integrals. While

these results are interesting in their own right, in this section we take a step

further and put them to use: we present several ways of using the knowledge of

(sequences of) cut integrals to reconstruct the original Feynman integral based

on the knowledge of its cuts. The work presented here is covered in refs. [36,37].

We motivate our approach by discussing the three-point functions with

massless propagators and three external massive legs. It is obvious from the

first-entry condition that if all cuts are known, we can immediately write down

the coproduct component of weight (1, n − 1) of a pure integral of weight

n. In particular, for the three-point functions with massless propagators, we

immediately obtain

∆1,1(T (z, z̄)) = log(zz̄)⊗ δzT (z, z̄) + log((1− z)(1− z̄))⊗ δ1−zT (z, z̄) ,

∆1,3(F (z, z̄)) = log(zz̄)⊗ δzF (z, z̄) + log((1− z)(1− z̄))⊗ δ1−zF (z, z̄) ,
(4.1)

where T (z, z̄) is the one-loop triangle defined in eq. (B.53) and F (z, z̄) the two-
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Chapter 4. Reconstruction from cut diagrams

loop ladder of eq. (3.98), and the quantities δzT (z, z̄), δ1−zT (z, z̄), δzF (z, z̄)

and δ1−zF (z, z̄) are directly related to the discontinuities of the integral through

eqs. (3.65). These components of the coproduct in turn determine the functions

T (z, z̄) and F (z, z̄) up to terms that vanish when acting with ∆1,1 and ∆1,3. We

will see how this information can be recovered in the following.

Similarly, in eq. (3.66) we have shown how the double discontinuities of the

two-loop ladder triangle are related to the entries in the coproduct. We can then

immediately write

∆1,1,2(F (z, z̄)) =
∑

(x1,x2)∈A2
4

log x1 ⊗ log x2 ⊗ δx1,x2F (z, z̄) , (4.2)

and the values of δx1,x2F (z, z̄) can be read off from eq. (3.66).1 Thus, we see that

the knowledge of all double discontinuities enables us to immediately write down

the answer for the (1,1,2) component of the two-loop ladder triangle. Just as in

the case of a single unitarity cut, this component of the coproduct determines

F (z, z̄) up to terms that vanish when acting with ∆1,1,2. In the following, we

show how this ambiguity can be lifted.

While the previous application is trivial and follows immediately from the

first-entry condition and the knowledge of the set of variables that can enter the

symbol in these particular examples, it is less obvious that we should be able to

reconstruct information about the full function by looking at a single unitarity

cut, or at a specific sequence of two unitarity cuts. In the rest of this section we

give evidence that this is true nevertheless (both for diagrams with massless or

massive propagators).

The classic tool for determining a Feynman integral from its cuts is the

dispersion relation, which expresses a given Feynman integral as the integral of its

discontinuity across a certain branch cut. Traditionally used in the context of the

study of strongly interacting theories, dispersion relations appear more generally

as a consequence of the unitarity of the S-matrix, and of the analytic structure of

amplitudes [20]. These relations are valid in perturbation theory, order by order

1As written, eq. (3.66) gives solutions for four of the sixteen functions, δx1,x2
F (z, z̄).

The remaining ones can be obtained trivially by imposing the first entry condition, so that
δzF (z, z̄) = δz̄F (z, z̄) and δ1−zF (z, z̄) = δ1−z̄F (z, z̄), and by extending the kinematic analysis
to regions in which z̄ > z, thus restoring the symmetry of the full function under exchange of
z and z̄.
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4.2. Dispersion relations

in an expansion of the coupling constant. It was shown in refs. [18, 19, 21–23]

that individual Feynman integrals can also be written as dispersive integrals.

The fundamental ingredient in the proof of the existence of this representation

is the largest time equation [21], which is also the basis of the cutting rules.

In the first part of this section we review dispersion relations for Feynman

integrals, illustrating them with the examples of the one-loop three-mass triangle

integral and the two-loop three-point three-mass ladder integral. We used the

same method to compute the one-loop triangles with three external masses and

one or two massive propagators, but left that discussion for the appendix—see

section B.3.

We then show we can use the modern Hopf algebraic language to determine

the symbol of the integrals from either a single unitarity cut or a single sequence

of unitarity cuts. We will present several methods for this reconstruction, both for

diagrams with massless or massive propagators. Most of them require a previous

knowledge of the symbol alphabet, so we present them mostly as an illustration of

how the analytic strucutre of Feynman diagrams is constrained by the knowledge

of its cuts.

The reconstructibility procedure presented here works for the full integral,

and not for individual terms2 in the Laurent expansion in ε. We therefore focus

on examples which are finite in four dimensions, so that we can set ε = 0.

Aside from the review on dispersive integrals, all the work presented here

was done during my PhD, in collaboration with Ruth Britto, Claude Duhr, my

supervisor Einan Gardi, and Hanna Grönqvist for the study of diagrams with

internal masses.

4.2 Dispersion relations

Dispersion relations are a prescription for computing an integral from its

discontinuity across a branch cut, taking the form

F (p2
1, p

2
2, . . .) =

1

2πi

∫
C

ds

s− (p2
2 + iε)

ρ(p2
1, s, . . .) , (4.3)

2An example of an infrared divergent integral where the reconstructibility of individual terms
in the Laurent expansion would fail is the two-mass-hard box: it is clear from eq. (3.76) that a
cut in a single channel does not capture all terms of the symbol.
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where

ρ(p2
1, s, . . .) = Discp2

2
F (p2

1, p
2
2, . . .)

∣∣
p2

2=s
,

as computed with eq. (2.34), and the integration contour C goes along that same

branch cut. The above relation can be checked using eqs. (2.34) and (3.140).

We start with a simple generalisation of the above expression. Let

G(p2
i ) = r(p2

i )F (p2
i ) ,

where r(p2
i ) is a rational function of the Mandelstam invariants p2

i . Then, because

G(p2
i ) and F (p2

i ) have the same branch point and branch cut structure, G(p2
i ) itself

has a dispersive representation of the form eq. (4.3). This in turn provides an

alternative representation for F (p2
i ). Indeed, using that

Discp2
2
G(p2

1, p
2
2, . . .) = r(p2

1, p
2
2, . . .) Discp2

2
F (p2

1, p
2
2, . . .) ,

one gets:

F (p2
1, p

2
2, . . .) =

1

2πi

1

r(p2
1, p

2
2, . . .)

∫
C

ds

s− (p2
2 + iε)

r(p2
1, s, . . .)ρ(p2

1, s, . . .) , (4.4)

provided the integral on the right hand side is well defined, and where for

simplicity we assumed ρ(p2
1, s, . . .) has no poles in the integration region (if this

is not the case, we need to add the contribution of the residues at those poles, as

dictated by the residue theorem). Eq. (4.3) can be seen as a particular case of

eq. (4.4), with r(p2
i ) = 1. If the integral in eq. (4.3) is not well defined, typically

by becoming divergent at some endpoint of the integration region, a judicious

choice of r(p2
i ) can be made to find a dispersive representation for F (p2

i ). These

are called subtracted dispersion relations (see e.g. Appendix B in [102] for an

example in the context of dispersive representations of Feynman integrals).

In light of the relation between discontinuities and cuts presented in this thesis,

if F (p2
1, p

2
2, . . .) is a Feynman integral, eq. (4.4) can also be written as:

F (p2
1, p

2
2, . . .) = (4.5)

= − 1

2πi

1

r(p2
1, p

2
2, . . .)

∫
C

ds

s− (p2
2 + iε)

r(p2
1, s, . . .)

(
Cutp2

2
F (p2

1, p
2
2, . . .)

) ∣∣∣
p2

2=s
.

In order to illustrate the use of dispersion relations, we first look at the case
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4.2. Dispersion relations

of the scalar three-mass triangle. Its p2
2-channel cut was computed in eq. (B.56),

and we recall it here expressed in terms of Mandelstam invariants,

Cutp2
2
T (p2

1, p
2
2, p

2
3) =

=
2π√

λ(p2
1, p

2
2, p

2
3)

log

(
p2

1 − p2
2 + p2

3 −
√
λ(p2

1, p
2
2, p

2
3)

p2
1 − p2

2 + p2
3 +

√
λ(p2

1, p
2
2, p

2
3)

)
+ O(ε). (4.6)

This leads to a dispersive representation for the three-mass triangle of the form

(r(p2
i ) = 1):

T (p2
1, p

2
2, p

2
3) =

=
−1

2πi

∫ ∞
0

ds

s− (p2
2 + iε)

2π√
λ(p2

1, s, p
2
3)

log

(
p2

1 − s+ p2
3 −

√
λ(p2

1, s, p
2
3)

p2
1 − s+ p2

3 +
√
λ(p2

1, s, p
2
3)

)
. (4.7)

Note that the integration contour runs along the real positive axis: it corresponds

to the branch cut for timelike invariants of Feynman integrals with massless

internal propagators. Already for this not too complicated diagram we see that

the dispersive representation involves a rather complicated integration.

The main difficulty in performing the integral above comes from the square

root of the Källén function, whose arguments depend on the integration variable.

However, defining x = s/p2
1, and introducing variables α and ᾱ similar to

eq. (2.29), which are are a particular case of the more general eq. (2.26), defined

as

αᾱ = x and (1− α)(1− ᾱ) = u3 , (4.8)

or equivalently,

α =
1 + x− u3 +

√
λ(1, x, u3)

2
and ᾱ =

1 + x− u3 −
√
λ(1, x, u3)

2
, (4.9)

we can rewrite the dispersive integral as,

T (p2
1, p

2
2, p

2
3) =

=
i

p2
1

∫
du3

∫
dx

x− u2

1

α− ᾱ log
1− α
1− ᾱ δ

(
u3 − (1− α)(1− ᾱ)

)
θ(−x) θ(u3)

=
−i
p2

1

∫ 1

0

dα

∫ 0

−∞
dᾱ

1

αᾱ− u2

δ
(
u3 − (1− α)(1− ᾱ)

)
log

1− α
1− ᾱ
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=
−i
p2

1

1

z − z̄

∫ 1

0

dα

(
1

α− z̄ −
1

α− z

)[
2 log(1− α)− log u3

]
, (4.10)

where the integration region for α and ᾱ is deduced from the region where the

discontinuity is computed (see e.g. table 2.1). Written in this form, the remaining

integration is trivial to perform in terms of polylogarithms, and we indeed recover

the result of the three-mass triangle, eq. (B.51).

For the three-mass triangle, we can in fact take a second discontinuity

and reconstruct the result through a double dispersion relation because the

discontinuity function, eq. (4.6), has a dispersive representation itself [19, 94].

Note that this representation falls outside of what is discussed in ref. [22], and

we are not aware of a proof of its existence from first principles. The double

discontinuity is simply given, up to overall numerical and scale factors, by the

inverse of the square root of the Källén function, see eq. (B.60). We obtain

T (p2
1, p

2
2, p

2
3) =

= − 1

(2πi)2

∫
dx

x− u2

∫
dy

y − u3

(
Cutp2

3,p
2
2
T (p2

1, p
2
2, p

2
3)
) ∣∣∣

u2=x,u3=y

=
1

(2πi)2

4π2i

p2
1

∫
dx

x− u2

∫
dy

y − u3

1√
λ(1, x, y)

θ(−x) θ(−y)

=
−i
p2

1

∫ ∞
1

dα

∫ 0

−∞
dᾱ

1

αᾱ− zz̄
1

(1− α)(1− ᾱ)− (1− z)(1− z̄)
. (4.11)

The integral is trivial to perform3 and leads to the correct result.

We now turn to the case of the two-loop ladder. As long as we are using

suitable variables, from the point of view of dispersion relations it is trivial to go

from the three-mass triangle to the two-loop ladder. The only new feature we

need to deal with is a more complicated rational prefactor: instead of just having

the inverse of the square root of the Källén function, it appears multiplied by 1/u3.

This makes the dispersive integral over p2
3 as written in eq. (4.3) non convergent.

However, we can easily overcome this difficulty by setting r(p2
i ) = p2

3/p
2
1 = u3

in eq. (4.5). When considering a dispersive integral over p2
2 this is not necessary

for the convergence of the integral, but the same choice of r(p2
i ) still simplifies

3We have redefined α and ᾱ by replacing u3 by y in eq. (4.9). Just as for the single dispersion
integral, the integration region is deduced from the region where the double discontinuity is
computed, R2,3 in this case. Changing variables to β = 1

α and γ = 1
1−ᾱ makes the integral

particularly simple to evaluate.
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4.2. Dispersion relations

the integrand and makes the calculation simpler. Having made this choice, and

proceeding as with the three-mass triangle, the remaining integral is trivial to

perform in terms of polylogarithms.

As an example, we consider the dispersive integral over p2
3:

TL(p2
1, p

2
2, p

2
3) =

= − 1

2πi

1

u3

∫ 0

−∞

dy

y − u3

y

∫ ∞
0

du2 δ(u2 − αᾱ)
(

Cutp2
3
TL(p2

1, p
2
2, p

2
3)
) ∣∣∣

u3=y

=
i(p2

1)−2

(z − z̄)(1− z)(1− z̄)

∫ 1

0

dᾱ

(
1

ᾱ− z̄ −
1

ᾱ− z

)
1

2
log ᾱ log

u2

ᾱ
log

u2

ᾱ2
, (4.12)

where the variables α and ᾱ are similar to the ones defined in eq. (4.9) but with

x replaced by u2 and u3 by y, and we used Cutp2
3
TL(p2

1, p
2
2, p

2
3) as obtained from

eq. (3.122). This integral does indeed reproduce the expected result, eq. (3.97).

Similarly to the one-loop three-mass triangle, the two-loop three-mass ladder

also has a representation as a double dispersive integral. Given the variables we

chose to work with it is more convenient to consider the double unitarity cut on

p2
2 and p2

3. Using eq. (3.66), with the necessary prefactors as in eq. (3.97),

Cutp2
3,p

2
2
TL(p2

1, p
2
2, p

2
3) = − 4π2i (p2

1)
−2

(1− z)(1− z̄)(z − z̄)

(
log z log z̄ − 1

2
log2 z

)
,

from which we get:

TL(p2
1, p

2
2, p

2
3) =

= − 1

(2πi)2

1

u3

∫ 0

−∞

dx

x− u2

∫ 0

−∞

dy

y − u3

y
(

Cutp2
3,p

2
2
TL(p2

1, p
2
2, p

2
3)
) ∣∣∣

u2=x,u3=y

= −i(p
2
1)−2

u3

∫ ∞
1

dα

∫ 0

−∞
dᾱ

logα log ᾱ− log2 α
2

(αᾱ− u2)((1− α)(1− ᾱ)− u3)
, (4.13)

where we again used r(p2
i ) = u3 and exactly the same comments as the ones

accompanying eq. (4.11) apply. The remaining integrals are trivial to perform,

and we indeed recover the correct result, eq. (3.97). As far as we are aware, this

is the first time such a representation of the two-loop three-mass ladder has been

given.

We see that we can obtain the full result for the one-loop three-mass triangle

and the two-loop three-point three-mass ladder from the knowledge of either
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Chapter 4. Reconstruction from cut diagrams

its single or double cuts. A fundamental ingredient necessary to perform the

dispersive integral was the choice of variables in which to write the dispersive

integral. While for the one-loop example we studied one might still consider

performing the integration in terms of the Mandelstam invariants, for the two-

loop ladder this does not seem feasible anymore given the complexity of the

expression for the discontinuity in any of the channels when written in terms

of the Mandelstam invariants. For these examples, choosing the variables of

eq. (4.9), which we showed are naturally found by computing cuts, the increase

in complexity in going from one to two loops is not as great as one might näıvely

expect. More generally, although dispersive integrals are initially defined in terms

of Mandelstam invariants, as in eq. (4.3), we expect them to become simpler when

it is possible to change variables to letters in the symbol alphabet, eq. (2.26).

Indeed, in terms of these variables the underlying structure of iterated integrals

described in Section 2.2 becomes manifest.

We finish with a comment: we believe the dispersive representation for the

three-mass triangle provides one of the simplest ways to compute the diagram to

any order in the expansion of the dimensional regularisation parameter ε. While

we only considered the leading order in eq. (4.10), following the same arguments

we could as easily have written

T (p2
1, p

2
2, p

2
3) =− i(p

2
1)−1−ε

z − z̄
eγEεΓ(1− ε)

Γ(2− 2ε)

∫ 1

0

dα

(
1

α− z̄ −
1

α− z

)
u3 − (1− α)2

u3(
α(1− α− u3)

1− α

)−ε
2F1

(
1, 1− ε; 2− 2ε;

u3 − (1− α)2

u3

)
(4.14)

where we used the D-dimensional result for the cut given in eq. (B.56).

Integration over α and expansion in ε on the right hand side commute, and

we are left at any order with one integration to perform. The expansion in ε of

the hypergeometric function, although not trivial, has been automatised [100].

Aside from one overall rational prefactor that cancels the one remaining in the

integrand, it will only produce polylogarithms and thus the remaining integration

is trivial to perform in terms of multiple polylogarithms. The result will already

be expressed as a function of the variables in terms of which this diagram is

known to be most simply written.

We believe a deeper understanding of the connection between multiple cuts
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4.3. Reconstruction of three-point functions with massless propagators

and sequential discontinuities as defined in this thesis can provide a way to prove

the existence of multiple dispersive representations. We expect they will in turn

be useful in the actual calculation of Feynman integrals in cases where more

traditional techniques fail.

4.3 Reconstruction of three-point functions with

massless propagators

We now present purely algebraic methods to reconstruct the uncut three-mass

one-loop triangle and three-mass two-loop ladder.

4.3.1 Reconstructing the coproduct from a single unitar-

ity cut

As discussed above, Feynman diagrams can be fully recovered from unitarity

cuts in a given channel through dispersion relations. These relations rely on two

ingredients: the discontinuity of a function across a specific branch cut, and the

position of that particular branch cut. Given the relations between the (1, n− 1)

entries of the coproduct, discontinuities, and single unitarity cuts established in

previous sections, it is clear that the full information about the Feynman integral

is encoded in any one of these entries of the coproduct, since it contains the same

information about the function as a dispersive representation. We should thus be

able to reconstruct information about the full function by looking at a single cut

in a given channel.

For simplicity, we work mainly at the level of the symbol in the rest of this

section, keeping in mind that we lose information about terms proportional to

π and zeta values in doing so. We will find that this information can easily be

recovered in our examples. In a nutshell, we observe that if we combine the

first entry condition and the results for the discontinuities with the integrability

condition (2.17), we immediately obtain the symbol of the full function. In the

following, we illustrate this procedure in the examples of the one-loop triangle

and two-loop three-point ladder. Starting from the result for the unitarity cut in

a single channel, the procedure to obtain the symbol of the full function can be

formulated in terms of a simple algorithm, which involves two steps:
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Chapter 4. Reconstruction from cut diagrams

(i) Check if the tensor satisfies the integrability condition, and if not, add the

relevant terms required to make the tensor integrable.

(ii) Check if the symbol obtained from the previous step satisfies the first entry

condition, and if not, add the relevant terms. Then return to step (i).

We start by illustrating this procedure on the rather simple example of the

three-mass triangle of Section B.3.1. From eq. (B.56), the symbol of the cut in

the p2
2 channel is

1− z
1− z̄ ,

where we emphasise that the rational function is to be interpreted as the symbol

of a logarithm. We note that the same exercise can be done using the cuts in other

channels. Since we considered a cut in the p2
2 channel, the first entry condition

implies that we need to prepend u2 = zz̄ to the symbol of the discontinuity. Thus

we begin with the tensor

(zz̄)⊗ 1− z
1− z̄ .

We then proceed as follows.

• Step (i): This tensor is not the symbol of a function, as it violates the

integrability condition. To satisfy the integrability condition, we need to

add the two terms

(1− z)⊗ z̄ − (1− z̄)⊗ z .

The full tensor is not the symbol of a Feynman diagram, since the two new

terms do not satisfy the first entry condition.

• Step (ii): To satisfy the first entry condition, we add two new terms:

(1− z̄)⊗ z̄ − (1− z)⊗ z .

At this stage, the sum of terms obeys the first entry condition and the

symbol obeys the integrability condition, so we stop our process.

Putting all the terms together, we obtain

S(T (z, z̄)) = zz̄ ⊗ 1− z̄
1− z + (1− z)(1− z̄)⊗ z

z̄
, (4.15)
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4.3. Reconstruction of three-point functions with massless propagators

which agrees with the symbol of the one-loop three mass triangle in D = 4

dimensions, eq. (B.54).

Note that we can easily integrate this symbol to the full function. Indeed,

the cut computation has allowed us to determine the symbol, and hence also

the symbol alphabet A4 = {z, z̄, 1 − z, 1 − z̄}. It is well known that the most

general class of functions giving rise to this symbol alphabet and satisfying the

first entry condition are the single-valued harmonic polylogarithms [103]. Up to

overall normalisation, there is a unique single-valued harmonic polylogarithm of

weight two that is odd under the exchange of z and z̄, namely the function P2(z)

defined in eq. (B.52). We therefore immediately recover the analytic expression

for T (z, z̄) given in section B.3.1.

While the previous example might seem too simple to be representative, we

show next that the same conclusion still holds for the two-loop ladder. In the

following we use our knowledge of the cut in the p2
3 channel, eq. (3.122), and

show that we can again reconstruct the symbol of the full integral F (z, z̄). As

for the one-loop example, the same exercise can be done using the cuts in other

channels. Combining eq. (3.122) with the first entry condition, we conclude that

S(F (z, z̄)) must contain the following terms:

(1− z)(1− z̄)⊗ (4.16)

[z ⊗ z ⊗ z̄ + z ⊗ z̄ ⊗ z + z̄ ⊗ z ⊗ z − z ⊗ z̄ ⊗ z̄ − z̄ ⊗ z ⊗ z̄ − z̄ ⊗ z̄ ⊗ z] .

If we follow the same steps as in the one-loop case, we can again reconstruct the

symbol of the full function from the knowledge of the symbol of the cut in the p2
3

channel alone. More precisely, we perform the following operations:

• Step (i): To obey the integrability condition, we must add to the expression

above the following eight terms:

+ z ⊗ (1− z̄)⊗ z ⊗ z̄ + z ⊗ z ⊗ (1− z̄)⊗ z̄ + z ⊗ (1− z̄)⊗ z̄ ⊗ z
+ z̄ ⊗ (1− z)⊗ z ⊗ z − z ⊗ (1− z̄)⊗ z̄ ⊗ z̄ − z̄ ⊗ (1− z)⊗ z ⊗ z̄
− z̄ ⊗ (1− z)⊗ z̄ ⊗ z − z̄ ⊗ z̄ ⊗ (1− z)⊗ z .

• Step (ii): The terms we just added violate the first entry condition. To

restore it we must add eight more terms that combine with the ones above
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to have Mandelstam invariants in the first entry,

+ z̄ ⊗ (1− z̄)⊗ z ⊗ z̄ + z̄ ⊗ z ⊗ (1− z̄)⊗ z̄ + z̄ ⊗ (1− z̄)⊗ z̄ ⊗ z
+ z ⊗ (1− z)⊗ z ⊗ z − z̄ ⊗ (1− z̄)⊗ z̄ ⊗ z̄ − z ⊗ (1− z)⊗ z ⊗ z̄
− z ⊗ (1− z)⊗ z̄ ⊗ z − z ⊗ z̄ ⊗ (1− z)⊗ z .

• Step (i): The newly added terms violate the integrability condition. To

correct it, we must add two new terms,

z ⊗ z̄ ⊗ (1− z̄)⊗ z̄ − z̄ ⊗ z ⊗ (1− z)⊗ z . (4.17)

• Step (ii): We again need to add terms that combine with the two above to

have invariants in the first entry,

z̄ ⊗ z̄ ⊗ (1− z̄)⊗ z̄ − z ⊗ z ⊗ (1− z)⊗ z . (4.18)

At this point the symbol satisfies both the first entry and integrability conditions,

and we obtain a tensor which agrees with the symbol for F (z, z̄) in eq. (3.101).

Note that we can again easily promote the symbol to the full function. Indeed,

the symbol alphabet A4 = {z, z̄, 1 − z, 1 − z̄} combined with the first entry

condition again implies that F (z, z̄) can be expressed in terms of single-valued

harmonic polylogarithms. Taking into account the antisymmetry under exchange

of z and z̄ we find that there is a one-parameter family of functions with the

correct symbol,

F (z, z̄) = 6
[
Li4 (z)− Li4(z̄)

]
− 3 log (zz̄)

[
Li3 (z)− Li3(z̄)

]
+

1

2
log2(zz̄)

[
Li2(z)− Li2(z̄)

]
+ cP2(z) , (4.19)

where c is a real constant (of weight two). This constant can be fixed by explicitly

computing the discontinuity of the function F (z, z̄) in the variable p2
3, and

imposing that the discontinuity agrees with the result for the cut integral (3.122),

i.e., by requiring that (cf. eq. (3.123)),

Discp2
3
F (z, z̄) = i (p2

1)2 (1− z)(1− z̄)(z − z̄) Cutp2
3,R

3
4
TL(p2

1, p
2
2, p

2
3) . (4.20)
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It is easy to check that we must have c = 0. Note that if the free parameters

in the solution multiply functions that vanish when a discontinuity in a given

channel is taken, we can supplement this procedure by considering cuts in other

channels. In this way we can fix the initial condition up to a polylogarithmic

function that does not have any discontinuities, and must thus be a constant.

This constant can easily be fixed by computing the value of the original Feynman

integral numerically in a single point.

We finish with a comment. In these examples the integrability condition,

eq. (2.17), was particularly simple to implement because none of the letters of the

symbol alphabet depended on more than one independent variable, in this case

z and z̄. This is of course not true in general (even for these examples, at higher

orders in ε the letter (z − z̄) appears in the symbol alphabet), so implementing

the integrability condition is in general more complicated than in the examples

considered here.

4.3.2 Reconstructing the coproduct from double unitarity

cuts

While the possibility of reconstructing the function from a single cut in a

given channel might not be surprising, due to the fact that Feynman integrals

can be written as dispersive integrals over the discontinuity in a given channel,

we show in this section that in this particular case we are able to reconstruct

the full answer for ∆1,1,2F from the knowledge of just one sequential double cut,

along with the symbol alphabet. Note that ∆1,1,2F is completely equivalent to

the symbol S(F ). Indeed, the weight two part of ∆1,1,2F is defined only modulo

π, which is precisely the amount of information contained in the symbol.

Assuming that the symbol letters are drawn from the symbol alphabet already

given previously, A4 = {z, z̄, 1− z, 1− z̄}, we can write ∆1,1,2F in the following

general form:

∆1,1,2F =
∑

(x1,x2)∈A2
4

log x1 ⊗ log x2 ⊗ fx1,x2 ,

where the fx1,x2 denote 16 a priori unknown functions of weight two (defined only

modulo π2). Imposing the first entry condition and the integrability condition

in the first two entries of the coproduct gives the following constraints among
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the fx1,x2 :

fz,z = fz̄,z = fz,z̄ = fz̄,z̄ ,

f1−z,z = f1−z̄,z = fz,1−z̄ = fz̄,1−z̄ ,

fz,1−z = fz̄,1−z = f1−z,z̄ = f1−z̄,z̄ ,

f1−z,1−z = f1−z̄,1−z = f1−z,1−z̄ = f1−z̄,1−z̄ , (4.21)

which reduces the number of unknown functions to 4. Defining F̃ (z, z̄) = F (z̄, z),

we must require in addition that F̃ (z, z̄) = −F (z, z̄) (because its leading

singularity is likewise odd under this exchange), which gives further constraints.

For instance,

f1−z̄,z = −f̃1−z,z̄ . (4.22)

We can thus write

∆1,1,2F =

= log(zz̄)⊗ log(zz̄)⊗ fz,z + log((1− z)(1− z̄))⊗ log((1− z)(1− z̄))⊗ f1−z,1−z

+ [log(zz̄)⊗ log(1− z) + log((1− z)(1− z̄))⊗ log z̄]⊗ f1−z,z̄

− [log(zz̄)⊗ log(1− z̄) + log((1− z)(1− z̄))⊗ log z]⊗ f̃1−z,z̄ . (4.23)

Notice that up to this stage all the steps are generic: we have not used our

knowledge of the functional form of any of the double cuts which determine the

fx1,x2 , but only the knowledge of the set of variables entering its symbol and the

antisymmetry of the leading singularity under the exchange of z and z̄.

We now assume that we know the value of Cutp2
3,p

2
2
F , and thus by eq. (3.66f)

we have determined that

δ1−z,z̄F = − log z log z̄ +
1

2
log2 z . (4.24)

Next, we have to require that eq. (4.23) be integrable in the second and

third component. Assuming again that we only consider symbols with letters

drawn from the set A4, we use eq. (4.24) and impose the integrability condition

eq. (2.17), and we see that the symbols of the two unknown functions in eq. (4.23)
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are uniquely fixed,

S(fz,z) = −z ⊗ (1− z) + z̄ ⊗ (1− z̄) = S(Li2(z)− Li2(z̄)) ,

S(f1−z,1−z) = 0 ,

in agreement with eq. (3.100).

Note that once again we can easily integrate the symbol to the full function

by an argument similar to the one presented in Section 4.3.1: the most general

function having the correct symbol is again given by eq. (4.19), and the constant

c can easily be shown to vanish by requiring the function to have the correct

double discontinuity, i.e., by imposing that

Discp2
3,p

2
2
F (z, z̄) = −i (p2

1)2 (1− z)(1− z̄)(z − z̄) Cutp2
3,p

2
2
TL(p2

1, p
2
2, p

2
3) . (4.25)

We stress that the fact that we can reconstruct ∆1,1,2F from a single sequence

of cuts is not related to the specific sequence we chose. For example, if we had

computed only Cutp2
1,p

2
2
F and thus determined that −fz,z̄ − f1−z,z̄ = −Li2(z) +

Li2(z̄) + log z log z̄ − 1
2

log2 z, the integrability condition would fix the remaining

two free coefficients in a similar way. Finally, we could consider Cutp2
3,p

2
1
F , but

since this cut is obtained by a simple change of variables from Cutp2
3,p

2
2
F through

the reflection symmetry of the ladder, it is clear that integrability fixes the full

symbol once again.

Let us briefly consider the analogous construction for the one-loop triangle,

where the fx1,x2 are simply constant functions. The analog of eq. (4.23) above is

∆1,1T =

fz,z (log(zz̄)⊗ log(zz̄)) + f1−z,1−z (log((1− z)(1− z̄))⊗ log((1− z)(1− z̄)))

+ f1−z,z̄ [log(zz̄)⊗ log(1− z) + log((1− z)(1− z̄))⊗ log z̄]

+ f1−z̄,z [log(zz̄)⊗ log(1− z̄) + log((1− z)(1− z̄))⊗ log z] . (4.26)

A specific double cut, without loss of generality say Cutp2
3,p

2
2
, gives a constant

value for f1−z,z̄, as seen from eq. (B.60) and eq. (3.66f). We have a consistent

solution with f1−z,z̄ = −f1−z̄,z = −1 and fz,z = f1−z,1−z = 0, which is indeed

the ∆1,1 of the triangle, obtained by a consistent completion algorithm as in the

previous subsection.
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While it is quite clear that the reason why the algorithm of section 4.3.1

converged was the existence of a dispersive representation of Feynman integrals,

we do not know whether the existence of a double dispersive representation is a

necessary condition for the reconstruction based on the knowledge of ∆1,1,2 done

in this section to work, although it does seem reasonable that it would be the

case.

In closing, we notice that in this example, the integrability condition eq. (4.21)

implies that Cutp2
i ,p

2
j

= Cutp2
j ,p

2
i
, through the relations listed in eq. (3.66). It would

be interesting to see whether there is a general link between the integrability of

the symbol and the permutation invariance of a sequence of cuts.

4.4 Reconstruction of three-point functions with

massive propagators

In [37], similar methods to the ones described above to reconstruct uncut

functions with massless propagators were developed for one-loop triangles with

internal masses. When internal masses are present, the reconstruction process is

less algorithmic, and requires some knowledge of the type of symbol letters that

can appear in order to construct a general ansatz for the symbol. This ansatz

is then constrained by the information obtained from cuts. We describe how the

ansatz is constructed for a variety of examples, and then how the uncut function

is reconstructed from its symbol.

4.4.1 Constructing and constraining an ansatz for the

symbol

Our general strategy is the following. We observe that the symbol alphabets of

the scalar triangles we are investigating follow a pattern. With some experience,

we are able to write an ansatz for their symbol, in terms of unknown numerical

coefficients. Then, by imposing the knowledge of one channel cut, the first-entry

condition, the integrability condition, the absence of trivial terms (of the form

x⊗ x) and the symmetries of the function, we are able to fix all of the unknown

coefficients. We now give more specific rules for each of the steps just mentioned.

We start by explaining how to build the ansatz. First, we recall that if
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4.4. Reconstruction of three-point functions with massive propagators

the diagram is a function of n invariants, the pure functions we are concerned

with in this section are functions of n − 1 dimensionless variables only. For

concreteness, we always choose to normalise our variables by an external invariant.

The procedure starts by listing the possible first entries. These are completely

fixed by the first-entry condition—see sec. 2.3.2. Listing the second entries is

more difficult than listing the first entries. It can however be done based on the

knowledge of a cut integral, and, for the letters that do not appear in channel

cuts, by the empirical observations we list below.

Listing the second entries: We always start from a single cut in an external

channel. We observe the presence of the following terms in the set of second

entries:

• All letters of the symbol alphabet of the channel cut taken as the known

starting point ;

• Differences of internal masses, or their equivalents in terms of w1 and w̄1—

see eq. (2.33) ;

• For triangles with two external invariants, ratios of external invariants. In

our examples, this is just p2
2/p

2
3. For the examples with three external

massive channels where we must use the variables z and z̄ (see (2.29)), this

condition is replaced by the presence of the letters z, z̄, (1− z) and (1− z̄).

The terms generated through the above rules are added as cofactors of all the

first entries, each multiplied by an undetermined numerical coefficient. For the

first entry corresponding to the cut assumed to be known, these coefficients are of

course fixed by the cut result. For the other first entries, they must be determined

from additional considerations, according to the procedure we now describe.

Fixing the coefficients: We fix all coefficients according to the following steps:

1) We discard integrable terms of the form x ⊗ x, as they are not needed in

order to construct a minimal integrable symbol ;

2) Since the first-entry condition involves the original Mandelstam invariants,

the dimensionless variables appearing in the symbol should be expanded

when imposing this condition. Notably, we sometimes normalise the
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invariants by a variable p2
i with a nonzero mass threshold, so that p2

i

should not ultimately appear as a first entry by itself, although it shows up

superficially in the expansion of the dimensionless variables. Thus, all of

the second-entry cofactors of this p2
i should combine to give zero ;

3) We use the integrability condition, eq. (2.17), to fix the remaining

parameters ;

These three rules are already highly constraining and indeed sufficient for most

examples. If they are not, in particular in cases where we use the z, z̄, w1, and w̄1

variables, they can be complemented by the following:

4) Impose antisymmetry under z ↔ z̄ and symmetry under w1 ↔ w̄1. Indeed,

the Feynman integrals are functions of the invariants only and must thus

be symmetric under these transformations. When z and z̄ are necessary,

there is an antisymmetric rational prefactor, and so the pure function must

be antisymmetric as well ;

5) If there is a symmetry under the exchange of the legs with momenta p2 and

p3, impose symmetry under the simultaneous transformations z → 1 − z̄,

z̄ → 1− z, w1 → 1− w̄1, w̄1 → 1− w1.

We now illustrate these rules in some examples. The example in appendix

B.1.2 is trivial and the one in appendix B.1.3 divergent, so we will not address

them. The next-simplest example is T (p2
1, 0, 0;m2

12,m
2
23, 0)—see appendix B.1.4—

and we now show how to construct the ansatz for this case. We normalise the

internal masses by p2
1, giving the dimensionless variables m2

12/p
2
1 ≡ µ12 and

m2
23/p

2
1 ≡ µ23, and we assume knowledge of the p2

1 cut, eq. (B.15). Applying

the rules given above for writing the ansatz, we get

log(µ12 − 1)⊗ [log(µ23 − 1− µ12)− log(µ23)]

+ log(µ12)⊗ [a1 log(µ23 − 1− µ12) + a2 log(µ23) + a3 log(µ12 − µ23)]

+ log(µ23)⊗ [b1 log(µ23 − 1− µ12) + b2 log(µ23) + b3 log(µ12 − µ23)] , (4.27)

where we reintroduce the redundant ‘log’ for clarity of the equations. Our task is

now to fix the coefficients ai and bi. In this case, using rules 1), 2) and 3) above

fixes all coefficients, and we reproduce the symbol in eq. (B.14).
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An example of similar complexity is the triangle T (0, p2
2, p

2
3;m2

12, 0, 0), ap-

pendix B.2.3. We choose to normalise by p2
2, and define the variables m2

12/p
2
2 ≡ µ

and p2
3/p

2
2 ≡ u. We assume knowledge of the p2

2 cut, eq. (B.45). According to the

above steps, the general ansatz for the symbol reads:

log(µ− 1)⊗ {log(u) + log(µ)− log(µ+ u− 1)}
log(u)⊗ {a1 log(u) + a2 log(µ) + a3 log(µ+ u− 1)}

+ log(µ)⊗ {b1 log(u) + b2 log(µ) + b3 log(µ+ u− 1)} (4.28)

Our task is now to fix the coefficients ai and bi. As in the previous example, rules

1), 2) and 3) are sufficient and we reproduce the symbol in eq. (B.44).

As a final example of our rules to build the ansatz, we look at the most

complicated case we address, T (p2
1, p

2
2, p

2
3;m2

12, 0,m
2
13), given in appendix B.3.4.

This requires using the variables z, z̄, w1 and w̄1. We assume knowledge of the

p2
1 cut, eq. (B.72). Following our rules, the ansatz is

log(w1(1− w̄1))⊗
[

log(z − w1)− log(z − w̄1)− log(z̄ − w1) + log(z̄ − w̄1)
]

+ log(zz̄ − w1w̄1)⊗
[
a1 log(z − w1) + a2 log(z − w̄1) + a3 log(z̄ − w1)

+ a4 log(z̄ − w̄1) + a5 log(z) + a6 log(z̄) + a7 log(1− z)

+ a8 log(1− z̄) + a9 log(w1w̄1 − (1− w1)(1− w̄1))
]

+ log((1− z)(1− z̄)− (1− w1)(1− w̄1))⊗
[
ai → bi

]
+ log(w1w̄1)⊗

[
ai → ci

]
+ log(1− w1)(1− w̄1)⊗

[
ai → di

]
, (4.29)

and we must now determine the coefficients ai, bi, ci and di. Interestingly, also

for this case all we need are rules 1), 2) and 3) to fix all coefficients.

For all other triangles listed in appendix B, building the ansatz can be done

in a similar way as illustrated above. We now list the rules we must apply to fix

the coefficients of the ansatz of the remaining examples (for all cases, we assume

knowledge of the p2
1 cut):

• T (p2
1, 0, 0;m2

12, 0,m
2
13), appendix B.1.5. Rules 1), 2) and 3) are sufficient ;

• T (p2
1, 0, 0;m2

12,m
2
23,m

2
13), appendix B.1.6. Rules 1), 2), 3), 4) and 5) are

needed ;
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• T (p2
1, p

2
2, p

3
3;m2

12, 0, 0), appendix B.3.3. Rules 1), 2) and 3) are sufficient.

4.4.2 Reconstructing the full function from the symbol

We now explain how we integrate the symbol to get the full function. Although

integrating a symbol is in general an unsolved problem, it is a simple problem for

weight two functions where a complete basis is even known to exist in terms of

classical polylogarithms, see e.g. [53]. Once we have found a function that matches

our symbol, all that remains to be done is fixing terms that are invisible to the

symbol, in our case weight-one functions multiplied by π and terms proportional

to ζ2.

Powers of π are typically generated by analytic continuation and appear

multiplied by i. Working in the Euclidean region where the function is real

and away from any branch cut avoids this problem.

To fix the terms proportional to ζ2, we can use two strategies. The first,

which always works, is to evaluate the integrated symbol numerically at a single

point and compare it to a numerically integrated Feynman parametrisation of

the diagram. The difference must be a rational number multiplied by ζ2, which

completely determines our function. Alternatively, when possible, we can use the

symmetries of the diagram to check if terms proportional to ζ2 are allowed.

As examples, consider T (p2
1, 0, 0; 0,m2

23, 0) and T (p2
1, p

2
2, p

2
3;m2

12, 0, 0). In the

first case, there is no symmetry consideration to fix terms proportional to ζ2, and

we must thus rely on numerical comparisons. In the second example, there is a

rational prefactor antisymmetric under z ↔ z̄, and thus the pure function must be

antisymmetric under this transformation (the full function must be symmetric).

This forbids the existence of terms proportional to ζ2.

4.5 Summary and discussion

In this chapter, we have shown how the information obtained from the

calculation of cuts of Feynamn integrals can be used to reconstruct the (symbol of

the) full uncut function. This can be done either at the function level, by solving

a dispersive integral, or at the symbol level, by purely algebraic manipulations

on the symbol tensor or by using the cuts to constrain an ansatz of the symbol

tensor.
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We noticed that dispersion integrals which look complicated when written in

terms of Mandelstam invariants become simple when written in terms of variables

which make the symbol alphabet rational. The dispersion integral then falls

naturally into the class of iterated integrals amenable to Hopf algebra techniques.

This is of course consistent with the fact that each dispersion integral is expected

to raise the transcendental weight of the function by one: it is the opposite

operation to taking the discontinuity of the function across its branch cut. We

first made this observation in the case of the three-mass triangle and two-loop

three-point ladder [36], and we then used it to find an efficient way to compute

the three-mass triangle with one or two internal masses [37]—see section B.3.

Although dispersive integration is not a common method for the calculation of

Feynman integrals, we believe these examples show that it can be a powerful

method to compute them even in non-trivial cases.

We next presented purely algebraic ways to reconstruct the three-point three-

mass triangle and two-loop ladder with massless propagators from the knowledge

of a single set of cuts, along with the symbol alphabet. This was achieved by

using two main constraints: the integrability of the symbol and the first-entry

condition. More precisely, we showed how to reconstruct the symbol of the full

integral from the knowledge of a single unitarity cut in one of the channels. We

also showed that in the case of the two-loop ladder (and the much simpler one-loop

triangle) it is possible to reconstruct all the terms of the ∆1,1,2 component of the

coproduct of the uncut integral, and then the full function, from the knowledge

of a single sequence of double cuts.

Finally, we showed how channel cuts highly constrain the symbol of triangles

with internal masses. Indeed, we were able to completely constrain a general

ansatz for the symbol of each triangle (except the fully massive triangle) using the

knowledge of a single channel cut, the integrability condition and the symmetries

of the functions. However, building the ansatz is more complicated than in the

absence of internal masses, and we have had to postulate rules that determine

how to construct symbol letters not appearing in channel cuts. These rules are

obtained empirically and are specific to the class of diagrams we are studying.

Once the symbol is known, we explain how to reconstruct the function by

fixing terms invisible to the symbol. It would be interesting to see whether

reconstruction can also be done starting from cuts in internal masses.
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Aside from the dispersive integration method, it is not clear to us how general

the reconstruction procedures presented in this section are. Indeed, they were

mostly developed on a case by case basis, and rely on some outside knowledge,

such as the symbol alphabet. This is particularly obvious in the reconstruction of

diagrams with internal masses, section 4.4. Independently of this, we believe the

results presented here are interesting because they show how much the analytic

structure of Feynman integrals is constrained by the knowledge of a single one of

its unitarity cuts.
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Cuts of one-loop diagrams as

residues in complex kinematics

5.1 Introduction

Over the last decade, the calculation of one-loop amplitudes has been

revolutionised by the so-called generalised unitarity approach [4, 5, 85, 86].

Building on the observation made in [2] that one-loop Feynman integrals with

complicated numerators can be reduced to scalar ones, it was shown that any

one-loop amplitude in four dimensions can be decomposed into a basis of scalar

one-loop diagrams consisting of boxes, triangles, bubbles and tadpoles—see [90]

for a review of this subject. In a nutshell, the idea of generalised unitarity is that

the coefficients in this expansion can be extracted by projecting the amplitude

onto this basis, and this is done by matching the discontinuities of the amplitude

with the discontinuities of the basis integrals [4]. For instance, because triangles,

bubbles and tadpoles have no quadruple cuts, the quadruple cuts of the amplitude

project out its box contributions. Quadruple cuts have thus been very useful and

powerful in the framework of generalised unitarity, although how to correctly

interpret them has not always been clear.

Generalised unitarity is a very large subject, useful in both phenomenological

studies or more theoretical investigations on the structure of quantum field

theories. It is not the subject of this thesis, so we will not discuss it further. We

simply wish to point out that because cuts can be used as projection operators

to compute loop amplitudes, the last decade saw a renewed interest in the
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

development of methods to compute and interpret them [7–11, 14–17, 28, 56, 57,

101,104–115]. On the subject of generalised unitarity, we benefited from reading

the reviews [87–90].

In chapter 3 we generalised the notion of unitarity cut of a Feynman diagram

[18–21] to allow for multiple unitarity cuts in different kinematic channels, both

for diagrams with massless [36] or massive [37] propagators. However, we noted

that this generalisation might not be enough to describe all the components of the

coproduct of Feynman integrals. For instance, since we were looking at cuts as

discontinuities on kinematic channels, we insisted on having a well-defined relation

between cuts and discontinuities. Because of this, we excluded what we called

crossed channel cuts, i.e. cuts on channels that do not define separate regions in a

diagram, such as the cuts in the s and t channels of the box. However, these are

exactly the quadruple cuts that we know play an important role in generalised

unitarity.

In this chapter, we aim at finding a definition of cut that allows us to capture

as much as possible of the analytic structure of Feynman integrals. In particular

we will be able to give a concrete interpretation to quadruple cuts of boxes.

The four-propagator cut of a box should be very simple to compute for ε = 0.

Indeed, considering a box in D = 4 dimensions we have four integration variables

and four propagators. If the four propagators are replaced by Dirac δ-functions,

then the four integration variables are completely localised, which makes the

integration trivial. Let’s see how this is done in some more detail for the boxes

with no internal masses (the generalisation to the case with internal masses is

easy).

In D = 4, the box integral is given by

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) =

1

π2

∫
d4k

1

k2(p2 − k)2(p1 + p2 − k)2(k + p3)2
. (5.1)

It is convenient to use so-called dual variables xjk. We start by defining xj

through pj = xj − xj+1, where the indices are defined cyclically. Then, we define

x2
jk = (xj − xk)

2. Finally, if we define k = x0 − x1, we can rewrite the box

integral as

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) =

1

π2

∫
d4x0

1

x2
01x

2
02x

2
03x

2
04

. (5.2)

The four-propagator cut is now computed by replacing all
(
x2

0j

)−1
by 2πδ

(
x2

0j

)
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(we will not attempt to justify the choice of normalisation for this cut for now,

and leave the precise definition of this type of cut to the following section):

Cut4[B(s, t; p2
1, p

2
2, p

2
3, p

2
4)] = 24π2

∫
d4x0δ

(
x2

01

)
δ
(
x2

02

)
δ
(
x2

03

)
δ
(
x2

04

)
. (5.3)

To make it clearer that the four integrations are localised by the four Dirac δ-

functions, we change variables to sj = x2
0j, in terms of which

Cut4[B(s, t; p2
1, p

2
2, p

2
3, p

2
4)] = 24π2

(
4∏
j=1

∫
dsjδ(sj)

)
1

J
, (5.4)

where

J = det

(
∂sj
∂x0,µ

)
= det (2x0j,µ) . (5.5)

After some algebra, we find

J = 4
√

det
(
x2
jk − s2

j − s2
k

)
. (5.6)

We finally get

Cut4[B(s, t; p2
1, p

2
2, p

2
3, p

2
4)] = 4π2

(√
det
(
x2
jk

))−1

. (5.7)

In this expression, x2
jk is the well known Cayley matrix which appears in the

calculation of Feynman integrals (see e.g. [90]). We can specialise this expression

for the different types of boxes, and find

Cut4[B(s, t)] = Cut4[B(s, t; p2
1)] = Cut4[Bh(s, t; p2

1, p
2
2)] =

4π2

st
,

Cut4[Be(s, t; p2
1, p

2
2)] = Cut4[B(s, t; p2

1, p
2
2, p

2
3)] =

4π2

st− p2
1p

2
3

,

Cut4[B(s, t; p2
1, p

2
2, p

2
3, p

2
4)] =

4π2

st
√
λ(1, U, V )

, (5.8)

where U and V are defined in eq. (3.93). We thus see we can find a non-zero

value we can associate with the maximal cut of a box, even for the fully massless

case, where the maximal cut isolates four massless three-point vertices.

Unfortunately, it is not clear how to generalise the above procedure in a
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consistent way beyond ε = 0. Furthermore, while performing the different changes

of variables it is hard to keep track of what the correct integration contour

is, preventing a consistent generalisation of this method to the case where not

all propagators are cut. In this section, our goal is to find a definition of cut

diagrams which is consistent with the definition given in chapter 3, reproduces

the above result for maximal cuts, and allows to compute cuts of arbitrary one-

loop diagrams with any subset of cut propagators to all orders in ε.

We should mention that techniques to compute generalised cuts of one-loop

amplitudes in D-dimensions have been developed elsewhere, see e.g. [9, 101, 105,

106]. In [9], the authors follow a procedure which is very common in generalised

unitarity methods: the loop momentum is a 4 − 2ε vector, but the external

momenta are kept in exactly four dimensions. The advantage of this choice is

that the spinor-helicity formalism (see e.g. [116] and references therein) can be

used for the four-dimensional components, and the remaining −2ε integrations

are performed separately. As with the method above, it is not trivial to generalise

when going to higher orders in ε and/or when some of the propagators are not

cut.

We finish with a comment on the quadruple cuts of boxes we computed above.

Putting aside normalisation factors, comparing these results with the expressions

for the boxes given in section B.4, we see the maximal cuts of the boxes are

related to their rational prefactor, which is known to be related to the so-called

leading singularities of Feynman integrals [56, 57]. Once we have settled our

normalisation for computing this type of cut in a well defined way, we will define

the maximal cut computed at ε = 0 to be the leading singularity of the diagram.

We note the above method can always be used to easily compute the leading

singularities of diagrams with n propagators in n dimensions up to normalisation

conventions. It is not hard to see that the answer will always be proportional to

the inverse of the square-root of the determinant of the Cayley matrix.

All the work presented in this chapter was done during my PhD. The

framework to compute cuts as residues in complex kinematics presented below

was developed by myself, although I greatly benefited from discussions with and

comments from Ruth Britto, Claude Duhr and my supervisor Einan Gardi. Most

of the work presented in this chapter constitutes new results which, as far as I

am aware, have not been published elsewhere.
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5.2 Definition of cuts in Minkowski space

We will consider the m-propagator cut of a one-loop diagram with n

propagators in D = d − 2ε dimensions, where d is an even number such that

d − 2 < n ≤ d. In this section, cuts will be computed in Minkowski space-time.

We define the uncut diagram as:

In
(
{pj · pk} ;

{
m2
j

})
=
eγEε

iπ
D
2

∫
dDk

1(
k2 −m2

n−1

) n−2∏
j=0

1

(k − qj)2 −m2
j

. (5.9)

We note there is a change of normalisation with respect to what was done in the

previous chapters, see appendix A for a summary of our conventions. We will in

general not explicitly write the variables on which In depends.

In eq. (5.9), the qj are combinations of the external momenta pl:

qj =
n∑
l=1

cjlpl, cjl ∈ {−1, 0, 1}.

The numbering of the qj does not follow any particular order, but a distinction is

made between the ones that will not be cut (with m− 2 < j ≤ n− 2) and the m

propagators that will be (the others). For m ≥ 2, q0 is required to be such that

q2
0 6= 0. This is a very mild requirement, and if it cannot be met the cut vanishes,

see section 5.4.1. For single propagator cuts this is not required, but we postpone

the discussion of this type of cuts to section 5.3.

The choice of varying the number of space-time dimensions with the number

of propagators ensures that In is a pure function of weight d/2, i.e., it saturates

the upper bound of eq. (2.25). This is mainly relevant for the next chapter,

and most of the discussion in this chapter is independent of this choice (all

but the discussion of sections 5.4.2 and 5.4.3). We should note that there are

well established relations between diagrams computed in different space-time

dimensions [117], and thus our choice can be seen as a choice of a basis for

one-loop Feynman diagrams (although in this thesis we will not attempt to prove

this basis is complete).
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5.2.1 Parametrisation of the momenta and change of

variables

We work in the centre of mass of q0 and parametrise the qj as:

q0 = (q00,0D−1) , q1 = (q10, q11,0D−2) , qj = (qj0, . . . , qjj,0D−j) . (5.10)

For the loop momentum, we use polar coordinates:

k = k0

(
1, β cos θ1, . . . , β cos θn−2

(
n−3∏
j=1

sin θj

)
, β

(
n−2∏
j=1

sin θj

)
1D−n

)
(5.11)

where we made explicit the angles that will be relevant in the n propagators of

the diagram, and the remaining angles can be trivially integrated.

With this parametrisation, the dot products of the internal momentum with

the qj become

q0 · k = k0q00, q0 · k = k0(q10 − q11β cos θ1),

qj · k = k0

(
qj0 − qj1β cos θ1 − β

j∑
α=2

qjα cos θα

α−1∏
γ=1

sin θγ

)
. (5.12)

Performing the trivial angular integrals, the integration measure is

∫
dDk =

2π
D−n+1

2

Γ
(
D−n+1

2

) ∫ dk0k
D−1
0

∫
dββD−2

(
n−2∏
j=1

∫ π

0

dθj sinD−2−j θj

)
. (5.13)

We now change variables according to

cos θj = 2xj − 1 ⇒ d cos θj = 2dxj and sin θj = 2
√
xj(1− xj), (5.14)

for any 1 ≤ j ≤ n− 2. The propagators can then be written as

(k − qj)2 −m2
j = −Aj +Bjxj, (5.15)

where the Aj and Bj are functions of k0, β, x1, . . . , xj−1 and of the external
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5.2. Definition of cuts in Minkowski space

invariants, given by:

A0 =2k0q00 +m2
0 − k2 − q2

0, B0 = 0,

A1 =2k0 (q10 + q11β) +m2
1 − k2 − q2

1, B1 = 4βk0q11,

Aj =2k0

[
qj0 − β

j−1∑
α=1

qjα(2xα − 1)

(
α−1∏
γ=1

2
√
xγ(1− xγ)

)

+βqjj

(
j−1∏
γ=1

2
√
xγ(1− xγ)

)]
+m2

j − q2
j − k2,

Bj =2j+1k0βqjj

(
j−1∏
β=1

√
xβ(1− xβ)

)
=

2qjj
qj−1j−1

√
xj−1(1− xj−1)Bj−1, (5.16)

where the last relation holds for j > 1. We will in general not write the variables

on which the Aj and Bj depend, as it is usually a rather long list that makes the

equations hard to read. Finally, we also define xj,p as

xj,p =
Aj
Bj

, (5.17)

which is the point at which the propagator (k − qj)2 −m2
j vanishes.

We again stress that Aj ≡ Aj(k0, x1, . . . , xj−1) and Bj ≡ Bj(k0, x1, . . . , xj−1),

which means the xj,p are also functions of these variables (and of the kinematic

invariants on which In depends),

xj,p ≡ xj,p(k0, x1, . . . , xj−1). (5.18)

As for Aj and Bj, we will in general not explicitly write the variables on which

the xj,p depend for clarity of the expressions. Finally, we note that in terms of

the xj,p,

(k − qj)2 −m2
j = Bj (xj − xj,p) . (5.19)

We finish with a comment: the main advantage of our parametrisation is that

to each propagator with momentum (k − qj)
2 − m2

j , for j ≥ 3, it associates a

single new variable xj.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.2.2 Uncut integral

The uncut integral is

In =
21+

∑n−2
j=1 (D−2−j)π

1−n
2 eγEε

Γ
(
D−n+1

2

) ∫
dk0

∫
dβ

kD−1
0 βD−2

(k2 −m2
n−1)((k − q0)2 −m2

0)(
n−2∏
j=1

∫ 1

0

dxj
(xj(1− xj))

D−3−j
2

Bj (xj − xjp)

)
. (5.20)

Out of the n−2 integrals over the xj, we want to perform the last n−m. The

others are not integrated over, as they are the ones corresponding to propagators

that will be cut. We thus define the function f̃m (k0, β, x1, . . . , xm−2) which is the

result of these (n−m) integrations, as

f̃m (k0, β, x1, . . . , xm−2) = 2
∑n−2
j=m−1(D−2−j)

(
n−2∏

j=m−1

∫ 1

0

dxj
(xj(1− xj))

D−3−j
2

Bj (xj − xjp)

)
,

(5.21)

where we only wrote the dependence of f̃m on integration variables.

We then have

In =
21+

∑m−2
j=1 (D−2−j)π

1−n
2 eγEε

Γ
(
D−n+1

2

) ∫
dk0

∫
dβ

kD−1
0 βD−2

(k2 −m2
n−1)((k − q0)2 −m2

0)(
m−2∏
j=1

∫ 1

0

dxj
(xj(1− xj))

D−3−j
2

Bj (xj − xjp)

)
f̃m (k0, β, x1, . . . , xm−2) . (5.22)

We will in general not write the variables on which f̃m (k0, β, x1, . . . , xm−2)

depends. In this expression, the integrals that are left to be computed correspond

to the m propagators we will be cutting.

5.2.3 Definition of cuts as residues — Cm

We now give our definition of an m-propagator cut. This definition is based

on the observation that, for a function g(x) behaving well enough around x = a,∫ a2

a1

dxg(x)δ(x− a) = Resx=a
g(x)

(x− a)
= g(a), (5.23)
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5.2. Definition of cuts in Minkowski space

for a1 ≤ a ≤ a2. Instead of replacing cut propagators by delta functions as we

did in chapter 3, we will compute cuts by evaluating residues of propagators at

their poles. The advantage of this method is that while the replacement of the

propagator by a Dirac δ-function will only give a contribution if a1 ≤ a ≤ a2, the

replacement by a residue is easily extended to any a taking values anywhere in

the complex plane.

We choose our normalisations tailored to the needs of chapter 6. This is true

in particular for the factors of ±1 and the powers of (2π). We define Cm as:

Cm [In] ≡ (−1)m(2π)bm2 c2
1+

∑m−2
j=1 (D−2−j)eγEε

π
n−1

2 Γ
(
D−n+1

2

) Resk0

[
Resβ

[
Resx1

[
...

[
Resxm−2[

|k0|D−1 |β|D−2

(k2 −m2
n−1)((k − q0)2 −m2

0)

(
m−2∏
j=1

|xj(1− xj)|
D−3−j

2

|Bj| (xj − xjp)

)
f̃m

]]
...

]]]
. (5.24)

In this expression, bxc denotes the ‘floor function’, which to each real number

x associates the greatest integer smaller or equal to x. The residues are taken

at k0 = k0,p, β = βp, and xj = xj,p. The xj,p were defined above, but we recall

they correspond to the poles of the propagators, are functions of the kinematic

invariants, and more importantly of the integration variables,

xj,p ≡ xj,p(k0, x1, . . . , xj−1). (5.25)

We must now define βp and k0,p.

The propagator of momentum k is quadratic in β and thus has two zeros,

β± = ±
√

1− m2
n−1

k2
0

. (5.26)

By convention we take the residue at βp = β+. The propagator of momentum

(k − q0) is linear in k0 after imposing β = βp,

(k − q0)2 −m2
0 = −2q00k0 + q2

0 +m2
m−1 −m2

0,

and k0,p is its zero. In the absence of internal masses, βp = 1 and k0,p = q00

2
.

Before proceeding with the evaluation of the residues in the expression above,

we make some comments on this expression:
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

• this definition of cut is in principle also valid for single propagator cuts.

However, the choice of parametrisation of the loop momentum makes it hard

to evaluate them in practice. Below, in section 5.3, we give an equivalent

definition of cuts more suitable to the evaluation of single propagator cuts ;

• the factor of (−1)m is included to have expressions consistent with what is

needed for the work presented in chapter 6 ;

• the factor of (2π)bm2 c is included to have expressions without overall factors

of π, as needed for the next chapter ;

• in general, the poles xj,p are complex numbers, and in particular not between

0 and 1. This is why this is a cut in complex kinematics. If we can choose

real external kinematics such that all xj ∈ [0, 1], then the cut is computable

in real kinematics. Requiring this we recover the theta functions we had in

the relation between cuts, discontinuities and the coproduct of the previous

chapter, see e.g. eq. (3.66).

5.2.4 Evaluation of the residues and formal solution

We start by discussing the two-propagator cut, a special case of eq. (5.24)

with m = 2. For this, we write

(
k2 −m2

n−1

) (
(k − q0)2 −m2

0

)
=2 |k0|2 |q00| (β − βp) (β + βp)(

k0 −
q2

0 +m2
n−1 −m2

0

2q00

)
, (5.27)

so that eq. (5.24) becomes

C2[In] =
eγEεπ

3−n
2

Γ
(
D−n+1

2

) |k0,p|D−3 |βp|D−3

|q00|
f2. (5.28)

In this expression, f2 is f̃2(k0,p, βp), where f̃2 is defined in eq. (5.21). We will in

general use fm to denote the function f̃m evaluate at the pole of all its arguments,

fm ≡ f̃m (k0,p, βp, x1,p, . . . , xm−2,p) . (5.29)
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5.2. Definition of cuts in Minkowski space

Let’s now look at eq. (5.24) for m ≥ 3. We start by noting that

Bj = 2j+1k0βqjj

(
j−1∏
γ=1

√
xγ(1− xγ)

)

⇒
m−2∏
j=1

|Bj| =
2
∑m−2
j=1 (j+1)

|k0β|2−m

(
m−2∏
j=1

|qjj|
)(

m−3∏
j=1

|(xj(1− xj))|
m−2−j

2

)
. (5.30)

Using this result,

m−2∏
j=1

|(xj(1− xj))|
D−3−j

2

|Bj| (xj − xjp)
=

2−
∑m−2
j=1 (j+1)

(|k0| |β|)m−2

m−2∏
j=1

|(xj(1− xj))|
D−1−m

2

|qjj| (xj − xjp)
. (5.31)

We stress that, importantly, in the last line the power of the xj(1− xj) factors is

now independent of j.

As we will see, it is convenient to first evaluate the residue at xm−2 = xm−2,p,

Resxm−2=xm−2,p

[(
m−2∏
j=1

|(xj(1− xj))|
D−3−j

2

|Bj| (xj − xjp)

)
f̃m

]
=

2−
∑m−2
j=1 (j+1)

(|k0| |β|)m−2(
m−3∏
j=1

|(xj(1− xj))|
D−1−m

2

|qjj| (xj − xjp)

)
|(xm−2,p(1− xm−2,p))|

D−1−m
2

|qm−2,m−2|
f̃m(xm−2,p).

On the right-hand-side, we wrote one of the arguments of f̃m (k0, β, x1, . . . , xm−2)

explicitly to stress that we had set xm−2 = xm−2,p when taking the residue

associated with this variable.

We now use

|xm−2,p(1− xm−2,p)|
D−1−m

2 =

(
|Am−2(Bm−2 − Am−2)|∣∣B2

m−2

∣∣
)D−1−m

2

=
|Am−2(Bm−2 − Am−2)|D−1−m

2

(2m−1 |k0| |β| |qm−2,m−2|)D−1−m

(
m−3∏
j=1

(xj(1− xj))
1+m−D

2

)
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

to get

Resxm−2

(
m−2∏
j=1

|xj(1− xj)|
D−3−j

2

|Bj| (xj − xjp)

)
fm =

2
m(m+1)−2D(m−1)

2

(|k0| |β|)D−3(
m−3∏
j=1

1

|qjj| (xj − xjp)

)
|Am−2(Bm−2 − Am−2)|D−1−m

2

|qm−2,m−2|D−m
f̃m(xm−2,p).

Putting everything together,

Cm [In] = (−1)m
22−D(2π)b

m
2
ceγEε

π
n−1

2 Γ
(
D−n+1

2

) |qm−2,m−2|1+m−D(∏m−2
j=0 |qjj|

) Resk0

[
Resβ

[
...

[
Resxm−3(m−1∏

j=1

1

(xj − xjp)

)
|Am−2(Bm−2 − Am−2)|D−1−m

2

(β − βp)
(
k0 − q2

0+m2
n−1−m2

0

2q00

) f̃m(xm−2,p)

 ...
 . (5.32)

We observe that by evaluating the residue at xm−2 = xm−2,p we cancelled the

Jacobians of k0, β and all the xj with j < m− 2, and the remaining residues are

trivial to evaluate.

We thus get a formal solution to Cm [In] valid for m > 2:

Cm [In] =(−1)m
22−D(2π)b

m
2
ceγEε

π
n−1

2 Γ
(
D−n+1

2

) |Am−2,p(Bm−2,p − Am−2,p)|
D−1−m

2

|qm−2,m−2|D−m−1
(∏m−2

j=0 |qjj|
) fm,p. (5.33)

In this expression,

Am−2,p ≡ Am−2 (k0,p, βp, x1p, . . . , xm−3,p)

Bm−2,p ≡ Bm−2 (k0,p, βp, x1p, . . . , xm−3,p)

fm,p ≡ f̃m (k0,p, βp, x1p, . . . , xm−2,p)

are now functions of the external invariants only. To make the expression more

explicit, we recall that m is the number of cut propagators, n the total number

of propagators, and D = d− 2ε the dimensions, where d is an even number such

that d− 2 < n ≤ d. Examples of eq. (5.33) applied to some simple examples will

be given below.

A particularly interesting case of eq. (5.33) is when all propagators are cut,
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5.2. Definition of cuts in Minkowski space

i.e. m = n, which we call the maximal cut. In this limit,

Cn [In] =(−1)n
22−D(2π)b

n
2
ceγEε

π
n−1

2 Γ
(
D−n+1

2

) |An−2,p(Bn−2,p − An−2,p)|
D−1−n

2

|qn−2,n−2|D−1−n
(∏n−2

j=0 |qjj|
) , (5.34)

where we have set fn,p = 1 as follows from eq. (5.21).

We take this opportunity to define a concept which we have been using loosely

up to know, the leading singularity of Feynman integrals. From now on, we will

define the leading singularity of a Feynman integral In, which we will denote LS,

to be its maximal cut, computed at ε = 0:

LS [In] ≡ C(0)
n [In] . (5.35)

Here the superscript (0) means we take the ε0 coefficient of the ε-expansion

of Cn [In]. This definition fails when maximal cuts are zero, but this is a very

minor issue and we will explain how to overcome it in section 6.4.

We finish with a comment on notation. It will often be necessary to

specify which propagators are cut. For one-loop diagrams, we can identify each

propagator by the external legs they connect. For a diagram with n propagators,

each propagator is thus identified by a pair (j, j + 1), where j = 1, . . . , n and the

indices are defined cyclically. The order in which the indices appear is irrelevant.

We will then write1

Cm,[(j1,j1+1),...,(jm,jm+1)] (5.36)

for them propagator cut where the propagators (j1, j1+1), . . . , (jm, jm+1) are cut.

We recall that the parametrisation of section 5.2.1 is to be chosen in agreement

with the propagators that are being cut. For maximal cuts, there is no ambiguity

so we will never write the cut propagators explicitly.

1This notation is not suitable for single cuts of bubbles, but those cases are simple enough
that there should not be any ambiguity.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.2.5 Examples

We now give a few examples to make eqs. (5.28), (5.33) and (5.34) more

concrete. These are very simple examples, simply aimed at illustrating the use of

the results we obtained above. More interesting and non-trivial examples will be

addressed in section 5.5, where we compute cuts of one-loop diagrams with three,

four or five propagators. Some of the results presented there are new results, as

far as we are aware.

I2(p2): We start with the two propagator cut of the bubble with massless

propagators, I2(p2), evaluated in D = 2 − 2ε. According to the parametrisation

of section 5.2.1, we have

q0 =
√
p2(1,0D−1). (5.37)

Given that both propagators are massless, βp = 1 and k0,p =
√
p2/2. We can

then use eq. (5.28) to get

C2

[
I2(p2)

]
= 2

eγEεΓ(1− ε)
Γ(1− 2ε)

∣∣p2
∣∣−1−ε

, (5.38)

where we set f2 = 1 as this is a maximal cut of the bubble. In the kinematic

region consistent with a cut in the p2-channel, we have p2 > 0. Reinstating the

necessary factors of π and i—see appendix A, in particular the discussion around

eqs. (A.10) and (A.11)—we recover the result we would have got by applying the

cutting rules of the previous section,

Cutp2

[
Bub(p2)

]
= 2πC2

[
I2(p2)

]
= 4π

eγEεΓ(1− ε)
Γ(1− 2ε)

(
p2
)−1−ε

. (5.39)

I2(p2;m2
0,m

2
1): We now look at the bubble with internal masses m2

0 and m2
1,

I2(p2;m2
0,m

2
1). The parametrisation of the external momentum is the same as for

the massless case—see eq. (5.37)—but we now have

k0,p =
p2 +m2

0 −m2
1

2
√
p2

, βp =

√
p2

2

√
λ (1, µ0, µ1), (5.40)
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5.2. Definition of cuts in Minkowski space

where as usual λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the Källén function

and µi = m2
i /p

2. As above, we set f2 = 1 in eq. (5.28) to get

C2

[
I2(p2;m2

0,m
2
1)
]

= 2
eγEεΓ(1− ε)

Γ(1− 2ε)

∣∣p2
∣∣−1−ε

(√
λ (1, µ0, µ1)

)−1−2ε

, (5.41)

which also matches the result for the channel cut we would have obtained from

the cutting rules of the previous chapter, after multiplying by a factor of 2π.

I3(p2
1;m2

23): As a last example, we consider the triangle with one external

massive leg, p2
1, and one internal massive propagator connecting the external

legs 2 and 3, of mass m2
23. As this is a diagram with n = 3, it is evaluated in

D = 4− 2ε. We start by evaluating its two-propagator cut, C2,[(12),(13)]I3(p2
1;m2

23).

Given that in this case there is no ambiguity in which two propagators are cut

(there is only one non-vanishing two-propagator cut), we will drop the subscript

identifying the cut propagators for simplicity of notation. We parametrise the

external momenta as

p1 = q0 =
√
p2

1(1,0D−1), p2 = −q1 = −
√
p2

1

2
(1,−1,0D−2) . (5.42)

The propagators are

1

k2
,

1

(k − q0)2
and

1

(k − q1)2 −m2
23

, (5.43)

and because the propagators of momentum k and (k − q0) are massless we have

βp = 1 and k0,p =
√
p2

1/2. We can compute the quantities A1,p and B1,p as defined

in eq. (5.16), and we get

A1,p = m2
23 B1,p = −p2

1. (5.44)

Finally, we will also need f2,p as defined in eq. (5.21),

f2,p = −21−2ε

m2
23

Γ2(1− ε)
Γ(2− 2ε)

2F1

(
1, 1− ε; 2− 2ε;− p2

1

m2
23

)
. (5.45)

We note that f2,p is away from branch cuts in the natural kinematic region where

this cut is to be evaluated, p2
1 > 0 and m2

23 > 0. It is now straightforward to use
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

eq. (5.28) to get

C2

[
I3(p2

1;m2
23)
]

= −e
γEεΓ(1− ε)
Γ(2− 2ε)

|p2
1|
−ε

m2
23

2F1

(
1, 1− ε; 2− 2ε;− p2

1

m2
23

)
, (5.46)

which, after multiplication by a factor of (−2π), agrees with the result already

quoted in eq. (B.7) for Cutp2
1

[T (p2
1;m2

23)].

For this diagram, we can also evaluate the three-propagator cut. We have

already given all necessary ingredients, so we can just replace them in eq. (5.34)

with m = 3 to get

C3

[
I3(p2

1;m2
23)
]

= − eγEε

Γ(1− ε)
∣∣p2

1

∣∣−1+ε ∣∣m2
23(p2

1 +m2
23)
∣∣−ε , (5.47)

which in the relevant kinematic region (p2
1 > 0 and m2

23 < 0) and after

multiplication by a factor of (4π2i) agrees with the result for Cutp2
1,m

2
23

[T (p2
1;m2

23)]

quoted in eq. (B.9).

5.3 Alternative definition in Euclidean space

5.3.1 General formulation

Unfortunately, the definition of cut given in eq. (5.24) is not convenient to

compute single propagator cuts, which are the simplest cuts one could think of.

The reason for this is perhaps best illustrated by an example, so let’s look at

what happens for the tadpole of mass m2 computed in 2− 2ε dimensions,

I1 =
eγEε

iπ1−ε

∫
d2−2εk

1

k2 −m2
. (5.48)

According to the parametrisation of section 5.2.1, we would write the propagator

as

k2 −m2 = k2
0(1− β2)−m2,

and we would then associate the single propagator cut with a residue of this

propagator. The reason why this parametrisation is not the most practical is

already apparent: although we only have one propagator, we needed two variables

to parametrise it, k0 and β0. We could in theory proceed by choosing to take a
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5.3. Alternative definition in Euclidean space

residue on either k0 or β, and then performing the integral in the remaining

variable2. In practice, we found this integral not easy to compute even for the

simplest Feynman diagrams.

However, one would expect that the single propagator cut of a tadpole should

be very simple to compute. Indeed, there should be a choice of variables in terms

of which the propagator is parametrised by a single variable, and the remaining

1 − 2ε variables can be integrated trivially. Then, the cut would correspond to

taking the residue associated with the variable parametrising the propagator. We

recall that this was the main advantage of the parametrisation chosen in section

5.2.1: to each propagator of momentum qj with j > 0 is associated a single

variable xj, and the cut of this propagator is the residue on this variable.

As it turns out, there is a parametrisation very similar to that of section 5.2.1

that associates a variable to each propagator, but it requires to first perform a

Wick rotation from Minkowski to Euclidean space. Let us then redo the exercise

that led us to eq. (5.33) in this new parametrisation. We define a set of Euclidean

momenta in D dimensions in terms of their Minkowski counterparts as

kE = (−ik0, k1, . . . , kD−1)

qEj = (−iqj0, qj1, . . . , qjj,0D−j) ≡
(
qEj0, . . . , q

E
jj,0D−j

)
, (5.49)

satisfying

(
kE
)2

= −k2
(
qEj
)2

= −q2
j kE · qEj = −k · qj. (5.50)

Given that kE is now a vector in Euclidean space, we can parametrise it as

kE =
∣∣kE∣∣(cos θ0, cos θ1 sin θ0, . . . , cos θn−2

(
n−3∏
j=0

sin θj

)
,

(
n−2∏
j=0

sin θj

)
1D−n

)
(5.51)

where 1D−n is a unit vector in the D − n remaining components, which can be

2The reason why cuts with two or more propagators can be computed with the
parametrisation of section 5.2.1 is that this remaining integration is also replaced by a residue,
as was done in eq. (5.28): the integrations on the variables k0 and β are localised by taking the
residues associated with the propagators k2 −m2

n−1 and (k − q0)2 −m2
0.
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trivially integrated to get

∫
dDkE =

π
D−n+1

2

Γ
(
D−n+1

2

) ∫ d
∣∣kE∣∣2 (∣∣kE∣∣2)D−2

2

(
n−2∏
j=0

∫ π

0

dθj sinD−2−j θi

)
. (5.52)

In practice, this means that by going from Minkowski to Euclidean space we

traded the integration over β to an integration over an extra angle θ0, as can

be seen by comparing this expression with the equivalent in Minkowski space,

eq. (5.13).

We can now proceed as we did for the angular integrals in Minkowski space:

for each angle θj, change variables to xj = (cos θj + 1)/2, and associate a variable

xj to the propagator with momentum (k − qj),

−
(
(k − qj)2 −m2

j

)
= (kE − qEj )2 +m2

j = −AEj +BE
j xj.

Unlike what happened in the Minkowski parametrisation, we now have BE
0 6= 0.

For any j ≥ 0,

AEj = 2
∣∣kE∣∣ [ j−1∑

α=0

qEjα(2xα − 1)

(
α−1∏
γ=0

2
√
xγ(1− xγ)

)

−2jqEjj

(
j−1∏
γ=0

√
xγ(1− xγ)

)]
−m2

j − (qEj )2 −
∣∣kE∣∣2 ,

BE
j = −2j+2

∣∣kE∣∣ qEjj
(
j−1∏
β=0

√
xβ(1− xβ)

)
, (5.53)

and we also define xEj,p = AEj /B
E
j . Finally, as required, the propagator with

momentum k now only depends on one of the integration variables,

k2 −m2
n−1 = −

(∣∣kE∣∣2 +m2
n−1

)
.
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The uncut integral with n propagators can then be written as

In =(−1)n
2
∑m−2
j=0 (D−2−j)π

1−n
2 eγEε

Γ
(
D−n+1

2

) ∫
d
∣∣kE∣∣2

(∣∣kE∣∣2)D−2
2

|kE|2 +m2
n−1(

m−2∏
j=0

∫ 1

0

dxj
(xj(1− xj))

D−3−j
2

BE
j (xj − xjp)

)
f̃Em
(∣∣kE∣∣ , x0, x1, . . . , xm−2

)
, (5.54)

where f̃Em is defined as in eq. (5.21) with Bj replaced by BE
j and xj,p by xEj,p.

We are now ready to define what we mean by a m-propagator cut in this new

parametrisation. The equivalent of eq. (5.24) is

CEm [In] ≡ (−1)m(2π)bm2 c2
∑m−2
j=0 (D−2−j)eγEε

π
n−1

2 Γ
(
D−n+1

2

) Res|kE |2

[
Resx0

[
...Resxm−2


∣∣∣∣∣kE∣∣2∣∣∣D−2

2

|kE|2 +m2
n−1

(
m−2∏
j=0

|xj(1− xj)|
D−3−j

2∣∣BE
j

∣∣ (xj − xEjp)
)
f̃m


 ...


 , (5.55)

where the residues are evaluated at xj = xEj,p and
∣∣kE∣∣2 =

∣∣kE∣∣2
p
, which is the zero

of the propagator of momentum k. As for the equivalent relation in Minkowski

space, eq. (5.24), the normalisations were chosen to match what is needed for the

work presented in chapter 6.

For m = 1, eq. (5.55) gives a very simple expressions:

CE1 [In] = − eγEε

π
n−1

2 Γ
(
D−n+1

2

) ∣∣m2
n−1

∣∣D−2
2 fE1 , (5.56)

where fE1 = f̃E1

(∣∣kE∣∣2 = −m2
n−1

)
. For m ≥ 2, we can go through the same

exercise of section 5.2.4 to get

CEm [In] =(−1)m
22−D(2π)b

m
2
ceγEε

π
n−1

2 Γ
(
D−n+1

2

) ∣∣AEm−2,p(B
E
m−2,p − AEm−2,p)

∣∣D−1−m
2∣∣qEm−2,m−2

∣∣D−1−m
(∏m−2

j=0

∣∣qEjj∣∣) fEm,p. (5.57)

Although eqs. (5.24) and (5.55) are equivalent, we will prefer the definition of
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

cut given in eq. (5.55) for all but single propagator cuts, and only rely on eq. (5.55)

to define single propagator cuts. Indeed working in Euclidean space often makes

it harder to handle expressions for cuts of more complicated diagrams. We will

however show in some simple examples that eqs. (5.24) and (5.55) give consistent

results.

5.3.2 Examples

We now illustrate the computation of single propagator cuts using eq. (5.55),

and show that for double cuts of bubbles we get results consistent with the ones

obtained from eq. (5.24). As with the examples of section 5.2, these are simply

an illustration of the above expressions, and we leave the computation of cuts of

more interesting diagrams to section 5.5.

I1(m2): We start by looking at the diagram that motivated the alternative

definition of cut in Euclidean space, the tadpole with internal mass m2 in D =

2 − 2ε dimensions. As promised, the single propagator cut is now trivial to

evaluate. Indeed, we can use eq. (5.56) with n = 1 and set fE1 = 1, as this is a

maximal cut, to get

CE1 [I1] = − eγEε

Γ (1− ε)
∣∣m2

∣∣−ε . (5.58)

Multiplying by a factor of (2π), this reproduces the results one would expect

by computing the discontinuity of the tadpole in the relevant kinematic region,

m2 < 0. Indeed, following the cutting rules of the previous section, we would

have found

Cutm2

[
Tad(m2)

]
= −2π

eγEε

Γ (1− ε)
(
−m2

)−ε
. (5.59)

I2(p2): We now show that eqs. (5.24) and (5.55) give the same result for the

double cut of the bubble with massless propagators. We use eq. (5.57) with

m = n = 2, and D = 2 − 2ε. It is easy to see that for this case qE00 = −i
√
p2,

AE0,p = −(qE00)2 and BE
0,p = 0 so we get

CE2
[
I2(p2)

]
= 2eγEε

22ε
√
π

Γ
(

1−2ε
2

) ∣∣qE00

∣∣−2−2ε

= 2eγEε
Γ(1− ε)

Γ (1− 2ε)

∣∣p2
∣∣−1−ε

, (5.60)
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which is consistent with the result given above.

I2(p2;m2
1): As a final example, we look at the cuts of the bubble with one

internal massive propagator in D = 2 − 2ε. In this case, qE00 = −i
√
p2, |kE|p =

±im1, A0 = (
√
p2 ±m1)2 and B0 = ±m1

√
p2. For the single cut, we also need

fE1,p as defined in eq. (5.21),

fE1,p = − 2−2ε(√
p2 ±m1

)2

Γ2
(

1−2ε
2

)
Γ(1− 2ε)

2F1

1,
1− 2ε

2
; 1− 2ε;

±m1

√
p2(√

p2 ±m1

)2

 .

From eq. (5.56), we then get

CE1
[
I2(p2;m2

1)
]

=
eγEε

Γ(1− ε)
|m2|−ε

(
√
p2 ±m1)2

2F1

1,
1− 2ε

2
; 1− 2ε;

±m1

√
p2(√

p2 ±m1

)2

 .

Upon expansion of the hypergeometric function, it can be checked that once the

factors of (2π) have been adjusted to match conventions, this rather complicated

and inelegant result is consistent with the one obtained from the cutting rules of

the previous chapter in the region p2 < m2 < 0,

Cutm2
1

[
Bub(p2;m2

1)
]

= 2π
eγEε

Γ(1− ε)
(−m2)−ε

p2 2F1

(
1, 1 + ε; 1− ε; m

2

p2

)
. (5.61)

Finally, we also have all ingredients to compute the double cut of this bubble.

Using eq. (5.57),

CE2
[
I2(p2;m2

1)
]

= 2eγEε
Γ(1− ε)

Γ (1− 2ε)

∣∣p2
∣∣ε ∣∣p2 −m2

1

∣∣−1−2ε
, (5.62)

which reproduces the m2
0 → 0 limit of eq. (5.41), and is also consistent with the

result obtained by the cutting rules of the previous chapter,

Cutp2

[
Bub(p2;m2

1)
]

= 4πeγEε
Γ(1− ε)

Γ (1− 2ε)

(
p2
)ε (

p2 −m2
1

)−1−2ε
, (5.63)

computed in the region where 0 < m2 < p2.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.4 General results on cuts of one-loop Feyn-

man diagrams

In this section, we will look at some results that can be derived from the

general expressions we have given for the m-propagator cut of one-loop Feynman

diagrams, eqs. (5.24) and (5.55). We will start by determining which cuts can

vanish for specific choices of kinematic configurations. Then we will show a

relation between the first order in the ε-expansion of the maximal and next-to-

maximal cuts (i.e., with n − 1 cut propagators) of finite diagrams with an even

number of propagators. This relation will play a very important role in the work

presented in the next chapter. Finally, we will make a brief comment on the form

of maximal cuts.

5.4.1 Vanishing cuts in complex kinematics

In the previous chapter, as in refs. [36, 37], we interpreted cuts of Feynman

diagrams as discontinuities on kinematic channels or internal masses. This

allowed us to argue that some cuts should vanish. For instance, the single

propagator cut of a massless propagator should be zero, because it could not

correspond to the discontinuity on any internal mass. As another example, if the

two-propagator cut of a one-loop diagram selected a massless external channel,

then it had to vanish as the function had no discontinuities associated to that cut.

In this analysis, we restricted ourselves to the use of real kinematics, which meant

that if a cut isolated a three-point vertex with three on-shell massless particles,

then it had to vanish. This hypothesis was enough to obtain the relations between

discontinuities, cuts and certain coproduct entries, but we also commented that

we expected a generalisation of the cutting rules might be necessary to describe

other coproduct entries. As we will see in the following chapter, the definition of

cut given in the section above allows to do this. However, if we allow ourselves to

go beyond real kinematics as we have done above, can we still identify vanishing

cuts simply by looking at a cut diagram? Although some cuts we would previously

set to zero are no longer vanishing, in the following we argue that it is possible,

and identify which cuts of one loop Feynman diagrams can vanish.

Consider a general one-loop integral with n propagators. We now examine its
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5.4. General results on cuts of one-loop Feynman diagrams

cuts, and look for which configurations of internal and external masses one finds

a vanishing result.

One-propagator cuts: We start by single propagator cuts, for which we can

use eq. (5.56). Provided fE1,p does not behave as
∣∣m2

n−1

∣∣D−2
2 as

∣∣m2
n−1

∣∣ → 0, the

single cut will vanish if the mass of the cut propagator is zero, which agrees

with the behaviour we would have expected from the relation between cuts and

discontinuities. Let us then show that fE1,p is analytic for
∣∣kE∣∣2 = m2

n−1 = 0. In

this limit, eq. (5.53) gives

AEj,p(|kE| = 0) = −m2
j −

(
qEj
)2
, BE

j,p(|kE| = 0) = 0, for j ≥ 1. (5.64)

We thus have

fE1,p = π
n−1

2
Γ
(
D−n+1

2

)
Γ
(
D
2

) (
n−2∏
j=0

1

−AEj (|kE| = 0)

)
, (5.65)

which shows fE1,p is analytic at
∣∣kE∣∣2 = m2

n−1 = 0.

Two-propagator cuts: For two propagator cuts, we also rely on the definition

of cuts in Euclidean space, eq. (5.55), as the parametrisation in Minkowski is only

valid for q2
0 6= 0. We will show that the double cut vanishes if qE0 = 0, i.e., if the

double cut selects a massless external channel. From eq. (5.57), the double cut is

CE2 [In] = (−1)m
22−D(2π)eγEε

π
n−1

2 Γ
(
D−n+1

2

) ∣∣qE00

∣∣2−D ∣∣AE0,p(BE
0,p − AE0,p)

∣∣D−2
2 fE2,p. (5.66)

If qE00 = 0, then BE
j = 0 for all j ≥ 0. This means all integrations in fE2,p can be

done trivially, as they were for fE1,p above, and fE2,p is analytic in this limit. We

can thus conclude that the double cut vanishes if q2
0 = −(qE0 )2 = 0. Again, this is

in agreement with the relation between two-propagator cuts of one-loop diagrams

and discontinuities on external channels discussed in the previous chapter.
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Three-propagator cuts: We now look at three-propagator cuts. For these

cuts, we can use the Minkowski space formulation of eqs. (5.24) and (5.33),

C3 [In] = − 22−D(2π)eγEε

π
n−1

2 Γ
(
D−n+1

2

) |q11|4−D
|A1,p(B1,p − A1,p)|

D−4
2

|q00| |q11|
f3,p. (5.67)

By definition, we know q11 6= 0, see section 5.2.1. To consider a triple cut, we

must have at least three propagators, and so there is at least one massive external

channel which we can identify with q2
0. We thus also have q00 6= 0. Finally, f3,p is

non-zero for general kinematics (i.e., when all the qj and m2
j are independent of

each other). We thus see that the triple cut can vanish if and only if A1,p = 0 or

A1,p = B1,p, where A1,p and B1,p are given in eq. (5.16),

A1,p = 2k0,p(q10 + q11βp) +m2
1 − k2 − q2

1, B1,p = 4βpk0,pq11. (5.68)

To have A1,p = 0 or A1,p = B1,p, we must have k2 = m2
1 = q2

1 = 0, which in turn

implies that βp = 1 and q2
10 − q2

11 = 0. This last equation has two solutions,

q10 = q11 ⇒ A1,p = B1,p,

q10 = −q11 ⇒ A1,p = 0. (5.69)

Physically, the configurations where the triple cut vanishes correspond exactly to

what would have been expected from real kinematics: the triple cut is zero if it

isolates a vertex with three massless on-shell legs. The two solutions correspond

to the fact that the sign of the q11 component of q1 is arbitrary. To finish our proof

that the cut is zero in this configuration, we must also check that f3,p is analytic

in this limit: we can use exactly the same argument as for fE1,p above, because

in this case all Bj,p with j ≥ 2 vanish (they are proportional to
√
x1,p(1− x1,p)),

which makes all the integrations in f3,p trivial.

In summary, for three particle cuts we can still rely on arguments from real

kinematics to identify which cut diagrams vanish. As an example, the triple cut

of the triangle with no internal massive propagators and one or two external

massive channels will vanish.

Four or more propagator cuts: We now discuss the case where four or more

propagators are cut. We start by looking at the four-propagator cut. Setting
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m = 4 in eq. (5.33),

C4 [In] =
22−D(2π)2eγEε

π
n−1

2 Γ
(
D−n+1

2

) |q22|5−D
|A2,p(B2,p − A2,p)|

D−5
2

|q00| |q11| |q22|
f4,p. (5.70)

For the same reason as for the three-propagator cut, the quadruple cut will vanish

if and only if A2,p = 0 or A2,p = B2,p. Recalling that x1,p = A1,p/B1,p, with B1,p

as given above, we have

B2,p = 2
q22

q11

B1,p

√
x1,p(1− x1,p) = 2

q22

q11

√
A1,p(B1,p − A1,p) (5.71)

A2,p = 2k0,pq20 −
q21

2q11

(2A1,p −B1,p) +
q22

q11

√
A1,p(B1,p − A1,p) +m2

2 − k2 − q2
2.

The näıve guess to find a kinematic configuration where the quadruple cut

could vanish would be to require any of the three-propagator cuts obtained by

cutting one fewer propagator of such diagram to be zero, i.e., that any of the

triple cuts would isolate a vertex with three massless legs. This can be realised

in the above expressions by setting A1,p = 0 and k2 = 0, in which case

B2,p = 0

A2,p = 2k0,p(q20 + q21)− q2
2. (5.72)

where we have also set m2
2 to be zero, which we are of course free to do. As for

the triple cut, we can also require that q2
2 = 0. We would then have a vanishing

quadruple cut if q20 + q21 = 0. However, these two conditions cannot be satisfied

at the same time: since by definition q22 6= 0,

q2
2 = 0 ⇒ q2

22 = q2
20 − q2

21 6= 0 ⇒ q20 + q21 6= 0. (5.73)

We thus conclude that the quadruple cut of a one-loop diagram cannot vanish

for a general kinematic configuration. As an example, which we will explore in

more detail below, the quadruple cut of the massless box is not zero, and can be

computed using eq. (5.70) to all orders in ε. This result contradicts our intuition

from the previous chapter in two ways. First, if we restricted ourselves to real

kinematics this cut would vanish because it isolates a massless vertex (in fact, four

massless vertices). Second, we got used to thinking of iterated cuts as iterated
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

discontinuities, but once we have taken the first cut, say on the s-channel of the

box, the second cut, say on the t-channel, is a cut on a channel that does not

have a well defined i0-prescription according to the rules of the previous chapter,

which means we could not compute its double discontinuity. In that spirit, the

only value that would make sense to assign to such a cut would be zero. We will

however see that the quadruple cut can still be interpreted in some sense as a

discontinuity on s and t.

We conjecture that the same conclusion holds for any number of cut

propagators m ≥ 4, for exactly the same reasons. We will give both direct and

indirect evidence to support this conjecture. The direct evidence will be given in

the next section where we will compute the five-propagator cut of the pentagon,

and the indirect evidence in the next chapter where we will argue that maximal

cuts are related to the homogeneous terms of the differential equations satisfied

by Feynman diagrams.

To summarise this subsection, one-, two- and three-propagator cuts, computed

in complex kinematics according to the definitions in eqs. (5.24) and (5.55),

can also be understood from the perspective of the relation between cuts and

discontinuities we developed in the previous section. One- and two-propagator

cuts vanish if they do not correspond to a discontinuity on an internal mass or

an external channel, and three-propagator cuts will vanish if they isolate a vertex

with three massless legs. If four or more propagator are cut, the cuts will never

vanish for general kinematics.

5.4.2 Maximal and next-to-maximal cuts of a diagram

with an even number of propagators

We now look at an interesting relation between maximal and next-to-maximal

cuts of diagrams with an even number n of propagators, computed in d = n

dimensions. This relation will play an important role in the discussion of the

following chapter.

We start with an observation on the weight of Feynman integrals. As already

mentioned, requiring that the space-time dimensions vary with the number of

propagators as we do in eq. (5.9) guarantees that all one-loop Feynman diagrams

are functions of weight d/2 (more precisely, a pure function once normalised to
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its leading singularity, as defined in eq. (5.35)). It then follows that the m-

propagator cut of a Feynman diagram as defined in eq. (5.24) is a function of

weight d/2 − dm/2e, where dxe is the ‘ceiling function’ that associates a real

number x to the smallest integer greater or equal to x. In particular, this means

that the next-to-maximal and maximal cuts of a diagram with an even number

of propagators are functions of weight 0, i.e., they are rational functions for

ε = 0. Note that this means that next-to-maximal and maximal cuts cannot be

divergent.

We will now show that if the next-to-maximal cuts exist, i.e., if they are

not zero for the reasons given in section 5.4.1, they are equal to each other and

proportional to the maximal cut at ε = 0. Furthermore, the proportionality

constant is independent of the diagram.

We start by evaluating the maximal cut at ε = 0. We can use eq. (5.34)

and, because we are considering diagrams with an even number of propagators,

set D = n:

C(0)
n [In] = 22−n

2 |An−2,p(Bn−2,p − An−2,p)|−
1
2

n−3∏
j=0

|qjj|−1 , (5.74)

where C(0)
n [In] denotes the order ε0 term in the ε-expansion of Cn [In].

The next-to-maximal cuts can be written in the form

C(0)
n−1 [In] = −22−n

2

2π
f

(0)
n−1,p

n−3∏
j=0

|qjj|−1 , (5.75)

where the superscript (0) has the same meaning as above. Note that while the

maximal cut is unique, there are n different next-to-maximal cuts. However, they

can all be written in this form, so we will not distinguish between them. Because

the next-to-maximal cuts are not divergent, we can compute f
(0)
n−1,p by setting

ε = 0 and m = n− 1 in eq. (5.21):

f
(0)
n−1,p =

∫ 1

0

d x
(x(1− x))−

1
2

(Bm−2,px− Am−2,p)
= π |An−2,p(Bn−2,p − An−2,p)|−

1
2 . (5.76)

We thus find that

C(0)
n−1 [In] = −1

2
C(0)
n [In] +O(ε). (5.77)

143



Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

This shows that for any one-loop diagram with an even number of propagators

there is a relation between the next-to-maximal and the maximal cuts: the O(ε0)

coefficients in the ε-expansion of all existing next-to-maximal cuts (i.e., non-

vanishing according to the discussion in section 5.4.1) are equal to each other,

and equal to minus one-half times the O(ε0) coefficient of the maximal cut.

As an example, consider the box diagram with one internal massive propa-

gator, and four external massless legs. Following the discussion of section 5.4.1,

this diagram has a single non-vanishing triple cut, the one where the massive

propagator and the two adjacent ones are cut. According to eq. (5.77), we expect

the first term in the ε-expansion of this cut to be minus one-half times the first

term in the ε-expansion of the quadruple cut. In the next section, we will verify

this by explicit calculation.

5.4.3 Brief comment on maximal cuts

We finish this section on general properties of cuts of one-loop diagrams with

a brief comment on maximal cuts. Our formal solution for the m-propagator cut

of a diagram with n propagators, given explicitly in eq. (5.33), is of the form

Cm [In] = N (ε)R(pj · pk;m2
l )X (pj · pk;m2

l ; ε)fm,p(pj · pk;m2
l ; ε), (5.78)

where:

• N is a prefactor independent of the kinematic invariants ;

• R is a rational function of the invariants independent of ε ;

• X is a function of the invariants and of ε, with a very simple ε dependence

of the form xε, giving only powers of simple logarithms upon expansion ;

• fm,p is a function of the invariants and of ε, obtained by integrating the

uncut propagators, with a complicated ε dependence, producing non-trivial

polylogarithms upon expansion.

For the maximal cut, fn,p(pj · pk;m2
l ; ε) = 1, and we have

Cn [In] = N (ε)R(pj · pk;m2
l )X (pj · pk;m2

l ; ε), (5.79)
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which means that, aside from a prefactor independent of the kinematic invariants,

the ε dependence of the maximal cut is of the form xε. Because of this, maximal

cuts will play a special role in the discussion of the next chapter.

5.5 New results for cuts in complex kinematics

When introducing our formulation for cuts of one-loop diagrams in sections

5.2 and 5.3, we illustrated the formulae we obtained by showing they gave

the expected results for some trivial examples. We now apply them to more

complicated diagrams. We first look once more at our favourite example, the

one-loop three-mass triangle, to show we recover the results we already obtained

previously. We then go on to compute cuts of a variety of box diagrams. We

will not explore the one- and two-propagator cuts, as their calculation does not

require the tools introduced in this chapter: the calculation is essentially the same

as for triangles, but requires the evaluation of more complicated integrals. We will

evaluate the next-to-maximal cuts to illustrate how they can vanish depending

on the kinematic configuration. The maximal cuts of boxes will be the first

example of a cut that could not have been computed through the methods of the

previous chapters. Finally, we compute the maximal cut of the pentagon with no

internal or external masses, which gives more evidence that cuts of four or more

propagators do not vanish even if they isolate a vertex connecting three massless

legs.

5.5.1 Three-mass triangle

We will consider the double and triple cuts of the triangle with three external

massive legs of masses p2
1, p2

2 and p2
3 in D = 4 − 2ε dimensions, which we

already analysed in sections 3.5.1 and 3.5.5. These cuts are computable in real

kinematics, so this example shows that the definition of cut as residues given in

this chapter reproduces the results computed with the more standard techniques

of the previous chapter when both methods give non-vanishing results.

In this case, eq. (5.9) is

I3(p2
1, p

2
2, p

2
3) =

eγEε

iπ2−ε

∫
d4−2εk

1

k2

1

(k − q0)2

1

(k − q1)2 , (5.80)
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p1

p3

p2k

p1 − k

k + p2

Figure 5.1: Parametrisation for the triangle with three external masses.

and we choose q0 = p1 and q1 = −p2, which is consistent with cutting the

propagator (12), of momentum k, and (13), of momentum (p1 − k), see fig. 5.1.

Working out the kinematics,

q0 =
√
p2

1(1,0D−1), q1 =

√
p2

1

2

(
1 + u2 − u3,−

√
λ(1, u2, u3),0D−2

)
. (5.81)

Under the conditions k0 =

√
p2

1

2
, β = 1, we have A1,p and B1,p—see eq. (5.16):

A1,p = p2
1(1− z)z̄, B1,p = −p2

1(z − z̄), x1,p = −(1− z)z̄

z − z̄ . (5.82)

This parametrisation is suitable for the p2
1-channel cut, so we now show we do

recover the expected result from eq. (5.28) with n = 3,

C2,[(12),(13)]

[
I3(p2

1, p
2
2, p

2
3)
]

=
eγEε

Γ (1− ε)

(√
p2

1

2

)1−2ε
f2,p√
p2

1

, (5.83)

in the region where p2
1 > 0. f2,p is obtained from eq. (5.21) with n = 3,

f2,p =− 21−2ε

p2
1(z − z̄)

∫ 1

0

dx1
(x1(1− x1))−ε

x1 − x1p

=− 21−2ε

p2
1z̄(1− z)

Γ2(1− ε)
Γ(2− 2ε)

2F1

(
1, 1− ε; 2− 2ε;− z − z̄

(1− z)z̄

)
. (5.84)

Putting everything together,

C2,[(12),(13)]

[
I3(p2

1, p
2
2, p

2
3)
]

=

= −e
γEεΓ(1− ε)
Γ(2− 2ε)

(p2
1)−1−ε

(1− z)z̄
2F1

(
1, 1− ε; 2− 2ε;− z − z̄

(1− z)z̄

)
, (5.85)
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p3

p1

p2

p4k − p1 − p2

k

k − p2 k + p3

Figure 5.2: Parametrisation for the general box diagram. For each of the boxes
we consider, some of the masses have to be put to zero.

which reproduces the result of eq. (B.55), which was computed as a unitarity

cut using the methods of chapter 3, once multiplied by a factor of (−2π). In

appendix A, eq. (A.10), we explain in detail how this factor can be determined.

We can also compute the maximal cut of this triangle, for which we use

eq. (5.34) with n = 3,

C3

[
I3(p2

1, p
2
2, p

2
3)
]

=
2−1+2εeγEε

Γ (1− ε)

∣∣q2ε−1
11

∣∣
|q00|

|A1,p(B1,p − A1,p)|−ε

=− eγEε

Γ(1− ε)
(p2

1)−1−ε

(z − z̄)1−2ε
|zz̄(1− z)(1− z̄)|−ε , (5.86)

which reproduces the result of eq. (B.58) once factors of (2π) and i have been

adjusted.

5.5.2 Triple and quadruple cut of the 0-mass box

We now look at the triple and quadruple cuts of the 0-mass box in 4 − 2ε

dimensions,

I4(s, t) =
eγEε

iπ2−ε

∫
d4−2εk

1

k2(k − (p1 + p2))2(k − p2)2(k + p3)2
(5.87)

where s = (p1 + p2)2 and t = (p2 + p3)2. We parametrise the momenta as follows

(see fig. 5.2 with all masses set to zero):

q0 = p1 + p2 =
√
s (1,0D−1) , q1 = p2 =

√
s

2
(1,−1,0D−2)

q2 = −p3 =

√
s

2

(
1,−1− 2r, 2

√
−r(1 + r),0D−3

)
,
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k = k0 (1, cos θ1, sin θ1 cos θ2, sin θ1 sin θ21D−4) , (5.88)

where r = t/s.

The triple cut for which this parametrisation is suitable, C3,[(12),(23),(14)] [I4(s, t)],

isolates a vertex with three massless particles (we can easily check x1,p = 0), and

following the discussion of section 5.4.1 it must thus vanish. In fact, by symmetry

this is true for any triple cut and we can write more generally

C3 [I4(s, t)] = 0. (5.89)

The quadruple cut is a maximal cut so we can use eq. (5.34) with n = 4 and

D = 4− 2ε,

C4 [I4(s, t)] =
eγEεΓ(1− ε)
Γ (1− 2ε)

|q22|2ε
|q00| |q11|

|A2,p(B2,p − A2,p)|−
1+2ε

2 , (5.90)

where A2,p and B2,p are evaluated at x1 = x1,p = 0, and thus become very simple:

A2,p = −t, and B2,p = 0. (5.91)

We then get

C4I4(s, t) = 2
eγEεΓ(1− ε)
Γ (1− 2ε)

s−εt−ε(s+ t)ε

st
, (5.92)

where we chose to be in the region where s, t > 0, as this cut is symmetric in

these two variables.

This is the first cut we computed with the definition of cut given in eq. (5.24)

that we would not have been able to compute using the method of chapter 3.

It would thus be interesting to have some check of this result. The first check

we can do is to check whether the coefficient of order ε0 matches the rational

prefactor of this diagram [56, 57], and it is easy to see that it does. Indeed, up

to normalisation factors it also matches the result we have computed in eq. (5.8).

However, we claim our method should give the quadruple cut to all orders in ε,

so we would like to check higher orders in ε are correct as well. We now show

how this can be done.

The uncut box is given in eq. (B.91). Because this diagram only depends on

two variables, its analytic structure should be simple to understand: by symmetry
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of the diagram and of its quadruple cut, it is reasonable to expect that

δs,tI4(s, t) = δt,sI4(s, t) = ±C4I4(s, t), (5.93)

and this relation should hold to all orders in ε. We can thus compute the symbol

of eq. (B.91), and check that its δs,t agrees with the symbol of eq. (5.92) order by

order in ε. We have checked that the equality holds up to ε4, with a plus sign in

eq. (5.93).

Note that this means we can identify the quadruple cut of the box with the

double discontinuity on s and t up to an overall sign. Indeed, there is no way to

correctly determine the sign in eq. (5.93): after the first discontinuity has been

taken, the variable on which the second discontinuity is taken does not have a

well defined i0 prescription. This is why we have excluded this type of cuts from

the discussion of chapter 3.

5.5.3 Triple and quadruple cut of the 1-mass box

The triple and quadruple cuts of the 1-mass box in 4− 2ε are also very easily

computable. We have

I4(s, t; p2
4) =

eγEε

iπ2−ε

∫
d4−2εk

1

k2(k − (p1 + p2))2(k − p2)2(k + p3)2
. (5.94)

The momenta are parametrised as:

q0 = p1 + p2 =
√
s (1,0D−1) , q1 = p2 =

√
s

2
(1,−1,0D−2) ,

q2 = −p3 =
s− p2

4

2
√
s

(
1,

1− µ+ 2r

µ− 1
, 2

√
r(µ− 1− r)

1− µ ,0D−3

)
,

k = k0 (1, cos θ1, sin θ1 cos θ2, sin θ1 sin θ21D−4) , (5.95)

where we defined r = t/s and µ = p2
4/s—see fig. 5.2 with the relevant masses set

to zero.

As for the zero-mass box, all triple cuts are zero because of the discussion of

section 5.4.1. For the quadruple cut, we can use eq. (5.90). It turns out that the
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quantities A2,p and B2,p are equal to the ones of the zero-mass box,

A2,p = −t, and B2,p = 0. (5.96)

Putting everything together, we find

C4

[
I4(s, t; p2

4)
]

= 2
eγEεΓ(1− ε)
Γ (1− 2ε)

s−εt−ε(s+ t− p2
4)ε

st
, (5.97)

which in the p2
4 → 0 limit reproduces eq. (5.92) as it should. We can perform the

same checks on this result as we did for eq. (5.92). We observe it matches the

result in eq. (5.8), up to normalisation factors and at order ε = 0. Furthermore,

by symmetry we expect the quadruple cut to match δs,tI4(s, t; p2
4) to all orders

in ε. This can be checked explicitly from the expression for the one-mass box,

eq. (B.92), and we have done so up to ε4.

5.5.4 Triple and quadruple cut of the 2-mass-easy box

We now look at the triple and quadruple cuts of the 2-mass-easy box in 4−2ε

dimensions,

Ie4(s, t; p2
2, p

2
4) =

eγEε

iπ2−ε

∫
d4−2εk

1

k2(k − (p1 + p2))2(k − p2)2(k + p3)2
. (5.98)

The momenta are parametrised as follows (see fig. 5.2 with the relevant masses

set to zero):

q0 = p1 + p2 =
√
s (1,0D−1) , q1 = p2 =

(
s+ p2

2

2
√
s
,
s− p2

2

2
√
s
,0D−2

)
q2 = −p3 =

s− p2
4

2
√
s

(
1,

2s(p2
2 + p2

4 − s− t)
(p2

2 − s)(s− p2
4)
− 1,

2

√
s(s+ t− p2

2 − p2
4)(p2

2p
2
4 − st)

(s− p2
2)(s− p2

4)
,0D−3

)
k = k0 (1, cos θ1, sin θ1 cos θ2, sin θ1 sin θ21D−4) . (5.99)

It is easy to see that all triple cuts isolate a three-point massless vertex, so

they all vanish. For the quadruple cut, we use eq. (5.90) but now A2,p and B2,p
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are given by

A2,p =
st− p2

2p
2
4

p2
2 − s

, and B2,p = 0. (5.100)

Putting everything together,

C4

[
Ie4(s, t; p2

2, p
2
4)
]

= 2
eγEεΓ(1− ε)
Γ (1− 2ε)

(s+ t− p2
2 − p2

4)ε

(st− p2
2p

2
4)1+ε

. (5.101)

As expected, the limit p2
2 → 0 reproduces eq. (5.97), and the limit p2

2, p
2
4 → 0

reproduces eq. (5.92). The ε = 0 limit of this expression is also consistent with

the result computed in eq. (5.8). To check that the symbol of this expression is

consistent with the appropriate truncation of the coproduct to higher order in ε,

we use the result for the uncut two-mass-easy box in eq. (B.93). There is however

a difference between this example and the previous two: the relevant truncation

is no longer δs,tI
e
4(s, t; p2

2, p
2
4), which is zero, but rather δs,st−p2

2p
2
4
Ie4(s, t; p2

2, p
2
4).

Indeed, looking at a selection of box diagrams, we observe that the coproduct

entry that is reproduced by the quadruple cut is of the form δs,Ξ where Ξ is (one-

half times) the leading singularity of the box in question as defined in eq. (5.35).

We have no deeper understanding of this observation but note that δs,st−p2
2p

2
4

reduces to δs,t in the limits corresponding to the zero-mass and one-mass boxes,

so there is some consistency between the three examples. We have verified the

agreement up to O(ε4).

5.5.5 Triple and quadruple cut of the 0-mass box with one

internal mass

We now look at the triple and quadruple cuts of the 0-mass box with one

internal massive propagator between external legs 1 and 2, of mass m2
12, in 4− 2ε

dimensions,

I4(s, t;m2
12) =

eγEε

iπ2−ε

∫
d4−2εk

1

k2(k − p1 + p2)2((k − p2)2 −m2
12)(p3 + k)2

.

(5.102)

We can use the same parametrisation of the external momenta as for the 0-mass

box given in eq. (5.88)—see also fig. 5.2 with the relevant masses set to zero—

which is consistent with a two-propagator cut in the s-channel, and a three-

propagator cut which also cuts the massive propagator. The coefficients Aj,p and
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Bj,p are different because of the internal mass,

A1,p = m2
1 = sµ12, B1,p = −s, x1p = −µ12,

A2,p = s(−µ12 − r − 2µ12r + 2
√
µ12r(1 + µ12)(1 + r)) ≡ −sᾱ,

B2,p = 4s
√
µ12r(1 + µ12)(1 + r) ≡ s(α− ᾱ), x2p = − ᾱ

α− ᾱ . (5.103)

where r = t/s, µ12 = m2
12/s and α and ᾱ were defined to have more compact and

easy-to-handle expressions. It is useful to notice that αᾱ = (µ− r)2 and that the

integral is symmetric under α↔ ᾱ.

This is our first example of a box for which the triple cut does not vanish.

Indeed, x1,p /∈ {0, 1}. To compute this cut, we need to compute f3,p, as defined in

eq. (5.21). After some algebra, we see that the integral that must be evaluated is

∫ 1

0

dx2
(x2(1− x2))−1/2−ε

x2α + (1− x2)ᾱ
.

It is convenient to use the α ↔ ᾱ symmetry of this expression to find a

better behaved integral representation of this integral (this is not necessary, but

facilitates the expansion of the final result). We note that

∫ 1

0

dx2
(x2(1− x2))−1/2−ε

x2α + (1− x2)ᾱ
=

∫ 1

0

dx2
(x2(1− x2))−1/2−ε

(1− x2)α + x2ᾱ

and so∫ 1

0

dx2
(x2(1− x2))−1/2−ε

x2α + (1− x2)ᾱ
=
α + ᾱ

2s

∫ 1

0

dx2
(x2(1− x2))−1/2−ε

αᾱ + x2(1− x2)(α− ᾱ)2

=
22ε−1(α + ᾱ)

αᾱ

√
πΓ(1/2− ε)
Γ(1− ε) 2F1

(
1,

1

2
− ε; 1− ε;−(α− ᾱ)2

4αᾱ

)
.

Using this result,

f3,p =
α + ᾱ

2αᾱs

√
πΓ
(

1−ε
2

)
Γ(1− ε) 2F1

(
1,

1

2
− ε; 1− ε;−(α− ᾱ)2

4αᾱ

)
. (5.104)

From eq. (5.33), with m = 3 and n = 4, we get

C3

[
I4(s, t;m2

12)
]

= − 2−1+2εeγEε√
πΓ
(

1−ε
2

) |q11|2ε−1

|q00|
f3,p |A1,p (B1,p − A1,p)|−ε , (5.105)
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which for this particular case becomes,

C3,[(12),(23),(14)]

[
I4(s, t;m2

12)
]

=

=− eγEε |s|−2+ε

2Γ (1− ε)
∣∣m2

12(s+m2
12)
∣∣−ε α + ᾱ

αᾱ
2F1

(
1,

1

2
− ε; 1− ε;−(α− ᾱ)2

4αᾱ

)
=

1

s(m2
12 − t)

{
1 + ε

(
− 2 log

(
s (t−m2

12)

t (m2
12 + s)

)
− log

(
m2

12 + s
)

− log
(
−m2

12

)
+ log(s)

)}
+O(ε2). (5.106)

This result could have been computed using the methods of the previous chapter,

and we have checked that the two methods agree in the region where s > 0 and

t < m2
12 < 0.

Upon expansion and substitution of α and ᾱ by their expressions in terms of

invariants, it is a non-trivial check of our result that there are no square roots

remaining. Indeed, we know that the symbol alphabet of this diagram is rational

when written in terms of (ratios of) Mandelstam invariants and internal masses,

as can be seen explicitly in eq. (B.95). As a side comment, in chapter 6 we will

argue that one can guess if the alphabet of a box diagram is rational when written

in terms of the kinematic invariants by looking at the different diagrams obtained

by pinching some of the propagators of the box: if any of them requires a more

complicated parametrisation, so will the box. We easily see this is not the case

for this example.

As a final check of eq. (5.106), we can verify it is consistent with δs,m2
12
I4(s, t;m2

12)

using the result for I4(s, t;m2
12) in eq. (B.95). Higher orders in the expansion can

be found in the accompanying MATHEMATICA package.

We now look at the quadruple cut. We can use eq. (5.90) for which all

ingredients have already been given. We find

C4

[
I4(s, t;m2

12)
]

= 2
eγEεΓ(1− ε)
Γ (1− 2ε)

s−1−εtε(s+ t)ε(t−m12)−1−2ε. (5.107)

This expression passes the usual checks: the massless limit reproduces eq. (5.92),

and it matches δs,m2
12−tI4(s, t;m2

12) up to ε3, the order to which we have evaluated

I4(s, t;m2
12). Furthermore, this is the first example for which we can check that

the relation in eq. (5.77) holds: it is easy to see that the finite terms of eqs. (5.106)
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and (5.107) do agree with it.

5.5.6 Triple and quadruple cut of the 0-mass box with two

adjacent internal masses

We now look at the triple and quadruple cuts of the 0-mass box with two

adjacent internal masses in 4− 2ε dimensions,

I4(s, t;m2
12,m

2
23) = (5.108)

=
eγEε

π2−ε

∫
d4−2εk

1

k2((k − p1 + p2)2 −m2
23)((k − p2)2 −m2

12)(p3 + k)2
.

We will use the same parametrisation as for the the 0-mass box and the previous

example, see fig. 5.2 with the relevant masses set to zero. Because the propagator

of momentum (k − q0) is massive, the pole of the residue of k0 is now at k0,p =
s−m2

23

2
√
s

. The coefficients Aj,p and Bj,p are given by

A1,p = m2
12 = sµ12, B1,p = m2

23 − s = s(µ23 − 1), x1,p =
µ12

µ23 − 1
,

A2,p = s(−µ12 − r − 2µ12r + rµ23 + 2
√
µ12r(1 + µ12 − µ23)(1 + r)) ≡ −sδ̄,

B2,p = 4s
√
µ12r(1 + µ12 − µ23)(1 + r) ≡ s(δ − δ̄), x2,p = − δ̄

δ − δ̄ , (5.109)

where r = t/s and µij = m2
ij/s. The quantities δ and δ̄ were defined

for convenience and simplicity of the expressions. It is useful to notice that

δδ̄ = (µ12 + r(µ23 − 1))2.

The parametrisation we chose is consistent with the triple cut where the

propagators (12), (23) and (14) are cut. Proceeding as in the previous example,

C3,[(12),(23),(14)]

[
I4(s, t;m2

12,m
2
23)
]

=

= −e
γEε |s|−2+ε

2Γ (1− ε)
∣∣m2

12(s+m2
12 −m2

23)
∣∣−ε δ + δ̄

δδ̄
2F1

(
1,

1

2
− ε; 1− ε;−(δ − δ̄)2

4δδ̄

)
=

1

s (m2
12 − t) +m2

23t

{
1 + ε

(
− 2 log

(−m2
12s−m2

23t+ st

t (m2
12 −m2

23 + s)

)

− log
(
m2

12 −m2
23 + s

)
− log

(
−m2

12

)
+ log(s)

)}
+O(ε2). (5.110)
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The same comments as below eq. (5.106) apply: the same result could have

been computed with the methods of chapter 3 in the kinematic region where

s > m2
23 and t < m2

12 < 0, all square roots disappear upon expansion and

substitution of δ and δ̄ (as for the previous box, we can check all triangles obtained

by contracting one of the propagators have a rational symbol alphabet when

written in terms of ratios of kinematic invariants), and this expression reproduces

δs,m2
12
I4(s, t;m2

12,m
2
23), which we can compute using eq. (B.99). Furthermore, we

can check the m2
23 → 0 limit of the unexpanded expression agrees with the result

in eq. (5.106). Higher orders in the expansion can be found in the accompanying

MATHEMATICA package.

There is another non-vanishing triple cut we can compute, C3,[(12),(23),(34)] [I4],

which would correspond to a double discontinuity on t and m2
23 in the language

of the previous section. We could re-parametrise the momenta to have a

parametrisation consistent with this triple cut, and go through the same exercise

as above. However, it is easier to notice that C3,[(12),(23),(14)] and C3,[(12),(23),(34)] are

related by symmetry:

C3,[(12),(23),(34)]

[
I4(s, t;m2

12,m
2
23)
]

= C3,[(12),(23),(14)]

[
I4(t, s;m2

23,m
2
12)
]
. (5.111)

To finish with this example, the quadruple cut is given by

C4

[
I4(s, t;m2

12,m
2
23)
]

= 2
eγEεΓ(1− ε)
Γ (1− 2ε)

(s+ t)ε(s(t−m12)−m2
23t)

−1−2ε. (5.112)

This expression passes the usual checks: the massless limit reproduces eqs. (5.92)

and (5.107), and it matches δs,s(t−m12)−m2
23t
I4(s, t;m2

12) up to ε2, the order to which

we have evaluated I4(s, t;m2
12,m

2
23). As for the previous examples, we can check

that eqs. (5.110)), (5.111)) and (5.112)) are in agreement with the relation in

eq. (5.77).

5.5.7 Triple and quadruple cut of the 2-mass-hard box

As our last box example, we look at the triple and quadruple cuts of the

2-mass-hard box in 4− 2ε dimensions,

Ih4 (s, t; p2
1, p

2
2) =

eγEε

π2−ε

∫
d4−2εk

1

k2(k − (p1 + p2))2(k − p2)2(k + p3)2
. (5.113)
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We choose a parametrisation consistent with a first cut in the s channel and a

second cut in the propagator (12), see fig. 5.2 with the relevant masses set to

zero:

q0 =p1 + p2 =
√
s (1,0D−1) , q1 = p2 =

√
p2

2

(
α,
√
α2 − 1,0D−2

)
,

q2 =− p3 = β
(

1, γ,
√

1− γ2,0D−3

)
,

k =k0 (1, cos θ1, sin θ1 cos θ2, sin θ1 sin θ21D−4) . (5.114)

After working out the kinematics,

q1 =
√
s

(
1− u1 + u2

2
,

√
λ

2
,0D−2

)
, q2 =

√
s

2

(
1, γ,

√
1− γ2,0D−3

)
, (5.115)

where

ui =
p2
i

s
, γ =

1− u1 − u2 + 2r√
λ

, r =
t

s
, λ = λ(1, u1, u2).

We will use the by now usual z and z̄ defined as u1 = zz̄ and u2 = (1− z)(1− z̄),

see also section B.4.6.

We start by computing the Aj,p and Bj,p coefficients:

A1,p = sz(1− z̄), B1,p = s(z − z̄),

A2,p = s

(
1 + γ

2
− γx1 +

√
1− γ2

√
x1(1− x1)

)
≡ sχ,

B2,p = 2s
√

1− γ2
√
x1(1− x1) = s(χ− χ̄). (5.116)

The poles of the propagators are at:

x1,p =
z(1− z̄)

z − z̄ , x2,p =
1 + γ − 2γx1 + 2

√
1− γ2

√
x1(1− x1)

4
√

1− γ2
√
x1(1− x1)

=
χ

χ− χ̄ ,

where χ and χ̄, introduced for convenience, satisfy χχ̄ = r2

(z−z̄)2 .

By the arguments of section 5.4.1, there is a single non-vanishing triple cut,

the cut of propagators (12), (14) and (23). We are by now familiar with this type
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(a) Three-propagator cut (b) Cut in p2
1 and p2

2

(c) Cut in s and p2
1 (d) Cut in s and p2

2

Figure 5.3: Different interpretations of the non-vanishing triple cut of the
two-mass-hard box.

of calculation, so we simply quote the result:

C3,[(12),(23),(14)]

[
Ih4 (s, t; p2

1, p
2
2)
]

=

= −e
γEε |s|−2+ε

2Γ (1− ε)
|zz̄(1− z)(1− z̄)|−ε

|z − z̄|1−2ε

χ+ χ̄

χχ̄
2F1

(
1,

1

2
− ε; 1− ε;−(χ− χ̄)2

χχ̄

)
=

1

s2r

{
− 1 + ε

(
− 2 log(r − zz̄ + z̄) + 2 log(−r) + log(s)

+ log

(
−(1− z)z̄

z(1− z̄)

))}
+O(ε2). (5.117)

As the previous two triple cuts of boxes we computed, this cut could have been

computed with the methods of the previous chapter. However, this is the first

time that a three-propagator cut—see fig. 5.3a—can have different interpretations

as discontinuities. Indeed, it can correspond to a discontinuity on p2
1 and p2

2—

see fig. 5.3b—to a discontinuity on s and p2
1—see fig. 5.3c—or to a discontinuity

on s and p2
2—see fig. 5.3d. These three discontinuities must thus be related by

analytic continuation (in our expression, we chose to compute it in the region

where p2
1, s > 0 and p2

2, t < 0). More importantly, following the relation between

cuts, discontinuities and coproduct entries, this implies many relations between
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coproduct entries. For instance, from Discp2
1,p

2
2

= Discp2
2,p

2
1
, we get

δz̄,1−zI
h
4 (s, t; p2

1, p
2
2) = δ1−z,z̄I

h
4 (s, t; p2

1, p
2
2) = −C3,[(12),(23),(14)]I

h
4 (s, t; p2

1, p
2
2) mod π.

From Discs,p2
1

= Discs,p2
2
, which must hold by symmetry, we get

(δs,z̄ − δz,z̄ − δ1−z,z̄ − δx,z̄) Ih4 (s, t; p2
1, p

2
2) =

= (δs,1−z − δz,1−z − δ1−z,1−z − δx,1−z) Ih4 (s, t; p2
1, p

2
2)

= C3,[(12),(23),(14)]I
h
4 (s, t; p2

1, p
2
2) mod π

We also get some relations from Discp2
1,s

and Discp2
2,s

but these would involve

other symbol letters so we will not go into that detail here. Indeed, we simply

wanted to illustrate once more through a new example that the analytic structure

of Feynman integrals is highly constrained by their cuts.

We finish this example with the quadruple cut, for which we can use eq. (5.90).

Using

q2
22 = s

(r + z − zz̄)(zz̄ − r − z̄)

(z − z̄)2
, q00q11 =

s(z − z̄)

2
,

A2(B2 − A2) = −s2 r2

(z − z̄)2

the quadruple cut is

C4

[
Ih4 (s, t; p2

1, p
2
2)
]

= 2
eγEεΓ(1− ε)
Γ (1− 2ε)

s−1−ε(−r)−1−2ε

|(r + z − zz̄)(zz̄ − r − z̄)|−ε
. (5.118)

This expression passes all the usual checks. In particular, it agrees with

C4

[
Ih4 (s, t; p2

1, p
2
2)
]

= (δs,r − δz,r − δ1−z,r − δr,r) Ih4 (s, t; p2
1, p

2
2) mod π,

as it should, given the relation between the quadruple cut and the double

discontinuity Discs,t
[
Ih4 (s, t; p2

1, p
2
2)
]
. We can also check the agreement of

eqs. (5.117) and (5.118) in the perspective of eq. (5.77).
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p5

p1

p2 p3

p4

k

p1 − k

p1 + p2 − k

p4 + p5 + k

p5 + k

Figure 5.4: Parametrisation for the massless pentagon.

5.5.8 Maximal cut of the massless pentagon

As a final example, we examine the maximal cut of the massless pentagon in

D = 6 − 2ε dimensions. Through this example, we wish to illustrate two main

points. The first is to show that it is possible to have a non-vanishing cut that

isolates a vertex with three massless legs in a diagram with an odd number of cut

propagators. The second is to point out a subtlety in the usage of eq. (5.16).

We start with some notation. In the usual way, we define

sjk = (pj + pk)
2 = 2pj · pk. (5.119)

The pentagon depends on five independent dimensionful variables. As usual,

we can factor out a scale that carries the dimensions of the integral, and the

non-trivial part of the integral is a function of four dimensionless variables. We

choose

rij =
sij
s12

, with ij = 23, 34, 45, 15. (5.120)

We parametrise the momenta as follows, see fig. 5.4:

q0 = p1 + p2 =
√
s12 (1,0D−1) , q1 = p1 =

√
s12

2
(1, 1,0D−2) ,

q2 = −(p4 + p5) =
√
s12

(
1 + r45, 1 + 2r23 − r45,−2

√
r23(r45 − 1− r23),0D−3

)
,

q3 = −p5 = −√s12

(
γ0, γ1, γ2,

√
γ2

0 − γ2
1 − γ2

2 ,0D−4

)
, (5.121)
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where

γ0 =
r34 − 1

2
, γ1 =

r34 − 1− 2r15

2
,

γ2 =
−r15 − 2r23r15 + r45r15 − r23 + r23r34 − r34r45

2
√
−r23 (1 + r23 − r45)

.

To compute the maximal cut, we will need to evaluate A3,p and B3,p. We can

start by noticing that once the propagators (12), (23) and (15) have been cut

we have isolated two three-point massless vertices. Following the discussion of

section 5.4.1, we have x1,p ∈ {0, 1}, which implies
√
x1,p(1− x1,p) = 0. One could

then be tempted to say that

2∏
j=1

√
xj,p(1− xj,p) = 0, (5.122)

This product appears in both A3,p and B3,p. However, this is not the case, because

x2,p is itself a function of x1,p. Being more careful, we have

2∏
j=1

√
xj,p(1− xj,p) =

√
A1,p(B1,p − A1,p)

B1,p

√
A2,p(B2,p − A2,p)

B2,p

,

where

B2,p =
2q22

q11

√
x1,p(1− x1,p)B1,p =

2q22

q11

√
A1,p(B1,p − A1,p)

and thus
2∏
j=1

√
xj,p(1− xj,p) =

q11

2q22B1,p

√
A2,p(B2,p − A2,p),

which does not vanish if
√
x1,p(1− x1,p) = 0, i.e., if A1,p = 0 or A1,p = B1,p.

As a side comment, we note there is no contradiction between the point we

make here and the discussion of section 5.4.1. There, we used the fact that

√
x1,p(1− x1,p)

2∏
j=2

√
xj(1− xj) (5.123)

vanishes to argue that f3,p was analytic if x1,p ∈ {0, 1}. The difference is that

in one case, eq. (5.122), we are considering products of xj,p which are related for

different values of j, xj,p = xj,p(k0,p, x1,p, . . . , xj−1,p), and in the other, section
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5.4.1, a product of integration variables, which are unrelated to x1,p.

Let us then write explicitly the coefficients A1,p, A2,p(x1,p), A3,p(x1,p, x2,p),

B1,p, B2,p(x1,p) and B3,p(x1,p, x2,p), which we will need for the maximal cut of the

pentagon:

A1,p = 2k0,p (q10 + q11βp) +m2
1 − k2

p − q2
1,

A2,p = 2k0,pq20 −
q21

2q11

(2A1,p −B1,p) +
q22

q11

√
A1,p (B1,p − A1,p) +m2

2 − k2
p − q2

2,

A3,p = 2k0,pq30 −
q31

2q11

(2A1,p −B1,p)−
q33

2q22

(2A2,p −B2,p)

+
q33

q22

√
A2,p (B2,p − A2,p) +m2

3 − k2
p − q2

3, (5.124)

and

B1,p = 4βpk0,pq11, B2,p = 2
q22

q11

√
A1,p (B1,p − A1,p),

B3,p = 2
q33

q22

√
A2,p (B2,p − A2,p). (5.125)

For the case we are interested in and with the parametrisation we chose,

βp = 1, k2
p = q2

1 = m2
1 = 0, and so A1,p = B1,p = 4k0q11 = s12, which means

x1,p = 1 as expected. The remaining coefficients are

A2,p = −s12r23, B2,p = 0, B3,p =
s12

√
∆

(1 + r23 − r45)
,

A3,p = s12
r23 − r15 − r23r34 + r15r45 + r34r45 +

√
∆

2 (1 + r23 − r45)
, (5.126)

where

∆ ≡ 2r15 (r23 (r34 + (r34 + 1) r45 − 1)− r34 (r45 − 1) r45)

+ r2
15 (r45 − 1) 2 + (r23 (r34 − 1)− r34r45) 2. (5.127)

We can then use eq. (5.34) with n = 5 and D = 6− 2ε,

C5 [I5] = −2−2+2εeγEε

Γ(1− ε) |q33|2ε
|A3,p(B3,p − A3,p)|−ε
|q00| |q11| |q22| |q33|

. (5.128)
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After some algebra,

|q33| =
1

2

√
s12

√
∆√

r23(r23 − r45 + 1)
, |q00| |q11| |q22| |q33| =

s2
12

4

√
∆,

|A3,p(B3,p − A3,p)| = s2
12

∣∣∣∣ r15r34r45

r23 − r45 + 1

∣∣∣∣ . (5.129)

Putting all ingredients together, we get the remarkably simple expression

C5 [I5] = − eγEε

Γ(1− ε)s
−2−ε
12

|r15r23r34r45|−ε(√
∆
)1−2ε . (5.130)

As expected, we get a non-zero result for this five-propagator cut. As we will

see in the next chapter, this is in agreement with the fact that the differential

equation for the pentagon has an homogeneous term. Given that we have not

actually computed the massless pentagon, there are not many checks we can do

on this result. However, its leading order does reproduce the expected result as it

is proportional to the inverse of the square-root of the determinant of the Cayley

matrix, as we argued in the introduction to this chapter, section 5.1, and has the

correct symmetries (the cut should be symmetric under exchange of any of the

channels).

5.6 Summary and discussion

In this chapter, we have given a new definition of cut diagrams. The definition

we presented in eq. (5.24), the central result of this chapter, is consistent with the

cutting rules of chapter 3 when both methods give non-zero results, which is of

course something we wanted to preserve. However, in this chapter we addressed

the fact that the definition of Cut given in chapter 3 was not general enough

to be able to reproduce important features of the analytic structure of Feynman

integrals. In particular, we could not compute maximal cuts of a massless box,

but we are now able to do so.

It was important to make this generalisation such that it would apply to any

one-loop Feynman diagram, with any number of cut propagators, and to any

order in ε, unlike the brute-force method we described in the introduction to this
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chapter, section 5.1.

We gave two formulations of our new cut method, one in Minkowski space

and one in Euclidean space. These two formulations are consistent, but the one

in Euclidean space is more suitable to compute single-propagator cuts. For any

other type of cut, we prefer the formulation in Minkowski space as the expressions

are easier to handle and interpret.

Having formal solutions for the m-propagator cut of a diagram with n

propagators allowed us to establish some general results about cuts of Feynman

diagrams in section 5.4. In particular, we characterised all cuts that can vanish,

established a relation between maximal and next-to-maximal cuts for diagrams

with an even number of propagators, and we commented on the general functional

form of maximal cuts. All these observations will play an important role in the

work presented in the next chapter.

Then, in section 5.5 we computed cuts of some non-trivial Feynman diagrams.

These results illustrate the formalism for cuts we developed in the previous

sections, and the general observations of section 5.4. Some of the cuts we

computed are new results, as far as we are aware. We considered the three-

mass triangle to show the consistency with the definition of Cut in chapter 3, and

then a selection of box integrals we would not have been able to fully analyse

with the cutting rules of chapter 3. All the results we obtained here for cuts of

boxes will be used in the next chapter. Finally, we checked the maximal cut of

the pentagon was not zero in agreement with the discussion of section 5.4.1.

The main motivation for the development of the formalism in this chapter was

to find a procedure to compute cut Feynman diagrams that was general enough

to capture all the contributions appearing in the right entries of the coproduct

of Feynman integrals. In the next chapter, we will see this is indeed achieved by

the definition proposed in eq. (5.24).

While we restricted our definition to one-loop diagrams, we are of course

interested in generalising the formalism we developed here to Feynman diagrams

beyond one loop. We do not foresee any major obstacles in this generalisation,

but have not yet explored this issue in detail.
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Chapter 6

Diagrammatic representation of

the coproduct of one-loop

Feynman diagrams

6.1 Introduction

In the previous chapters, we discussed the relation between multiple unitarity

cuts and iterated discontinuities, and showed how these were related to coproduct

entries. Then we showed how one could give a more general definition of

Cut, defined by sequentially evaluating the residues associated to the m cut

propagators in the complex plane, which we called Cm. This allowed us to compute

cuts that were beyond the reach of the methods developed to compute unitarity

cuts.

We believe these results to be important in their own right. However, the

reason why we studied this problem in the first place was that this was a

step towards a more ambitious goal: to establish a completely diagrammatic

representation of the coproduct of Feynman integrals. The idea that such a

representation could exist was first introduced to us by Claude Duhr. The initial

idea was motivated by the Landau conditions [18], which we now review briefly.

Following [18], we write a general l-loop scalar Feynman diagram with n

propagators as

F =

∫
dDk1 . . .

∫
dDkl

1

A1 . . . An
, (6.1)
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where Ai are the propagators,

Ai = q2
i −m2

i . (6.2)

The propagators can now be combined using Feynman parameters,

1

A1 . . . An
= (n− 1)!

∫ ∞
0

dx1 . . .

∫ ∞
0

dxn
δ (1−∑n

i=1 xi)

(
∑n

i=1 xiAi)
n . (6.3)

Discontinuities are of course generated by the poles of the denominator (one can

check that in the euclidean region, as defined in section 2.3.2, the denominator

is positive definite and thus we are away from any branch cuts). Landau shows

that a necessary condition for a singularity to be generated is that either

xi = 0 , or Ai = 0 . (6.4)

There are thus two types of sources of discontinuities. The first kind, where

we set xi = 0, corresponds to a situation where the propagator Ai does not

contribute. Diagrammatically, this is equivalent to contracting the propagator

Ai, which means we obtain a diagram with less propagators. Hence, this

source of discontinuity is associated with simpler diagrams. The other source

of discontinuities corresponds to setting Ai = 0. This is the condition we are

more familiar with, where a propagator is put on-shell. These singularities are

intrinsically associated with the diagram we are investigating.

In summary, according to the Landau conditions there are two graphical

operations one can perform on a Feynman graph that capture their discontinuity

structure: either we cut edges or we contract edges. We thus wanted to

understand if by using these two graphical operations we could construct a

completely graphical representation of the coproduct of Feynman diagrams.

It quickly became clear to us that studying a general Feynman diagram might

be too ambitious, so we decided to focus on one-loop integrals. We first intended

to only look at diagrams with no internal masses, building on the work presented

in [36], but after studying diagrams with internal masses in [37] we decided to try

to address all one-loop scalar diagrams. This turned out to be a wise choice, as

including internal masses was fundamental to understanding the general structure

of the coproduct of one-loop integrals.
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In this chapter, we will then show how to construct a completely graphical

representation of the coproduct of Feynman graphs. Following our brief review of

the Landau conditions, the ingredients will be Feynman diagrams themselves, and

cuts of Feynman diagrams as defined in the previous chapter. It turns out to be

possible to construct the graphical coproduct through purely graphical operations

on Feynman graphs. Once this is done, one may map the graphs to the functions

they evaluate to, and recover the familiar coproduct on polylogarithms introduced

in chapter 2, order by order in ε .

In fact, we can show that we can construct not only a coproduct but a

complete Hopf algebra on Feynman graphs. In this thesis, we will not give the full

construction of the Hopf algebra, as it would require introducing several concepts

(such as the counit and the antipode) that would go beyond the scope of this

thesis. This will be presented in a separate paper [118]. Here, we will simply

show how to construct the coproduct of the Hopf algebra of one-loop Feynman

graphs.

Because this construction is a rather abstract exercise, we believe it is useful

to start by motivating it by looking at an example, so we first investigate

bubble diagrams. Having introduced most of the ideas in section 6.2, we hope

the abstract formulation of section 6.3 will be more transparent. Then, in

section 6.4 we make the connection between the graphical coproduct and the

coproduct of MPLs. In this section, we also check that the graphical coproduct

correctly reproduces the coproduct of Feynman integrals in a variety of non-

trivial examples. Finally, in sections 6.5 and 6.6 we look at the consequences

of the diagrammatic coproduct for the study of discontinuities and differential

equations of Feynman integrals, which will allow us to make some indirect checks

of the validity of our construction. These last two sections illustrate how the

graphical coproduct can have practical applications in the calculation of Feynman

diagrams.

We should mention that Hopf algebras have been seen to be useful in several

aspects of particle physics and quantum field theories [119–123]. While we were

researching what we present in this chapter, we were were made aware through

private communications that Francis Brown is working on related subjects with

encouraging results. Aside from the usual collaborators, we also benefited from

discussions with Erik Panzer.
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All the work presented here was done during my PhD, in collaboration with

Ruth Britto, Claude Duhr, and my supervisor Einan Gardi. As far as we are

aware, this is new work that has not been published elsewhere at the time of

writing.

6.2 Motivation — Bubble diagrams

The next sections of this chapter will be rather formal. We have thus decided

to have an introductory section which motivates the idea of the chapter by looking

at three different types of bubble diagrams (with 0, 1 or 2 massive propagators).

The presentation in this section follows the way we arrived at the more abstract

formulation of the next sections. We believe keeping in mind the reasons why we

started exploring this subject is important, particularly if one wants to generalise

what we present here beyond one-loop diagrams.

We are looking for a completely diagrammatic representation of the coproduct

of these three bubble diagrams. Our main guiding principles for the construction

of such representations will be the first-entry condition presented in 2.3.2, the

fact that discontinuities act in the first entry of the coproduct, eq. (2.21b), and

the fact that the coproduct of a function of weight n has two trivial components

of weight (n, 0) and (0, n). Using these ideas, we will write a conjecture for a

diagrammatic coproduct, which we can then check by explicitly comparing the

coproduct of the functions the bubble diagrams evaluate to with what is predicted

by their diagrammatic representation.

6.2.1 Diagrammatic coproduct of bubble diagrams

Zero-mass bubble, I2(p2): We start with the bubble with no internal masses,

I2(p2
2), which according to our conventions is given by

I2(p2) = −2cΓ
(−p2)−1−ε

ε
, (6.5)

for which the ε expansion is trivial.

From the discussion of chapters 2 and 3, we already know that

C2

[
I2

(
p2
)]

= −δp2I2(p2) = 2
eγEεΓ(1− ε)

Γ(1− 2ε)
(p2)−1−ε, (6.6)
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where the result for the cut is written in the natural region for this cut, i.e.,

p2 > 0. By the first entry condition, we know that the weight one cofactors of

all coproduct entries of the form (1, n) of the massless bubble are log(−p2) (we

included a minus sign to have the logarithm well defined in the euclidean region).

This means all weight n cofactors are trivially related to δp2I2(p2), and we now

have a diagrammatic representation of the rightmost cofactor of terms of weight

(1, n) in the coproduct of the bubble.

We would also like to have a diagrammatic interpretation of the weight one

cofactor. Because of the relation between discontinuities and the coproduct,

which we recall states that discontinuities operators only act in the first entry, or

more formally

∆ Disc = (Disc⊗id)∆ , (6.7)

we expect that the diagrams in the first entry should have the same discontinuity

structure as a Feynman diagram. The obvious guess is that it is a Feynman

diagram. More specifically, in the very simple case we are looking at, it is easy

to guess that this should be the bubble itself: indeed, this is a diagram whose

expansion produces powers of logarithms and nothing else, and in particular a

log(−p2) at order ε0.

Let us then suppose that the coproduct of the zero-mass bubble is given by

the zero-mass bubble in the first entry and the cut bubble in the second entry,

and that this is true to all orders in ε. It is obvious that this näıve choice does not

work because both diagrams contribute a factor of 2/p2, which is the leading order

of the double cut of the bubble. This problem can be solved in three different

ways: either we normalise the cut bubble appearing in the right cofactor of the

coproduct, or we normalise the uncut bubble appearing in the left cofactor of

the coproduct, or we choose to only work with normalised diagrams everywhere.

For reasons we will highlight below, the first option is not viable in general. The

other two options are. Normalising the diagram appearing in the left cofactor of

the coproduct would be the ideal solution as the diagrammatic coproduct would

then encode the maximum information about the function. However, for practical

purposes we choose to normalise all diagrams, cut or uncut: this will allow us to

have a simpler mapping between diagrams and the functions they represent. To

be completely precise, all diagrams are normalised to the leading order of their

maximal cut (to their leading singularity). Note that this is a minor detail, as
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one can always reinstate the correct normalisation at the end of all manipulations

done with the coproduct.

Let us then write

∆
( )

= ⊗ , (6.8)

where

=
I2(p2)

LS [I2 (p2)]
, (6.9)

and

=
C2 [I2 (p2)]

LS [I2 (p2)]
=
eγEεΓ(1− ε)

Γ(1− 2ε)
(p2)−ε, (6.10)

where

LS
[
I2

(
p2
)]

=
2

p2
(6.11)

is the order ε0 term in the ε-expansion of C2 [I2 (p2)], i.e, the leading singularity

of the zero-mass bubble as defined in eq. (5.35). This is a rational function, given

that C2 [I2 (p2)] is a weight 0 function.

Note that strictly speaking the operator ∆ in eq. (6.8) is not the same as

the coproduct of polylogarithms introduced in section 2 because it is acting on

a diagram rather than on a function. However, in this section we will use the

same symbol in the same way that we associate the diagrams on the right to the

functions they evaluate to. In the next two sections we will make this distinction

more precise.

We can show that eq. (6.8) is correct by evaluating both sides order by order

in the dimensional regularisation parameter. Let’s see this explicitly for the first

orders:

• O(ε−1): the coefficient of this order in the Laurent expansion is of weight

0, and so its coproduct should have only one term, 1 ⊗ 1 given our choice

of normalising all diagrams. From eq. (6.8),

∆
( ∣∣∣

ε−1

)
=

∣∣∣
ε−1
⊗

∣∣∣
ε0

+
∣∣∣
ε0
⊗

∣∣∣
ε−1
.

(6.12)

We have ∣∣∣
ε−1

= 1, (6.13)

170



6.2. Motivation — Bubble diagrams

and ∣∣∣
ε−1

= 0,
∣∣∣
ε0

= 1 (6.14)

so eq. (6.12) is

(1⊗ 1) = (1⊗ 1) . (6.15)

• O(ε0): the coefficient of this order in the Laurent expansion is of weight 1,

and so its coproduct should have only two terms, of weight (1, 0) and (0, 1).

From eq. (6.8),

∆
( ∣∣∣

ε0

)
=

∣∣∣
ε−1
⊗

∣∣∣
ε1

+
∣∣∣
ε0
⊗

∣∣∣
ε0

+
∣∣∣
ε1
⊗

∣∣∣
ε−1
. (6.16)

The last term vanishes because of eq. (6.14). For the other two, we need∣∣∣
ε0

= − log(−p2), (6.17)

and ∣∣∣
ε1

= − log(p2). (6.18)

Then, eq. (6.16) becomes

−
(
1⊗ log(p2) + log(−p2)⊗ 1

)
= −

(
1⊗ log(p2) + log(−p2)⊗ 1

)
(6.19)

where on the left-hand side we used the fact that the second entries of the

coproduct are defined modulo π.

• O(ε): the coefficient of this order in the Laurent expansion is of weight 2,

and so its coproduct should have three terms, of weight (2, 0), (1, 1) and

(0, 2). From eq. (6.8),

∆
( ∣∣∣

ε1

)
=

∣∣∣
ε−1
⊗

∣∣∣
ε2

+
∣∣∣
ε0
⊗

∣∣∣
ε1

+
∣∣∣
ε1
⊗

∣∣∣
ε0
, (6.20)

where we only wrote terms not vanishing because of eq. (6.14). We need

∣∣∣
ε1

=
log2(−p2)

2
− π2

12
, (6.21)
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and ∣∣∣
ε2

=
1

2

(
log2(p2)− π2

2

)
. (6.22)

The left-hand side of eq. (6.20) is

∆
( ∣∣∣

ε1

)
=

1

2

(
1⊗ log2(p2) + 2 log(−p2)⊗ log(p2)

+

(
log2(−p2)− π2

6

)
⊗ 1

)
. (6.23)

For the right-hand side,∣∣∣
ε−1
⊗

∣∣∣
ε2

=
1

2

(
1⊗ log2(p2)

)∣∣∣
ε0
⊗

∣∣∣
ε1

=
(
log(−p2)⊗ log(p2)

)
∣∣∣
ε1
⊗

∣∣∣
ε0

=
1

2

((
log2(−p2)− π2

6

)
⊗ 1

)
. (6.24)

In both cases we used the fact that the second entries of the coproduct are

defined modulo π. Comparing the two sides, we see that eq. (6.20) is indeed

correct.

Higher orders in ε of eq. (6.16) can be checked in exactly the same way, and we

have verified its validity up to order ε4.

To finish with this example, we comment on a feature which will reappear

in the general formulation of the diagrammatic representation of the coproduct

regarding the trivial coproduct entries (of the form F ⊗1 and 1⊗F , of respective

weights (n, 0) and (0, n) for a function F of weight n). Given the diagrammatic

representation in eq. (6.8) and the ε expansion of eq. (6.10), it is clear that the

trivial coproduct entry of weight (n, 0), at order εn−1, will be given by the term∣∣∣
εn−1
⊗

∣∣∣
ε0
. (6.25)

It is however less clear how the other trivial coproduct entry of weight (0, n) is

reproduced, as the diagram itself does not appear in the second entry. Looking

at the explicit check of the conjecture above, we see it is generated by the terms

of the form ∣∣∣
ε−1
⊗

∣∣∣
εn
. (6.26)
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Indeed, one can easily check this kind of term is the only one generating a

contribution of the required weight. Another way to write this observation, is

I
(n)
2 (p2) = C(n+1)

2

[
I2(p2)

]
mod iπ (6.27)

While this might seem a rather trivial observation for this simple example, we will

see that its generalisation to more complicated cases will lead to a very interesting

result.

One-mass bubble, I2(p2;m2): According to our conventions, the bubble with

one massive propagator is given by

I2(p2;m2) = −e
γEεΓ(1 + ε)

ε

(
m2 − p2

)−1−ε
2F1

(
−ε, 1 + ε; 1− ε; p2

p2 −m2

)
.

(6.28)

It has two different non-vanishing cuts. A one-propagator cut,

C1

[
I2(p2;m2)

]
= − eγEε

Γ(1− ε)
(−m2)

−ε

p2 2F1

(
1, 1 + ε; 1− ε; m

2

p2

)
, (6.29)

and a two-propagator cut,

C2

[
I2(p2;m2)

]
= 2

eγEεΓ(1− ε)
Γ(1− 2ε)

(
p2
)ε (

p2 −m2
)−2ε−1

, (6.30)

where the results for the cuts are written in their natural regions: p2 < m2 < 0

for the single propagator cut, and 0 < m2 < p2 for the two-propagator cut.

We can now play the same game as for the massless bubble. Following the

discussion of chapters 2 and 3, we know that

C1

[
I2(p2;m2)

]
= −δm2I2(p2;m2)

C2

[
I2(p2;m2)

]
= −δm2−p2I2(p2;m2), (6.31)

which means we have a diagrammatic interpretation for the cofactors of weight n

of all terms of the form (1, n) in the coproduct of the one-mass bubble. The weight

one cofactors are log(m2) or log(m2−p2). log(m2) is most naturally generated by

the expansion of a tadpole of mass m2. log(m2 − p2) is generated by a one-mass

bubble, but as we know—see section 2.3.2— this diagram also generates log(m2)
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as a first entry. It is thus not as obvious which diagram to choose to reproduce

the first-entries log(m2 − p2).

However, using the expression for the tadpole,

I1(m2) = −e
γEεΓ(1 + ε)

ε
(m2)−ε, (6.32)

one can easily check that the combination

I1(m2)

LS [I1 (m2)]
+

1

2

(
I2(p2;m2)

LS [I2(p2;m2)]

)
(6.33)

has only log(m2 − p2) as first entry in the coproduct, which is what we want to

appear with C2 [I2(p2;m2)] in the second entry.

Let us come back to the comment on the normalisation of diagrams we made

above eq. (6.8). We now see why it would not have been consistent to normalise

the cut diagrams appearing in the right cofactor and not normalise the uncut

diagrams appearing in the left cofactor. In general, while we can have different

types of diagrams in the first entry, each with their own leading singularity,

in the second entry we always take cuts of the same diagram, the one whose

coproduct we are studying. Had we not normalised the diagrams appearing in

the leftmost cofactor, we would have generated different combinations of rational

factors. Clearly, our choice of normalising all diagrams avoids this issue.

As for the zero-mass bubble, we define

m2

=
I1(m2)

LS [I1 (m2)]
= −I1(m2), (6.34a)

=
I2(p2;m2)

LS [I2 (p2;m2)]
, (6.34b)

=
C1 [I2 (p2;m2)]

LS [I2 (p2;m2)]
, (6.34c)

=
C2 [I2 (p2;m2)]

LS [I2 (p2;m2)]
, (6.34d)

where we recall

C1

[
I1

(
m2
)]

= − eγEε

Γ(1− ε)(−m2)−ε, (6.35)
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in the natural region of this cut, and

LS
[
I2

(
p2;m2

)]
=

2

p2 −m2
. (6.36)

We can now make a guess for what the diagrammatic representation of the

coproduct of the bubble with one internal mass should be:

∆
( )

=

(
+

1

2
m2

)
⊗ + m2 ⊗ . (6.37)

As for the zero-mass bubble, we can check the validity of this expression order

by order in ε. Using eqs. (6.28), (6.29) and (6.30), see also the MATHEMATICA

package in [38], we have done so up to weight 4 (order ε3), and thus believe it to

be valid to all orders in ε.

Instead of the details in the checks, we will show eq. (6.37) is consistent

through some observations. First, since we claim eq. (6.37) to be valid to all

orders in ε, it should reproduce eq. (6.8) for m2 → 0. This is trivial to check:

tadpoles and single propagator cut vanish in this limit, and so we recover eq. (6.8).

Second, as for the massless bubble, the trivial term of the coproduct of weight

(n, 0) is reproduced by ∣∣∣
εn−1
⊗

∣∣∣
ε0
. (6.38)

This implies that the tadpole contributions at this weight must vanish, i.e.,

m2

∣∣∣
εn−1
⊗
(

1

2
+

) ∣∣∣
ε0

= 0 (6.39)

which can only happen if,

1

2

∣∣∣
ε0

+
∣∣∣
ε0

= 0. (6.40)

This is exactly the relations we found between maximal and next-to-maximal

cuts of diagrams with an even number of propagators in section 5.4.2.

Finally, the other trivial component of the coproduct, of weight (0, n), is now

175



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

generated by the poles of tadpoles and bubbles. Indeed, noticing that(
+

1

2
m2

) ∣∣∣
ε−1

= m2

∣∣∣
ε−1

= 1, (6.41)

one can then check that

I
(n)
2 (p2;m2) = C(n+1)

1

[
I

(n)
2 (p2;m2)

]
+ C(n+1)

2

[
I

(n)
2 (p2;m2)

]
mod iπ. (6.42)

Notice that we used the fact that because only the one-mass bubble appears

in this relation, we are free to not normalise any of the terms to the leading

singularity of this integral.

Two-mass bubble, I2(p2;m2
1,m

2
2): According to our conventions, the bubble

with two massive propagator is given by

I2(p2;m2
1,m

2
2) =

= −e
γEεΓ(1 + ε)

ε

(−p2)−1−ε

(w1 − w̄1)1+ε

[
w−ε1 2F1

(
−ε, 1 + ε; 1− ε; w1

w1 − w̄1

)
−(w1 − 1)−ε 2F1

(
−ε, 1 + ε; 1− ε; w1 − 1

w1 − w̄1

)]
(6.43)

This diagram has three different non-vanishing cuts. A single propagator cut on

the mass m2
1,

C1,[1]

[
I2(p2;m2

1,m
2
2)
]

=
eγEε

Γ(1− ε)
(−p2

1)−1−ε

w1(w1w̄1)ε
2F1

(
1, 1 + ε; 1− ε; w̄1

w1

)
, (6.44)

a single propagator cut on the mass m2
2,

C1,[2]

[
I2(p2;m2

1,m
2
2)
]

=

=
eγEε

Γ(1− ε)
(−p2

1)−1−ε(1− w1)−ε

(w1 − w̄1)1+ε 2F1

(
−ε, 1 + ε; 1− ε; w1 − 1

w1 − w̄1

)
, (6.45)

and a two propagator cut,

C2

[
I2(p2;m2

1,m
2
2)
]

= 2
eγEεΓ(1− ε)

Γ(1− 2ε)
(p2)−1−ε(w1 − w̄1)−1−2ε. (6.46)
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All results are written in the natural region for the corresponding discontinuity,

and we use an obvious notation to distinguish the two single propagator cuts.

The leading singularity we normalise the diagrams by is

LS
[
I2(p2;m2

1,m
2
2)
]

=
2

p2(w1 − w̄1)
. (6.47)

Given the diagrammatic representations of the coproduct of the zero and one-

mass bubbles in eqs. (6.8) and (6.37), we can make an educated guess for what

the diagrammatic coproduct of the two-mass bubble should be. The simplest

guess we can make that is consistent in the limit of vanishing propagator masses

and that preserves the symmetry under the exchange of the two masses is:

∆
(

m2
1

m2
2

)
=

(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1

m2
2

+
m2

2 ⊗ m2
1

m2
2

. (6.48)

We recall all diagrams are normalised to their leading singularity.

As for the other two examples above, we can then check the validity of this

relation order by order in ε, and we have done so up to weight 4 (i.e., order ε3).

We should stress the two-mass bubble is already not a trivial function, as can be

seen by expanding eq. (6.43), and so it is highly non-trivial that a relation like

eq. (6.48) would hold true to order ε3 by accident.

As for the one-mass bubble, we can make some consistency checks on

eq. (6.48). We already commented that it agrees with eqs. (6.8) and (6.37) in the

appropriate massless limit, so we now look at the trivial coproduct components.

Correctly reproducing the component (n, 0) requires

1

2

m2
1

m2
2

∣∣∣
ε0

+
m2

1

m2
2

∣∣∣
ε0

=
1

2

m2
1

m2
2

∣∣∣
ε0

+
m2

1

m2
2

∣∣∣
ε0

= 0, (6.49)

which is the equivalent for the two-mass bubble of the constraint we derived in

eq. (6.39) for the one-mass bubble. This is the relation we found in section 5.4.2:

for diagrams with an even number of propagators, at leading order in ε, all non-

vanishing next-to-maximal cuts are equal to minus one-half of the maximal cut.

The (0, n) component is reproduced by the poles of the diagrams appearing in

the first entry. However, unlike what happened in the previous two examples,
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because the two-mass bubble is finite only the poles of tadpoles contribute. The

relation between cut and uncut diagrams equivalent to eq. (6.42) is now

I
(n)
2 (p2;m2

1,m
2
2) = C(n+1)

1,[1]

[
I

(n)
2 (p2;m2

1,m
2
2)
]

+ C(n+1)
1,[2]

[
I

(n)
2 (p2;m2

1,m
2
2)
]

+ C(n+1)
2

[
I

(n)
2 (p2;m2

1,m
2
2)
]

mod iπ. (6.50)

Because the two-mass bubble is finite, we can also check that the singularities

introduced by the tadpoles in eq. (6.48) cancel. This requires

C(0)
1,[1]

[
I

(n)
2 (p2;m2

1,m
2
2)
]

+ C(0)
1,[2]

[
I

(n)
2 (p2;m2

1,m
2
2)
]

+ C(0)
2

[
I

(n)
2 (p2;m2

1,m
2
2)
]

= 0,

which is indeed true, and can be seen as the n = −1 case of the previous relation.

6.2.2 Towards a general formulation

It turns out that the different mass configurations of the bubble topology

already teach us a great deal about the diagrammatic representation of the

coproduct of one-loop diagrams. We now summarise the main points we

established by looking at this example.

First, in the construction of the diagrammatic coproduct itself, we see there

is a relation between the propagators that are cut and the ones appearing in the

corresponding first entry. For one-propagator cuts, the corresponding first entry

is the diagram obtained by contracting the uncut propagator. However, there is

an unequal treatment of cuts with an even or an odd number of cut propagators.

Indeed, following what happens for single cuts, one might be tempted to say that

the first entry corresponding to a two propagator cut should be the bubble itself,

and not the combination of bubbles and tadpoles we see in eqs. (6.37) and (6.48).

One way to see this näıve generalisation cannot be correct is to look at the trivial

coproduct entry of weight (n, 0). As is clear from the examples of the one- and

two-mass bubble, the tadpole must appear in the first entry corresponding to the

two-propagator cut for it to be correctly reproduced, see the discussion above

eq. (6.39). This implies the constraint in eq. (6.40) for the one-mass bubble and

the equivalent for the two-mass bubble, eq. (6.49). One way to make sense of

this combination is to say that the first entry of a cut with an even number

of propagators is obtained by contracting the uncut propagators and adding all
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diagrams with an extra contraction multiplied by 1/2. While it is just a guess at

this stage, we will confirm this is indeed the correct interpretation when looking

at box diagrams.

Second, one might wonder about the origin of the factor of 1/2, and whether in

the generalisation to more complicated diagrams one should allow this coefficient

to take other values. When looking at the bubbles, we highlighted the connection

between this factor and the relations between next-to-maximal and maximal cuts

of diagrams with an even number of propagators we established in section 5.4.2.

There, we showed this relation holds for diagrams with any even number of

propagators, and we thus see that there is no reason to expect any other coefficient

when considering more complicated topologies. We note this is also connected to

the previous point: for any other value of this parameter, the trivial coproduct

entry of weight (n, 0) would not be correctly reproduced.

Finally, in all our examples we commented on a relation between cut and uncut

diagrams which allowed us to correctly reproduce the other trivial coproduct

component of weight (0, n). According to eqs. (6.27), (6.42) and (6.50), the

uncut diagram at a given order in ε is given by the sum of all one- and two-

propagator cuts at the next order in ε. This observation has to remain valid for

more complicated topologies for a diagrammatic representation of the coproduct

to exist, because the uncut diagram itself will never appear in the second entry

(we know the second entries correspond to discontinuity functions, i.e., to cuts)1.

Furthermore, if an uncut diagram is finite, we also need a relation between the

leading orders of cuts to cancel the singularities introduced by the divergent

tadpoles and/or bubbles in the first entry.

All these observations show that Feynman diagrams and their cuts have to

satisfy many constraints for a diagrammatic representation of their coproduct to

exist, and it is thus highly non-trivial that such a representation would exist. In

the next sections we conjecture that it does exist for any one-loop diagram, and

give substantial evidence supporting our claim.

1We note this relation is consistent in terms of weight. Let’s assume the uncut diagram has
weight n. Then in the perspective of chapters 2 and 3, one and two-propagator cuts correspond
to single discontinuities and are thus functions of weight n− 1 (we normalise by the factor of π
generated by taking the discontinuity). The coefficient of order j in the Laurent expansion in
ε of the uncut function will have weight j + n, and so will the coefficient of order j + 1 in the
Laurent expansion of the cuts
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6.2.3 Coassociativity of the diagrammatic coproduct

Strictly speaking, in the examples above we only showed that the tensor

obtained by the action of the coproduct operator on the functions Feynman

diagrams evaluate to can be given a diagrammatic interpretation. More precisely,

we have not shown that the action of ∆ on a diagram, as in eq. (6.48), has the same

properties as a coproduct. Indeed, as we already mentioned, there is an abuse

of notation in using the same symbol ∆ to describe the coproduct that acts on

polylogarithms and the coproduct that acts on diagrams. We will eventually see

this is justified when we map them to each other.

We now show how one can see that the diagrammatic coproduct is coassocia-

tive, which we means that

(id⊗∆) ∆ = (∆⊗ id) ∆ , (6.51)

i.e., acting with the coproduct operator in the first or second entry of the

coproduct entry gives the same result. We recall this is crucial for iterations

of the coproduct to be well defined (as for instance its maximal iteration, the

symbol). We will only show it for the two-mass bubble, because we know that

the other mass configurations can be obtained by taking the appropriate massless

limit.

(∆⊗ id) ∆: We start by acting with ∆ in the first entries of eq. (6.48), which

means ∆ is acting on uncut diagrams, either tadpoles or bubbles. We know how

∆ acts on a bubble, and the way it acts on the tadpole is by now easy to guess:

∆

(
m2

)
= m2 ⊗ m2

. (6.52)

We then have

(∆⊗ id) ∆
(

m2
1

m2
2

)
=

[(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1

m2
2

+
m2

2 ⊗ m2
1

m2
2

]
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1 ⊗

(
m2

1

m2
2

+
1

2

m2
1

m2
2

)
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+
m2

2 ⊗ m2
2 ⊗

(
m2

1

m2
2 +

1

2

m2
1

m2
2

)
. (6.53)

(id ⊗ ∆) ∆: We now want to act with ∆ on the second entry of eq. (6.48),

for which we must know how the coproduct acts on cut diagrams. We follow

the same reasoning as for the uncut diagram. For the second entries, we list all

further cuts of the cut diagram we are considering. The corresponding first entry

is then obtained by pinching all uncut propagators, and adding one-half times

the diagrams with an extra propagator contracted in case of an even number of

cuts in the second entry. The propagators that were cut in the cut diagram under

consideration remain cut in the first entry2. We now give some examples. For

the cut in the mass m2
1,

∆
(

m2
1

m2
2

)
=

(
m2

1

m2
2

+
1

2

m2
1

)
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1

m2
2

. (6.54)

For the cut in the mass m2
2, the equivalent expression holds. For the cut in the

external channel, which is a maximal cut,

∆
(

m2
1

m2
2

)
=

m2
1

m2
2

⊗ m2
1

m2
2

. (6.55)

Comparing these expressions with eq. (6.48), we see that there is a quicker way

to get the diagrammatic representation of the coproduct of cut diagrams once

the diagrammatic representation of the uncut diagram has been determined: all

terms that do not have the propagators that will be cut in the first entry are

discarded, and in the terms that have them they are cut.

Let us briefly go back on the issue of normalisation discussed above eq. (6.8).

We now see why we chose to normalise all diagrams to the first order in the

ε expansion of the maximal cut. Had we not done this and chosen the other

alternative of keeping the normalisation in diagrams appearing on the rightmost

entry of the coproduct, we would have had to introduce a different notation

distinguishing cut diagrams appearing on the rightmost coproduct entry or any

other entry. To make the connection between diagrams and functions more direct,

2Discontinuity operators only act on the first entry of the coproduct, so the first entries of
the diagrammatic coproduct of a cut diagram must have the same discontinuity structure as the
cut diagram. We thus claim the first entries of the diagrammatic coproduct of a cut diagram
will be a diagram with the same cut propagators.
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we chose to normalise all diagrams.

Before we check that with this procedure of obtaining the diagrammatic

coproduct of cut diagrams we find the same result as in eq. (6.53), we make

a comment on maximal cuts. From eq. (6.55), we see the coproduct of the

maximal cut is trivial: the same diagram appears in the first and the second

entry. According to our rules this will be the case for any maximal cut, and

objects having this type of coproduct are called group-like. It is easy to see that

a function of the form xε is group-like, as implied by eq. (2.12). The diagrammatic

coproduct of a maximal cut is thus in accordance with the discussion in section

5.4.3, where we argued maximal cuts had precisely this functional form.

We now evaluate the action of (id⊗∆)∆ on the two-mass bubble to compare

it with eq. (6.53). According to eq. (6.54) and eq. (6.55), we have

(id⊗∆) ∆
(

m2
1

m2
2

)
= (6.56)

=

(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

1

m2
2

⊗ m2
1

m2
2

+
m2

1 ⊗
[(

m2
1

m2
2

+
1

2
m2

1 (m2
1)

)
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1

m2
2

]

+
m2

2 ⊗
[(

m2
1

m2
2

+
1

2

m2
2

)
⊗ m2

1

m2
2

+
m2

2 ⊗ m2
1

m2
2

]
,

which matches eq. (6.53).

We have thus shown that

(∆⊗ id) ∆
(

m2
1

m2
2

)
= (id⊗∆) ∆

(
m2

1

m2
2

)
, (6.57)

which means the graphical coproduct of the two-mass bubble diagram is

coassociative. By taking the appropriate massless limits, we can easily check

this is true for the bubbles with zero or one internal masses as well.
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6.3 Graphical coproduct of one-loop Feynman

graphs

We now discuss the diagrammatic coproduct in a more abstract and general

way. In this section, all diagrams should be thought of just as graphs. Our goal

will be to show that one can define a coproduct on the space of one-loop Feynman

graphs. One can in fact go further and show that one can define a Hopf algebra on

the space of one-loop Feynman graphs. However, this requires introducing several

new structures that we would not use in the following sections, so in this thesis we

simply show how a coproduct can be defined. The more complete construction

will be presented in a separate paper [118]. In the next section, the graphical

coproduct constructed here will be mapped to the coproduct of polylogarithms

we are used to.

6.3.1 General formulation

Definition of Feynman graph: A Feynman graph G is defined by the

following properties:

• A set of vertices VG ;

• A set of edges EG, each incident on exactly two vertices (the two vertices can

coincide, and multiple edges can be incident on the same pair of vertices).

These are called internal edges ;

• A set of half-edges Eext
G , each incident on exactly one vertex. These are

called external legs ;

• To each internal edge e ∈ EG, we associate a real number m2
e which we call

the mass squared ;

• To each external leg e ∈ Eext
G , we associate a D-dimensional vector pe which

we call momentum, subject to momentum conservation,∑
e∈Eext

G

pe = 0. (6.58)
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Feynman graphs are Poincaré invariant: if two Feynman graphs differ only by

the assignment of the external momenta, or if these are related by a Lorentz

transformation, the two graphs are equivalent. Furthermore, if two external legs

e1 and e2 of momentum p1 and p2 respectively are incident in the same vertex,

they can be replaced by a single external leg incident on the same vertex but with

momentum p1 + p2.

Contraction of internal edges: An obvious operation one can define on a

Feynman graph is the contraction of a subset of its internal edges. If S ⊆ EG,

G/S is the Feynman graph obtained by contracting all edges in S. For instance,

G/∅ = G and G/EG = 0, (6.59)

where 0 denotes the empty graph and ∅ and empty set. For future use, we define

GS as the Feynman graph where all edges except those in S have been contracted,

GS = G/S̄. For instance,

GEG = G and G∅ = 0. (6.60)

Cut Feynman graph: A cut Feynman graph is a pair (G,C), where G is a

Feynman graph, and C is a subset of the internal edges of G, i.e. C ⊆ EG. An

edge in C is called a cut edge. (G,EG) is called a maximal cut (all internal edges

are cut) and (G,∅) = G is called an uncut graph3. The contraction operation is

extended to cut Feynman graphs:

If S ⊆ EG , (G,C)/S =

{
(G/S,C) if C ∩ S = ∅
0 otherwise

. (6.61)

So far the discussion was valid for any Feynman graph. From now on we focus

on one-loop graphs.

3In this notation, the next-to-maximal cuts we mentioned previously are (G,EG/e) for
e ∈ EG. There are |EG| different next-to-maximal cuts, where |EG| denotes the cardinality
of EG.
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Definition of ∆: Let P denote the (free) Q-algebra generated by one-loop cut

Feynman graphs. We define an algebra morphism ∆ : P → P ⊗ P acting on cut

graphs as

∆(G,C) =
∑

C⊆I⊆EG
I 6=∅

(GI , C) + aI
∑
e∈I/C

(GI/e, C)

⊗ (G, I), (6.62)

where

aI =

{
1
2

if |I| even

0 otherwise
. (6.63)

|I| denotes the cardinality of the set I.

Maximal cuts: It is easy to show that according to this definition of ∆

maximally cut Feynman graphs are group-like. For this, we note that

EG ⊆ I ⊆ EG ⇒ I = EG and EG/EG = ∅, (6.64)

so that there is only one term surviving in eq. (6.62), which has I = EG. As

already noted above, GEG = G, and we thus have

∆(G,EG) = (G,EG)⊗ (G,EG) (6.65)

as expected.

Coassociativity of ∆: For the algebra morphism defined in eq. (6.62) to be

a coproduct it must be coassociative. We now show that with the definition of

∆ given above, (id⊗∆) ∆ = (∆⊗ id) ∆. This proof was first proposed to us by

Erik Panzer in a private communication.

We start with (id⊗∆) ∆. Acting with ∆ on the cofactor (G, I) in eq. (6.62):

(id⊗∆) ∆(G,C) =
∑

C⊆I⊆EG
I 6=∅

∑
I⊆J⊆EG
J 6=∅

(GI , C) + aI
∑
e∈I/C

(GI/e, C)


⊗

(GJ , I) + aJ
∑
f∈J/I

(GJ/f , I)

⊗ (G, J). (6.66)
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For later use, it is convenient to make the substitution I ↔ J in the above

expression, which is just a renaming of the sets we sum over. We also note that∑
C⊆I⊆EG
I 6=∅

∑
I⊆J⊆EG
J 6=∅

−→
∑

C⊆J⊆EG
J 6=∅

∑
J⊆I⊆EG
I 6=∅

=
∑

C⊆I⊆EG
I 6=∅

∑
C⊆J⊆I
J 6=∅

and we finally get

(id⊗∆) ∆(G,C) =
∑

C⊆I⊆EG
I 6=∅

∑
C⊆J⊆I
J 6=∅

(GJ , C) + aJ
∑
e∈J/C

(GJ/e, C)


⊗

(GI , J) + aI
∑
f∈I/J

(GI/f , J)

⊗ (G, I). (6.67)

To compute (∆⊗ id) ∆, we will need the following expressions, easily obtained

from eq. (6.62),

∆(GI , C) =
∑

C⊆J⊆I
J 6=∅

(GJ , C) + aJ
∑
e∈J/e

(GJ/e, C)

⊗ (GI , J)

∆(GI/f , C) =
∑

C⊆J⊆I/f
J 6=∅

(GJ , C) + aJ
∑
e∈J/e

(GJ/e, C)

⊗ (GI/f , J).

We then have (in eq. (6.62), the name of the edges in I/C summed over is now

f instead of e):

(∆⊗ id) ∆(G,C) =

=
∑

C⊆I⊆EG
I 6=∅

∑
C⊆J⊆I
J 6=∅

(GJ , C) + aJ
∑
e∈J/C

(GJ/e, C)

⊗ (GI , J)⊗ (G, I) (6.68)

+
∑

C⊆I⊆EG
I 6=∅

∑
C⊆J⊆I/f
J 6=∅

∑
f∈I/C

aI

(GJ , C) + aJ
∑
e∈J/C

(GJ/e, C)

⊗ (GI/f , J)⊗ (G, I).

It is clear the first term on the right-side of the above equation matches the
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contribution of the (GI , J) term appearing in the middle cofactor of eq. (6.67). For

the remaining contribution, we can notice the following equivalence of conditions

(f ∈ I/C ∧ C ⊆ J ⊆ I/f) ⇔ (f ∈ I/J ∧ C ⊆ J ⊆ I) . (6.69)

The last line in eq. (6.68) then becomes

∑
C⊆I⊆EG
I 6=∅

∑
C⊆J⊆I
J 6=∅

∑
f∈I/J

aI

(GJ , C) + aJ
∑
e∈J/C

(GJ/e, C)

⊗ (GI/f , J)⊗ (G, I),

which matches the remaining contributions of eq. (6.67).

We have thus proven that ∆ as defined in eq. (6.62) is coassociative. We note

that nothing in this proof depends on the specific form of the coefficient aI in

eq. (6.62), but we have set it to that particular value because it is the one that

matches the coproduct of Feynman integrals.

The Hopf algebra of one-loop graphs: It turns out that the algebra P has

a much richer algebraic structure than what we discussed here. It can be shown

that starting from the algebra P one can define a counit and an antipode, which

together with the coproduct ∆ defined in eq. (6.62) turn P into a Hopf algebra

(strictly speaking the Hopf algebra it is not P , but rather an algebra constructed

from P). Showing this would require introducing more notation and proving

several non-trivial results. Because it will not be used in the remainder of this

thesis we will not do it here and the full construction of this Hopf algebra will be

presented elsewhere [118].

6.3.2 Examples

To make eq. (6.62) more concrete, we now illustrate it for uncut and cut

Feynman graphs with up to four internal edges. Cut edges will be denoted by a

dashed red line. We will see we recover the diagrammatic coproduct of tadpoles

and bubbles already determined above.
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|EG| = 1: For one internal edge, eq. (6.62) is trivial. When the edge is uncut,

∆

(
m2

)
= m2 ⊗ m2

. (6.70)

This is the same as we obtained in eq. (6.52).

When the edge is cut,

∆

(
m2

)
= m2 ⊗ m2

. (6.71)

|EG| = 2: We already studied the case with two internal edges in the previous

section. We now show we get the same result from eq. (6.62). When |C| = 0,

∆
(

m2
1

m2
2

)
=

(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

1

m2
2

+
m2

1 ⊗ m2
1

m2
2

+
m2

2 ⊗ m2
1

m2
2

. (6.72)

There are two different graphs with |C| = 1. They are similar, so we only

consider one:

∆
(

m2
1

m2
2

)
=

(
m2

1

m2
2

+
1

2

m2
1 (m2

1)

)
⊗ m2

1

m2
2

+
m2

1 (m2
1)⊗ m2

1

m2
2

. (6.73)

The maximal cut, with |C| = 2, gives

∆
(

m2
1

m2
2

)
=

m2
1

m2
2

⊗ m2
1

m2
2

. (6.74)

This is exactly the same diagrammatic coproduct we had already established in

the previous section.

|EG| = 3: For |C| = 0,

∆

(
m2

1 m2
2

m2
3

)
=

m2
1 m2

2

m2
3

⊗ m2
1 m2

2

m2
3

+

(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

1 m2
2

m2
3

+

(
m2

1

m2
3

+
1

2

m2
1 +

1

2

m2
3

)
⊗ m2

1 m2
2

m2
3
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+

(
m2

2

m2
3

+
1

2

m2
2 +

1

2

m2
3

)
⊗ m2

1 m2
2

m2
3

+
m2

1 ⊗ m2
1 m2

2

m2
3

+
m2

2 ⊗ m2
1 m2

2

m2
3

+
m2

3 ⊗ m2
1 m2

2

m2
3

. (6.75)

For |C| = 1, there are three similar graphs. We only consider one:

∆

(
m2

1 m2
2

m2
3

)
=

m2
1 m2

2

m2
3

⊗ m2
1 m2

2

m2
3

+

(
m2

1

m2
2

+
1

2

m2
1

)
⊗ m2

1 m2
2

m2
3

+

(
m2

1

m2
3

+
1

2

m2
1

)
⊗ m2

1 m2
2

m2
3

+
m2

1 ⊗ m2
1 m2

2

m2
3

. (6.76)

For |C| = 2, there are three similar graphs. We only consider one:

∆

(
m2

1 m2
2

m2
3

)
=

m2
1 m2

2

m2
3

⊗ m2
1 m2

2

m2
3

+
m2

1

m2
2

⊗ m2
1 m2

2

m2
3

. (6.77)

Finally, the maximal cut with |C| = 3:

∆

(
m2

1 m2
2

m2
3

)
=

m2
1 m2

2

m2
3

⊗ m2
1 m2

2

m2
3

. (6.78)

|EG| = 4: For |C| = 0,

∆

(
m2

3

m2
1

m2
2

m2
4

)
=

=

(
m2

3

m2
1

m2
2

m2
4

+
1

2

m2
1 m2

2

m2
3

+
1

2

m2
2 m2

3

m2
4

+
1

2

m2
1 m2

3

m2
4

+
1

2

m2
1 m2

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
3

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

2 m2
3

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1 m2
3

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+

(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
⊗ m2

3

m2
1

m2
2

m2
4

+

(
m2

2

m2
3

+
1

2

m2
2 +

1

2

m2
3

)
⊗ m2

3

m2
1

m2
2

m2
4

+

(
m2

3

m2
4

+
1

2

m2
3 +

1

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4
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+

(
m2

1

m2
4

+
1

2

m2
1 +

1

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4

+

(
m2

1

m2
3

+
1

2

m2
1 +

1

2

m2
3

)
⊗ m2

3

m2
1

m2
2

m2
4

+

(
m2

2

m2
4

+
1

2

m2
2 +

1

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4

(6.79)

+
m2

1 ⊗ m2
3

m2
1

m2
2

m2
4

+
m2

2 ⊗ m2
3

m2
1

m2
2

m2
4

+
m2

3 ⊗ m2
3

m2
1

m2
2

m2
4

+
m2

4 ⊗ m2
3

m2
1

m2
2

m2
4

.

For |C| = 1, there are four similar graphs. We only consider one:

∆

(
m2

3

m2
1

m2
2

m2
4

)
=

=

(
m2

3

m2
1

m2
2

m2
4

+
1

2

m2
1 m2

2

m2
3

+
1

2

m2
1 m2

3

m2
4

+
1

2

m2
1 m2

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
3

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1 m2
3

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+

(
m2

1

m2
2

+
1

2

m2
1

)
⊗ m2

3

m2
1

m2
2

m2
4

+

(
m2

1

m2
4

+
1

2

m2
1

)
⊗

m2
3

m2
1

m2
2

m2
4

+

(
m2

1

m2
3

+
1

2

m2
1

)
⊗ m2

3

m2
1

m2
2

m2
4

+
m2

1 ⊗ m2
3

m2
1

m2
2

m2
4

. (6.80)

For |C| = 2, there are six similar graphs. We only consider one:

∆

(
m2

3

m2
1

m2
2

m2
4

)
=

(
m2

3

m2
1

m2
2

m2
4

+
1

2

m2
1 m2

2

m2
3

+
1

2

m2
1 m2

2

m2
4

)
⊗ m2

3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
3

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

+
m2

1

m2
2

⊗ m2
3

m2
1

m2
2

m2
4

. (6.81)

Note that out of the six graphs with |C| = 2, two are special in that they do

not cut adjacent edges (these are the cuts in the s and t channels of the box).

However, this fact changes nothing in eq. (6.62) and the structure of the graphical

coproduct of these two terms is similar to the other four.
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For |C| = 3, there are four similar graphs. We only consider one:

∆

(
m2

3

m2
1

m2
2

m2
4

)
=

(
m2

3

m2
1

m2
2

m2
4

+
1

2

m2
1 m2

2

m2
3

)
⊗ m2

3

m2
1

m2
2

m2
4

+
m2

1 m2
2

m2
3

⊗ m2
3

m2
1

m2
2

m2
4

.

(6.82)

Finally, the maximal cut with |C| = 4:

∆

(
m2

3

m2
1

m2
2

m2
4

)
=

m2
3

m2
1

m2
2

m2
4

⊗ m2
3

m2
1

m2
2

m2
4

. (6.83)

These examples illustrate eq. (6.62). Graphs with more edges are better suited

to be studied with the help of a computer given the number of terms generated

by eq. (6.62).

6.4 Diagrammatic coproduct of one-loop Feyn-

man diagrams

In the previous section we saw how one could define a purely graphical

coproduct on P , the Q-algebra generated by one-loop cut Feynman graphs, as

defined below eq. (6.60). Of course, we are interested in what the implications

of this structure are for the functions Feynman diagrams evaluate to. We will

thus define how we map Feynman graphs to Feynman integrals, and then we will

discuss some consequences of the underlying graphical coproduct. We will finish

with some examples illustrating our main points.

6.4.1 The graphical coproduct and the coproduct of

MPLs

Mapping between graphs and Feynman integrals: Let us then define the

mapping between the graphs of the previous section and the MPLs Feynman

integrals evaluate to. This map is quite straightforward.

A Feynman graph with n-external legs (after combining the half-edges incident
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on the same vertex) and n-propagators (previously called internal edges) is

computed according to the rules of chapter 5, summarised in appendix A below

eq. (A.8), but normalised to their leading singularity as defined in eq. (5.35). For

instance:

m2

=
I1(m2)

LS[I1(m2)]
,

m2
1

m2
2

=
I2(p2;m2

1,m
2
2)

LS[I2(p2;m2
1,m

2
2)]

,

m2
1 m2

2

m2
3

=
I3(p2

1, p
2
2, p

2
3;m2

1,m
2
2,m

2
3)

LS[I3(p2
1, p

2
2, p

2
3;m2

1,m
2
2,m

2
3)]

,

m2
3

m2
1

m2
2

m2
4

=
I4(p2

1, p
2
2, p

2
3, p

2
4;m2

1,m
2
2,m

2
3,m

2
4)

LS[I4(p2
1, p

2
2, p

2
3, p

2
4;m2

1,m
2
2,m

2
3,m

2
4)]
. (6.84)

We recall In is computed according to

In
(
{pj · pk} ;

{
m2
j

})
=
eγEε

iπ
D
2

∫
dDk

1(
k2 −m2

n−1 + i0
) n−2∏
j=0

1

(k − qj)2 −m2
j + i0

.

(6.85)

All cuts are computed according to the rules of the previous chapter, and each

is normalised to its leading singularity. For instance,

m2
1

m2
2

=
C1,[1][I2(p2;m2

1,m
2
2)]

LS[I2(p2;m2
1,m

2
2)]

. (6.86)

Finally, the coproduct ∆ acting on graphs introduced in the previous section

is simply mapped to the coproduct ∆ acting on MPLs introduced in chapter 2.

Let us now make a comment on the connection between graphs and the

Feynman integrals they correspond to, evaluated in dimensional regularisation.

We recall we formulated the graphical coproduct for graphs with massive

propagators and massive external legs. However, if we claim eq. (6.62) to be valid

in dimensional regularisation, it should still hold if we take some of the masses to

zero. In this context, there are two interesting limits we can consider: the limit

where all internal propagators and external legs are massive and generic, and

the limit where all internal propagators and external legs are massless (strictly

speaking, for triangles and bubbles we have to keep respectively one and two

massive external legs to get a non-trivial diagram).

In the first case, we expect the Feynman integrals to evaluate to complicated
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MPLs, depending on a large number of variables. The fact that there is an

underlying graphical coproduct imposes strong constraints on these functions,

but the connection between the coproduct on graphs and MPLs is straightforward

according to the rules given above. For instance, looking at eq. (6.79) we see that

the graphical coproduct has a rich structure which allows for the complex analytic

structure one expects to be associated with this type of functions.

In the other limit, we have very simple functions depending on a small number

of variables. Correspondingly, we expect that the graphical coproduct will have

a simple structure, with only a few terms. It is a highly non-trivial observation

that the graphical coproduct introduced in the previous section is consistent with

dimensional regularisation. Because of this, many contributions of the graphical

coproduct can vanish (for instance, because in that limit they would correspond

to a scaleless integral, vanishing in dimensional regularisation). As we will see,

despite the graphical operations having been defined in the fully massive case,

even the coproduct of divergent diagrams is correctly reproduced by the graphical

coproduct.

One could wonder whether we could have used other regularisation procedures.

Unfortunately, we did not have time to explore this possibility, but it would

certainly be an interesting subject to study.

ε-expansion of the diagrammatic coproduct: Although we claim the

diagrammatic coproduct is valid in dimensional regularisation, which means we

can think of the diagrams appearing in it as functions of ε, the validity of eq. (6.62)

must be checked order by order in ε because the coproduct on functions is defined

for the MPLs appearing in the Laurent expansion of the diagrams. As we know

by now—see the discussion in section 2.2.2—the coefficients of each order in ε are

functions of increasing weight. Moreover, we also know that for each weight n,

there are several coproduct components we must check, of the form (k, n− k) for

each k = 0, . . . , n.

This means when checking eq. (6.62) we must do two expansions: first an

expansion in ε, and then, at each order in ε, an expansion in the different

coproduct components for that specific weight. Understanding these expansions

in detail, in particular which diagrams appearing in eq. (6.62) contribute at which

order to a particular coproduct entry at a given power in ε is important, so we
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now give some details about them. We explain the expansion for a fully massive

diagram F with n even, with the uncut and cut diagrams computed according

to the definitions of chapter 5. The discussion can easily be generalised to other

cases, with n odd and/or some masses set to zero.

We start with some notation. Let us define the set of all propagators of F by

{e1, . . . , en}. The ε-expansion of the uncut diagram (which we normalise to its

leading singularity) is

F =
∑
j=0

εjfj . (6.87)

Since F is computed according to the eq. (5.9), we know it has weight ω = n/2.

This means the weights of the coefficients in its ε-expansion are

w (fj) = ω + j . (6.88)

We now discuss its cuts. The maximal cut Cn[F ] has weight 0, which means the

coefficients in its ε-expansion, C(j)
n [F ] have weight

w
(
C(j)
n [F ]

)
= j . (6.89)

The next-to-maximal cuts also have weight 0. We denote the cut where all

propagators but propagator ej are cut by Cn/{ej}[F ], and thus have

w
(
C(j)
n/{ej}[F ]

)
= j . (6.90)

More generally, a cut where k propagators are cut, Ck[F ] with 0 < k ≤ n, has

weight ω − dk/2e, which means

w
(
C(j)
k [F ]

)
= ω −

⌈
k

2

⌉
+ j. (6.91)

We can now determine the weight of all the contributions appearing in the second

entry of the diagrammatic coproduct.

For the first entries, where uncut diagrams appear, we also introduce some

definitions. We define Tad(ej) as the tadpole obtained by contracting all

propagators of F the but the propagator ej, with 0 < j ≤ n, normalised to

its leading singularity. Tadpoles are functions of weight 1 which start at order
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ε−1, so we have

Tad(ej) = (ej) =
∑
l=−1

εltadl(ej) with w (tadl(ej)) = 1 + l. (6.92)

with obvious notation for the argument of the diagram.

We then define Bub(ej, ek), with 0 < j < k ≤ n which avoids double counting,

as the combination

Bub(ej, ek) = (ej, ek) +
1

2
(ej) +

1

2
(ek), (6.93)

with obvious notation for the arguments of the diagrams. This is a function of

weight 1 which starts at order ε−1, so we have

Bub(ej, ek) =
∑
l=−1

εlbubl(ej, ek) with w (bubl(ej, ek)) = 1 + l. (6.94)

We proceed similarly for triangles, which are finite weight 2 functions.

Tri(ei, ej, ek) = (ei, ej, ek), (6.95)

where 0 < i < j < k ≤ n, with

Tri(ei, ej, ek) =
∑
l=0

εltril(ei, ej, ek) with w (tril(ei, ej, ek)) = 2 + l. (6.96)

For the box terms, we define Box(ei, ej, ek, em), with 0 < i < j < k < m ≤ n,

which are finite weight 2 functions, defined as

Box(ei, ej, ek, em) = (ei, ej, ek, em) +
1

2
(ei, ej, ek)

+
1

2
(ei, ej, em) +

1

2
(ei, ek, em) +

1

2
(ej, ek, em), (6.97)

with

Box(ei, ej, ek, em) =
∑
l=0

εlboxl(ei, ej, ek), (6.98)

and

w (boxl(ei, ej, ek, em)) = 2 + l. (6.99)
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We define similar function for pentagons and hexagons. For pentagons, which

are finite weight 3 functions,

Pent =
∑
l=0

εlpentl with w (pentl) = 3 + l, (6.100)

where we did not write explicitly the propagators. For hexagons, we take the

usual combination of the hexagon and one-half times the pentagons obtained by

contracting each of the propagators. These are also a finite weight 3 function,

Hex =
∑
l=0

εlhexl with w (hexl) = 3 + l, (6.101)

where we did not write explicitly the propagators.

Similar functions can be defined for diagrams with more propagators. The

only ones we will need for our discussion are

F =
∑
l=0

εlfl with w (fl) = ω + l (6.102)

as the usual combination of F and the diagrams obtained by contracting one

propagator. We also define

F(ej) =
∑
l=0

εlf
(ej)
l with w

(
f
(ej)
l

)
= ω + l (6.103)

for the diagrams obtained by contracting the propagator ej of F .

Let us then go back to the check of the diagrammatic coproduct of F . We

will consider the coefficient of order εj of the ε-expansion of F , which we recall

has weight ω + j. The different coproduct entries at this weight are:

• (0, ω+ j): The only diagrams appearing in the first entry with a weight 0

coefficient in their ε-expansion are Tad and Bub at order ε−1. This means

the left cofactor contributes at order jL = −1, and so the right cofactor

must contribute at order jR = j + 1. This is consistent with the coefficient

of the one- and two-propagator cuts at order εj+1 having weight ω + j.

• (1, ω+j−1): Again, the only diagrams appearing in the first entry with a

weight 1 coefficient in their ε-expansion are Tad and Bub at order ε0. This

means the left cofactor contributes at order jL = 0, and so the right cofactor
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must contribute at order jR = j. This is consistent with the coefficient of

the one- and two-propagator cuts at order εj having weight ω + j − 1.

• (2, ω + j − 2): There are two different contributions to this coproduct

entry.

First, we have a contribution from the coefficient of order ε1 in the ε-

expansion of Tad and Bub. Since the left cofactor contributes at order

jL = 1, the right cofactor must contribute at order jR = j − 1. This is

consistent with the coefficient of the one- and two-propagator cuts at order

εj−1 having weight ω + j − 2.

Second, we have a contribution from the coefficient of order ε0 in the ε-

expansion of Tri and Box. Since the left cofactor contributes at order

jL = 0, the right cofactor must contribute at order jR = j. This is consistent

with the coefficient of the three- and four-propagator cuts at order εj having

weight ω + j − 2.

• (3, ω + j − 3): There are three different contributions to this coproduct

entry.

First, we have a contribution from the coefficient of order ε2 in the ε-

expansion of Tad and Bub. Since the left cofactor contributes at order

jL = 2, the right cofactor must contribute at order jR = j − 2. This is

consistent with the coefficient of the one- and two-propagator cuts at order

εj−2 having weight ω + j − 3.

Second, we have a contribution from the coefficient of order ε1 in the ε-

expansion of Tri and Box. Since the left cofactor contributes at order

jL = 1, the right cofactor must contribute at order jR = j − 1. This is

consistent with the coefficient of the three- and four-propagator cuts at

order εj−1 having weight ω + j − 3.

Third, we have a contribution from the coefficient of order ε0 in the ε-

expansion of Pent and Hex. Since the left cofactor contributes at order

jL = 0, the right cofactor must contribute at order jR = j. This is consistent

with the coefficient of the three- and four-propagator cuts at order εj having

weight ω + j − 3.
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• (k,ω+ j−k): For any 3 < k < n we follow the same procedure as for the

cases above. As k increases, more and more topologies start contributing.

• (ω+j,0): The only contributions in the right cofactor which have a weight

0 coefficient are the maximal and next-to-maximal cuts of F taken at order

ε0. This means jR = 0, which implies jL = j, which is consistent with the

εj coefficients of F and F(ej) having weight ω + j. We note that, given the

relation obtained in section 5.4.2, we find

fj ⊗ C(0)
n [F ] +

∑
k=1,...,n

f
(ek)
j ⊗ C(0)

n/ek
[F ] = fj ⊗ 1, (6.104)

which is the correct result for the trivial coproduct component of weight

(ω + j, 0).

It is straightforward to generalise this discussion to diagrams with an odd

number of propagators or to diagrams which are divergent. Understanding these

expansions was important to perform the checks of the graphical coproduct we

present in section 6.4.2.

Pole cancellation identity and the first-entry condition revisited:

Given the graphical coproduct and the mapping to Feynman integrals we have

established, let us now revisit what were our main guiding principles to introduce

the diagrammatic coproduct for uncut Feynman diagrams in section 6.2. We

recall there were three main guiding principles: (i) the fact that the discontinuity

operator only acts in the first entry of the coproduct which implied having

diagrams with the same analytic structure as Feynman diagrams in the first

entry ; (ii) correctly reproducing the trivial components of the coproduct of

weight (0, n) and (n, 0) ; and (iii) satisfying the first entry condition.

Point (i) is satisfied by construction of the graphical coproduct, eq. (6.62). We

also note that the generalisation for cut diagrams is also satisfied: the propagators

cut in the graph whose coproduct is being computed are always cut in the

diagrams appearing in the first entry of the graphical coproduct.

Let us now see how the principle (ii) is satisfied. We start with the easiest, the

component of weight (n, 0). As shown in eq. (6.104), it is easy to see that this term

is reproduced by the contribution of the graphical coproduct corresponding to the
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maximal cut. For diagrams with an odd number of propagators, see e.g. eq. (6.75),

the term appears by itself and there is nothing to add. For diagrams with an even

number of propagators, see e.g. eq. (6.79), we can just follow the discussion that

led us to eq. (6.104).

In section 6.2, we also argued that the component of weight (0, n) was

reproduced because of a relation between uncut graphs and their one- and two-

propagator cuts, which we recall involved the singularities of bubbles and/or

tadpoles. We now show this is true for a general finite diagram with all

propagators massive. The proof presented here is a straightforward generalisation

of an unpublished proof by Claude Duhr, which was obtained for the case where

all propagators are massless. We start by noting that

m2

=
1

ε
− log(m2) +O(ε),(
m2

1

m2
2

+
1

2

m2
1 +

1

2

m2
2

)
=

1

ε
− log(w(1− w̄)) +O(ε). (6.105)

For an uncut graph evaluating to a finite function, it is easy to see that all

other combinations of graphs appearing in the left cofactor of eq. (6.62)—the

Tri, Box, Pent and Hex above—will be finite. In other words, given the mapping

of graphs to the functions they evaluate to, we see that on the right-hand side of

eq. (6.62) we have introduced a potentially divergent contribution which we can

schematically write as

1

ε

(∑
(one-propagator cuts) +

∑
(two-propagator cuts)

)
. (6.106)

From chapter 3, we know that one-propagator cuts always correspond to disconti-

nuities in internal masses, and two-propagator cuts to discontinuities in external

channels. The divergent contribution can then be rewritten (schematically) in a

similar form as above,

1

ε

(∑
(internal mass discontinuities) +

∑
(channel discontinuities)

)
. (6.107)

To understand the cancellation of the bubble/tadpole singularities we must thus

try to relate discontinuities in internal masses and discontinuities in external

channels to the original function.
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Let us then prove the following result:

If F (r1, . . . , rm+1) is a function obtained by integrating a l-loop Feynman

integral (that evaluates to MPLs), depending on m + 1 dimensionful

quantities rγ, then

m+1∑
γ=1

1

2πi
Discrγ Fk = lFk−1 mod iπ, (6.108)

and we are particularly interested in the case l = 1.

Proof: To prove this result, we assume rm+1 to be an internal mass (squared),

but the proof is equally valid if it is any kinematic invariant. We can then write

F (r1, . . . , rm+1) = (rm+1 − i0)−lεf(ρ1, . . . , ρm) (6.109)

where ργ are n dimensionless variables defined as ργ = rγ/rm+1 for 1 ≤ γ ≤ n. We

assumed rm+1 positive and gave it a (−i0)-prescription because it is an internal

mass and we work in the euclidean region of F . We then define Fk and fk as the

coefficients in the Laurent series of F and f . Using∑
k

Fkε
k = (rm+1)−lε

∑
k

fkε
k (6.110)

we find that

Fk =
k∑
j=0

(−l)j
j!

logj(rm+1)fk−j. (6.111)

We now define τk,γ as

τk,γ ≡
1

2πi
Discrγ fk =

1

2πi
Discργ fk, (6.112)

where the discontinuity is taken according to the definitions of chapters 2 and 3.

We can then find

1

2πi
Discrγ Fk =

k∑
j=0

(−l)j
j!

logj(rm+1)τk−j,γ for 1 ≤ γ ≤ n. (6.113)
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For rm+1, we must be more careful as there are two contributions:

1

2πi
Discrm+1 Fk =

k∑
j=0

(−l)j
j!

Discrm+1

[
logj(rm+1)

]
2πi

fk−j

+
k∑
j=0

(−l)j
j!

logj(rm+1)
Discrm+1 [fk−j]

2πi

=l
k∑
j=1

(−l)j−1

(j − 1)!
logj−1(rm+1)fk−j

−
n∑
γ=1

k∑
j=0

(−l)j
j!

logj(rm+1)τk−j,γ (6.114)

We thus have

n+1∑
γ=1

1

2πi
Discrγ Fk = l

k−1∑
j=0

(−l)j
j!

logj(rm+1)fk−1−j = lFk−1 mod iπ, (6.115)

which proves eq. (6.108).

The result in eq. (6.108) is valid modulo iπ because the function and its

discontinuities are not evaluated in the same region. Being careful with factors

of ±i and powers of 2π, we can easily check that this condition is equivalent to

the statement that the sum of the one- and two-propagator cuts at order εk is

equal to the function at order εk−1, up to analytic continuation.

This is quite a powerful result. If F is finite, for k = 0 it implies the

cancellation of the poles introduced by the bubble/tadpole contributions. For

k > 0, it guarantees all the coproduct entries of weight (0, n) are correctly

reproduced by the rules of the graphical coproduct.

Finally, we comment on principle (iii), i.e., we comment on the first-entry

condition from the perspective of the graphical coproduct. For this, it is worth

keeping in mind the discussion above about how coproduct entries of weight

(1, w+ j− 1) are reproduced by the graphical coproduct. According to our rules,

we know that a diagram with n propagators has weight dn/2e. This means that in

the graphical coproduct of an uncut diagram the only terms of weight one in the

first entry are tadpoles and bubbles, or, more precisely, the order ε0 coefficient

of the Laurent expansion of tadpoles and bubbles. The first-entry condition
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stating that internal masses appear in the first entry of the coproduct is now a

simple consequence of the graphical coproduct entries with a tadpole in the first

entry and a one-propagator cut in the second entry. The first-entry condition

corresponding to a channel cut is obtained from the terms with two-propagator

cuts. For the fully massive case, the first-entry is the log(w(1 − w̄)) appearing

in eq. (6.105), which we already encountered in eq. (2.45) and the discussion

below, where we argued it corresponded to the same condition as the physical

mass threshold.

To finish this discussion, we make a comment on what happens when internal

or external masses vanish. As already argued above, eq. (6.62) is consistent with

dimensional regularisation. This means we are free to take kinematic invariants

to zero, in which case some diagrams might become divergent in the infrared.

By infrared power counting (see e.g. [124]) diagrams with n ≥ 5 propagators

as defined in eq. (5.9) are finite independently of whether internal propagators

and external legs are massive or not. However, boxes, triangles and bubbles can

be divergent in the infrared, and tadpoles are divergent in the ultraviolet. Despite

this, we claim that all combinations of uncut diagrams appearing in the first entry

of eq. (6.62) are always finite except for bubbles and tadpoles. In other words,

all the functions Tri and Box defined above that can appear in the first entry of

the diagrammatic coproduct are finite, independently of the mass configurations.

This can be proved by examining all possibly divergent mass configurations,

as there is a finite number of cases to check. To see that no divergences are

introduced by triangles appearing by themselves, all we need to check is that

divergent triangles correspond to vanishing three-propagators cuts (see section

5.4.1). For boxes, all one needs to check is that the combination of boxes and

triangles appearing in the first entry of the four-propagator cuts in eq. (6.62) is

always of order ε0, independently of the configurations of the masses.

This means that if we want to study the trivial coproduct components and

the first-entry condition for diagrams which do not have all propagators and all

external legs massive, whether they are finite or not, we still only need to examine

the contributions of bubbles and tadpoles.

Let us say we take all internal masses to zero. Then there are no tadpole

contributions in eq. (6.62) because they become scaleless integrals. First entries
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corresponding to two-propagator cuts are now divergent, not because of the poles

of tadpoles, but because the massless bubble is divergent. One might näıvely

think our discussion above of how poles of tadpoles and bubble were necessary

to reproduce the weight (0, n) components of the coproduct is no longer valid.

However, we now have

=
1

ε
− log(−p2) +O(ε), (6.116)

and it is the contribution of this pole that will reproduce the weight (0, n)

components. This can be proved in exactly the same way as we did for the

case where there were no internal masses. The first entry condition is a trivial

consequence of the graphical coproduct in this case.

In the intermediate case where some propagators are massive and some

massless, we might have two-propagator cuts whose corresponding first-entry is a

bubble with only one massive propagator. This case can be treated in the same

way as the massless or the fully massive ones once we realise that singularities

now come from

m2

=
1

ε
− log(m2) +O(ε),(

+
1

2
m2

)
=

1

ε
− log(m2 − p2) +O(ε). (6.117)

In this case also the first entry condition is a trivial consequence of the graphical

coproduct, both for internal masses and external channels.

6.4.2 Examples

In the previous sections, we have given a very formal definition of a coproduct

on one-loop graphs, established its connection to Feynman integrals, and then

made several comments on the structure of the graphical coproduct to show it was

consistent with the action of the coproduct of MPLs on the functions Feynman

integrals evaluate to. We now illustrate all these points through some concrete

examples.

We have already studied the tadpole, eq. (6.52), and all bubbles, eqs. (6.8),

(6.37) and (6.48). The graphical coproduct of their cuts was also discussed in

section 6.2.3. We will thus now focus on triangles and boxes. We believe there
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Figure 6.1: Notation for external legs and and internal masses for general
triangles and boxes.

is a large enough variety of mass configurations for these topologies to provide

ample evidence of the validity of eq. (6.62) for any one-loop diagram. In the

following sections, we will see that the fully massless pentagon and hexagon are

also consistent with eq. (6.62).

For each example, we will highlight which properties of the diagrammatic

coproduct they illustrate. We have not checked it for the fully massive triangle

or the fully massive box—see fig. 6.1—which would be the natural examples to

explore given that the graphical coproduct was formulated for diagrams with

generic internal and external masses. Unfortunately, in both cases, we have not

found a parametrisation which would give a rational symbol alphabet, and this

makes checking the diagrammatic coproduct very complicated. We will thus

restrict ourselves to simpler (but already non-trivial) examples for which we have

such a parametrisation.

When checking eq. (6.62) for a specific diagram, we recall there are two

expansions, one in the dimensional regularisation parameter ε and one in the

different coproduct components at a given weight, see the discussion below

eq. (6.103). We must check the consistency of each term in this double expansion

between the right-hand-side and the left-hand-side of eq. (6.62). All the examples

were checked at least up to weight 3 (i.e., order ε1 for triangles and boxes), when

all diagrams contribute at least as weight 1 functions. The simplest examples

were checked to higher weights.

We will not write the kinematic dependence of the diagrams in cases where it

is obvious. If two cuts are related by symmetry, we only present the coproduct

of one of them. We do not give expressions for the cuts for any of the examples.

Some can be found in appendix B, but all relevant expressions have been collected

in the accompanying MATHEMATICA package [38]. For all examples below, we refer
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6.4. Diagrammatic coproduct of one-loop Feynman diagrams

to the notation of fig. 6.1 to assign each invariant to a specific propagator or

external legs.

I3(p2
1,0,0; 0,0,0): We start by examining the triangle with a single external

massive leg. From eq. (6.75) and equations below, we find

∆

( )
= ⊗ , (6.118)

∆

( )
= ⊗ . (6.119)

This is a trivial example, very similar to the bubble with no internal masses, for

which explicit expressions can be found in section B.1.1. It nevertheless warrants

discussion because of the following observation concerning triangle integrals. In

eq. (6.84), we said Feynman graphs were mapped to the corresponding Feynman

integral normalised to the first order in the ε expansion of its maximal cut.

However, as discussed in section 5.4.1, maximal cuts of triangles can vanish if

they do not have enough masses. This happens in the example we are currently

examining, as can be seen by the fact that the triple cut contribution is absent

for the diagrammatic coproduct. Of course, this poses a problem to normalise

the uncut and two-propagator cut diagram.

Fortunately, triangle diagrams have a particularity: their maximal cut, when

non-zero, is independent of the internal masses (this is not true for bubbles—

compare eqs. (6.10), (6.30) and (6.46)—or boxes—compare eqs. (5.92) and

(5.107)). This means we can determine the normalisation for triangles with a

given configuration of external channels by looking at any configuration of internal

masses making the integral finite. For a triangle with one external massive leg,

the simplest example is I3(p2
1, 0, 0; 0,m2

23, 0), from which we find

LS[I3(p2
1, 0, 0; 0, 0, 0)] ≡ C(0)

3 [I3(p2
1, 0, 0; 0,m2

23, 0)] = − 1

p2
1

. (6.120)

All diagrams with one massive external leg and a vanishing triple cut will be

normalised by this factor.

Finally, this diagram demonstrates that even if the massless limit of eq. (6.62)
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gives rise to singularities, it still gives the correct coproduct. As we already

mentioned previously, because the triple cut is zero this divergent triangle does

not appear by itself in the first entry of the diagrammatic coproduct. We note

that in this case the singularity introduced by the bubble is necessary to have the

same degree of singularity on both sides of the relation.

I3(p2
1,0,0;m2

12,0,0): We now look at the triangle with one external massive

leg and one adjacent massive propagator. We find

∆

( )
=

(
+

1

2

)
⊗ + ⊗ , (6.121)

∆

( )
=

(
+

1

2

)
⊗ + ⊗ , (6.122)

∆

( )
= ⊗ . (6.123)

This example is also simple, and very similar to the bubble with one internal mass.

Explicit expressions can be found in section B.1.3. As the previous example, its

maximal cut vanishes and so we use the same trick to find the leading singularity.

I3(p2
1,0,0; 0,m2

23,0): We now look at the triangle with one external massive

leg and one massive propagator not adjacent to it. We find

∆

( )
= ⊗ + ⊗ + ⊗ ,

(6.124)

∆

( )
= ⊗ + ⊗ , (6.125)

∆

( )
= ⊗ + ⊗ , (6.126)
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∆

( )
= ⊗ . (6.127)

This example—explicit expressions can be found in section B.1.2—is interesting

for two reasons. First, it is this diagrams we used to extract the normalisation

factor for the previous two diagrams as it is the simplest diagram with one external

massive leg having a non-vanishing triple cut. Second, this diagram illustrates

how a tadpole can appear by itself if the massive propagator is not attached to

any massive external channel, consistently with eq. (6.62).

I3(p2
1,0,0;m2

12,0,m
2
13): We now look at the triangle with one external

massive leg and two adjacent massive propagators. We find

∆

( )
=

= ⊗ +

(
+

1

2
(m2

12) +
1

2
(m2

13)

)
⊗

+ (m2
12)⊗ + (m2

13)⊗ , (6.128)

∆

( )
= ⊗ +

(
+

1

2
(m2

12)

)
⊗

+ (m2
12)⊗ , (6.129)

∆

( )
= ⊗ + ⊗ , (6.130)

∆

( )
= ⊗ . (6.131)

This diagram is interesting because it is the simplest triangle requiring variables

as the w1 and w̄1 defined in eq. (2.33) to get a rational symbol alphabet. Explicit
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expressions can be found in section B.1.5. In that sense, it is similar to the bubble

with two internal massive propagators. However, it has a very specific feature

that we did not encounter in any other triangle: its non-vanishing maximal cut

has no interpretation as an iterated discontinuity. This shows the diagrammatic

conjecture contains more information than what we would get by simply analysing

the discontinuities of Feynman diagrams as we did in chapters 2 and 3.

I3(p2
1,0,0;m2

12,m
2
23,m

2
13): As a last example of a triangle with one external

massive leg, we look at the case where all internal propagators are massive. We

find

∆

( )
=

= ⊗ +

(
+

1

2
(m2

12) +
1

2
(m2

13)

)
⊗

+ (m2
12)⊗ + (m2

23)⊗ + (m2
13)⊗ , (6.132)

∆

( )
= ⊗ +

(
+

1

2
(m2

12)

)
⊗

+ (m2
12)⊗ , (6.133)

∆

( )
= ⊗ + (m2

23)⊗ , (6.134)

∆

( )
= ⊗ + ⊗ , (6.135)

∆

( )
= ⊗ . (6.136)
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This diagram is included because it is the most general diagram with one external

massive leg. Explicit expressions can be found in section B.1.6. All previous

examples can be obtained as the massless limit of this case.

I3(0, p2
2, p

2
3; 0,m2

23,0): We now start exploring diagrams with two external

massive legs. As a first example, we look at the case with a single internal

massive propagator adjacent to the two massive external legs. We find

∆

( )
=

(
+

1

2

)
⊗ +

(
+

1

2

)
⊗

+ ⊗ , (6.137)

∆

( )
=

(
+

1

2

)
⊗ +

(
+

1

2

)
⊗

+ ⊗ , (6.138)

∆

( )
= ⊗ . (6.139)

This is the only triangle with one internal massive propagator and two external

massive legs that is not finite. Explicit expressions can be found in section B.2.2.

It also has a vanishing triple cut: to find the leading singularity we use the

same trick as for diagrams with one external massive propagators and extract

the normalisation factor by looking at a case with more massive propagators (as

the next example). We note the same has to be done for the triangle with two

external masses and no massive propagators.

I3(0, p2
2, p

2
3;m2

12,m
2
23,0): We then look at the triangle two internal massive

legs, where one of the massive propagators is adjacent to the two external massive

legs. Explicit expressions for this diagram can be found in the accompanying
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MATHEMATICA package [38]. We find

∆

( )
=

= ⊗ +

(
+

1

2
(m2

12) +
1

2
(m2

23)

)
⊗

+

(
+

1

2
(m2

23)

)
⊗

+ (m2
12)⊗ + (m2

23)⊗ , (6.140)

∆

( )
= ⊗ +

(
+

1

2
(m2

23)

)
⊗

+

(
+

1

2
(m2

23)

)
⊗ + (m2

23)⊗ ,

(6.141)

∆

( )
= ⊗ +

(
+

1

2
(m2

12)

)
⊗

+ (m2
12)⊗ , (6.142)

∆

( )
= ⊗ + ⊗ , (6.143)

∆

( )
= ⊗ + ⊗ , (6.144)

∆

( )
= ⊗ . (6.145)
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This is the most complicated example we will examine with two-massive external

legs. We stress that this diagram evaluates to a rather complicated combination

of MPLs [38], and in that sense is a highly non-trivial check of the graphical

coproduct we introduce.

We have also analysed the example with two external massive legs and three

internal propagators, for which we have found a parametrisation making the

symbol alphabet rational. We have not included this example because the

functions get rather complicated and do not teach us anything new about the

diagrammatic coproduct.

I3(p2
1, p

2
2, p

2
3; 0,0,0): As a final example of the diagrammatic coproduct for

triangles, we examine the triangle with three massive external legs and massless

propagators for which explicit expressions can be found in section B.3.1. We find

∆

( )
= ⊗ + ⊗

+ ⊗ + ⊗ , (6.146)

∆

( )
= ⊗ + ⊗ , (6.147)

∆

( )
= ⊗ . (6.148)

Although by this point it seems a rather trivial example, we could not not include

our favourite example. It was also important for us when we started looking at

the diagrammatic representation of the coproduct because it was the first example

for which we understood the diagrammatic representation of all coproduct

components. Finally, it helped us understand how the singularities introduced

by bubbles cancel and reproduce the weight (0, n) coproduct components, as we

argued in the previous section.

We will not look at diagrams with three external massive legs and any number

of massive propagators because they do not teach us anything new. For the cases
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with one or two internal masses, we have a parametrisation in terms of which the

symbol alphabet is rational, see appendix B.3. For the fully massive case, we did

not find such a parametrisation.

I4(s, t): We now explore box diagrams. We start with the simplest one, the

fully massless box. Explicit expressions for this diagram can be found in the

accompanying MATHEMATICA package [38]. From eq. (6.79), we find

∆

( )
=

(
+

1

2
(s) +

1

2
(t)

)
⊗

+ (s)⊗ + (t)⊗ , (6.149)

∆

( )
=

(
+

1

2
(s)

)
⊗

+ (s)⊗ , (6.150)

∆

( )
= ⊗ . (6.151)

The massless box was important for us to understand that we could not avoid

including maximal cuts of boxes. The reason for this is simple to see: had we not

included the maximal cut, there would only be bubbles in the leftmost entry of

the coproduct, which cannot reproduce the non-trivial analytic structure of the

massless box (in particular, the symbol letter (s + t) would never appear in the

leftmost entries if that were the case).

This is also the first example were we can see that the first entry corresponding

to the quadruple cut is finite, which requires a cancellation between double and

single poles of the box and triangles. We recall this is important to ensure only

bubbles and tadpoles are singular in the left entry of the diagrammatic coproduct,

as this is needed for the components of weight (0, n) to be correctly reproduced.
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Ie4(s, t;p2
1,0, p

2
3,0) — two-mass-easy: We now look at the simplest of the

box topologies with two massive external legs, the two-mass-easy box. Explicit

expressions for this diagrams can be found in the accompanying MATHEMATICA

package [38]. We find

∆

( )
=

(
+

1

2
(s, p2

1) +
1

2
(s, p2

3)

+
1

2
(t, p2

1) +
1

2
(t, p2

3)

)
⊗

+ (s)⊗ + (t)⊗

+ (p2
1)⊗ + (p2

3)⊗ , (6.152)

∆

( )
=

(
+

1

2
(s, p2

1) +
1

2
(s, p2

3)

)
⊗

+ (s)⊗ , (6.153)

∆

( )
=

(
+

1

2
(s, p2

1) +
1

2
(t, p2

1)

)
⊗

+ (p2
1)⊗ , (6.154)

∆

( )
= ⊗ . (6.155)

We present this example to contrast it with the following one. Indeed, we

know the two-mass-easy box is simpler than the two-mass-hard box, as their

names suggest. The reason for this is apparent from the perspective of the

diagrammatic coproduct: unlike what happens for the two-mass-hard box, all

the single propagator contractions of the two-mass-easy box give rise to simple

triangles with two-massive external legs. We know these have a vanishing triple
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cut, and therefore all triple cuts of the two-mass-easy box vanish.

As for the fully massless box, we can check the first entry corresponding to

the maximal cut of this box is finite because the pole of the box cancels with the

poles of the the four different triangles.

To finish, we note that the box with a single external massive leg can be

obtained trivially from this example by sending e.g. p2
3 to zero.

Ih4 (s, t;p2
1, p

2
2,0,0) — two-mass-hard: We now look at the hardest of the

box topologies with two massive external legs, the two-mass-hard box. Explicit

expressions for this diagrams can be found in the accompanying MATHEMATICA

package [38]. We find

∆

( )
=

(
+

1

2
(s) +

1

2
(s, p2

1, p
2
2)

+
1

2
(t, p2

1) +
1

2
(t, p2

2)

)
⊗

+ (s, p2
1, p

2
2)⊗

+ (s)⊗ + (t)⊗

+ (p2
1)⊗ + (p2

2)⊗ , (6.156)

∆

( )
=

(
+

1

2
(s) +

1

2
(s, p2

1, p
2
2)

)
⊗

+ (s, p2
1, p

2
2)⊗ + (s)⊗ , (6.157)

∆

( )
=

(
+

1

2
(s, p2

1, p
2
2) +

1

2
(t, p2

1)

)
⊗

+ (s, p2
1, p

2
2)⊗ + (p2

1)⊗ , (6.158)
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∆

( )
=

(
+

1

2
(t, p2

1) +
1

2
(t, p2

2)

)
⊗

+ (t)⊗ , (6.159)

∆

( )
=

(
+

1

2
(s, p2

1, p
2
2)

)
⊗

+ (s, p2
1, p

2
2)⊗ , (6.160)

∆

( )
= ⊗ . (6.161)

As we mentioned in the previous example, the two-mass-hard box has a more

complicated structure. This can be seen by the fact that the contraction of

one of its propagators gives rise to a triangle with three external masses, which,

in contrast to the one- and two-mass triangles, has a non-vanishing maximal

cut, see e.g. eq. (6.146). Related to this three-mass triangle, we also have the

corresponding non-vanishing triple cut of the box appearing in the diagrammatic

coproduct. Note that the appearance of the three-mass triangle in the coproduct

means we expect we will need to use variables like the z and z̄ defined in eq. (2.29)

to get a rational symbol alphabet.

By looking at the diagrammatic coproduct of this function we can even predict

these variables will only be needed at order ε1. Let us apply the general discussion

below eq. (6.103) to this particular example. We start by noting that as expected

the first entry corresponding to the maximal cut is finite, and will thus only

contribute at order ε0. The same is true for the triple cut contribution. This

means the order ε−2 and ε−1 coefficients of the two-mass-hard box are completely

determined by the terms with bubbles in the first entry, and should thus be very

simple (i.e., logarithms of (ratios of) invariants). At order ε0, we start to get

contributions from the terms with triple and quadruple cuts. However, because

of the discussion in section 5.4.2, we know the contribution of the three-mass
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triangle must cancel at leading order since it appears both with the triple and

the quadruple cuts. We linked the necessity of using the z and z̄ variables to the

contribution of the three-mass triangle, and we are now seeing this contribution

only starts at order ε1. We thus expect only to need those variables starting from

that order.

This example was checked up to weight 4, i.e. order ε2, where it is already

a rather complicated function [38]. We view this as one of the most important

checks of the diagrammatic representation of the coproduct we propose, as it

would be very unlikely that it would match by accident in such a complicated

example.

This is the most complicated box with no massive propagators we analysed.

The box with three external massive legs should be possible to study, but we

do not believe it would be of any particular interest compared to the examples

we already gave. For the box with four massive external legs we did not find a

parametrisation giving a rational alphabet to all orders in ε.

I4(s, t; 0,0,0,0;m2
12,m

2
23,0,0): As a last example, we look at the box with

massless external legs and two adjacent massive propagators. Explicit expressions

for this diagrams can be found in the accompanying MATHEMATICA package [38].

We find

∆

( )
=

(
+

1

2
(s,m2

23) +
1

2
(s,m2

23,m
2
12)

+
1

2
(t,m2

12) +
1

2
(t,m2

12,m
2
23)

)
⊗

+ (s,m2
23,m

2
12)⊗ + (t,m2

12,m
2
23)⊗

+

(
(t,m2

12) +
1

2
(m2

12)

)
⊗

+

(
(s,m2

23) +
1

2
(m2

23)

)
⊗

+ (m2
12)⊗ + (m2

23)⊗ , (6.162)
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∆

( )
=

(
+

1

2
(s,m2

23,m
2
12)

+
1

2
(t,m2

12) +
1

2
(t,m2

12,m
2
23)

)
⊗

+ (s,m2
23,m

2
12)⊗ + (t,m2

12,m
2
23)⊗

+

(
(t,m2

12) +
1

2
(m2

12)

)
⊗

+ (m2
12)⊗ , (6.163)

∆

( )
=

=

(
+

1

2
(s,m2

23) +
1

2
(s,m2

23,m
2
12)

)
⊗

+ (s,m2
23,m

2
12)⊗ + (s,m2

23)⊗ , (6.164)

∆

( )
=

(
+

1

2
(s,m2

23,m
2
12)

)
⊗

+ (s,m2
23,m

2
12)⊗ , (6.165)

∆

( )
= ⊗ . (6.166)

Besides I4(s, t; 0, 0, 0, 0;m2
12,m

2
23, 0, 0), we have also analysed the box with a

single internal mass, I4(s, t; 0, 0, 0, 0;m2
12, 0, 0, 0), whose graphical coproduct can

be easily obtained by taking m2
23 → 0 in the above expressions. Once again,

we explicitly observe all the features we already discussed. The first entry
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corresponding to a quadruple cut only contributes at order ε0 because of the

cancellation of the poles of the triangles and the box. There are two non-vanishing

triple cuts, which only start contributing at order ε1. For this box, we can use

(ratios of) invariants as variables to get a rational alphabet, which is consistent

with the fact that the triangles appearing with triple cuts do not require more

complicated parametrisations.

We believe this example to be important as it checks most of the features of

the diagrammatic coproduct we have described up to now. Indeed, it requires

dealing with massive and massless propagators, with vanishing and non-vanishing

triple cuts and with a non-vanishing quadruple cut, all in the same example. Had

we not correctly understood any of these points, or had we made a mistake in

computing any of the cut diagrams, we would not have been able to match the

coproduct on the two sides of eq. (6.62) for such a complicated case.

Aside from the examples listed here, we explicitly checked the diagrammatic

coproduct in the following cases:

• I3(p2
1, 0, 0;m2

12,m
2
23, 0) ;

• I3(0, p2
2, p

2
3;m2

12, 0, 0) ;

• I3(0, p2
2, p

2
3;m2

12, 0,m
2
13) ;

• I4(s, t; p2
1, 0, 0, 0) ;

• I4(s, t; 0, 0, 0, 0;m2
12, 0, 0, 0).

As already mentioned, the necessary expressions to perform the checks of all the

cases we mentioned can be found in the accompanying MATHEMATICA package [38].

6.5 Discontinuities

In the previous sections, we have motivated the existence of a diagrammatic

representation of the coproduct of one-loop Feynman diagrams, defined it

formally, and given evidence of its validity by explicitly looking at a large selection

of examples. We now assume this diagrammatic representation to exist and

see what consequences we can draw from it. In particular, in this section we
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will review the implications of the diagrammatic coproduct in the study of the

discontinuities of Feynman diagrams.

The main tool we will use in this section is the relation between the dis-

continuity operator and the coproduct, which we recall states that discontinuity

operators only act in the first entry of the coproduct, or more formally

∆ Disc = (Disc⊗id)∆ . (6.167)

We should stress that in this expression ∆ is the coproduct acting on functions.

However, given our mapping between the graphical coproduct and the coproduct

of Feynman integrals, we can easily think of ∆ (and Disc) as acting on graphs.

The main conclusion of this section is that the existence of the graphical rep-

resentation of the coproduct makes the relations between iterated discontinuities,

multiple unitarity cuts and the coproduct we developed in chapters 2 and 3 very

simple to get.

Before we show this in some examples, let us make a comment on which

type of coproduct entries are interesting when studying discontinuities. Because

the discontinuity operator acts in the first entry, if we are computing m-iterated

discontinuities of a function of weight n, thus getting a weight n−m discontinuity

function, the natural type of coproduct entries we are interested in are the ones

of weight (1, . . . , 1︸ ︷︷ ︸
m−terms

, n−m).

From the perspective of the graphical coproduct, this means that single

discontinuities are determined by the diagrams of weight one appearing in the

leftmost cofactor, double discontinuities by diagrams of weight two and so on.

Furthermore, only diagrams depending on the variables on which we are taking

the discontinuity can give a contribution.

This can be illustrated by looking at the three-mass triangle we are very

familiar with. We know that the components of weight (1, n) of its coproduct

are completely determined by the ε0 coefficient of the bubble contributions in

eq. (6.146). In other words,

∆1,n

( )
= (p2

1)
∣∣
ε0
⊗

∣∣∣∣
εn−1

+ (p2
2)
∣∣
ε0
⊗

∣∣∣∣
εn−1

+ (p2
3)
∣∣
ε0
⊗

∣∣∣∣
εn−1

, (6.168)
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Let’s say we are interested in the discontinuity on p2
1. Of course, we have

Discp2
1

[
(p2

1)
∣∣
ε0

]
= 2πi (6.169)

and

Discp2
1

[
(p2

2)
]

= Discp2
1

[
(p2

3)
]

= 0, (6.170)

The right-hand side of eq. (6.169) depends on the normalisation of the diagram,

the precise definition of Disc and the i0 associated to the invariant. From

eq. (6.168) we thus have

Discp2
1

[ ]
= 2πi , (6.171)

which is a function of weight 1. This is exactly the relation we expect between

cuts and discontinuities, and we can get the precise relation by following the rules

of the chapters 2 and 3.

If we are interested in double discontinuities, we should look at coproduct

entries of the form (1, 1, n). Terms of the graphical coproduct with bubbles in

the first entry do not contribute because they depend on a single scale, so all

double discontinuities are fixed by acting on the ε0 (weight 2) component of the

uncut triangle, see eq. (6.146). Using

Discp2
1,p

2
2

[ ∣∣∣∣
ε0

]
= (2πi)2, (6.172)

we get

Discp2
1,p

2
2

[ ]
= (2πi)2 , (6.173)

which is a function of weight 0. This is also the relation we would expect from

the discussion of chapter 3.

To finish with this example, we could also have looked at the double

discontinuity from another perspective. We know the coproduct of the p2
1 channel

has the diagrammatic representation given in eq. (6.147). Out of the two terms

on the right-hand-side, only the first depends on the p2
2 channel. Instead of acting

with the double discontinuity on the uncut triangle, we could thus have computed

the discontinuity on p2
2 of the cut in p2

1 at order ε0 (which is a weight 1 function)
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Figure 6.2: Massless hexagon

and got

Discp2
2

[ ∣∣∣∣
ε0

]
∼ 2πi. (6.174)

Combined with the above relation for the p2
1-discontinuity, this also leads to the

expected relation between iterated discontinuities and multiple unitarity cuts.

This same reasoning can be applied to more interesting diagrams such as the

boxes. For instance, if we are interested in computing an iterated discontinuity

in the s and t-channels in eq. (6.149), it is easy to see that the only contribution

would come from the term in the graphical coproduct with the box in the first

entry, which is consistent with the (s, t) discontinuity being proportional to the

maximal cut.

Instead of going over the same examples we have already studied, we will show

how we can use this type of argument to determine the values of cuts we have

not computed explicitly. To this end, we consider the fully massless hexagon in

D = 6 dimensions—see fig. 6.2—which is a weight 3 function. Our goal will be to

extract the value of the three and four propagator cuts of this diagram from the

knowledge of its symbol. We will then check the results we obtain are consistent

with an observation made in [125] on the symbol of this type of Feynman integral,

thus giving indirect evidence for the validity of the graphical coproduct in this

example.

We start with some notation related to the hexagon. We will use the results

and notation introduced in refs. [67, 126]. Instead of the usual momenta pj,

it is convenient to use the so-called dual variables xj we already used in the
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introduction to chapter 5, section 5.1, defined as

pj = xj − xj+1, (6.175)

where indices are defined modulo 6. It is also convenient to define x2
jk = (xj−xk)2.

In terms of these variables, we have for instance

(p1 + p2)2 = x2
13 (p1 + p2 + p3)2 = x2

14 x2
j,j+1 = p2

j = 0. (6.176)

Note that we can associate each xj with an edge of the hexagon and in fig. 6.2

we have numbered the edges consistently with the definition of the xj. The loop

momentum can be defined as k = x0 − x1, and we then have

I
(0)
6 =

∫
d6x0

iπ3

1

x2
01x

2
02x

2
03x

2
04x

2
05x

2
06

(6.177)

were we have set ε = 0 because the integral is finite and we will not study higher

orders in ε. In the following, we will drop the (0) in superscript.

It is easy to see that I
(0)
6 is a function of nine variables, which we can choose

to be x2
13, x2

14, x2
15, x2

24, x2
25, x2

26, x2
35, x2

36 and x2
46. In exactly six dimensions, this

integral is known to be conformally invariant [127], and it can thus only depend

on the three-cross ratios

u1 =
x2

15x
2
24

x2
14x

2
25

, u2 =
x2

26x
2
35

x2
25x

2
36

, u3 =
x2

13x
2
46

x2
14x

2
36

. (6.178)

This is the reason why setting ε = 0 greatly simplifies the discussion of the

hexagon (as was the case for the box with four massive legs, see appendix B.4.8).

Following [67], we introduce the quantities

fi =
x+(1− x−i )

x−(1− x+
i )
, x±i = uix

±, x± =
u1 + u2 + u3 − 1±√∆H

2u1u2u3

, (6.179)

where

∆H = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (6.180)

We define H to be the hexagon normalised to its leading singularity:

H = x2
14x

2
25x

2
36

√
∆HI

(0)
6 . (6.181)
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The symbol of H can then be written as

S(H) =− u1 ⊗ u2 ⊗ f3 − u1 ⊗ u3 ⊗ f2 + u1 ⊗ (1− u1)⊗ f1f2f3

− u2 ⊗ u1 ⊗ f3 − u2 ⊗ u3 ⊗ f1 + u2 ⊗ (1− u2)⊗ f1f2f3

− u3 ⊗ u1 ⊗ f2 − u3 ⊗ u2 ⊗ f1 + u3 ⊗ (1− u3)⊗ f1f2f3 . (6.182)

According to our conjectured diagrammatic coproduct, eq. (6.62), we have

∆

( )
= Hex⊗ C6[H] +

∑
j∈EH

[{j}]⊗ C5,[EH/{j}][H]

+
∑

j,k∈EH
j<k

Boxjk ⊗ C4,[EH/{j,k}][H]

+ (x2
13, x

2
35, x

2
15)⊗ C3,[{1,3,5}][H] + (x2

24, x
2
46, x

2
26)⊗ C3,[{2,4,6}][H]

+
∑

j,k∈EH
j<k

(x2
jk)⊗ C2,[{j,k}][H] (6.183)

where we have introduced some notation to make the expression more compact.

EH = {1, 2, 3, 4, 5, 6} is the set of internal edges of the hexagon. We have defined:

Hex ≡ +
1

2

∑
j∈EH

[{j}] (6.184)

where

[{j}]

is the one-mass pentagon obtained by contracting the j-th propagator of the

hexagon. Similarly, we defined

Boxjk = [{jk}] +
1

2

∑
l∈EH/{j,k}

[{jkl}] (6.185)

where

[{jk}] and [{jkl}] (6.186)

are the boxes (triangles) obtained by contracting the propagators {j, k} ({j, k, l})
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Figure 6.3: Box diagrams corresponding to Box56, Box46 and Box36.

of the hexagon. Several of the external channels of the boxes and triangles will

be zero, and we simply used the diagrams above to depict the most general case

(see fig. 6.3 for some examples of the boxes that appear).

We note that in eq. (6.183) there are 6 different pentagon contributions, 15

different box contributions (6 one-mass boxes, 6 two-mass-hard boxes and 3 two-

mass easy boxes), 2 triangle contributions (from the discussion of section 5.4.1

only two of the three-propagator cuts are non-zero, but there are of course one-

and two-mass triangles accompanying the box terms), and 9 non-vanishing bubble

contributions (out of the 15 terms appearing in eq. (6.183) six vanish because

x2
j,j+1 = 0).

Our goal is now to match eqs. (6.182) and (6.183) to extract the values of

the three- and four-propagator cuts at leading order in ε. These are weight 1

functions, corresponding to a double discontinuity of a weight 3 function, most

naturally identified in the (2, 1) component of the coproduct of the hexagon. It

is easy to see these components correspond to the terms with boxes and triangle

contributions in eq. (6.183). Given how discontinuities act on the coproduct, we

should be able to determine the values of the cuts by identifying the terms in the

first entry that have the correct branch points.

Our plan is the following. From sections 5.5.3, 5.5.4 and 5.5.7 we know that the

maximal cuts of boxes with one external massive leg correspond to the coproduct

entry δs,t of the box, the same is true for two-mass-hard boxes but for two-

mass-easy boxes it corresponds to δs,st−p2
1p

2
3
. For each Boxjk in eq. (6.183) we

should then identify the s and t (or st − p2
1p

2
3) invariants, and then look for

the corresponding term in eq. (6.182). We examine one example of each type:

Box56, of the one-mass type, Box46, of the two-mass-hard type and Box36, of the

two-mass-easy type, see fig. 6.3.

For Box56, the first diagram in fig. 6.3, we have s = x2
13, t = x2

24, so we

can associate s ∼ u3 and t ∼ u1. Comparing with eq. (6.182), we then get
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C4,[1234][H] = δu3,u1H = f2. Given the s↔ t symmetry of the box, we should get

the same result when looking at δu1,u3 , and that works because δu3,u1H = δu1,u3H.

For all one-mass boxes, this same procedure allows to fix all the corresponding

cuts. Note that this case is particularly simple: s and t are always of the form

xj,j+2 and xk,k+2, i.e. they appear only in (the numerator of) one of the ul, and

so can be associated with a single pair (uj, uk), j 6= k. Finally, given that xj,j+2

and xk,k+2 appear in the numerator of the cross-ratios, by convention we take

the corresponding δuj ,uk with positive sign4. Going through all the six different

one-mass boxes we find

C4,[1234][H] = δu3,u1H = f2, C4,[1236][H] = δu2,u3H = f1,

C4,[2345][H] = δu1,u2H = f3, C4,[3456][H] = δu2,u3H = f1,

C4,[1456][H] = δu1,u3H = f2, C4,[1256][H] = δu1,u2H = f3. (6.187)

For Box46—the middle diagram in fig. 6.3—of the two-mass-hard type, s = x2
13

and t = x2
25. The association with the cross-ratios is slightly more complicated:

because t is of the form x2
j,j+3 it appears in the denominator of the cross-ratios

and thus in two different ones. However, it turns out it never appears in the

same cross-ratio as s, which simplifies the analysis a lot. In this particular case,

we can have (s, t) ∼ (u3, u1) or (s, t) ∼ (u3, u2) because x2
25 appears in both u1

and u2, and so, in agreement with the rule of chapters 2 and 3 that one should

sum the contributions of symbol letters consistent with a given invariant, we add

both contributions. Furthermore, because t appears in the denominator of the

cross-ratios we pick up a minus sign. We then get C4,[1235][H] = −f1 − f2. A

similar procedure allows to deal with all six two-mass-hard boxes, and we find

C4,[1235][H] = −f1 − f2, C4,[2346][H] = −f2 − f3,

C4,[1345][H] = −f1 − f3, C4,[2456][H] = −f1 − f2,

C4,[1356][H] = −f2 − f3, C4,[1246][H] = −f1 − f3, . (6.188)

Next, we look at Box36—the last diagram in fig. 6.3—of the two-mass-easy

type. In this case, s = x2
14 and t = x2

25: they are both of the form x2
j,j+3 and

so appear in the denominator of the cross-ratios. We would be in trouble if we

4This is an arbitrary choice. As long as we are consistent with it, we are only working up
to an undetermined overall sign, which is the same for all cuts.
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were looking for a δuj ,uk as in the two previous cases, because the three cross-

ratios depend on either x2
14, x2

25 or both. Luckily, we are looking for terms of

the type δuj ,1−uj : the condition for the leading singularity of the two-mass-easy

box to vanish (st − p2
1p

2
3 = 0) is equivalent to uj = 1. This makes the analysis

quite simple: each of the three two-mass-easy boxes is associated with a single uj.

More specifically, Box36 is associated with u1 and so C4,[1245][H] = δu1,1−u1H =

f1 + f2 + f3. The other two cases give the same result,

C4,[1245][H] = Cut2356[H] = Cut1346[H] = f1 + f2 + f3. (6.189)

To complete our analysis, we must look at the three-propagator cuts appearing

with the two three-mass triangles in eq. (6.183). Both three-mass triangles only

depend on variables of the type x2
j,j+2, so the analysis is very simple: they are

associated with discontinuities on pairs (u1, u2), (u1, u3) or (u2, u3). We then get

Cut135(H) = Cut246(H) = f1 + f2 + f3. (6.190)

We now claim to have determined all the three and four propagator cuts of

the hexagon. However, this assumed the validity of the graphical conjecture, so

we would like to have some checks that our results are correct. In ref. [125], it

was shown that the (2, 1) component of the coproduct of a conformally invariant

hexagon was given by the sum of fifteen terms of the form

∆2,1(H) =
∑

j,k∈EH
j<k

(jk)

⊗ log (Rjk(H)) , (6.191)

where the quantities Rij are defined in eq. (7) of [125] (as above, the boxes that

appear are not four-mass boxes, but we drew it this way to cover the general

case). Unfortunately, the authors only give an explicit expression for the Rjk

of a hexagon with three non-adjacent massive legs, and present their results in

terms of momentum-twistor variables [128–131], which we were not yet able to

translate into the variables we are using for the massless hexagon (they should be

nothing but a combination of the fj appearing in eq. (6.182)). Nevertheless, this

expression still imposes a constraint on the graphical coproduct of the hexagon:

it claims only boxes contribute to the weight (2, 1) component of the coproduct
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of the hexagon while from eq. (6.183) one would also expect to also have triangle

contributions. We can then check if these all cancel in a non-trivial way.

The first thing we can notice is that the contributions of the three-mass

triangles cancel. This is easily because these diagrams only appear in four-

propagator cuts corresponding to the Boxjk of the two-mass-hard type and in

the first entry of three-propagator cuts. Let us focus on the three-mass triangle

with masses x2
13, x2

35 and x2
15. It appears in the first entries of the four-propagator

cuts [1235], [1345] and [1356], and in the first entry of the three-propagator cut

[135]. From eqs. (6.188) and (6.190), the contribution to eq. (6.183) with this

three-mass triangle in the first entry is

(x2
13, x

2
35, x

2
15)⊗ (−(f1 + f2 + f3) + f1 + f2 + f3) = 0. (6.192)

By the same argument, the contribution of the other three-mass triangle also

vanishes. As in the discussion of 5.4.2, we note that the factor of 1/2 appearing

in the diagrammatic coproduct was necessary for this cancellation to occur.

For the other triangle contributions, the situation is not as simple. Indeed,

the ε-expansions of one- and two-mass triangles give the same type of functions,

the square of simple logarithms of the invariants at weight 2. This means con-

tributions from different triangles mix, and we should not check the cancellation

of each triangle individually. Instead, we must check the cancellation of terms

with a log2(x2
ij) in the first entry that come from any of the one- and two-mass

triangles appearing in the first entry of eq. (6.183). Going through the algebra,

we see that this imposes 10 non-trivial relations between the Rjk(H). If we relate

them to the quadruple cuts as determined above, all of them are satisfied. This

shows the result of [125] is consistent with the diagrammatic coproduct.

We will stop here our discussion about discontinuities and the diagrammatic

conjecture. However, we should mention that we have checked that all examples

given in chapter 3 to illustrate the relations between Cut, Disc and the coproduct

are in agreement with what is dictated by the graphical coproduct of each

diagram.
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6.6 Differential equations

Throughout this thesis, we discussed many times the relation between

discontinuities and the coproduct. However, we never discussed the relation

between differential operators and the coproduct, which we had introduced at

the same time in eq. (2.21). While discontinuity operators only act in the first

entry of the coproduct, differential operators only act in the last entry. More

formally,

∆
∂

∂z
=

(
id⊗ ∂

∂z

)
∆. (6.193)

As a discontinuity operator reduces the weight of a function by one (not counting

powers of π), so does a differential operator. For instance, the derivative of a

weight one function (a logarithm) is a rational function. We note this is obvious

to see from the definition of the MPLs as iterated integrals, eq. (2.2). Computing

the derivative of a MPL is thus very simple if its coproduct is known. Let’s see

how this is done.

The coproduct of a (pure) function F of weight n + 1 has a component of

weight (n, 1), which we can generally write as

∆n,1F =
∑
ai∈A

fai ⊗ log(ai), (6.194)

where A is the symbol alphabet of F , and the cofactors fai are weight n functions.

Then, the derivative of F is simply given by

∂

∂z
F =

∑
ai∈A

1

ai

(
∂ai
∂z

)
fai (6.195)

As a very simple example, we can use eq. (2.13) to compute the derivative of any

classical polylogarithm,
∂

∂z
Lin+1 =

1

z
Lin(z), (6.196)

which is the well-known differential equation satisfied by classical polylogarithms,

which is also obvious from their definition as iterated integrals.

We note the reason why we look at the weight (n, 1) component of the

coproduct for computing derivatives is the same reason why we looked at the

weight (1, n) component of the coproduct for computing discontinuities: once we
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act with the differential (discontinuity) operator on the weight 1 cofactor, we

obtain a trivial tensor of the form n⊗1 (1⊗n for discontinuities) from which one

can read-off the derivative (discontinuity) we are computing. One could of course

act on any other non-trivial coproduct entry and coassociativity guarantees we

would get the same result. However, reconstructing the function from the non-

trivial tensor obtained after acting with the differential (discontinuity) operator

would be a complicated task in general.

Since we have a diagrammatic representation of the coproduct of one-loop

Feynman integrals, eq. (6.193) should have interesting consequences for the

differential equations satisfied by Feynman integrals. This is an interesting

subject, given that one of the most powerful modern methods of computing

Feynman integrals is by solving differential equations. This method has a long

and successful history [59,77,78,80,132], and has been applied in the calculation

of a large variety of physical processes (too large for us to give a complete list of

references). Recent reviews can be found in the literature, e.g. [133, 134]. This

field has developed a lot in recent years because of the better understanding

of the analytic structure of MPLs. For instance, one now knows how to write

the differential equation in what is called a canonical basis [59], where they are

trivial to solve order by order in the ε-expansion in terms of MPLs once the initial

condition is known, or in a quasi-finite basis [135] which avoids the introduction

of spurious structures that would cancel when combining different contributions.

In this introductory section we will review how the standard method

introduced in [80] works through one example, the two-mass bubble. We will

then compare it to what we obtain from the graphical coproduct, which will

allow us to identify the coefficients of the differential equation as derivatives of

cuts. Finally, we will make some comments on the so-called reverse unitarity

method [136–138], which allows to use differential equations to compute phase-

space integrals.

Differential equations for the two-mass bubble: To get the differential

equation satisfied by the two-mass bubble, it is convenient to consider the bubble
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topology with general powers of the propagators:

I2(p2;m2
1,m

2
2; ν1, ν2) =

∫
d2−2εk

iπ1−ε
1

(k2 −m2
1)ν1

1

((k − p)2 −m2
2)ν2

, (6.197)

and we are particularly interested in the case ν1 = ν2 = 1. The reason to keep

the exponents general is that taking derivatives is then equivalent to shifting the

exponent. Furthermore, by setting one of the νi to zero we get a tadpole diagram,

and it thus would make sense to consider a system of differential equations

including bubbles and tadpoles (we will not do this here as it is not necessary for

our discussion). In the following, for simplicity of the expressions we will only

keep the νi in the arguments of I2(p2;m2
1,m

2
2; ν1, ν2) ≡ I2(ν1, ν2).

We know that the natural variables in terms of which to write the two-mass

bubble are the w and w̄ variables as defined in eq. (2.33), and are thus looking for

the differential equation with respect to those variables. However, when acting

on the integrand of eq. (6.197), it is more convenient to take derivatives with

respect to pµ, m1 and m2. Let’s then relate the differential operators of the two

sets of variables

p · ∂p = 2p2 ∂p2 +
2w(1− w)

w − w̄ ∂w +
2w̄(w̄ − 1)

w − w̄ ∂w̄ ,

m1 ∂m1 = 2ww̄

(
w − 1

w − w̄∂w +
1− w̄
w − w̄∂w̄

)
,

m2 ∂m2 = 2(1− w)(1− w̄)

(
− w

w − w̄∂w +
w̄

w − w̄∂w̄
)
, (6.198)

where we use the shorthand ∂z ≡ ∂/∂z. These relations can be inverted to get

p2 ∂p2 =
1

2
(p · ∂p +m1 ∂m1 +m2 ∂m2) ,

∂w =
1

2

(
1

w
m1 ∂m1 +

1

w − 1
m2 ∂m2

)
,

∂w̄ =
1

2

(
1

w̄
m1 ∂m1 +

1

w̄ − 1
m2 ∂m2

)
. (6.199)

The first equation is the so-called dilation operator, which measures the

dimensionality of the integral. Aside from being a check on the calculation,

it does not lead to any interesting differential equation so we will not consider it

further.
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We are thus left with two differential operators to study ∂w and ∂w̄. Acting

with ∂w on eq. (6.197) with ν1 = ν2 = 1 and after some algebra, we find

∂wI2(1, 1) = p2 ((w̄ − 1)I2(1, 2) + w̄I2(2, 1)) , (6.200)

where we only wrote the values of the νi in the arguments of I2. For ∂w̄, we find

∂w̄I2(1, 1) = p2 ((w − 1)I2(1, 2) + wI2(2, 1)) . (6.201)

We must now deal with I2(1, 2) and I2(2, 1). These integrals are related to bubbles

by a shift in the exponent. It is well known that there are relations between

integrals with different powers of the propagators, known as integration-by-parts

identities (IBP), first introduced in [58]. These identities are obtained by noting

that in dimensional regularisation∫
dDk

∂

∂kµ
i(kµ,m

2
i , pi) = 0, (6.202)

where i(kµ,m
2
i , pi) is the integrand of some Feynman integral. Using these

relations, which also contain the Lorentz-invariance identities [80], we get a

recursion between integrals with different powers of the propagators, which can

be solved in terms of a chosen basis [139]. It is a non-trivial result that this can

always be done. For the bubble topology the recursion can be solved by hand, but

in general one would use one of the available computer implementations of these

methods like FIRE [140,141] or REDUZE [142]. In our concrete case, we choose the

basis to be the tadpole and the bubble with unit powers of the propagators. We

then find

I2(1, 2) =
2ε

(p2)2(w − w̄)2

(
2ww̄ − w − w̄

2(1− w)(1− w̄)
I2(0, 1)− I2(1, 0)

)
+

(1 + 2ε)(w + w̄)

p2(w − w̄)2
I2(1, 1) (6.203)

and

I2(2, 1) =
2ε

(p2)2(w − w̄)2

(
2ww̄ − w − w̄

2ww̄
I2(1, 0)− I2(0, 1)

)
− (1 + 2ε)(w + w̄ − 2)

p2(w − w̄)2
I2(1, 1). (6.204)
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The differential equations can now be written in terms of tadpoles and bubbles.

We find

∂wI2(1, 1) =
ε

p2(w − w̄)

(
I2(1, 0)

w
+
I2(0, 1)

1− w

)
− 1 + 2ε

w − w̄ I2(1, 1)

∂w̄I2(1, 1) = − ε

p2(w − w̄)

(
I2(1, 0)

w̄
+
I2(0, 1)

1− w̄

)
+

1 + 2ε

w − w̄ I2(1, 1), (6.205)

which are symmetric under w ↔ w̄ as they should be given the symmetry of

I2(1, 1) under this exchange.

We have thus written the differential equations in terms of simpler diagrams,

which we assume have already been computed. Solving the system requires

finding an initial condition which is in general not a trivial problem. However, we

will not go into that direction as it would take us too far away from the subject

of this thesis.

Although valid for a relatively simple example, eq. (6.205) has the general

structure of the differential equation of any one-loop diagram. Schematically, it

is of the form

∂zIn =
n∑
i

∑
j

ci,j
(
ε; {p2

l }; {m2
l }
)
Iji (6.206)

where the sum on i runs over the basis of one-loop Feynman integrals (which we

choose to be the integrals In with unit power of the propagators as defined in

eq. (5.9)5) and the sum on j over different types of diagrams with the same number

of propagators. For instance, in the differential equations of the two-mass bubble,

eq. (6.205), i runs over bubbles and tadpoles, and for ‘i =tadpole’ j runs over

the two different tadpoles. The coefficients ci,j (ε; {p2
i }; {m2

i }) depend trivially on

the dimensional regularisation parameter, and are in general algebraic functions

of the kinematic invariants. As illustrated by the bubble example above, they are

rational in the parametrisation giving a rational symbol alphabet (indeed, they

are the derivatives of the logarithm of symbol letters, as we will see shortly).

In the following, we will see how differential equations can be very easily

obtained from the diagrammatic coproduct, without needing the intermediate

steps of eqs. (6.200), (6.201), (6.203) and (6.204). Not needing to solve IBP

identities is particularly interesting, as this is usually a very computer-intensive

5We not proven these form a basis for one-loop integrals, but are currently working on this
proof.
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process. We will also show that the coefficients ci,j (ε; {p2
i }; {m2

i }) are nothing

but derivatives of cuts, which we think is a beautiful result.

6.6.1 Cuts and coefficients of differential equations

We now discuss the differential equations of Feynman diagrams from the

perspective of the diagrammatic representation of the coproduct. We already

know how to get a differential equation once the coproduct of a function is known,

so we can apply the same idea to Feynman diagrams. We will illustrate the

procedure by deriving the differential equation for the bubble, and then comment

on the general case.

We start by rewriting the graphical coproduct of the two-mass bubble, but

we arrange the terms according to the first entries and not the second entries as

we did in eqs. (6.48) and (6.72),

∆
(

m2
1

m2
2

)
=

m2
1

m2
2

⊗ m2
1

m2
2

+
m2

1 ⊗
(

m2
1

m2
2

+
1

2

m2
1

m2
2

)
+

m2
2 ⊗

(
m2

1

m2
2

+
1

2

m2
1

m2
2

)
. (6.207)

We know the natural coproduct components to consider when computing

derivatives are the ones of the form (n, 1). This means we should look at the

coefficients of weight one in the expansion of the cut diagrams. Because these are

weight 0 functions if one counts the weight of ε (they are single discontinuities

of a weight one function), we should look at the coefficient of the order ε1 of the

Laurent expansion of the cuts.

From eq. (6.193), we thus have

∂w

(
m2

1

m2
2

)
=

=
m2

1

m2
2

∂w

[(
m2

1

m2
2

) ∣∣∣∣
ε

]
ε+

m2
1 ∂w

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
ε

+
m2

2 ∂w

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
ε, (6.208)

and similarly for w̄. We stress this equation is valid to all orders in ε. This means

the differential equation is determined to all orders in ε by the first order in the

ε expansion of the cuts.

233



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

We can compute the derivatives of the cuts—see eqs. (6.44), (6.45) and

(6.46)—and find

∂w

[(
m2

1

m2
2

) ∣∣∣∣
ε

]
= − 2

w − w̄ , ∂w̄

[(
m2

1

m2
2

) ∣∣∣∣
ε

]
=

2

w − w̄ ,

∂w

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
= − 1

2w
,

∂w̄

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
=

1

2w̄
,

∂w

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
= − 1

2(1− w)
,

∂w̄

[(
m2

1

m2
2

+
1

2

m2
1

m2
2

) ∣∣∣∣
ε

]
=

1

2(1− w̄)
. (6.209)

These coefficients are antisymmetric under w ↔ w̄ because the diagrams are all

normalised to the leading order of the two-propagator cut, which is antisymmetric

under this exchange.

The differential equations as obtained from the diagrammatic conjecture are

thus

∂w

(
m2

1

m2
2

)
= − 2ε

w − w̄
m2

1

m2
2

− ε

2w

m2
1 − ε

2(1− w)

m2
2 ,

∂w̄

(
m2

1

m2
2

)
=

2ε

w − w̄
m2

1

m2
2

+
ε

2w̄

m2
1 +

ε

2(1− w̄)

m2
2 . (6.210)

To compare these equations with the result obtained through more standard

methods—see eq. (6.205)—we must use that

I2(p2;m2
1,m

2
2; 1, 1) =

2

p2(w − w̄)

m2
1

m2
2

, (6.211)

which means

∂wI2(p2;m2
1,m

2
2; 1, 1) = − 1

w − w̄ I2(p2;m2
1,m

2
2; 1, 1) +

2

p2(w − w̄)
∂w

m2
1

m2
2

,

(6.212)

and similarly for w̄. We then see the differential equations obtained through the

two procedures agree.

This example illustrates how one gets differential equations from the knowl-
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edge of the diagrammatic coproduct. This also shows that the coefficients in the

differential equations are completely determined by the cuts of the function, as

in eq. (6.208).

Of course, what we observe in this example is completely generalisable to other

cases. The differential equation is obtained by taking the derivative of the weight

one coefficients in the ε expansion of their cuts. In the example of the bubble,

this meant the coefficients of O(ε) for all cuts. For triangles and boxes, which

are weight two functions, this means we should take the derivatives of the O(ε0)

coefficient of one- and two-propagator cuts, but the O(ε) coefficient of three- and

four-propagator cuts. For pentagons and hexagons, an interesting thing happens:

they are finite functions of weight 3, which means their one- and two-propagator

cuts are finite functions of weight 2, with no weight one coefficients in their ε-

expansion. This means these cuts do not contribute to the weight (n, 1) coproduct

components, and hence do not contribute to the differential equations.

By the same argument, we can say that for a general (finite) one-loop diagram

with n propagators, n even, all coefficients of the differential equations are

determined by the n-, (n − 1)-, (n − 2)- and (n − 3)-propagator cuts, taken

at order ε for the first two cases, and order ε0 for the last two cases. For n odd,

there is one less contribution (the (n− 3)-propagator no longer has the required

weight).

We also conclude that the homogeneous term in the differential equation is

determined by the derivative of the order ε coefficient of the maximal cut. This

is in agreement with the fact that the homogeneous term is proportional to ε,

which makes it easier to solve the equations order by order in ε [59, 134]. The

discussion in 5.4.1 then implies that the only one-loop diagrams which might not

have an homogeneous term are triangles. Indeed, they are the only non-trivial

diagrams that can have a vanishing maximal cut.

This observation allows us to make another consistency check of the validity

of the diagrammatic coproduct and of the cut rules presented in chapter 5. In

section 5.5.8 we computed the maximal cut of the fully massless pentagon, and

showed it was non-zero. According to our discussion above, this should imply that

the differential equation of the pentagon has an homogeneous term. We thus went

through the exercise of getting the differential equation for the massless pentagon
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through standard methods6, and it does indeed have a homogeneous term.

We finish with two comments. First we note that unlike for discontinuities

which were defined only modulo π, one does not lose any information when

obtaining the differential equation from the coproduct. Indeed, because the

differential operators clip-off the last entry of the coproduct and keep the first

entry, the relations one obtains are equalities at the function level, where all ζ-

values and powers of π are correctly accounted for7. Second, because the symbol

alphabet of cut integrals is a subset of the alphabet of the uncut function, the

coefficients of differential equations are derivatives of logarithms of symbol letters.

If one has found a rational parametrisation of the symbol alphabet, as discussed

in section 2.2.3, the coefficients of the differential equations should also be rational

functions in those variables.

We have verified for all cases on which we explicitly checked the validity of the

graphical coproduct that the differential equations obtained through the method

described here give the correct result.

6.6.2 Reverse unitarity

We finish the discussion of differential equations through the perspective of

the graphical coproduct by commenting on its implications in the so-called reverse

unitarity method [136–138]. We note reverse unitarity was fundamental in the

recent calculation of the Higgs production by gluon fusion at three-loops [1].

In an nutshell, this method aims at using tools developed in the calculation

of loop integrals (i.e., virtual contributions to a cross-section), in particular the

differential equation method, for the calculation of phase-space integrals which

appear in the (real) radiative corrections to inclusive cross-sections. The basic

idea is that the phase-space integral can be seen as the unitarity cut of a loop

amplitude, in the spirit of the optical theorem. For instance, the phase-space

integral in a 2→2 scattering is closely connected to the integral appearing in the

cut on the s-channel of a box.

The argument allowing to use the tools developed for uncut integrals is

that cut Feynman integrals (i.e., phase-space integrals) should obey the same

6We do not write it explicitly because it is a rather long expression which we will not exploit
any further than the comment made here.

7Given that it has been a long while since we first mentioned this, we recall factors of π and
ζn with n even can only appear in the first entry of the coproduct of MPLs, see section 2.2.
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differential equations as uncut Feynman integrals, once the contributions of basis

integrals that do not have any of the cut propagators have been discarded. One

can then use the standard methods of obtaining the differential equations for

uncut Feynman integrals, and from this equation read-off the differential equation

one needs to compute the cut (phase-space) integral8.

For instance one could get the differential equation of the box to read the

differential equation satisfied by the phase-space integral necessary for 2 → 2

scattering. Using the method of the previous section, we get

∂r

( )
= (6.213)

= −1

r
(s) + ε

(
1

1 + r
− 1

r

)(
+ (s) + (sr)

)
where r = s/t, and we would then conclude that

∂r

( )
= −1

r
(s) + ε

(
1

1 + r
− 1

r

)(
+ (s)

)
.

(6.214)

In the spirit of the optical theorem, the cut going through the propagators could

then be thought of as the separation between the amplitude and its complex

conjugate, and the cut box would be the matrix element squared of a 2 → 2

scattering.

We note eq. (6.213) illustrates the comment we made in the previous section

about the homogeneous term of the differential equation of the box being

proportional to ε but not the bubble contributions, which come from two-

propagator cuts.

From the perspective of the graphical coproduct and differential equations,

reverse unitarity is a straightforward consequence of the coassociativity of the

coproduct which, we recall, fixed the graphical coproduct of cut diagrams based

on that of the uncut ones. The fact that the form of the differential equation is

the same for cut and uncut diagrams is a simple consequence of the fact that the

last entries of the graphical coproduct are the same for cut or uncut diagrams.

8We should note that the idea of using cuts or discontinuities to extract the values of
complicated phase-space integrals was already used in [102].
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For instance, eq. (6.214) is obtained from eq. (6.150) in exactly the same way

that eq. (6.213) is obtained from eq. (6.149).

However, from the perspective of the diagrammatic coproduct, ‘phase-space-

like’ cuts are not special in any way: the differential equation of any type of cut

has the same property that it is easily obtained from the differential equation

of the uncut integral, because its coproduct must be consistent with that of the

uncut function. Following the spirit of reverse unitarity, this could provide a

differential equation for non-trivial integrals which are hard to evaluate through

other methods.

Finally, let us look at the differential equation of maximal cuts. We know the

coproduct of a maximal cut has only one term,

∆

( Cn[In]

LS[In]

)
=
Cn[In]

LS[In]
⊗ Cn[In]

LS[In]
. (6.215)

As explained above, Cn[In] is of weight 0 so one must go to the first order in its

ε-expansion to get a weight one coefficient. The differential equation satisfied by

the maximal cut is then

∂z

( Cn[In]

LS[In]

)
= ε ∂z

( Cn[In]

LS[In]

) Cn[In]

LS[In]
. (6.216)

This equation is trivial to solve, and is consistent with the functional form of

maximal cuts discussed in 5.4.3.

6.7 Summary and discussion

In this chapter we introduced a completely diagrammatic representation of

the coproduct of one-loop scalar Feynman diagrams.

We started by explaining how we arrived at the diagrammatic coproduct in a

few simple examples, the bubbles with zero, one or two internal masses. Although

simple, the diagrammatic coproduct of these examples—see eqs. (6.8), (6.37) and

(6.48)—already have many of the features of the general case.

Having introduced the idea of the diagrammatic coproduct through these

simple examples, we then formulated it more generally. In section 6.3 we defined

Feynman graphs as purely graphical objects, and in eq. (6.62) defined an algebra

morphism on the Q-algebra generated by these objects which we then proved

238



6.7. Summary and discussion

behaves as a coproduct. We did not show how one can define a full Hopf algebra

on Feynman graphs but this will be presented in a separate paper. We finished

by explicitly showing how eq. (6.62) looks for diagrams with up to four internal

edges, cut or uncut. We observed this reproduced the expected results for bubbles

and tadpoles.

We then showed how one could trivially map the coproduct on Feynman

graphs to the coproduct of MPLs. Using eq. (6.62), we thus had a diagrammatic

representation for the coproduct of Feynman integrals. We made the non-trivial

observation that the relations obtained from eq. (6.62) are valid in dimensional

regularisation, and explicitly verified that the coproduct of a variety of non-trivial

one-loop diagrams with up to four external legs, divergent or finite, was correctly

reproduced. We note that this is true despite the fact that some divergences are

related to the ultraviolet (for tadpoles), while others are related to the infrared

(for bubbles, triangles and boxes). These checks were performed using the results

for the cut diagrams computed according to the definition introduced in chapter 5.

They thus provide a check of the results presented in both chapters 5 and 6. We

also noted that our observations made in section 5.4 about which cuts can vanish,

how next-to-maximal cuts and maximal cuts are related in diagrams with an even

number of propagators, and about the general functional form of maximal cuts

were all consistent with the diagrammatic coproduct, and indeed necessary for it

to be valid.

We then studied some consequences of the diagrammatic coproduct of

Feynman diagrams. First, we explored the implications for the study of their

discontinuities. We saw all the results we obtained in chapters 2 and 3 were

trivially contained in the graphical coproduct. Then we showed how the

diagrammatic coproduct could be used to determine the value of specific cuts

without doing any calculation in a very non-trivial example, the massless hexagon.

By interpreting its symbol from the perspective of its graphical coproduct, we

identified all its three- and four-propagator cuts. We then checked our results by

showing that they confirmed a relation obtained by different arguments in [125].

Finally, we explored the consequences of the graphical coproduct for the

differential equations satisfied by Feynman diagrams. We showed that the

coefficients of the differential equation of a given diagram, valid to all orders

in ε, can be obtained by computing the derivative of the weight one coefficient of
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the ε-expansion of its cuts. In an example, we showed that through this method

we obtain the same results as when following the standard procedure to derive

differential equations of Feynman integrals, without requiring the use of IBP

identities. The validity of the method was also checked for the other diagrams for

which the diagrammatic coproduct was explicitly checked [38]. We then noted

that the so-called reverse unitarity method was a straightforward consequence

of the coassociativity of the coproduct, which completely fixes the diagrammatic

coproduct of cut Feynman diagrams, and thus their differential equations. We also

noted this procedure can be extended to cuts that do not have an interpretation

as phase-space integrals.

It is clear what the next steps should be in the study of the graphical

coproduct of Feynman integrals. While we believe we completely understand

its structure for one-loop diagrams, many new questions appear at two-loops and

beyond. First, it is well known that elliptic integrals appear at two-loops. While

this is not a problem in itself for the graphical coproduct, it poses an issue in

the mapping between the graphical coproduct and the coproduct on Feynman

integrals, because a generalisation of the coproduct of MPLs to elliptic functions

is not known, although some interesting progress in that direction has recently

been made [35]. Second, even if we restrict ourselves to the case of diagrams that

evaluate to MPLs, it is not obvious what a suitable basis would be.

Nevertheless, we are confident that such a construction can be extended

beyond one-loop. Indeed, our initial motivations to study this problem, such

as the Landau conditions, the first-entry condition or the relation between the

coproduct and the discontinuity operator are independent of the loop order.

Furthermore, as already mentioned in the introduction, we are aware of some

recent work by Francis Brown which seems to be encouraging for this project.
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Conclusions

We now summarise the work presented in this thesis. Given that we have

already included a summary and discussion for each chapter, we will be brief.

In chapter 2, we introduced multiple polylogarithms (MPLs), a class of

transcendental functions that played a central role in this thesis, as we focused

on Feynman integrals that evaluate to this class of functions. We defined some

important tools such as the coproduct of the Hopf algebra of MPLs and its

maximal iteration, the symbol. Finally, we introduced some important concepts

like pure functions, Feynman integrals of uniform weight and the symbol alphabet.

All these are very useful tools to describe the analytic structure of Feynman

integrals.

We then discussed the discontinuities of Feynman integrals. For that, we

defined an operator Disc which evaluates discontinuities across branch cuts of

Feynman integrals associated with kinematic invariants, be they internal masses

or massive external channels. This operator was trivially generalised to allow the

evaluation of iterated discontinuities. We defined a kinematic region where we are

away from any discontinuities, the so-called euclidean region. By moving away

from this region in a well defined manner, we single out branch cuts associated

with specific kinematic invariants.

The coproduct of MPLs is an ideal tool to study the discontinuities of MPLs,

and thus the discontinuities of Feynman integrals evaluating to MPLs. We

established precise relations between the (k iteration of the) operator Disc and

an operator δ which truncates coproduct entries of the form (1, . . . , 1︸ ︷︷ ︸
k

, n− k). We
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made these relations more concrete by explicitly deriving the relations for three-

point Feynman diagrams with three-external masses and massless propagators.

In chapter 3, we proceeded with the study of discontinuities of Feynman

integrals by giving them a diagrammatic representation. These are the well known

unitarity cuts of Feynman diagrams. Rules to define diagrams that reproduce

single discontinuities had been established a long time ago, but we generalised

them to allow for multiple unitarity cuts. We also introduced a new type of

cut, a single propagator cut, that reproduces the discontinuity associated with

internal masses. The rules we developed are formulated strictly in real kinematics,

and valid in dimensional regularisation. We then obtained a precise relation

between unitarity cuts of Feynman diagrams (Cut), discontinuities across branch

cuts (Disc), and specific truncations of the coproduct tensor (δ). Through these

relations, we obtained a diagrammatic representation of specific coproduct entries.

To evaluate cut diagrams, we had to develop our own computational

techniques as the calculation of this type of diagrams is far less developed than

that of uncut Feynman integrals. We believe these techniques to be an important

part of the work presented here, with possible applications in the calculation of

other types of integrals, like e.g. phase-space integrals. Our conjectured relations

between Cut, Disc and δ were then verified in a wide variety of examples: one-

loop triangles with different configurations of external and internal masses, box

diagrams, and a two-loop example, the three-point three-mass two-loop ladder

diagram with massless propagators.

We found the exploration of the two-loop diagram to be a particularly

interesting example, with features we had not anticipated. For instance, despite

the uncut diagram being finite, individual cuts contributing to a given unitarity

cut are divergent. Of course, the unitarity cut itself must be finite, as it

corresponds to the discontinuity of a finite function. We observed that the

cancellation of the singularities occurs in a way very similar to the cancellation of

the singularities between real and virtual contributions to a physical cross-section.

We believe this type of relation to be new and useful for the general program of

the study of infrared singularities.

In this chapter, we also observed that not all coproduct entries could be

captured by the unitarity cuts as we had defined them. Perhaps the most striking
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example is the two-loop diagram: this is a weight four function, but by our rules

we were limited to a series of two unitarity cuts, which means we could not go

deeper in the coproduct than the entries of the form ∆1,1,2. This shortcoming of

our cutting methods was addressed in chapter 5.

However, before that, we investigated the possibility to fully reconstruct uncut

Feynman integrals from the knowledge of their cuts. We reviewed the dispersive

representation of Feynman diagrams, the standard procedure to reconstruct a

function from its discontinuities. We observed that when written in terms

of variables for which the symbol alphabet is rational, the dispersive integral

becomes easy to evaluate as it naturally falls in the class of iterated integrals that

evaluate to MPLs. We used this observation to find a compact representation for

the three-mass triangles with zero, one or two internal masses, as well as the

two-loop example mentioned above.

We then explored a variety of methods to reconstruct the symbol or the

coproduct of an uncut function from the knowledge of its cuts. In all examples,

we observed that the knowledge of a single unitarity cut contained enough

information to constrain the symbol of the uncut functions. However, in cases

with internal masses we had to postulate rules to determine the symbol alphabet

of the functions. It is thus not clear to us how general these methods are, but

we believe it would be interesting to study them further as they might lead to

purely algebraic ways of computing Feynman integrals.

As already mentioned, in chapter 5 we returned to the study of cut Feynman

diagrams. Our goal was to formulate cutting rules that were consistent with

the ones developed in chapter 3 but reproduced more of the analytic structure

of Feynman integrals by allowing any subset of propagators to be cut. In this

chapter, we restricted our discussion to (scalar) one-loop Feynman diagrams.

We chose to change the dimensions with the number of propagators in a way

that ensures the Feynman integrals evaluate to functions of uniform weight in

dimensional regularisation. This choice is equivalent to the choice of a basis of

scalar integrals.

Based on ideas coming from the field of generalised unitarity, we constructed

a new definition of cut Feynman diagrams, which we denoted C. Instead of
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replacing propagators by Dirac δ-functions when they are cut, we now evaluate

residues at the poles of cut propagators. The advantage of this method is that

it is easily generalisable to situations were the poles do not lie in the integration

range of the loop momentum, or even on the real axis. This allowed us to relax

the condition of working in real kinematics.

We presented two formulations of our new cutting rules, one in Minkowski

space and one in Euclidean space. Although equivalent, the latter is best suited

to the evaluation of single propagator cuts, and the former more practical for

any other type of cut. In both cases, we were able to find a formal solution to

the m-propagator cut of a diagram with n-propagators. This allowed us to draw

some general conclusions about cut diagrams. We characterised all cut diagrams

that can vanish, found a general relation between maximal and next-to-maximal

cuts, and commented on the functional form of maximal cuts.

We then provided results obtained with our new cutting rules for a variety of

one-loop Feynman integrals. Through these examples, we showed the consistency

between the cutting rules defined in chapters 3 and 5. However, we also showed

that one could now compute cuts that were beyond the scope of the rules of

chapter 3. For instance, we computed maximal cuts of boxes even in cases

where the maximal cut isolates massless three-point vertices, which we would have

previously set to zero because of the restriction to use real kinematics. We checked

the consistency of our results in several ways. For maximal cuts, we verified they

matched the expectation that the leading order should be proportional to the

inverse of the square root of the Gram determinant of each diagram. When

maximal and non-vanishing next-to-maximal cuts were computed, we checked

they agreed with our general relation between these two types of cuts. We were

also able to match all the cut integrals in our examples to specific coproduct

entries, which provided a check of the higher order in ε of our results. Finally, we

computed the maximal cut of the fully massless pentagon. As we had foreseen,

this cut integral does not vanish.

In our last chapter, we presented what was the motivation for most of

the work developed in this thesis. We showed how one can construct a

completely diagrammatic representation of the coproduct of one-loop scalar

Feynman integrals.

244



We started by motivating our construction through some simple examples,

the zero-, one- and two-mass bubble diagrams. This allowed us to introduce the

general form of the diagrammatic coproduct we were after.

We then showed how by using only graphical operations one could construct

a graphical coproduct on the algebra generated by one-loop Feynman graphs. In

this construction, we restricted ourselves to two types of operations: propagators

could be cut or contracted. As we commented in the introduction to chapter

6, these are the same operations that allow to determine the sources of

discontinuities of Feynman integrals according to the Landau conditions. We

also mentioned that one could in fact construct a complete Hopf algebra on one-

loop Feynman graphs, but that this discussion goes beyond the scope of this

thesis.

Having defined a purely graphical coproduct acting on Feynman graphs, we

then explained how it could be mapped to the coproduct of MPLs, acting on the

functions Feynman graphs evaluate to. This mapping allows us to explicitly check

its validity by looking at specific Feynman diagrams. Although this is not trivial,

we conjectured the graphical coproduct was valid in dimensional regularisation,

and should thus be checked order by order in the dimensional regularisation

parameter ε. This is important because even in the fully massive case there are

divergences we must regularise, the ultraviolet singularity of tadpole diagrams.

Because we map the graphical coproduct to the coproduct of MPLs, it must be

checked order by order in the ε-expansion of the Feynman integrals. We explained

how in fact there are two expansions one must do when checking the diagrammatic

coproduct: an expansion in the dimensional regularisation parameter, and one

expansions in the different coproduct components at a given weight. For each

term in this double expansion it is important to understand which diagrams of

the graphical coproduct contribute at which order in ε.

We then commented on the cancellation of the poles introduced by tadpoles,

and how this was important to reproduce the trivial coproduct entries of weight

(0, n). Following similar arguments, we can also see that the graphical coproduct

is consistent with the first-entry condition.

We checked the validity of the graphical coproduct in a variety of examples.

We looked at triangles and boxes with different mass configurations, and explicitly

checked the coproduct of the uncut and cut integrals were correctly reproduced
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Chapter 7. Conclusions

by the graphical representation of their coproduct.

We finished by exploring some consequences of the graphical coproduct. We

first examined its implications in the study of discontinuities of Feynman integrals,

and argued that the results of chapters 2 and 3 are easily reproduced by the

graphical coproduct if one keeps in mind the way discontinuity operators and the

coproduct interact. This observation allowed us to determine the values of the

three- and four-propagator cuts of the massless hexagon from the knowledge of its

symbol, and then use this information to make an indirect check of the graphical

coproduct.

Finally, we explored the consequences of the graphical coproduct for differ-

ential equations of Feynman integrals. We showed how one could interpret the

coefficients of these differential equations as derivatives of cuts, which means

we have a way to derive them without needing the usual reduction using IBP

relations. We then explained how reverse unitarity was a simple consequence of

the coassociativity of the graphical coproduct.

It is quite clear to us how we would like to pursue the work presented in this

thesis. The cutting techniques established in chapter 5 are presently restricted to

one-loop Feynman integrals. Although we do not foresee any major obstacles in

their generalisation beyond one loop, we still have not investigated this issue in

detail. In particular, the assumption that we only need to study scalar diagrams

will need to be revisited, as it is well known that at two-loops and beyond some

numerator factors cannot be reduced.

Once we understand how to generalise our cutting rules, we would like to

generalise the diagrammatic coproduct beyond one loop. This generalisation

will not be straightforward but we are confident it can be done. Indeed, what

motivated us to establish a graphical coproduct at the one-loop order is still

valid beyond one loop. However, there are some obstacles: it is not clear how

to find a good basis for diagrams at two-loop and above, and we know MPLs

are no longer enough to describe all diagrams as elliptic integrals start appearing.

Nevertheless, the lessons learned at one loop should help us find a way to overcome

these difficulties.
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Appendix A

Notation and conventions

Feynman rules. Here we summarise the Feynman rules for cut diagrams in

massless scalar theory. For a discussion of their origin, as well as the rules for

determining whether a propagator is cut or uncut, see section 3.2.

• Vertex:

= i (A.1)

• Complex conjugated vertex:

= −i (A.2)

• Propagator:

p
=

i

p2 + i0
(A.3)

Massive (massless) propagators are drawn with a thick (thin) line.

• Complex conjugated propagator:

p
=

−i
p2 − i0 (A.4)
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Appendix A. Notation and conventions

• Cut propagator:

p

u v
=

p

u v
=

p

u v
=

p

u v
= 2π δ

(
p2
)

(A.5)

There is a theta function restricting the direction of energy flow in a cut

propagator. For single cuts, our convention is that energy flows from black

to white. For multiple cuts, there are separate color labels for each cut—see

section 3.2 for details. There can be multiple thin dotted lines indicating

cuts on the same propagator without changing its value. However, each

thin dotted line implies complex conjugation of a region of the diagram.

• Cut propagator for cut in an internal mass:

p
=

p
= 2π δ

(
p2 −m2

)
. (A.6)

• Loop factor (for loop momentum k, in D = d− 2ε dimensions):(
eγEε

πd/2−ε

)∫
dd−2εk . (A.7)

• Different topologies are denoted as follows

– tadpole of mass m: Tad(m2) ;

– bubbles of mass m1 and m2, and momentum p: Bub(p2
2;m2

1,m
2
2) ;

– triangle with external channels p2
1, p2

2, p2
3 and masses m12, m23, m13,

where the indices of the masses signal which external legs they connect:

T (p2
1, p

2
2, p

2
3;m2

12,m
2
23,m

2
13) ;

– box with external channels p2
1, p2

2, p2
3, p2

4 and masses m12, m23, m34,

m14 (with the same meaning for the indices):

B(s, t; p2
1, p

2
2, p

2
3, p

2
4;m2

12,m
2
23,m

2
34,m

2
14).

For simplicity, if some of the invariants vanish we might not write them in

the argument. For instance, for the box with one external mass, we will

write B(s, t; p2
1). There are two types of boxes with two-external masses, the

two-mass-easy, where the massive channels are not adjacent, which we will
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denote Be(s, t; p2
1, p

2
3), and the two-mass-hard, where the massive channels

are adjacent, Bh(s, t; p2
1, p

2
2).

Kinematic regions. For the three-point three-mass functions with massless

propagators at one and two loops, we use the following shorthand for different

kinematic regions, with variables z, z̄ as defined in eq. (2.29),

R∗4 : p2
1, p

2
2, p

2
3 > 0, z̄ = z∗ ,

Ri
4 : p2

i > 0, and p2
k < 0 for all k 6= i ,

Ri,j
4 : p2

i , p
2
j > 0, and p2

k < 0 for all k 6= i, j.

Feynman rules for chapters 5 and 6. In these two chapters, we use a ‘bare’

version of the diagrams computed in the previous chapters. For each loop, we

include a factor: (
eγEε

iπ2−ε

)∫
d4−2εk . (A.8)

Vertices and propagators come with no factor of i. Diagrams computed with

these rules will be denoted In, with arguments following the same conventions as

for the arguments of the different topologies listed above.

The relation between the two conventions is easy to establish. For instance,

I2(p2) = iBub(p2), I3(p2) = −iT (p2), and I4(s, t) = iB(s, t). (A.9)

The relation between cuts computed according to the two sets of rules are

also easy to get by compensating for the mismatch in powers of 2π and ±i. For

instance, let us relate the results obtained in eqs. (5.85) and (B.55) for the p2
1

channel cut of the three mass triangle.

The result in eq. (B.55) was computed following the rules of chapter 3, and

thus includes a factor i for the vertex where p2
1 enters the diagrams, and a factor of

(−i)3 for the vertices and propagator on the complex conjugated region of the cut

diagram. Because the two-propagator cut corresponds to a single discontinuity,

there is an explicit factor of (2π). Overall, this gives a factor of (−2π) compared

to the definition of C2[I3] given in chapter 5, with which (5.85) was computed.
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We should then find that

Cutp2
1
T (p2

1, p
2
2, p

2
3) = (−2π)C2,[(12),(13)][I3(p2

1, p
2
2, p

2
3)], (A.10)

which is indeed true.

As another example, we can compare the maximal cut of the three-mass

triangle, seen as a double discontinuity on p2
1 and p2

2, computed with our two

definitions, eqs. (5.86) and (B.58). According to the rules of chapter 3, we have

a factor of i2 from the vertices where the channels we are cutting in enter the

diagram, and a factor of (−i) for the other vertex. Because this corresponds

to a double discontinuity, we have an explicit factor of (2π)2. Finally, in the

definition of the triple cut of chapter 5 there is an explicit factor of (−1) which

was included by hand. The two definitions should thus differ by a factor of

(−4π2i). More precisely,

Cutp2
1,p

2
2
T (p2

1, p
2
2, p

2
3) = (−4π2i)C3[I3(p2

1, p
2
2, p

2
3)], (A.11)

which is indeed the correct relation.

Definition of cΓ. In loop calculations, a specific combinations of gamma

functions appears very often, which we denote cΓ,

cΓ =
eγEεΓ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (A.12)

Definition of 2F1 and F1. Results for triangles and their cuts often involve

the Gauss hypergeometric function 2F1 and one of its generalizations, the F1

Appell function. They have the Euler-type integral representations

2F1 (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dt tβ−1(1− t)γ−β−1(1− tz)−α (A.13)

for Re γ > Re β > 0, and

F1 (α; β, β′; γ;x; y) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

dt
tα−1(1− t)γ−α−1

(1− tx)β(1− ty)β′
(A.14)

for Re γ > Reα > 0.
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Appendix B

Results

In this appendix, we collect several results of Feynman diagrams that we use

in the main text. In the accompanying MATHEMATICA package [38] we include more

results and expansions of the functions to higher orders than what is presented

here.

B.1 One-mass triangles

We give explicit expressions for triangles with one external massive channel.

For all the examples considered, we have computed the uncut triangles both

through standard Feynman parametrization and through a dispersive integral,

and verified agreement of the expressions. Divergent integrals were compared

with the results given in ref. [39]. For all triangles with one external massive

channel considered in the following subsections, we separate the rational prefactor

from the pure transcendental function according to the relation

T (p2
1, 0, 0;m2

12,m
2
23,m

2
13) =

i

p2
1

T (p2
1, 0, 0;m2

12,m
2
23,m

2
13) , (B.1)

where the internal masses are generic and can be zero. Before expansion in the

dimensional regularization parameter ε, the results will often involve the functions

2F1 and F1 defined in eqs. (A.13) and (A.14).
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(a) T (p2
1, 0, 0; 0, 0, 0) (b) T (p2

1, 0, 0; 0,m2
23, 0) (c) T (p2

1, 0, 0;m2
12, 0, 0)

(d) T (p2
1, 0, 0;m2

12,m
2
23, 0) (e) T (p2

1, 0, 0;m2
12, 0,m

2
13) (f) T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)

Figure B.1: Triangles with one external mass

(a) T (0, p2
2, p

2
3; 0, 0, 0) (b) T (0, p2

2, p
2
3; 0,m2

23, 0) (c) T (0, p2
2, p

2
3;m2

12, 0, 0)

Figure B.2: Triangles with two external mass

(a) T (p2
1, p

2
2, p

2
3; 0, 0, 0) (b) T (p2

1, p
2
2, p

2
3;m2

12, 0, 0)

(c) T (p2
1, p

2
2, p

2
3;m2

12, 0,m
2
13) (d) T (p2

1, p
2
2, p

2
3;m2

12,m
2
23,m

2
13)

Figure B.3: Triangles with three external mass
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B.1. One-mass triangles

B.1.1 T (p2
1, 0, 0; 0, 0, 0)

The triangle with one external, eq. (B.1a), massive channel is

T (p2
1, 0, 0; 0, 0, 0) = icΓ

(−p2
1)−1−ε

ε2
, (B.2)

where cΓ is defined in eq. (A.12). The symbol is

S
[
T (p2

1, 0, 0; 0, 0, 0)
]

= − 1

ε2
+
p2

1

ε
− p2

1 ⊗ p2
1 +O(ε) . (B.3)

Single cuts

Cutp2
1

[
T (p2

1, 0, 0; 0, 0, 0)
]

= −2π
eγEεΓ(1− ε)
εΓ(1− 2ε)

(p2
1)−1−ε (B.4)

Double cuts

All double cuts are zero.

B.1.2 T (p2
1, 0, 0; 0,m2

23, 0)

The triangle of fig. B.1b is given by:

T (p2
1, 0, 0; 0,m2

23, 0) =

=
ieγEε

ε

[
(−p2

1)−ε

m2
23

Γ(1 + ε)Γ2(1− ε)
Γ(2− 2ε)

2F1

(
1, 1− ε; 2− 2ε;− p2

1

m2
23

)
−
(
m2

23

)−1−ε Γ(1 + ε)Γ(1− ε)
Γ(2− ε) 2F1

(
1, 1; 2− ε;− p2

1

m2
23

)]
=

i

p2
1

(
Li2

(
m2

23 + p2
1

m2
23

)
− π2

6

)
+O(ε) . (B.5)

The symbol is

S
[
T (p2

1, 0, 0; 0,m2
23, 0)

]
=m2

23 ⊗
(
m2

23 + p2
1

m2
23

)
− p2

1 ⊗
(
m2

23 + p2
1

m2
23

)
+O(ε) .

(B.6)
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Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, 0, 0; 0,m2
23, 0)

]
=

= 2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(p2
1)−ε

p2
1 +m2

23
2F1

(
1, 1− ε; 2− 2ε;

p2
1

p2
1 +m2

23

)
= −2π

p2
1

log

(
m2

23

p2
1 +m2

23

)
+O(ε) . (B.7)

The cut in the internal mass m2
23 is

Cutm2
23

[
T (p2

1, 0, 0; 0,m2
23, 0)

]
=

2πeγEε

Γ(2− ε)
(−m2

23)−ε

p2
1 +m2

23
2F1

(
1, 1− ε; 2− ε; p2

1

p2
1 +m2

23

)
=

2π

p2
1

log

(
m2

23 + p2
1

m2
23

)
+O(ε) . (B.8)

Double cuts

The double cut in the external channel p2
1 and the internal mass m2

23 is

Cutp2
1,m

2
23

[
T (p2

1, 0, 0; 0,m2
23, 0)

]
=− 4π2i

eγEε

Γ(1− ε)
(p2

1)−1+ε(−m2
23)−ε

(p2
1 +m2

23)ε
θ(p2

1 +m2
23)

=− 4π2i

p2
1

θ(p2
1 +m2

23) +O(ε) . (B.9)

B.1.3 T (p2
1, 0, 0;m2

12, 0, 0)

The triangle of fig. B.1c is given by:

T (p2
1, 0, 0;m2

12, 0, 0) =− ie
γEεΓ(1 + ε)

ε(1− ε) (m2
12)−1−ε

2F1

(
1, 1 + ε; 2− ε; p2

1

m2
12

)
=
i

p2
1

[
1

ε
log

(
1− p2

1

m2
12

)
− Li2

(
p2

1

m2
12

)
− log2

(
1− p2

1

m2
12

)
− log

(
m2

12

)
log

(
1− p2

1

m2
12

)]
+O (ε) . (B.10)

The symbol is

S
[
T (p2

1, 0, 0;m2
12, 0, 0)

]
=

1

ε

m2
12 − p2

1

m2
12

+m2
12 ⊗

m2
12 (m2

12 − p2
1)

p2
1
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+
(
m2

12 − p2
1

)
⊗ p2

1

(m2
12 − p2

1)
2 +O (ε) . (B.11)

Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, 0, 0;m2
12, 0, 0)

]
= −2π

eγEεΓ(1− ε)
εΓ(1− 2ε)

(p2
1 −m2

12)−2ε

(p2
1)1−ε (B.12)

= − 2π

p2
1ε
− 2π

p2
1

(
log
(
p2

1

)
− 2 log

(
p2

1 −m2
12

))
+O (ε) .

The cut in the internal mass m2
12 is

Cutm2
12

[
T (p2

1, 0, 0;m2
12, 0, 0)

]
=

= − 2πeγEε

εΓ(1− ε)
(−m2

12)−ε

p2
1

2F1

(
1, ε; 1− ε; m

2
12

p2
1

)
= − 2π

p2
1ε

+
2π

p2
1

(
log
(
m2

12 − p2
1

)
+ log

(−m2
12

−p2
1

))
+O (ε) .

Double cuts

The double cut in the external channel p2
1 and the internal mass m2

12 is zero.

B.1.4 T (p2
1, 0, 0;m2

12,m
2
23, 0)

The triangle of fig. B.1d is given by:

T (p2
1, 0, 0;m2

12,m
2
23, 0) =

= i
eγEεΓ(1 + ε)

ε(1− ε) (m2
12 −m2

23)

[(
m2

23

)−ε
2F1

(
1, 1; 2− ε; p2

1

m2
12 −m2

23

)
−
(
m2

12

)−ε
F1

(
1; 1, ε; 2− ε; p2

1

m2
12 −m2

23

;
p2

1

m2
12

)]
=
i

p2
1

[
Li2

(
m2

12

m2
23

)
− Li2

(
m2

12 − p2
1

m2
23

)
− log

(
1− m2

12 − p2
1

m2
23

)
log

(
1− p2

1

m2
12

)
+ log

(
m2

23

m2
12

)
log

(
1− p2

1

m2
12 −m2

23

)]
+O (ε) . (B.13)
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The symbol is

S
[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=m2
12 ⊗

(
m2

12 −m2
23

m2
23

)
+m2

23 ⊗
(

1− p2
1

m2
12 −m2

23

)
− (m2

12 − p2
1)⊗

(
1− m2

12 − p2
1

m2
23

)
+O (ε) . (B.14)

Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(p2
1 −m12)1−2ε

m2
23(p2

1)1−ε 2F1

(
1, 1− ε; 2− 2ε;

m2
12 − p2

1

m2
23

)
=

2π

p2
1

log

(
1− m2

12 − p2
1

m2
23

)
+O (ε) . (B.15)

The cut in the internal mass m2
12 is

Cutm2
12

[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=− 2π

p2
1

eγEε

Γ(2− ε)
(−m2

12)1−ε

m2
12 −m2

23

F1

(
1; 1, ε; 2− ε; m2

12

m2
12 −m2

23

;
m2

12

p2
1

)
=− 2π

p2
1

log

(
m2

23

m2
23 −m2

12

)
+O (ε) . (B.16)

The cut in the internal mass m2
23 is

Cutm2
23

[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=− 2π
eγEε

Γ(2− ε)
(−m2

23)−ε

m2
12 −m2

23
2F1

(
1, 1; 2− ε; p2

1

m2
12 −m2

23

)
=

2π

p2
1

log

(
1− p2

1

m2
12 −m2

23

)
+O (ε) . (B.17)
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Double cuts

The double cut in the external channel p2
1 and internal mass m2

23 is

Cutp2
1,m

2
23

[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=− 4π2i
eγEε

Γ(1− ε)
(p2

1)−1+ε(−m2
23)−ε

(p2
1 −m2

12 +m2
23)ε

θ(p2
1 −m2

12 +m2
23)

=− 4π2i

p2
1

θ(p2
1 −m2

12 +m2
23) +O (ε) . (B.18)

The double cut in the two internal masses is

Cutm2
12,m

2
23

[
T (p2

1, 0, 0;m2
12,m

2
23, 0)

]
=

=− 4π2i
eγEε

Γ(1− ε)
(−p2

1)−1+ε(−m2
23)−ε

(m2
12 − p2

1 −m2
23)ε

θ(m2
12 − p2

1 −m2
23)θ(m2

23 −m2
12)

=
4π2i

p2
1

θ(m2
12 − p2

1 −m2
23)θ(m2

23 −m2
12) +O (ε) . (B.19)

B.1.5 T (p2
1, 0, 0;m2

12, 0,m
2
13)

The triangle of fig. B.1e is given by:

T (p2
1, 0, 0;m2

12, 0,m
2
13) =

= i
eγEεΓ(1 + ε)

ε(1− ε) (−p2
1)−1−ε

[
(w1 − w̄1)−ε

(1− w̄1)(
(w1 − 1)1−ε

w1

F1

(
1− ε; 1, ε; 2− ε; w1 − 1

w1(1− w̄1)
;
w1 − 1

w1 − w̄1

)
−w−ε1 F1

(
1− ε; 1, ε; 2− ε; 1

1− w̄1

;
w1

w1 − w̄1

))
−((w1 − 1)(1− w̄1))−ε

w1w̄1
2F1

(
1, 1− ε; 2− ε; 1

w1w̄1

)]
=
i

p2
1

log

(
w1

w1 − 1

)
log

( −w̄1

1− w̄1

)
+O (ε) . (B.20)
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The symbol is

S
[
T (p2

1, 0, 0;m2
12, 0,m

2
13)
]

=

=

(
w1

1− w1

)
⊗
(

w̄1

1− w̄1

)
+

(
w̄1

1− w̄1

)
⊗
(

w1

1− w1

)
+O (ε) . (B.21)

Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, 0, 0;m2
12, 0,m

2
13)
]

=

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)
(p2

1)−1−ε (w1 − w̄1)1−2ε

w̄1(w1 − 1)
2F1

(
1, 1− ε; 2− 2ε;

w1 − w̄1

w̄1(w1 − 1)

)
=

2π

p2
1

(
log

(
w1

1− w1

)
− log

(
w̄1

1− w̄1

))
+O (ε) . (B.22)

The cut in the internal mass m2
12 is

Cutm2
12

[
T (p2

1, 0, 0;m2
12, 0,m

2
13)
]

=

= −2π
eγEε(−p2

1)−1−ε

Γ(2− ε) (w1 − 1)
w̄−ε1 (w1 − w̄1)−ε F1

(
1− ε; 1, ε; 2− ε; 1

1− w1

;
−w̄1

w1 − w̄1

)
=

2π

p2
1

log

(
w1

w1 − 1

)
+O (ε) . (B.23)

The cut in the internal mass m2
13 is

Cutm2
13
T (p2

1, 0, 0;m2
12, 0,m

2
13) =

= −2π
eγEε(−p2

1)−1−ε

Γ(2− ε)

[
−((1− w1)(1− w̄1))−ε

w1w̄1
2F1

(
1, 1− ε; 2− ε; 1

w1w̄1

)
+

(1− w1)1−ε(w1 − w̄1)−ε

w1(w̄1 − 1)
F1

(
1− ε; 1, ε; 2− ε; 1− w1

w1(w̄1 − 1)
;
w1 − 1

w1 − w̄1

)]
= −2π

p2
1

log

( −w̄1

1− w̄1

)
+O (ε) . (B.24)

Double cuts

All double cuts are zero.
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B.1.6 T (p2
1, 0, 0;m2

12,m
2
23,m

2
13)

The triangle of fig. B.1f is given by1:

T (p2
1, 0, 0;m2

12,m
2
23,m

2
13)

=i
eγEεΓ(1 + ε)

ε
(−p2

1)−1−ε
[

(w1 − w̄1)−ε

(1− ε)(µ23 + w1(1− w̄1))(
(w1 − 1)1−ε F1

(
1− ε; 1, ε; 2− ε; w1 − 1

µ23 + w1(1− w̄1)
;
w1 − 1

w1 − w̄1

)
− w1−ε

1 F1

(
1− ε; 1, ε; 2− ε; w1

µ23 + w1(1− w̄1)
;

w1

w1 − w̄1

))
− (−µ23)−ε

w1w̄1 − µ23

F1

(
1; 1, ε; 2;

1

w1w̄1 − µ23

;
µ23 + (w1 − 1)(1− w̄1)

µ23

)]
=
i

p2
1

[
log

(
w1

w1 − 1

)
log

( −w̄1

1− w̄1

)
−G

(
1, 0,

µ23

(w1 − 1)(w̄1 − 1)

)
+G

(
1, 0,

µ23

w1(w̄1 − 1)

)
+G

(
1, 0,

µ23

(w1 − 1)w̄1

)
−G

(
1, 0,

µ23

w1w̄1

)]
+O (ε) . (B.25)

The symbol is

S
[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

= µ23 ⊗
(µ23 + w1(1− w̄1))(µ23 + w̄1(1− w1))

(µ23 − w1w̄1)(µ23 − (1− w1)(1− w̄1))
+ w1 ⊗

µ23 − w1w̄1

µ23 + w1(1− w̄1)

+ w̄1 ⊗
µ23 − w1w̄1

µ23 + w̄1(1− w1)
+ (1− w1)⊗ µ23 − (1− w1)(1− w̄1)

µ23 + w̄1(1− w1)

+ (1− w̄1)⊗ µ23 − (1− w1)(1− w̄1)

µ23 + w1(1− w̄1)
+O (ε) . (B.26)

1We wrote the result in terms of harmonic polylogarithms for simplicity. It has a longer
expression in terms of classical polylogarithms which can be easily obtained using

G(1, 0, x) = Li2(x) + log(1− x) log(x) .
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Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=− 2π
eγEεΓ(1− ε)

Γ(2− 2ε)
(p2

1)−1−ε (w1 − w̄1)1−2ε

w̄1(w1 − 1)− µ23

2F1

(
1, 1− ε; 2− 2ε;

w1 − w̄1

w̄1(w1 − 1)− µ23

)
=

2π

p2
1

log

(
µ23 + w1(1− w̄1)

µ23 + w̄1(1− w1)

)
+O (ε) . (B.27)

The cut in the internal mass m2
12 is

Cutm2
12

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=
2πeγEε(−p2

1)−1−ε

Γ(2− ε)
w̄1−ε

1 (w1 − w̄1)−ε

µ23 − w̄1(w1 − 1)

F1

(
1− ε; 1, ε; 2− ε; w̄1

µ23 − w̄1(w1 − 1)
;
−w̄1

w1 − w̄1

)
=

2π

p2
1

log

(
µ23 − w1w̄1

µ23 + w̄1(1− w1)

)
+O (ε) . (B.28)

The cut in the internal mass m2
23 is

Cutm2
23

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=2π
eγEε

Γ(1− ε)
(−p2

1)−1−ε

1− ε µ1−ε
23

2F1

(
1, 1; 2− ε; µ23

(µ23−(1−w1)(1−w̄1))(w1w̄1−µ23)

)
(µ23 − (1− w1)(1− w̄1))(w1w̄1 − µ23)

=
2π

p2
1

log

(
(µ23 + w1(1− w̄1))(µ23 + w̄1(1− w1))

(µ23 − w1w̄1)(µ23 − (1− w1)(1− w̄1))

)
+O (ε) . (B.29)

The cut in the internal mass m2
13 is

Cutm2
13

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=− 2π
eγEε

Γ(2− ε)(−p2
1)−1−ε

[
(1− w1)1−ε(w1 − w̄1)−ε

w1(w̄1 − 1)− µ23

(B.30)

F1

(
1− ε; 1, ε; 2− ε; 1− w1

w1(w̄1 − 1)− µ23

;
w1 − 1

w1 − w̄1

)
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−
((1− w1)(1− w̄1))1−ε

2F1

(
1, 1− ε; 2− ε; (1−w1)(1−w̄1)

(w1(w̄1−1)−µ23)(w̄1(w1−1)−µ23)

)
(w1(w̄1 − 1)− µ23)(w̄1(w1 − 1)− µ23)


=

2π

p2
1

log

(
µ23 − (1− w1)(1− w̄1)

µ23 + w̄1(1− w1)

)
+O (ε) . (B.31)

Double cuts

The double cut in the external channel p2
1 and internal mass m2

23 is

Cutp2
1,m

2
23

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=− 4π2i
eγEε

Γ(1− ε)(p2
1)−1−ε (w̄1(w1 − 1)− µ23)−ε (−w1(w̄1 − 1) + µ23)−ε

θ(w̄1(w1 − 1)− µ23)θ(−w1(w̄1 − 1) + µ23)

=− 4π2i

p2
1

θ(w̄1(w1 − 1)− µ23)θ(−w1(w̄1 − 1) + µ23) +O (ε) . (B.32)

The double cut in the internal masses m2
12 and m2

23 is

Cutm2
12,m

2
23

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=− 4π2i
eγEε

Γ(1− ε)(−p2
1)−1−ε (µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1)))−ε

θ(w1w̄1 − µ23)θ (µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1)))

=
4π2i

p2
1

θ(w1w̄1 − µ23)θ (µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1))) +O (ε) .

(B.33)

The double cut in the internal masses m2
13 and m2

23 is

Cutm2
13,m

2
23

[
T (p2

1, 0, 0;m2
12,m

2
23,m

2
13)
]

=

=− 4π2i
eγEε

Γ(1− ε)(−p2
1)−1−εθ((1− w1)(1− w̄1)− µ23)

(µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1)))−ε

θ (µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1)))

=
4π2i

p2
1

θ (µ23 − (w1w̄1 − µ23)(µ23 − (1− w1)(1− w̄1)))

θ((1− w1)(1− w̄1)− µ23) +O (ε) . (B.34)
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All other double cuts are zero.

B.2 Two-mass triangles

We give explicit expressions for triangles with two external massive channels.

For all the examples given, we have computed the uncut triangles both through

standard Feynman parametrization and through a dispersive integral, and verified

agreement of the expressions. Divergent integrals were compared with the results

given in ref. [39]. For all triangles with two external massive channels considered

in the following subsections, we separate the rational prefactor from the pure

transcendental function according to the relation

T (0, p2
2, p

2
3;m2

12,m
2
23,m

2
13) =

i

p2
2 − p2

3

T (0, p2
2, p

2
3;m2

12,m
2
23,m

2
13) , (B.35)

where the internal masses are generic and can be zero. Before expansion in the

dimensional regularization parameter ε, the results will often involve the functions

2F1 and F1 defined in eqs. (A.13) and (A.14).

B.2.1 T (0, p2
2, p

2
3; 0, 0, 0)

The triangle with two external massive channels, eq. (B.2a), is

T (0, p2
2, p

2
3; 0, 0, 0) = −icΓ

ε2
(−p2

2)−ε − (−p2
3)−ε

p2
2 − p2

3

, (B.36)

where cΓ is defined in eq. (A.12). The symbol is

S
[
T (0, p2

2, p
2
3; 0, 0, 0)

]
= −p

2
2

ε
+
p2

3

ε
+ p2

2 ⊗ p2
2 − p2

3 ⊗ p2
3 +O(ε) . (B.37)

Single cuts

The cut in the p2
2 is

Cutp2
2

[
T (0, p2

2, p
2
3; 0, 0, 0)

]
= −2π

eγEεΓ(1− ε)
εΓ(1− 2ε)

(p2
2)−ε

p2
2 − p2

3

, (B.38)

and the cut in p2
3 is obtained by symmetry.
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Double cuts

All double cuts are zero.

B.2.2 T (0, p2
2, p

2
3; 0,m2

23, 0)

The triangle of fig. B.2b is given by:

T (0, p2
2, p

2
3; 0,m2

23, 0) =

=i
eγEεΓ(1 + ε)

ε(1− ε)
(m2

23)−ε

p2
2 − p2

3

[
p2

2

p2
2 −m2

23
2F1

(
1, 1− 2ε; 2− ε; p2

2

p2
2 −m2

23

)
− p2

3

p2
3 −m2

23
2F1

(
1, 1− 2ε; 2− ε; p2

3

p2
3 −m2

23

)]
=

i

p2
2 − p2

3

[
1

ε
log

(
m2

23 − p2
2

m2
23 − p2

3

)
+ Li2

(
p2

2

p2
2 −m2

23

)
− Li2

(
p2

3

p2
3 −m2

23

)
−1

2
log2

(
m2

23 − p2
2

)
+

1

2
log2

(
m2

23 − p2
3

)]
+O (ε) . (B.39)

The symbol is

S
[
T (0, p2

2, p
2
3; 0,m2

23, 0)
]

=
1

ε

m2
23 − p2

2

m2
23 − p2

3

+m2
23 ⊗

p2
3(m2

23 − p2
2)

p2
2(m2

23 − p2
3)

+
(
m2

23 − p2
2

)
⊗ p2

2

(m2
23 − p2

2)
2 −

(
m2

23 − p2
3

)
⊗ p2

3

(m2
23 − p2

3)
2 +O (ε) . (B.40)

Single cuts

The cut in the external channel p2
2 is

Cutp2
2

[
T (0, p2

2, p
2
3; 0,m2

23, 0)
]

= −2π
eγEεΓ(1− ε)
εΓ(1− 2ε)

(p2
2)ε(p2

2 −m2
23)−2ε

p2
2 − p2

3

=− 2π

ε(p2
2 − p2

3)
− 2π

p2
2 − p2

3

[
log
(
p2

2

)
− 2 log

(
p2

2 −m2
23

)]
+O(ε) . (B.41)

The cut in the external channel p2
3 is trivial to obtain from the symmetry of the

function. The cut in the internal mass m2
23 is

Cutm2
23

[
T (0, p2

2, p
2
3; 0,m2

23, 0)
]

=

=− πeγEε

εΓ(1− ε)
Γ(1 + 2ε)

p2
2 − p2

3

{
Γ(1− ε)
Γ(1 + ε)

(−p2
2)−ε

(
1− m2

23

p2
2

)−2ε
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− (−p2
2)−ε

Γ(1 + 2ε)
2F1

(
ε, 2ε; 1 + 2ε; 1− m2

23

p2
2

)
−
(
p2

2 ↔ p2
3

)}
=

2π

p2
2 − p2

3

[
log

( −p2
3

m2
23 − p2

3

)
− log

( −p2
2

m2
23 − p2

2

)]
+O(ε) . (B.42)

Double cuts

All double cuts are zero.

B.2.3 T (0, p2
2, p

2
3;m

2
12, 0, 0)

The triangle of fig. B.2c is given by:

T (0, p2
2, p

2
3;m2

12, 0, 0) =

=i
eγEεΓ(1 + ε)

ε

[
(−p2

3)−ε

m2
12

Γ2(1− ε)
Γ(2− 2ε)

2F1

(
1, 1− ε; 2− 2ε;

p2
2 − p2

3

m2
12

)
−(m2

12)−1−ε

1− ε F1

(
1; 1, ε; 2− ε; p

2
2 − p2

3

m2
12

;
p2

2

m2
12

)]
=

i

(p2
2 − p2

3)

[
Li2

(
p2

2

m2
12

)
− Li2

(
p2

2 −m2
12

p2
3

)
+

1

2
log2

(
− p2

3

m2
12

)
− log

(
p2

2 −m2
12

p2
3

)
log

(
m2

12 − p2
2 + p2

3

p2
3

)
+
π2

3

]
+O(ε) . (B.43)

The symbol is

S
[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

= m2
12 ⊗

(
p2

2

p2
3

)
+ p2

3 ⊗
(
m2

12 − p2
2 + p2

3

m2
12

)
+
(
m2

12 − p2
2

)
⊗
( −p2

3m
2
12

p2
2(p2

2 −m2
12 − p2

3)

)
+O(ε) . (B.44)

Single cuts

The cut in the external channel p2
2 is

Cutp2
2

[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

=

=− 2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(p2
2 −m2

12)1−2ε

(p2
2)−εm2

12p
2
3

2F1

(
1, 1− ε; 2− 2ε;

(p2
2 − p2

3)(p2
2 −m2

12)

m2
12p

2
3

)
=

2π

p2
2 − p2

3

(
log

(
p2

2

m2
12

)
+ log

(
p2

2 −m2
12 − p2

3

−p2
3

))
+O(ε) . (B.45)
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The cut in the external channel p2
3 is

Cutp2
3

[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

=

=− 2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(p2
3)−ε

p2
2 − p2

3 −m2
12

2F1

(
1, 1− ε; 2− 2ε;

p2
2 − p2

3

p2
2 − p2

3 −m2
12

)
=

2π

p2
2 − p2

3

(
log
(
m2

12

)
− log

(
m2

12 − p2
2 + p2

3

))
+O(ε) . (B.46)

The cut in the internal mass m2
12 is

Cutm2
12

[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

=

=
2πeγEε

Γ(2− ε)
(m2

12 − p2
2)−ε

p2
3

(
m2

12

p2
2

)−ε
F1

(
1− ε; 1, ε; 2− ε; p

2
3 − p2

2

p2
3

;
m2

12

m2
12 − p2

2

)
=

2π

p2
2 − p2

3

(
log
(
−p2

2

)
− log

(
−p2

3

))
+O(ε) . (B.47)

Double cuts

The double cut in the external channels p2
2 and p2

3 is

Cutp2
2,p

2
3

[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

=

=
4π2ieγEε

Γ(1− ε)
(p2

3)−ε(p2
2 − p2

3 −m2
12)−ε

(m2
12)ε(p2

2 − p2
3)1−2ε

θ(p2
2 − p2

3 −m2
12)

=
4π2i

p2
2 − p2

3

θ(p2
2 − p2

3 −m2
12) +O(ε) . (B.48)

The double cut in the external channel p2
3 and the internal mass m2

12 is

Cutp2
3,m

2
12

[
T (0, p2

2, p
2
3;m2

12, 0, 0)
]

=

= −4π2i
eγEε

Γ(1− ε)
(p2

3)−ε(−m2
12)−ε

(p2
3 − p2

2)1−ε (p2
3 +m2

12 − p2
2)−εθ(p2

3 +m2
12 − p2

2)

=
4π2i

p2
2 − p2

3

θ(p2
3 +m2

12 − p2
2) . (B.49)

The double cut in the external channel p2
2 and the internal mass m2

12 is zero.
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B.3 Three-mass triangles

We now present expressions for triangles with three external massive legs. We

start by discussing the diagram with massless propagators. We then describe how

we computed the triangles with one or two massive propagators, for which we give

a very simple expression that allows us to evaluate the diagrams very easily to

arbitrary order in ε. This follows what was done for the triangle with massless

propagators in section 4.2. Our method does not work for the case with three

massive propagators, where we were not able to find a rational parametrization,

and we thus rely on the result in ref. [143]. We will comment further on the choice

of variables for this example in section B.3.5 below. For the cases treated in this

section we will not compute mass discontinuities, as they do not add anything

to what we have already illustrated in the context of previous examples. We

separate the rational prefactor from the pure transcendental function according

to the relation

T (p2
1, p

2
2, p

2
3;m2

12,m
2
23,m

2
13) =

i

p2
1(z − z̄)

T (p2
1, p

2
2, p

2
3;m2

12,m
2
23,m

2
13) , (B.50)

where the internal masses are generic and can be zero.

B.3.1 T (p2
1, p

2
2, p

3
3; 0, 0, 0)

Many different expressions are known for the three-mass triangle integral,

fig. B.3a, both in arbitrary dimensions [98, 144] as well as an expansion around

four space-time dimensions in dimensional regularization [65, 99, 145, 146]. We

showed in section 4.2 a way to compute it through a dispersive integral [36].

Here we follow [65] in writing the result of the integral in the form

T (p2
1, p

2
2, p

2
3; 0, 0, 0) = − i

p2
1

2

z − z̄P2(z) +O(ε), (B.51)

where

P2(z) = Li2(z)− Li2(z̄) +
1

2
log(zz̄) log

(
1− z
1− z̄

)
, (B.52)
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We thus have

T (p2
1, p

2
2, p

2
3; 0, 0, 0) = T (z, z̄)

= −2Li2(z) + 2Li2(z̄)− log(zz̄) log

(
1− z
1− z̄

)
. (B.53)

The symbol of the one-loop three mass triangle is

S [T (z, z̄)] = (zz̄)⊗ 1− z̄
1− z + ((1− z)(1− z̄))⊗ z

z̄
+O(ε) (B.54)

We note that in this expression the first entry condition is explicit despite the

use of the variables z and z̄.

Single cuts

The cut in the external channel p2
1 is

Cutp2
1

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
=

=− 2πeγEεΓ(1− ε)
Γ(2− 2ε)

(p2
1)
−1−ε

(z − 1)z̄
2F1

(
1, 1− ε; 2− 2ε;

z − z̄
(z − 1)z̄

)
=

2π

p2
1(z − z̄)

log

(
z(1− z̄)

z̄(1− z)

)
+O(ε) . (B.55)

The cut in the external channel p2
2 is

Cutp2
2

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
=

=
2πeγEεΓ(1− ε)

Γ(2− 2ε)

(−p2
1)
−1−ε

(1− z)(−zz̄)ε
2F1

(
1, 1− ε; 2− 2ε;

z − z̄
z − 1

)
=

2π

p2
1(z − z̄)

log

(
1− z
1− z̄

)
+O(ε) . (B.56)

The cut in the external channel p2
3 is

Cutp2
3

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
=

=
2πeγEεΓ(1− ε)

Γ(2− 2ε)

(−p2
1)
−1−ε

z̄(−(1− z)(1− z̄))ε
2F1

(
1, 1− ε; 2− 2ε;−z − z̄

z̄

)
=

2π

p2
1(z − z̄)

log
( z̄
z

)
+O(ε) . (B.57)
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Double cuts

The double cuts in p2
1 and p2

2 and in p2
1 and p2

3, although computed in different

kinematic regions, are equal:

Cutp2
1,p

2
2

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
= Cutp2

1,p
2
3

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
(B.58)

= 4π2i
eγEε

Γ(1− ε)
(p2

1)−1−ε

(z − z̄)1−2ε
(−zz̄(1− z)(1− z̄))−ε

=
4π2i

p2
1(z − z̄)

+O(ε) . (B.59)

The double cut in p2
2 and p2

3 is

Cutp2
2,p

2
3

[
T (p2

1, p
2
2, p

2
3; 0, 0, 0)

]
=

= 4π2i
eγEε

Γ(1− ε)
(−p2

1)−1−ε

(z − z̄)1−2ε
(zz̄(1− z)(1− z̄))−ε

= − 4π2i

p2
1(z − z̄)

+O(ε) . (B.60)

B.3.2 Computation of triangles with three external and

one or two internal masses

Triangles with two external masses are easily computed with standard

techniques to arbitrary order in ε. However, that is no longer the case for triangles

with three external masses [65]. In section 4.2, see also ref. [36], it was shown

that the triangle with three external masses and massless internal propagators

was easily computable to arbitrary order in ε through a double dispersion integral

over its double cut. We now show this is also possible when there are one or two

massive propagators. In the following, we will use the variables

αᾱ = x =
s2

p2
1

, (1− α)(1− ᾱ) = y =
s3

p2
1

,

where s2 and s3 are integration variables in dispersion relations.

We will use the shorthand T (p2
i ;m

2
jk) for any of the three-mass triangles. We

now proceed as in section 4.2:

T (p2
i ;m

2
jk) = − 1

(2πi)2

∫
c2

ds2

s2 − p2
2

∫
c3

ds3

s3 − p2
3

(
Cutp2

2,p
2
3
T (p2

i ;m
2
jk)
) ∣∣∣∣

p2
2=s2,p2

3=s3
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=
i

4π2p2
1

∫
cα

dα

∫
cᾱ

dᾱ

(
Cutp2

2,p
2
3
T (p2

i ;m
2
jk)
) ∣∣∣∣

z=α,z̄=ᾱ

(αᾱ− zz̄)((1− α)(1− ᾱ)− (1− z)(1− z̄))
. (B.61)

The only difference between the triangles with one and two massive propagators

are the integration contours c2 and c3, and cα and cᾱ. For the case with one

internal mass,

c2 = [m2
12,∞) , c3 = [0,∞) and cα = [1,∞) , cᾱ = (−∞, µ12] ,

and for the case with two internal masses,

c2 = [m2
12,∞) , c3 = [m2

13,∞) and cα = [w1,∞) , cᾱ = (−∞, w̄1] .

For either case, the functions
(

Cutp2
2,p

2
3
T (p2

i ;m
2
jk)
) ∣∣∣∣

z=α,z̄=ᾱ

are given by

powers of logarithms whose arguments are linear in both α and ᾱ. The integral in

eq. (B.61) is thus trivial to solve in terms of polylogarithms to the desired order

in ε. The change of variables

β =
aβ
α

γ =
1− aγ
1− ᾱ ,

where aβ = 1 or w1 and aγ = µ12 or w̄1 respectively for the cases with one and

two internal massive propagators, makes the integration particularly simple to

perform. The results for the finite terms of these two triangles, given below in

eqs. (B.63) and (B.70), were computed with this method, and checked to agree

with the result in ref. [143]. In our method, as mentioned above, higher orders in

ε become trivial to compute.

B.3.3 T (p2
1, p

2
2, p

3
3;m

2
12, 0, 0)

The triangle of fig. B.3b is given by

T (p2
1, p

2
2, p

3
3;m2

12, 0, 0) =
i

p2
1(z − z̄)

T
(
p2

1, z, z̄, µ12

)
, (B.62)
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where T (p2
1, z, z̄, µ12) is a pure function given by

T
(
p2

1, z, z̄, µ12

)
=G (1, z, µ12) +G

(
1,
µ12

z
, z̄
)
−G

(
1,
µ12

z̄
, z
)
−G (1, z̄, µ12)

− Li2(z) + Li2(z̄) + log(1− z) log
(

1− µ12

z

)
+ log

(
1− 1

µ12

)
log

(
1− z
1− z̄

)
− log(1− z̄) log

(
1− µ12

z̄

)
+ log (1− µ12) log

(
z(1− z̄) (z̄ − µ12)

z̄(1− z) (z − µ12)

)
+O(ε) . (B.63)

The symbol of its finite part is

S
[
T
(
p2

1, z, z̄, µ12

)]
= µ12 ⊗

z̄(z − µ12)

z(z̄ − µ12)
+ (1− z)(1− z̄)⊗ (z − µ12)

(z̄ − µ12)

+ (zz̄ − µ12)⊗ z(1− z̄)(z̄ − µ12)

z̄(1− z)(z − µ12)
+ (1− µ12)⊗ (1− z)(z̄ − µ12)

(1− z̄)(z − µ12)
. (B.64)

Single cuts

The cut in the p2
1 channel is

Cutp2
1

[
T (p2

1, p
2
2, p

3
3;m2

12, 0, 0)
]

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
p2

1

)−1−ε

(1− µ12)1−2ε

(1− z)(µ12 − z̄)
2F1

(
1, 1− ε, 2− 2ε,

(1− µ12)(z − z̄)

(1− z)(µ12 − z̄)

)
=

2π

p2
1(z − z̄)

log

(
(1− z̄)(z − µ12)

(z − 1)(µ12 − z̄)

)
+O (ε) . (B.65)

The cut in the p2
2 channel is

Cutp2
2

[
T (p2

1, p
2
2, p

3
3;m2

12, 0, 0)
]

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
−p2

1

)−1−ε

(µ12 − zz̄)1−2ε(−zz̄)ε

z̄(1− z)(z − µ12)
2F1

(
1, 1− ε; 2− 2ε;

(z − z̄)(µ12 − zz̄)

z̄(1− z)(z − µ12)

)
=

2π

p2
1(z − z̄)

log

(−z̄(1− z)(z − µ12)

z(1− z̄)(µ12 − z̄)

)
+O (ε) . (B.66)

The cut in the p2
3 channel is
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Cutp2
3

[
T (p2

1, p
2
2, p

3
3;m2

12, 0, 0)
]

=

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
−p2

1

)−1−ε ((z − 1)(1− z̄))−ε

µ12 − z̄ 2F1

(
1, 1− ε; 2− 2ε;

z − z̄
µ12 − z̄

)
=

2π

p2
1(z − z̄)

log

(
µ12 − z̄
µ12 − z

)
+O (ε) . (B.67)

Double cuts

The double cut in the p2
i and p2

j channels is

Cutp2
i ,p

2
j

[
T (p2

1, p
2
2, p

3
3;m2

12, 0, 0)
]

=

= Θij
4π2ieγEε

Γ(1− ε)
(
(−1)ap2

1

)−1−ε
(z − z̄)−1+2ε ((z − 1)(1− z̄)(z̄ − µ12)(z − µ12))−ε

=
4π2i

p2
1(z − z̄)

(−1)aΘij +O(ε) , (B.68)

where a = 0 for (i, j) = (1, 2) or (1, 3), and a = 1 for (i, j) = (2, 3). The theta

functions are

Θ12 = θ(z − 1)θ(1− z̄)θ(z − µ12)θ(z̄ − µ12)

Θ13 = θ(1− z)θ(1− z̄)θ(z − µ12)θ(µ12 − z̄)

Θ23 = θ(z − 1)θ(1− z̄)θ(z − µ12)θ(µ12 − z̄) .

B.3.4 T (p2
1, p

2
2, p

3
3;m

2
12, 0,m

2
13)

The triangle of fig. B.3c is given by

T (p2
1, p

2
2, p

3
3;m2

12, 0,m
2
13) =

i

p2
1(z − z̄)

T
(
p2

1, z, z̄, w1, w̄1

)
, (B.69)

where T (p2
1, z, z̄, w1, w̄1) is a pure function given by

T
(
p2

1, z, z̄, w1, w̄1

)
=

G

(
w1

z
,

w1(w̄1 − 1)

w̄1 + (1− z)(1− z̄)− 1
, 1

)
+G

(w1

z̄
, w1, 1

)
−G

(w1

z
, w1, 1

)
−G

(
w1

z̄
,

w1(w̄1 − 1)

w̄1 + (1− z)(1− z̄)− 1
, 1

)
− Li2

(
zz̄

w1w̄1

)
−G

(w1

z
,
w1w̄1

zz̄
, 1
)

−G
(
w̄1,

w1w̄1

z̄
, z
)

+ log

(
1− 1

w̄1

)
log

(
w1 − z
w1 − z̄

)
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+ log

(
1− z̄

w1

)
log

(
1− z

w̄1

)
+O(ε) . (B.70)

The symbol of its finite part is

S
[
T
(
p2

1, z, z̄, w1, w̄1

)]
= (zz̄ − w1w̄1)⊗ z(w1 − z̄)(w̄1 − z̄)

z̄(w1 − z)(w̄1 − z)

+ ((1− z)(1− z̄)− (1− w1)(1− w̄1))⊗ (1− z̄)(w1 − z)(w̄1 − z)

(1− z)(w1 − z̄)(w̄1 − z̄)

+ (1− w1)⊗ (1− z)(w1 − z̄)

(1− z̄)(w1 − z)
+ w1 ⊗

z̄(w1 − z)

z(w1 − z̄)

+ (1− w̄1)⊗ (1− z)(w̄1 − z̄)

(1− z̄)(w̄1 − z)
+ w̄1 ⊗

z̄(w̄1 − z)

z(w̄1 − z̄)
. (B.71)

Single cuts

The cut in the p2
1 channel is

Cutp2
1

[
T (p2

1, p
2
2, p

3
3;m2

12, 0,m
2
13)
]

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
p2

1

)−1−ε

(w1 − w̄1)1−2ε

(z − w1)(z̄ − w̄1)
2F1

(
1, 1− ε, 2− 2ε,

(z − z̄)(w1 − w̄1)

(z − w1)(z̄ − w̄1)

)
=

2π

p2
1(z − z̄)

log

(
(z − w̄1)(w1 − z̄)

(w̄1 − z̄)(z − w1)

)
+O (ε) . (B.72)

The cut in the p2
2 channel is

Cutp2
2

[
T (p2

1, p
2
2, p

3
3;m2

12, 0,m
2
13)
]

= 2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
−p2

1

)−1−ε

(−zz̄)ε(w1w̄1 − zz̄)1−2ε

z̄(w1 − z)(z − w̄1)
2F1

(
1, 1− ε, 2− 2ε,

(z − z̄)(w1w̄1 − zz̄)

z̄(w1 − z)(z − w̄1)

)
=

2π

p2
1(z − z̄)

log

(−z̄(z − w̄1)(w1 − z)

z(w1 − z̄)(w̄1 − z̄)

)
+O (ε) . (B.73)

The cut in the p2
3 channel is

Cutp2
3

[
T (p2

1, p
2
2, p

3
3;m2

12, 0,m
2
13)
]

= −2π
eγEεΓ(1− ε)

Γ(2− 2ε)

(
p2

1

)−1−ε

uε3(u3 − µ13)1−2ε

(z̄ − 1)(z − w̄1)(z − w1)
2F1

(
1, 1− ε, 2− 2ε,

(z − z̄)(u3 − µ13)

(z̄ − 1)(z − w̄1)(z − w1)

)
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=
2π

p2
1(z − z̄)

log

(
(z − 1)(z̄ − w̄1)(w1 − z̄)

(1− z̄)(z − w̄1)(z − w1)

)
+O(ε). (B.74)

Double cuts

The double cut in the p2
i and p2

j channels is

Cutp2
i ,p

2
j

[
T (p2

1, p
2
2, p

3
3;m2

12, 0,m
2
13)
]

=

= Θij
4π2ieγEε

Γ(1− ε)
(
(−1)ap2

1

)−1−ε
(z − z̄)−1+2ε ((z − w1)(z̄ − w̄1)(z − w̄1)(z̄ − w̄1))−ε

=
4π2i

p2
1(z − z̄)

(−1)aΘij +O(ε) , (B.75)

where a = 0 for (i, j) = (1, 2) or (1, 3), and a = 1 for (i, j) = (2, 3). The theta

functions are

Θ12 = θ(z − w1)θ(w1 − z̄)θ(z − w̄1)θ(z̄ − w̄1)

Θ13 = θ(w1 − z)θ(w1 − z̄)θ(z − w̄1)θ(w̄1 − z̄)

Θ23 = θ(z − w1)θ(w1 − z̄)θ(z − w̄1)θ(w̄1 − z̄) .

B.3.5 T (p2
1, p

2
2, p

3
3;m

2
12,m

2
23,m

2
13)

For the triangle of fig. B.3d we take the expression from ref. [143], adjusted

to match our conventions:

T (p2
1, p

2
2, p

3
3;m2

12,m
2
23,m

2
13) =

i

p2
1(z − z̄)

T (p2
1, p

2
2, p

2
3;m2

12,m
2
23,m

2
13) , (B.76)

where

T (p2
1, p

2
2, p

2
3;m2

12,m
2
23,m

2
13) =

3∑
i=1

∑
σ=±

[
Li2

(
y0i − 1

yiσ

)
− Li2

(
y0i

yiσ

)]
. (B.77)
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The y0i and yi± are given by

y0i =
−1

2ui
√
λz

[
ui(ui − ui+1 − ui−1 + 2µi−1,i+1 − µi,i+1 − µi−1,i)

− (ui+1 − ui−1)(µi−1,i − µi,i+1)−
√
λz(ui − µi−1,i + µi,i+1)

]
,

yi± = y0i −
1

2ui

[
ui − µi−1,i + µi,i+1 ±

√
λi

]
.

(B.78)

Here, the indices i± 1 are defined cyclically. The variables ui, µij are defined in

eqs. (2.27) and (2.31), and the λi for i = z, 1, 2, 3 are defined as

λz = λ(1, u1, u2), λ1 = λ(1,mu12, µ13),

λ2 = λ(u2,mu12, µ23), λ3 = λ(u3,mu13, µ23). (B.79)

To get as close as possible to a rational symbol alphabet, we use the variables

z, z̄, w1, w̄1 and µ23, which are adapted to the p2
1 channel. Since this triangle is

fully symmetric, it is easy to choose variables adapted to any of the other two

channels. However, given our choice, square roots of λ2 ≡ λ(u2, µ12, µ23) and

λ3 ≡ λ(u3, µ13, µ23) make an unavoidable appearance. Written in a form where

the first entries may be readily identified with the three channel thresholds and

the three internal masses, the symbol of the triangle is

S
[
T
(
p2

1, z, z̄, w1, w̄1, µ23

)]
=

w1 (1− w̄1)⊗ T1−

T1+

+
1

2

(
−zz̄ + w1w̄1 −

√
λ2 + µ23

)
⊗ T2−

T2+

+
1

2

(
z̄z − z − z̄ − w1w̄1 + w1 + w̄1 +

√
λ3 − µ23

)
⊗ T3−

T3+

+ w1w̄1 ⊗
T2+

(−z)T1−

+ (1− w1) (1− w̄1)⊗ (z − 1)T1+

T3−
+ 4µ23 ⊗

zT3+

(1− z)T2−
. (B.80)

The Ti± are given by the general formula

Ti± =− ui(−ui + ui+1 + ui−1 + µi,i+1 + µi,i−1 − 2µi+1,i−1)

+ (ui+1 − ui−1)(µi,i+1 − µi,i−1)±
√
λzλi . (B.81)
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In particular, we have

T1± = −2(zz̄ + w1w̄1 − µ23) + (w1 + w̄1)(z + z̄)± (w1 − w̄1)(z − z̄)

T2± = (zz̄ + w1w̄1 − µ23)(z + z̄)− 2zz̄(w1 + w̄1)± (z − z̄)
√
λ2

T3± = z2(1− z̄) + z̄2(1− z) + (w1 + w̄1)(2zz̄ − z − z̄)

+(µ23 − w1w̄1)(z + z̄ − 2)± (z − z̄)
√
λ3 .

We note that T1± can be written in a simpler form, but where the ± notation is

less clear:

T1+ = 2 (µ23 − (w1 − z̄)(w̄1 − z))

T1− = 2 (µ23 − (w1 − z)(w̄1 − z̄)) . (B.82)

Since the triangle depends on the external momenta through the invariants,

it depends on z and z̄ only through the symmetric combinations u2 = zz̄, u3 =

(1−z)(1− z̄). Therefore, once we have removed the rational prefactor, the symbol

above is antisymmetric under the exchange z ↔ z̄. However, we note that this

antisymmetry is not superficially apparent in the last three terms.

Single cuts

We now show how it is possible to choose variables such that each of the

single cuts has a rational alphabet. However, unlike what happens for all other

configurations of masses, for each cut we must choose different variables. For

instance, in eq. (B.80) we chose variables that rationalize the symbol of the p2
1

cut (indeed, the T1± are rational, as seen in eq. (B.82)). In this section, we give the

cut results in terms of two slightly different sets of variables: either we normalize

invariants by the same invariant associated with the channel being cut, or by a

different invariant. Our notation is that p2
i is the channel used for normalization,

and p2
j is the cut channel in the case where it is different.

We start with variables where we cut in the same channel we normalize by,

namely p2
i . To be more precise, the variables we choose are

wi =
1 + µij − µjk +

√
λ(uj, µij, µjk)

2
, w̄i =

1 + µij − µjk −
√
λ(uj, µij, µjk)

2
,
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z =
1 + uj − uk +

√
λ(1, uj, uk)

2
, z̄ =

1 + uj − uk −
√
λ(1, uj, uk)

2
, (B.83)

related to the invariants through

zz̄ = uj =
p2
j

p2
i

, (1− z)(1− z̄) = uk =
p2
k

p2
i

, µjk =
m2
jk

p2
i

,

wiw̄i = µij =
m2
ij

p2
i

, (1− wi)(1− w̄i) = µik =
m2
ik

p2
i

. (B.84)

This is a slight abuse of notation, as strictly speaking the z and z̄ variables are

different for each i. For i = 1, these are the variables defined in eq. (2.29) and

eq. (2.33) and the ones used for eq. (B.80).

In terms of these variables, the single cut in the p2
i channel is

Cutp2
i

[
T (p2

1, p
2
2, p

3
3;m2

12,m
2
23,m

2
13)
]

= −2π
eγEΓ(1− ε)
Γ(2− 2ε)

(p2
i )
−1−ε

(wi − w̄i)1−2ε

(z − wi)(z̄ − w̄i)− µjk 2F1

(
1, 1− ε; 2− 2ε;

(z − z̄)(wi − w̄i)
(z − wi)(z̄ − w̄i)− µjk

)
=

2π

p2
i (z − z̄)

log

(
(wi − z̄)(w̄i − z)− µjk
(wi − z)(w̄i − z̄)− µjk

)
+O(ε) . (B.85)

Setting (i, j, k) = (1, 2, 3) and comparing with eq. (B.80), we see that the expected

relation between cuts and coproduct entries holds.

Requiring that we normalize invariants by the channel being cut might be

too restrictive. We now show how to define variables that do not have this

requirement, but in terms of which the symbol alphabet is still rational. We

define

wj =
uj + µij − µjk +

√
λ(uj, µij, µjk)

2
, w̄j =

uj + µij − µjk −
√
λ(uj, µij, µjk)

2
,

z =
1 + uj − uk +

√
λ(1, uj, uk)

2
, z̄ =

1 + uj − uk −
√
λ(1, uj, uk)

2
, (B.86)

related to the invariants through slightly more complicated relations,

zz̄ = uj =
p2
j

p2
i

, (1− z)(1− z̄) = uk =
p2
k

p2
i

, µik =
m2
ik

p2
i

,

276



B.3. Three-mass triangles

wjw̄j = ujµij = uj
m2
ij

p2
i

, (uj − wj)(uj − w̄j) = ujµjk = uj
m2
jk

p2
i

. (B.87)

As above, there is a slight abuse of notation in the definition of the z and z̄

variables.

In terms of these variables, the single cut in the p2
j channel is

Cutp2
j

[
T (p2

1, p
2
2, p

3
3;m2

12,m
2
23,m

2
13)
]

= −2π
eγEΓ(1− ε)
Γ(2− 2ε)

(−p2
i )
−1−ε

(−zz̄)ε(wj − w̄j)1−2ε

(z − wj)(z̄ − w̄j)− zz̄µik 2F1

(
1, 1− ε; 2− 2ε;

(z − z̄)(wj − w̄j)
(z − wj)(z̄ − w̄j)− zz̄µik

)
=

2π

p2
i (z − z̄)

log

(
zz̄µik − (z − wj)(z̄ − w̄j)
zz̄µik − (z − w̄j)(z̄ − wj)

)
+O(ε) . (B.88)

As promised, the symbol letters are rational.

Double cuts

We now give the results for the double cuts in terms of the two sets of variables.

For the variables in eq. (B.83), we compute the double cut in channels p2
i and p2

j .

It is given by

Cutp2
i ,p

2
j

[
T (p2

1, p
2
2, p

3
3;m2

12,m
2
23,m

2
13)
]

= (B.89)

=
4π2ieγE

Γ(1− ε)
(p2
i )
−1−ε

(z − z̄)1−2ε
(µjk − (z − wi)(z̄ − w̄i))−ε ((z − w̄i)(z̄ − wi)− µjk)−ε Θij,

where

Θij = θ (µjk − (z − wi)(z̄ − w̄i)) θ ((z − w̄i)(z̄ − wi)− µjk) .

For the variables of eq. (B.86), we compute the double cut in channels p2
j and

p2
k. It is given by

Cutp2
j ,p

2
k
T (p2

1, p
2
2, p

3
3;m2

12,m
2
23,m

2
13) =

=
4π2ieγE

Γ(1− ε)
(−p2

i )
−1−ε

(−zz̄)−ε(z − z̄)1−2ε
Θjk

(zz̄µik − (z − wj)(z̄ − w̄j))−ε
((z − w̄j)(z̄ − wj)− zz̄µik)ε

, (B.90)

where

Θjk = θ ((z − w̄j)(z̄ − wj)− zz̄µik) θ (zz̄µik − (z − wj)(z̄ − w̄j)) .
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(a) B(s, t) (b) B(s, t; p2
1) (c) Be(s, t; p2

1, p
2
3)

(d) B(s, t;m2
12) (e) B(s, t;m2

12,m
2
23) (f) Bh(s, t; p2

1, p
2
2)

(g) B(s, t; 0, p2
2, p

2
3, p

2
4) (h) B(s, t; p2

1, p
2
2, p

2
3, p

2
4)

Figure B.4: Box diagrams

B.4 Boxes

B.4.1 Zero-mass box

The zero-mass box, fig. B.4a, evaluates to a well known result, see e.g. [98,102],

I4(s, t) = 2
cΓ

ε

{
Γ2(1− ε)Γ2(1 + ε)

εΓ(1 + 2ε)Γ(1− 2ε)

2

st

(
−s+ t

st

)ε
(B.91)

−(−s)−2−ε

1 + ε
2F1

(
1, 1; 2 + ε;− t

s

)
− (−t)−2−ε

1 + ε
2F1

(
1, 1; 2 + ε;−s

t

)}
,

where cΓ is defined in eq. (A.12).

B.4.2 One-mass box

For the one-mass box, fig. B.4b, we take the result from [80],

I4(s, t; p2
4) =

2cΓ

ε2s t

{(
s t

s− p2
4

)−ε
2F1

(
−ε,−ε; 1− ε; p

2
4 − s− t
p2

4 − s

)
+

(
s t

t− p2
4

)−ε
2F1

(
−ε,−ε; 1− ε; p

2
4 − s− t
p2

4 − t

)
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−
(
− s t p2

4

(s− p2
4)(t− p2

4)

)−ε
2F1

(
−ε,−ε; 1− ε; p2

4(p2
4 − s− t)

(s− p2
4)(t− p2

4)

)}
. (B.92)

B.4.3 Two-mass-easy box

For the two-mass-easy box, fig. B.4c, we take the result from [147],

Ie4(s, t; p2
2, p

2
4) = 2

cΓ

ε2(st− p2
2p

2
4)

{
(−s)−ε + (−t)−ε − (−p2

2)−ε − (−p2
4)−ε

+
3∑
j=0

(−1)j
(
s+ t− p2

2 − p2
4

αj

)ε
2F1

(
ε, ε; 1 + ε;

st− p2
2p

2
4

αj

)}
, (B.93)

with

α0 =
(
p2

2 − s
) (
p2

2 − t
)

α1 =
(
p2

2 − s
) (
s− p2

4

)
α2 =

(
p2

4 − s
) (
p2

4 − t
)

α3 =
(
p2

2 − t
) (
t− p2

4

)
.

(B.94)

B.4.4 Zero-mass box with one internal mass

The zero-mass box with one internal mass, fig. B.4d was computed by direct

integration of Mellin-Barnes representation,

I4(s, t;m2
12) =

(−s)−2−ε

(r − µ12)

∞∑
j=−2

i
(j)
4 (r;µ12) εj (B.95)

where r = s/t and µ12 = m2
12/s, with

i
(−2)
4 (r;µ12) = 1 (B.96)

i
(−1)
4 (r;µ12) = 2 log (−µ12)− 2G (−r,−µ12)− 2 log(r) (B.97)

i
(0)
4 (r;µ12) = −1

2
log (−µ12) +G (1, 0,−µ12) + 4 log(r)G (−r,−µ12)

− 4G (−r, 0,−µ12) + 4G (−r,−r,−µ12)− 13π2

12
. (B.98)
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The coefficients i
(j)
4 (r;µ12) for j = 1, 2, 3 can be found in the accompanying

MATHEMATICA package, [38].

B.4.5 Zero-mass box with two adjacent internal masses

The zero-mass box with two adjacent internal masses, fig. B.4e was computed

by direct integration of Mellin-Barnes representation,

I4(s, t;m2
12,m

2
23) =

(−s)−2−ε

(r − µ12 − rµ23)

∞∑
j=−2

i
(j)
4 (r;µ12, µ23) εj (B.99)

where r = s/t, µ12 = m2
12/s and µ23 = m2

23/s, with

i
(−2)
4 (r;µ12, µ23) = 0 (B.100)

i
(−1)
4 (r;µ12, µ23) =−G (−1,−µ23)−G (−r,−µ12) + log (−µ12)

+ log (−µ23)− log(r) (B.101)

i
(0)
4 (r;µ12, µ23) = −G (−1,−µ23)G (1− µ23,−µ12) + 3G (−1,−1,−µ23)

+G (1− µ23, 0,−µ12)− log (−µ12)G (−1,−µ23)− log (−µ23) log(r)

+ 2G (−1,−µ23)G ((µ23 − 1) r,−µ12)−G (−r, 0,−µ12)

+G (r, 0,−µ23)−G (−µ23 − r,−r,−µ12)− 1

2
log2 (−µ23)

+ 2G ((µ23 − 1) r,−r,−µ12) + 2 log(r)G (−1,−µ23)

− 3G (−1, 0,−µ23) + 2G (−r,−r,−µ12)− 1

2
log2 (−µ12)

+ 2 log(r)G ((µ23 − 1) r,−µ12) + log (−µ23)G (−µ23 − r,−µ12)

− 2 log (−µ23)G ((µ23 − 1) r,−µ12) + 2 log(r)G (−r,−µ12)

− 2G ((µ23 − 1) r, 0,−µ12)− log(r)G (−µ23 − r,−µ12)

− log(r)G (r,−µ23) + log (−µ23) log (−µ12)− π2. (B.102)

The coefficients i
(j)
4 (r;µ12, µ23) for j = 1, 2 can be found in the accompanying

MATHEMATICA package, [38].
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B.4.6 Two-mass-hard box

The two-mass-hard box, fig. B.4f, is an interesting example. Up to order

ε0, the result can be written in terms of Mandelstam invariants without the

appearance of any square roots. However, from order ε1 on, square roots appear.

These are connected to the three-mass triangle one obtains by pinching one of

the propagators. We can thus find the appropriate variables by introducing

variables that rationalise the square root appearing in that three-mass triangles.

For Ih4 (s, t; p2
1, p

2
2), we thus define

zz̄ =
p2

1

s
(1− z)(1− z̄) =

p2
2

s
r =

t

s
. (B.103)

Then,

Ih4 (s, t; p2
1, p

2
2) =

(−s)−2−ε

r

∞∑
j=−2

i
(j)
4 (r, z, z̄) εj. (B.104)

Up to order ε0, the expression for the two-mass-hard box can be found e.g. in [98]

and is remarkably simple,

Ih4 (s, t; p2
1, p

2
2) = (−s)−2−εcΓ

(zz̄)εr−1−2ε

((1− z)(1− z̄))−ε

(
1

ε2
+ 2Li2

(
1− r

zz̄

)
+2Li2

(
1− r

(1− z)(1− z̄)

)
− π2

12

)
+O(ε). (B.105)

We then get

i
(−2)
4 (r, z, z̄) = 1 (B.106)

i
(−1)
4 (r, z, z̄) = log(zz̄) + log((1− z)(1− z̄))− 2 log(r) (B.107)

i
(0)
4 (r, z, z̄) = 2Li2

(
1− r

(1− z)(1− z̄)

)
+ 2Li2

(
1− r

zz̄

)
− 2 log(r) log(zz̄) + 2 log2(r) +

1

2
log2((1− z)(1− z̄)) +

1

2
log2(zz̄)

− 2 log(r) log((1− z)(1− z̄)) + log((1− z)(1− z̄)) log(zz̄)− π2

12
. (B.108)
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The coefficients up to order ε2 were computed by direct Mellin-Barnes integration

and can be found in the accompanying MATHEMATICA package, [38].

B.4.7 Three masses

We give the result for the box, fig. B.4g , with three external massive legs, as

computed in [98], because it appears as a subdiagram in the single unitarity cuts

of the two-loop ladder.

B(s, t; p2
2, p

2
3, p

2
4) =

= i
cΓ

st− p2
2p

2
4

{
2

ε2
[
(−s)−ε + (−t)−ε − (−p2

2)−ε − (−p2
3)−ε − (−p2

4)−ε
]

+
1

ε2
(−p2

2)−ε(−p2
3)−ε

(−t)−ε +
1

ε2
(−p2

3)−ε(−p2
4)−ε

(−s)−ε − 2Li2

(
1− p2

2

s

)
−2Li2

(
1− p2

4

t

)
+ 2Li2

(
1− p2

2p
2
4

st

)
− log2 s

t

}
+O(ε) . (B.109)

The t-channel cut, which appears as a subdiagram in the double unitarity

cuts of the two-loop ladder is computed using the relation Disct = −Cutt.

CuttB
3m(s, t; p2

2, p
2
3, p

2
4) = (2π)2 e

γEε

π2−ε

∫
d4−2εk

δ ((k + p1)2) δ((k − p4)2)

(k2 + i0)((k + p1 + p2)2 − i0)

=
eγEεΓ(1− ε)

Γ(1− 2ε)

2π

st− p2
2p

2
4

[
2

ε
t−ε − 1

ε
tε(−p2

2)−ε(−p2
3)−ε + 2 log

(
1− p2

4

t

)
−2 log

(
1− p2

2p
2
4

st

)
− 2 log(−s) + 2 log t

]
θ(t) +O(ε) . (B.110)

B.4.8 Four mass box

The four-mass box, fig. B.4h, is finite in four dimensions, and, as was shown

in [99], it may in fact be expressed by the same function as the three-mass triangle.

In [99], this is shown by deriving a Mellin-Barnes representation of each diagram,

and showing that they are equivalent if one makes the following identification

u2 → U =
p2

2p
2
4

st
, u3 → V =

p2
1p

2
3

st
(B.111)

where the ui are the dimensionless variables of the triangle we are familiar with,

see 2.27. U and V are variables invariant under conformal symmetry, which is
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one of the symmetries of the four mass box.

We will now show another derivation of this result, but instead of finding an

equivalence of Mellin-Barnes representations we will find an equivalence of the

parametric representation of both integrals. More precisely, we will find that the

four-mass boxes has the same parametric representation as the one derived for

the three-mass triangle in [65].

According to our conventions, for D = 4 we have

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) =

1

π2

∫
d4k

1

k2(k + p1 + p2)2(k + p2)2(k − p3)2
, (B.112)

and for later use we define

Z =
1

2

(
1 + U − V +

√
λ(1, U, V )

)
,

Z̄ =
1

2

(
1 + U − V −

√
λ(1, U, V )

)
. (B.113)

We show in section 3.5.8 how these variables arise naturally in the calculation of

cuts.

Introducing Feynman parameters and carrying out the loop momentum

integral in the usual way, we get:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.114)

= i

4∏
i=1

(∫ ∞
0

dxi

)
δ
(
1−∑i∈S xi

)
(−x1x3s12 − x2x4s23 − x1x4p2

3 − x1x2p2
2 − x2x3p2

1 − x3x4p2
4)

2 .

We choose S = {x1, x2, x3, x4}.
Following [99], we change variables for the x1, x2 and x3 integrations:

xi = (1− x4)βi , i = 1, 2, 3 (B.115)

and get:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = i

3∏
i=1

(∫ 1

0

dβi

)
∫ 1

0

dx4

δ
(
1−∑3

i=1 βi
)

[(1− x4) (β1β2p2
2 + β1β3s+ β2β3p2

1) + x4 (β1p2
3 + β2t+ β3p2

4)]
2 . (B.116)
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The x4 integration can be easily performed to get:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.117)

= i

∫ 1

0

dβ1

∫ 1

0

dβ2

∫ 1

0

dβ3

δ
(
1−∑3

i=1 βi
)

(β1β2p2
2 + β1β3s+ β2β3p2

1) (β1p2
3 + β2t+ β3p2

4)
,

which matches the result of [99].

However, we now proceed in a different direction. According to the result we

prove below, eq. (B.125), we have:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.118)

= i

∫ ∞
0

dβ1

∫ ∞
0

dβ2

∫ ∞
0

dβ3

δ
(
1−∑i∈S′ βi

)
(β1β2p2

2 + β1β3s+ β2β3p2
1) (β1p2

3 + β2t+ β3p2
4)

where S ′ is any non-empty set of {β1, β2, β3}.
For simplicity of notation, we define:

ai =
p2
i

s
bi =

p2
i

t
(B.119)

Picking the set S ′ to be S ′ = {β2}, we get:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.120)

= i
1

st

∫ ∞
0

dβ1

∫ ∞
0

dβ3
1

(β1a2 + β1β3 + β3a1) (1 + β1b3 + β3b4)
,

which is similar to the parametric representation of the three-mass triangle of [65].

The calculation can now be finished in the same as was done for the three-mass

triangle. Integrating over β1:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.121)

=
ib4

st

∫ ∞
0

dβ3
log(β3 + a2)− log b3 + log(1 + β3b4)− log(β3a1)

(β3b4 + Z)(β3b4 + Z̄)
.

Changing variables to α3 = b4β3, we get:

B(s, t; p2
1, p

2
2, p

2
3, p

2
4) = (B.122)

=
i

st

∫ ∞
0

1

(α3 + Z)(α3 + Z̄)

(
log(α3 + U)− log V + log(1 + α3)− logα3

)
.
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We have now brought the calculation of the four-mass box to exactly the same

form as the three-mass triangle, with the identification z → Z and z̄ → Z̄. We

can thus write

B(s, t; p2
1, p

2
2, p

2
3, p

2
4; 0) =

i

st

2

Z − Z̄P2 (Z) , (B.123)

where P2 is defined in eq. (B.52). This result agrees with [99].

The symbol is

S
[
B(s, t; p2

1, p
2
2, p

2
3, p

2
4)
]

=

=
i

st

1

Z − Z̄

[(
ZZ̄
)
⊗ 1− Z

1− Z̄ +
(
(1− Z)(1− Z̄)

)
⊗ Z̄

Z

]
. (B.124)

As for the three-mass triangle, the first entry condition is manifest.

Proof of the result used in eq. (B.118):

We show that for a function F ({xi}) of homogeneity m the following result

holds:

I =
n∏
i=1

(∫ ∞
0

dxi

)
δ

(
1−

n∑
i=1

xi

)
F ({xi}) = (B.125)

=
n∏
i=1

(∫ ∞
0

dxi

)
δ

(
1−

∑
i∈S

xi

)1 +
∑
i∈X/S

xi

n+m

F ({xi}),

where S is any non-empty set of X = {x1, . . . , xn}.
When m = −n, this becomes:

n∏
i=1

(∫ ∞
0

dxi

)
δ

(
1−

n∑
i=1

xi

)
F ({xi}) =

n∏
i=1

(∫ ∞
0

dxi

)
δ

(
1−

∑
i∈S

xi

)
F ({xi}).

(B.126)

The Cheng-Wu theorem is a particular case of this result (at least in the way it

is presented in the book [148] ; unfortunately, we couldn’t find Cheng and Wu’s

original formulation to see how it is presented there).

To prove this result, we define η as the sum of the elements of S. Without
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loss of generality, we have

η =

j∑
i=1

xi , j < n, (B.127)

We define n− 1 new variables to rescale all the integration variables except one

(we pick xj) such that

xi = ηx′i , i 6= j. (B.128)

Then

xj = η −
j−1∑
i=1

xi = η

(
1−

j−1∑
i=1

x′i

)
≡ ηx′j, (B.129)

where in the last equality we introduced a new variable x′j as

x′j = 1−
j−1∑
i=1

x′i. (B.130)

Using these definitions,

I =

(
n∏
i=1

∫ ∞
0

dxi

)
δ

(
1−

n∑
i=1

xi

)
F ({xi}) (B.131)

=

(
n∏
i=1

∫ ∞
0

dx′i

)∫ ∞
0

dη

η1−n δ

(
1− η

(
1 +

n∑
i=j+1

x′i

))
δ

(
1−

j∑
i=1

x′i

)
F ({ηx′i}),

where the first delta function comes from

δ

(
1−

n∑
i=1

xi

)
= δ

(
1− η

(
1 +

n∑
i=j+1

x′i

))
, (B.132)

and the second delta function (along with the integral over x′j) implements the

definition of x′j,

∫ ∞
0

dx′j δ

(
x′j −

(
1−

j−1∑
i=1

x′i

))
=

∫ ∞
0

dx′j δ

(
1−

j∑
i=1

x′i

)
= 1 . (B.133)
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If F ({xi}) is homogeneous of degree m, then

F ({xi}) = F ({ηx′i}) = ηmF ({x′i}), (B.134)

and we have

I =

(
n∏
i=1

∫ ∞
0

dx′i

)
∫ ∞

0

dη

η1−n−m δ

(
1− η

(
1 +

n∑
i=j+1

x′i

))
δ

(
1−

j∑
i=1

x′i

)
F ({x′i}). (B.135)

It is now straightforward to do the η integral and get:

I =

(
n∏
i=1

∫ ∞
0

dx′i

)(
1 +

n∑
i=j+1

x′i

)n+m

δ

(
1−

j∑
i=1

x′i

)
F ({x′i}), (B.136)

which proves our result.
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Appendix C

Cuts of the three-mass

three-point ladder

C.1 Explicit results for the single unitarity cuts

We present the results we obtained for the single unitarity cuts. These results

were computed and numerically checked in the region where z̄ = z∗. For cut

[45] the hypergeometric function was expanded using HypExp [100]. We write

everything in terms of multiple polylogarithms as defined in Section 2.2 to simplify

the comparison between different terms.

C.1.1 Unitarity cuts in the p2
3 channel

Cutp2
3,[12],R∗4

TL(p2
1, p

2
2, p

2
3) = (C.1)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
(−2πi) f

(k,1)
[12] (z, z̄) + (−2πi)2 f

(k,2)
[12] (z, z̄)

]
,

f
(−2,1)
[12] (z, z̄) = log

z

z̄
,

f
(−2,2)
[12] (z, z̄) = 0 ,

f
(−1,1)
[12] (z, z̄) = −G

(
0,

1

z
;
1

z̄

)
+G

(
0,

1

z̄
;
1

z

)
+ log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
289



Appendix C. Cuts of the three-mass three-point ladder

− 2 log[(1− z)(1− z̄)] log
z

z̄
,

f
(−1,2)
[12] (z, z̄) =

1

2
log

z

z̄
,

f
(0,1)
[12] (z, z̄) = −2

[
G

(
0,

1

z
,
1

z̄
;
1

z̄

)
−G

(
0,

1

z̄
,
1

z
;
1

z

)]
− 1

12
log3 z

z̄

− 2 log[(1− z)(1− z̄)] log
z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
+ 2 log[(1− z)(1− z̄)]

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
+

1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]2

+
π2

6
log

z

z̄

+ 2 log2[(1− z)(1− z̄)] log
z

z̄
− 1

4
log2(zz̄) log

z

z̄
,

f
(0,2)
[12] (z, z̄) =

1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− log[(1− z)(1− z̄)] log

z

z̄

− 1

2

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
− 1

2
log2 z

z̄
. (C.2)

Cutp2
3,[45],R∗4

TL(p2
1, p

2
2, p

2
3) = (C.3)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
(−2πi) f

(k,1)
[45] (z, z̄) + (−2πi)2 f

(k,2)
[45] (z, z̄)

]
,

f
(−2,1)
[45] (z, z̄) = log

z

z̄
,

f
(−2,2)
[45] (z, z̄) = 0 ,

f
(−1,1)
[45] (z, z̄) = −G

(
0,

1

z
;
1

z̄

)
+G

(
0,

1

z̄
;
1

z

)
+ log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 2 log[(1− z)(1− z̄)] log

z

z̄
,

f
(−1,2)
[45] (z, z̄) = −1

2
log

z

z̄
,

f
(0,1)
[45] (z, z̄) = −2

[
G

(
0,

1

z
,
1

z̄
;
1

z̄

)
−G

(
0,

1

z̄
,
1

z
;
1

z

)]
+
π2

6
log

z

z̄

− 2 log[(1− z)(1− z̄)] log
z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
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+ 2 log[(1− z)(1− z̄)]

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
− 1

3
log3 z

z̄

+
1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]2

+ 2 log2[(1− z)(1− z̄)] log
z

z̄
,

f
(0,2)
[45] (z, z̄) = −1

2

[
G

(
0,

1

z̄
;
1

z

)
−G

(
0,

1

z
;
1

z̄

)]
+ log[(1− z)(1− z̄)] log

z

z̄

− 1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 1

2
log2 z

z̄
. (C.4)

Cutp2
3,[135],R∗4

TL(p2
1, p

2
2, p

2
3) = (C.5)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−1

εk
[
(−2πi) f

(k,1)
[135] (z, z̄) + (−2πi)2 f

(k,2)
[135] (z, z̄)

]
,

f
(−2,1)
[135] (z, z̄) = − log

z

z̄
,

f
(−2,2)
[135] (z, z̄) = 0 ,

f
(−1,1)
[135] (z, z̄) = G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)
− log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
+ 2 log[(1− z)(1− z̄)] log

z

z̄
+

1

2
log

z

z̄
log(zz̄) ,

f
(−1,2)
[135] (z, z̄) = 0 ,

f
(0,1)
[135] (z, z̄) = 2

[
G

(
0,

1

z
,
1

z̄
;
1

z̄

)
−G

(
0,

1

z̄
,
1

z
;
1

z

)]
+ 6[Li3(z)− Li3(z̄)]

+ 2 log[(1− z)(1− z̄)] log
z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]2

− 3

2
[Li2(z)− Li2(z̄)] log(zz̄)

+
1

2
log(zz̄) log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 2

3
π2 log

z

z̄

− 2 log[(1− z)(1− z̄)]

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
− 1

2
log(zz̄)

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
+

5

24
log3 z

z̄

− 2 log2[(1− z)(1− z̄)] log
z

z̄
− log[(1− z)(1− z̄)] log(zz̄) log

z

z̄
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− 3

2
[Li2(z) + Li2(z̄)] log

z

z̄
− 1

8
log2(zz̄) log

z

z̄
,

f
(0,2)
[135] (z, z̄) =

1

2
log2 z

z̄
. (C.6)

Cutp2
3,[234],R∗4

TL(p2
1, p

2
2, p

2
3) = (C.7)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−1

εk
[
(−2πi) f

(k,1)
[234] (z, z̄) + (−2πi)2 f

(k,2)
[234] (z, z̄)

]
,

f
(−2,1)
[234] (z, z̄) = − log

z

z̄
,

f
(−2,2)
[234] (z, z̄) = 0 ,

f
(−1,1)
[234] (z, z̄) = G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)
− log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
+ 2 log[(1− z)(1− z̄)] log

z

z̄
− 1

2
log

z

z̄
log(zz̄) ,

f
(−1,2)
[234] (z, z̄) = 0 ,

f
(0,1)
[234] (z, z̄) = 2

[
G

(
0,

1

z
,
1

z̄
;
1

z̄

)
−G

(
0,

1

z̄
,
1

z
;
1

z

)]
− 6[Li3(z)− Li3(z̄)]

− 1

2
log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]2

+
3

2
[Li2(z) + Li2(z̄)] log

z

z̄

+ 2 log[(1− z)(1− z̄)] log
z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 1

2
log(zz̄) log

z

z̄

[
G

(
1

z
;
1

z̄

)
+G

(
1

z̄
;
1

z

)]
− 2 log[(1− z)(1− z̄)]

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
+

1

2
log(zz̄)

[
G

(
0,

1

z
;
1

z̄

)
−G

(
0,

1

z̄
;
1

z

)]
+

1

3
log3 z

z̄

+
3

2
[Li2(z)− Li2(z̄)] log(zz̄)− 2 log2[(1− z)(1− z̄)] log

z

z̄

+
1

4
log2(zz̄) log

z

z̄
+ log[(1− z)(1− z̄)] log(zz̄) log

z

z̄
+
π2

3
log

z

z̄
,

f
(0,2)
[234] (z, z̄) =

1

2
log2 z

z̄
. (C.8)
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C.1.2 Unitarity cuts in the p2
2 channel

Cutp2
2,[46],R∗4

TL(p2
1, p

2
2, p

2
3) (C.9)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−1

εk
[
(−2πi) f

(k,1)
[46] (z, z̄) + (−2πi)2 f

(k,2)
[46] (z, z̄)

]
,

f
(−1,1)
[46] (z, z̄) = −Li2(z) + Li2(z̄) ,

f
(−1,2)
[46] (z, z̄) = 0 ,

f
(0,1)
[46] (z, z̄) = G

(
0,

1

z
,
1

z̄
; 1

)
−G

(
0,

1

z̄
,
1

z
; 1

)
− 4[Li3(1− z)− Li3(1− z̄)]

− 2[Li3(z)− Li3(z̄)]− 2[Li2(z) + Li2(z̄)] log
1− z
1− z̄

− 1

2
log

z

z̄
log2 1− z

1− z̄ −
1

2
log2[(1− z)(1− z̄)] log

z

z̄

− log[(1− z)(1− z̄)] log(zz̄) log
1− z
1− z̄ +

2π2

3
log

1− z
1− z̄ ,

+ [Li2(z)− Li2(z̄)] log(zz̄)

f
(0,2)
[46] (z, z̄) =

1

2
[Li2(z)− Li2(z̄)] . (C.10)

Cutp2
2,[136],R∗4

TL(p2
1, p

2
2, p

2
3) (C.11)

=
i c2

Γ (p2
1)−2−2ε

(1− z)(1− z̄)(z − z̄)

∞∑
k=−1

εk
[
(−2πi) f

(k,1)
[136] (z, z̄) + (−2πi)2 f

(k,2)
[136] (z, z̄)

]
,

f
(−1,1)
[136] (z, z̄) = Li2(z)− Li2(z̄) ,

f
(−1,2)
[136] (z, z̄) = 0 ,

f
(0,1)
[136] (z, z̄) = −G

(
0,

1

z
,
1

z̄
; 1

)
+G

(
0,

1

z̄
,
1

z
; 1

)
+ 4[Li3(1− z)− Li3(1− z̄)]

+ 5[Li3(z)− Li3(z̄)] + 2[Li2(z) + Li2(z̄)] log
1− z
1− z̄
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+
1

2
log

z

z̄
log2 1− z

1− z̄ +
1

2
log2[(1− z)(1− z̄)] log

z

z̄

+ log[(1− z)(1− z̄)] log(zz̄) log
1− z
1− z̄ −

2

3
π2 log

1− z
1− z̄ ,

− 2[Li2(z)− Li2(z̄)] log(zz̄)

f
(0,2)
[136] (z, z̄) = 0 . (C.12)

C.2 Computation and explicit results for double

unitarity cuts

We briefly outline our approach to the calculation of the double unitarity cuts

of fig. 3.12 and fig. 3.13. We then give explicit results for these integrals, written

in terms of multiple polylogarithms to simplify the comparison between different

terms.

C.2.1 Calculation of double unitarity cuts

Cut [456], R1,3
4 , fig. 3.12a:

Because cut [45] factorizes the two loop integrations, this cut is just the product

of an uncut one-loop triangle with one mass (p2
3) and the double cut of a three-

mass triangle, with masses p2
1, p2

2 and p2
3, in the channels p2

1 and p2
3.

Cut[456],R1,3
4
TL(p2

1, p
2
2, p

2
3) =

= −i e
γEε

π2−ε (2π)3

∫
d4−2εk1δ

(
k2

1

)
δ
(
(p3 − k1)2

)
δ
(
(p1 + k1)2

)
T (p2

3)

= −4π2i
cΓe

γEε

ε2Γ(1− ε)(p2
1)−2−2εu−1−2ε

3 eiπε
z−ε(−z̄)−ε

(z − z̄)1−2ε
. (C.13)

Cut [1256], R1,3
4 , fig. 3.12b:

The integrand has a simple pole inside the integration region. We can still

make sense of the integral by keeping track of the i0 prescription associated to

the propagators and the invariants, and we obtain

Cut[1256],R1,3
4
TL(p2

1, p
2
2, p

2
3) =

=− i e
γEε

π2−ε (2π)2

∫
d4−2εk1

δ (k2
1) δ ((p1 − k1)2)

(p3 + k1)2 − i0 Cutp2
3
T
(
p2

3, (p3 + k)2)
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=i
e2γEε

π2−ε
Γ(1− ε)
εΓ(1− 2ε)

(2π)3

∫
d4−2εk

δ (k2) δ ((p1 − k)2)

(p3 + k)2 − i0
(p2

3 + i0)−ε

(p2
3 + i0)− ((p3 + k)2 − i0)

=− 4π2i
e2γEε

εΓ(1− 2ε)
(p2

1)−2−2εu−ε3∫ 1

0

dx
x−ε(1− x)−ε

(u3 + z − 1− x(z − z̄)− i0)(z − 1− x(z − z̄)− i0)
, (C.14)

where in each line we were careful to keep the ±i0 prescription associated with

propagators and invariants. The integrand in the last line has poles at

0 < xp ≡
(1− z)(−z̄)

z − z̄ < 1 and x =
z − 1

z − z̄ < 0 .

While the location of the second pole lies outside the integration region, the first

singularity lies inside, and we must hence split the integral into its principle value

and imaginary part,

lim
0→0

1

a± i0 = PV

(
1

a

)
∓ iπδ(a) .

which is valid in a distribution sense. We then obtain∫ 1

0

dx
x−ε(1− x)−ε

(u3 + z − 1− x(z − z̄)− i0)(z − 1− x(z − z̄))

= PV

∫ 1

0

dx
x−ε(1− x)−ε

(u3 + z − 1− x(z − z̄))(z − 1− x(z − z̄))

+ iπ

∫ 1

0

dx
x−ε(1− x)−ε

(z − 1− x(z − z̄))
δ(u3 + z − 1− x(z − z̄)) . (C.15)

Both integrals are finite and can easily be performed order by order in ε in terms

of polylogarithms.

Cut [1236], R1,3
4 , fig. 3.12c:

Using the strategy outlined in Section 3.6.4, we immediately obtain

Cut[1236],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.16)

= i
eγEε

π2−ε (2π)2

∫
d4−2εkδ

(
k2
)
δ
(
(p3 − k)2

)
Cut(p1−k)2Bh(p2

3, (p1 − k)2; p2
1, p

2
2) .
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Inserting the analytic expression for the cut box (see appendix B.4) and

parametrizing the remaining cut integration, we obtain an integral with an

endpoint singularity. After subtraction of the singularity, all the integrals are

finite and can be expanded under the integration sign. We obtain

Cut[1236],R1,3
4
TL(p2

1, p
2
2, p

2
3) =

= 8π2i
eγEεcΓ

Γ(1− ε)(p2
1)−2−2εu−1−2ε

3 zε(−z̄)ε
∫ z

z−z̄

0

dx
x−ε(1− x)−ε

(z − x(z − z̄))1+2ε

×
[

1

ε
+ log

(
1− z − x(z − z̄)

zz̄

)
+ log (1− z + x(z − z̄))

]
. (C.17)

The remaining integral is easy to perform.

Cut [2346], R1,3
4 , fig. 3.12d:

Using the routing of the loop momenta shown in fig. 3.12d, we compute this

cut by integrating over the cut of a two-mass triangle. However, when using the

result for the cut triangle, we need to correct for the fact that the vertex attached

to propagators 2, 3 and 5 has a different color, compared to the usual cut triangle.

Note also that it is convenient to introduce the variable y defined in eq. (3.104).

We obtain

Cut[2346],R1,3
4
TL(p2

1, p
2
2, p

2
3) =

= −i
(
eγEε

π2−ε

)
(2π)2

∫
d4−2εk1

δ (k2
1) δ ((p2 + k1)2)

(p3 − k1)2
Cut(p3−k1)2T

(
p2

3, (p3 − k1)2)
= −4π2i

e2γEε

εΓ(1− 2ε)
(p2

1)−2−2εu−1−2ε
3

∫ 1

0

dx x−ε(1− x)−ε∫ 1

0

dy y−2ε(1− y)−1−εδ (u2 + y(z(1− z̄)− x(z − z̄)))

= −4π2i
e2γEε

εΓ(1− 2ε)
(p2

1)−2−2εu−1−2ε
3 z−2ε(−z̄)−2ε

∫ z
z−z̄

0

dx
x−ε(1− x)−ε

(z − x(z − z̄))1+ε

1

(z − zz̄ − x(z − z̄))−3ε
. (C.18)

The integral has an endpoint singularity that needs to be subtracted before

expansion in ε under the integration sign. The y variable is restricted to the

interval [0, 1] because of the θ-function of the cut triangle subdiagram. We find
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C.2. Computation and explicit results for double unitarity cuts

it simpler to use the δ-function associated with the cut on (p2 + k1)2 to perform

the y integration, which in turn imposes some limits on the range of integration

of x.

Cut [1356], R1,3
4 , fig. 3.12f:

The integral is

Cut[1356],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.19)

= −i e
γEε

π2−ε (2π)2

∫
d4−2εk1

δ (k2
1) δ ((p1 − k1)2)

(p2 + k1)2
Cut(p2+k1)2T

(
p2

3, (p2 + k1)2)
=
−4π2ie2γEε

εΓ(1− 2ε)
(p2

1)−2−2ε

∫ −z̄(1−z)
z−z̄

0

dx
x−ε(1− x)−ε(−z̄(1− z)− x(z − z̄))−1−ε

(1− z + x(z − z̄))
.

The restriction on the integration range of x is imposed by the θ-function of the

cut triangle subdiagram. After subtracting the singularity, the integral can be

performed oder by order in ε.

Cut [456], R1,2
4 , fig. 3.13a:

The calculation of this cut in region R1,2
4 is done in exactly the same way as

in region R1,3
4 . However, we write the result differently so that we are away from

the branch cuts in this region:

Cut[456],R1,2
4
TL(p2

1, p
2
2, p

2
3) =

= −i e
γEε

π2−ε (2π)3

∫
d4−2εk1δ

(
k2

1

)
δ
(
(p3 − k1)2

)
δ
(
(p1 + k1)2

)
T (p2

3)

= −4π2i
cΓe

γEε

ε2Γ(1− ε)(p2
1)−2−2εeiπε((z − 1)(1− z̄))−1−2ε (zz̄)−ε

(z − z̄)1−2ε
. (C.20)

Cut [2346], R1,2
4 , fig. 3.13b:

The calculation of this cut in R1,2
4 is simpler than in region R1,3

4 . We get

Cut[2346],R1,2
4
TL(p2

1, p
2
2, p

2
3) = (C.21)

= −i
(
eγEε

π2−ε

)
(2π)2

∫
d4−2εk1

δ (k2
1) δ ((p2 − k1)2)

(p1 + k1)2
Cut(p1+k1)2T

(
p2

3, (p1 + k1)2)
= 4π2i

e2γEε

εΓ(1− 2ε)
(p2

1)−2−2εu−ε2

∫ 1−z̄
z−z̄

0

dx x−ε(1− x)−ε
(1− z̄ − x(z − z̄))−1−ε

z(1− z̄)− x(z − z̄)
.
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Appendix C. Cuts of the three-mass three-point ladder

After subtraction of the singularity, the integral is easy to perform.

Cut [1356], R1,2
4 , fig. 3.13c:

The computation of this cut is very similar to the previous one. We have

Cut[1356],R1,2
4
TL(p2

1, p
2
2, p

2
3) = (C.22)

= −i
(
eγEε

π2−ε

)
(2π)2

∫
d4−2εk1

δ (k2
1) δ ((p1 − k1)2)

(p2 + k1)2
Cut(p2+k1)2T

(
p2

3, (p2 + k1)2)
= 4π2i

e2γEε

εΓ(1− 2ε)
(p2

1)−2−2ε

∫ z̄(z−1)
z−z̄

0

dx x−ε(1− x)−ε
(z̄(z − 1)− x(z − z̄))−1−ε

z − 1− x(z − z̄)
.

The restriction on the integration range of x is imposed by the θ-function of the

cut triangle subdiagram. The endpoint singularity is dealt with as before.

Cut [1236], R1,2
4 , fig. 3.13d:

This cut is slightly harder to compute in region R1,2
4 than in region R1,3

4 . We

follow the same technique of integrating over the cut of a two-mass hard box,

although we have to be careful to correct for the different factors of ±i between

the subdiagram entering in fig. 3.13d and a standard cut box that would have

black vertices on one side of the cut and white vertices on the other side. It is

also useful to introduce the y variable defined in eq. (3.104), and to integrate over

it with the δ-function on propagator (p3 + k). The y variable is restricted to the

interval [0, 1] because of the θ-function on (p1 − k)2:

Cut[1236],R1,2
4
TL(p2

1, p
2
2, p

2
3) =

= i
eγEε

π2−ε (2π)2

∫
d4−2εkδ

(
k2
)
δ
(
(p3 + k)2

)
Cut(p1−k)2B2mh(p2

1, p
2
2; p2

3, (p1 − k)2)

= −8π2i
eγEεcΓ

Γ(1− ε)(p2
1)−2−2ε uε2

((z − 1)(1− z̄))1+ε

∫ 1

0

dx x−ε(1− x)−ε∫ 1

0

dy y1−2ε(1− y)−1−2εδ
(
u3 + y(z − 1− x(z − z̄))

)
[

1

ε
+ log y + log

(
u2 − (1− y)

)
− log u2

]
= −8π2i

eγEεcΓ

Γ(1− ε)(p2
1)−2−2ε uε2

((z − 1)(1− z̄))3ε

∫ z̄(z−1)
z−z̄

0

dx
x−ε(1− x)−ε

(z − 1− x(z − z̄))1−4ε
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C.2. Computation and explicit results for double unitarity cuts

(
z̄(z − 1)− x(z − z̄)

)−1−2ε
[

1

ε
+ log

(
(z − 1)(1− z̄)

)
− log

(
z − 1− x(z − z̄)

)
− log(zz̄) + log

(
zz̄ − z̄(z − 1)− x(z − z̄)

z − 1− x(z − z̄)

)]
(C.23)

The restriction on the integration range of x is imposed when integrating over y.

The endpoint singularity is dealt with as before.

C.2.2 Double unitarity cuts in the p2
1 and p2

3 channels in

region R1,3
4

In this section we present the analytic results for all the nonvanishing cuts in

the p2
1 and p2

3 channels in region R1,3
4 , where z̄ < 0 < z < 1.

Cut[456],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.24)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[456],R1,3
4

(z, z̄) + (−2πi) f
(k,3)

[456],R1,3
4

(z, z̄)

]
,

f
(−2,2)

[456],R1,3
4

= 1 ,

f
(−2,3)

[456],R1,3
4

= 0 ,

f
(−1,2)

[456],R1,3
4

= 2 log (z − z̄)− 2 log [(1− z) (1− z̄)]− log (−zz̄) ,

f
(−1,3)

[456],R1,3
4

= −1

2
,

f
(0,2)

[456],R1,3
4

=
1

2
[−2 log (z − z̄) + 2 log [(1− z) (1− z̄)] + log (−zz̄)]2 − π2

2
,

f
(0,3)

[456],R1,3
4

= log [(1− z) (1− z̄)]− log (z − z̄) +
1

2
log (−zz̄) . (C.25)

Cut[1236],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.26)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[1236],R1,3
4

(z, z̄) + (−2πi) f
(k,3)

[1236],R1,3
4

(z, z̄)

]
,
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Appendix C. Cuts of the three-mass three-point ladder

f
(−2,2)

[1236],R1,3
4

= 1 ,

f
(−2,3)

[1236],R1,3
4

= 0 ,

f
(−1,2)

[1236],R1,3
4

= 2 log (z − z̄)− 2 log [(1− z)(1− z̄)]− 2 log z ,

f
(−1,3)

[1236],R1,3
4

= 0 ,

f
(0,2)

[1236],R1,3
4

= 2Li2(z)− 2Li2

(z
z̄

)
− 2Li2 (z̄) + 2 log2 (1− z̄) + 2 log2 (z − z̄)

+ 4 log(1− z) log (1− z̄)− 4 log(1− z) log (z − z̄) + 4 log z log (1− z̄)

− 4 log z log (z − z̄)− 4 log (1− z̄) log (z − z̄) + 2 log2(1− z) + 2 log2 z

− log2 (−z̄) + 4 log z log(1− z)− 2π2

3
,

f
(0,3)

[1236],R1,3
4

= 0 . (C.27)

Cut[1256],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.28)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−1

εk
[
f

(k,2)

[1256],R1,3
4

(z, z̄) + (−2πi) f
(k,3)

[1256],R1,3
4

(z, z̄)

]
,

f
(−1,2)

[1256],R1,3
4

= log z − log (−z̄) ,

f
(−1,3)

[1256],R1,3
4

=
1

2
,

f
(0,2)

[1256],R1,3
4

= 2Li2

(z
z̄

)
+ 2Li2 (z̄)− 2Li2(z) +

3

2
log2 (−z̄)− 2 log z log (1− z̄)

+ 2 log z log (z − z̄)− log z log (−z̄) + 2 log(1− z) log (−z̄)

+ 2 log (1− z̄) log (−z̄)− 2 log (z − z̄) log (−z̄)− 1

2
log2 z

− 2 log(1− z) log z +
π2

6
,

f
(0,3)

[1256],R1,3
4

= log (z − z̄)− log [(1− z) (1− z̄)]− 1

2
log (−zz̄) . (C.29)
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Cut[1356],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.30)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[1356],R1,3
4

(z, z̄) + (−2πi) f
(k,3)

[1356],R1,3
4

(z, z̄)

]
,

f
(−2,2)

[1356],R1,3
4

= −1 ,

f
(−2,3)

[1356],R1,3
4

= 0 ,

f
(−1,2)

[1356],R1,3
4

= 2 log [(1− z)(1− z̄)]− 2 log (z − z̄) + 2 log (−z̄) + log(z) ,

f
(−1,3)

[1356],R1,3
4

= 0 ,

f
(0,2)

[1356],R1,3
4

= −Li2

(z
z̄

)
− 3Li2 (z̄)− 2 log2 (1− z̄)− 2 log2 (z − z̄)

− 4 log(1− z) log (1− z̄) + 4 log(1− z) log (z − z̄)

− 2 log z log (1− z̄) + 2 log z log (z − z̄) + 4 log (1− z̄) log (z − z̄)

− log z log (−z̄)− 4 log (1− z̄) log (−z̄) + 4 log (z − z̄) log (−z̄)

− 5

2
log2 (−z̄)− 4 log(1− z) log (−z̄)− 2 log2(1− z)

− log2 z − 2 log z log(1− z) +
π2

6
,

f
(0,3)

[1356],R1,3
4

= 0 . (C.31)

Cut[2346],R1,3
4
TL(p2

1, p
2
2, p

2
3) = (C.32)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[2346],R1,3
4

(z, z̄) + (−2πi) f
(k,3)

[2346],R1,3
4

(z, z̄)

]
,

f
(−2,2)

[2346],R1,3
4

= −1 ,

f
(−2,3)

[2346],R1,3
4

= 0 ,

f
(−1,2)

[2346],R1,3
4

= 2 log [(1− z)(1− z̄)]− 2 log (z − z̄) + log z ,

301



Appendix C. Cuts of the three-mass three-point ladder

f
(−1,3)

[2346],R1,3
4

= 0 ,

f
(0,2)

[2346],R1,3
4

= Li2

(z
z̄

)
+ 3Li2 (z̄)− 2 log2 (1− z̄)− 2 log2 (z − z̄) +

3

2
log2 (−z̄)

− 4 log(1− z) log (1− z̄) + 4 log(1− z) log (z − z̄)− 1

2
log2 z

+ 2 log z log (z − z̄) + 4 log (1− z̄) log (z − z̄)− 2 log2(1− z)

− 2 log z log (1− z̄)− 2 log z log(1− z) +
5π2

6
,

f
(0,3)

[2346],R1,3
4

= 0 . (C.33)

C.2.3 Double unitarity cuts in the p2
1 and p2

2 channels in

region R1,2
4

In this section we present the analytic results for all the nonvanishing cuts in

the p2
1 and p2

2 channels in region R1,2
4 , where 0 < z̄ < 1 < z.

Cut[456],R1,2
4
TL(p2

1, p
2
2, p

2
3) (C.34)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[456],R1,2
4

(z, z̄) + (−2πi) f
(k,3)

[456],R1,2
4

(z, z̄)

]
,

f
(−2,2)

[456],R1,2
4

= 1 ,

f
(−2,3)

[456],R1,2
4

= 0 ,

f
(−1,2)

[456],R1,2
4

= 2 log (z − z̄)− 2 log [(z − 1) (1− z̄)]− log (zz̄) ,

f
(−1,3)

[456],R1,2
4

= 0 ,

f
(0,2)

[456],R1,2
4

= 2 log2 (1− z̄) + 2 log2 (z − z̄) +
1

2
log2 z̄ + 4 log(z − 1) log (1− z̄)

− 4 log(z − 1) log (z − z̄) + 2 log(z − 1) log z̄ + 2 log z log (1− z̄)

− 2 log z log (z − z̄)− 4 log (1− z̄) log (z − z̄) + log z log z̄

− 2 log (z − z̄) log z̄ + 2 log2(z − 1) +
1

2
log2 z + 2 log z log(z − 1)

+ 2 log (1− z̄) log z̄ ,
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f
(0,3)

[456],R1,2
4

= 0 . (C.35)

Cut[1236],R1,2
4
TL(p2

1, p
2
2, p

2
3) = (C.36)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[1236],R1,2
4

(z, z̄) + (−2πi) f
(k,3)

[1236],R1,2
4

(z, z̄)

]
,

f
(−2,2)

[1236],R1,2
4

= 1 ,

f
(−2,3)

[1236],R1,2
4

= 0 ,

f
(−1,2)

[1236],R1,2
4

= 2 log (z − z̄)− 2 log [(z − 1) (1− z̄)]− 2 log z̄ ,

f
(−1,3)

[1236],R1,2
4

= 0 ,

f
(0,2)

[1236],R1,2
4

= 2Li2(1− z)− 2Li2 (z̄)− 2Li2

( z̄
z

)
+ 2 log2 (1− z̄) + 2 log2 (z − z̄)

+ 4 log(z − 1) log (1− z̄)− 4 log(z − 1) log (z − z̄) + 4 log(z − 1) log z̄

− 4 log (1− z̄) log (z − z̄) + 4 log (1− z̄) log z̄ − 4 log (z − z̄) log z̄

− log2 z + 2 log z log(z − 1) + 2 log2 z̄ + 2 log2(z − 1) ,

f
(0,3)

[1236],R1,2
4

= 0 . (C.37)

Cut[1356],R1,2
4
TL(p2

1, p
2
2, p

2
3) = (C.38)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[1356],R1,2
4

(z, z̄) + (−2πi) f
(k,3)

[1356],R1,2
4

(z, z̄)

]
,

f
(−2,2)

[1356],R1,2
4

= −1 ,

f
(−2,3)

[1356],R1,2
4

= 0 ,

f
(−1,2)

[1356],R1,2
4

= 2 log [(z − 1) (1− z̄)]− 2 log (z − z̄) + 2 log z̄ + log z ,

f
(−1,3)

[1356],R1,2
4

= 0 ,
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f
(0,2)

[1356],R1,2
4

= −3Li2 (z̄) + Li2

( z̄
z

)
− 2 log2 (1− z̄)− 2 log2 (z − z̄)− 2 log2 z̄

− 4 log(z − 1) log (1− z̄) + 4 log(z − 1) log (z − z̄)− 4 log(z − 1) log z̄

− 2 log z log (1− z̄) + 2 log z log (z − z̄) + 4 log (1− z̄) log (z − z̄)

− 4 log (1− z̄) log z̄ + 4 log (z − z̄) log z̄ − 2 log2(z − 1)− log2(z)

2

− 2 log z log z̄ − 2 log z log(z − 1) +
π2

3
,

f
(0,3)

[1356],R1,2
4

= 0 . (C.39)

Cut[1356],R1,2
4
TL(p2

1, p
2
2, p

2
3) = (C.40)

=
i c2

Γ (p2
1)−2−2ε(−2πi)2

(1− z)(1− z̄)(z − z̄)

∞∑
k=−2

εk
[
f

(k,2)

[1356],R1,2
4

(z, z̄) + (−2πi) f
(k,3)

[1356],R1,2
4

(z, z̄)

]
,

f
(−2,2)

[1356],R1,2
4

= −1 ,

f
(−2,3)

[1356],R1,2
4

= 0 ,

f
(−1,2)

[1356],R1,2
4

= 2 log [(z − 1) (1− z̄)]− 2 log (z − z̄) + log z̄ ,

f
(−1,3)

[1356],R1,2
4

= 0 ,

f
(0,2)

[1356],R1,2
4

= Li2

( z̄
z

)
− 3Li2(1− z)− 2 log2 (1− z̄)− 2 log2 (z − z̄)− 1

2
log2 z̄

− 4 log(z − 1) log (1− z̄) + 4 log(z − 1) log (z − z̄)− 2 log(z − 1) log z̄

+ 4 log (1− z̄) log (z − z̄)− 2 log (1− z̄) log z̄ + 2 log (z − z̄) log z̄

− 2 log2(z − 1) +
3

2
log2 z − 3 log z log(z − 1)− π2

6
,

f
(0,3)

[1356],R1,2
4

= 0 . (C.41)
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Appendix D

A brief comment on non-generic

internal masses

Throughout this thesis, we have assumed all internal masses to be distinct.

However, diagrams with equal internal masses are particularly interesting in

phenomenological applications, so we now show how to obtain relations for these

cases from the ones we established in the generic case. If two propagators have the

same mass m, then it is no longer correct that the cut on one of the propagator of

mass m will reproduce the full discontinuity of the function on the m2 variable,

so that relations such as eq. (3.11) and eq. (3.17) must be modified.

If a Feynman diagram has more than one propagator with mass m2, it is

the sum of all the single cuts of propagators of mass m2 that is related to the

m2-discontinuity of the integral. It is thus sufficient to consider the case where

all internal masses are distinct: to get the discontinuity in the degenerate case

we sum the discontinuities (or cuts, which are well defined for generic masses)

associated with each of the masses that we want to make equal, and then take

the equal mass limit.

Let us give an example. Consider the diagram of section B.1.5 in the limit

m2
12 = m2

13, T (p2
1, 0, 0;m2, 0,m2). This diagram is finite in four dimensions, and

it is given by

T (p2
1, 0, 0;m2, 0,m2) =− i

p2
1

log2

(
1 + γ

γ − 1

)
+O(ε), (D.1)
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where we defined the usual quantity

γ =

√
1− 4

m2

p2
1

. (D.2)

For concreteness we work in the region where p2
1 < 0 and m2 > 0, in which case

γ > 1.

The result of the cut in p2
1 is computed in the region p2

1 > 4m2 > 0 where

γ < 1 and we get

Cutp2
1

[
T (p2

1, 0, 0;m2, 0,m2)
]

=
4π

p2
1

log

(
1 + γ

1− γ

)
. (D.3)

The discontinuity in m2 can be computed directly from eq. (D.1). The result is

Discm2

[
T (p2

1, 0, 0;m2, 0,m2)
]

=
4π

p2
1

log

(
1 + γ

1− γ

)
. (D.4)

Let us now see how these results are related to the case with generic masses,

i.e. m2
12 6= m2

13. In the equal mass limit,

w1 −→
1 + γ

2
and w̄1 −→

1− γ
2

. (D.5)

It is easy to see that eq. (D.1) and eq. (D.3) are obtained from eq. (B.20) and

eq. (B.22) under this limit. More interestingly, we can verify from eq. (D.4) above

and the cuts of massive propagators given in eq. (B.23) and eq. (B.24) that

Discm2

[
T (p2

1, 0, 0;m2, 0,m2)
]

= (D.6)

=
[
Cutm2

12
T (p2

1, 0, 0;m2
12, 0,m

2
13) + Cutm2

13
T (p2

1, 0, 0;m2
12, 0,m

2
13)
] ∣∣∣∣m2

12=m2

m2
13=m2

which illustrates the point we made above.

We close with a comment on divergences. When combining single cuts to take

the degenerate mass limit, one should first add all relevant single-propagator cuts

and then take the limit. Indeed, individual terms in the sum might become

divergent in this limit, but these divergences are of course not meaningful and

cancel in the sum. As an example, consider the diagram of section B.1.4 in the
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limit m2
12 = m2

23, T (p2
1, 0, 0;m2,m2, 0). The two cuts in internal masses are given

in eqs. (B.16) and (B.17) and they are divergent for m2
12 = m2

23. However, their

sum, which corresponds to the m2-discontinuity of T (p2
1, 0, 0;m2,m2, 0), is finite,

as it should be.
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