
Optimisation de l’accès aux données

au CERN et dans la Grille de calcul mondiale

pour le LHC (WLCG)

Olga Chuchuk

Centre Inria d’Université Côte d’Azur - équipe NEO

Présentée en vue de l’obtention

du grade de docteur en Informatique

d’Université Côte d’Azur

Dirigée par : Giovanni Neglia

Co-dirigée par : Markus Schulz

Soutenue le : 19 février 2024

Devant le jury, composé de :

Frédéric Derue, CNRS/IN2P3, Rapporteur

Stéphane Jezequel, CNRS/IN2P3, Rapporteur

Chadi Barakat, Inria, Examinateur

Eric Cogneras, Université Clermont Auvergne, Examinateur

Giovanni Neglia, Inria, Directeur de thèse

Markus Schulz, CERN, Co-encadrant de thèse

C
ER

N
-T

H
ES

IS
-2

02
4-

17
4

19
/0

2/
20

24

Data access optimisation

at CERN and in the Worldwide

LHC Computing Grid (WLCG)

Jury:

President

Chadi BARAKAT Directeur de recherche Centre Inria d’Université Côte d’Azur

Reviewers

Frédéric DERUE Directeur de recherche CNRS/IN2P3

Stéphane JEZEQUEL Directeur de recherche CNRS/IN2P3

Examiners

Eric COGNERAS Mâıtre de conférences Université Clermont Auvergne

Director

Giovanni NEGLIA Directeur de Recherche Centre Inria d’Université Côte d’Azur

Co-Supervisor

Markus SCHULZ Cadre scientifique CERN

Résumé

La Grille de calcul mondiale pour le LHC (WLCG) offre une infrastructure informatique

distribuée considérable dédiée à la communauté scientifique impliquée dans le Grand

Collisionneur de Hadrons (LHC) du CERN. Avec un stockage total d’environ un exaoctet,

le WLCG répond aux besoins de traitement et de stockage des données de milliers de

scientifiques internationaux. À mesure que la phase du High-Luminosity LHC (HL-LHC)

approche, le volume de données à analyser augmentera considérablement, dépassant les

gains attendus grâce à l’avancement de la technologie de stockage. Par conséquent, de

nouvelles approches pour un accès et une gestion efficaces des données, telles que les

caches, deviennent essentielles. Cette thèse se plonge dans une exploration exhaustive de

l’accès au stockage au sein du WLCG, dans le but d’améliorer le débit scientifique global

tout en limitant les coûts. Au cœur de cette recherche se trouve l’analyse des journaux

d’accès aux fichiers réels provenant du système de surveillance du WLCG, mettant en

évidence les véritables schémas d’utilisation.

Dans un contexte scientifique, la mise en cache a des implications profondes. Con-

trairement à des applications plus commerciales telles que la diffusion de vidéos, les

caches de données scientifiques traitent des tailles de fichiers variables, allant de quelques

octets à plusieurs téraoctets. De plus, les associations logiques inhérentes entre les

fichiers influencent considérablement les schémas d’accès des utilisateurs. La recherche

traditionnelle sur la mise en cache s’est principalement concentrée sur des tailles de

fichiers uniformes et des modèles de référence indépendants. Au contraire, les charges de

travail scientifiques rencontrent des variations de taille de fichier, et les interconnexions

entre les fichiers logiques influencent de manière significative les schémas d’accès des

utilisateurs.

Mes investigations montrent comment l’organisation hiérarchique des données du LHC,

en particulier leur compartimentation en “datasets”, influence les schémas de demande.

Reconnaissant cette opportunité, j’introduis des algorithmes de mise en cache innovants

qui mettent l’accent sur la connaissance spécifique des datasets et je compare leur efficacité

avec les stratégies traditionnelles axées sur les fichiers. De plus, mes découvertes mettent

i

Résumé

en évidence le phénomène des “hits retardés” déclenché par une connectivité limitée entre

les sites de calcul et de stockage, mettant en lumière ses répercussions potentielles sur

l’efficacité de la mise en cache.

Reconnaissant le défi de longue date que représente la prédiction de la Popularité des

Données dans la communauté de la Physique des Hautes Énergies (PHE), en particulier

avec la problématique de stockage à l’approche de l’ère du HL-LHC, ma recherche intègre

des outils de Machine Learning (ML). Plus précisément, j’utilise l’algorithme Random

Forest, connu pour sa pertinence dans le traitement des Big Data. En utilisant le ML

pour prédire les futurs schémas de réutilisation des fichiers, je présente une méthode en

deux étapes pour informer les politiques d’éviction de cache. Cette stratégie combine la

puissance de l’analyse prédictive et des algorithmes établis d’éviction de cache, créant

ainsi un système de mise en cache plus résilient pour le WLCG.

En conclusion, cette recherche souligne l’importance de services de stockage robustes,

suggérant une orientation vers des caches sans état pour les petits sites afin d’alléger les

exigences complexes de gestion de stockage et d’ouvrir la voie à un niveau supplémentaire

dans la hiérarchie de stockage. À travers cette thèse, je vise à naviguer à travers les défis

et les complexités du stockage et de la récupération de données, élaborant des méthodes

plus efficaces qui résonnent avec les besoins évolutifs du WLCG et de sa communauté

mondiale.

Mots clés. Algorithmes de mise en cache, WLCG, Popularité des données, Forêt

d’arbres décisionnels, Infrastructure informatique distribuée, Big Data

ii

Abstract

The Worldwide LHC Computing Grid (WLCG) offers an extensive distributed computing

infrastructure dedicated to the scientific community involved with CERN’s Large Hadron

Collider (LHC). With storage that totals roughly an exabyte, the WLCG addresses the

data processing and storage requirements of thousands of international scientists. As the

High-Luminosity LHC phase approaches, the volume of data to be analysed will increase

steeply, outpacing the expected gain through the advancement of storage technology.

Therefore, new approaches to effective data access and management, such as caches,

become essential. This thesis delves into a comprehensive exploration of storage access

within the WLCG, aiming to enhance the aggregate science throughput while limiting

the cost. Central to this research is the analysis of real file access logs sourced from the

WLCG monitoring system, highlighting genuine usage patterns.

In a scientific setting, caching has profound implications. Unlike more commer-

cial applications such as video streaming, scientific data caches deal with varying file

sizes—from a mere few bytes to multiple terabytes. Moreover, the inherent logical

associations between files considerably influence user access patterns. Traditional caching

research has predominantly revolved around uniform file sizes and independent reference

models. Contrarily, scientific workloads encounter variances in file sizes, and logical file

interconnections significantly influence user access patterns.

My investigations show how LHC’s hierarchical data organisation, particularly its

compartmentalization into datasets, impacts request patterns. Recognising the opportu-

nity, I introduce innovative caching policies that emphasize dataset-specific knowledge,

and compare their effectiveness with traditional file-centric strategies. Furthermore, my

findings underscore the “delayed hits” phenomenon triggered by limited connectivity

between computing and storage locales, shedding light on its potential repercussions for

caching efficiency.

Acknowledging the long-standing challenge of predicting Data Popularity in the High

Energy Physics (HEP) community, especially with the upcoming HL-LHC era’s storage

conundrums, my research integrates Machine Learning (ML) tools. Specifically, I employ

iii

Abstract

the Random Forest algorithm, known for its suitability with Big Data. By harnessing ML

to predict future file reuse patterns, I present a dual-stage method to inform cache eviction

policies. This strategy combines the power of predictive analytics and established cache

eviction algorithms, thereby devising a more resilient caching system for the WLCG.

In conclusion, this research underscores the significance of robust storage services,

suggesting a direction towards stateless caches for smaller sites to alleviate complex

storage management requirements and open the path to an additional level in the storage

hierarchy. Through this thesis, I aim to navigate the challenges and complexities of data

storage and retrieval, crafting more efficient methods that resonate with the evolving

needs of the WLCG and its global community.

Key words. Caching algorithms, WLCG, Data popularity, Random Forest, Distributed

Computing Infrastructure, Big Data

iv

Contents

Résumé [Français] . i

Abstract . iii

Contents . v

List of Figures . ix

List of Tables . xiii

1 Introduction 1

1.1 LHC at CERN and the ATLAS experiment 1

1.1.1 ATLAS Data Processing Workflow 2

1.2 Worldwide LHC Computing Grid (WLCG) 6

1.2.1 Architecture . 6

1.2.2 Functional Tasks . 8

1.2.3 Main Use Cases . 10

1.2.4 Hierarchical Organisation of Data into Datasets 11

1.2.5 ATLAS Data Placement and Processing Policies 11

1.2.6 EOS . 12

1.3 Data Management Challenges in LHC Experiments 13

1.3.1 Data Lakes . 14

1.4 Introduction to Caching . 16

1.4.1 Types of Caching . 16

1.4.2 Existing Caching Algorithms . 17

1.4.3 Different Scenarios of Caching . 19

1.4.4 Evaluating Caching Efficiency . 22

2 WLCG Workload Characteristics 25

2.1 Sources of Log Information in the WLCG 26

2.1.1 EOS Report Logs . 26

2.1.2 ATLAS Rucio Logs/Dumps . 27

2.1.3 Data Sources Consistency . 30

2.2 WLCG Logs Processing Workflow . 31

2.2.1 Data Collection and Parsing . 31

v

Contents

2.2.2 Data Filtering . 31

2.2.3 Data Grouping . 32

2.2.4 Derivation of the Operation Types 33

2.2.5 Derivation of File-Specific Metrics 33

2.2.6 Data Cleaning and Data Immutability Assumption 35

2.3 General Access Patterns . 36

2.3.1 Distribution of File Types (Based on Creation/Deletion time) . . . 37

2.3.2 File Sizes Distribution . 39

2.3.3 File Accesses Time Distribution (Temporal Locality) 39

2.3.4 Analysis of Content Popularity and Zipf’s Law in Caching Perfor-

mance . 43

2.4 Analysis Files Access Patterns . 45

2.4.1 Workload Comparisons: Analysis vs. Total Workloads 45

2.4.2 Comparing File Sizes: Analysis Files vs. All Files 45

2.4.3 Number of File Accesses . 46

2.4.4 Correlation Between File Size and Popularity 46

2.4.5 Request Rate . 47

2.4.6 Dependency Between the Lifetime and Popularity 47

2.4.7 Popularity of the Files: Ranking-Zipf Plots 48

2.5 Dataset-Based Access Patterns . 48

2.6 Conclusions . 55

2.7 Log Data Processing Pipeline: A Brief Overview of Implementation Details 56

3 Caching in the Context of the WLCG 57

3.1 Problem Statement . 57

3.2 Constructing MRCs for Equal-size File Traces 57

3.2.1 OSA. Samples . 58

3.2.2 LRU and OPT. Samples . 58

3.2.3 OSA, LRU, and OPT. Samples. Comparison 59

3.2.4 OSA. Influence of Sampling . 61

3.3 Cache Admission: Impact on Algorithmic Performance 61

3.4 MRCs for Heterogeneous File Sizes . 63

3.4.1 Optimisation of MRCs Through Point-Based Construction 63

3.4.2 Lower and Upper bound of the OPT algorithm 64

3.4.3 Lower Bound for BMR of Reactive Policies 64

3.5 Exploring Enhanced LRU Variants: Implementation of 2-LRU Caching . 68

3.6 Caching Algorithms Taking into Account Specifics of WLCG Workloads . 68

3.7 Performance Comparison . 71

3.7.1 Implemented Enhancement Strategies 73

3.8 Limited Connectivity Throughput Study 74

vi

Contents

3.8.1 Implementation Specifics . 74

3.8.2 Observations on the Queue Length 75

3.8.3 Full-Cache Points and the Calculation of Hit Ratios 77

3.8.4 Discussion of Experimental Results 80

3.8.5 Prefetching Overhead . 85

3.9 Bandwidth Exploration . 86

3.10 Conclusions . 88

4 Machine Learning-based Caching Policies 89

4.1 Description of the Trace: . 89

4.2 Performance of the Belady algorithm . 89

4.3 Architecture of ML solution (2-Stage Approach) 91

4.4 Predicting Future Accesses . 92

4.4.1 Search for Simpler Dependencies 92

4.4.2 The Choice of the Predictive Model 94

4.4.3 Training Decision Trees and Random Forests 100

4.4.4 Reformulating the Problem: Watermarks Training 104

4.4.5 Results of the Prediction Models 107

4.4.6 Feature Importance . 110

4.5 Integration into the Caching Policies . 114

4.5.1 Condensing Model . 114

4.5.2 Watermarks . 115

4.5.3 Experimental Results and Discussion 117

4.6 Implementation Details and Computational Complexity 117

4.6.1 LRU and LRU Watermarks . 119

4.6.2 Machine Learning Approach . 120

5 Conclusions 123

5.1 Future Directions . 124

vii

Contents

viii

List of Figures

1.1 Schematic of the Data Processing Workflow in the ATLAS Experiment at

the LHC. 3

1.2 Illustration of the Worldwide LHC Computing Grid (WLCG) Infrastructure. 7

1.3 Projected Resource Requirements for the ATLAS Experiment from 2020

to 2036. 13

1.4 Flow of Information within a Data Lake Framework. 15

2.1 Classification of File Operations by Size and Byte Metrics. 34

2.2 Definition of Update, Empty and Abnormal Operations. 34

2.3 Data Turnover at CERN T0 Data Center for LHC Detectors. 36

2.4 Comparison of Read Volume and Read Workload in the ATLAS Instance. 37

2.5 Data Read Activities Breakdown at CERN’s T0 Data Center for the

ATLAS Experiment. 38

2.6 Visual Analysis of File Size Distribution and Volume Contribution at

CERN’s T0 Data Center, ATLAS Experiment. 40

2.7 Distribution of File Access Frequency. 41

2.8 Time Difference Between Consecutive File Accesses. 41

2.9 Detailed Distribution of Time Intervals Between Consecutive File Requests. 42

2.10 Distribution of File Access Durations. 43

2.11 Zipf-like Distribution Analysis of File Accesses Across LHC Experiments. 44

2.12 File Size Distribution for AOD and DAOD Files. 47

2.13 File Popularity Distribution for Analysis Files. 48

2.14 Correlation Between File Size and Average Number of Read Accesses. . . 49

2.15 Total Number of Read Accesses by File Size. 49

2.16 System Load Correlated with File Size. 50

2.17 Distribution of Byte Request Rate Averaged Per Second. 50

2.18 Dependency Between Lifetime and Number of Accesses. 51

ix

List of Figures

2.19 Comparative Analysis of Zipf-like Distributions for Analysis and Non-

Analysis File Accesses Across the ATLAS Experiment. 51

2.20 Dataset Size Distribution. 52

2.21 Distribution of the Number of Files Across Datasets. 52

2.22 Distribution of File Access Frequencies Across Datasets. 53

2.23 Histogram of File Access Proportions Across Datasets. 54

2.24 Variance in File Access Frequencies Within Datasets. 54

3.1 Comparative Analysis of File Miss Ratio Across Different Cache Sizes and

Eviction Policies for the LHC Detectors. 60

3.2 Impact of Trace Sample Size on File Miss Ratio for the Optimal Static

Allocation (OSA) Eviction Policy in the LHC Detectors. 62

3.3 Detailed Comparison of Various Cache Eviction Policies’ Performance in

Terms of FMR and BMR Depending on the Cache Size. 72

3.4 Comparative Analysis of FMR and BMR Excluding Cold Misses for Various

Cache Eviction Policies. 73

3.5 Queue Size Variation Over Time for LRU Cache Policy Under Different

Network Throughputs. 78

3.6 Queue Size Variation Over Time for Dataset LRU Cache Policy Under

Different Network Throughputs. 79

3.7 Hit Rate Dynamics Across Different Cache Sizes for 100 Gbit/s Throughput

Using LRU. 81

3.8 Analysis of LRU Cache Performance Across Various Throughput Levels. . 82

3.9 Analysis of Dataset LRU Cache Performance Across Various Throughput

Levels. 83

3.10 Comparative Analysis of BMR for LRU and Dataset LRU Under Different

Network Throughputs. 84

3.11 Optimal Caching Policy Based on Connectivity Bandwidth and Cache Size. 85

3.12 Prefetching Overhead as a Function of Cache Size. 86

3.13 Distribution of Cumulative Bandwidth Utilisation for File Access Events

Over Time. 87

4.1 Comparing the Performance of LRU, Belady and the Lower Bound of the

Optimal Algorithms. 91

4.2 Comparative Analysis of Access Frequency and Access Rate Over Time. . 93

4.3 Overlay Histogram of Normalised Access Times on Log Scale by Access

Class. 94

x

List of Figures

4.4 Correlations between Previous and Next File and Dataset Access Times. . 95

4.5 Decision Tree and Random Forest Schematic Representation. 99

4.6 Regression Analysis: Comparison of Actual vs. Predicted Reuse Distance

Distributions. 109

4.7 Regression Analysis: Actual vs. Predicted Distribution of Reuse Distances.109

4.8 Regression Model Error Distribution by Reuse Distance. 110

4.9 Predicted Class Distribution in Classification Model. 111

4.10 Error Magnitude by Prediction Class in Classification Model. 112

4.11 Feature Importance for Regression Model. 113

4.12 Feature Importance for Classification Model. 114

4.13 Comparing the Basic LRU and Belady Cache Eviction Policies with Their

Watermark-Based Counterparts (Wmk). 116

4.14 Comparing LRU, Belady-Watermarks Models, with the ML-Based Solutions.118

4.15 Performance Evaluation Plot of an ML Regressor with Watermark Thresh-

olds. 119

xi

List of Figures

xii

List of Tables

2.1 Description of Main Non-Deletion Log Metrics of EOS Report Logs. . . . 27

2.2 Description of Main FST Deletion Log Metrics of EOS Report Logs. . . . 28

2.3 Description of Main MGM Deletion Log Metrics of EOS Report Logs. . . 29

2.4 Comparison of Files and Number of Accesses in Rucio and EOS Report

Logs. 30

2.5 Fraction of Other Operations at CERN T0 Data Center for LHC Detectors. 35

2.6 Comparison of the Total Access and Analysis-Only Access Workloads. . . 46

4.1 Main Characteristics of the Updated 2022 File Access Trace. 89

4.2 Retention of Records and Composition of Training Dataset. 93

4.3 Comparison of RMSE Scores for Different Regression Methods. 97

4.4 Filtering Reduction Rates of the Training Dataset for Random Forest Model.106

4.5 ML Model Performance Comparison (Random Forest). 108

4.6 ML Model Performance Comparison (Decision Tree). 108

4.7 Regression Model Performance Comparison. 113

4.8 Impact of the Cache Size on the Number of Cache Cleanups, Simulation

Time and the Average RMSE of the Random Forest Classification Task. . 116

xiii

List of Tables

xiv

Chapter 1

Introduction

1.1 LHC at CERN and the ATLAS experiment

The European Organisation for Nuclear Research, better known as CERN [1], is a

multinational organisation that serves as the epitome of collaborative efforts in scientific

research. CERN is globally renowned for its Large Hadron Collider (LHC) [2], the most

powerful particle accelerator in existence. Situated underground near Geneva, the LHC

consists of a 27-kilometre ring equipped with superconducting magnets. The primary

objective of the LHC is to recreate conditions that existed just moments after the Big

Bang, thereby providing an environment for discovering new particles and offering insights

into the fundamental forces and constituents of the universe.

The LHC is used by four main detectors, each with a focus on specific research

goals, ATLAS and CMS are covering similar topic employing different technologies for

calorimetry and the measurement of muons :

• ATLAS (A Toroidal LHC ApparatuS): As one of the two general-purpose detectors,

ATLAS is designed to investigate a wide range of physics, including the search for

phenomena beyond the Standard Model, such as supersymmetry. ATLAS played a

significant role in the discovery of the Higgs boson in 2012 [3].

• CMS (Compact Muon Solenoid): Like ATLAS, CMS is the second general-purpose

detector. CMS also participated in the discovery of the Higgs boson [4].

• ALICE (A Large Ion Collider Experiment): This detector is specialised for studying

the quark-gluon plasma, a state of matter that existed shortly after the Big Bang.

ALICE helps to understand the strong force, one of the four fundamental forces in

physics [5].

1

1.1. LHC AT CERN AND THE ATLAS EXPERIMENT 2

• LHCb (LHC beauty): The LHCb experiment aims to understand why we live

in a universe made predominantly of matter. By studying the decay of particles

containing beauty and charm quarks, LHCb provides crucial information on the

matter-antimatter imbalance [6].

Each detector generates massive volumes of physics data, necessitating a highly

efficient computational infrastructure for data storage, management, and analysis, a role

fulfilled by the Worldwide LHC Computing Grid (WLCG) [7]. WLCG is a remarkable

success of collaboration in the field of computational science, underpinning some of the

most significant advancements in computing for particle physics.

In this study, the focus is on the processing of ATLAS detector data. The reason for

this lies in the complexity and scale of computing for ATLAS, which is typical for the

current generation of HEP experiments at larger accelerators. Additionally, their chosen

labelling system efficiently differentiates between data types in the storage system, clearly

distinguishing between datasets used for analysis tasks and other forms of data. Analysing

the local grid analysis workloads of ATLAS at the CERN Data Denter, the largest center

within the WLCG, provides valuable insights into the patterns and structure of data

management and processing in the high-energy physics community.

1.1.1 ATLAS Data Processing Workflow

ATLAS, the largest detector at the LHC in terms of physical dimensions and volume,

is supported by a global team of over 5,000 members, including physicists, engineers,

technicians, and support staff. This collaborative effort, essential for both the construction

and operation of the detector, exemplifies international scientific cooperation. The

computing and storage needs of ATLAS are distributed among the WLCG sites.

Two Branches of Analysis for Physics ATLAS, like the other LHC experiments, follows

two branches of data processing (refer to Figure 1.1). The first begins with data recorded

by the ATLAS detector during the operation of LHC. The data stream passes through

several steps of selection and filtering with the High Level Trigger (HLT), being the first

already implemented in software, deciding on the selection of physics events to keep,

leading to initial data filtering and a significant reduction in data rate and so in volume.

The collision rate is 40 MHz. After HLT processing, only a fraction of the data is retained

for offline analysis, about 1 kHz. The size of each event is typically 1.6 MB [8,9].

Following this, the raw data (RAW) undergoes so-called reconstruction, which includes

calibration, alignment, object identification (particles, clusters, and particle jets), particle

track reconstruction, and more. Scientists utilise the reconstructed data for their analyses.

1.1. LHC AT CERN AND THE ATLAS EXPERIMENT 3

Figure 1.1: Schematic of the data processing workflow in the ATLAS experiment at the
LHC. The workflow is divided into two parallel branches: the processing of real collision
data (left) and simulated data (right). Real data undergoes initial filtering through the
High Level Trigger (HLT) before reconstruction and derivation steps prepare it for final
analysis. Simultaneously, simulated data generated via Monte Carlo methods is processed
through similar stages, including digitisation and reconstruction, ensuring both data
types are suitable for comparative analysis in particle physics research.

1.1. LHC AT CERN AND THE ATLAS EXPERIMENT 4

In parallel with the processing of real LHC data, another branch handles simulated

physics events. This begins with Monte Carlo (MC) generation of collision events based

on known physics laws and extensions that are expected to be possible extensions of

the current knowledge. This step is called the event generation. The next step of

the process then simulates the physical responses of the detector components and the

conversion to digital signals, as if these collisions occurred within the detector. This step

is called detector simulation, for which the detector response relies either on the GEANT
1 [10] toolkit or a fast simulation utilising parametrised showers in the calorimeter. The

resulting MC data closely resembles collision data but also includes so-called “truth”

information on the data from the event generators. Subsequently, these data undergo the

same processing steps as collision data.

Physicists use both collision and simulated data sources to compare analysis results,

confirming or disproving existing theoretical knowledge and making discoveries in particle

physics.

Collision Data Flow and Data Model Data from the HLT, in byte-stream format, are

permanently stored and archived in the WLCG as RAW data files. These files are

further reconstructed into Event Summary Data (ESD) files, which are C++ object

representations containing sufficient information for particle identification, track re-fitting,

jet calibration, etc. ESD data are in general transient and are kept on disk on demand,

with a limited lifespan, and only for a very limited subset of studies. ESD files serve as

the basis for deriving subsequent data types suitable for analysis (AOD2 and DAOD3),

as well as for control of reconstruction activities and performance monitoring (DESD4).

As such, ESD files are typically the largest among the three formats: The size of an

ESD file for a single event can be in the range of 1-2 MB. AOD files are smaller, usually

around 200-500 KB per event. A single event in a DAOD file might be around 50-150

KB, depending on the specifics of the analysis.

1GEANT in a software toolkit developed for the simulation of the passage and interaction of particles
through matter and fields. It is widely used in high energy physics for designing detectors, studying
their performance, and interpreting experimental data. GEANT provides the framework for simulating
complex interactions of particles with matter, essential for understanding the experimental outcomes in
the ATLAS project.

2AOD (Analysis Object Data) files are C++ object representations containing a summary of recon-
structed events and sufficient information for common analyses.

3DAOD (Derived AOD) - more compact and tailored towards the needs of specific analysis teams.
4DESDs (Derived ESD) are reduced ESDs, storing only the information needed for performance

evaluation and rate estimates.

1.1. LHC AT CERN AND THE ATLAS EXPERIMENT 5

Simulated Data Flow and Data Model Data produced by Monte Carlo generators are

stored in the EVNT (Event Data) format, a C++ object representation containing

“truth” information about particle collisions [8, 9]. Special software [10] simulates the

detector’s response to these generated events, producing HITS (Hits Data) C++ object

representation files that contain simulated energy deposits in active detector volumes and

related particle information. HITS files are used for digitising the detector’s response and

obtaining RDO (Raw Data Object) files, which have the same format as RAW data files

but also contain truth information about the events. The subsequent simulation of the

High Level Trigger response results in filtered RDO files based on trigger configurations.

RDO files are transient and used similarly to RAW LHC data for deriving subsequent

ESD, AOD, and DESD files. Each step in this data processing pipeline significantly

contributes to the vast amount of data generated in HEP, with final datasets often

accumulating to several TB. Specifically, for AODs, the total amounts to 200 petabytes

per year for MC simulations and 35 petabytes for the actual detector data.

The first reconstruction of LHC RAW data occurs immediately during or after LHC

data-taking, which involves collecting data from particle collisions within the Large

Hadron Collider. This provides the basis to ensure data quality and input for the refined

calibration and alignment procedures required to exploit the full potential of the data.

However, the best precision can be achieved only after processing all data. Therefore,

experiments also conduct two types of reprocessing activities:

• Full RAW → AOD Reprocessing: It initially occurs approximately three months

after the initial prompt reconstruction, and subsequently approximately once per

year.

• Fast AOD → AOD Reconstruction: It occurs several times per year in sync with

the updates of the calibration software. This process is sufficient if only high-level

reconstruction objects (e.g., particle jets) need to be improved.

In cases where lower-level objects, like tracks and clusters, need modification, a full

RAW data reprocessing is necessary. Monte Carlo simulated data undergoes reprocessing

in parallel with collision data.

ATLAS analysis begins with the AOD files, which have an xAOD format and can be

used by both Athena5 [11] and ROOT6 [12] to produce final ROOT N-tuples, used in

individual analyses.

5Athena is the ATLAS software framework managing all steps of the ATLAS production workflows
before the final analysis and some physics group analyses.

6ROOT is a widely-used data analysis framework in the High Energy Physics community.

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 6

AODs are typically too large to run analyses directly. Therefore, they are centrally

reduced according to the needs of physics groups, producing DAOD (Derived AOD) files,

which have the same format but are much smaller in size through filtering and reducing

the information retained.

1.2 Worldwide LHC Computing Grid (WLCG)

Originating from the necessity to manage, analyse, and store massive volumes of data

from the LHC, the WLCG has evolved into a complex, distributed computing system,

showcasing advanced complexity in its architecture and operations.

1.2.1 Architecture

WLCG follows the Grid paradigm that federates independent resources, allowing user

communities to access these resources without being linked to all individual sites as users.

This is handled by an abstraction layer called middle ware [13].

The WLCG has a distributed architecture structured in three layers, known as Tiers,

which is depicted in the schematic illustration (refer to Figure 1.2) [9].

The Tier 0 (T0) corresponds to the CERN Data Center, which is the largest in the

Grid in terms of computational resources and storage capacity [14]. as of 2023, it is

equipped with approximately 450,000 processor cores and 10,000 servers, which operate

continuously to manage the extensive data generated by the LHC experiments. All data

from the LHC detectors passes directly through this central hub. It provides roughly

20% of the overall resources in compute and disk storage; in addition, it maintains a

tape-based archive with one copy of all RAW data.

The next layer consists of thirteen Tier 1 (T1) sites, which are large computer centers

spread across Europe, Asia, and North America. One of the distinctive features of T1 sites

is their direct connection to the CERN Data Center via a high-bandwidth network called

the LHC Optical Private Network (LHCOPN) [15]. This network is used to distribute

data from T0 to T1 sites. In addition to computational and disk resources, they also

provide tape archives that maintain a combined second copy of all RAW data. With

their high bandwidth connection, they can handle the data rates required to contribute

to the reconstruction effort.

The Tier 2 (T2) sites vary in size from smaller computing and storage facilities, such

as universities, to larger at scientific institutes, located around the world. Most T2 sites

are connected to the Grid through the LHC Open Network Environment (LHCONE) [16],

which enables dynamic allocation of point-to-point virtual networks to further increase

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 7

Figure 1.2: Illustration of the Worldwide LHC Computing Grid (WLCG) infrastructure,
depicting CERN Tier-0 at the core, surrounded by interconnected Tier-1 sites across
various global locations, and the extensive network of approximately 160 Tier-2 sites. Each
site is connected through high-speed data links, forming a robust computing ecosystem
for LHC data processing and analysis.

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 8

network bandwidth. Regular national networks complement this infrastructure, ensuring

that all T2 sites maintain connectivity with each other and with T1 sites. In the original

design, the connections were expected to be hierarchical, with T2s being assigned to

T1s. This was intended to improve the robustness, expecting frequent partial outages of

wide area networks. Operational experience proved this as being unnecessary, and the

connectivity was converted from a tree to a mesh architecture.

In total, more than 170 active sites are contributing to WLCG. This extensive network

collectively contributes approximately 1.4 million computing cores and has a storage

capacity of 1.5 exabytes. This setup provides more than 12,000 physicists worldwide with

near real-time access to LHC data and the capability to process it efficiently. At the end

of the LHC’s Long Shutdown 2 (LS2) in early 2022, the global transfer rates between the

sites exceeded 260 GB/s.

Additionally, there are local compute resources outside the Grid, ranging from

individual laptops or desktops to large analysis facilities. These resources are often

referred to as Tier 3 (T3) sites, but are not part of the shared infrastructure and access

rights are managed on site-specific terms.

1.2.2 Functional Tasks

The WLCG has to provide the following functionality:

• Data Archiving: A long-term commitment to provide reliable storage for the LHC

data. Since conducting HEP experiments at accelerators is very costly, experiments

are rarely repeated under the same conditions. Therefore, the long-term preservation

of data is of great importance. Most of the sites use digital tape for this purpose,

as it offers cost-effective, scalable and reliable storage. However, the sites are free

to use other storage media for archiving, particularly with the decreasing price gap

between tape and disk. The data archiving sites must provide expertise in managing

large-scale computing facilities and perform regular validation of data accessibility.

Data losses must be minimised and, in the case of one, the data must be recovered

from copies at other grid sites. Additionally, these sites should have a good network

connection within the WLCG to support the expected data migrations. This task

of archiving the physics data is covered by the T0 and the T1 sites.

• Large-Scale Data Serving: To provide this functionality, a site must be capable of

holding significant volumes of data sets online on disk and serving them over the

network to other grid sites. Similar to data archiving, this task requires significant

expertise in the management of large-scale storage systems and an adequate network

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 9

connection with other sites.

• Compute Facilities: Depending on the I/O intensity of the computational tasks,

the requirements can be divided into two categories:

– Reconstruction/Reprocessing: These tasks are I/O-intensive and, therefore,

require that the compute cluster is complemented by large local storage re-

sources, where the data will be populated from an archive facility or other

data-serving site. Consequently, these sites also need adequate network band-

width. Both the storage and network bandwidth must scale together with the

size of the compute cluster.

– Simulation: The simulation type of work has relatively little I/O in relation to

the required processing needs and, therefore, requires little or no permanent

local storage. Sites with sufficient network connectivity to manage remote I/O

are suitable for this type of workload. Furthermore, if the output data is not

time-critical, these tasks can be run at relatively less well-connected sites if

they have a reasonable amount of local storage where the output data can be

buffered before being staged to the computing grid for storage and further

processing.

• Infrastructure or Experiment Central Services: The services supporting the opera-

tions of WLCG need servers to run. They include, among others:

– Workflow Managers: Production and Distributed Analysis (PanDA) system

used by ATLAS [17], the CMS Remote Analysis Builder (CRAB) [18] and

others.

– Data Managers: Rucio [19], which was originally developed to meet the

requirements of the high-energy physics experiment ATLAS and is now also

used by various other scientific communities; the Distributed Infrastructure

with Remote Agent Control (DIRAC) [20], which provides a more generalised

workload and data management functionalities, and others.

– The VOMS (Virtual Organisation Membership Service): service for authenti-

cation and authorisation [21].

– WLCG Information System: contains current information about the running

services [22].

– Grid Configuration Database (GOCDB): stores information about the topology

of the Grid [23].

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 10

– File Transfer Service (FTS) [24].

– Other Grid Services: VObox [25], a specialised grid service designed to support

the needs of a Virtual Organisation (VO) within the grid, CernVM-FS [26],

a system to efficiently distribute the experiments’ software on WLCG, and

others.

The sites hosting them must provide high availability and reliability, as these

services are critical for the operation of the infrastructure of the experiments. As

of now, most of these services are provided by T0 and T1 sites.

1.2.3 Main Use Cases

Different steps of the data processing vary in terms of computing requirements:

• Calibration and Alignment: After passing through the High-Level Trigger, the

data undergoes calibration and alignment activities. These tasks are run at the

T0 as they require access to the most recent data samples and proximity to the

acquisition cluster for immediate feedback. Organised as batch activities, they are

labour-intensive and are performed under the control of the core computing teams

of the experiments.

• Reconstruction/Reprocessing: These activities require access to the RAW data

and are therefore organised close to the archives (mostly at T0 and T1, with

approximately 10% at T2). Like calibration and alignment, they are organised

batch activities run by the computing teams.

• Stripping, Creation of AODs, Derived Datasets, etc.: These activities require access

to the full processed datasets and are I/O intensive. Thus, they are performed

at sites with sufficient storage and access to the archived data (mostly T1s and

sometimes the T0).

• Simulation: Simulation tasks are compute-intensive but have relatively little I/O.

They require compute clusters with enough storage to cache the output while it is

being staged elsewhere for longer-term storage and/or further processing. T2 sites,

as well as opportunistic resources like clouds and HPC systems, are commonly used

for this purpose. The subsequent steps of processing simulated data are analogous

to those for collision data and follow the same principles of computing distribution.

• Group Analysis: This requires sufficient storage capacity for the input physics

data, adequate compute resources, and WAN connectivity to access the input and

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 11

distribute the output to other sites. This typically occurs at T2 sites.

• Individual Analysis: This mostly occurs outside the Grid - at T3 sites. However,

T2 sites play the role of data-serving sites in these cases and, therefore, must have

reliable disk storage and significant network bandwidth with T3 sites. Some aspects

of this work are also done at the T0.

1.2.4 Hierarchical Organisation of Data into Datasets

In the context of data management within the WLCG, the concept of a “file” is largely

abstracted; its dimensions are often dictated by transfer duration and the capacity of an

operating system to process large files. Simultaneously, a “dataset”, which is a collection

of files that form a meaningful unit of data needed for physics analysis, represents a

broader organisational structure. These datasets were initially divided into files based on

storage system requirements and for the convenience of users processing the data.

It’s noteworthy that within these datasets, the files, just like the physics events within

a file, are independent and have no particular meaningful order. This approach reflects

the needs of the WLCG’s complex data environment. These files, distributed across

different hosts, are predominantly processed in parallel, enhancing efficiency and speed.

In certain experiments, overlapping files may be present across multiple datasets.

1.2.5 ATLAS Data Placement and Processing Policies

In managing the voluminous data from the LHC experiments, the ATLAS experiment

employs targeted data placement and processing strategies. RAW data, vital for long-term

research, are archived permanently at T0 and one T1 site, with additional current-year

copies on T1 disks. In contrast, ESD is less frequently archived, with about 5% retained

temporarily for processing and assessments. AOD follows a more conservative approach,

with one archived copy at Tier 1 and a dynamic replication policy at T1 and T2 sites,

contingent on usage.

For simulation data, the policies are equally nuanced. EVNT files are primarily

replicated at T2 sites, with distribution as required. High CPU-intensive GEANT

simulation outputs (HITS files) are singularly archived at a T1 site.

Derived AODs (DAODs) undergo post-reconstruction processing (skimming, slimming,

thinning) to cater to specific analysis needs, leading to a diverse array of smaller but

numerous DAOD versions. Notably, these often overlap in events, adding complexity to

version management. ATLAS is addressing data management challenges by introducing

new, compact data formats like PHYS and PHYSlite [27]. These formats are tailored to

1.2. WORLDWIDE LHC COMPUTING GRID (WLCG) 12

reduce data size substantially while retaining crucial analysis information. This innovation

aims to standardise data formats across various analyses, enhancing data sharing and

efficiency within the scientific community.

DAODs are typically stored in proximity to the research groups that utilise them. This

approach aims to facilitate easier access to the data for those specific groups. However,

such a localised placement strategy may not always result in an evenly balanced system

in terms of data distribution and access.

ATLAS categorises replicas into primary (always available on disk) and secondary

(extra copies subject to automatic cleanup). The categorisation is dynamic, based on

data access frequency, with T1 datasets becoming secondary after 6 months of inactivity

and T2 after a year.

Lastly, space management involves proactive monitoring, with groups manually

scheduling deletions to optimise storage efficiency. These comprehensive policies under-

score ATLAS’s commitment to balancing data preservation with practical storage and

accessibility requirements in high-energy physics research.

1.2.6 EOS

EOS [28] is a large disk storage system that has been developed at CERN since 2010. It

serves as multi-purpose storage software and is utilised for storing both physics and user

data at CERN and other WLCG sites. EOS is optimised for large-scale installations and

provides secure access to data through multiple protocols and supports multi-user access

control.

Currently, CERN operates numerous EOS instances, including ones corresponding

to specific LHC experiments: LHCb, CMS, ATLAS, and ALICE. Each EOS instance

consists of two metadata servers (also known as headnodes or MGM) and up to several

hundred disk servers (storage nodes or FST). Each headnode maintains a list of file names

along with information about their creation, the number of file copies, file ownership,

and other metadata. Storage nodes, on the other hand, house 24–72 disks that store

file contents. In total, EOS at CERN manages more than 100,000 disks and houses 8.27

billion files. The total data size currently stored on EOS at CERN exceeds 780 PB.

Due to its primary focus on physics data analysis, the EOS service is characterised

by numerous concurrent user accesses, a significant fraction of random data access, and a

high file-open rate.

1.3. DATA MANAGEMENT CHALLENGES IN LHC EXPERIMENTS 13

(a) Disk storage requirements (b) Annual CPU consumption

Figure 1.3: Projected resource requirements for the ATLAS experiment, comparing
conservative and aggressive R&D strategies against a sustained budget model, from
2020 to 2036. The sustained budget model is represented by two lines, indicating a
10% (pessimistic) and 20% (optimistic) annual increase in capacity. Each graph also
highlights the operational phases of Run 3, Run 4, and Run 5, indicating periods of
increased computational and storage demands.

1.3 Data Management Challenges in LHC Experiments

LHC stands as a significant generator of scientific data. Its detectors capture petabytes

of data every second from particle collisions. Although a substantial portion of this data

is filtered to retain only the most critical for scientific research, the yearly accumulation

still amounts to about 30 petabytes. Managing this colossal volume of data poses a

considerable challenge, especially with the upcoming launch of the High Luminosity Large

Hadron Collider (HL-LHC) runs in 2026.

Presently, the expected available computing resources will be struggling to keep

pace with these increasing demands. Despite a steady budget, which allows for some

technological improvements, the growth in resources is insufficient to meet the expanding

needs of the LHC’s research (Figure 1.3).

In light of these challenges, various research and development initiatives are underway

to enhance the efficiency of LHC data processing [29,30], including Data Lake model [31,

32], Data Carousel project [33,34], and Data Popularity studies [35,36]. These efforts

are not just about improving software performance, but also about identifying more

resource-efficient deployment strategies. A crucial aspect of this research, and a focal

point of the work presented in this PhD thesis, is the study of caching as a potential

solution.

Implementing caching systems at different sites is emerging as a promising strategy

1.3. DATA MANAGEMENT CHALLENGES IN LHC EXPERIMENTS 14

to address the anticipated increase in data processing requirements. The benefits of such

an approach include faster data transfer times, reduced need for storage space, and fewer

data replicas required.

The effectiveness of caching largely depends on the specific data workflows and

network availability across sites. An integral part of this thesis involves analysing how

storage services are utilised within the WLCG and at CERN’s EOS storage system,

aiming to effectively evaluate the potential advantages of caching. This study is expected

to contribute to the understanding and implementation of caching in high-energy physics

data management.

1.3.1 Data Lakes

Amongst various architectural, organisational, and technical shifts, a new data man-

agement model is emerging: the Data Lake model [33,34], a storage service comprising

geographically distributed data centers interconnected by a low-latency, high bandwidth

network. In this model, caching systems play a critical role from an infrastructural

perspective, helping to mitigate latency and improve access to popular data.

The envisioned Data Lake architecture allows for the dynamic movement of data

between various Data Lakes. This capability enables the system to store frequently

accessed datasets in multiple locations, enhancing data redundancy and availability.

This structure is designed to maximise data accessibility and efficiency, ensuring that

important datasets are readily available where and when they are needed most.

The architecture integrates different types of centers, each with specialised roles (as

depicted in Figure 1.4). Some centers focus on long-term data archiving, using less efficient

storage mediums, ensuring data preservation. Others are tailored towards immediate data

and computational needs, featuring faster storage options and computational resources.

These centers are strategically equipped to handle different aspects of data storage and

processing, from high-speed caching to direct network access for data retrieval.

The key aspect of this architecture is the emphasis on cache systems, which play a

pivotal role in streamlining data access. This approach not only speeds up data retrieval

and processing but also helps in optimising the storage infrastructure, effectively balancing

performance with storage needs. This makes the system both efficient and adaptable to

various data usage scenarios. Caching is also an attractive option for HEP data because

at a given time only a limited fraction of the overall data is actively used.

1.3. DATA MANAGEMENT CHALLENGES IN LHC EXPERIMENTS 15

Figure 1.4: Diagram depicting the flow of information within a Data Lake framework,
illustrating the interaction between data storage, management, transfer, caching, and
processing as implemented in the WLCG infrastructure.

1.4. INTRODUCTION TO CACHING 16

1.4 Introduction to Caching

Before venturing into the specifics of caching within the WLCG framework, it is crucial

to understand what caching is in a broader context. At its core, caching involves storing

data in a temporary storage area, known as a cache, which allows for faster access to

frequently used data. The primary purpose of caching is to reduce access time and

improve data retrieval speed by keeping copies of data at points closer to where it is

needed. This helps in reducing latency and speeds up data retrieval, improving overall

system performance while lowering the used bandwidth on the networks connecting sites.

The principle of caching has been applied across a variety of computing domains, from

web content delivery to processor operations.

1.4.1 Types of Caching

Based on the application domain and the specific level at which a cache operates within

a computing system, various types of caches are distinguished. Some of the common

types are:

• CDN Caches: Content Delivery Network (CDN) caches are crucial in web content

distribution. They store web content at geographically dispersed locations to

ensure faster delivery to users irrespective of their location. By caching content

like web pages, images, and videos closer to the end-users, CDNs reduce latency

and bandwidth usage, thus improving user experience and content accessibility.

• Web Caches: Web caching involves storing parts of web pages, such as HTML files

and images so that they are quickly available to users on subsequent requests. This

type of caching is instrumental in reducing server load, bandwidth requirements,

and latency, leading to faster web browsing.

• Disk Caches: Disk caching is the process of storing data in a computer’s memory

(RAM) that is typically stored on a disk. This form of caching accelerates data

retrieval processes, as accessing data from memory is significantly faster than disk

reads.

• CPU Caches: CPU caches are small-sized, faster memory locations within a

processor. They store copies of data from frequently accessed main memory

locations. The aim is to reduce the time to access memory and to alleviate the

bottleneck due to the difference in speed between the CPU and the main memory.

1.4. INTRODUCTION TO CACHING 17

Each type of cache serves a specific purpose and is optimised for the data and access

patterns typical to that environment.

1.4.2 Existing Caching Algorithms

The efficacy of the cache system depends on its size and the cache eviction policy, which

is an algorithm that determines which files to remove when it reaches full capacity. These

algorithms manage how data is stored, retrieved, and evicted from the cache.

To evaluate the performance of a cache system, it is essential to understand the

following key terms:

• Cache Hit: A cache hit occurs when the requested data is found in the cache

memory. It indicates that the data being accessed is already present in the cache,

thereby avoiding the need to retrieve it from the slower main memory or external

storage. Cache hits are desirable as they result in faster access times and improved

system performance.

• Cache Miss: A cache miss occurs when the requested data is not found in the cache

memory. In this case, the system needs to retrieve the data from the slower main

memory or external storage, resulting in longer access times compared to a cache

hit. Cache misses are inevitable but can be minimised through efficient caching

strategies.

• Cold Miss: A cold miss refers to the type of cache miss that occurs when the cache

is initially empty. Cold misses typically occur when the system is first initialised

and are, therefore, inevitable.

These terms are crucial for measuring the performance of caches, depending on the

cache eviction policy.

In this subsection, the most common types of caching algorithms are introduced.

LRU and Alike

The Least Recently Used (LRU) cache eviction policy, to date, remains highly popular in

practical applications due to its straightforward implementation and maintenance, coupled

with its capacity to significantly enhance system performance even with a modest cache

size, approximately 20-50% of the main storage capacity. This efficacy is documented in

various studies [37,38]). LRU is particularly effective for workloads exhibiting substantial

temporal locality, where requests for the same file are often clustered within short time

intervals.

1.4. INTRODUCTION TO CACHING 18

Building upon the LRU concept, the 2-LRU algorithm offers a variant approach.

While it shares similarities with LRU, 2-LRU is less stringent in terms of temporal

locality. It uniquely focuses on giving priority to the most recently accessed objects,

but does so within the subset of recently requested items. This approach is explored in

further detail in research [38,39]. This nuanced difference allows 2-LRU to manage cache

eviction in a manner that can be more suitable for specific types of workloads.

LFU and OSA

The Least Frequently Used (LFU) caching strategy delves into a different dimension

of request patterns, focusing on the popularity distribution of individual objects. This

approach is well-supported by research [38, 40], which highlights its efficacy. LFU is

particularly effective in environments where a relatively small subset of objects are more

frequently requested than others. By prioritising these items, LFU ensures higher cache

hit rates for the most popular objects.

In the context of the Independent Reference Model (IRM)7, LFU demonstrates a

close approximation to the Optimal Static Allocation (OSA) algorithm. OSA, an offline

algorithm, is designed to retain the most popular objects in the cache, as determined

by the observed distribution in the request trace. This alignment with OSA allows LFU

to operate with a high level of efficiency, especially in scenarios where the popularity

distribution of requests is skewed towards a limited number of objects.

ARC

The Adaptive Replacement Cache policy (ARC) [41] stands out as a sophisticated caching

algorithm that adeptly considers both the recency and frequency of file requests. By

organising files based on recent requests and popularity, ARC splits its cache into two

distinct logical lists. What sets it apart is its dynamic adaptability: it adjusts the

cache space dedicated to each list based on evolving access patterns. Compared to

LRU, ARC offers enhanced performance, being resistant to scans and adept at handling

extended periods of low temporal locality, all while retaining the simplicity of LRU’s

implementation.

A salient feature of ARC is its intrinsic learning capability. Instead of relying on

high-level insights to adapt caching algorithms, ARC autonomously discerns access

patterns from the ground up. This bottom-up approach underscores the algorithm’s

ingenuity.

7Under this model, the assumption is that requests for different objects are independent and that the
probability of requesting an object remains constant over time.

1.4. INTRODUCTION TO CACHING 19

However, adapting ARC to scenarios similar to that at the WLCG, with heterogeneous

file size distribution, presents challenges. While ARC offers a harmonised balance between

the Most Recently Used (MRU) and Most Frequently Used (MFU) files, no known

modifications of ARC are tailored explicitly for diverse file sizes. Despite the inherent

complexities, the potential for leveraging its foundational principles in heterogeneous

contexts remains a promising avenue for exploration.

1.4.3 Different Scenarios of Caching

Caching for Heterogeneous File Sizes

It’s imperative to emphasise that the majority of existing literature predominantly

examines scenarios with uniform file sizes [37–43]. In contrast, the present research

gravitates toward addressing the complexities of heterogeneous file sizes. A common

simplification offered in literature is the partitioning of varied file sizes into consistent,

standardised chunks. However, this strategy is not universally applicable and can

introduce significant computational challenges. The nuances of managing files of disparate

sizes require more tailored solutions than merely standardising their dimensions. In this

research, files are considered as atomic cacheable units.

LFU, LRU, and 2-LRU can also operate with heterogeneous file sizes with minor

changes, but more sophisticated policies in general require a non-straightforward adapta-

tion, e.g., in the case of ARC. The existing policies that were specifically conceived to take

into account file size: AdaptSize [44], GDSF [45], GD-Wheel [46]), and DynqLRU [47].

Caching with Non-Zero Download Delay

The common assumption in caching systems is that file retrieval from remote storage to

the local cache occurs quickly enough to precede subsequent requests. This presumption

often leads to the disregard of the actual retrieval time, especially under the belief that

high throughput ensures efficient file fetching. However, this scenario changes when the

throughput-to-latency ratio varies rapidly, making it crucial to consider the impact of

delayed hits on overall system performance.

A “delayed hit” is characterised by the file retrieval time exceeding the time until

the next request for that file. In simulations of caching algorithms, this situation can

mistakenly be counted as a hit since, according to the eviction policy, the file is deemed

to be in the cache. This misinterpretation leads to a logical error, particularly when

the balance between throughput and request rate is not stable. Therefore, performance

evaluation of caching algorithms requires a more nuanced approach beyond traditional

1.4. INTRODUCTION TO CACHING 20

methods.

The paper [42] highlights that simply maximising the efficiency of file retrieval does

not necessarily equate to minimising latency, especially when dealing with delayed hits.

This revelation points to the need for latency-sensitive caching algorithms. The paper

introduces two LRU variants and discusses methods for their performance evaluation in

contexts where delayed hits are significant.

In a similar vein, The authors of [43] investigate modifications to the LRU algorithm

to incorporate substantial data retrieval times, focusing on Named Data Networking

(NDN) architectures. Their approach includes distinct processes for handling request

arrivals and content deliveries, aiming to address scenarios where the time to fetch data

might exceed the interval between consecutive requests for the same file, resulting in

‘delayed hits’.

Caching with Prefetching

The caching policies described previously are fundamentally reactive, updating the cache

only after a miss by inserting the requested file. However, leveraging existing correlations in

request patterns offers an opportunity for proactive strategies, like prefetching. Prefetching

involves forecasting future content requests based on observed patterns and preloading

this content into the cache.8

In the realm of video streaming, similar to the hierarchical organisation of physics

data in the WLCG, data retrieval is both hierarchical and selective. Unlike the complete

retrieval of a video file, users often access specific segments or chunks, mirroring how

physicists access certain files within a larger dataset. This selective retrieval is akin to

the practices in the WLCG.

The key difference, however, lies in the content’s nature and utilisation. Video stream-

ing focuses on continuity, ensuring the next segment is preloaded for a smooth experience.

This contrasts with the WLCG’s approach, where datasets comprise independent files,

prioritising specific data retrieval or parallel processing rather than sequential continu-

ity. Despite their shared use of hierarchical and selective retrieval, the objectives and

operational nuances of these systems are distinct.

This approach is particularly pertinent to video streaming, as investigated in studies

like [48, 49]. Video files, often accessed sequentially, present unique challenges such as

handling pauses, fast-forwards, and rewinds.

The study [48] delves into prefetching in the context of sequential data reading in

8The terms “caching policies” and “prefetching policies” are often used in literature to differentiate
what is referred to here as “reactive caching policies” and “caching policies with prefetching,” respectively.

1.4. INTRODUCTION TO CACHING 21

video streams, addressing linear access patterns like playing videos in order, while also

accommodating non-linear interactions like pausing or rewinding. This methodology

contrasts with the diverse data access patterns at CERN, where, as highlighted in

Section 2.5, requests within the same dataset are highly correlated, but file access occurs

in an arbitrary order, subject to user and system software preferences.

The concept of dataset-based caching, while highly relevant in the context of CERN’s

data access patterns, represents a relatively unexplored area within the literature. This

approach deviates from the more linear patterns typically associated with video streaming,

offering a novel perspective on caching strategies. Therefore, adapting prefetching

techniques to accommodate the unique, non-sequential file access patterns at CERN

requires a more versatile and complex strategy than those currently employed in standard

streaming scenarios.

Machine Learning in Caching

Innovative approaches in cache content management and optimisation have been explored

in recent research, focusing on the application of Deep Neural Networks (DNN) and

Reinforcement Learning (RL) techniques. The study [50] suggests the pre-training of a

DNN to enhance the real-time scheduling of cache content in heterogeneous networks.

This concept is further extended by another research [51] which employs a Deep Recurrent

Neural Network to predict cache accesses, thereby aiding in effective caching decisions.

However, this approach has so far been limited to smaller cache and synthetic datasets,

not extending to the larger volumes seen in Data Lakes.

A different angle is presented in the study [52], where predictive models are used to

refine the eviction process in fixed-size caches. Another research initiative [53] explores

the use of the Gradient Boosting Tree for automating cache management in distributed

data clusters. These studies highlight the importance of the environment in cache

management, underscoring the need for flexible and autonomous solutions capable of

adapting to varying conditions.

To address this need, recent techniques based on RL have been proposed. In [54], the

authors use Deep RL for caching popular content across distributed caching entities in

the context of Content Delivery Networks. However, this method’s online adaptation

capability is tested with a limited number of files in a hierarchical caching system. In High

Energy Physics, where file sizes vary significantly, this approach might not be directly

applicable.

Another aspect of ML in cache management was explored through learning from

Belady algorithm. The pioneering efforts in this direction were made by [55,56]. These

1.4. INTRODUCTION TO CACHING 22

projects used binary classifiers to predict cache line reuse, either as “cache-friendly” or

“cache-averse”, and applied traditional heuristics for eviction order. While effective in

overcoming direct learning challenges, these methods were limited in their ability to

emulate Belady algorithm fully. Contrasting this, recent studies have approached cache

replacement as an imitation learning problem, allowing for a more comprehensive policy

training that better approximates Belady algorithm [57].

Overall, these studies indicate a growing trend towards leveraging ML for more efficient

caching strategies in various contexts, including high-energy physics data management

and web-based systems. The advancement in this field promises potential improvements in

data management and access efficiency, particularly in large-scale computing environments

like the WLCG.

Caching for Scientific Workloads

Previous studies on caching for scientific computation often focus on design and deploy-

ment of the caching infrastructure [58–60], rather than on selection of well-suited caching

algorithms. For example, in [58], the authors simply rely on XCache [61] and its internal

implementation of the LRU policy. Alternatively, paper [62] explores the usage of a

caching technique significantly different from LRU for scientific workloads. The authors

propose an adaptive caching solution that is only suitable for tasks with high re-execution

rates, which are not present in the WLCG.

Some works explore how effectively the WLCG storage is used: at individual grid

sites [63], or throughout the whole WLCG in the context of a single LHC experiment [36].

These papers also describe data access patterns potentially relevant for caching, but they

do not directly investigate caching strategies.

In this research, another study of the data access patterns in the WLCG is performed,

but with a specific focus on those characteristics that directly influence cache performance.

Additionally, several new caching policies are proposed, and their behaviour is com-

pared with the existing ones under different scenarios (cache size, network connectivity

throughput).

1.4.4 Evaluating Caching Efficiency

The optimal cache eviction policy maximises the number of cache hits compared to the

number of cache misses.

The standard metric used to evaluate the cache performance is the hit/miss ratio, but

it fails to capture the different costs of different misses when file sizes are heterogeneous.

1.4. INTRODUCTION TO CACHING 23

Therefore, it is useful to distinguish the hit ratio, also called File Hit Ratio (FHR), and

the Byte Hit Ratio (FHR). They can be defined as follows:

FHR =
Ncache

N
, BHR =

Vcache

V
, (1.1)

where N is the total number of requests (or the trace length), V is the total volume of

the catalogue, i.e., the total size in bytes of all files which have been requested at least

once, Ncache is the number of files retrieved from the cache (the total number of hits),

and Vcache is the total number of bytes served by the cache.

Respectively, File Miss Ratio (FMR) and Byte Miss Ratio (BMR) are calculated as:

FMR = 1− FHR, BMR = 1− BHR. (1.2)

Under different scenarios, one of these metrics can play a more important role than

the other. For example, FMR is more relevant if the objective is to minimise the user

delay and the retrieval time under a miss is almost constant (latency dominates the

retrieval time). At the same time, BMR is more important for assessing the data volume

transfer between the sites. From the definition, when the files have the same size, FMR

and BMR coincide.

Lower bound for FMR of reactive policies. In case of homogeneous file sizes, Belady

offline algorithm [64] achieves optimal FMR amongst reactive policies [37]. At each step,

this algorithm evicts the file that will be requested the furthest in the future. Since it

can only be calculated post-factum, practical implementation is not possible. However,

in studies similar to the one presented in this work, it can serve as a lower bound for the

performance of practical reactive policies.

In the case of heterogeneous file sizes, the reactive caching policy that minimises

FMR (resp. BMR) is denoted as OPT (resp. OPT.Bytes). Both minimisation problems

are NP-hard [65], which means that in practice, finding the exact optimal policies is not

feasible.

A simple lower bound for both FMR and BMR of reactive policies can be computed

by simulating an infinite size cache [66]. This approach only quantifies cold compulsory

misses, which inevitably occur when a file is requested for the first time. Instead,

paper [67] proposes several algorithms to calculate lower and upper bounds for FMR

of OPT. The Flow-based Offline Optimal (FOO) lower and upper bounds presented by

the authors are very accurate but computationally expensive; the Practical FOO lower

and upper bounds (PFOO-L and PFOO-U) work for hundreds of millions of requests,

while still providing tight upper and lower bounds for OPT performance. Paper [68]

1.4. INTRODUCTION TO CACHING 24

presents yet another lower bound for FMR of non-anticipative policies, but only under

some statistical assumptions on the request process. In this work, the PFOO-L lower

bound is used and extended it to be able to compute a lower bound for OPT.Bytes’

BMR.

Chapter 2

WLCG Workload Characteristics

Before delving into the principles of caching in the context of the WLCG, one first needs

to better understand the specifics of the user accesses in this environment. In order to

evaluate access and usage of storage, this work uses data access and popularity studies

for the analysis workflows executed in the EOS node supporting CERN activities, based

on local monitoring data spanning several months. In this chapter, the focus is on a

three-month time frame: 01/2020 - 03/2020, and limit the studies to the analysis user

accesses present at the CERN Data Center - the WLCG T0 site. This study mostly

considers the ATLAS experiment, sometimes along with other large experiments, in order

to provide a meaningful comparison.

As already mentioned, the T0 storage is supported by EOS, ATLAS, as well as the

three other large experiments, each have their dedicated EOS instance. The nuances of

data storage within the EOS infrastructure will be explored in greater depth.

From the storage point of view, each physics file has 3 main types of file events during

the lifespan: creation, accesses (if any) and deletion. Due to the specifics of the analysis,

the physics files are rarely modified, which is supported by the analysis conducted in

Subsection 2.2.6.

Creation is the moment when a file is generated in the system. There can be different

use-cases: either it’s a new file that came directly from the experiment, or it is a new

file that was generated by the physics users as a part of their analysis, or it’s a copy of

already existing file in the system generated for the service reliability or performance

improvements.

The file accesses, which could also be seen as file reads due to the almost absent

file modifications, play a crucial role in the question of optimising the WLCG storage,

and in this study, in particular. The number of accesses during the file existence might

vary from zero accesses to a very large number, especially for some files which are often

25

2.1. SOURCES OF LOG INFORMATION IN THE WLCG 26

constantly used by the end-users to run their analysis.

File deletion time is not solely dependent on the end-user decisions but is also

influenced by the deletion policies of the entire experiments. Deletions usually occur

in large chunks, especially when storage space is nearing its limit. At the same time, a

common case for the EOS storage system is that most of the files are created and are

not meant to be deleted according to the experiment data storage workflow specifics –

this usually happens for the data files coming directly from the experiment, so for the

RAW files. Great care is taken to ensure that these files are securely stored. The policy

at LHC is that as a minimum one copy is kept at CERN, in the tape system, and one

copy is stored at one of the T1 centers.

2.1 Sources of Log Information in the WLCG

The WLCG have been monitored, for more than a decade, with in-house central solutions

gathering and storing in the CERN storage facilities a large amount of metrics and

logging information. The monitoring system has been fully developed and supported by

the software teams at CERN and the experiments and also make use of CERN cloud

resources [69]. The monitoring infrastructure covers the whole workflow of the monitoring

data: from collecting and validating metrics and logs to making them available for

dashboards, reports and alarms. In the research, two types of logs covering WLCG are

used: EOS report logs and Rucio Dumps.

2.1.1 EOS Report Logs

The EOS headnodes generate report log files every day. These log files have a highly

structured format and are stored as .eosreport files on the headnodes.

Each EOS report logs file is stored as an archived text file, where each line represents

a separate log record, which in turn corresponds to a single file event. Each line contains

a sequence of key-value pairs, representing a set of metrics about the concerned file and

the concerned event, and encoded in the following way:

key1=val1&key2=val2&...&keyN=valN.

There are 3 types of EOS Report Log records: a record of the first type is generated

each time a file was open or created, the two other types correspond to file deletions from

the disk and from the namespace.

Each non-deletion record contains more than sixty metrics. The explanation of the

main ones is in Table 2.1:

2.1. SOURCES OF LOG INFORMATION IN THE WLCG 27

Term Description
log log record identifier
path logical path to the file
td trace identifier in the format:

<user_name>.<process_id>:fd@<origin_host>.[<domain>.]

fid file identifier
fsid filesystem identifier
ruid identifier of the user
ots, cts opening and closing of the file timestamps
otms, ctms opening and closing file timestamps in milliseconds
rb, wb bytes read and written during the operation
osize the file size at the opening
csize the file size at the closing

Table 2.1: Description of main non-deletion log metrics of EOS Report Logs.

As mentioned earlier, the process of file deletion is not atomic and usually constitutes

of two main steps, which correspond to 2 different subtypes of deletion log formats:

• A version of the file is deleted from a local disk (FST deletion). In this case, other

replicas of this file can still exist in the system. Regardless of the number of replicas

left, this type of deletion does erase information about this file on the headnode.

The description of the format is given in Table 2.2.

• Deletion from the headnode (MGM deletion). This happens when the file is deleted

from the system altogether. Usually, this deletion is propagated to the FST where

the local versions of the files are deleted. The description of the format is given in

Table 2.3.

In this research, the MGM deletion is considered to represent the user workflow, as

they only occur when someone explicitly deletes the file. Disk deletions, on the other

hand, could happen due to user-unrelated internal system processes, such as balancing.

2.1.2 ATLAS Rucio Logs/Dumps

Incorporating the data management and workflow management logs into internal storage

system logs proved to be a valuable endeavour, as it allowed for the correlation of these

logs with ATLAS datasets through filenames.

DDM Rucio [70] represents an open-source framework that empowers both scientific

collaborations and individual users to efficiently organize, manage, and access data on a

global scale. This framework facilitates the distribution of data across geographically

2.1. SOURCES OF LOG INFORMATION IN THE WLCG 28

Term Description
log log record identifier
host FST host name
fid file identifier
fsid filesystem id where the file is deleted
del_ts deletion timestamp
del_tns deletion timestamp in nanoseconds
dc_ts timestamp of the last change in the metadata (e.g., change of the owner,

change of the rights)
dc_tns timestamp of the last change in the metadata in nanoseconds
dm_ts timestamp of the last modification of the content (e.g., creation, update)
dm_tns timestamp of the last modification of the content in nanoseconds
da_ts the last local disk access timestamp (not necessarily only user accesses)
da_tns the last local disk access timestamp in nanoseconds
dsize the file size before deletion
sec.app “deletion”

Table 2.2: Description of main FST deletion log metrics of EOS Report Logs.

dispersed data centers. Originally conceived to meet the specific needs of the ATLAS

experiment, Rucio offers functionalities such as the aggregation of files into datasets and

the management of data distribution and replication within the grid. Last, but not least

it provided a grid enabled file catalogue that is used to locate and track files and data

sets.

Rucio Traces The data access operations on WLCG, involving WMS (Web Map Service)

or DDM (Data Distribution Management) system, are monitored by the Tracer system.

This system creates a trace dictionary for each file, recording essential details like

filenames, scopes, related datasets, access points, types of access (like Analysis or

Production uploads), user information, file specifics, and timing data. These traces

are then sent from the Rucio server to a central ActiveMQ broker. From here, different

consumers process this data, with the Kronos daemon in Rucio being especially important.

Kronos assimilates these traces and updates key parameters in the Rucio catalogue,

such as the last access timestamp for files and datasets. This information is crucial for

determining the priority of replicas and deciding when to delete them.

Rucio API The Rucio API serves as a comprehensive source of metadata pertaining to

dataset attributes, including project information, run numbers, succinct descriptions of

physics processes, production tags, and data formats. Furthermore, it offers insights into

dataset replicas and their placements. An essential popularity metric provided by this

2.1. SOURCES OF LOG INFORMATION IN THE WLCG 29

Term Description
log log record identifier
fid file identifier
host MGM host name
del_ts deletion timestamp
del_tns deletion timestamp in nanoseconds
dc_ts timestamp of the last change in the metadata (e.g., change of the owner,

change of the rights)
dc_tns timestamp of the last change in the metadata in nanoseconds
dm_ts timestamp of the last modification of the content (e.g., creation, update)
dm_tns timestamp of the last modification of the content in nanoseconds
dsize file size before deletion
sec.app “rm” or “recycle”

Table 2.3: Description of main MGM deletion log metrics of EOS Report Logs.

API is the access_cnt, which quantifies the number of accesses.

In the ATLAS experiment, a unique identification system ensures that the com-

binations of scope and filename, as well as scope and dataset name, are distinct.

Leveraging this uniqueness, it was possible to create a mapping table derived from the

Rucio dumps. This table links scope + filename (sc + fname) to scope + dataset

name (sc + dname). This mapping facilitates the enrichment of data gathered from EOS

Report Logs with additional dataset information. The integration of this mapping table

with the EOS logs allows for a more comprehensive understanding of data access and

usage patterns, aiding in better data management and optimisation of resources within

the ATLAS experiment framework.

During the research process, a significant challenge was the lack of scope information in

the EOS Report Logs, complicating the task of dataset identification. Despite this, it was

observed that most filenames and dataset names were unique. A very small percentage

(about 0.0015% for filenames and 0.0003% for dataset names) did not maintain this

uniqueness. However, these instances were so rare that they had a negligible effect on

the overall dataset identification process.

An intriguing issue encountered during the research was the absence of certain files

in the Rucio logs. Upon investigation, it was found that many of these missing files

had a .rucio.upload extension, which was consistently not recorded in the Rucio logs.

Discussions with the ATLAS Distributed Computing team revealed that these files,

marked by the .rucio.upload extension, are used to confirm successful uploads and

are intentionally deleted soon after creation. Therefore, they can be excluded from the

research analysis without impacting the validity of the study.

2.1. SOURCES OF LOG INFORMATION IN THE WLCG 30

Metric Rucio Rucio Only Rucio and EOS EOS Only EOS

Accesses 890198 8905
881293 (Rucio)
1177969 (EOS)

990269 2168238

Files 655686 7541 648145 372032 1020177

Table 2.4: Comparison of files and number of accesses in Rucio and EOS report logs at
the CERN T0 Data Center for the ATLAS experiment on October 1, 2020.

Furthermore, the remaining files not found in the Rucio logs constituted a small

volume, less than 2.5%. By filtering the data to include only read accesses, almost

all of these files could be traced back in the Rucio system. This further validates the

comprehensiveness and accuracy of the research methodology.

2.1.3 Data Sources Consistency

In collaboration with colleagues from ATLAS, a study was undertaken to evaluate the

consistency of data popularity metrics derived from various data sources. This assessment

is a crucial phase in the research, as it lays the groundwork for integrating and combining

data from multiple sources. The objective was to ensure that the measurements of data

popularity—how frequently and widely data is accessed or used—remain reliable and

consistent across different datasets and systems.

For this study, a specific time frame was chosen: October 1, 2020, from 00:00 UTC to

23:59 UTC. All Rucio traces with access times within this period, specifically for files

located at CERN, were selected. Similarly, file access records from EOS logs during the

same period, excluding those related to system events, were also chosen for comparison.

The results of this selection, including the number of accesses and the distinct files

involved, were compiled into a Table 2.4.

Upon examining the data, it was found that 98.8% of the files that were accessed

according to Rucio were also accessed according to EOS. It is important to note that

this comparison was made without attempting to match the exact timestamps of access.

The small fraction of discrepancies, accounting for about 1.2%, predominantly consisted

of traces that were generated prior to the actual file access. These traces, termed “direct

access”, often did not lead to actual file access due to interruptions such as job crashes.

On the other hand, the alignment was less pronounced in the opposite direction: only

63.5% of the files accessed as per EOS records were found in the Rucio traces. This finding

was not unexpected, given that a significant number of files in EOSATLAS (ATLAS EOS

instance at CERN) are not accessed via PanDA jobs and therefore are not traced by the

ATLAS framework.

2.2. WLCG LOGS PROCESSING WORKFLOW 31

The overarching conclusion from this study is that Rucio and EOS generally agree

on which files are accessed, as long as the files are successfully opened by the job. This

shows that Rucio is reliable in tracking file access, which is important for research that

combines data from different sources.

2.2 WLCG Logs Processing Workflow

2.2.1 Data Collection and Parsing

The first step in the preparation of data for the analysis – is the collection of log records

from the headnodes into one place. For this purpose, there is a daemon running every

night to copy the log files over from the headnodes (where they were generated) to the

machinery where they will be processed for further analysis. These background jobs

create .eosreport files for each day per each EOS instance. As described previously, the

log records have a special text format. To make them more convenient for further multiple

accesses, this data was parsed and save in a tabular format, which is more suitable for

this analysis. At this stage, the record logs are seperated into three types (event, MGM

and FST deletions).

2.2.2 Data Filtering

This step is vital for the analysis since it aims to reduce the volume of data as much as

possible and, at the same time, maintain the main metrics that could be of interest to

the research. Therefore, in these logs, one can track all the events that happened to a

file – creation, read, deletion and the possible rare updates. However, it contains not

only user-generated events but also system processes. As this research aims at tracking

2.2. WLCG LOGS PROCESSING WORKFLOW 32

user analysis workflow, those need to be neatly separated.

The subsequent phase involves filtering the columns, focusing on the metrics of

interest:

• fid: Can be used as a unique file identifier since this field was programmed as an

increasing counter. Moreover, all replicas of the same file share a common fid.

• osize, csize: The difference between these two sizes serves as an indicator of the

operation type described in the log record.

• ots, cts: Only these two fields are considered for the timestamps of file opening and

closing. The timestamps do not include milliseconds (otms and ctms fields) since

an event with a time difference of less than one second is too short to involve a file

opening.

• rb, wb: It is important to note that during read operations, the value of rb may

not always match csize, as the entire file may not be read or the file may be read

multiple times. For creation operations, the value of wb can vary; it may be greater

than csize, indicating that the process rewrote some parts of the file, or it may be

smaller. A smaller wb could indicate either an update operation that affected only

a portion of the file or concurrent writing by another process to the same file (refer

to Subsection 2.2.4 on operation classification).

• td: A particular combination of its parts can serve as a process identifier, as

described in the next subsection.

2.2.3 Data Grouping

Given that a single session may correspond to multiple records in a log file, it was

necessary to develop a method to differentiate between sessions and accurately group

records associated with the same session. This required the creation of a global session

identifier, which was not explicitly maintained in the log files.

Given the structure of the trace identifier td field:

<user_name>.<process_id>:fd@<origin_host>[<domain>.], a global session iden-

tifier was created using a substring of it, consisting of the user_name, process_id (local),

and origin_host.

2.2. WLCG LOGS PROCESSING WORKFLOW 33

After this, all records were grouped based on this session identifier and the file id as a

key. The remaining metrics were updated in an aggregated manner:

• osize: osize from the record with the earliest ots;

• csize: csize from the record with the latest cts;

• ots, cts: the earliest and latest timestamps, respectively; and

• rb, wb: sum of all the rb and wb fields, respectively.

2.2.4 Derivation of the Operation Types

As outlined in the EOS Report Logs description, most storage system activity logs, except

for deletions, follow a uniform format. These logs encompass a range of file operations,

including reads, writes, updates, and others. However, the original log metrics do not

specify the type of operation performed. Identifying the nature of these operations is

crucial for understanding the lifecycle of a file.

To address this, the existing metrics—such as the size of the file upon opening and

closing, and the volume of bytes read and written— have been utilised to categorise

operations into five distinct classes: Create, Read, Update, Empty, and Abnormal.

The initial fundamental operation identified is the Creation of a file. This is charac-

terised by an opening file size of zero, a positive number of bytes written, and a non-zero

closing file size. This operation is distinguished from an Update, where the file’s opening

size is greater than zero. Both Creation and Update operations may involve non-zero

read bytes, as the system might re-read portions of the file post-writing for internal

verification.

The graphical representation of this heuristic can be found on Figure 2.1.

In the process of log analysis, numerous Empty operations were observed, characterised

by zero bytes read and written. Furthermore, some operations exhibited a closing file

size of zero despite recording some read or written bytes. These instances have been

classified as Abnormal operations (refer to Figure 2.2 for details).

After this classification stage, each log record in the data corresponds to a singular

operation executed on a file.

2.2.5 Derivation of File-Specific Metrics

To effectively track data access patterns, it was essential to acquire file-specific metrics,

particularly those indicating the frequency of operations performed on each file. To this

end, the daily operations data was utilised to generate daily file tables. These tables

2.2. WLCG LOGS PROCESSING WORKFLOW 34

Figure 2.1: This figure categorises file operations into Create, Read, and Other based
on the initial and closing file size, and the volume of bytes read and written. Creation
operations are defined by an initial file size of zero and a non-zero number of bytes
written. Read operations involve a positive initial file size and non-zero bytes read with
no bytes written. Operations not fitting these criteria are labeled as Other and further
subdivided into Update, Empty, and Abnormal based on additional metrics.

Figure 2.2: This figure provides specific criteria for identifying Update, Empty and
Abnormal operations within log data. An update is indicated by both non-zero initial
and closing file sizes, coupled with bytes written. Empty operations show no bytes read
or written. Abnormal operations are defined by a closing file size of zero despite some
activity, such as bytes read or written.

2.2. WLCG LOGS PROCESSING WORKFLOW 35

include essential information such as file identification, file size, and a count of each

operation type, categorised as per the classification outlined in the preceding subsection.

This approach enabled direct engagement with file-level data, facilitating the filtering

of information based on file IDs. Most crucially, it allowed for the computation of

file-specific metrics, such as the frequency of each type of operation.

2.2.6 Data Cleaning and Data Immutability Assumption

Empty and Abnormal operations appear in log records for various reasons. However, it is

pertinent to exclude these from this analysis if their occurrence is statistically insignificant.

Additionally, an observed anomaly in some files is the occurrence of multiple reations.

This could be attributed to a file initially being Created, then Updated (which may involve

truncation to zero size), followed by another operation misclassified as a reation. For

the integrity of this study, files exhibiting this pattern will be excluded, provided they

represent a small percentage of the total.

Furthermore, considering the specific workflow on EOS instances for the detectors,

most new data, originating directly from experiments, typically undergoes no Updates,

but is Read multiple times instead. The calculation of the proportion of files undergoing

Update operations validates this observation. Finding this number to be negligible, these

files were excluded from this analysis.

The aggregated data on operations excluded from the study are presented in Table 2.5.

This includes the percentage of files involved and the corresponding percentage of the

total data volume these files represent.

Metric LHCb CMS ATLAS

Other Operations (% of Related Files) 0.06% 0.26% 0.61%
Other Operations (% of Total Volume) 0.89% 0.05% 0.14%

Table 2.5: Fraction of Other operations related to the total related files and total volume
at CERN T0 Data Center for LHC detectors, Jan-Mar 2020.

In conclusion, it is a reasonable assumption that the data in question is immutable,

characterised by a single instance of creation followed by multiple Read operations.

Following the data cleansing process outlined in this subsection, this analysis now

exclusively focuses on files that exhibit a distinct pattern: precisely one Creation operation,

accompanied by zero or multiple Read operations (hereafter referred to simply as “read”

or “read access”), and devoid of Update, Empty, or Abnormal operations. This selection

criterion further reinforces the premise that the data under study is immutable.

2.3. GENERAL ACCESS PATTERNS 36

Figure 2.3: Data turnover at CERN T0 Data Center for LHC Detectors. The bar
chart illustrates storage use and data turnover for three LHC detectors—cumulative for
Jan-Mar 2020. The Instance Logical Volume (blue) shows data stored, Write Workload
(orange) captures data written, and Read Workload (green) reflects data read. Total
Turnover (red outline) is the aggregate of Write and Read Workloads. The ATLAS
experiment, represented by the final bar, demonstrates a notable peak in Total Turnover
at 120.16 PB.

2.3 General Access Patterns

As already mentioned, the results of this chapter are based on the log files of three

consecutive months (01/01/2020 - 31/03/2020), which is not a data-taking period and

the tasks performed at the site mainly consisted of Monte Carlo production jobs and

data analysis.

Figure 2.3 gives an overview of the read/write processes happening at the EOS

instances during the considered three months and shows how actively the provided disk

volume was used by ATLAS and two other LHC experiments. The plot indicates that

the access patterns differ from one experiment to another.

As a benchmark and a reference for the experiment’s size, the data has been extracted

from the EOS Control Tower (Grafana) [71] on each instance size. The total volume is

slightly changing over time, but when considering a several months period, an average

approximation is sufficient to give a broad idea of the instance’s size.

ATLAS, in comparison to the other experiments, has the biggest EOS instance volume

and had the most intense workload. Its total turnover (the sum of all the bytes read

and written) is over 480% of the instance volume at the time. This means that a large

2.3. GENERAL ACCESS PATTERNS 37

number of deletions is happening in the instance and that the data is frequently updated.

During the examined period, all the experiments read more data than they wrote, but

not by a large margin. ATLAS had 2-3 times as much read volume as the written one.

Since quite often the amount of read bytes was significantly smaller than the total

size of the file, statistics have been added that show which fraction of the files is read

on average. For ATLAS these numbers reach approximately 80-90%. The low numbers

could have a negative impact on caching, since the whole file has to be copied to cache

but only small fraction of it will be useful. 1

The metric “Repeated Read Volume” is one of the indicators of how efficient the

storage space is used and, at the same time, it can show the potential for providing

caching policies in the system. In Figure 2.4 the “Read Volume” is the total volume of

all the accessed files and the “Read Workload” is the sum of all the bytes read. The

hatched parts show the fraction of the volume that was read more than once and the

corresponding fraction of the workload. Some read accesses did not read the files fully,

though the average read completion per file at the ATLAS instance is 95.84%.

Figure 2.4: Comparison of “Read Volume” and “Read Workload” in the ATLAS Instance,
Jan-Mar 2020. The chart presents a breakdown of the data read activities within the
ATLAS experiment’s computing instance at the CERN T0 Data Center. The “Read
Volume,” represented by the solid blue bar, stands at 32.19 petabytes (PB) and denotes
the total volume of all accessed files. Within this, the hatched blue portion, accounting
for 42.72%, indicates the Repeated Read Volume, signifying the volume of the part of the
data that was read more than once. The solid orange bar signifies the “Read Workload,”
the aggregation of all bytes read, amounting to 91.54 PB. The hatched orange section
shows the Repeated Read Workload, representing 68.05% of the total Read Workload,
which corresponds to the volume of bytes read from files that were accessed multiple
times.

2.3.1 Distribution of File Types (Based on Creation/Deletion time)

The access records have been grouped by the file identifiers to obtain file-specific statistics.

After, the corresponding files have been categorised based on their creation and deletion

1The XCache system, used in the community, tries to address this by a strategy of caching only blocks
that have been read and a configuration dependent number of additional consecutive blocks. However, in
practice no major differences have been observed

2.3. GENERAL ACCESS PATTERNS 38

Figure 2.5: The chart presents a breakdown of data read activities within the ATLAS
experiment’s computing instance at the CERN T0 Data Center, Jan-Mar 2020. Four
categories are defined: (1) files created and deleted within the period, which are further
classified into “Read” if accessed and “Not Read” groups based on whether they were
accessed; (2) files created during the period but not deleted, or deleted subsequently; (3)
files created before and deleted within the period, reflecting interim data management
practices; and (4) files present both before and after the period, accounting for the largest
fraction, also subdivided into “Read” and “Not Read”.

times in relation to the boundaries of the considered period. Overall, there are four

categories covering all the possible cases:

• files created and deleted during the period;

• files created during the period and deleted after or not deleted;

• files created before and deleted during the period; and

• files created before and not deleted or deleted after the period.

The pie chart in Figure 2.5 shows the distribution of these categories for the ATLAS

EOS instance.

The biggest fraction belongs to the files that were present on disk before and after the

considered period (36.8% of total volume). For these files, the lifetime is more than three

months. The ATLAS experiment produced and deleted approximately the same volume

in this period, as a result, the total occupied volume did not change. A big fraction of

created files were also deleted (66.9% of created volume), which indicates that there are

2.3. GENERAL ACCESS PATTERNS 39

a lot of short-lived files with a lifetime shorter than 3 months. The fraction of files that

went through their whole life cycle (“Created and Deleted”) is only 31.2%, and, in the

future, the plan is to extend the time frame in order to increase the relative number of

such files.

ATLAS jobs produce also a large number of log files and some of them are never read

before their deletion. Overall, in the considered period, almost 3 PB of files were not

read between their creation and deletion. Moreover, a big fraction of files stayed on disk

without being accessed for a long time (refer to Figure 2.5). The possibility of keeping

these files on a less expensive storage media should be investigated further [32].

2.3.2 File Sizes Distribution

Another metric of interest for this research is the distribution of file sizes. To visualise this,

a plot illustrating the relationship between the number of files and their respective sizes

has been created (refer to Figure 2.6a). This plot covers only files that have been accessed

at least once during the examined period. There is a clear peak in the distribution around

1 GB, with a maximum of 470.73 GB and an average file size of 875.45 MB.

When comparing Figures 2.6b and 2.6c, most of the volume comes from files bigger

than 1 GB, but the majority of files are less than 1 GB. This is yet an indicator that the

diversity of file sizes is not negligible, and when looking for appropriate caching models,

the file size should be taken into account.

2.3.3 File Accesses Time Distribution (Temporal Locality)

Commencing the exploration, it is crucial to establish a fundamental concept: file

popularity. File popularity denotes the frequency with which a file is accessed (read) over

a specified period. This metric provides valuable insights into the usage patterns of files

within a system, shedding light on the distinction between frequently accessed files and

those that remain dormant.

Henceforth, file read access will simply be referred to as file access, considering the

minimal occurrence of file modifications within the system.

In this respect, the time differences between consecutive file accesses have been

explored; for each read access, the time between this read and the first file access has

been calculated.

As seen in Figure 2.7, most files were accessed very few times (∼63% of files were

accessed only once), and, if a file was re-accessed, it was most likely to happen within a

couple of hours (refer to Figure 2.8).

2.3. GENERAL ACCESS PATTERNS 40

(a) File size distribution.

(b) Cumulative file size distribution.

(c) Cumulative volume contribution by file size.

Figure 2.6: Visual analysis of file size distribution and volume contribution at CERN’s
T0 Data Center, ATLAS experiment, Jan-Mar 2020. Figure (a) charts the total count of
files by their size, distinguishing between all files and those used by the physics analysis
activities. Figure (b) demonstrates the cumulative distribution of these files, revealing how
file sizes accumulate proportionally. Figure (c) further explores the volume contribution
by size, showing the significant data storage footprint that larger files have within the
system. Figure (c) was obtained by weighting Figure (b) with file size.

2.3. GENERAL ACCESS PATTERNS 41

Figure 2.7: Distribution of file access frequency at CERN’s T0 Data Center, ATLAS
experiment, Jan-Mar 2020. This histogram shows the fraction of total files plotted against
the number of accesses per file.

Figure 2.8: Time difference between consecutive accesses at CERN’s T0 Data Center,
ATLAS experiment, Jan-Mar 2020. This histogram displays the fraction of total file
accesses by the time interval between consecutive uses, spanning up to 90 days. The
main chart illustrates the distribution over days, while the inset focuses on the first 24
hours, highlighting the high frequency of accesses within shorter intervals.

2.3. GENERAL ACCESS PATTERNS 42

A closer look at the temporal locality of this trace reveals short-term correlations in

the request process. Figure 2.9 is derived from plot 2.8, with a log scale applied to the

x-axis and y-axis normalisation. The distribution exhibits a multi-modal pattern. While

the average time between two consecutive accesses to the same file is approximately 3

days, some files experience consecutive accesses with up to a 60-day gap. Notably, 27.44%

of consecutive accesses occur within a minute, and 6.47% occur within one second.

Figure 2.9: Detailed distribution of time intervals between consecutive file requests at
CERN’s T0 Data Center, ATLAS experiment, Jan-Mar 2020. This histogram further
analyses the temporal locality of file accesses, highlighting the normalised frequency of
time intervals between consecutive requests for the same file, ranging from one second
to one month. The distribution is displayed on a logarithmic scale to accentuate the
multi-modal nature of file access patterns.

It is essential to acknowledge that some of the observed accesses are not independent

read attempts but rather artefacts resulting from the way the experiments access the

data, opening the file before working with it to ensure accessibility, analogous to the

“touch” functionality in operating systems.

The observations in Figure 2.10a, along with its detailed counterpart focusing on

accesses of less than two seconds in duration (refer to Figure 2.10b), corroborate this

assertion.

At this juncture, it was decided to proceeded to analyse the trace in its current state,

given the focus on optimising the storage system rather than delving into the intricacies

of the experiment workflows. This should not significantly impact caching performance; if

these artificial accesses occur, the file is typically used shortly thereafter. Nevertheless, it

is prudent to be mindful of this when encountering unusual patterns of accesses occurring

within one second.

2.3. GENERAL ACCESS PATTERNS 43

(a) Duration of file accesses. (b) Duration of accesses < 2sec.

Figure 2.10: Distribution of file access durations at CERN’s T0 Data Center, ATLAS
experiment, Jan-Mar 2020. Panel (a) shows the frequency of file access durations spanning
up to 30 days, illustrating a steep decline in occurrences as duration increases. Panel (b)
provides a focused view on shorter access durations less than 2 seconds.

2.3.4 Analysis of Content Popularity and Zipf ’s Law in Caching Performance

This study was performed for all the 4 detector-experiments at CERN and employs the

principle of the Zipf distribution to model content popularity and access frequency within

the system. The Zipf distribution is particularly useful in highlighting how a few items

dominate usage or popularity in a given system.

To analyse the content popularity, these files have, for a start, been ranked from the

most to the least popular. An aspect of critical importance is the tail of the popularity

distribution, which can significantly impact caching performance. The analysis of the

slope of this tail on a log-log plot (logarithm of requests on the y-axis and logarithm

of rank on the x-axis) provides insights similar to the parameters of an equivalent Zipf

distribution. This slope essentially corresponds to the Zipf coefficient, which is employed

to assess the extent to which Zipf’s law characterises content requests in the system.

The results (refer to Figure 2.11), however, reveal a notable deviation from the typical

Zipfian distribution observed in web caching scenarios [72]. In contrast to the expectations

set by Zipf’s law, where a small number of items are vastly more popular, the findings

suggest a different pattern of access. Specifically, the Zipf coefficient determined for

LHCb is approximately 0.5, whereas for other systems, it hovers around 0.8, more akin to

internet request patterns. This divergence emphasises that the system’s access patterns

are fundamentally different from those typically observed in standard web caching tasks.

2.3. GENERAL ACCESS PATTERNS 44

Figure 2.11: Zipf-like distribution analysis of file accesses across different experiments at
CERN’s T0 Data Center, Jan-Mar 2020. This set of plots displays the ranking analysis of
file accesses for the LHCb, CMS, ATLAS, and ALICE experiments, comparing empirical
data (blue) against a fitted Zipf’s Law model (orange). Each graph shows the number of
file accesses plotted against the file rank on a logarithmic scale. The Zipf’s coefficient
and R2 scores are annotated, indicating the degree of alignment between the data and
the Zipfian distribution.

2.4. ANALYSIS FILES ACCESS PATTERNS 45

2.4 Analysis Files Access Patterns

A typical WLCG data processing workflow could be roughly divided into preprocessing

(reconstruction, derivation, etc.) and analysis activities. The preprocessing campaigns

are run in a well-organised, scheduled manner. Therefore, provisioning of resources for the

preprocessing activities could be done in advance since they are more or less predictable.

On the other hand, the analysis is aimed at preparing the RAW data coming from the

LHC detectors for the physics users. These analysis tasks are relatively sporadic as they

are independently triggered by different users according to their needs. Consequently,

they are not as scheduled and organised and less predictable.

Analysis jobs constitute only a fraction of the total EOSATLAS node workload, but

these activities are not as scheduled and organised as other types of jobs (reconstruction,

derivation, etc.) and, consequently, less predictable. These kinds of jobs work with

special data formats (AOD and DAOD files). For these cache studies, therefore, they are

addressed separately.

Isolating caching exclusively for analysis data is a viable option to consider. This

research would be particularly useful for the processing T2 sites that have temporary

storage only for the analysis data.

2.4.1 Workload Comparisons: Analysis vs. Total Workloads

Analysis jobs constitute only a fraction of the total EOS ATLAS workload. Table 2.6

provides an overview of the read workloads for analysis files compared to the total

workloads. It is evident that analysis files contribute to approximately one-quarter

of the total number of file accesses/files and approximately 60% to the total access

workload/volume. Interestingly, these percentages remain nearly unchanged in the actual

sequence of requests. This also leads to a preliminary assumption that, on average,

analysis files are larger than the rest. To substantiate this, a more detailed study of the

distribution of file sizes has been conducted (refer to Section 2.4.2).

2.4.2 Comparing File Sizes: Analysis Files vs. All Files

Figure 2.6a illustrates the size distribution of files that were accessed during this period

(not necessarily encompassing all the files present on the instance) and provides a separate

view of the size distribution for the analysis files. In general, the size of the accessed

files spans from a few bytes to half a terabyte, with the most prevalent file size being

around 1 GB, and an approximate average size of 875 MB. Conversely, for the analysis

files, there are fewer smaller files, with the peak size at around 10 GB. Although, when

2.4. ANALYSIS FILES ACCESS PATTERNS 46

Metric Total Analysis

Number of Read Accesses 173,181,554 45,931,029 (26.5% of total)
Accesses Volume 91.54 PB 55.46 PB (60.6% of total)
Number of Accessed Files 36,774,178 9,152,849 (24.9% of total)
Volume of Accessed Files 32.19 PB 19.1 PB (59.3% of total)

Table 2.6: Comparison of the total access and analysis-only access workloads within the
ATLAS experiment’s computing instance at the CERN T0 Data Center, Jan-Mar 2020.
“Number of Read Accesses” refers to the count of read access events recorded. “Accesses
Volume” denotes the cumulative data volume accessed, measured in petabytes (PB).
“Number of Accessed Files” indicates the total count of individual files accessed. “Volume
of Accessed Files” represents the aggregate file size of accessed files, also measured
in petabytes. The percentages in parentheses show the fraction of each metric that
corresponds to the analysis-related files or workloads compared to the total.

compared to the entirety of files, the maximum file size is smaller (approximately 70 GB),

the average remains higher (2 GB), reaffirming the earlier assumption.

Figure 2.12 presents the sizes of AOD and DAOD files separately, indicating that the

dispersion in the distribution is influenced by both file formats.

2.4.3 Number of File Accesses

The popularity of the analysis files demonstrates significant diversity (refer to Figure 2.13).

Upon closer examination, it becomes evident that while a large proportion of files are

accessed infrequently, there remains a substantial number of files that are re-accessed

multiple times. This characteristic underscores the potential benefits of caching within

the system and reinforces the decision to explore caching strategies for optimisation.

2.4.4 Correlation Between File Size and Popularity

Furthermore, the distribution of file popularity, as indicated by the number of accesses,

is not uniform across different file sizes, as evident in Figure 2.14. Although there is no

direct correlation between these two metrics, it’s noteworthy that very small files (less

than 10 kB) and very large files (greater than 1 GB) tend to experience higher access

rates compared to files of average size. Figure 2.15 provides an insight into the cumulative

number of file accesses relative to file size. It becomes apparent that the majority of

accesses are concentrated around files of approximately 1 GB in size. Consequently,

the system load, depicted in Figure 2.16 and calculated by weighting the previous plot

with file sizes, is predominantly influenced by files falling within the range of 100 MB to

10 GB.

2.4. ANALYSIS FILES ACCESS PATTERNS 47

Figure 2.12: File size distribution for AOD and DAOD Files at CERN’s T0 Data Center,
ATLAS experiment, Jan-Mar 2020. This histogram illustrates the distribution spread
and the differences in file sizes between AOD and DAOD, categorised from 1 KB to 100
GB. The distribution shows the count of files for each size category, highlighting the
predominant file sizes for each format.

Based on the observations above, it is evident that file size cannot be overlooked in

this analysis. While very small files contribute significantly to the overall number of

accesses, it is the larger files that predominantly contribute to the system load.

2.4.5 Request Rate

Another significant characteristic of the trace is the variability in request load over time,

as depicted in Figure 2.17. The byte rate, averaged over one second, exhibits a wide

range, ranging from a few bytes to several terabytes per second, with the mode of the

distribution hovering around 20 GB/s. Additionally, the average request rate throughout

the entire period is recorded at 9.91 GB/s.

2.4.6 Dependency Between the Lifetime and Popularity

Next, the investigation focused on exploring any potential correlation between the lifetime

of a file and the frequency of its accesses. The findings are illustrated in Figure 2.18a,

revealing that files with longer lifespans tend to accumulate a higher number of accesses.

This observation led to the hypothesis that the frequency of access per unit of time might

2.5. DATASET-BASED ACCESS PATTERNS 48

Figure 2.13: File popularity distribution for analysis files at CERN’s T0 Data Center,
ATLAS experiment, Jan-Mar 2020. This histogram shows the distribution of the number
of read accesses per analysis file, illustrating file popularity across a broad range of counts
from a few to over a thousand reads. The main chart provides a broad overview, with
the inset offering a detailed view of the distribution for files with up to 2,000 reads.

exhibit uniformity throughout the files’ lifespans, a concept further substantiated by the

data presented in Figure 2.18b.

2.4.7 Popularity of the Files: Ranking-Zipf Plots

In the next step of the investigation follows the examination the Zipf-based qualities of the

analysis files in comparison to other files within the system. While these two categories

exhibit slightly different distributions, neither adheres strictly to the conventional patterns

suggested by Zipf’s law. Despite this deviation, both groups of files possess relatively

high Zipf scores: 0.95 for analysis data and 0.94 for the rest. This finding suggests a

unique characteristic in the way content is accessed in the system, differentiating it from

typical models anticipated by Zipfian distributions.

2.5 Dataset-Based Access Patterns

Consider that all the records meaningful for the same physics analysis are spread across

different files and together form a logical entity called a dataset. The properties of datasets

and their access patterns have been studied in the context of this thesis. The distribution

of dataset sizes is more heterogeneous than that of individual files (Figure 2.20). The

2.5. DATASET-BASED ACCESS PATTERNS 49

Figure 2.14: Correlation between file size and average number of read accesses at CERN’s
T0 Data Center, ATLAS experiment, Jan-Mar 2020. This scatter plot illustrates the
average number of read accesses per file as a function of file size, ranging from 1 Byte to
1 Terabyte.

Figure 2.15: Total number of read accesses by file size at CERN’s T0 Data Center,
ATLAS experiment, Jan-Mar 2020. This scatter plot shows the cumulative number of
read accesses for files across various sizes, from 1 Byte to 1 Terabyte.

2.5. DATASET-BASED ACCESS PATTERNS 50

Figure 2.16: System load correlated with file size at CERN’s T0 Data Center, ATLAS
experiment, Jan-Mar 2020. This scatter plot depicts the system load, calculated by
weighting the total access count with file size and measured in petabytes, as a function
of file size, ranging from 1 Byte to 1 Terabyte.

Figure 2.17: Distribution of byte request rate averaged per second at CERN’s T0 Data
Center, ATLAS experiment, Jan-Mar 2020. This histogram displays the normalised
frequency of byte request rates, ranging from 1 KB/s to 1 TB/s.

2.5. DATASET-BASED ACCESS PATTERNS 51

(a) Number of file accesses depending on the
lifetime.

(b) The access rate depending on the lifetime.

Figure 2.18: Dependency between file lifetime and number of accesses at CERN’s T0
Data Center, ATLAS experiment, Jan-Mar 2020. This figure consists of two panels: (a)
shows the average number of file accesses per day against the file’s lifetime in days, and
(b) depicts the read access rate per second as a function of the file’s lifetime. Both plots
illustrate how the frequency of file usage varies over the lifespan of files.

Figure 2.19: Comparative analysis of Zipf-like distributions for analysis and non-analysis
file accesses across the ATLAS experiment at CERN’s T0 Data Center, Jan-Mar 2020.
This figure compares empirical data (blue) against a fitted Zipf’s Law model (orange) for
two categories of file accesses: analysis (“AODDAOD”) and non-analysis (“Others”). Each
graph shows the number of file accesses plotted against the file rank on a logarithmic scale.
The Zipf’s coefficient and R2 scores are annotated, indicating the degree of alignment
between the data and the Zipfian distribution.

2.5. DATASET-BASED ACCESS PATTERNS 52

most common dataset size is around 1 MB, while the average is almost 80 GB.

Figure 2.20: Dataset Size Distribution at CERN’s T0 Data Center, ATLAS experiment,
Jan-Mar 2020. This histogram displays the distribution of dataset sizes within the system,
ranging from 1 KB to 1 TB.

An intriguing observation from the distribution of files per dataset reveals that the

majority of datasets are characterised by their compactness, with most encompassing

fewer than 5 files. (Figure 2.21) Here, some outliers and the long tail (5%) are excluded.

Figure 2.21: Distribution of the number of files across datasets at CERN’s T0 Data
Center, ATLAS experiment, Jan-Mar 2020. This histogram shows the count of datasets
against the number of files they contain, up to the 95th percentile.

A notable trend in this data analysis highlights that the majority of datasets experience

a limited access frequency, with most being accessed fewer than 20 times during the

observation time. (Figure 2.22)

In this part of the research,the focus shifte to determine whether the datasets were

utilised fully. To answer this question, it has been examined how many files within each

dataset were accessed throughout the three months. Understanding the full utilisation

2.5. DATASET-BASED ACCESS PATTERNS 53

Figure 2.22: Distribution of file access frequencies across datasets at CERN’s T0 Data
Center, ATLAS experiment, Jan-Mar 2020. This histogram represents the number of
times files within datasets are accessed, up to the 95th percentile.

of datasets is pivotal for assessing the efficiency and coverage of the data management

practices.

The task of determining if the datasets are accessed in their entirety is complicated

by the challenge of distinguishing between consecutive runs within the same dataset.

The primary focus, however, was to ascertain whether all files within the datasets were

accessed at least once during the observed period.

The findings revealed that in 75% of the datasets, every file was accessed at least

once. On average, 83% of the files in each dataset were accessed, although it is critical to

note that this figure does not imply usage in every individual access instance. Detailed

results of this analysis are presented in Figure 2.23.

To determine whether this pattern occurs consistently with every dataset access, both

the mean and variance of the number of file accesses per dataset have been computed.

The results are depicted in Figure 2.24. Notably, the variance tends to be quite low,

suggesting that the frequency of file access remains relatively consistent within datasets.

The order of the individual file accesses is difficult to reconstruct since log files only

show the aggregate request process, where multiple users may access the same dataset

simultaneously, and the same user can access different parts of the same dataset in parallel

(for example, when the data being processed is coordinated by Rucio).

From all the above, it is safe to assume that when a dataset is accessed, almost always

all of its files are indeed accessed. However, the order of access within the dataset may

not follow a specific sequence.

2.5. DATASET-BASED ACCESS PATTERNS 54

Figure 2.23: Histogram of file access proportions across datasets at CERN’s T0 Data
Center, ATLAS experiment, Jan-Mar 2020. This graph displays the dataset count on a
logarithmic scale against the fraction of files within each dataset that have been accessed.

Figure 2.24: Variance in file access frequencies within datasets at CERN’s T0 Data
Center, ATLAS experiment, Jan-Mar 2020. This histogram shows the distribution of
variance in the number of file accesses per dataset, plotted on a logarithmic scale for
dataset counts. A high frequency of low variance values indicates uniformity in access
across files within most datasets.

2.6. CONCLUSIONS 55

2.6 Conclusions

In this chapter, an analysis of a comprehensive data access trace characterised by a broad

spectrum of file sizes and diverse file popularity trends has been presented. This trace

serves as an excellent basis for assessing cache performance and exploring the efficacy of

various cache eviction strategies.

Throughout the data handling and processing layers, Rucio and PanDA consistently

log operations on files, tasks, and datasets. When this data is merged with the access

logs from the EOS file system, a holistic view of the data’s entire lifecycle emerges,

from its global distribution to the specific file usage patterns. This analysis offers vital

insights, laying the groundwork for further research to enhance storage management and

utilisation. Although expanding this research to encompass longer durations, additional

storage infrastructures, and more comprehensive details would be beneficial, the current

findings still provide a solid foundation for future optimisation efforts. Moreover, the

methodologies developed are versatile enough to be applied in broader contexts beyond

the ATLAS project.

The investigation into AOD and DAOD datasets reveals that most data is accessed

infrequently, with access typically occurring in short bursts, and a substantial portion

remains unused on disks for prolonged periods. These preliminary findings, while not

universally applicable to all experiment stages, suggest that implementing more robust

caching, adopting stricter data deletion policies, and varying the quality of service levels

could significantly reduce storage costs. However, realising these benefits in practice

necessitates further work, particularly in ongoing data popularity monitoring and the

creation and application of detailed metrics to guide both users and site managers toward

more resource-efficient practices.

The access patterns of analysis files differ remarkably from the general trends in file

size and popularity. This distinction underlines the need for differentiated optimisation

strategies for grid site management as opposed to optimising experimental analysis

workflows. The focus is on the latter, addressing the challenge of storing and processing

analysis files, which are distributed across WLCG sites. It is crucial to recognise that

local file storage and access patterns at individual sites can vary considerably based on

factors like the site’s role and geographic location.

Another key observation from this analysis are the varied file size distribution within

the dataset. These findings underscore the importance of considering this diversity in

designing caching models, emphasising the need for strategies that can adapt to a wide

range of file sizes.

2.7. LOG DATA PROCESSING PIPELINE: A BRIEF OVERVIEW OF
IMPLEMENTATION DETAILS 56

2.7 Log Data Processing Pipeline: A Brief Overview of Imple-

mentation Details

Overall, the developed data processing pipeline encompasses a series of steps, starting

with collecting data from two primary sources: EOS Report Logs and Rucio Logs dumps.

The size of EOS Report Logs ranges between 100 MB to 8 GB daily for each experiment.

In parallel, data from Rucio Logs dumps has been integrated, sourced from the Rucio

database. These logs aggregate approximately 50 GB over three months.

After the main log processing stages (parsing, filtering, grouping, merging) the logs

are converted into .parquet files. This format not only reduces the data size by about 30

times (resulting in files ranging from 600 MB to 7 GB monthly) but also makes the data

more manageable for statistical analysis and visualisation.

Furthermore, “ordered traces” have been constructed from the processed logs, tailored

to suit individual Cache Eviction Policies. These traces, stored as .csv files and organised

by timestamp, occupy 2 to 6 GB over a three-month span.

Both processed logs and ordered traces are stored in HDFS and EOS, ensuring

streamlined access and retrieval.

The final component of the pipeline is the implementation of diverse cache eviction

policies. Utilising languages like C++, Python, and Python with PySpark allows for an

exhaustive evaluation of caching strategies.

Chapter 3

Caching in the Context of the WLCG

3.1 Problem Statement

To formalize the problem of searching for an optimal cache, the total number of requests

(or the trace length) is defined as N , M is the number of unique files in the trace, C is the

cache capacity, f1, f2, . . . , fM are the unique files with sizes s1, s2, . . . , sM respectively, V

is the total unique volume requested (V =
∑M

i=1 si). The sequence of requests can be

represented as fj1 , fj2 , . . . , fjN , where ji is the file requested at time ti = i (ti therefore

changes from 1 to N).

The result of applying a given cache eviction policy to the trace can be represented

as a sequence h1, h2, . . . , hN with hi ∈ {0, 1}, where hi = 1 if the corresponding file

fji was retrieved from the cache (a hit) and hi = 0 otherwise (a miss). In this case,

Ncache =
∑N

i=1 hi is the number of file retrievals from the cache (the total number of

hits), and Vcache =
∑N

i=1 hi × sj is the volume (the total amount of bytes) retrieved from

the cache.

3.2 Constructing MRCs for Equal-size File Traces

A Miss Ratio Curve (MRC) is a graphical representation that serves to elucidate the

relationship between cache performance and cache size. It provides valuable insights

into how the cache hit ratio changes as the cache size varies. In this study, MRCs were

created for the historical trace to understand how cache performance varies with different

cache sizes. Two types of MRCs will be important to distinguish in this research: those

representing FMR and BMR.

To start, studies have been conducted with request traces consisting of a sequence

of file IDs accessed. At this stage the actual times between accesses or the file size

57

3.2. CONSTRUCTING MRCS FOR EQUAL-SIZE FILE TRACES 58

haven’t been considered, this is a significant simplification, given the range of file sizes

in the instances. After obtaining initial results and gaining an understanding of the

computational complexity and the general shape of MRCs, work shifted to more complete

versions of the traces containing file sizes as well (refer to Section 3.4).

3.2.1 OSA. Samples

To construct MRCs for Optimal Static Allocation (OSA), one needs information about

file popularity (here the notion of popularity corresponds to the number of times a files

was accessed). Therefore, historical data is needed from which file popularity can be

derived.

For a cache of size C, the policy would dictate to put C of the most popular files into

the cache. The File Hit Ratio can then be simply calculated as a ratio of the total number

of requests to the C most popular files to the total number of requests. In practice, when

working with a tabular data format, this could be done by sorting files by popularity

columns and calculating the cumulative sum of these popularities, starting from the most

popular file.

The first approach was to work with a trace sample of size 100,000 files (a sub-sequence

of the full trace with only the requests to a previously randomly selected set of 100,000

files). In this case, it was feasible to do the calculations described above using Python

pandas dataframes which allowed rapid experimentation to gain insight [73].

Following a similar logic, it was possible to calculate Byte Miss Ratio curves, where

the Byte Hit Ratio is determined as a ratio of requested bytes that were served from the

cache to the total volume requested.

3.2.2 LRU and OPT. Samples

LRU is one of the simplest cache eviction policies to construct MRCs. It satisfies the

inclusion policy that states that in each moment in time, a cache of size C is a subset of

a cache of size (C + 1) for all C. This allows for the construction of a so-called cache

stack: at each point t in time, a subset cache stack[1 : C] corresponds to the files that

would be stored in a cache of size C after processing t first requests. Here, the notion of

time corresponds to the position in the request trace. This allows to find stack distances

for each file request, the minimum cache size is given by the size for which the requested

element would be found in the cache if it was ever accessed before. An array of stack

distances can be easily converted into the MRC.

This logic was inspired by the ideas presented in [37].

3.2. CONSTRUCTING MRCS FOR EQUAL-SIZE FILE TRACES 59

This publication suggests an algorithm to calculate stack distances for OPT, the

Optimal Policy for equal-sized file trace. This policy, also known as Clairvoyant or

Belady, evicts the file that will be accessed the furthest in the future. The publication

also presents proof that this algorithm satisfies the inclusion policy.

Since after each file request the cache stack needs to be re-ordered, the time complexity

is O(N ×M) for both LRU and OPT, even though in practice only a small portion of the

cache stack needs to be re-ordered and the average time complexity of each file request is

tighter than O(M). Given this complexity, it was possible to process samples only of the

order of 10, 000 files.

Even though the time complexity for LRU could be improved, by maintaining a

tree of files ordered by the next request time using so-called “counting trees”, to achieve

O(logM) complexity per request as explained in [74], there is also a proof demonstrating

can be found that LRU is the only algorithm for which it is possible since the stack

ordering 1 for this algorithm is identical to the priority ordering 2.

3.2.3 OSA, LRU, and OPT. Samples. Comparison

To compare the performance of the three algorithms (LRU, OSA, and OPT) on an

identical dataset, MRCs for OSA have been developed, using the same sample of 10,000

files. The corresponding plots are presented in Figure 3.1.

If LRU performs better than OSA, which is the case for ATLAS and ALICE, there

must be a lot of temporal locality. In this case, there is little benefit from static caches.

If OSA performs better than LRU, as seen for LHCb, there is a small set of very

popular files, and even having a static cache with these files yields a lower miss ratio

than a simple online cache eviction policy.

Furthermore, regardless of whether OSA or LRU performs better, a gap exists between

the best-performing policy and OPT, which represents the theoretical lower bound of

what could be achieved. This gap serves as a motivation to develop a new policy that

builds upon the strengths of OSA or LRU to more closely approach the efficiency of

OPT.

Additionally, these plots show that most of the gain from the cache could be attained

with a cache of size 20-40% of the total number of requested files.

1the order of files in the cache stack
2the order of files based on the next request time

3.2. CONSTRUCTING MRCS FOR EQUAL-SIZE FILE TRACES 60

Figure 3.1: Comparative analysis of File Miss Ratio across different cache sizes and
eviction policies for the LHC detectors. The figures display the File Miss Ratios as a
function of cache size, represented as a percentage of the total file count, for three different
cache eviction policies: Optimal (OPT), Least Recently Used (LRU), and Optimal Static
Allocation (OSA). Each line traces the performance of a policy, showing how the Miss
Ratio decreases as the cache size increases, from 0% to 100% of the total file count. Cold
misses, which occur when data requested has never been in the cache, are excluded from
this analysis.

3.3. CACHE ADMISSION: IMPACT ON ALGORITHMIC PERFORMANCE 61

3.2.4 OSA. Influence of Sampling

To estimate the influence of sampling on MRCs, the case of OSA has been studied and the

computations in Python have been converted to pySpark to be able to construct MRCs

on the full traces. Unfortunately, the need to calculate a cumulative sum requires all

rows to be brought to a single Spark node, which negates the benefits of the distributed

nature of computations in Spark. Moreover, this approach proved infeasible for ALICE,

as the number of files (rows) was too large to fit on a single node.

Nevertheless, the MRCs that could be obtained in a reasonable amount of time have

been compared (Figure 3.2). It can be seen from the plots that samples seem to give

a very good approximation, as in the case of LHCb and ATLAS and the 100,000 files

sample for CMS, as well as over- or underestimate the miss ratios, for the 10,000 files

samples for CMS and ALICE.

The construction of MRCs using sampling was also addressed in the previous scientific

works. The paper [75] summarises state-of-the-art techniques to eliminate the effect of

sampling. They propose a hybrid way of constructing MRCs where the part of the curve

that corresponds to the small cache sizes is built precisely, as this part suffers the most

from sampling, and the rest, corresponding to large cache sizes, is built by compensating

sampling algorithms.

Instead, these studies proceeded with constructing MRCs by points: calculating

precise miss ratios, but only for a finite set of cache sizes. This approach also enabled the

analysis of ALICE’s data, which included nearly 200 million accesses over three months,

achieving faster results with only minimal compromise in accuracy.

3.3 Cache Admission: Impact on Algorithmic Performance

In the preceding discussion, the focus has been primarily on cache eviction policies.

However, it is imperative to also consider admission policies, which determine the initial

inclusion of a file in the cache. The decision-making process surrounding whether to

admit a file to the cache is a critical aspect of cache management.

Each cache policy presents a binary choice regarding the mandatory status of storing

an element in the cache. These options significantly influence the performance of the

algorithms, leading to varied outcomes based on the chosen policy.

In this section, the differences between two caching policies are examined: one that

does not require the storage of the requested file in the cache, denoted as P (k), and

another that enforces the constraint of storing the last object requested in the cache,

denoted as Pc(k). For simplicity, it is assumed that objects of equal size are considered.

3.3. CACHE ADMISSION: IMPACT ON ALGORITHMIC PERFORMANCE 62

Figure 3.2: Impact of trace sample size on File Miss Ratio for the Optimal Static
Allocation (OSA) eviction policy in the LHC detectors. The figure presents the File
Miss Ratios as a function of cache size, shown as a percentage of the total file count, for
the OSA eviction policy using different sample sizes. The curves illustrate how the file
miss ratio decreases with increasing cache size, evaluated for sample sizes of 10,000 files,
100,000 files, and no sampling. Cold misses, which occur when data requested has never
been in the cache, are excluded from this analysis.

3.4. MRCS FOR HETEROGENEOUS FILE SIZES 63

Let k represent the cache size. P (k) and Pc(k) are defined as the optimal caching

policies without and with the constraint of storing the last object requested, respectively.

The metric of interest is the hit ratio.

It is clear that P (k) outperforms Pc(k) in terms of the hit ratio, which can be expressed

as P (k) ≥ Pc(k). However, when considering the caching policy Pc(k + 1), which allows

for one additional slot in the cache, it is observed that it performs at least as well as

P (k). This can be stated as Pc(k + 1) ≥ P (k), as Pc(k + 1) can store what P (k) stores

and reserve the extra slot for the last object requested, if it is not in P (k), or for some

other object.

In summary, these two caching policies form a “sandwich” relationship:

Pc(k + 1) ≥ P (k) ≥ Pc(k).

However, it is important to note that the performance of a cache with size k or k + 1

is practically indistinguishable for cache sizes not too small, such as k ≥ 100. Therefore,

for cache sizes k ≥ 100, there is virtually no difference in the results obtained by policies

P and Pc:

Pc(k) ≈ P (k).

3.4 MRCs for Heterogeneous File Sizes

3.4.1 Optimisation of MRCs Through Point-Based Construction

In the following research, the focus has shifted towards a more efficient method for

constructing MRCs. Initially, the process of fully simulating MRCs for each cache size

proved to be time-intensive. For instance, using Python’s OrderedDict for simulating

LRU, it took several hours for datasets such as LHCb and CMS, and over eight hours for

ATLAS.

Furthermore, moving the construction of MRCs to select discrete points rather than

evaluating every possible cache size was seen as advantageous. This change stems from

the understanding that these functions are non-increasing and recognising the need

to economize on time spent on this aspect of the study. By transitioning to a point-

based visual representation of MRCs, sufficient accuracy for comparing different caching

algorithms has been achieved, which is one of the central objectives of this research.

This streamlined approach allows for the inclusion of more complex algorithms in the

study, the processing of complete access traces, and the consideration of actual file sizes.

Now, instead of constructing a comprehensive spectrum of cache sizes with corresponding

3.4. MRCS FOR HETEROGENEOUS FILE SIZES 64

exact hit ratios, it suffices to simulate the cache for only 10-12 strategic points. For these

points, the caching policy is implemented, and a full simulation is run. The performance

is then evaluated in terms of File Miss Ratio (FMR) and Byte Miss Ratio (BMR).

It is important to note that certain assumptions are still made about the system. For

instance, in this section, aspects such as throughput and delayed hits are not considered.

These are examined in more detail in Section 3.8.

3.4.2 Lower and Upper bound of the OPT algorithm

The study presented in [67] introduces novel methods for estimating the lower and upper

bounds of the OPT algorithm, taking into consideration the actual file sizes. The paper

presents two primary methods: Flow-based Offline Optimal (FOO) and Practical FOO

(PFOO). FOO is noted for its high accuracy, but is computationally demanding, limiting

its applicability to datasets with tens of millions of requests. In contrast, PFOO is

designed for scalability, handling hundreds of millions of requests and providing nearly

tight upper and lower bounds for OPT.

Prior to this work, the only known lower bound was the Infinite Cache model,

represented as a horizontal line in MRC plots, leading to misconceptions about the

potential for improvement.

This paper, in contrast, provides compelling proof that PFOO-L is a genuine lower

bound of OPT. The algorithm operates under the premise that cache resources are finite

in both space and time, introducing a “cost” metric for storing a file in the cache post

access, calculated as the product of reuse distance and object size. In this model, each

file request is treated as an interval until the file is requested again. PFOO-L then adopts

a greedy approach, selecting the smallest intervals until the cache size limit is reached.

Each selected interval equates to one cache hit, although these intervals may overlap,

causing the aggregate size of stored files to exceed the cache limit. This overlap renders

PFOO-L a lower bound. However, if file requests are independently distributed, this

overlap is not significantly detrimental. Thus, PFOO-L establishes itself as a lower bound

for FMR, as no other caching strategy can achieve fewer file misses with the same total

resources (N × C).

3.4.3 Lower Bound for BMR of Reactive Policies

The PFOO-L algorithm, as an approximation of OPT, effectively optimises the number

of cache hits and misses. However, optimising the volume of data associated with these

hits and misses, specifically in bytes, is also crucial. To address this, a modified version

of PFOO-L has been developed that can be employed to approximate a lower bound for

3.4. MRCS FOR HETEROGENEOUS FILE SIZES 65

the OPT algorithm when measuring performance in terms of byte volume, referred to as

the OPT.Bytes algorithm. This adaptation focuses on the byte-level impact of caching

decisions, providing a more comprehensive understanding of cache efficiency.

It has to be noted that N denotes the total number of requests in the trace. The trace

contains M unique files f1, f2, . . . , fM with sizes s1, s2, . . . , sM , respectively. The i-th

request can be represented by the pair {i, fji}, where ji is the identifier of the requested

file. Let Tdif [i] denote the reuse distance, i.e., the difference between the order of the

future request for the same file and the current request. C denotes the cache capacity in

bytes.

Similarly to [67], the total cache resource is represented by an initially empty rectangle

with sizes N and C, the resources are limited in time and space.

With each request {i, fji} a rectangle with height sji and width Tdif [i] can be

associated and be placed between i and i+ Tdif [i] on the time axis. Its area sji × Tdif [i]

corresponds to the total amount of cache resources that should be allocated to file ji to

avoid the following request, at time i+ Tdif [i], to produce a miss.

The PFOO-L algorithm greedily picks the rectangles with the smallest area until all

cache resources are consumed, and the sum of the areas of the placed rectangles exceeds

the global rectangle size, regardless of the overlaps.

It therefore finds a lower bound for FMR of reactive policies, since no other reactive

caching algorithm can get fewer misses using N × C total resources. In particular, the

rectangles selected by PFOO-L may overlap in such a way that the required instantaneous

capacity, the sum of the rectangles’ heights, exceeds the constraint C.

Now it can be described how to adapt PFOO-L to find a lower bound for the minimum

BMR (PFOO-L.Bytes). While in PFOO-L every selected rectangle brings a gain equal

to 1 as it prevents a miss, in PFOO-L.Bytes, the rectangle corresponding to the request

{i, fji} has an associated gain of sji , i.e., equal to the bytes it prevents from downloading.

This leads to a knapsack problem, where each file is associated with a cost to store it

and a potential gain. A lower bound for BMR can be found by greedily selecting the

rectangles with the best gain/cost ratio, until exhausting the caching resources. This

leads to a knapsack problem.

The algorithm is:

1. Sort the intervals in the non-increasing order of P/S, where profit in this case is

the file size, and cost corresponds to FileSize × TimeTillNextRequest, which is the

same as 1/TimeTillNextRequest.

2. Greedily add intervals to the cache starting with the smallest until the next interval

is too big to fit.

3.4. MRCS FOR HETEROGENEOUS FILE SIZES 66

3. The solution would be the intervals that are already in the cache, plus a fraction of

the first interval that does not fit.

By adding this fraction, the optimal solution of the knapsack problem is either

matched or exceeded. Therefore, it’s an upper bound for the hit bytes ratio and a lower

bound for the miss bytes ratio.

Knapsack Problem Fractional Greedy Approximation

Problem statement. Assuming that there is a set of N items, each with profit pi and size

si, and a knapsack of size S. The task is to find a subset of items I ⊂ [N] that maximises∑
i∈I pi subject to the constraint

∑
i∈I pi ≤ S.

Greedy Fractional Approximation. The approximation is constructed in three steps:

1. Sort the elements in the non-increasing order of pi
si
. The new order of the elements

is ij , j = 1, N .

2. Greedily put items into the cache until j == k so that

(

k∑
j=1

sij ≤ S) ∧ ((k == N) ∨ (

k+1∑
j=1

sij > S)). (3.1)

3. If k == N or
∑k

j=1 sij == S, then this solution is optimal. If not, the left space

S −
∑k

j=1 sij will be filled with a corresponding fraction of the k + 1 element. The

final profit is:
k∑

j=1

pij +
s−

∑k
j=1 sij

sik+1

× pik+1
. (3.2)

Explanation of the solution. Since the elements with the highest pi
si

ratio have been

taken, it is impossible to obtain a higher profit with a total space of S . Therefore,

this solution gives a profit which is either equal to the optimal, or exceeds it. In case∑k
j=1 sij == S, the solution is optimal.

Continuation of the Approach: Detailed Implementation of PFOO-L.Bytes

The complete algorithm PFOO-L.Bytes is presented in Algorithm 1. Arrays R, T and

S are initialised with the request sequence, the order of requests, or request time, and

the sizes of the request files, correspondingly. The first step is to find the order of the

next request Tnext[i] for the same file fji for each request {i, fji} of the trace (line 7). If

the file fji is accessed for the last time, Tnext[i] =∞. Next, the reuse distance between

3.4. MRCS FOR HETEROGENEOUS FILE SIZES 67

consecutive requests Tdif [i] to the same file fji is calculated (line 8). This leads to the

rectangles’ sizes (line 9), which are sorted by density, i.e., the gain/cost ratio (line 10),

and added to the cache while there are enough caching resources (lines 11–17). Since

Algorithm 1 is not an actual caching algorithm, but only finds a lower bound of the

optimal performance, the caching of file fractions is allowed. In the function cache_file,

the second argument indicates the fraction of the file that needs to be cached. The final

step is to add a fraction of the first rectangle that did not fit (lines 18–20). Note how

implicitly solving the fractional knapsack problem is being solved, and then the optimal

solution of the original knapsack problem is either matched or exceeded.

Algorithm 1: PFOO-L.Bytes

1 R = [], T = [], S = []
2 for i = 1 to N do
3 append(R, fji)
4 append(T, i)
5 append(S, sji)

6 end
7 Tnext ← find_next_access(R) // Define the next access time

8 Tdif = Tnext − T
9 I = S × Tdif

10 I ← sort_by_density(I, S)
11 i = 1
12 P = N × C
13 while i ≤ N and I[i] ≤ P do
14 cache_file(i, 1)
15 P = P − I[i]
16 i = i+ 1

17 end
18 if i ≤ N then
19 cache_file(i, P/I[i])

20 end

Both PFOO-L and PFOO-L.Bytes can be constructed through a single pass over the

trace for different cache sizes. In this case, the preprocessing steps, finding the time of

the next access and sorting the intervals accordingly, take O(N logN) time and O(N)

space, and iterating over the trace takes O(N) both in time and space.

3.5. EXPLORING ENHANCED LRU VARIANTS: IMPLEMENTATION OF 2-LRU
CACHING 68

3.5 Exploring Enhanced LRU Variants: Implementation of 2-

LRU Caching

To extend the focus beyond the traditional LRU caching policy to include its variant,

2-LRU, which has demonstrated superior performance in numerous scenarios, as outlined

in previous studies [38, 76]. The effectiveness of both LRU and 2-LRU is particularly

notable in scenarios with high temporal locality, as evidenced in the access trace depicted

in Figure 2.8.

The 2-LRU algorithm, at its core, is designed to leverage the benefits of a two-layer

caching system. This approach was considered due to its potential to enhance cache hit

rates and overall efficiency. In the 2-LRU model, the first layer, denoted as l1, operates

as a simulation layer, where only file keys are stored without the actual file contents.

This layer employs an LRU eviction policy, considering the sizes of the files. The second

layer, l2, functions as the actual physical cache. Files are transferred to this layer only if

they register a hit in the first layer, ensuring that frequently accessed files are prioritised.

The eviction policy for the second layer is also based on the LRU principle.

This analysis specifically considers the case where both the l1 and l2 layers of the

cache are configured to have the same size, offering a balanced and uniform structure

for evaluating the 2-LRU algorithm’s performance. The policy is then presented in

Algorithm 2.

The 2-LRU algorithm generally exhibits superior performance compared to the

traditional LRU, particularly due to its enhanced handling of files with frequent accesses.

While it is notable that files accessed twice in a short interval, but not a third time

are excluded from the cache in the 2-LRU system, the overall advantages of 2-LRU

in efficiently managing cache hits typically outweigh this limitation, making it a more

effective caching strategy in various scenarios.

3.6 Caching Algorithms Taking into Account Specifics of WLCG

Workloads

In addition, new caching policies that take advantage of some specifics of WLCG workloads

have been proposed and evaluated. In particular, these policies rely on the dataset

membership information, which was obtained for each file using an additional data

source, the Rucio metadata. Given that datasets are typically accessed in their entirety,

if some files in the dataset are currently in use, one may expect that the other files within

the same dataset will be accessed in the near future. In particular, the following policies

3.6. CACHING ALGORITHMS TAKING INTO ACCOUNT SPECIFICS OF WLCG
WORKLOADS 69

Algorithm 2: 2-LRU

1 File f is requested
2 if f ∈ l1 and f ∈ l2 then
3 f is served (it’s a hit)
4 f is moved to the heads of both l1 and l2

5 end
6 else if f ∈ l1 and f ̸∈ l2 then
7 it’s a miss
8 f is put into l2 (the head)
9 ensure the cache capacity of l2
10 f is moved to the head of l1

11 end
12 else if f ̸∈ l1 and f ̸∈ l2 then
13 it’s a miss
14 f is put into l1 (the head)
15 ensure the cache capacity of l1
16 if l2 has enough free space for f then
17 f is put into l2 (the head)
18 end
19 else
20 nothing happens in l2
21 end

// In this case, some files might be evicted from l1, but stay

in l2, which leads to the situation:

22 end
23 if f ̸∈ l1 and f ∈ l2 then
24 f is served from l2 (it’s a hit)
25 f is moved to the head of l2
26 f is inserted into l1
27 ensure the cache capacity of l1

28 end

3.6. CACHING ALGORITHMS TAKING INTO ACCOUNT SPECIFICS OF WLCG
WORKLOADS 70

are proposed, which preserve LRU’s low complexity and are in addition particularly

suited to serve high-rate request processes.

For several operational reasons it cannot be assumed that datasets are always processed

in their entirety, or in a defined sequence:

• Job Interruptions: Jobs processing these files might face unexpected interruptions

or failures, leading to a break in the sequence of file processing.

• Preliminary Testing on Subsets: Before processing the entire dataset, jobs are often

initially tested on a smaller subset. This preliminary run can introduce variances

in the order of file processing.

• Concurrent Access by Multiple Users: The same dataset might be accessed concur-

rently by different users, each running jobs that process the files. This simultaneous

access can disrupt the traditional sequence.

• Parallel Processing by Rucio: Rucio, the data management system, reduces time to

completion of tasks by running jobs in parallel. However, this parallel processing

means, that different jobs might begin processing on different segments of the

dataset, further deviating from an expected sequence.

In light of these operational intricacies, while the inherent sequence of files in dataset

lists exists, the actual order of processing can vary considerably based on multiple factors.

Dataset Evict LRU/MRU. These policies insert a file into the cache only upon a

miss for that file (as LRU does). They maintain information about the last access to a

dataset and, when space is needed, they start evicting files belonging to the least recently

accessed dataset. Among the files within this dataset, Dataset Evict LRU first evicts the

least recently accessed files, while Dataset Evict MRU evicts the most recently accessed

ones. It has to be stressed that both policies operate on the file level.

Dataset LRU. This policy relies on prefetching, as, upon a file miss, all files belonging

to the accessed dataset are retrieved from the remote server and stored in the cache.

Similarly, when cache space is needed, all files of the least recently accessed dataset are

evicted. In short, this policy operates on individual files, it has to be noted that datasets

are only logical concepts, unknown to the underlying file system, but practically behaves

as LRU would if datasets were the atomic cacheable units.

A variant of Dataset LRU that is less aggressive upon eviction has also been tested.

This policy does not evict entirely the least recently accessed dataset, but only as many of

its files as needed. While this variant better uses the available storage space and achieves

smaller FMR and BMR, the improvement is negligible, in the order of 10−4.

3.7. PERFORMANCE COMPARISON 71

3.7 Performance Comparison

Simulation of the cache behaviour using the same three-month trace reflecting the request

process allowed for the evaluation of the performance of the caching policies. In each

case, the initial state of the system is an empty cache.

Figures 3.3a and 3.3b compare how FMR and BMR change depending on the cache

size, which is measured as a percentage of the total volume of unique files seen in the

trace. PFOO-L and PFOO-L.Bytes algorithms provide lower bounds for the performance

of any reactive caching policy. Dataset Evict LRU and Dataset Evict MRU show a

negligible difference in performance of the order of 10−3, so results are only shown for

the first of them.

It is essential to ascertain the optimal sampling fraction of total storage that yields

significant benefits in caching performance. Empirical evidence suggests that utilising

merely 20-50% of the total storage capacity can achieve a substantially high hit ratio,

indicating the efficiency of this scaled storage approach in cache management.

Moreover, these plots show that, among the considered reactive techniques considered,

LRU remains the best option. Differently from what was observed in many previous

studies [38,76], 2-LRU results in significantly worse BMR and almost the same FMR.

A possible factor contributing to it could be the number of single requests. All the

files accessed only once should be better for 2-LRU (since it will never put them into the

cache and will not occupy the space).

Curves for LRU and Dataset Evict LRU almost coincide. As most of the files in the

same dataset are accessed consecutively, files in the least recently accessed dataset are to

a large extent also the least recently accessed files. Cache states are then almost identical

for LRU and Dataset Evict LRU.

As expected, all reactive techniques (LRU, 2-LRU, Dataset Evict LRU, PFOO-L,

PFOO-L.Bytes) provide the same performance when the cache can store the whole

catalogue. In these cases, misses occur only the first time a file is requested (cold misses)

and are not due to space constraints.

A direct comparison between Dataset LRU and the rest of the algorithms is challenging

due to the prefetching this algorithm incorporates, which alters the number of cold misses.

This difference persists even in scenarios where the cache size equals 100% of the total

data volume. To facilitate a more accurate comparison, cold misses have been excluded

from the analysis, focusing solely on the shape of the resultant curves, illustrated in

Figure 3.4.

Under these modified conditions, the Dataset LRU algorithm continues to outperform

3.7. PERFORMANCE COMPARISON 72

(a) FMR as a function of cache size.

(b) BMR as a function of cache size.

Figure 3.3: Detailed comparison of various cache eviction policies’ performance in terms
of FMR and BMR depending on the cache size. The plots evaluate the effectiveness of
different cache eviction policies from January to March 2020 for the ATLAS experiment,
by showing their FMR and BMR as the cache size varies from 0% to 100% of total unique
volume. Each line represents the trend in miss ratios for a different policy. The insets
provide a zoomed-in view of the FMR and BMR for cache sizes ranging from 2% to 4%.

3.7. PERFORMANCE COMPARISON 73

(a) FMR. (b) BMR.

Figure 3.4: Comparative analysis of FMR and BMR excluding cold misses for various
cache eviction policies. The plots evaluate the effectiveness of different cache eviction
policies from January to March 2020 for the ATLAS experiment, by showing their FMR
and BMR as the cache size varies from 0% to 100% of total unique volume. Each line
represents the trend in miss ratios for a different policy. Cold misses, which occur when
data requested has never been in the cache, are excluded from this analysis.

the optimal lower bound. This outcome is expected, considering the impact of prefetching

on enhancing cache hit rates.

3.7.1 Implemented Enhancement Strategies

Since the dataset size is so diverse (Figure 2.20) both in terms of the number of files

and the number of bytes, sometimes, when running Dataset LRU, evicting several files

instead of evicting the whole dataset would be sufficient to make space for the newly

requested dataset. Therefore, there is possibly an opportunity to improve the algorithm

by switching to a file-based eviction, while still prefetching whole datasets. To estimate

the influence, the simulations have been run with a buffer space equal to the average

size of the dataset, while maintaining the eviction rule. In this way, the dataset is only

evicted once there is a need for most of the space occupied by it. The difference in the

result is in the order of 10−4, which is negligible.

Another possible improvement would be to account for the partial hits while a dataset

is still in the loading queue. In the implementation, a pessimistic scenario is run, where all

the requests for a dataset result in a miss until the dataset is fully loaded into the cache.

A less conservative set-up would be to account for them as partial hits, proportionally to

the part of the dataset already loaded. Again, there was a very slight improvement seen;

the difference is in the order of 10−3.

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 74

3.8 Limited Connectivity Throughput Study

So far, it has been assumed that the throughput between the processing grid site and the

data source is large enough to make the content retrieval time negligible in comparison to

the inter-request arrival times. In reality, as described in Sec. 1.4.3, limited connectivity

could lead to delayed hits and significantly influence the cache performance. To estimate

this effect, an array of experiments have been conducted that emulate the retrieval process

under throughput constraints and compare the performance of LRU, as the best reactive

policy, and Dataset LRU, which showed the best performance previously.

3.8.1 Implementation Specifics

The backhaul link and the main storage are modeled as a single-server FIFO (First In

First Out) queue [77] with a constant service rate, corresponding to the throughput.

The customers in the queue are the objects to be retrieved, a file in the case of LRU, a

dataset in the case of Dataset LRU. Such a queue is referred to as the “loading queue.”

The order of the objects in the queue represents the order in which they are to be loaded

into the cache. Objects are inserted into the cache when their service is completed. Each

object request3 is considered as one iteration of the algorithm. The following explains

how the algorithm works.

When an object is accessed for the first time, it is put into the loading queue. The

objects in this queue are served in the FIFO manner. If there is already a pending

request for that object, the new request will not influence the priority, and the previous

loading order will be maintained.

Simultaneously with this, a second data structure serves to maintain the cache order

according to the caching policy. The head of the cache corresponds to the MRU objects

and the tail to the LRU ones. Upon each object request, it is inserted into the MRU

place in the cache, either inserted as a new element or moved to the head if it was already

in the cache. Initially, a not_loaded tag is attached and changed to the opposite when

the object is loaded fully. In contrast to the loading queue, the object order in the cache

changes with each new access. Consequently, the tail of the cache contains the next

candidate for the eviction. If the accessed object was present in the cache with a tag

loaded, it is also counted as a hit before being moved to the head of the cache.

Before each new object request, a simulation of the loading process is performed.

This is done by calculating how many bytes could have been loaded into the cache, given

the bandwidth and the time difference with the previous access. Then, the algorithm

3each file access record in the generated trace

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 75

iterates over the loading queue, starting with the head, and distributes the loaded bytes

amongst the objects that were the first in the queue. The fully loaded files are then put

into the cache, their tag changes to loaded, where the LRU order will be maintained.

With each iteration, the occupied size of the cache is updated. When the volume of

the loaded bytes exceeds the maximum cache capacity, the algorithm starts removing

objects from the cache in LRU order, i.e. starting from the tail. The only exception to

the eviction of the LRU object is when this object is the first one in the loading queue,

and the reason for the current cache cleaning is to make space for this exact object. In

this case, this object is skipped and one but the last cache element will be removed. Since

the first element of the queue is never removed and loading the next object does not

start before the first one is accessed, remove partially loaded objects are never removed.

Therefore, the possibility that the removed file was still in the loading queue is eliminated.

The Algorithm 3 portrays the implementation details in the form of the pseudocode

of the above-mentioned algorithm for the case of file-based LRU. The bandwidth becomes

one of the parameters of the system. The model is simplified to loading files into the

cache one by one according to the request sequence, facilitating the evaluation of the

algorithm’s efficiency in handling file requests with bandwidth constraints.

In the case of Dataset LRU, the additional problem of fetching the whole datasets

into the cache arises: some of them do not fit when simulating small-sized caches. In this

case, simply skipping them from loading is not an option, since at least the requested file

must be served to the user. This case therefore requires more granular cache insertion

rules, based on files or datasets, depending on the size factor.

3.8.2 Observations on the Queue Length

When studying the queue sizes, it was noticed that it does not always oscillate around

zero. At the beginning of the trace, the queue keeps growing while the cache is filling

up, then its size either falls down to zero, or stabilises and starts oscillating around a

non-zero value, or keeps growing. The last scenario has no clear interpretation, since

some requests will never be served to the user. These cases as marked dashed lines on

the follow-up plots (Figure 3.8b and 3.9b).

LRU: Figure 3.5 presents how the length of the loading queue is behaving depending

on the connectivity. For 10 Gbit/s the situation is completely unstable . The queue

keeps growing, which means the some requests will never be served. This implies that

the network’s bandwidth is insufficient to handle even the average request rate. For the

20 Gbit/s connectivity, the situation depends on the cache size. If the cache capacity is

large enough to store 50%+ of the data, the queue either decreases in size (goes to 0)

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 76

Algorithm 3: LRU with delayed hits

Data: cache cap - the maximum cache capacity
Data: Fid = fid1, fid2, . . . , fidN - the sequence of requests
Data: Fsize = fsize1, fsize2, . . . , fsizeN - file sizes corresponding to the request

trace
Data: Ts = ts1, ts2, . . . , tsN - the timestamps of the requests
Data: connect - the connectivity to the remote site

1 Cache← deque()
2 Queue← deque()
3 cur cap = 0
4 prev ts = 0
5 hits = 0
6 i = 1
7 while i ≤ N do
8 loaded = connect× (Ts[i]− prev ts)
9 prev ts = Ts[i]
10 while !Queue.isEmpty() AND loaded > 0 do
11 Queue.load first(loaded)

// involves updating loaded and cur_cap
12 while cur cap > cache cap do
13 fid, fsize← Cache.pop()
14 cur cap = cur cap− fsize

15 end
16 if Queue.first is loaded() then
17 Cache.put(Queue.pop())
18 end

19 end
20 if Cache.contains(Fid[i]) then
21 Cache.move to head(Fid[i])
22 hits = hits+ 1

23 end
24 else
25 if !Queue.contains(Fid[i]) then
26 Queue.put(Fid[i], Fsize[i])
27 end

28 end
29 i = i+ 1

30 end

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 77

or stabilises and becomes of a constant size with some oscillations. If the cache size is

smaller than that though, the queue keeps growing. This situation arises because while

the bandwidth can accommodate the “average” request rate, it falls short during peak

requests. Consequently, a buffer in the form of adequate cache size is necessary to enable

the system to even out the request load. 50 Gbit/s connectivity seems to be sufficient to

deal with the request rate and with the peaks. These peaks could be easily observed on

the next plot (for 100 Gbit/s connectivity) where there are clusters of requests. Such

peaks correspond to clusters of misses which require the retrieval of large volumes of

data. With a 100 Gbit/s connectivity, the queue size quickly goes does to zero, which

does not imply any additional misses. For such a level of connectivity, the network is

almost never congested: the queue occupancy is close to zero most of the time, with some

peaks appearing only for small cache sizes (3% and less) or (≤ 6%).

In conclusion, with at least 50 Gbit/s, the system remains stable, even with small

cache sizes of 2% of the total volume, but some time is required to load the whole queue

again.

Dataset LRU: The analogous plots are presented in Figure 3.6. For 10 Gbit/s, the

system is unstable, the queue keeps growing. It can be seen that after 3e7 requests

the queue size decreases, but looking at the previous plot, it can be seen that simply

there are not many requests coming in this period of time, so the system manages to

process some part of the queue. 20 Gbit/s is enough only if the cache size is 52%+ of

the total volume. If not, the system is unstable, the queue keeps growing. For 50 Gbit/s

connectivity, 13%+ is sufficient for the system for stable operation . In the other cases,

the queue length never goes down to zero, at least on this trace, so it’s hard to argue

that the system is stable. 100 Gbit/s connectivity - with 3%+ of the total size, the queue

length goes down to 0. For most of the period and most of the cache sizes, it stays close

to zero, which means the throughput is sufficient to keep up with the incoming requests.

3.8.3 Full-Cache Points and the Calculation of Hit Ratios

The point of the full cache is the point when the cache is fully populated for the first time.

It is obvious that, for any reasonable cache strategy, everything that happens before this

point does not exhibit the behaviour of the cache eviction policy, since it has before this

point not been applied. Comparing the total hit count and hit byte numbers of these

simulations would not be representative enough of the eviction policy performance in

the long run. Plus, comparing them when the bandwidth connection is different is not

correct since the point when the caches are fully populated is not the same in these cases.

An alternative approach of simply discarding cold misses prior to the cache reaching

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 78

Figure 3.5: Queue size variation over time for LRU cache policy under different network
throughputs. This figure illustrates how the queue size, expressed as the number of files,
evolves over time with respect to the number of requests for different cache sizes under
10 Gbit/s, 20 Gbit/s, 50 Gbit/s, and 100 Gbit/s connectivity scenarios using LRU cache
policy. Data encompasses 46 million requests, covering the entire three-month period
from January to March 2020 for the ATLAS experiment, across cache sizes of 100%,
26%, 6%, and 2%.

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 79

Figure 3.6: Queue size variation over time for Dataset LRU cache policy under different
network throughputs. This figure illustrates how the queue size, expressed as the number
of files, evolves over time with respect to the number of requests for different cache sizes
under 10 Gbit/s, 20 Gbit/s, 50 Gbit/s, and 100 Gbit/s connectivity scenarios using
Dataset LRU cache policy. Data encompasses 46 million requests, covering the entire
three-month period from January to March 2020 for the ATLAS experiment, across cache
sizes of 100%, 26%, 6%, and 2%. The star symbols mark the initial points when the
cache reaches full capacity.

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 80

its full capacity is also impractical. This is due to the likelihood that the cache could

become full towards the end of the request sequence, especially if even a single new file

is accessed, which is a common occurrence. Moreover, when comparing different cache

eviction policies, it is important to note that the comparative analysis is conducted along

the y-axis of MRCs. In this dimension, all policies are equally affected by the same exact

number of cold misses, thereby ensuring a consistent basis for comparison.

Another observation is that the lower bandwidth requires more time to reach the

same set-up in terms of the hit rate, because in these cases the cache state is updated

later.

Instead of calculating the hit ratio from the point where the cache is full for each

set-up, one can start from the point (approximately, 40%) where it is known for sure

that all the cache sizes with any bandwidth connection would be full. Otherwise, one

compares the algorithms over different traces. For the full size of the cache, this is an

exception, the cache will not be full yet, but to satisfy this condition, it would be required

to cut off almost the whole trace. In this set-up, the new content is constantly arriving.

3.8.4 Discussion of Experimental Results

Figure 3.7 shows how the hit rate changes over time for different cache sizes. Lower

throughput requires longer times to reach the same set-up in terms of the hit rate, since

the cache state is updated slower. The squares on the curve designate the first time

instant when the cache is full. Lower throughput and larger cache sizes shift these points

further to the right. The troughs observed during these simulations are caused by a

combination of the peaks in the request rate observed in Figure 2.17 and the short time

difference between consecutive accesses (Figure 2.9).

In order to eliminate the effect of the initial transient, the first 40% of the trace is

considered as a warm-up period and evaluate the metrics of interests only on the final

60%. In this manner, it can be guaranteed that the cache is full for all the considered

set-ups, like different throughputs, cache sizes, caching policies, but for the cache sizes

closely approaching 100%.

The effect of throughput constraints on LRU performance is illustrated in Figure 3.8b.

At a bandwidth of 100 Gbit/s, which is currently available between T0 and almost all

T1 sites, the Byte Hit Ratio is almost identical to the LRU, which is the same when

assuming the bandwidth is infinite. It becomes clear that as far as the system provides

a throughput of at least 50 Gbit/s, delayed hits have little effect on BMR, which is

very close to the ideal case of infinite throughput. At the same time, a throughput of

30 Gbit/s shows a significant difference in performance with small cache sizes (20% and

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 81

Figure 3.7: Hit rate over time for a 100 Gbit/s throughput using LRU, measured as the
number of hits per request. The squares mark the initial points when the cache reaches
full capacity. Data encompasses 46 million requests, covering the entire three-month
period from January to March 2020 for the ATLAS experiment, across cache sizes of
26%, 52%, and 100%.

less). For 20 Gbit/s the BMR is higher for all cache sizes.

The situation with the FMR is very similar (Figure 3.8a). The results differ in

absolute numbers, but the relative position of the MRCs is the same.

As the throughput decreases, scenarios arise where the rate of content retrieval

requests consistently exceeds the connectivity throughput. This leads to an increasing

queue occupancy over time, indicating a bottleneck where incoming data requests cannot

be processed quickly enough due to limited bandwidth. In these pathological cases, the

numerical values for FMR and BMR are not representative, since they heavily depend

on the trace length, and are then represented through dashed lines in the BMR plots

(Figure 3.8b and the following one for Dataset LRU 3.9b).

In contrast, the effect of the limited throughput on the performance of Dataset

LRU—the best policy in the infinite throughput regime (Figure 3.3b)—is more profound

(Figure 3.9b). In fact, upon a miss, Dataset LRU retrieves a much larger amount of data

than LRU as the comparison of dataset sizes to file sizes shows (Figure 2.6a and 2.20).

As the loading time increases, the delayed hits counteract the prefetching effect.

A 13% cache size, even at 100 Gbit/s throughput, which had virtually no influence

on LRU performance, leads Dataset LRU to experience BMR equal to 0.15 compared

to just 0.01 for the infinite throughput case. Dataset LRU still outperforms LRU in

this scenario, but the relative performance improvement is significantly reduced. For

even smaller throughputs and/or smaller cache sizes, the effect of delayed hits diminishes

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 82

(a) FMR as a function of cache size.

(b) BMR as a function of cache size.

Figure 3.8: Analysis of LRU cache performance across various throughput levels. This
figure presents a detailed comparison of cache in terms of FMR and BMR under different
network throughput conditions ranging from 20 Gbit/s to 100 Gbit/s, as well as an ideal
scenario labelled“Infinite”. Panel (a) shows the FMR as a function of cache size, measured
as a percentage of total unique volume. Panel (b) depicts the BMR. The analysis covers
data calculated on the final 60% of the trace, with dashed lines representing scenarios
where the loading queue size grows continuously.

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 83

(a) FMR as a function of cache size.

(b) BMR as a function of cache size.

Figure 3.9: Analysis of Dataset LRU cache performance across various throughput levels.
This figure presents a detailed comparison of cache in terms of FMR and BMR under
different network throughput conditions ranging from 20 Gbit/s to 100 Gbit/s, as well
as an ideal scenario labelled “Infinite”. Panel (a) shows the FMR as a function of cache
size, measured as a percentage of total unique volume. Panel (b) depicts the BMR. The
analysis covers data calculated on the final 60% of the trace of the three-month trace
Jan-Mar 2020 for the ATLAS experiment, with dashed lines representing scenarios where
the loading queue size grows continuously.

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 84

(a) Infinite throughput. (b) throughput = 100 Gbit/s.

(c) throughput = 50 Gbit/s. (d) throughput = 20 Gbit/s.

Figure 3.10: The plots compare the performance of LRU and Dataset LRU in terms of
BMR under different throughput (“Infinite”, 10 Gbit/s, 50 Gbit/s, and 20 Gbit/s). The
analysis covers data calculated on the final 60% of the three-month trace Jan-Mar 2020
for the ATLAS experiment.

completely the advantage from prefetching, and Dataset LRU starts performing worse

than LRU.

In order to compare the performance of the two algorithms, it is worthwhile to look at

the intersection points of BMRs of LRU and Dataset LRU, depending on the throughput

(Figure 3.10). Dataset LRU clearly does not always have an advantage over LRU, as in

case of the infinite bandwidth (Figure 3.10a). With limited bandwidth, it takes more and

more time to load the elements from the queue to put them into the cache, which in turn

starts to level out the prefetching effect. With 100 Gbit/s connectivity, Dataset LRU

starts overperforming LRU in terms of the BMR only with the cache capacity approx.

7% and more of the total unique volume. This intersection point shifts more and more

to the left as the bandwidth decreases: Approx. 25% of the total volume for 50 Gbit/s

connectivity (Figure 3.10c), and 90-95% for 20 Gbit/s (Figure 3.10d).

3.8. LIMITED CONNECTIVITY THROUGHPUT STUDY 85

From these results, it becomes clear that the throughput must be taken into account

when developing cache eviction policies for a remote computation model. The limited

throughput worsens the performance of cache algorithms, not proportional to the results

under the infinite throughput assumption. Figure 3.11 shows which caching policy should

be preferred, between LRU and Dataset LRU, depending on the throughput and the

cache size.

Figure 3.11: This figure illustrates the effectiveness of LRU and Dataset LRU caching
policies across a range of connectivity bandwidths from 20 Gbit/s to 100 Gbit/s and
varying cache sizes as a percentage of total unique volume. The shaded areas represent
the efficiency range of each caching policy, with the red area denoting LRU and the
green area representing Dataset LRU. As the connectivity bandwidth increases, the
effective cache size required for Dataset LRU to outperform LRU decreases, indicating
that Dataset LRU becomes more favourable at higher bandwidths. The analysis is based
on the final 60% of the three-month trace Jan-Mar 2020 for the ATLAS experiment.

3.8.5 Prefetching Overhead

Prefetching data can help speed up data retrieval, but it also has its downsides. One

significant drawback is that it can increase the total amount of data sent to a remote site

compared to standard methods like LRU. This extra data might not be used, leading

to inefficiency and potential resource waste. In essence, prefetching can result in an

overhead, meaning that too much data is loaded in advance. This “prefetching overhead”

can be visually understood through a comparison between the percentage of prefetching

overhead and cache size. While the intention behind prefetching is to improve hit rates

and reduce latency, unnecessary data retrieval can offset these benefits.

3.9. BANDWIDTH EXPLORATION 86

Furthermore, this approach resembles to a certain degree the current staging practice.

Consequently, this direction wasn’t pursued beyond the presented level. The reduction

in miss ratio achieved through prefetching is offset by a significant increase in the

accumulated data transfer volume, as depicted in Figure 3.12 and due to the granularity

the impact on waiting jobs is also contra-productive. These trade-offs highlight the

complexities involved in balancing caching efficiency with resource utilisation.

Figure 3.12: Prefetching overhead as a function of cache size. This graph illustrates
the exponential decrease in prefetching overhead with increasing cache size, expressed
as a percentage of the total unique volume. The overhead is measured by the ratio of
accumulated transferred volumes for Dataset LRU compared to LRU under an infinite
bandwidth scenario. This trend underscores the trade-offs between caching efficiency
and resource utilisation. The analysis is based on the final 60% of the three-month trace
Jan-Mar 2020 for the ATLAS experiment.

3.9 Bandwidth Exploration

The integrity and efficiency of data-driven operations, such as fetching individual files or

prefetching entire datasets, hinge significantly on the quality of the connectivity to remote

sites. As the backbone of these operations, a robust and consistent connection ensures

the timely transfer and availability of data, preventing lags or “delayed hits” that might

occur when data is not retrieved promptly. However, the challenge lies in discerning the

optimal bandwidth necessary for these tasks. Factors such as the duration for which files

remain open, the rate of data transfer, and the potential overlap in bandwidth demands

from concurrent operations all play pivotal roles. Delving into this intricacy forms the

basis for this investigation, trying to delineate the bandwidth prerequisites that will

optimise these crucial processes.

Figure 3.13 presents the distribution of the cumulative bandwidth utilised during file

openings, with each instance weighted according to the duration of its overlap. Essentially,

3.9. BANDWIDTH EXPLORATION 87

this figure illustrates the distribution of the total reading bandwidth at the T0 site, in

conjunction with the specific duration (measured in days) over a three-month period. It

is observed that the total bandwidth rarely surpassed 100 Gbit/s, despite the system’s

capability to support higher reading speeds of up to 400 Gbit/s. Notably, the data reveals

that for only 7.35% of the observed period, the total bandwidth exceeded 100 Gbit/s.

Figure 3.13: Distribution of cumulative bandwidth utilisation for file access events over
time. This histogram illustrates the distribution of total bandwidth used during file
opening events, measured in gigabits per second, and weighted by the duration of each
event’s overlap with others. The analysis is based on the three-month trace Jan-Mar
2020 for the ATLAS experiment.

Optimising Transfer Rates Optimising data transfer rates hinges on two primary aspects:

first, reducing the total volume of data transferred, and second, ensuring that the

available connectivity bandwidth isn’t overwhelmed or saturated. Current observations,

as illustrated in the previous bandwidth accumulation plots, suggest that bandwidth

saturation isn’t a pressing concern given the ample resources at the T0. Consequently,

the immediate focus shifts to minimising transfer costs, specifically by reducing the

cumulative amount of transferred bytes.

While prefetching is not inherently counterproductive in optimising transfers—there

are scenarios where prefetching can balance reading bandwidth and stave off peak

loads—it’s essential to weigh its costs and benefits. Under the assumption that the

bandwidth usage stays within the confines of the provided connectivity, the prefetching

might inadvertently inflate transfer costs.

As a result, the current emphasis is on devising a reactive eviction policy that can

outperform the standard LRU approach.

3.10. CONCLUSIONS 88

3.10 Conclusions

The research demonstrated the utility of constructing Miss Ratio Curves for under-

standing cache performance relative to cache size, particularly in heterogeneous file size

environments.

A point-based method was employed, that strikes a balance between computational

efficiency and the precision needed for representing diverse caching strategies.

LRU demonstrates commendable performance with favourable ease of implementation

and maintenance. However, it raises the question of whether a better BMR can be achieved

through the adoption of alternative cache eviction policies.

In an attempt to close this gap, cache eviction policies specifically tailored to the

WLCG types of workloads have been developed, such as Dataset Evict LRU and Dataset

Evict MRU, which leverage the observation that files within a dataset are very often

accessed together during analysis jobs. Despite extensive exploration and efforts, it has

not been possible to surpass the performance of LRU in previous attempts with 2-LRU

and Dataset Evict LRU.

Despite the absence of a reactive technique in this study that surpasses the performance

of LRU, the comparative analysis with optimal bounds indicates substantial scope for

improvement, hinting at the possibility of developing more efficient caching strategies in

the future.

For example, for the 5–10% cache sizes, the miss ratios could be reduced by a factor

of 1.5.

This study also highlighted how limited connectivity can significantly affect cache

performance, necessitating the consideration of network throughput in cache design.

While this is less severe for T0 and T1 located caches, it becomes more critical for some

of the poorly connected T2s.

The overall findings emphasise the need for adaptable strategies that take into account

file size variability, network conditions, and workload characteristics.

Chapter 4

Machine Learning-based Caching

Policies

4.1 Description of the Trace:

In this chapter, the results of applying Machine Learning techniques to the problem of

caching in the WLCG are presented. All the results presented here were based on a trace

generated from the 2022 data accesses (February - April) for the ATLAS experiment.

Main characteristics of the trace are presented in Table 4.1.

Table 4.1: Main characteristics of the updated 2022 file access trace. This table summarises
various data access metrics recorded within the ATLAS Experiment’s computing instance
at the CERN T0 Data Center for the period Feb-Apr 2022.

Metric Value

Number of Read Accesses 55,714,376
Read Volume 112.19 PB
Number of Files 11,864,276
Volume of Files 25.055 PB
Number of Datasets 285,469

4.2 Performance of the Belady algorithm

A theoretical policy capable of predicting future file accesses with certainty would be able

to identify the optimal file for eviction at each step. When files have the same size, this

policy is straightforward - it selects the file that will be accessed farthest in the future

(known as Belady algorithm [64]). However, when file sizes are different, determining the

89

4.2. PERFORMANCE OF THE BELADY ALGORITHM 90

best eviction strategy becomes more difficult and is an NP-hard [65] problem.

Here are the counterexamples that show the proof that Belady policy is not optimal

in the case of heterogeneous file sizes.

• Suppose there are four files f1, f2, f3, f4 with the sizes s1 = 1, s2 = 1, s3 = 2, s4 = 2

respectively (measured in some units). The cache capacity is 5 and the trace is the

following:

timestamp: t1 t2 t3 t4 t5 t6 t7

requested file: f1 f2 f3 f4 f3 f1 f2

At time t4, according to the Belady algorithm, both files f1 and f2 should be

evicted, which results in 1 hit over the whole trace (for the file f3). On the other

hand, evicting the file f3 instead would leave enough space for the new f4 and

result in 2 hits (for f1 and f2) in the end.

Therefore, Belady is not optimal for maximising FMR.

• Suppose the files f1, f2, f3, f4 have sizes s1 = 1, s2 = 1, s3 = 4, s4 = 1 respectively.

The cache capacity is 6 and the trace is the following:

timestamp: t1 t2 t3 t4 t5 t6 t7

requested file: f1 f2 f3 f4 f1 f2 f3

When f4 is inserted at time t4, Belady evicts f3, which is accessed the furthest in

the future. This results in 2 hits and 2 hit bytes in total (at t5 and t6). Instead,

evicting the file f1 results in 2 hits and 5 hit bytes (at t6 and t7).

Therefore, Belady algorithm is not optimal for maximising BHR either.

As seen previously in this analysis, the WLCG workloads are characterised by a

vast spread in file sizes (reference Figure 2.12). Therefore, Belady algorithm would

not be optimal for either FMR or BMR for the studied workloads. Nevertheless, the

empirical observations present an unexpected outcome. When applying Belady algorithm

to the extracted trace, it demonstrated performance that approached the theoretical

lower bound for efficiency as defined by the PFOO-L and PFOO-L.Bytes algorithm, as

illustrated in Figure 4.1a and Figure 4.1b. This suggests that for the analysed dataset,

Belady algorithm exhibits nearly optimal performance.

4.3. ARCHITECTURE OF ML SOLUTION (2-STAGE APPROACH) 91

(a) Comparing Belady and LRU. FMR. (b) Comparing Belady and LRU. BMR.

Figure 4.1: Comparing the performance of LRU, Belady and the lower bound of the
optimal algorithms using MRCs.

In practice, while not being optimal, Belady algorithm approximates an optimal lower

bound for both FMR and BMR. This served as an inspiration to use Belady algorithm

as a valuable example of nearly-optimal behaviours and combine it with the potential of

Machine Learning tools for prediction.

4.3 Architecture of ML solution (2-Stage Approach)

It is important to remember that Belady algorithm, although nearly optimal on the

extracted trace, cannot be practically implemented as it necessitates foreknowledge of

the future, making it impossible for real-world implementations. Nonetheless, one of the

feasible solutions could be to train a machine-learning model based on past cache accesses

and employ it to guide future cache replacement choices. If the ensemble of features

available in the trace of the previous accesses is a reliable indicator of future accesses,

then the replacement strategy can approximate the performance of Belady algorithm.

Therefore, this task is separated into two stages: instead of training the ML model to

answer the question “which file should be evicted from the cache” (like the paper [55]

and possibly others), the approach here is to predict the reuse patterns on the files.

Based on these predictions, a heuristic is then applied to determine eviction priorities.

More specifically, the two stages are:

1. The initial stage involves building a robust predictor based on all the available data

from the trace. This results in an ML model, which is trained with historical data

to predict future file accesses.

2. The predicted access information is then utilised for cache eviction decisions.

4.4. PREDICTING FUTURE ACCESSES 92

Specifically, the predicted time (or probability) of file reuse is integrated into the

caching model to make informed cache eviction choices and allows the cache to be

freed up from files that are less likely to be accessed in the future.

4.4 Predicting Future Accesses

4.4.1 Search for Simpler Dependencies

Dependency Between File Lifetime and Access Rate

The initial step of this approach involved exploring simpler relationships between various

features of the trace data, such as file size, distance to previous access, and the target

variable, which is the reuse time1 of the files.

The examination focused on whether files with specific lifetimes are accessed more or

less frequently. This analysis aimed to establish a pattern, such as, “if a file is older than

a certain number of days, it is likely to be accessed less frequently.” For this analysis,

only files with both creation and deletion dates were considered, which constituted 44%

of all files. This limitation is also why the maximum lifetime depicted in the figures is

approximately 80 days.

An inherent bias was detected in the data due to the inclusion of accesses from the

last month. This introduced a bias: files with a previous reuse distance longer than 60

days were more likely to be accessed. Moreover, if the previous reuse distance is around

80 days, the subsequent reuse distance cannot exceed 10 days. To counter this bias, all

accesses occurring within the last month were excluded.

The first result is presented in Figure 4.2a and shows the number of file accesses in

relation to their lifetime. It was observed that while files with longer lifetimes tend to be

accessed more times, yet this effect becomes less pronounced when analysing the rate

(the number of accesses divided by the lifetime), as depicted in Figure 4.2b. Therefore,

no clear dependency that could be useful was not present.

Impact of Previous Access Times on File Reuse

This section examines the potential impact of two features on the target variable: the

time distance between the current access and the most recent access to the same file

(previous file access time distance), and the time distance between the current access

1The reuse time of the files refers to the distance between the current access and the next one to this
file.

4.4. PREDICTING FUTURE ACCESSES 93

(a) Number of file accesses
depending on the lifetime.

(b) Read access rate
depending on the lifetime.

Figure 4.2: Comparative analysis of access frequency and access rate over time.

and the most recent access to any file from the same dataset (previous dataset file access

time distance).

The initial objective was to try to predict whether a file would be reused within the

subsequent month. In the filtering stage of this task, the last month of trace data was

excluded to facilitate the construction of the target variable, resulting in ∼67% of records

being retained. Table 4.2 summarises the percentages of records retained for different

analyses and the composition of the training datasets.

Analysis Type
% of Records
Retained

Labelled as
“Accessed”

Labelled as “Not
Accessed”

Previous File Access
Time Distance

49.72% 23,978,636 3,721,268

Previous Dataset Access
Time Distance

63.43% 27,369,345 7,971,000

Table 4.2: The table provides a breakdown of the retention rates and composition of the
training datasets used in the study of file reuse predictions within a month based on the
previous access times. “Previous File Access Time Distance” measures the time between
the current and last access of the same file, and “Previous Dataset Access Time Distance”
measures the time between the current access and the last access of any file within the
same dataset. For each analysis type, the table shows the percentage of records retained
after filtering out the last month’s data and constructing the feature, along with the
count of files labeled as “Accessed” or “Not Accessed” based on their reuse within the
subsequent month.

As shown, the data filtering process significantly reduced the number of access records

available for analysis but left enough entries to perform a thorough analysis.

4.4. PREDICTING FUTURE ACCESSES 94

The observations from Figure 4.3 reveal that the two distributions do not significantly

differ and follow similar patterns when normalised. Notably, there are pronounced spikes

in reaccess frequencies at intervals of less than one second, less than one minute, around

one hour, and less than one month. These spikes are also observed in the distribution

plots of the general reuse time, suggesting a consistent pattern across different measures of

file access and reuse. The pronounced spikes at very short intervals (less than one second)

are likely artefacts of the system’s operation, rather than reflecting useful access patterns.

Although these spikes have minimal impact on caching performance, it is important

to acknowledge their source when studying data access patterns. For a more accurate

analysis, data should be aggregated based on one logical access, rather than including

these artificial “touch” operations, which are likely the source of these short-term spikes.

Figure 4.3: Overlay histogram comparing the normalised frequency of previous data
access times on a log scale, distinguishing between classes “1” for data accessed and “0”
for data not accessed during the target period, across time intervals ranging from one

second to one month.

Examining the distribution of the actual reuse distance within the next month, based

on the previous access distance (as shown in Figure 4.4a) and the previous access to the

same dataset (illustrated in Figure 4.4b), reveals no discernible correlation. In summary,

while there are typical values observed, they do not exhibit a correlational relationship.

4.4.2 The Choice of the Predictive Model

Machine Learning and Statistical Methods for Predictive Analysis

When deciding on a predictive model for this work, the choice was between machine

learning (ML) models and statistical approaches. ML models were selected, primarily

4.4. PREDICTING FUTURE ACCESSES 95

(a) Correlation between 2 consequent accesses to the same file.

(b) Correlation between next file access and previous dataset
access.

Figure 4.4: Detailed correlations between the time differences of previous and subsequent
file and dataset accesses. Panel (a) illustrates the relationship between two consecutive
accesses to the same file, and Panel (b) shows how the time differences between accesses

in the same dataset relate. Both plots display the time differences in days across a
temporal span of 60 days.

4.4. PREDICTING FUTURE ACCESSES 96

due to the complexity and size of the data. While statistical methods can be applied to

large datasets, they often struggle with computational complexity and scalability. ML

algorithms, on the other hand, are inherently equipped to handle such datasets efficiently.

They benefit from parallel processing libraries and other computational advancements,

which make them more suitable for big data.

Furthermore, ML algorithms excel in predicting outcomes and generalising to unseen

data. They are adept at automatically identifying patterns and relationships within

large datasets. In contrast, statistical approaches tend to focus more on understanding

relationships between variables, making inferences about populations, and providing

measures of uncertainty. Given the predictive nature of this research problem, this

distinction makes ML a more appropriate choice.

Evaluating and Comparing Diverse Regression Models: Preliminary Tests and Insights

This analysis focuses on tree-based learning methods, particularly Decision Trees and

their ensembles, Random Forests (RF) and Gradient Boosting Trees (GBT), due to their

superior performance in the preliminary tests (Table 4.3). Ensemble learning is a method

that combines multiple machine learning models to improve predictive accuracy and

reduce the risk of choosing a sub-optimal model. Such an approach tends to make more

accurate predictions than any individual model.

There are various types of ensemble learning methods [78], the main ones are:

• Parallel Ensemble Learning (Bootstrap Aggregating, or Bagging): Bagging involves

training multiple models in parallel, each on a random subset of the training data.

The final prediction is typically an average (for regression) or a majority vote (for

classification). Random Forest is a classic example of bagging, where many decision

trees are trained on different data subsets and their predictions are averaged.

• Sequential Ensemble Learning (Boosting): In boosting, subsequent models are

trained by focusing more on the instances that previous models misclassified or

gave higher errors. The idea is to improve the model iteratively by focusing on the

harder cases. Boosting algorithms include Gradient Boosting Trees, AdaBoost and

XGBoost.

• Stacking: Stacking involves training multiple models (usually of differing types)

on the same dataset and then using another model, often called a meta-learner,

to synthesize the outputs of the individual models. The base models are trained

on the complete dataset, and their predictions form the input features for the

4.4. PREDICTING FUTURE ACCESSES 97

meta-learner, which aims to learn how best to combine these predictions to make a

final prediction.

One should mention, that aggregated or ensemble models do not inherently outperform

their single-model counterparts in every scenario. Usually, their advantage is most notable

in reducing variance and improving reliability in models prone to instability.

Various machine learning regression techniques from the pyspark.ml.regression

library were assessed [79], such as Linear Regression, Generalised Linear Regression,

Decision Tree Regressor, Random Forest Regressor, Gradient-Boosted Tree Regression,

Isotonic Regression, and Factorization Machines Regression. A basic dataset was created

with three features—file size, last opening duration2, and the difference in last opening

time—to predict the logarithm of the next reuse distance. This formulation of the predict-

ing target was chosen over predicting the reuse time value to improve interpretability and

differentiate between files reused within varying time frames. Although the computational

effort is nearly the same, these two values are easily interchangeable.

These three features were normalised for the regression task and used Root Mean

Square Error (RMSE) as the evaluation metric, as shown in Table 4.3. Additionally,

based on the distribution of the target variable, which aligns with the distribution of

previous access time (illustrated in Figure 4.3), all data where the target variable was

less than 10 seconds were excluded. This step, detailed in the “RMSE (After Noise

Reduction)” column of Table 4.3, enhanced the results. However, this improvement could

simply be attributed to the reduction in the output range.

Method RMSE (Initial)
RMSE (After

Noise Reduction)

Linear Regression 4.36 3.73
Generalised Linear Regression 4.35 3.71
Decision Tree Regressor 3.32 3.01
Random Forest Regressor 3.51 3.11
Gradient-Boosted Tree Regression 3.22 2.93
Isotonic Regression 4.92 3.71
Factorization Machines Regression 8.73 9.15

Table 4.3: Comparison of RMSE scores for different regression methods before and
after noise reduction. This table evaluates several ML regression techniques from the
pyspark.ml.regression library. The analysis is based on three normalised features: file
size, last opening duration, and the difference in last opening time. The goal is to predict
the logarithm of the next reuse distance of files.

2The last opening duration refers to the time interval between the closing and opening time of the last
access operation to a file.

4.4. PREDICTING FUTURE ACCESSES 98

Our findings demonstrated that tree-based methods (Decision Tree, Random Forest,

and Gradient-Boosted Tree) were superior in performance.

Gradient Boosted Trees Gradient Boosted Trees employ an iterative approach to train a

series of decision trees. In each iteration, it uses the combined predictions of the existing

trees to assess each training entry, comparing these predictions with the actual labels.

Entries that are poorly predicted are then given more weight in the subsequent iteration,

guiding the next tree to focus on these errors for correction.

One key characteristic of GBT is its ability to achieve superior results with a relatively

smaller number of trees compared to other methods. However, this comes at the cost

of increased time for model construction. It is equally important to note that GBT,

unlike bagging ensemble methods such as Random Forest (RF), is more susceptible to

overfitting.

Given the large dataset and the need for a method that is both rapid and robust against

overfitting, GBT (Gradient Boosted Trees) was omitted from the analysis. This decision

was based on prioritising methodologies that align better with the data characteristics

and analysis goals.

Decision Trees and Random Forest

After careful study of existing ML techniques, the focus was placed on Decision Trees and

their ensembles, Random Forests. Decision trees and random forests are both powerful

machine-learning algorithms that can be used for classification and regression tasks.

A decision tree is a tree-like model that makes decisions based on a series of binary

splits on the input features (Figure 4.5). Each split divides the data into subsets based on

the value of a particular feature until the final leaves of the tree represent the predicted

output for each subset. Random forests are an ensemble of decision trees that are trained

on subsets of the data and subsets of the features and then aggregated to produce a final

prediction. Each tree in the forest is grown independently, and the final prediction is

determined by a majority vote or an average of the individual predictions.

Decision trees are easy to interpret and can handle non-linear relationships between

features and the target variable. However, they are prone to overfitting and may not

generalize well to new data. Random forests address the overfitting issue by aggregating

the predictions of multiple trees. They are also able to handle high-dimensional data and

noisy data. However, they may be more complex to interpret than a single decision tree.

For the task of predicting future file accesses based on previous data, random forests

were chosen because they can handle high-dimensional data and are robust to noise. This

4.4. PREDICTING FUTURE ACCESSES 99

Figure 4.5: Decision Tree and Random Forest schematic representation.

4.4. PREDICTING FUTURE ACCESSES 100

method was selected due to its effectiveness in handling both classification and regression

tasks and its capability for parallelization. Additionally, exploring the importance of

different features in the prediction task is readily facilitated by random forests, making it

a valuable tool for feature analysis.

4.4.3 Training Decision Trees and Random Forests

Preparing the Data

Decision Trees and Random Forests typically do not require normalisation of data due to

their operational nature. These algorithms make decisions by splitting on feature values,

focusing on the ordering of the data rather than their scale. Therefore, standardising or

normalising features, which alters their scale but not their ordering, does not significantly

impact the performance of these models.

Balancing is essential for the target variable (label) to prevent the model from

being biased towards the more represented classes (more dense areas of the popularity

distribution). Although balancing was not implemented for the regression task, mainly

due to the complexity involved in such contexts, it was also considered that the inherent

bias towards more frequent reuse distances might be advantageous in regression scenarios.

However, for classification tasks, balancing was diligently applied to ensure a more

equitable and accurate representation across various classes.

Furthermore, as described in the preliminary tests with different regression models,

the decision was made to predict the logarithm of the reuse time, rather than the raw

value, to improve the model’s performance and interpretability.

Random Forest Implementation

Suppose a Random Forest employs K Decision Trees. Each tree is built from a random

subsample of the original dataset (D), ensuring diversity in the analysis. During the

construction of each tree, a subset of features (F) is randomly chosen for node splitting.

F was set to equal the square root of the total feature count, which is typical in regression

tasks. The deciding feature will be determined based on the amount of entropy it creates.

The node impurity is a measure of the homogeneity of the labels at the node. It is

calculated as follows:

1

N

N∑
i=1

(yi − µ)2 (4.1)

where yi is a label for an instance, N is the number of instances and µ is the mean given

4.4. PREDICTING FUTURE ACCESSES 101

by

1

N

N∑
i=1

yi (4.2)

The impurity decrease (also called “information gain”) is the difference between the

parent node impurity and the weighted sum of the two child node impurities. The

equation is the following:

Nt

N

(
impurity− NtR

Nt
× right impurity− NtL

Nt
× left impurity

)
(4.3)

where N is the total number of samples, Nt is the number of samples at the current

node, NtL is the number of samples in the left child, and NtR is the number of samples

in the right child.

There are several issues with the procedure of recursively partitioning data to construct

decision trees (DTs). Allowing the trees to grow until each leaf contains only a single

observation leads to significant problems. First, this process is time-consuming, as the

number of splits that need to be tested grows exponentially with the increase in the

number of leaves in the trees. Second, there is a critical point where continuing to split

nodes into smaller child nodes should be halted; overly complex trees with many branches

and leaves tend to overfit the training data.

In addressing these challenges, various stopping criteria are defined to govern the

growth of decision trees in both Decision Tree and Random Forest algorithms. These

criteria, integral to controlling overfitting and improving the model’s generalization

capabilities, are readily adjustable in PySpark, allowing for tailored model complexity

and enhanced predictive performance.

To conduct the experiments, the libraries used are

pyspark.ml.classification.RandomForestClassifier for classification tasks and

pyspark.ml.regression.RandomForestRegressor for regression analysis. The follow-

ing are the key stopping criteria, along with their corresponding parameters in the

PySpark implementation, if any:

• Maximum Number of Leaves: The growth of the tree is halted once it reaches a

predefined number of leaves.

• Maximum Depth: The tree expansion is limited to a specified depth, defined by

the maxDepth parameter in PySpark.

• Minimum Samples for Split: This criterion prevents further splitting of a node if it

contains fewer observations than a specified threshold, ensuring that each leaf has

4.4. PREDICTING FUTURE ACCESSES 102

at most N entries.

• Minimum Samples per Leaf : A split is not performed if it results in child nodes

having fewer observations than a predefined limit. This is determined by the

minInstancesPerNode parameter in PySpark.

• Minimum Impurity Decrease: Splits are only executed if they lead to a significant

decrease in impurity, compared to the parent node’s impurity. This is quantified by

the minInfoGain parameter in PySpark, whereby a node will be split if this split

induces an impurity decrease greater than or equal to this value.

• Purity of Nodes: The process is naturally terminated once all observations in a

node have either the same target value, indicating a pure node, or identical feature

values.

A decision tree’s expansion ceases when at least one of these criteria is satisfied, thus

preventing the model from overfitting and ensuring better generalization. The number of

trees in a forest is defined by the numTrees parameter.

Split candidates of Continuous features In scenarios involving small datasets, the process

of identifying split candidates for each continuous feature typically involves using the

feature’s unique values. This approach is straightforward: the feature values are sorted,

allowing the algorithm to employ these sorted, unique values as split candidates. This

sorting facilitates faster tree calculations.

However, for large datasets distributed across multiple machines, sorting feature

values becomes computationally expensive and less feasible. To address this, the pySpark

implementation adopts a different strategy. It approximates the set of split candidates

by performing a quantile calculation on a sampled subset of the data. This approach

effectively generates ordered splits, which are then grouped into “bins”. The granularity

of these bins can be controlled using the maxBins parameter, allowing to specify the

maximum number of bins to be created. This method provides a balance between

computational efficiency and the precision of the split candidates in large, distributed

datasets.

Addressing Overfitting in Random Forest Models It is important to highlight the two

primary sources of randomness in the construction of a Random Forest, both aimed at

decreasing the variance of the forest estimator. Firstly, each tree in the ensemble is built

from a sample drawn with replacement (i.e., a bootstrap sample) from the training set.

4.4. PREDICTING FUTURE ACCESSES 103

This process is controlled by parameters subsamplingRate and a boolean bootstrap,

which can be adjusted as needed. The randomness injected into forests results in decision

trees with decoupled prediction errors. By averaging these predictions, some errors can

effectively cancel out, enhancing the overall accuracy of the model.

Furthermore, as previously mentioned, when splitting each node during the construc-

tion of a tree, the best split is determined from a random subset of all input features,

controlled by the featureSubsetStrategy parameter. This random selection of features

contributes further to reducing the variance of the model.

During the studies, it has been observed that the Random Forest model with default

configuration exhibited marginally lower accuracy compared to a single Decision Tree

(Table 4.3). This discrepancy is attributed to the default setting of the RF model, where

the number of features considered for each split is the square root of the total number of

features. However, upon modifying this parameter to featureSubsetStrategy = all ,

which considers all features for each split, the performance of the RF model significantly

improved, surpassing that of the single DT. This adjustment highlights the impact of the

feature selection strategy on the efficacy of the RF model.

It is also worth noting that Random Forest’s inherent randomness in feature selection

across trees offers a form of built-in cross-validation, reducing the necessity for external

cross-validation methods.

Fine-Tuning Hyperparameters of Random Forest Models

The optimisation of hyper-parameters in Random Forest models was also examined.

Here, some of the key findings are presented.

The primary parameter for adjustment in Random Forests is the number of trees in

the forest. While a larger number generally improves model performance, it also increases

computational time. Importantly, the improvement in results plateaus beyond a certain

number of trees. As expected, in scenarios where numTrees, the Random Forest model

essentially replicates the results of a Decision Tree.

Another influential feature is the size of the random feature subsets for node split-

ting. Lower numbers of considered features can reduce variance but increase bias.

Importantly, the performance of a model can be adversely affected by the inclusion of

irrelevant features, particularly when these features are randomly selected for splits (when

featureSubsetStrategy differs from “all”).

Fully grown trees, with unlimited tree depth and combined with fully split nodes

(maxDepth=None combined with minInstancesPerNode=1 can lead to good results, al-

though they may not be optimal and can result in high memory usage. These values

4.4. PREDICTING FUTURE ACCESSES 104

should be cross-validated for best performance.

The study found that using the full dataset can lead to repetitive trees, diminish-

ing diversity and performance. However, too small a sample size can increase errors.

The bootstrap parameter, a method for sampling data points, significantly affects

performance.

Eventually, the most effective combination of parameters identified for this test-

ing task was: Eventually, the most effective combination of parameters identified for

this testing task was as follows: featureSubsetStrategy = “all”, subsamplingRate

= 0.01, maxBins = 256, maxDepth = 15, numTrees = 20 (default), and bootstrap =

True (default). This configuration yielded a RMSE on test data of 2.88 (for comparison,

refer to Table 4.3), and a RMSE on training data of 2.88.

4.4.4 Reformulating the Problem: Watermarks Training

After encountering a performance plateau in fine-tuning the regression model, it seemed

advisable to transition to a different predictive approach. Instead of predicting the reuse

distance between consecutive accesses, a threshold was established (a fixed moment in

time) and predicted the time from this threshold to the next access, using previous

access data and other available parameters. As detailed in this subsection, this redefined

prediction task yielded significantly improved results. Furthermore, it facilitated more

realistic integration into an operational cache system. Rather than predicting for each

file upon every access, predictions were only necessary for all files in the cache when the

high watermark was reached (refer to Subsection 4.5.2 for additional details).

To develop this new approach, it was necessary to construct an entirely different

training dataset. The dataset was partitioned into features and target sets based on

a time threshold. This divided the 3-month trace into approximately 75 and 15 days,

corresponding to 79.33% and 20.67% of all accesses, respectively.

Reformulating the task in this way allowed to greatly enhance the list of features used

for the training. In total, 18 features have been tailored, including file and dataset sizes,

frequencies, recency of file accesses, access durations, and dataset-related characteristics.

The full list:

- file size (physical storage size);

- recency3 of the most recent file access;

- recency of the second-to-most-recent file access;

- recency of the file creation;

3Time interval between NOW and the corresponding access.

4.4. PREDICTING FUTURE ACCESSES 105

- recency of the first file access;

- number of file accesses within the last day;

- number of file accesses within the last week;

- number of file accesses within the last month;

- total number of file accesses since file creation;

- duration4 of the most recent access;

- time difference between file creation and most recent access;

- time difference between file creation and first access;

- time difference between first and most recent file accesses;

- difference between the average access duration and the duration of the most recent

access;

- difference between the maximum access duration and the duration of the most

recent access;

- dataset size (physical storage size);

- dataset size (number of files); and

- recency of the most recent dataset access.

As a start, the prediction has been run with all the features possible (including the

ones that are not available for the real trace, and the dataset-related ones). This approach

was adopted to assess the potential for obtaining meaningful results and to determine

whether the inclusion of non-existent features would be justified.

Working with this dataset, two prediction tasks have been formulated:

• Regression Task: Predict the reuse distance of the file from the time stamp to the

closest access. (As in the previous subsection, the log of the distance is predicted

for the same reasons).

• Classification Task: Calculate the probability of whether a file will be accessed in

the next 15 days (binary classification task).

The same RF model architecture and feature set have been used for both classification

and regression tasks, although different prediction goals implied slightly different filtering

steps. The filtering was mainly due to the use of features not present for all files.

4time interval between file opening and closing of the corresponding access.

4.4. PREDICTING FUTURE ACCESSES 106

For the regression task, the filtering process consisted of choosing files that have at

least 2 accesses, and files with accessible creation dates. Additionally, each file needed to

have at least 1 access within the target dataset. Starting with over 10 million files, this

filtering process resulted in 342,878 files (only 2.89% of the original number) containing

all the necessary features for training the ML model (refer to Table 4.4 for task type

“Both” and “Regression”).

Filtering Stage Task Type Number of Files Percentage of Files

Before the threshold Both 10,556,833 88.98%
With 2+ accesses Both 4,719,609 39.78%
With creation time Both 2,378,787 20.05%
With target access Regression 342,878 2.89%
After target balancing Classification 686,942 5.79%

Table 4.4: Filtering reduction rates of the training dataset for regression and classification
tasks, which aim to predict file access within the next 15 days using Random Forest
model. This table illustrates the sequential reduction of the dataset from over 10 million
files to subsets suitable for specific ML tasks. The filtering criteria, based on target
and feature requirements, include having more than two accesses and a known creation
time. For regression, at least one relevant access within the dataset reduced the count
to 342,878 files (2.89% of the original). For classification, after balancing the classes
“Accessed” and “Not Accessed,” 686,942 files (5.79% of the original) remained.

For the classification, instead of excluding the files that were not used in the next 15

days, they have been used to train the model, but the balancing of the prediction classes

(refer to Subsection 4.4.3) needs to be performed. The final dataset comprised 686,942

files, accounting only for 5.79% of the original number (See also task types “Both” and

“Classification” in Table 4.4).

Note. After the balancing of the target for the classification task, the RMSE looks

much worse, however, the“AreaUnder”results have improved, compared to the unbalanced

dataset. This was expected. When the training (and test) datasets are unbalanced, the

model is biased towards more frequent results, which improves the accuracy, the RMSE,

but it actually learns wrong patterns. so the area increases. Balancing actually improved

the model even though the accuracy dropped.

Evaluation metrics The RMSE has been employed as the evaluation metric for re-

gression, and RMSE, Area Under the ROC (Receiver Operating Characteristic) curve

(AreaUnderROC), and Area Under the PR (Precision-Recall) curve (AreaUnderPR)

for classification. The use of RMSE as a regression-specific metric was justified by the

caching model’s utilisation of the exact predicted probability. Conversely, AreaUnderROC

4.4. PREDICTING FUTURE ACCESSES 107

and AreaUnderPR are standard classification-specific metrics.

The ROC curve itself is a plot of the True Positive Rate (TPR or Sensitivity) against

the False Positive Rate (FPR or 1 − Specificity) at various threshold settings for a

classification model. AreaUnderROC quantifies the trade-off between the TPR and

FPR. The PR curve, on the other hand, plots precision (the proportion of true positive

predictions among all positive predictions) against recall (the proportion of true positives

among all actual positives), focusing on the performance of a classifier on the positive

class, which is particularly useful in imbalanced datasets.

The Units

Although the prediction involves the logarithm (log) of a time value that is measured in

seconds, the result of the RMSE will be unitless. This is because the logarithm itself

does not have units; it is a pure number that represents the logarithmic relationship

between the original time value and the chosen base.

The AreaUnderROC and AreaUnderPR are also unitless metrics. They measure the

performance of a binary classification model, and the value ranges from 0 to 1, where 0

indicates poor performance (the model makes all predictions incorrectly), and 1 indicates

perfect performance (the model makes all predictions correctly).

4.4.5 Results of the Prediction Models

Through model tweaking and hyperparameter tuning, some encouraging results were

achieved, summarised in Table 4.5 and Table 4.6 (for both, column “M1”).

The fact that the error on training and testing is similar is what one would expect,

this means that there is no overfitting. Additionally, it is observed that Random Forest

significantly outperforms Decision Trees, with performance metrics almost approaching

the ideal value of 1.

One can note that these results look significantly better than the previous formulation

of the problem (refer to Table 4.3). These compelling results validate the effectiveness of

the ML approach and open the way for enhancing cache eviction policies.

To get a deeper look into the model’s prediction capacities, several key metrics were

plotted. In regression analysis, the focus was on examining whether the distribution of

the target variable changes (as seen in the actual distributions in Figures 4.6a and 4.7a

versus the predicted ones in Figures 4.6b and 4.7b). The observation that the main

patterns (peaks and troughs) are retained confirms the quality of the prediction.

Figure 4.8 indicates that the model tends to be more accurate the bigger the target

label is.

4.4. PREDICTING FUTURE ACCESSES 108

M1 M2 M3

Regression
RMSE on the training data (70%) 0.291 0.387 0.432
RMSE on the test data (30%) 0.346 0.431 0.460

Classification
RMSE on the training data (70%) 0.108 0.128 0.196
RMSE on the test data (30%) 0.119 0.142 0.196
AreaUnderROC on the training data 0.998 0.996 0.988
AreaUnderROC on the test data 0.998 0.994 0.988
AreaUnderPR on the training data 0.998 0.995 0.987
AreaUnderPR on the test data 0.997 0.993 0.987

Table 4.5: ML model performance comparison (Random Forest). M1 - The initial full
model with 18 features. M2 - the model excludes dataset-related features, so 15 features
are left. M3 - the reduced model with only really existing in the trace features (6 features).

M1 M2 M3

Regression
RMSE on the training data (70%) 0.323 0.452 0.500
RMSE on the test data (30%) 0.398 0.509 0.523

Classification
RMSE on the training data (70%) 0.120 0.142 0.210
RMSE on the test data (30%) 0.136 0.160 0.216
AreaUnderROC on the training data 0.974 0.952 0.938
AreaUnderROC on the test data 0.972 0.949 0.937
AreaUnderPR on the training data 0.975 0.954 0.921
AreaUnderPR on the test data 0.974 0.952 0.920

Table 4.6: ML model performance comparison (Decision Tree). M1 - The initial full model
with 18 features. M2 - the model excludes dataset-related features, so 15 features are
left. M3 - the reduced model with only really existing in the trace features (6 features).

4.4. PREDICTING FUTURE ACCESSES 109

(a) Actual. (b) Predicted.

Figure 4.6: Regression analysis: comparison of Actual vs. Predicted reuse distance
distributions. This figure presents the normalised frequency distributions for the actual

and predicted reuse distances of files over a period of 16 days. Panel (a) shows the
actual observed reuse distances, and Panel (b) depicts the predicted reuse distances
derived from the regression model. Each distribution is plotted on a linear scale to

provide a clear view of the frequency and variance in file reuse patterns, illustrating the
model’s ability to mimic real-world usage behaviour.

(a) Actual. (b) Predicted.

Figure 4.7: Regression analysis: Actual vs. Predicted distribution of reuse distances.
This figure contrasts the actual and predicted distributions of reuse distances for files,

ranging from one second to one month. Panel (a) displays the actual observed
frequencies of reuse distances, while Panel (b) shows the predicted frequencies based on
the regression model. Both distributions are normalised and plotted on a logarithmic

scale to highlight differences across a broad range of time intervals.

4.4. PREDICTING FUTURE ACCESSES 110

Figure 4.8: Regression model error distribution by reuse distance. This figure details the
average error magnitude across different predicted reuse distances, from one second to
one month. The histogram shows that errors tend to decrease as the reuse distance
increases, indicating varying levels of prediction accuracy across short and long reuse

intervals.

For classification, the distribution of the target classes in the training dataset is

levelled out (due to the balancing). The distribution in the prediction is shown in

Figure 4.9.

Figure 4.10 indicates that the model tends to have false positives rather than false

negatives. It is possible to take a raw prediction (the probability that an entry belongs

to this class) and set a custom threshold to determine the final prediction. In the case,

the standard threshold parameter (0.5) gave a sufficiently good result. By tuning this

parameter of the classifier, one can achieve a better ratio between false positives and

false negatives.

4.4.6 Feature Importance

To gain insights into the Random Forest models’ workings, the feature importance was

examined, a valuable attribute that RF provides [80]. There are several methods to

measure it, including permutation feature importance and accuracy-based importance,

which relies on out-of-bag samples from each decision tree in a forest. In this study,

Gini-based importance was selected for its efficiency. One advantage of the Gini-based

importance is that the Gini calculations are already performed during training, so minimal

extra computation is required. The feature importance values are available as fields of

the trained regression and classification models.

4.4. PREDICTING FUTURE ACCESSES 111

Figure 4.9: Classification model: distribution of predicted classes. This figure presents
the normalised frequency of predictions for the target variable “Is reused” in a
classification model, showing a comparable likelihood of files being predicted as

“Accessed” and “Not Accessed,” correspondingly. The graph highlights the balanced
distribution of predicted outcomes in the model, which corresponds to the balanced

distribution in the training dataset.

Gini-Based Importance

When a tree is built, the decision about which variable to use to split at each node uses

a calculation of the Gini impurity. For each variable, the sum of the Gini decrease across

every tree of the forest is accumulated every time that variable is chosen to split a node.

The sum is divided by the number of trees in the forest to give an average. The scale is

irrelevant: only the relative values matter.

Figure 4.11 demonstrates the results of gini-based feature importance for the Random

Forest regression model. Several interesting observations could be made. The importance

of dataset-specific metrics is apparent. They tend to contribute the most to the model’s

decisions. The frequencies of the previous access do not seem to be too relevant.

Additionally, the duration of the last access in comparison to the duration of the previous

access to the same file tends to contribute the least.

It is important to note, that each time the model is retrained, the actual values of

the feature importance slightly change, but their relative position and contribution stay

more or less the same.

Figure 4.12 demonstrates the importance of the same features, but in the binary

classification case of Random Forest. Firstly, it is clear that the distribution is very

different. Very apparently, the recency of the last access contributes hugely to the result,

it is at least 5 times more important than any other feature.

Overall, dataset-related features hold significant importance in both models. This

4.4. PREDICTING FUTURE ACCESSES 112

Figure 4.10: Classification model: error magnitude depending on the target class. This
plot displays the average error magnitude for each class (“Yes” corresponding to

“Accessed” and “No” - “Not Accessed”) within the classification model.
Classification model error depending on the target class

suggests that the dataset a file belongs to substantially influences its likelihood of being

reused. Additionally, recency-based features, such as the last file and dataset access

times, play a critical role in models. They indicate a file’s relevance and potential future

reuse.

Feature Importance by Exclusion

Another way to understand the importance of a specific feature is by completely excluding

it from the training set. This is significantly more computationally expensive, but gives a

clearer indication on whether adding this feature improves the overall prediction accuracy

or not.

Six most influential features for the regression prediction task have been taken into

consideration:

- recency of the most recent file access;

- time difference between file creation and most recent access;

- number of file accesses within the last month;

- file size (physical storage size);

- recency of the file creation; and

- recency of the first file access.

Combined, these features contribute almost 70% to the model prediction decision.

4.4. PREDICTING FUTURE ACCESSES 113

Figure 4.11: Feature importance for the RF regression model. Features are ranked by
their contribution to the final predictions.

The results are presented in Table 4.7 (“M4”) in comparison to the initial full model

(“M1”). As expected, for the RF model the result got worse, but remained very acceptable.

This indicates that if the number of features needs to be reduced, the between accuracy

and lightweight of the model will be rather good.

M1 M4

Random Forest
RMSE on the training data (70%) 0.291 0.387
RMSE on the test data (30%) 0.346 0.431

Table 4.7: Regression model performance comparison. M1 - The initial full model with
18 features. M4 - the model with the most important features only (6 features)

A similar analysis has been performed for dataset-related features, for regression and

classification, as well as Random Forest and Decision Tree models. The three dataset-

related features (dataset size, number of files in the dataset, and the time difference with

the last access to this dataset) have been excluded and the model has been retrained

and the the model performance has been reevaluated, column “M2” in Tables 4.5 and 4.6

show the results. Although this exclusion did not fundamentally undermine the models’

performance, some deterioration of the results can be observed.

4.5. INTEGRATION INTO THE CACHING POLICIES 114

Figure 4.12: Feature importance for the RF classification model. Features are ranked by
their contribution to the final predictions.

4.5 Integration into the Caching Policies

4.5.1 Condensing Model

Some of the features that have been used in the previous section will realistically not

be available. Although in theory, it is possible to keep this kind of information in the

metadata and transferring a bit of metadata with the file when sent to the cache is not

too expensive, for example, Rucio maintains more information about the files than the

storage systems. In the real case, the situation would be comparable, the first encounter

of a cache with a given file would provide the cache with the very first information about

the characteristics of this file.

Therefore, to extend the applicability of the developed ML models to the entire access

trace currently available, they were retrained to operate with a reduced set of features:

- file size (physical storage size);

- recency of the most recent file access;

- duration of the most recent access;

- dataset size (physical storage size);

4.5. INTEGRATION INTO THE CACHING POLICIES 115

- dataset size (number of files); and

- recency of the most recent dataset access.

Despite the reduced feature set, the adapted models still demonstrated robust perfor-

mance in both regression and classification tasks as can be seen in Tables 4.5 and 4.6,

“M3”. The minimal decrease in performance indicates the resilience and flexibility of the

ML models, allowing them to effectively handle the limited number of available features.

4.5.2 Watermarks

The process of integrating predictive capabilities into the cache eviction algorithm

involved a series of strategic adjustments to the existing implementation. Instead of

carrying out cache deletions on a per-file basis, a more practical approach known as

the “Watermarks” method has been adopted. This approach allows the cache’s size to

fluctuate within predetermined thresholds: a high watermark and a low watermark,

which can be configured to suit specific needs. In this particular case, the low watermark

is set at 80% of the cache’s capacity and the high watermark at 95%.

The purpose of the high watermark is to ensure that there’s still sufficient room within

the cache to accommodate incoming files while the evaluation process, which determines

which files to evict, is in progress. Without this buffer, pending requests would disrupt

the system. Meanwhile, the low watermark serves as the limit for the cache purging

process. The choice of high and low watermark levels is influenced by the rates at which

incoming requests arrive (to maintain adequate space during evaluations) and the time it

takes to complete the evaluation.

It’s worth noting that setting these watermarks too conservatively can limit the

practical cache size, so a careful balance is required and in a production systems needs to

be monitored carefully.

To incorporate predictive capabilities into the cache eviction algorithm, when the

high watermark is reached, it triggers the predictive process for all files currently residing

in the cache. Subsequently, the files are sorted based on their predicted reuse distance

or probability of being reused, depending on whether it’s a regression or classification

scenario. In the case of regression, the actual predicted value is employed for sorting,

while in the classification case, the probability of a file being reused within the next two

weeks is used. In both cases, the Random Forest-based models are used, as they showed

better results.

This approach, although slightly less performing than the original file-by-file method,

offers significant advantages. It reduces the frequency of cache cleanup (refer to Table 4.8),

4.5. INTEGRATION INTO THE CACHING POLICIES 116

leading to decreased CPU load. In fact, as demonstrated in Figure 4.13, this realistic

implementation shows minimal performance reduction compared to the original approach,

underscoring the effectiveness of the watermarks-based cache management in maintaining

cache efficiency while reducing CPU overhead.

Furthermore, the watermarks model conveniently facilitates the integration of pre-

dictive models. The prediction process for machine learning models is only triggered

occasionally, specifically when the high watermark is reached. This stands in contrast to

the constant recalculation of file priorities in the eviction queue by the cache, resulting in

an overall enhancement of the caching system’s performance.

Figure 4.13: Visual comparison of the basic LRU and Belady cache eviction policies
with their watermark-based counterparts (Wmk).

Cache Size Number of Cache Cleanups Simulation Time (min) Average RMSE

100% 0 13 -
72% 4 16 1.61
36% 18 20 1.79
18% 53 25 1.94
9% 136 36 1.99
4% 319 57 2.12
2% 724 101 2.39

Table 4.8: Impact of the cache size on the number of cache cleanups, simulation time and
the average RMSE of the Random Forest classification task. As cache size decreases, the
number of required cache cleanups increases, extending the simulation time and affecting
prediction accuracy (RMSE).

Interestingly, Belady and Belady-Watermarks behave almost perfectly with large

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 117

cache sizes (seen on Figure 4.13). This is mainly due to the fact that when the cache size

is big, much fewer files need to be removed. The first candidates to be evicted are the

files that will not be used in this trace again, and whose eviction does not influence the

final hit ratios.

4.5.3 Experimental Results and Discussion

The results depicted in Figure 4.14 reveal that the classification model performs somewhat

better than the regression model, but still falls short of outperforming LRU. One possible

explanation for the classification model’s superior performance could be attributed to the

fact that with small cache sizes (2-5%), the distinction between files likely to be reused

within several days versus several weeks or more becomes more crucial. In this context,

the classification approach is better equipped to handle such distinctions.

Further analysis has been conducted to understand why predictors with favourable

scores did not lead to significant improvements in the cache eviction policy. It became

evident that the performance of the trained models on the actual full trace was considerably

worse than on the test data. Specifically, the average RMSE of the regression model for

each cache size was notably higher than the RMSE of 0.46 obtained on the test data (as

demonstrated in Figure 4.15 and Table 4.8).

Several factors contribute to this discrepancy. Firstly, the model’s training exclusively

relied on files created within the restricted time frame. Moreover, a significant portion of

files within this short time window were used only once (approximately 60%), a scenario

that a regression model alone cannot adequately capture. Additionally, the training data

underwent specific feature/label cuts, diminishing the diversity of training entries, and

the prediction was constrained to a 15-day timeframe.

These findings reveal the limitations of the current implementation, while highlighting

several directions for further enhancement of the ML-based solutions, such as expanding

the training dataset and optimising model hyperparameters. This would allow the models

to learn from more diverse and extensive data, which overall can lead to better predictive

capabilities. Additionally, by exploring different ML model combinations, potentially

more effective ways to leverage the predictive power of ML for cache management could

be found.

4.6 Implementation Details and Computational Complexity

For understanding the the computational complexity it is instructive to look at running

the simulation for one cache size, which is tightly related to the implementation details

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 118

(a) FMR.

(b) BMR.

Figure 4.14: Visual comparison of LRU and Belady-Watermarks models, and models
integrating regression and classification predictions, along with the theoretical optimum

lower bound.

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 119

Figure 4.15: Performance evaluation plot of an ML Regressor with watermark thresholds
(80/95), with annotated RMSE values indicating the prediction error of the ML

Regressor for various cache sizes.

of each method.

4.6.1 LRU and LRU Watermarks

The chosen approach involves implementing the queue as a double-linked list (referred to

as dq), which allows for constant time (O(1)) insertions and removals, including in the

middle of the queue.

An auxiliary map (ma) is used to map file IDs to their respective positions in the

queue. This setup guarantees that all operations in the map occur in average constant

time (O(1)).

The core operations of the system are as follows:

Purging is initiated whenever a new element is inserted into the cache. This process

involves removing elements from the cache, starting from the head. Each individual

removal and the corresponding update in the map can be performed in constant time

O(1). Let l denote the total number of cache purging operations that occur, and let ki

represent the number of elements that need to be purged in the ith purging operation.

Here, i ranges from 1 to l, inclusive. N is the trace length.

The total execution time for processing each file access in the trace is given by:

T (N) = O(N) +O(k1 + k2 + . . .+ kl) (4.4)

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 120

Algorithm 4: Cache Management Process

1 if element is present in cache then
2 Move element to the head of dq (O(1)) ;
3 Update ma (O(1)) ;

4 else
5 if element is new then
6 Insert element at the head of dq (O(1)) ;
7 Update ma (O(1)) ;
8 Trigger purging if necessary ;

9 end

10 end

However, considering that the sum of all k values (k1, k2, . . . , kl) is less than or equal

to N , the total execution time simplifies to:

T (N) = O(N) +O(N) = O(N) (4.5)

When switching to the LRU Watermarks implementation, the individual values of ki

may change, but the following remains true:

l∑
i=1

ki ≤ N (4.6)

Consequently, the overall time complexity remains the same, maintaining the efficiency

of this approach.

4.6.2 Machine Learning Approach

The time complexity of Random Forest and Decision Tree algorithms primarily depends

on two main phases: the training phase and the prediction (inference) phase. Although

training generally exhibits higher time complexity, in practical scenarios, the prediction

phase often becomes more dominant in terms of integrated costs. This is due to the

stability of access patterns over extended periods, such as several months, which leads to

a more frequent engagement with the prediction phase.

Decision Tree Time Complexity

Training Time Complexity The training time complexity of a decision tree is primarily

determined by the following factors:

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 121

• Number of Data Points (D): The more data points, the longer it takes to construct

the tree.

• Number of Features (F): The complexity grows as the number of features increases.

• Tree Depth (log(D)): The depth of the tree depends on various factors, including

stopping criteria and data complexity, as discussed in Subsection 4.4.3.

Therefore, the training time complexity can be expressed as:

Training Time Complexity = O(D · F · log(D))

Inference (Prediction) Time Complexity A decision tree’s prediction is a fast operation

because it only needs to traverse a tree from the root to a leaf node based on feature

values. The time complexity is:

Inference Time Complexity = O(log(D))

where D is the depth of the tree.

Random Forest Time Complexity

During the training phase of Random Forest, several factors influence the time complexity:

• Number of Trees (Ntree): The more trees in the forest, the longer the training

phase takes.

• Bootstrapping Size (Dsample): The first step of constructing a Random Forest is

typically the Bootstrapping (Random Sampling), where the datasets for training

each individual Decision Tree are obtained. The time complexity of bootstrapping

depends on the number of trees and the size of the bootstrapping dataset, and

equals to O(Ntree ·Dsample), as one is sampling Dsample data points Ntree times.

• Parallelization Factor (P): Random Forest can potentially parallelize the training

of individual decision trees. Depending on the implementation and available

hardware, this can reduce the training time, especially when constructing multiple

trees simultaneously. This parallelization factor represents how much parallelism

your Spark cluster can achieve. It can depend on the number of worker nodes, CPU

cores per node, and the ability to distribute the workload effectively.

4.6. IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY 122

Therefore, the overall training time complexity for the Random Forest approach can

be expressed as:

Training Time Complexity = O(P ·Ntree ·Dsample + P · F ·Dsample · log(Dsample)))

Here, log(Dsample) represents the average depth of each decision tree.

Prediction (Inference) Time Complexity

The prediction phase of Random Forest is very efficient, with a time complexity of:

Inference Time Complexity = O(P ·Ntree · log(Dsample))

Caching with ML Time Complexity

When the purging process is triggered, predictions (interference) needs to be made for

each file present in the cache. Assuming that there are wi files each time, where i ranges

from 1 to l, with l representing the number of cleanup cycles.

During each cleanup cycle, generating predictions incurs the following time complexity:

Tcleanup(i) = O(wi · P ·Ntree · log(Dsample))

This complexity arises from the utilisation of the Random Forest model underlying

the predictions.

Following prediction generation, the cache files need to be ordered, which takes

O(wi · log(wi)) time, and a portion of them, denoted as zi files, must be deleted, which

has a time complexity of O(zi). Since wi > zi, the result is obtained:

Tpurge(i) = O(wi · P ·Ntree · log(Dsample) + wi · log(wi))

To determine the overall time complexity for simulating a cache of a specific size, the

sum of the time complexities is calculated for each of the l cleanup cycles:

Ttotal =

l∑
i=1

Tpurge(i)

Simplifying this formula further becomes challenging due to the variability in the

remaining files across different cleanup cycles.

Chapter 5

Conclusions

In this work, the existing scientific workloads were studied, as they are processed at

the CERN Data Center, in the context of caching. This included analysis of the access

patterns of two three-month traces of ATLAS, one of the two largest LHC experiments.

The focus was on the user read accesses for the analysis data, as they correspond to the

most unpredictable part of the storage accesses 1. Furthermore, this research explores in

great detail the request rates, time locality, file popularity, and system load depending

on the file size, as well as intra-dataset access patterns.

The comprehensive analysis of the EOS disk storage system’s data access patterns

involved developing a full pipeline for processing EOS report logs. This process encom-

passed collection, parsing, quality improvement, and aggregation of log data. These

results illuminated the variations in data processing among experiments, showcasing the

differences in data popularity distributions. This analysis highlights the complexity and

diversity inherent in data management for large-scale scientific research.

Trace analysis motivated the selection of existing caching policies (LRU, 2-LRU) that

can take advantage of temporal locality characteristics and operate with heterogeneous

file sizes. They were compared to new cache policies specifically tailored for dataset-based

workloads (Dataset Evict LRU and Dataset LRU). The evaluation of cache performance

with respect to FMR and BMR led to the proposition of the PFOO-L.Bytes algorithm,

offering a tighter lower bound for the Byte Miss Ratio for any reactive caching policy.

The Dataset LRU is greatly dependent on prefetching and offers notable enhancements

in both FMR and BMR. However, concerns arose about the high number of delayed hits.

Simulations with varying network throughput values showed that Dataset LRU loses its

advantage over LRU when the throughput is insufficient to sustain higher data volumes.

1MC production, Reconstruction, AOD and DAOD generation are centrally organised activities, while
analysis is driven by a large number of small teams and individuals

123

5.1. FUTURE DIRECTIONS 124

The file popularity predictive model coupled with watermark-based implementation

showcases a promising approach for cache eviction. Leveraging the predictive power

of tree-based ML models and optimising the cache cleanup process demonstrates the

potential to enhance caching efficiency and reduce unnecessary cache evictions. The

feature importance distributions of the regression and classification models revealed

the significance of file recency and popularity, supporting the efficacy of recency-based

eviction policies.

5.1 Future Directions

The research period covered two three-month periods, which captured short-term access

patterns but did not represent yearly data access trends in the physics community.

Notably, changes in data access patterns occur during the LHC’s data-taking periods. In

future work, it could be beneficial to extend the analysis to these data as they become

available and to explore developing a model for evaluating the global cost of caching.

This study has shed light on the challenges of surpassing LRU and integrating ML

models effectively into cache eviction algorithms, highlighting promising future direc-

tions. To further improve ML-based cache eviction policies, several possible alternative

approaches have been identified. Expanding the training dataset could enhance the ML

models’ performance, allowing them to learn from more diverse data. Exploring different

combinations of ML models and optimising their hyperparameters remains an area of

opportunity.

Bibliography

[1] CERN: European Organization for Nuclear Research. https://home.cern/. Ac-

cessed: 2024-01-11.

[2] Large Hadron Collider - CERN. https://home.cern/science/accelerators/

large-hadron-collider. Accessed: 2024-01-11.

[3] ATLAS Collaboration, G Aad, E Abat, J Abdallah, AA Abdelalim, A Abdesselam,

O Abdinov, BA Abi, M Abolins, H Abramowicz, et al. The ATLAS experiment at

the CERN large hadron collider. Journal of Instrumentation, 3(08):S08003, 2008.

[4] CMS Collaboration, S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan,

W Adam, T Bauer, T Bergauer, H Bergauer, M Dragicevic, et al. The CMS

experiment at the CERN LHC. Journal of Instrumentation, 3(08):S08004, 2008.

[5] Kenneth Aamodt, A Abrahantes Quintana, R Achenbach, S Acounis, D Adamová,

C Adler, M Aggarwal, F Agnese, G Aglieri Rinella, Z Ahammed, et al. The ALICE

experiment at the CERN LHC. Journal of Instrumentation, 3(08):S08002, 2008.

[6] TL Collaboration, A Augusto Alves, LM Andrade Filho, AF Barbosa, I Bediaga,

G Cernicchiaro, G Guerrer, HP Lima, AA Machado, J Magnin, et al. The LHCb

detector at the LHC. Journal of instrumentation, 3(08):S08005–S08005, 2008.

[7] Worldwide LHC Computing Grid (WLCG) - CERN. https://wlcg.web.cern.ch/.

Accessed: 2024-01-11.

[8] ATLAS Collaboration. ATLAS Computing: Technical Design Report. ATLAS-

TDR-17; CERN-LHCC-2005-022, CERN, 2005.

[9] Ian Bird, F Carminati, R Mount, B Panzer-Steindel, J Harvey, Ian Fisk, B Kersevan,

P Clarke, M Girone, P Buncic, et al. Update of the Computing Models of the WLCG

and the LHC Experiments. CERN-LHCC-2014-014; LCG-TDR-002, CERN, 2014.

125

https://home.cern/
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://wlcg.web.cern.ch/

BIBLIOGRAPHY 126

[10] Sea Agostinelli, John Allison, K al Amako, John Apostolakis, H Araujo, Pedro

Arce, Makoto Asai, D Axen, Swagato Banerjee, GJNI Barrand, et al. GEANT4—a

simulation toolkit. Nuclear instruments and methods in physics research section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303,

2003.

[11] P Calafiura, M Marino, C Leggett, W Lavrijsen, and D Quarrie. The Athena control

framework in production, new developments and lessons learned. 2005.

[12] ROOT—An object oriented data analysis framework,.

[13] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a new computing

infrastructure. Elsevier, 2003.

[14] CERN. The CERN Data Centre. https://home.cern/science/computing/

data-centre, 2023. Accessed: 2023-12-16.

[15] CERN. LHCOPN. https://lhcopn.web.cern.ch/. Accessed: 2024-01-11.

[16] CERN. LHCONE. https://lhcone.web.cern.ch/. Accessed: 2024-01-11.

[17] Tadashi Maeno. PanDA: distributed production and distributed analysis system for

ATLAS. In Journal of Physics: Conference Series, volume 119, page 062036. IOP

Publishing, 2008.

[18] Daniele Spiga, Stefano Lacaprara, W Bacchi, Mattia Cinquilli, Giuseppe Codispoti,

Marco Corvo, A Dorigo, Alessandra Fanfani, Federica Fanzago, Fabio Farina, et al.

The CMS remote analysis builder (CRAB). In High Performance Computing–HiPC

2007: 14th International Conference, Goa, India, December 18-21, 2007. Proceedings

14, pages 580–586. Springer, 2007.

[19] CERN. Rucio - Scientific Data Management. https://lhcone.web.cern.ch/.

Accessed: 2024-01-11.

[20] AC Smith and A Tsaregorodtsev. DIRAC: reliable data management for LHCb. In

Journal of Physics: Conference Series, volume 119, page 062045. IOP Publishing,

2008.

[21] CERN. VOMS Home. https://italiangrid.github.io/voms/. Accessed: 2024-

01-11.

https://home.cern/science/computing/data-centre
https://home.cern/science/computing/data-centre
https://lhcopn.web.cern.ch/
https://lhcone.web.cern.ch/
https://lhcone.web.cern.ch/
https://italiangrid.github.io/voms/

BIBLIOGRAPHY 127

[22] Julia Andreeva, Alexey Anisenkov, Alessandro Di Girolamo, Alessandra Forti,

Stephen Jones, Balazs Konya, Andrew McNab, and Panos Paparrigopoulos. Evolu-

tion of the WLCG Information Infrastructure. In EPJ Web of Conferences, volume

245, page 03029. EDP Sciences, 2020.

[23] Gilles Mathieu, Andrew Richards, John Gordon, Cristina Del Cano Novales, Peter

Colclough, and Matthew Viljoen. GOCDB, a topology repository for a worldwide

grid infrastructure. In Journal of Physics: Conference Series, volume 219, page

062021. IOP Publishing, 2010.

[24] CERN. FTS - File Transfer Service. https://fts.web.cern.ch/fts/. Accessed:

2024-01-11.

[25] CERN. WLCG VObox Deployment Documentation. https://twiki.cern.ch/

twiki/bin/view/LCG/WLCGvoboxDeployment. Accessed: 2024-01-11.

[26] CERN. CernVM File System. https://cernvm.cern.ch/fs/. Accessed: 2024-01-

11.

[27] Jana Schaarschmidt, Johannes Elmsheuser, Lukas Alexander Heinrich, Nils Erik

Krumnack, James Catmore, Alaettin Serhan Mete, and Nurcan Ozturk. PHYSLITE-

A new reduced common data format for ATLAS. Technical report, ATL-COM-

SOFT-2023-105, 2023.

[28] A Joachim Peters, Elvin Alin Sindrilaru, and Geoffrey Adde. EOS as the present

and future solution for data storage at CERN. In Journal of Physics: Conference

Series, volume 664, page 042042. IOP Publishing, 2015.

[29] Paolo Calafiura, James Catmore, Davide Costanzo, and Alessandro Di Girolamo.

ATLAS HL-LHC computing conceptual design report. Technical report, 2020.

[30] ATLAS collaboration and others. ATLAS software and computing HL-LHC roadmap.

Technical report, 2022.

[31] Martin Barisits, Mikhail Borodin, Alessandro Di Girolamo, Johannes Elmsheuser,

Dmitry Golubkov, Alexei Klimentov, Mario Lassnig, Tadashi Maeno, Rodney Walker,

and Xin Zhao. ATLAS Data Carousel. In EPJ Web of Conferences, volume 245,

page 04035. EDP Sciences, 2020.

[32] Mikhail Borodin, Alessandro Di Girolamo, Edward Karavakis, Alexei Klimentov,

Tatiana Korchuganova, Mario Lassnig, Tadashi Maeno, Siarhei Padolski, and Xin

https://fts.web.cern.ch/fts/
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGvoboxDeployment
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGvoboxDeployment
https://cernvm.cern.ch/fs/

BIBLIOGRAPHY 128

Zhao. The ATLAS Data Carousel Project Status. In EPJ Web of Conferences,

volume 251, page 02006. EDP Sciences, 2021.

[33] Ian Bird, Simone Campana, Maria Girone, Xavier Espinal, Gavin McCance, and

Jaroslava Schovancová. Architecture and prototype of a WLCG data lake for

HL-LHC. In EPJ Web of Conferences, volume 214, page 04024. EDP Sciences, 2019.

[34] I Kadochnikov, I Bird, G McCance, J Schovancova, M Girone, S Campana, and

XE Currul. WLCG data lake prototype for HL-LHC. Advisory committee, 127

(2018).

[35] Maria Grigorieva, Eugeny Tretyakov, Alexei Klimentov, Dmitry Golubkov, Tatiana

Korchuganova, Aleksandr Alekseev, Alexey Artamonov, and Timofei Galkin. High

Energy Physics Data Popularity: ATLAS Datasets Popularity Case Study. In 2020

Ivannikov Memorial Workshop (IVMEM), pages 22–28. IEEE, 2020.

[36] Thomas Beermann, Olga Chuchuk, Alessandro Di Girolamo, Maria Grigorieva, Alexei

Klimentov, Mario Lassnig, Markus Schulz, Andrea Sciaba, and Eugeny Tretyakov.

Methods of Data Popularity Evaluation in the ATLAS Experiment at the LHC. In

EPJ Web of Conferences, volume 251, page 02013. EDP Sciences, 2021.

[37] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation

techniques for storage hierarchies. IBM Systems journal, 9(2):78–117, 1970.

[38] Michele Garetto, Emilio Leonardi, and Valentina Martina. A unified approach to

the performance analysis of caching systems. ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (TOMPECS), 1(3):1–28, 2016.

[39] Alireza Montazeri, Nicholas R Beaton, and Dwight Makaroff. LRU-2 vs 2-LRU:

An Analytical Study. In 2018 IEEE 43rd Conference on Local Computer Networks

(LCN), pages 571–579. IEEE, 2018.

[40] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun

Cho, and Chong Sang Kim. LRFU: A spectrum of policies that subsumes the least

recently used and least frequently used policies. IEEE transactions on Computers,

50(12):1352–1361, 2001.

[41] Nimrod Megiddo and Dharmendra S Modha. {ARC}: A {Self-Tuning}, Low

Overhead Replacement Cache. In 2nd USENIX Conference on File and Storage

Technologies (FAST 03), 2003.

BIBLIOGRAPHY 129

[42] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S Berger. Caching with delayed

hits. pages 495–513, 2020.

[43] Huichen Dai, Bin Liu, Haowei Yuan, Patrick Crowley, and Jianyuan Lu. Analysis of

tandem PIT and CS with non-zero download delay. In IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, pages 1–9. IEEE, 2017.

[44] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. Adaptsize: Or-

chestrating the hot object memory cache in a content delivery network. In 14th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
17), pages 483–498, 2017.

[45] Ludmila Cherkasova. Improving WWW proxies performance with greedy-dual-size-

frequency caching policy. Hewlett-Packard Laboratories, 1998.

[46] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware replacement policy for key-

value stores. In Proceedings of the Tenth European Conference on Computer Systems,

pages 1–15, 2015.

[47] Giovanni Neglia, Damiano Carra, and Pietro Michiardi. Cache policies for linear

utility maximization. IEEE/ACM Transactions on Networking, 26(1):302–313, 2018.

[48] Giuseppe Rossini, Dario Rossi, Michele Garetto, and Emilio Leonardi. Multi-

terabyte and multi-gbps information centric routers. In IEEE INFOCOM 2014-IEEE

Conference on Computer Communications, pages 181–189. IEEE, 2014.

[49] Ernst W Biersack, Alain Jean-Marie, and Philippe Nain. Open-loop video distribution

with support of VCR functionality. Performance Evaluation, 49(1-4):411–427, 2002.

[50] Lei Lei, Lei You, Gaoyang Dai, Thang Xuan Vu, Di Yuan, and Symeon Chatzinotas.

A deep learning approach for optimizing content delivering in cache-enabled hetnet.

In 2017 international symposium on wireless communication systems (ISWCS),

pages 449–453. IEEE, 2017.

[51] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li

Zhang. Deepcache: A deep learning based framework for content caching. In

Proceedings of the 2018 Workshop on Network Meets AI & ML, pages 48–53, 2018.

[52] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine

learned advice. Journal of the ACM (JACM), 68(4):1–25, 2021.

BIBLIOGRAPHY 130

[53] Herodotos Herodotou. AutoCache: Employing machine learning to automate caching

in distributed file systems. In 2019 IEEE 35th international conference on data

engineering workshops (ICDEW), pages 133–139. IEEE, 2019.

[54] Alireza Sadeghi, Gang Wang, and Georgios B Giannakis. Deep reinforcement learning

for adaptive caching in hierarchical content delivery networks. IEEE Transactions

on Cognitive Communications and Networking, 5(4):1024–1033, 2019.

[55] Akanksha Jain and Calvin Lin. Back to the future: Leveraging Belady’s algorithm

for improved cache replacement. ACM SIGARCH Computer Architecture News,

44(3):78–89, 2016.

[56] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning

to the cache replacement problem. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 413–425, 2019.

[57] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan

Ahn. An imitation learning approach for cache replacement. In International

Conference on Machine Learning, pages 6237–6247. PMLR, 2020.

[58] Derek Weitzel, Brian Bockelman, Duncan A Brown, Peter Couvares, Frank Würth-

wein, and Edgar Fajardo Hernandez. Data Access for LIGO on the OSG. In

Proceedings of the Practice and Experience in Advanced Research Computing 2017

on Sustainability, Success and Impact, pages 1–6, 2017.

[59] Teng Li, Robert Currie, and Andrew Washbrook. A data caching model for Tier 2

WLCG computing centres using XCache. In EPJ Web of Conferences, volume 214,

page 04047. EDP Sciences, 2019.

[60] Aleksandr Alekseev, Stephane Jezequel, Andrey Kiryanov, Alexei Klimentov, Ta-

tiana Korchuganova, Valery Mitsyn, Danila Oleynik, Serge Smirnov, and Andrey

Zarochentsev. Evaluation of the Impact of Various Local Data Caching Configura-

tions on Tier2/Tier3 WLCG Sites. In CEUR Workshop Proceedings, volume 2679,

pages 1–10. RWTH Aahen University, 2020.

[61] LAT Bauerdick, K Bloom, B Bockelman, DC Bradley, S Dasu, JM Dost, I Sfiligoi,

A Tadel, M Tadel, F Wuerthwein, et al. XRootd, disk-based, caching proxy for

optimization of data access, data placement and data replication. Journal of Physics:

Conference Series, 513(4):042044, 2014.

BIBLIOGRAPHY 131

[62] Gaëtan Heidsieck, Daniel De Oliveira, Esther Pacitti, Christophe Pradal, Francois

Tardieu, and Patrick Valduriez. Efficient execution of scientific workflows in the cloud

through adaptive caching. In Transactions on Large-Scale Data-and Knowledge-

Centered Systems XLIV, pages 41–66. Springer, 2020.

[63] Olga Chuchuk and Dirk Duellmann. Access Pattern Analysis in the EOS Storage

System at CERN. In CEUR Workshop Proceedings, pages 22–31, 2020.

[64] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer.

IBM Systems journal, 5(2):78–101, 1966.

[65] Marek Chrobak, Gerhard J Woeginger, Kazuhisa Makino, and Haifeng Xu. Caching

is hard—even in the fault model. Algorithmica, 63(4):781–794, 2012.

[66] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt Lloyd, Sanjeev Kumar,

and Harry C Li. An analysis of Facebook photo caching. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 167–181,

2013.

[67] Daniel S Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical bounds on

optimal caching with variable object sizes. Proceedings of the ACM on Measurement

and Analysis of Computing Systems, 2(2):1–38, 2018.

[68] Nitish K Panigrahy, Philippe Nain, Giovanni Neglia, and Don Towsley. A New

Upper Bound on Cache Hit Probability for Non-anticipative Caching Policies. ACM

SIGMETRICS Performance Evaluation Review, 48(3):138–143, 2021.

[69] Alberto Aimar, Asier Aguado Corman, Pedro Andrade, Javier Delgado Fernandez,

Borja Garrido Bear, Edward Karavakis, Dominik Marek Kulikowski, and Luca

Magnoni. MONIT: monitoring the CERN data centres and the WLCG infrastructure.

In EPJ Web of Conferences, volume 214, page 08031. EDP Sciences, 2019.

[70] Martin Barisits, Thomas Beermann, Frank Berghaus, Brian Bockelman, Joaquin

Bogado, David Cameron, Dimitrios Christidis, Diego Ciangottini, Gancho Dimitrov,

Markus Elsing, et al. Rucio: Scientific data management. Computing and Software

for Big Science, 3(1):1–19, 2019.

[71] Grafana Labs. Grafana - the open observability platform. https://grafana.com/

oss/grafana/, 2024. Accessed: 2024-01-11.

[72] Felipe Olmos and Bruno Kauffmann. An inverse problem approach for content

popularity estimation. arXiv preprint arXiv:1510.07480, 2015.

https://grafana.com/oss/grafana/
https://grafana.com/oss/grafana/

BIBLIOGRAPHY 132

[73] Wes McKinney and the pandas development team. pandas: powerful Python data

analysis toolkit. Version 1.5.0. https://pandas.pydata.org/, 2023. Accessed:

2024-01-11.

[74] Frank Olken. Efficient methods for calculating the success function of fixed-space

replacement policies. Technical report, Lawrence Berkeley Lab., CA (USA), 1981.

[75] Damiano Carra and Giovanni Neglia. Efficient miss ratio curve computation for

heterogeneous content popularity. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 741–751, 2020.

[76] Guilherme Iecker Ricardo, Alina Tuholukova, Giovanni Neglia, and Thrasyvoulos

Spyropoulos. Caching policies for delay minimization in small cell networks with co-

ordinated multi-point joint transmissions. IEEE/ACM Transactions on Networking,

29(3):1105–1115, 2021.

[77] Mor Harchol-Balter. Performance modeling and design of computer systems: queueing

theory in action. Cambridge University Press, 2013.

[78] Martin Sewell. Ensemble learning. RN, 11(02):1–34, 2008.

[79] Apache Spark Documentation. pyspark.ml.regression. https://spark.apache.

org/docs/latest/ml-classification-regression.html#regression, 2024. Ac-

cessed: 2024-01-11.

[80] RandomForestRegressor - PySpark 3.1.1 documentation. https://spark.apache.

org/docs/latest/api/python/reference/api/pyspark.ml.regression.

RandomForestRegressor.html. Accessed: 2023-12-21.

https://pandas.pydata.org/
https://spark.apache.org/docs/latest/ml-classification-regression.html#regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#regression
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html

	Résumé [Français]
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 LHC at CERN and the ATLAS experiment
	1.1.1 ATLAS Data Processing Workflow

	1.2 Worldwide LHC Computing Grid (WLCG)
	1.2.1 Architecture
	1.2.2 Functional Tasks
	1.2.3 Main Use Cases
	1.2.4 Hierarchical Organisation of Data into Datasets
	1.2.5 ATLAS Data Placement and Processing Policies
	1.2.6 EOS

	1.3 Data Management Challenges in LHC Experiments
	1.3.1 Data Lakes

	1.4 Introduction to Caching
	1.4.1 Types of Caching
	1.4.2 Existing Caching Algorithms
	1.4.3 Different Scenarios of Caching
	1.4.4 Evaluating Caching Efficiency

	2 WLCG Workload Characteristics
	2.1 Sources of Log Information in the WLCG
	2.1.1 EOS Report Logs
	2.1.2 ATLAS Rucio Logs/Dumps
	2.1.3 Data Sources Consistency

	2.2 WLCG Logs Processing Workflow
	2.2.1 Data Collection and Parsing
	2.2.2 Data Filtering
	2.2.3 Data Grouping
	2.2.4 Derivation of the Operation Types
	2.2.5 Derivation of File-Specific Metrics
	2.2.6 Data Cleaning and Data Immutability Assumption

	2.3 General Access Patterns
	2.3.1 Distribution of File Types (Based on Creation/Deletion time)
	2.3.2 File Sizes Distribution
	2.3.3 File Accesses Time Distribution (Temporal Locality)
	2.3.4 Analysis of Content Popularity and Zipf's Law in Caching Performance

	2.4 Analysis Files Access Patterns
	2.4.1 Workload Comparisons: Analysis vs. Total Workloads
	2.4.2 Comparing File Sizes: Analysis Files vs. All Files
	2.4.3 Number of File Accesses
	2.4.4 Correlation Between File Size and Popularity
	2.4.5 Request Rate
	2.4.6 Dependency Between the Lifetime and Popularity
	2.4.7 Popularity of the Files: Ranking-Zipf Plots

	2.5 Dataset-Based Access Patterns
	2.6 Conclusions
	2.7 Log Data Processing Pipeline: A Brief Overview of Implementation Details

	3 Caching in the Context of the WLCG
	3.1 Problem Statement
	3.2 Constructing MRCs for Equal-size File Traces
	3.2.1 OSA. Samples
	3.2.2 LRU and OPT. Samples
	3.2.3 OSA, LRU, and OPT. Samples. Comparison
	3.2.4 OSA. Influence of Sampling

	3.3 Cache Admission: Impact on Algorithmic Performance
	3.4 MRCs for Heterogeneous File Sizes
	3.4.1 Optimisation of MRCs Through Point-Based Construction
	3.4.2 Lower and Upper bound of the OPT algorithm
	3.4.3 Lower Bound for BMR of Reactive Policies

	3.5 Exploring Enhanced LRU Variants: Implementation of 2-LRU Caching
	3.6 Caching Algorithms Taking into Account Specifics of WLCG Workloads
	3.7 Performance Comparison
	3.7.1 Implemented Enhancement Strategies

	3.8 Limited Connectivity Throughput Study
	3.8.1 Implementation Specifics
	3.8.2 Observations on the Queue Length
	3.8.3 Full-Cache Points and the Calculation of Hit Ratios
	3.8.4 Discussion of Experimental Results
	3.8.5 Prefetching Overhead

	3.9 Bandwidth Exploration
	3.10 Conclusions

	4 Machine Learning-based Caching Policies
	4.1 Description of the Trace:
	4.2 Performance of the Belady algorithm
	4.3 Architecture of ML solution (2-Stage Approach)
	4.4 Predicting Future Accesses
	4.4.1 Search for Simpler Dependencies
	4.4.2 The Choice of the Predictive Model
	4.4.3 Training Decision Trees and Random Forests
	4.4.4 Reformulating the Problem: Watermarks Training
	4.4.5 Results of the Prediction Models
	4.4.6 Feature Importance

	4.5 Integration into the Caching Policies
	4.5.1 Condensing Model
	4.5.2 Watermarks
	4.5.3 Experimental Results and Discussion

	4.6 Implementation Details and Computational Complexity
	4.6.1 LRU and LRU Watermarks
	4.6.2 Machine Learning Approach

	5 Conclusions
	5.1 Future Directions

