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Abstract. Hyperon-nucleon and hyperon-hyperon interactions are important in studying
the properties of hypernuclei in hypernuclear physics. However, unlike the nucleons
which are quite stable, hyperons are unstable so that the direct scattering experiments are
difficult, which leads to the large uncertainty in the phenomenological determination of
hyperon potentials. In this talk, we use the gauge configurations generated at the (almost)
physical point (mπ = 146 MeV) on a huge spatial volume (8.1fm)4 to present our latest
result on the hyperon-hyperon potentials in S = −3 sector (ΞΣ single channel and ΞΣ-
ΞΛ coupled channel) from the Nambu-Bethe-Salpeter wave functions based on the HAL
QCD method with improved statistics.

1 Introduction

Experimental determination of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions is one
of the most important subjects of J-PARC. These hyperon interactions are important in studying the
structure of hyper nuclei. They are also important in studying the structure of the neutron stars through
the equation of states at high density. However, hyperons are too unstable to be used in a direct
scattering experiment so that the phenomenological determination of hyperon potentials involves large
uncertainty. Since the uncertainty increases as the number of strange quarks increases, they mainly
focus on S = −1 and S = −2 sectors in J-PARC. In contrast, lattice QCD (LQCD) determination of
these potentials which was recently developed by HAL QCD Collaboration [1, 2, 3, 4, 5] becomes
easier for the increasing number of strange quarks. In this talk, we present our results of hyperon-
hyperon potentials for S = −3 sector (ΞΣ(I=3/2) single channel and ΞΛ-ΞΣ(I=1/2) coupled channel)
with improved statistics by using 2+1 flavor LQCD gauge configurations generated by employing
almost the physical pion mass mπ � 146 MeV by using K computer at AICS [6].
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2 Lattice QCD setup

We use the 2+1 flavor gauge configurations at almost the physical point generated on 964 lattice
where the RG improved (Iwasaki) gauge action and the nonperturbatively O(a)-improved Wilson
quark (clover) action are employed at β = 1.82, (κud, κs) = (0.126117, 0.12790) with cSW = 1.11 and
the 6-APE stout smeared links with the smearing parameter ρ = 0.1 [6]. The setup leads to the lattice
spacing a−1 � 2.3 GeV (a � 0.085 fm), the spatial extension L = 96a � 8.1 fm, mπ � 146 MeV
and mK � 525 MeV. 400 gauge configurations are used for the measurement of hyperon potentials
with the time-dependent HAL QCD method [5], where each gauge configuration is separated by 5
HMC trajectories. Quark propagators are generated with a wall source accepting the Coulomb gauge
fixing, where we impose the periodic boundary condition on the spatial directions, whereas Dirichlet
boundary condition is imposed on the temporal direction on the time slice t = t1 which is separated
from the wall source as t1 − t0 = 48. We use 48 source points for the measurement of the hyperon
potentials. The charge conjugation and time reversal symmetries are used to combine the forward and
backward propagation to double the statistics of two-point and four-point hyperon correlators, while
the hypercubic symmetry of 964 lattice is used to quadruple the statistics. Statistical data are averaged
in the bin of the size 20, which is equivalent to 100 HMC trajectories. Jackknife prescription is used
to estimate the statistical errors.

3 Single baryon sector

We show the effective mass plots of the temporal two-point correlators of Λ, Σ and Ξ in Fig. 1 both
for the point-sink and wall-source (point-wall) and for the wall-sink and wall-source (wall-wall).
To obtain the mass m and the overlap parameters aPW and aWW for the point-wall and wall-wall
correlators, we perform single exponential fit analysis of the point-wall and the wall-wall temporal
two-point correlators by employing the functional form

CPW(t) � aPW exp(−mt), CWW(t) � aWW exp(−mt). (1)

The overlap parameters are used to obtain the ΞΛ-ΞΣ(I=1/2) coupled channel potentials. They con-
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Figure 1. The effective mass plots of Λ, Σ and Ξ for (WW) wall-wall and (PW) point-wall (lhs) and those for
point-wall correlators (rhs) for comparison.

tribute to the ΞΛ-ΞΣ coupled channel potential in the combination
√

ZΛ/ZΣ. Here, ZΛ and ZΣ denote
the Z factors of local composite hyperon operators for Λ and Σ hyperons, respectively, which appear
in the limit ψ(x) → Z1/2ψout(x) as x0 → +∞ where ψ(x) and ψout(x) denote local composite hyperon
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Figure 1. The effective mass plots of Λ, Σ and Ξ for (WW) wall-wall and (PW) point-wall (lhs) and those for
point-wall correlators (rhs) for comparison.

tribute to the ΞΛ-ΞΣ coupled channel potential in the combination
√

ZΛ/ZΣ. Here, ZΛ and ZΣ denote
the Z factors of local composite hyperon operators for Λ and Σ hyperons, respectively, which appear
in the limit ψ(x) → Z1/2ψout(x) as x0 → +∞ where ψ(x) and ψout(x) denote local composite hyperon

operators and the corresponding asymptotic fields. For point-wall correlators, we identify the plateau
regions as 15-20 for Λ and Σ while 20-25 for Ξ. In contrast, the wall-wall correlators are too noisy to
identify the plateau regions so that we examine the two regions (i) 10-15 and (ii) 15-20. The fit with
10-15 leads to

√
ZΛ/ZΣ = 1.01(3), whereas the fit with 15-20 leads to

√
ZΛ/ZΣ = 1.02(6). Since the

results do not lead to a significant change, we adopt the result for 10-15. The results for the hyperon
masses are given as follows: mΛ = 1.139(2) GeV, mΣ = 1.222(2) GeV and mΞ = 1.356(2) GeV.

4 ΞΣ (I=3/2) single channel potentials

In order to obtain the ΞΣ(I=3/2) single channel potential, we use the time-dependent HAL QCD
method which allows us to extract the potential without requiring the ground state saturation [5]. We
define the R-correlator for ΞΣ as

R(�x − �y, t;JΞΣ) ≡
�
0
���T [Ξ(�x, t)Σ(�y, t) · JΞΣ(t = 0)

]��� 0
�
/e−(mΞ+mΣ)t, (2)

where Ξ(x) and Σ(y) denote local composite fields for Ξ and Σ, and JΞΣ denotes the wall source for
ΞΣ. The R-correlator Eq. (2) satisfies the time-dependent Schrödinger-like equation for unequal mass
system which involves a fourth time-derivative [7]. The ΞΣ(I=3/2) single channel potential should
be obtained from this equation. However, since the numerical evaluation of fourth time-derivative
is unstable so far, we use its non-relativistic approximation. By keeping only the leading order of
derivative expansion of the non-local potential, the time-dependent Schrödinger-like equation is given
as (

− ∂
∂t
+
∇2

2µ

)
RΞΣ(�r, t) = VΞΣ(�r)RΞΣ(�r, t), (3)

where µ ≡ 1/(1/mΞ + 1/mΣ) denotes the reduced mass.
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Figure 2. The spin-singlet central potential for ΞΣ(I=3/2) single channel obtained from the t region t = 10 − 16
(lhs) together with the spin-singlet central potential for NN (I=1) from t = 8 − 10 (rhs) for comparison.

We show the spin-singlet central potential for ΞΣ(I=3/2) single channel in Fig. 2(lhs), where the
potentials obtained in the t region t = 10 − 16 are plotted. Since t-dependence is seen to be weak, we
regard these potentials to converge. We see that the there is a repulsive core which is surrounded by
an attractive pocket. In this way, the qualitative behavior is quite similar to the central NN potential.
This is natural because, in the flavor SU(3) limit, ΞΣ(I=3/2) belongs to flavor irrep. 27 to which
NN(I=1) also belongs (dineutron channel). To see the size of the flavor SU(3) breaking, we show
the spin-singlet NN potential for I=1 sector in Fig. 2 for comparison. (For detail of NN results, see
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Figure 3. The spin-triplet ΞΣ(I=3/2) potential together with the spin-triplet NN potentials (I=0) for comparison.
(a) ΞΣ central potential, (b) ΞΣ tensor potential, (c) NN central potential and (d) NN tensor potential.

Ref.[8].) We see that ΞΣ potential has a weaker repulsive core. However, the statistical noise of NN
potential is too large to compare the attraction for middle to long distance.

The spin-triplet central and tensor potentials for ΞΣ(I=3/2) single channel are shown in Fig. 3(a)
and (b). These potentials are obtained in the t region t = 10− 16. Since the t dependence is seen to be
weak again, we regard them to converge. We see that qualitative behaviors of these ΞΣ potentials are
similar to those of NN. (We also show the spin-triplet central and tensor potentials for NN (I=0) in
Fig. 3(c) and (d) for comparison.) This is natural because, in the flavor SU(3) limit, ΞΣ(I=3/2) belongs
to flavor irrep. 10∗ to which NN(I=0) also belongs (deuteron channel). However, quantitatively, we
see that there are some flavor SU(3) breaking effects, i.e., ΞΣ has a weaker repulsive core in the central
potential and a weaker tensor force.

We use these ΞΣ(I=3/2) single channel potentials to solve Schrödinger equation for the scattering
phase shift. Fig. 4(a) shows the scattering phase shift of ΞΣ(I=3/2) for 1S 0 channel. We see that the
interaction is attractive but that it is not strong enough to generate a bound state. Thus the qualitative
behavior is quite similar to NN case. Fig. 4(b),(c) and (d) show the scattering phase shifts and the
mixing parameter of ΞΣ(I=3/2) for 3S 1 −3 D1 channel. We see that the interaction is attractive but
the strength is not strong enough to generate a bound state. Therefore, the qualitative behaviors are
similar to NN except for the existence of the bound state (deuteron).

We make a comment on the t region used to calculate these potentials. In obtaining these ΞΣ
potentials, we replace the exponential factor e−(mΞ+mΣ)t of the R-correlator Eq. (2) by a product of
temporal two point correlators (point-wall) of Ξ and Σ. We do this to expect a cancellation of the
correlated statistical noises. Therefore, although the t dependence of these potentials are small, t
should be large enough to achieve the ground state saturations of the temporal two-point correlators
of Ξ and Σ, i.e, t<∼ 20.
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Figure 3. The spin-triplet ΞΣ(I=3/2) potential together with the spin-triplet NN potentials (I=0) for comparison.
(a) ΞΣ central potential, (b) ΞΣ tensor potential, (c) NN central potential and (d) NN tensor potential.
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Figure 4. ΞΣ(I=3/2) scattering phase shifts from t = 11−15. (a) The s-wave phase shift δ0(E) for 1S 0 channel, (b)
s-wave phase shift δ̄0(E) for 3S 1-3D1 channel, (c) d-wave phase shift δ̄2(E) for 3S 1-3D1 channel and (d) mixing
parameter ε̄1(E) for 3S 1 −3 D1 channel.

5 ΞΛ-ΞΣ(I=1/2) coupled channel sector

We use a coupled channel extension of the time-dependent Schrödinger-like equation to obtain the
ΞΛ-ΞΣ(I=1/2) coupled channel potentials. To use this equation, we define the R-correlators as

RΞΛ(�x − �y, t;J) ≡
�
0
���T [Ξ(�x, t)Λ(�y, t) · J(t = 0)

]��� 0
�
/e−(mΞ+mΛ)t (4)

RΞΣ(�x − �y, t;J) ≡
�
0
���T [Ξ(�x, t)Σ(�y, t) · J(t = 0)

]��� 0
�
/e−(mΞ+mΣ)t, (5)

where Ξ(x), Λ(y) and Σ(y) denote local composite operators for Ξ, Λ and Σ, respectively. J = JΞΛ
and JΞΣ denotes the wall source for ΞΛ and ΞΣ, respectively. The coupled channel extension of the
time-dependent Schrödinger-like equation for unequal mass system involves fourth time-derivative
[7]. However, since the numerical evaluation of fourth time-derivative is still unstable, we use its
non-relativistic approximation as


(
− ∂
∂t +

∇2

2µΞΛ

)
RΞΛ(�r, t;J)(

− ∂
∂t +

∇2

2µΞΣ

)
RΞΣ(�r, t;J)

 =
[

VΞΛ;ΞΛ(�r) ζ0ζ
+t/aVΞΛ;ΞΣ(�r)

ζ−1
0 ζ
−t/aVΞΣ;ΞΛ(�r) VΞΣ;ΞΣ(�r)

]
·
[

RΞΛ(�r, t;J)
RΞΣ(�r, t;J)

]
, (6)

where ζ ≡ e(mΣ−mΛ)a and ζ0 ≡
√

ZΛ/ZΣ. µΞΛ ≡ 1/(1/mΞ + 1/mΛ) and µΞΣ ≡ 1/(1/mΞ + 1/mΣ) denote
the reduced mass for ΞΛ and ΞΣ, respectively. We use Eq. (6) twice by replacing the source by
J = JΞΛ and JΞΣ to obtain these four coupled channel potentials.

Fig. 5 shows the spin-singlet ΞΛ-ΞΣ (I=1/2) coupled channel central potentials obtained from t
region t = 10 − 16. We see that they are quite noisy. t-dependence is mild except for the the long
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Figure 5. The spin-singlet central potentials for ΞΛ-ΞΣ(I=1/2) coupled channel from t = 10−16. (a) VC;ΞΛ,ΞΛ(r),
(b) VC;ΞΛ,ΞΣ(r), (c) VC;ΞΣ,ΞΛ(r) and (d) VC;ΞΣ,ΞΣ(r).

distance behavior of VC;ΞΛ,ΞΣ(r) and VC;ΞΣ,ΞΣ(r). Note that qualitative behaviors of these potentials can
be understood in terms of the flavor SU(3) symmetry, i.e., in the flavor SU(3) limit, these potentials
are expressed as linear combinations of two potentials V27(r) and V8S (r) for the irreps. 27 and 8S
of flavor SU(3) as VΞΛ,ΞΛ(r) = 9

10 V27(r) + 1
10 V8S (r), VΞΛ,ΞΣ(r) = − 3

10 V27(r) + 3
10 V8S (r), VΞΣ,ΞΛ(r) =

− 3
10 V27(r)+ 3

10 V8S (r) and VΞΣ,ΞΣ(r) = 1
10 V27(r)+ 9

10 V8S (r), which explains, in particular, (i) the existence
of an attractive pocket in VC;ΞΛ,ΞΛ(r) and (ii) very strong repulsive core of VC;ΞΣ,ΞΣ(r). (For lattice
QCD results of VC;27(r) and VC;8S (r) in the flavor SU(3) limit, see Ref.[9].)

Fig. 6 and Fig. 7 show the spin triplet ΞΛ-ΞΣ (I=1/2) coupled channel central and tensor potentials
obtained from t region t = 10−16. t dependence is seen to be mild. Their qualitative behaviors can be
understood by the flavor SU(3) symmetry again. As before, in the flavor SU(3) limit, these potentials
are expressed as linear combinations of the two potentials V10(r) and V8A (r) for the flavor SU(3) irreps.
10 and 8A as VΞΛ,ΞΛ(r) = VΞΣ,ΞΣ(r) = 1

2 V10(r)+ 1
2 V8A (r) and VΞΛ,ΞΣ(r) = VΞΣ,ΞΛ(r) = 1

2 V10(r)− 1
2 V8A (r),

which explains, in particular, (i) existence of an attractive pocket for VC;ΞΛ,ΞΛ(r) and VC;ΞΣ,ΞΣ(r), (ii)
weak tensor potentials of ΞΛ-ΞΣ and ΞΣ-ΞΛ.

6 Summary

We have presented our “physical point” lattice QCD results of hyperon-hyperon potentials in S = −3
sector, i.e., ΞΣ(I=3/2) single channel potentials and ΞΛ-ΞΣ(I=1/2) coupled channel potentials, with
improved statistics. We have used the 2+1 flavor QCD gauge configuration at almost the physical
point (mπ � 146 MeV) on the huge spatial volume L � 8.1 fm generated on 964 lattice by K com-
puter at AICS. To obtain these potentials, we have used a non-relativistic approximation of the time-
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QCD results of VC;27(r) and VC;8S (r) in the flavor SU(3) limit, see Ref.[9].)

Fig. 6 and Fig. 7 show the spin triplet ΞΛ-ΞΣ (I=1/2) coupled channel central and tensor potentials
obtained from t region t = 10−16. t dependence is seen to be mild. Their qualitative behaviors can be
understood by the flavor SU(3) symmetry again. As before, in the flavor SU(3) limit, these potentials
are expressed as linear combinations of the two potentials V10(r) and V8A (r) for the flavor SU(3) irreps.
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2 V10(r)+ 1
2 V8A (r) and VΞΛ,ΞΣ(r) = VΞΣ,ΞΛ(r) = 1

2 V10(r)− 1
2 V8A (r),

which explains, in particular, (i) existence of an attractive pocket for VC;ΞΛ,ΞΛ(r) and VC;ΞΣ,ΞΣ(r), (ii)
weak tensor potentials of ΞΛ-ΞΣ and ΞΣ-ΞΛ.

6 Summary

We have presented our “physical point” lattice QCD results of hyperon-hyperon potentials in S = −3
sector, i.e., ΞΣ(I=3/2) single channel potentials and ΞΛ-ΞΣ(I=1/2) coupled channel potentials, with
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Figure 6. The spin-triplet central potentials for ΞΛ-ΞΣ(I=1/2) coupled channel from t = 10− 16. (a) VC;ΞΛ,ΞΛ(r),
(b) VC;ΞΛ,ΞΣ(r), (c) VC;ΞΣ,ΞΛ(r) and (d) VC;ΞΣ,ΞΣ(r).

dependent Schrödinger-like equation. We have seen that qualitative behaviors are similar to those
expected from the flavor SU(3) symmetry, where mild SU(3) breaking effects are involved.
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