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Abstract
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expected.
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Chapter 1

Introduction

1.1 Yang Mills and QCD

Yang-Mills theory, also known as "non-abelian gauge theory" [61] has an interesting

history from the work of gauge symmetry that evolved from the work of Hermann

Weyl [50].

Yang-Mills equations have common properties with Maxwell equations in that

they provide classical description of massless waves. In the 1950’s when Yang-Mills

was discovered, it was already known that Quantum Electrodynamics gives extremely

accurate experimental comparisons. However, the massless nature of classical Yang-

Mills waves is an obstacle in applying Yang-Mills to nuclear forces, where forces are

short ranged and particles are massive. In the case of the weak force, Glashow-Salam-

Weinberg’s electroweak theory used gauge group H = SU(2) × U(1). The massless

nature of classical Yang-Mills waves were avoided with the addition of the Higgs field.

In the case of the strong force, the discovery of Asymptotic freedom, rather than

the addition of fields to quantum Yang-Mills [37, 54]. Asymptotic freedom means

that at short distances, fields display quantum behaviors similiar to its classical ones.

At long distances, however, classical theory is not a good indicator for the quantum

behaviors. Asymptotic freedom together with other experimental and theoretical

results in the 1960’s and 1970’s made it possible to describe the strong force by

a non-abelian gauge theory with gauge group G = SU(3). The additional fields

1



describe quarks with spin 1/2 that are perhaps analogous to the electron. Quarks,

however transform under the representation of SU(3). This non-abelian gauge theory

of the strong force is called Quantum Chromodynamics (QCD).

For QCD to describe the strong force successfully, it must have at the quantum

level the following three properties as described in one of the Millenium Problems by

the Clay Mathematics Institute:

1) It must have a mass gap, ∆ > 0, such that every excitation of the vacuum has

energy at least ∆. 2) It must have "quark confinement," that is, even though the

theory is described in terms of elementary fields, such as quark fields, that transform

non-trivially under SU(3), the physical particle states – such as the proton, neutron,

and pion –are SU(3)-invariant. 3) It must have "chiral symmetry breaking," which

means that the vacuum is potentially invariant (in the limit that the quark-bare

masses vanish) only under certain subgroup of the full symmetry group that acts on

the quark fields.

The first point insures that strong forces are short ranged, the second point ex-

plains why quarks are never observed experimentally except in bound states, the third

point is needed to account for the current algebra of soft pions.

Both experiment and computer simulations suggest strongly that QCD does have

the three properties. QCD, however, are not fully understood theoretically. "There

does not exist a convincing, whether or not mathematically complete, theoretical

computation demonstrating any of the three properties in QCD, as opposed to a

severly simplified truncation of it." [40] Despite many empirical successes in QCD,

many fundamental questions remain unsolved. Questions include hadronization, color

confinement, the behavior of QCD couping at small momenta, asymptotic n! growth

of the perturbation theory, also known as renormalon phenomena, the diffractive

phenomena, a fundamental understanding of the soft and hard pomeron in high energy

scattering, and the conflict between QCD vacuum structure and the small size of the

cosmological constant [9].
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1.2 Running Couplings

QCD running coupling can be obtained from integrating the differential equation

µ2dαs
dµ2

= β(αs) (1.1)

rewritten as

ln
µ2

µ2
0

=

∫ αs(µ2)

αs(µ20)

dα

β(α)
(1.2)

The resulting form is

αs(µ
2) =

1

β0ln(µ2/Λ2)
(1.3)

The dimensional scale Λ keeps track of initial parametrization (µ0, αs(µ
2
0)). The

value of Λ must be extracted from experimental measurement of αs for a given ref-

erence scale. This emergence of a scale parameter, referred to as dimensional trans-

mutation, breaks the scale invariance of massless theories. This scale parameter is

believed to be associated the hadron size. Λ is the scale about which the coupling

(one-loop) diverges, the Landau ghost, and where pertubation theory becomes mean-

ingless. This dimensional scale is scheme-dependent and receives further correction

at each loop level [55].

1.3 Confinement and conformal algebraic structures’

In Brodsky and company’s work, Light Front (LF) Hamiltonian theory provided a

rigorous relativistic and frame independent framework for non-perturbative QCD

and understanding color confinement. For QCD(1 + 1), eigenstates for baryons and

mesons at zero quark mass is determined in units of its dimensionful coupling with

the Discretized Light Cone Quantization (DLCQ) [52, 51]. In the case of 3 + 1

dimension, QCD’s coupling is dimensionless, thus, it is not clear what sets the hadron

mass. Instead, the work by de Alfaro, Fubini and Furlan (dAFF) can generate a mass

scale and a confinement potential without changing the conformal invariance of the

action. [48]. Thus, effective LF confining potential can be obtained by extending the

3



results found by dAFF to light-front dynamics and to the embedding space [11].

Brodsky and company and work in Charmonium showed that an effective har-

monic potential in the light-front form of dynamics, for light quark masses, corre-

sponds to a linear potential in the usual instant-form [60, 17]. These results give

the prediction of linear Regge trajectories in the hadron mass square for small quark

masses, in agreement with observations for light hadrons. 4 dimensional light-front

dynamics combined with 5 dimensional AdS5, with the extraction of mass scale from

dAFF in 1 + 1 dimension gives rise to SO(2, 1), an isometry group of AdS2. Stated

another way, the emergence of a mass scale comes from the remarkable connection

between semiclassical light-front dyamics in four-dimension with gravity in higher di-

mensional AdS space, with constraints imposed by the dAFF one dimensional quan-

tum field theory. [10].

1.4 Hadrons and Meson Spectrum

With LF Hamiltonian, hadronic states are arrived at in:

[−z
d−1−2J

eϕ(z)
(
eϕ(z)

zd−1−2J
∂z) +

(mR)2

z2
]ΦJ(z) = M2ΦJ(z), (1.4)

where invariant hadron mass PµP µ ≡ ηµνPµPν ≡M2 The AdS massm = µeff = µ

in the equation is a constant that is determined from the mapping of the light-front

Hamiltonian. m maps to the Casimir operator of the orbital angular momentum in

the light front. See Figure 1-2.
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Figure 1-1: Meson spectrum [10]

Figure 1-2: Meson spectrum [10]
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Chapter 2

High Energy Scattering

The Balitsky-Fadin-Kuraev-Lipatov (BFKL) [44, 20, 43, 42, 5, 6] formalism enables

the logarithms appearing in scattering amplitudes with large center of mass energy,
√
s and fixed momentum transfer

√
−t to be summed. Calculations of strong cou-

pling high energy scattering at HERA, the Tevatron and LHC has used DGLAP and

BFKL [56]. The Dokshitzer-Gribov-Lipatov-Alterelli-Parisi, DGLAP equation and

the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation formed the basis for current

understanding of high-energy scattering in quantum chromodynamics. See Figure [?].

Without an analytic QCD solution, calculations had to resort to studying unitarity

and analyticity constraints on scattering amplitudes, combined with the work of Tullio

Regge. Gribov, Lipatov and others developed the leading logarithm approximation to

processes at high-energies. This is central to perturbative QCD for strong interactions.

Reggeon field theory was checked and confirmed with QED experiments.

Experiments in the 1960s at SLAC had showed Bjorken scaling in deep inelastic

lepton-hadron scattering. Gribov attemped to see if Bjorken scaling can be derived

from QFT. For large momentum transfer, leading Feynman diagrams in QED gave

rise to the logarithmically enhanced contributions to the cross section at fixed values

of the Bjorken variable, x = q2/(s+ q2) between 0 and 1 [36].

Lipatov showed that the gauge vector boson in Yang-Mills theory is reggeized with

radiative corrections included [45]. The vector boson becomes a moving pole in the

complex angular momentum plane near j = 1. In QCD, this pole corresponds to color

7



exchange. The exchange of two or more reggeized gluons leads to colorless exchange

in the t-channel. This exchange with vacuum quantum numbers is a Pomeron, and

with non-vacuum ones is an Odderon.

Lipatov and collaborators showed that Pomeron correspond to a regge cut, and

not a pole in the complex angular momentum plane.

2.1 BFKL and DGLAP

Quantum field theory is the heart of QCD, however, attempts towards solving QFT

for strong interactions have been difficult. Some fifty years ago, efforts have been

made to circumvent traditional QFT by focusing on unitarity and analyticity on

scattering amplitudes, combined with extensions to Tullio Regge’s work on connect-

ing complex angular momentum to relativistic theory. Balitsky, Fadin, Kuraev and

Lipatov (BFKL), over two decades ago, set out to determine the high-energy behav-

ior of the scattering of hadronic objects within perturbative QCD. They found terms

going as (αs ln s)n, where s is the squared centre-of-mass energy. Since the factor

lns can compensate the smallness of ᾱs, it was necessary to sum the entire series of

leading logarithmic, LL, terms. The resulting cross-section increases as a power of

s2. For typical values of αs ≈ 0.2, this power is of the order of 0.5 [42, 5].

Much experimental effort has been devoted towards observing this phenomenon

in the 1990’s, however, experiments showed that the cross sections rise is much slower

than s = 0.5.

The solution to this problem was to have been in determining the next-to-leading

corrections to the BFKL equation, terms αs(αs ln s)n. After much effort, however,

the next-to-leading order showed to be much smaller and the leading contribution,

and, in fact, turned out not even positive definite [57].

Lipatov and collaborators showed that the Pomeron corresponds to a cut, and

not a pole, in the complex angular momentum plane. Lipatov discovered beautiful

symmetries in the BFKL equation. This enabled him to obtain solutions in terms

of the conformal-symmetric eigenfunctions. This completed the construction of the

8



Figure 2-1: DGLAP equations allows the extraction of parton distribution functiosn
from data at the electron-proton collider HERA. The proton-parton densities has
been extracted from the combined H1 and ZEUS measurements in this figure, for
q2 = 10, 000GeV 2. This corresponds to W production at the LHC. xg is the gluon
term that dominates the proton content at low Bjorken-x [41].

fundamental entity in high-energy physics in the bare Pomeron in QCD [46].
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2.2 Donnachie and Landshoff

Regge theory has been hugely successful when compared with experimental data [16].

However there is significant gap in its understanding. Only exchanges of single par-

ticles can be calculated after five decades. Double or high exchanges has yet to be

done. The accurate description of experimental data can only be achieved with the

introduction of an exchange, the Pomeron, not obviously associated with particle

exchange. According to Regge theory, particle exchange contributes simple power

behavior sε to total cross sections. Donnachie and Landshoff, three decades ago, in-

troduced just two powers to fit all hadron-hadron total cross sections. They showed

with ε ≈ 0.08 corresponds to pomeron exchange and εR ≈ 1
2

to nearly degenerate ρ,

ω, f2, a2 exchange.

With deep inelastic ep scattering at small x from HERA, Donnachie and Landshoff

introduced a second pomeron, the hard pomeron. This put the conventional DGLAP

evolution analysis at small x in sound footing [16]. Without the second pomeron,

unitarity would be violated as the forward amplitude would grow very large with

increasing energy. Additional terms beyond P and PP would be ultimately necessary

for higher energies to prevent the total cross section from becoming negative because

the two pomeron PP term is negative, to preserve unitarity, but grows much more

rapidly than P .

For the total cross section, σtotal = Im A(s, 0), Donnachie and Landshoff has

A(s, t) =− XPFP (t)

2ν
e−

1
2
iπαP (t) (2να′P )αP (t) − X+F+(t)

2ν
e−

1
2
iπα+(t) (2να′+)α+(t)

∓ iX−F−(t)

2ν
e−

1
2
iπα−(t) (2να′−)α−(t)

(2.1)

where αi(t) = 1 + εi + α′it i = P,± and F (t) = Aeat + (1− A)ebt, see figure 2-2
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Figure 2-2: Total cross section with Reggeon and Pomeron [16]

Figure 2-3: Differential cross section for elastic pp with Reggeon and Pomeron [16]
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2.3 AdS/CFT - Tan and company.

In recent years, the AdS/CFT correspondence has been heavily investigated for QCD

processes. Curved space string theory was first used to describe the classical Regge

regime, where s > Λ2
QCD and the BFKL regime. A coherent treatment of the Pomeron

based on AdS/CFT was presented by Brower, Polchinski, Strassler and Tan in 2006

[12]. String theory in flat space generally disagree with QCD, however, in the classic

Regge regime, where s � Λ2
QCD and |t| ≤ Λ2

QCD, QCD scattering processes shows

amplitudes similar to Regge behavior or that of flat-space classical string theory. For

s � −t � ΛQCD, string amplitudes follows a linear Regge trajectory while QCD

does not. The asymptotic Regge regime is important because it accounts for most

of total cross-sections and differential cross-sections at small angles, on the other

hand however, direct perturbative computation nor lattice QCD methods can obtain

QCD amplitudes. In string theory, the Pomeron is the object exchanged at tree level

scattering in the Regime regime. That is, the graviton’s Regge trajectory. Multi-

Pomeron exchange becomes dominant as s → ∞, and as such, non-perturbative

approach to Pomerons is needed [13, 14].

Lipatov also considered the BFKL and DGLAP equations in N=4 theory and

computed the anomalous dimensions of various operators. The high symmetry of

N=4 SYM allowed calculations to be made to unprecedented high orders and the

results were then compared with the predictions of string theory. This facilitated the

study of integrable structures [47].

Lipatov established that the gluon production amplitudes in the planar approxi-

mation can have Mandelstam cut contributions in the multi-regge kinematics at some

physical regions. The wavefunction of these states, in the adjoint representation, sat-

isfy BFKL-like equation. They are integrable in leading logarithmic approximation

and have the property of holomorphic factorization [47].

The resulting holomorphic hamiltonian coincides with an integrable open Heisen-

berg spin model’s hamiltonian. A simple recurrent relation is obtained for the Baxter-

Sklyanin equation for this model in terms of Γ-functions.
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In 2007, Tan and company derived the Eikonal approximation for multiple Pomeron

exchanges. Single Pomeron and multiple graviton exchange in AdS are generalized

to consider unitarity and saturation in the conformal regime. This Eikonal indicates

that the Froissart bound is satisfied and saturated [13, 14].

Alday and Maldacena in 2007 also wrote down gluon scattering amplitudes at

strong coupling in N = 4 super Yang Mills using gauge/string duality [1]. Solutions

were arrived at by finding classical string configurations with boundary conditions

determined by gluon momenta. These solutions are infrared divergent. The gravity

version of dimensional regularization was used to define finite quantities. These results

are in agreement with similar work by Bern, Dixon and Smirnov [7].

2.4 Eikonal Derivation from Martin Perl Page 41-43

Starting with the relativistic wave equation

[∇2 + k2]ψ(r) = U(r)ψ(r) (2.2)

Following derivation given by Glauber (2GL), where U(r) is complex. With incident

wave ψinc(r), moving in direction +z, being written as

ψinc(r) = eikzφ(r) (2.3)

where φ(r) = 1 at z = −∞. Inserting ψinc(r) into above gives

[2ik
d

dz
+∇2]φ(r) = U(r)φ(r). (2.4)

Assume the potential varies slowly with r that the second derivative can be ne-

glected, or

|∇2φ(r)| � |2ikdφ(r)

dz
| (2.5)
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Then we obtain

2ik
dφ(r)

dz
= U(r)φ(r) (2.6)

and

φ(r) = exp[
−i
2k

∫ z

−∞
U(x, y, z′)dz′]. (2.7)

Insert this expression for φ(r) into ψinc(r) gives

ψinc(r) = eikzexp[− i

2k

∫ z

−∞
U(x, y, z′)dz′]. (2.8)

From ψ(r) = ψinc(r) + ψscat(r), and R = r − r′ where

ψscat(r) =
1

4π

∫
d3r[U(r′)ψ(r′)

eikR

R
] (2.9)

We obtain

ψscat = − 1

4π

∫
d3r[U(r)eikzexp(− i

2k

∫ z

−∞
U(x, y, z′)dz′)

eikR

R
] (2.10)

Remembering that ψscat(r) = f(θ) e
ikr

r
with f(θ) = − 1

4π

∫
d3r[U(r′)ei(k−k

′)·r′ ],

we arrive at the eikonal approximation

f(θ) = − 1

4π

∫
d3r[ei(k−k

′)·rU(r)exp(− i

2k

∫ z

−∞
U(x, y, z′)dz′)]. (2.11)

For b = z, (k − k′) · r = q · r ≈ q · b,

above becomes

f(θ) =
k

2πi

∫
d2beiq·bexp[

−i
2k

∫ +∞

−∞
U(b, z)dz]− 1 (2.12)

If we define χ(b) = χi(x, y, z =∞), we get the common form of the eikonal model:

f(θ) =
k

2πi

∫
d2beiq·b[eiχ(b) − 1] (2.13)

see "High Energy Hadron Physics" by Martin L. Perl [53].
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Chapter 3

Halpern Functional Integral

3.1 Field-Strength Formulation of Quantum Chro-

modynamics

In 1977, Halpern in an attempt to extend non-abelian gauge theories in space-time

dimensions to D ≥ 3 provided the follow work in this section. Non-abelian gauge

theories is reformulated in terms of field strengths and the details for (D = 4) QCD

is written down [38, 39].

Starting with the action for QCD,

S1 =

∫
dDx[

1

2
Gi
µνF

i
µν −

1

4
Gi
µνG

i
µν + ψ†(6 ∂ +M + ig 6 V )ψ],

F i
µν ≡ ∂µV

i
ν − ∂νV i

ν − gfijkV j
µV

k
ν ,

6 V ≡ γµV
a
µ

λa
z

(3.1)

For the Generating Functional, we integrate eS1 over all Gi
µν ,V i

µ,ψ,ψ†. After quadratic
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integration over the V i
µ, we obtain the field-strengh action,

S =

∫
dDχ[

1

2g
(∂ρG

i
µν − gJ iµ)(G−1)ijµν(∂λG

j
λν − gJ

j
ν)

− 1

4
Gi
µνG

i
µν + ψ†(6 ∂ +M)ψ

− χiµν
g

2
Gijµνχjν ],

J iν ≡ iψ†γµ
λi

2
ψ.

(3.2)

χiµν is our familiar auxiliary field, much like a Faddeev-Popov field, representing

(detG)−1/2). In the case of N = 2, D = 4, we have

(G−1)ij = G̃jGiK−1 (3.3)

where K ≡ G1G̃2G3 −G3G̃2G1 and G̃i
µν ≡ 1

2
εµνρσG

i
ρσ, ε0123 = +1.

In the self dual sectors for K, Gi = ±G̃i,Gi
0l ≡ Ei

l , we obtain:

Kµν = δµνξ,ξ ≡
1

3
εαβγεijkE

α
i E

β
j E

γ
k ,

(G−1)ij = ±ξ−1GjGi.

(3.4)

Under gauge transformations

V i
µ → OiaV a

µ +
1

2g
fijkOja∂µ(OT )ak,

Gk
µν → OklGl

µν ,

Gijµν → OilGlmµν (OT )mj,

(G−1)ijµν → Oib(G−1)baµν(OT )aj)

(3.5)

, the field equations are invariant. The action, however,

S =

∫
d4χ[

1

2g
(∂G G−1∂G)− 1

4
G2 − χg

2
Gχ] (3.6)

is not explicitly gauge-invariant.
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To regain explicity gauge-invariance, we use identities,

∂λG
i
µν(G−1)ijµν∂ρGj

ρν = Gi
µνε

ijkJ j
µJ k

ν

= ∂λG
i
λµJ i

µ

= −Gi
λµ∂λJ i

µ + ∂λ(G
i
λJ i

µ).

(3.7)

With appropriate choices of the second and last term in Eq. 3.7 and dropping the

surface term, we obtain explicit gauge-invariant form,

S =

∫
d4χ[− 1

2g
GF(J (G))− 1

4
G2 − χg

2
Gχ]. (3.8)

Or

S =

∫
d4χ[−1

4
(G+

F
g

)2 +
1

8g2
(F ± F̃)2 ∓ 1

4g2
FF̃ ] (3.9)

[38, 39]. At the saddle point, the first term in Eq. 3.8 vanishes and at fi xed
∫
d4χFF̃ ,

the action is minimum only if F±F̃ = 0 and G = ±G̃. Rerranging Eq. 3.8 and Eq. 3.9

brings us to the form we shall use in our formalism,

S =

∫
d4χ[+

1

2g
Gχ+ χ2]. (3.10)
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Chapter 4

Casimir Invariants

4.1 Casimir Invariants, C2 and C3

In non-relativistic Quark Models and in non-perturbative Schwinger mechanism, the

dependence on the cubic Casimir operator, C3 is important. In strong coupling

fermionic QCD, the Green’s functions and related amplitudes requires not just the

SUc(3) quadratic Casimir operator, C2f but also this C3. C3 accounts for the full

algebraic content of the rank-2 Lie algebra of SUc(3) [29].

As pointed out by Grandou, it is remarkable that C3 has been unnoticed for so

long. Perhaps that is because numerically, C3 only account for sub-leading effects [34].

4.2 Non-Perturbative Fermionic Green’s Functions

In perturbation theory, all scattering processes are proportional to either CA = Nc

and/or CF = (N2
C − 1)/2Nc [35]. In other words, processes are proportional to

the quadratic Casimir operator eigenvalue C2(R) in the adjoint and fundamental

representations. C2(R) is defined as:

C2(R) =
8∑

a=1

T 2
a (R) (4.1)

where Ta(R) are the SUc(3) Lie algebra generators for a given representation R.
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In addition to perturbative calculations, non-perturbative QCD models such as

the MIT bag model, the Stochastic Vacuum Model (SVM), and Lattice QCD comply

with these C2(R) dependencies.

In strong coupling where g � 1, the amplitude for Quark(antiQuark)/Quark(antiQuark)

scattering amplitude using Random Matrix Theory is given by:

(−16π
m2

E2
)N

∑
monomials

(±1) Tr

∑
qi=N(N−1)/2∏

1≤i≤N

[1− i(−1)qi ]

× C

∫
dp1 .. dpN(N−1)/2 f(p1, . . . , pN(N−1)/2)

∫ +∞

0

dαi1
sin[αi1(OT )i]

αi1

∫ +∞

0

dαi2
sin[αi2(OT )i]

αi2

×G23
34

iNc

(
αi1α

i
2

gϕ(b)

)2
ŝ(ŝ− 4m2)

2m4

∣∣∣∣∣
3−2qi

4
, 1

2
, 1,

1, 1, 1
2
, 1

2

 , (4.2)

where we have used the eikonal and quenced approximations, assumed single species

of quarks of mass m.

O = O(.., pj, ..) is an orthogonal N × N matrix specified by the N(N − 1)/2

parmeters pjs, with N = D × (N2
c − 1), D, the number of space-time dimensions;

that is N = 32 [38, 39]. The distribution f(.., pj, ..) defines the Haar measure of

integration over the orthogonal group ON(R), and the constant C (the normalization)

is the inverse of the ON(R)-volume. O, (the N × N orthogonal matrices), acts on

N -vector of matrices T = (1, 1, 1, 1)⊗ T = (T, T, T, T ), i.e. T is made out of D = 4

copies of the full set T of SUc(3) generators, with the fundamental representation:

T = {t1, t2, . . . , t7, t8}, where ta = λa/2 is the standard Gell-Mann matrices [62]. This

step allows one to perform a series of exact integrations.

G23
34 is the Meijer special Functions [34].The Meijer function depends on an array

of parameters, one of them involving an integer qi, with 1 ≤ i ≤ N and 0 ≤ qi ≤

N(N−1)/2. The power of qi comes from the expansion of a Vandermonde determinant

into a sum of monomials.
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Eq. 4.2 can now be rearranged to give,

±(−16π2m2

E2
)N

∑
monomials

〈 N∏
i=1

[1− i(−1)qi ]

×
[√

2iNc

√
ŝ(ŝ− 4m2)

m2

]
[(OT )i]

−2

gϕ(b)

×G30
03

([
gϕ(b)√
32iNc

m2√
ŝ(ŝ− 4m2)

]2[
(OT )i

]4 ∣∣∣∣12 , 3 + 2qi
4

, 1

)〉
ON (R)

, (4.3)

where the large brackets denote the orthogonal group ON(R). It is this group that

displays the full algebraic content of rank-2 SUc(3) color algebra. The matrix values

of the Meijer’s function, G30
03 is,

zi ≡ λ [(OT )i]
4 , λ ≡

(
gϕ(b)√
32iNc

m2√
ŝ(ŝ− 4m2)

)2

. (4.4)

For g � 1 and zi � 1 above can be rewritten as cite,

±(−4π2m2

E2
)N
〈 N∏
i=1

[1− i(−1)qi ]
3∑

h=1

Ahi z
bh− 1

2
i

(
1 +Oih zi +O(z2i )

)〉
ON (R)

. (4.5)

The matrix-valued argument zi is on the order of [(OT )i]
4. and tThe orders z0i ,

√
zi, zi and zi

√
zi contributions of (4.5), are of even orders (OT )0i , (OT )2i , (OT )4i and

(OT )6i respectively.

The leading order <
√
zi > given by

√
λ

N∑
j,k=1

〈
OijTjOikTk

〉
ε,Θ

=
√
λ
〈 N∑
j=1

a2ij(. . .Θlm . . . )
〉
Θ
T 2
j =

√
λ

N
DC2f 13×3 , (4.6)

where C2f is the quadratic Casimir operator eigenvalue on the fundamental represen-

tation, C2f = CF = 4/3. 13×3 is 3× 3 identity matrix.

The sub-leading order is then,

< zi >= (

√
λ

N
)2
(

(DC2f )
2 + (DC3f )

)
13×3 , (4.7)
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where we see the cubic Casimir operator, C3f , with fundamental representation,

N2
c−1∑

a,b,c=1

dabc t
atbtc ≡ C3f13×3 . (4.8)

In Young Tableaus parameters p, q, we have

C3(p, q) =
1

18
(p− q)(2p+ q + 3)(2q + p+ 3). (4.9)

Hence, in the SU(3) fundamental representation,

C3f = C3(1, 0) =
10

9
. (4.10)

. And in the adjoint representation,

C3a = C3(1, 1) = 0. (4.11)

The next to sub-leading order zi
√
zi is given by a combination of C2’s and C3’s,

< zi
√
zi >= (

√
λ

N
)3
(

[2 + (
5

6
)2](DC2f )

2 + (DC2f )(DC3f ) + 3(DC3f )

)
13×3 . (4.12)

.

It is now clear that C3 in addition to C2 will be important in any non-perturbative

fermionic Green’s function and related processes [34, 35].

22



Chapter 5

Schwinger Action Principle and

Generating Functional

5.1 Schwinger Action Principle

We begin by writing down the Schwinger’s Action Principle [58] for the probability

amplitude < a, t2|a′, t1 >,

δ < a, t2|a′, t1 >= i < a, t2|δW |a′, t1 > (5.1)

where a denotes all appropriate set of eigenvalues, discrete or continuous, that char-

acterize the system at time t. δW denotes variations in the parametric, end-point,

and parameters which the Lagrangian itself may depend on. We assume the property

of reality

< a, t2|a′, t1 > · =< a′, t1|a, t2 > (5.2)

and closure ∑
n

< a, t2|n′, t >< n′, t|a′, t1 >=< a, t2|a′, t1 > (5.3)

The unitary operator U acting on a state vector |a, t > corresponds to infinitesimal
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transformation is

δ|a, t > = −iG(t)|a, t >

δ < a, t| = +i < a, t|G(t),
(5.4)

where G is defined by the infinitesimal operator δ(U − 1) = −iG. Then combining

Eq. 5.1 and Eq. 5.4 gives

δW = G(t2)−G(t1) (5.5)

and with total variation δQ = δ0Q + δt · dQ/dt giving δW = Q · P − δt · H21 with

P = ∂L∂(dQ/dt) and H = [dQ/dt] · ∂L/∂(dQ/dt) − L. The quanties P and H

are coefficients of end-point coordinates or time-variations are precisely the usual

definition of momentum and hamiltonian.

Under variations in δQ, we obtain

G(t) = PδQ−Hδt (5.6)

as the infinitesimal unitary operator for transformations appropriate to coordinate

changes and to time translations. It is important to point out that the fundamental

statement of quantum physics is a consequence of above derivations. To see this,

we choose an arbitrary operator O and write O′ = U · OU †, where U † is Hermitian

adjoint of U . From Eq. 5.4, we see that variation δQ can be written as δQ = i[O,G].

If we choose, as an example, O = Q, the generator G is given by Eq. 5.6 is

G = P δQ. (5.7)

To satisfy relation δQ = i[PδQ,Q], we must adopt

[O,P ] = i (5.8)

where, adjusting for the correct units, h/2π, then the right hand side of the total
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variation of W

δW =

∫
dt · δQ0 ·

(
∂L

∂Q
− d

dt
[

∂L

∂(dQ/dt)
]

)
+

(
δQ0 · [

∂L

∂(dQ/dt)
] + δt · L

)
21

(5.9)

multiplies Eq. 5.8. As the traditional Action Principle asserts that only terms that

depends on the end-time quantities are non-zero, the first term on the RHS of Eq. 5.9

is zero. So, it is from Schwinger’s Action Principle that we arrive at the fundamental

state of quantum physics, with the expression of the uncertainty principle restricting

possible measurements of δQ and δP in a system.

In the vacuum having source field j, the probability amplitude to find the system

at a time t2 with known vacuum state at t1 is

< 0, t2|0, t1 >j (5.10)

This is the quantity central to all formal functional descriptions. The Action Principle,

Eq. 5.1 gives an immediate answer for explicit form of j dependence.

δ

δj(x)
< 0, t2|0, t1 >j= i < 0, t2|

δ

δj(x)
W2,1|0, t1 >j (5.11)

The coefficients of the implicit variations vanishes for the j dependence on oper-

ators A(x) because of Euler equations. We then have

δ

δj(x)
< 0, t2|0, t1 >j=< 0, t2|A(x)|0, t1 >j (5.12)

and nth derivative is, with ordered bracket,

(
1

n
)n[

δ

δj(x1)
]...[

δ

δj(xn)
] < 0, t2|0, t1 >j=< 0, t2|(A(x1)...A(xn))+|0, t1 >j (5.13)

To construct the coefficient of the nth power of j in a Taylor expansion, we set j = 0

and obtain

< 0, t2|0, t1 >j=< 0, t2|(exp[i
∫
d4xj(x)A(x)])+|0, t1 > (5.14)
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We introduce the unitary operator t21[j] = (exp[i
∫ t2
t1
d4xj(x)A(x)])+. By taking the

limit t2 → ∞ and t1 → ∞, the vaccuum expectation value of Eq. 5.14 defines the

Generating Functional, GF, Z[j], or

Z[j] =< 0, t2|0, t1 >j= limt1→∞,t2→∞ < 0, t2|(exp[i
∫ t2

t1

d4xj(x)A(x)])+|0, t1 > .

(5.15)

A formal functional solution for Eq. 5.10, < 0, t2|0, t1 >j can be obtained by writing

down the differential equation

−iKx[
δ

δj(x)
] < 0, t2|0, t1 >j = < 0, t2|(j(x)− ng[A(x)]n−1)|0, t1 >j

=

(
j(x)− ng(

1

i
)n−1[

δ

δj(x)
]n−1

)
< 0, t2|0, t1 >j

(5.16)

where Euler equation has been used again to result in only explicit A(x) dependences

for j. Setting g = 0, we have

Kx[
δ

δj(x)
] < 0, t2|0, t1 >g=0

j = ij(x) < 0, t2|0, t1 >g=0
j (5.17)

whose solution is

< 0, t2|0, t1 >0
j= exp[

i

2

∫
d4x

∫
d4yj(x)∆c(x− y;m2)j(y)] (5.18)

where the integration is over all spatial points with all t between t1 and t2.

If we return to the Action Principle, we can construct a solution to the full Eq. 5.17.

Considering variations in the coupling g → g + dg,

δ

δg
< 0, t2|0, t1 >j= −i < 0, t2|

∫ t2

t1

d4x[A(x)]n|0, t1 >j, (5.19)

giving
δ

δg
< 0, t2|0, t1 >j= −i

∫ t2

t1

d4x[
1

i

δ

δj(x)
]n < 0, t2|0, t1 >j (5.20)
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with solution

< 0, t2|0, t1 >j= exp
{
− ig

∫ t2

t1

d4x [
1

i

δ

δj(x)
]n
}
< 0, t2|0, t1 >0

j (5.21)

or

< 0, t2|0, t1 >j= exp
{
i

∫ t2

t1

d4x L′
{1

i

δ

δj(x)

}n}
< 0, t2|0, t1 >0

j (5.22)

The generalized form is then the Generating Functional,

Z(0)[j] =< 0,∞|0,−∞ >g=0
jµ

= exp[
i

2

∫
jµDc,µνjν ], (5.23)

where Dc,µν(x − y) = δµν∆c(x − y,m)|m→0 is the free photon propagator in the

Feynman gauge. The GF for free fermions is written with the addition of Grassmann

sources, ηα, η̄β.

Z(0)[η̄, η] =< 0,∞|0,−∞ >0
ν,ν̄= exp[i

∫
η̄Scη] (5.24)

As in Eq. 5.14, we get GF for free fermions as

Z(0)[η̄, η] =< 0| (exp[ i

∫
[η̄ψ + ψ̄η]])+|0 > (5.25)

where Grassmann ηα, η̄β anticommute with each other and with all free fermion fields

ψ
(0)
α ,ψ̄(0)

β .

The full GF with j, η and η̄ is then, from Eq. 5.22, Eq. 5.24 and Eq. 5.25,

Z[j, η̄, η] =
1

< 0,+∞|0,∞ > |j=η̄=η=0

· exp[−i
∫

δ

δη
(−gγ · δ

δj
)
δ

δη̄
] · Z(0)[j] · Z(0)[η̄, η],

= exp[−i
∫

δ

δη
(−gγ · δ

δj
)
δ

δη̄
] · exp[ i

2

∫
jµDc,µνjν ] · exp[ i

∫
[η̄ψ + ψ̄η]].

(5.26)

The QCD Lagrangian is

LQCD =
1

4
Fa
µνF

a
µν − ψ̄ · [m+ γµ(∂µ − igAaµλa)] · ψ, (5.27)
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where Fa
µν = ∂µA

a
ν − ∂νAaµ + gf abcAbµAcν ≡ faµν + gf abcAbµAcν .

Rearranging the Lagrangian [26, 29, 25, 31], we use,

−1

4

∫
F 2 = −1

4

∫
f 2 − 1

4

∫
[F 2 − f 2 ] = −1

4

∫
f 2 +

∫
L′[A]

f aµν = ∂µA
a
ν − ∂νAaµ

L′[A] = −1

4
(2faµν + gf abcAbµA

c
ν)(gf

abcAbµA
c
ν)

(5.28)

After integration by parts, we obtain

−1

4

∫
F2 = −1

2

∫
Aaµ(−∂2)Aaµ +

1

2

∫
(∂µA

a
µ)2 +

∫
L′[A] (5.29)

To select a particular relativistic gauge, we multiply the term 1
2

∫
(∂µA

a
µ)2 in Eq. 5.29

by λ. We include this term as part of the interaction and obtain

Z(ζ)
QCD[j] = N exp[i

∫
L′[1

i

δ

δj
]] · exp[ i

2
λ

∫
δ

δjµ
∂µ∂ν

δ

δjν
] · exp[ i

2

∫
j ·D(0)

c · j], (5.30)

or

Z(ζ)[j] = N exp[i
∫
L′[1

i

δ

δj
]] · exp[ i

2

∫
j ·D(ζ)

c · j]. (5.31)

Here, we have neglected the fermion/quark variables and will reinsert at the end.

Replacing L′ from Eq. 5.22 gives us,

Z(ζ)
QCD[j] = N exp[− i

4

∫
F 2 − i

2
(1− λ)

∫
(∂µA

a
µ)2 +

i

2

∫
Aaµ(−∂2)Aaµ]|A→ 1

i
δ
δj

· exp[ i
2

∫
j ·D(0)

c · j].
(5.32)

The choice of λ = 1 can now be made. An important consequence is that the term

exp[ i
2

∫
Aaµ(−∂2)Aaµ]|A→ 1

i
δ
δj

effectively removes all factors of exp[ i
2

∫
j ·D(0)

c ·j], thereby

gluons are treated, effectively as ghost fields and gluons themselves are never measur-

able by themselves. The result is the QCD Generating Functional, after reinserting

28



the fermion/quark variables,

ZQCD[j, η̄, η] = N e−
i
2

∫
δ
δA
·D(0)
A ·

δ
δA · e−

i
4

∫
F2+ i

2

∫
A·(−∂2)·A · ei

∫
η̄·Gc[A]·η+L[A]|

A=
∫
D

(0)
c ·j

(5.33)

The quark variables, G[A] and L[A] represents the quark line and quark loop respec-

tively [21, 22]. We shall examine them more closely in next section.

5.2 Schwinger Generating Functional

From last section, we started with the Schwinger Generating Functional, GF, for

QCD, with gluon operators in an Arbitrary, relativistic, gauge. The GF is rear-

ranged in terms of a "Reciprocity Relation" under a "Gaussian Linkage Operation",

exp[− i
2

∫
δ
δA
·D(0)

A ]. The GF now depends upon two functionals of A,

ZQCD[j, η̄, η] = N e−
1
2

∫
δ
δA
·D(0)
c · δδA · e−

i
4

∫
F2+ i

2

∫
A·(−∂2)·A · ei

∫
η̄·Gc[A]·η+L[A]|

A=
∫

D(0)
c ·j

(5.34)

where the quark line, Gc[x, y|A] = [m + γ · (δ − igAτ)]−1 and virtual quark loop,

L[A] = ln[1− iγAτc[0]].

The GF can now can be rearranged into gauge-invariant form. This was overlooked

for decades [26, 24].

Now combine with Fradkin expressions for the quark line, Gc[A], and quark loop,

L[A]. Efimov S. Fradkin gave expressions for Gc[A] and L[A] in gaussian form [21, 22].

These are exact.
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Fradkin’s representation for the quark line, G[A] is given by

Gc(x, y|A) (5.35)

= i

∫ ∞
0

ds e−ism
2

e−
1
2
Trln (2h)

∫
d[u] e

i
4

∫ s
0 ds

′ [u′(s′)]2 δ(4)(x− y + u(s))

×
[
m− γµ

δ

δu′µ(s)

]
NΩNΦ

∫
d[α]

∫
d[Ξ]

∫
d[Ω]

∫
d[Φ]

(
ei

∫ s
0 ds

′ [αa(s′)−iσµν Ξaµν(s′)] τa
)
+

×e−i
∫
ds′ Ωa(s′)αa(s′)−i

∫
ds′Φaµν(s

′)Ξaµν(s
′)

×e−ig
∫
ds′ u′µ(s

′)Ωa(s′)Aaµ(y−u(s′))+ig
∫
ds′Φaµν(s

′)Faµν(y−u(s′)),

while the Fradkin’s representation for the quark loop, L[A] is given by

L[A] = −1

2

∫ ∞
0

ds

s
e−ism

2

e−
1
2
Trln (2h) (5.36)

×NΩNΦ

∫
d4x

∫
d[α]

∫
d[Ω]

∫
d[Ξ]

∫
d[Φ]

×
∫
d[v] δ(4)(v(s)) e

i
4

∫ s
0 ds

′ [v′(s′)]2

× e−i
∫
ds′ Ωa(s′)αa(s′)−i

∫
ds′Φaµν(s

′)Ξaµν(s
′) · Tr

(
ei

∫ s
0 ds

′ [αa(s′)−iσµν Ξaµν(s′)] τa
)
+

×e−ig
∫ s
0 ds

′ v′µ(s
′)Ωa(s′)Aaµ(x−v(s′))−2ig

∫
d4z (∂νΦaνµ(z))Aaµ(z)

×e+ig2
∫
ds′ fabcΦaµν(s

′)Abµ(x−v(s′))Acν(x−v(s′))

−{g = 0} ,

See Appendix A for details on Fradkin’s variables. The F2 in the GF Eq. 5.34 can be

rewritten using Halpern’s half century old expression [38, 39],

e−
i
4

∫
F2

= N

∫
d[χ]e

i
4

∫
χ2+ i

2

∫
F ·χ, (5.37)

where χaµν = −χaνµ. With the exp[− i
4

∫
F2] in the GF in Gaussian form, under χ

fields, the relevant Gaussian Functional operations can be performed exactly. This

corresponds to the summation of all Feynman graphs of gluons exchanged between

quarks.

Then the explicit cancellation of all the gauge-dependent gluon propagators is
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obtained as will be shown in next Chapter, Section 6.1.

5.3 The importance of non-perturbative solutions in

QCD

Amongst the reasons that give perturbative QCD difficulties is because there are ,in

effect, two coupling constants, Quarks and gluons, g1 and g2 respectively. Expansion

around g2 = 0 will not be sensible when we are looking at g21
g2

terms.
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Chapter 6

Explicit Gauge Invariance

6.1 Gauge Cancellations

A rearrangement can now be made to formally insure gauge-invariance, even though

the GF still apparently contains gauge-dependent gluon propagators.

ZQCD[j, η̄, η] = N e−
1
2

∫
δ
δA
·D(0)
c · δδA ·e−

i
4

∫
F2+ i

2

∫
A·(−∂2)·A ·ei

∫
η̄·Gc[A]·η+L[A]|

A=
∫

D(0)
c ·j

(6.1)

Gives 2n-point functions:

= N
∫
d[χ]e

i
4

∫
χ2

eD
(0)
A e

i
2

∫
χ·F+ i

2

∫
A·(D(0)

c )−1·AGc(1|gA)Gc(2|gA)eL[A]|A=0 (6.2)

Then,

eDaF1[A] = exp[
i

2

∫
Q̄ ·D(0)

c · (1− K̄ ·D(0)
c )−1 · Q̄− 1

2
Tr ln(1−Dc · K̃)]

· exp[1
2

∫
A · K̄ · (1−D(0)

c · K̄)−1 · A+ i

∫
Q̄ · (q − K̄ ·D(0)

c )−1]

(6.3)

where

D(0)
c · (1− K̄ ·D(0)

c )−1 = D(0)
c · [1− (K̂ + (D(0)

c )−1) ·D(0)
c ]−1

= −(K̃ab
µν + gfabcχcµν)

−1

= −K̂
−1

(6.4)
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connects two quarks, forming the basis of our Gluon Bundle.

Remembering that exp[ i
2

∫
δ
δA′
·D(0)

c · δ
δA′

] is the inverse of eDA , we arrive at

eDAF1[A]F2[A] = exp[− i
2

∫
Q̄ · K̂

−1
· Q̄+

1

2
Tr ln K̂ +

1

2
Tr ln(−D(0)

c )]

· exp[ i
2

∫
δ

δA′
·D(0)

c ·
δ

δA′
]

· exp[ i
2

∫
δ

δA′
· K̂
−1
· δ

δA′
−
∫
Q̄ · K̂

−1
· δ

δA′
]

· (eDAF2[A
′])

(6.5)

eDAF1[A]F2[A] = N exp[− i
2

∫
Q̄ · K̂

−1
· Q̄+

1

2
Tr ln K̂]

· exp[ i
2

∫
δ

δA
· K̂
−1
· δ
δA
−
∫
Q̄ · K̂

−1
· δ
δA

]

· exp[L[A]]

(6.6)

As one sees in equation 6.6, all the explicit gauge dependent propagators cancel.

This is gauge invariant by means of gauge-independence. It deserves to be emphasized

that Gauge Independence is the strongest form of Gauge Invariance. Feynman had

long hoped for this for QED.

The −K̂
−1

above, also written as (f · χ)−1 represents infinite gluon exchanges

summed. This term is the Gluon Bundle, GB, exchanged between two quarks as

shown in figure 6-1.

Figure 6-1: A Gluon Bundle, GB, is the term (f · χ)−1, representing the exchange of
all gluons summed.

All the gaussian linkage operations can then be carried through exactly, corre-

sponding to the summation of all gluons changed between any pair of quark (and/or

anti-quark) lines, and including the cubic and quartic gluon interactions. See figure 6-

2.
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Figure 6-2: A Gluon Bundle, GB, representing the exchange of all gluons summed.

The result is explicit cancellation of all gauge-dependent gluon propagators, with

resulting GF exhibiting Manifest Gauge Independence. One also finds a new, exact

property of non-perturbative, gauge-invariant QCD, where the space-time coordinates

of both ends of a GF are equal, modulo small uncertainties in their transverse coor-

dinates. There is an Effective Locality between interacting quarks, and, changes all

the remaining functional integrals into sets of ordinary integrals. One can actually

complete these integrals [25, 26, 31]
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Chapter 7

Effective Locality

7.1 Proof of Effective Locality for all quark processes.

Effective Locality is a new property where the coordinates between opposite end

points of a Gluon Bundle was the same, modulo transverse quark fluctuations. This

property holds true for all quark processes, without approximation and without ex-

ception. We prove this below.

In the QCD Generating Functional, we have used

e−
i
4

∫
FaµνF

µν
a = N

∫
d[χ]e

i
4

∫
χaµνχ

µν
a + i

2

∫
χaµνF

µν
a (7.1)

and

∫
d[χ] =

∏
i

∏
a

∏
µ>ν

∫
dχaµν(ωi) (7.2)

Each χ is divided into d4 volume that is, not part of a function space but becomes

individual minkowski space units[29].

p1 + p2 = p′1+
′
2 (7.3)

are obtained by pair-wise functional differentiation of the Generating Functional with

respect to quark sources ηaµ, η̄bν . Each of these operations bring down a set of Green’s
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function, Gc[A].

N

∫
d[χ]e

i
4

∫
χ2eDAe

i
2

∫
χF+ i

2

∫
A(Dζ

c)
−1A × [GI

c(x1, y1|A)GII
C (x2, y2|A)

eL[A]

< S >
]A=0 (7.4)

In the ordered exponentials definite the GI,II
c [A], linear Aµ dependencies can be

factored out in:

(eg
∫ s
0 ds

′σ·F (y−u(s′) · e−ig
∫ s
0 ds

′u′(s′)·A(y−u(s′)))+ (7.5)

and

(exp[g

∫ s

0

ds′σµνλ
afabcAbµ(z)Acν(z)])+ (7.6)

where z = y − u(s′).

For example,

(e2ig
∫+∞
−∞ dspµAaµ(y+2p)λa)+ =

∫
Dαδ[αa(s)− 2gpµA

a
µ(y + 2sp)](ei

∫+∞
−∞ dsαa(s)λa)+ (7.7)

The result is then

e−
i
2

∫
δ
δA
·D(ζ)
c · δδA · e+

i
2

∫
A·K̄·A+i

∫
Q̄·A · eL[A] (7.8)

where

K̄ab
µν = Kab

µν + [gfabcχcµν + (D(ζ)
c )−1)abµν ] (7.9)

and

Q̄a
µ = −∂νχaµν +Qa

µ = −∂νχaµν + g[Ra
Iµ +Ra

IIµ] (7.10)
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The functional identity

eDA · (FI [A]FII [A]) = (e
←→
D A · FI [A]) · eD · (eDA′ · FII [A′])A′=A (7.11)

is required with the cross-linkage operator

←→
D = −i

∫ ←→
δ

δA
·D(ζ)

c ·
←→
δ

δA′
, (7.12)

.

As before, all correlation functions does not have Dζ
c dependence, whereas K̂ =

K + g(f · χ) connects all quark lines and quark loops. Further, this connection by K

is "effectively local" from

< x|K̂−1|y >= K̂−1(x)δ(4)(x− y) (7.13)

.

A Gluon Bundle reduces coordinates at each end to depend only on the simple

combination of y and Fradkin’s variables u(s′) in a specific, for example, y − u(s′),

local way.

Gluon propagators Dc(w− z) in QCD quark/(anti)quark amplitudes are replaced

by contact type interaction term K̂−1(w)× δ(4)(w − z).

For example, in the Bloch-Nordsieck approximation where

< p|GBN
c [A]|y > = e−ip·y · i

∫ ∞
0

dse−is(m
2+p2)m− iγµ[pµ − gAaµ(+2sp)λa]

× (exp{g
∫ s

0

ds′σµνF a
µν(y + 2s′p)λa} · exp{+2ig

∫ s

0

ds′[pµAaµ(y + 2s′p)λa]})+

(7.14)

39



leads to

δ(4)(ω − y1 + s1p1) · δ(4)(ω − y2 + s2p2)

=
1

2pE
· δ(2)(~y1,⊥ − ~y2,⊥) · δ(s1 − s+) · δ(s2 − s−)

· δ(2)(~ω⊥ − ~y⊥ · δ(ωL −
1

2
(y1,L + y2,L)) · δ(ω0 − y1,0 +

E

p
y1,L).

(7.15)

In the center of mass,

~y⊥ = ~y1,⊥ = −~y2,⊥ ≡
1

2
~b,

z0 = y1,0 − y2,0 = 0→ s1 = s2

y1,0 = γms1 → s1 =
y1,0

(γm)
.

(7.16)

For large γ and any reasonable duration of the scattering, s1 = s2 ≈ 0.

igδ(2)(~b)Ωa
I(0)[f · χ(ω(0)]−1|ab3,0Ωb

II(0), (7.17)

where ω(0)
µ = (~y⊥,~0L; y0) for E/p ≈ 1.

These statements all refer to particles. The longitudinal momenta of quarks can

be obtained but the transverse coordinates cannot as required by the introduction of

transverse quark imprecision ϕ(b).

We now replace δ(2)(~y1,⊥ − ~y2,⊥ = δ(2)(~b) by

(2π)2
∫
d2~k⊥e

i~k⊥·~b−~k2⊥/M
2

=
M2

4π
exp[−M

2~b2

4
] (7.18)

where M ≈ (total center of mass scattering energy).

s1 = s2 = s ≈ 0

ωµ = ω(0)
µ

χ = χ(ω(0)
µ )

(7.19)
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Hence, we are left with effectively same coordinates at each of the Gluon Bundle [29].
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Chapter 8

Quarks Transverse Imprecision

8.1 Imprecision in Quark’s transverse coordinates

An important point is that quarks are never observed individually, and, thus, cannot

have fixed coordinates. The correct coordinates for quarks include transverse quark

fluctuations. We believe we know how to do this, the work is still underway for

understanding quark fluctuations from first principles. What we have done here is to

introduce phenomenlogical transverse fluctuation amplitudes for every quark-gluon

vertex, replacing the usual gluon-quark current interaction at the same space-time

point ∫
d4x ψ̄(x)γµA

a
µ(x)τaψ(x) (8.1)

by ∫
d2x′⊥

∫
d4x a(x⊥ − x′⊥) ψ̄(x′)γµA

a
µ(x)τaψ(x′), (8.2)

with a(x⊥ − x′⊥) real and symmetric, and x′µ = (x′⊥, xL, x0). The probability of

finding two quarks separated by a transverse (or impact parameter) distance is then

ϕ(b) =
∫

d2q
(2π)2

eiqb |ã(q)|2.

We chose a deformed gaussian

ϕ(b) = ϕ(0)e−(µb)
2+ξ

(8.3)
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with deformation parameter ξ real and small. A straight forward calculation yields,

for small ξ,

V (r) ≈ ξµ(µr)1+ξ (8.4)

. Perhaps it is important to emphasize again that all asymptotic quark states are

hadronic bound states of quarks; and for such a bound state we can specify longi-

tudinal and time coordinates, but not transverse coordinates since they are always

fluctuating. The conventional "static quark" approximation used in model bind-

ing potential calculations in all non-perturbative amplitudes are plagued with diver-

gences. All non-perturbative amplitudes are plagued with absurdities without taking

such "transverse imprecision" into account.

Substituting our potential into a Schrodinger binding equation, using the "quan-

tic" approximation then yields µ ∼ mπ, with ξ ≈ 0.1. This is sensible since the

maximum fluctuations should be less than m−1π [27].

Our results encompasses two different lattice calculations, V ∼ r and V ∼ r ln(r).

All lattice and other model calculations of q − q̄ binding correspond to an amplitude

containing only one of the two Casimir SU(3) invariants, C2 or C3, whereas our

amplitude contains both as shown in Section 4, [34, 35]. We used the well-known

half century old Eikonal function relation with potential. The minimum bound state

energy for the pion shows that most of the pion’s mass comes from the gluons forming

the GB and relatively little from the quark masses.
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Chapter 9

QCD renormalization

9.1 Cluster Expansion

To obtain all configurations between Gluon Bundles and Quark loops, we use a

method suggested by Chemists in molecular configurations. Consider a functional

L[A] which is acted upon by the linkage operator exp[D], with D = −( i
2
)
∫

δ
δA(µ)

Dc(u−

v) δ
δA(v)

. For simplicity, we write

L̄[A] = eDL[A]. (9.1)

To represent S[A] = eD · eL[A], we convert S[A] directly to an exponential whose

argument is an infinite sum over a set of connected quantities. The representation is

S[A] = exp[
∞∑
N=1

QN

N !
], (9.2)
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where the QN [A] are connected functionals, initially defined as

QN [A] = eDLN [A]|connected

=
N∏

i>j=1

eDij ·
N∏
i=1

eDiL[Ai]|connected,Ai=A,

=
N∏
i>j

eDij ·
N∏
i=1

L̄[Ai]|connected,Ai=A

(9.3)

The subscript "connected" indicates that at least one linkage must be retained be-

tween any and each pair of L[Ak] terms. For N = 1, Q1[A] = L̄[A]. Explicit QN

forms are found by using lagrange multiplier λ such that L→ λL, then QN → λNQN .

S[A] becomes

exp[
∞∑
n=1

λnQn

n!
] = eD · eλL (9.4)

or
∞∑
n=1

Qn

n!
= ln[eD·e

λL

] (9.5)

Each QN can be obtained by applying (∂/∂λ)N |λ=0 on above. For example, Q1 =

[eD·Le
λL

[eD·e
λL

]]|λ=0 = eD · L = L̄. Figure 9-1. For Q4, we obtain the following

Figure 9-1: Graphical expansion of Q1

expansion as shown in figure 9-2. The multiplicative factor for each term can be

obtained by direct counting or combinatorics [23].

Figure 9-2: Graphical expansion of Q4
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9.2 Renormalization

The radiative corrections of QCD enter when there is momentum transfer between

one quark and another quark, where momentum transfer passes through intemediate

GBs and/or closed quark loops.

We use an exact functional cluster expansion described in Chapter 2.5 of [23]. In

our particular choice of renormalization, we choose δ2` = κ, where δ represent point

where GB connects to a quark loop. The quark loop, `, has the expected UV log

divergence and κ is a finite positive constant, figure 9-3.

Figure 9-3: We chose a renormalization scheme where two connections of Gluon
Bundles, δ, multplied by a quark loop with logarithmic divergence, ` are set equal to
a finite quantity κ, to be determined by experiments.

With this particular choice if renormalization, only GB chain graphs are non-

zero. All other closed loops entering into the functional cluster expansion vanish.

In figure 9-2, only the last term will be non-zero. These GB chain graphs form a

geometric series which can be summed, and is everywhere finite. See figure 9-4.

Figure 9-4: We set δ2 ·` = κ, where κ is assumed finite and determined by experiment.
This simplifies all posible loop connections with Gluon Bundles to only the straight
chains. This is the first attempt at renormalization, and, thus far, compares well with
experiments.

The real radiative corrections in QCD are formed from Gluon Bundles and Quark-

Antiquark loops. We are in position now to calculate scattering amplitudes between

Quark/(anti)Quark processes.

All the basic radiative correction structure of non-perturbative QCD comes from

interacting closed-quark-loops with GB’s. A single dressed quark has an amplitude
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proportional to

N

∫
d[χ]ei

χ2

4 (det(gf · χ)−
1
2 )eD̂A ·Gc[A]eL[A]|A→0, (9.6)

While two scattering quarks are described by

N

∫
d[χ]ei

xχ2

4 (det(gf · χ)−
1
2 )eD̂AG(1)

c [A]G(2)
c [A]eL[A]|A→0, (9.7)

where D̂A = i
2

∫
∂
∂A

(gf · χ)−1 ∂
∂A

.

9.3 Quark self-energy

Every GB exchanged is represented by the linkage operator connecting the twoGc[A]’s

to each other, and the Gc[A]’s to L[A]. Explicit calculation shows that all self-energy

graphs vanish either by asymmetry of the (f · χ)−1 color and indices or by explicit

loop integration. See Figure 9-5. All self energies of a quark are exactly 0. Of course,

we cannot make comments on individual quark masses, the quark line in Figure 9-5

includes its transverse imprecision as discussed in Section 8.1. In other words, realistic

quarks must be in bound states.

Non-perturbative QCD turns out to be far simpler than QED.

Figure 9-5: All self energy graphs with Gluon Bundles are zero, 0.
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Chapter 10

Masses and Confinement Scale(s)

10.1 QCD confinement scale(s)

In the formulation in 8.1, the confinement mass µ appears in the transverse fluctu-

ation probability ϕ(b). Values of b > 1/µ give negative contributions to any Fourier

transform of powers of ϕ(b). We shall use a simpler procedure here to obtain an

approximate equation for the bound state energy, mbs.

ϕ(b) = ϕ(0) e−(µb)2+ξ , (10.1)

The transverse fluctuations of the bound quarks inside a bound state particle

cannot be larger than the Compton wavelength of that particle. The deformation

parameter ξ in Eq. 10.1 is the origin of quark binding in section 8.1. For a pion, b

is the transverse separation of a q − q̄ pair forming a pion, and µ is the mass scale

such that transverse fluctuations larger than µ−1 give little contribution. Deformation

parameter ξ is a small, real and positive number, of the order of 0.1 in a pion [32].

Of note is that the G23
34 Meijer function’s in section 4.2 mixes partonic variables

m, ŝ with Eq 10.1. This is a prediction in Brodsky and company’s approach in [49, 11].

The corresponding potential arrived through Eikonal function, χ of chapter 2.4,

is that of Eq. 8.4,

V (r) ' ξµ(µr)1+ξ, (10.2)
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where µ was taken to be on the order of the pion mass, mπ.

For larger bound states, µ is that larger particle’s mass, mBS. Deformation pa-

rameter is expected to be smaller than ξ < ξπ used for the pion. In our formulation,

3 quarks bound states have xinucleon ∼ 0.1. The Fourier transform of ϕ(b) is then

exp[−~q 2/4m2
p], (10.3)

where mp is the proton’s mass. Eq. 10.3 is of the form of momentum space fall-off

suggested in recent Brodsky and company’s light-front analysis [49, 11].

For a simplified analysis, we replace the rij in each of the q− q̄’s V (r)ij with 1/mπ.

We can now write energy of a bound particle, E0 as,

E0 → mBS ' nqmq + ξ
∑
q

mBS

(
mBS

mπ

)1+ξ

, (10.4)

where
∑

q represents the number of pairwise q and/or q̄ interactions. One them

obtains

mBS ' nqmq +
nq(nq − 1)

2
mBS ξ

(
mBS

mπ

)1+ξ

; (10.5)

and since ξ is expected to be � 1, Eq. 10.5 simplifies further to

ξ ' [1− nqmq

mBS

] ·
(

1
nq(nq−1)

2
(mBS
mπ

)

)
. (10.6)

What we have is that µ is mass of the bound state mBS and must be less than

the Compton wavelength of the particle. This in term determines the deformation

parameter ξ. The reverse is also true: if we know ξ, we can determine mBS. The

mass parameters in later chapter 11 and chapter 12 can be determined if we have ξ.

Some values for bound states have been listed in Table B.1 in Appendix B.
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10.2 Nuclear physics from QCD

In the same light, nucleon binding is examined. Here is the first (to our knowledge)

example of nucleon binding, for a model deuteron, from basic QCD [28]. We have

performed a qualitative model, without electrical charge and nucleon spins which can

always be added in, to describe the essence of Nuclear Physics. Assuming an average

quark for ease of calculation, an attractive potential is obtained [27, 24]. Quark

binding takes place for rij ≈ m−1π , but for nucleon binding that takes place at larger

distances. Extraction and regularization of the logarithmic UV divergence loop will

Figure 10-1: Nucleon nucleon binding is mediated by the exchange of Gluon Bundles
supporting one or more closed quark loops. The change in sign is the important factor
that enables binding to occur.

contribute two essential features.

1. The loop stretches, so distances larger than m−1π can easily enter

2. It provides a crucial change of sign for the effective n-n binding potential, fig-

ure 10-1, [27].

We expect and hope that nuclear physicists will employ such effective potentials

to discuss heavier nuclei. A model deuteron is constructed from first principles

in article [28]. See Figure 10-2.
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Figure 10-2: Nucleon nucleon binding is mediated by the exchange of Gluon Bundles
with a quark loop that is able to stretch to distances greater than that of a pion. The
change in sign in the derived potential in Figure 10-1 provides the crucial ingredient
for binding to occur.
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Chapter 11

QCD Scattering Amplitude

11.1 Eikonal approximation

The scattering amplitude we obtain from the eikonal is:

Teikonal(s, t; g
2) =

is

2m2

∫
d2beiqb[1− eiχ0(s,b)] (11.1)

The relation between ˜ϕ(b) and the eikonal, χ is given by

eiχ(s,b) = N′
∫ ∞
0

dRR3eiR
2/4+igϕ̃(b)/R (11.2)

if we used our R2 =
∑

a χ
2 approximation. The amplitude can be calculated exactly,

however, at this stage, we use our intuitive understanding that all the angles in the

color space are the same. The s dependence will be part of our normalization for the

δ that connects a real physical quark to a gluon bundle, this takes the form (m/E)2p

where p is to be extract from experiments.

11.2 Scattering Amplitude

With our renormalization scheme, and a first rough pass as averaging
∑
χ2’s by an

average R2, we calculate quark/(anti)quark scattering amplitude, T .
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a a' b' c' d' b

μ α β γ ε ν 

Figure 11-1: Two averaged quarks connected by GB’s and two loops.

For ease of presentation, let’s calculate a two loop chain graph scattering ampli-

tude, T , in Fig. 11-1. T is proportional to

T =

∫ s

0

ds1 u
′
µ(s1) Ωa(s1)

∫ s̄

0

ds̄1 ū
′
ν(s̄1) Ω̄b(s̄1) ·

∫ t

0

dt1 v
′
α(t1) Ω̂a′(t1) (11.3)

·
∫ t

0

dt2 v
′
β(t2) Ω̂b′(t2) ·

∫ t̄

0

dt̄1 v̄
′
γ Ω̆c′(t̄1) ·

∫ t̄

0

dt̄2 v
′
ε(t̄2) Ω̆d′(t̄2)

·
∫

d2y′⊥ a(y⊥ − y′⊥) ·
∫

d2ȳ′⊥ a(ȳ⊥ − ȳ′⊥) ·
∫

d2x′⊥ a(x⊥ − x′⊥)

·
∫

d2x′′⊥ a(x⊥ − x′′⊥) ·
∫

d2x̄′⊥ a(x̄⊥ − x̄′⊥) ·
∫

d2x̄′′⊥ a(x̄⊥ − x̄′′⊥)

· δ(4)(y′ − u(s1)− x′ + v(t1)) · δ(4)(x′′ − v(t2)− x̄′ + v̄(t̄1)) · δ(4)(x̄′′ − v̄(t̄2)− ȳ′ + ū(s̄1))

· [f · χ(y′ − u(s1))]
−1|aa′µα · [f · χ(x̄′ − v̄(t̄1))]

−1|b′c′βγ · [f · χ(ȳ′ − ū(s̄1))]
−1|d′bεν ,

where the a(z⊥− z′⊥) represent the probability amplitudes of each quark to be found

at a perpendicular distance z′⊥ about its average. The probability of an individual GB

delivering momentum q is given by ϕ̃(q) = [ã(q)]2. The δ-functions of Eq. (11.3) shows

Effective Locality, and z′µ = (z0, zL; z′⊥), where 0 is time-like and L is longitudinal

components. The three (f · χ)−1’s are the three GB’s in T . The x and x̄ are the

space-time coordinates of each loop. The y and ȳ coordinates represent each quark,

with corresponding Fradkin functional variables u(s′) and u(s′).

Now perform the following steps:

1. Suppress the primes in the arguments of each (f ·χ)−1; the justification for this

step is given in Appendix B of Ref. [30].

2. Assume that [f · χ(x̄− v̄(t̄1))]
−1 is labeled only by its transverse arguments, an
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assumption made for convenience, which is consistent with the final results of

this exercise.

3. Write an integral representation for each of the time-like and longitudinal δ-

functions of Eq. (11.3), thereby introducing the Fourier variables q0, qL, p0, pL, k0, kL.

Assume the two quarks of Fig. 11-1 are scattering at high energy and use the

Eikonal Model. This removes the need for an integration over the Fradkin u-

and ū-dependence. The result is that the Fourier variables q0, qL, p0, pL, k0, kL

vanish, leaving only transverse q⊥, p⊥, k⊥ dependence.

4. Write Fourier representations for the remaining three transverse delta-functions

of Eq. (11.3), and calculate the integrals
∫

d2y′⊥ ·
∫

d2ȳ′⊥ ·
∫

d2x′⊥ ·
∫

d2x′′⊥ ·
∫

d2x̄′⊥ ·∫
d2x̄′′⊥ to obtain factors of ϕ̃(q) · ϕ̃(p) · ϕ̃(k) where all previous z′⊥ are effectively

replaced by z⊥.

5. Calculate
∫

d2x⊥ ·
∫

d2x̄⊥ and find that p⊥ = k⊥ = q⊥, so that there is but one

transverse integral,
∫

d2q⊥ ≡
∫

d2q remaining.

The three transverse δ-functions multiplying the last line of Eq. (11.3) can be used

to re-write the [f · χ(x̄− v̄(t1))]
−1 term as

[
f · χ

(
1

2
[x− v(t2) + x̄− v̄(t̄1)]

)]−1
(11.4)

⇒
[
f · χ

(
1

2
[y − u(s1) + v(t1)− v(t2)− v̄(t̄1) + v̄(t̄2) + ȳ − ū(s̄1)]

)]−1
,

and, as explained in Ref. [30, 33], in the Center of Mass (CM) of the scattering quarks,

with the zero of time chosen as that time when both quarks’ longitudinal coordinates

are zero, the Eikonal Model effectively replaces y− u(s1) by y⊥, and ȳ− ū(s̄1) by ȳ⊥.

This replaces Eq. (11.4) by

[
f · χ

(
1

2
[y⊥ + ȳ⊥ + ∆v −∆v̄]

)]−1
, (11.5)

where ∆v = v(t1)−v(t2), and ∆v̄ = v̄(t̄1)−v̄(t̄2). With the CM value of the transverse
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vectors y⊥ + ȳ⊥ = 0, Eq. (11.5) reduces to

[
f · χ

(
1

2
[∆v −∆v̄]

)]−1
. (11.6)

The remaining transverse integral over d2q⊥ has

eiq·[y⊥−ȳ⊥+Δv+Δv̄], (11.7)

in its integrand, where y⊥ − ȳ⊥ = ~b is the impact parameter. The (f · χ)−1 of

Eq. (11.6) must now be included as part of Fradkin’s v and v̄-integrals. For this, we

write a Fourier representation of Eq. (11.6) as

∫
d2K

(2π)2
F̃(K) ei

K
2
[Δv−Δv̄], (11.8)

and note that the UV divergent part of the Fradkin integrals over both loops,
∫

d[v] ·∫
d[v̄], is proportional to the product

[
−λ δαβ (q +

1

2
K)2 `

]
·
[
−λ δγε (q − 1

2
K)2 `

]
, ` = ln(1/m) (11.9)

using our original approximation for the spin dependence of each loop. Note that the

color indices of each side of the loop are forced to be identical in the divergent limit

of the loop.

Without its K-dependence, Eq. (11.9) is just given by the product of the two

loops’ q2-factors. That K-dependence appears in the form of a sum over products

of polynomial dependence on K components, multiplying the transform F̃ . We now

take the inverse transform with

F̃(K) =

∫
d2B e−iK·B [f · χ(B)]−1. (11.10)

Each K-component Kα can be expressed as a derivative with respect to Bα of the

inverse transform, Kα → i ∂
∂Bα

. An integration-by-parts transforms this and all such

derivatives from the polynomial K-dependence of Eq. (11.9) into one or more deriva-
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tives operating upon [f · χ(B)]−1. The
∫

d2K can now be immediately, yielding

δ(2)(B). The result of all the K-dependence of Eq. (11.9) is a group of derivatives

taken at B = 0.

We have not yet allowed the small space-time interval of the (f ·χ)−1 of this central

GB to vanish, in conjunction with the loop UV divergences becoming infinite. Each

of the small space-time volume is completely independent of its neighbors such that

the δ
δBα

operating on them. We are free to define how the limit is to be taken and,

we shall, take the simplest case of a "flat" volume without any curvature. Each and

every derivative on this flat volume vanishes as B → 0. To put it in another way, any

curvature introduces a scale; and there is no relevant scale to adopt.

The contribution of this two-loop chain is then proportional to the product of

two groups of q-factors, one from each loop, separated by the matrix quantity [f ·

χ(0)]−1|b′c′βγ which we now replace by the simplified expression

(−λq2δαβ)(−λq2δγε)κ2. (11.11)

This result of the form of Eq. (11.11) will hold for every ’interior’ GB of the chain.

For example, the three-loop amplitude has four (f · χ)−1 factors where the central

two may both be re-written as

∑
β,c′

[f · χ(0)]−1|b′c′αβ · [f · χ(0)]−1|c′d′βγ , (11.12)

or as [f · χ(0)]−2|b′d′αγ .

Thus, the result for a chain with n ’interior’ GBs yields a term proportional to

[f · χ(0)]n|b
′d′

αγ which is inserted between the two ’exterior’ GBs, [f · χ(y⊥)]−1|aa
′

µα on

the left and [f · χ(ȳ⊥)]−1|d
′b
εν on the right, multiplied by the remaining q-dependence,

and integrated over all transverse q. With a(q2) = λ q2 κ g ϕ̃(q), all together one has,

upon summing over all interior loops which effectively form a geometric series, and
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including the amplitude with but one loop,

Tchain = [f · χ(y⊥)]−1
∣∣aa′
µα
· ga(q2)ϕ̃ (11.13)

×
[
1 + ia(q2) [f · χ(0)]−1 − a(q2)2 [f · χ(0)]−2 − ia(q2)3 [f · χ(0)]−3 + · · ·

]a′b′
αβ

· [f · χ(ȳ⊥)]−1
∣∣b′b
βν
,

or, suppressing matrix indices,

Tchain = [f · χ(y⊥)]−1 · ga(q2)ϕ̃

[
1 + ia(q2)[f · χ(0)]−1

1 + a(q2)2 [f · χ(0)]−2

]
· [f · χ(ȳ⊥)]−1. (11.14)

Eq. (11.14) can be replaced by

Tchain = ga(q2)ϕ̃ [f ·χ(y⊥)]−1 ·[f ·χ(0)]2
[

1 + ia(q2)[f · χ(0)]−1

[f · χ(0)]2 + a(q2)2

]
·[f ·χ(ȳ⊥)]−1. (11.15)

Since the indices α and β of χaαβ(0) are transverse, all components of χ(0) can be

chosen as real. With fabc real, [f ·χ(0)]2 is positive, and the denominator of Eq. (11.15)

is never zero. The χ(0) contribution to the amplitude is then proportional to

g2
∫

d2q eiq·
~b · [f · χ(y⊥)]−1 · I(q2, g2) · [f · χ(ȳ⊥)]−1 (11.16)

or

g2R(q2) = g2 I(q2, g2) q2[ϕ̃(q)]2 λκ (11.17)

with

I(q2, g2) = N
∫

d4χ(0) det[f · χ(0)]−
1
2 e

i
4
χ(0)2 [f · χ(0)]2

[f · χ(0)]2 + [λκgq2ϕ̃]2
, (11.18)

since the integral
∫

dnχ(0) over an odd function of [f · χ(0)]−1 vanishes.

There is no divergence in the integral of Eq. (11.16) for any value of q2. The

Fourier transform of this integral corresponds to q2 dependence in momentum space.

This factor will be present in every interacting quarks processes, and as such,

can be considered as the renormalized color-charge dependence of this Model renor-
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malization, as the ’renormalized’ charge which appears in the scattering of a pair of

quarks and/or anti-quarks, at q-values somewhat different from those obtained from

simple one-GB exchange. Integrals over this quantity are then finite by virtue of the

exponential cut-off appearing in ϕ̃(q), which is (slightly) less strong than Gaussian,

reflecting the basic structure of confinement in this Model of Realistic QCD. This

chain-graph Bundle structure will be repeated in all of the correlation functions. The

integrations over coordinate components are all finite even if complicated. Methods of

Random Matrix theory [34, 31] can be used to evaluate multiple-chain contributions

to high-energy hadronic reactions, in particular elastic pp scattering.

For ease of computation, and to demonstrate the origin and appearance of the

familiar "diffraction dip" in the (momentum-transfer)2 region of m2
p

2
, we adopting two

intuitive, qualitative approximations for the exchange of a single GB-loop chain be-

tween a pair of scattering quarks, each bound into a different proton. For momentum

exchange much smaller than the CM energies, individual proton’s quarks interactions

are suppressed.

The first approximation is to represent the amplitude of a single chain by its

first two terms, as pictured in Fig. 11-2. The second approximation is to evaluate∫
dnχ(0) by treating χa as a vector in color space, with magnitude R =

√∑
a(χ

a)2,

greatly simplified by suppressing all of the normalized integrations over such angles,

and retaining only the normalized integration over R. This permits evaluations with

Figure 11-2: First two terms of complete amplitude. A Gluon Bundle term (two
bundles because one bundle is anti-symmetric) plus One-Closed-Quark-Loop term

experiments, namely, the differential cross section of elastic proton-proton scattering.
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11.3 Differential Cross Section

Elastic differential cross section is given by

dσ

dt
=

m4

16πp2E2
|Tsummed|2 (11.19)

The amplitude for two Gluon Bundles is

dσ

dt
= k[−12

βextg
2

4π
(
m

E
)2p(

m

E
)2pexp(−3

8

x

m2
)]. (11.20)

Adding in the one loop amplitude gives

dσ

dt
= k[− 12

βextg
2

4π
(
m

E
)2p(

m

E
)2pexp(−3

8

x

m2
)

+ 9
βextg

2

4π
(
m

E
)2p4πλκ̄

x

m2
exp(

−x
2m2

)]2.

(11.21)

The factor k absorbed all physical constants and converted to the experimental data

unit mb/GeV . The β’s come from the exp[iβ/4] = exp[i
∑

a χ
2/4] term and can be

calculated exactly with random matrix methods. (βext connects to physical quarks

at the ends of the chain, and βint connects to the virtual interior quark loops.) The

factor 12 in front of the Gluon Bundle term represents 12 ways two GB’s can be

arranged between three and three bound quarks, see Figure 11-2. The factor 9 is

the number of ways a single loop chain can connect between three and three bound

quarks.

For the infinite loops summed, see Figure 12-9, we calculated the differential cross-
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section to be,

dσ

dt
= k[− 12

βextg
2

4π
(
m

E
)2p(

m

E
)2pexp(−3

8

x

m2
)

+ 9
βextg

2

4π
(
m

E
)2p4πλκ̄

x

m2
exp(

−x
2m2

)

+ 9(6× 6× 2× 2)2(
βintg

2

4π
)(
m

E
)2p(4πλκ̄)(

1

2
g · a(x)ϕ̃(x)2 × (

(a(x)6−7a(x)
2

β2
int

)− (5a(x)
4

βint
+ 3

β3
int

)

a(x)8 + 1
β4
int

+ 2a(x)4

β2
int

)

)
]2

(11.22)

where a(x) = gxκϕ̃(x), x is the momentum transfer q2, βext represents connections

to exterior (real) quark line, while βint represents connections to interior quark loops.

ϕ̃(x) = exp[−i(x/m)2−η] is the fourier transform of our transverse quark imprecision

distribution, ϕ(b) in equation 8.3 where η is the inverse of ξ. For simplicity, we shall

let experiments determine β, while coupling g, renormalizations κ, p, and m must be

extracted from experiments.
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Chapter 12

Comparison with High Energy

scattering experiments

12.1 Elastic pp-scattering

In high energy hadron scattering, pp-scattering in particular, there has always been

a ’diffraction dip’ that was difficult to explain and certainly not from first principles.

There are form factors, or other methods attempted. For us, we calculate the dif-

ferential cross section from, intuitively trying a GB exchanged between two hadrons

(3 quarks that are not breaking up) and a GB-virtual quark loop-GB configuration.

Just to get an intuitive understanding. Low and behold, we have a diffraction dip as

seen in experiments. It comes from quark-GB-quark and quark-GB-virtualquarkloop-

GB-quark, Figure 12-1 and Figure 12-2, [33].

The contribution from purely GB’s exchanged between two nucleons provide an

amplitude with exponential fall off, while the one-loop-term provides a rising function,

figure 12-1, that, when both combined explains the diffraction dip. The exact form

that includes infinite sum of all chain loops are currently underway. We expect

favorable comparison with the experimental measurements [2, 3, 4, 8].

The δq in our amplitude that connects to physical quark lines have units of time,

giving us inverse eenergy relation. Raising 1/E to the first power provided too strong

an energy dependence for positions of the dips. With δq proportional to (1/m)(m/E)p,
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Figure 12-1: Elastic differential cross-section is most simply calculated from exchange
of Gluon Bundles between hadrons and exchange of Gluon Bundles between hadrons
with an additional one-quark-loop. The restriction to one loop is a first approxima-
tion.

the power p can be deduced from data. See figure 12-3. The parameters coupling

g, (re)normalization constants κ and p, and m, mass scale, β’s will be determined

from experiment. Note that the β’s can be computed exactly with random matrix

methods, but for now, we shall let experiments give us this value.

12.2 Elastic Scattering Amplitude with Gluon Bun-

dle and One quark loop term

Amplitude for gluon bundles and one loop between two hadrons is given by Eq. 11.21,

where each hadron is comprised of 3 average quarks. See figure 12-3,12-4,12-5,12-6,12-
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Figure 12-2: Gluon Bundles term (two bundles because one bundle is anti-symmetric)
plus Gluon-Bundle-One-Closed-Quark-Loop term

7 and 12-8. The parameters resulted from this amplitude are

g = 2.9

m = 2mπ

p = 0.01

βext = 3.0

κ = 0.0296

(12.1)

Figure 12-3: Early comparisons of Gluon Bundle exchanges and the one-loop-term
amplitude compares well with Intersecting Storage Ring data of elastic pp-scattering.
Data points are in small circular points. Our calculations are solid lines. There is the
expected movement of the dip to smaller q2 as energy,

√
s is increased, [2, 3, 4, 8].
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Figure 12-4: 24 GeV ISR fit using amplitude with gluon bundles and one loop term.

Figure 12-5: 31 GeV ISR fit using amplitude with gluon bundle and one loop term.
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Figure 12-6: 45 GeV ISR fit using amplitude with gluon bundle and one loop term.

Figure 12-7: 53 GeV ISR fit using amplitude with gluon bundle and one loop term.
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Figure 12-8: 63 GeV ISR fit using amplitude with gluon bundle and one loop term.
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12.3 Elastic Scattering Amplitude with Gluon Bun-

dle and Infinite summed loop chains

For the full elastic scattering amplitude given by Eq. 11.22, there are 9 possible ways

for the left hand side quarks in a proton to connect to the right hand side quarks of

the other proton, corresponding to 3 x 3 different ways the chain can be exchanged.

Consider the left hand side quark touching the external quark, there are 3 colors and

2 transverse choices that can be made for the left hand side of that GB.

Figure 12-9: Complete elastic scattering amplitude, T . Gluon Bundles term (two
bundles because one bundle is anti-symmetric) plus

∑
of infinite chains of loops.

If the right hand side of that GB is to have a different color than the left hand

side, with the same transverse coordinate, there will then be an extra factor of 2

choices, as it touches the first left hand side loop. And so there would seem to be an

extra factor of 2 for choices of the right hand side quark.

Parameters with the entire infinite loop chain and gluon bundle amplitude resulted
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in

g = 6.0

mext = 2mπ, mint = 12mπ

βext = 3.0, βint = 1/9

p = 0.1

κ = 0.000265

(12.2)

Figure 12-10: 24 GeV ISR fit with infinite loop chains summed.

For LHC’s energy of 7 TeV, total cross section should become more relevant.
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Figure 12-11: 31 GeV ISR fit with infinite loop chains summed.

Figure 12-12: 45 GeV ISR fit with infinite loop chains summed.

71



Figure 12-13: 53 GeV ISR fit with infinite loop chains summed.

Figure 12-14: 63 GeV ISR fit with infinite loop chains summed.
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Chapter 13

Extension to LHC energies and

beyond. Summary and Conclusions.

13.1 Total cross section

At 7 TeV and above, we feel it is important to consider to total cross section, σ,

σ =
4π

k
Im[T (0)] (13.1)

is proportional to the imaginary part of the foward amplitude, T (0). As first derived

by Cheng and Wu in their seminal paper [15], that the cross-section should rise with

increasing center of mass energy,

ln2

(
(s/s0)

a

ln2(s/s0)

)
(13.2)

and later confirmed by experiments. Data from Totem collaboration at the LHC [18,

19], Figure 13-1 shows that at LHC energies, the total cross-section is much higher

than at the ISR energies this report is focused on.

In our renormalization scheme where the δq that connects to a physical quark is

given the factor (m
E

)2p. Intuitively we feel there should be energy dependence on this

p. This work towards the LHC energies is currently underway.
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Figure 13-1: Totem’s total cross section shows a rise with increasing beam energy.

13.2 Summary and Conclusions

What we have done is began with the Schwinger Action, write down the QCD La-

grangian, imposing that quarks’s field must include an imprecision, ϕ(b). From there,

through Halpern’s Functional in addition to Fradkin’s representations, we get explic-

itly gaussian operations on gaussian integrals. This is possible only in the non-abelian

case, which is quite surprising that QCD is perhaps an easier problem than QED. All

of the above gives a finite, exact, gauge-invariant, non-perturbative answers to QCD

processes and can be done exactly.

1. Gauge invariance is insured in it’s strongest form by means of being Gauge-

independent.

2. Both Casimir, C2 and C3 invariants are preserved.

3. A new property in Effective Locality arose and simplifies all quark/quark pro-

cesses correlations, without approximation, without exception.

4. Individual gluons have disappeared, giving instead, the entire sum of all gluons
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exchanges, a Gluon Bundle.

5. Quark binding is obtained by the vital change of sign in its corresponding po-

tential.

6. The mass of a pion is obtained and in the right order.

7. Nucleon binding, the simplest one in a deuteron is produced.

We, at this point, introduced our particular choice of renormalization where

δ2` = κ is assumed finite, we have simplified all loop graphs to simply loop chains.

Taking all the SU(3) color fields angles to be of the same order, where
∑

A χ
2 is aver-

aged as R2, we arrived at elastic scattering amplitudes that we can compare against

experiment. Our differential cross-section, with only the coupling constant g, renor-

malization constants p and κ, and finally the bound state mass factor mext and mint

to be determined from experiments. The results compare remarkably well at ISR

energies including energy dependencies that shifts the diffraction dip to lower q2, and

the form of the curve. Certainly, comparison with LHC data is the next logical step

and is underway.

We feel, at this stage, this formalism of QCD is on good footing. Perhaps QCD

can be raised to the level of QED as a true theory of nature.
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Appendix A

Appendix A

A.1 Modified Fradkin’s Represenation of Green’s func-

tion and Closed-Fermion-Loop Functional

The causal Green’s function in Eq. (??) can be written as [23]

Gc[A] = [m+ iγ · Π][m+ (γ · Π)2]−1 = [m+ iγ · Π] · i
∫ ∞
0

ds e−ism
2

eis(γ·Π)2 , (A.1)

where Π = i[∂µ − igAaµτ
a] and (γ · Π)2 = Π2 + igσµν F

a
µντ

a with σµν = 1
4
[γµ, γν ].

Following the Fradkin’s method and replacing Πµ with i δ
δvµ

, one obtains

Gc(x, y|A) (A.2)

= i

∫ ∞
0

ds e−ism
2 · e

i
∫ s
0 ds

′ δ2

δv2µ(s′) ·
[
m− γµ

δ

δvµ(s)

]
δ(x− y +

∫ s

0

ds′ v(s′))

×

(
exp

{
−ig

∫ s

0

ds′

[
vµ(s′)Aaµ(y −

∫ s′

0

v)τa + iσµν F
a
µν(y −

∫ s′

0

v)τa

]})
+

∣∣∣∣∣
vµ→0

.

Then, one can insert [26]

1 =

∫
d[u] δ(u(s′)−

∫ s′

0

ds′′ v(s′′)) (A.3)

and replace the delta-functional δ(u(s′)−
∫ s′
0
ds′′ v(s′′)) with a functional integral over
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Ω, then the Green’s function becomes [59]

Gc(x, y|A) (A.4)

= i

∫ ∞
0

ds e−ism
2

e−
1
2
Tr ln (2h)

∫
d[u] e

i
4

∫ s
0 ds

′ [u′(s′)]2 δ(4)(x− y + u(s))

×
[
m+ igγµA

a
µ(y − u(s))τa

] (
e−ig

∫ s
0 ds

′ u′µ(s
′)Aaµ(y−u(s′)) τa+g

∫ s
0 ds

′σµν Faµν(y−u(s′)) τa
)
+
,

where h(s1, s2) =
∫ s
0
ds′ θ(s1 − s′)θ(s2 − s′). To remove the Aaµ-dependence out of the

linear (mass) term, one can replace igAaµ(y − u(s))τa with − δ
δu′µ(s)

operating on the

ordered exponential so that

Gc(x, y|A) = i

∫ ∞
0

ds e−ism
2

e−
1
2
Tr ln (2h)

∫
d[u] e

i
4

∫ s
0 ds

′ [u′(s′)]2 δ(4)(x− y + u(s)) (A.5)

×
[
m− γµ

δ

δu′µ(s)

] (
e−ig

∫ s
0 ds

′ u′µ(s
′)Aaµ(y−u(s′)) τa+g

∫ s
0 ds

′σµν Faµν(y−u(s′)) τa
)
+
.

To extract the A-dependence out of the ordered exponential, one may use the iden-

tities

1 =

∫
d[α] δ

[
αa(s′) + gu′µ(s′)Aaµ(y − u(s′))

]
(A.6)

1 =

∫
d[Ξ] δ

[
Ξa
µν(s

′)− gFa
µν(y − u(s′))

]
so that

(
e−ig

∫ s
0 ds

′ u′µ(s
′)Aaµ(y−u(s′)) τa+g

∫ s
0 ds

′σµν Faµν(y−u(s′)) τa
)
+

(A.7)

= NΩNΦ

∫
d[α]

∫
d[Ξ]

∫
d[Ω]

∫
d[Φ]

(
ei

∫ s
0 ds

′ [αa(s′)−iσµν Ξaµν(s′)] τa
)
+

×e−i
∫
ds′ Ωa(s′)αa(s′)−i

∫
ds′Φaµν(s

′)Ξaµν(s
′)

×e−ig
∫
ds′ u′µ(s

′)Ωa(s′)Aaµ(y−u(s′))+ig
∫
ds′Φaµν(s

′)Faµν(y−u(s′)),

where NΩ and NΦ are constants which normalize the functional representations of

the delta-functionals. All A-dependence is removed from the ordered exponentials

and the resulting form of the Green’s function is exact (it entails no approximation).
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Alternatively, extracting the A-dependence out of the ordered exponential can also

be achieved by using the functional translation operator. One writes

(
e+g

∫ s
0 ds

′ [σµν Faµν(y−u(s′))τa]
)
+

= e
g
∫ s
0 ds

′ Faµν(y−u(s′)) δ
δΞaµν (s

′) ·
(
e
∫ s
0 ds

′ [σµν Ξaµν(s′)τa]
)
+

∣∣∣∣
Ξ→0

.

(A.8)

For the closed-fermion-loop functional L[A], one can write [23]

L[A] = −1

2

∫ ∞
0

ds

s
e−ism

2
{

Tr
[
e−is(γ·Π)2

]
− {g = 0}

}
, (A.9)

where the trace sums over all degrees of freedom. The Fradkin’s representation pro-

ceeds along the same steps as in the case of Gc[A], and the closed-fermion-loop func-

tional reads

L[A] = −1

2

∫ ∞
0

ds

s
e−ism

2

e−
1
2
Tr ln (2h) (A.10)

×
∫
d[v] δ(4)(v(s)) e

i
4

∫ s
0 ds

′ [v′(s′)]2

×
∫
d4x tr

(
e−ig

∫ s
0 ds

′ v′µ(s
′)Aaµ(x−v(s′)) τa+g

∫ s
0 ds

′σµν Faµν(x−v(s′)) τa
)
+

−{g = 0} ,

where the trace now sums over color and spinor indices. Also, Fradkin’s variables

have been denoted by v(s′), instead of u(s′), in order to distinguish them from those

79



appearing in the Green’s function Gc[A]. One finds

L[A] = −1

2

∫ ∞
0

ds

s
e−ism

2

e−
1
2
Tr ln (2h) (A.11)

×NΩNΦ

∫
d4x

∫
d[α]

∫
d[Ω]

∫
d[Ξ]

∫
d[Φ]

×
∫
d[v] δ(4)(v(s)) e

i
4

∫ s
0 ds

′ [v′(s′)]2

× e−i
∫
ds′ Ωa(s′)αa(s′)−i

∫
ds′Φaµν(s

′)Ξaµν(s
′) · tr

(
ei

∫ s
0 ds

′ [αa(s′)−iσµν Ξaµν(s′)] τa
)
+

×e−ig
∫ s
0 ds

′ v′µ(s
′)Ωa(s′)Aaµ(x−v(s′))−2ig

∫
d4z (∂νΦaνµ(z))Aaµ(z)

×e+ig2
∫
ds′ fabcΦaµν(s

′)Abµ(x−v(s′))Acν(x−v(s′))

−{g = 0} ,

where the same properties as those of Gc[A] can be read off explicitly and the A-

dependence is at most Gaussian.
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Appendix B

Appendix B

Hadron mBS [GeV/c2] Quark Content x ξ

Proton 0.938 uud 6.7 0.05

Neutron 0.939 udd 6.7 0.05

Lambda,Λ0 1.116 uds 8.0 0.04

Charmed Lambda, Λ+
c 2.286 udc 16.3 0.009

bottom Lambda, Λ0
b 5.619 udb 40.1 0.008

Sigma+, Σ+ 1.189 uus 8.5 0.03

Sigma0, Σ0 1.193 uds 8.5 0.03

Sigma-, Σ− 1.197 dds 8.6 0.03

Charmed Sigma, Σ++
c 2.454 uuc 17.5 0.009

Bottom Sigma, Σ+
b 5.811 uub 41.5 0.008

Bottom Sigma, Σ−b 5.816 ddb 41.5 0.008

Xi, Ξ0 1.315 uss 9.4 0.03

Xi, Ξ− 1.322 dss 9.4 0.03

Charmed Xi, Ξ+
c 2.468 usc 17.6 0.008

charmed Xi, Ξ0
c 2.471 dsc 17.6 0.008

charmed Xi prime, Ξ′+c 2.575 usc 18.4 0.008

charmed Xi prime, Ξ′0c 2.578 dsc 18.4 0.008

double charmed Xi, Ξ+
cc 3.519 dcc 25.1 0.004
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bottom Xi (Cascade B), Ξ0
b 5.788 usb 41.3 0.008

bottom Xi(Cascade B), Ξ−b 5.791 dsb 41.4 0.008

charmed Omega, Ω0
c 2.695 ssc 19.3 0.008

bottom Omega, Ω−b 6.071 ssb 43.4 0.007

Table B.1: ξ-values for the known hadrons, using correct

quark flavor masses [?], displays the expected variations

in ξ as a function of x where x = mBS/mπ

Figure B-1: QCD Confinement scales.
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Figure B-2: QCD confinement scales.
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