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We have investigated Bianchi type V space-time in scale invariant theory with dark energy.
The matter field is considered in the form of viscous fluid. The field equations for scale
invariant theory has been solved by applying a variation law for generalized Hubble’s param-
eter [Berman 7]. The gauge function depends on time coordinate only (Dirac gauge). The
cosmological model is constructed, its physical and kinematical properties are discussed.

1 Introduction

Another modification of Einstein’s theory of gravitation is the scale invariant theory of gravita-
tion proposed by Wesson 28,29. This is one of the prominent alternative theory. In this theory,
the Einstein field equations have been written in a scale dependent way by using the conformal
or scale transformation as:

ḡij = β2(xk)gij . (1)

where the gauge function β, in its most general formulation, is a function of all space-time
coordinates. Thus, using the conformal transformation of the type given by (1), Wesson 28,29

transforms the usual Einstein field equations into

Gij + 2
β;ij
β
− 4

β,iβ,j
β2

+ (gab
β,aβ,b
β2

− 2gab
β;ij
β

)gij + Λ0β
2gij = −Tij . (2)

where Gij ≡ Rij − 1
2Rgij . Semicolon and comma respectively denote covariant differentiation

with respect to gij and partial differentiation with respect to coordinates. Gij is the conventional
Einstein tensor involving gij . Rij is the Ricci tensor, and R is the Ricci scalar. The cosmolog-
ical term Λgij of Einstein theory is now transformed to Λ0β

2gij in scale invariant theory with
dimensionless cosmological constant Λ0. G is the Newtonian gravitational parameter. Tij is the
energy momentum tensor of the matter field. It is worthy to note that no independent equation
for β exists in this theory. In this theory, Beesham 4,5,6, Mohanty and Daud 16, Mohanty and
Mishra 17,18, Mishra 11,12, Mishra and Sahoo 13,14,15 have investigated several aspects of scale
invariant theory.

Cosmic observations from supernovae [Riess et al.23; Perlmutter et al.22], cosmic microwave
background (CMB) radiation [Spergel et al.26; Komatsu et al.10], large scale structure (LSS)
[Tegmark et al.27; Seljak et al.25], baryon acoustic oscillations (BAO) [Eisenstein et al.8] and weak
lensing [Jain and Taylor9] have implied that the expansion of the universe is accelerating at the
present stage. The latest data sets coming from astrophysics and cosmological observations such
as CMB and supernovae survey indicate that the energy budget of the universe is the following:
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74 percent dark energy, 22 percent dark matter and 4 percent ordinary baryonic matter [Riess
et al.24; Eisenstein et al.8; Astier et al.2; Spergel et al.26]. Nojiri and Odintsov19,20,21, Bamba et
al.3 have developed the cosmological reconstruction method in terms of cosmological time.

2 Field equations for Bianchi Type V metric

Here we consider Bianchi type V space-time with a Dirac gauge function β = β(ct) of the form

ds2W = β2(−dt2 +A2dx2 + e2αx(B2dy2 + C2dz2)). (3)

The metric potentials A, B and C are functions of t only. c is the velocity of light. ds2W
represents the intervals in Wesson theory. Further, xi, i = 1, 2, 3, 4 respectively denote for x,y,z
and t only. The energy momentum tensor Tij in eqn. (2) in gravitational units G = c = 1 is the

combination of viscous fluid T
(vis)
ij and dark energy fluid T

(de)
ij , which can be expressed as

T
(vis)
ij = (ρ+ p̄)uiuj + p̄gij = diag[−ρ, p, p, p]. (4)

where p̄ = p− ξui;i, and

T
(de)
ij = diag[−ρde), p(de)x , p(de)y , p(de)z ]

= diag[−1, ωx, ωy, ωz]ρ
(de)

= diag[−1, (ω + δ), (ω + γ), (ω + η)]ρ(de). (5)

The skewness parameters δ, γ, and η are the deviations from ω on x, y and z axes respectively.
Hence, for the metric (3) and energy momentum tensor (4) and (5), the field equations for scale
invariant theory (2) yield the following equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
− α2

A2
+ 2

β̇

β

(
Ḃ

B
+

Ċ

C

)
+ 2

β̈

β
− β̇2

β2
+ Λ0β

2 = −p+ 3ΞH − (ω + δ)ρ(de). (6)

Ä

A
+

C̈

C
+

ȦĊ

AC
− α2

A2
+ 2

β̇

β

(
Ȧ

A
+

Ċ

C

)
+ 2

β̈

β
− β̇2

β2
+ Λ0β

2 = −p+ 3ΞH − (ω + γ)ρ(de). (7)

Ä

A
+

B̈

B
+

ȦḂ

AB
− α2

A2
+ 2

β̇

β

(
Ȧ

A
+

Ḃ

B

)
+ 2

β̈

β
− β̇

β2
+ Λ0β

2 = −p+ 3ΞH − (ω + η)ρ(de). (8)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− 3

α2

A2
+ 2

β̇

β

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
+ 3

β̇2

β2
+ Λ0β

2 = ρ+ ρ(de). (9)

2
Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (10)

The over dot on a field variable denotes exact differentiation with respect to time t. We
conserve the energy momentum tensors of the two sources separately. The energy conservation

equation for the viscous fluid T
(vis)ij
;j = 0 and dark energy T

(de)ij
;j = 0 components respectively

defined as ρ̇ + 3(p̄ + ρ)H = 0 and ρ̇(de) + 3ρ(de)(ω + 1)H + ρ(de)(δH1 + γH2 + ηH3) = 0. Then
we split the conservation of energy momentum tensor of the dark energy into two parts [Akarsu
and Kilinc 1]. One corresponds to the deviations of equation of state (EoS) parameter and the
other is the deviation free part. This can be expressed as:

ρ̇(de) + 3ρ(de)(ω + 1)H = 0 (11)
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ρ(de)(δHx + γHy + ηHz) = 0 (12)

Now, the behaviour of ρde is controlled by deviation free part of EoS parameter of dark energy
but deviations will affect ρde indirectly. For a physically viable model of the universe consistent
with observations, the choice of skewness parameters are quite arbitrary. However, we consider
the skewness parameters δ, γ and η be functions of cosmic time.

3 Solutions of the field equations

In the field eqns.(6)-(9), number of unknowns exceeds the number of equations. In order to
obtain explicit exact solution, we need additional constraints relating to the unknowns. With
the help of special law of variations proposed by Berman 7, which yields constant deceleration
parameter of the models of the universe, we will solve the system of equations. The constant
deceleration parameter model for defined as

q = −RR̈

Ṙ2
= constant (13)

where R = (ABC)
1
3 . Hence, eqn.(13) yields the solution

R =
(
R

(1+q)
0 + (1 + q)(t− t0)

) 1
1+q

(14)

where R0 is the integration constant and taken as 1 and 1 + q > 0. Again using the physical
condition that the shear scalar σ is proportional to scalar expansion θ, we take

B = Cm (15)

where m is constant. With the help of eqns.(10), (14) and (15), we obtain the expression for

the metric potentials as A = R,B = Cm = R
2m
m+1 . We also consider β = β(t) = 1

t and express
the directional Hubble parameter in terms of the mean Hubble parameter H as Hx = H,

Hy =
(

2m
m+1

)
H, Hz =

(
2

m+1

)
H. Now,eqns. (6), (7), (8) and (12) yields the following

γρde = −
(
1−m

1 +m

)(
m+ 5

3(m+ 1)

)(
R̈

R
+ 2

Ṙ2

R2
− 2

t

Ṙ

R

)
(16)

ηρde =

(
1−m

1 +m

)(
1 + 5m

3(m+ 1

)(
R̈

R
+ 2

Ṙ2

R2
− 2

t

Ṙ

R

)
(17)

δρde =

(
1−m

1 +m

)(
2(m− 1)

3(m+ 1

)(
R̈

R
+ 2

Ṙ2

R2
− 2

t

Ṙ

R

)
(18)

We use the barotropic bulk viscus pressure and fluid relation p̄ = ερ, where ε is a constant. Then
the energy density ρ can be obtained as

ρ =
ρ0

(ABC)1+ε
=

ρ0

R3(1+ε)
(19)

Subsequently, the energy density for dark energy component can be found as

ρde =

(
2(m2 + 4m+ 1)

(m+ 1)2

)
Ṙ2

R2
− 3

α2

R2
− 6

t
.
Ṙ

R
+

3 + Λ0

t2
− ρ0

R3(1+ε)
(20)
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Now, Using eqn. (20), eqns. (16)-(18) reduces to

γ = −
(
1−m
1+m

)(
m+5

3(m+1)

)(
R̈
R + 2 Ṙ2

R2 − 2
t
Ṙ
R

)
(
2(m2+4m+1)

(m+1)2

)
Ṙ2

R2 − 3 α2

R2 − 6
t .

Ṙ
R + 3+Λ0

t2
− ρ0

R3(1+ε)

(21)

η =

(
1−m
1+m

)(
1+5m
3(m+1)

)(
R̈
R + 2 Ṙ2

R2 − 2
t
Ṙ
R

)
(
2(m2+4m+1)

(m+1)2

)
Ṙ2

R2 − 3 α2

R2 − 6
t .

Ṙ
R + 3+Λ0

t2
− ρ0

R3(1+ε)

(22)

δ =

(
1−m
1+m

)(
2(m−1)
3(m+1)

)(
R̈
R + 2 Ṙ2

R2 − 2
t
Ṙ
R

)
(
2(m2+4m+1)

(m+1)2

)
Ṙ2

R2 − 3 α2

R2 − 6
t .

Ṙ
R + 3+Λ0

t2
− ρ0

R3(1+ε)

(23)

Moreover, the EOS parameter ω is obtained as

ω =
−2

3

(
m2+4m+1
(1+m)2

)(
2 R̈
R + Ṙ2

R2 − 2
t 2

Ṙ
R

)
− α2

R2 + 3+Λ0
t2

− ερ0
R3(1+ε)(

2(m2+4m+1)
(m+1)2

)
Ṙ2

R2 − 3 α2

R2 − 6
t .

Ṙ
R + 3+Λ0

t2
− ρ0

R3(1+ε)

(24)

4 Some Physical and Kinematical properties of the Model

In this section, we have investigated some physical behaviour of the constructed model. The
scalar expansion of the model, θ = A4

A + B4
B + C4

C = 3 [1 + (1 + q)(t− t0)]
−1, which indicates

that the scalar expansion remains constant for t = 0; however for large value of t, the expansion

decreases. The spatial volume found to be, V = R3 = ABC = [1 + (1 + q)(t− t0)]
1

1+q . It is ob-
served that the spatial volume is unity at t = t0 and it increases as t increases. Thus, the universe
starts evolving with unit volume at t = t0 and expands with cosmic time t. Also, for 1+q > 0, the

universe is expanding. The shear scalar, σ2 = 1
2

(
ΣH2

i − 1
3θ

2
)
=
(
m−1
m+1

)2
[1 + (1 + q)(t− t0)]

−2

becomes constant for large value of t. Therefore the shape of the universe remains unchanged
during evolution. Moreover, σ2

θ2
turns out to be a constant, the model does not approach isotropy

for large value of t. However, for m = 1, the model becomes isotropic.

The generalized mean Hubble’s parameterH isH = 1
3(Hx+Hy+Hz) = [1 + (1 + q)(t− t0)]

−1.
The Hubble’s parameter is unity at t = t0. The rate of expansion is accelerated or decelerated
depends on the signature of the parameter. However, as 1 + q > 0 , the model indicates ac-

celeration. The average anisotropy parameter is calculated as Am = 4
3Σ
(
ΔHi
H

)2
= 2

3

(
m−1
m+1

)2
.

Now, the mean anisotropic parameter is uniform throughout the evolution of the universe since
Am is constant. The energy density, ρ(t) = ρ0

R3(1+ε) = ρ0

[Q(t)]
3(1+ε)
1+q

, vanishes for large t,where

Q(t) = [1 + (1 + q)(t− t0)]. The EoS parameter ω, obtained as

ω =

−2
3

(
m2+4m+1
(1+m)2

)(
1−2q
[Q(t)]2

− 4
t[Q(t)]

)
− α2

[Q(t)]
2

1+q
+ 3+Λ0

t2
− ερ0

[Q(t)]
3(1+ε)
1+q(

2(m2+4m+1)
(m+1)2

)
1

[Q(t)]2
− 3 α2

[Q(t)]
2

1+q
− 6

t[Q(t)] +
3+Λ0
t2

− ρ0

[Q(t)]
3(1+ε)
1+q

It is observed that δ and γ are functions of time t. Moreover, δ and γ never diverges as t
vanishes.
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5 Conclusions

In this paper, we have investigated Bianchi type V dark energy cosmological models with variable
EoS parameter in scale invariant theory of gravitation. In the constructed model, it is observed
that the dark energy model in scale invariant theory is consistent with the recent observations
of Type Ia supernovae. The EoS parameters and skewness parameter turn out to be functions
of cosmic time t. This study is significant, because dark energy is the best candidate to explain
the cosmic acceleration in the general and alternative theories of gravitation.
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