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We present several filtering methods which can be used as triggers for the detection of gravi­
tational wave bursts in interferometric detectors. All the methods are compared to matched 
filtering with the help of a figure of merit based on the detection of supernovae signals simu­
lated by Zwerger and Miiller. 

1 Introduction 

Supernovae have been historically the first envisaged source of gravitational waves (GW) . Al­
though binary inspirals or even periodic GW emitters like pulsars seem to be nowadays more 
promising sources, impulsive sources of GW such as supernovae should also be considered in the 
data analysis design of interferometric detectors currently under construction. 

Impulsive GW sources are typically collapses of massive stars, leading to the birth of a 
neutron star (type II supernova) 1 •2 •3 or of a black hole 4 ; mergers of compact binaries can also 
be considered as impulsive sources 5 .  

The problem with these sources is that the emitted waveforms are very poorly ·predicted, 
unlike the binary inspirals. As a consequence, this forbids the use of matched filtering for the 
detection of GW bursts in the data of one interferometric detector. The filtering of such bursts 
should therefore be as general and robust as possible and with minimal a priori assumptions 
on the waveforms to be detected : A drawback )s of course that such ·filters will be sensitive to 
non-stationary noises as well as to GW bursts; spurious events, e.g. generated by these transient 
noises, should be eliminated afterwards when working in coincidence with other detectors. But, 
on the other hand, burst filters could help to identify and understand these noises, which would 
be useful especially_ during the debugging phase of the detector. 

We present in the-following some filtering methods dedicated to the detection of GW bursts : 
methods based on the autocorrelation , slope detector, correlator . . .  All the filters are compared 
by studying their performance to detect a reference sample of GW burst signals; for this purpose, 
just as in 6 (and in order to use somewh�t physically sound signals) ,  we use the catalogue of 
signals emitted by type II supernovae, numerically computed by Zwerger and Miiller (ZMf and 
available on the web 7 .  

Throughout the following, we assume that the detector noise i s  white, stationary and Gaus­
sian with zero mean. For the numerical estimates, we chose the flat (amplitude) spectral density 
to be hn � 4 X 10-23 / v1fZ and the sa,mpling frequency fa � 20 kHz, so the standard deviation 
of the noise is O'n = hn v7:fj. ,...., 3 x 10-21 ; we will note the sampling time t. = 1/ fa · The value 
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chosen for hn corresponds approximately to the minimum of the sensitivity curve of the VIRGO 
detector 8; around this minimum ,  the sensitivity is rather fiat, in the range � [200 Hz, lkHz] , 
which is precisely the range of interest for the gravitational wave bursts we are interested in .  
This validates tpen our assumption of a white noise; otherwise, we can always assume that the 
detector output has been first whitened by a suitable filter 9 .  
2 General filters 

2. 1 Filters based on the autocorrelation 

The noise being whitened, its autocorrelation is ideally a Dirac function , and ,  in practice vanishes 
outside of 0. The autocorrelation of the data x (t) 

A,, (r) :::: j x (t) x ( t  + r)dt ( 1 )  

should then reveal the presence of some signal (surely correlated) . The information contained 
in the autocorrelation function can be extracted in different ways. We have studied two of them 
and built so two non-linear filters. The first one computes the maximum of the autocorrelation 
Ax (r) ; this occurs always at T :::: 0, and then this maximum is nothing but the nortn of x (t) . 
For sampled data x; in a window of size N, the output of this filter is simply 

N 
A(O) :::: L xf.  (2)  

i = l  

In the following, we will refer to this filter as the Norm Filter (NF) . A similar approach has 
been developed independently by Flanagan and Hughes in the context of the detection of binary 
black hole mergers 10. 

Anot�er simple possibility is to look at the norm of the autocorrelation function : 

l lA J I = 
N 2- L A(k)2 , 

N k=2 
(3) 

where A(k) denotes the discrete autocorrelation of N data x;. The sum is here initiated at the 
second bin according to the fact that the noise (uncorrelated) contributes essentially to the first 
bin. In the following we will call this fi1ter Norm of Autocorrelation (NA) . In practice, the A (k) 
are computed in the Fourier space, according to the Wiener-Khintchine theocem, allowing the 
use of FFT's. Note that the only parameter for these two filters is th� window size N. 

2.2 The Bin Counting filter 

This filter (BC) computes the number of bins in a window of size N whose value exceeds some 
threshold s x un ·  For example, if we take s = 2 and pure Gaussian noise, as P(jx; j  2: 2un ) ::::::: 4.6%, 
the output of the BC filter is on average about 46 'counts' for a window size N = 1000. This 
filter is also non-linear, but it involves two parameters : the window size N and the threshold 
s .  The threshold s is chosen by maximizing the signal to noise ratio (SNR) when detecting the 
signals of the ZM catalogue. The optimum is for s ::::::: 1 .7 but it is not critical; indeed any value 
of s in the range [l.4,2.0] would be also convenient (with a low loss in SNR) . 

2. 3 The Slope Detector 

This filter (SD) fits the data in a window of size N to a straight line. If the data are pure white 
noise with zero mean , then the slope of the fitted line is zero on average, so this slope detector 
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can well discriminate between the two cases : only noise or noise+signal. The output of the SD 
is simply 

< tx > - < t > < X > 1 N t; - < t > a =  < t2 > - < t >2 = N L < t2 > - < t >2 x; , 
•=l 

(4)  

wh.ere < y >= 2=f:1 y;f N denotes the mean value of the Yi and t; = i x  t • .  Note that this filter 
is linear, as opposed to the first three considered. Again the only parameter is the window size 
N. 
2.4 The Peak Correlator 

Filtering by correlating the .data with peak (or pulse) templates is justified by the fact that 
simulated supernova GW signals exhibit one (or more) peaks. The pulse templates have been 
built from truncated Gaussian functions 

FT (t) = exp (-�:) , (5) 

with - 3r � t :S 3r . The only parameter of the peak correlator (PC) is the width of the Gaussian 
pulse filter r (the window size is automatically set to be a power of 2, due to use of FFT's) . 
The lattice of filters is then built as usual (see 1 1  for example) : the distance tu between two 
successive filters of the lattice FT and FT+t!i.T is computed by the condition 

(6) 

where we define a scalar product as < f, g >= Max11 J f(t + t')g(t)dt/ J J f2 (t)dt and f is the 
allowed loss in the SNR. A simple calculation leads to �r = 2r../f. With £ = 10-2 , we finally 
have 26 templates in the interval (0. 1 ms, 10 ms) (which are used in the following) . 
2.5 Statistics 
The SD and PC filters being linear, they transform an input normal Gaussian noise with zero 
mean into a Gaussian noise with zero mean but with a modified standard deviation.  For the SD 
filter, with the help of Eq.4, we find a standard deviation 

2 N ( t; - < t > ) 2 12f'1 uso = � N(< t2 > _ < t >2) = N (N2 - l) . (7) 

Similarly, when correlating pure noise data with the puli;e filter Fn we obtain a G aussian noise 
of standard deviation · 

2 '- T Upc = y 'lr  - . t, (8) 

The output of the BC fiJter is a binomial random variable, considering the data are pure 
Gaussian random variables; it is well approximated by Gaussian statistics for long enough win­
dows (typically N 2'.: 50) 12 and the standard deviation for the noise at the BC output is simply 

use =JNp(l  - p) (9) 
with p = erfc(s/J2) . 

Considering the NF filter, if we call A its output, it is easy to see that A follows a chi­
square distribution with N degrees of freedom, and then A* = J2A - ../2N - 1 is also well 
approximated by a normal (uNA = 1) Gaussian random variable, provided N 2'.: 30 12 , and the 
input noise is itself a normal Gaussian random variable. 

Finally, the noise at the output of the NA filter is not known analytically and its character­
istics have to be found numerically (adding some complexity to this filtering method) . 
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3 Performance of the filters 
S. 1 Definiiio<i of a threshold for detection 

We °'et che false alarm rate for each of the filters to be 10-6 (72 false alarms / hour for a sampling 
rate f., = 20 kHz) . This corresponds to a detection threshold (normalised SNR) of T/ ::: 4.89 for 

a single 'Gaussian filter ' .  For a trigger that incorporate in fact several filters, for example the 26 
templates of the PC, the threshold has to be raised accordingly, in order to keep a global false 
alarm rate of 1 0 -6 (e.g. T/ � 5.50 in this case) . 
3. 2 The Zwerger and Muller Catalogue 

The catalogue of Zwerger and Miiller 7 (ZMC) contains 78 gravitational-wave signals . Each of 

them corresponds to a particular set of parameters, essentially the initial distribution of angular 
momentum and the rotational energy of the star core, in the axisy mmetric collapse models of 
ZM. The signal total durations range from about 40 ms to a little more than 200 ms .. The 
gravitational wave amplitudes of the stronger signals a

.
re of the order h � a few 10-23 for a 

source located at 10 Mpc. All the signals are computed for a source located at 1 0  Mpc. We can 
then re-scale the waveforms in order to locate the source at any distance d, according to 

lOMpc h(d, t) = h0(t) ---·-­
d 

I 1 ()� , _., \  ! 

where h0 is the signal at 10  Mpc and h (d, t) is the same signal but at a distance d. Concerning 

the sirnpe of the waveforms , Zwerger and Muller distinguish three ditferent types of signals' . 
Type I signals typically present a first peak (associated to the bounce)followed by a ringdown. 
Type I I  signals show a few (2-3) decreasing peaks, with a time lag between the fi rst two of at 
least 10 ·ms .  Type I I I  signals exhibit no strong peak but fast ( � 1 kHz)  oscillations after the 

bounce . 
Since the 78 signal waveforms are known, we can explicitly derive the optimal SNR provided 

by the Wiener filter matched to each of them, and then compute the m aximal distance of 
detection. We wiil then be able to build a benchmark for the different filters by comparing their 
results (detection distances) to the results of the Wiener filter. Note that, in what follows, we 
consider optima.Hy polarized GW's, along the interferometer arms" 

Let's call h(t) one of the 78 signals (at some distance d) and h(f)  its Fourier transform. The 
optimal signal to noise ratio Po is given by 

( 1 1 ) 

where sh = h; is the one-sided noise power spectral density (hence the factor of 2 ) .  
As  previously, a supernova signal i s  detected by  the Wiener filter i f  p0 :'.': 17,  where 1/ i s  the 

same detection threshold as defined above. Fig.l shows the maximal distance of detection for 
each of the 78 signals. The mean distance, averaged over all tlie signals, is about dopt ::: 25.4 kpc, 
which is of the order of the diameter of the Milky Way. A few signals can be detected at distances 
beyond 50 kpc, the distance of the Large Magellanic Cloud (LMC) . It is clear that this class of 
signals will be detected by the first generation interferometric detectors only if the supernovae 
occur inside our Galaxy or in the very close neighbourhood. 

3. 3 Estimating a filter performance 

Let's consider one signal, say the ith in the ZMC. The optimal filtering allows to detect such a 
signal for a source located at the distance d}0l . Similarly, a filter F is able to detect the same 
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Figure 1: Detection distances calculated with the optimal filter for the 78 signals in the ZMC 

signal up to a distance d,.; of course d; is averaged over many noise realizations in a Monte 
Carlo simulation . The detection efficiency of the filter F for this signal i is simply defined as 
the distance of detection relative to the optimal distance of detection : d;/ d/01 .  The global 
performance of the filter F is then estimated as the detection efficiency averaged over all the 
signals of the ZMC : 

3. 4 Comparison of the filtering methods 

( 12) 

The results for the different filters are reported in the Table 1 below. We also give the average 
distance of detection d = -h, 2::;�1 d�) for all the filters, together with the ratio d/ dopt · 

Table 1: Efficiency of the different filters. L means linear filter and NL means non-linear filter. 

Filter Optimal NF NA BC SF PC 
d (kpc) 25.4 1 1 .5 1 1 .4 10 .9 20.7 18.5 
d/dopt 1 0.45 0.45 0.43 0.81 0.73 

p 1 0 .46 0 .47 0 .43 0.79 0.73 
Linearity L NL NL NL L L 

The three first filters NF, NA and BC (all non-linear) have an efficiency a little less than one 
half, while the SD and the PC have an efficiency a little above 0.7. note that the SF has been 
in fact implemented with a sampling of 6 different window sizes, sufficient to cover the variety 
of signals. If implemented with a single window size, as t he other filters NF,  N A  and BC, its 
performance decreases down to about 0.6. 
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4 Conclusion 

We have discussed several filters to be used as triggers for detecting GW bursts in interferometric 
detectors. They are all sub-optimal but their efficiency is not far below that of optimal filter. 

Concerning the detection of ZMC like signals, we note that none of the BC, NF and NA 
filters is efficient enough to cover the whole Galaxy in average, at the contrary of the SD and 
PC (and optimal) filters. Several signals can be 'seen' in fact anywhere from the Galaxy and 
even beyond; in particular the signals 77 and 78 can be detected up to t he LMC by any of the 
filters. 

Finally, all the filters studied here can be implemented on line without problem, due to use 
of FFT's (for the NA and the PC) or to simple recurrence relations between filter outputs in 
successive windows (NF,BC or SD) .  

More information (preprints, Virgo reports . . .  ) can be found at 13 
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