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We present several filtering methods which can be used as triggers for the detection of gravi-
tational wave bursts in interferometric detectors. All the methods are compared to matched
filtering with the help of a figure of merit based on the detection of supernovae signals simu-
lated by Zwerger and Miiller.

1 Introduction

Supernovae have been historically the first envisaged source of gravitational waves (GW). Al-
though binary inspirals or even periodic GW emitters like pulsars seem to be nowadays more
promising sources, impulsive sources of GW such as supernovae should also be considered in the
data analysis design of interferometric detectors currently under construction.

Impulsive GW sources are typically collapses of massive stars, leading to the birth of a
neutron star (type II supernova)*?2 or of a black hole 4; mergers of compact binaries can also
be considered as impulsive sources®.

The problem with these sources is that the emitted waveforms are very poorly ‘predicted,
unlike the binary inspirals. As a consequence, this forbids the use of matched filtering for the
detection of GW bursts in the data of one interferometric detector. The filtering of such bursts
should therefore be as general and robust as possible and with minimal a priori assumptions
on the waveforms to be detected: A drawback js of course that such-filters will be sensitive to
non-stationary noises as well as to GW bursts; spurious events, e.g. generated by these transient
noises, should be eliminated afterwards when working in coincidence with other detectors. But,
on the other hand, burst filters could help to identify and understand these noises, which would
be useful especially during the debugging phase of the detector.

We present in the following some filtering methods dedicated to the detection of GW bursts :
methods based on the autocorrelation, slope detector, correlator ... All the filters are compared
by studying their performance to detect a reference sample of GW burst signals; for this purpose,
just as in ® (and in order to use somewhat physically sound signals), we use the catalogue of
signals emitted by type II supernovae, numerically computed by Zwerger and Miiller (ZM} and
available on the web?.

Throughout the following, we assume that the detector noise is white, stationary and Gaus-
sian with zero mean. For the numerical estimates, we chose the flat (amplitude) spectral density
to be hn, >~ 4 x 10~23/1/Hz and the sampling frequency f, ~ 20 kHz, so the standard deviation
of the noise is on = hnv/fs/2 ~ 3 x 10~2; we will note the sampling time t, = 1/ f,. The value
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chosen for h, corresponds approximately to the minimum of the sensitivity curve of the VIRGO
detector &; around this minimum, the sensitivity is rather flat, in the range ~ [200 Hz,1kHz],
which is precisely the range of interest for the gravitational wave bursts we are interested in.
This validates then our assumption of a white noise; otherwise, we can always assume that the
detector output has been first whitened by a suitable filter 9.

2 General filters

2.1 Filters based on the autocorrelation

The noise being whitened, its autocorrelation is ideally a Dirac function, and, in practice vanishes
outside of 0. The autocorrelation of the data z(t)

A(r) = /:r(t):r(t+1’)dt (1)

should then reveal the presence of some signal (surely correlated). The information contained
in the autocorrelation function can be extracted in different ways. We have studied two of them
and built so two non-linear filters. The first one computes the maximum of the autocorrelation
Az(7); this occurs always at 7 = 0, and then this maximum is nothing but the norin of z(t).
For sampled data z; in a window of size N, the output of this filter is simply

N
A(0) = Zz? (2)
i=1

In the following, we will refer to this filter as the Norm Filter (NF). A similar approach has
been developed independently by Flanagan and Hughes in the context of the detection of binary
black hole mergers 1°.

Another simple possibility is to look at the norm of the autocorrelation function :

1 N
1411 = | 7 2 Ak, (3)
k=2

where A(k) denotes the discrete autocorrelation of N data z;. The sum is here initiated at the
second bin according to the fact that the noise (uncorrelated) contributes essentially to the first
bin. In the following we will call this filter Norm of Autocorrelation (NA). In practice, the A(k)
are computed in the Fourier space, according to the Wiener-Khintchine theotem, allowing the
use of FFT’s. :Note that the only parameter for these two filters is the window size N.

2.2 The Bin Counting filter

This filter (BC) computes the number of bins in a window of size N whose value exceeds some
threshold sxo,. For example, if we take s = 2 and pure Gaussian noise, as P(|z;| > 20,) ~ 4.6%,
the output of the BC filter is on average about 46 ’counts’ for a window size N = 1000. This
filter is also non-linear, but it involves two parameters : the window size N and the threshold
s. The threshold s is chosen by maximizing the signal to noise ratio (SNR) when detecting the
signals of the ZM catalogue. The optimum is for s >~ 1.7 but it is not critical; indeed any value
of s in the range [1.4,2.0] would be also convenient (with a low loss in SNR).

2.8 The Slope Detector

This filter (SD) fits the data in a window of size N to a straight line. If the data are pure white
noise with zero mean, then the slope of the fitted line is zero on average, so this slope detector
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can well discriminate between the two cases : only noise or noise+signal. The output of the SD
is simply .

<tz>-<t><z> 1L ti-<t>
= _ls

L YL
<t2T> - <t>? N& <2 >~ <t >

(4)
i=1
where < y >= Zﬁl yi/N denotes the mean value of the y; and t; =% x t,. Note that this filter
is linear, as opposed to the first three considered. Again the only parameter is the window size
N.

2.4 The Peak Correlator

Filtering by correlating the data with peak (or' pulse) templates is justified by the fact that
simulated supernova GW signals exhibit one (or more) peaks. The pulse templates have been
built from truncated Gaussian functions

2
F.(t) = exp (-é—) , (5)

with —37 <t < 37. The only parameter of the peak correlator (PC) is the width of the Gaussian
pulse filter 7 (the window size is automatically set to be a power of 2, due to use of FFT’s).
The lattice of filters is then built as usual (see!! for example) : the distance A7 between two
successive filters of the lattice F'; and F; A, is computed by the condition
< Fp Fr > =< Frparn, Fr >
< F.,F; >

where we define a scalar product as < f,g >= Max, [ f(t + t')g(t)dt/+/[ f*(t)dt and ¢ is the
allowed loss in the SNR. A simple calculation leads to At = 27,/e. With ¢ = 1072, we finally
have 26 templates in the interval [0.1 ms, 10 ms] (which are used in the following).

2.5 Statistics

<'e, (6)

The SD and PC filters being linear, they transform an input normal Gaussian noise with zero
mean into a Gaussian noise with zero mean but with a modified standard deviation. For the SD
filter, with the help of Eq.4, we find a standard deviation

N 2 2
t,i—<t> 12f
ot =3 (fres 5) = VT g
S \NK 2> -<t>?) N(N2-1)
Similarly, when correlating pure noise data with the pulse filter F,, we obtain a Gaussian noise
of standard deviation 'r
3

The output of the BC filter is a binomial random variable, considering the data are pure
Gaussian random variables; it is well approximated by Gaussian statistics for long enough win-
dows (typically N > 50) 12 and the standard deviation for the noise at the BC output is simply

opc =/Np(1 - p) (9)

with p = erfc(s/V/2).

Considering the NF filter, if we call A its output, it is easy to see that A follows a chi-
square distribution with N degrees of freedom, and then A* = V24 — V2N < 1 is also well
approximated by a normal (oya = 1) Gaussian random variable, provided N > 30!2, and the
input noise is itself a normal Gaussian random variable.

Finally, the noise at the output of the NA filter is not known analytically and its character-
istics have to be found numerically (adding some complexity to this filtering method).
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3 Performance of the filters
3.1 Definiiiori of a threshold for detection

We set ihe false alarm rate for each of the filters to be 107 (72 false alarms / hour for a sampling
rate f; = 20 kHz). This corresponds to a detection threshold (normalised SNR) of # ~ 4.89 for
a single 'Gaussian filter’. For a trigger that incorporate in fact several filters, for example the 26
templates of the PC, the threshold has to be raised accordingly, in order to keep a global faise
alarm rate of 107¢ (e.g. 7 22 5.50 in this case).

3.2 The Zwerger and Miller Catalogue

The catalogue of Zwerger and Miiller 7 (ZMC) contains 78 gravitational-wave signals. Each of
them corresponds to a particular set of parameters, essentially the initial distribution of anguiar
momentum and the rotational energy of the star core, in the axisymmetric collapse models of
ZM. The signal total durations range from about 40 ms to a little more than 200 ms. The
gravitational wave amplitudes of the stronger signals are of the order A ~ a few 10723 for a
source located at 10 Mpc. All the signals are computed for a source located at 10 Mpc. We can
then re-scale the waveforms in order to locate the source at any distance d, according to

h(d,t) = ho(t) ——P< am

where hg is the signal at 10 Mpc and h(d, t) is the same signal but at a distance d. Concerning
the shape of the waveforms , Zwerger and Miiller distinguish three different types of signaist.
Type [ signals typically present a first peak (associated to the bounce)followed by a ringdown.
Type 1 signals show a few (2-3) decreasing peaks, with a time lag between the first two of at
least 10 ms. Type 111 signals exhibit no strong peak but fast (~ 1 kHz) oscillations after the
bounce.

Since the 78 signal waveforms are known, we can explicitly derive the optimal SNR provided
by the Wiener filter matched to each of them, and then compute the maximal distance cf
detection. We will then be able to build a benchmark for the different filters by comparing their
results-(detection distances) to the results of the Wiener filter. Note that, in what follows, we
consider optimaily polarized GW’s, along the interferometer arms.

Let’s call h(t) one of the 78 signals (at some distance d) and h(f) its Fourier transform. The
optimal signal to noise ratio pg is given by

=2 [y =L [ihpra = [ o (1)

where S;, = h2 is the one-sided noise power spectral density (hence the factor of 2).

As previously, a supernova signal is detected by the Wiener filter if pg > 5, where 7 is the
saine detection threshold as defined above. Fig.l shows the maximal distance of detection for
each of the 78 signals. The mean distance, averaged over all tlie signals, is about dop, > 25.4 kpc,
which is of the order of thediameter of the Milky Way. A few signals can be detected at distances
beyond 50 kpc, the distance of the Large Magellanic Cloud (LMC). It is clear that this class of
signals will be detected by the first generation interferometric detectors only if the supernovae
occur inside our Galaxy or in the very close neighbourhood.

3.8 FEstimating a filter performance

Let’s consider one signal, say the i*? in the ZMC. The optimal filtering allows to detect such a
signal for a source located at the distance d{(o)‘ Similarly, a filter F is able to detect the same
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Figure 1: Detection distances calculated with the optimal filter for the 78 signals in the ZMC

signal up to a distance d;; of course d; is averaged over many noise realizations in a Monte
Carlo simulation. The detection efficiency of the filter F for this signal 7 is simply defined as
the distance of detection relative to the optimal distance of detection : d,—/di(o). The global

performance of the filter F is then estimated as the detection efficiency averaged over all the
signals of the ZMC :

(12)

3.4 Comparison of the filtering methods

The results for the different filters are reported in the Table 1 below. We also give the average
distance of detection d = & 78, d;:) for all the filters, together with the ratio d/dgpe.

Table 1: Efficiency of the different filters. L means linear filter and NL means non-linear filter.

Filter | Optimal | NF | NA | BC | SF | PC
d (kpc) 254 | 11.5[11.4]10.9]20.7]18.5
d/dopt 1 0.45| 0.45 | 0.43 | 0.81 | 0.73

p 1 0.46 | 0.47 | 0.43 | 0.79 | 0.73
Linearity L NL [ NL | NL L L

The three first filters NF, NA and BC (all non-linear) have an efficiency a little less than one
half, while the SD and the PC have an efficiency a little above 0.7. note that the SF has been
in fact implemented with a sampling of 6 different window sizes, sufficient to cover the variety

of signals. If implemented with a single window size, as the other filters NF, NA and BC, its
performance decreases down to about 0.6.
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4 Conclusion

We have discussed several filters to be used as triggers for detecting GW bursts in interferometric
detectors. They are all sub-optimal but their efficiency is not far below that of optimal filter.

Concerning the detection of ZMC like signals, we note that none of the BC, NF and NA
filters is efficient enough to cover the whole Galaxy in average, at the contrary of the SD and
PC (and optimal) filters. Several signals can be ’seen’ in fact anywhere from the Galaxy and
even beyond; in particular the signals 77 and 78 can be detected up to the LMC by any of the
filters. ‘

Finally, all the filters studied here can be implemented on line without problem, due to use
of FFT’s (for the NA and the PC) or to simple recurrence relations between filter outputs in
successive windows (NF,BC or SD).

More information (preprints, Virgo reports ...) can be found at!3
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