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Lay Summary

Comparing physical theories to experimental results is fundamental to test
the validity of said theories. To make this comparison, a widely used method
relies on the evaluation of so-called Feynman diagrams. These are a graphical
representation of complicated mathematical expressions. Evaluating them
requires the computation of specific integrals, called Feynman integrals. In this
thesis, we develop new methods to study these diagrams and the functions they
evaluate to.

Computing Feynman integrals is a very complicated task and the focus of a
lot of ongoing research. We make use of some recently developed mathematical
formalism to shed new light on the analytic structure of the functions these
integrals evaluate to. We show how purely graphical operations on Feynman
diagrams capture the analytic structure of Feynman integrals, and how this allows

to find new and more efficient ways of computing these integrals.






Abstract

We study the relations among unitarity cuts of a Feynman integral computed
via diagrammatic cutting rules, the discontinuity across the corresponding branch
cut, and the coproduct of the integral. For single unitarity cuts, these relations
are familiar, and we show that they can be generalized to cuts in internal masses
and sequences of cuts in different channels and/or internal masses. We develop
techniques for computing the cuts of Feynman integrals in real kinematics.
Using concrete one- and two-loop scalar integral examples we demonstrate that
it is possible to reconstruct a Feynman integral from either single or double
unitarity cuts.

We then formulate a new set of complex kinematics cutting rules generalising
the ones defined in real kinematics, which allows us to define and compute cuts of
general one-loop graphs, with any number of cut propagators. With these rules,
which are consistent with the complex kinematic cuts used in the framework of
generalised unitarity, we can describe more of the analytic structure of Feynman
diagrams. We use them to compute new results for maximal cuts of box diagrams
with different mass configurations as well as the maximal cut of the massless
pentagon.

Finally, we construct a purely graphical coproduct of one-loop scalar Feynman
diagrams. In this construction, the only ingredients are the diagram under
consideration, the diagrams obtained by contracting some of its propagators,
and the diagram itself with some of its propagators cut. Using our new definition
of cut, we map the graphical coproduct to the coproduct acting on the functions
Feynman diagrams and their cuts evaluate to. We finish by examining the
consequences of the graphical coproduct in the study of discontinuities and

differential equations of Feynman integrals.
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Chapter 1
Introduction

The Standard Model of particle physics has been extremely successful
in describing data collected in a wide range of collider experiments to an
unprecedented level of accuracy. This makes it one of the best tested theories in
physics. The ever increasing precision of the experimental measurements must
be matched by an increase in the accuracy of theoretical predictions.

Scattering amplitudes are fundamental tools in making the connection
between quantum field theories, like the Standard Model, and experimental
observations. Roughly speaking, squared amplitudes describe the (differential)
probability of a given process to happen. They allow to determine the cross-
sections of scattering processes, which can be measured in collider experiments,

from the underlying theory that governs them.

In the framework of perturbative quantum field theory, amplitudes are written
as an expansion over so-called Feynman diagrams. Feynman diagrams are a
graphical representation of the terms appearing in the Taylor expansion of the
generating functional of the theory, defined in terms of its Lagrangian density.
The Taylor expansion is an expansion in powers of some small coupling constant
of the theory. Feynman graphs with a certain number of loops first appear at
a specific order in this expansion. It is thus common to refer to the accuracy
of theoretical predictions by either counting the power of the coupling at which
we truncate the expansion, or by counting the maximal number of loops of the
Feynman diagrams we consider.

For most processes, the state of the art is next-to-leading order (NLO)

accuracy (although for some inclusive processes we can reach much higher
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accuracy, a notable example being the recent determination of the Higgs
production by gluon fusion at three-loops (N°LO) [1]). This was possible to
achieve thanks to the development of powerful methods to efficiently evaluate
one-loop amplitudes. These methods build on the observation that one-loop
amplitudes can be written in terms of a small number of scalar Feynman diagrams,

i.e., Feynman diagrams with unit numerators.

The fact that diagrams with complicated numerators can be rewritten in
terms of scalar diagrams was first noticed by Passarino and Veltman [2]. The
calculation of one-loop amplitudes was then done by expanding it in terms of
Feynman diagrams, reducing all diagrams to scalar integrals, and then computing
all contributing integrals. However, even at one-loop, the number of diagrams
soon becomes unmanageable as one increases the number of particles taking part

in the interaction.

In more recent methods [3-17], using modern unitarity techniques, one-loop
amplitudes are themselves projected onto a small basis of scalar integrals, the
only integrals that must be evaluated, thus bypassing the expansion in terms
of complicated Feynamn diagrams and their reduction to scalar ones. In four
dimensions, only diagrams with one, two, three or four propagators are necessary
(diagrams with five propagators can also be necessary to obtain the so-called
rational parts of the amplitudes). These methods are called unitarity methods
because they use discontinuities to project the amplitude onto the basis of scalar

integrals.

The work in this thesis builds on two main lessons learnt in the development of
these techniques. The first lesson is that scalar Feynman integrals constitute the
fundamental building blocks of amplitudes at one loop. This is not true beyond
one loop as some of the numerator structures that appear cannot be reduced in
the sense of [2], but it is still true that scalar diagrams play a fundamental role.
Throughout this thesis, we will thus focus on scalar Feynman diagrams. Although
we will not always be explicit about it, every time we mention Feynman diagrams

we will be referring to scalar Feynman diagrams.

The second lesson is that understanding the discontinuity structure of
Feynman diagrams (and more generally amplitudes) is important to find efficient
ways of computing them. Indeed, discontinuities of amplitudes are interesting

to study as physical objects. It was realised a long time ago [18-20] that



they can be given a physical interpretation in terms of so-called unitarity cuts,
corresponding to the original diagrams with some of the propagators put on-
shell. Some years later, it was shown that the same can be said for individual
Feynman diagrams [21-23]. In a nutshell, discontinuities appear at the threshold
for production of on-shell physical states. From these observations, important
tools were developed, such as the S-matrix theory [20], the optical theorem
which relates the discontinuity of forward-scattering amplitudes to the total cross-

section, or the largest time equation [21},23].

More recently, the calculation of Feynman integrals was revolutionised by
new developments in the study of a specific class of transcendental functions,
the so-called multiple polylogarithms (MPLs). Indeed, a large class of Feynman
diagrams can be expressed in terms of these functions, in particular all one-loop
diagrams. Multiple polylogarithms are defined as iterated integrals, and carry a
lot of unexpected algebraic structure. They form a Hopf algebra [24,25], which
turns out to be a natural tool to capture their discontinuities. In this thesis, we
will thus study the discontinuities of scalar Feynman diagrams using tools drawn

from the Hopf algebra of multiple polylogarithms, in particular its coproduct.

To be clear about the scope of this thesis, we will mostly be concerned with
scalar and planar Feynman integrals, with generic configurations of internal and
external masses, computed in dimensional regularisation. Some of our discussion
can be generalised to non-planar diagram, but we did not investigate this type of
diagrams in detail. Beyond one loop, we will restrict our discussion to diagrams
that evaluate to MPLs, although it is known that generic Feynman integrals can
involve other types of transcendental functions [26-35]. In the latter parts of
this thesis, chapters [f] and [0, we will further specialise our discussion to one-loop

diagrams.

In chapter |2 we will start by explaining in detail how discontinuities are
captured by the coproduct of the Hopf algebra of MPLs. For that, we will be
concrete about what we mean by discontinuity, by defining an operator Disc. This
operator acts on MPLs, and can be iterated to compute sequential discontinuities.
We will then show that this operator can be related to specific entries of the
coproduct of MPLs, computed through the action of an operator 4. We will

establish precise relations between these two operations, thus making it apparent
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that the coproduct is a natural tool to study the discontinuities of Feynman

integrals that evaluate to MPLs.
Following [18-23], in chapter |3| we will then show that the discontinuities of

Feynman integrals can be computed through a specific set of so-called cutting
rules, that define the unitarity cuts of Feynman diagrams. These rules have
already been established for single discontinuities, and in this thesis we build
on this to propose a consistent set of generalised rules reproducing multiple
discontinuities. We will thus define an operator Cut, acting on Feynman
diagrams, which computes multiple unitarity cuts. These can be cuts on external
massive channels, or on internal massive propagators. We will then relate this
operator to the other two operators which compute discontinuities, Disc and ¢.
We will thus conjecture a relation between unitarity cuts, discontinuities and

specific coproduct entries.

To check our relations, we had to develop techniques to compute cut diagrams.
We did so for a variety of triangle diagrams, with or without internal masses, as
well as for a two-loop example, the three-point ladder integral with three-external
massive legs. We verified that our conjectured relations between Cut, Disc and ¢

were satisfied in all the examples we investigated.

In chapter [4, we explore the question of whether Feynman diagrams can be
computed from the knowledge of their cuts. The idea for this was based on
[21-23], where it was shown that individual Feynman diagrams have a dispersive
representation (it had been known for a while that amplitudes have a dispersive
representation [20]). We were able to verify that unitarity cuts greatly constrain

the analytic structure of Feynman diagrams.

As we will make clear in our discussion, while the operator Cut is enough to
reproduce the discontinuities across physical branch cuts of Feynman diagrams, it
is not enough to capture the full structure of the coproduct of Feynman integrals.
In chapter |5| we will thus develop a new set of cutting rules, which is consistent
with Cut when both are applicable, but captures as much as possible of the
analytic structure of Feynman diagrams. These rules will be developed in the
context of one-loop Feynman diagrams. Unlike Cut, which was defined strictly in
real kinematics, these new rules are defined in complex kinematics which allows
us to compute new types of cuts. For instance, with the new set of rules we will

be able to compute the four-propagator cut of the fully massless box diagrams to

4



all orders in €, which is beyond what can be achieved with Cut.

Finally, we will address what was our main motivation for the study of cut
diagrams, discontinuities and the coproduct of Feynman diagrams. It started
from the realisation that some coproduct entries, the ones corresponding to
discontinuities, have a diagrammatic representation. It was then natural to
ask ourselves whether it would be possible to have a completely diagrammatic
representation of the full coproduct of Feynman diagrams. In this thesis, we show
that this is possible for one-loop Feynman diagrams. We explain how a purely
graphical coproduct acting on one-loop Feynman graphs can be constructed,
and how its action on Feynman graphs matches the action of the coproduct
of MPLs on Feynman integrals. This representation of the coproduct has
practical applications given the way the coproduct interacts with discontinuity
and differential operators. In particular, we will show that differential equations
of one-loop Feynman integrals are determined by their cuts, and can be easily

obtained from their graphical coproduct.

Chapters [2] 3] and [4] of this thesis form a coherent whole by themselves. They
correspond to work that was published in two papers, [36] and [37]. Chapter
contains work that has not yet been published. Although it should be contrasted
with the work presented in chapter [3| it can be read on its own. Chapter [g] is
also unpublished work. It is largely self contained, although it uses many results
established in chapter [f| In chapter [7] we summarise the conclusions of our work

and discuss directions for further study.

In the appendices, we summarise our notations and conventions, appendix
[A] and include most of the explicit results of our calculations of uncut and cut
Feynman diagrams, appendices [B] and [C] These include some calculations and
proofs that do not belong in the main body but we thought should be present,
such as section [B.3] where we compute triangles with three external massive legs
and one or two massive propagators, and section where we compute the
box with four massive external legs. Finally, in appendix [D| we briefly comment
on how some of our results generalise in the case where some masses are equal
but non-zero, which we always assume not to be the case in the main body of
this thesis.



Chapter 1. Introduction

We finish this introduction by noting that some of the results necessary to
perform the checks of the diagrammatic coproduct are not explicitly included in
this thesis, as some diagrams evaluate to rather large expressions. However, all
of them are available in a separate MATHEMATICA package [38|, which we believe
is a more suitable format to present such large expressions. This package can be
downloaded from:

http://www2.ph.ed.ac.uk/~s1039321/results0fDiagramsDiagCoprod.zip.


http://www2.ph.ed.ac.uk/~s1039321/resultsOfDiagramsDiagCoprod.zip

Chapter 2

Multiple polylogarithms and
discontinuities of Feynman

diagrams

2.1 Introduction

In this first chapter we will introduce concepts and tools which will be
important throughout this thesis. The content covered here is also presented
in refs. [36] and [37].

We will start by introducing a specific class of transcendental functions, the
so-called multiple polylogarithms (MPLs). We will define MPLs and review some
of their properties. This will not be a complete review of the subject as it is a
very broad field of study. Instead, we will focus on what will be used in the
remaining of this thesis, in particular the Hopf algebraic structure of MPLs and
the associated coproduct.

The reason we are interested in this particular class of functions is that
many Feynman integrals evaluate to MPLs. In particular, it is conjectured, and
observed in a wide variety of examples, that all one-loop diagrams can be written
in terms of these functions. Beyond one-loop, elliptic functions can appear but
MPLs still play an important role, specially for diagrams depending on few scales.
We will introduce and review several topics which have allowed to make progress
in the understanding of the analytic structure of Feynman integrals over recent

years, such as the concept of symbol and symbol alphabet or the so-called first-
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

entry condition.

It is well known that the branch cuts of Feynman integrals are related to
discontinuities which have a physical meaning, as they are associated to thresholds
for the production of on-shell physical states [18,[20]. The position of the branch
points of Feynman integrals can be found through the so-called Landau conditions
[18] (see e.g. [39] for a modern discussion of the Landau conditions in the context
of one-loop diagrams. We also give a very short review of the Landau conditions in
the introduction of chapter [6] section [6.1)). Understanding the analytic structure
of Feynman integrals thus benefits from having a physical perspective on these
functions, and not only a purely mathematical approach.

In this chapter, we will give a precise definition of Disc, an operator computing
discontinuities across physical branch cuts of Feynman integrals which evaluate
to MPLs, and will argue that the coproduct of the Hopf algebra of MPLs is a
natural tool to study these discontinuities. For this purpose, we will define an
operator ¢ which corresponds to a truncation of the coproduct tensor.

We will explain how to identify the kinematic region where the Feynman
integral is away from any branch cut, the so-called euclidean region, and how by
moving away from that region in a controlled way we can select the discontinuities
associated with specific kinematic invariants. We will then establish precise
relations between discontinuities and coproduct entries, i.e., relations between
Disc and 4, and explain in detail how these can be obtained. We will finish
by giving an example to make our discussion more concrete: we will get the
relations between discontinuities and coproduct entries for three-point functions
with massive external legs and massless propagators.

This chapter is a mixture of well established results—section [2.2—and work
developed during the course of my PhD, in collaboration with Ruth Britto, Claude
Duhr, my supervisor Einan Gardi, and Hanna Grénqvist for the study of diagrams

with internal masses—section 2.3

2.2 The Hopf algebra of multiple polylogarithms

Feynman integrals in dimensional regularisation usually evaluate to transcen-
dental functions whose branch cuts are related to the physical discontinuities

of S-matrix elements. Although it is known that generic Feynman integrals
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can involve elliptic functions [26H35], large classes of Feynman integrals can be

expressed through the classical logarithm and polylogarithm functions,
“dt , “dt . .
log z = n and Li,(z) = n Li,—1(t) with Lij(z) = —log(1—=2), (2.1)
1 0

and generalisations thereof (see, e.g., refs. [40-46], and references therein). In this
work we will concentrate exclusively on integrals that can be expressed entirely
through the so-called multiple polylogarithms (MPLs), and in the rest of this

section we will review some of their mathematical properties.

2.2.1 Multiple polylogarithms

Multiple polylogarithms (MPLs) are defined by the iterated integral [25,/47]

2o dt
Gay,...,an;2) = / G(ag,...,an;t), (2.2)
0 t— aq
with a;, z € C. In the special case where all the a;’s are zero, we define, using the
obvious vector notation a, = (a,...,a),
——
1 n
G(0,;2) = — log" z. (2.3)
n!

The number n of integrations in eq. (2.2), or equivalently the number of a;’s, is
called the weight of the multiple polylogarithm, denoted w. As simple cases, we

have
G(0; z) = log z, G(a; z) = log (1 — 2) , G(0,a;z) = —Liy <§> ,

. (b—2z . b z z—a
G(a, b, Z) = L12 (b— a) —LIQ (m) —|—10g (1 — E) IOg (Z— b) y (24)

where the last equality holds for a and b different and nonzero [48]. Note that

some constants, corresponding to specific values of MPLs, inherit the weight from

the functions that define them. For instance,
log(—1) = +inr = w(r) =1, Li, (1) = ¢, = w((,) =n. (2.5)

9



Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

In the following we denote by H the Q-vector space spanned by all multiple
polylogarithms. In addition, H can be turned into an algebra. Indeed, iterated

integrals form a shuffle algebra,

G(a;;2) Gl z) = Y G(iz), (2.6)

d€a M,
where a; Illd,; denotes the set of all shuffles of a@; and @y, where a; =
(a11,...,a1,) and da = (ag1,...,a2m), le., the set of all permutations of
their union that preserve the relative orderings inside a; and ds. It is obvious
that the shuffle product preserves the weight, and hence the product of two
multiple polylogarithms of weight n; and ny is a linear combination of multiple
polylogarithms of weight n; +ns. We can formalise this statement by saying that
the algebra of multiple polylogarithms is graded by the weight,

H=EH, with Hy, - Hoy C Hoytns (2.7)
n=0

where H,, is the Q-vector space spanned by all multiple polylogarithms of weight
n, and we define Hy = Q.

The coproduct of the Hopf algebra of MPLs: Multiple polylogarithms
can be endowed with more algebraic structures. If we look at the quotient space
H = H/(rH) (the algebra H modulo 7), then H is a Hopf algebra [24}25].
In particular, H can be equipped with a coproduct A : H — H ® H, which is

coassociative,

(dA)A=(A®id) A, (2.8)

respects the multiplication,
Aa-b) = A(a) - A(b), (2.9)
and respects the weight,

Hy = D HE @ o - (2.10)

10



2.2. The Hopf algebra of multiple polylogarithms

The coproduct of the ordinary logarithm and the classical polylogarithms are

A(logz) =1®logz +logz® 1, (2.11)
or, more generally,
A(log" z) = <Z) log®(2) @ log" ¥ (2), (2.12)
k=0
and .
A(Lin(2)) = 1® Lin(2) + Y Liy4(2) ® Oi' =, (2.13)
k=0 '

For the definition of the coproduct of general multiple polylogarithms we refer to
refs. [24,25].

The coassociativity of the coproduct implies that it can be iterated in a unique

way. If (nq,...,ng) is a partition of n, we define
..... TLkHTL_>HTL1®®an (214)

Note that the maximal iteration of the coproduct, corresponding to the partition

(1,...,1), agrees with the symbol of a transcendental function F' [49-53]

(F)eMi®.. . 0H, . (2.15)

.....

Since every element of H; is a logarithm, the ‘log’ sign is usually dropped when
talking about the symbol of a function. Note that not every element in H; ®...®
‘H1 corresponds to the symbol of a function in H. Instead, one can show that if

we take an element

.....

.....

Z Ciy,...in, d10g Ty Ndlog s, | logx; ®...®log xp_1®log 1 2®. . .Qlogx;, =0,

(2.17)

11
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where A denotes the usual wedge product on differential forms.

While H is a Hopf algebra, we are practically interested in the full algebra

H where we have kept all factors of . Based on similar ideas in the context of

motivic multiple zeta values [54], it was argued in ref. [48] that we can reintroduce

7 into the construction by considering the trivial comodule H = Q[in] ® H. The

coproduct is then lifted to a comodule map A : H — H ® H which acts on ir
according to

A(ir) =ir ® 1. (2.18)

For n even, (, is proportional to 7", and we thus also have
AlG) =¢G®1 for n even, (2.19)

while
AlG) =GR1+1®(, for n odd, (2.20)

as follows naturally from eq. (2.13). In the following we will, by slight abuse of
language, refer to the comodule as the Hopf algebra # of multiple polylogarithms.

Note that for H (more precisely H) to be a Hopf algebra, it has to be equipped
with more structures such as a counit and an antipode, see e.g. [48,/55]. These will

not play a role in the remaining of this thesis, so we will not study them further.

Let us conclude this review of multiple polylogarithms and their Hopf algebra
structure by discussing how differentiation and taking discontinuities interact
with the coproduct (see section for a precise definition of discontinuity in
this work). In ref. [48] it was argued that the following identities hold:

0 , 0
A 5= <1d ® &) A (2.21a)
A Disc = (Disc ®id) A. (2.21b)

In other words, differentiation only acts in the last entry of the coproduct, while

taking discontinuities only acts in the first entry.

Let f, be an element of weight n in H. The derivative of f, is thus a product

of a rational function and a function which is an element of weight n — 1 in #,

12



2.2. The Hopf algebra of multiple polylogarithms

given by
ofn . 0
2, M Kld ® g) An—l,lfn:| , (2.22)

where v : H ® H — H denotes the multiplication in H.

Since discontinuities are proportional to ¢m, which appears only in the first
entry of the coproduct, it follows from eq. (2.21b]) that for an element f,, of weight
n in H,

Disc f,, = p[(Disc ®id) Ay -1 fn] (2.23)

i.e. we simply multiply the two factors in the coproduct, and = denotes
equivalence modulo 72, because the weight (n — 1) part of the coproduct in
the right-hand side is only defined modulo 7.

The two relations in eq. will play a central role in the remaining of this
work. The relation between discontinuities and the coproduct will be important
throughout, and the relation between differential operators and the coproduct

will allow us to relate cuts and differential equations in chapter [6]

2.2.2 Pure Feynman integrals

Throughout this thesis, we will be concerned with connected planar Feynman
integrals in dimensional regularisation. In D = d — 2¢ dimensions, for d even, an

L-loop Feynman integral F") defines a Laurent series,

FP@e) = Y P (2.24)

k=—-2L

In the following we will concentrate on situations where the coefficients of the

Laurent series can be written exclusively in terms of multiple polylogarithms

and rational functions, and a well-known conjecture states that the weight of the
(

transcendental functions (and numbers) that enter the coefficient F; kL) of a L-loop

integral is such that
dL
w (F,ﬁ“) <k (2.25)

If all the polylogarithms in F,C(L) have the same weight, the integral is said to have
uniform (transcendental) weight. In addition, we say that an integral is pure if
the coefficients F; ,EL) do not contain rational or algebraic functions of the external

kinematical variables.

13
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It is clear that pure integrals are the natural objects to study when trying to
link Hopf algebraic ideas for multiple polylogarithms to Feynman integrals. For
this reason we will only be concerned with pure integrals in the rest of this thesis.
However, the question naturally arises of how restrictive this assumption is. In
ref. [56] it was noted that if a Feynman integral has unit leading singularity [57],
i.e., if all the residues of the integrand, obtained by integrating over compact
complex contours around the poles of the integrand, are equal to one, then the
corresponding integral is pure. Furthermore, it is well known that Feynman
integrals satisfy integration-by-parts identities [58], which, loosely speaking, allow
one to express a loop integral with a given propagator structure in terms of a
minimal set of so-called master integrals. In ref. [59] it was conjectured that it
is always possible to choose the master integrals to be pure integrals, and the
conjecture was shown to hold in several nontrivial cases [60-63]. Hence, if this
conjecture is true, it should always be possible to restrict the computation of the
master integrals to pure integrals, which justifies the restriction to this particular

class of integrals.

In practice, in this thesis we will always work with Feynman integrals
evaluating to functions of uniform weight, with a single rational factor. This
will require to choose the value of d according to the number of propagators. For
one-loop diagrams with n propagators, we will choose d to be the even number
such that d — 2 < n < d. For instance, tadpoles and bubbles are computed
in D = 2 — 2¢, triangles and boxes in D = 4 — 2¢, pentagons and hexagons in
D = 6 — 2¢, etc. The coefficient Fo(l) of one-loop integrals will then evaluate to
functions of weight d/2. It is not yet clear to us how to generalise this procedure
to general diagrams at higher loop order, but for the two-loop diagram we will
analyse in this work choosing D = 4 — 2¢ gives a uniform weight function, of
weight 4, which saturates the upper bound in eq. .

We finish with two comments. First, we only require to have integrals
evaluating to functions of uniform weight because it makes our discussion simpler.
Indeed, most of our conclusions are still valid for functions of non-uniform weight,
but we would need to treat separately the components of different weights.
Second, it will be convenient to think of the dimensional regularisation parameter
¢ as having weight —1. We can then assign a weight to a diagram in dimensional

regularisation (instead of only to the coefficients in its Laurent expansion): given

14



2.2. The Hopf algebra of multiple polylogarithms

our choice of varying the dimensions with the number of propagators for one-loop
diagrams, they have weight d/2. This will mean that in its Laurent expansion,
the coefficient of the order €* is a function of weight d/2 + k.

2.2.3 The symbol alphabet

The most natural kinematic variables for a given integral might be complicated
functions of the momentum invariants. Indeed, it is known that the Laurent
expansion coefficients in eq. are periods (defined, loosely speaking,
as integrals of rational functions), which implies that the arguments of the
polylogarithmic functions are expected to be algebraic functions of the external
scales [64]. In practice it is more convenient to find a parametrisation of the
kinematics such that the arguments of all polylogarithmic functions are rational.
More precisely, if we have a Feynman integral depending on n independent scales
s; (e.g. Mandelstam invariants), we want to find n — 1 independent variables z;
such that

SifS$n = filz1, -y 2n-1), (2.26)

where the f; are rational functions such that all the arguments of the polylog-
arithms are rational functions of the z; variables. While no general algorithm
is known that allows one to find the parametrisation eq. (2.26]), such a
parametrisation exists for a wide variety of diagrams. The inverse relations to
eq. (2.26)), expressing z; in terms of the Mandelstam invariants {s;}, are algebraic
functions, often involving square roots of polynomials of the invariants {s;}.

In this thesis, we will focus on diagrams for which we have found a rational
parametrisation and simply comment on some borderline cases in sections |B.3.5
and [B.4.8] Let us give some concrete examples of rational parametrisations.
For three-point diagrams with massless propagators and three massive external
channels, let’s say p?, p3 and p3, a very useful parametrisation was introduced

in [65]. We start by defining two dimensionless ratios

v}
pt’

u; = for i=1,2, (2.27)
and then define the variables z and z as

Uy = 2Z, ug=(1—-2)(1-2). (2.28)
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As mentioned above, the inverse relations involve algebraic functions:

o 1+U2—U3+ \/)\(1,U2,U3) 1+UQ—U3— )\(1,1,62,“3) (2 29)
- 2 Y .

z zZ = 5 ,

where A(a, b, ¢) is the usual Kéllén function,
Ma, b, c) = a® + b* + ¢* — 2ab — 2ac — 2bc. (2.30)

In the following, we will sometimes write A = A(1,ug,u3), when there is no

ambiguity about the arguments.

In [37], the same idea was applied to integrals with massive internal
propagators. If an external massive leg of mass p? is attached to two internal
massive propagators of masses m3, and m?;, then simply by working out the
kinematics of such a vertex one can see that it is convenient to introduce the
analogue of eq. in the following way. We define the two dimensionless

ratios
2

mz.
fi; = p—;], for i=1, j =23, (2.31)
1

and then define the variables w; and w; as
H12 = wlwl, H13 = (1 — w)(l - 12)1). (232)

The inverse relation is then

1 g — s+ AL g, ) — 1+ pi12 — iz — /A(L, g2, pas)
= 9 1 —_— .
2 2

(2.33)

%1

Throughout this work, most of our examples will be three-point functions,
and so these sets of variables will appear very often. Other examples of rational
parametrisations can be found in the literature. These can be obtained either by
intuition (e.g. [66]), a connection with twistor theory (e.g. [67,68]), or a connection

with scattering equations [69)].

If a parametrisation of the type (2.26) has been determined for a given
Feynman integral, it is easy to see that the entries of the symbol of this
integral will be rational functions of the z;. Moreover, due to the additivity

of the symbol, we can assume that the entries of the symbol are polynomials
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2.2. The Hopf algebra of multiple polylogarithms

with integer Coefﬁcientﬂ in the variables z;, which without loss of generality
we may assume to be irreducible over Z. In other words, once a rational
parametrisation has been determined, we can assign to every Feynman
integral a set A C Z[z1,...,2,-1] of irreducible polynomials. In the following
we call the set A the symbol alphabet of the integral, and its elements, which
we generically denote by z;, will be called the letters of the alphabet. Some
comments are in order: First, we note that the symbol alphabet A is not unique,
but it is tightly connected to the choice of the rational parametrisation ([2.26)).
A different choice for the rational functions f; may result in a different symbol
alphabet A. Second, we emphasise that although the parametrisation only
involves the external scales, its form is in general dependent on the loop order
and /or the order in the expansion in the dimensional regulator € and the topology
of the integral under consideration. Third, it is easy to see that once a symbol
alphabet A is fixed, the symbol of a polylogarithmic function of weight k takes
values in Q ®z Z[A]®*, the k-fold tensor product (with rational coefficients) of
the free abelian group of rational functions whose generators are the polynomials
in the set A. Finally, we note that it is expected that the arguments of the
polylogarithms take values in a subset of the free abelian group Z[A], and an
explicit (conjectural) construction of this subset was presented in ref. [53].

In practical applications it is often advantageous to know the symbol
alphabet underlying a specific problem a priori. For example, if the alphabet
is determined, it is possible to write ansétze for the symbols and/or the function
spaces for Feynman integrals or amplitudes, which can then be fixed using
additional physical information (e.g., behaviour in certain limits) [65,[70-76].
Unfortunately, as already mentioned, no general algorithm to determine a rational
parametrisation , and thus the letters x; € A is known. One possible way
to determine the alphabet is to analyze the differential equations satisfied by
Feynman integrals [59,|77-80], where the letters x; appear as the singularities
of the differential equationsﬂ In the rest of this paper we argue that another
way of determining the letters x; consists in analyzing (iterated) unitarity cuts of
Feynman integrals. Indeed, as we will argue in the next section, cut integrals are

tightly connected to the entries in the coproduct (and hence the symbol) and the

'We allow the polynomials to be constants.
2We note, however, that also in that case a rational parametrisation has to be determined
by independent means.
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

discontinuities of a Feynman integral, but they are sometimes easier to compute

because the transcendental weight is reduced.

This review of the properties of multiple polylogarithms is a very short
summary of an interesting and broad subject, that we tailored to the needs of
this thesis. To learn this subject, we mainly benefited from studying references
[48] and [53], as they present the subject in a manner more suited to non-
mathematicians. Furthermore, the lectures in [81] are a very good review of
the subject as well as a good source of references. More recently, we found [55]
useful as a short summary of the properties of Hopf algebras. Finally, for a
reference which deals exactly with the subject of polylogarithms and Feynman
integrals from the mathematics community, but which we found to be accessible

nevertheless, we refer to [82].

2.3 Iterated discontinuities and coproduct en-

tries

Having given a succinct introduction to the analytic structure of multiple
polylogarithms in the previous section, we now focus on discontinuities of MPLs
and how they are related to coproduct entries. We will start by giving our
definition of discontinuity, and then define an operator ¢ that truncates the
coproduct tensor of MPLs. Finally, we show how iterated discontinuities and
the action of ¢ are related. These two operations are defined for general
polylogarithms, and our next step is to make the discussion more specific to
Feynman integrals by commenting on their analytic structure. In particular, we
will introduce the concept of first entry condition. This will allow us to determine

the natural kinematic region in which discontinuities should be evaluated.

2.3.1 Discontinuities and coproduct entries
Disc: Discontinuity across branch cuts

We define an operator Disc, F' giving the direct value of the discontinuity of
F" as the variable s crosses the real axis. By convention we choose the branch cut

of the logarithm function to be the negative real axis. If there is no branch cut
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in the region of s for which F(s) is defined, or if F' does not depend on s, then
the value is zero. Concretely,

Discs [F(s £10)] = lir% [F (s £ie) — F(s Fie)], (2.34)

e—

where the i prescription must be inserted correctly in order to obtain the
appropriate sign of the discontinuity, and we assume s to be real valued. For
example, Disc, log(s+1i0) = 27i #(—s). Understanding the correct sign of the £i0
associated to a given variable in detail is important, but we leave that discussion
for when we relate Disc to diagrammatic cuts in the next chapter.

The sequential discontinuity operator Disc,, ., is defined recursively:

Disc,, .., F' = Disc,, (Discy,,. o, F). (2.35)

In the context of Feynman diagrams, we should think of the r; as associated to
kinematic invariants, either Mandelstam invariants or (squared) internal masses.

Note that Disc may be computed in any region after careful analytic
continuation. In particular, sequential Disc will be computed in different regions

at each step. We will sometimes write
Discy,. ror F' (2.36)

to make explicit the region R in which Disc,, ., is to be computed, after having

analytically continued F' to this same region.

0: Entries of the coproduct

If F'is of transcendental weight n and has all its symbol entries drawn from

the alphabet A, then we can write without loss of generality

Al,l,...,l,nko = Z lOg Ty @@ log Ty, © gmil,‘..,xik > (237)
k times (xi17~~~,x7jk)€/4k

and we define

I

F

Qﬁjl ,.‘.,I]k

Z 5i1j1 ce 5ikjk gl"ilrn@ik? (238)

(xil,...,zik)G.Ak
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where the congruence symbol indicates that 5:,33.17,,,@ij can be defined only
modulo 7. If the integral contains overall numerical factors of w, they should
be factored out before performing this operation.

The definition of (5%7”,@ij is motivated by the relation in eq. lD between
discontinuities and coproducts. In particular, if §,F = g¢,, then Disc, F' =
+27i g,. The sign is determined by the 0 prescription of x in F. The precise
form of the relation between the Disc and d operations will be discussed in more

detail in the following subsection.

Relation between iterated discontinuities and coproduct entries

Recall from eq. (2.23)) that for an element F' of weight n of the Hopf algebra,
Disc F' = p[(Disc ®id)(Ay -1 F)] , (2.39)

To be precise, F' should not include overall factors of w. If it does, these are
stripped out before performing the operation on the right-hand side, and then
reinstated. It follows from this relation that the discontinuity of any element of
the Hopf algebra is captured by the operation ¢ as defined in eq. . To apply
the relation, we must take great care with the sequential analytic continuation of
the discontinuities and the locations of the branch cuts. Finally, since the first
entries of A, ,_; [ are of weight 1, the Disc operation on the right-hand side is
computing discontinuities of ordinary logarithms.

Let us specialise to the discontinuity computed in a given variable r. We can

expand the coproduct in terms of the full symbol alphabet by writing

(Disc, ®id)(Ay,,—1F) 2 (Disc, ®id) Y _ (log(+z) ® 6, F) . (2.40)
zeA

Note that this relation applies generally, so it also applies to the case where F' is
the sequential discontinuity of some other function F. We stress for a last time
that, as noted below eq. , overall factors of 7 in F' are handled separately:
this is particularly noteworthy if F' is a sequential discontinuity where powers of
7 will have been generated from previous discontinuities.

For Feynman diagrams, we require Disc to be computed in a specific kinematic

region. We then require that the sign in the argument of the logarithm in
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eq. be chosen so that the argument is positive and the expression is thus
real-valued in the kinematic region for which F' is away from its branch cut in
r. In taking Disc,, the coproduct will be analytically continued to the region
in which there is a branch cut in r. In this new region, the arguments of the
logarithms may become negative, and if the letter x depends on the invariant r,

then there will be a nonzero contribution to Disc.

Sequential discontinuities of F are computed by the sequential use of
eq. (2.40). We thus claim they are captured by ¢ in the relation

k
Disc,,,. . = 0O Z (H a;(r;, :cl)> Y (2.41)

(z1,---,z1)EAR \1=1

where the sum runs over all ordered sequences (1, ..., xx) of k letters. We recall
that the congruence symbol in eq. indicates that despite the fact that the
discontinuity function Disc,, ., F'is unique, the right-hand side only captures
terms whose coproduct is nonvanishing, and it therefore holds modulo (27i)***.
Furthermore, since the coproduct is the same in all kinematic regions (because it
is defined modulo 7, it is invariant under analytic continuation), we have inserted
the schematic factor © to express the restriction to the region where the left-hand
side is computed. Finally, the factors a;(r;, z;) are related to the discontinuity
of a real-valued logarithm after analytic continuation from one kinematic region
(R;—1) to another (R;). Specifically,

a;(r;, x;) = Disc,,.g, [[ lOg(:i:l'i)ﬂRi71, (2.42)

where the double-bracket means that the sign of the argument of the logarithm
should be chosen so that the argument is positive in the region R; i, or

equivalently,
[log(£2) ||, = 10g(%:)| g, npeis0y T 108(=20) |k, | Ami<o) (2.43)

In the simplest cases, each a;(r;, ;) will simply take one of the values +2i
or 0. In more complicated cases, one might find a further division into nonempty

subregions of phase space.

We note that although we focus on Feynman integrals in the remaining of this
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

work, the mathematical relation between Disc and 0 applies in a more general
context. The essential requirement is that the function has no branch cut in 7;
in region R; 1, but does in region R;.

In section we make eq. more concrete by looking at an example.
We will compute the coefficients a;(r;, z;) of eq. in detail for single and

double discontinuities of three-point functions with massless propagators.

2.3.2 Euclidean region and the first-entry condition

The operations Disc and ¢ are defined for any multiple polylogarithm.
However, as we will now see, the branch cut structure of Feynman integrals is
constrained by physical considerations which allow to state some general results
for the relation between discontinuities and the coproduct of Feynman integrals.

We start by discussing the case where all propagators are massless. In this
case, it is known that the branch points of the integral, seen as a function
of the invariants s;; = (p; + p;)?, where p; are the external momenta (which
can be massive or massless), are the points where one of the invariants is
zero or infinite [18]. It follows then from the second relation in eq.
(or equivalently ) that the first entry of the coproduct of a Feynman
integral can only have discontinuities in these precise locations. In particular,
this implies the so-called first entry condition, i.e., the statement that the first
entries of the symbol of a Feynman integral with massless propagators can only
be (logarithms of) Mandelstam invariants [36,[83]. This observation, combined
with the fact that Feynman integrals can be given a dispersive representation,
provided the motivation for a lot of the work presented here, namely the study
of the discontinuities of Feynman integrals through the lens of the Hopf algebraic
language reviewed in the previous section.

In [37], we extended the first-entry condition to cases with internal masses.
We argued that the coproduct can always be written in such a form where: (i)
the first entries of the coproduct component A, ,_; are either consistent with the
thresholds of Mandelstam invariants or are internal masses ; (%i) the second entry
is the discontinuity across the branch cut associated with the corresponding first

entry, as is the case for diagrams with no internal massesﬂ

3We remark that property (ii) does not follow from property (i), as we shall see in an
example at the end of this section.
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2.3. Iterated discontinuities and coproduct entries

Feynman integrals with massive propagators have a much more intricate
analytic structure than in the massless case. Let us then be a bit more
specific about them. Planar Feynman integrals are most easily computed in the
kinematic region of the invariants where the integral is well-defined independently
of the +i0-prescription of the propagators [18]. This region is characterised by
having the Mandelstam invariants below their threshold for production of on-shell
physical states, and the (squared) masses of internal propagators being positive.
In this region, the euclidean region, we are away from any branch cut.

As an example, the euclidean region for a triangle diagram with massive

propagators is (see appendix [A| for the notation):

2 2 2
P% < (\/m%2+ \/m%?)) ) pg < (\/ miy + \/ m%3> ) P:Qa < (\/ m%3+ \/ m%3) )

mi, >0, mas >0, mis > 0. (2.44)

For triangles where some of the masses vanish, the euclidean region can be
obtained from the above by taking the appropriate limit. For instance, as already
mentioned above, in the absence of internal masses the euclidean region is the
region where all external invariants are negative.

As we depart from the euclidean region, we are sensitive to branch cuts of the
integral, and the Fi0-prescription indicates which side of the branch cut we are
on. The discontinuity, as defined in eq. , corresponds to the difference of
the results computed with different prescriptions.

Eq. implies that the first entries of the coproduct tensor of a Feynman
diagram must have the same branch cut structure as the Feynman diagram itself.
In particular, this means that when looking at the A;,_; component, the weight
one cofactors appearing in the first entries must be simple logarithms with branch
points at the boundaries of the euclidean region.

From this observation, and by looking at eq. , we see two ways in which
the first entry condition of [83] must be generalised in the presence of internal
masses. The first is that we no longer have logarithms of Mandelstam invariants
themselves, but instead logarithms with branch cuts at the mass threshold for the
corresponding invariant. The second is that the squared masses of the propagators

themselves appear as first entries.
As predicted by eq. (2.21b]), the second entries of the Ay ,,_; component of the
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

coproduct of a Feynman diagram then correspond to the discontinuities associated
to the branch cut identified in the corresponding first entry. These discontinuities
can be associated either to Mandelstam invariants going above their thresholds,
or to internal masses becoming negative.

In this thesis, we will give ample evidence illustrating this observation.
However, we should make a comment related to how apparent the first entry is
depending on the variables used. As we discussed above, we prefer to have symbol
alphabets with rational letters. If that is the case when using the Mandelstam
invariants themselves as variables (or ratios of them, if we want to work with
dimensionless quantities), the above properties are very easy to check. In more

complicated cases where we need to change variables to have a rational symbol

alphabet, let’s say by using variables as defined in egs. (2.29) or (2.33)), the

situation is not as clear. We claim that even though the first entry condition might
not be apparent in the most compact expressions for the symbol (or, equivalently,
the coproduct), we can always rearrange the different terms of the symbol tensor
so that they are in the form described above by using logarithmic identities. We

now give two examples, one for each type of behaviour.

Example 1: Consider the triangle T'(p?,0,0;m2,,0,0), whose symbol is given
in eq. (B.11)) up to order €°. The first term of the finite contribution has log(m?,)
as its first entry, and the second term has log(m3, — p?) as its first entry. The
latter is written in a form in which the argument of the logarithm is positive in

the euclidean region where the integral is originally evaluated.

Example 2: As another example, consider the triangle T'(p?, 0, 0; m%,, 0, m3,),
whose symbol is given in eq. . We have changed variables according to
eq. to have a rational symbol alphabet. Because the new variables have a
more complicated relation to the Mandelstam invariants, the first entry condition
is not as apparent as in the previous example. However, as mentioned above, the

symbol of T(p?,0,0;m32,,0,m?;) can be rewritten as

S [T(p7,0,0;miy, 0,miy)] = (wiwn) @ < ijlwl (1 —w)(1— @) ® - ;1“_“
_ w1 (1 — wy)
_'_(wl(l _wl))@)m. (2.45)
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2.3. Iterated discontinuities and coproduct entries

The first entry of the first term is log(m2,/p?), and its second entry is associated
with the discontinuity in the variable m?,. The first entry of the second term
is log(m?;/p?), and its second entry is associated with the discontinuity in the
variable m?,. The first entry of the third term corresponds to the threshold at
pi= (\/m_%Q + y/m3;)?, and its second entry is associated with the discontinuity
in the variable p?. The argument of the logarithm in the first entry of this term
is not a direct change of variables of p? — (/m2, + \/m_i),)2, which would not be a
rational function. Nevertheless, one can verify that the condition w;(1 —w;) > 0
is exactly equivalent to the condition p? > (1/m3, + /m?;)?, whenever p? > 0.

In this analysis, we have neglected the denominators p? in each of the first
entries of eq. . We did this because the denominators are simply used
to normalise the variables to be dimensionless: as we know, the physically
meaningful first entry is the one including the mass threshold, which is nonzero
for the p? channel. Indeed, since the three corresponding second entries sum to
zero, we see that the term whose first entry would be p? has zero as its second
entry.

We finish with a word of caution. Our claim is that one can generally
write symbols of Feynman integrals in a form such as eq. (2.45)), where (i) the
first entries are directly identified with kinematic invariants and thresholds, and
(1) the second entries are the corresponding discontinuities, but that these two
properties do not follow from one another. To see that property (ii) does not
follow from property (i), consider Example 2 above. The symbol of this triangle

can also be written in the form

(w1 -0) & L (1w & 2020

(wlwl) X 1

Here, the first entries have the same properties as in eq. , but the second
entries do not correspond to the expected discontinuities. (In this case, the
discrepancy is due to the choice of branch of the square root in the definitions of
the variables w; and wy; the kinematics of the cut require a consistent choice of

the positive branch.)

It is now clearer in which kinematic region it is natural to evaluate the
discontinuity associated to a given kinematic invariant (this is also the region

where discontinuities will be related to cuts of Feynman diagrams): it is the region
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

in which that particular invariant, be it a Mandelstam invariant or a squared
internal mass, is outside of the euclidean region, while all other invariants remain
in the euclidean region. Of course Disc is defined for any region: if we were to
compute it in the region where all invariants remain in the euclidean region we
would get zero. Conversely, the choice of taking only one of the invariants out of
the euclidean region is made for simplicity, as we are thus sure that all branch
cuts we probe are related to that particular invariant.

For iterated discontinuities, eq. , we simply iterate our procedure: we
evaluate the iterated discontinuity in the region where all the invariants we are
taking the discontinuity on are outside the euclidean region. In the relation
between iterated discontinuities and the coproduct, eq. , the coefficients a;
are evaluated in the region R; which is the region where the invariants rq,...,r;
have been moved away from the euclidean region.

To make the calculation of discontinuities and their relation with the
coproduct completely precise, we still have to say how the 4i0 of the invariants
is determined. This will be done in the next chapter when the connection with

cuts of Feynman diagrams is established.

2.3.3 Example

We close this section with a simple example of the proposed relation in

eq. (2.41) to make it more concrete.
Consider a three-point planar Feynman integral in D = 4 dimension with no

massive propagators. After normalisation to unit leading singularity, it will be a

dimensionless function of two ratios of Mandelstam invariants,

r(45). (2.16)

Pt pi
We define variables z, Z as in eq. ([2.29)),

5 3
=2 =2z, = =(1-2)(1-2), z>Z. (2.47)
p1 pi

Suppose that we know that the symbol alphabet can be taken to be
Apr={z,2,1—-2,1-z}. (2.48)
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2.3. Iterated discontinuities and coproduct entries

This is, in fact, the alphabet of the three-point ladder in D = 4 dimensions with
massless propagators and any number of rungs [72,84], and thus illustrates the
parametrisation of eq. (2.26]) for this class of diagrams.

The integral F is originally defined in the euclidean region where all p? < 0,
i.e., in the massless limit of eq. (2.44). In terms of real-valued z, Z, there are

three separate components of the euclidean region [65],
z2<2<0, 0<z<z<, and l<z<z.

For concreteness, we choose the component Ry . = {Z < z < 0}, but the relations

work equally well starting from either of the other components.

Let us take the first discontinuity in the channel s; = p2. We analytically
continue F to the region R; of the first cut, where p3 > 0 and p? p? < 0. In
terms of z and z, By = R% = {Z < 0 < z < 1}, see table . For each letter
11 € Ap, the logarithms logz; in the definition of a;(p3,z;) are written with
positive arguments in the region Ry.. For example, in a;(p3, 2) we compute
the discontinuity of the analytic continuation of log(—z) rather than log(z).
According to the usual Feynman rules the invariants have a positive imaginary
part, p3 +i0. We can thus deduce the corresponding imaginary parts in z + 0

and Z — 10 for the symbol alphabet, and we get:

a1(p3, 2) = Discyg,p, log(—2 —i0) = =271,

a1(py, 2) = Disc,g,p, log(—2 +1i0) =0, 10
ay(p5,1—2) = Disc,s. g, log(1 — z — i0) =0,
ay(p3,1—2) = Disc,z., log(1 — z +140) =

The discontinuities Discz.p, have been computed directly using the definition in
eq. (2.34). According to eq. (2.41]), our relations among Disc and the coproduct
is then

Discyz F' = —(27i) © 0, F . (2.50)

Let us take the second discontinuity in the channel s, = p2. We analytically
continue F to the region Ry where p3,p3 > 0 and p? < 0. In terms of z and
Z, Ry = R = {z < 0,z > 1}, see table . The a,’s are the same as above.
To compute the ay(p2, x5)’s, we write the logarithms of the alphabet, x5 € Ax,
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

Name Region of the p? Region of 2, 2
RL pi >0, p3,p3 <0 2<0, 1<z
R pi <0, p3,p3>0
2 2 2 2
RA ps >0, pi,p3 <0 Zz<0<z<1
1,3
R} p3 <0, pt,p3 >0
3 2 2 2
RA p3>07 p1>p2<0 0<z<l<z
1,2
Ry p3 <0, pt.p3 >0
R\ p1,p3,p5 >0, and A <0 Z=c

Table 2.1: Some kinematic regions of 3-point integrals, classified according to
the sign of the Mandelstam invariants. In the first six rows, A > 0, so that z and
Z are real-valued, and we take z > Z without loss of generality. z and Z are

defined in eq. (22.29))

with positive arguments in the region B, = R4. We will now decide that the
imaginary part of p32 should be conjugated when taking the second discontinuity
(the reason for this will become clear when the connection with cut diagrams is

established), so we deduce the signs of the imaginary parts in z — i0 and z — 0
from p3 — i(f1]

= Discyz.p, log(z —i0) =0,

ax(p3, ) v (
as(p3, 2) = Discps., log(—2 +i0) = 0, (2.51)
as(p3, 1 —2) = Discyz.g, log(1 — 2z +i0) = 2,
as(p3, 1 —2) = Disc,z.g, log(1 — z +i0) =
The only surviving term is a;(p3, z) as(p3, 1 — z) = —(2m)?, and the iterated
discontinuity is then related to the coproduct according to:
Disc,z 2 F = —(210)?©0.1 . F . (2.52)

Finally, we could consider taking discontinuities in all three channels with
the operation Cutp%pg’p%. The region in which we would hope to detect this
triple discontinuity has all p? > 0. Because F is a function of ratios of the

Mandelstam invariants, eq. (2.46)), this region is indistinguishable from the branch

4Determining the +i0 of symbol letters is not always as simple as we seem to suggest here.
We comment on this issue in section
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cut-free euclidean region in D = 4. Therefore the function does not have any
discontinuities in this region.
For completeness and for future reference, we close with the full list of relations

for single and double discontinuities of this class of integrals.

Discpz ' = (27) © [0, + 61 F, (2.53a)
Discyz F'= —(2mi) © 0, F, (2.53b)
Discyz F' = —(2mi) © 01 F, (2.53c)
Disc,z 2 F = (20)? © [0,z + 61 2] F (2.54a)
Disc,z 2 F =2 (2m0)? © [0,z + 6.2 F (2.54b)
Discyz 2 F' = (2mi)? O 0.1 + 6121 F, (2.54c¢)
Discyz 2 F = (2m0)? O [0y 2z + 61212 F (2.54d)
Disc,z 2 F = —(2711)°© 0.1 . F, (2.54e)
Disc,z 3 F = —(2710)° © 6y, - F (2.54f)

In the next chapter, we will show how these discontinuities are related to cuts
of Feynman diagrams. There, we will also give further support for the relation
between Disc and the coproduct by considering Feynman integrals with internal

masses.

2.4 Summary and discussion

In this chapter we reviewed some important properties of MPLs that will
be useful throughout this thesis. In particular, we discussed in some detail the
coproduct of their Hopf algebra, which we saw was a natural tool to study the
discontinuities of these functions. We introduced concepts such as the symbol and
the symbol alphabet, which will play an important role in several of the following
chapters.

We defined an operator Disc which computes discontinuities across physical
branch cuts of Feynman integrals. We explained how one could define a kinematic

region where we are away from any discontinuities, the euclidean region, which
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Chapter 2. Multiple polylogarithms and discontinuities of Feynman diagrams

is thus the natural region to evaluate Feynman integrals. We then saw that by
moving away from the euclidean region we started to be sensitive to branch cuts
associated with specific kinematic invariants. This allowed us to define a natural
kinematic region where each discontinuity should be computed, depending on
which branch cuts they were probing.

Finally, we established precise relations between the discontinuity operator
Disc, and an operator §, acting on the coproduct tensor, which selects specific
truncations of this tensor. These relations contain the so-called first-entry condi-
tion (which we generalised to cases with massive propagators), corresponding
to the evaluation of a single discontinuity, but were generalised to allow for
iterated discontinuities. In section [2.3.3] we finished with explicit examples of
these relations for three-point Feynman diagrams with massless propagators.

Some questions raised in this chapter were left unanswered, as for instance how
to keep track of the imaginary part associated with each kinematic invariant when
taking multiple discontinuities. Another question we did not address was whether
all coproduct entries could be given an interpretation as multiple discontinuities
on kinematic invariants. In the next chapter we will answer the first question,
and make progress in answering the second. This will be achieved by giving a
diagrammatic representation to the discontinuities of Feynman integrals, the so-
called cut Feynman diagrams, and defining a set of rules to interpret and evaluate

these diagrams.
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Chapter 3

Cuts as iterated discontinuities

3.1 Introduction

In chapter [2, we studied the discontinuities of Feynman integrals evaluating
to multiple polylogarithms across physical branch cuts, and related them to the
coproduct of these functions. We established precise relations between multiple
discontinuities and specific truncations of the coproduct tensor. In this chapter,
we will give a diagrammatic representation to these discontinuities. The work
presented here is covered in refs. [36}37].

This subject has a long history. Indeed, soon after the formulation of the
Landau conditions that identify the positions of branch points of Feynman
integrals, a diagrammatic solution of these conditions was proposed in ref. [19].
This led to the development of so-called unitarity methods [20], which aimed
at computing amplitudes and cross-sections by the study of their analytic
properties, in particular their discontinuities, even in non-perturbative quantum
field theories. Because of the successes of perturbation theory in the study of
phenomenologically relevant quantum field theories in the late 70’s, the 80’s and
the 90’s, the interest of the community in unitarity based methods decreased.

However, it was then realised that these methods allowed to find very efficient
ways of studying the properties of amplitudes at the loop level or even of
computing them, both numerically and analytically. This led to the development
of so called generalised unitarity methods [4}5]85[86]. These are now widely
used to make predictions for LHC phenomenological studies (see e.g. the reviews
[87-90]).
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Chapter 3. Cuts as iterated discontinuities

In this chapter, we will look at unitarity in a form closer to the original
formulation of [18,[19], with a similar approach to that of [21,23]. In these
references, the authors showed that a lot of the unitarity-based results obtained
in the study of cross-sections and amplitudes were valid for individual Feynman
diagrams. In particular, we will be interested in the observation that the
discontinuity of Feynman integrals can be given a diagrammatic representation,
through the so called largest time equation. The diagrams that evaluate to

discontinuities of Feynman diagrams are called cut diagrams.

In this chapter, we review the work of [21,23] about single unitarity cuts of
Feynman diagrams. We then extend their results by defining multiple unitarity
cuts. In [21,23] and [36], only cuts in external invariants were considered. In [37],
rules were developed for cuts in internal masses. In sections and we
present explicit rules for interpreting and evaluating the cut Feynman integrals
in both cases. These rules will make clear how to determine the i0-prescription

of invariants, a question we had left open in chapter 2]

We will then relate multiple unitarity cuts to discontinuities of Feynman
integrals across physical channels. Using the results of the previous chapter,
this implies a relation between unitarity cuts and coproduct entries. In section
we thus obtain a relation between Cut, the operator computing unitarity
cuts of Feynman diagrams, Disc, the operator computing discontinuities across
physical branch cuts of Feynman integrals, and ¢, a well defined truncation of the
coproduct tensor. These relations were first presented in |36] for diagrams with

massless propagators and in [37] for diagrams with massive propagators.

To test our relations we had to develop efficient ways to compute cut diagrams.
In section [3.5] we explain our methods in the context of a variety of one-loop
examples. Then, in section we study a two-loop example, the two-loop
three-point ladder with three external massive legs. We checked the conjectured
relations hold for all these examples. In appendices [B] and [C] we collected the

explicit expressions we obtained for the cuts of the examples we investigated.

This chapter starts by reviewing the work of [21,23], but most of it corresponds
to work done during my PhD, in collaboration with Ruth Britto, Claude Duhr,
my supervisor Einan Gardi, and Hanna Gronqvist for the study of diagrams with

internal masses.
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3.2. Cuts in kinematic channels

3.2 Cuts in kinematic channels

We start by defining a cut in a kinematic channels: the operator Cut, gives
the sum of cut Feynman integrals, in which some propagators in the integrand of
F are replaced by Dirac delta functions. These propagators themselves are called
cut propagators. The sum is taken over all combinations of cut propagators that
separate the diagram into two parts, in which the momentum flowing through
the cut propagators from one part to the other corresponds to the Mandelstam
invariant s. Furthermore, each cut is associated with a consistent direction of
energy flow between the two parts of the diagram, in each of the cut propagators.
In this work, we follow the conventions for cutting rules established in refs. [21,23],

and extend them for sequential cuts.

First cut. Let us first review the cutting rules of refs. [21,[23]. We start by
enumerating all possible partitions of the vertices of a Feynman diagram into
two sets, coloured black (b) and white (w). Each such coloured diagram is then

evaluated according to the following rules:

e Black vertices, and propagators joining two black vertices, are computed

according to the usual Feynman rules.

e White vertices, and propagators joining two white vertices, are complex-

conjugated with respect to the usual Feynman rules.
e Propagators joining a black and a white vertex are cut with an on-shell
delta function, a factor of 27 to capture the complex residue correctly, and

a theta function restricting energy to flow in the direction b — w.

For a massless scalar theory, the rules for the first cut may be depicted as:

*—1 o= —1 (3.1)

p 7/ 4 —'l
>0 — (o2 A& S 32
p? +ie p? —ic (3:2)
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Chapter 3. Cuts as iterated discontinuities

R S Y (p*) 6 (po) (3.3)

The dashed line indicating a cut propagator is given for reference and does not
add any further information. We write Cut, to denote the sum of all diagrams
belonging to the same momentum channel, i.e., in each of these diagrams, if p is
the sum of all momenta through cut propagators flowing in the direction from
black to white, then p?> = s. Note that cut diagrams in a given momentum
channel will appear in pairs that are black/white colour reversals — but of each
pair, only one of the two can be consistent with the energies of the fixed external
momenta, giving a potentially nonzero result.

We note that Cuts F'(21,...,2;) is a function of the variables z; mentioned
in eq. , which we recall can be complicated algebraic functions of the
Mandelstam invariants. Finding the correct z; in which to express a given
Feynman integral is a nontrivial problem. Since cut Feynman integrals depend
on the same variables as uncut diagrams but are simpler functions, the z; can be

more easily identified by computing cuts.

Sequential cuts. The diagrammatic cutting rules of refs. [21,123] reviewed so
far allow us to consistently define cut integrals corresponding to a single unitarity
cut. These rules are insufficient for sequences of cuts, as they only allow us to
partition a diagram in two parts, corresponding to connected areas of black and
white vertices. In [36], the rules were then generalised to allow multiple unitarity
cuts in different channels, and we now review the rules presented there. At this
stage, we only state the rules, whose consistency is then backed up by the results
we find in the remainder of this work.

In a sequence of diagrammatic cuts, energy-flow conditions are overlaid, and
complex conjugation of vertices and propagators is applied sequentially. We
continue to use black and white vertex colouring to show complex conjugation.
We illustrate an example in fig. |3.1], which will be discussed below.

Consider a multiple-channel cut, Cut,, _, I. It is represented by the sum
of all diagrams with a colour-partition of vertices for each of the cut invariants
s; = p?. Assign a sequence of colours (¢;(v),...,cx(v)) to each vertex v of the

diagram, where each ¢; takes the value 0 or 1. For a given ¢, the colours ¢;
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3.2. Cuts in kinematic channels

Figure 3.1: Sequential cuts of a triangle diagram, whose vertices v are labelled
by all possible colour sequences (c1(v), c2(v)) encoding the cuts. Energy flows
from 0 to 1 for each cut, giving the restrictions listed below each diagram.
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Chapter 3. Cuts as iterated discontinuities

partition the vertices into two sets, such that the total momentum flowing from
vertices labeled 0 to vertices labeled 1 is equal to p;. A vertex v is finally coloured
according to ¢(v) = 3% ¢;(v) modulo 2, with black for ¢(v) = 0 and white for

¢(v) = 1. The rules for evaluating a diagram are as follows.

e Black vertices are computed according to the usual Feynman rules; white

vertices are computed according to complex-conjugated Feynman rules.

e A propagator joining vertices u and v is uncut if ¢;(u) = ¢;(v) for all i.
Then, if the vertices are black, i.e. c¢(u) = ¢(v) = 0, then the propagator
is computed according to the usual Feynman rules, and if the vertices are
white, i.e. ¢(u) = ¢(v) = 1, then the propagator is computed according to

complex-conjugated Feynman rules.

e A propagator joining vertices u and v is cut if ¢;(u) # ¢;(v) for any i. There
is a theta function restricting the direction of energy flow from 0 to 1 for
each i for which ¢;(u) # ¢;(v). If different cuts impose conflicting energy
flows, then the product of the theta functions is zero and the diagram gives

no contribution.

e We exclude crossed cuts, as they do not correspond to the types of
discontinuities captured by Disc and (5D In other words, each new cut
must be located within a region of identically-coloured vertices with respect
to the previous cuts. In terms of the colour labels, this is equivalent to
requiring that for any two values of i, j, exactly three of the four possible
distinct colour sequences (¢;(v), ¢;(v)) are present in the diagram. We give

an example of a crossed cut we exclude in figure (3.2

e Likewise, we exclude sequential cuts in which the channels are not all
distinct. This restriction is made only because we have not found a general
relation between such cuts and Disc or 4. In principle, there is no obstacle

to computing these cut diagrams.

e We restrict ourselves to the use of real kinematics, both for internal and

external momentaﬂ. This implies, in particular, that diagrams with on-shell

LA similar restriction was proposed in refs. [91H93]. In chapter |5} we will see how crossed
cuts can be computed as residues.
2This restriction will also be lifted in the generalised definition of cut given in
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3.2. Cuts in kinematic channels

massless three-point vertices must vanish in dimensional regularisation. The
consistency of this choice will be verified in the examples considered in

subsequent sections.

For massless scalar theory, the rules for sequential cut diagrams may then be

depicted as follows:

e =1 o= —1¢ (3.4)
P ? P —1
>0 — > - o o0 — 3 - (35)
p* +e pe — 1€
P o p - p - p
*— @ = e&——+—0 = 0—— =9 - o0——+—0
u v u v u : v u v

=275 (p°)  [[ 0(ci(v) —ci(wlp)  (3.6)

i:ci(u)#ci(v)

Let us make some comments about the diagrammatic cutting rules for multiple
cuts we just introduced. First, we note that these rules are consistent with the
corresponding rules for single unitarity cuts presented at the beginning of this
section. Second, using these rules, it is clear that sequential cuts are independent
of the order of cuts. Indeed, none of our rules depends on the order in which
the cuts are listed. Finally, the dashed line is an incomplete shorthand merely
indicating the location of the delta functions, but not specifying the direction of
energy flow, for which one needs to refer to the colour indices. Our diagrams

might also include multiple cut lines on individual propagators, such as
il (3.7)

We also introduce notation allowing us to consider individual diagrams
contributing to a particular cut, and possibly restricted to a particular kinematic
region. When no region is specified for the planar examples given in this thesis,
it is assumed that the cut invariants are taken to be above their threshold, i.e.,

outside of the euclidean region, while all other consecutive Mandelstam invariants
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Chapter 3. Cuts as iterated discontinuities

Figure 3.2: An example of crossed cuts, which we do not allow.

are below threshold, i.e., in the euclidean region, see the discussion in section

2.3.20 We write
Cuty fe;.en),RD (3.8)

to denote a diagram D cut in the channel s, in which exactly the propagators
ey ---e, are cut, and computed in the kinematic region R. Rules of complex

conjugation and energy flow will be apparent in the context of such a diagram.

Examples of sequential cuts. We briefly illustrate the diagrammatics of
sequential cuts. Consider taking two cuts of a triangle integral. At one-loop
order, a cut in a given channel is associated to a unique pair of propagators.
We list the four possible colour partitions {c¢;(v), ..., cx(v)} in fig. The first

graph is evaluated according to the rules above, giving

e”Ee/%2’2(—1)(%)35(p2)5(q2)5(7’2)9(po)9(qD)9(7°o)- (3.9)

The second and third graphs evaluate to zero, since the colour partitions give
conflicting restrictions for the energy flow on the propagator labeled p. The
fourth graph is similar to the first, but with energy flow located on the support of
0(—po)0(—qo)0(—1p). Just as for a single unitarity cut, in which only one of the
two colourings is compatible with a given assigment of external momenta, there
can be at most one nonzero diagram for a given topology of sequential cuts subject
to fixed external momenta. In the examples calculated in the following sections
of this paper, we will thus omit writing the sequences of colours (¢1(v), ..., cx(v)).
We may also omit writing the theta functions for energy flow in the cut integrals.

We include an example of crossed cuts, which we do not allow, in fig. [3.2]
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3.3. Cuts in internal masses

Notice that there are four distinct colour sequences in the diagram, while we only

allow three for any given pair of cuts.

Vanishing of cuts with on-shell massless three-point vertices. We now
show more explicitly why a cut isolating a massless three-point vertex should
vanish in dimensional regularisation. Let’s look at an example, the box with two
adjacent massive external legs (legs 1 and 2) and two massless ones (legs 3 and
4), the so-called two-mass-hard box. We consider the cut in the t = (py + p3)?
channel and in the p2 channel, see figure . This cut isolates a massless three-
point vertex at the top right corner.

It is well known that this vertex, considered in real Minkowski space,
requires collinear momenta. Let us see how this property manifests itself in
the computation of the cut integral. Parametrise the loop momentum by
{ = xp3 + yps + wq, where ¢ is integrated over all values satisfying ¢* = —1
and q - p; =0 for ¢ = 3,4. Then

/dDﬁ §(0%) 6((€ — py)?) f(0) :/g dx dy wPdw dQP? §(zys — w?)

0((x(y — 1)s —w?) £(0)
1

= /dy dQP=3 dw 6(w) wP=* f(0).

The delta functions set * = w = 0, so that ¢ = yp4, which is the familiar
collinearity condition. We see that this cut vanishes for D > 4, which is what
is required to regularise the infrared divergences appearing in massless diagrams.
We will come back to this example in more detail in section [3.5.7, and will see

how one can make sense of some cuts isolating massless three-point vertices in

chapter [5}

3.3 Cuts in internal masses

In 37 we introduced a new kind of cut, a single-propagator cut, corresponding
to discontinuities across branch cuts related to internal masses. Our discussion
will be in the context of one-loop diagrams, but this is solely for the simplicity
of the expressions, and all the results can be straightforwardly generalised to the

planar multi-loop case.
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Chapter 3. Cuts as iterated discontinuities

P2 P3

P1 P4

Figure 3.3: Cut isolating on-shell massless three-point vertices.

Let F' be a one-loop diagram with n external legs of momentum p;, with

2
iyi+1

legs i and 7 + 1, which we assume are all distinct (we comment on the degenerate

¢t =1,...,n,all incoming, massive or not, and with internal masses m between
case in appendix @) Furthermore, we define ¢; = >77_ p;, for j = 1,...,n, so

that ¢, = 0. Then, according to our Feynman rules,

L 1
o D (F+qi)? — Mg +1i0°

1=

F(gs- g om2,) = (—1)es / (3.10)

The integral F' is evaluated away from any branch cut in the euclidean region
of all kinematic invariants. The +i0 of the propagator can be reabsorbed into the

squared mass, which means we can associate a —i(0 prescription to the masses:

2 2 ~
Mi g1 = My — 10,

Although it does not correspond to a physical region, we can analytically
continue F' to a region where the square of one of the masses is negative (without
loss of generality, say min < 0), while keeping all the other kinematic invariants
in the euclidean region. In this region, following the definition of eq. , we
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3.3. Cuts in internal masses

isolate the discontinuity associated with m?:

Disc,2 F'= F(g; - 4j;m3 g5 mi, —i0) — F(qi - qjsm3 5, ..., m3, +0)

D/2 n—1
= (_1)n67E5/dD//2k ( 2 12 N 72 12 - )H 21 2
7 k?—mi, +i0  k*—mi, —i0/) 11 (k+¢)* —mi,,

= (—1)n+16wE dD/%(Qm —m3 H
b/ P (k)2

-1 - 2 i1

= CUtmf nF ,
(3.11)

which shows that mass discontinuities do indeed correspond to single-particle
cuts. We again stress that although we are discussing one-loop integrals, this
is just for simplicity of the expressions. The same result holds for a multi-loop

diagram.

Furthermore, we notice that F' can also be a cut Feynman diagram as long
as the propagator with mass m%n has not been cut previously. Cuts in internal
masses can then be combined with cuts in external channels to compute sequential

discontinuities in internal masses and external channels.

We can thus deduce the rules for single-propagator cuts, corresponding to
mass discontinuities: we simply replace the cut propagator by a delta function,

according to

L, — 218(p* — m?), (3.12)
p? —m? +i0
without any condition on the energy flow or any further conjugation of other
parts of the diagram. Unlike cuts in kinematic channels, the black and white
colourings are unaffected by these cuts, as there is no notion of separation into

two regions where one is complex-conjugated.

Diagrammatically, we will denote cuts in internal masses with a thick (thicker

than for channel cuts) dashed line,

iS]
- .

=276 (p° —m?). (3.13)

:
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Chapter 3. Cuts as iterated discontinuities

3.4 Cuts, discontinuities and coproduct entries

In the previous chapter, we introduced two operators giving consistent results
for discontinuities, Disc, which computes discontinuities explicitly, and §, which
computes discontinuities by truncating specific components of the coproduct
tensor. In the previous section, we introduced another type of discontinuity,
corresponding to cut diagrams. We now show how these three types of

discontinuities are related.

3.4.1 Cut diagrams and discontinuities

The rules for evaluating cut diagrams are designed to compute their disconti-
nuities. For single cuts in internal masses, the relation is straightforward as can
be seen from eq. . For cuts in external channels, there are some subtleties
which we now review.

The original relation for the first cut in an external channel follows from the
largest time equation [21-23], and the derivation may be found in refs. [21}23].
The original relation is

F+F* ==Y Cut,F, (3.14)

where the sum runs over all momentum channels. In terms of diagrams with
coloured vertices, the left-hand side is the all-black diagram plus the all-white
diagram. The right-hand side is -1 times the sum of all diagrams with mixed
colours. We can isolate a single momentum channel s by analytic continuation
into a kinematic region where among all the invariants, only s is away from the
euclidean region. There, the left-hand side of eq. can be recastl—f] as Disc, F',

while the right-hand side collapses to a single term:
Discs F' = — Cut, F. (3.15)

In this relation, the discontinuity is evaluated with s = s 4+ ¢0. Indeed, for an
uncut diagram, the +:0-prescription of the propagators translates into a +i0-

prescription for Mandelstam invariants.

3The apparent difference in relative sign between eq. and eq. is due to an explicit
overall factor of 7 in every diagram, due to the Fourier transform from position to momentum
space. Note therefore that eq. should not be interpreted as the imaginary part of the
function, and is in fact typically real-valued.
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3.4. Cuts, discontinuities and coproduct entries

For sequential cuts in external channels, we argued in ref. [36] that the relation
could be generalised so that Cuty, , F' captures discontinuities through the

relation

Cut F = (-1)"Disc,, ., F, (3.16)

5150455k k

where Cuts, , F' is to be computed according to the rules given above for
multiple cuts.

Eq. , like eq. , is valid in a specific kinematic region. As mentioned
in the previous section, Cut,, s, F' is evaluated in the region where sy,..., s;
are above their respective thresholds, the remaining external channels are below
their thresholds, and all internal masses are positive. On the right-hand side,
we proceed step by step according to the definition in eq. : each Discs, s,
is evaluated after analytic continuation to the same region in which Cut,, s, F
is evaluatedﬁ. The +i0-prescription associated to each s; is read from the cut

diagram in which the cuts correspoding to Cuts, . F have been taken.

8i—1

The relation between cuts in internal masses and discontinuities is trivial.
For a single cut, the relation is given in eq. (3.11). It can be straightforwardly
generalised as

Cut,,> 2 F =Disc,2 .2 F. (3.17)
TERRLU TR

We can now combine cuts in internal masses and external channels through

Cut » ' = (—1)' Disc

2
5150481, T

. F . (3.18)

2
S1ye0e3 ST 50T,

In order for eq. to produce the correct signs, the +:0 associated to the
internal masses on the right hand side are determined from the cut diagram in
which all [ of the channel cuts have been taken. (We recall that according to our
rules, channel cuts imply complex conjugation of certain regions of the diagram,
which affects the i0-prescription of the internal propagators. Hence we make it
a rule to take channel discontinuities before mass discontinuities.) Furthermore,
on the right hand side, we take a specific order of the listed invariants. Indeed,
while sequential cuts are independent of the order in which the invariants are

listed, the correspondences to Disc are derived in sequence so that the right-hand

4As mentioned in the discussion below eq. (2.41), we now see how the region where Disc
should be evaluated follows from the region where Cut is evaluated.
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Chapter 3. Cuts as iterated discontinuities

\ *

/ 2 4
T(p2;m2,, m? (b) Cut, 2T (p%; m2,,m2;) (c) Cut T (p?;m2,, m3,)
(a) T(py; miq, mi3) p2 L \P15 M2, M3 m2y,m3, L \P15 M2, M3

Figure 3.4: The uncut and two-propagator cuts of the triangle T'(p?; m?,, m?,)

side of eq. (3.18)) takes a different form when channels and masses on the left-
hand side are permuted. Thus, eq. (3.18) implies relations among the different
Disc 2 > F

8150y SL,MT 5o M,

We note one restriction: the cut integrals reproduce sequential discontinuities
through the above relations only if each additional invariant in the subscript—
whether a momentum channel or a mass—introduces at least one new cut
propagator in the Feynman diagrams. For example, we would not consider
Cut,z .2, of a one-loop triangle, since the propagator of mass m?2, was already

cut in the first step, Cut,z.

A limit on multiple mass cuts

Cuts in multiple massive propagators vanish if the diagram is equivalent to
the complete cut in a momentum channel. Consider for instance two massive
propagators attached to the same external massive leg of a one-loop integral, as
for example in fig. 3.4, Then the double discontinuity in those two internal masses
will vanish. Let us now see why this is the case. Without loss of generality, we
consider the cut in mj , of Cutm%nF as given in eq. . The integral with cuts

of the two propagators of masses mj,, and m? ,, which is given by

n o o 2 2 ) n—1 1
I R R RLICRFAEEERY | R et

o My i1

(3.19)
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3.4. Cuts, discontinuities and coproduct entries

can be used for either of the cut integrals Cutm%wm%zF as in fig. , or Cut,2 F
as in fig. , depending on the kinematic region where it is evaluated.ﬂ If
p? # 0, then the uncut integral F' has a branch cut in p?. As a consequence of the
largest time equation, the integral Cutp%F is proportional to the discontinuity of
F across this branch cut [21,23]. In particular, the discontinuity is zero when we
are below the threshold of p?, which can be realised either for m?,,m?, > 0 or

m3 5, mi, <0, and in this case the integral eq. (3.19) vanishes as well.

Now, the double-cut integral CutmiwmiQF must be evaluated in the region
where miQ,min < 0 and all other invariants are below their thresholds. In
particular, since p? is below its threshold, i.e. p? < m%72+min+2, /m3 ym7,, where
we note that the right-hand-side is still real despite the masses being imaginary;,
the integral vanishes by the argument given above. We will see an example of
this type of vanishing double cut in T'(p?,0,0;m2,,0,m?,) in Section [3.5.4]

However, if p? = 0, then F' has no branch cut associated with this external
channel, and the largest time equation does not give any constraint on the result
of eq. (3.19). In this case, the double discontinuity in the masses m3, and mj ,
can indeed be nonzero. We will see an example of this type of nonvanishing
double cut in T'(p?,0,0; m?,, m35,0) in Section m

This argument will hold for any pair of massive propagators in a one-loop
diagram, not necessarily adjacent, provided that the corresponding momentum
channel p satisfies p? # 0. At higher loops, one needs to be more careful: indeed,
one might have more than one cut diagram contributing to the cut in a given
channel, so it is no longer true that a cut diagram by itself must vanish if not

evaluated in the region where the corresponding channel is below threshold.

3.4.2 Cuts and the coproduct

Having related cuts to discontinuities in the previous section and discontinu-
ities to coproduct entries in section [2.3.1] it is now straightforward to relate cuts
to coproduct entries. Combining the relations eq. (2.41]) and eq. (3.18]), we arrive

at:

SFor the first cut in a given timelike momentum channel, the consistent direction of energy
flow in the cut propagators is an automatic consequence of the on-shell conditions.
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Chapter 3. Cuts as iterated discontinuities

CU_t QFEJ

2
S1yeeeySLHTNY e,

l
© Z <_1)l (H ai(siaxi) Haj(m§7yj)> 5961,---73317311,---7ku‘ (320)

(@1 s T Y15y ) EARTL i=1 J=1

We recall that on the left-hand side the s; and the mj2 may be written in any order,
and correspondingly permuted on the right-hand side, but we require that we act
first with all the s; and then with the m?. It is not obvious that permutations
of the sets {s;} and {m7} give equivalent results on the right-hand side, but this
property follows from the commutativity of cuts. This implies nontrivial relations

among coproduct entries.

+1i0-prescription of symbol letters

In most examples considered in this thesis, it is simple to determine the sign
of the i0-prescription of a given symbol letter once we know the prescription
of the invariant to which it is associated and the kinematic region in which we
are working (we recall the i0-prescription is read from the Feynman rules of
cut diagrams). Indeed, whenever the symbol letters are linear combinations of
invariants, this is a trivial problem. However, we observe that in more complicated
cases there can be an ambiguity in the sign of the imaginary part of some symbol
letters (more precisely, we encounter this problem for diagrams which require the
use of eq. to get a rational alphabet and have internal massive propagator).
We need to resolve this ambiguity, because this sign is needed to obtain the correct
sign in eq. .

The simplest case where we observe this problem is the triangle with three
external masses and one internal mass, T'(p?, p3, p3; m3,,0,0), whose symbol is
given in eq. (B.64). For instance, when considering the double cut first in p3 and
then in p?, we need to determine the sign of the imaginary part of zZ — po, as
inherited from the prescription of the second cut invariant, p? —i0. One can easily

check that this sign is the same as the sign of the quantity

=2 —pa(e—2)

which can be either positive or negative in the region where the double cut is
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3.5. Examples — One-loop

computed,
z>1, 0<z<1l, O<pp<l, Z—pup>0.

If the imaginary part of zZ — 12 is negative, then we are in the subregion

Z(l1—2z
z>1, O0<z<l, (—,)<,u12<2,
z—Z
and if it is positive, in the subregion
Z(1—2z
z>1, 0<z<1, 0<u12<(—).

Z—Z

We note that if we are in the first situation we cannot smoothly take the internal
mass (f12) to zero. However, if we are in the second situation, corresponding to a
positive imaginary part of zZ — p12, we can take p15 to zero without any problem,
which is naturally a desirable property. We thus associate a positive imaginary
part to the symbol letter zZ — ;5. We can confirm this is indeed the correct result
by considering the same double cut in the opposite order, where there are no sign
ambiguities. We treat this example in detail in section |3.5]

All other cases where we have found sign ambiguities can be solved in the same
way: we always require being in a kinematic region where massless limits can be
taken smoothly. Furthermore, we have found in all of our examples of multiple
cuts that there is always an ordering of the cuts where there is no ambiguity. We
have then verified that any possible ambiguities were correctly lifted through the
method just described.

3.5 Examples — One-loop

We now give a range of examples of one-loop diagrams for which we have
verified that the relations between cuts, discontinuities and the coproduct,
eqs. , and , give consistent results. Most of our examples will
be three-point functions, with two exceptions: we will explore the two-mass-hard
box as it shows we must be careful with choosing the right kinematic region
when comparing cuts with discontinuities, and we will also look at the box with
four external masses which in four dimensions turns out to be related to the

triangle with three external masses. We will start by outlining the method used
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Chapter 3. Cuts as iterated discontinuities

to compute cuts, both in external channels and external masses, and then apply

our methods to concrete examples.

3.5.1 Calculation of cut diagrams

We now outline our strategy for the calculation of cuts of the three-point
functions studied in this section. For cuts in external channels, we use the method

presented in ref. [36]. For the single-propagator cuts, we use the method presented

in ref. [37]. All cuts given in appendices [B.1] [B.2| and [B.3| were obtained through
the methods described here.

Cuts in external channels. When computing a single cut in the channel p?,
we work in the region where p? is above its threshold, all other external channels
are below threshold, and all masses are positive. We parametrise the external

momenta as

pi=\P(,0,0p2), b= /p (@ VP =10p5),  (321)

where « is trivial to determine in terms of the kinematic variables. If p?- =0,
then an equivalent parametrisation is trivial to find.

We route the loop momentum so that the propagators of momentum & and
(p; — k) are cut, and if possible the propagator of momentum k is massless. We

parametrise k as
k= ko(1,Bcosf,[sind 1p_5), (3.22)

where 6§ € [0,7], and ko, > 0, and 1p_, ranges over unit vectors in the
dimensions transverse to p; and p;. If the propagator of momentum k is massless,
then g = 1.

In the most general case we need to consider for this thesis, using the delta
function that puts the propagator of momentum k on-shell, the integration

measure becomes
/ A28 5 (k2 — m?)0 (ko) =
2172671_176 00 1-2¢ 1
2T kg (ke — /d |- 2) 9
g ), wa(Vig-m) [at-o e
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3.5. Examples — One-loop

(a) T(p?, p3, 3) (b) Cut,s T(p7,p3,3) (c) Cutyz 2 T(p, 13, 13)

Figure 3.5: The triangle integral, with loop momentum defined as in the text;
and with cuts in the p3 and p3 channels.

where we made a change of variables from cos# to

B 1+ cos@
— 5 )

T

(3.24)

The kg integral can be trivially performed using the delta function putting the

propagator of momentum (p; — k) on-shell.

The remaining uncut propagator, of momentum (p; + k), is linear in the z
variable, and so the most complicated result we will get for the single cut of
a one-loop three-point function can be written to all orders in € as a Gauss
hypergeometric function, eq. , as can be seen in the several examples
collected in appendices [B.1], [B.2 and [B.3]

If the triangle has two or three external masses (say p? # 0 and p? #0), we

can compute its sequential cuts in the external channels p? and p?, in the region
where they are both above threshold, while the remaining external channel is
below threshold and all internal masses are positive. The extra delta function
makes the x integration in eq. trivial (note, however, that it might restrict
the kinematic region in which the cut is nonzero). The most complicated functions
we get as a result are invariants raised to powers that are linear in €, producing

powers of logarithms upon expansion in €. Again, our examples are collected in
appendices [B.1], [B.2] and [B.3]

Let’s apply the procedure we just discussed to the triangle with three external

masses and no internal massive propagators, T'(p?, p3, p3; 0, 0,0). We will compute

the cut in the p3 channel and then the double cut in the p3 and p2 channels, see
figure [3.5] We will use the variables in eq. (2.29).
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Chapter 3. Cuts as iterated discontinuities

For the cut in p3, the integral we have to compute is

2@ / d472€k6+ (kz) 6* ((pQ — k)Q) (325>

Cut,2T(p},p3,p3) = —(2
uty,2 (p17p27p3) ( 7T) T2 (p1+/€)2
We parametrise the momenta as

D2 = \/p% (170D71) yP1 = \/p% <04> Va? —1, 0D72> . (3-26)

Working out the kinematics,

—1- NAYER™S
Ve = it \/p%\/p%m:—pf—( 21) (3.7)

2 2

The loop momentum is parametrised as discussed above. Because one of the
Dirac §-functions sets k? = 0, 8 = 1. The other J-functions fixes kg = /p3/2.
After changing variables as in eq. (3.24]), we then have

2 z—1

(p1+k)? = p? (1 s s — VA +x\/X> = p*(1—2) (1 ~ M) , (3.28)

with z and Z as defined in eq. (2.29). We note that these variables appear
naturally in the calculation of the cut, simply as the variables that rationalise
the parametrisation of the kinematics. The integral that remains to be computed

18

s (p3) [t (z(l =)
Cut,2T(p7, p3,p3) = —27 /ndx————————. 3.29
b3 ( 172 3) F(l o E) p%(l o Z) 0 (1 B x(zzjlz)) ( )

It is easy to see that in the region where p2 > 0 and p?, p? < 0 this integral is
well defined—see table for the translation to a region for z and z—and that

it reproduces the result given in eq. (B.56]).
For the double cut in the p3 and p3 channels, we now work in the region where

p3,p3 > 0 and p? < 0, and we again refer to table for the equivalent in terms

of z and z. We are now evaluating the integral

Cutyg 2T (1, 3, 13) =
YE€
E / A7 RST (R7) 67 (b2 = R)) 67 ((mr +R)) . (3.30)

=i(2m) o
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3.5. Examples — One-loop

We proceed exactly as for the cut in p3, but the last equation is now trivial

because of the new d-function:

1 1—=2
5 k)?) = ————06 : 3.31
(0 +47) = 9 (5155 (33
Performing the integrations over ky and [ as for the single cut, the remaining
integral is

Cut, 2 2T(p?7p§>p§) =

p3,P3

I P (p@e_) /0 e (:c 4 Llzz ) (#(1—2)  (3.32)

F(1—e)p2(z—2 z—Z

which reproduces the result in eq. (B.58)).

We should note that for one-loop integrals, a three-propagator cut has
previously been interpreted as a discontinuity of a diagrammatic unitarity cut.
In ref. [94], it was used in a double dispersion relation to verify the region of
integration in phase space for semileptonic D decay. More recently, in ref. [§|,
a similar interpretation was given, in the spirit of the Feynman Tree Theorem

[95-97], capitalizing on progress in unitarity methods for one-loop amplitudes.

Cuts in internal masses. Cuts in internal masses are harder to compute than
cuts in external channels. We present two ways of computing them. In either case,
we compute discontinuities, which are trivially related to cuts through eq. .
The first way is a brute-force method that works in all cases considered here.
The second way is more elegant, but only suitable for special configurations of the
external and internal masses. Because we do not have a proof that it should work,
we present it as an observation. In all cases where both can be applied we find
they agree, giving evidence for the validity of the second way. We will illustrate
both in the context of the triangle T'(0, p2, p3;m3,,0,0), see section [B.2.3]

The first method relies on getting a Feynman parameter representation for the
diagram, and then computing the discontinuity of the integrand across the branch

cut associated with the internal mass. It is of course valid for any configuration
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Chapter 3. Cuts as iterated discontinuities

of the internal and external masses. As an example, we have:

Y

YEET(1 1 22 —€ _ (102 _ 22\ —€
T(pg,pg; m2,) = ie (1+e) / da(1 — x)—e(( p3:B)2 (m212 5295) )
€ 0 mi, + z(p3 — p3)

(3.33)

which we obtain by computing the trivial and the first non-trivial Feynman
parameter integrals. We then use
2mie

. e e m?2
DlSCm%Q [(m%Z _pgx) ] = F(]. _ E)P(l + 6) (pgx - m%Q) 6 <_;2 - x) )

where we recall m?, = m?2, —i0 and we are in the region p3 < m?, < 0, to get

Cut,2 T(p3, p3; miy) = Disc2. T(p3, p3; m7y)

Ve VEE m3,/p3 2., 2 \—e
:L/ dx(l —z)" (f?x lez) . (3.34)
L(1—e¢) Jo mi, + z(p3 — p3)

which is trivial to evaluate to any desired accuracy in e, see eq. (B.47)).

The second way only works if there is a massive external leg non-adjacent to

the massive internal leg being cut. More precisely, in our notation, if we look

zzj’

then compute a three-propagator cut corresponding to Cutp% m2 in the region
315

at the cut in the internal propagator of mass m?;, we need p: # 0. We can
where m?; < 0 and pj is above threshold. This is trivial to evaluate because
all propagators are cut. The single-propagator cut is finally obtained through a
dispersive integration in the p?-channel of the three-propagator cut. This is not
guaranteed to work a priori, because we have no proof that the m?j—discontinuity
function has a dispersive representation. However, it does give the correct answer
in all the cases we have considered. The reason why this method is not valid for
any configuration of internal and external masses is because there is no sequential

cut associated to an external mass and an internal mass if they are adjacent.

For our example, we have (i,7,k) = (1,2,3). The three-propagator cut is

computed in the region where p > 0 and m?, < 0 and is given by

2 2.2
CUtm%Q,pgT(p%p& m12) =

47.[.22'6’75]6 (pZ)—e(_m2 )—E .
= - F(l _ 6) E)pg _p2)}2_6 (p% + m%? - pg) e(pg + m%Q - pg) 9 (335>
3 2
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3.5. Examples — One-loop

Through a standard dispersive integral, see e.g. the brief discussion in section [4.2]

we obtain

Cut,n2, T(p3, p3; miy) = Disc,2, T(p3, p3; m3s)

e'\/EE

*© ds s¢
= — 2m————(—mi,) " 2 —pH)c. (3.36
Wr(l _ 6)( m12) /0 S — pg (S B p%)I’QC (S + m12 p2) ( )

The integral is trivial to compute at any order in e, and matches the result

obtained in eq. (3.34).

In appendices[B.1], [B.2] and [B.3] we collect several examples of cuts in massive

internal legs. Whenever possible, the cuts were computed in both ways described

above, and the results agreed.

Now that we have presented our methods for evaluating cuts of one-loop three
point functions, we verify their predicted relations with discontinuities and the
coproduct in a variety of examples, chosen to illustrate specific features we found
relevant. All expressions will be written only up to finite terms of order €°, but

we have checked their agreement to higher orders in e.

3.5.2 T (p?,0,0;miy, mss,0)

In this example, we illustrate iterated cuts in internal masses and iterated
cuts in one external channel and one internal mass. Expressions for the integral,
its symbol and cuts can be found in appendix [B.1.4l The euclidean region, which
we denote by Ry, is

Ry : mi, >0, ma, > 0, pr < m?,. (3.37)

Single cuts: For the single cut in the invariant r, where 7 € {p? m?3,, m3,}, we

will move away from the euclidean region and into region R]. These regions are,

respectively,
2
pi o 2 2 2 2
Ry mi, > 0, myg > 0, p] > m7,,
mi 2 2 2 2
Ry miy <0, mas > 0, p; < misy,
2
R"™ . mi, >0, my, <0,  pi<mi,. (3.38)
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Chapter 3. Cuts as iterated discontinuities

Recalling the prescriptions p? + 0 and m?j — 10, we can compute the coefficients

2
M1

2
ai(r, 1) as defined in eq. (2.42). They are computed respectively in R}, R]
m2
and Ry **, and turn out to be equal. We find:

al(p%7 m%Z - p%) = al(m%27 m%Q) = al(mgg, m%g) = —217.
We then get:
2 2 2 .2
Cut,yT = — Disc,p T2 — =2 08,2 T = - log (1 it Pl) |
1 1 Py 12— P1 p? m2,
2 2 2
Cutyg, T = Dise,z, T —503,2 T = =5 log (— M > ,
12 12 Dy 12 Pi mass — My
2 2 2
Cut,,2 T = Disc, 2 T = —Z@amg T = _7; log (1 _ %) 7 (3.39)
v v P * Dr Mig — Ma3

which are consistent with the results in appendix [B.1.4]
All relations for single cuts follow the same pattern, so we will simply list them
without further details in the remaining examples, unless we wish to illustrate

some particularity in a given case.

Double cuts: According to our rules, there are two different cuts to consider:

Cutyz 2, and Cutyz 2 = Cut,,z 2 . We start with Cutz .2, for which we go

2
from the region R}* to the region
2 2
RHV™E mi, >0, mas <0, P >mi,. (3.40)

Given our conventions for multiple cuts, we now have the prescription m3, + 0.
Then,

as (M3, mas) = 2, as (m3s, i + m3s — miy) = 2mif (miy — p; — m3s) |

where we have only listed the coefficients leading to nonzero contributions. We
finally find

Cutye 2, T = — Discp2 2 T
A2
~ 2 2 2
== (O, gz, 0 (my =0 = m33) O 2, | T
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3.5. Examples — One-loop

9.

== 2 = ). (3.41)
which matches the result of the direct calculation in Interestingly, even
the theta functions are correctly reproduced, which is a feature observed in all
our examples. We recall that when computing multiple cuts in external channels
and internal masses, we insist on taking the discontinuity first in the external
invariants, and then in the masses. It can easily be checked that if we had taken

the opposite order, we would have had the opposite sign in the above equation.

We now consider the double cut in the internal masses. This is an example of
the behaviour described in section [3.4.1] where a double cut in internal masses
attached to the same external massless leg is nonzero. We only give details for
one order of the invariants, first m?%, and then m3,. The opposite order can be

done in exactly the same way.

2
m
2., we must go from Ry to

P

To compute Cut,,z2,
Rmﬂ,m% . 2 <0 2 <0 2 < 2
2 : my ) Ma3 ) P <mys.

Because mass cuts do not require complex conjugation of any region of the
diagram, we still have the prescription m3; — i0. The coefficients as(m2;, o)

giving nonzero contributions are

ag(m§3, m%zs) = —2mi, ag(m§3, mg3 - m%Q) = —27rz'9(m%2 - mgg)-
We then find
Cutm%?m%ST = DiSCm%?mgS T

472 9 9

= _?6 5m%2,m%3 + 0(m12 - m23)5m%2,m%3—m%2} T

4Am%q

= 79(7”%2 - P% - P§3)‘9(m§3 - m%2) ) (3.42)

1

which matches the result of the direct calculation in [B.1.4l  Taking the

discontinuities in the opposite order, we would have found
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Chapter 3. Cuts as iterated discontinuities

Cutm2 m2 T= DiSCm2 m2 T
23277712 23277712
Am?i 2 2 2 2 9
- p? © |0(py +mas — m12)5m§37m?2—p%—m§3 + 0(mas — m12)5m§3,m§3—m§2 T
4%
T O(miy — Pt — pis)0(mas — miy) (3.43)
1

which also matches the direct calculation.

While it is obvious that Cut,; .2 T = Cut,; .2 T, we see that they
are related to different coproduct entries. This is an example of how the
underlying relation between coproduct entries and cut diagrams constrains the

symbol/coproduct of Feynman diagrams.

We finish this example with a comment. As mentioned previously, for triangle
integrals we cannot set up a double cut in an external momentum and an internal
mass attached to it, like p? and m?, in this example, because there is no additional
propagator to cut at the second stage. Correspondingly, if we were to attempt
to relate Disc and the coproduct for this double cut as in the above exercise,
we would be stuck when taking the second discontinuity, as the £:0 prescription
of the second invariant is not well-defined. Thus, even in this case, there is no

conflict among Cut, Disc and the coproduct.

3.5.3 T (0,p3, p3; miy,0,0)

In this example, we illustrate iterated cuts in external channels, and we give
another example of iterated cuts in one external channel and one internal mass.
Expressions for the integral, its symbol and cuts can be found in appendix [B.2.3
The euclidean region, which we denote R, (we reuse the same notation as above
for all examples, since there is no ambiguity and to avoid having too many
indices), is

Ry : mi, >0, Py < mi,, p3 < 0. (3.44)

The single discontinuities are treated as above and obey the expected relations,

so we will not go through the derivation. The result for the cuts can be found

in egs. (B.45)), (B.46) and (B.47). For double discontinuities, we consider two

different double cuts: Cutz 2, and Cutyz » = Cutyz 2. The first one is very

similar to what we did before so we will not address it in detail here, the result

26



3.5. Examples — One-loop

for this double cut is found in eq. (B.49). The second one is a new kind. In
particular, we will show that both orders of taking the discontinuities give the

same result.

(p2,p%) :  We must analytically continue the function from
2
‘RII)2 : m%Q > 07 pg > m%27 p§ < Oa (345)

to
2 2
RZPS mi, >0, P2 >m?,, P2 > 0. (3.46)

In this region, the nonvanishing coefficients as(p3, z) are

as(p3,p3) =2mi,  as(p3,ps — miy — p3) = 2mif(miy — p3 + p3).

We then find

Cutp%p%T = DISCP%I% T

42
= "o — 2@ [6p%—m%2,p§ + 9(771%2 - p% +p§)5p§—m%2,p§—m%2—p§] T
P2 —P3
4%
= ———0(p3 —mi, —p3). (3.47)
by — p3

(p%,p%) :  We now start in the region
2
RY:  mip>0,  py<mi,  p;<0 (3.48)
2 2
and go to the same region R5*" as above. The coefficients ay(p2, z) are

az(p3, miy — p3 + p3) = 2mif(p3 — mi, — p3)

and thus
CutpgﬂpgT = DiSCp%,p% T
4Am%i
=5 3 O(py —mi, — p§)5p§,m§2—p§+p§ T
b3 — D3
4%
= ———0(p3 —miy — p3), (3.49)
Ps — P3
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Chapter 3. Cuts as iterated discontinuities

as above.

As expected, the two orderings of taking discontinuities match the direct
calculation of the double cut, and we again find non-trivial relations between

coproduct entries.

3.5.4 T (p3,0,0;m3,,0,m2)

In this example, we show how the relations between discontinuities and the
coproduct generalise when we must use variables such as the ones defined in
eq. to get a symbol with rational letters. In particular, we hope to make
clearer the discussion below eq. . Finally, we also illustrate the discussion
in section [3.4.1 as predicted, we show that the double cut in the two internal

masses vanishes.

Expressions for the integral, its symbol, and its cuts can be found in appendix
B.1.5] The euclidean region is

2
Ry : mi, >0, mis >0, < (\/m%Q - \/m%3> : (3.50)

To simplify our discussion, we will restrict the euclidean region to the subregion

Ro., defined by

Ry, : mi, >0, mi, >0, pP<0 = w5 <0, wy, > 1.
(3.51)
Our discussion would be similar if we had started from the other subregion of the

euclidean region (i.e., the region where p? is positive but below threshold).

Single cuts: For the single cut in the invariant r, with r € {p?, m2,, m3,}, we
will move away from the euclidean region and into region Rj. These three regions

are

2
2
R m2, >0, mi; >0, p?>(\/m%2+\/m%3) = 0<w <w <1,

R™M:. ;2 <0, m >0 240 => O<wy<l<w
1 - 12 ) 13 y P 1 1,

RMs . m2%, >0, mi<0, pP<0 = o <0<w <l. (3.52)
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3.5. Examples — One-loop

2
For the discontinuity in the p? channel, we first note that, in region R}*, p2+i0

implies w; + i0 and w; — i0. Then, the nonzero coefficients a;(p?, z1) are
ay(p?, ) = 2mi, ar(p, 1 —wy) = 2mi. (3.53)
The relation between Cut, Disc and the coproduct is

Cutp%T = — Discp% T
2
=50 [0, + 01w, | T

b1
2 Wy w1

=— 1 —1 ) .54
pi (Og(l—w1> Og<1—w1>> (3.54)

2
Similarly, for the discontinuity in the mass m?2,, we note that, in region R},

m2, — 0 implies w; + i0 and w; + 70. The nonzero coefficients a;(m?,, ;) are

ay(mly, wy) = —2mi, (3.55)
and we then find
Cut, o T = Disc, 2 T~ 2205, T = 27 w
Utz T = Disc,p2, T = 7 o T = 7 og w—1) (3.56)

2
Finally, for the discontinuity in the mass m?;, we note that, in region R,

2 . . . . — . . 2
mis — i0 implies w; — 0 and w; — ¢0. The nonzero coefficients a;(mis, x1) are

ar(mis, 1 —w,) = —27i, (3.57)
and we find
Cuttys. T = Discye. T = 2206, T = — -2 log (2
Utz T = Discy,e, T = 7 1wy T = 7 g\ 1 o) (3.58)

We finish the discussion of these single cuts with three comments. First, we

note that eqgs. (3.54)), (3.56) and (3.58|) reproduce the direct calculation of the

cuts in eqs. (B.22)), (B.23)) and (B.24)) as expected. Second, we have confirmed
eq. (2.45) as, in that form, we can indeed read the correct (symbol of the)

discontinuity across the branch cut of each of the invariants appearing in the
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Chapter 3. Cuts as iterated discontinuities

first entry. Finally, we have shown that writing the symbol in the special form of
eq. (2.45) is not necessary or even natural from the point of view of the relations
between Disc and 9, as the relations are formulated in terms of individual symbol
letters and not some particular combination of them. In other cases where similar
variables are needed, we prefer to present the most compact expression of the

symbol.

Double cuts: The only double cut we can consider is the double cut in the
internal masses. Since the two masses are connected to an external massive leg,
we claimed in section [3.4.1] that these double cuts should vanish. We now show

this observation agrees with what one gets from the coproduct.

The double cut Cut,z2, 2, T = Cuty2, 2, T is computed in the region

m%zvm%:s 2 2
R, : mis <0, mys <0, m2y + 1/ mi, (3.59)

In terms of the variables w; and w;, this region is split into two disconnected

2 2 2 2
: Myg,M73 Myg,M73
subregions 7y, and R, ,
m127m13 - m§2,m%3 -
R, Do <wp <0; R,, Dl <y < wy. (3.60)

m12:m13

For Cut, s 2 T, we start in region R}" 2 In R, , m2, —10 implies w; +10,

and the nonvamshlng coefficients ay(m?,, xy) are

as(mis, wy) = 27, ag(mis, 1 —wp) = 2mi.
We then get
. o Ar%
CUtm§2,mf3T = DlSCm%%m%3 T —p—%@ [5@1@1 + 5117171_11,1] T=0. (3.61)

In Rm12’m13 all the coefficients as(m?;, r3) vanish so that we again find

Cut,, 2 2 T = Disc,2. 2. T'=0. (3.62)
12>M13

m12 my

. . m? m2,,m? .
For Cut,z2 .2 T, we start in region Ry". In R,*"*, all the coefficients
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3.5. Examples — One-loop

as(mis, z2) vanish and we get

Cut,,2. 2. T = Disc,,2 2. T =0. (3.63)
12 12:M13

mig,

m2,,m? [ . _ . C 1. .
In Ry, m?2, — 40 implies w; + 0. The nonvanishing coefficients as(mis, o)

are
ag(m?,, ) = 2mi, ag(miy, 1 — ) = 2mi
and we get
Cut,,2. 2. T = Disc,2 2. T = 4L22i@ (01 —wyo, T 01—y 1—n ] T =0.  (3.64)
e B p1 7 7

We thus find consistent results in all subregions and for either order of the
discontinuities: in all cases, the result of the double discontinuity is zero. As

already mentioned, this result illustrates the discussion in |3.4.1

3.5.5 T(pi,p3,p3:0,0,0)

Single cuts: We already discussed the relations between discontinuities and
the coproduct of the three-mass triangle in some detail in section [2.3.3] What
was missing there was the relation with cuts, but we can now complete these
relations (we keep F as a function describing a general three-point function with

massless propagators and three-massive external legs):

Cutys F = — Disc,s F & —(27i) © [5. + 6, _.]F, (3.65)
Cutpg F=—- DiSCpg F=(27ri)00,F, (3.65b)
Cutyz F' = — Disce F' = (27m1) © 1., (3.65¢)

These relations can be checked with the results in eq. (B.3.1]), and by taking
F =Tz, z) as defined in eq. (B.53).

Double cuts: As for single cuts, the relation between coproduct and discon-
situies for double discontinuities as already been described in section [2.3.3. We
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Chapter 3. Cuts as iterated discontinuities

now complete them by relating them to cuts.

Cutpz 2 F' = Discyz 2 I = (2mi)? O [0,z + 01, - F (3.66a)
Cutyz y2 F' = Discyz o F' = (2mi)? O[5, + 6z’1_z]F, (3.66Db)
Cutyz 2 F' = Discyz o F' = (27i)? O [0.1-» + 61212 F,  (3.66¢)
Cutyz 2 F' = Discyz 2 F' = (2mi)? © [0, s+ 01| F, (3.66d)
Cutyg 2 I = Discyg 2 I = —(27i)? 00,1 _.F, (3.66e)
Cutps 2 F' = Discyz 2 I = —(27i)*© 6, F . (3.66f)

These relations can be checked with the results in eq. , and by taking
F =T(z,%) as defined in eq. (B.53).

We see once more that because cuts act simultaneously in the various channels,
there are nontrivial relations among entries of the coproduct. For example,
Cutp3,p§ F= Cutp§7p§ F implies that 0,1 . F = 01—, :F.

The relations between cuts, discontinuities and the coproduct given in this

section will also be relevant for the two-loop example we will study below—see
section 3.6

3.5.6 T (p3.p3.p}:miy, 0,0)

With our last example of three-point functions at one-loop, we come back
to the case already mentioned in section to show that we have lifted the

ambiguity of the imaginary part in some symbol letters correctly.

The relations among cuts, discontinuities and the coproduct in this example
are straightforward to obtain. Indeed, the nonzero internal mass is a simple
generalisation of the previous example. We give the full set of relations for cuts
in external channels, to verify that the procedure described in section to fix
this ambiguity does indeed give the correct result. We will not present cuts in
the internal mass here, because we have already given several examples of this

type of discontinuity, and they would not teach us anything new.

To get rational symbol letters, we use the variables defined in eq. (2.29), and
also define as usual p15 = m2,/p?. Expressions for the integral, its symbol, and its

cuts can be found in appendix [B.3.3] The regions where single cuts are computed
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are
2
Rzl)l: p%>m%27 p§<07 p§<07 m%2>07
2
R1102: p%<0a p%>m%27 p§<07 m%2>0a
2
R¥ . pt<0, pi<0, p3>0, mi, > 0. (3.67)

We note that these regions are not the complete regions in which single cuts
are nonzero. For instance, in Rﬁﬁ we could have allowed 0 < p3 < mi,. This
complicates the discussion in terms of the z and z variables, so in this discussion
we restrict the cut regions to the subregions defined above, although we have
performed some checks that the relations are consistent for the full euclidean
region and other parts of the cut regions. In terms of z, z and po, the chosen

euclidean subregion and the subregions for single cuts listed above are

Ror : 0<z<z<1, pip<0, 22— ;>0 (3.68)

Rﬁ’l cz>1, 2<0, O0<pie<l, 2—p12>0, Z2—p12<0, 22—p12<0
2

RZ:0<z<1, 2<0, pua<0, 2—p12>0, Z—p12<0, 22— 1120 <0

R’f?’: z>1, 0<z<1, <0, z2—p12>0, Z—p12>0, 22— p2>0.

For single cuts, knowing that p? = p?+i0, there is no ambiguity in determining the

sign of the imaginary part of the relevant symbol letters in the relevant kinematic
region. We then find

2T
Cut 2T = —Disc 2 T~ ——0O[d;_, +0 0s5_
ut, i5Cp2 T (01— 4 Opyy + ] T
2
= ————06_
p-2) e
Cut, 2T = —Disc,2 T = — 2m 0,5 T
p3t — P3 - p%(z . 2) zZ—p12 7
27
t 2T = —Disc 2T =2 —————006,_,7T. )
Cutps iscyz T 2)@ 1-2T (3.69)

For the p? channel cut, we used the fact that there is no branch point at p? = 0

to find a simpler relation.
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Chapter 3. Cuts as iterated discontinuities

The double cuts are computed in the regions

p3.p3 | 2 2 2 2 2 2
RV py > mi,, Py > My, p; <0, mis > 0,
2 2
P03 2 2 2 2 2
Ry Pl > misy, py <0, p3 >0, mis >0,
2 2
pZ.p3 2 2 2 2 2
R p; <0, Py > miy, p; >0, mis > 0. (3.70)

Determining the signs of the symbol letters and their imaginary parts in each of
these regions is straightforward for all double discontinuities, except for Cutyz 2T,
in which case the imaginary part of Z — uy5 does not have a definite sign in the
cut region. We showed how this issue could be addressed in section where
we also mentioned that the result can be cross-checked by comparing Cut,z 2T
and Cutz 2T

The full set of relations among cuts, discontinuities and the coproduct is

: o Ar%i
Cutys 3T = Discyz 0 T = m@élfulz,iﬁumTa
1
: o —A4ri
CutpgﬁT = DlSCp%’p% T = ﬁ@ [6z2—/.1,12,1—2 + 52/5_#12,5 + 525—#1272—#12] T,
pi(z —2)
: . Ar%
CUtp%p%T = DlSCp%pg T= m@51—u12,1—z77
: -~ 4%
Cutpgvpr = DISCp:%ﬁp% T —m@élfz,zfyuT,
: . e
Cutyz 2T = Discyz 2 T = m@@g_ng—,ﬂ’y
: . Ar%i
Cutpg’pgT = DlSCp§7p§ T m@(slfz’gfum,]-. (371)

Using these results and the expressions given in appendix we indeed verify
that Cutyz 2T = Cutyz 2T. We have also checked that all the relations are

satisfied for all pairs of external channels.

3.5.7 Two-mass-hard box

We now look at the two-mass-hard box, a box integral (having massless
propagators) with two adjacent external massless legs p3 = p? = 0, and two
massive ones. The symbol alphabet consists exclusively of linear functions of the

invariants because we will only study the function up to terms that vanish when
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3.5. Examples — One-loop

e = 0 (at higher orders, having a rational symbol alphabet requires using variables
like in eq. , see section . Our main reason for including this example
is that despite this apparent simplicity, understanding the relations between Cut,
Disc and § requires some care regarding the kinematic regions. Furthermore, the
two-mass-hard box analysed here will also be needed for our two-loop calculations

that follow, where it appears as a subdiagram in some cuts.

We use the result of ref. [98], with an additional factor of ie’2¢ inserted to

match our conventions. In the euclidean region, the box is given by

YE€ 1
B"(s,t;pi,p3) = 6—/d‘“% 7
(5,197, 93) = 5 k2(k + p2)?(k + p2 + ps)?(k — p1)? 372

B o sV s L% 4 9L, (1 - i) 1 2L, (1 - i)] O,

(—t)ir2e(—s)tte pi P3

where s = (p; + p2)? and t = (py + p3)? and cr is defined in eq. . In the
following equations, we drop the O(e) terms. The coproduct (or symbol, which
are almost equivalent for the weight 2 functions we are concerned with here) is
evaluated order by order in the Laurent expansion in €. At order 1/¢2, it is trivial
and there is clearly no discontinuity. At order 1/e, the coproduct is simply the

function itself,

A, B" Ve = i [log( p}) +log(—p3) — log(—s) — 2log(—t)] ) (3.73)

At order €°, we are interested in the A;; term of the coproduct, which is given

= — [tog(—p}) @ log(—p3) + log(—p3) ® log(—p}) — log(—p}) @ log(—s)
—log(—s) ® log(—p}) — 2log(—p;) @ log(—t) — 2log(—t) @ log(—p?)
—2log (%) ® log <1 — p%) + log(—p?) ® log(—p?) — log(—p3) ® log(—s)
—log(—s) ® log(—p3) — 2log(—p3) @ log(—t) — 2log(—t) ® log(—p3)

—2log (p%) ® log <1 — p%) + log(—p3) ® log(—p3) + 2log(—s) ® log(—t)
+2log(—t) ® log(—s) + log(—s) ® log(—s) + 4log(—t) ® log(—t)] . (3.74)
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P2 P3 P2 p3 P2 ps P2

p1 b1 2 b1

=
=
=
B

(a) (b) () (d)

Figure 3.6: Cut integral diagrams for sequential discontinuities of the
two-mass-hard box, where legs 3 and 4 have null momenta.
(a) Channel pairs (s, p?), (s,p3), or (p?,p3). (b) Channel pair (¢, p?).
(c) Channel pair (¢,p2). (d) Channel pair (s,t).

Up to order O(e), the symbol alphabet can then be chosen to be
Ah: {pipg?t:&t_p%at_p%} . (375)

Discontinuity in the t-channel: The discontinuity of B" in the t-channel,
with ¢ > 0 and all other invariants negative, can be straightforwardly computed
according to the definition (2.34)) starting with the expression for the function

B?mh in (3.72)), obtaining;

2\e 2\e
- h (=p1)(=p2)° [1 t t
DlSCtB = 47(ch |:E + log 1-— p_% + log 1-— p_% + 0(6)

CAr Tl (=pi)(=pa) log (

S
st L log (—s)t?

- 12) + log (1 - 12) + 0(@} . (3.76)

Py p3

Considering instead the coproduct relation (2.41)) and using the coproduct entry
given in eq. (3.74)), we find

T2 / t
53’@1[———21 —p?) —2log [1— =) —2log(—p2) — 2log (1 — —
’ | ¢ 2log(=pi) og 2 og(—p3) — 2log 72

+2log(—s) + 4log(—t) + O(e)] , (3.77)
and thus Disc, B" = —27i © §,B", as expected.

Sequential discontinuities: Since the two-mass-hard box has four momentum
channels, there are six pairs to consider as sequential discontinuities. Cutting
any of the pairs of channels (s, p?), (s,p3), or (p?, p3) cuts the same set of three

propagators, as shown in fig. [3.6a] and gives the leading singularity . The result
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3.5. Examples — One-loop

of the integral in the respective kinematic regions is —4m2i/(st), which matches
the value computed from the coproduct, eq. (3.77), or the direct evaluation of

discontinuities (we will compute these cuts explicitly in section [5.5.7)).

Let us now consider the sequential discontinuities on the channel pair (¢, p?),
where ¢ = 1 or 2. For concreteness we focus on the case i« = 2. We first discuss
the relation of the discontinuity to the coproduct as in eq. ; finally we will
verify that the result is consistent with the iterated cut integral in the region
where the latter is defined.

Specializing (2.41)) to the case of interest, we have

Discy 2.5, B" = © Z 1(t, 1) a2(p2,$2)6x17x2Bh, (3.78)
(CC17$2)E.A

where R; is the region where ¢ > 0 and pg < 0 and Ry is the one where both ¢t > 0
and p3 > 0. The relevant letters for ; can a priori be ¢ and ¢ — p?, however, by
the first entry condition we know that 5t_prh = 0 so we only need to consider
r1 = t. We find:

a1(t,t) = Discyso log(—t — i0) = —2mi (3.79)
For z, the relevant letters are p3 and ¢ — p3, and both potentially contribute:

ax(p3, p3) = Disc,.g, log(—pj + i0) = 2mi

_ » ' (3.80)
as(ps,t — p3) = Disc,z., log(t — p3 +i0) = 2mif(p5 —t).
However using the coproduct of eq. (3.74) we have 0, 2 B" =0, so we get
: h 20,2 h 8
Discy 2.5, B = —(27i)°0(p3 — t)0;4_p2 B" = ——9( —t). (3.81)
Next consider the sequential discontinuity in the reverse order:
Discz .z, B* = © Z 1(p3, x1)as(t, I2)5x1,mBh7 (3.82)

(z1 ,zz)€A2

where R; is now the region where p2 > 0 and ¢ < 0 and R, is the one where both

t > 0 and p3 > 0. Taking into account the first entry condition, there is only one
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Chapter 3. Cuts as iterated discontinuities

relevant letter for the first discontinuity, z; = p2, and we find:
ay(p3,p3) = Discpz.p2-0 log(—p3 — i0) = —27i . (3.83)
For the second discontinuity z can either be ¢ or ¢ — p? for i = 1 and 2.

as(t,t) = Discy.g, log(—t +10) = 27i
2( ) t;Ra g( ) (384)
as(t,t — p?) = Discy.p, log(p? —t +1i0) = 2mi 0(t — p?).

Using the coproduct component in eq. 1} we find that 5p§7t,p§Bh vanishes and
we finally obtain:
8%i

Disc,z 1. r, B" = —(2mi)? <5p§7tBh + (5p§,t_p§Bh> = —?9(]7; —t). (3.85)

We thus obtain the same result irrespectively of the order in which the two

discontinuities are taken,

Disc, 3z B" = Disc,z , B". (3.86)

Consider now the cut diagrams in the channel pairs (¢,p?) and (¢,p3). This
cut involves an on-shell massless three-point vertex, as shown in fig. diagrams
(b) and (c). For D > 4, as needed to regularise the infrared divergences of the

integral, the integral over w vanishes
Cut,z B> = Cut, , B = 0. (3.87)

It should be emphasised that this result is in fact only valid for ¢ > p2, which is
consistent with real external momenta (the complimentary region is unphysical;
it can only be realised for complex external momenta). Given that the iterated
cut Cut,z ; is only defined for ¢ > p3, where it was shown to vanish identically, and
the discontinuities and also vanish in that region, we have verified
that

Cutpg,thmh = Discz, B*h — —(27i)?© (6

2mh 2mh\ __
BT+ 5p§,tfp§B > =0.

(3.88)

Exactly the same conclusion holds for the double discontinuity on p? and t.
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Finally, a comment is due concerning the channel pair (s,t). This double
discontinuity is excluded because the cuts cross in the sense described in the
cutting rules of the previous section. Indeed the relation between Cut and Disc
does not apply for crossed cuts because the second Disc operation would not have
an unambiguous 70 prescription. Note however that in the coproduct, eq. (3.74)),
there are terms proportional to log(—s) ® log(—t) and log(—t) ® log(—s). If we
were to compute the cut integral, it would be zero, not only because of the on-
shell three-point vertices, but also because there is no real-valued momentum
solution for any box with all four propagators on shell, even in D = 4. We will

see in chapter [5| a way to consistently compute these cuts.

3.5.8 Four-mass box

Let us now look at the four mass box. In D = 4 dimensions, this diagram is
very similar to the three-mass triangle because of its conformal symmetry [99].
We give the result for the uncut function in section |B.4.8| eq. (B.123]), computed

as a parameter integral in what we believe is a new derivation of this result.

Here, our goal is to study its cuts and their relation with the discontinuities
and the coproduct. When computing the cuts, we will see that the variables
in terms of which the result is best written appear naturally. There are two
different types of single unitarity cuts: cuts that isolate one vertex (in one of the
p?), and cuts that isolate a pair of vertices (in either the s or the ¢ channels).
We will look at one example of each configuration: the cut in the p3 channel

and the cut in the s channel. Because of the long list of arguments, we write
B(s,t;pi, 05,03, p3) = B

Calculation of single unitarity cuts: Following the cutting rules we estab-

lished in the previous section, and working in D = 4, we have

oF (k) 0* ((k —p3)?)
k+ p2)?(k 4 p1 + p2)?

o [T dars (1-5ay | [t Ok = p))
_4/0 dl/o dQ(s(l 2 l>/dk((a1+a2)k2+2k~n+52)27

€S

Cut,, B =4 / d*k ( (3.89)
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Chapter 3. Cuts as iterated discontinuities

where in the last line we combined the two uncut propagators using Feynman

parameters, and we have defined the four-vector n and the invariant 32 as

N = aips + a2(p1 +P2) ) 52 = alpg + ass.

Following the Cheng-Wu theorem, for which we provide a proof in section [B.4.8|
since the denominator of the integrand is homogeneous of degree 2 in (ay, as), we
may take S to be any nonempty subset of {1,2}. As far as the integration of the
cut loop momentum is concerned, we are in a situation similar to the one of the

three-mass triangle, and we thus use a similar parametrisation of the momenta,

D3 =/ p?&(laO?OQ)v n=v 772(a7 Va2 — L, 02)7
k = (ko, |k|cos b, |k|sinf 1s),

where now a and n? are functions of the Feynman parameters. The integration

over the cut loop-momentum can be done easily and we get

&0 > 0(1— . a;
Cutsz4m = 27r/ dal/ day— 2( 421652 )
’ 0 0 p3n* + B+ 28%p3 -

—on / day / das (L= Fies @) . (3.90)
0 0

apat + a3p3s + aras (st — pips + pip?)

Choosing S = {2} so that ay = 1, and changing variables to y = alpé,

2 1
Cut B = — dy -
P3 st J, (Z+g{)(Z+y) (3.91)
_mo 7 |
T T siz-7 %7
where
1
Z:§(1+U—V+\//\(1,U,V)>,
_ 1
Z=3 (1 Y U-V - AL, V)) , (3.92)
with - -
y="00h P (3.93)
st st
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3.6. Two-loop three-point three-mass ladder

As for the three-mass triangle, Z and Z appear naturally in the calculation of
the cut of the four-mass box diagram, and it is fair to say that this calculation is

simpler than the evaluation of the uncut diagram.

The cut in the s-channel can be computed following exactly the same steps.

We only quote the result,

2 1 1-Z A

Discussion: As expected, we find that both cuts verify the relations we
anticipated
Cut,s B'™ = —Disc,, B'™ = (2mi) © 6,z B, (3.95)

and

Cut,B"" = —Disc,B"™ = —(2mi) © (6;B"™ + 61_zB"™). (3.96)

Similar results can be obtained for the other external massive channels of the

box.

The analysis of multiple cuts is more complicated. Following the methods
we have developed, the calculation of the three- and four-propagator cuts is not
hard. The difficulty lies in identifying the correct region where the cuts and
discontinuities should be related. Indeed, as we already saw in the previous
example, identifying this kinematic region for box diagrams is not trivial. It
becomes even harder in the case of the four-mass box, given the required change
of variables to Z and Z. This is a technical issue only, but makes this example
not particularly enlightening as an illustration of the Disc-Cut-d relations, so we

will not discuss it further.

3.6 Two-loop three-point three-mass ladder

The two-loop, three-point, three-mass ladder diagram with massless internal
lines, fig. , is finite in four dimensions [99]. In terms of the variables z, zZ defined
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Chapter 3. Cuts as iterated discontinuities

Figure 3.7: Two-loop three-mass ladder.

in eq. (2.29)), it is given by a remarkably simple expression:

Tolprpoops) = _% /d4k1 /d4k2 ki (ps — k1)?(ka +p1)21/€§ (p3 — k2)?(k1 — k2)?
=10 oo s e B
(3.97)
where we have defined the pure function
F(2,2) =6[Lis (2) — Lis(2)] — 3log (22) [Lis (2) — Lis(2)] 5.98)

+ L 10g2(:3)[Lia(2) — Lin(2)].

Because the two-loop three-point ladder in four dimensions is given by weight-
four functions, its coproduct structure is much richer than the one-loop cases
of the preceding section. Since one of our goals is to match the entries in the
coproduct to the cuts of the integral, we list below for later reference all the

relevant components of the coproduct, of the form Ay 1 . We have

k times

A13(F(z,2)) =log(2z) ® [-3 Liz(z) + 3 Li3(2) + log(22) (Liz(z) — Liz(2))]

1
+log((1—2)(1—-2))® 3 log zlog z log z : (3.99)
z
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3.6. Two-loop three-point three-mass ladder

1
Ap12(F(2,2) =log(1—2)(1—-2)) ®logz® (logzlogZ b log? 2>
1
—log((1 —2)(1—-2))®logz® (logzlogz b log? z>
1
—log(zz) ® log(1 — 2) ® <logzlogz ~5 log? z)

1
+log(zz) ® log(1 — 2) ® (logzlogz ~ 5 log? z)

+log(22) ® log(2z) ® [Lia(z) — Lia(2)] , (3.100)

Ap111(F(2,2) =log((1 —2)(1 —2)) ® logg ® (log z ® log z + log z ® log %)

+log((1 —2)(1 — 2)) ®log Z ® log z ® log 2

z
® log z ® log 2z
1—=z

°® log z ® log z + log(2z) ® log
z

)

—log(2z) ® log(1 — 2) ®log z ® log Z + log(2z) ® log(1 — 2) ® log z ® log 2
)
)

+log(22) ® log(2z) ® log(l — 2) ® log z . (3.101)

Notice that the first entry of Ay ;1 is (the logarithm of) a Mandelstam invariant,
in agreement with the first entry condition.

In the rest of this section we evaluate the standard unitarity cuts of the ladder
graph of fig. 3.7, which give the discontinuities across branch cuts of Mandelstam
invariants in the time-like region. Our goal is, first, to relate these cuts to specific
terms of Ay 3 of Ty (p?, p3,p3), and, in the following section, to take cuts of these
cuts and relate them to Ay 9.

In contrast to the one-loop case, even if the uncut diagram is finite, individual
cut diagrams are infrared divergent: even though Ty (p?, p3,p3) is finite in D = 4
dimensions, its unitarity cuts need to be computed in D = 4 — 2¢ dimensions.
The finiteness of Tp(p?, p3,p3) for € = 0 imposes cancellations between e-poles of
individual cut diagrams. These cancellations can be understood in the same way
as the cancellation of infrared singularities between real and virtual corrections

in scattering cross sections.

For practical reasons, the cut diagrams will be computed in the region R},
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Chapter 3. Cuts as iterated discontinuities

where z = 2* and all the Mandelstam invariants are timelike. This restriction
is consistent with the physical picture of amplitudes having branch cuts in the
timelike region of their invariants. When comparing the results of cuts with ¢,
but particularly with Disc, we will be careful to analytically continue our result
to the region where only the cut invariant is positive, as this is where Cut is to
be compared with Disc.

Before we start computing the cut integrals, we briefly outline our approach
to these calculations. We will compute the cuts of this two-loop diagram by
integrating first over a carefully chosen one-loop subdiagram, with a carefully
chosen parametrisation of the internal propagators. We make our choices
according to the following rules, which were designed to simplify the calculations

as much as possible:

e Always work in the center of mass frame of the cut channel p?. The

momentum p; is taken to have positive energy ;

e The routing of the loop momentum k; is such that k; is the momentum of
a propagator, and there is either a propagator with momentum (p; — k1) or

a subdiagram with (p; — k;)? as one of its Mandelstam invariants ;
e The propagator with momentum k; is always cut ;
e Whenever possible, the propagator with momentum (p; — k) is cut ;

e Subdiagrams are chosen so to avoid the square root of the Kéllén function

as their leading singularity. This is always possible for this ladder diagram.

These rules, together with the parametrisation of the momenta

pi = \/P}(1,0,0p_5),  p; = /D (a, va? — LOD_z) :
kl = (kl’o, |l€1| COS 9, ’kll sin @ ].D,Q), (3102)

where 0 € [0,7], |ki| > 0, and 1p_5 ranges over unit vectors in the dimensions
transverse to p; and p;, make the calculation of these cuts particularly simple. It

is easy to show that

2 /.2 p?—p?—p? 2 /.2 /3 1 2 .2 2
ay/p? pi= and 1/pi\/pivVa —125 A(pi,pj,pl). (3.103)
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3.6. Two-loop three-point three-mass ladder

s — ki

p3+ ko

(a) Cut [45] (b) Cut [12]

Figure 3.8: Two-particle cuts in the p3-channel.

The changes of variables

2

cosf =2z —1 and ko= v, (3.104)

are also useful (the y variable is useful mainly when (p; — k1) is not cut).

3.6.1 Unitarity cut in the p} channel

We present the computation of the cuts in the p3 channel in some detail,
in order to illustrate our techniques for the evaluation of cut diagrams outlined
above. We follow the cut rules in section .2l We then collect the different

contributions and check the cancellation of divergent pieces and the agreement

with the term ;. F(z, Z) in eq. (3.99) as predicted in eq. (3.65¢).

There are four cuts contributing to this channel,

Cut,, T (pt, p3, P3) =
= (CUtpg,[45] + Cutpz 19) + Cutyz o34 + CUtpg,[135]>TL<P%aP%aP§) , (3.105)

and our aim is to show that

CutpgTL(p%,pg,pg) = - DiSCpg TL(p%,p%,p%)

2m 1 _
_@E(l —a _2)(2_2)51_2}7(2,2). (3.106)

I

Two-particle cuts: There are two two-particle cut diagrams contributing to
the p3-channel unitarity cut, Cutyz usTr(pf,p3,p3) and Cutyz 19 TL(p, 3, P3),
shown in fig. |3.8|
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Chapter 3. Cuts as iterated discontinuities

We start by considering the diagram in fig. [3.84) which is very simple
to compute because the cut completely factorises the two loop momentum
integrations into a one-mass triangle and the cut of a three-mass triangle:

[t G )

C t * T 2 2 2 = —
Wi pas) i TP P2 P3) = =1 | 15 (ky +p1)? — i0

evEe / PR | 1 1
m2e k2440 (ps — k)2 + 140 (ky — k2)2 40
=i T(p3) Cutye g, T(p}, 03, P3) (3.107)

We can find expressions for T'(p3) and Cut,z s T'(p7, p3,p3) in sections B.1.1
and . We note that the one-mass triangle is evaluated for space-like p3, while
in this calculation we have p > 0, given that we are cutting in this channel. We
can make sense of terms like log(—p3) by recalling that given the +i0 prescription

of the propagators contributing to the one-mass triangle, we have p = p2 + 0.

As expected, the result is divergent for ¢ — 0: the origin of the divergent

terms is the one-loop one-mass triangle subdiagram. Expanding up to O(e), we

get
Cutyz 135,55 TL (P}, 93, P3) = (3.108)
o (p7) 2> U=, v, 1y, _ 0, -
A0 -G =g | & B AT g (52 + g (= 2) 006

Expressions for the coefficients f[%(z, zZ) are given in appendix |C.1|

We now go on to fig. We can see diagrammatically that the integration
over ko is the (complex-conjugated) two-mass-hard box with external masses p?
and p3 and s = p2, t = (p; + k1)?. We give the result for this diagram up to the
needed power of € in eq. . More precisely, we have

Cutyg 1), gy, T.(P1, P, P3) = (3.109)
e'YEE ) 9
= 0 [t ns ()5 (s~ ) (B G+ )

To proceed, we parametrise the momenta as in eq. (3.102), with (i,7) = (3,1).
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3.6. Two-loop three-point three-mass ladder

Then, we rewrite the momentum integration as

6’YE €

/ 42y (225 (K2) 6 ((ps — k1)?) =

47 o
:1"<1 _ 6) /dklvo/d|k1|2 |k1|l ? 5(]{3%,0 - |k1|2)5(p§ — 2ps3 - k?1)

7T2—e

1
/ dcosf(1 — cos 0) €.

1

The two delta functions allow us to trivially perform the k; o and |k; | integrations.

For the remaining integral, it is useful to change variables to cosf = 2z — 1, as
in eq. (3.104)), and we get,

(pr+ k1) =pi (2 —2(2 - 2)) .

We finally have

Cutyz 121,55, T (PT, P3, 03) =

cr

['(1—¢)

=27

)72726 —1imE, € x*ﬁ(l _ x)ie

1
—1—2¢
e UsUs /0 dx =2z — 7)™

’ )} L0, (3.110)

(pi
1 _ _
~ +2Lis(1 — 2 + (2 — 2)) + 2L (1 _zzaz=z)
€ 2Z
where cp is defined in eq. (A.12). The factor e~ was determined according
to the i0 prescription of the invariants. After expansion in €, all the integrals
above are simple to evaluate in terms of multiple polylogarithms. We write this

expression as:

Cutz 1,55 TL(PF, 03, P3) = (3.111)
, (p?) 22 1 ooy, 1., o,
:Z(l—z)(i—i)(z—é) e_QfD?] (Z’Z)"‘gf[m] (2,2) + fug (2, 2) p + O(e),

and give the expressions for the coefficients f[(fg](z, z) in appendix |C.1}

Three-particle cuts: There are two three-particle cut diagrams contributing
to the p3-channel unitarity cut, Cut,z 53477 (p3, p3, p3) and Cutyz (15511 (p3, P35, P3),
shown in fig. 3.9 As these two cuts are very similar, we only present the details
for the computation of the cut in fig. [3.9a, and simply quote the result for fig. [3.9b]
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b3
p3— k1 — ko R
’

’ ps — ki

(a) Cut [234] (b) Cut [135]

Figure 3.9: Three-particle cuts in the p2-channel.

In both cases, we note that the integration over k, is the cut in the (p3 — k;)*-

channel of a two-mass one-loop triangle, with masses p3 and (p3 — k;1)?. More
precisely, for the cut in fig. we have

9 9 oy € 4-2e J (k)
Cutpg,[234],R*ATL(p17p2ap3) :71-275 d k1<27r) ((p2 + k1)2 _ ZO) <<p3 _ k1)2 _ ZO)
xCut(pS_kl)zT (pg, (pg — k1)2) . (3112)

We take the result for the cut of the two mass triangle given in appendix

and insert it into eq. (3.112)),

Cutyz 30, rs, Tr(PT, P3, P3) = (3.113)

e*1ee T(1 - ¢) / 4—9 0 (k7)) 0 ((ps—k1)?) < 1 )HE
=2 4k 0(k1o)
7w e['(1 — 2¢) "t k)2 psky (ps — k1 )? (K1,0)

where we have used the §-function to set k¥ = 0, and we have dropped the =4i(
of all propagators. We have included the #-functions because the cut of the two-
mass triangle is only nonzero when the (ps — k;)*-channel is positive. It is also
important to recall that the positive energy flow across the cut requires k19 > 0,
so we have included this 6-function explicitly. We use the parametrisation of
eq. (3.102)), with (7, 7) = (3,2) and both changes of variables in eq. , since
the propagator with momentum (ps — k) is not cut. The two conditions imposed
by the #-functions imply that

0<y<1. (3.114)
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3.6. Two-loop three-point three-mass ladder

We get

2meET(1 —€) , o o o Uz
— —~ 3.115
€2F(1 o 36) (pl) Us ( )

CUtpg,[234},R*ATL(P%7P;Pé) =

1 _ -
/ drz™ (1 — )7 F (1, 1—261—3¢61— w) :
0

U2

We can now expand the hypergeometric function into a Laurent series in € using
standard techniques [100], and we then perform the remaining integration order

by order. As usual, we write the result in the form

Cutyz 034,75 T (PT, 03, 13) =

, (p}) > Loy, v ey, ©) . -
B S TS T = {sz[234] (2:2) + _faa (2:2) + fraan (2, Z)} +0(e).
(3.116)

The diagram of fig. |3.9b| can be calculated following exactly the same steps,
the only difference being that when using the parametrisation of eq. (3.102)) we
have (i,7) = (3,1). The result is

27T€27E6F(1 - €)< 2)72726 —1—2¢
— U
(1 —3e) ! 3

CUtpg,[l?)S},R*ATL(p%apgap?))) =

1

/ dra (1 —2) 7 F (1,1 =261 361 — 2z +2(z — 2)) (3.117)
0

()

(1-2)(1-2)(z—2)

=1

1 —9 _ 1 -1 _ 0 =
{27860 + LD + (a0 + 0.

Explicit expressions for the f[(;; 4}(2, Z) and f[(l?ﬁ](z, zZ) are given in appendix |C.1|

Summary and discussion. Let us now combine the results for each p3-channel
cut diagram and compare the total with Disc and the relevant terms in the
coproduct. We observe the sum is very simple, compared to the expressions

for each of the cuts.

Note that, as imposed by the fact that the two-loop ladder is finite in four
dimensions, the sum of the divergent terms of each diagram vanishes. In fact,

this cancellation happens in a very specific way: the sum of the two-particle cuts
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cancels with the sum of the three-particle cuts. If we write

f(—2) +f(_2) f(—l) +f(_1) (-2) (=1)
[45] ~ [12] + [45] [12] Efvurt +fv1rt ’ (3118)

€ € €2 el

f(—2) +f(_2) f(—l) +f(_1) (-2) (-1)
by 7 T T T sl Jreal | Jreal (3.119)

€ € €2 el

then this cancellation can be written as

F58 = -y and fG0 = 10D (3.120)

virt real real

We call the divergent contribution of two particle cuts a wvirtual contribution
because it is associated with divergences of loop diagrams, whereas the divergent
contribution of three particle cuts, the real contribution, comes from integrating
over a three-particle phase space. This cancellation is similar to the cancellation
of infrared divergences for inclusive cross sections, although in this case we are
not directly dealing with a cross section, but merely with the unitarity cuts of
a single finite Feynman integral. A better understanding of these cancellations
might prove useful for the general study of the infrared properties of amplitudes,

and it would thus be interesting to understand how it generalises to other cases.

As expected, the sum of the finite terms does not cancel. We get
_ _ _ _ . _ z
f[ﬁfg](z, Z) + f[(log}(z, Z) + f[(20334}(z, Z) + f[(l(g5](z, Z) = imlog z log Z log > (3.121)

Since all divergences have cancelled, we can set € = 0 and write the cut-derived

discontinuity of the integral as

m(pt)
1—2)(1-2)(z—2)

z

CutpngZTL(p%,pg,pg) = —( log zlog Zlog — . (3.122)
z

For comparison with Disc, we now analytically continue this result to the region

R3 where only the cut invariant is positive: p3 > 0 and p3,p3 < 0. In terms of

the z and z variables, the region is: z > 1 > z > 0, see table 2.1} None of the

functions in eq. (3.122)) has a branch cut in this region, and thus there is nothing

to do for the analytic continuation and the result is valid in this region as it is
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3.6. Two-loop three-point three-mass ladder

(a) Cut [46] (b) Cut [136]

Figure 3.10: Cuts in the p3-channel

given above,

CUtpg,RBATL(p%pg)pg) = CUtpg,R*ATL(p%apgapg) .

This is consistent with the expectation that the discontinuity function would be

real in the region where only the cut invariant is positive [21},23].

The relations with Disc and ¢ are now easy to verify. As expected, we find,

Cut,z gs Tr(pi,p3, ) = — Discye To(p1, p3, 13) (3.123)
1

(1-2)(1-2)(z—2)

We can write this equation diagrammatically as

: ; o~

s (o= )

3.6.2 Unitarity cut in the p3 channel

12

—27 (p%)_2 © 0. F(z,2).

We now turn to the calculation of the cuts in the p3 channel, in order to
reproduce the 6,77 (p?, p3, p2) entry of the coproduct in eq. (3.99)) as predicted in
eq. (3.65h)). Only two cut diagrams contribute to this channel,

CUtpgTL(pip;pg) = (Cutpg,[lm} + Cutp%,[136]>TL(p%7pg7p§) : (3124)
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Chapter 3. Cuts as iterated discontinuities

The computation of the two cuts diagrams follows the same strategy as before,
i.e., we compute the cut of the two-loop diagram by integrating over a carefully

chosen one-loop subdiagram.

Computation of the cut diagrams. We start with Cut,z 14677 (P, p3, p3). As
suggested by the momentum routing in fig. [3.10al we identify the result of the
ko integration with the complex conjugate of an uncut two-mass triangle, with

masses (p3 + k1)? and p3:

CUtP%7[46],RZ TL (p%a p%a p%) =

Sl / d4‘25k1(2ﬂ)25(é{;j i(liylo;—_k;) (TG, s+ 1)2) . (3125)

7T2—e

Using the result for the triangle given in appendix and proceeding in the
same way as with the p3-channel cuts, we get (setting (i,7) = (2,3) in eq. (3.102))

— cFeﬂ/Es —€ _—1TE —2—2¢ ! e —¢
Cutyp e, rs T (pT, P3, P3) = 2= ——uy e ™ (p}) 272 / dr (1 —z)~x
o e2l'(1 —¢) 0

(us+z—us—x(z—2)) “—uz*
(us+2z—us — (2 —2)) (2 —ug — (2 — 2))

=1 (p%)*Q*QE 1 1) Z,Z ) 2,z €
TS T T {Efue] (2,2) + fug (2, )}+O( ), (3.126)

where cr is defined in eq. (A.12)).

The cut integral Cutpgy[mﬁ]TL(p%, p3,p3) is slightly more complicated. Using
the routing of loop momenta of fig. we look at it as the ki-integration over

the cut of a three-mass box,

Cut,z 136, r5, T (0T, P3, P3) =

evee 276 (k?
= o [ B (B R ) 3120

where Cut,B (s, t,13,12,13) is the t-channel cut of the three-mass box with masses
12, fori € {2,3,4}, 13 =0, s = (I; + I3)* and t = (I + [3)*. In our case:

I3 =(ps+ki)”—i0, I5=pi—i0, If=ps+i0, s=p;—i0, t=(po—k)>.
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3.6. Two-loop three-point three-mass ladder

The result for the t-channel cut of the three-mass box is given in eq. in the
region where the uncut invariants are negative and ¢ is positive. Since we work
in the region where all the p? are positive, some terms in the expression
need to be analytically continued using the +¢0 prescriptions given above. Using
eq. with (7,7) = (2,3) and introducing the variables = and y according to
eq. (3.104), we haveﬁ

log(—s) = logp? + logus + im,

(13 = (e”p%)*6 (us+y(z—us—a(z—2))) ",

(—85)7¢ = (e"pi) ",
2

[
log <1 - ?4> =logy — log(1 —y) —im,
1313 _ .
log (1 — o log (us + 2z —ug — x(z — 2)) + logy — log uz — log(1 — y) — im.
s
Combining everything, Cut,s 13¢,rs Tr (P, P3, P3) is given by

2 2 2
Cutyz 36, ry 10 (p1, p3, p3) =
62’yE5

1 1
-9 —€(2 226/ dr (1 = —€ e/ d —2¢
ﬂ-r(l_QE)uQ (pl) 0 x( ‘1.) xz 0 Yy

1 1 2
21 —uy (1 —y)™°
u3+z—u2—x(z—z)u3+y(z—u2—m(z—z))[ 0gu2+6u2( v)

€

+2log(1 —y) — %(1 — ) (us+y (2 —uy —x(z — 7))
—2log (ug + 2z —ug — (2 — 2)) | + O(e)
_ (pi) 2> 1o Lz © () = ]
- (1—2)(1—-2)(z—2) {Ef[lsﬁ}( ) )+f[136]( ) )} + O(e) . (3.128)

Explicit results for f[(ié}(z, z) and f[(f;ﬁ](z, z) are given in appendix |C.1}

Summary and discussion. Similarly to the p2-channel cuts, we first analyze

the cancellation of the singularities in the sum of the two cuts contributing to the

6Strictly speaking, this analytic continuation is valid for z = z*, with fRe(z) < 1. For the
case of Re(z) > 1, the factors of im are distributed in other ways among the different terms,
but the combination of all terms is still the same.
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Chapter 3. Cuts as iterated discontinuities

p3 channel, and check the agreement with 6,77, (p?, p3, p3) given in eq. (3.99). In

this case we only have single poles, and we see that the poles cancel, as expected:
-1 - -1 _
fia(2,2) + flon (2.2) = 0. (3.129)

This cancellation can again be understood as the cancellation between virtual

(from cut [46]) and real contributions (from cut [136]).

Adding the finite contributions, we find

iz D)+ £ (2, 2) = 2m{3 [Lig(2) — Lis(2)] + (log(22) —im) [Lia(2) — Lis(2)] } :
(3.130)

Hence, the cut of the two-loop ladder in the p3 channel is

CUtpg,RZTL(pipgvng == (1 o Z)Qg(zilé_xz - 2) {3[L13(2) - L13(Z)}

+ (log(zz) — im) [Lia(z) — Lia( )]} (3.131)

Since this result was computed in the region where all invariants are positive, we
now analytically continue to the region R4 where p3 > 0 and p?,p3 < 0. For the
z and Z variables, this corresponds to 1 > z > 0 > Zz, see table [2.1} The analytic
continuation of the Lis and Liz functions is trivial, because their branch cuts lie in
the [1, 00) region of their arguments. However, the continuation of log(zz) needs
to be done with some care, since (2Z) becomes negative. We can determine the

sign of the 0 associated with (zz) by noticing that

2
log<— = ) log (—zz —i0) ,

where we associate a —i0 to p? because it is in the complex—conjugated region of
the cut diagrams. We thus see that the —im term in eq. (| is what we get
from the analytic continuation of log (—zz — i0) to positive (zE) In region R%,

we thus have

CUtpg,RQATL(p%pg?pg) - - (1 _ 2)2(7;(111)2_)(2 _ 2) {3[Li3(2) - Li3(2)]
+ log(—zz — ig)[Lis(z) — Lis(Z)] } : (3.132)

84



3.6. Two-loop three-point three-mass ladder

(a) Cut [56] (b) Cut [236]

Figure 3.11: Cuts in the p?-channel

This agrees with the expectation that the discontinuity function should be real
in the region where only the cut invariant is positive [21,23]. Furthermore, we

again observe the expected relations with Disc and 9,

Cutp%,R?‘ATL (piapgapg) = - DiSCpg TL (P%:Pgapg)

~ 2) 2 !
~ 9210 (p1) (1—2)(1-2)(z—2)

Diagrammatically, the relation can be written as follows:

5ZTL(p%7pgap§) :% (““’I[ + _'_"‘[ > : (3.134)

3.6.3 Unitarity cut in the p? channel

5.F(z2). (3.133)

Given the symmetry of the three-point ladder, the cut in the p? channel shown
in fig. can be done in exactly the same way as the p3 channel, so we will be
brief in hstlng the results.

For the sum of the two cut integrals, the reflection symmetry can be
implemented by exchanging p; and ps in eq. , along with transforming
z — 1/Z and Z — 1/z. The total cut integral is then

Cuty e T (031 =~ (= j( (p@_;(z 3 {3 {Lig (1) s (1)}

— (log(22) + i) {le( > Li, G)} } (3.135)

We now analytically continue p3 and p? to the region R% where we should match

Cut with Disc. In this region, we have z < 0 and z > 1, see Similarly to the
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Chapter 3. Cuts as iterated discontinuities

previous case, we take p2 — 10 to find that log(zz —i0) — log(—zZz) — i, and thus

Cutye g1, Tr(p, 03, 15) = — = Z)Q(z(]i%)z)zz 3 {3 {Li?’ G) s G)}

~toa(=2) [ L () ~1is (5] }

= — Disc, T0(p, p3, P3)- (3.136)

In the last line, we have confirmed that the cut result agrees with a direct
evaluation of the discontinuity of T, (p?, p3, p3) in the region R} .

The ¢ discontinuity evaluated from the coproduct is simply related to the
discontinuities in the p3 and p2 channels. Indeed, we can rewrite eq. (3.99) as

A13(F(z,2) =log (—p3) ® 0,2 F(2, 2) + log (—p3) ® 0,2 F(2,2)
+log (—p?) ® 6,2 F (2, 2),

where

0,2 F(2,2) = 0,F(2,2), 0,2 F(2,2) = 01, F (2, 2)

0,2 F(2,2) = —0.F(2,2) — 01 . F(2,2). (3.137)
Explicitly,

2m(p}) 2
(1—2)(1-2)(z—2)

1
+ log(—2Z)[Lis(2) — Liz(2)] + 5 log z log Z log z} . (3.138)

(—27i)0,2 Ty, = — {3 [Lis(2) — Lis(z)]

which agrees with Disc, T7, from eq. (3.136) modulo 72.

3.6.4 Double unitarity cuts

In this section we describe the computation of the sequences of two unitarity
cuts corresponding to Cut,z o Cut,z and Cut,z o Cut,s; see fig. and fig. [3.13]
All the cut integrals can be computed following similar techniques as the ones
outlined in sections[3.6.1]and [3.6.2] so we will be brief and only comment on some

special features of the computation. Details on how to compute the integrals can
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3.6. Two-loop three-point three-mass ladder

ps+ ki

(b) Cut [1256]

P3

po+ ki

(e) Cut [23456] (f) Cut [1356]
Figure 3.12: Cut diagrams contributing to the Cut,2 o Cut,z sequence of

unitarity cuts.

be found in appendix [C.2.1] and the explicit results for all the cuts in fig.
and fig. |3.13| are given in appendices [C.2.2| and [C.2.3] respectively.

First, we note that, since we are dealing with sequences of unitarity cuts, the
cut diagrams correspond to the extended cutting rules introduced in section [3.2]
In particular, in section |3.2| we argued that cut diagrams with crossed cuts should
be discarded, and such diagrams are therefore not taken into account in our
computation. (In this example, all possible crossed cut diagrams would vanish
anyway, for the reason given next.)

Second, some of the cut integrals vanish because of energy-momentum
constraints. Indeed the cut in fig. vanishes in real kinematics because it
contains a three-point vertex where all the connected legs are massless and on
shell. Hence, the cut diagram cannot satisfy energy momentum conservation in

real kinematics with D > 4. We will set this diagram to zero, and we observe
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Chapter 3. Cuts as iterated discontinuities

p1+ Ky

-

o — ki €
P2 1,
G
.

(a) Cut [456] (b) Cut [2346]

p1+ ko

P2+ ky

p2— k2

(¢) Cut [1356] (d) Cut [1236]

Figure 3.13: Cut diagrams contributing to the Cut,2 o Cut,z sequence of
unitarity cuts.

a posteriori that this is consistent with the other results, again supporting our
approach of working in real kinematics.

We make one further remark on kinematic restrictions. Recall that the
generalised cutting rules allow for all possible directions of energy flow across
each cut (as illustrated in fig. for the triangle). In this example of the ladder
cut in channels p? and p2, all diagrams except fig. would vanish if the
energy components of p; and p3 had the same sign. However, it follows from the
conditions of the cut region (p?,p3 > 0, p3 < 0), in real kinematics, that the
energy components of p; and ps must have opposite signs. Thus we will find that
we always have nonvanishing contributions from all diagrams except fig. [3.12¢
It is important to be aware of these types of restrictions on the existence of the
cut region, since they do not necessarily show up explicitly in the cut integrals.

Let us now focus on the cuts that do not vanish. As we mentioned previously,
the cuts are computed by integrating over carefully chosen one-loop subdiagrams.
In particular, for simplicity we avoid integrating over three-mass triangles, cut
or uncut, because the leading singularity of this diagram is the square root of
the Kéllén function, which leads to integrands that are not directly integrable
using the tools developed for multiple polylogarithms. In Tables and we

summarise the preferred choices of subdiagrams for the first loop integration. We
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3.6. Two-loop three-point three-mass ladder

Cut — computed in R} One-loop subdiagram
Cuty2 56) © Cutyz 45 = Cut[456]’R23 One-mass triangle, mass p3, fig. [3.12a

(this cut completely factorises).
Cutyz 56 © Cutyz 1) = Cutygsq RL? Cut two-mass triangle, masses p3 and

(ps + k1)?, in p2 channel, fig. [3.12b]
Cuty2 236 © Cutyz 19) = Cut[1236]7R23 Cut two-mass-hard box, masses pj

and p3, in t = (p; — ky)? channel,

fig. .

Cutp%[%ﬁ] o Cutp§7[234} = Cut[2346]7 RL? Cut two-mass triangle, masses p3 and

(ps — k1)?, in (ps — kq)? channel,

fs f12

Cuty2 561 © Cutyz 135 = Cut[1356]7R23 Cut two-mass triangle, masses p3 and

(ps — k1)?, in (p3 — k1)? channel,
fig p121

Table 3.1: Nonvanishing cuts contributing to the Cut, o Cutpg sequence of
unitarity cuts.

observe that it is insufficient to define a cut integral by the subset of propagators
that are cut. Indeed, some cut integrals in the two tables have the same cut
propagators, but are computed in different kinematic regions due to the rules of
section [3.2] leading to very different results.

Finally, depending on the cut integral and the kinematic region where the
cut is computed, the integrands might become divergent at specific points, and
we need to make sense of these divergences to perform the integrals. In the
case where the integral develops an end-point singularity, we explicitly subtract
the divergence before expanding in e, using the technique known as the plus
prescription. For example, if g(y, €) is regular for all y € [0, 1], then, for ¢ < 0,

we have:

Yooglye) ge) [t gly,e) —g(le)
/Ody(l_y)HE— : —|—/Ody R (3.139)

The remaining integral is manifestly finite, and we can thus expand in ¢ under
the integration sign. However, we also encounter integrands which, at first
glance, develop simple poles inside the integration region. A careful analysis
however reveals that the singularities are shifted into the complex plane due to

the Feynman ¢0 prescription for the propagators. As a consequence, the integral
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Chapter 3. Cuts as iterated discontinuities

Cut — computed in R} One-loop subdiagram
Cutz (56 © Cutyz 146) = Cut[456],R22 One-mass triangle, mass p3, fig. [3.13a

(this cut completely factorises).
CUtpf,[%ﬁ} o CUtpg,[46] = Cut[2346]7 RL? Cut two-mass triangle, masses p§ and

(p1 + k1)%, in (p1 + k1)? channel,
fig. [3.13b[

Cut,z (56 © Cutpz 136 = CUt[1356],R22 Cut two-mass triangle, masses p2 and
(p2 4+ k1)?, in (p2 + k1)? channel,

fig. .

Cutz [936) © Cutyz j136) = Cut[1236]7 RL? Cut two-mass-hard box, masses p?

and p3, in t = (p; — ky)? channel,
fig. B.13d

Table 3.2: Cuts contributing to the Cut,2 o Cut,;z sequence of unitarity cuts.

develops an imaginary part, which can be extracted by the usual principal value

prescription,

1
lim =PV-Firi(a), (3.140)
a

e—0 a + 1€

where PV denotes the Cauchy principal value, defined by

Pv/oldyﬂ:nm ono_ndyﬂju/l dyM} , (3.141)

Y—"Y n=0 Y — Yo otn Y~ Yo

where ¢(y) is regular on [0,1] and yo € [0,1]. Note that the consistency
throughout the calculation of the signs of the 0 of uncut propagators and
subdiagram invariants, as derived from the conventions of the extended cutting
rules of section (see also appendix , is a nontrivial consistency check of

these cutting rules.

Summary and discussion

Let us now look at explicit results for Cutpg,pi Tr and Cutp;p% Tr. From the

explicit calculations collected in Appendix [C.2] we get

Am*i(py)
1—2)(1-2)(z— 2)

logQ(Z)) |

(1og<z> log(2) — 2%

Cutyp 2 Ty, (97, 03, 05) = (
(3.142)
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3.6. Two-loop three-point three-mass ladder

and

2 2 92y _ Ari(pt) O
CUtpg,p% TL (p17p27p3) _(1 . Z)(]_ . 2)(2 . 2) 10g<z) log(Z) 2 log (Z)

Comparing with the coproduct in eq. (3.100)), we verify from these results
that the relations of eq. (3.20) between Cut and 6, as written in egs. (3.66)),

are satisfied. We have confirmed by direct calculation from the original ladder
function, eq. (3.97)), that the Disc operation gives the expected results as well.

Diagrammatically, for the specific cuts considered above, we have

[5172,2 + 617z,17z]TL<p%7 p%u p§>

and,

[52,2 + 5271—2] TL(pi pgv pg;) =

One could wonder about a sequence of three unitarity cuts in the three distinct
channels of the ladder. As argued in Section [2.3.3] the region where one would
hope to compute this triple cut has all p? > 0. Since F is only a function of
the ratios of the p?, this region is indistinguishable from the euclidean region, so
the triple cut must vanish and contains no nontrivial information on the analytic

structure of the function.
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Chapter 3. Cuts as iterated discontinuities

3.7 Summary and discussion

For the class of Feynman integrals with massless propagators that may be
expressed in terms of the iterated integrals known as multiple polylogarithms,
we have formulated precise relations between discontinuities across their physical
branch cuts, their unitarity cuts, and their coproduct.

Taking a step beyond the familiar case of a single unitarity cut, in sections
and we developed the concept of a sequence of unitarity cuts. To define
this notion consistently, we extended the cutting rules of [21,23] to accommodate
multiple cuts in different channels or in a combination of channels and internal
masses, in an appropriately chosen kinematic region. The cutting rules specify a
unique prescription for complex conjugation of certain vertices and propagators,
dictated by the channels on which cuts are taken. Importantly, the result does
not depend on the order in which the cuts are applied (aside from the minor
detail discussed below eq. (3.18)).

Having specified the definition of a sequence of unitarity cuts, we find the

following correspondences, which we conjecture to be general, among

e the sum of all cut diagrams in the kinematic invariants rq, ..., 7, where the
r; can be either external channels or internal masses, which we denote by
Cut,, .,

k

e a sequence of discontinuity operations, which we denote by Disc,, ., ;
e the weight n — k cofactors of the terms in the coproduct of the form
Ay 1. 1n—k, Where each of the k weight one entries of a specific term in

Ay 1,10k 1s associated with the r; in a well defined manner.

The precise relations are given in section [3.4] and were illustrated by a variety
of one—see section [3.5}—and two-loop examples—see section [3.6] In establishing
the relations given in section [3.4] we had to settle several small issues related
to the order in which discontinuities are taken and the determination of the ¢0-
prescription of symbol letters. We will not review them here, but it is important
to have them in mind when determining the relations in specific examples. We
also found an interesting result about cuts of massive propagators that isolate an
external channel, see the discussion around eq. .
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3.7. Summary and discussion

In sections[3.5.T]and [3.6] we explained the techniques we developed to compute
cut diagrams. This was one of the most challenging parts of the work presented
in this chapter, as techniques to compute cut diagrams are far less well developed
than techniques to compute uncut diagrams. We note that individual cuts of
multi-loop integrals that are themselves finite in four dimensions may be divergent
when the internal propagators that are put on shell are massless. However,
because the diagram is finite, the combination of cuts contributing to the unitarity
cut in a given channel must be finite. This situation was encountered here upon
taking unitarity cuts of the two-loop ladder graph, where we saw that the pattern
of cancellation is similar to the familiar real-virtual cancellation mechanism in
cross sections, although this example does not correspond to a cross section.
Understanding this pattern of cancellation is useful for the general program of
developing efficient subtraction procedures for infrared singularities, and it would
be interesting to explore how this generalises for other multi-loop integrals.

Unfortunately, in this section we observed that unitarity cuts are not enough
to describe the full structure of the coproduct of Feynman diagrams. This is
perhaps most apparent in the two-loop example where we could not go deeper
than Aj;9. Another shortcoming of our method is that it does not allow cuts
in crossed channels, which means we have no way of reproducing the iterated
discontinuity on the s and ¢ channels of a box diagram. Finally, we insisted on
using real kinematics in computing the cut diagrams, and although it allowed
us to reproduce the results computed with Disc, even in the two-loop case, it is
known that cuts computed in complex kinematics capture information about the
analytic structure of Feynman diagrams [4./5,9,56,57,85,86, 101]. It is of course
interesting to understand if one can relax some of the rather strict conditions we
imposed in a systematic way, and this question will be addressed in chapter [5

However, before that, in the next chapter we will discuss the question of
whether we can use the information obtained by computing cuts to reconstruct

the uncut Feynman integral.
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Chapter 4

Reconstruction from cut

diagrams

4.1 Introduction

In the previous chapter we introduced computational tools to compute cut
integrals, and we showed that extended cutting rules in real kinematics lead to
consistent results. Furthermore, we argued that the entries in the coproduct of
a Feynman integral can be related to its discontinuities and cut integrals. While
these results are interesting in their own right, in this section we take a step
further and put them to use: we present several ways of using the knowledge of
(sequences of ) cut integrals to reconstruct the original Feynman integral based

on the knowledge of its cuts. The work presented here is covered in refs. [36}37].

We motivate our approach by discussing the three-point functions with
massless propagators and three external massive legs. It is obvious from the
first-entry condition that if all cuts are known, we can immediately write down
the coproduct component of weight (1,n — 1) of a pure integral of weight
n. In particular, for the three-point functions with massless propagators, we

immediately obtain

A11(T(2,2)) = log(22) ® 8T (2, 2) + log((1 — 2)(1 - 2)) ® 01T (2, %),

4.1
A1 3(F(2,2) =log(22) ® 6,F(2,2) +log((1 —2)(1 — 2)) ® 61_,F (2, 2), 1)

where 7 (z, Z) is the one-loop triangle defined in eq. (B.53) and F'(z, Z) the two-
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Chapter 4. Reconstruction from cut diagrams

loop ladder of eq. (3.98), and the quantities 6,7 (z,2), 6:1-.7 (2, %), 6.F(z, 2)
and 0;_,F(z, z) are directly related to the discontinuities of the integral through
eqs. . These components of the coproduct in turn determine the functions
T (z,z) and F(z,Z) up to terms that vanish when acting with A, ; and A, 3. We
will see how this information can be recovered in the following.

Similarly, in eq. we have shown how the double discontinuities of the
two-loop ladder triangle are related to the entries in the coproduct. We can then

immediately write

ALL?(F(Zv 2)) - Z IOg 1 & 1Og To ® 5z1,z2F(z7 2) ) (42)

(w1,22)€A%

and the values of d,, ., F'(z, Z) can be read off from eq. E| Thus, we see that
the knowledge of all double discontinuities enables us to immediately write down
the answer for the (1,1,2) component of the two-loop ladder triangle. Just as in
the case of a single unitarity cut, this component of the coproduct determines
F(z,Z) up to terms that vanish when acting with A ;5. In the following, we

show how this ambiguity can be lifted.

While the previous application is trivial and follows immediately from the
first-entry condition and the knowledge of the set of variables that can enter the
symbol in these particular examples, it is less obvious that we should be able to
reconstruct information about the full function by looking at a single unitarity
cut, or at a specific sequence of two unitarity cuts. In the rest of this section we
give evidence that this is true nevertheless (both for diagrams with massless or
massive propagators).

The classic tool for determining a Feynman integral from its cuts is the
dispersion relation, which expresses a given Feynman integral as the integral of its
discontinuity across a certain branch cut. Traditionally used in the context of the
study of strongly interacting theories, dispersion relations appear more generally
as a consequence of the unitarity of the S-matrix, and of the analytic structure of

amplitudes [20]. These relations are valid in perturbation theory, order by order

LAs written, eq. (3.66) gives solutions for four of the sixteen functions, &, .,F(z,%).
The remaining ones can be obtained trivially by imposing the first entry condition, so that
0.F(z,2) = 0:F(2,2) and 61, F(z,2) = 61-:F(z,Z), and by extending the kinematic analysis
to regions in which Z > z, thus restoring the symmetry of the full function under exchange of
z and Z.
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4.2. Dispersion relations

in an expansion of the coupling constant. It was shown in refs. [18|19}21-23]
that individual Feynman integrals can also be written as dispersive integrals.
The fundamental ingredient in the proof of the existence of this representation
is the largest time equation [21], which is also the basis of the cutting rules.
In the first part of this section we review dispersion relations for Feynman
integrals, illustrating them with the examples of the one-loop three-mass triangle
integral and the two-loop three-point three-mass ladder integral. We used the
same method to compute the one-loop triangles with three external masses and
one or two massive propagators, but left that discussion for the appendix—see
section [B.3l

We then show we can use the modern Hopf algebraic language to determine
the symbol of the integrals from either a single unitarity cut or a single sequence
of unitarity cuts. We will present several methods for this reconstruction, both for
diagrams with massless or massive propagators. Most of them require a previous
knowledge of the symbol alphabet, so we present them mostly as an illustration of
how the analytic strucutre of Feynman diagrams is constrained by the knowledge
of its cuts.

The reconstructibility procedure presented here works for the full integral,
and not for individual terms in the Laurent expansion in e. We therefore focus
on examples which are finite in four dimensions, so that we can set ¢ = 0.

Aside from the review on dispersive integrals, all the work presented here
was done during my PhD, in collaboration with Ruth Britto, Claude Duhr, my
supervisor Einan Gardi, and Hanna Gronqvist for the study of diagrams with

internal masses.

4.2 Dispersion relations

Dispersion relations are a prescription for computing an integral from its

discontinuity across a branch cut, taking the form

1 ds
Fp2p2,.. )=— | ————— p(p?,s,... 4.
(p17p27 ) 27_‘_1/08_(})3_'_28) p(phsv )7 ( 3)

2 An example of an infrared divergent integral where the reconstructibility of individual terms
in the Laurent expansion would fail is the two-mass-hard box: it is clear from eq. (3.76|) that a
cut in a single channel does not capture all terms of the symbol.
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Chapter 4. Reconstruction from cut diagrams

where
2 RS 2 2
p<p17 Sy ) - DlSCpg F(p17p2a s ')‘pgzs )
as computed with eq. (2.34), and the integration contour C' goes along that same
branch cut. The above relation can be checked using eqs. (2.34)) and (3.140).

We start with a simple generalisation of the above expression. Let

Gp?) =r(p))F (),

where r(p?) is a rational function of the Mandelstam invariants p?. Then, because
G(p?) and F(p?) have the same branch point and branch cut structure, G(p?) itself
has a dispersive representation of the form eq. (4.3). This in turn provides an

alternative representation for F(p?). Indeed, using that

Discys G(ph, i) = r(p i .) Discyy s, ...

one gets:

1 1 ds
F(p?,p3,..) = — / 2 s, )p(p3,s, . .. 4.4
(p17p27 ) 27 ?“(p%,p%, o ) oS — (p% —|—Z<€) T(plasa )p(pbsa )7 ( )

provided the integral on the right hand side is well defined, and where for
simplicity we assumed p(p?, s, ...) has no poles in the integration region (if this
is not the case, we need to add the contribution of the residues at those poles, as
dictated by the residue theorem). Eq. can be seen as a particular case of
eq. (4.4), with r(p?) = 1. If the integral in eq. is not well defined, typically
by becoming divergent at some endpoint of the integration region, a judicious
choice of r(p?) can be made to find a dispersive representation for F(p?). These
are called subtracted dispersion relations (see e.g. Appendix B in [102] for an
example in the context of dispersive representations of Feynman integrals).

In light of the relation between discontinuities and cuts presented in this thesis,
if F(p3,p3,...)is a Feynman integral, eq. can also be written as:

P2 p,...) = (4.5)
1 1 ds 9 9 o

_ s (Cut. FG2, ) .
2mr<p%,p3,...>/cs—<p%+z‘s>’”(p1S ) (Cutyy P )|,

In order to illustrate the use of dispersion relations, we first look at the case
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4.2. Dispersion relations

of the scalar three-mass triangle. Its p3-channel cut was computed in eq. (B.56)),

and we recall it here expressed in terms of Mandelstam invariants,

Cut,2 T(pi, p3, p3) =

21 pi — 03+ p3 — VAPL P53, p3)
- 2 .2 ,2 log ; i 2 ; ; g + (’)(e). (4'6)
)‘(plap2ap3) p1 —py +p5+ )\(plap27p3)

This leads to a dispersive representation for the three-mass triangle of the form

(r(pf) =1):

T(p},p3,p3) =

:_—1, N d23 : 2 log pi=s 4 ps = VMRS ) . (4.7)
2mi Jo s — (P2 +1€) \/A(p?, 5, p3) P2 — s+ p3+ VAW, s, p3)

Note that the integration contour runs along the real positive axis: it corresponds
to the branch cut for timelike invariants of Feynman integrals with massless
internal propagators. Already for this not too complicated diagram we see that

the dispersive representation involves a rather complicated integration.

The main difficulty in performing the integral above comes from the square
root of the Kéllén function, whose arguments depend on the integration variable.
However, defining # = s/p?, and introducing variables a and & similar to
eq. , which are are a particular case of the more general eq. , defined
as

aad =z and (1—a)(l—a)=us, (4.8)

or equivalently,

1—|—$_u3—|—v>\<1,l',’d3) d 7_1_'_'%._”3_ )\(1,1‘,U3) (49)

o = and o = ,
2
we can rewrite the dispersive integral as,
p17p2>p3
——/du/ log =% §(us — (1 — a)(1 — @) () O(us)
N . Uy o0 — & 1—a 3 3
/da/ do—— ! o(us — (1 —a)(1—a))lo Lo
ad — Usy 3 & 1—
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—i 1 ! 1 1
:_2@ _/o da( - — ) [ZIOg(l—a)—logug , (4.10)

P17 —= a—z a— 2z

where the integration region for a and & is deduced from the region where the
discontinuity is computed (see e.g. table . Written in this form, the remaining
integration is trivial to perform in terms of polylogarithms, and we indeed recover
the result of the three-mass triangle, eq. (B.51]).

For the three-mass triangle, we can in fact take a second discontinuity
and reconstruct the result through a double dispersion relation because the
discontinuity function, eq. , has a dispersive representation itself [19]94].
Note that this representation falls outside of what is discussed in ref. [22], and
we are not aware of a proof of its existence from first principles. The double
discontinuity is simply given, up to overall numerical and scale factors, by the

inverse of the square root of the Kéllén function, see eq. (B.60)). We obtain
T (pl,pg,pg
_ 2 .2 2
- 27” / T — u2 / ~ us CUtpﬁ P} T(pl,pg,p3)>
42 / dy 1 ) 0(—y)
27m T—U2 ) Y—us/\ 1xy Y
— 1
=— [ d dao : 4.11
p%/1 O‘/_OO O‘aa—zz(l—a)a—a)—(1—z)(1—z) (4.11)

The integral is trivial to performﬂ and leads to the correct result.

U2=T,U3=Y

We now turn to the case of the two-loop ladder. As long as we are using
suitable variables, from the point of view of dispersion relations it is trivial to go
from the three-mass triangle to the two-loop ladder. The only new feature we
need to deal with is a more complicated rational prefactor: instead of just having
the inverse of the square root of the Kallén function, it appears multiplied by 1/us.
This makes the dispersive integral over p3 as written in eq. non convergent.
However, we can easily overcome this difficulty by setting r(p?) = p3/p? = us
in eq. (4.5). When considering a dispersive integral over p3 this is not necessary

for the convergence of the integral, but the same choice of r(p?) still simplifies

3We have redefined o and & by replacing u3 by  in eq. (4.9). Just as for the single dispersion
integral, the integration region is deduced from the region where the double discontinuity is
computed, Ry 3 in this case. Changing variables to 8 = é and v = ﬁ makes the integral

particularly simple to evaluate.
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4.2. Dispersion relations

the integrand and makes the calculation simpler. Having made this choice, and
proceeding as with the three-mass triangle, the remaining integral is trivial to
perform in terms of polylogarithms.

As an example, we consider the dispersive integral over p:

Tr(p}, p3,p3) =
11 % dy

- ~ 2,2 2
— _2_mu_3 L U—us 3//0 dus (5(’&2 — 0404) (Cutpg TL(P1>P2>P3))

uz=y
i(p?)~2 /1 1 1 1, us, ug
= da — —1 log — log — 4.12
Coo0-90-9 ), ©@\a=z 5=z )zlelsFloe 5y, (412)

where the variables av and @& are similar to the ones defined in eq. (4.9)) but with

x replaced by uy and ug by y, and we used Cut,z T%(p?, p3, p3) as obtained from
eq. (3.122). This integral does indeed reproduce the expected result, eq. .

Similarly to the one-loop three-mass triangle, the two-loop three-mass ladder
also has a representation as a double dispersive integral. Given the variables we
chose to work with it is more convenient to consider the double unitarity cut on
p3 and p2. Using eq. (3.66), with the necessary prefactors as in eq. (3.97),

An%i ()~

S ST T <logzlog2— %log22> ,

Cutpg 2 TP}, p3,p3) =
from which we get:

TL(p%,p%,pg) =
1 1 [ dz O dy
S Cutyg 3 Tolpo )
~ @ / p— / T ( 202 11 (P1, P35, 03) ey

B p1 N - log alog v — k’g "
= /d/ B o —a)d-a) =)’ (4.13)

where we again used r(p?) = uz and exactly the same comments as the ones
accompanying eq. apply. The remaining integrals are trivial to perform,
and we indeed recover the correct result, eq. . As far as we are aware, this
is the first time such a representation of the two-loop three-mass ladder has been
given.

We see that we can obtain the full result for the one-loop three-mass triangle

and the two-loop three-point three-mass ladder from the knowledge of either
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Chapter 4. Reconstruction from cut diagrams

its single or double cuts. A fundamental ingredient necessary to perform the
dispersive integral was the choice of variables in which to write the dispersive
integral. While for the one-loop example we studied one might still consider
performing the integration in terms of the Mandelstam invariants, for the two-
loop ladder this does not seem feasible anymore given the complexity of the
expression for the discontinuity in any of the channels when written in terms
of the Mandelstam invariants. For these examples, choosing the variables of
eq. , which we showed are naturally found by computing cuts, the increase
in complexity in going from one to two loops is not as great as one might naively
expect. More generally, although dispersive integrals are initially defined in terms
of Mandelstam invariants, as in eq. , we expect them to become simpler when
it is possible to change variables to letters in the symbol alphabet, eq. .
Indeed, in terms of these variables the underlying structure of iterated integrals

described in Section 2.2l becomes manifest.

We finish with a comment: we believe the dispersive representation for the
three-mass triangle provides one of the simplest ways to compute the diagram to
any order in the expansion of the dimensional regularisation parameter e. While
we only considered the leading order in eq. , following the same arguments

we could as easily have written

» 2717667EEI‘1_€ 1 1 1 U—l—O{2
TG, ) = — i 2L ( )/ da( - > =
0

z—2z T'(2—2e) a—ZzZ a—z us

(M) LR <1, 1— 62— 2 M) (4.14)

l—« U3

where we used the D-dimensional result for the cut given in eq. (B.50).
Integration over a and expansion in € on the right hand side commute, and
we are left at any order with one integration to perform. The expansion in € of
the hypergeometric function, although not trivial, has been automatised [100].
Aside from one overall rational prefactor that cancels the one remaining in the
integrand, it will only produce polylogarithms and thus the remaining integration
is trivial to perform in terms of multiple polylogarithms. The result will already
be expressed as a function of the variables in terms of which this diagram is

known to be most simply written.

We believe a deeper understanding of the connection between multiple cuts
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4.3. Reconstruction of three-point functions with massless propagators

and sequential discontinuities as defined in this thesis can provide a way to prove
the existence of multiple dispersive representations. We expect they will in turn
be useful in the actual calculation of Feynman integrals in cases where more

traditional techniques fail.

4.3 Reconstruction of three-point functions with

massless propagators

We now present purely algebraic methods to reconstruct the uncut three-mass

one-loop triangle and three-mass two-loop ladder.

4.3.1 Reconstructing the coproduct from a single unitar-

ity cut

As discussed above, Feynman diagrams can be fully recovered from unitarity
cuts in a given channel through dispersion relations. These relations rely on two
ingredients: the discontinuity of a function across a specific branch cut, and the
position of that particular branch cut. Given the relations between the (1,n —1)
entries of the coproduct, discontinuities, and single unitarity cuts established in
previous sections, it is clear that the full information about the Feynman integral
is encoded in any one of these entries of the coproduct, since it contains the same
information about the function as a dispersive representation. We should thus be
able to reconstruct information about the full function by looking at a single cut
in a given channel.

For simplicity, we work mainly at the level of the symbol in the rest of this
section, keeping in mind that we lose information about terms proportional to
m and zeta values in doing so. We will find that this information can easily be
recovered in our examples. In a nutshell, we observe that if we combine the
first entry condition and the results for the discontinuities with the integrability
condition , we immediately obtain the symbol of the full function. In the
following, we illustrate this procedure in the examples of the one-loop triangle
and two-loop three-point ladder. Starting from the result for the unitarity cut in
a single channel, the procedure to obtain the symbol of the full function can be

formulated in terms of a simple algorithm, which involves two steps:
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Chapter 4. Reconstruction from cut diagrams

(i) Check if the tensor satisfies the integrability condition, and if not, add the

relevant terms required to make the tensor integrable.

(ii) Check if the symbol obtained from the previous step satisfies the first entry

condition, and if not, add the relevant terms. Then return to step (i).

We start by illustrating this procedure on the rather simple example of the
three-mass triangle of Section [B.3.1] From eq. (B.56)), the symbol of the cut in

the p3 channel is
1—=2

1—2z’

where we emphasise that the rational function is to be interpreted as the symbol

of a logarithm. We note that the same exercise can be done using the cuts in other
channels. Since we considered a cut in the p3 channel, the first entry condition
implies that we need to prepend us = 2z to the symbol of the discontinuity. Thus

we begin with the tensor

(22)®1_Z.

We then proceed as follows.

e Step (7): This tensor is not the symbol of a function, as it violates the
integrability condition. To satisfy the integrability condition, we need to
add the two terms

l-2)®z2—- (1-2)®=z.

The full tensor is not the symbol of a Feynman diagram, since the two new

terms do not satisfy the first entry condition.
e Step (i7): To satisfy the first entry condition, we add two new terms:
l1-2)®z— (1-2)®=z.

At this stage, the sum of terms obeys the first entry condition and the
symbol obeys the integrability condition, so we stop our process.
Putting all the terms together, we obtain

S(T(22) = 2@ 1_ :

+(1-2)1-2)®-=, (4.15)

—Z z
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4.3. Reconstruction of three-point functions with massless propagators

which agrees with the symbol of the one-loop three mass triangle in D = 4
dimensions, eq. .

Note that we can easily integrate this symbol to the full function. Indeed,
the cut computation has allowed us to determine the symbol, and hence also
the symbol alphabet Apn = {z,2,1 — 2,1 — z}. It is well known that the most
general class of functions giving rise to this symbol alphabet and satisfying the
first entry condition are the single-valued harmonic polylogarithms [103]. Up to
overall normalisation, there is a unique single-valued harmonic polylogarithm of
weight two that is odd under the exchange of z and z, namely the function Py (z)
defined in eq. . We therefore immediately recover the analytic expression
for T(z, z) given in section [B.3.1]

While the previous example might seem too simple to be representative, we
show next that the same conclusion still holds for the two-loop ladder. In the
following we use our knowledge of the cut in the p2 channel, eq. , and
show that we can again reconstruct the symbol of the full integral F(z,z). As
for the one-loop example, the same exercise can be done using the cuts in other
channels. Combining eq. with the first entry condition, we conclude that

S(F(z,Z)) must contain the following terms:

(1-2)(1-2)® (4.16)
2R2QZ+202Z2Q2+2Q0202—2QZRZ—ZR2QZ—2Q2Z® 7] .

If we follow the same steps as in the one-loop case, we can again reconstruct the

symbol of the full function from the knowledge of the symbol of the cut in the p3

channel alone. More precisely, we perform the following operations:

e Step (i): To obey the integrability condition, we must add to the expression

above the following eight terms:

+20(1-2)®202+2020(1-2)®2+20(1-2)QZ2® 2
+zZ201-2)0202—20(1-2)82Rz-20(1—2)® 202z
- Z201-2)R2Z2®2-20z20(1—2)® 2.

e Step (ii): The terms we just added violate the first entry condition. To

restore it we must add eight more terms that combine with the ones above
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to have Mandelstam invariants in the first entry,

+2Z20(1-2)0202+2020(1-2)02+20(1-2)Q2ZQ 2

+20(1-2)®202—-20(1-2)02Rz2—20(1—-2)R2Q 2z
—2(1-2)RZ®2z2—2z2RZQ(1—-2)® 2.

e Step (i): The newly added terms violate the integrability condition. To

correct it, we must add two new terms,

2zZ20(1-2)Rz2-220(1—-2)® 2. (4.17)

e Step (ii): We again need to add terms that combine with the two above to

have invariants in the first entry,

IQIQ(1-2)RZ-20:20(1—2)® 2. (4.18)

At this point the symbol satisfies both the first entry and integrability conditions,
and we obtain a tensor which agrees with the symbol for F(z, ) in eq. (3.101)).
Note that we can again easily promote the symbol to the full function. Indeed,
the symbol alphabet Axn = {z,2,1 — 2,1 — z} combined with the first entry
condition again implies that F(z,z) can be expressed in terms of single-valued
harmonic polylogarithms. Taking into account the antisymmetry under exchange
of z and Z we find that there is a one-parameter family of functions with the

correct symbol,
F(z,7z) =6[Lis (2) — Lis(2)] — 3log (2%) [Lis (z) — Lis()]

+ %IOgQ(ZE) [Liz(z) — Lis(2)] + ¢ Pa(), (4.19)

where ¢ is a real constant (of weight two). This constant can be fixed by explicitly
computing the discontinuity of the function F(z,z) in the variable p3, and
imposing that the discontinuity agrees with the result for the cut integral (3.122]),

i.e., by requiring that (cf. eq. (3.123)),
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4.3. Reconstruction of three-point functions with massless propagators

It is easy to check that we must have ¢ = 0. Note that if the free parameters
in the solution multiply functions that vanish when a discontinuity in a given
channel is taken, we can supplement this procedure by considering cuts in other
channels. In this way we can fix the initial condition up to a polylogarithmic
function that does not have any discontinuities, and must thus be a constant.
This constant can easily be fixed by computing the value of the original Feynman
integral numerically in a single point.

We finish with a comment. In these examples the integrability condition,
eq. , was particularly simple to implement because none of the letters of the
symbol alphabet depended on more than one independent variable, in this case
z and z. This is of course not true in general (even for these examples, at higher
orders in € the letter (z — z) appears in the symbol alphabet), so implementing
the integrability condition is in general more complicated than in the examples

considered here.

4.3.2 Reconstructing the coproduct from double unitarity

cuts

While the possibility of reconstructing the function from a single cut in a
given channel might not be surprising, due to the fact that Feynman integrals
can be written as dispersive integrals over the discontinuity in a given channel,
we show in this section that in this particular case we are able to reconstruct
the full answer for A, ; oF' from the knowledge of just one sequential double cut,
along with the symbol alphabet. Note that A;;.F" is completely equivalent to
the symbol S(F). Indeed, the weight two part of A;;2F is defined only modulo
7, which is precisely the amount of information contained in the symbol.

Assuming that the symbol letters are drawn from the symbol alphabet already
given previously, Ax = {z,2,1 — 2,1 — Z}, we can write Ay ;F in the following
general form:

Ay 10F = Z logzy ®logxs @ fo 2,

(z1 ,:/UQ)E.AQA

where the f;, », denote 16 a priori unknown functions of weight two (defined only
modulo 7%). Imposing the first entry condition and the integrability condition

in the first two entries of the coproduct gives the following constraints among
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the fz, 2,:

fz,z - fE,z - fz,z - fZ,Ev

fl—z,z = fl—z,z = fz,l—z = fz,l-z;

fz,l—z = fz,l—z = fl—z,z = fl—Z,Za

ficzi—z = fizi— = fi—zi—2 = fi—z1-2, (4.21)

which reduces the number of unknown functions to 4. Defining F(z, z) = F(Z, 2),
we must require in addition that F(z,Z) = —F(z,%) (because its leading
singularity is likewise odd under this exchange), which gives further constraints.

For instance,
fimze=—fi—zz. (4.22)

We can thus write

Ay1oF =

= log(2z) ®1log(22) ® f.,. +log((1 — 2)(1 — 2)) ®log((1 = 2)(1 - 2)) ® fiz1--
+ [log(2z) ®log(1 — 2) +1log((1 —2)(1 — 2)) @ log z] ® f1_.z

— [log(2z) @ log(1 — 2) + log((1 — 2)(1 — 2)) ® log 2] @ fi_. = (4.23)

Notice that up to this stage all the steps are generic: we have not used our
knowledge of the functional form of any of the double cuts which determine the
fz1,20, but only the knowledge of the set of variables entering its symbol and the

antisymmetry of the leading singularity under the exchange of z and Z.

We now assume that we know the value of Cuty;z 2 F, and thus by eq. (3.66f)

we have determined that

1
01— :F = —logzlogz + 5 log? = . (4.24)

Next, we have to require that eq. be integrable in the second and
third component. Assuming again that we only consider symbols with letters
drawn from the set Ax, we use eq. (4.24)) and impose the integrability condition
eq. , and we see that the symbols of the two unknown functions in eq.
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are uniquely fixed,

S(fez) ==2@(1—2)+2® (1 - 2) = S(Liz(2) — Lix(2))
S(.fl—z,l—z) = 07

in agreement with eq. (3.100)).

Note that once again we can easily integrate the symbol to the full function
by an argument similar to the one presented in Section [£.3.1} the most general
function having the correct symbol is again given by eq. , and the constant
¢ can easily be shown to vanish by requiring the function to have the correct

double discontinuity, i.e., by imposing that
Discpg,pg F(Zu 2) = —i (p%)z (1 - Z)(l - 2)(2 - 2) Cutp%,pgTL(pipg?pg) : (425)

We stress that the fact that we can reconstruct A; ;o F' from a single sequence
of cuts is not related to the specific sequence we chose. For example, if we had
computed only Cutp%p%F and thus determined that —f, ; — fi_, > = —Lis(2) +
Lis(2) + log zlog z — %log2 z, the integrability condition would fix the remaining
two free coefficients in a similar way. Finally, we could consider Cut,z 2 F, but
since this cut is obtained by a simple change of variables from Cutpgjng through
the reflection symmetry of the ladder, it is clear that integrability fixes the full

symbol once again.

Let us briefly consider the analogous construction for the one-loop triangle,
where the f,, ., are simply constant functions. The analog of eq. (4.23)) above is

AT =

fzz (log(22) ®@log(22)) + fi-zn-= (log((1 — 2)(1 — 2)) ® log((1 — 2)(1 — 2)))

+ fi-zz[log(22) ® log(1 — 2) +log((1 — 2)(1 — 2)) @ log Z]

+ fi—z. [log(2z) ® log(1 — z) +1log((1 — 2)(1 — 2)) ® log 2] . (4.26)

A specific double cut, without loss of generality say Cutpgvpg, gives a constant

value for fi_,z, as seen from eq. (B.60) and eq. (3.66f). We have a consistent
solution with f1_,; = —fi_s, = —1l and f,, = fi_.1-. = 0, which is indeed
the Ay of the triangle, obtained by a consistent completion algorithm as in the

previous subsection.
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While it is quite clear that the reason why the algorithm of section [4.3.1]
converged was the existence of a dispersive representation of Feynman integrals,
we do not know whether the existence of a double dispersive representation is a
necessary condition for the reconstruction based on the knowledge of A; ;2 done
in this section to work, although it does seem reasonable that it would be the
case.

In closing, we notice that in this example, the integrability condition eq.
implies that Cut,z ,» = Cut,z 2, through the relations listed in eq. . It would
be interesting to see whether there is a general link between the integrability of

the symbol and the permutation invariance of a sequence of cuts.

4.4 Reconstruction of three-point functions with

massive propagators

In [37], similar methods to the ones described above to reconstruct uncut
functions with massless propagators were developed for one-loop triangles with
internal masses. When internal masses are present, the reconstruction process is
less algorithmic, and requires some knowledge of the type of symbol letters that
can appear in order to construct a general ansatz for the symbol. This ansatz
is then constrained by the information obtained from cuts. We describe how the
ansatz is constructed for a variety of examples, and then how the uncut function

is reconstructed from its symbol.

4.4.1 Constructing and constraining an ansatz for the

symbol

Our general strategy is the following. We observe that the symbol alphabets of
the scalar triangles we are investigating follow a pattern. With some experience,
we are able to write an ansatz for their symbol, in terms of unknown numerical
coefficients. Then, by imposing the knowledge of one channel cut, the first-entry
condition, the integrability condition, the absence of trivial terms (of the form
r ® z) and the symmetries of the function, we are able to fix all of the unknown
coefficients. We now give more specific rules for each of the steps just mentioned.

We start by explaining how to build the ansatz. First, we recall that if
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4.4. Reconstruction of three-point functions with massive propagators

the diagram is a function of n invariants, the pure functions we are concerned
with in this section are functions of n — 1 dimensionless variables only. For
concreteness, we always choose to normalise our variables by an external invariant.
The procedure starts by listing the possible first entries. These are completely
fixed by the first-entry condition—see sec. 2.3.2] Listing the second entries is
more difficult than listing the first entries. It can however be done based on the
knowledge of a cut integral, and, for the letters that do not appear in channel

cuts, by the empirical observations we list below.

Listing the second entries: We always start from a single cut in an external
channel. We observe the presence of the following terms in the set of second

entries:

e All letters of the symbol alphabet of the channel cut taken as the known

starting point ;

e Differences of internal masses, or their equivalents in terms of w; and w;—

see eq. (2.33) ;

e For triangles with two external invariants, ratios of external invariants. In
our examples, this is just p3/p3. For the examples with three external
massive channels where we must use the variables z and z (see (2.29))), this

condition is replaced by the presence of the letters z, z, (1 — z) and (1 — 2).

The terms generated through the above rules are added as cofactors of all the
first entries, each multiplied by an undetermined numerical coefficient. For the
first entry corresponding to the cut assumed to be known, these coefficients are of
course fixed by the cut result. For the other first entries, they must be determined

from additional considerations, according to the procedure we now describe.

Fixing the coefficients: We fix all coefficients according to the following steps:

1) We discard integrable terms of the form x ® z, as they are not needed in

order to construct a minimal integrable symbol ;

2) Since the first-entry condition involves the original Mandelstam invariants,
the dimensionless variables appearing in the symbol should be expanded

when imposing this condition. Notably, we sometimes normalise the
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Chapter 4. Reconstruction from cut diagrams

invariants by a variable p? with a nonzero mass threshold, so that p?
should not ultimately appear as a first entry by itself, although it shows up
superficially in the expansion of the dimensionless variables. Thus, all of

the second-entry cofactors of this p? should combine to give zero ;

3) We use the integrability condition, eq. (2.17), to fix the remaining

parameters ;

These three rules are already highly constraining and indeed sufficient for most
examples. If they are not, in particular in cases where we use the z, z, wy, and w;

variables, they can be complemented by the following:

4) Impose antisymmetry under z <+ Zz and symmetry under wy <+ w;. Indeed,
the Feynman integrals are functions of the invariants only and must thus
be symmetric under these transformations. When z and z are necessary,
there is an antisymmetric rational prefactor, and so the pure function must

be antisymmetric as well ;

5) If there is a symmetry under the exchange of the legs with momenta py and
p3, impose symmetry under the simultaneous transformations z — 1 — Z,

Z-)l—Z,wl—>1—’u_)1,'U_}1%1—w1.

We now illustrate these rules in some examples. The example in appendix
is trivial and the one in appendix divergent, so we will not address
them. The next-simplest example is T'(p?, 0, 0; m?2,, m35, 0)—see appendix
and we now show how to construct the ansatz for this case. We normalise the

internal masses by p?, giving the dimensionless variables m?2,/p? = 1o and

m3,/p? = o3, and we assume knowledge of the p? cut, eq. (B.15). Applying
the rules given above for writing the ansatz, we get

log(p12 — 1) ® [log(pes — 1 — pu12) — log(pi3)]
+log(pi2) @ [arlog(pes — 1 — pi2) + azlog(pias) + aslog(piz — fios)]
+log(pas) ® [b1log(pas — 1 — pi2) + b log(piaz) + bslog(pne — pos)],  (4.27)

where we reintroduce the redundant ‘log’ for clarity of the equations. Our task is
now to fix the coefficients a; and b;. In this case, using rules 1), 2) and 3) above
fixes all coefficients, and we reproduce the symbol in eq. (B.14)).
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4.4. Reconstruction of three-point functions with massive propagators

An example of similar complexity is the triangle T'(0,p3, p3;m,,0,0), ap-
pendix We choose to normalise by p3, and define the variables m3,/p3 = p
and pZ/p3 = u. We assume knowledge of the p3 cut, eq. (B.45)). According to the

above steps, the general ansatz for the symbol reads:

log(n — 1) ® {log(u) + log(u) — log(p +u — 1)}
log () ® {a log(u) + as log(u) + a log(u + u — 1)}
+log(p) ® {b1 log(u) + by log(p) + b log(p +u — 1)} (4.28)

Our task is now to fix the coefficients a; and b;. As in the previous example, rules
1), 2) and 3) are sufficient and we reproduce the symbol in eq. .

As a final example of our rules to build the ansatz, we look at the most
complicated case we address, T(p?, p3, p3;m2,,0,m?,), given in appendix [B.3.4]
This requires using the variables z, z, w; and w;. We assume knowledge of the
p? cut, eq. . Following our rules, the ansatz is

log(wi(1 —w)) ® [log(z —wy) —log(z —wy) —log(z — wi) + log(z — U_Jl)}
+log(zz — wiwy) @ [al log(z — wy) + ag log(z — wy) + aslog(z — wy)
+ a4 log(z — wy) + aslog(z) + ag log(z) + arlog(l — 2)
+ aglog(l — 2) + ag log(wyw; — (1 —wy)(1 — wl))}
—|—10g((1 — Z)(l — 2) — (1 — wl)(l — 7IJ1)) (24 |:CLZ‘ — bli| + 10g<’LU1’U_11) X |:CLZ‘ — Ci:|
and we must now determine the coefficients a;, b;, ¢; and d;. Interestingly, also
for this case all we need are rules 1), 2) and 3) to fix all coefficients.
For all other triangles listed in appendix [B] building the ansatz can be done
in a similar way as illustrated above. We now list the rules we must apply to fix

the coefficients of the ansatz of the remaining examples (for all cases, we assume

knowledge of the p? cut):
o T(p?,0,0;m2,,0,m3,), appendix [B.1.5 Rules 1), 2) and 3) are sufficient ;

e T(p?,0,0;m3,,m3;, m?;), appendix [B.1.6, Rules 1), 2), 3), 4) and 5) are

needed ;
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Chapter 4. Reconstruction from cut diagrams

e T(p3,p3,p3;m3,, 0,0), appendix [B.3.3] Rules 1), 2) and 3) are sufficient.

4.4.2 Reconstructing the full function from the symbol

We now explain how we integrate the symbol to get the full function. Although
integrating a symbol is in general an unsolved problem, it is a simple problem for
weight two functions where a complete basis is even known to exist in terms of
classical polylogarithms, see e.g. [53]. Once we have found a function that matches
our symbol, all that remains to be done is fixing terms that are invisible to the
symbol, in our case weight-one functions multiplied by 7 and terms proportional
to (s.

Powers of m are typically generated by analytic continuation and appear
multiplied by ¢. Working in the Euclidean region where the function is real
and away from any branch cut avoids this problem.

To fix the terms proportional to (5, we can use two strategies. The first,
which always works, is to evaluate the integrated symbol numerically at a single
point and compare it to a numerically integrated Feynman parametrisation of
the diagram. The difference must be a rational number multiplied by (5, which
completely determines our function. Alternatively, when possible, we can use the
symmetries of the diagram to check if terms proportional to (, are allowed.

As examples, consider T'(p?,0,0;0,m2;,0) and T(p3, p3, p3; m3,,0,0). In the
first case, there is no symmetry consideration to fix terms proportional to (5, and
we must thus rely on numerical comparisons. In the second example, there is a
rational prefactor antisymmetric under z <+ z, and thus the pure function must be
antisymmetric under this transformation (the full function must be symmetric).

This forbids the existence of terms proportional to (5.

4.5 Summary and discussion

In this chapter, we have shown how the information obtained from the
calculation of cuts of Feynamn integrals can be used to reconstruct the (symbol of
the) full uncut function. This can be done either at the function level, by solving
a dispersive integral, or at the symbol level, by purely algebraic manipulations
on the symbol tensor or by using the cuts to constrain an ansatz of the symbol

tensor.
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4.5. Summary and discussion

We noticed that dispersion integrals which look complicated when written in
terms of Mandelstam invariants become simple when written in terms of variables
which make the symbol alphabet rational. The dispersion integral then falls
naturally into the class of iterated integrals amenable to Hopf algebra techniques.
This is of course consistent with the fact that each dispersion integral is expected
to raise the transcendental weight of the function by one: it is the opposite
operation to taking the discontinuity of the function across its branch cut. We
first made this observation in the case of the three-mass triangle and two-loop
three-point ladder [36], and we then used it to find an efficient way to compute
the three-mass triangle with one or two internal masses [37]—see section [B.3|
Although dispersive integration is not a common method for the calculation of
Feynman integrals, we believe these examples show that it can be a powerful

method to compute them even in non-trivial cases.

We next presented purely algebraic ways to reconstruct the three-point three-
mass triangle and two-loop ladder with massless propagators from the knowledge
of a single set of cuts, along with the symbol alphabet. This was achieved by
using two main constraints: the integrability of the symbol and the first-entry
condition. More precisely, we showed how to reconstruct the symbol of the full
integral from the knowledge of a single unitarity cut in one of the channels. We
also showed that in the case of the two-loop ladder (and the much simpler one-loop
triangle) it is possible to reconstruct all the terms of the A;; o component of the
coproduct of the uncut integral, and then the full function, from the knowledge

of a single sequence of double cuts.

Finally, we showed how channel cuts highly constrain the symbol of triangles
with internal masses. Indeed, we were able to completely constrain a general
ansatz for the symbol of each triangle (except the fully massive triangle) using the
knowledge of a single channel cut, the integrability condition and the symmetries
of the functions. However, building the ansatz is more complicated than in the
absence of internal masses, and we have had to postulate rules that determine
how to construct symbol letters not appearing in channel cuts. These rules are
obtained empirically and are specific to the class of diagrams we are studying.
Once the symbol is known, we explain how to reconstruct the function by
fixing terms invisible to the symbol. It would be interesting to see whether

reconstruction can also be done starting from cuts in internal masses.
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Chapter 4. Reconstruction from cut diagrams

Aside from the dispersive integration method, it is not clear to us how general
the reconstruction procedures presented in this section are. Indeed, they were
mostly developed on a case by case basis, and rely on some outside knowledge,
such as the symbol alphabet. This is particularly obvious in the reconstruction of
diagrams with internal masses, section [£.4l Independently of this, we believe the
results presented here are interesting because they show how much the analytic
structure of Feynman integrals is constrained by the knowledge of a single one of

its unitarity cuts.
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Chapter 5

Cuts of one-loop diagrams as

residues in complex kinematics

5.1 Introduction

Over the last decade, the calculation of one-loop amplitudes has been
revolutionised by the so-called generalised unitarity approach [4, 5, 85, 86].
Building on the observation made in [2| that one-loop Feynman integrals with
complicated numerators can be reduced to scalar ones, it was shown that any
one-loop amplitude in four dimensions can be decomposed into a basis of scalar
one-loop diagrams consisting of boxes, triangles, bubbles and tadpoles—see [90]
for a review of this subject. In a nutshell, the idea of generalised unitarity is that
the coefficients in this expansion can be extracted by projecting the amplitude
onto this basis, and this is done by matching the discontinuities of the amplitude
with the discontinuities of the basis integrals [4]. For instance, because triangles,
bubbles and tadpoles have no quadruple cuts, the quadruple cuts of the amplitude
project out its box contributions. Quadruple cuts have thus been very useful and
powerful in the framework of generalised unitarity, although how to correctly
interpret them has not always been clear.

Generalised unitarity is a very large subject, useful in both phenomenological
studies or more theoretical investigations on the structure of quantum field
theories. It is not the subject of this thesis, so we will not discuss it further. We
simply wish to point out that because cuts can be used as projection operators

to compute loop amplitudes, the last decade saw a renewed interest in the
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

development of methods to compute and interpret them [7-11,]14-17,28,56, /57,
101,{104H115]. On the subject of generalised unitarity, we benefited from reading
the reviews [87-90].

In chapter |3 we generalised the notion of unitarity cut of a Feynman diagram
[18-21] to allow for multiple unitarity cuts in different kinematic channels, both
for diagrams with massless [36] or massive [37] propagators. However, we noted
that this generalisation might not be enough to describe all the components of the
coproduct of Feynman integrals. For instance, since we were looking at cuts as
discontinuities on kinematic channels, we insisted on having a well-defined relation
between cuts and discontinuities. Because of this, we excluded what we called
crossed channel cuts, i.e. cuts on channels that do not define separate regions in a
diagram, such as the cuts in the s and ¢ channels of the box. However, these are
exactly the quadruple cuts that we know play an important role in generalised
unitarity:.

In this chapter, we aim at finding a definition of cut that allows us to capture
as much as possible of the analytic structure of Feynman integrals. In particular
we will be able to give a concrete interpretation to quadruple cuts of boxes.

The four-propagator cut of a box should be very simple to compute for e = 0.
Indeed, considering a box in D = 4 dimensions we have four integration variables
and four propagators. If the four propagators are replaced by Dirac d-functions,
then the four integration variables are completely localised, which makes the
integration trivial. Let’s see how this is done in some more detail for the boxes
with no internal masses (the generalisation to the case with internal masses is
easy).

In D =4, the box integral is given by

1
k2(p2 — k)?(p1 + p2 — k)?(k + p3)?

1
Bls.tt i) = [ ' 6.1)
It is convenient to use so-called dual variables zj;. We start by defining z;
through p; = x; — x4, where the indices are defined cyclically. Then, we define
x?k = (z; — xx)?. Finally, if we define k = 2y — x1, we can rewrite the box

integral as
1

072 2.2 2"
Lp1202203L04

1
Bls. it ) = = [ dis )
The four-propagator cut is now computed by replacing all (a:gj)fl by 276 (zgj)
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(we will not attempt to justify the choice of normalisation for this cut for now,

and leave the precise definition of this type of cut to the following section):
Cuta[B(s, t; p, p3, 3, )] = 2'7° / d'wod (x51) 6 (252) 0 (23) 0 (264) - (5:3)

To make it clearer that the four integrations are localised by the four Dirac -

functions, we change variables to s; = a:gj, in terms of which

4
1
Cuty[B(s, t; i, p3, p3, p1)] = 2'7° (H/dsj5(8j)) 7 (5.4)
j=1

where

J = det ( 05 ) = det (220;,.) (5.5)

J = ayfdet (13, — 52— ). (5.6)
We finally get
-1
CutlB(s. 68 )] = 45° (Ve (1)) (5.7
In this expression, x?k is the well known Cayley matrix which appears in the

calculation of Feynman integrals (see e.g. [90]). We can specialise this expression

for the different types of boxes, and find

4
Cuta[B(s, )] = Cuta[ B(s,t; p7)] = Cuta[ B" (s, p7, p3)] = —-,
e 2 2 2 2 2 4mr?
Cuty[B*(s, t; pi, p3)] = Cuta[B(s, t; p7, 3, p3)| = ———5,
st — pips

472

Cuty|B(s, t; 2, 2, 2, 2 =
4[B(s,t; pT, 03, 3, 01)] NAL)

where U and V' are defined in eq. (3.93). We thus see we can find a non-zero

value we can associate with the maximal cut of a box, even for the fully massless

(5.8)

case, where the maximal cut isolates four massless three-point vertices.

Unfortunately, it is not clear how to generalise the above procedure in a
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

consistent way beyond € = 0. Furthermore, while performing the different changes
of variables it is hard to keep track of what the correct integration contour
is, preventing a consistent generalisation of this method to the case where not
all propagators are cut. In this section, our goal is to find a definition of cut
diagrams which is consistent with the definition given in chapter |3, reproduces
the above result for maximal cuts, and allows to compute cuts of arbitrary one-

loop diagrams with any subset of cut propagators to all orders in e.

We should mention that techniques to compute generalised cuts of one-loop
amplitudes in D-dimensions have been developed elsewhere, see e.g. [9}/101}[105,
106]. In [9], the authors follow a procedure which is very common in generalised
unitarity methods: the loop momentum is a 4 — 2¢ vector, but the external
momenta are kept in exactly four dimensions. The advantage of this choice is
that the spinor-helicity formalism (see e.g. [116] and references therein) can be
used for the four-dimensional components, and the remaining —2e¢ integrations
are performed separately. As with the method above, it is not trivial to generalise
when going to higher orders in ¢ and/or when some of the propagators are not

cut.

We finish with a comment on the quadruple cuts of boxes we computed above.
Putting aside normalisation factors, comparing these results with the expressions
for the boxes given in section [B.4] we see the maximal cuts of the boxes are
related to their rational prefactor, which is known to be related to the so-called
leading singularities of Feynman integrals [56],/57]. Once we have settled our
normalisation for computing this type of cut in a well defined way, we will define
the maximal cut computed at € = 0 to be the leading singularity of the diagram.
We note the above method can always be used to easily compute the leading
singularities of diagrams with n propagators in n dimensions up to normalisation
conventions. It is not hard to see that the answer will always be proportional to

the inverse of the square-root of the determinant of the Cayley matrix.

All the work presented in this chapter was done during my PhD. The
framework to compute cuts as residues in complex kinematics presented below
was developed by myself, although I greatly benefited from discussions with and
comments from Ruth Britto, Claude Duhr and my supervisor Einan Gardi. Most
of the work presented in this chapter constitutes new results which, as far as I

am aware, have not been published elsewhere.
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5.2 Definition of cuts in Minkowski space

We will consider the m-propagator cut of a one-loop diagram with n
propagators in D = d — 2¢ dimensions, where d is an even number such that
d—2 < n <d. In this section, cuts will be computed in Minkowski space-time.

We define the uncut diagram as:

n—2

(5.9)

oo () = T [ aPr

“'.:1

2

We note there is a change of normalisation with respect to what was done in the
previous chapters, see appendix [A] for a summary of our conventions. We will in

general not explicitly write the variables on which 7,, depends.

In eq. (5.9), the g; are combinations of the external momenta p;:

n

q; = chzpl, cji € {—1,0,1}.

1=1
The numbering of the ¢; does not follow any particular order, but a distinction is
made between the ones that will not be cut (with m —2 < j < n —2) and the m
propagators that will be (the others). For m > 2, gy is required to be such that
g2 # 0. This is a very mild requirement, and if it cannot be met the cut vanishes,

see section [5.4.1 For single propagator cuts this is not required, but we postpone
the discussion of this type of cuts to section [5.3|

The choice of varying the number of space-time dimensions with the number
of propagators ensures that [, is a pure function of weight d/2, i.e., it saturates
the upper bound of eq. (2.25). This is mainly relevant for the next chapter,
and most of the discussion in this chapter is independent of this choice (all
but the discussion of sections [5.4.2] and [5.4.3). We should note that there are

well established relations between diagrams computed in different space-time

dimensions [117], and thus our choice can be seen as a choice of a basis for
one-loop Feynman diagrams (although in this thesis we will not attempt to prove

this basis is complete).
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.2.1 Parametrisation of the momenta and change of

variables

We work in the centre of mass of gy and parametrise the g; as:

¢0 = (900,0p-1), @ = (¢10,¢11,0p-2), q¢; = (gjo,---,4jj;;0p—;) . (5.10)

For the loop momentum, we use polar coordinates:

n—3 n—2
k=ko (1,5008 01,...,8cos6, - (H sin 9j> , B (H Sin(‘)j) 1D_n> (5.11)

j=1 J=1

where we made explicit the angles that will be relevant in the n propagators of

the diagram, and the remaining angles can be trivially integrated.

With this parametrisation, the dot products of the internal momentum with

the ¢; become

q -k = koqoo, qo-k= ko(cho — qu1 3 cos 91),

J a—1
q; - k= ko <qu —gj1Bcosb — Z Qjo COS O, H sin 97> ) (5.12)
a=2 v=1

Performing the trivial angular integrals, the integration measure is

2 D—;H—l n—2 T '
/ Pk :ﬁ / dho kP! / 8P~ (H / df; sin? =2 9]-). (5.13)
Donit 1,

We now change variables according to

cost; =2x;—1 = dcosb; =2dz; and sinf; = 2¢/z;(1 —xz;), (5.14)

for any 1 < j < n — 2. The propagators can then be written as

(k — qj)Z — m? = —Aj + Bjxja (515)
where the A; and B, are functions of ko, 3,z1,...,2;—1 and of the external
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invariants, given by:

Ao =2koqoo + m% —k* - qS, By =0,
Ay =2k (quo + quB) +mi — k* — ¢¢, By = 48koqu,

7j—1

a—1
Aj :2]€0 [q]‘[) — BZ qja(Qxa — 1) (H 2\ / l’,y(l — l‘,y))
a=1 y=1
j—1
+645 (H 24/ zy(1 — x'y))
y=1
j—1
Bj :2j+1k’0/8q]'j (H \/1‘,3(1 — QTB)) = Qij \/ZEj_l(l — ZEj_l)Bj_l, (516)
B=1

qdj—15—1

+mj2~—q]2-—k2,

where the last relation holds for 7 > 1. We will in general not write the variables
on which the A; and B; depend, as it is usually a rather long list that makes the
equations hard to read. Finally, we also define z;, as
A
Tin = (5.17)

J

which is the point at which the propagator (k — ¢;)* — m? vanishes.

We again stress that A; = A;(ko, x1,...,2j-1) and Bj = Bj(ko, %1, ...,T;-1),
which means the z;, are also functions of these variables (and of the kinematic

invariants on which [,, depends),
Ljp = xj,l’)(kloa Ty, ... 717j—1)- (518)

As for A; and Bj, we will in general not explicitly write the variables on which
the z;, depend for clarity of the expressions. Finally, we note that in terms of
the x; ,

(k—q;)* —m} = B; (x; — ;). (5.19)

We finish with a comment: the main advantage of our parametrisation is that
to each propagator with momentum (k — ¢;)* — m?, for j > 3, it associates a

single new variable ;.
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5.2.2 Uncut integral

The uncut integral is

Ql+37 2(D—2—j) VEe D—1.3D-2
I = : D= nf o /dko/dﬁ 2k0 ’ 2
T (o D((k— 02 —md)

J>>” e
(H / - ) . (5.20)

Out of the n —2 integrals over the x;, we want to perform the last n —m. The

others are not integrated over, as they are the ones corresponding to propagators
that will be cut. We thus define the function f,, (ko, 8, %1, . . ., Zm_s) which is the

result of these (n — m) integrations, as

5 ) n—2 1 (I(l—i‘))%
Fon (ko, B, 21, o) = 25 (P20 / PG Sl |
jl;I_l o Bj(x;—x)
(5.21)
where we only wrote the dependence of f,, on integration variables.
We then have
21+2J 1 2(D—2—j) YEE€ kD 19D-2
I, = DWM@ /dko/dﬁ - 5 i
(=5 ~)((k = qo)* — mg)
>>D 2
. 2 ~
H/ & fm (k())/Bwrla'”)xm—Q)- (522)
— Tjp)
We will in general not write the variables on which f, (ko, B, 21,y Tm—2)

depends. In this expression, the integrals that are left to be computed correspond

to the m propagators we will be cutting.

5.2.3 Definition of cuts as residues — C,,

We now give our definition of an m-propagator cut. This definition is based

on the observation that, for a function g(z) behaving well enough around = = a,

/az drg(z)d(z —a) = Resx:a% = g(a), (5.23)
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5.2. Definition of cuts in Minkowski space

for a1 < a < ay. Instead of replacing cut propagators by delta functions as we
did in chapter [3, we will compute cuts by evaluating residues of propagators at
their poles. The advantage of this method is that while the replacement of the
propagator by a Dirac -function will only give a contribution if a; < a < as, the
replacement by a residue is easily extended to any a taking values anywhere in

the complex plane.

We choose our normalisations tailored to the needs of chapter [6} This is true

in particular for the factors of £1 and the powers of (27). We define C,, as:

QI+ SA(D=2-]) yge

W"T*lr (D—;H—l)

[ko[ 7 18177 P R e
w1 2 ) )

n—1 ,7:1

Co (1) = (—1)"(2m) %]

Resy, | Resg | Resy, Res,,, ,

(5.24)

In this expression, |z]| denotes the ‘floor function’, which to each real number
x associates the greatest integer smaller or equal to z. The residues are taken
at ko = kop, B = Bp, and x; = x;,. The z;, were defined above, but we recall
they correspond to the poles of the propagators, are functions of the kinematic

invariants, and more importantly of the integration variables,
Tjp = Tjp(ko, 1, Tj1). (5.25)

We must now define /3, and k.

The propagator of momentum £k is quadratic in 5 and thus has two zeros,

2
B =y f1 - It (5.26)
k:O

By convention we take the residue at /5, = 8. The propagator of momentum

(k — qo) is linear in ky after imposing § = 3,
(k —qo0)* — m§ = —2qooko + g5 + m2,_; — mg,

and ko, is its zero. In the absence of internal masses, 3, = 1 and kg, = %°.

Before proceeding with the evaluation of the residues in the expression above,

we make some comments on this expression:
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

e this definition of cut is in principle also valid for single propagator cuts.
However, the choice of parametrisation of the loop momentum makes it hard
to evaluate them in practice. Below, in section [5.3] we give an equivalent

definition of cuts more suitable to the evaluation of single propagator cuts ;

e the factor of (—1)™ is included to have expressions consistent with what is

needed for the work presented in chapter [6];

e the factor of (27) [%] is included to have expressions without overall factors

of 7, as needed for the next chapter ;

e in general, the poles x; , are complex numbers, and in particular not between
0 and 1. This is why this is a cut in complex kinematics. If we can choose
real external kinematics such that all z; € [0, 1], then the cut is computable
in real kinematics. Requiring this we recover the theta functions we had in

the relation between cuts, discontinuities and the coproduct of the previous

chapter, see e.g. eq. (3.66]).

5.2.4 Evaluation of the residues and formal solution

We start by discussing the two-propagator cut, a special case of eq. (5.24))

with m = 2. For this, we write

(K = m3y) (k= o) = m§) =21[ko[" laool (8 = B,) (5 + )

2 2 2
(ko i dp + M1 mO) 7 (527)
2400

so that eq. (5.24) becomes

e s |k0,p‘D_3 ’6p|D_3

I (55+) [

Cull,] = b (5.28)

In this expression, f, is fg(ko’p, B,), where f5 is defined in eq. 1} We will in

general use f,, to denote the function f,, evaluate at the pole of all its arguments,

fm = fm (kO,py 6])7 Tip,--- axm—Q,p) . (529)
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5.2. Definition of cuts in Minkowski space

Let’s now look at eq. (5.24]) for m > 3. We start by noting that
j—1
Bj = 2" ko Bqy; (H \/ zy(1 — $7)>
y=1

m—2 ;n 12(j+1) m—2 m—3 m—2—j
= Bjl = %= | 1] il (2 (L =)l =) . (5:30)
j=1 |k ﬁ‘ j=1 j=1

Using this result,

m—2 D—-3—j _ m72 - m—2 D—1—-m
PR el )
o 1Bl (@ — @) (ol 1B)™ % 5 sl (5 — wjp)

We stress that, importantly, in the last line the power of the z;(1 — x;) factors is

now independent of j.

As we will see, it is convenient to first evaluate the residue at ,—o = Tp—2,,

m—2 D—3—j o m_z .
Res H , z;))| 2 il 9~ 255 (D)
B - — Zjp) (Ikol 1B))™

7=1
m—3 —1—-m D—1—m
[(2;(1 — ;)| [(Tm2p(1 = Tmap))| > 2
fm(Tm—2p).

i1 g1 (25 — @ |Gm—2,m—2|
On the right-hand-side, we wrote one of the arguments of fm (ko, B, 1y« s Ti—2)
explicitly to stress that we had set z,,_2 = -2, when taking the residue
associated with this variable.

We now use
D*éfm
D—1-m ‘Am72(Bm 2 Amf2)|
|$m—2,p(1 - xm—Q,p)| = < ‘B ‘

D—-1-m

_ |Am—2(Bim—2 — Am—2)| 2 o =D
= @ TRl 5] gy (L0 =2
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

to get

’ D 237]‘ 2m(m+1)—2D(m—l)
X; i 2
Res,, ., H i Jm = -

w (%ol |B)"~
m—3 D—1-m
1 |Am—2(Bm—2 - Am—2)| 2 s

ey fn(Tm—2p)-

(H |QJJ| ( x]p)) ‘Qm—2,m—2‘D o

Putting everything together,

22_D (27T> Lmj e’YEE ‘me2,m72 | thm=D

TT T (2L (HT:BQ|ij|>
D—1—m

ml 1 ) ‘Am72<Bm72 Am 2)‘ 2
Fol@map) | | ] ] (5.32)
(E — Tjp) (B—Bp) <k;0 ‘1()4‘"127;—001%> 2

Co L) = (—1)™ Resy, |Resg | ... |Resy,,

We observe that by evaluating the residue at z,,,_o = x,,—2, we cancelled the
Jacobians of kg, 8 and all the z; with j < m — 2, and the remaining residues are
trivial to evaluate.

We thus get a formal solution to C,, [I,,] valid for m > 2:

w2 OmEEE A (B = Amoay)l”
Crn [In] =(-1) T poanl T i fp (5.33)
T2 ( 2 ) IQm72,mf2’ <Hj:0 ‘q]]‘)

In this expression,

Am—Q,p = Am—Q (k(],pa 6})7 Tipy .- - 7xm—3,p)
Bm—Q,p = Bm—2 (kO,p7 Bp7 $1p7 ce axm—?),p)

fm,p = fm (kO,;m Bpa $1p7 oo axm—Q,p)

are now functions of the external invariants only. To make the expression more
explicit, we recall that m is the number of cut propagators, n the total number
of propagators, and D = d — 2¢ the dimensions, where d is an even number such
that d — 2 < n < d. Examples of eq. applied to some simple examples will

be given below.

A particularly interesting case of eq. (5.33)) is when all propagators are cut,
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5.2. Definition of cuts in Minkowski space

i.e. m = n, which we call the mazimal cut. In this limit,

n D—1—n
n227D(27T)L§J€7E6 |An—2,p(Bn—2,p - An—27p)| 2
Co [In] =(=1)" —= D-ntl D—1-n (1Tqn—2
T2 F( 2 ) |Gn—2,n—2] (Hj:() |ij‘>

: (5.34)

where we have set f,, = 1 as follows from eq. (5.21)).

We take this opportunity to define a concept which we have been using loosely
up to know, the leading singularity of Feynman integrals. From now on, we will
define the leading singularity of a Feynman integral I,,, which we will denote LS,

to be its maximal cut, computed at € = 0:
LS[L]=C"L]. (5.35)

Here the superscript (0) means we take the €® coefficient of the e-expansion
of C,, [I,]. This definition fails when maximal cuts are zero, but this is a very

minor issue and we will explain how to overcome it in section [6.4]

We finish with a comment on notation. It will often be necessary to
specify which propagators are cut. For one-loop diagrams, we can identify each
propagator by the external legs they connect. For a diagram with n propagators,
each propagator is thus identified by a pair (j, 7+ 1), where j = 1,...,n and the
indices are defined cyclically. The order in which the indices appear is irrelevant.

We will then writel]
Con, (1,14 1)+ 1) (5.36)

for the m propagator cut where the propagators (1, j14+1), ..., (jm, Jm+1) are cut.
We recall that the parametrisation of section [5.2.1]is to be chosen in agreement
with the propagators that are being cut. For maximal cuts, there is no ambiguity

so we will never write the cut propagators explicitly.

!This notation is not suitable for single cuts of bubbles, but those cases are simple enough
that there should not be any ambiguity.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.2.5 Examples

We now give a few examples to make egs. (5.28), (5.33) and (5.34) more

concrete. These are very simple examples, simply aimed at illustrating the use of
the results we obtained above. More interesting and non-trivial examples will be
addressed in section 5.5 where we compute cuts of one-loop diagrams with three,
four or five propagators. Some of the results presented there are new results, as

far as we are aware.

I,(p?): We start with the two propagator cut of the bubble with massless
propagators, I»(p?), evaluated in D = 2 — 2¢. According to the parametrisation

of section |5.2.1 we have

9 = Vp*(1,0p_1). (5.37)
Given that both propagators are massless, 3, = 1 and ko, = /p?/2. We can
then use eq. (5.28)) to get

e=T(1 — )

iag T 539

CQ [[2(p2):| =2
where we set fo = 1 as this is a maximal cut of the bubble. In the kinematic
region consistent with a cut in the p?-channel, we have p? > 0. Reinstating the
necessary factors of 7 and i—see appendix [A] in particular the discussion around

egs. (A.10) and (A.11)—we recover the result we would have got by applying the
cutting rules of the previous section,

eET(1 —¢)

Cut,e [Bub(p®)] = 27C; [L(p®)] = 4n T2 (pQ)_l_E.

(5.39)

I, (p?;m2,m2?): We now look at the bubble with internal masses mZ and m?,
Iy(p*; m2, m?). The parametrisation of the external momentum is the same as for
the massless case—see eq. (5.37)—but we now have

2 2 2 /2

p +m0—m1 D
koy=——"+——+ = V(1 A4
0,p 9 /—p2 ) ﬁp 2 (7“07,“’1)7 (5 0)
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5.2. Definition of cuts in Minkowski space

where as usual A(a,b,c) = a® + b* + ¢* — 2ab — 2ac — 2bc is the Kallén function
and p; = m?/p*. As above, we set fo = 1 in eq. (5.28) to get

eET(1 —¢)

s )] = 2

9| —1—¢ —1—2¢
1’| ( AUM@MQ) , (5.41)
which also matches the result for the channel cut we would have obtained from

the cutting rules of the previous chapter, after multiplying by a factor of 2.

I3(p3;m2;): As a last example, we consider the triangle with one external
massive leg, p?, and one internal massive propagator connecting the external
legs 2 and 3, of mass m3;. As this is a diagram with n = 3, it is evaluated in
D =4 —2e. We start by evaluating its two-propagator cut, Ca ((12),a3)13(pT; m33)-
Given that in this case there is no ambiguity in which two propagators are cut
(there is only one non-vanishing two-propagator cut), we will drop the subscript
identifying the cut propagators for simplicity of notation. We parametrise the

external momenta as

2
b1 =4 = \/p%(laOD—l)a P2 = —q1 = — 2p1 (L —1, 0D-2)- (5-42)

The propagators are

1 1 1
~ —~ and , 5.43
A . =) =, (5.43)

and because the propagators of momentum & and (k — gy) are massless we have
B, =1and kg, = v/p?/2. We can compute the quantities A; , and By, as defined
in eq. (5.16)), and we get

Arp = m§3 By, = _P%- (5.44)

Finally, we will also need fs, as defined in eq. ([5.21)),

21—26 F2(1 _ 6) p2
=— Fill1—e2—2:—2L ). 5.45
f27p m§3 F(Q - 25) . ( ’ © © m§3> ( )

We note that f5, is away from branch cuts in the natural kinematic region where

this cut is to be evaluated, p? > 0 and m3; > 0. It is now straightforward to use
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

eq. (5.28) to get

7ET(1 — €) |]72|_6 p2
Co [I5(p%: m? = _c L Fi{1,1—€2—2:—>-L 5.46
2 [ 3(p1,m23)} [ (2 — 26) m%3 2 ’ “ “ m%3 ’ ( )

which, after multiplication by a factor of (—27), agrees with the result already
quoted in eq. (B.7) for Cut,z [T (p¥; m3,)].

For this diagram, we can also evaluate the three-propagator cut. We have
already given all necessary ingredients, so we can just replace them in eq.
with m = 3 to get

G'YE €

N S |pﬂ_1+e ‘mgzz(p% + mgg)‘_e ; (5.47)

Cs [I3(pT; m3s)] = N

which in the relevant kinematic region (pj > 0 and m3; < 0) and after

multiplication by a factor of (47%) agrees with the result for Cut,z 2. [T (pi; m3;)]

quoted in eq. (B.9).

5.3 Alternative definition in Euclidean space

5.3.1 General formulation

Unfortunately, the definition of cut given in eq. (5.24) is not convenient to
compute single propagator cuts, which are the simplest cuts one could think of.
The reason for this is perhaps best illustrated by an example, so let’s look at

what happens for the tadpole of mass m? computed in 2 — 2¢ dimensions,

YE€ 1
_[1 - ,e /d2_2€kk2—. (548)

According to the parametrisation of section we would write the propagator
as
k> —m?® = kj(1 — %) —m?,

and we would then associate the single propagator cut with a residue of this
propagator. The reason why this parametrisation is not the most practical is
already apparent: although we only have one propagator, we needed two variables

to parametrise it, kg and 5. We could in theory proceed by choosing to take a
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5.3. Alternative definition in Euclidean space

residue on either ky or §, and then performing the integral in the remaining
variabldﬂ. In practice, we found this integral not easy to compute even for the

simplest Feynman diagrams.

However, one would expect that the single propagator cut of a tadpole should
be very simple to compute. Indeed, there should be a choice of variables in terms
of which the propagator is parametrised by a single variable, and the remaining
1 — 2¢ variables can be integrated trivially. Then, the cut would correspond to
taking the residue associated with the variable parametrising the propagator. We
recall that this was the main advantage of the parametrisation chosen in section
: to each propagator of momentum g¢; with 5 > 0 is associated a single

variable z;, and the cut of this propagator is the residue on this variable.

As it turns out, there is a parametrisation very similar to that of section[5.2.1
that associates a variable to each propagator, but it requires to first perform a
Wick rotation from Minkowski to Euclidean space. Let us then redo the exercise
that led us to eq. in this new parametrisation. We define a set of Euclidean

momenta in D dimensions in terms of their Minkowski counterparts as

kE - (_ik07 kla SRR kDfl)
¢; = (=igjo, qj1,- -, 45, Op—;) = (o - - - 4j5, Op—3) (5-49)

satisfying

(k) =k (") '=-¢ K ¢F=—k-q. (5.50)

J

Given that k¥ is now a vector in Euclidean space, we can parametrise it as

n—3 n—2
EF = |kE‘ (cos 0o, cos By sinby, ..., cosb,_o (H sin 9j> , (H sin 9j> 1Dn)
§=0

" (5.51)

where 1p_,, is a unit vector in the D — n remaining components, which can be

2The reason why cuts with two or more propagators can be computed with the
parametrisation of section is that this remaining integration is also replaced by a residue,
as was done in eq. ((5.28): the integrations on the variables ko and § are localised by taking the

2

residues associated with the propagators k* —m2_; and (k — qo)? — m2.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

trivially integrated to get

D—n+1

D—2 n—2 T
ppp T [ e () T o
/d k _F(D_g+l)/d]k *(16]) <j|:|0/0 do; sin Jel). (5.52)

In practice, this means that by going from Minkowski to Euclidean space we
traded the integration over [ to an integration over an extra angle 6y, as can
be seen by comparing this expression with the equivalent in Minkowski space,
eq. (5.13)).

We can now proceed as we did for the angular integrals in Minkowski space:
for each angle 6;, change variables to x; = (cos#;+1)/2, and associate a variable

z; to the propagator with momentum (k — g¢;),
(k=) =) = (6 = g = —AF + B

Unlike what happened in the Minkowski parametrisation, we now have BY # 0.

For any 7 > 0,
7j—1 a—1
AP =2|k"| [Z g (2x4 — 1) (H 24/ 7,(1 — m)
a=0 v=0
7—1
2
_ZJ(Jﬁ ( zy(1 — wv))] - mf - (qf)Q - ‘kE ’
v=0
j—1
BF = =272 k"] ¢f; ( zg(1 — x5)> : (5.53)
B=0

and we also define zf, = AP/BF. Finally, as required, the propagator with

momentum k now only depends on one of the integration variables,

H_W@JZ_QMﬁ+m;J.
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5.3. Alternative definition in Euclidean space

The uncut integral with n propagators can then be written as

D—2
m— . —_n 2
I, (_1)n22j02(D2J)7T12€7E€/d|kE‘2 <‘kE|> 2

CE A
nﬁQ /1 dr. (2;(1 — %’))D_;_] JZE (
i Jo ’ BjE (zj — zjp "

where f is defined as in eq. 1} with B; replaced by Bf and x;, by z7,.

Ty Tpa),  (5.54)

We are now ready to define what we mean by a m-propagator cut in this new

parametrisation. The equivalent of eq. (5.24) is

925 02(D_2_j)e’YE€ i
CE L] = (1) (2m) %] T () Res z2 | Resy, | ..
|
Resg,,_, fal o1, (5.55
S kP 2, (H !BE! E> ! )

where the residues are evaluated at z; = a: and ‘kE | } Wthh is the zero

of the propagator of momentum k. As for the equivalent relatlon in Minkowski
space, eq. (b.24)), the normalisations were chosen to match what is needed for the

work presented in chapter [6]

For m = 1, eq. ((5.55)) gives a very simple expressions:

CElL] = O 2 | P, (5.56)
T (25

where ff = fF <‘kE|2 = —m? > For m > 2, we can go through the same

n—1

exercise of section to get

B D—1-m
2
Am 2,p)‘

|> fr o (5.57)

2-P(2m) v | AB_, ,(BE

m—2,p

n—1

n—- D—n+1 D—1-m E

2 —_
m F( 2 ) ‘qm_z,m—2| < j=0 ’qjj

Cpn L] =(=1)"

Although egs. (5.24) and (5.55)) are equivalent, we will prefer the definition of
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

cut given in eq. ((5.55)) for all but single propagator cuts, and only rely on eq. (5.55))
to define single propagator cuts. Indeed working in Euclidean space often makes

it harder to handle expressions for cuts of more complicated diagrams. We will

however show in some simple examples that eqs. ((5.24)) and (5.55|) give consistent

results.

5.3.2 Examples

We now illustrate the computation of single propagator cuts using eq. ,
and show that for double cuts of bubbles we get results consistent with the ones
obtained from eq. . As with the examples of section , these are simply
an illustration of the above expressions, and we leave the computation of cuts of

more interesting diagrams to section [5.5

I, (m?): We start by looking at the diagram that motivated the alternative
definition of cut in Euclidean space, the tadpole with internal mass m? in D =
2 — 2¢ dimensions. As promised, the single propagator cut is now trivial to
evaluate. Indeed, we can use eq. with n = 1 and set ff = 1, as this is a

maximal cut, to get
e’YEE

['(1—e [

—€

2

ClE [Il] ==

(5.58)

Multiplying by a factor of (27), this reproduces the results one would expect
by computing the discontinuity of the tadpole in the relevant kinematic region,
m? < 0. Indeed, following the cutting rules of the previous section, we would

have found
e’}'E€

Cuts [Tad ()] = ~2m

—m?) ", (5.59)

I, (p?): We now show that eqs. (5.24) and (5.55)) give the same result for the
double cut of the bubble with massless propagators. We use eq. (5.57)) with

m=n =2, and D = 2 — 2¢. It is easy to see that for this case ¢l = —iy/p?,

Aéﬂ,p = _(%%)2 and ng = 0 so we get

225ﬁ

Cy [L(")] = 26%@ ’q§)|_2_26
_ € F(l B 6) 2|—1—€
= 2¢7E T2 12— (5.60)
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5.3. Alternative definition in Euclidean space

which is consistent with the result given above.

I,(p*;m3?): As a final example, we look at the cuts of the bubble with one
internal massive propagator in D = 2 — 2¢. In this case, qf) = —i\/p?, kel, =
+imy, Ay = (\/p?> £ my)? and By = +my+/p?. For the single cut, we also need

fi, as defined in eq. (5.21)),

E_ 2% 2 (L) 1—2¢  _  E£mu/p?
fl,p_ QF(1_2>2F1 1; 2 71 267 2
(x/pZ:I:ml) € (x/pZ:I:ml)
From eq. (5.56)), we then get
cE [I ( 2'm2)} _ evEe |m2|76 Pl 1—2¢ 1 — 9 +mq+/p?
1 2p7 1 F(1—€)<\/_2:|:m)22 1 ) 2 ) I 2
P 1 <\/1¥:|:m1>

Upon expansion of the hypergeometric function, it can be checked that once the
factors of (27) have been adjusted to match conventions, this rather complicated
and inelegant result is consistent with the one obtained from the cutting rules of

the previous chapter in the region p* < m? < 0,

2

o I (1, 1+61—c¢ 7;—2) . (b.61)

eVE€ (_m2)7e
l—e¢ p?

Cut,,2 [Bub(p*; m7)] =2

Finally, we also have all ingredients to compute the double cut of this bubble.

Using cq. (5:57),

I'l—e) |,
T (1 2 P

€

CQE [[2(p2; m%)} = 2e7E¢ 2 m%l_l_%

D : (5.62)

which reproduces the m2 — 0 limit of eq. (5.41)), and is also consistent with the

result obtained by the cutting rules of the previous chapter,

['(1—¢)

T e @) - mi) (5.63)

Cut,e [Bub(p®; m})] = 4me™

computed in the region where 0 < m? < p*.
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

5.4 General results on cuts of one-loop Feyn-

man diagrams

In this section, we will look at some results that can be derived from the
general expressions we have given for the m-propagator cut of one-loop Feynman
diagrams, eqs. and . We will start by determining which cuts can
vanish for specific choices of kinematic configurations. Then we will show a
relation between the first order in the e-expansion of the maximal and next-to-
maximal cuts (i.e., with n — 1 cut propagators) of finite diagrams with an even
number of propagators. This relation will play a very important role in the work
presented in the next chapter. Finally, we will make a brief comment on the form

of maximal cuts.

5.4.1 Vanishing cuts in complex kinematics

In the previous chapter, as in refs. [36,37], we interpreted cuts of Feynman
diagrams as discontinuities on kinematic channels or internal masses. This
allowed us to argue that some cuts should vanish. For instance, the single
propagator cut of a massless propagator should be zero, because it could not
correspond to the discontinuity on any internal mass. As another example, if the
two-propagator cut of a one-loop diagram selected a massless external channel,
then it had to vanish as the function had no discontinuities associated to that cut.
In this analysis, we restricted ourselves to the use of real kinematics, which meant
that if a cut isolated a three-point vertex with three on-shell massless particles,
then it had to vanish. This hypothesis was enough to obtain the relations between
discontinuities, cuts and certain coproduct entries, but we also commented that
we expected a generalisation of the cutting rules might be necessary to describe
other coproduct entries. As we will see in the following chapter, the definition of
cut given in the section above allows to do this. However, if we allow ourselves to
go beyond real kinematics as we have done above, can we still identify vanishing
cuts simply by looking at a cut diagram? Although some cuts we would previously
set to zero are no longer vanishing, in the following we argue that it is possible,

and identify which cuts of one loop Feynman diagrams can vanish.

Consider a general one-loop integral with n propagators. We now examine its
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5.4. General results on cuts of one-loop Feynman diagrams

cuts, and look for which configurations of internal and external masses one finds

a vanishing result.

One-propagator cuts: We start by single propagator cuts, for which we can

D—2
use eq. (5.56). Provided f{ does not behave as |[m2_;| * as |m2_,| — 0, the

single cut will vanish if the mass of the cut propagator is zero, which agrees
with the behaviour we would have expected from the relation between cuts and

discontinuities. Let us then show that ff, is analytic for ‘sz|2 =m2 ;=0. In
this limit, eq. ((5.53)) gives

AP (lkg| =0) = —m? — (¢¥)",  BE(ks|=0)=0, forj>1. (5.64)

We thus have

1F D— n+1 n—
fip= (H Ik:EI — 0)> (5.65)

S

which shows f£ is analytic at |k |2 =m;_

H
Il
i

Two-propagator cuts: For two propagator cuts, we also rely on the definition
of cuts in Euclidean space, eq. (5.55)), as the parametrisation in Minkowski is only
valid for g2 # 0. We will show that the double cut vanishes if ¢ = 0, i.e., if the

double cut selects a massless external channel. From eq. (5.57)), the double cut is

22D (27)erEe
T ()

CEIL] = (—1)™ & |* " |AE (BE, — AE )| [E, (5.66)

If gfy = 0, then BF = 0 for all j > 0. This means all integrations in f;7, can be
done trivially, as they were for ffp above, and ffp is analytic in this limit. We
can thus conclude that the double cut vanishes if g2 = —(¢F)* = 0. Again, this is
in agreement with the relation between two-propagator cuts of one-loop diagrams

and discontinuities on external channels discussed in the previous chapter.

139



Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

Three-propagator cuts: We now look at three-propagator cuts. For these
cuts, we can use the Minkowski space formulation of eqs. ((5.24)) and (5.33]),

D—-4

4—D ’Al,p(Bl,p — Al,p)‘ ?
|(100\ |(111\

22D (27)evE"
Cs Un] = T T a1 ( ) ) ’(]11\

n7 D (2eptl

fap- (5.67)

By definition, we know ¢;; # 0, see section [5.2.1 To consider a triple cut, we
must have at least three propagators, and so there is at least one massive external
channel which we can identify with ¢3. We thus also have oo # 0. Finally, f3,, is
non-zero for general kinematics (i.e., when all the ¢; and m? are independent of
each other). We thus see that the triple cut can vanish if and only if A, , =0 or
Ay, = By, where Ay, and By, are given in eq. (5.16)),

Al,p = 2k07p(Q10 + (hlﬁp) + m% -k - (J%> B, = 48,ko pqu1- (5.68)

To have Ay, =0 or Ay, = By, we must have k* = m? = ¢ = 0, which in turn

implies that 8, =1 and ¢}, — ¢}, = 0. This last equation has two solutions,

qo=qu = Aip= DBy,
qo=—qu = A,=0. (5.69)

Physically, the configurations where the triple cut vanishes correspond exactly to
what would have been expected from real kinematics: the triple cut is zero if it
isolates a vertex with three massless on-shell legs. The two solutions correspond
to the fact that the sign of the ¢;; component of ¢; is arbitrary. To finish our proof
that the cut is zero in this configuration, we must also check that f3, is analytic
in this limit: we can use exactly the same argument as for ffp above, because
in this case all B;, with j > 2 vanish (they are proportional to \/z1,(1 — x1,)),
which makes all the integrations in f3, trivial.

In summary, for three particle cuts we can still rely on arguments from real
kinematics to identify which cut diagrams vanish. As an example, the triple cut
of the triangle with no internal massive propagators and one or two external

massive channels will vanish.

Four or more propagator cuts: We now discuss the case where four or more

propagators are cut. We start by looking at the four-propagator cut. Setting
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5.4. General results on cuts of one-loop Feynman diagrams

m =4 in eq. (5.33)),

D—5
5D |A2p(Bap — Azp)| 2
|QO0’ |Q11’ |CJ22’

22-D(27)2erE¢

T (D*;rkl)

Ca [[n] = ‘QZ2| f4,p- (5~70)

For the same reason as for the three-propagator cut, the quadruple cut will vanish
if and only if Ay, = 0 or Ay, = Bs,. Recalling that z,, = A ,/B;,, with By,

as given above, we have

B27P = 2@81@ $17p(1 — xl,p) = 2@\//41@(814) — ALp) (571)
d11 q11

A (941~ Biy) + 22\ [ 41,(Biy — Avy) +mE — K — .
2qn a1

The naive guess to find a kinematic configuration where the quadruple cut
could vanish would be to require any of the three-propagator cuts obtained by
cutting one fewer propagator of such diagram to be zero, i.e., that any of the
triple cuts would isolate a vertex with three massless legs. This can be realised

in the above expressions by setting A; , = 0 and k? = 0, in which case

BQ,p — O
Az = 2ko (20 + 421) — 5. (5.72)

where we have also set m2 to be zero, which we are of course free to do. As for
the triple cut, we can also require that ¢35 = 0. We would then have a vanishing
quadruple cut if go9 + g21 = 0. However, these two conditions cannot be satisfied

at the same time: since by definition goo # 0,
G=0 = ¢G=0G -G #0 = qo+qu#0. (5.73)

We thus conclude that the quadruple cut of a one-loop diagram cannot vanish
for a general kinematic configuration. As an example, which we will explore in
more detail below, the quadruple cut of the massless box is not zero, and can be
computed using eq. to all orders in e. This result contradicts our intuition
from the previous chapter in two ways. First, if we restricted ourselves to real
kinematics this cut would vanish because it isolates a massless vertex (in fact, four

massless vertices). Second, we got used to thinking of iterated cuts as iterated
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

discontinuities, but once we have taken the first cut, say on the s-channel of the
box, the second cut, say on the t-channel, is a cut on a channel that does not
have a well defined i0-prescription according to the rules of the previous chapter,
which means we could not compute its double discontinuity. In that spirit, the
only value that would make sense to assign to such a cut would be zero. We will
however see that the quadruple cut can still be interpreted in some sense as a
discontinuity on s and t.

We conjecture that the same conclusion holds for any number of cut
propagators m > 4, for exactly the same reasons. We will give both direct and
indirect evidence to support this conjecture. The direct evidence will be given in
the next section where we will compute the five-propagator cut of the pentagon,
and the indirect evidence in the next chapter where we will argue that maximal
cuts are related to the homogeneous terms of the differential equations satisfied

by Feynman diagrams.

To summarise this subsection, one-, two- and three-propagator cuts, computed
in complex kinematics according to the definitions in egs. and (5.55),
can also be understood from the perspective of the relation between cuts and
discontinuities we developed in the previous section. One- and two-propagator
cuts vanish if they do not correspond to a discontinuity on an internal mass or
an external channel, and three-propagator cuts will vanish if they isolate a vertex
with three massless legs. If four or more propagator are cut, the cuts will never

vanish for general kinematics.

5.4.2 Maximal and next-to-maximal cuts of a diagram

with an even number of propagators

We now look at an interesting relation between maximal and next-to-maximal
cuts of diagrams with an even number n of propagators, computed in d = n
dimensions. This relation will play an important role in the discussion of the
following chapter.

We start with an observation on the weight of Feynman integrals. As already
mentioned, requiring that the space-time dimensions vary with the number of
propagators as we do in eq. guarantees that all one-loop Feynman diagrams

are functions of weight d/2 (more precisely, a pure function once normalised to
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its leading singularity, as defined in eq. ) It then follows that the m-
propagator cut of a Feynman diagram as defined in eq. is a function of
weight d/2 — [m/2], where [z] is the ‘ceiling function’ that associates a real
number x to the smallest integer greater or equal to z. In particular, this means
that the next-to-maximal and maximal cuts of a diagram with an even number
of propagators are functions of weight 0, i.e., they are rational functions for
e = 0. Note that this means that next-to-maximal and maximal cuts cannot be

divergent.

We will now show that if the next-to-maximal cuts exist, i.e., if they are
not zero for the reasons given in section [5.4.1] they are equal to each other and
proportional to the maximal cut at ¢ = 0. Furthermore, the proportionality

constant is independent of the diagram.

We start by evaluating the maximal cut at ¢ = 0. We can use eq. (5.34))
and, because we are considering diagrams with an even number of propagators,
set D = n:

n—3
CT(LO) 1] = 2272 [An—2p(Bn-2p = An-2,)| ? H |ij|71 g (5.74)
=0

where CY [I,,] denotes the order ¢ term in the e-expansion of C,, [I,,].

The next-to-maximal cuts can be written in the form
(0) 275 0 T, 1
Cn—l [In] = _W.fn—l,p H |qjj| ) (575)
=0

where the superscript (0) has the same meaning as above. Note that while the
maximal cut is unique, there are n different next-to-maximal cuts. However, they
can all be written in this form, so we will not distinguish between them. Because

the next-to-maximal cuts are not divergent, we can compute féo_)l,p by setting

e=0and m=n—11in eq. (5.21):

1
O . (x(l —x))2 _ 1A B 4 1 & 76
= [ e r By~ A (5T
We thus find that )
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

This shows that for any one-loop diagram with an even number of propagators
there is a relation between the next-to-maximal and the maximal cuts: the O(e")
coefficients in the e-expansion of all existing next-to-maximal cuts (i.e., non-
vanishing according to the discussion in section are equal to each other,
and equal to minus one-half times the O(€?) coefficient of the maximal cut.

As an example, consider the box diagram with one internal massive propa-
gator, and four external massless legs. Following the discussion of section [5.4.1],
this diagram has a single non-vanishing triple cut, the one where the massive
propagator and the two adjacent ones are cut. According to eq. , we expect
the first term in the e-expansion of this cut to be minus one-half times the first
term in the e-expansion of the quadruple cut. In the next section, we will verify

this by explicit calculation.

5.4.3 Brief comment on maximal cuts

We finish this section on general properties of cuts of one-loop diagrams with
a brief comment on maximal cuts. Our formal solution for the m-propagator cut

of a diagram with n propagators, given explicitly in eq. (5.33)), is of the form

Cun [In] = N()R(p; - Py mi)) X (05 - pii 175 €) frnp (5 - Py M €), (5.78)
where:
e N is a prefactor independent of the kinematic invariants ;
e R is a rational function of the invariants independent of € ;

e X is a function of the invariants and of €, with a very simple ¢ dependence

of the form z¢, giving only powers of simple logarithms upon expansion ;

® fn.p is a function of the invariants and of €, obtained by integrating the
uncut propagators, with a complicated € dependence, producing non-trivial

polylogarithms upon expansion.
For the maximal cut, f,,(p; - pr;mi;€) = 1, and we have
Co lIn] = N()R(p; - pr; mi) X (pj - s M5 €), (5.79)
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which means that, aside from a prefactor independent of the kinematic invariants,
the e dependence of the maximal cut is of the form z¢. Because of this, maximal

cuts will play a special role in the discussion of the next chapter.

5.5 New results for cuts in complex kinematics

When introducing our formulation for cuts of one-loop diagrams in sections
and we illustrated the formulae we obtained by showing they gave
the expected results for some trivial examples. We now apply them to more
complicated diagrams. We first look once more at our favourite example, the
one-loop three-mass triangle, to show we recover the results we already obtained
previously. We then go on to compute cuts of a variety of box diagrams. We
will not explore the one- and two-propagator cuts, as their calculation does not
require the tools introduced in this chapter: the calculation is essentially the same
as for triangles, but requires the evaluation of more complicated integrals. We will
evaluate the next-to-maximal cuts to illustrate how they can vanish depending
on the kinematic configuration. The maximal cuts of boxes will be the first
example of a cut that could not have been computed through the methods of the
previous chapters. Finally, we compute the maximal cut of the pentagon with no
internal or external masses, which gives more evidence that cuts of four or more
propagators do not vanish even if they isolate a vertex connecting three massless

legs.

5.5.1 Three-mass triangle

We will consider the double and triple cuts of the triangle with three external
massive legs of masses p?, p3 and p3 in D = 4 — 2¢ dimensions, which we
already analysed in sections and These cuts are computable in real
kinematics, so this example shows that the definition of cut as residues given in
this chapter reproduces the results computed with the more standard techniques

of the previous chapter when both methods give non-vanishing results.

In this case, eq. (5.9) is

193 P30 ) = / e 1
3\F1y P2y V3 gre—e k2 (/{ — q0>2 (k' - Q1)2’

(5.80)
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

Figure 5.1: Parametrisation for the triangle with three external masses.

and we choose ¢y = p; and ¢ = —po, which is consistent with cutting the
propagator (12), of momentum k, and (13), of momentum (p; — k), see fig. [5.1}

Working out the kinematics,

/2
qdo = \/ p%(L 0D71>7 q1 = ﬁ (1 + U — Uz, —/ )\(1, UQ,U;?,), OD,2> . (581)

2

Under the conditions kg = 2p%, B =1, we have A, and B; ,—see eq. (5.16):
1—2)z
Ay, =pi(l = 2)z, By, = —pi(z — %), X1y = —%. (5.82)

This parametrisation is suitable for the p?-channel cut, so we now show we do
recover the expected result from eq. (5.28) with n = 3,

1—2¢
eveEe Pl fo,
C2,(12),(13)] [13(17%71737193)} = T o ( 5 1) \/]%’ (5.83)
1

in the region where p? > 0. fy, is obtained from eq. (5.21)) with n = 3,

2 (I -m)
Jop = )/0 dxq

Cpiz—z Ty — Ty
2172¢ T2(1 —¢) z—Z
=— Fi{1,1—€62—-2¢——]. 5.84
e TN (SRR I e o) B

Putting everything together,

Cz,[(12),(13)} [k(pf,pg,pg)} =

YEET(1 — 2\ —1—€
_ A9 )T b (12— 9e -
I'2-2) (1-2)z
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P2 k P3

k — paf Yk + p3

Plk_m_mp4

Figure 5.2: Parametrisation for the general box diagram. For each of the boxes
we consider, some of the masses have to be put to zero.

which reproduces the result of eq. (B.55)), which was computed as a unitarity
cut using the methods of chapter [3] once multiplied by a factor of (—27). In
appendix , eq. (A.10)), we explain in detail how this factor can be determined.

We can also compute the maximal cut of this triangle, for which we use

eq. (5.34) with n = 3,

2—1+Ze ype | 4261
Co (12, 18 p2)] =2 i

’Al,p<Bl,p - Al,p)rE

r (1 - 5) |QO0\
_ eVE€ (p%),1,€ . . . .
T TA—e) (2 |22(1 —2)(1 - 2)|°, (5.86)

which reproduces the result of eq. (B.58) once factors of (27) and i have been
adjusted.

5.5.2 Triple and quadruple cut of the 0-mass box

We now look at the triple and quadruple cuts of the 0-mass box in 4 — 2¢

dimensions,

YEE€

/d42ek ]‘
im?e k2(k — (p1 + p2))*(k — p2)2(k + p3)?

(5.87)

where s = (p; +p2)? and t = (py + p3)?. We parametrise the momenta as follows
(see fig. [.2] with all masses set to zero):

S
Go=p1+p2=+vs(1,0p1), q=p= \/7_ (1,-1,0p_2)
S
4 = —p3 = % (1, 1 —2r,2y/—r(1 +r),0D_3) ,
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k = ko (1, cos by,sin 6, cos by, sin by sinby1p_4) (5.88)

where r = t/s.

The triple cut for which this parametrisation is suitable, Cs [19),(23),(14)] [14(5, )],
isolates a vertex with three massless particles (we can easily check z;, = 0), and
following the discussion of section [5.4.1]it must thus vanish. In fact, by symmetry

this is true for any triple cut and we can write more generally

Cs [1(s,1)] = 0. (5.80)

The quadruple cut is a maximal cut so we can use eq. ([5.34) with n = 4 and
D =4 — 2,

€’YE6F(1 — 6) |QQ2’2E 142¢

I = As (Bs, — A T2
64[4(8?t)] F(1—26) ‘QOOHQHH 2,17( 2,p 2»}7)|

(5.90)

where A, and B, , are evaluated at 1 = 1, = 0, and thus become very simple:
A27p = —t, and Bg,p = 0. (591)

We then get
ET(1 —€) st (s +t)°
['(1— 2e) st ’

where we chose to be in the region where s,t > 0, as this cut is symmetric in

C4]4(S,t) =2 (592)

these two variables.

This is the first cut we computed with the definition of cut given in eq.
that we would not have been able to compute using the method of chapter [3|
It would thus be interesting to have some check of this result. The first check
we can do is to check whether the coefficient of order € matches the rational
prefactor of this diagram [56,/57], and it is easy to see that it does. Indeed, up
to normalisation factors it also matches the result we have computed in eq. .
However, we claim our method should give the quadruple cut to all orders in e,
so we would like to check higher orders in e are correct as well. We now show

how this can be done.

The uncut box is given in eq. (B.91)). Because this diagram only depends on

two variables, its analytic structure should be simple to understand: by symmetry
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of the diagram and of its quadruple cut, it is reasonable to expect that
55715[4(5,75) = 5t,s-[4(37 t) == :|:C4I4(8, t), (593)

and this relation should hold to all orders in e. We can thus compute the symbol

of eq. (B.91)), and check that its d,; agrees with the symbol of eq. (5.92)) order by
order in e. We have checked that the equality holds up to €*, with a plus sign in

cq. ET3).

Note that this means we can identify the quadruple cut of the box with the
double discontinuity on s and ¢t up to an overall sign. Indeed, there is no way to
correctly determine the sign in eq. : after the first discontinuity has been
taken, the variable on which the second discontinuity is taken does not have a
well defined 70 prescription. This is why we have excluded this type of cuts from
the discussion of chapter [3]

5.5.3 Triple and quadruple cut of the 1-mass box

The triple and quadruple cuts of the 1-mass box in 4 — 2¢ are also very easily

computable. We have

evee 1
Li(s,t;p?) = - /d“% . 5.94
) = [ e e O
The momenta are parametrised as:
s
G=p1+p2=+Vs(1L,0p_1), q=p2= % (1,-1,0p_2),
2
s —pi l—p+2r Jr(p—1-—r7)
q2 Ps3 2\/;(7 ,Lt—l ) ]._M yVUD-3 | »
k = ko (1, cos6,sin 6y cos by, sin 6y sinbh1p_4), (5.95)

where we defined r = t/s and pu = p?/s—see fig. [5.2| with the relevant masses set

to zero.

As for the zero-mass box, all triple cuts are zero because of the discussion of
section For the quadruple cut, we can use eq. (5.90). It turns out that the
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quantities Ay, and B, are equal to the ones of the zero-mass box,
Agm = —t, and Bg’p = 0. (596)

Putting everything together, we find

=T (1 — ) s~4(s +t — pi)°
I'(1—2e¢) st ’

Cy [Lu(s,t;p7)] =2 (5.97)
which in the p? — 0 limit reproduces eq. as it should. We can perform the
same checks on this result as we did for eq. . We observe it matches the
result in eq. , up to normalisation factors and at order ¢ = 0. Furthermore,
by symmetry we expect the quadruple cut to match ds,14(s,t;p3) to all orders
in €. This can be checked explicitly from the expression for the one-mass box,
eq. (B.92)), and we have done so up to €.

5.5.4 Triple and quadruple cut of the 2-mass-easy box

We now look at the triple and quadruple cuts of the 2-mass-easy box in 4 — 2¢

dimensions,

€

VE 1
I¢(s t- 2. p2) — € /d4—25 ‘
1 (st 05, 0%) i 12(k — (p1 + p2))2(k — p2)2(k + ps)?

(5.98)

The momenta are parametrised as follows (see fig. [5.2] with the relevant masses

set to zero):

s+Dp3 s—Dj

= g 1 O _ = — - =y T = O —
G =p1+p2=+5(1,0p_1), Q1 = P2 (2\/5,2\/§,D2
b= —py = S0 (1 2oatpi—s—b)

2v/s \" (p3—s)(s—pi) ’
V(s +t—p3 — p3) (p3p2 — st)
2 2 2 aOD—B
(s —p3)(s — pi)

k = ko (1, cos by, sin 0y cos by, sin 0y sinfs1p_4) . (5.99)

It is easy to see that all triple cuts isolate a three-point massless vertex, so
they all vanish. For the quadruple cut, we use eq. (5.90) but now A,, and B,
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are given by

t— 2,2
AZP 2 2 f2p47 and B2,p =0. (5100)
by — S

Putting everything together,

eET(1—e€)(s+t—p5—p3)
I'(1—2€e) (st—p3pi)te

Ca [I5(s, t; 15, p3)] = 2 (5.101)
As expected, the limit p2 — 0 reproduces eq. (5.97), and the limit p2,p? — 0
reproduces eq. . The € = 0 limit of this expression is also consistent with
the result computed in eq. . To check that the symbol of this expression is
consistent with the appropriate truncation of the coproduct to higher order in ¢,
we use the result for the uncut two-mass-easy box in eq. . There is however
a difference between this example and the previous two: the relevant truncation
is no longer d,.I{(s,t;p3,pj), which is zero, but rather &, ,2,215(s,; 3, pj)-
Indeed, looking at a selection of box diagrams, we observe that the coproduct
entry that is reproduced by the quadruple cut is of the form J, = where = is (one-
half times) the leading singularity of the box in question as defined in eq. .
We have no deeper understanding of this observation but note that o, _p2,2
reduces to ds, in the limits corresponding to the zero-mass and one-mass boxes,

so there is some consistency between the three examples. We have verified the

agreement up to O(e?).

5.5.5 Triple and quadruple cut of the 0-mass box with one

internal mass

We now look at the triple and quadruple cuts of the 0-mass box with one
internal massive propagator between external legs 1 and 2, of mass m?3,, in 4 — 2¢

dimensions,

YEE€
2 € 1

I ,t, : d4—2e .
4(8 m12) im2e / k’Z(l{ —p1+ p2)2((k p2)2 - m%?)(p?) + k)Q

We can use the same parametrisation of the external momenta as for the 0-mass
box given in eq. ([5.88)—see also fig. with the relevant masses set to zero—

which is consistent with a two-propagator cut in the s-channel, and a three-

propagator cut which also cuts the massive propagator. The coefficients A;, and
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B, , are different because of the internal mass,

Avp =mi = sphz, Bip = —s, Lip = —H12,
Asp = s(—piy = 7 = 2puzr + 2/ mar (1 + p2) (1 + 7)) = —sa,
a
By =4s\/jor (1 p) (1 +7) =sla—a),  ay=-——.  (5.103)

a—

where r = t/s, j119 = m3,/s and a and @ were defined to have more compact and
easy-to-handle expressions. It is useful to notice that «@ = (p —r)? and that the
integral is symmetric under « <> .

This is our first example of a box for which the triple cut does not vanish.
Indeed, z1, ¢ {0,1}. To compute this cut, we need to compute f3,, as defined in
eq. . After some algebra, we see that the integral that must be evaluated is

/1 dis (22(1 — 552))71/276.

Toar + (1 — x9)

It is convenient to use the a <> & symmetry of this expression to find a
better behaved integral representation of this integral (this is not necessary, but

facilitates the expansion of the final result). We note that

/1 di (a(1 — m9)) /> _ /1 dis (a1 — m9)) V%

roav + (1 — x9)a (1 — z9)a + 220

and so

/1 di (221 = 22)) " a+a /1 di (22(1 — 22)) "7
0 0

oo+ (1 —x0)a  2s ad + xa(l — 29) (a0 — &)?
2e—1 = _ A2
_ 2 (Oi+a)ﬁf(1/2 6)2F1 1’1_6;1_6;_(04 _oc) |
aq ['(1—¢) 2 daa
Using this result,
a+ayal (5F) 1 (o = G)”
= FllL-—el—6¢——7-—77—]). 5.104
o= Sas T \bg 78176713 (5.104)

From eq. (5.33)), with m = 3 and n = 4, we get

271+2667E6 |q11 |2€—1

_ﬁr (%) |q0o|

Cs [Lu(s, tymiy)] = fap|Arp (Bip — Aip)l ™", (5.105)
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which for this particular case becomes,

Cs,[(12),(23),(14)] [1a(s,t;mT,y)] =
’72+e

€’YE5’S 2 2 —_e+ @ 1 (CY—@)2
:—m‘m12(8+m12)| o o1 (1,5_6;1_6;_—

1 S(t_mfz) 2
g =2t (2R
s(m@—w{ “( ot (Fagp ) sl

—log (—m7,) + log(s)> } + O(e2). (5.106)

This result could have been computed using the methods of the previous chapter,
and we have checked that the two methods agree in the region where s > 0 and
t <mi, <0.

Upon expansion and substitution of o and & by their expressions in terms of
invariants, it is a non-trivial check of our result that there are no square roots
remaining. Indeed, we know that the symbol alphabet of this diagram is rational
when written in terms of (ratios of) Mandelstam invariants and internal masses,
as can be seen explicitly in eq. . As a side comment, in chapter @ we will
argue that one can guess if the alphabet of a box diagram is rational when written
in terms of the kinematic invariants by looking at the different diagrams obtained
by pinching some of the propagators of the box: if any of them requires a more
complicated parametrisation, so will the box. We easily see this is not the case
for this example.

As a final check of eq. , we can verify it is consistent with o .2 I4(s,t;mi,)
using the result for I,(s, t;m?,) in eq. (B.95). Higher orders in the expansion can
be found in the accompanying MATHEMATICA package.

We now look at the quadruple cut. We can use eq. for which all

ingredients have already been given. We find

eET(1 —¢)

Cy []4(3,15; m%z)] =2 I (1— 2e)

s (s + 1)°(t — mag) T (5.107)
This expression passes the usual checks: the massless limit reproduces eq. (5.92]),
and it matches d, .2 4 14(s,t; m2,) up to €2, the order to which we have evaluated

I(s,t;m3y). Furthermore, this is the first example for which we can check that
the relation in eq. (5.77]) holds: it is easy to see that the finite terms of eqgs. ({5.106])
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and (5.107) do agree with it.

5.5.6 Triple and quadruple cut of the 0-mass box with two

adjacent internal masses

We now look at the triple and quadruple cuts of the 0-mass box with two

adjacent internal masses in 4 — 2¢ dimensions,

Li(s, t; 3 m3s) = (5.108)
= / d'" %k ! .
e R2((k — p1 + po)? — ) ((k — pa)? — i) (ps + k)2

e’YEE

We will use the same parametrisation as for the the 0-mass box and the previous
example, see fig. [5.2] with the relevant masses set to zero. Because the propagator
of momentum (k — go) is massive, the pole of the residue of kg is now at kg, =

2
S§—M33

N The coefficients A;, and B;, are given by

H12
oz — 1’
Ag = s(—pa2 — 17— 2p007 + o3 + 2\/,u12r(1 + 1o — po3)(1 + 1)) = —s0,

T ) _ _
A1 p = miy = Sjia, Bipy=my3 —s= 5(p2s — 1), Lip =

J
By = 48/ piar (L + pia — paz) (1 + 1) = s(6 — 6), T2p = 5 (5.109)

where r = t/s and p; = m2/s. The quantities § and § were defined
for convenience and simplicity of the expressions. It is useful to notice that
00 = (prg + (23 — 1))

The parametrisation we chose is consistent with the triple cut where the

propagators (12), (23) and (14) are cut. Proceeding as in the previous example,

Cs,(12),(28),(14)) [La (5, t;miy, m34)] =

evEe |g| 72 te e 0+6 1 §—0)2
= L‘mé(s—i—m%—m%ﬂ o <1,——e;1—6;—( ) )

2T (1—e) 56 2 465
_ 1 14 ef —2log —m2,s — m3st + st
s (miy — 1) + mist t (miy —m3; + s)

— log (m7y — m3; + s) — log (—m7,) + log(s)) } + O(é%). (5.110)
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The same comments as below eq. apply: the same result could have
been computed with the methods of chapter |3 in the kinematic region where
s > m3; and t < m2, < 0, all square roots disappear upon expansion and
substitution of § and & (as for the previous box, we can check all triangles obtained
by contracting one of the propagators have a rational symbol alphabet when
written in terms of ratios of kinematic invariants), and this expression reproduces
58,”@2[4(3, t:m?2,, m3,;), which we can compute using eq. . Furthermore, we
can check the m3; — 0 limit of the unexpanded expression agrees with the result
in eq. (5.106)). Higher orders in the expansion can be found in the accompanying
MATHEMATICA package.

There is another non-vanishing triple cut we can compute, Cs (12),(23),34)] [14],
which would correspond to a double discontinuity on ¢ and mZ; in the language
of the previous section. We could re-parametrise the momenta to have a
parametrisation consistent with this triple cut, and go through the same exercise
as above. However, it is easier to notice that Cs [(12),(23),(14)) and Cs [(12),(23),(34)] are
related by symmetry:

Cs,[(12),(23),(30)] []4(s,t;m32,m§3)} = C3,[(12),(23),(14)] [14(7575;7”%377”%2)} . (5.111)

To finish with this example, the quadruple cut is given by

eEI(1 —¢)

m(s F O (s(t —miz) —mit) T (5.112)

Cy [I4(s,t;m%2,m§3)} =2
This expression passes the usual checks: the massless limit reproduces egs. (5.92))
and (5.107), and it matches &, y(;—m,,)—m3z,¢14(5, t; mi,) up to €, the order to which
we have evaluated I,(s,t;m2,, m3,;). As for the previous examples, we can check
that egs. (5.110)), (5.111)) and (5.112)) are in agreement with the relation in

ca. E79).

5.5.7 Triple and quadruple cut of the 2-mass-hard box

As our last box example, we look at the triple and quadruple cuts of the

2-mass-hard box in 4 — 2¢ dimensions,

VEe

1
I3 (s, t;p7, p3) = /d4_26k '
i 607,py) = o k2(k — (p1 + p2))2(k — p2)2(k + p3)?

(5.113)
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We choose a parametrisation consistent with a first cut in the s channel and a
second cut in the propagator (12), see fig. with the relevant masses set to

Zero:

g =p1 +p2=+/s(1,0p_1), ¢ = P2 =\/Ds <CY, va? — 1,0D—2> ;
G2 = —P3 = B (1577 V 1 _72701373) )

k =ko (1, cos 6y, sin 0 cos Oy, sin 0y sinfs1p_4) . (5.114)

After working out the kinematics,

%

2 T2 2

1—up +us VA s
@ =+s <;2 _aOD—Q) y Q2 = (1,% v1-= Z;OD—:&) , (5.115)

where

2 L=y — up 42 L
P2 B Uy — Ug + 21 r=-, A= A(l,ul,UQ)'

ui:;v 7= \/X ; s

We will use the by now usual z and z defined as u; = 2z and us = (1 —2)(1 — 2),
see also section [B.4.6]

We start by computing the A;, and B;, coefficients:

A, =52(1-2), Biy=s(z—2),

14
Ay =s (77 — vz + /1 =22 (1 —xl)) = sX,

By, = 25v/1 —2/21(1 — 1) = s(x — X)- (5.116)

The poles of the propagators are at:

_2(1-2) Iy =2y + 21— ol —a) X

x - —_ $, )
W, o 4/T—2\/a1(1 — 1) X—X

r2

where y and Y, introduced for convenience, satisfy yy = EEEEE

By the arguments of section [5.4.1] there is a single non-vanishing triple cut,
the cut of propagators (12), (14) and (23). We are by now familiar with this type
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(a) Three-propagator cut (b) Cut in p? and p3
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(c) Cut in s and p? (d) Cut in s and p3

Figure 5.3: Different interpretations of the non-vanishing triple cut of the
two-mass-hard box.

of calculation, so we simply quote the result:

Cs,[(12),(23),(14)] [[f(s,t;pf,pg)] =

vEe 5|72 | 55(1 — 2)(1 — 7)€ = 1 Y
b0 (L 0o 0)
2 (1 —¢) |z — 2| XX 2 XX

1 o
= E{ -1+ e( —2log(r — 2z + z) + 2log(—7) + log(s)

(1-2)z 2
+ log (—m) ) } + O(€7). (5.117)

As the previous two triple cuts of boxes we computed, this cut could have been
computed with the methods of the previous chapter. However, this is the first
time that a three-propagator cut—see fig. [5.3a—can have different interpretations
as discontinuities. Indeed, it can correspond to a discontinuity on p? and pi—
see fig. to a discontinuity on s and p?—see fig. [5.3c}—or to a discontinuity
on s and p5—see fig. [5.3dl These three discontinuities must thus be related by
analytic continuation (in our expression, we chose to compute it in the region
where p?,s > 0 and p3,t < 0). More importantly, following the relation between

cuts, discontinuities and coproduct entries, this implies many relations between
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Chapter 5. Cuts of one-loop diagrams as residues in complex kinematics

coproduct entries. For instance, from Disc,2 2 = Disc,z2 2, we get
1:D3 P3:P1

0s1— 1} (s,t;p7,03) = 61— 511 (s, p1, p5) = —Caa12),23), 10014 (8, £ 1, p3)  mod .

From Disc, 2 = Disc which must hold by symmetry, we get

2
8,059

(53,2 - 52;,2 - 51—2,2 - 537,2) 12(37 tapipg) -
= (55,1—3 - 57;,1—,2 - 51—z,l—z - 517,1—7;) IZ(Su tap%)pg)

= C3,[(12),(23),(14)}]£<3; t;p%,pg) mod 7

We also get some relations from Disc,z ; and Disc,z ; but these would involve
other symbol letters so we will not go into that detail here. Indeed, we simply
wanted to illustrate once more through a new example that the analytic structure

of Feynman integrals is highly constrained by their cuts.

We finish this example with the quadruple cut, for which we can use eq. (5.90)).
Using

s (r+z—22)(22—1r—Z) _ s(z—2)
Q22 = $ - 2)? o Qoo = T
s 17
As(By — Ag) = —s*——
2(Bs 2) s (- 2)
the quadruple cut is
e’YEeF(l _ 6) 87175(_7“)71725

Cy [I1 (s, t; 07, p3)] =2 (5.118)

L(1—=2€¢) |(r+2z—22)(22—1r—2)|°
This expression passes all the usual checks. In particular, it agrees with
C4 [IZ(S, t;p?,pg)} = (68,T - 52,7“ - 51—z,r - 5r,r> IZ(S, t;p%,p%) mod ,

as it should, given the relation between the quadruple cut and the double

discontinuity Discg, [[f(s,t; P, pg)} We can also check the agreement of

egs. (5.117) and (5.118)) in the perspective of eq. (5.77)).
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Figure 5.4: Parametrisation for the massless pentagon.

5.5.8 Maximal cut of the massless pentagon

As a final example, we examine the maximal cut of the massless pentagon in
D = 6 — 2¢ dimensions. Through this example, we wish to illustrate two main
points. The first is to show that it is possible to have a non-vanishing cut that
isolates a vertex with three massless legs in a diagram with an odd number of cut
propagators. The second is to point out a subtlety in the usage of eq. .

We start with some notation. In the usual way, we define

sik = (pj + pr)® = 2p; - Dr- (5.119)

The pentagon depends on five independent dimensionful variables. As usual,
we can factor out a scale that carries the dimensions of the integral, and the
non-trivial part of the integral is a function of four dimensionless variables. We

choose
ry = 29 with ij = 23,34, 45, 15. (5.120)
S12

We parametrise the momenta as follows, see fig. [5.4k

\/S
= (17 17 0D72) )

o =p1+ D2 =+/512(1,0p_1), n=p=-7

@2 = —(ps+ps) = /512 <1 + 745, 1 + 2193 — 745, —24/Ta3(r4s — 1 — 7“23),01)73) ;
q3 = —Ps5s = —/S12 <707717727 \/ ’yg - ,Y% - 7227 0D—4) ; (5121)
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where
7’34—1 T34—1—2T15
9 ) 1= 9 )
—T15 — 2723715 + TasT15 — T'23 + 723734 — 7’34745
2\/—7”23 (14723 — 745)

Yo =

Y2 =

To compute the maximal cut, we will need to evaluate As, and Bs,. We can
start by noticing that once the propagators (12), (23) and (15) have been cut
we have isolated two three-point massless vertices. Following the discussion of
section , we have z1, € {0,1}, which implies y/z1,(1 — z1,) = 0. One could
then be tempted to say that

2
IT/zin(1 = 25,) =0, (5.122)

This product appears in both As , and Bs ,. However, this is not the case, because

xa,) is itself a function of z;,. Being more careful, we have

- \/Al,p(Bl,p - Al,p) \/AZ,p(BZp - A2,p)
H Tjp(l—xjp) = ;
j=1 B Bap

where

2q 2q
B2,p === pr(l - xl,p)Blyp === \/Al,p(Bl,p - Al,p)
q11 q11

and thus

2
q11
1 Vzint = 2,) = B \/AZP(BQ,p — Azy),
=1 q2251p

which does not vanish if y/x;,(1 —z1,) =0, i.e., if A;, =0or Ay, = B1,.

As a side comment, we note there is no contradiction between the point we
make here and the discussion of section [5.4.1] There, we used the fact that

\/xljp(l —xl,p)ﬁ[\/xj(l — ;) (5.123)

vanishes to argue that fs5, was analytic if z;, € {0,1}. The difference is that
in one case, eq. ((5.122)), we are considering products of x;, which are related for

different values of j, x;, = x;,(kop, T1p,...,Tj—1,), and in the other, section
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5.5. New results for cuts in complex kinematics

[b.4.1] a product of integration variables, which are unrelated to .

Let us then write explicitly the coefficients Ay, As,(21,), Asp(T1p, T2p),
By p, Bsy(71,) and Bs (21, T2,), which we will need for the maximal cut of the

pentagon:

A = 2ko (quo + q115p) + ml kQ - QIa

Q21 q22
A2,p = 2kO,pQ20 - 2 <2A1,p Bl,p) + _\/Al,p (Bl,p - Al,p) + m% - k‘ﬁ - q%

Az p = 2kopaqz0 — & (241, — Bip) — 53 (242, — Bap)
2q11 2q22

+ 88 [y (Bay — Asy) + i — k2 — ¢, (5.124)

QQ2

and

Bl,p = 45pk0,p(111, B2p = 2@\/141]3 Blp Ay p)

By, _2@\/@@ (Bay — Asy). (5.125)

For the case we are interested in and with the parametrisation we chose,
By =1,k =q =mi =0, and so Ay, = By, = 4koq1 = 512, which means

x1, = 1 as expected. The remaining coefficients are

312\/Z
(1 +7"23 —7”45)’

T93 — T15 — T'23734 + T15T45 + 734745 + VA

Ay, = —519793, By, =0, B3, =

Ax = 5.126
3,p 512 2 (1 + oz — 7”45) ) ( )
where
A =215 (ro3 (r3a + (raa + 1) ras — 1) — r3q (145 — 1) 745)
+ 75 (ras — 1) 2+ (ras (rsa — 1) — raaras) 2. (5.127)
We can then use eq. (5.34)) with n =5 and D = 6 — 2e,
22 H2epyme e |As,(Bs, — A3 )| €
Cs [Is] = ———— |aas’ [Asp(Bsp — Asp)l (5.128)
(1 —e) lqoo| |@11] |g22] |gs3]
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After some algebra,

1 VA
’C]33\ = 7V S12 )
2 \/7’23(T23—7“45+1)

715734745
As;. (Bs, — A =52 | —==="__|.
’ 3,p( 3,p 3,p)| 12 To3 — Tz + 1 '

2
S
|C]00\ |Q11\ |Q22| |Q33| = %\/Z7

(5.129)

Putting all ingredients together, we get the remarkably simple expression

€ —€
eVE o |T157 237347 a5

T(1—e S12 <\/Z> 1_2¢

As expected, we get a non-zero result for this five-propagator cut. As we will

Cs [I5] = —

(5.130)

see in the next chapter, this is in agreement with the fact that the differential
equation for the pentagon has an homogeneous term. Given that we have not
actually computed the massless pentagon, there are not many checks we can do
on this result. However, its leading order does reproduce the expected result as it
is proportional to the inverse of the square-root of the determinant of the Cayley
matrix, as we argued in the introduction to this chapter, section [5.1} and has the
correct symmetries (the cut should be symmetric under exchange of any of the

channels).

5.6 Summary and discussion

In this chapter, we have given a new definition of cut diagrams. The definition
we presented in eq. , the central result of this chapter, is consistent with the
cutting rules of chapter |3| when both methods give non-zero results, which is of
course something we wanted to preserve. However, in this chapter we addressed
the fact that the definition of Cut given in chapter |3| was not general enough
to be able to reproduce important features of the analytic structure of Feynman
integrals. In particular, we could not compute maximal cuts of a massless box,
but we are now able to do so.

It was important to make this generalisation such that it would apply to any
one-loop Feynman diagram, with any number of cut propagators, and to any

order in €, unlike the brute-force method we described in the introduction to this
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chapter, section 5.1

We gave two formulations of our new cut method, one in Minkowski space
and one in Euclidean space. These two formulations are consistent, but the one
in Euclidean space is more suitable to compute single-propagator cuts. For any
other type of cut, we prefer the formulation in Minkowski space as the expressions
are easier to handle and interpret.

Having formal solutions for the m-propagator cut of a diagram with n
propagators allowed us to establish some general results about cuts of Feynman
diagrams in section [5.4] In particular, we characterised all cuts that can vanish,
established a relation between maximal and next-to-maximal cuts for diagrams
with an even number of propagators, and we commented on the general functional
form of maximal cuts. All these observations will play an important role in the
work presented in the next chapter.

Then, in section [5.5| we computed cuts of some non-trivial Feynman diagrams.
These results illustrate the formalism for cuts we developed in the previous
sections, and the general observations of section Some of the cuts we
computed are new results, as far as we are aware. We considered the three-
mass triangle to show the consistency with the definition of Cut in chapter [3, and
then a selection of box integrals we would not have been able to fully analyse
with the cutting rules of chapter [3] All the results we obtained here for cuts of
boxes will be used in the next chapter. Finally, we checked the maximal cut of
the pentagon was not zero in agreement with the discussion of section [5.4.1}

The main motivation for the development of the formalism in this chapter was
to find a procedure to compute cut Feynman diagrams that was general enough
to capture all the contributions appearing in the right entries of the coproduct
of Feynman integrals. In the next chapter, we will see this is indeed achieved by
the definition proposed in eq. .

While we restricted our definition to one-loop diagrams, we are of course
interested in generalising the formalism we developed here to Feynman diagrams
beyond one loop. We do not foresee any major obstacles in this generalisation,

but have not yet explored this issue in detail.
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Chapter 6

Diagrammatic representation of
the coproduct of one-loop

Feynman diagrams

6.1 Introduction

In the previous chapters, we discussed the relation between multiple unitarity
cuts and iterated discontinuities, and showed how these were related to coproduct
entries. Then we showed how one could give a more general definition of
Cut, defined by sequentially evaluating the residues associated to the m cut
propagators in the complex plane, which we called C,,,. This allowed us to compute
cuts that were beyond the reach of the methods developed to compute unitarity
cuts.

We believe these results to be important in their own right. However, the
reason why we studied this problem in the first place was that this was a
step towards a more ambitious goal: to establish a completely diagrammatic
representation of the coproduct of Feynman integrals. The idea that such a
representation could exist was first introduced to us by Claude Duhr. The initial

idea was motivated by the Landau conditions [18], which we now review briefly.

Following [18], we write a general [-loop scalar Feynman diagram with n

1
F:/del.../delm7 (61)
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where A; are the propagators,

A =qi —mi. (6.2)

)

The propagators can now be combined using Feynman parameters,

1 o > O (1= i)
m:(n—l)!/o dxl.../o R S TR (63)

i=11

Discontinuities are of course generated by the poles of the denominator (one can
check that in the euclidean region, as defined in section [2.3.2] the denominator
is positive definite and thus we are away from any branch cuts). Landau shows

that a necessary condition for a singularity to be generated is that either

x; =0, or A =0. (6.4)

There are thus two types of sources of discontinuities. The first kind, where
we set z; = 0, corresponds to a situation where the propagator A; does not
contribute. Diagrammatically, this is equivalent to contracting the propagator
A;, which means we obtain a diagram with less propagators. Hence, this
source of discontinuity is associated with simpler diagrams. The other source
of discontinuities corresponds to setting A; = 0. This is the condition we are
more familiar with, where a propagator is put on-shell. These singularities are

intrinsically associated with the diagram we are investigating.

In summary, according to the Landau conditions there are two graphical
operations one can perform on a Feynman graph that capture their discontinuity
structure: either we cut edges or we contract edges. We thus wanted to
understand if by using these two graphical operations we could construct a

completely graphical representation of the coproduct of Feynman diagrams.

It quickly became clear to us that studying a general Feynman diagram might
be too ambitious, so we decided to focus on one-loop integrals. We first intended
to only look at diagrams with no internal masses, building on the work presented
in [36], but after studying diagrams with internal masses in [37] we decided to try
to address all one-loop scalar diagrams. This turned out to be a wise choice, as
including internal masses was fundamental to understanding the general structure

of the coproduct of one-loop integrals.
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In this chapter, we will then show how to construct a completely graphical
representation of the coproduct of Feynman graphs. Following our brief review of
the Landau conditions, the ingredients will be Feynman diagrams themselves, and
cuts of Feynman diagrams as defined in the previous chapter. It turns out to be
possible to construct the graphical coproduct through purely graphical operations
on Feynman graphs. Once this is done, one may map the graphs to the functions
they evaluate to, and recover the familiar coproduct on polylogarithms introduced

in chapter [2| order by order in € .

In fact, we can show that we can construct not only a coproduct but a
complete Hopf algebra on Feynman graphs. In this thesis, we will not give the full
construction of the Hopf algebra, as it would require introducing several concepts
(such as the counit and the antipode) that would go beyond the scope of this
thesis. This will be presented in a separate paper [118]. Here, we will simply
show how to construct the coproduct of the Hopf algebra of one-loop Feynman

graphs.

Because this construction is a rather abstract exercise, we believe it is useful
to start by motivating it by looking at an example, so we first investigate
bubble diagrams. Having introduced most of the ideas in section [6.2, we hope
the abstract formulation of section will be more transparent. Then, in
section [6.4] we make the connection between the graphical coproduct and the
coproduct of MPLs. In this section, we also check that the graphical coproduct
correctly reproduces the coproduct of Feynman integrals in a variety of non-
trivial examples. Finally, in sections [6.5 and we look at the consequences
of the diagrammatic coproduct for the study of discontinuities and differential
equations of Feynman integrals, which will allow us to make some indirect checks
of the validity of our construction. These last two sections illustrate how the
graphical coproduct can have practical applications in the calculation of Feynman

diagrams.

We should mention that Hopf algebras have been seen to be useful in several
aspects of particle physics and quantum field theories [119-123]. While we were
researching what we present in this chapter, we were were made aware through
private communications that Francis Brown is working on related subjects with
encouraging results. Aside from the usual collaborators, we also benefited from

discussions with Erik Panzer.
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All the work presented here was done during my PhD, in collaboration with
Ruth Britto, Claude Duhr, and my supervisor Einan Gardi. As far as we are
aware, this is new work that has not been published elsewhere at the time of

writing.

6.2 Motivation — Bubble diagrams

The next sections of this chapter will be rather formal. We have thus decided
to have an introductory section which motivates the idea of the chapter by looking
at three different types of bubble diagrams (with 0, 1 or 2 massive propagators).
The presentation in this section follows the way we arrived at the more abstract
formulation of the next sections. We believe keeping in mind the reasons why we
started exploring this subject is important, particularly if one wants to generalise
what we present here beyond one-loop diagrams.

We are looking for a completely diagrammatic representation of the coproduct
of these three bubble diagrams. Our main guiding principles for the construction
of such representations will be the first-entry condition presented in [2.3.2] the
fact that discontinuities act in the first entry of the coproduct, eq. (2.21b)), and
the fact that the coproduct of a function of weight n has two trivial components
of weight (n,0) and (0,n). Using these ideas, we will write a conjecture for a
diagrammatic coproduct, which we can then check by explicitly comparing the
coproduct of the functions the bubble diagrams evaluate to with what is predicted

by their diagrammatic representation.

6.2.1 Diagrammatic coproduct of bubble diagrams

Zero-mass bubble, I,(p?): We start with the bubble with no internal masses,
I5(p3), which according to our conventions is given by
(_ 2\—1—e¢

L(p*) = —QCF% : (6.5)

for which the € expansion is trivial.
From the discussion of chapters [2] and [3, we already know that

LTI )

Co [ ()] = =0 L(p?) = 2@(102)_1_57 (6.6)
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where the result for the cut is written in the natural region for this cut, i.e.,
p? > 0. By the first entry condition, we know that the weight one cofactors of
all coproduct entries of the form (1,n) of the massless bubble are log(—p?) (we
included a minus sign to have the logarithm well defined in the euclidean region).
This means all weight n cofactors are trivially related to d,25(p®), and we now
have a diagrammatic representation of the rightmost cofactor of terms of weight
(1,n) in the coproduct of the bubble.

We would also like to have a diagrammatic interpretation of the weight one
cofactor. Because of the relation between discontinuities and the coproduct,
which we recall states that discontinuities operators only act in the first entry, or

more formally

A Disc = (Disc ®id)A, (6.7)

we expect that the diagrams in the first entry should have the same discontinuity
structure as a Feynman diagram. The obvious guess is that it is a Feynman
diagram. More specifically, in the very simple case we are looking at, it is easy
to guess that this should be the bubble itself: indeed, this is a diagram whose
expansion produces powers of logarithms and nothing else, and in particular a

log(—p?) at order €°.

Let us then suppose that the coproduct of the zero-mass bubble is given by
the zero-mass bubble in the first entry and the cut bubble in the second entry,
and that this is true to all orders in €. It is obvious that this naive choice does not
work because both diagrams contribute a factor of 2/p?, which is the leading order
of the double cut of the bubble. This problem can be solved in three different
ways: either we normalise the cut bubble appearing in the right cofactor of the
coproduct, or we normalise the uncut bubble appearing in the left cofactor of
the coproduct, or we choose to only work with normalised diagrams everywhere.
For reasons we will highlight below, the first option is not viable in general. The
other two options are. Normalising the diagram appearing in the left cofactor of
the coproduct would be the ideal solution as the diagrammatic coproduct would
then encode the maximum information about the function. However, for practical
purposes we choose to normalise all diagrams, cut or uncut: this will allow us to
have a simpler mapping between diagrams and the functions they represent. To
be completely precise, all diagrams are normalised to the leading order of their

maximal cut (to their leading singularity). Note that this is a minor detail, as
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one can always reinstate the correct normalisation at the end of all manipulations
done with the coproduct.

Let us then write

where
_ LY
A (6.9)
and
. GL(®)]  eET(l—¢), 4,
_<§> ~ LS[L (p?)] T(1— 2¢) (r°)~, (6.10)
where
LS [5 (0)) = (6.1)

is the order €” term in the e-expansion of Cy [, (p?)], i.e, the leading singularity
of the zero-mass bubble as defined in eq. . This is a rational function, given
that Cy [I5 (p?)] is a weight 0 function.

Note that strictly speaking the operator A in eq. is not the same as
the coproduct of polylogarithms introduced in section [2| because it is acting on
a diagram rather than on a function. However, in this section we will use the
same symbol in the same way that we associate the diagrams on the right to the
functions they evaluate to. In the next two sections we will make this distinction
more precise.

We can show that eq. is correct by evaluating both sides order by order
in the dimensional regularisation parameter. Let’s see this explicitly for the first

orders:

e O(e™1): the coefficient of this order in the Laurent expansion is of weight
0, and so its coproduct should have only one term, 1 ® 1 given our choice

of normalising all diagrams. From eq. ,

A(-|) = e <y e <

(6.12)

We have

=1, (6.13)
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and

—>—| =0, =< =1 (6.14)

€

so eq. (6.12) is
Iel)=(1x®1). (6.15)

O(e): the coefficient of this order in the Laurent expansion is of weight 1,

and so its coproduct should have only two terms, of weight (1,0) and (0, 1).

From eq. ,

o) ==L =D+ =< o <,
+ —Q—‘ © o (6.16)

N

e—1

The last term vanishes because of eq. (6.14]). For the other two, we need

= — ]og(—pz), (617)

€0

-

and
C.
Then, eq. (6.16) becomes

= log(p?). (6.18)

€

— (1 ®log(p®) + log(—p*) @ 1) = — (1 @ log(p®) + log(—p°) ® 1) (6.19)

where on the left-hand side we used the fact that the second entries of the

coproduct are defined modulo 7.

O(e): the coefficient of this order in the Laurent expansion is of weight 2,

and so its coproduct should have three terms, of weight (2,0), (1,1) and

(0,2). From eq. (6.8),

W)= e <>

N =] e <

(6.20)

el

o’
where we only wrote terms not vanishing because of eq. (6.14)). We need

log®(—p?)
_oe\Tr) T 6.21
o 2 12’ (6.21)

-
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and

2

(1og2(p2) - g) : (6.22)

N —

— -

The left-hand side of eq. (6.20)) is

€

1
51) ) (1 ® log®(p?) + 2log(—p°®) ® log(p?)

+ (10g2(—p2) — %2) ® 1) : (6.23)

A(=m

For the right-hand side,

(1 ®log*(»*))

log(—p?) @ log(p*))

<(log2(—p2) — %2) ® 1) : (6.24)

In both cases we used the fact that the second entries of the coproduct are
defined modulo 7. Comparing the two sides, we see that eq. (6.20)) is indeed

correct.

—-
-

-

&= =
L& =D, =

el

€=

€

el ® : 0 -

Higher orders in € of eq. can be checked in exactly the same way, and we
have verified its validity up to order €*.

To finish with this example, we comment on a feature which will reappear
in the general formulation of the diagrammatic representation of the coproduct
regarding the trivial coproduct entries (of the form FF®1 and 1® F', of respective
weights (n,0) and (0,n) for a function F' of weight n). Given the diagrammatic
representation in eq. and the e expansion of eq. , it is clear that the

trivial coproduct entry of weight (n,0), at order €"~!, will be given by the term

| ® = (6.25)

en— €0

It is however less clear how the other trivial coproduct entry of weight (0,n) is
reproduced, as the diagram itself does not appear in the second entry. Looking
at the explicit check of the conjecture above, we see it is generated by the terms

of the form

| @ =< (6.26)
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Indeed, one can easily check this kind of term is the only one generating a

contribution of the required weight. Another way to write this observation, is
5% ="V [L(p*)]  mod ir (6.27)

While this might seem a rather trivial observation for this simple example, we will
see that its generalisation to more complicated cases will lead to a very interesting

result.

One-mass bubble, I>(p?; m?): According to our conventions, the bubble with

one massive propagator is given by

BT (1 +¢)

L(p*;m?) = 2 )V R (—e 1t el —e -2,
2<p7m) € (m p) 241 €, +€a Eva_mQ
(6.28)
It has two different non-vanishing cuts. A one-propagator cut,
e (—m?) m2
C [L(p%m?)] = —— F(Ll+eal—e™ 6.29
1 [ 2(p ;M )} F(l — E) p2 21471 1€ €5 p2 ) ( )
and a two-propagator cut,
eIl —e€ e —2¢-1
& [L(ptim?)] = 2= gy )2 (630)

(1 — 2¢)

where the results for the cuts are written in their natural regions: p?> < m? < 0
for the single propagator cut, and 0 < m? < p? for the two-propagator cut.

We can now play the same game as for the massless bubble. Following the
discussion of chapters [2] and [3] we know that

Cy [[2(172;7”2)} = - m212<p2;m2)
Co [I(p*;m?)] = =622 L(p*; m?), (6.31)

which means we have a diagrammatic interpretation for the cofactors of weight n
of all terms of the form (1, ) in the coproduct of the one-mass bubble. The weight
one cofactors are log(m?) or log(m? —p?). log(m?) is most naturally generated by
the expansion of a tadpole of mass m?. log(m? — p?) is generated by a one-mass
bubble, but as we know—see section this diagram also generates log(m?)
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as a first entry. It is thus not as obvious which diagram to choose to reproduce

the first-entries log(m? — p?).

However, using the expression for the tadpole,

L(m?) = —W(m%—a (6.32)

one can easily check that the combination

Lm?)  1( LEmd)
LS (m?)] 2 (Ls L0 m2>1> (6.33)

has only log(m? — p?) as first entry in the coproduct, which is what we want to

appear with Cy [I3(p?; m?)] in the second entry.

Let us come back to the comment on the normalisation of diagrams we made
above eq. . We now see why it would not have been consistent to normalise
the cut diagrams appearing in the right cofactor and not normalise the uncut
diagrams appearing in the left cofactor. In general, while we can have different
types of diagrams in the first entry, each with their own leading singularity,
in the second entry we always take cuts of the same diagram, the one whose
coproduct we are studying. Had we not normalised the diagrams appearing in
the leftmost cofactor, we would have generated different combinations of rational

factors. Clearly, our choice of normalising all diagrams avoids this issue.

As for the zero-mass bubble, we define

(6.34c¢)

> = 1, ) (0:340)
)

- ﬂ ] (6.34d)

where we recall

G [L (m?)] = ————(—m*)", (6.35)
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in the natural region of this cut, and

2
2.2\ _
We can now make a guess for what the diagrammatic representation of the

coproduct of the bubble with one internal mass should be:

A(o):(-<>+§@)®—<§>+@®—<i>. (6.37)

As for the zero-mass bubble, we can check the validity of this expression order
by order in e. Using eqs. (6.28), (6.29) and (6.30)), see also the MATHEMATICA
package in |38], we have done so up to weight 4 (order €*), and thus believe it to

be valid to all orders in e.

Instead of the details in the checks, we will show eq. is consistent
through some observations. First, since we claim eq. to be valid to all
orders in ¢, it should reproduce eq. for m? — 0. This is trivial to check:
tadpoles and single propagator cut vanish in this limit, and so we recover eq. .

Second, as for the massless bubble, the trivial term of the coproduct of weight

(n,0) is reproduced by

> (6.38)

© >

en—1 0

This implies that the tadpole contributions at this weight must vanish, i.e.,

©

which can only happen if,

W ® (%—(} + -@-) ,=0 (6.39)

%—<!>—

L= =0 (6.40)

This is exactly the relations we found between maximal and next-to-maximal

cuts of diagrams with an even number of propagators in section |5.4.2]

Finally, the other trivial component of the coproduct, of weight (0,n), is now
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generated by the poles of tadpoles and bubbles. Indeed, noticing that

<_<>_+%@)‘ 1:@‘61:1, (6.41)

€~

one can then check that
1 (p%m?) = Y [0 (% m?) |+ c§ 0 [0 (% m?) | mod im. (6.42)

Notice that we used the fact that because only the one-mass bubble appears
in this relation, we are free to not normalise any of the terms to the leading

singularity of this integral.

Two-mass bubble, I,(p?;m2, m2): According to our conventions, the bubble

with two massive propagator is given by

Ly(p*;mi, m3)

YEET(] _m2\—1—€
S U o B o 0 i P (S DS G W
€ (wy — wy)lte wy — Wy

—1
—(wy — 1) F (—e, 1+el—c¢ wl—)] (6.43)

wy — Wy

This diagram has three different non-vanishing cuts. A single propagator cut on

the mass m?,

eVEE (_p2>—1—e U_Jl
Coy [0t mi)] = 5 e 2P (B H el —e ), (644)

a single propagator cut on the mass m3,

Cr [L(p*;mi,m3)] =

eE (—ph) (L —w)
= Fi(—e1+el—¢
P(l — 6) (w1 — ’lIJ1>1+€ 2 “ + “ “

w1—1

wy — Wy

> . (6.45)

and a two propagator cut,

eT(1 — )

s )] =25

(P (wy —wy) T (6.46)
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All results are written in the natural region for the corresponding discontinuity,
and we use an obvious notation to distinguish the two single propagator cuts.

The leading singularity we normalise the diagrams by is

2
LS [L(p*:m?,m2)] = ————. 6.47
[ 2<p 1 2)} p2(w1 — wl) ( )

Given the diagrammatic representations of the coproduct of the zero and one-
mass bubbles in eqs. and , we can make an educated guess for what
the diagrammatic coproduct of the two-mass bubble should be. The simplest
guess we can make that is consistent in the limit of vanishing propagator masses

and that preserves the symmetry under the exchange of the two masses is:

A(—O—)=(—O—+%+%)®—®"—
+®—<>—+®—C>"‘— (6.48)

We recall all diagrams are normalised to their leading singularity.

As for the other two examples above, we can then check the validity of this
relation order by order in €, and we have done so up to weight 4 (i.e., order €*).
We should stress the two-mass bubble is already not a trivial function, as can be
seen by expanding eq. , and so it is highly non-trivial that a relation like
eq. would hold true to order € by accident.

As for the one-mass bubble, we can make some consistency checks on

eq. (6.48). We already commented that it agrees with eqs. and ([6.37]) in the

appropriate massless limit, so we now look at the trivial coproduct components.

Correctly reproducing the component (n,0) requires

e 1 U
<> €0=§:@—

—"}

m}
+ _<m§ >—
€0 '

1
5 o= 0, (6.49)
which is the equivalent for the two-mass bubble of the constraint we derived in
eq. for the one-mass bubble. This is the relation we found in section m
for diagrams with an even number of propagators, at leading order in ¢, all non-
vanishing next-to-maximal cuts are equal to minus one-half of the maximal cut.
The (0,n) component is reproduced by the poles of the diagrams appearing in

the first entry. However, unlike what happened in the previous two examples,
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because the two-mass bubble is finite only the poles of tadpoles contribute. The

relation between cut and uncut diagrams equivalent to eq. (6.42)) is now

1 % mim3) = e |17 0% mimd) | + e |17 0% mtmd)|

+ ol [Iz(n) (p*;m2, m%)} mod 7. (6.50)

Because the two-mass bubble is finite, we can also check that the singularities
introduced by the tadpoles in eq. (6.48|) cancel. This requires

el [ @t md)] +lfy B0t md)] 4+ [0 mt m3)] = o,

which is indeed true, and can be seen as the n = —1 case of the previous relation.

6.2.2 Towards a general formulation

It turns out that the different mass configurations of the bubble topology
already teach us a great deal about the diagrammatic representation of the
coproduct of one-loop diagrams. We now summarise the main points we
established by looking at this example.

First, in the construction of the diagrammatic coproduct itself, we see there
is a relation between the propagators that are cut and the ones appearing in the
corresponding first entry. For one-propagator cuts, the corresponding first entry
is the diagram obtained by contracting the uncut propagator. However, there is
an unequal treatment of cuts with an even or an odd number of cut propagators.
Indeed, following what happens for single cuts, one might be tempted to say that
the first entry corresponding to a two propagator cut should be the bubble itself,

and not the combination of bubbles and tadpoles we see in egs. (6.37)) and (6.48]).

One way to see this naive generalisation cannot be correct is to look at the trivial
coproduct entry of weight (n,0). As is clear from the examples of the one- and
two-mass bubble, the tadpole must appear in the first entry corresponding to the
two-propagator cut for it to be correctly reproduced, see the discussion above
eq. (6.39)). This implies the constraint in eq. for the one-mass bubble and
the equivalent for the two-mass bubble, eq. . One way to make sense of
this combination is to say that the first entry of a cut with an even number

of propagators is obtained by contracting the uncut propagators and adding all
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diagrams with an extra contraction multiplied by 1/2. While it is just a guess at
this stage, we will confirm this is indeed the correct interpretation when looking

at box diagrams.

Second, one might wonder about the origin of the factor of 1/2, and whether in
the generalisation to more complicated diagrams one should allow this coefficient
to take other values. When looking at the bubbles, we highlighted the connection
between this factor and the relations between next-to-maximal and maximal cuts
of diagrams with an even number of propagators we established in section [5.4.2]
There, we showed this relation holds for diagrams with any even number of
propagators, and we thus see that there is no reason to expect any other coefficient
when considering more complicated topologies. We note this is also connected to
the previous point: for any other value of this parameter, the trivial coproduct

entry of weight (n,0) would not be correctly reproduced.

Finally, in all our examples we commented on a relation between cut and uncut
diagrams which allowed us to correctly reproduce the other trivial coproduct
component of weight (0,n). According to egs. (6.27), and (6.50)), the
uncut diagram at a given order in € is given by the sum of all one- and two-
propagator cuts at the next order in e. This observation has to remain valid for
more complicated topologies for a diagrammatic representation of the coproduct
to exist, because the uncut diagram itself will never appear in the second entry
(we know the second entries correspond to discontinuity functions, i.e., to cuts)ﬂ
Furthermore, if an uncut diagram is finite, we also need a relation between the
leading orders of cuts to cancel the singularities introduced by the divergent

tadpoles and/or bubbles in the first entry.

All these observations show that Feynman diagrams and their cuts have to
satisfy many constraints for a diagrammatic representation of their coproduct to
exist, and it is thus highly non-trivial that such a representation would exist. In
the next sections we conjecture that it does exist for any one-loop diagram, and

give substantial evidence supporting our claim.

'We note this relation is consistent in terms of weight. Let’s assume the uncut diagram has
weight n. Then in the perspective of chapters 2| and [3] one and two-propagator cuts correspond
to single discontinuities and are thus functions of weight n — 1 (we normalise by the factor of 7
generated by taking the discontinuity). The coefficient of order j in the Laurent expansion in
€ of the uncut function will have weight j + n, and so will the coefficient of order j 4+ 1 in the
Laurent expansion of the cuts

179



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

6.2.3 Coassociativity of the diagrammatic coproduct

Strictly speaking, in the examples above we only showed that the tensor
obtained by the action of the coproduct operator on the functions Feynman
diagrams evaluate to can be given a diagrammatic interpretation. More precisely,
we have not shown that the action of A on a diagram, as in eq. , has the same
properties as a coproduct. Indeed, as we already mentioned, there is an abuse
of notation in using the same symbol A to describe the coproduct that acts on
polylogarithms and the coproduct that acts on diagrams. We will eventually see
this is justified when we map them to each other.

We now show how one can see that the diagrammatic coproduct is coassocia-

tive, which we means that
(d®A)A=(A®id) A, (6.51)

i.e., acting with the coproduct operator in the first or second entry of the
coproduct entry gives the same result. We recall this is crucial for iterations
of the coproduct to be well defined (as for instance its maximal iteration, the
symbol). We will only show it for the two-mass bubble, because we know that
the other mass configurations can be obtained by taking the appropriate massless

limit.

(A ®id) A: We start by acting with A in the first entries of eq. (6.48]), which
means A is acting on uncut diagrams, either tadpoles or bubbles. We know how

A acts on a bubble, and the way it acts on the tadpole is by now easy to guess:

2(9)-9:0. 6
We then have
soms(<) - [0+ 10410) « <
+®—O—+®-<>’"-}®_®n_
+®®<_<>_+%_®_>
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+@®®<—O—+%—®—) (6.53)

(id ® A) A: We now want to act with A on the second entry of eq. (6.48),
for which we must know how the coproduct acts on cut diagrams. We follow
the same reasoning as for the uncut diagram. For the second entries, we list all
further cuts of the cut diagram we are considering. The corresponding first entry
is then obtained by pinching all uncut propagators, and adding one-half times
the diagrams with an extra propagator contracted in case of an even number of
cuts in the second entry. The propagators that were cut in the cut diagram under
consideration remain cut in the first entryfl We now give some examples. For

the cut in the mass m?,

i} —m} 1 ; —~" : -~
A(ZQ-):<7@-+§>®:@-+®7@-. (6.54)

For the cut in the mass m3, the equivalent expression holds. For the cut in the

external channel, which is a maximal cut,

A (=) = < 0 < (6.55)

Comparing these expressions with eq. , we see that there is a quicker way
to get the diagrammatic representation of the coproduct of cut diagrams once
the diagrammatic representation of the uncut diagram has been determined: all
terms that do not have the propagators that will be cut in the first entry are
discarded, and in the terms that have them they are cut.

Let us briefly go back on the issue of normalisation discussed above eq. .
We now see why we chose to normalise all diagrams to the first order in the
e expansion of the maximal cut. Had we not done this and chosen the other
alternative of keeping the normalisation in diagrams appearing on the rightmost
entry of the coproduct, we would have had to introduce a different notation
distinguishing cut diagrams appearing on the rightmost coproduct entry or any

other entry. To make the connection between diagrams and functions more direct,

2Discontinuity operators only act on the first entry of the coproduct, so the first entries of
the diagrammatic coproduct of a cut diagram must have the same discontinuity structure as the
cut diagram. We thus claim the first entries of the diagrammatic coproduct of a cut diagram
will be a diagram with the same cut propagators.

181



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

we chose to normalise all diagrams.

Before we check that with this procedure of obtaining the diagrammatic
coproduct of cut diagrams we find the same result as in eq. , we make
a comment on maximal cuts. From eq. , we see the coproduct of the
maximal cut is trivial: the same diagram appears in the first and the second
entry. According to our rules this will be the case for any maximal cut, and
objects having this type of coproduct are called group-like. It is easy to see that
a function of the form z¢ is group-like, as implied by eq. . The diagrammatic
coproduct of a maximal cut is thus in accordance with the discussion in section

[5.4.3, where we argued maximal cuts had precisely this functional form.

We now evaluate the action of (id ® A)A on the two-mass bubble to compare

it with eq. (6.53). According to eq. (6.54)) and eq. (6.55)), we have
(deA)A () = (6.56)
o1 1 o o
(4394590 x>0

+@s (:ﬁi+%(m?))®:ﬁi+@®:ﬁi]

0. [(<110). 0 00|

which matches eq. (6.53)).

We have thus shown that

2

(A@id)A(:ﬁ;>:(id®A)A(ﬁi), (6.57)

which means the graphical coproduct of the two-mass bubble diagram is
coassociative. By taking the appropriate massless limits, we can easily check

this is true for the bubbles with zero or one internal masses as well.
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6.3 Graphical coproduct of one-loop Feynman
graphs

We now discuss the diagrammatic coproduct in a more abstract and general
way. In this section, all diagrams should be thought of just as graphs. Our goal
will be to show that one can define a coproduct on the space of one-loop Feynman
graphs. One can in fact go further and show that one can define a Hopf algebra on
the space of one-loop Feynman graphs. However, this requires introducing several
new structures that we would not use in the following sections, so in this thesis we
simply show how a coproduct can be defined. The more complete construction
will be presented in a separate paper [118]|. In the next section, the graphical
coproduct constructed here will be mapped to the coproduct of polylogarithms

we are used to.

6.3.1 General formulation

Definition of Feynman graph: A Feynman graph G is defined by the

following properties:
e A set of vertices Vi ;

o A set of edges F¢, each incident on exactly two vertices (the two vertices can
coincide, and multiple edges can be incident on the same pair of vertices).

These are called internal edges ;

e A set of half-edges EZ*, each incident on exactly one vertex. These are

called external legs ;

e To each internal edge ¢ € F¢, we associate a real number m? which we call

the mass squared ;

e To each external leg e € E&®, we associate a D-dimensional vector p, which

we call momentum, subject to momentum conservation,

> pe=0. (6.58)
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Feynman graphs are Poincaré invariant: if two Feynman graphs differ only by
the assignment of the external momenta, or if these are related by a Lorentz
transformation, the two graphs are equivalent. Furthermore, if two external legs
e; and ey of momentum p; and py respectively are incident in the same vertex,
they can be replaced by a single external leg incident on the same vertex but with

momentum p; + po.

Contraction of internal edges: An obvious operation one can define on a
Feynman graph is the contraction of a subset of its internal edges. If S C Eg,

(G/S is the Feynman graph obtained by contracting all edges in S. For instance,
G/o=G and G/Eg =0, (6.59)

where 0 denotes the empty graph and @ and empty set. For future use, we define
(G5 as the Feynman graph where all edges except those in .S have been contracted,
Gs = G/S. For instance,

Gg. =G and Gy = 0. (6.60)

G

Cut Feynman graph: A cut Feynman graph is a pair (G,C), where G is a
Feynman graph, and C' is a subset of the internal edges of G, i.e. C' C Eg. An
edge in C'is called a cut edge. (G, Eg) is called a maximal cut (all internal edges
are cut) and (G, @) = G is called an uncut graphP} The contraction operation is

extended to cut Feynman graphs:

(G/S,C) iftCNS=o

] (6.61)
0 otherwise

If S C Eg, (G,C)/S:{

So far the discussion was valid for any Feynman graph. From now on we focus

on one-loop graphs.

3In this notation, the next-to-maximal cuts we mentioned previously are (G,Eg/e) for
e € Eg. There are |E¢g| different next-to-maximal cuts, where |Eg| denotes the cardinality
of EG.
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Definition of A: Let P denote the (free) Q-algebra generated by one-loop cut
Feynman graphs. We define an algebra morphism A : P — P ® P acting on cut

graphs as
AGC)= Y | (GrLC) +ar Y (Gre, C) | ® (G, ), (6.62)
CCICEq ecl/C
1#%
where
Loif |1
o= 4 3 i even (6.63)
0 otherwise

|I| denotes the cardinality of the set I.

Maximal cuts: It is easy to show that according to this definition of A

maximally cut Feynman graphs are group-like. For this, we note that
EqcCICE; = I=FEg and Eg/EG =, (664)

so that there is only one term surviving in eq. (6.62)), which has I = Eg. As

already noted above, G, = GG, and we thus have
A(G, Eg) = (G, Eg) ® (G, Eg) (6.65)

as expected.

Coassociativity of A: For the algebra morphism defined in eq. to be
a coproduct it must be coassociative. We now show that with the definition of
A given above, (id ® A) A = (A ®id) A. This proof was first proposed to us by
Erik Panzer in a private communication.

We start with (id ® A) A. Acting with A on the cofactor (G, 1) in eq. (6.62)):

[doA)AG C)= Y > |(Gr,O)+ar Y (G, C)

CCICEg ICJCEG ecl/C

140 J#0

@ (Gr, D) +a; Y (Gyp D) | @ (G, ). (6.66)
feJjI
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For later use, it is convenient to make the substitution I <> J in the above

expression, which is just a renaming of the sets we sum over. We also note that

2. 2 2 D= )

CCICEg ICJCEg CCJCEg JCICEg  CCICEg CCJCI
1#2 JED J#£o T£2 42 J#0

and we finally get

[doA)AGC) = Y > |(GrC)+as Y (G C

CCICEg CCJCI ecJ/C
1#2 J#S

@ (G D) +ar Y (Giyp.J) | @ (G, ). (6.67)
fer/J

To compute (A ®id) A, we will need the following expressions, easily obtained

from eq. (6.62)),

AGLC)= ) [ (Gr,C)+a; Y (Gye,C) | ®(Gr,J)

ccJcI ecd/e
T£5

NGy, C) = Y [(G.C)+a; Y (Gye.C) | @ (Gryyp, ).

CCJCI/f ecJ/e
J#2

We then have (in eq. (6.62]), the name of the edges in I/C summed over is now
f instead of e):

(A®id) A(G,C) =

Y Y (GO +ar > (G CO) | @ (G, )@ (G ) (6.68)

CCICEg CCJCI ecJ/C
I J#2
£ Y Y Y| €n0 e Y (G ) | @ (G )@ (G
CCI;CEG CCJClI/f fel/C e€J/C
@ J#@

It is clear the first term on the right-side of the above equation matches the
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contribution of the (G, J) term appearing in the middle cofactor of eq. (6.67)). For

the remaining contribution, we can notice the following equivalence of conditions
(fel/C N CCJCI/f) < (fel/J N CCJCI). (6.69)

The last line in eq. (6.68]) then becomes

S S w60 +ar Y (G C) | @ (Gryp ) @ (G,

CCICEq CCJCI fel)J e€J/C
140 J#£0

which matches the remaining contributions of eq. (6.67)).
We have thus proven that A as defined in eq. (6.62)) is coassociative. We note

that nothing in this proof depends on the specific form of the coefficient a; in
eq. (6.62)), but we have set it to that particular value because it is the one that

matches the coproduct of Feynman integrals.

The Hopf algebra of one-loop graphs: It turns out that the algebra P has
a much richer algebraic structure than what we discussed here. It can be shown
that starting from the algebra P one can define a counit and an antipode, which
together with the coproduct A defined in eq. turn P into a Hopf algebra
(strictly speaking the Hopf algebra it is not P, but rather an algebra constructed
from P). Showing this would require introducing more notation and proving
several non-trivial results. Because it will not be used in the remainder of this
thesis we will not do it here and the full construction of this Hopf algebra will be

presented elsewhere [118].

6.3.2 Examples

To make eq. (6.62) more concrete, we now illustrate it for uncut and cut
Feynman graphs with up to four internal edges. Cut edges will be denoted by a
dashed red line. We will see we recover the diagrammatic coproduct of tadpoles

and bubbles already determined above.
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|Eg| = 1: For one internal edge, eq. (6.62)) is trivial. When the edge is uncut,

A(@) _Q:0. (6.70)

This is the same as we obtained in eq. (6.52]).
When the edge is cut,

A(@) _ 0,0 (6.71)

|Eg| = 2: We already studied the case with two internal edges in the previous
section. We now show we get the same result from eq. (6.62)). When |C| = 0,

A(‘O‘)I(-O-+%@+%)®-®-
+ Qo >+ Qo> (6.72)

There are two different graphs with |C'| = 1. They are similar, so we only

consider one:
L L 1 —~ ; o
NCeoOE (0 +§@<m%>>®zg>+<m%>®:o—. (6.73)

The maximal cut, with |C| = 2, gives

A(@—)z—@—@ﬁ— (6.74)

This is exactly the same diagrammatic coproduct we had already established in

the previous section.

|E¢| = 3: For |C| =0,
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(6.75)

(6.76)

(6.77)

(6.78)
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(—O— O %Q)
(<> 110 +%Q)
+ Qo ] At Qs "' T+ Qe [T Qe I T

" (6.79)

For |C| = 1, there are four similar graphs. We only consider one:

(6.80)

(6.81)

Note that out of the six graphs with |C| = 2, two are special in that they do
not cut adjacent edges (these are the cuts in the s and ¢ channels of the box).
However, this fact changes nothing in eq. (6.62)) and the structure of the graphical

coproduct of these two terms is similar to the other four.
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For |C| = 3, there are four similar graphs. We only consider one:

’ITL2I mzl
2 g E P
A 5 ; - 5 A
m} m? mi m3

(6.82)

o o
Al A7 )= 47 e 47 (6.83)
A A A

These examples illustrate eq. (6.62)). Graphs with more edges are better suited

to be studied with the help of a computer given the number of terms generated

by eq. (6.62).

6.4 Diagrammatic coproduct of one-loop Feyn-

man diagrams

In the previous section we saw how one could define a purely graphical
coproduct on P, the Q-algebra generated by one-loop cut Feynman graphs, as
defined below eq. (6.60). Of course, we are interested in what the implications
of this structure are for the functions Feynman diagrams evaluate to. We will
thus define how we map Feynman graphs to Feynman integrals, and then we will
discuss some consequences of the underlying graphical coproduct. We will finish

with some examples illustrating our main points.

6.4.1 The graphical coproduct and the coproduct of
MPLs

Mapping between graphs and Feynman integrals: Let us then define the
mapping between the graphs of the previous section and the MPLs Feynman
integrals evaluate to. This map is quite straightforward.

A Feynman graph with n-external legs (after combining the half-edges incident
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on the same vertex) and n-propagators (previously called internal edges) is
computed according to the rules of chapter [5], summarised in appendix [A] below
eq. (A.8), but normalised to their leading singularity as defined in eq. (5.35)). For

mstance:

L(p*;m3, m3)

_ L(m?) : _
@ ~ LS[L(m?)]’ LS[Iy(p*; m{, m3)]’

2

_ [3(p%7p%7p§7m%7m%7m§)
LS[[g(p%,p%,pg; m%a m%a m%)]

2 2 2 .2, 2 2 2 2
m I4<p17p27p37p47m17m27m37m4)

Y

| ol = TSGR 1802 0 2 B )] .
We recall I, is computed according to
SN 1 o 1
oo o)) = S [ Pk s
(6.85)

All cuts are computed according to the rules of the previous chapter, and each

is normalised to its leading singularity. For instance,

L Cu[L(p?; mT, m3)]
2 _ L , 6.86
B AR .

Finally, the coproduct A acting on graphs introduced in the previous section

is simply mapped to the coproduct A acting on MPLs introduced in chapter [2|

Let us now make a comment on the connection between graphs and the
Feynman integrals they correspond to, evaluated in dimensional regularisation.
We recall we formulated the graphical coproduct for graphs with massive
propagators and massive external legs. However, if we claim eq. to be valid
in dimensional regularisation, it should still hold if we take some of the masses to
zero. In this context, there are two interesting limits we can consider: the limit
where all internal propagators and external legs are massive and generic, and
the limit where all internal propagators and external legs are massless (strictly
speaking, for triangles and bubbles we have to keep respectively one and two

massive external legs to get a non-trivial diagram).

In the first case, we expect the Feynman integrals to evaluate to complicated
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MPLs, depending on a large number of variables. The fact that there is an
underlying graphical coproduct imposes strong constraints on these functions,
but the connection between the coproduct on graphs and MPLs is straightforward
according to the rules given above. For instance, looking at eq. we see that
the graphical coproduct has a rich structure which allows for the complex analytic
structure one expects to be associated with this type of functions.

In the other limit, we have very simple functions depending on a small number
of variables. Correspondingly, we expect that the graphical coproduct will have
a simple structure, with only a few terms. It is a highly non-trivial observation
that the graphical coproduct introduced in the previous section is consistent with
dimensional regularisation. Because of this, many contributions of the graphical
coproduct can vanish (for instance, because in that limit they would correspond
to a scaleless integral, vanishing in dimensional regularisation). As we will see,
despite the graphical operations having been defined in the fully massive case,
even the coproduct of divergent diagrams is correctly reproduced by the graphical
coproduct.

One could wonder whether we could have used other regularisation procedures.
Unfortunately, we did not have time to explore this possibility, but it would

certainly be an interesting subject to study.

e-expansion of the diagrammatic coproduct: Although we claim the
diagrammatic coproduct is valid in dimensional regularisation, which means we
can think of the diagrams appearing in it as functions of €, the validity of eq.
must be checked order by order in € because the coproduct on functions is defined
for the MPLs appearing in the Laurent expansion of the diagrams. As we know
by now—see the discussion in section [2.2.2}—the coefficients of each order in € are
functions of increasing weight. Moreover, we also know that for each weight n,
there are several coproduct components we must check, of the form (k,n — k) for
each k =0,...,n.

This means when checking eq. we must do two expansions: first an
expansion in €, and then, at each order in e, an expansion in the different
coproduct components for that specific weight. Understanding these expansions
in detail, in particular which diagrams appearing in eq. contribute at which

order to a particular coproduct entry at a given power in € is important, so we

193



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

now give some details about them. We explain the expansion for a fully massive
diagram F' with n even, with the uncut and cut diagrams computed according
to the definitions of chapter [f] The discussion can easily be generalised to other

cases, with n odd and/or some masses set to zero.

We start with some notation. Let us define the set of all propagators of F' by
{e1,...,en}. The e-expansion of the uncut diagram (which we normalise to its
leading singularity) is

F=>Y éf. (6.87)
=0

Since F is computed according to the eq. (5.9)), we know it has weight w = n/2.

This means the weights of the coefficients in its e-expansion are
w(fj) =w+y. (6.88)

We now discuss its cuts. The maximal cut C,[F] has weight 0, which means the

coefficients in its e-expansion, C’[F] have weight
w(CPF)) =j. (6.89)

The next-to-maximal cuts also have weight 0. We denote the cut where all

propagators but propagator e; are cut by C,/¢e,3[F], and thus have

w (€Y, F1) =5 (6.90)

More generally, a cut where k propagators are cut, Cix[F] with 0 < k£ < n, has
weight w — [k/2], which means

w (c,ﬁj')[F]) —w— [g +3 (6.91)

We can now determine the weight of all the contributions appearing in the second

entry of the diagrammatic coproduct.

For the first entries, where uncut diagrams appear, we also introduce some
definitions. We define Tad(e;) as the tadpole obtained by contracting all
propagators of F' the but the propagator e;, with 0 < j < n, normalised to

its leading singularity. Tadpoles are functions of weight 1 which start at order
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e~ !, so we have

‘Zab(ej) = Q(@j) = Z eltabl(ej) with w (tabl(ej)) =1+ (692)

I=—1

with obvious notation for the argument of the diagram.

We then define Bub(e;, e;), with 0 < j < k < n which avoids double counting,

as the combination

Bub(e, o) = <= (e5e) + 5 Qley) + 3 Qe (699

with obvious notation for the arguments of the diagrams. This is a function of

1

weight 1 which starts at order €*, so we have

Bub(ej,er) = > ebuby(ej,ep)  with  w(buby(ej,ex)) =1+1  (6.94)

I=—1

We proceed similarly for triangles, which are finite weight 2 functions.

Tri(e;, €5, €e) = <[ (€is€j,€ek), (6.95)

where 0 <7 < 7 < k < n, with

Tri(e;, e, €x) = Zelttil(ei, e;, ex) with w (teiy(e;, e5,e,)) =24 1. (6.96)
1=0

For the box terms, we define Box(e;, €, €k, €,,), With 0 <i < j <k <m < n,

which are finite weight 2 functions, defined as

1
‘BOI(% €j, €k, em) = (€i, €j, €k, €m) + §< (62', €;, €k)

1 1 1
+ §< (6i7 €5 €m> + §< (eia €k, €m) + §< (€j7 €k, em)? (697)

with
Bor(e;, €, €k, €m) = Zelbopl(ei, e, er), (6.98)
1=0
and
w (boy;(e;, €, €k, €m)) =2+ L. (6.99)
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We define similar function for pentagons and hexagons. For pentagons, which

are finite weight 3 functions,

Pent = Z e'pent, with w (pent)) =3+ 1, (6.100)

=0

where we did not write explicitly the propagators. For hexagons, we take the
usual combination of the hexagon and one-half times the pentagons obtained by

contracting each of the propagators. These are also a finite weight 3 function,

Her = Z é'her, with w (her;) =3 +1, (6.101)
1=0

where we did not write explicitly the propagators.
Similar functions can be defined for diagrams with more propagators. The

only ones we will need for our discussion are
F=> efi with  w(fi)=w+l (6.102)
1=0

as the usual combination of F and the diagrams obtained by contracting one

propagator. We also define
=3 R with w ((Y) —w (6.103)
1=0

for the diagrams obtained by contracting the propagator e; of F.
Let us then go back to the check of the diagrammatic coproduct of F'. We
will consider the coefficient of order €/ of the e-expansion of F', which we recall

has weight w 4 j. The different coproduct entries at this weight are:

e (0,w+ 7): The only diagrams appearing in the first entry with a weight 0
coefficient in their e-expansion are Tad and Bub at order e~!. This means
the left cofactor contributes at order j;, = —1, and so the right cofactor
must contribute at order jp = j + 1. This is consistent with the coefficient

of the one- and two-propagator cuts at order ¢/*! having weight w + j.

e (1,w+j—1): Again, the only diagrams appearing in the first entry with a
weight 1 coefficient in their e-expansion are Tad and Bub at order €°. This

means the left cofactor contributes at order j;, = 0, and so the right cofactor
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must contribute at order jr = j. This is consistent with the coefficient of

the one- and two-propagator cuts at order ¢/ having weight w + j — 1.

(2,w 4+ j — 2): There are two different contributions to this coproduct

entry.

Lin the e

First, we have a contribution from the coefficient of order e
expansion of Tad and Bub. Since the left cofactor contributes at order
jr = 1, the right cofactor must contribute at order jp = 5 — 1. This is
consistent with the coefficient of the one- and two-propagator cuts at order

¢/~! having weight w + j — 2.

Second, we have a contribution from the coefficient of order €® in the e-
expansion of Tri and Boxr. Since the left cofactor contributes at order
jr = 0, the right cofactor must contribute at order jz = j. This is consistent
with the coefficient of the three- and four-propagator cuts at order ¢/ having

weight w + 7 — 2.

(3,w 4+ g — 3): There are three different contributions to this coproduct

entry.

First, we have a contribution from the coefficient of order € in the e-
expansion of Tad and Bub. Since the left cofactor contributes at order
jr = 2, the right cofactor must contribute at order jp = 5 — 2. This is
consistent with the coefficient of the one- and two-propagator cuts at order

¢/=2 having weight w + j — 3.

Second, we have a contribution from the coefficient of order €' in the e-
expansion of Tri and Boxr. Since the left cofactor contributes at order
jr = 1, the right cofactor must contribute at order jr = 7 — 1. This is
consistent with the coefficient of the three- and four-propagator cuts at

order ¢/=! having weight w + j — 3.

Third, we have a contribution from the coefficient of order € in the -
expansion of Pent and Her. Since the left cofactor contributes at order
jr = 0, the right cofactor must contribute at order jr = j. This is consistent
with the coefficient of the three- and four-propagator cuts at order ¢/ having

weight w + 7 — 3.
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o (kyw+j—k): For any 3 < k < n we follow the same procedure as for the

cases above. As k increases, more and more topologies start contributing.

e (w+7,0): The only contributions in the right cofactor which have a weight
0 coefficient are the maximal and next-to-maximal cuts of F' taken at order
€. This means jr = 0, which implies j;, = j, which is consistent with the
¢ coefficients of § and §*) having weight w + j. We note that, given the
relation obtained in section [5.4.2] we find

BecPFl+ > i ech [Fl=fol, (6.104)

k=1,....,m

which is the correct result for the trivial coproduct component of weight
(w+7,0).

It is straightforward to generalise this discussion to diagrams with an odd
number of propagators or to diagrams which are divergent. Understanding these
expansions was important to perform the checks of the graphical coproduct we
present in section [6.4.2]

Pole cancellation identity and the first-entry condition revisited:
Given the graphical coproduct and the mapping to Feynman integrals we have
established, let us now revisit what were our main guiding principles to introduce
the diagrammatic coproduct for uncut Feynman diagrams in section [6.2, We
recall there were three main guiding principles: (i) the fact that the discontinuity
operator only acts in the first entry of the coproduct which implied having
diagrams with the same analytic structure as Feynman diagrams in the first
entry ; (i) correctly reproducing the trivial components of the coproduct of
weight (0,n) and (n,0) ; and (7i) satisfying the first entry condition.

Point (i) is satisfied by construction of the graphical coproduct, eq. (6.62). We
also note that the generalisation for cut diagrams is also satisfied: the propagators
cut in the graph whose coproduct is being computed are always cut in the
diagrams appearing in the first entry of the graphical coproduct.

Let us now see how the principle (i7) is satisfied. We start with the easiest, the
component of weight (n,0). As shown in eq. , it is easy to see that this term

is reproduced by the contribution of the graphical coproduct corresponding to the
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maximal cut. For diagrams with an odd number of propagators, see e.g. eq. (6.75)),
the term appears by itself and there is nothing to add. For diagrams with an even

number of propagators, see e.g. eq. (6.79)), we can just follow the discussion that

led us to eq. (6.104]).

In section [6.2) we also argued that the component of weight (0,n) was
reproduced because of a relation between uncut graphs and their one- and two-
propagator cuts, which we recall involved the singularities of bubbles and/or
tadpoles. We now show this is true for a general finite diagram with all
propagators massive. The proof presented here is a straightforward generalisation
of an unpublished proof by Claude Duhr, which was obtained for the case where

all propagators are massless. We start by noting that

© = %~ tog(m) + O(e),

(:O— +%@ +%@) :%—1og(w(1_w))+0(e). (6.105)
For an uncut graph evaluating to a finite function, it is easy to see that all
other combinations of graphs appearing in the left cofactor of eq. —the
Tri, Bog, Pent and Her above—will be finite. In other words, given the mapping
of graphs to the functions they evaluate to, we see that on the right-hand side of
eq. we have introduced a potentially divergent contribution which we can

schematically write as

1

- <Z(one—propagator cuts) + Z(two-propagator cuts)) . (6.106)
€

From chapter |3, we know that one-propagator cuts always correspond to disconti-
nuities in internal masses, and two-propagator cuts to discontinuities in external
channels. The divergent contribution can then be rewritten (schematically) in a

similar form as above,

1
- (Z(internal mass discontinuities) + Z(channel discontinuities)) . (6.107)
€

To understand the cancellation of the bubble/tadpole singularities we must thus
try to relate discontinuities in internal masses and discontinuities in external

channels to the original function.

199



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

Let us then prove the following result:

If F(ry,...,7my1) is a function obtained by integrating a I-loop Feynman
integral (that evaluates to MPLs), depending on m + 1 dimensionful

quantities 7., then

m+1

1
> 5 Diser, Fy = 1Fiy mod i, (6.108)
v=1

and we are particularly interested in the case [ = 1.

Proof: To prove this result, we assume r,,,1 to be an internal mass (squared),

but the proof is equally valid if it is any kinematic invariant. We can then write

F(ri,...,Tme1) = (g1 — 0 “f(p1, ...\ pm) (6.109)

where p, are n dimensionless variables defined as p, = 7, /7,41 for 1 <y <n. We
assumed 7,1 positive and gave it a (—i0)-prescription because it is an internal
mass and we work in the euclidean region of F'. We then define F} and f; as the

coefficients in the Laurent series of F' and f. Using

D Feet = (rmi) Y fre® (6.110)
k k

we find that .
AV ,
F, = Z( _'> log? (Tyms1) frj- (6.111)
— !
j
We now define 73, as
. .
Thy = 5 Disc,. f = 9 Disc,,. f&, (6.112)

where the discontinuity is taken according to the definitions of chapters [2 and [3]
We can then find

k

I . A
50 Disc, Fj, = jzo ( j!) log (Ti1)Th—jy for 1<y <mn. (6.113)
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For r,,11, we must be more careful as there are two contributions:

: (—1)? Discy,,., [log? (rm+1)]
— Disc,,,,, Fr = >
15 Crm 1 i

271

i

= ! 2m1
ST
ZZZ G- 1) log”™" (rim41) fi—
=1 T
-y > i 1087 (i s1) Thejry (6.114)
y=1 j=0 '
We thus have
n+1 1 k—1 (-l)J '
Z - Disc,. Fj, =1 7 log’ (rim+1) fx—1—j = F—1 mod iw, (6.115)

Il
o

r=1 J
which proves eq. ((6.108)).
The result in eq. (6.108) is valid modulo iw because the function and its

discontinuities are not evaluated in the same region. Being careful with factors
of +¢ and powers of 27, we can easily check that this condition is equivalent to
the statement that the sum of the one- and two-propagator cuts at order €* is

equal to the function at order ¥~ up to analytic continuation.

This is quite a powerful result. If F' is finite, for £ = 0 it implies the
cancellation of the poles introduced by the bubble/tadpole contributions. For
k > 0, it guarantees all the coproduct entries of weight (0,n) are correctly

reproduced by the rules of the graphical coproduct.

Finally, we comment on principle (i), i.e., we comment on the first-entry
condition from the perspective of the graphical coproduct. For this, it is worth
keeping in mind the discussion above about how coproduct entries of weight
(1,w+j—1) are reproduced by the graphical coproduct. According to our rules,
we know that a diagram with n propagators has weight [n/2]. This means that in
the graphical coproduct of an uncut diagram the only terms of weight one in the
first entry are tadpoles and bubbles, or, more precisely, the order € coefficient

of the Laurent expansion of tadpoles and bubbles. The first-entry condition

201



Chapter 6. Diagrammatic representation of the coproduct of one-loop Feynman
diagrams

stating that internal masses appear in the first entry of the coproduct is now a
simple consequence of the graphical coproduct entries with a tadpole in the first
entry and a one-propagator cut in the second entry. The first-entry condition
corresponding to a channel cut is obtained from the terms with two-propagator
cuts. For the fully massive case, the first-entry is the log(w(1 — w)) appearing
in eq. (6.105), which we already encountered in eq. and the discussion
below, where we argued it corresponded to the same condition as the physical

mass threshold.

To finish this discussion, we make a comment on what happens when internal
or external masses vanish. As already argued above, eq. (6.62]) is consistent with
dimensional regularisation. This means we are free to take kinematic invariants

to zero, in which case some diagrams might become divergent in the infrared.

By infrared power counting (see e.g. |[124]) diagrams with n > 5 propagators
as defined in eq. are finite independently of whether internal propagators
and external legs are massive or not. However, boxes, triangles and bubbles can
be divergent in the infrared, and tadpoles are divergent in the ultraviolet. Despite
this, we claim that all combinations of uncut diagrams appearing in the first entry
of eq. are always finite except for bubbles and tadpoles. In other words,
all the functions Tti and Boyr defined above that can appear in the first entry of

the diagrammatic coproduct are finite, independently of the mass configurations.

This can be proved by examining all possibly divergent mass configurations,
as there is a finite number of cases to check. To see that no divergences are
introduced by triangles appearing by themselves, all we need to check is that
divergent triangles correspond to vanishing three-propagators cuts (see section
5.4.1). For boxes, all one needs to check is that the combination of boxes and
triangles appearing in the first entry of the four-propagator cuts in eq. is

always of order €, independently of the configurations of the masses.

This means that if we want to study the trivial coproduct components and
the first-entry condition for diagrams which do not have all propagators and all
external legs massive, whether they are finite or not, we still only need to examine

the contributions of bubbles and tadpoles.

Let us say we take all internal masses to zero. Then there are no tadpole
contributions in eq. (6.62)) because they become scaleless integrals. First entries
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corresponding to two-propagator cuts are now divergent, not because of the poles
of tadpoles, but because the massless bubble is divergent. One might naively
think our discussion above of how poles of tadpoles and bubble were necessary
to reproduce the weight (0,n) components of the coproduct is no longer valid.

However, we now have

= 2 log(—p?) + O(e), (6.116)

€

and it is the contribution of this pole that will reproduce the weight (0,n)
components. This can be proved in exactly the same way as we did for the
case where there were no internal masses. The first entry condition is a trivial
consequence of the graphical coproduct in this case.

In the intermediate case where some propagators are massive and some
massless, we might have two-propagator cuts whose corresponding first-entry is a
bubble with only one massive propagator. This case can be treated in the same
way as the massless or the fully massive ones once we realise that singularities

now come from

(—Q + %) = % — log(m® — p*) + O(e). (6.117)

In this case also the first entry condition is a trivial consequence of the graphical

coproduct, both for internal masses and external channels.

6.4.2 Examples

In the previous sections, we have given a very formal definition of a coproduct
on one-loop graphs, established its connection to Feynman integrals, and then
made several comments on the structure of the graphical coproduct to show it was
consistent with the action of the coproduct of MPLs on the functions Feynman
integrals evaluate to. We now illustrate all these points through some concrete
examples.

We have already studied the tadpole, eq. , and all bubbles, eqgs. ,
and . The graphical coproduct of their cuts was also discussed in
section [6.2.3] We will thus now focus on triangles and boxes. We believe there
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D2 D3
2
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2 2
mi, mis,
2
mi,
D1 Da

Figure 6.1: Notation for external legs and and internal masses for general
triangles and boxes.

is a large enough variety of mass configurations for these topologies to provide
ample evidence of the validity of eq. for any one-loop diagram. In the
following sections, we will see that the fully massless pentagon and hexagon are
also consistent with eq. .

For each example, we will highlight which properties of the diagrammatic
coproduct they illustrate. We have not checked it for the fully massive triangle
or the fully massive box—see fig. [6.I}—which would be the natural examples to
explore given that the graphical coproduct was formulated for diagrams with
generic internal and external masses. Unfortunately, in both cases, we have not
found a parametrisation which would give a rational symbol alphabet, and this
makes checking the diagrammatic coproduct very complicated. We will thus
restrict ourselves to simpler (but already non-trivial) examples for which we have
such a parametrisation.

When checking eq. for a specific diagram, we recall there are two
expansions, one in the dimensional regularisation parameter ¢ and one in the
different coproduct components at a given weight, see the discussion below
eq. (6.103). We must check the consistency of each term in this double expansion
between the right-hand-side and the left-hand-side of eq. . All the examples
were checked at least up to weight 3 (i.e., order €' for triangles and boxes), when
all diagrams contribute at least as weight 1 functions. The simplest examples
were checked to higher weights.

We will not write the kinematic dependence of the diagrams in cases where it
is obvious. If two cuts are related by symmetry, we only present the coproduct
of one of them. We do not give expressions for the cuts for any of the examples.
Some can be found in appendix [B], but all relevant expressions have been collected

in the accompanying MATHEMATICA package [38]. For all examples below, we refer
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to the notation of fig. to assign each invariant to a specific propagator or

external legs.

I3(p3,0,0;0,0,0): We start by examining the triangle with a single external
massive leg. From eq. (6.75) and equations below, we find

A (—<[> = <= —<[ (6.118)
A(-{D = <C-@ —<[ (6.119)

This is a trivial example, very similar to the bubble with no internal masses, for
which explicit expressions can be found in section [B.I1.1] It nevertheless warrants
discussion because of the following observation concerning triangle integrals. In
eq. , we said Feynman graphs were mapped to the corresponding Feynman
integral normalised to the first order in the e expansion of its maximal cut.
However, as discussed in section [5.4.1] maximal cuts of triangles can vanish if
they do not have enough masses. This happens in the example we are currently
examining, as can be seen by the fact that the triple cut contribution is absent
for the diagrammatic coproduct. Of course, this poses a problem to normalise
the uncut and two-propagator cut diagram.

Fortunately, triangle diagrams have a particularity: their maximal cut, when
non-zero, is independent of the internal masses (this is not true for bubbles—
compare eqs. , and —or boxes—compare eqs. and
(5.107))). This means we can determine the normalisation for triangles with a
given configuration of external channels by looking at any configuration of internal
masses making the integral finite. For a triangle with one external massive leg,

the simplest example is I3(p?,0,0;0,m35,0), from which we find

1
LS[I5(p2,0,0;0,0,0)] = C”[I5(p,0,0:0,m2,,0)] = — (6.120)
1

All diagrams with one massive external leg and a vanishing triple cut will be
normalised by this factor.
Finally, this diagram demonstrates that even if the massless limit of eq. (6.62)
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gives rise to singularities, it still gives the correct coproduct. As we already
mentioned previously, because the triple cut is zero this divergent triangle does
not appear by itself in the first entry of the diagrammatic coproduct. We note
that in this case the singularity introduced by the bubble is necessary to have the

same degree of singularity on both sides of the relation.

I3(p3,0,0;m2,,0,0): We now look at the triangle with one external massive

leg and one adjacent massive propagator. We find

A(—{)-(—O—+%Q)®—<{+Q®—<, (6.121)
A(—{)z(—@—+%@)®—<{+@®—<ﬂ (6.122)
(D)oo e

This example is also simple, and very similar to the bubble with one internal mass.
Explicit expressions can be found in section As the previous example, its

maximal cut vanishes and so we use the same trick to find the leading singularity.

I3(p3,0,0;0,m3;,0): We now look at the triangle with one external massive

leg and one massive propagator not adjacent to it. We find

A(<[>:—<[®—{+—©—®—{+Q®—<E,

(6.124)

s(=]) Qo= s =T o—].
A(-{):-@-@—{+—{®—{, (6.126)
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A (—{) _ —{ ® —{ (6.127)

This example—explicit expressions can be found in section [B.1.2}is interesting
for two reasons. First, it is this diagrams we used to extract the normalisation
factor for the previous two diagrams as it is the simplest diagram with one external
massive leg having a non-vanishing triple cut. Second, this diagram illustrates
how a tadpole can appear by itself if the massive propagator is not attached to
any massive external channel, consistently with eq. .

I3(p3,0,0;m32,,0,m3;): We now look at the triangle with one external

massive leg and two adjacent massive propagators. We find

(<0)-
= —<[ ® —<[ + <—<>— + %Q(mi) + %Q(mfg)) ® —<[
+ Qe <+ Quntyo <, (6.128)

A(—<):—<®—{+<—O—+%Q(m?2))®—{
L Q(m§2>® _< (6.129)

(<)oo
s(<D)-<Co<C om

This diagram is interesting because it is the simplest triangle requiring variables
as the wy and w; defined in eq. (2.33)) to get a rational symbol alphabet. Explicit
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expressions can be found in section [B.1.5] In that sense, it is similar to the bubble
with two internal massive propagators. However, it has a very specific feature
that we did not encounter in any other triangle: its non-vanishing maximal cut
has no interpretation as an iterated discontinuity. This shows the diagrammatic
conjecture contains more information than what we would get by simply analysing

the discontinuities of Feynman diagrams as we did in chapters [2] and [3]

I3(p3,0,0;m32,,m3;,m3;): As a last example of a triangle with one external
massive leg, we look at the case where all internal propagators are massive. We
find

(<)
- —<J o<+ (== 5 Qi+ 5 Quty ) & <
+ Qe <+ Quiye < + Quitye <. ©132)

3 (<T) =< o< + (- +50uin) o <]
+ @(m%)@@ —<[ (6.133)

(<)< -Oire <[
)T el s
A (—<D _ —<E & —<[ (6.136)
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This diagram is included because it is the most general diagram with one external
massive leg. Explicit expressions can be found in section B.1.6] All previous

examples can be obtained as the massless limit of this case.

I3(0,p2,p2;0,m3;,0): We now start exploring diagrams with two external
massive legs. As a first example, we look at the case with a single internal

massive propagator adjacent to the two massive external legs. We find

(<D= (> +10)e <L+ (-+19) <L
+ Qs . (6.137)

A(ﬁi)z(-@+%@)®<f+(-€>+%¢)®<£
+Q®<E, (6.138)

A ({[) - > <|: (6.139)

This is the only triangle with one internal massive propagator and two external
massive legs that is not finite. Explicit expressions can be found in section [B.2.2]
It also has a vanishing triple cut: to find the leading singularity we use the
same trick as for diagrams with one external massive propagators and extract
the normalisation factor by looking at a case with more massive propagators (as
the next example). We note the same has to be done for the triangle with two

external masses and no massive propagators.

I3(0,p2, p2;m2,,m3,,0): We then look at the triangle two internal massive
legs, where one of the massive propagators is adjacent to the two external massive

legs. Explicit expressions for this diagram can be found in the accompanying
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MATHEMATICA package [38]. We find

»(~<0)-
oA (<m0 0o
(<>—+ Q3 >)®<[

<I: O (m2 <]: (6.140)

(DA (o100 T
+ (@— +§¢<m§3>> o <[ +Quiaye <.

(6.141)

o (<) <o+ (<0 +10m) o <C
+(:P(m?2)®<]:, (6.142)

s(<) Lo <0< oy
s(<0)-<Le<lre <l o
2(<0)- <=L (6145
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This is the most complicated example we will examine with two-massive external
legs. We stress that this diagram evaluates to a rather complicated combination
of MPLs [38], and in that sense is a highly non-trivial check of the graphical
coproduct we introduce.

We have also analysed the example with two external massive legs and three
internal propagators, for which we have found a parametrisation making the
symbol alphabet rational. We have not included this example because the
functions get rather complicated and do not teach us anything new about the

diagrammatic coproduct.

I3(p2,p2,p2;0,0,0): As a final example of the diagrammatic coproduct for
triangles, we examine the triangle with three massive external legs and massless

propagators for which explicit expressions can be found in section [B.3.1 We find

O e ¢
+-<>-®—<E+—<>—®—{, (6.146)

s(<)-<Lo=Lopo=l. @
S(<)-=Co=C wm

Although by this point it seems a rather trivial example, we could not not include
our favourite example. It was also important for us when we started looking at
the diagrammatic representation of the coproduct because it was the first example
for which we understood the diagrammatic representation of all coproduct
components. Finally, it helped us understand how the singularities introduced
by bubbles cancel and reproduce the weight (0,7) coproduct components, as we
argued in the previous section.

We will not look at diagrams with three external massive legs and any number

of massive propagators because they do not teach us anything new. For the cases
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with one or two internal masses, we have a parametrisation in terms of which the
symbol alphabet is rational, see appendix [B.3] For the fully massive case, we did

not find such a parametrisation.

I,(s,t): We now explore box diagrams. We start with the simplest one, the
fully massless box. Explicit expressions for this diagram can be found in the
accompanying MATHEMATICA package [38]. From eq. (6.79), we find

N )-(T T +i=Te+;=Tw)e

+ <= ()® + <) ® e, (6.149)

e |, (6.150)

A():@ (6.151)

The massless box was important for us to understand that we could not avoid

including maximal cuts of boxes. The reason for this is simple to see: had we not
included the maximal cut, there would only be bubbles in the leftmost entry of
the coproduct, which cannot reproduce the non-trivial analytic structure of the
massless box (in particular, the symbol letter (s + t) would never appear in the
leftmost entries if that were the case).

This is also the first example were we can see that the first entry corresponding
to the quadruple cut is finite, which requires a cancellation between double and
single poles of the box and triangles. We recall this is important to ensure only
bubbles and tadpoles are singular in the left entry of the diagrammatic coproduct,

as this is needed for the components of weight (0,7) to be correctly reproduced.
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IS(s,t;p3,0,p3,0) — two-mass-easy: We now look at the simplest of the
box topologies with two massive external legs, the two-mass-easy box. Explicit
expressions for this diagrams can be found in the accompanying MATHEMATICA
package [38]. We find

(T D) - (I Ts<{om+5<{em
+%<[(t,pf)+%<[(t7p§)) s

+ =<0 || ==

=)o | | <=Ghe | T, 6152

+ =)@ ||, (6.153)

+==whe | [ (6.154)

A(): ® (6.155)

We present this example to contrast it with the following one. Indeed, we

know the two-mass-easy box is simpler than the two-mass-hard box, as their
names suggest. The reason for this is apparent from the perspective of the
diagrammatic coproduct: unlike what happens for the two-mass-hard box, all
the single propagator contractions of the two-mass-easy box give rise to simple

triangles with two-massive external legs. We know these have a vanishing triple
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cut, and therefore all triple cuts of the two-mass-easy box vanish.

As for the fully massless box, we can check the first entry corresponding to
the maximal cut of this box is finite because the pole of the box cancels with the

poles of the the four different triangles.

To finish, we note that the box with a single external massive leg can be

obtained trivially from this example by sending e.g. p3 to zero.

I (s,t;p?,p2,0,0) — two-mass-hard: We now look at the hardest of the
box topologies with two massive external legs, the two-mass-hard box. Explicit
expressions for this diagrams can be found in the accompanying MATHEMATICA
package [38]. We find

A< )z( +%—<(S)+%<(S,pf,p§)
+%<(t,p?)+%<[(t7pg)) ® |
+ ~<[(8,p?,p§)® |

+ =< (9)® + == ®

+=<=0he | | +=<T=0he ||, (6156)

A( ):< +§—{<s>+§—<<s,pip§>)®

+ —{(s,pf,pg) ® - + —CE}(S) ® : (6.157)

A( )=< +%—<E(8,p%,p§)+%<12(t,pf)>®

=T ene | | +=<D-the ] | (6.158)
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A( T );( 7 +§<E<uﬁ>+§<[<up%>)®

+ —<COo= ()@ el (6.159)

( +%_<E(37p%7pg>>®
=L enme ] | (6.160)

A(): ® (6.161)

As we mentioned in the previous example, the two-mass-hard box has a more

complicated structure. This can be seen by the fact that the contraction of
one of its propagators gives rise to a triangle with three external masses, which,
in contrast to the one- and two-mass triangles, has a non-vanishing maximal
cut, see e.g. eq. . Related to this three-mass triangle, we also have the
corresponding non-vanishing triple cut of the box appearing in the diagrammatic
coproduct. Note that the appearance of the three-mass triangle in the coproduct
means we expect we will need to use variables like the z and z defined in eq.
to get a rational symbol alphabet.

By looking at the diagrammatic coproduct of this function we can even predict
these variables will only be needed at order €'. Let us apply the general discussion
below eq. to this particular example. We start by noting that as expected
the first entry corresponding to the maximal cut is finite, and will thus only

O The same is true for the triple cut contribution. This

contribute at order €
means the order =2 and e~ ! coefficients of the two-mass-hard box are completely
determined by the terms with bubbles in the first entry, and should thus be very
simple (i.e., logarithms of (ratios of) invariants). At order €, we start to get
contributions from the terms with triple and quadruple cuts. However, because

of the discussion in section [5.4.2] we know the contribution of the three-mass
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triangle must cancel at leading order since it appears both with the triple and
the quadruple cuts. We linked the necessity of using the z and z variables to the
contribution of the three-mass triangle, and we are now seeing this contribution
only starts at order e!. We thus expect only to need those variables starting from
that order.

This example was checked up to weight 4, i.e. order €2, where it is already
a rather complicated function [38]. We view this as one of the most important
checks of the diagrammatic representation of the coproduct we propose, as it
would be very unlikely that it would match by accident in such a complicated

example.

This is the most complicated box with no massive propagators we analysed.
The box with three external massive legs should be possible to study, but we
do not believe it would be of any particular interest compared to the examples
we already gave. For the box with four massive external legs we did not find a

parametrisation giving a rational alphabet to all orders in e.

I,(s,t;0,0,0,0;m3,,m2;,0,0): As a last example, we look at the box with
massless external legs and two adjacent massive propagators. Explicit expressions
for this diagrams can be found in the accompanying MATHEMATICA package [3§].
We find

1 1
A( > - ( +§—<(s,m§3)+§—<(s,m§3,mf2)
1 t 2 1 t 2 2 '
+ 2 ( 7m12) + 2 ( 7m127m23) (U & . 1"
b= emtmiye [ | =] enbmige ]

(<t 100} e T
( Q)

+ (>t + 1 Qi) @

+Ozye T 1 «OQuye [ 1. (6.162)
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A<"" )_("" +%~<E@m%m@

+OQumiye [ | (6163

+ —{(s,m%,m%) ® -t + —Q(S,mgg) ® ,  (6.164)

+~<£@mgﬁg®mf : (6.165)
A<~i~>=--ﬂ-®-{~. (6.166)

Besides I4(s,t;0,0,0,0;m%,,m3,,0,0), we have also analysed the box with a

single internal mass, I4(s,t;0,0,0,0;m2,,0,0,0), whose graphical coproduct can
be easily obtained by taking m3; — 0 in the above expressions. Once again,

we explicitly observe all the features we already discussed. The first entry
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corresponding to a quadruple cut only contributes at order € because of the
cancellation of the poles of the triangles and the box. There are two non-vanishing

1 For this box, we can use

triple cuts, which only start contributing at order ¢
(ratios of) invariants as variables to get a rational alphabet, which is consistent
with the fact that the triangles appearing with triple cuts do not require more
complicated parametrisations.

We believe this example to be important as it checks most of the features of
the diagrammatic coproduct we have described up to now. Indeed, it requires
dealing with massive and massless propagators, with vanishing and non-vanishing
triple cuts and with a non-vanishing quadruple cut, all in the same example. Had
we not correctly understood any of these points, or had we made a mistake in
computing any of the cut diagrams, we would not have been able to match the

coproduct on the two sides of eq. (6.62)) for such a complicated case.

Aside from the examples listed here, we explicitly checked the diagrammatic

coproduct in the following cases:

e I3(p},0,0;m}y, m3,,0) ;

]3(07]7%7])%’ m%27 07 0) ;

I5(0, p3, p};my, 0,m3y) ;

14(87 tuP%? 07 07 O) ;

o I,(s,t;0,0,0,0;m3%,,0,0,0).

As already mentioned, the necessary expressions to perform the checks of all the

cases we mentioned can be found in the accompanying MATHEMATICA package [3§].

6.5 Discontinuities

In the previous sections, we have motivated the existence of a diagrammatic
representation of the coproduct of one-loop Feynman diagrams, defined it
formally, and given evidence of its validity by explicitly looking at a large selection
of examples. We now assume this diagrammatic representation to exist and

see what consequences we can draw from it. In particular, in this section we
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will review the implications of the diagrammatic coproduct in the study of the
discontinuities of Feynman diagrams.

The main tool we will use in this section is the relation between the dis-
continuity operator and the coproduct, which we recall states that discontinuity

operators only act in the first entry of the coproduct, or more formally
A Disc = (Disc ®id)A . (6.167)

We should stress that in this expression A is the coproduct acting on functions.
However, given our mapping between the graphical coproduct and the coproduct
of Feynman integrals, we can easily think of A (and Disc) as acting on graphs.

The main conclusion of this section is that the existence of the graphical rep-
resentation of the coproduct makes the relations between iterated discontinuities,
multiple unitarity cuts and the coproduct we developed in chapters [2| and (3] very
simple to get.

Before we show this in some examples, let us make a comment on which
type of coproduct entries are interesting when studying discontinuities. Because
the discontinuity operator acts in the first entry, if we are computing m-iterated
discontinuities of a function of weight n, thus getting a weight n —m discontinuity
function, the natural type of coproduct entries we are interested in are the ones
of weight (1,...,1,n —m).

——

m—terms
From the perspective of the graphical coproduct, this means that single

discontinuities are determined by the diagrams of weight one appearing in the
leftmost cofactor, double discontinuities by diagrams of weight two and so on.
Furthermore, only diagrams depending on the variables on which we are taking
the discontinuity can give a contribution.

This can be illustrated by looking at the three-mass triangle we are very
familiar with. We know that the components of weight (1,n) of its coproduct

are completely determined by the € coefficient of the bubble contributions in

eq. (6.146)). In other words,
s <o =<

tia (=) = <=l o =
+~-lee < | . (6.169

en—1
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Let’s say we are interested in the discontinuity on p?. Of course, we have

Disc,z [ <= (pt)|,0] = 2mi (6.169)

and
Disc,z [~ = (p3)] = Disc,z [ <= (p3)] =0, (6.170)
The right-hand side of eq. (6.169) depends on the normalisation of the diagram,

the precise definition of Disc and the 70 associated to the invariant. From
eq. (6.168) we thus have

Disc, [~<[] = 2m'—<[, (6.171)

which is a function of weight 1. This is exactly the relation we expect between

cuts and discontinuities, and we can get the precise relation by following the rules
of the chapters [2] and [3]

If we are interested in double discontinuities, we should look at coproduct
entries of the form (1,1,n). Terms of the graphical coproduct with bubbles in
the first entry do not contribute because they depend on a single scale, so all

double discontinuities are fixed by acting on the €® (weight 2) component of the
uncut triangle, see eq. (6.146)). Using

Discp%pg {~<[
Disc,2 2 [~<ﬂ = (2m)2—<E, (6.173)

which is a function of weight 0. This is also the relation we would expect from
the discussion of chapter [3|

} = (2mi)?, (6.172)

we get

To finish with this example, we could also have looked at the double
discontinuity from another perspective. We know the coproduct of the p? channel
has the diagrammatic representation given in eq. . Out of the two terms
on the right-hand-side, only the first depends on the p3 channel. Instead of acting
with the double discontinuity on the uncut triangle, we could thus have computed

the discontinuity on p2 of the cut in p? at order ¢® (which is a weight 1 function)
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b2 D3

D1
D4

Pg Ds

Figure 6.2: Massless hexagon

and got

Discpg {—<[

Combined with the above relation for the p?-discontinuity, this also leads to the

} ~ 2. (6.174)

€0

expected relation between iterated discontinuities and multiple unitarity cuts.

This same reasoning can be applied to more interesting diagrams such as the
boxes. For instance, if we are interested in computing an iterated discontinuity
in the s and t-channels in eq. , it is easy to see that the only contribution
would come from the term in the graphical coproduct with the box in the first
entry, which is consistent with the (s, ) discontinuity being proportional to the

maximal cut.

Instead of going over the same examples we have already studied, we will show
how we can use this type of argument to determine the values of cuts we have
not computed explicitly. To this end, we consider the fully massless hexagon in
D = 6 dimensions—see fig. [6.2—which is a weight 3 function. Our goal will be to
extract the value of the three and four propagator cuts of this diagram from the
knowledge of its symbol. We will then check the results we obtain are consistent
with an observation made in [125] on the symbol of this type of Feynman integral,
thus giving indirect evidence for the validity of the graphical coproduct in this

example.

We start with some notation related to the hexagon. We will use the results
and notation introduced in refs. [67,/126]. Instead of the usual momenta p;,

it is convenient to use the so-called dual variables x; we already used in the
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introduction to chapter [5], section [5.1} defined as
pj = Tj = Tj1, (6.175)

where indices are defined modulo 6. It is also convenient to define x%, = (2;—x1).

In terms of these variables, we have for instance

(p1 + p2)2 = $%3 (p1 + po + p3)2 = xi x?,j—i—l = p]z =0. (6176)
Note that we can associate each x; with an edge of the hexagon and in fig. [6.2
we have numbered the edges consistently with the definition of the x;. The loop

momentum can be defined as k = x¢y — x1, and we then have

o 1
10 = / 7o (6.177)

3 2.9 .92 .92 .9 2
LT Tp1 L0203 04L05L 06

were we have set € = 0 because the integral is finite and we will not study higher

orders in e. In the following, we will drop the (0) in superscript.

. 0) . . . . .

It is easy to see that Ié ) is a function of nine variables, which we can choose
to be 22,5, 23, ¥%:, 13, 13, 134, 35, 136 and x3,. In exactly six dimensions, this
integral is known to be conformally invariant [127], and it can thus only depend
on the three-cross ratios

2 .2 2 2 2 .2
_ 15Ty _ T35 _ L1346

Uy = 2 = 3 =
2,2 2 .92
T14T35 To5T36

(6.178)

2.2 -
T14T36

This is the reason why setting ¢ = 0 greatly simplifies the discussion of the
hexagon (as was the case for the box with four massive legs, see appendix [B.4.8)).

Following [67], we introduce the quantities

(1 —x; —-1+£VA
fi= Gk} x:)’ o =wr®, ot = Uit st U B (6.179)
x=(1—z;) 22U UgUs
where
Ag = (uy + up + uz — 1)? — dujugus. (6.180)
We define H to be the hexagon normalised to its leading singularity:
H = 22,2203/ An 1. (6.181)
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The symbol of H can then be written as

SH) == Quw® f3—uQus® fot+u @ (1 —w)® fifafs
— U U D fs — U Q@us ® fi +us ® (1 —uz) ® fifofs
_u3®u1®f2_U3®U2®f1+U3®(1—U3)®f1f2f3. (6182)

According to our conjectured diagrammatic coproduct, eq. (6.62)), we have

A (Q) Her @ Cs[H Z {3} @ Cs ey [H]

+ > Bor, @ Cajmy iy [H]

7,k€EFEY
j<k

+ =@ty o Copam (] + = (oo k) @ Cogaapl)

+ Y, == (ah) @ Coggiun[H] (6.183)

J.keEy
i<k

where we have introduced some notation to make the expression more compact.
Ey =1{1,2,3,4,5,6} is the set of internal edges of the hexagon. We have defined:

Her = Q Z ] (6.184)
Q [{i}]

is the one-mass pentagon obtained by contracting the j-th propagator of the

where

hexagon. Similarly, we defined

Bog,;, = [{jk}]+% > ~<[ [{jk1}] (6.185)

leEy /{j,k}

[{jk}] and <[{jkl}] (6.186)

are the boxes (triangles) obtained by contracting the propagators {j, k} ({4, k,1})

where
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3 3 93%5 33%4 4
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Figure 6.3: Box diagrams corresponding to Boxsg, Bor,s and Boysg.

of the hexagon. Several of the external channels of the boxes and triangles will
be zero, and we simply used the diagrams above to depict the most general case
(see fig. for some examples of the boxes that appear).

We note that in eq. there are 6 different pentagon contributions, 15
different box contributions (6 one-mass boxes, 6 two-mass-hard boxes and 3 two-
mass easy boxes), 2 triangle contributions (from the discussion of section [5.4.1]
only two of the three-propagator cuts are non-zero, but there are of course one-
and two-mass triangles accompanying the box terms), and 9 non-vanishing bubble
contributions (out of the 15 terms appearing in eq. six vanish because
235 = 0).

Our goal is now to match egs. and to extract the values of
the three- and four-propagator cuts at leading order in e. These are weight 1
functions, corresponding to a double discontinuity of a weight 3 function, most
naturally identified in the (2,1) component of the coproduct of the hexagon. It
is easy to see these components correspond to the terms with boxes and triangle
contributions in eq. . Given how discontinuities act on the coproduct, we
should be able to determine the values of the cuts by identifying the terms in the

first entry that have the correct branch points.

Our plan is the following. From sections[5.5.3, [5.5.4land [5.5.7] we know that the

maximal cuts of boxes with one external massive leg correspond to the coproduct

entry 05, of the box, the same is true for two-mass-hard boxes but for two-
mass-easy boxes it corresponds to (5578t_p%p§. For each %Bor;, in eq. we
should then identify the s and ¢ (or st — p?p2) invariants, and then look for
the corresponding term in eq. . We examine one example of each type:
Bor,,, of the one-mass type, Boy,g, of the two-mass-hard type and Bogsg, of the
two-mass-easy type, see fig. [6.3]

For Borss, the first diagram in fig. [6.3] we have s = z%;, t = x3,, so we
can associate s ~ uz and t ~ wu;. Comparing with eq. , we then get
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Caposa)[H]| = duyu, H = fo. Given the s <+ ¢ symmetry of the box, we should get
the same result when looking at 4, .,, and that works because 0y, 4, H = 0y, us H.
For all one-mass boxes, this same procedure allows to fix all the corresponding
cuts. Note that this case is particularly simple: s and ¢ are always of the form
xjj+o and Ty g0, i.e. they appear only in (the numerator of) one of the u;, and
so can be associated with a single pair (u;, uy), j # k. Finally, given that x; .o
and w42 appear in the numerator of the cross-ratios, by convention we take
the corresponding 9., ., with positive signﬁ. Going through all the six different

one-mass boxes we find

C4,[1234} [H] = 5’U3,U1H = f27 C4,[1236] [H] = 5uz,u3H = f17
C4,[2345] [H] = 5u1,u2H - f37 C4,[3456] [H] = 5u2,u3H = f1>
C47[1456] [H] = 0uy us H = f2, C4,[1256] [H] = 6uy s H = f5. (6.187)

For Boyr,;—the middle diagram in fig. of the two-mass-hard type, s = 3,
and t = x3;. The association with the cross-ratios is slightly more complicated:
because t is of the form a:?J 43 it appears in the denominator of the cross-ratios
and thus in two different ones. However, it turns out it never appears in the
same cross-ratio as s, which simplifies the analysis a lot. In this particular case,
we can have (s,t) ~ (ug,u;) or (s,t) ~ (u3,us) because z3 appears in both u;
and uy, and so, in agreement with the rule of chapters [2| and [3] that one should
sum the contributions of symbol letters consistent with a given invariant, we add
both contributions. Furthermore, because t appears in the denominator of the
cross-ratios we pick up a minus sign. We then get Cypios5)[H] = —fi — fo. A

similar procedure allows to deal with all six two-mass-hard boxes, and we find

Canoss)[H] = —f1 — fa.  Cupsae[H] = —fo — f3,
Cansas)[H] = —f1 — f3,  Capase[H] = —f1 — fo,
Canssel[H] = —fo — f3, Capue[H] = —f1 — fs,. (6.188)

Next, we look at Boyrss—the last diagram in fig. [6.3}—of the two-mass-easy
type. In this case, s = z%, and ¢ = 23;: they are both of the form x§7j+3 and

so appear in the denominator of the cross-ratios. We would be in trouble if we

4This is an arbitrary choice. As long as we are consistent with it, we are only working up
to an undetermined overall sign, which is the same for all cuts.
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were looking for a 0, ., as in the two previous cases, because the three cross-
ratios depend on either x%,, x3; or both. Luckily, we are looking for terms of
the type dy;1-4;: the condition for the leading singularity of the two-mass-easy
box to vanish (st — pip3 = 0) is equivalent to u; = 1. This makes the analysis
quite simple: each of the three two-mass-easy boxes is associated with a single u;.
More specifically, Bogpsq is associated with u; and so Cy 245 [H]| = 6y 1— H =
f1+ fa + f3. The other two cases give the same result,

C47[1245] [H] = Cut2356[H] = Cut1346 [H] = f1 —|— f2 + f3. (6189)

To complete our analysis, we must look at the three-propagator cuts appearing
with the two three-mass triangles in eq. ((6.183)). Both three-mass triangles only
depend on variables of the type x??j 42, SO the analysis is very simple: they are

associated with discontinuities on pairs (uy, us), (uy,ug) or (ug,us). We then get

Cut135(H) = Cut246(H) = fl + f2 + f3. (6190)

We now claim to have determined all the three and four propagator cuts of
the hexagon. However, this assumed the validity of the graphical conjecture, so
we would like to have some checks that our results are correct. In ref. [125], it
was shown that the (2,1) component of the coproduct of a conformally invariant

hexagon was given by the sum of fifteen terms of the form

(3k)
Aoy = 3 " @ log (Ryu(H)) | (6.191)

Jk€EEY
i<k

where the quantities R;; are defined in eq. (7) of [125] (as above, the boxes that
appear are not four-mass boxes, but we drew it this way to cover the general
case). Unfortunately, the authors only give an explicit expression for the Rj
of a hexagon with three non-adjacent massive legs, and present their results in
terms of momentum-twistor variables [128-131], which we were not yet able to
translate into the variables we are using for the massless hexagon (they should be
nothing but a combination of the f; appearing in eq. (6.182)). Nevertheless, this
expression still imposes a constraint on the graphical coproduct of the hexagon:

it claims only boxes contribute to the weight (2,1) component of the coproduct
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of the hexagon while from eq. (6.183]) one would also expect to also have triangle

contributions. We can then check if these all cancel in a non-trivial way.

The first thing we can notice is that the contributions of the three-mass
triangles cancel. This is easily because these diagrams only appear in four-
propagator cuts corresponding to the Bog;, of the two-mass-hard type and in
the first entry of three-propagator cuts. Let us focus on the three-mass triangle
with masses 225, 2. and x3.. It appears in the first entries of the four-propagator
cuts [1235], [1345] and [1356], and in the first entry of the three-propagator cut
[135]. From eqs. and (6.190), the contribution to eq. with this

three-mass triangle in the first entry is

<[ (2, 235, 2%5) @ (=(fr + fo+ f3) + fr + fa+ f3) = 0. (6.192)

By the same argument, the contribution of the other three-mass triangle also
vanishes. As in the discussion of [5.4.2] we note that the factor of 1/2 appearing

in the diagrammatic coproduct was necessary for this cancellation to occur.

For the other triangle contributions, the situation is not as simple. Indeed,
the e-expansions of one- and two-mass triangles give the same type of functions,
the square of simple logarithms of the invariants at weight 2. This means con-
tributions from different triangles mix, and we should not check the cancellation
of each triangle individually. Instead, we must check the cancellation of terms
with a 10g2(x?j) in the first entry that come from any of the one- and two-mass
triangles appearing in the first entry of eq. . Going through the algebra,
we see that this imposes 10 non-trivial relations between the R, (H). If we relate
them to the quadruple cuts as determined above, all of them are satisfied. This

shows the result of [125] is consistent with the diagrammatic coproduct.

We will stop here our discussion about discontinuities and the diagrammatic
conjecture. However, we should mention that we have checked that all examples
given in chapter [3|to illustrate the relations between Cut, Disc and the coproduct
are in agreement with what is dictated by the graphical coproduct of each

diagram.
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6.6 Differential equations

Throughout this thesis, we discussed many times the relation between
discontinuities and the coproduct. However, we never discussed the relation
between differential operators and the coproduct, which we had introduced at
the same time in eq. (2.21)). While discontinuity operators only act in the first
entry of the coproduct, differential operators only act in the last entry. More

formally,

A % = (id ® %) A. (6.193)
As a discontinuity operator reduces the weight of a function by one (not counting
powers of ), so does a differential operator. For instance, the derivative of a
weight one function (a logarithm) is a rational function. We note this is obvious
to see from the definition of the MPLs as iterated integrals, eq. (2.2). Computing
the derivative of a MPL is thus very simple if its coproduct is known. Let’s see

how this is done.

The coproduct of a (pure) function F' of weight n 4+ 1 has a component of

weight (n, 1), which we can generally write as

ApiF =" fa, ®log(a,), (6.194)
a;EA

where A is the symbol alphabet of F', and the cofactors f,, are weight n functions.

Then, the derivative of F' is simply given by

8 1 8ai
5 F = ;E (82) far (6.195)

As a very simple example, we can use eq. (2.13)) to compute the derivative of any

classical polylogarithm,
0 . 1_.
_82L1n+1 = ;Lln(2)7 (6.196)

which is the well-known differential equation satisfied by classical polylogarithms,

which is also obvious from their definition as iterated integrals.

We note the reason why we look at the weight (n,1) component of the
coproduct for computing derivatives is the same reason why we looked at the

weight (1,7n) component of the coproduct for computing discontinuities: once we
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act with the differential (discontinuity) operator on the weight 1 cofactor, we
obtain a trivial tensor of the form n® 1 (1®n for discontinuities) from which one
can read-off the derivative (discontinuity) we are computing. One could of course
act on any other non-trivial coproduct entry and coassociativity guarantees we
would get the same result. However, reconstructing the function from the non-
trivial tensor obtained after acting with the differential (discontinuity) operator

would be a complicated task in general.

Since we have a diagrammatic representation of the coproduct of one-loop
Feynman integrals, eq. (6.193) should have interesting consequences for the
differential equations satisfied by Feynman integrals. This is an interesting
subject, given that one of the most powerful modern methods of computing
Feynman integrals is by solving differential equations. This method has a long
and successful history [59}77,/78]80|,132], and has been applied in the calculation
of a large variety of physical processes (too large for us to give a complete list of
references). Recent reviews can be found in the literature, e.g. |[133,|134]. This
field has developed a lot in recent years because of the better understanding
of the analytic structure of MPLs. For instance, one now knows how to write
the differential equation in what is called a canonical basis [59], where they are
trivial to solve order by order in the e-expansion in terms of MPLs once the initial
condition is known, or in a quasi-finite basis [135] which avoids the introduction

of spurious structures that would cancel when combining different contributions.

In this introductory section we will review how the standard method
introduced in [80] works through one example, the two-mass bubble. We will
then compare it to what we obtain from the graphical coproduct, which will
allow us to identify the coefficients of the differential equation as derivatives of
cuts. Finally, we will make some comments on the so-called reverse unitarity
method [136-138], which allows to use differential equations to compute phase-

space integrals.

Differential equations for the two-mass bubble: To get the differential

equation satisfied by the two-mass bubble, it is convenient to consider the bubble
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topology with general powers of the propagators:

>k 1 1

1
gml—e (k2 _ m%)ul ((k _ p)2 . m%)yza (6 97)

2., 2 2. _
IQ(p 7m17m2aV17V2) _/

and we are particularly interested in the case v; = v, = 1. The reason to keep
the exponents general is that taking derivatives is then equivalent to shifting the
exponent. Furthermore, by setting one of the v; to zero we get a tadpole diagram,
and it thus would make sense to consider a system of differential equations
including bubbles and tadpoles (we will not do this here as it is not necessary for
our discussion). In the following, for simplicity of the expressions we will only

keep the v; in the arguments of Ir(p*;m3, m3; vy, vs) = L(vy, vs).

We know that the natural variables in terms of which to write the two-mass
bubble are the w and w variables as defined in eq. , and are thus looking for
the differential equation with respect to those variables. However, when acting
on the integrand of eq. , it is more convenient to take derivatives with
respect to p,, m; and my. Let’s then relate the differential operators of the two

sets of variables

2w(l — 2w(w — 1

PO, =270 + wl _w)éw w(w _ )au_,,
- w —w
m18m1:2ww(w_18w+1_w3—>,
w— W w — W
w w
—9(1—w)(1-w) [ — : 1

Mo Oy = 2(1 — w)( w)< w_waw+w_waw>, (6.198)

where we use the shorthand 0, = 0/0z. These relations can be inverted to get

1
p28p2 == é(pap—i_mlaml +m28m2) ’
1
a’UJ — 5 <_m1 87711 + w — 1m28’m2) )
1/1 1
0 = (Lm0 + a0, (6.199)

The first equation is the so-called dilation operator, which measures the
dimensionality of the integral. Aside from being a check on the calculation,
it does not lead to any interesting differential equation so we will not consider it
further.
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We are thus left with two differential operators to study 0, and 0z. Acting
with 9, on eq. (6.197)) with v; = 1, =1 and after some algebra, we find

Oulz(1,1) = p* (W — 1) I5(1,2) + wly(2,1)), (6.200)
where we only wrote the values of the v; in the arguments of 1. For 0y, we find
Oalo(1,1) = p* (w — 1) [5(1,2) + wly(2,1)) . (6.201)

We must now deal with I5(1,2) and I5(2, 1). These integrals are related to bubbles
by a shift in the exponent. It is well known that there are relations between
integrals with different powers of the propagators, known as integration-by-parts
identities (IBP), first introduced in [58]. These identities are obtained by noting

that in dimensional regularisation

o)
/ demi(k“,mf,pi) =0, (6.202)

where i(k,, m?,p;) is the integrand of some Feynman integral. Using these

relations, which also contain the Lorentz-invariance identities [80], we get a
recursion between integrals with different powers of the propagators, which can
be solved in terms of a chosen basis [139]. It is a non-trivial result that this can
always be done. For the bubble topology the recursion can be solved by hand, but
in general one would use one of the available computer implementations of these
methods like FIRE [140,/141] or REDUZE [142]. In our concrete case, we choose the
basis to be the tadpole and the bubble with unit powers of the propagators. We

then find

2¢ 20W — W — W
B(L2) = (= 01 - 1(1,0))
(14 2¢)(w + w)
T — I(1,1) (6.203)
and
2€ 200 — W — W
IQ<2, ].) :(pQ)Q(w — w)z < QW ]2(]-> 0) - ]2<07 1)>
(1+ 2¢)(w+ w — 2)
2w — )2 L(1,1). (6.204)
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The differential equations can now be written in terms of tadpoles and bubbles.
We find

€ I,(1,0)  I5(0,1) 1+ 2
I,(1,1) = — Ir(1,1
Pul>(1,1) p2(w—u_})( w 1w w—zT)Q(’)
€ I,(1,0)  I5(0,1) 1+ 2
o1o(1,1) = — Ir(1,1 2
Ool>(1,1) p2(w—w)( o ti-g ) Ta—githl) (6205

which are symmetric under w <+ w as they should be given the symmetry of
I5(1,1) under this exchange.

We have thus written the differential equations in terms of simpler diagrams,
which we assume have already been computed. Solving the system requires
finding an initial condition which is in general not a trivial problem. However, we
will not go into that direction as it would take us too far away from the subject
of this thesis.

Although valid for a relatively simple example, eq. has the general
structure of the differential equation of any one-loop diagram. Schematically, it

is of the form

Ouln =D iy (e {pith {mi}) 1} (6.206)

where the sum on ¢ runs over the basis of one-loop Feynman integrals (which we
choose to be the integrals [, with unit power of the propagators as defined in
eq. E[) and the sum on j over different types of diagrams with the same number
of propagators. For instance, in the differential equations of the two-mass bubble,
eq. (6.205), ¢ runs over bubbles and tadpoles, and for ‘¢ =tadpole’ j runs over
the two different tadpoles. The coefficients ¢; ; (¢; {p?}; {m?}) depend trivially on
the dimensional regularisation parameter, and are in general algebraic functions
of the kinematic invariants. As illustrated by the bubble example above, they are
rational in the parametrisation giving a rational symbol alphabet (indeed, they
are the derivatives of the logarithm of symbol letters, as we will see shortly).

In the following, we will see how differential equations can be very easily
obtained from the diagrammatic coproduct, without needing the intermediate
steps of egs. (6.200)), (6.201), (6.203) and (6.204). Not needing to solve IBP

identities is particularly interesting, as this is usually a very computer-intensive

5We not proven these form a basis for one-loop integrals, but are currently working on this
proof.
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process. We will also show that the coefficients ¢; ; (e;{p?}; {m?}) are nothing

but derivatives of cuts, which we think is a beautiful result.

6.6.1 Cuts and coefficients of differential equations

We now discuss the differential equations of Feynman diagrams from the
perspective of the diagrammatic representation of the coproduct. We already
know how to get a differential equation once the coproduct of a function is known,
so we can apply the same idea to Feynman diagrams. We will illustrate the
procedure by deriving the differential equation for the bubble, and then comment
on the general case.

We start by rewriting the graphical coproduct of the two-mass bubble, but

we arrange the terms according to the first entries and not the second entries as

we did in eqs. and -
m3 2 —~ o 1 o
A(:O—)=:O—®:@-+@®(:O—+§:©-)
+®<-<>-+ —@—) (6.207)

We know the natural coproduct components to consider when computing
derivatives are the ones of the form (n,1). This means we should look at the
coefficients of weight one in the expansion of the cut diagrams. Because these are
weight 0 functions if one counts the weight of € (they are single discontinuities
of a weight one function), we should look at the coefficient of the order €' of the
Laurent expansion of the cuts.

From eq. , we thus have

0. (%) =
= =0, [( - ) }e+@a {(_O_Jr%_@_)
+‘9”K<>+ =)

L

} €, (6.208)

and similarly for w. We stress this equation is valid to all orders in e. This means
the differential equation is determined to all orders in € by the first order in the

e expansion of the cuts.
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We can compute the derivatives of the cuts—see eqgs. (6.44), (6.45) and
(6.46))—and find

[ e L 1 1
O <—<>—+ —@—) =5
- ) ) v - .
o | (= + 5= ) || = 5
" 2 ™ J 2w
[ ) 1
aw P = - )
(= )=

mi 1 1 1
=+ 553 || = s (6.20)
T 2™ €
These coefficients are antisymmetric under w <> w because the diagrams are all
normalised to the leading order of the two-propagator cut, which is antisymmetric
under this exchange.

The differential equations as obtained from the diagrammatic conjecture are
thus

2e

0. (<) = 50 @ s @
aw(—o—): 2€w—o—+£@+2(1—iw)@ (6.210)

w —

To compare these equations with the result obtained through more standard

methods—see eq. (6.205)—we must use that

L(p*mims1,1) = ———— =, (6.211)

which means

1
L(p*m},m3;1,1
W — 2(pam17m27 ) )+p2(w_w

awIQ(p2; m%vm; ]-7 ]-) - =
(6.212)

and similarly for w. We then see the differential equations obtained through the

two procedures agree.

This example illustrates how one gets differential equations from the knowl-
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edge of the diagrammatic coproduct. This also shows that the coefficients in the
differential equations are completely determined by the cuts of the function, as
in eq. (6.208]).

Of course, what we observe in this example is completely generalisable to other
cases. The differential equation is obtained by taking the derivative of the weight
one coefficients in the e expansion of their cuts. In the example of the bubble,
this meant the coefficients of O(e) for all cuts. For triangles and boxes, which
are weight two functions, this means we should take the derivatives of the O(e°)
coefficient of one- and two-propagator cuts, but the O(e) coefficient of three- and
four-propagator cuts. For pentagons and hexagons, an interesting thing happens:
they are finite functions of weight 3, which means their one- and two-propagator
cuts are finite functions of weight 2, with no weight one coefficients in their e-
expansion. This means these cuts do not contribute to the weight (n, 1) coproduct

components, and hence do not contribute to the differential equations.

By the same argument, we can say that for a general (finite) one-loop diagram
with n propagators, n even, all coefficients of the differential equations are
determined by the n-, (n — 1)-, (n — 2)- and (n — 3)-propagator cuts, taken
at order € for the first two cases, and order €’ for the last two cases. For n odd,
there is one less contribution (the (n — 3)-propagator no longer has the required

weight).

We also conclude that the homogeneous term in the differential equation is
determined by the derivative of the order e coefficient of the maximal cut. This
is in agreement with the fact that the homogeneous term is proportional to e,
which makes it easier to solve the equations order by order in € [59,/134]. The
discussion in then implies that the only one-loop diagrams which might not
have an homogeneous term are triangles. Indeed, they are the only non-trivial

diagrams that can have a vanishing maximal cut.

This observation allows us to make another consistency check of the validity
of the diagrammatic coproduct and of the cut rules presented in chapter In
section [5.5.8| we computed the maximal cut of the fully massless pentagon, and
showed it was non-zero. According to our discussion above, this should imply that
the differential equation of the pentagon has an homogeneous term. We thus went

through the exercise of getting the differential equation for the massless pentagon
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through standard methods?| and it does indeed have a homogeneous term.

We finish with two comments. First we note that unlike for discontinuities
which were defined only modulo 7, one does not lose any information when
obtaining the differential equation from the coproduct. Indeed, because the
differential operators clip-off the last entry of the coproduct and keep the first
entry, the relations one obtains are equalities at the function level, where all (-
values and powers of 7 are correctly accounted foi} Second, because the symbol
alphabet of cut integrals is a subset of the alphabet of the uncut function, the
coefficients of differential equations are derivatives of logarithms of symbol letters.
If one has found a rational parametrisation of the symbol alphabet, as discussed
in section[2.2.3] the coefficients of the differential equations should also be rational
functions in those variables.

We have verified for all cases on which we explicitly checked the validity of the
graphical coproduct that the differential equations obtained through the method

described here give the correct result.

6.6.2 Reverse unitarity

We finish the discussion of differential equations through the perspective of
the graphical coproduct by commenting on its implications in the so-called reverse
unitarity method [136-138]. We note reverse unitarity was fundamental in the
recent calculation of the Higgs production by gluon fusion at three-loops [1].

In an nutshell, this method aims at using tools developed in the calculation
of loop integrals (i.e., virtual contributions to a cross-section), in particular the
differential equation method, for the calculation of phase-space integrals which
appear in the (real) radiative corrections to inclusive cross-sections. The basic
idea is that the phase-space integral can be seen as the unitarity cut of a loop
amplitude, in the spirit of the optical theorem. For instance, the phase-space
integral in a 2—2 scattering is closely connected to the integral appearing in the
cut on the s-channel of a box.

The argument allowing to use the tools developed for uncut integrals is

that cut Feynman integrals (i.e., phase-space integrals) should obey the same

5We do not write it explicitly because it is a rather long expression which we will not exploit
any further than the comment made here.

"Given that it has been a long while since we first mentioned this, we recall factors of 7 and
(n, with n even can only appear in the first entry of the coproduct of MPLs, see section
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differential equations as uncut Feynman integrals, once the contributions of basis
integrals that do not have any of the cut propagators have been discarded. One
can then use the standard methods of obtaining the differential equations for
uncut Feynman integrals, and from this equation read-off the differential equation
one needs to compute the cut (phase-space) integra]ﬂ

For instance one could get the differential equation of the box to read the
differential equation satisfied by the phase-space integral necessary for 2 — 2

scattering. Using the method of the previous section, we get

&»( ): (6.213)
-+ (1) + =L+ = o)

where r = s/t, and we would then conclude that

o (TT) - =me-3) (T <)

(6.214)
In the spirit of the optical theorem, the cut going through the propagators could

then be thought of as the separation between the amplitude and its complex
conjugate, and the cut box would be the matrix element squared of a 2 — 2
scattering.

We note eq. illustrates the comment we made in the previous section
about the homogeneous term of the differential equation of the box being
proportional to e but not the bubble contributions, which come from two-

propagator cuts.

From the perspective of the graphical coproduct and differential equations,
reverse unitarity is a straightforward consequence of the coassociativity of the
coproduct which, we recall, fixed the graphical coproduct of cut diagrams based
on that of the uncut ones. The fact that the form of the differential equation is
the same for cut and uncut diagrams is a simple consequence of the fact that the

last entries of the graphical coproduct are the same for cut or uncut diagrams.

8We should note that the idea of using cuts or discontinuities to extract the values of
complicated phase-space integrals was already used in [102].
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For instance, eq. (6.214) is obtained from eq. (6.150f) in exactly the same way
that eq. (6.213]) is obtained from eq. ((6.149)).

However, from the perspective of the diagrammatic coproduct, ‘phase-space-
like” cuts are not special in any way: the differential equation of any type of cut
has the same property that it is easily obtained from the differential equation
of the uncut integral, because its coproduct must be consistent with that of the
uncut function. Following the spirit of reverse unitarity, this could provide a
differential equation for non-trivial integrals which are hard to evaluate through
other methods.

Finally, let us look at the differential equation of maximal cuts. We know the

coproduct of a maximal cut has only one term,

A (g’s‘[[z]]) = Gullu] ) Callu] (6.215)

As explained above, C,[,,] is of weight 0 so one must go to the first order in its
e-expansion to get a weight one coefficient. The differential equation satisfied by

the maximal cut is then

() (N

This equation is trivial to solve, and is consistent with the functional form of

maximal cuts discussed in [5.4.3]

6.7 Summary and discussion

In this chapter we introduced a completely diagrammatic representation of
the coproduct of one-loop scalar Feynman diagrams.

We started by explaining how we arrived at the diagrammatic coproduct in a
few simple examples, the bubbles with zero, one or two internal masses. Although
simple, the diagrammatic coproduct of these examples—see eqs. , and
(6.48)—already have many of the features of the general case.

Having introduced the idea of the diagrammatic coproduct through these
simple examples, we then formulated it more generally. In section [6.3| we defined
Feynman graphs as purely graphical objects, and in eq. defined an algebra
morphism on the Q-algebra generated by these objects which we then proved
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behaves as a coproduct. We did not show how one can define a full Hopf algebra
on Feynman graphs but this will be presented in a separate paper. We finished
by explicitly showing how eq. looks for diagrams with up to four internal
edges, cut or uncut. We observed this reproduced the expected results for bubbles

and tadpoles.

We then showed how one could trivially map the coproduct on Feynman
graphs to the coproduct of MPLs. Using eq. , we thus had a diagrammatic
representation for the coproduct of Feynman integrals. We made the non-trivial
observation that the relations obtained from eq. are valid in dimensional
regularisation, and explicitly verified that the coproduct of a variety of non-trivial
one-loop diagrams with up to four external legs, divergent or finite, was correctly
reproduced. We note that this is true despite the fact that some divergences are
related to the ultraviolet (for tadpoles), while others are related to the infrared
(for bubbles, triangles and boxes). These checks were performed using the results
for the cut diagrams computed according to the definition introduced in chapter [5
They thus provide a check of the results presented in both chapters 5] and [6] We
also noted that our observations made in section [5.4] about which cuts can vanish,
how next-to-maximal cuts and maximal cuts are related in diagrams with an even
number of propagators, and about the general functional form of maximal cuts
were all consistent with the diagrammatic coproduct, and indeed necessary for it
to be valid.

We then studied some consequences of the diagrammatic coproduct of
Feynman diagrams. First, we explored the implications for the study of their
discontinuities. We saw all the results we obtained in chapters [2| and [3| were
trivially contained in the graphical coproduct. Then we showed how the
diagrammatic coproduct could be used to determine the value of specific cuts
without doing any calculation in a very non-trivial example, the massless hexagon.
By interpreting its symbol from the perspective of its graphical coproduct, we
identified all its three- and four-propagator cuts. We then checked our results by

showing that they confirmed a relation obtained by different arguments in [125].

Finally, we explored the consequences of the graphical coproduct for the
differential equations satisfied by Feynman diagrams. We showed that the
coefficients of the differential equation of a given diagram, valid to all orders

in €, can be obtained by computing the derivative of the weight one coefficient of
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the e-expansion of its cuts. In an example, we showed that through this method
we obtain the same results as when following the standard procedure to derive
differential equations of Feynman integrals, without requiring the use of IBP
identities. The validity of the method was also checked for the other diagrams for
which the diagrammatic coproduct was explicitly checked [38]. We then noted
that the so-called reverse unitarity method was a straightforward consequence
of the coassociativity of the coproduct, which completely fixes the diagrammatic
coproduct of cut Feynman diagrams, and thus their differential equations. We also
noted this procedure can be extended to cuts that do not have an interpretation
as phase-space integrals.

It is clear what the next steps should be in the study of the graphical
coproduct of Feynman integrals. While we believe we completely understand
its structure for one-loop diagrams, many new questions appear at two-loops and
beyond. First, it is well known that elliptic integrals appear at two-loops. While
this is not a problem in itself for the graphical coproduct, it poses an issue in
the mapping between the graphical coproduct and the coproduct on Feynman
integrals, because a generalisation of the coproduct of MPLs to elliptic functions
is not known, although some interesting progress in that direction has recently
been made [35]. Second, even if we restrict ourselves to the case of diagrams that
evaluate to MPLs, it is not obvious what a suitable basis would be.

Nevertheless, we are confident that such a construction can be extended
beyond one-loop. Indeed, our initial motivations to study this problem, such
as the Landau conditions, the first-entry condition or the relation between the
coproduct and the discontinuity operator are independent of the loop order.
Furthermore, as already mentioned in the introduction, we are aware of some

recent work by Francis Brown which seems to be encouraging for this project.
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Chapter 7
Conclusions

We now summarise the work presented in this thesis. Given that we have

already included a summary and discussion for each chapter, we will be brief.

In chapter , we introduced multiple polylogarithms (MPLs), a class of
transcendental functions that played a central role in this thesis, as we focused
on Feynman integrals that evaluate to this class of functions. We defined some
important tools such as the coproduct of the Hopf algebra of MPLs and its
maximal iteration, the symbol. Finally, we introduced some important concepts
like pure functions, Feynman integrals of uniform weight and the symbol alphabet.
All these are very useful tools to describe the analytic structure of Feynman
integrals.

We then discussed the discontinuities of Feynman integrals. For that, we
defined an operator Disc which evaluates discontinuities across branch cuts of
Feynman integrals associated with kinematic invariants, be they internal masses
or massive external channels. This operator was trivially generalised to allow the
evaluation of iterated discontinuities. We defined a kinematic region where we are
away from any discontinuities, the so-called euclidean region. By moving away
from this region in a well defined manner, we single out branch cuts associated
with specific kinematic invariants.

The coproduct of MPLs is an ideal tool to study the discontinuities of MPLs,
and thus the discontinuities of Feynman integrals evaluating to MPLs. We
established precise relations between the (k iteration of the) operator Disc and
an operator d which truncates coproduct entries of the form (1,...,1,n—k). We

——

k
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made these relations more concrete by explicitly deriving the relations for three-

point Feynman diagrams with three-external masses and massless propagators.

In chapter we proceeded with the study of discontinuities of Feynman
integrals by giving them a diagrammatic representation. These are the well known
unitarity cuts of Feynman diagrams. Rules to define diagrams that reproduce
single discontinuities had been established a long time ago, but we generalised
them to allow for multiple unitarity cuts. We also introduced a new type of
cut, a single propagator cut, that reproduces the discontinuity associated with
internal masses. The rules we developed are formulated strictly in real kinematics,
and valid in dimensional regularisation. We then obtained a precise relation
between unitarity cuts of Feynman diagrams (Cut), discontinuities across branch
cuts (Disc), and specific truncations of the coproduct tensor (§). Through these

relations, we obtained a diagrammatic representation of specific coproduct entries.

To evaluate cut diagrams, we had to develop our own computational
techniques as the calculation of this type of diagrams is far less developed than
that of uncut Feynman integrals. We believe these techniques to be an important
part of the work presented here, with possible applications in the calculation of
other types of integrals, like e.g. phase-space integrals. Our conjectured relations
between Cut, Disc and § were then verified in a wide variety of examples: one-
loop triangles with different configurations of external and internal masses, box
diagrams, and a two-loop example, the three-point three-mass two-loop ladder

diagram with massless propagators.

We found the exploration of the two-loop diagram to be a particularly
interesting example, with features we had not anticipated. For instance, despite
the uncut diagram being finite, individual cuts contributing to a given unitarity
cut are divergent. Of course, the unitarity cut itself must be finite, as it
corresponds to the discontinuity of a finite function. We observed that the
cancellation of the singularities occurs in a way very similar to the cancellation of
the singularities between real and virtual contributions to a physical cross-section.
We believe this type of relation to be new and useful for the general program of

the study of infrared singularities.

In this chapter, we also observed that not all coproduct entries could be

captured by the unitarity cuts as we had defined them. Perhaps the most striking
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example is the two-loop diagram: this is a weight four function, but by our rules
we were limited to a series of two unitarity cuts, which means we could not go
deeper in the coproduct than the entries of the form A; ;5. This shortcoming of

our cutting methods was addressed in chapter [5

However, before that, we investigated the possibility to fully reconstruct uncut
Feynman integrals from the knowledge of their cuts. We reviewed the dispersive
representation of Feynman diagrams, the standard procedure to reconstruct a
function from its discontinuities. We observed that when written in terms
of variables for which the symbol alphabet is rational, the dispersive integral
becomes easy to evaluate as it naturally falls in the class of iterated integrals that
evaluate to MPLs. We used this observation to find a compact representation for
the three-mass triangles with zero, one or two internal masses, as well as the

two-loop example mentioned above.

We then explored a variety of methods to reconstruct the symbol or the
coproduct of an uncut function from the knowledge of its cuts. In all examples,
we observed that the knowledge of a single unitarity cut contained enough
information to constrain the symbol of the uncut functions. However, in cases
with internal masses we had to postulate rules to determine the symbol alphabet
of the functions. It is thus not clear to us how general these methods are, but
we believe it would be interesting to study them further as they might lead to

purely algebraic ways of computing Feynman integrals.

As already mentioned, in chapter [5| we returned to the study of cut Feynman
diagrams. Our goal was to formulate cutting rules that were consistent with
the ones developed in chapter [3| but reproduced more of the analytic structure
of Feynman integrals by allowing any subset of propagators to be cut. In this
chapter, we restricted our discussion to (scalar) one-loop Feynman diagrams.
We chose to change the dimensions with the number of propagators in a way
that ensures the Feynman integrals evaluate to functions of uniform weight in
dimensional regularisation. This choice is equivalent to the choice of a basis of

scalar integrals.

Based on ideas coming from the field of generalised unitarity, we constructed

a new definition of cut Feynman diagrams, which we denoted C. Instead of
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replacing propagators by Dirac d-functions when they are cut, we now evaluate
residues at the poles of cut propagators. The advantage of this method is that
it is easily generalisable to situations were the poles do not lie in the integration
range of the loop momentum, or even on the real axis. This allowed us to relax

the condition of working in real kinematics.

We presented two formulations of our new cutting rules, one in Minkowski
space and one in Euclidean space. Although equivalent, the latter is best suited
to the evaluation of single propagator cuts, and the former more practical for
any other type of cut. In both cases, we were able to find a formal solution to
the m-propagator cut of a diagram with n-propagators. This allowed us to draw
some general conclusions about cut diagrams. We characterised all cut diagrams
that can vanish, found a general relation between maximal and next-to-maximal

cuts, and commented on the functional form of maximal cuts.

We then provided results obtained with our new cutting rules for a variety of
one-loop Feynman integrals. Through these examples, we showed the consistency
between the cutting rules defined in chapters [3| and [o| However, we also showed
that one could now compute cuts that were beyond the scope of the rules of
chapter For instance, we computed maximal cuts of boxes even in cases
where the maximal cut isolates massless three-point vertices, which we would have
previously set to zero because of the restriction to use real kinematics. We checked
the consistency of our results in several ways. For maximal cuts, we verified they
matched the expectation that the leading order should be proportional to the
inverse of the square root of the Gram determinant of each diagram. When
maximal and non-vanishing next-to-maximal cuts were computed, we checked
they agreed with our general relation between these two types of cuts. We were
also able to match all the cut integrals in our examples to specific coproduct
entries, which provided a check of the higher order in € of our results. Finally, we
computed the maximal cut of the fully massless pentagon. As we had foreseen,

this cut integral does not vanish.

In our last chapter, we presented what was the motivation for most of
the work developed in this thesis. ~We showed how one can construct a
completely diagrammatic representation of the coproduct of one-loop scalar

Feynman integrals.
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We started by motivating our construction through some simple examples,
the zero-, one- and two-mass bubble diagrams. This allowed us to introduce the

general form of the diagrammatic coproduct we were after.

We then showed how by using only graphical operations one could construct
a graphical coproduct on the algebra generated by one-loop Feynman graphs. In
this construction, we restricted ourselves to two types of operations: propagators
could be cut or contracted. As we commented in the introduction to chapter
[0, these are the same operations that allow to determine the sources of
discontinuities of Feynman integrals according to the Landau conditions. We
also mentioned that one could in fact construct a complete Hopf algebra on one-
loop Feynman graphs, but that this discussion goes beyond the scope of this

thesis.

Having defined a purely graphical coproduct acting on Feynman graphs, we
then explained how it could be mapped to the coproduct of MPLs, acting on the
functions Feynman graphs evaluate to. This mapping allows us to explicitly check
its validity by looking at specific Feynman diagrams. Although this is not trivial,
we conjectured the graphical coproduct was valid in dimensional regularisation,
and should thus be checked order by order in the dimensional regularisation
parameter €. This is important because even in the fully massive case there are

divergences we must regularise, the ultraviolet singularity of tadpole diagrams.

Because we map the graphical coproduct to the coproduct of MPLs, it must be
checked order by order in the e-expansion of the Feynman integrals. We explained
how in fact there are two expansions one must do when checking the diagrammatic
coproduct: an expansion in the dimensional regularisation parameter, and one
expansions in the different coproduct components at a given weight. For each
term in this double expansion it is important to understand which diagrams of

the graphical coproduct contribute at which order in e.

We then commented on the cancellation of the poles introduced by tadpoles,
and how this was important to reproduce the trivial coproduct entries of weight
(0,n). Following similar arguments, we can also see that the graphical coproduct

is consistent with the first-entry condition.

We checked the validity of the graphical coproduct in a variety of examples.
We looked at triangles and boxes with different mass configurations, and explicitly

checked the coproduct of the uncut and cut integrals were correctly reproduced
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by the graphical representation of their coproduct.

We finished by exploring some consequences of the graphical coproduct. We
first examined its implications in the study of discontinuities of Feynman integrals,
and argued that the results of chapters [2| and |3| are easily reproduced by the
graphical coproduct if one keeps in mind the way discontinuity operators and the
coproduct interact. This observation allowed us to determine the values of the
three- and four-propagator cuts of the massless hexagon from the knowledge of its
symbol, and then use this information to make an indirect check of the graphical
coproduct.

Finally, we explored the consequences of the graphical coproduct for differ-
ential equations of Feynman integrals. We showed how one could interpret the
coefficients of these differential equations as derivatives of cuts, which means
we have a way to derive them without needing the usual reduction using IBP
relations. We then explained how reverse unitarity was a simple consequence of

the coassociativity of the graphical coproduct.

It is quite clear to us how we would like to pursue the work presented in this
thesis. The cutting techniques established in chapter 5[ are presently restricted to
one-loop Feynman integrals. Although we do not foresee any major obstacles in
their generalisation beyond one loop, we still have not investigated this issue in
detail. In particular, the assumption that we only need to study scalar diagrams
will need to be revisited, as it is well known that at two-loops and beyond some
numerator factors cannot be reduced.

Once we understand how to generalise our cutting rules, we would like to
generalise the diagrammatic coproduct beyond one loop. This generalisation
will not be straightforward but we are confident it can be done. Indeed, what
motivated us to establish a graphical coproduct at the one-loop order is still
valid beyond one loop. However, there are some obstacles: it is not clear how
to find a good basis for diagrams at two-loop and above, and we know MPLs
are no longer enough to describe all diagrams as elliptic integrals start appearing.
Nevertheless, the lessons learned at one loop should help us find a way to overcome
these difficulties.

246



Appendix A

Notation and conventions

Feynman rules. Here we summarise the Feynman rules for cut diagrams in
massless scalar theory. For a discussion of their origin, as well as the rules for

determining whether a propagator is cut or uncut, see section [3.2]

Vertex:

o= (A1)
e Complex conjugated vertex:
o= —i (A.2)
e Propagator:
— L .= Iﬁ (A.3)

Massive (massless) propagators are drawn with a thick (thin) line.

Complex conjugated propagator:

N S P (A4)

247



Appendix A. Notation and conventions

248

e Cut propagator:

el =l — el =l o —2i(p) (AD)
There is a theta function restricting the direction of energy flow in a cut
propagator. For single cuts, our convention is that energy flows from black
to white. For multiple cuts, there are separate color labels for each cut—see
section for details. There can be multiple thin dotted lines indicating
cuts on the same propagator without changing its value. However, each

thin dotted line implies complex conjugation of a region of the diagram.

Cut propagator for cut in an internal mass:

' '
- : = o : > =276 (p2 — m2) : (A.6)
' '

Loop factor (for loop momentum k, in D = d — 2¢ dimensions):

evee d—2e

Different topologies are denoted as follows

— tadpole of mass m: Tad(m?) ;

— bubbles of mass m; and msy, and momentum p: Bub(p3; m?,m3) ;

— triangle with external channels p?  p32, p2 and masses mya, Ma3, M3,
where the indices of the masses signal which external legs they connect:
2 02,2 9 2 2,
T'(pi, p3, p3; Mia, Mg, Mi3)
— box with external channels p?, p3, p2, p? and masses My, Ma3, M3y,
my4 (with the same meaning for the indices):

L2 .2 2 2. 9 2 2 2
B(S,t7p1,p2,p3,p4,m12,m23,m34,m14).

For simplicity, if some of the invariants vanish we might not write them in
the argument. For instance, for the box with one external mass, we will
write B(s,t;p?). There are two types of boxes with two-external masses, the

two-mass-easy, where the massive channels are not adjacent, which we will



denote B®(s,t;p?,p3), and the two-mass-hard, where the massive channels

are adjacent, B"(s,t;p?, p3).

Kinematic regions. For the three-point three-mass functions with massless

propagators at one and two loops, we use the following shorthand for different
kinematic regions, with variables z, z as defined in eq. ([2.29)),

Ry : plpsp;>0, z=2",
Ry : p?>0, and p; <O0forall k#1,

RiA’j: p?,p32~>0, and p? < 0 for all k # i, j.

Feynman rules for chapters[5|and [6l In these two chapters, we use a ‘bare’

version of the diagrams computed in the previous chapters. For each loop, we

evEe 4—2¢
e d* k. (A.8)

Vertices and propagators come with no factor of ¢. Diagrams computed with

include a factor:

these rules will be denoted I,,, with arguments following the same conventions as

for the arguments of the different topologies listed above.

The relation between the two conventions is easy to establish. For instance,
L(p?) = iBub(p?), IL(p?) = —iT(p?), and I4(s,t) =iB(s,t). (A.9)

The relation between cuts computed according to the two sets of rules are
also easy to get by compensating for the mismatch in powers of 27 and +i. For
instance, let us relate the results obtained in eqs. (5.85)) and (B.55)) for the p?

channel cut of the three mass triangle.

The result in eq. was computed following the rules of chapter , and
thus includes a factor i for the vertex where p? enters the diagrams, and a factor of
(—14)? for the vertices and propagator on the complex conjugated region of the cut
diagram. Because the two-propagator cut corresponds to a single discontinuity,

there is an explicit factor of (27). Overall, this gives a factor of (—27) compared
to the definition of Cy[[3] given in chapter , with which (5.85)) was computed.
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We should then find that

Cutp%T(p%,pg,pg) = (—2m)Ca,12),13) [ L3 (1, P53, P3)], (A.10)

which is indeed true.

As another example, we can compare the maximal cut of the three-mass
triangle, seen as a double discontinuity on p? and p2, computed with our two
definitions, egs. (5.86) and (B.58). According to the rules of chapter [ we have

a factor of i? from the vertices where the channels we are cutting in enter the

diagram, and a factor of (—i) for the other vertex. Because this corresponds
to a double discontinuity, we have an explicit factor of (27)%. Finally, in the
definition of the triple cut of chapter [5| there is an explicit factor of (—1) which
was included by hand. The two definitions should thus differ by a factor of
(—4m?i). More precisely,

Cutye 2 T(pt, p3, p3) = (—470)Ca| L (p1, 13, 13)] (A.11)

which is indeed the correct relation.
Definition of cr. In loop calculations, a specific combinations of gamma
functions appears very often, which we denote cr,

eBT23(1 — e)['(1 +¢)
(1 — 2¢)

. (A.12)

Ccr =

Definition of ;F; and F;. Results for triangles and their cuts often involve
the Gauss hypergeometric function oF; and one of its generalizations, the F}j

Appell function. They have the Euler-type integral representations

o) (a0, B;;2) = %/{) dtt? 11—t P71 —t2)™™  (A13)

for Rey > Re S > 0, and

: leme ey = I'(v) Voot (1 — ¢)rmet
Fl(a,ﬁjﬁ,%ﬂy)—m/o dt(l—tm)ﬁ(l—ty)ﬁ' (A.14)

for Rey > Rea > 0.
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Results

In this appendix, we collect several results of Feynman diagrams that we use
in the main text. In the accompanying MATHEMATICA package [38] we include more
results and expansions of the functions to higher orders than what is presented

here.

B.1 One-mass triangles

We give explicit expressions for triangles with one external massive channel.
For all the examples considered, we have computed the uncut triangles both
through standard Feynman parametrization and through a dispersive integral,
and verified agreement of the expressions. Divergent integrals were compared
with the results given in ref. [39]. For all triangles with one external massive
channel considered in the following subsections, we separate the rational prefactor

from the pure transcendental function according to the relation
?
T(pf, O? 0; m%% mgi’)? mi}) = FT(p%J 07 0; m%% mg:s? m%i’)) ) (B1>
1

where the internal masses are generic and can be zero. Before expansion in the

dimensional regularization parameter €, the results will often involve the functions

oF) and F} defined in eqgs. (A.13) and (A.14).
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A

-1 <

(a) T(p?,0,0;0,0,0) T(p?,0,0;0,m33,0) T(p?,0,0;m32,,0,0)
(d) (19170 0; m127m23’ Plao 0; m12’0 m13 plvo 0; m12,m23,m13

Figure B.1: Triangles with one external mass

<

a) T(07p2>p3§070 0 0 p27p370 m23, 0 p27p37m1270 0

A

—~

Figure B.2: Triangles with two external mass

_<[

A

(a) T(p%vp%7p§70>070) pl,pg,p37m12,0 0
(c) T(p%,p%,pg;mfg,o,mfg) p17p2>p3am127m23,m13

Figure B.3: Triangles with three external mass
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B.1. One-mass triangles

B.1.1 T(p%0,0:0,0,0)

The triangle with one external, eq. (B.1a)), massive channel is
2\ —1—€
T(2.0,0;0,0,0) = iep P (B.2)

where cr is defined in eq. (A.12)). The symbol is

1 2
8 [T(}.0.0:0.0.0)] = —5 + 7 i @pf + O(e). (B.3)
Single cuts
BT (1 —¢)

Cut,e [T(p7,0,0;0,0,0)] = =2 (p}) (B4)

el'(1 — 2¢)

Double cuts

All double cuts are zero.

B.1.2 T(p%, 0,0;0, m%3, 0)
The triangle of fig. is given by:

T(p3,0,0;0,m33,0) =
e T(—p2) =< T(1 + )I2(1 — i
e [<po (L+ QZE(L1_62_26_2L>

€ m3, ['(2 — 2e) m3,
s T+ eD(1—¢) Vi
. FLL2—e-20
(mgg) F(Q _ 6) 2171 s Ly €; m%g
1 m3s + p2 w2
=— (L L)——)Hﬁ. B.5
Vi ( ’ ( m3; 6 (€ (B5)

The symbol is

2 2 2 2
+ -
S [T (920,00, m2,, 0)] =m2, ® (u) P (u) L 0@,
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Single cuts

The cut in the external channel p? is

Cut,z [T(p1,0,0;0,m35,0)] =

YEET(] — 2\ —e¢ 2
:27r8 ( ©) ) o F1 <1,1—€;2—2€; - >

(2 —2€¢) p?+m3, P+ m3,
27 m2
= ——log <i> + O(e). (B.7)
pi pi +m3s

The cut in the internal mass m3, is

dmeVEE (— 2 \—e 2
Cutyng, [T(p3,0,0;0,m3,,0)] = T (—mys) 2 F1 (1, 1—¢2—c¢ p—l)

L2 4+, P+,
27 m3, + p?

= — log (L + O(e). (B.8)
Vi m3;

Double cuts

The double cut in the external channel p? and the internal mass m3; is

evEe <p%)—1+e(_m%3)—50(p2 +m2 )
1 23

2 . 2 — 2;
Cutyging, (710,050, mzs, O] = = dmie—o =0

472
= — —5-0(p; + m33) + O(e) . (B.9)

b1

B.1.3  T(p20,0;m2,0,0)

The triangle of fig. is given by:

EET(1+¢€) 1. pi
T(p3,0,0;m3,,0,0) = — Zﬁ(mfz) TR <1, L+62—¢ m_%
1 2 2 2
Lo (=) e () v (- 2)
by L€ mis mia mis
2
tog () og (1- 2 ) + 0.0 (B.10)
12

The symbol is

1m2. — p2 2 2 .2
S [T(32,0.0:m%,0,0)] =L 2Py, g 105 (12 = 1)
€ My 1
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S+ 0().  (B11)

Single cuts

The cut in the external channel p? is

= T(1 —¢) (pf — miy) ™™

2 . 2 _
Cut,e [T(p7,0,0;m35,0,0)] = =27 T2 O (B.12)
2 2
= —Tﬂ - —72T (log (p%) —2log (p% — m§2)) + O (e) .
pie P

The cut in the internal mass m?, is

Cutm%Q [T(pi 0, 0; m%Q? 0, 0)} =

IreVES 2 \—€ 2
_ e ( mf) oF 1,61 —¢ —m;Q
el'(l—¢)  pi i
2
1

21 21 -
:—T+—2<log(m%2—pf)+log( 22>)+0(6)
pie D1 —D1

Double cuts

The double cut in the external channel p? and the internal mass m?2, is zero.

2 .« 2 2
B.1.4 T(p7,0,0;miy, mss,0)
The triangle of fig. is given by:
T(pia 07 0; m%Qv m%f}’ 0) =

Y€ (] . 2
€ ( +€) |:(m§3) 2F1 (17172—67 2 pl )

B e(1—¢) (m%z - mgg) mig — m§3

2

2
_(m%Q)_E Fy (1;1,6;2—6; > P1 . h )]

219
Mg — Moy Mg

T () () g (1 Y g (1 )
pi Mas Ma3 Mas mis

+log (%) log (1 - %)} L O(e) . (B.13)
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The symbol is
S [T(pi 07 0; m%% mg?ﬂ 0)} -

2 2 2
mio, —m P
:m§2®<—12 5 23)+m§3®(1——2 - 2)
mas mis mas

— (m}, —p}) ® <1 —~ m%Q—QP%) + O (e) . (B.14)

Mas

Single cuts

The cut in the external channel p? is

Cutp% [T(p%, 07 O; m%Qa mgSv O)] =
YEE (] — 2 1—2¢ 2 2
€ ( 6) (pl m12) 2F1 (1,1_672_267 m12 pl)

T2 e s
2m m2, — p?

=" log (1 - L) + O (e) . (B.15)
P m%zz

The cut in the internal mass m?, is

Cutpz, [T(p},0,0;miy, m3,,0)] =

__2m e (—miy)' F (1; Le2—e mi, m%z)

P% ['(2—¢) m%z - m%3 m%z - m§37 p%
o2 m2

=— —log (¢) + O (e) . (B.16)
P% m%3 - m%Z

The cut in the internal mass m3; is

Cutpz, [T(pi,0,0;my, m33,0)] =

e (—mi)

2
pi
=2 1,1:2—¢ —————
WF(2_€) m%Q—m%32 1( o © m%z_mg?))
2m P )
=— log <1 ————5 | +0(e) . (B.17)
P% m%Q—m§3
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B.1. One-mass triangles

Double cuts

The double cut in the external channel p? and internal mass m3, is

Cutyz 2, [T(p7,0,0;m7y, m35,0)] =

e (p) e (=mE)
F(l —€) (p% - m%2 + m%3)€
47T 7

l

2

= — 4% (p1 — m% + mgi&)

The double cut in the two internal masses is

Cutynz, m2, [T(p},0,0;miy, m3,,0)] =
() my)
[(1—e¢) (m%2 - p% - m%:a)e
4m*i 2 2 2 2 2
:79(7”12 — py — mayg)0(ma3 — miy) + O (e) . (B.19)
1

= — 4m%i (m%2 - p? - mg{i)e(mg?) - m%z)

B.1.5 T(p2,0,0;m2,0,m2)

The triangle of fig. is given by:

T(pfa 07 O;m%% O? m%3> =

_Z,GVEEF(l—I—e) Coviiee | (wn —wy) €
Tl — o) (=) [ 1— )

— 1) —1 —1
(—(wl ) Fi <1—6;1,€;2— U . — >

w1 wl(l—wl w1, — Wy

1
—w; By <1—6;1,6;2 ))
1—w1 wl—wl
1

(i =D =) 7

- 21<171—€§2—€; )]
W1 W1 wiwW

_i w1 — W1
= log (w1 — 1) log (1 — w1> + O (e) . (B.20)
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The symbol is

S [T(p% 07 0) m%27 07 m%3>j| -

_ (1 imwl) ® (1 iulwl> + (1 101%) ® (1 101%) +O().  (B21)

Single cuts

The cut in the external channel p? is

Cutp% [T(p%, O, 0, m%Qa 0) m%3):| =
1—2¢

6’7E6F<1 — 6) 2\ —1— (w1 — U_)l) wp — ’lIJl
= _op——— el U R(11-e2—2¢— L
"Ta—29 P g o i\ e ke o T

_%%O%(lflﬁ-4%<l?m)>+0@y (B.22)

The cut in the internal mass m?, is

Cutyne, [T(p},0,0;mi,y, 0,m7;)] =

e (—pf) e 1 —w,
= -2 “(wy — Fll1-6l,62-¢ :
TFE = w — o W w) Al mele2m6
o wq )
=l +0() . B.23

The cut in the internal mass m?, is

Cut,2 T(p7,0,0;m3y,0,m7z) =

B _27T€”E1i((;p_f)€)“ [_ L wﬁf;; w 2 I <1, l-€2—¢ L)

1— 1—e . € 1— —1
P, (wlqm>.ﬂ<1—aL62—a o )}

wl(ﬂ)l — 1) wl(’LU1 — 1) wp — wWq
2 —U_)l )
=——1lo — | + O (e) . B.24
oz () 4000 (B.24)

Double cuts

All double cuts are zero.
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B.1. One-mass triangles

B.1.6 T(p?,0,0;m3,y, m3,, mis)

The triangle of fig. is given by}

2 o2 2 2
T(pb 07 Ov Mg, Mog, m13)

:Z'_e’YEGF(l + 6) (_pZ)flfe |: (wl B u_)l)_e
€ ' (1 = €)(pas + wi(1 — w1))
wy — 1 Cwy—1 >
oz + wy (1 — @) wy — Wy

—w%_eFl (1—6;1,6;2—6; w1 — w17 ))
fos + wi (1 — ) wy — Wy
— - 1 —1)(1 —w
_ 7/123) F (1; 1 e —— ; froz + (w1 — 1)( wl)>:|
w1W1 — H23 wWi1Wy — H23 H23

1 w1 — W1 H23
=—|lo lo -G (1,0, —
P { g(wl—l) g(l—u_fl) ( (wl—l)(w1—1)>
H23 H23
+G 1,0, ——— | +G (1,0, —————
( wy (Wwy — 1)> ( (wy — 1)w1>

G (1,0, F2s H LO(e) . (B.25)

wy1w1

((w1 — )R <1 —61,62—¢

€

The symbol is

S [T(pi 07 07 m%% mg37 mi’i)} =

+wi(l —w + (1l —w — W W
g ® (pe23 1(7 1)) (fh23 1( 71)) o ® [23 101
(123 — wrwy)(po3 — (1 — wy)(1 — wy)) po3 + wi (1 — )
— W W — (1 —w)(1—w
W ® H23 1W1 i (1 _ wl) ® H23 ( 1)( 1)

oz + w1 (1 — wy) oz + w1 (1 — wy)
pr23 — (1 —w)(1 —wy)

o3 + w1(1 — wl)

+(1—w)® +O() . (B.26)

"'We wrote the result in terms of harmonic polylogarithms for simplicity. It has a longer
expression in terms of classical polylogarithms which can be easily obtained using

G(1,0,z) = Lig(z) + log(1 — z) log(x) .

259



Appendix B. Results

Single cuts

The cut in the external channel p? is

CU‘tp% [T(p%, 07 O; m%27 m§37 m%i’,)} =
e (1 — — W

- _ QWu(p%)—l—e 7<w1 w1
['(2 — 2¢) wy(wy — 1) — pog

JF) (1,1—6;2—26; L B )
wl(’w1 - 1) — H23
2w (M23+w1(1 — w01)

=—lo
P s o + Wi (1 —wy)

)1726

) +O(e) . (B.27)

The cut in the internal mass m?, is

CUtm%Q [T<p%7 07 0; m%% mg?ﬂ m%?;)] =

_2me B (—pf) " by (wy — )~
F(Q — 6) Mo3 — ’U_Jl<w1 — 1)

F (1—6;1,6;2—6; 7w1 : _w{ >
oz — wy(wy — 1) wy — 1y
27 o3 — W1Wy )
=—log ( - + O (€) . B.28
pi poz + w1 (1 — wy) (©) ( )

The cut in the internal mass m3; is

CUtmgg, |:T<p%7 07 07 m%Q? m%B? m%?))} =

JF) (1,1;2—

evre (_p%>_1_6 & (M23f(1*w1)(1/121%1))(w1u71*,uzg)>
[1—¢) 1-e¢ (p2s = (1 —w1)(1 — wy)) (wiwy — pr23)
_2r ] ((Ms + wi (1 — w1))(pt23 + w1 (1 — wl)))
=—5 log - —

p1 (po3 — wywy) (pes — (1 — wy)(1 — wy))
L O(e) . (B.29)

=2m Ty

The cut in the internal mass m?, is

Cutm% [T(pi 07 0; m%% mgS? m%S)] =

eVEE [ = w) e (wy — )
= 21— (—p?) € B.30
P - €)< i) wi(wr — 1) — piog ( )
1-— -1
Fl(l—e;l,e;Q—e; — d ;w1 _)
wl(wl - 1) — M23 W1 — Wi
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B.1. One-mass triangles

- —e . . (—w1)(1—w1)
((1 B wl)(l B w1>>1 211 <1’ 1-€2-¢ (wl(wlfl)*/uzls)(wl(131*1)*#23)>

(wi(wy — 1) — poz) (w1 (wy — 1) — pa3)

_27'(' Mo3 — (1 —’UJ1>(1—1I}1)
_p_f tog < pag 4 w1 (1 — wy) ) +oL)- (B31)

Double cuts

The double cut in the external channel p? and internal mass m3, is

Cutp%m% [T(p%, 0,0; m%m m%g, m%s)} =

T 47r2if(i —€) (P~ (@1 (wy — 1) = prgg) ™ (—wi (w1 — 1) + prgg) ™
0wy (w1 — 1) — pe3)0(—wy (w1 — 1) + po3)
_ 4;7’9(@01(101 1) — 13)0(—wr (@1 — 1) + pizg) + O (€) . (B.32)

The double cut in the internal masses m?2, and m2, is

Cut,2, 2, [T(p7,0,0;m3y, m3s, miy)] =

o eme . ) .
- 47T22F(1 y (—=p1) 77 (p2s — (wrty — prg3)(ptas — (1 — wi)(1 — 1))
O(wwy — pip3)0 (p123 — (W11 — pros)(pi2s — (1 — wy)(1 — wy)))
4724
:%9(7#1101 — 123)0 (po3 — (w11 — pugg)(pees — (1 —wr)(1 —wy))) + O (e) .
1
(B.33)
The double cut in the internal masses m?; and m3; is
Cutyz, mz, [T(01,0,0;miy, miy, miy)] =
eme . -
= 47T2Z1—x(1 _ 6) (_p%) ! 6((1 - w1)<1 - wl) - /L23)
(p23 — (wiy — pog)(prez — (1 — wi)(1 —wy)))
0 (p123 — (w1 — poz)(pros — (1 — wy)(1 —wy)))
472 _ _
:p—29 (pr23 — (w101 — pgz)(p23 — (1 — wr)(1 — w1)))
1
O((1 —wq)(1 —wq) — pa3) + O (e€) . (B.34)
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All other double cuts are zero.

B.2 Two-mass triangles

We give explicit expressions for triangles with two external massive channels.
For all the examples given, we have computed the uncut triangles both through
standard Feynman parametrization and through a dispersive integral, and verified
agreement of the expressions. Divergent integrals were compared with the results
given in ref. [39]. For all triangles with two external massive channels considered
in the following subsections, we separate the rational prefactor from the pure
transcendental function according to the relation

T(O,pg,pg; m%mm%gvm%g) = %T(O,pg,pg; m%m mg37 m%3) ’ (B.35)

> — D3

where the internal masses are generic and can be zero. Before expansion in the

dimensional regularization parameter €, the results will often involve the functions
oy and F defined in egs. (A.13]) and (A.14)).
B.2.1 T(Ovp%7p§707070>

The triangle with two external massive channels, eq. (B.2al), is

cr (=p3) = = (=p3)~°

T(0,p3,p3;0,0,0) = —i : B.36
(0.72,3 L (B30
where cr is defined in eq. (A.12). The symbol is
P P
S[T(0,05,p5:0,0,0)] = == + = 4+ p; @ p; — ps @ p; + O(e) . (B.37)
Single cuts
The cut in the p3 is
VEET(1 — 2\ —e
Cut,z [T(O,pg,pg;0,0,0)] I, P (1=¢) (p2) (B.38)

el'(1—2¢) pj —p3’
and the cut in p? is obtained by symmetry.

262



B.2. Two-mass triangles

Double cuts

All double cuts are zero.

B.2.2 T(07p%7p§707m%370)
The triangle of fig. is given by:

T(Oupgupga()?mg?,ao) =
YECT(1 2 \—e 2 2
;€ ( +e)(r2n23)2[2p2 22F1<1,1—26;2—€; 2292 2)
(1 — 5) Py —DP3 Py — Mag Py — mas

2 D
b3 ( . . P3 )]
—— VK (1, 1—-2¢2—¢ ——=>—
2471 ) ) )
2 2 p3 —mi,

P3 — Ma3
i1 mis — b3 . 3 . 3
22_2{—1055( 7 o) TLe| w—— | Lz | 5——
p; —Dp3 L€ mas — P3 Pa — Mag P3 — Ma3
1 1
5108 (my = 53) + 3o (md — 13)] + 00 (B.30)
The symbol is
1m2, — p2 p2(m3s — pd)
S [T(0,p%,p2:0,m%, 0)] = =2 P2 | 2 o P\ — P
7102203500 O = 55 = 750 i, )
2 2
b p
+ (M3 —p3) ® — P — (myy —p3) @ —5 5 +0(c) . (B.A0)
(M35 — p3) (M3 — p3)

Single cuts
The cut in the external channel p3 is

2 2. 2 _ BT (1 —€) (p3)(p3 — m3s) >

r 27 5 [log (p3) — 2log (p5 —mi)] + O(e).  (B.41)

-1 pE-p

The cut in the external channel p? is trivial to obtain from the symmetry of the

function. The cut in the internal mass m3; is

Cutynz, [7(0, 3, p3;0,m35,0)] =
B me 2 T'(1 4+ 2¢)
- I(l—¢€) pi—pi

(1

I'l —e¢
I'(1+e)

——
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(—=p3)° m3s 2 2
) (2614261 - 128 C (2 o
F(l + 26) 207 | €, 26, 1 + 2€; p% (p2 pS)

2m —3 ) ( —p3 )}
=—— |log (— —log | 54— || +O(e). (B.42)
3 — p3 [ m3s — 3 m3s — P

Double cuts

All double cuts are zero.

B.2.3 T(Oap%7p§7m%27070)
The triangle of fig. is given by:

T(Oupgapgu m%Za 07 0) =

LT [CRTT0 -0 (L, B
. m%2 F(Q — 26) 2471 ) ’ )

2 \—l—c 2 .2 .2
_(m12) P <1;1,6;2—e; P2 2293; Pg )}
) 2 2 2
? D3 Py — My 1 2 p3
— Lio [ 22 ) — L | _ ¥
u@—@>{”<m@) ”( 2 )+2°g( m%)
2 _ 2 m2, — p2 + p 2
—log (M2 Y10 (H2 B2 TR ) L T L 0@). (B43)
p3 P3 3

The symbol is

2 2 2 2
P mi, — pP5 +p
S[T(0,p2, p2;m3,,0,0)] = m?, @ (p—é) +P3® (—” < 3)

3 mis

+(m— ) @ ( ~ Q_pgn;% . ) +O(e). (B.44)
p3(p3 — miy — p3)

Single cuts
The cut in the external channel p3 is

Cutyz [T(0, p3, pii mi,, 0,0)] =

YEeP (] — 2 02 \1-2¢ 2 N2 o2
_ 27Te ( €) (p22 _m122) R (17 1—e2— 2 (3 p3)2(p22 le))
['(2—2¢)  (p3)~“miyp3 misP3

2 o _ .2 .2
__m (log (Tz—g) + log (W)) + O(e) . (B.45)

p% - pg 12 p3
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B.2. Two-mass triangles

The cut in the external channel p3 is

Cutyz [T(0, p3, pi mi,, 0,0)] =

YEET(] — 2\—e 2 _ .2
— 978 (1= (p3) o Fy <1,1—6;2—26; _Pahs )

['(2—2¢) p3—p3—mi, p3 — 3 — mi,
21
T (log (m3,) —log (miy — s +p3)) + O(e). (B.46)

The cut in the internal mass m?, is

Cutyne, [T(0,p3, p3;m3,,0,0)] =

_ 2me=¢ (mi, —p) (7’1%2)6 F <1 el e2—c pi—ps  mi )

" T(2—¢) % 3 p3 mi, — p}
9
= (log (=23) — los (—1£)) + O(e). (B.47)
b3 — D3

Double cuts

The double cut in the external channels p3 and p? is

Cutys sz [T(0, 13, p3;mip, 0,0)] =
Am*ie = (p3)~“(p3 — p3 — miy)~
- 0 p2 o p2 . m2
[(1—¢€) (m3,)(p3 —p3)t-2e (P —p3 12)

4% 9 9 9
= ———0(p; —p5 —miy) + O(e) . (B.43)
by —P3

€

The double cut in the external channel p2 and the internal mass m2, is

Cutp§,m§2 [T(O,pg,pg;mé,o 0)] =

i, O () (miy)
=TIy e

Am%q
p 9(]93 + m12 p%) . (B.49)
2 —

P +miy — p3) " O(p3 + miy — p3)

The double cut in the external channel p3 and the internal mass m?, is zero.
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B.3 Three-mass triangles

We now present expressions for triangles with three external massive legs. We
start by discussing the diagram with massless propagators. We then describe how
we computed the triangles with one or two massive propagators, for which we give
a very simple expression that allows us to evaluate the diagrams very easily to
arbitrary order in e. This follows what was done for the triangle with massless
propagators in section [£.2l Our method does not work for the case with three
massive propagators, where we were not able to find a rational parametrization,
and we thus rely on the result in ref. [143]. We will comment further on the choice
of variables for this example in section below. For the cases treated in this
section we will not compute mass discontinuities, as they do not add anything
to what we have already illustrated in the context of previous examples. We
separate the rational prefactor from the pure transcendental function according
to the relation

2 i 2 2

T(Pip;p?’,; m%Q,m%,m%g) = mT(Pip;p?z; mu,m%,m%?)), (B.50)
1

where the internal masses are generic and can be zero.

B.3.1  T(p?,p2 p%:0,0,0)

Many different expressions are known for the three-mass triangle integral,
fig. B.34] both in arbitrary dimensions [98|[144] as well as an expansion around
four space-time dimensions in dimensional regularization [65}(99}145,/146]. We

showed in section a way to compute it through a dispersive integral [36].

Here we follow [65] in writing the result of the integral in the form

2
T 2a 2a 2;07070 :_i
(P, P2, P3 ) -

Pa(2) + Ofe), (B.51)

where

Pa(z) = Lig(z) — Lia(2) + %log(zz) log (1 — f) , (B.52)
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B.3. Three-mass triangles

We thus have

T (p3,p5,03;0,0,0) = T (2, 2)

= —2Liy(2) + 2Liy(2) — log(22) log (1 - z) . (B3

The symbol of the one-loop three mass triangle is

1—-2z

S[T(z,2)]=(22)® .

— H(d=2)1=-2)e g +0(e) (B.54)

We note that in this expression the first entry condition is explicit despite the

use of the variables z and Z.

Single cuts

The cut in the external channel p? is

Cutyz [T(p, p3,3: 0,0,0)] =

IreVET(] — 2\ —1—¢ =
_ T ( ) (p) o [ 1,1 —¢€,2—2¢ S
I'2-2) (z—1)z z

2 o 2(1—2) )
_pf(z—z)l g(z ) + O(e). (B.55)

The cut in the external channel p3 is

Cut,s [T (p1, 3, 13;0,0,0)] =

e s 5
e (i > (B0

The cut in the external channel p3 is

Cutyz [T(pF,p3,p5:0,0,0)] =

:27T6'YEEF(1 —€) (—]D%)_l_6

f@-20 A-(-21-2)" (11-a2-26-257)
:p—(jﬂ_ 5 log < ) + O(e). (B.57)
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Double cuts

The double cuts in p? and p3 and in p? and p2, although computed in different

kinematic regions, are equal:

Cutye 2 [T(p7,p5,3;0,0,0)] = Cutyp 2 [T(p1, 15, 15;0,0,0)] (B.58)

S

=47 iF(l s o 2)1_26(—22(1 —2)(1—-2))°
4%
=7 Ole) . (B.59)

The double cut in p3 and p3 is

CUtp§7p§ [T(p%,p%,pg,o,(),oﬂ =
YE€ _ 2)—1—5
— A2 (—p7 51 — 2)(1 — )
g ZF(l —6) (z —z)-2 (22(1 = 2)(1 - 2))
A2
=————+0(e). B.60
-9 "0 )

B.3.2 Computation of triangles with three external and

one or two internal masses

Triangles with two external masses are easily computed with standard
techniques to arbitrary order in e. However, that is no longer the case for triangles
with three external masses [65]. In section [£.2] see also ref. [36], it was shown
that the triangle with three external masses and massless internal propagators
was easily computable to arbitrary order in € through a double dispersion integral
over its double cut. We now show this is also possible when there are one or two

massive propagators. In the following, we will use the variables

_ 52 _ S3
aq =1 =—, l—-a)(l—a)=y=—,
i i

where s, and s3 are integration variables in dispersion relations.
We will use the shorthand T'(p?; m?k) for any of the three-mass triangles. We
now proceed as in section

1 ds ds

2
0282_p2 383_p3

2_ 2_
Pp3=82,p3=83
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B.3. Three-mass triangles

Z. (CutygTw2imz)) |
T anp? / o / d@(a@ —z2Z)(1—-a)(l—a)— (1_—7;)(1 —2)° (B.61)

The only difference between the triangles with one and two massive propagators
are the integration contours ¢, and c3, and ¢, and c;. For the case with one

internal mass,
co = [m3y,00), e3=[0,00) and c,=[1,00), caq=(—00, 2],
and for the case with two internal masses,

ey = [m3y,00), c3=[ml5,00) and ¢, = [w,00), c5= (—00,wW].

For either case, the functions (Cut 2 2T(p?;mj2.k)>

p2.52 are given by

Z=o,z=Q

powers of logarithms whose arguments are linear in both a and a. The integral in
eq. (B.61]) is thus trivial to solve in terms of polylogarithms to the desired order
in €. The change of variables

1—a,

a
p==L v = —,
o 1—a

where ag = 1 or wy and a, = p12 or w; respectively for the cases with one and
two internal massive propagators, makes the integration particularly simple to
perform. The results for the finite terms of these two triangles, given below in
eqs. and , were computed with this method, and checked to agree
with the result in ref. |[143]. In our method, as mentioned above, higher orders in

¢ become trivial to compute.

B‘3'3 T(p%vp%7p§7m%27070)

The triangle of fig. is given by
T2, g2 s 12y, 0,0) = ———— T (2,2, 2 B.62
(p1>p2>p37m12> ) ) p%(Z_Z)T(pDZaZa,UlZ) ) ( )
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where T (p?, 2, Z, pi12) is a pure function given by

T(pfa Z,Z, ,LL12) :G (1727,LL12) + G <]-7 %72> - G <17 %72) - G (1727 ,Uf12)

_ LiQ(Z) + LiQ(E) + log(l — z) log (1 — %)
! 1-z 5 H2
+ log <1 - E) log (E) —log(1 — 2) log (1 — 7)

+1log (1 — pi12) log (28 — 2 Ej — Z’ED +0(e).  (B.63)

The symbol of its finite part is

(2 — p12)
(2 — p12)
(1 —2)(Z — o)

5 - _ (2 — pu2) (] —
S[T(p17zuzaul2)] —M12®Z(2_u12) + (1 )(1 ) ®

2(1 = 2)(Z — pa)

+ (2Z — R — + (1 — (% — . B.64
B O S T T O T ey P
Single cuts
The cut in the p? channel is
eET(1 —¢) e
Cutp% [T<p%7pgapg7 m%% 07 O)] = 27 F(2 _ 26) ( %)
1 — 1—2¢ 1— _ =
(1 — pu2) LR, (1,1_6’2_26,( f12) (2 2))
(1= 2) (12 — 2) (1 —2) (12 — 2)
27 (1 — 2)(2 — /,612))
:—log( ) L0 B.65
AG-9 2\ Dim -2/ T2 (65)
The cut in the p3 channel is
eET(1 — ¢)

—1—e¢

(p12 — 22)172%¢(—22)° e — 9 (z — 2)(p12 — 22)
=20 — ) ﬂ“@‘ 2 27@—@@—#@)

27 —2(1 — 2)(z — p12)
A9 ( (1= 2) (2 — 2) ) +0(9) (B.66)

The cut in the p3 channel is
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Cutyz [T(p}, 3, pif;miz, 0,0)] =

YEETN(1 — 1 —1)(1—2))"¢ -z
= —27?—6 ( ) (—pf) 1= (2 I 72)) o (1, 1 —€2—2¢ : z)
(2 — 2¢) f12 — Z f12 — Z

27 12 — 2
= | . B.
pi(z — 2) o8 <M12—3> O (B.67)

Double cuts

The double cut in the pj and p3 channels is

Cutye 2 [T(p], p3, pf;m3e,0,0)] =

= @z’j% ((—1)‘12?%)7176 (z—2)"*((z = DA = 2)(2 — p2)(z — p12)) "
A7%q ar ]
= m(—l) ©,; + O(e), (B.68)

where a = 0 for (z,7) = (1,2) or (1,3), and a = 1 for (¢,7) = (2,3). The theta

functions are

O =0(z—1)0(1 — 2)0(z — 1112)0(Z — u12)
O13=0(1—2)0(1 — 2)0(z — p112)0(p12 — 2)
O3 =0(z — 1)0(1 — 2)0(z — p12)0(pt12 — 2) .

2 2 e 2 2
B.3.4 T(p17p27p§7m12707m13)
The triangle of fig. is given by

l

Y A— 22,2 0 B.69
p%(z_z),r(plazazﬂulawl)? ( )

T(pi, p3, p3;miy, 0,mis) =
where T (p?, 2, Z, wy, W) is a pure function given by
T (p%, 2,2, W, wl) =

w1 wl(u_Jl—l) w1 w1
1 1 L, 1) =G (=, w1
G(z’u‘;1+(1—z)(1—z)—1’>+G(z’w1’> G(z’w1’>

w1 w1 (u?l — ].) . 2z w1 U)1U_J1
—G(= 1) -L —G (= 1
(2’w1+(1—z)(1—2)—1’) 12(w1u_)1) (z’ 22’)

_ 1 _
_G(wl,w,z) + log (1—_—) log (w1 f)
z w1 w, — 2
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+log (1 _ wi) log <1 - _i) +O(e) . (B.70)

1 w1

The symbol of its finite part is

ST (025 w1,m)] = o7 ) 20—
H= D=9 - (- w1 - m) @ =
e
Hl-o) e S e G, (B.71)
Single cuts
The cut in the p? channel is
e T(1 — ¢)

—1—¢
CUtp% [T(pip%ap; m%27 07 m%3)} = _2Ww (p%)

iiiﬁéiij)

2 o (z —w)(w = 2) .
= )lg( 7 )—i—(’)(). (B.72)

piz—z (w1 — 2)(z —wy)

)1—26

Fi11,1-¢2-2
@—wn@—wnzl(’ T

(w1 — Wy

The cut in the p2 channel is

eET(1 —¢) oy —1—c
Te-29 M)
(z — 2)(wywy — zz))

Z(wy — z)(z — wy)

Cut,z [T(p3, p3, i miy, 0,miy)] = 2

(—22)(wyw, — 22)17%

Fill,1—¢2-2
2w — 2)(z — ) “(’ R

2T g <_Z(Z_w1)<w1 _Z)) +0O(e). (B.73)

iz —2) 2(wr = z)(w) = 2)

The cut in the p3 channel is
FET(L—€) 5 1e
T(2 — 2¢) (v1)

i (11— e M) )

Cut,s [T(p3, p3, py; miy, 0,miy)] = —2m

ug(ug — pag) '

(z—=1)(z—wy)(z — wq)
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27 o (z—=1)(z—w)(wy — 2) .
= )l g( E ) + O(e). (B.74)

Double cuts

The double cut in the p; and p? channels is

Cutyz 2 [T(p, p3, 33y, 0,mis)] =

= &y% (1)) (2 = 2) 7% (2 — w) (2 — @) (2 — @) (2 — @1)) "¢
472 aq .
= (170, + 000, (B.75)

where a = 0 for (4,7) = (1,2) or (1,3), and a = 1 for (4,j) = (2,3). The theta

functions are
@12 = (9(2 — UJ1>0(’(U1 — 2)6(2 — ’11_11)9(2 — U_}l)

@13 = 9(11)1 - 2)9(w1 - 2)9(2 — 2171)9(11_)1 — 5)
@23 == 0(2 - U)1>Q(’UJ1 - 2)9(2 — wl)é’(wl — 2) .

B.3.5 T(p%p%apg;m%%m%?nm%?))

For the triangle of fig. we take the expression from ref. [143], adjusted

to match our conventions:

l

T(ﬁﬁﬂpgvpg; m%% m%?n m%?)) = m,r(piﬂpgvpg; m%m m%?n m%?)) ) (B'76)
1
where
’ Y Yoi
Tt iyt =330 |uia (20 ) —niy (®) ] (wa)
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The yg; and y;+ are given by

—1
i = Wi (Wi = Uip1 — Uim1 + 21541 — fiie1 — Hio1
Yo QUZ\//\_Z[ ( +1 1 Hi—1i41 — Mii+1 — [ 1,)

- (Uz’+1 - Ui—l)(ﬂi—1,i - Nz‘,z’+1) -V )\z(ui — Mi—1; + ,ui,i+1>]7 (B'78>
1

Yi+ = Yoi — 2_%

[Uz‘ — fhi—1i t Mgy T/ /\i] .

Here, the indices 7 £ 1 are defined cyclically. The variables w;, j;; are defined in

egs. (2.27) and (2.31), and the \; for ¢ = 2,1, 2,3 are defined as

A= AL ur,ug), A= A(1,muga, fas),
A2 = A(ug, Mg, fig3), Az = A(uz, muys, fig3). (B.79)

To get as close as possible to a rational symbol alphabet, we use the variables
2z, Z, wy, Wy and 3, which are adapted to the p? channel. Since this triangle is
fully symmetric, it is easy to choose variables adapted to any of the other two
channels. However, given our choice, square roots of Ay = A(ug, 112, fi23) and
A3 = A(ug, f13, f1o3) make an unavoidable appearance. Written in a form where
the first entries may be readily identified with the three channel thresholds and

the three internal masses, the symbol of the triangle is

ST (03, 2.2, wy, oy, pia3)] =

T 1 Th_
wy (1 — ) ® —— + = (—z2+w1w1— \/A2+u23> ® 2=

Ty 2 Ty
+1(‘ z 01 + wy + @1 4+ VA )®T3‘+ By @ —L2
—|(Zz—2z—Z—ww +w +w — — + W Q —————
5 1W1 1 1 3 — Ma3 Tss 1W1 (—2)T1
_ (z = )Ty 2T3
1— 1— — +14 —_ B.80
The T;+ are given by the general formula
Tix = — wi( =i + Uipr + U1+ Pigpr + fiio1 — 2fhir1i-1)
+ (i1 — Wim1) (Maig1 — fii—1) £V AN (B.81)
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In particular, we have

wy 4+ w1)(z+ 2) £ (wy —w1)(z — 2)
Tor = (224 wiy — po3)(z + 2) — 222 (w1 + @) + (2 — 2)V A2
Tse = 22(1—2)+22(1—2) + (wy + ) (222 — 2 — 2)

+(pas — witln) (2 + 2 — 2) £ (2 — 2)V/ s

Ty = —2(2Z4 wiwy — po3) +

(
)

We note that 77+ can be written in a simpler form, but where the 4+ notation is

less clear:

Ty =2 (pos — (w1 — 2) (w1 — 2))
To = 2 (pas — (w1 — 2)(y — 2)) . (B.82)

Since the triangle depends on the external momenta through the invariants,
it depends on z and Z only through the symmetric combinations us = 2z, uz =
(1—2)(1—2). Therefore, once we have removed the rational prefactor, the symbol
above is antisymmetric under the exchange z <+ z. However, we note that this

antisymmetry is not superficially apparent in the last three terms.

Single cuts

We now show how it is possible to choose variables such that each of the
single cuts has a rational alphabet. However, unlike what happens for all other
configurations of masses, for each cut we must choose different variables. For
instance, in eq. we chose variables that rationalize the symbol of the p?
cut (indeed, the T4 are rational, as seen in eq. ) In this section, we give the
cut results in terms of two slightly different sets of variables: either we normalize
invariants by the same invariant associated with the channel being cut, or by a
different invariant. Our notation is that p? is the channel used for normalization,

and pjz is the cut channel in the case where it is different.

We start with variables where we cut in the same channel we normalize by,

namely p?. To be more precise, the variables we choose are

L g = g+ Ay, s ) _ L+ pij — g — /Ay, pijs pje)
(2 ) 2 2 )
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z= zZ= ,

Lty —up + AL uj,ue) T 4wy —u, — /AL uy, up) (B.83)
2 ’ |

related to the invariants through

pz- p2 2’k
ZZZU':—]y I—2)(1-2 :Uk:_ka ,u‘k:_]7
i ( ) ) P2 j 2
_ m?j _ mi,
WW; = flij = 2 (1 —w;)(1 —w;) = pgre = 2 (B.84)

This is a slight abuse of notation, as strictly speaking the z and z variables are
different for each i. For i = 1, these are the variables defined in eq. (2.29) and

eq. (2.33)) and the ones used for eq. (B.80)).

In terms of these variables, the single cut in the p? channel is

Cutpf [T(pipg,pg;mfz,mgg,mfg)} = —27‘(‘%(19?)16
(w; — ;)12 62— 2% (z — 2)(w; — ;)
(z — wi)(Z — wi) — pjk 2 (1’1 2-2 (z — w;) (2 —w;) — MM)
—2—7T o (wi_z)(wi_z) — Kk .
Pz —2) log <(w,~ ) (@ —2) - ,ujk) +0(e). (B.85)

Setting (7, j, k) = (1,2, 3) and comparing with eq. (B.80]), we see that the expected

relation between cuts and coproduct entries holds.

Requiring that we normalize invariants by the channel being cut might be
too restrictive. We now show how to define variables that do not have this
requirement, but in terms of which the symbol alphabet is still rational. We
define
s — U Mg = kA i ) g g — e — VA, g, )

i = A ’
2 2

- 1+uj—uk+\/)\(1,uj,uk) 5 — 1+uj—uk— A(l,Uj,U]Q (B 86)
2 T 2 ’ '

related to the invariants through slightly more complicated relations,

2

2 2 '
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_ min _ m?k
Wiy = ity = wj—s- s (uy = w)(uy = w;) = wipg = uj—g- . (B.87)
7 (2

As above, there is a slight abuse of notation in the definition of the z and 2
variables.
In terms of these variables, the single cut in the p?- channel is

eEI(1 —€)

Cutye [T(pF,p3, p; mip, mis, mis)] = — Ww(_p?)—l—e

(=22)(w; — wy) o 9e (= 2)(w) —w))
(z —w;) (2 — W)) — 2Zpin 2 (1’1 2R (2 —w;)(z —w;) — ZEMik)

L N (zz“““ — (2o w)(E - “’j)) +O). (B.83)

pi(z — %) 22k — (2 — w;) (2 — wy)

1—2e

As promised, the symbol letters are rational.

Double cuts

We now give the results for the double cuts in terms of the two sets of variables.
For the variables in eq. (B.83)), we compute the double cut in channels p} and p3.
It is given by
Cutp?m? [T (p3, 03, p3; My, mig, mis)| = (B.89)

_AweE (pf)The

o F(l _ 6) (Z I 2)1_26 (:ujk - (Z - wz)(z - wi))_€ ((Z - wz)(é - wz) - :ujk)_€ @ija

where
O = 0 (jx — (2 — wi) (2 — wy)) 0 ((2 — i) (2 — wi) — ) -

For the variables of eq. (B.86)), we compute the double cut in channels pjz and

pi. It is given by

2 .02 3.2 2 2\ _
CUthz,pﬁT(ph D3, P53 M, Mg, Mi3) =

At () (e = (2 w)(E - @)
D1 =€) (=22) (2 = 2)" 2 7" ((z = w)) (7 — wy) — z2p)"

(B.90)
where
Ok = 0 ((z — w;)(Z — wy) — 2Zpir) 0 (2Zpar — (2 — wy) (2 — wy)) -
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(a) B(s,t) (b) B(s, t;p3) (c) B%(s,t;p3,p)
(d) B(s,t;miy) (e) B(s,t;m3y, ms) (f) B"(s, t;p%,p3)
(g) B(s,t;0,p%,p%,p?) (h) B(s,t;p3,p3,03,03)

Figure B.4: Box diagrams

B.4 Boxes

B.4.1 Zero-mass box

The zero-mass box, fig. , evaluates to a well known result, see e.g. [98,102],
cr [ T2(1—e)T?(1+¢€) 2 s+t\°
Iy(s, t) =2— — | - B.91
1(s:1) € {eF(l +26)T'(1 — 2¢) st st ( )
o) 2—€ t —t —2—¢
_LQFI (1,1;24‘6;—;) - L2Fl (1,1§2+€;—§>},

1+e€ 1+e€

where cr is defined in eq. (A.12)).

B.4.2 One-mass box

For the one-mass box, fig. [B.4b, we take the result from [80],

2cr st \ © p2—s5—t
Li(s.t:p%) = r 1 . Ps
4( ) 7p4) €2St { <S pi) 2471 < €, —€ € p?; S

st \ ° pi—s—t
+ oy <—e, —€61—¢ —)
(t—p?;) pi—t
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(o) (el } o

B.4.3 Two-mass-easy box

For the two-mass-easy box, fig. [B.4d we take the result from [147],

e cr —€ —€ —€ —€
14(S,t;p§,pi):22—zz{(—8) + (=) = (=p3) " — (—pi)

(st — p3p3)
3 2 9\ ¢€ 2.9
I Z<_1)j <s+t D3 p4) JF (6’ &1+ e M) }7 (B.93)
=0 @ &
with
ao = (p; —s) (13 — t) ay = (p; —s) (s — pi) (B.94)
azz(pi—s)(pi—t) agz(pg—t)(t—pi).

B.4.4 Zero-mass box with one internal mass

The zero-mass box with one internal mass, fig. was computed by direct

integration of Mellin-Barnes representation,

I(s,t;mi,) Z i (75 p1a) € (B.95)

(1 — pa2) Ja—
where r = s/t and 19 = m2,/s, with

i () =1 (B.96)
7:51_1) (7” ,LL12) =2 log <—,LL12) - 2G (—T7 _/’L12) - 210g(r) <B97)

. 1
i (13 p12) = 5 10g (~pna) + G (1,0, —jusz) + 410g(r)G (=7, o)

1372

— 4G (_Tu 0, —Mu) +4G (_7"7 -, —M12) - 12

(B.98)
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The coefficients iij) (r; puy2) for 7 = 1,2,3 can be found in the accompanying

MATHEMATICA package, |38].

B.4.5 Zero-mass box with two adjacent internal masses

The zero-mass box with two adjacent internal masses, fig. was computed

by direct integration of Mellin-Barnes representation,

Li(s, t;m3,,m3s) = Z i (73 paz, fioz) € (B.99)

(7’ - M12 - 7’M2a

where 7 = s/t, o = m?,/s and g3 = m3;/s, with

i (13 pz, pizz) = 0 (B.100)

ii_l) (rs a2, pros) = — G (=1, —paz) — G (=7, —pu12) + log (—pu12)

+log (—f123) — log(r) (B.101)

it (r; iz, pas) = —G (=1, —pag) G (1 — pras, —fir2) + 3G (=1, —1, — p1a3)
+ G (1 — po3, 0, —pi12) — log (—pu12) G (=1, —pin3) — log (—pa3) log(r)
+2G (=1, —pi93) G ((p23 — 1) 7, —pta2) — G (=7, 0, —u12)

1
+ G (1,0, —pzs) = G (—pras — 7, =1, —pinz) — 5 log? ()

+2G ((p23 — 1) 7, =7, —pu12) + 21og(r)G (=1, —pi23)

1
- 3G (_17 07 _:u23) + 2G (—T, =T, —,U12) - 5 10g2 (—,U12)

+ 21og(r)G ((p2s — 1) 7, —pu2) + log (—p23) G (—pios — 7, —112)

— 2log (—pi23) G ((p23 — 1) 7, —pa2) + 21og(r)G (=7, —pu2)

—2G ((p23 — 1) 1,0, —pu12) — log(r)G (—piaz — 1, —fi12)

— log(r)G (r, —i93) + log (—pa3) log (—pu12) — 7. (B.102)

-(7) (

The coefficients i, (r; p12, p2g) for j = 1,2 can be found in the accompanying

MATHEMATICA package, [38].
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B.4.6 Two-mass-hard box

The two-mass-hard box, fig. [B-4f} is an interesting example. Up to order
€’, the result can be written in terms of Mandelstam invariants without the
appearance of any square roots. However, from order €' on, square roots appear.
These are connected to the three-mass triangle one obtains by pinching one of
the propagators. We can thus find the appropriate variables by introducing
variables that rationalise the square root appearing in that three-mass triangles.

For I} (s, t;p?,p3), we thus define

2 2
- _ P - _ P2 t
Z=0 0 gogn-n=2 ot (B.103)
Then,
r

=2

Up to order €, the expression for the two-mass-hard box can be found e.g. in [98]

and is remarkably simple,

il tirb) = (o) e (—ZZ);@ZE))—E (l +2Li (1- )

+2Li, (1 — m) - E) + O(e). (B.105)

We then get
iz 2) =1 (B.106)
i (r, 2, 2) = log(22) + log((1 — 2)(1 — 2)) — 2log(r) (B.107)

i (r, 2, 2) = 2Li (1 - + 2L, <1 - Q)
s

T=7a=%)

— 2log(r) log(22) + 2log*(r) + %log2((1 —-2)(1-2))+ %logQ(zE)
— 2log(r) log((1 — 2)(1 — 2)) + log((1 — 2)(1 — 2)) log(2Z2) — 71T—2 (B.108)
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The coefficients up to order €2 were computed by direct Mellin-Barnes integration

and can be found in the accompanying MATHEMATICA package, [38].

B.4.7 Three masses

We give the result for the box, fig. [B.4g], with three external massive legs, as
computed in [9§], because it appears as a subdiagram in the single unitarity cuts

of the two-loop ladder.

B(s, t;p3,p3,p3) =

i {3 [(=8) 7+ (=)™ = (=p3) " = (=p3) ™ — (=p3) ]

ERAC
1(=p3)“(=p3) 1 (=p3) (=P .. v
= ~ —oLi, (1-22
R T s e P R G e 2 p
i pap; s
—2Li, ( — 7“) + 2Lis ( - 2—]54) — log? g} + Ofe) . (B.109)
S

The t-channel cut, which appears as a subdiagram in the double unitarity
cuts of the two-loop ladder is computed using the relation Disc; = —Cut;.
Sy (S0 /L, (e

(

Cut, B¥™ (s, t; p3, 3, p3) = (27)* ——
uty (s,t;p3, 3, p1) = (27) T2—¢ k2 4+i0)((k + p1 + p2)? —40)

e T(l—e€) 27 {2 1 ( pﬁ)
t

— _tfﬁ__t6_276_276 21
I(1—2¢) st— pp? (=p2)~“(=p3) ™ + 2log

€ €
P3pi
—2log (1 — 2—754) — 2log(—s) + 2log t} 6(t) + O(e) . (B.110)
s

B.4.8 Four mass box

The four-mass box, fig. [B.4L] is finite in four dimensions, and, as was shown
in [99], it may in fact be expressed by the same function as the three-mass triangle.
In [99], this is shown by deriving a Mellin-Barnes representation of each diagram,
and showing that they are equivalent if one makes the following identification

2,2

2,,2
wp U =22y = (B.111)
st st

where the u; are the dimensionless variables of the triangle we are familiar with,

see U and V are variables invariant under conformal symmetry, which is
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one of the symmetries of the four mass box.

We will now show another derivation of this result, but instead of finding an
equivalence of Mellin-Barnes representations we will find an equivalence of the
parametric representation of both integrals. More precisely, we will find that the
four-mass boxes has the same parametric representation as the one derived for
the three-mass triangle in [65].

According to our conventions, for D = 4 we have

1 1
Bt-2222:—/d4k
(87 7p17p27p37p4) ’/T2 kQ(k +p1+p2)2(k+p2)2(k_p3>27

(B.112)

and for later use we define

A

%(1+U—V+MA(1,U,V)),
Z=3(1+U -V - VALTT)). (B.113)

2

We show in section how these variables arise naturally in the calculation of

cuts.
Introducing Feynman parameters and carrying out the loop momentum

integral in the usual way, we get:

B(s,t;p}, p3, 03, 15) = (B.114)
4

([ ) (1= Sies)

2 2 2 212"
i=1 —T1T3812 — TaT4S93 — T1T4P3 — T1T9P3 — Ta3P] — T3T4P])

We choose S = {x1, x9, x3, 24 }.

Following [99], we change variables for the 1, x5 and z3 integrations:

and get:

3 1
B tiptadaad) = J1 ([ 49,
1 - . 3 )
/d:v4 (1= X i) . (B.116)
o [(T—az4)(

B1Bap3 + B1335 + Bafap?) + 24 (Bip} + Bat + Bap3)]”
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The x4 integration can be easily performed to get:

B 8 t; p17p27p37p4 (B117)

6 (1= 30, 6)
- Z/ w0 1/ W 2/ e BB+ Bros + Babst?) (i + B & Bt

which matches the result of [99].

However, we now proceed in a different direction. According to the result we
prove below, eq. (B.125)), we have:

B(s, t; pt, p3, p3, P1) (B.118)
d (1 - ZieS’ BZ)
B Z/ 4 / 4 / dﬁg (818203 + B153s + B2f3p3) (B1p3 + Bot + B3p3)

where S’ is any non-empty set of {51, B2, 53}

For simplicity of notation, we define:

2 2
S t
Picking the set S’ to be S = {2}, we get:
B(s, t; pY, 3, p3, p1) = (B.120)

B Zg /0 4h /0 4Ps (Braz + B163 + Bsa1) (1 4 B1bg + B3bs)’

which is similar to the parametric representation of the three-mass triangle of [65].
The calculation can now be finished in the same as was done for the three-mass

triangle. Integrating over fi:

B(s,t;p?,pg,pi,pi) - (B.121)
_ iby dﬂ log(Bs + as) — log b + log(1 + 6%64) — log(B3a1)
st Jo ’ (B3bs + Z)(Bsbs + Z)

Changing variables to ag = byf3, we get:

B(s,t;p}, p3, p3,p5) = (B.122)
e 1
"5t o Dt D)

<log(a3 +U) —logV +log(1 + a3) — log a3>.
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B.4. Boxes

We have now brought the calculation of the four-mass box to exactly the same
form as the three-mass triangle, with the identification z — Z and z — Z. We

can thus write

P2
B(s, 601, 05,05,03:0) = ————=P2(2), (B.123)

where P, is defined in eq. (B.52)). This result agrees with [99].
The symbol is

S [B(s, t;p},p3, 03, p3)] =

e 2T e (S A TO R ) EA B CREY)

As for the three-mass triangle, the first entry condition is manifest.

Proof of the result used in eq. (B.118):

We show that for a function F'({z;}) of homogeneity m the following result
holds:

[= f[ (/OOO d;@)a (1 - zn:x> F({z;}) = (B.125)

n+m
i=1 W0 ieS i€X/S
where S is any non-empty set of X = {xy,...,z,}.
When m = —n, this becomes:
H (/ dxi) <1 — Zaa) ({x:}) H (/ dxi) <1 — Zaa) ({x:})
i=1 0 i=1 icS

(B.126)
The Cheng-Wu theorem is a particular case of this result (at least in the way it
is presented in the book [148] ; unfortunately, we couldn’t find Cheng and Wu'’s

original formulation to see how it is presented there).

To prove this result, we define n as the sum of the elements of S. Without
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loss of generality, we have

J
n:in, Jj<n, (B.127)

We define n — 1 new variables to rescale all the integration variables except one
(we pick z;) such that
T; = NI, i ] (B.128)

Then
j—1
=1 Z;UZ_T]< 3:) = naj, (B.129)

where in the last equality we introduced a new variable z’; as

w=1-) al. (B.130)

Using these definitions,
I= <ﬁ /Oo dm,») (1 —Zx) ({z:}) (B.131)
(T a) [ (- (1 30 ) Yo (1 o)t

where the first delta function comes from

(5 s((e ).

and the second delta function (along with the integral over :1:;) implements the

definition of 27,

/Oooda:ﬂ(:ﬂ;—(l—ix;))Z/Oooda:;cS(l—Zj:a;;):L (B.133)

=1
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B.4. Boxes

If F({x;}) is homogeneous of degree m, then
F({z:}) = F({nzi}) = n"F({=}}), (B.134)

and we have

- (1}/5@)

/OO nlflf_mé (1 —7 (1 + Z x>> 5 (1 - ip) F({}}). (B.135)

It is now straightforward to do the n integral and get:

I= (ﬁ /000 dmé) (1 + i xé) ) (1 — 235;) F({z}}), (B.136)

i=j+1

which proves our result.
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Appendix C

Cuts of the three-mass

three-point ladder

C.1 Explicit results for the single unitarity cuts

We present the results we obtained for the single unitarity cuts. These results

*

were computed and numerically checked in the region where z = z*. For cut
[45] the hypergeometric function was expanded using HypExp [100]. We write
everything in terms of multiple polylogarithms as defined in Section [2.2]to simplify

the comparison between different terms.

C.1.1 Unitarity cuts in the p3 channel

Cuatys (12), 55, T2 (P71, P, P3) = (C.1)
Z‘CQ (pQ)—Q—Ze o0 . 1 B . Lo )

T - Z)F(l . 2)(2 - 2) 2. ¢ [(_27”) fi (5,2) + (=2mi)? i )(Z’Z)] ’

k=-2

(_271) >\ — z
f[m] (272)—10g§,

—2,2 _
fio?(z2) =0,

- 11 11 11 11
o (22 = -G (o,—;:) +@ (0,;-) +log 2 {G <_;:) e (:;_”
z Z z z z A 7 5



Appendix C. Cuts of the three-mass three-point ladder

~ 2log|(1 — 2)(1 ~ )} log .

1 z
(-1,2) _
f[lz] (Z,Z) - 5 log;,

111 11 1 z
(0,1) =\ I B -, _ 3z
f[12] (2,2) = =2 [G (O’z’z’z> G(O,Z, : )] D log e

1 11 s
+§10g—_G(;,;)+G 6
+ 21og?[(1 — 2)(1 — 2)] logé - %llog2(22) log
z
1 z 11 1 1]
1) = plon = |6 (5i2) 46 (52| - el - )1 - 2o
11 11 1
—1 |:G <O,—,:) —G(O,j,_>:| -1 g2i (C2>
2 z Z Z z 2 Z
CUtpg,[45],RZTL(p%7P%Jﬁ) = (C.3)
— ZC%‘ (p%)—Q—Qe i k |:(_2 ) f(k,l)( —) + (_2 -)2 f(k,Q)( —):|
~ a0 -90-79 € i) fug (2, % )" fug (2, 2) ]

k=-2
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C.1. Explicit results for the single unitarity cuts

) = =5 6 (050 ) = 6 (0.52) | out(a - )0 - o

Loz o (52) o (52)] - b o
2 z z Z z oz 2 z

CUtpg,[135],RZTL(p%apgapg) = (C.5)
'iCQ <p2)—2—26 0 ) 1 B ) %2 B
T - Z)F(l . 2)(z—2) > ¢ [(_27”) fi (2:2) + (—2”2)2f[(1551)(z’z)] ’

k=-1

f(_Q’l)(z zZ)=— logi,
z

[135]

2,2
f[(135] )( s )_0

" 11 11 11 11
fiwj (29 =G (0’_; _) ¢ (0’ - ) log - [G (‘; —) +G (—; ‘)}

_ z 1 z ~
+ 2log[(1 — 2)(1 — 2)]log - + 3 log = log(zz),
z z

Fo?(z,2) =0,

[135]

01, - 11 111
f[135]< )_2[G(07;7§7%)_G(07§7 7;

LI [G (1; i) e (1 1)} ~ 2[Lia(2) — Lin(9)] log(=2)

2 z z Z

|
DO
—_
O
0]
—
—_
|
I
N—
YamS
—
|
N
Pt
— |
Q
VRS
uO
Q| =
IR
W = SN
|
Q
VR
VO
| =
IS
~_
—_

1 11\
— 5 lOg(ZZ) |:G (0, Z, %> G (0,

— 2log?[(1 — 2)(1 — )] log Z log[(1 — 2)(1 — )] log(2%) 1og§

—~
—_
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Appendix C. Cuts of the three-mass three-point ladder

3
- §[L12( ) + Liz(z)]log — — - log"(22) log
z
f[103§ (2,2) = —10g2 (C.6)
CUtpg,[234],R*ATL<p%7pgapg) = (C.7)
iR &

T 1-2)1-2)(z—2) kZ—:1 e [(_27”) f[g;’i})(z,z) + (—2mi)? f[({?,’if(z, 5)] ;

—2,2 _
f[(234] )(Z»Z) =0,

- 11 11 11 11
faien = e (0.5:1) ~e (0] ,—) o [6 (L) e (1))

1
+ 2log[(1 — 2)(1 — 2)] log P log - - log(22),
z

1.1
P z' 2z
1 11 INT 1, 42
+ §log(zz) [G <O, = G (0, ; z>] + 3 log E
3
+ 2[Lia(2) — Lia(9)] low(:3) — 210g?[(1 — 2)(1 — 2)]log >
1, o, z _ _ z w2
+ ) log®(22) log E +log[(1 — 2)(1 — 2)] log(zZ) log B + 3 log .
(0,2) 1 z
f[234} (Z Z) = 5 10g2 % . (C8)



C.1. Explicit results for the single unitarity cuts

C.1.2 Unitarity cuts in the p3 channel

Cutyz ug),rs Te(PT, P3, P3)
it (p) -

= Tt & (2 ) 2) + (2 £GP (.2

(C.9)

k=—1

f[ig]l’l)(z, %) = —Liy(2) + Lis(2)
—1,2 _
flg 2(z.2) =0,

fi(z2) =G (0, é %; 1) ye (0, é %; 1) — 4[Lig(1 — z) — Lig(1 — 2)]
— 9[Lig(2) — Lia(2)] — 2[Lis(2) + Lia(2)] log

1—2
1 z 1—2 1 z
— —log Zlog®? ——= — = log?[(1 — 2)(1 — 2)] log =

0g - log” — 20g[( z)(1 - 2)] 08—

2
1-— 272 1-—
~ log[(1 = 2)(1 - 2)] log(22) log ; AT P i

z 3 1—2z’
+ [Liz(z) — Lig(2)] log(2Z2)

1, .
fiag (2:2) = 5[Lia(z) — Lia(2)]. (C.10)
Cutys 136,75, TL (07, 3. 13) (C.11)

iR

1—2)(1-2)(z—2) > ¢ [(—27”') fie (2. %) + (—2mi)? f[g’ggf(z,g)] ,

k=-1

f[(lgéjl)(zv z) = Lis(z) — Liy(2),
—1,2 _
f[(136} )(Zv Z) =0,

O, =y _ _ 11 11 (1 — 2) — Lis(1 — =
f[136] (Z,Z) = -G (07 Z, 27 ]-> + G (07 27 Z’ 1 +4[L13(1 Z) L13(1 Z)]

+5[Lis(2) — Lig(2)] + 2[Lis(2) + Lis(2)] log 1 =
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—log log? %%——log (1—2)(1—2)] logg
+log[(1 — 2)(1 — 2)] log(zZ) log 1o - 27r2 log - ° :
1-z 3 1-2
— 2[Lis(z) — Lis(2)] log(22)
fal(z.2) =0, (C.12)

C.2 Computation and explicit results for double

unitarity cuts

We briefly outline our approach to the calculation of the double unitarity cuts
of fig. and fig. [3.13] We then give explicit results for these integrals, written
in terms of multiple polylogarithms to simplify the comparison between different

terms.

C.2.1 Calculation of double unitarity cuts

Cut [456], R, fig.

Because cut [45] factorizes the two loop integrations, this cut is just the product
of an uncut one-loop triangle with one mass (p3) and the double cut of a three-

mass triangle, with masses p?, p3 and p3, in the channels p? and p3.

CUt[456] R1’3TL (pi pgv p?’)) =

YEE€
= —iS2n) / 42818 (K2) 6 ((ps — k1)%) 8 ((p1 + k0)?) T(52)
. cre’?* ——e——eiTreZ_e zZ)" ¢
= —47T2262FI£1—_6)( %) 2=2 31 26 (,2—(—2)1)25 (013)

Cut [1256], R;®, fig. [3.12b¢

The integrand has a simple pole inside the integration region. We can still
make sense of the integral by keeping track of the i0 prescription associated to

the propagators and the invariants, and we obtain

2 2 2
CUt[1256],R23TL(p17p2ap3) =

e ae,, 0(KD) 0 ((p1 = F1)?) 2
— 2 2 4 2e 1 2T 2
= (2m) /d S (v, (s + £)°)
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C.2. Computation and explicit results for double unitarity cuts

N =L (Do B X
w2 el'(1 — 2¢) (ps+ k)?2 =140  (p%+i0) — ((ps + k)% —i0)
2’7EE
a2, € 2\—2—2¢, —¢
- 47T /LEF(]_—2€) (pl) u3

/1 de T (l—x)°
o (uzst+z—1—2(2—2)—i0)(z —1—x(z—2)—1i0)’

(C.14)

where in each line we were careful to keep the +:0 prescription associated with
propagators and invariants. The integrand in the last line has poles at
(1—2)(—2) z—1

<1 and T = —
z—Z z—Z

0<z,= <0.

While the location of the second pole lies outside the integration region, the first
singularity lies inside, and we must hence split the integral into its principle value
and imaginary part,

I 1
im
0—0 g % 20

_pv (2) T+ ird(a).

which is valid in a distribution sense. We then obtain
/ld:c x_e(_l — ?)_6 -
o (us+z—1—2(2—2)—i0)(z —1—2(z— 2))

B 1 N xiﬁ(l—x)ie
_PV/O d (us+2—1—a(z—2))(z—1—2x(z — 2))

) 1 v (l-2) —1—z(z—2Z
+@7T/0 dx(2_1_$<2_5))5(u3+z 1 ( ). (C.15)

Both integrals are finite and can easily be performed order by order in € in terms

of polylogarithms.

Cut [1236], R,’, fig. [3.12ct

Using the strategy outlined in Section [3.6.4] we immediately obtain

CUt[1236},R23TL(p§’p;ﬁ%) = (C.16)
. e’YEe 9
=i (27T>2/014 k6 (k) 6 ((ps — k)?) Cuty,—r2B" (93, (p1 — k) 03, 03) -
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Appendix C. Cuts of the three-mass three-point ladder

Inserting the analytic expression for the cut box (see appendix [B.4) and
parametrizing the remaining cut integration, we obtain an integral with an
endpoint singularity. After subtraction of the singularity, all the integrals are

finite and can be expanded under the integration sign. We obtain

2 2 2
CUt[1236],RZSTL (pl » P2, p3) -

—Z

e et [ U
« E—l—log <1—#> —l—log(l—z—i—x(z—,?))] RNTeRTs

The remaining integral is easy to perform.

Cut [2346], R}, fig. [3.12d:

Using the routing of the loop momenta shown in fig. we compute this
cut by integrating over the cut of a two-mass triangle. However, when using the
result for the cut triangle, we need to correct for the fact that the vertex attached
to propagators 2, 3 and 5 has a different color, compared to the usual cut triangle.
Note also that it is convenient to introduce the variable y defined in eq. .
We obtain

Cut [2346], R%? Ti(pi, p3.p3) =

(e —ae;, 0 (k) 0 ((p2 + K1)?) 2
= —i (er) (27T)2/d4 “ki 1(p3 T ek T (#5: (ps — k1)")
o,  €PVEC 2\—2—2¢, —1-2 ! - -
= —4rx Zm(]%) Us /0 dJTJT (1 — [lﬁ')

/0 Ay (1 = )6 (us + y(=(1 — 2) — 2z — 2)))
(p%)—2—2Eu3—1—262—26(_2)—26

/ g vl —a) ! . (C.18)

z—x(z =2t (z — 22 —x(2 — 2))73¢

The integral has an endpoint singularity that needs to be subtracted before
expansion in € under the integration sign. The y variable is restricted to the

interval [0, 1] because of the #-function of the cut triangle subdiagram. We find
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C.2. Computation and explicit results for double unitarity cuts

it simpler to use the J-function associated with the cut on (ps + k1)? to perform
the y integration, which in turn imposes some limits on the range of integration

of z.

Cut [1356], R,’, fig.

The integral is

Cut[1356},RZ3TL(p§,p§,Pg) = (C.19)
_eTEe 9, 0(KD)O — k)2
T e (2m)° /d4 T ( 12?2(—(1?21)2 2 )CUt(p2+k1)2T (p?'w (P2 + k1)2)

_ —4mietee —2-2¢ = e (1—a) (=21 —-2)—2(z—2)) "
(1 —2e) (1) /0 de (I1—2z4z(z—2)) ‘

The restriction on the integration range of x is imposed by the #-function of the
cut triangle subdiagram. After subtracting the singularity, the integral can be

performed oder by order in e.

Cut [456], R}, fig.

The calculation of this cut in region RZZ is done in exactly the same way as
in region Rf. However, we write the result differently so that we are away from

the branch cuts in this region:

Cut[456],RZ2TL (pi p%v pg,) =

e / 42815 (12) 8 ((ps — k1)%) 8 (91 + k0)?) T(52)
_ 2. Cre’” 2\—2-2¢ ime o1o2e (22)7°
—47 @m(pl) e™((z—1)(1 —2)) m (C.20)

Cut [2346], R}, fig. 3.13b

The calculation of this cut in RE is simpler than in region RZB. We get

Cut[2346},RZQTL(p%apg»pg) = (C.21)
(e e, 0(K) 0 ((p2 — k1)?) 2
- 2 2/d425k Cut 2T (p3, (p1 + k
i(5=) e =) Ot T (3 01+ 1))
2ee = (—z—z(z—2))1
— A2 C 22265/ dez—<(1 —
e L e = e P
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Appendix C. Cuts of the three-mass three-point ladder

After subtraction of the singularity, the integral is easy to perform.

Cut [1356], R,’, fig. 3.13ct

The computation of this cut is very similar to the previous one. We have

CUt[1356},R22TL (P}, p5,15) = (C.22)

[ evEe oe, 0(K2)6 — ky)?
= —1 (ﬂ_2_6> (27‘(‘)2/(14 2 /{21 ( 1)(]92(—(&9;{21)2 1) )Cut(p2+k1)2T (p?)), (pQ + k1)2)

Z(Z_,l)

62’YE€

= 47r2i—(p%)_2_26/0 T da (1 — x)_6(2<z —D—alz-2)7 :

z—1—2z(2—2)

The restriction on the integration range of x is imposed by the #-function of the

cut triangle subdiagram. The endpoint singularity is dealt with as before.

Cut [1236], R}, fig. [3.13d:

This cut is slightly harder to compute in region RZQ than in region RZ?’. We
follow the same technique of integrating over the cut of a two-mass hard box,
although we have to be careful to correct for the different factors of +i between
the subdiagram entering in fig. and a standard cut box that would have
black vertices on one side of the cut and white vertices on the other side. It is
also useful to introduce the y variable defined in eq. , and to integrate over
it with the d-function on propagator (ps + k). The y variable is restricted to the

interval [0, 1] because of the f-function on (p; — k)*:

2 2 2
CUt[lzsﬁ},RfTL(ppr?Ps) =

YE€
=i (2m)? [ QS () 8 (s + K)?) Cut o B0 55 (01— )
1
9. €ECCr o o o ug —e —e
_ - - 1_
S Ve <<z—1><1—z>>1+6/0 dra(1 ~z)

/o1 dyy' (1 —y) %0 (us + y(z — 1 — 2(z — 2)))

1
{g +logy +log (us — (1 —y)) — 10qu]

e’Peep 2)=2-2 us e v (1 —x)°

= 87 iﬁ(ﬂ ((z = 1)(1 = 2))* J, (z =1—x(z —2))t-4
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C.2. Computation and explicit results for double unitarity cuts

(2(z— 1) —x(z—Z))_1_2€ E +log ((z=1)(1—2)) —log (z — 1 — z(z — 2))

log(22) + log (ZZ Gl ks G Z)ﬂ (C.23)

z—1—2(z2—2)

The restriction on the integration range of x is imposed when integrating over y.

The endpoint singularity is dealt with as before.

C.2.2 Double unitarity cuts in the p? and p3 channels in
region RZ?’

In this section we present the analytic results for all the nonvanishing cuts in

the p? and p? channels in region R)’, where Z < 0 < z < 1.

Cutyysg pro T (pT, 13, P3) = (C.24)
9 9\ —2-2 Ny 00
B (1-2)(1-2)(z—2) kz ¢ f[456],RZ3 (2,2) + (=2mi) f[456],R23 (z,2)| ,

(72’2) —
f[456],R23 =1,
(_273) —
f [456],R° 0,
(-12) o B g .
f[456],R23 = 2log (2 — 2) — 2log (1 — 2) (1 — 2)] — log (—22) ,
1
-3 _ 1
f [456,R> — 97
708 L 10g (2 — 5)+ 2log (1 — 2) (1 — 2)] + log (=) —
[456],RL> 9 g g g 5
(0,3) - _ I o, 1 .
fuse,rre =108 (1 =2) (1 =2)] —log (2 = 2) + 5 log (=22) . (C.25)
Cut[lQBG],RZSTL(pipgaP%) - (026)

_ I @) 2 { Pl s (2:2) + (=2m8) f00 11a(2,2) |
2

(1=2)(1-2)(z—2) = [1236], R)® [1236], RL®
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(_272) .
f[1236},R23 =1,

(7273) _
f[1236},R23 =0,

1,2 B )
f[(1236},)R23 =2log(z—2z) —2log[(1—2)(1—2)] —2log z,

(_173)
f 1,3 — 0 5

[1236],R 2

. . z X B - )

f[(loégé},zzy = 2Liy(2) — 2Li (E) — 2Liy (2) + 2log® (1 — 2) + 2log? (z — 2)

+4log(l —z)log (1 —z) —4log(l — z)log (2 — 2) + 4log zlog (1 — 2)
—4log zlog (z — 2) — 4log (1 — 2)log (z — 2) + 2log?(1 — 2) + 2log” 2

2, - 272
—log” (—Z) + 4log zlog(1 — z) — =
(0,3) _
f[1236},R23 =0. (C.27)
Cut g, 10 Te(PF, 13, 15) = (C.28)

_ iC% (p%)—2_25(—271'2'>2 i 6k {f(k,Q) (z, 2) + (—27Ti) f(k73) (Zv 2) ’
1

(1-2)1=-2)(z—2) = [1256], R * [1256], R%®

~1,2 _
(-13 1

f [1256,R%® ~ 9

f(0,2) — 91 <E> + 2Ly (2) — 2Lia(2) + 3 log? (%) — 2log zlog (1 — %)
[1256), R%? 2\z 2 2 9 8 &

+ 2log zlog (z — z) — log zlog (—Zz) + 2log(1 — z) log (—2)

1
+2log (1 —2)log(—2) —2log (z — z) log (—Z%) — 5 log® 2
2

—2log(1l — 2)log z + %,

1
(0,3) _ = _ _
f[1256]’R23 =log(z—2) —log[(1—2)(1—2)] — 5 log (—z2) . (C.29)
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CUt[1356],R23TL(p%J P3.p3) = (C.30)

_ i O ) {f““) (202) + (=270 [l s (2:2) |

(1—2)(1—2)(z— %) = [1356], R [1356],R .

(—2,2) B
f1356]R13 =-1

(=2,3) _
f1356] R® 0,

Y

f (1326?31,3 =2log[(1 — 2)(1 — 2)] — 2log (2 — 2) + 2log (—2) + log(2),

(7173) i
f[1356] R® 0,

(0,2) T E . e 2 oy 2 -
f1356]R13— Liy (2> 3Lis (2) — 2log” (1 — 2) — 2log™ (2 — %)
—4log(l — z)log (1 — 2z) + 4log(l — z)log (z — 2)
—2log zlog (1 — 2) +2logzlog (2 — z) + 4log (1 — 2) log (z — 2)

—log zlog (—z) — 4log (1 — z) log (—z) + 4log (z — 2) log (—2)
- glog2( z) — 4log(1 — 2)log (—=2) — 2log?*(1 — 2)

—log® z — 2log zlog(1 — 2) +

6
(0,3) —
f[1356],R23 =0 (C.31)
Cut[2346]7R23TL(p%’pg’pg) = (C.32)

(1—-2)1-2)(z—2z (2346, R * [2346], R

= RO 57 o [ )+ 2m S 2]
k=—2

(-2,2) o
f [2346],R° 1,

(7273) I
f [2346],R° 0,

f[(2_3i76?,)R23 =2log[(1 —2)(1 —2)] —2log (2 — 2) +1og z,
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(_173) —

f[2346],RZ3 =0,

(0,2) 1 (* oy 20 oy N I T
f[2346],R23 = Li <5> +3Liz (2) — 2log™ (1 — 2) — 2log” (2 — 2) + 210g (—2)

—4log(l —2z)log (1 — 2) +4log(l — 2)log (2 — 2) — élogQZ
+ 2log zlog (2 — 2) + 4log (1 — 2)log (2 — z) — 2log?(1 — 2)
—2logzlog (1 —2) — 2log zlog(1 — z) + %ﬁz,
FO8 - =0, (C.33)

[2346],R%?

C.2.3 Double unitarity cuts in the p? and p3 channels in

. 1,2
region R,

In this section we present the analytic results for all the nonvanishing cuts in

the p? and p2 channels in region RZQ, where 0 < z2 < 1 < z.

CUt[456],Rg2TL<p%apgap§) (C.34)
-2 2\ —2—2¢ -\ 2 e’}
et (pi) (—2mi) k| pk2) . (k.3)
S (1-2)(1-2)(2—2) Z ¢ f[456],322(z’z) +(= 27TZ)f456 (Z A
k=—2
(_212) J—
f [456],R%> L,
(_273) -
f[456},R1’2 =0,
fé%f)w =2log (z — z) — 2log [(z — 1) (1 — 2)] — log (22) ,
(-13)
f [456],R%> 0,

1
f[(f;f 12 = 2log? (1 — 2) + 2log” (z—z)+§log22+4log(z_1)10g(1_5)

—4log(z — 1)log (z — z) + 2log(z — 1) log z + 2log z log (1 — %)
—2logzlog(z — z) —4log (1 — 2)log (z — 2) + log zlog Z

1
—2log (z — 2)log Z 4 21log*(z — 1) +§10g22+210g210g(z— 1)

+2log (1 —2)log z,
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C.2. Computation and explicit results for double unitarity cuts

(0,3) _
f[456],R22 =0. (C.35)
Cut[1236],R22TL(p%7pgapg) = (C.36)

_id (p?)‘z‘ze(—%i)?) i e [f(’“’z) (2,2) + (=2mi) f50 1 2(2,2)|
k=-2

(1-2)1-2)(z-% [1236), R " [1236], R}

Tz =1

f [(1;:35,)1%22 =0,

f[(@;é?gy =2log(z—2) —2logl(z—1)(1 —2)] —2log z,

Ly =0

! [(105251,3;2 = 2Liy(1 — 2) — 2Liy (2) — 2Li (g) +2log? (1 — z) + 2log? (z — 2)

+4log(z —1)log (1 — 2) —4log(z — 1) log (2 — 2) + 4log(z — 1) log Z
—4log (1 —2)log(z—2)+4log (1l —2)logz —4log(z — z)logz
—log® z 4 2log zlog(z — 1) + 2log® Z + 21og*(z — 1),

(0,3) _
f[1236],RZ2 =0. (C.37)
Cut[1356]7R22TL(p%apgapg) = (C.38)

_ iclg (p%)—Q—QG(—Qm')Q i Ek [f(kﬂ) (z,2) + (—2mi) f(k’g) (2,2)] ,
2

(1-2)1-2)(z—%2) [1356], R [1356], R %2
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f( 2’3) 1,2 207
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. . (7 _ _ _
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—4log(z —1)log (1 — z) + 4log(z — 1) log (2 — z) — 4log(z — 1) log z
—2logzlog (1 —2) + 2log zlog (z — 2) + 4log (1 — z)log (z — Z)
1 2
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f[1356},322 =0. (C.39)
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(_173) J—
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Appendix D

A brief comment on non-generic

internal masses

Throughout this thesis, we have assumed all internal masses to be distinct.
However, diagrams with equal internal masses are particularly interesting in
phenomenological applications, so we now show how to obtain relations for these
cases from the ones we established in the generic case. If two propagators have the
same mass m, then it is no longer correct that the cut on one of the propagator of

mass m will reproduce the full discontinuity of the function on the m? variable,
so that relations such as eq. (3.11]) and eq. (3.17) must be modified.

If a Feynman diagram has more than one propagator with mass m?, it is
the sum of all the single cuts of propagators of mass m? that is related to the
m?2-discontinuity of the integral. It is thus sufficient to consider the case where
all internal masses are distinct: to get the discontinuity in the degenerate case
we sum the discontinuities (or cuts, which are well defined for generic masses)
associated with each of the masses that we want to make equal, and then take

the equal mass limit.

Let us give an example. Consider the diagram of section in the limit
m2, = mi;, T(p?,0,0;m? 0,m?). This diagram is finite in four dimensions, and

it is given by

T(p%,o, O;m270;m2> = élOgZ <ﬁ> + O(e), (D.1)
1
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where we defined the usual quantity

2
721/1—47;—2. (D.2)
1

For concreteness we work in the region where p? < 0 and m? > 0, in which case
v > 1.

The result of the cut in p? is computed in the region p? > 4m? > 0 where

v < 1 and we get

4 1
Cutyg [TG2,0,0m,0.m%)] = 2 hog (157, (D3)

The discontinuity in m? can be computed directly from eq. (D.1)). The result is

4 1
Discp2 [T'(pi,0,0;m? 0,m?)] = —Zlog (14_—7) . (D.4)
1 -7
Let us now see how these results are related to the case with generic masses,
i.e. m3, #m?;. In the equal mass limit,
-7y

w, — T and w, — T . (D5)

It is easy to see that eq. (D.1)) and eq. (D.3|) are obtained from eq. (B.20]) and
eq. (B.22) under this limit. More interestingly, we can verify from eq. (D.4) above

and the cuts of massive propagators given in eq. (B.23)) and eq. (B.24]) that

Disc,,,2 [T(p%,O,O;m2,O,m2)} = (D.6)
= [Cutm%T(p%, 0,0;m2,,0,mls) + Cutm%T(p%, 0,0;m2,,0, m%)} P
12—
miz=m?

which illustrates the point we made above.

We close with a comment on divergences. When combining single cuts to take
the degenerate mass limit, one should first add all relevant single-propagator cuts
and then take the limit. Indeed, individual terms in the sum might become
divergent in this limit, but these divergences are of course not meaningful and

cancel in the sum. As an example, consider the diagram of section in the
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limit m%, = m3,, T(p?,0,0;m? m? 0). The two cuts in internal masses are given

in egs. (B.16)) and (B.17) and they are divergent for m2, = m3,. However, their

sum, which corresponds to the m?-discontinuity of T'(p?,0,0;m? m?,0), is finite,
as it should be.
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