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Zusammenfassung

Die numerische Relativitätstheorie ist ein unverzichtbares Werkzeug für astrophysikalische

Simulationen in starken Schwerefeldern. Sie ermöglicht es uns, die relativistische Dynamik

um kompakte Objekte, einschließlich Neutronensterne und Schwarze Löcher, genau zu er-

fassen und die Gravitationswellensignale aus dem System zu extrahieren. In dieser Disserta-

tion verwende ich numerische Relativitätssimulationen, um verschiedene astrophysikalische

Systeme zu untersuchen, nämlich den Gezeiten-Sternzerriss eines Weißen Zwergs um ein su-

permassereiches Schwarzes Loch, die Verschmelzung von binären Neutronensternen (BNS)

und den Kollaps von Sternen.

Im ersten Teil dieser Dissertation untersuche ich den Gezeiten-zerriss eines Weißen Zwergs

um ein supermassereiches Schwarzes Loch. Gezeiten-Sternzerrissereignisse (GSZE) treten

auf, wenn ein Stern sich über seinen Roche-Radius ausdehnt und durch die Gezeitenkräfte

außerhalb des Schwarzen Lochs zerrissen wird. Der gravitativ gebundene Anteil der Stern-

fragmente fällt daraufhin auf das Schwarze Loch zurück und bildet ein Akkretionsscheibe

mit potenziellem Jet-Ausbruch, der helle Emissionen von elektromagnetischer Strahlung,

einschließlich optischer/UV- und Röntgenstrahlung, erzeugt. Weiße Zwerg GSZE sind beson-

ders interessant, da sie Einblicke in die Entwicklung von Schwarzen Löchern mit Massen von

MBH ≲ 105M⊙ und deren Wachstum liefern können. Allerdings ist die Simulation von GSZE

extrem schwierig, da sie eine große Spanne von Längenskalen und Zeitskalen umspannen. Um

dies zu lösen, habe ich eine neue Methode für vollständig numerische Relativitätssimulationen

entwickelt, die es mir ermöglicht, den Gezeiten-Sternzerriss eines Weißen Zwergs um ein su-

permassereiches Schwarzes Loch, zum ersten Mal, zu simulieren.

Der zweite Teil dieser Dissertation untersucht die Verschmelzung von Neutronenstern-

paaren in der massiven Skalar-Tensor-Theorie. Diese Theorie, vorgeschlagen von Damour und

Esposito-Farèse, führt einen zusätzlichen skalaren Freiheitsgrad ein, welcher die Struktur von

Neutronensternen ändert und zu unterscheidbaren Merkmalen in Gravitationswellensignalen

führen kann. Ich habe eine Reihe von numerischen Simulationen durchgeführt, um die nicht-

linearen Effekte dieser Theorie in BNS-Verschmelzungen zu quantifizieren und Signale in

Gravitationswellensignalen zu untersuchen.

Im letzten Teil der Arbeit untersuche ich numerische Relativitätssimulationen unter achsen-

symmetrischen Konfigurationen. Die Einführung der Achsensymmetrie senkt die Rechenkosten
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für numerische Simulationen drastisch, indem sie die Größe des Problems auf zwei räumliche

Dimensionen reduziert, was eine längere Simulationszeit für physikalische Systeme ermöglicht

als dreidimensionale Simulationen. Zunächst betrachte ich das Kollapsar-System, bei dem ich

ein annäherndes Freifallmodell konstruiere, das aus einem Schwarzen Loch und einfallendem

Material besteht, das von massereichen Vorläufersternen ausgeht, um effiziente numerische

Simulationen zu ermöglichen. Dann stelle ich SACRA-2D vor, einen neuen MPI- und OpenMP-

parallelisierten, voll relativistischen Hydrodynamik Code in dynamischer Raumzeit unter

axialer Symmetrie mit der Cartoon-Methode, der die von mir entwickelten Finite-Volumen-

Schock-Capturing-Schemata für Hydrodynamik verwendet. Schließlich wird eine physikalis-

che Anwendung von SACRA-2D vorgestellt, bei der das Wendepunktkriterium von differentiell

rotierenden NS in der Skalar-Tensor-Theorie unter asymmetrischer Störung untersucht wird.
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Abstract

Numerical Relativity is an essential tool for astrophysical simulations under strong gravity.

It allows us to capture the relativistic dynamics around compact objects, including neutron

stars and black holes, and accurately extract the gravitational wave signal from the system.

In this thesis, I utilize numerical relativity simulations to study various astrophysical systems,

namely the tidal disruption of a white dwarf around a supermassive black hole, binary neutron

star (BNS) merger, and collapsar.

In the first part of this thesis, I investigate the tidal disruption of a white dwarf around

a supermassive black hole. Tidal disruption events (TDEs) occur when a star passes closer

to the tidal radius and gets torn apart by the tidal force outside the black hole’s event

horizon. The bounded fraction of tidal debris subsequently falls back onto the black hole and

circularizes to form an accretion disk with potential jet launching, generating a luminous flare

of electromagnetic radiation including optical/UV and X-ray emission. White dwarf TDEs

are particularly interesting as they could provide insights into low-mass supermassive black

holes MBH ≲ 105 M⊙ and the growth of massive black holes. However, simulating TDEs is

extremely challenging due to the vast range of length scales and time scales involved. To

overcome this, I developed a new method for full numerical relativity simulations, allowing

me to evolve the tidal disruption of a white dwarf around a supermassive black hole for the

first time.

The second part of this thesis explores the BNS merger in the massive scalar tensor theory.

This theory, proposed by Damour and Esposito-Farèse, introduces an additional scalar degree

of freedom that can alter the structure of neutron stars and lead to distinctive features in

gravitational wave (GW) signals. I conducted a series of numerical studies to quantify the

non-linear effects of this theory in binary neutron star mergers and explore signatures in GW

signals. My collaborators and I started by constructing initial data for quasi-equilibrium

configurations of binary neutron stars that are self-consistent with the massive scalar-tensor

theory, from which we suggested a constraint on the scalar mass. To further understand

the scalar effect on the coalescence dynamics and the post-merger remnant, I extended the

numerical relativity code SACRA-MPI to the massive scalar tensor theory and performed a

set of numerical simulations. I found that the modified gravity effect in the massive scalar

tensor theory can significantly alter the final fate of the merger remnant and provide various
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distinctive features that appear in a wide range of binary parameters. The presence of the

scalar field can also provide additional support from gravitational collapse, modifying the

final disk mass around the black hole and subsequent post-merger ejecta. I demonstrated

that a gravitational effect like scalarization can lead to a violation in quasi-universal relations.

In the last part of the thesis, I explore numerical relativity simulations under axisymmetric

configurations. Imposing axisymmetry drastically lowers the computation cost for numerical

simulation by reducing the problem’s size to two spatial dimensions, which facilitates a longer

simulation time of physical systems than three-dimensional simulations. I first consider

the collapsar system where I construct an approximate free-fall model consisting of a black

hole and infalling material started from large-mass progenitor stars to facilitate efficient

numerical simulations. Then, I introduce SACRA-2D, a new MPI and OpenMP parallelized,

fully relativistic hydrodynamics (GRHD) code in dynamical spacetime under axial symmetry

with the cartoon method, using the finite-volume shock-capturing schemes for hydrodynamics

I developed. Finally, one physical application of SACRA-2D is presented, which examines the

turning-point criterion of differential rotating NS in scalar-tensor theory under asymmetric

perturbation.
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Chapter 1

Introduction

Contents

1.1 Overview and motivationon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formulation in Numerical Relativity . . . . . . . . . . . . . . . . . . . . . . . . . 3

This thesis is based on the publication [209, 293, 303, 304, 305, 306]. Throughout this thesis,

the geometrical units of c = 1 = G are used where c and G are the speed of light and the

gravitational constant, respectively, but when it is necessary to clarify the units, G and c are

recovered. The subscripts a, b, c, · · · denote the spacetime coordinates while i, j, k, · · · the

spatial coordinates, respectively. This chapter provides an overview of the thesis and a basic

introduction of numerical relativity.

1.1 Overview and motivationon

The first part of the thesis (Part I) is dedicated to studying the tidal disruption of white

dwarfs by supermassive black holes through numerical relativity. Tidal disruption events

(TDEs) occur when a star passes closer to the tidal radius and gets torn apart by the tidal

force outside the event horizon of the black hole. The bounded fraction of tidal debris

subsequently falls back onto the black hole and circularizes to form an accretion disk with

potential jet launching, generating a luminous flare of radiation, including optical/UV and

X-ray emission. With over one hundred events already detected in different telescopes and

expected over several tens of thousands of detections in future transient surveys, TDEs act

as an excellent and promising astrophysical laboratory to probe the parameters of massive

black holes and the composition of the disrupted stars. This is particularly interesting if the
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companion star is a white dwarf, as white dwarf TDEs could occur for intermediate-mass

black holes (MBH ≲ 105 M⊙), potentially associated with GW signals, which could provide

rich information on intermediate-mass black holes if detected and help understand the dwarf

galaxy as well as the growth of massive black holes. However, numerical simulation of TDEs

is extremely challenging because it requires resolving vastly different length scales over a long

time. To address this, I developed a new method to evolve the tidal disruption of a white

dwarf around a supermassive black hole using numerical relativity simulation (Chapter 2).

The new formalism enables us to study the tidal disruption criteria in the relativistic regime

for the first time.

Part II discusses the process of binary neutron star merger under the framework of al-

ternative theories of gravity. Although Einstein’s theory of general relativity (GR) passes

many tests through observation of the Solar system and binary pulsars observation with

flying colors, the incongruity of GR with quantum description demands a modification of

gravity theory. The detection of the first GW signal from binary black holes mergers by

Laser Interferometer Gravitational Observatory (LIGO) and Virgo collaborations [2] marks

the beginning of the precision GW astrophysics era, providing us with a new and unique

tool to stringently test GR in an extremely dynamical and strong field gravity regime. To

better understand how detailed GW signatures correspond to specific features of alterna-

tive gravity, it is useful to conduct in-depth studies of specific alternative theories. One of

the most established modified theories of gravity is the DEF type of scalar-tensor theory

[142, 143] proposed as the low-energy limit of string theory where an additional scalar degree

of freedom is introduced with the scalar field coupled to the spacetime curvature. In this

theory class, a neutron star can spontaneously scalarize under specific conditions, altering

its structure. The influence of the scalar field on the stellar structure is strongly degenerate

with that of the supranuclear equation of states. That said, there are some effects exclusive

to the scalar field. For example, the presence of scalar charge for neutron stars gives rise

to additional dipolar radiation and speeds up the orbital decay of a binary due to the extra

energy lost. This allows pulsar timing observations to rule out the massless DEF theory

basically [419] and put a lower bound on the scalar mass of ≳ 10−16 eV as the scalar effect

is smeared off beyond the corresponding Compton wavelength. In Part II, my collaborator

and I conducted a series of numerical studies aiming to quantify the non-linear feature of

massive DEF theory in binary neutron star mergers and explore distinctive signatures in

GW signals, paying particular attention to scalar mass in ∼ 10−11 eV with corresponding

Compton wavelength ∼ 20 km, which could have scalar interaction imprinted in the late

inspiral phase. In Chapter 3, we constructed initial data for quasi-equilibrium configurations

of binary neutron stars that are self-consistent with DEF theory. From that, we compared

orbital energy obtained from the numerical data with the event GW170817 and suggested

a constraint on scalar mass ≳ 10−11 eV if both neutron stars are scalarized in the inspiral
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phase. To further understand the scalar effect on the dynamics of the coalescence and the

postmerger remnant, in Chapter 4 we extended the numerical relativity code SACRA-MPI to

the massive DEF theory and performed a set of numerical simulations to study comprehen-

sively the dependence on scalar mass and coupling strength. In Chapter 5, we demonstrated

a gravitational effect like scalarization could lead to a violation in quasi-universal relations

of GW signals.

In the final part of the thesis, Part III, we explore the applications of numerical relativ-

ity under axisymmetric configurations. Numerical relativity simulations are a crucial tool

for understanding the behavior of complex astrophysical systems, such as binary neutron

star mergers and black hole-neutron star mergers. However, these simulations are often

computationally expensive and require significant resources to perform. In contrast, some

specific systems can be approximated to be axisymmetric, reducing the problem’s size to two

spatial dimensions and drastically lowering the computation cost for numerical simulation.

For example, axisymmetric simulations have been useful in studying the long-term evolu-

tion of post-merger remnants from neutron star mergers and the core-collapse supernova.

In particular, to speed up the simulation of the collapsar, we developed a free-fall model in

Chapter 6 composed of a spinning black hole and infalling matter that self-consistently sat-

isfies constraint equations of general relativity. We also implemented SACRA-2D, a new MPI

and OpenMP parallelized, fully relativistic general-relativistic hydrodynamic (GRHD) code

in dynamical spacetime under axial symmetry with the cartoon method, described in Chap-

ter 7, which utilized the two-to-one fixed mesh refinement and the state-of-the-art HLLC

Riemann solver. Finally, we apply SACRA-2D in Chapter 8 to study the dynamical stability

of differentially rotating neutron stars in scalar-tensor theory.

1.2 Formulation in Numerical Relativity

1.2.1 The 3+1 decomposition

The Einstein equation connects the spacetime curvature and the stress-energy momentum

tensor Tab by

(4)Rab −
1

2
gab

(4)R =
8πG

c4
Tab, (1.1)

where gab is the metric, (4)Rab is the Ricci tensor, (4)R := gab
(4)Rab is the Ricci scalar. The

non-linear nature of the Einstein equations makes it challenging to find even the approxi-

mate solutions for dynamical systems. Therefore, numerical simulation becomes a reliable

way, sometimes the only method, to describe these systems accurately. To perform these

simulations, one must reformulate the Einstein equations as an initial-value problem, which

can be accomplished by the 3+1 decomposition. The following section will briefly outline the
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3+1 decomposition of spacetime and summarize some useful relations that are often used in

the later chapters. We refer the readers to the numerical relativity books from Baumgarte

and Shapiro [56] and Shibata [430] for a more detailed introduction.

In 3+1 decomposition, the spacetime manifold is foliated into a set of non-intersecting

spacelike hypersurfaces Σt, each defined as a level surface of the coordinate time t. We can

construct the future-directed timelike unit four-vector na normal to Σt given by

na = gabnb, na = −α∇at, α :=

−gab∇at∇bt

�−1/2
(1.2)

where the lapse function α > 0 determines the proper time α∆t between consecutive hyper-

surfaces Σt and Σt+∆t, and ∇a is the covarivant derivative associated with gab. The induced

spatial metric γab on the hypersurface can therefore be defined as

γab := gab + nanb. (1.3)

This allows us to construct the spatial projection tensor γa
b and the time projection tensor

Na
b as

γa
b := δab + nanb, Na

b := −nanb, (1.4)

which decomposes any generic four-vector V a into spatial part γa
bV

b and timelike partNa
bV

b,

and also define on Σt the corresponding spatial counterparts of Ricci tensor Rij, Ricci scalar

R, connection coefficients Γi
jk, as well as the covariant derivative Da for generic tensor

T b1b2···
c1c2··· as

DaT
b1b2···

c1c2··· := γa
dγb1

e1γ
b2

e2 · · · γc1f1γc2f2 · · ·∇dT
e1e2···

f1f2···, with Dcγab = 0. (1.5)

Consequently, the time unit vector ta := (∂/∂t)a can be decomposed as

ta = αna + βa, βa := γa
bt

b, (1.6)

where βa is the shift vector that measures the changes of spatial coordinates on the successive

hypersurfaces. The extrinsic curvature Kab is defined by the spatial projection of the gradient

of na on Σt as

Kab := −γa
c∇cnb = −1

2
Lnγab, (1.7)

where Ln is the Lie derivative with respect to na. Note that for pure spatial tensor, e.g., γab,

βa and Kab, it would be sufficient only to consider the spatial components, and hence only

the spatial indices are shown (i.e., γij, β
i and Kij).
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Under the 3+1 decomposition, the line element is therefore given by

ds2 = −α2dt2 + γij

βidt+ dxi

�
βjdt+ dxj

�
, (1.8)

and the stress-energy momentum tensor Tab is decomposed into

Tab = ρhnanb + Janb + Jbna + Sab, (1.9)

where

ρh = Tcdn
cnd, Ja = −Tcdγ

c
an

d, Sab = Tcdγ
c
aγ

d
b. (1.10)

In the Arnowitt–Deser–Misner (ADM) formulation [38, 532], the Einstein equations in

Eq. (1.1) are rewritten into a set of constraint and evolution equations of the dynamical

variables (γij, Kij) given by

R−KijK
ij +K2 = 16πρh, (Hamiltonian constraint) (1.11a)

DjKi
j −DiK = 8πJi, (Momentum constraint) (1.11b)


∂t − βk∂k

�
γij = −2αK + γik∂jβ

k + γjk ∂iβ
k, (Evolution for γij) (1.11c)


∂t − βk∂k

�
Kij = α


Rij − 2KikKj

k +KKij

�

− 8πα

�
Sij −

1

2
γij


Sk

k − ρh
��

−DiDjα +Kik∂jβ
k +Kjk∂iβ

k,

(Evolution for Kij) (1.11d)

where K := γijKij is the trace of the extrinsic curvature.

In addition to the 3+1 formulation, the conformal decomposition, originally developed

by Lichnerowicz [310] and York [349, 530, 531] for initial data construction, is often used

to factor out the gravitational potential part from the spatial metric in numerical relativity.

Under such formulation, the conformal spatial metric γ̃ij and the conformal traceless extrinsic

curvature Ãij are defined by

γ̃ij := ψ−4γij, (1.12a)

Ãij := ψ−4

�
Kij −

1

3
γijK

�
, (1.12b)

with the conformal factor ψ usually chosen to be

ψ := (γ/f)1/12 , (1.13)

where γ := det(γij) and f := det(fij) with fij being the flat spatial metric. The corresponding

conformal Ricci tensor R̃ij, Ricci scalar R̃, connection coefficient Γ̃i
jk and covariant derivative
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operator D̃i can be defined in a similar manner. The basic equations in the ADM formulation

Eq. (1.11) can hence be rewritten in the conformal decomposition formulation for variables

(γ̃ij, Ãij,ψ, K) with two additional algebraic constraints

det(γ̃ij) = f, γ̃ijÃij = 0. (1.14)

1.2.2 The Baumgarte-Shapiro–Shibata–Nakamura formulation

Despite the well-definedness of the 3+1 formulation, it forms a weakly hyperbolic system

and is not well-posed. If we numerically integrate the evolution equations directly, any small

numerical error will grow inevitably without bound. A strongly hyperbolic reformulation is

necessary to maintain a stable evolution. Shibata and Nakamura [433] recasted the equations

by introducing a new independent variable Fi := f jkD
(0)
j γ̃ik with D

(0)
j being the covariant

derivative associated with fij (the so-called Fi version). Later, Baumgarte and Shapiro

[55] proposed the Γ̃i version by instead defining Γ̃i := −D
(0)
j γ̃ij, which gives essentially

the same basic equations with slightly simpler form. This reformulation established the so-

called Baumgarte-Shapiro–Shibata–Nakamura (BSSN) formulation, one of the most popular

formulations in numerical relativity. The evolution equations of the BSSN formulation in the

Cartesian coordinate are summarized below

(∂t−βk∂k)W =
1

3
W


αK − ∂kβ

k
�
, (1.15a)

(∂t−βk∂k)γ̃ij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k, (1.15b)

(∂t−βk∂k)Ãij = W 2 (αRij −DiDjα− 8παSij)
TF + α

�
KÃij − 2ÃikÃj

k
�

+ Ãkj∂iβ
k + Ãki∂jβ

k − 2

3
Ãij∂kβ

k,
(1.15c)

(∂t−βk∂k)K = 4πα(Si
i + E) + α

�
ÃijÃ

ij +
1

3
K

�
−DiD

iα, (1.15d)

(∂t−βk∂k)Γ̃
i = −2Ãij∂jα + 2α

�
Γ̃i
jkÃ

jk − 1

3
γ̃ij∂jK − 3

W
Ãij∂jW − 8πγ̃ijSj

�

+
2

3
γ̃jkΓ̃i

jk∂lβ
l + γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k − γ̃klΓ̃j
kl∂jβ

i,

(1.15e)

where Sij
TF := Sij − 1

3
γijS

k
k corresponds to the tracefree part of a tensor Sij and W := ψ−2

is introduced to avoid divergent term of ψ appeared in the black hole [328] (χ := ψ−4 is

employed for some studies e.g., [119]).

1.2.3 Gauge conditions

The evolution equations from the 3+1 decomposition are not sufficient for numerical integra-

tion. One still has the gauge freedom to impose the coordinate conditions by specifying the
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lapse function α and the shift vectors βi. A proper choice of coordinates should avoid any

singularities, such as coordinate singularities and black hole singularity. One typical choice

for lapse α is the maximal slicing condition defined as

K = 0 = ∂tK, (1.16)

which yields a continuity equation for proper volume
√
γ

∂t
√
γ = ∂i

√
γβi

�
, (1.17)

which shows γ remains regular as long as a regular shift βi is chosen, suggesting this is

likely to have a singularity-avoidance property. This time slicing condition forms an elliptic

equation for α

γijDiDjα = α
�
KijK

ij + 4π

ρ+ Sk

k

��
(1.18)

which, combined with the Hamiltonian constraint, is often used in constructing the initial

data given by

γ̃ijD̃iD̃j (αψ) = αψ

�
7

8
ÃijÃ

ij +
1

8
R̃ + 2πψ4


ρ+ Sk

k

��
. (1.19)

The next issue is defining a spatial slicing condition with a ”regular” shift βi. Smarr and

York [463] proposed the minimal distortion gauge defined by

Dj


γ−1/3∂tγ̃

ij
�
= 0, (1.20)

which minimizes the global change rate of γ̃ij in every hypersurface based on the action I

I =

Z
d3x (∂tγ̃ij) (∂tγ̃kl) γ̃

ikγ̃jl√γ, (1.21)

hence the name ”minimal distortion”. Provided that the initial condition does not contain

large coordinate distortion, this gauge condition can eliminate coordinate-related fluctuations

on γ̃ij, which is desirable for long-term stable numerical evolution. The minimal distortion

gauge can be further written into a vector elliptic equation for βi by combining the evolution

equation of γ̃ij as

γ̃jkD̃jD̃kβ
i +

1

3
γ̃ijD̃jD̃kβ

k + R̃i
jβ

j +

�
γ̃ikD̃kβ

j + γ̃jkD̃kβ
i − 2

3
γ̃ijD̃kβ

k

�
D̃j lnψ

6 (1.22)

= 2ψ−6ÃijD̃jα +
4

3
αγ̃ijDjK + 16πψ4αSi. (1.23)

Despite the excellent physical property of the maximal slicing and minimal distortion
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gauge conditions, the fact that they take forms in elliptic type equations makes it compu-

tationally expensive for practical use. On the other hand, the dynamical gauge conditions,

which take forms in hyperbolic equations, are numerically more favorable. In particular,

the moving-puncture gauge [26, 42, 119] was established to become the standard gauge in

numerical relativity written as


∂t − βk∂k

�
α = −2αK, (1+log slicing) (1.24a)


∂t − βk∂k

�
βi =

3

4
Bi,


∂t − βk∂k

�
Bi =


∂t − βk∂k

�
Γ̃i − ηBB

i,
(hyperbolic Gamma-driver) (1.24b)

where Bi is a new auxiliary variable and ηB is a constant of order 1/M with M being the

total mass of the system.
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Breakdown of Contributions

This chapter is based on the publication: “Numerical-relativity simulation for tidal disruption

of white dwarfs by a supermassive black hole” in Phys.Rev.D 107 (2023) 4, 043033 [304] by

A. T.-L. Lam, M. Shibata and K. Kiuchi. I modified the code SACRA-MPI developed by

M. Shibata and K. Kiuchi to include the unequal levels in moving box structure and the

trumpet black hole background for the tidal disruption project. I also constructed an initial

data solver that consists of a supermassive black hole and a white dwarf in an elliptic orbit

built upon the open-source code octree-mg. All the numerical simulations were carried out

by me and all the plots were generated by me. K. Kiuchi provided constructive comments

on the manuscript written partially by me and M. Shibata.

Overview

In this Chapter, we study tidal disruption of white dwarfs in elliptic orbits with the eccen-

tricity of ∼ 1/3–2/3 by a nonspinning supermassive black hole of mass MBH = 105M⊙ in

fully general relativistic simulations targeting the extreme mass-ratio inspiral leading even-

tually to tidal disruption. Numerical-relativity simulations are performed by employing a
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suitable formulation in which the weak self-gravity of white dwarfs is accurately solved. We

reconfirm that tidal disruption occurs for white dwarfs of the typical mass of ∼ 0.6M⊙ and

radius ≈ 1.2×104 km near the marginally bound orbit around a nonspinning black hole with

MBH ≲ 4× 105M⊙.

2.1 Introduction

Tidal disruption of ordinary stars and/or white dwarfs by supermassive black holes has

been revealed to be one of the major sources of bright electromagnetic transients (see, e.g.,

Refs. [27, 410, 505]), which have been actively observed in the last decade. In addition,

gravitational waves emitted by tidal disruption of white dwarfs closely orbiting supermassive

black holes could be observable by Laser Interferometer Space Antenna (LISA) [31]. Elec-

tromagnetic signals associated with tidal excitation (e.g., Ref. [506]) or mass stripping (e.g.,

Refs. [274, 313, 318, 335] for related works) or tidal disruption (e.g., Refs. [400, 401]) of white

dwarfs can be an important electromagnetic counterpart of gravitational waves. Because the

expected event rate is not so high [324] that the signal-to-noise ratio of gravitational waves for

the LISA sensitivity is unlikely to be very high, the discovery of the possible electromagnetic

counterparts will help extract gravitational waves from the noisy data in the LISA mission.

The condition for mass shedding and tidal disruption during the cross encounter of stars

with supermassive black holes is often described by the so-called β-parameter defined by

β :=
rt
rp
, (2.1)

where rp is the periastron radius for the orbit and rt is the Hill’s radius [240] defined by

rt := R∗

�
MBH

M∗

�1/3

, (2.2)

with R∗ the stellar radius, M∗ the stellar mass, and MBH the mass of the supermassive

black hole, respectively. Since the early 1990s (see, e.g., Refs. [157, 273, 302]), a large

number of numerical simulations have been performed in the last three decades (see, e.g.,

Refs. [325, 399] for reviews of the latest works and Refs. [212, 404, 405, 406, 407, 408] for

some of the most advanced works). They have shown that mass stripping can take place

at the close encounter if β is larger than about 0.5, and tidal disruption can take place if

β ≳ 1 for stars in parabolic orbits (see, e.g., Refs. [222, 326, 399] for Newtonian simulation

works, and also early semianalytical work [320, 321]). It is also shown that for close orbits

around a black hole, the general relativistic effect can significantly reduce the critical value

of β for the tidal disruption [407]. Indeed, general relativistic works show that for circular

orbits near the innermost stable circular orbit of black holes, the mass shedding can occur
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even for β ∼ 0.4 [190, 254].

However, the previous analyses have been carried out in Newtonian gravity or in relativis-

tic gravity of a black hole with Newtonian (or no) gravity for the companion star or in a tidal

approximation with a relativistic tidal potential [190, 254, 327]. To date, no fully general

relativistic (the so-called numerical-relativity) simulation, i.e., a simulation with no approxi-

mation except for the finite differencing, has been done for the tidal disruption problem with

β ≲ 1 (but see Refs. [172, 174, 225] for a head-on and an off-axis collision).

Numerical-relativity simulation is suitable for the tidal disruption problem for the case

that the orbit at the tidal disruption is highly general-relativistic. This is particularly the

case for tidal disruption of white dwarfs by supermassive black holes because it can occur

only for orbits very close to the black-hole horizon. Advantages of the numerical-relativity

simulation are: (i) the redistribution of the energy and angular momentum of the star can

be followed in a straightforward manner and (ii) we can directly follow the matter motion

after the tidal disruption including the subsequent disk formation.

In this Chapter, we present a result of numerical-relativity simulations for tidal disruption

of white dwarfs of typical mass (0.6–0.8M⊙) by a supermassive black hole with relatively

low mass (MBH = 105M⊙) for the first time. For simplicity, the white dwarfs are modeled

by the Γ = 5/3 polytropic equation of state. As a first step toward more detailed and

systematic studies, we focus on tidal disruption of white dwarfs in mildly elliptic orbits

aiming at confirming that our numerical-relativity approach is suitable for reproducing the

criteria of tidal disruption, which has been already investigated in many previous works

referred to above.

This Chapter is organised as follows. In Section 2.2, we describe our formulation for

evolving gravitational fields, matter fields, and for providing initial data of a star in elliptic

orbits around supermassive black holes. In Section 2.3, numerical results are presented paying

particular attention to the criterion for tidal disruption. Section 2.4 is devoted to a summary.

2.2 Basic equations for the time evolution

2.2.1 Gravitational field

First, we reformulate the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 422]

in numerical relativity to a form suitable for the simulation of high-mass ratio binaries, in

particular for accurately computing a weak self-gravity of white dwarfs. Throughout this

Chapter, high-mass ratio binaries imply those composed of a very massive black hole of mass

MBH ≳ 105M⊙ and a white dwarf (or an ordinary star) of mass of M∗ = O(M⊙) with the

radius R∗ ≳ 103 km, for which the compactness defined by M∗/R∗ is smaller than 10−3.

We consider the two-body problem with a compact orbit of the orbital separation r ≲
30MBH. With such setting, the magnitude of the gravitational field generated by the black
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hole, which is defined by gab − ηab is, of order MBH/r > 10−2. Here gab and ηab are the space-

time metric and Minkowski metric, respectively. On the other hand, the magnitude of the

gravitational field generated by white dwarfs and ordinary stars is of order M∗/R∗ < 10−3,

which is much smaller than that by the black hole. To accurately preserve the nearly equilib-

rium state of such stars during their orbits, an accurate computation of the gravitational field

by them is required. However, if we simply solve Einstein’s equation, a numerical error for

the computation of the black-hole gravitational field can significantly affect the gravitational

field for the white dwarfs/ordinary stars. To avoid this numerical problem, we separate out

the gravitational field into the black hole part and other part, although we still solve fully

nonlinear equations. The idea employed here is similar to that of Ref. [174], but we develop

a formalism based on the BSSN formalism (see Eq. (1.15) in Chapter 1).

In this problem, we employ a variation of puncture gauge [25], in which the evolution

equations for α and βi are written by replacing the advective derivatives ∂t − ∂kβ
k to ∂t as

∂tα = −2αK, (2.3a)

∂tβ
i =

3

4
Bi, (2.3b)

∂tB
i = ∂tΓ̃

i − ηBB
i, (2.3c)

where Bi is an auxiliary three-component variable and ηB is a constant of order M−1
BH.

By introducing a static black-hole solution for the geometric variables, α0, β
i
0, γ̃

0
ij, W0,

Ã0
ij, and K0 and by writing all the variables by

α = α0 + αs, βi = βi
0 + βi

s, γ̃ij = γ̃0
ij + γ̃s

ij, W = W0 +Ws,

Ãij = Ã0
ij + Ãs

ij, K = K0 +Ks, Γ̃i = Γ̃i
0 + Γ̃i

s, (2.4)

we then write down the equations for αs, β
i
s, γ̃

s
ij, Ws, Ã

s
ij, Ks, and Γ̃i

s (these are denoted by

a representative variable Qs as follows). Specifically, the evolution equations Eq. (1.15) and

Eq. (2.3) of the geometrical variables (denoted by a representative variable Q) are schemati-

cally written in the form

∂tQ = F (Q). (2.5)

Then, for the decomposition of Q = Q0 + Qs with F (Q0) = 0 (under the conditions of

∂tQ0 = 0), we write the equation for Qs as

∂tQs = F (Q0 +Qs)− F (Q0). (2.6)

In numerical simulation, F (Q0) obtained from finite difference is nonzero, which contains the

truncation error of evolving the stationary background metric numerically. Here, we added
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the second term in the right-hand side to explicitly subtract the leading error of evolving the

background metric so that the right-hand side of the evolution equation of Qs does not have

the zeroth order terms in Qs

Any static black-hole solutions can be used for α0, β
i
0, · · · , but in the BSSN formalism

with the puncture gauge, the metric relaxes to a solution in the limit hypersurface with

K0 = 0. Using such a trumpet-puncture black hole also allows us to construct the initial

data in the conformal-thin-sandwich (CTS) formalism [53] (see Section 2.2.3). Thus, in the

present formalism, it is appropriate to employ such a solution. In the nonspinning black hole,

the analytic solution is known and is written as [180]

α0 =

r
1− 2MBH

R
+

27M4
BH

16R4
, (2.7a)

βi
0 =

3
√
3M2

BH

4R3
xi, (2.7b)

W0 =
r

R
, (2.7c)

γ̃0
ij = δij, i.e., Γ̃i

0 = 0, (2.7d)

Ã0
ij =

3
√
3M2

BH

4R3

�
δij − 3

xixj

r2

�
, (2.7e)

and K0 = 0 where R is a function of r determined by [54]

r =

 
2R +MBH +

p
4R2 + 4MBHR + 3M2

BH

4

!

×
"

(4 + 3
√
2)(2R− 3MBH)

8R + 6MBH + 3
p

8R2 + 8MBHR + 6M2
BH

#1/√2

.

(2.8)

We note that r = 0 corresponds toR = 3MBH/2 and the event horizon is located atR = 2MBH

(i.e., r ≈ 0.78MBH) in this solution.

2.2.2 Hydrodynamics

In this Chapter we model white dwarfs simply by the polytropic equation of state,

P = κρΓ, (2.9)

where P and ρ are the pressure and rest-mass density, respectively, κ the polytropic constant,

and Γ adiabatic index for which we set to be 5/3. For the hydrodynamics, we solve the
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continuity and Euler equations,

∇a(ρu
a) = 0, (2.10a)

∇aT
a
k = 0, (2.10b)

and

Tab = (ρ+ ρε+ P )uaub + Pgab, (2.11)

where ε and ua are the specific internal energy and four velocity, respectively. In this work,

we do not solve the energy equation, and determine ε simply by ε = κρΓ−1/(Γ− 1), which is

derived from the condition that the specific entropy is conserved for the fluid elements. The

continuity and Euler equations are solved in the same scheme as that used in Refs. [278, 526].

The motivation for using the polytropic equation of state comes from the fact that our

primary purpose of this Chapter is to explore the tidal disruption condition for a relatively

low value of β < 1 and the formation of shocks by the tidal compression does not play

any role. We here focus only on the process of tidal disruption and subsequent short-term

evolution of the tidally disrupted material. After the tidal disruption, the fluid is highly

elongated and during the long-term evolution of the fluid elements with different specific

energy and angular momentum, they collide and shocks are likely to be formed. For such

a phase, the shock heating will play an important role. Our plan is to follow this phase by

solving the energy equation with a more general equation of state.

2.2.3 Initial condition

First, we describe the formulation employed in this Chapter for computing the initial data

in which white dwarfs are approximately in an equilibrium state in their comoving frame.

From Eq. (2.10b), we have

ρua∇a(hui) +∇iP = 0, (2.12)

where h is the specific enthalpy defined by h := 1 + ε + P/ρ. To derive Eq. (2.12), we used

Eq. (2.10a).

For the isentropic fluid, the first law of thermodynamics is written as

ρdh = dP, (2.13)

where dQ denotes the variation of a quantity Q in the fluid rest frame. In the polytropic
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equations of state employed in this work, we obtain the relation

h =

Z
dP

ρ
and ln h =

Z
dP

ρh
. (2.14)

In this situation, Eq. (2.12) is rewritten to

ua∇a(hui) + ∂ih = 0. (2.15)

Then, we define ka := ua/ut. Using this quantity, Eq. (2.15) is written to

utLk(hui)− uthua∇ik
a + ∂ih = 0, (2.16)

where Lk denotes the Lie derivative with respect to ka. The second term of Eq. (2.16) is

written as

uthua∇ik
a = uthua∇i(u

a/ut) = h∂i ln u
t, (2.17)

where we used uaua = −1. Thus, Eq. (2.16) is written to

Lk(hui) + ∂i(h/u
t) = 0. (2.18)

We consider an initial condition for a system composed of a star of mass M∗ and radius

R∗, for which the center is located on the x-axis, around a massive black hole of mass

MBH ≫ M∗ and MBH ≫ R∗ which is located at a coordinate origin. We assume that the star

predominantly moves toward the y-direction with the identical specific momentum. Thus we

set vi := ui/ut = −βi
0 + V i where V i = V δiy with V being a constant to be determined.

Here the term of βi
0 is added to simplify the iteration process for computing quasiequilibrium

states. Then, ut is calculated from

ut =
�
α2 − γij(v

i + βi)(vj + βj)
�−1/2

. (2.19)

In the present context, Lk(hui) can be assumed to be zero for i = y and z, because the star

has momentarily translation invariance for the motion toward the y- and z-directions. By

contrast, with respect to the x-direction, the star receives the force from the massive black

hole. Since the radius of the star, R∗, is much smaller than the orbital separation, x0, and x0 is

larger than the black-hole radius of ∼ MBH, Lk(hui) for the x–direction can be approximated

by ∂i[A(x − x0)] where we take A to be a constant, which should be approximately the

Newtonian gravitational acceleration caused by the black-hole written as ∼ −MBH/x
2
0 for

x0 > 0. Then, Eq. (2.18) is integrated to give

A(x− x0) +
h

ut
= C, (2.20)
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where C is an integration constant. We note that Eq. (2.20) is not an exact first integral

of the Euler equation but can be considered as an approximate one for obtaining an initial

condition in which the star is in an approximate equilibrium state.

For computing initial conditions, we assume the line elements of the form

ds2 = −(α2 − βkβ
k)dt2 + 2βkdtdx

k + ψ4δijdx
idxj, (2.21)

where ψ is the conformal factor. Using the Isenberg-Wilson-Mathews formalism [253, 516],

the basic equations are written as

∆ψ = −2πρhψ
5 − ψ−7

8
ÂijÂ

ij, (2.22a)

∆(αψ) = 2παψ5(ρh + 2S) +
7

8
αψ−7ÂijÂ

ij, (2.22b)

∂iÂ
i
j = 8πJjψ

6, (2.22c)

where

ρh = ρh(αut)2 − P, S = ρh[(αut)2 − 1] + 3P, Ji = ρhαutui, (2.23)

and ∆ is the flat Laplacian. Âij is defined from the extrinsic curvature, Ãij, by Âij = ψ6Ãij

and K is set to be zero. Using the CTS decomposition [58, 533] with trumpet-puncture

Âij = Âij
0 +

ψ6

2α
(Lβs)

ij , (2.24)

Eq. (2.22c) is rewritten as

∂j∂
jβi

s +
1

3
δij∂j∂kβ

k
s = 16παψ4J i + (Lβs)

ij ∂j ln

αψ−6

�
, (2.25)

where (Lβs)
ij =


δik∂kβ

j
s + δjk∂kβ

i
s − 2

3
δij∂kβ

k
s

�
. Note that although there are some works

in constructing binary black holes initial data with trumpet-puncture [131, 158, 250], this

is, to our knowledge, the first attempt combining the CTS decomposition and puncture

method with the limit (trumpet) hypersurface in constructing quasi-equilibrium initial data

in nonvacuum spacetime. We assume that the contribution to the extrinsic curvature from

the black hole is negligible because the orbital momentum of the black hole is negligible in

this problem, and thus, we set the black hole at rest (however, it is straightforward to take

into account the small black-hole motion [462] in our formalism.)

For a solution of the initial data, we have to determine the free parameters, A, C, and V .

In the polytropic equation of state, we can consider κ as well as the central density ρc as free

parameters. In the following, we first consider that V and the rest mass of the star are input

parameters and A, C, and κ are parameters to be determined during the iteration process in
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numerical computation. Our method to adjust κ to a desired value will be described later.

To determine these three parameters we need three conditions, for which we choose the

following relations. First, we fix the location of the surface of white dwarfs along the x-axis

as x = x1 (referred to as point 1) and x = x2 (point 2). Typically, we choose x1 + x2 = 2x0.

At the surface, h = 1, and thus, Eq. (2.20) gives

A(x1 − x0) +
1

ut
1

= A(x2 − x0) +
1

ut
2

= C, (2.26)

where ut
1 and ut

2 are the values of ut at points 1 and 2. In addition, we fix the rest mass of

the star which is defined by

m∗ =

Z
d3xραψ6ut, (2.27)

where m∗ is approximately equal to the gravitational mass M∗ because the star is only weakly

self-gravitating.

Using the condition (2.26), the values of C and A are determined, and subsequently, h

is determined from Eq. (2.20). In the polytropic equation of state, the rest-mass density is

written as

ρ =

�
(h− 1)(Γ− 1)

κΓ

�1/(Γ−1)

, (2.28)

and thus, from Eq. (2.27), κ is determined for given values of m∗ and x2 − x1. Once these

free parameters are determined, the rest-mass density is obtained from Eq. (2.28).

For a realistic setting, we have to obtain the desired values of the mass of the star and the

value of κ. The value of κ is controlled by varying the stellar diameter x2 − x1 for a given

value of m∗.

To take into account the effect of the black-hole gravity, we employ the puncture formu-

lation by setting

ψ = ψ0 + ϕ, αψ = α0ψ0 +X, βk = βk
0 + βk

s , Âij = Â0
ij + Âs

ij, (2.29)

where ψ0, α0, βk
0 , and Â0

ij denote the solutions of vacuum Einstein’s equation shown al-

ready in Section 2.2.1. Then we numerically solve the equations for ϕ, X, βk
s , and Âs

ij from

Eqs. (2.22a), (2.22b), (2.24) and (2.25). The initial data is prepared using the octree-mg

code [488], an open source multigrid library with an octree adaptive-mesh refinement (AMR)

grid, which we modified to support a fourth-order finite-difference elliptic solver.
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Figure 2.1: Maximum density as a function of time for model M7V165 (top) with N = 40, 60, 70, and model
M8V17 (bottom) with N = 60, 82, 102. We find that a fair convergence is obtained with N = 60.

2.3 Numerical simulation

2.3.1 Setup

The simulation is performed using an AMR algorithm with the equatorial symmetry imposed

on the z = 0 (equatorial) plane using the SACRA-TD code (for SACRA see Refs. [278, 526]).

We prepare two sets of finer domains, one of which comoves with a white dwarf and the

other of which is located around the center and covers the massive black hole. Because the

radius of the white dwarf, R∗, is smaller than the black-hole horizon radius ∼ MBH, we need

to prepare more domains for resolving the white dwarf. In addition to these domains, we

prepare coarser domains that contain both the finer domains in their inside. All the domains

are covered by (2N +1, 2N +1, N +1) grid points for (x, y, z) with N being an even number.

Specifically, each domain is labeled by i which runs as 0, 1, 2, · · · , ifix, · · · , iBH, · · · , imax.

The grid resolution for the domains with ifix ≤ i ≤ iBH is identical with that with iBH + 1 ≤
i ≤ 2iBH − ifix + 1(< imax), respectively. For 0 ≤ i ≤ iBH, the center of the domain is located

at the origin, at which a black hole is present. Strictly speaking, the black hole moves due to

the backreaction against the motion of the companion star, but this motion is tiny because

of the condition MBH ≫ M∗. For these domains, the ith level covers a half cubic region of

[−Li : Li]× [−Li : Li]× [0 : Li] where Li = N∆xi, ∆xi is the grid spacing for the ith level,

and the grid spacing for each level is determined by ∆xi+1 = ∆xi/2 (i = 0, 1, 2, · · · , iBH − 1

and i = iBH + 1, · · · , imax − 1) with ∆xiBH+1 = ∆xifix and LiBH
∼ 0.8MBH.

For the moving domains that cover the white dwarf, the center is chosen to approximately
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Table 2.1: Models considered in this Chapter and the fate (last column). M7V16a and M7V16b correspond to the
models with R∗ = 8.5× 103 and 7.0× 103 km, respectively. For other models, R∗ ≈ 104(M∗/0.7M⊙)−1/3 km.
rp and rp,A are periastron radius in the present coordinates and the Schwarzschild coordinates, respectively.
TD and OC denote tidal disruption and appreciable oscillation of white dwarfs, and NN denotes that no
appreciable tidal effect is found.

ID V M∗(M⊙) rp/MBH rp,A/MBH J/MBH β Fate

M6V16 0.160 0.6 4.401 5.456 3.775 0.72 TD
M7V16 0.160 0.7 4.401 5.456 3.775 0.65 TD
M7V16a 0.160 0.7 4.401 5.456 3.775 0.55 TD
M7V16b 0.160 0.7 4.401 5.456 3.775 0.45 TD/OC
M8V16 0.160 0.8 4.401 5.456 3.775 0.59 TD
M7V165 0.165 0.7 5.770 6.813 3.897 0.52 TD
M8V165 0.165 0.8 5.770 6.813 3.897 0.47 TD/OC
M6V17 0.170 0.6 7.030 8.065 4.019 0.49 TD/OC
M7V17 0.170 0.7 7.030 8.065 4.019 0.44 OC
M8V17 0.170 0.8 7.030 8.065 4.019 0.40 OC
M6V175 0.175 0.6 8.317 9.346 4.142 0.42 OC
M7V18 0.180 0.7 9.681 10.707 4.265 0.33 NN

agree with the location of the density maximum. In the present context, the local density

maximum is approximately located along a geodesic around the supermassive black hole.

The size of the finest domain with i = imax, Lmax, is chosen so that it is 1.3–1.5R∗. We check

the convergence of two different models with three grid resolutions as illustrated in Fig. 2.1.

Higher resolution is used for model M8V17 to measure the spin up of the white dwarf more

accurately (see Section 2.3.2). We obtain good convergence for both models, and thus, we

employ N = 60 as the standard resolution in this Chapter.

2.3.2 Numerical results

In this Chapter we focus on the case that the black-hole mass is MBH = 105M⊙, the white-

dwarf mass is M∗ = 0.6, 0.7, and 0.8M⊙. For the polytropic equation of state, the stellar

radius, R∗, is proportional to M
(Γ−2)/(3Γ−4)
∗ for a fixed value of κ. Thus, for Γ = 5/3, the

stellar radius depends only weakly on the stellar mass. In the present case we basically choose

the value of κ so that R∗ ≈ 1.0× 104(M∗/0.7M⊙)−1/3 km. For M∗ = 0.7M⊙ and V = 0.160,

we also prepare two additional cases where κ is chosen such that R∗ = 8.5 × 103 km and

R∗ = 7.0× 103 km.

The initial separation is set to be x0 = 20MBH (it is ≈ 21.01MBH in the Schwarzschild

coordinates), and V is chosen to be 0.160, 0.165, 0.170, 0.175, and 0.180 (see Table 2.1).

The corresponding specific angular momentum of the white dwarf is J ≈ 3.7748, 3.8968,

4.0192, 4.142, and 4.2653MBH, and the resulting periastron radius is rp/MBH(rp,A/MBH) =

4.401(5.456), 5.770 (6.813), 7.030 (8.065), 8.317 (9.346), and 9.681 (10.707) where in the

parenthesis the values in the Schwarzschild coordinate, i.e., areal radius (hereafter denoted

by rp,A), are described. In Fig. 2.2, we plot the geodesics only for one orbital period for
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Figure 2.2: Geodesics for V = 0.160, 0.165, 0.170, 0.175 and 0.180 in the coordinates of g0ab. Those only
for one orbital period started from x = 20MBH and y = z = 0 are plotted. The filled circle at the center
represents the black hole with the coordinate radius of its event horizon r ≈ 0.78MBH.

V = 0.160, 0.165, 0.170, and 0.180.

With these settings, the white dwarf has an elliptic orbit around the black hole with

the periastron at rp ≈ (4.4–10)MBH, and thus, the eccentricity is approximately defined by

e = (x0 − rp)/(x0 + rp) is ≈ 1/3–2/3. Here, x0(= 20MBH) and rp are defined in the radial

coordinates of the metric of g0ab, and thus, the values of e slightly change if we define it in

the areal coordinate (Schwarzschild radial coordinate).

For the models mentioned above, the value of β is in the range between 0.33 and 0.72 and

estimated by

β ≈ 0.59

�
R∗

104 km

��
M∗

0.7M⊙

�−1/3 �
rp,A
6MBH

�−1 �
MBH

105M⊙

�−2/3

, (2.30)

where the areal radius rp,A is used for the definition of β in this section. For V = 0.160 and

0.165 with M∗ = 0.6–0.8M⊙, we find 0.50 ≤ β ≤ 0.7, and thus, the white dwarf is expected
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Figure 2.3: The maximum density as a function of time for V = 0.160, 0.165, 0.170, and 0.180 with M∗ =
0.7M⊙. The maximum density is normalized by the initial value denoted by ρ0.

to be strongly perturbed by the black-hole tidal field for M∗ = 0.6–0.8M⊙. By contrast, for

V = 0.180, β < 0.35 with M∗ = 0.7M⊙, and thus, the tidal force of the black hole is likely to

be too weak to perturb the white dwarf.

For V = 0.170, β ≈ 0.49, 0.44, and 0.40 with M∗ = 0.6, 0.7, and 0.8M⊙ respectively.

In these cases, tidal disruption is not very likely to take place but the tidal force from the

black hole should induce the stellar oscillation on the white dwarf. Because for Γ = 5/3, the

stellar radius depends only weakly on the stellar mass, the presence or absence of the tidal

disruption is likely to depend primarily on the value of V (or the specific angular momentum

of the white dwarfs) in the present setting. In the following, we will show that our code can

reproduce all these expected phenomena.

Fig. 2.3 plots the evolution of the maximum density for V = 0.160, 0.165, 0.170, and 0.180

with M∗ = 0.7M⊙. We note that for MBH = 105M⊙, the orbital period for these parameters

are in the range from ≈ 220 s for V = 0.160 to ≈ 250 s for V = 0.180. The figure shows the

results expected in the previous paragraphs: For M7V16 and M7V165, the white dwarfs are

tidally disrupted while approaching the black hole irrespective of the white-dwarf mass. For

M7V17 (β = 0.44), the white dwarf is perturbed by the black hole near the periastron but it

is not tidally disrupted. After the close encounter, the white dwarf is in an oscillating state

due to the instantaneous tidal force received from the black hole. By contrast, for M7V18, the

maximum density is approximately preserved to be constant, suggesting no disruption occurs

and the tidal effect is negligible. Note that such tidal field may still perturb the white dwarf

and produce detectable electromagnetic or gravitational-wave signal if a sufficient amplitude
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Figure 2.4: The maximum density as a function of time for the cases that stellar oscillation occurs (0.5 ≳ β ≳
0.4). The red, blue, and green curves show the results with M∗ = 0.6M⊙, 0.7M⊙ and 0.8M⊙, respectively.
The maximum density is normalized by the initial value denoted by ρ0.

of oscillation is induced.

In Fig. 2.3, the results of M7V16 (β = 0.65), M7V16a (β = 0.55) and M7V16b (β = 0.45) are

also compared. As expected, for the first two models, the white dwarfs are tidally disrupted,

while for the most compact white dwarf, the tidal disruption does not occur although it is

perturbed significantly by the black-hole tidal force. This illustrates that the β parameter is

a good indicator for assessing whether tidal disruption takes place or not irrespective of the

white-dwarf radius.

Fig. 2.4 shows the evolution of the maximum density when stellar oscillation is induced.

For M6V17 (β = 0.49), the white dwarf is significantly elongated by the tidal force from

the black hole; the central density is decreased to less than 50% of the original value after

passing through the periastron. Associated with the tidal effect, the mass is lost from the

white dwarf. However, with the increase of the orbital radius, the central density increases

again, resulting in a less massive white dwarf. This is also the case for M8V165 (β = 0.47) and

M7V16b (β = 0.45). These results indicate that the critical value of β for the tidal disruption is

∼ 0.50 and the threshold value for exciting a high-amplitude oscillation is β ∼ 0.45. Fig. 2.4

also shows that even for 0.40 ≲ β ≲ 0.45 an appreciable oscillation is excited by the tidal

force.

In Fig. 2.5 and Table 2.1, we summarize the fates of white dwarfs as a result of the tidal

interaction. It is found that for β ≳ 0.5 tidal disruption takes place and for β ≳ 0.4, the

white dwarfs are perturbed appreciably by the black-hole tidal field. All these results agree
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Figure 2.5: A summary for the fate of the white dwarfs in the plane of M∗ and β. TD and OC denote that
tidal disruption and appreciable oscillation of the white dwarfs are observed after the close encounter of the
white dwarfs with the black hole. NN denotes that no appreciable tidal effect is observed.

approximately with the expectation from the previous studies.

For M7V16, tidal disruption takes place but only a small fraction of the white dwarf matter

falls into the black hole because the fluid elements have specific angular momentum large

enough to escape capturing by the black hole. Most of the tidally disrupted matter ap-

proximately maintains the original elliptic orbit (see Fig. 2.6) although the matter has an

elongated profile. To clarify the eventual matter distribution around the black hole, we will

need to follow the matter motion for more than 10 orbits. This topic is one of our major

research targets in the future.

For 0.4 ≲ β ≲ 0.5, the white dwarf will be continuously perturbed by the black-hole

tidal force whenever it passes through the periastron. In addition, the angular momentum is

transported during the tidal interaction, and it will lead to the transport of the orbital angular

momentum to the white dwarf, resulting in a spin-up of it. According to a perturbation study

for the stellar encounter, the energy deposition during the tidal interaction in one orbit is
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Figure 2.6: The density profiles of the tidally-disrupted white dwarf for the model V = 0.160 andM∗ = 0.7M⊙
(M7V16). The units of the length scale for the density plots are GMBH/c

2 ≈ 1.48× 105 km. The solid and
dashed curves show the time evolution for the location of the maximum density and the elliptic orbit shown
in Fig. 2.2 for V = 0.160 (i.e., geodesic). The length scale of x and y axes is shown in units of MBH.

written approximately as [375]

∆Etid = ftid

�
M2

∗
R∗

��
MBH

M∗

�2 �
R∗
rp,A

�6

= ftid

�
M2

∗
R∗

�
β6.

(2.31)

where ftid is a factor of O(0.1), which depends on β and the equation of state. Associated

with the energy deposition near the periastron, the angular momentum deposition is also

deposited. In one orbit it is approximately estimated by ∆Jspin ≈ ∆Etid/Ωp [296] where

Ωp =
q

MBH/r3p,A, and thus,

∆Jspin = fspinM∗
p

M∗R∗

�
MBH

M∗

�3/2 �
R∗
rp,A

�9/2

= fspinM∗
p

M∗R∗β
9/2,

(2.32)

where fspin is a coefficient of the same order of the magnitude of ftid.
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Figure 2.7: The rescaled change in angular momentum ∆Jspin/

M∗

√
M∗R∗β9/2

�
as a function of time for

the stellar oscillation scenario (M8V17). This agrees with the analytic expression Eq. (2.32) if fspin ∼ 0.1–0.3.

Because the maximum spin angular momentum of the star is approximately written as

M∗
√
M∗R∗, we find that ∆Jspin can be more than 0.1% of the maximum spin if a white dwarf

passes through a close orbit with β ≳ 0.4. We approximate the orbit angular momentum

Jorbit and the spin angular momentum Jspin of the white dwarf as

Jorbit = Mh (⟨x⟩ ⟨uy⟩ − ⟨y⟩ ⟨ux⟩) , (2.33a)

Jspin =

Z
d3xψ6ρh [(x− ⟨x⟩) (uy − ⟨uy⟩)− (y − ⟨y⟩) (ux − ⟨ux⟩)] , (2.33b)

whereMh :=
R
d3xψ6ρh and the volume average of quantity q is defined as ⟨q⟩ := 1

Mh

R
d3xψ6ρhq.

In such decomposition, the sum of orbital and spin angular momentum equals the total an-

gular momentum of the white dwarfs. We analyzed the spin angular momentum gain of the

white dwarfs for M8V17, and we indeed find ∆Jspin/(M∗
√
M∗R∗β9/2) ≈ 0.1–0.3 as shown in

Fig. 2.7. Note that the spin up of white dwarf ∆Jspin is about 10−6 of the total angular

momentum, and hence, it is not easy to determine ∆Jspin accurately. Although we cannot

achieve a good convergence in ∆Jspin, we are able to obtain a noticeable rise in Jspin during

the close encounter, which suggests fspin ∼ 0.1–0.3, consistent with the above analytic result.

For close orbits, the tidal angular-momentum transport can dominate over the orbital

angular momentum loss by gravitational-radiation reaction. Assuming that gravitational

waves are most efficiently emitted near the periastron at which we may approximate the

orbit to be circular, the angular momentum dissipation by gravitational waves in one orbit
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can be written as [368]

∆JGW ≈ 64π

5

M2
BHM

2
∗

r2p,A

�
1 +

7e2

8

�
, (2.34)

where e denotes the eccentricity. Thus, the ratio of ∆Jtid to ∆JGW is written as

∆Jspin

∆JGW

≈ 23fspin

�
rp,A
4MBH

�−5/2 �
MBH

105M⊙

�−3 �
M∗

0.7M⊙

�−2 �
R∗

104 km

�5 �
1 +

7e2

8

�−1

. (2.35)

Thus it is larger than unity for rp,A ≲ 7MBH/c
2, R∗ ≈ 104 km, MBH = 105M⊙, M∗ = 0.7M⊙,

and fspin = 0.2. This is also the case for the ratio of ∆Etid/∆EGW where ∆EGW is the energy

dissipated by gravitational waves in one orbit. Thus, near the tidal disruption orbit, the

orbital evolution would be primarily determined not by the gravitational-wave emission but

by the tidal effect. To clarify the eventual fate of such a white dwarf, we obviously need a

long-term accurate simulation. Such a topic is one of our future targets.

We note that both ∆Jspin and ∆JGW are much smaller than the orbital angular momen-

tum of order M∗
p

MBHrp,A. Thus, the cumulative effect of the tidal angular momentum

transport plays an important role just prior to the tidal disruption. By repeated tidal

interaction, the spin angular velocity of the white dwarfs is likely to be enhanced up to

∼ M
1/2
BH /r

3/2
p = β3/2M

1/2
∗ /R

3/2
∗ . In addition, the stellar oscillation for which the oscillation

energy is comparable to or larger than the rotational kinetic energy should be excited. As a

result, mass loss could be induced, resulting in the increase of the stellar radius and enhanc-

ing the importance of tidal interaction. In this type of the system, the tidal disruption is

unlikely to take place by one strong impact by the black-hole tidal force but likely to do as a

result of a secular increase of the stellar radius (see, e.g., Refs. [141, 313] for related studies).

2.4 Discussion

We reported a new numerical-relativity code which enables us to explore tidal disruption

of white dwarfs by a relatively low-mass supermassive black hole. As a first step toward

more detailed future studies, we paid attention to the condition for tidal disruption of white

dwarfs with typical mass range in elliptic orbits by a nonspinning supermassive black hole.

We showed that our code is capable of determining the condition for the tidal disruption. As

expected from previous general relativistic works (e.g., Refs. [254, 407]), the tidal disruption

takes place for β ≳ 0.5 and an appreciable oscillation of the white dwarfs are induced by

the black-hole tidal effect for β ≳ 0.4 for orbits close to the black hole in the Γ = 5/3

polytropic equation of state. The critical value for the onset of the tidal disruption is smaller

than that obtained by Newtonian analysis. For white dwarfs with M∗ = 0.6M⊙ and R∗ =

1.2× 104 km, β can be larger than 0.4 even for MBH ≈ 4× 105M⊙ if the periastron radius is
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rp,A = 4MBH. Our result indicates that in such systems with a relatively low-mass (but not

intermediate-mass) supermassive black hole for which gravitational waves in the late inspiral

phase can be detected by LISA [31], tidal disruption can occur for typical white dwarfs. For

spinning black holes with the dimensionless spin parameter of ≳ 0.9, rp,A can be smaller than

∼ 1.7MBH [47]. For such black holes, tidal disruption of typical-mass white dwarfs may occur

even for MBH ≈ 106M⊙. Investigation of this possibility is a future issue.

There are several issues to be explored. The first one is to extend our implementation for

spinning black holes. Since no analytic solution is known for the spacetime of spinning black

holes on the limit hypersurface, we need to develop a method to provide g0ab for employing

the formulation introduced in this Chapter. One straightforward way to prepare such data

is just to numerically perform a simulation for a spinning black hole (in vacuum) until the

hypersurface reaches the limit hypersurface as a first step, and then, the obtained data are

saved and used in the subsequent simulations with white dwarfs. A more subtle issue along

this line is to prepare the initial condition. For nonspinning black holes, we can assume

that the conformal flatness of the three metric, and as a result, the initial-value equations

are composed only of elliptic-type equations with the flat Laplacian. For the spinning black

holes, the basic equations are composed of elliptic-type equations of complicated Laplacian,

and hence, the numerical computation could be more demanding, although in principle it

would be still possible to obtain an initial condition. We plan to explore this strategy in the

subsequent work.

For modeling realistic white dwarfs it is necessary to implement a realistic equation of

state. If we assume that the temperature of the white dwarfs is sufficiently low and the

pressure is dominated by that of degenerate electrons, it is straightforward to implement

this.

More challenging issue is to follow the hydrodynamics of tidally disrupted white-dwarf

matter for a long term. After the tidal disruption, the matter of the white dwarf is likely

to move around the black hole for many orbits. During such orbits, the matter collides each

other, and eventually, a compact disk will be formed after the circularization. Such disks are

likely to be hot due to the shock heating, and thus, it can be a source of electromagnetic

counterparts of the tidal disruption. In the presence of magnetic fields, magnetorotational

instability [43] occurs in the disk, and the magnetic fields will be amplified. If the amplified

magnetic field eventually penetrates the black hole and if the black hole is appreciably spin-

ning, a jet may be launched through the Blandford-Znajek effect [95]. After the amplification

of the magnetic fields, a turbulent state will be developed in the disk and mass ejection could

occur by the effective viscosity or magneto-centrifugal force [94]. The ejecta may be a source

of electromagnetic signals. One long-term issue is to investigate such scenarios by general

relativistic magnetohydrodynamics.





Part II

Binary neutron star mergers in

massive scalar-tensor theory

31





Chapter 3. Quasi-equilibrium states and dynamical enhancement of the scalarization 33

Chapter 3

Quasi-equilibrium states and

dynamical enhancement of the

scalarization

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Theoretical and observational aspects of the theory . . . . . . . . . . . . . . . . 37

3.3 Virial theorem, tensor mass, and asymptotic behavior of the geometry . . . . 43

3.4 Binary neutron stars in quasi-equilibria . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Breakdown of Contribution

This chapter is based on the publication: “Binary neutron star mergers in massive scalar-

tensor theory: Quasiequilibrium states and dynamical enhancement of the scalarization” in

Phys.Rev.D 108 (2023) 6, 064057 [294] by H.-J. Kuan, K. V. Aelst, A. T.-L. Lam and

M. Shibata. K. V. Aelst developed the initial data solver of binary neutron stars in massive

scalar-tensor theory based on the open-source code FUKA. The modified gravitational field

equations in quasi-equilibria were derived by H.-J. Kuan and me. I also proposed a change

of scalar field variable to better capture the asymptotic exponential decay, and helped fixing

some bugs during the development of the initial data code. The numerical calculation of

the quasi-equilibrium sequences was performed by H.-J. Kuan. K. V. Aelst and I provided

constructive comments on the manuscript written partially by H.-J. Kuan and M. Shibata.
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Overview

In this Chapter, we study quasi-equilibrium sequences of binary neutron stars in the frame-

work of Damour-Esposito-Farese-type scalar-tensor theory of gravity with a massive scalar

field, paying particular attention to the case where neutron stars are already spontaneously

scalarized at distant orbits, i.e., in the high coupling constant case. Although scalar effects

are largely quenched when the separation a is ≳ 3–6 times of the Compton length-scale that

is defined by the scalar mass, we show that the interaction between the scalar fields of the two

neutron stars generates a scalar cloud surrounding the binary at the price of orbital energy

when a ≲ 3–6 times of the Compton length-scale. This enables us to constrain the scalar

mass mϕ from gravitational-wave observations of binary neutron star mergers by inspecting

the dephasing due to such phenomenon. In particular, the event GW170817 is suggestive of

a constraint of mϕ ≳ 10−11 eV and the coupling strength should be mild if the neutron stars

in this system were spontaneously scalarized.

3.1 Introduction

General relativity (GR) has been put against a variety of observations and yet been chal-

lenged, while it has also proven to be incomplete from the theoretical point of view for its

nonrenormalizability (e.g., [50, 51]). Among the extensions to GR present in the literature,

Damour-Esposito-Farese (DEF) type of scalar-tensor (ST) theory of gravity is perhaps most

widely considered. In such theory, the gravity around a scalarized compact object acquires

a distinct feature from that in GR, modifying the trajectory of orbiting companions. In par-

ticular, the motion of binaries will be influenced to deviate from the GR prediction if there

is scalar interaction between the two components at play. In addition, scalar waves will be

emitted from binaries consisting of differently scalarized components, constituting extra loss

of orbital energy. Lacking the evidence of the aforementioned two effects in the pulsar timing

observation of neutron star-white dwarf (NS-WD) binaries has placed strong constraints on

ST theories with a massless scalar field [33, 74, 145, 197, 224, 419]. Such constraints are

rather stringent for the presence of a scalar charge of neutron stars (NSs) [128, 538]. These

constraints can, however, be mitigated by the inclusion of scalar mass mϕ [28, 385]. The

scalar effects beyond the associated Compton length-scale λ̄comp = ℏc/mϕ are smeared out,

thus naturally accounting for the non-detection of scalar dynamics that could take place in

these binaries. In particular, the constraints by the pulsar timing are lifted to a large extent

if the scalar field has a light mass mϕ ≫ 10−16 eV (corresponding to a Compton length-scale

λ̄comp ≪ 1.5× 106 km) [385]. With this small mass, the scalar interaction within NS-WD bi-

naries and the emission of scalar waves from them are suppressed, leading to identical orbital

evolution with that in GR. Therefore, including a scalar mass not only increases the dimen-

sion of the parameter space by one but unlocks the previously ruled-out region. However,
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NS-WD binaries could barely put constraints on the massive theory since a light scalar field

is enough to lift the constraining power of pulsar timing observations. On the other hand,

an ever-stringent lower bound on the scalar mass may be placed by pre-merger gravitational

waves (GWs) from coalescing binary neutron stars (BNSs).

For BNS mergers, the growth of the scalar field can be activated by the gravitational

compactness of the binary, defined as the ratio of the total mass to the orbital separation,

forming another kind of scalarization [46, 409, 432, 450] (see also [270, 271, 361, 415] for

semi-analytical modeling) other than the spontaneous ones [34, 143]. In the same spirit as

pulsar timing constraints, the absence of both kinds of scalarization in the event GW170817

suggests that spontaneously scalarized NSs are unlikely present in the associated coalescing

BNS if the scalar field is massless [537]. To probe massive ST theory by GW physics, a

pursue of scalar masses 10−12–10−11 eV is of particular interest since the associated Compton

length-scale is comparable with or smaller than the typical orbital separation of ∼ 30–200 km

when the BNS comes in the detection window.

It is widely known that the uncertainty on the theory of gravity is degenerate with that

on the nuclear equations of state (EOS) [418, 469]. Among other things, the twin star in GR

predicted from some EOS embracing hadron-quark phase transition has an analog in the ST

theory [292]. Nonetheless, certain scalar-induced phenomena have no counterparts in GR,

e.g., the presence of scalar-type GWs from binary motions [142], core-collapse of giant stars

[39, 126, 216, 398, 473], and radial [466] and polar [289] oscillations of NSs (see [167] for a

recent, extensive review). An observation of such ST-exclusive effects can therefore probe

the nature of gravity, and limit the parameter space of ST theories without the potential

for misinterpreting EOS effects. The dynamics during the late inspiral up to merger, and

the associated GW emission from BNSs in a ST theory that admits spontaneous and/or

dynamical scalarization may shed unique light on the nature of gravity [4, 15], thus deserving

qualitative investigation.

For mass of mϕ ≳ 10−12 eV, the scalar effects are shielded in the early inspiral and the

interaction only becomes dynamically important when the binary approaches merger. Since

the effects occur in a highly non-linear regime of the theory, it can only be investigated

numerically. Although certain attempts have been made in the massless case (mϕ = 0)

[46, 235, 323, 450, 486], numerical study of the BNS dynamics in theories with a massive

scalar field has not been performed. We thus endeavour to address such issue numerically as

a non-trivial scalar mass is necessary to account for the aforementioned observations. For this

purpose, preparing appropriate initial data (ID) is rather imperative in order to guarantee

accurate simulations.

As the first step towards the derivation of accurate BNS dynamics and the emitted GWs,

we develop an ID code to generate equilibrium states of BNSs, which are expected to deliver

certain information on the dynamics of coalescence since the sequence of equilibria can be
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viewed as the leading order approximations of the inspiraling process. In particular, the

constructed equilibria can (i) offer an approximate estimate on the luminosity of GWs [442,

486], and (ii) qualitatively investigate scalar effects in the inspiral stage on top of (iii) paving

the way toward future numerical-relativity studies of BNS mergers. By scrutinising the

constructed sequences, we found that a lower bound of mϕ > 10−11 eV for strong couplings

can be readily drawn. Although quantitative analysis of the waveforms can supplement the

effort of waveform-modelling (e.g., [100]) to examine the imprint of modified gravity from

GWs, the relevant investigation will be deferred to later work in this series.

In this Chapter, we pay particular attention to the sequences of BNSs in which each NS is

spontaneously scalarized, i.e., the coupling constant B is high [see Eq. (3.2)]. Broadly speak-

ing, inspiraling scalarized BNSs are speculated to be classified into three stages depending on

the following three parameters: the orbital separation a, the gravitational wavelength λ̄gw,

which is ≈ a3/2M−1/2/2(> a) for binaries in circular orbits with M the total mass of the

binary, and the Compton length-scale λ̄comp. For (I) λ̄gw > a ≫ λ̄comp, no effect associated

with the scalar field appears and hence the sequences of BNSs can be identical to those in

GR; (II) for λ̄gw > λ̄comp ≳ a, the scalar-wave emission is suppressed because of the relation

λ̄gw > λ̄comp, while the interaction between the scalar clouds of the two NSs can play a role

in modifying the binary orbit; (III) for λ̄comp > λ̄gw > a, both the scalar-wave emission and

interaction of the two scalar clouds are present. For the categories (II) and (III), the orbital

evolution of the BNSs can be different from that in GR. One of the primary purposes of this

Chapter is to confirm these speculations.

This Chapter is organised as follows. Section 3.2 briefly reviews the ST theory under study,

including the connection to other formalisms adopted in the literature, the equations to be

solved for quasi-equilibrium states of binaries, and the constraints on the theory parameters

from current observations of binary pulsar timing and GWs from coalescing BNS. In Sec. 3.3,

we describe the asymptotic properties of stationary spacetimes in this theory, which provide

quantitative measures for the quality of the quasi-equilibrium states constructed here. Section

3.4 forms the main part of the article, where the sequences of BNS are computed (Sec. 3.4.1),

and demonstrates the scalar effects in the binary evolution especially in terms of the cycles

in the GW (Sec. 3.4.2). An elaboration on how the enhancement of scalarization influences

the onset of mass-shedding follows in Sec. 3.4.3. Discussion and potential implications of a

detection of such effects are given in Sec. 3.5. Throughout this Chapter, the reduced Plank

constant set to ℏ = 1.
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3.2 Theoretical and observational aspects of the theory

3.2.1 Basic equations

The action of the scalar-tensor theory in the Jordan frame is written as [104, 259]

S =
1

16π

Z
d4x

√−g

�
ϕR− ω(ϕ)

ϕ
∇aϕ∇aϕ− U(ϕ)

�
−
Z

d4x
√−gρ(1 + ε), (3.1)

where R and ∇a are the Ricci scalar and covariant derivative associated with the metric gab,

ρ is the rest-mass density, and ε is the specific internal energy. In the action, ω(ϕ) describes

the coupling between the metric and the scalar field ϕ, for which the following expression:

1

ω(ϕ) + 3/2
= B lnϕ, (3.2)

is adopted in the present article with B as the dimensionless coupling constant [450]. For

latter use, we introduce the variable φ via

2 lnϕ = φ2, (3.3)

with respect to which the scalar potential,

U(ϕ) =
2m2

ϕφ
2ϕ2

B
, (3.4)

is chosen for the scalar mass mϕ [298]. Along with the scalar mass, a Compton length-scale,

λ̄comp ≈ 19.7 km
� mϕ

10−11 eV

�−1

(3.5)

is introduced.

Denoting the Einstein tensor associated with the metric gab as Gab, the equation of motion

associated with the action can then be written down as

Gab =8πϕ−1Tab + ω(ϕ)ϕ−2

�
∇aϕ∇bϕ− 1

2
gab∇cϕ∇cϕ

�

+ ϕ−1(∇a∇bϕ− gab∇c∇cϕ)−
2m2

ϕ

B
ϕ lnϕgab,

(3.6)

and

∇a∇aϕ =
1

2ω(ϕ) + 3

�
8πT − dω

dϕ
∇cϕ∇cϕ+

4m2
ϕϕ

2

B

�
, (3.7)

where T = T a
a . The equation of motion for the matter in the Jordan frame is the same as
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in GR, i.e.,

∇aT
ab = 0. (3.8)

The fluid is assumed to be a perfect fluid, for which the stress-energy tensor has the form

T ab = ρhuaub + Pgab, (3.9)

where P is the pressure, h = 1 + ε+ P/ρ is the specific enthalpy, and ua is the 4-velocity of

the fluid, respectively.

3.2.2 Connection to the Einstein frame

To draw the connection to a large part of the literature, where the Einstein frame is often

considered due to certain advantages with respect to the Jordan frame, we provide the re-

lations between these two frames in this subsection, while we will stick to the Jordan frame

in the rest of the article. The scalar field in the Einstein frame, denoted by φ̄, is defined by

assuming that the Weyl relation between the metric fields in the two frames is

gab = A(φ̄)2g̃ab, (3.10)

where A(φ̄) = ϕ−1/2 = eβ0φ̄2/2, and β0 is a dimensionless constant. Thus,

φ =
p

−2β0φ̄ =
√
Bφ̄. (3.11)

In addition, the potential in the Einstein frame, V , related to U via U = 4V ϕ2, is given by

V =
1

2
m2

ϕφ̄
2, (3.12)

which makes clear the physical meaning of the parameter mϕ as the scalar mass.

The two parameters in the DEF theory are defined as the asymptotic values of the first and

second derivative of the logarithmic coupling function [142, 143]. Let the asymptotic value

of the Jordan frame scalar field be φ0, thus the one in the Einstein frame being φ̄0 = φ0/
√
B

by Eq. (3.11), one then has

αDEF =
d lnA

dφ̄

����
φ0

=
β0φ0√

B
, (3.13)

and

βDEF =
d2 lnA

dφ̄2

����
φ0

= β0 = −B/2. (3.14)

As long as the transformations of the fields between the two frames are mathematically well-
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defined (e.g., one-to-one relations should be guaranteed [215]), the physics can be equally

validly discussed in whichever frame [191].

3.2.3 Gravitational field equations in quasi-equilibria

We describe here the basic gravitational field equations for computing quasi-equilibria of

BNSs in circular orbits. Following previous works [253, 515] (and see, e.g., [485] for a review),

we solve the constraint equations under the maximal slicing condition, assuming conformal

flatness for the 3-spatial metric γij = W−2fij, where W is a conformal factor and fij is the

flat 3-metric.

The momentum constraint is written as

0 = Mj = DiK
i
j −DjK − 8πϕ−1Jj + φKj

iDiφ−
�
1 +

2

B
− φ2

2

�
ΦDjφ− φDjΦ, (3.15)

where Φ = −α−1(∂t − βk∂k)φ is the ”momentum” of the scalar field. The Hamiltonian

constraint is written as

0 = H = R +K2 −KijK
ij − 16πϕ−1ρh −

�
2

B
− 3

2
φ2

�
(Φ2 +DkφD

kφ)

− 2
�
−KΦφ+ φDkD

kφ+ (1 + φ2)DkφD
kφ

�
−

2m2
ϕφ

2ϕ

B
,

(3.16)

where R is the Ricci scalar with respect to γij and ρh = α2T tt.

The elliptic equations for generating binary ID (assuming conformal flatness) are written

down as (see [450, 486] for equations in ST theories with a massless scalar field)

∆ψ =− ϕ−1ψ5

�
2πρh +

m2
ϕϕ

2φ2

4B

�
− 1

8
ψ−7ĀijĀ

ij − 1

2
πBψ5φ2Tϕ−1 −

m2
ϕϕφ

2

4
ψ5

− ψ

4

�
1 +

1

B
− 3

4
φ2

�
f ij(∂iφ)(∂jφ) +

1

4
χ−1φf ij(ψ∂iχ− χ∂iψ)(∂jφ),

(3.17)

∆χ = 2πϕ−1χψ4(ρh + 2S) +
7

8
χψ−8ĀijĀ

ij − 3

2
πBχψ4φ2Tϕ−1 −

�3
4
+

5

4B

�
χψ4m2

ϕφ
2ϕ

− χ

4

�
3 +

1

B
− 3

4
φ2

�
f ij(∂iφ)(∂jφ)−

3

4
ψ−1φf ij(ψ∂iχ− χ∂iψ)(∂jφ),

(3.18)

∆βi +
1

3
f ij∂j(∂kβ

k) = 16πϕ−1χψ−1f ijJj

− 2χψ−7Āij(7ψ−1∂jψ − χ−1∂jχ)− 2χφψ−7Āij∂jφ,
(3.19)
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and

∆φ = 2πBψ4φϕ−1T − φf ij(∂iφ)∂jφ− f ij(χ−1∂iχ+ ψ−1∂iψ)(∂jφ) +m2
ϕψ

4φϕ, (3.20)

where ∆ denotes the flat Laplacian, ψ = W−1/2, χ = αψ, S = Tijγ
ij, and we used the

definition

Āij = ψ10

�
Kij − 1

3
γijK

�
. (3.21)

We also assumed that the “momentum” of the scalar field φ, denoted by Φ, vanishes given

that the scalar-radiation reaction time scale is much longer than the orbital time scale. From

Eq. (3.20) we see that the asymptotic value of the scalar field, φ0, can be oscillatory (e.g.,

[149]) or zero for stationary solutions. We adopt the latter case in the present work, i.e.,

φ0 = 0. By modifying the elliptic equations (3.17)–(3.19) and introducing equation (3.20),

we generalise the public spectral code FUKA [363] to this ST theory for generating the BNSs

in quasi-equilibrium.

Note that, for large distances, FUKA uses a compactified domain to bring infinity to a

finite numerical distance (this allows in particular to properly impose boundary conditions

at infinity). Given the asymptotic exponential decay of the scalar field φ, its profile is better

captured in such a domain if Eq. (3.20) is rewritten in terms of an auxiliary scalar field

ξ = φ cosh(mϕr), which gives

∆ξ =m2
ϕ

�
2 cosh−2(mϕr) + ψ4ϕ− 1

�
ξ +

2mϕ tanh(mϕr)

r
ξ + 2mϕ tanh(mϕr)r̂

i∂iξ

+ 2πBψ4ξϕ−1T − cosh−2(mϕr)ξ
h
f ij∂iξ∂jξ − 2mϕξ tanh(mϕr)r̂

i∂iξ

+m2
ϕξ

2 tanh2(mϕr)
i
− (χ−1∂iχ+ ψ−1∂iψ)

h
f ij∂jξ −mϕξ tanh(mϕr)r̂

i
i
,

(3.22)

where r̂i is the unit radial vector. The first term in the right-hand side suggests a Helmholtzian

nature of the equation, which, however, asymptotically reduces to a Laplacian one under the

assumption of this Chapter that ϕ → 1 at r → ∞.

3.2.4 Spontaneous scalarization with massive fields

In isolated NSs and for a given coupling strength B, scalarization is triggered by tachyonic

instability if the NS exceeds a threshold compactness determined by the theory parameters

and the EOS. In particular, the conditions to be met for spontaneous scalarization in a

spherical NS are approximately k2 > 0 and kR⋆ → π/2 for k2 = −(2πBT + m2
ϕ) [298]. In

the massless theory, the threshold is only weakly EOS-dependent for some coupling strength,

given that −T ≈ ρ [30, 143, 450, 521]. However, this universality is lost from the non-

vanishing mϕ [527]. Instead of studying the EOS dependence of the threshold, we focus on a
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Figure 3.1: Boundaries of the scalarization projected on the m2
ϕ − B

p
M⋆,1.4 plane for a variety of stellar

masses, which separate the upper region where stars do not harbour a static scalar field from the lower region
of scalarized NSs. Here the notations M⋆,1.4 = M⋆/1.4 M⊙ and mϕ,−11 = mϕ/10

−11 eV are used, and the
APR4 EOS is adopted.

particular EOS (ARP4 [22]) and look at how the scalarization criterion is modified by mϕ.

In Fig. 3.1, we trace out the marginally-scalarized configuration on the m2
ϕ–B

√
M⋆ plane

where M⋆ denotes the mass of the NS (see Sec. 3.3.2 for more details on defining stellar mass).

We observe that the critical coupling strength B for scalarization correlates approximately

with the squared mass of the scalar field, and the relation depends only slightly on the specific

stellar mass. For the considered EOS, we find the fitting formula

�
mϕ

1.6× 10−11 eV

�2

≈ 1− 2.52x+ 1.54x2, (3.23)

where

x =

�
B

10

��
M⋆

1.4M⊙

�1/2

. (3.24)

Therefore, for a given scalar mass, the critical coupling strength is approximately a function

of M⋆. In particular, the critical coupling strength Bcrit for massless ST theories is solved as

B
mϕ=0
crit ≈ 9.6

�
M⋆

1.4M⊙

�−1/2

. (3.25)

We see also that the critical coupling strength increases monotonically withmϕ (i.e., ∂Bcrit/∂mϕ >
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0). This tendency continues up to the mass large enough to eliminate scalarization for any

coupling strength [385]. For NSs whose typical radius is ∼ 10 km, mass of mϕ ≳ 2×10−11 eV

severely suppresses scalarization in NSs since the associated Compton length is shorter than

the stellar size. We thus only consider masses smaller than this limit.

In addition, the presence of scalar hair provides extra supporting force, thus sustaining

more matter for a given stellar mass (the meaning of stellar mass will be further clarified in

Section 3.3.2), i.e., the stellar rest mass

Mb =

Z
ρut

√−gd3x (3.26)

is larger for stronger scalarization. As an illustration, assuming mϕ = 1.33× 10−11 eV, EOS

APR4, and M⋆ = 1.35M⊙, one has Mb = 1.5021M⊙ for B = 15.5, while Mb increases by

0.015M⊙ for B = 17.

3.2.5 Current Constraints

Pulsar-timing observations in NS-WD binaries [33, 197, 419] or in galactic NS-NS binaries

[287] can constrain the parameters of ST theories based on scalar-wave emissivity (assuming

mϕ ≲ 10−19 eV). In fact, the ST theory with a massless scalar field and a high coupling

constant B ≳ 9 (i.e., βDEF ≲ −4.5) is ruled out by the network of pulsar systems [128, 538].

However, a tiny value of mϕ > λ̄−1
gw (here λ̄gw denotes the wavelength of scalar waves which is

comparable to the gravitational wavelength) can account for the absence of scalar radiation

and the reason is as follows. The propagation group speed of scalar waves (vg) with the

frequency ωgw can be approximately written as

vg =
q

1−m2
ϕω

−2
gw = (1 +m2

ϕλ̄
2
gw)

−1/2, (3.27)

where we note that the relation between the wavelength and frequency is λ̄gw = (ω2
gw −

m2
ϕ)

−1/2. This speed is much slower than the speed of light for λ̄gw ≫ λ̄comp, thus essentially

prohibiting the scalar-wave emission (e.g., [28, 398]).

Aside from the scalar-wave emissivity, the gravitational field around scalarized NSs can

be appreciably different from that in GR within a few times of λ̄comp (see Fig. 3.2 below).

Accordingly, the orbital motion around the scalarized NS should be modified for orbital sep-

arations comparable with λ̄comp. Such modification is, however, not seen in the observations.

A small value of the mass mϕ ≫ 1/a (∼ 10−16 eV for observed NS-WD systems) is then

necessary to circumvent the current observational constraint if the NSs are scalarized (e.g.,

[385]). We note that this mass range can also accommodate what is observed from the triple

system PSR J0337+1715 [416] (see Fig. 2 therein). In addition, simultaneous mass-radius

measurements by monitoring rotating hot spot patterns of pulsars can also probe the theory
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parameters [152, 497], while the constraints obtained in this way are currently weaker than

the aforementioned ones.

The tensorial gravitational waveforms observed for a BNS can constrain the theory by

measuring the scalar-radiation-induced phase shift [378]. For the specific event GW170817,

the observation does not support significant scalar effects in inspiral stages [331, 537], while

the induced/dynamical scalarization in late-inspiral-to-merger phase remains unconstrained

due to the insufficient sensitivity to the late inspiral waveform. An upper limit of B ≲ 9−9.4

is thus suggested for massless scalar field if the two NSs are slowly rotating (cf. Fig. 13

in [537]; we note again that their parameter is β = −B/2). This constraint substantially

prevents spontaneous scalarization in NSs. In order to revive the existence of scalarized

NSs, the Compton length-scale has to be much smaller than the constraint from the pulsar

systems, because the orbital separation of inspiraling BNSs in the range of GW observations

is quite small, within ∼ 20–200 km. However, the scalar effects in this regime is not trivial,

so that the present numerical work is required; see Sec. 3.4 for more details.

Although much less stringent, the gravitational phenomena in the solar system (e.g.,

Shapiro time delay measured by Cassini tracking) put constraints on the scalar mass mϕ ≳
10−17 eV [28, 365]. Possible constraints on the massive theories may also be placed by extreme

mass-ratio inspirals (EMRIs) where superradiance modifies orbital dynamics [109], e.g., with

the presence of floating orbits on resonance ‘islands’ [535], thus leading to phase shifts in

gravitational waveforms (much similar to the ramification of non-Kerr black hole spacetimes

[155, 156]). However, it has recently been pointed out that the scalar imprint in the waveforms

may be indistinguishable from GR waveform baselines for mϕ ≲ 4× 10−12 eV [49].

3.3 Virial theorem, tensor mass, and asymptotic behavior of the

geometry

In the present article, we assume the conformally flat (Isenberg-Wilson-Mathews [253, 515])

approximation (see [199, 445, 501, 502] for a construction without this approximation), helical

symmetry, and maximal slicing (i.e., K = 0) for the spacetime. The quasi-equilibrium

states in this formalism satisfy the viral relation [99, 199, 432, 445]. Thus, we will validate

the numerical solutions of the quasi-equilibria by the virial theorem, which is described

for massive ST theory in Sec. 3.3.1. We then define the tensor mass in Sec. 3.3.2, which

characterizes the physical mass of the system.
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Figure 3.2: Relevant properties of isolated NSs in ST theories: Deviation between (ψ − 1) and (χ − 1) as a
function of the areal radius ψ2r (top) and the profile of the scalar field (bottom) for NSs with M⋆ = 1.35M⊙.
Theories with λ̄comp = 15 km (mϕ = 1.33× 10−11 eV; left) and λ̄comp = 30 km (mϕ = 6.65× 10−12 eV; right)
are considered. For each scalar mass, four coupling strengths are adopted and listed in the legend. Note that
the NS for B = 15 and λ̄comp = 15 km is not scalarized, and thus, the geometry is the same as in GR. Vertical
lines mark the first four times of the associated Compton length-scale. The stellar radius (areal radius) for
this model is ≈ 11.1 km.

3.3.1 Virial theorem

Given that the asymptotic behavior of the scalar field in the Einstein frame reads

φ̄ = φ̄0 +
Mφ̄

r
e−mϕr +O(r−2), (3.28)

we have the following relations for r → ∞,

φ = φ0 +

√
BMφ̄

r
e−mϕr +O(r−2). (3.29)

Since φ approaches φ0 exponentially at r → ∞, the scalar charges
√
BMφ̄ does not contribute

to the mass in the system. Thus, the virial relation is written in the same form as in GR

(cf. [432])

MK = MADM, (3.30)

where MADM is the Arnowitt–Deser–Misner (ADM) mass and MK denotes the Komar mass

defined by

MK = − 1

4πϕ0

I

∞
dSanbϕ∇aξb, (3.31)

where we have assumed the existence of a timelike Killing vector ξa fulfilling naξ
a = −α.
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3.3.2 Tensor Mass

As the ADM mass in the Einstein frame decreases monotonically when GWs propagate away

and is positively defined [309, 411, 412], we refer it to the mass of a given system following,

e.g., [165, 432], and define it as the tensor mass MT to be distinguishable from the ADM

mass in the Jordan frame (MADM). As a specific example, the stellar mass refers to the tensor

mass of a NS, i.e., M⋆ = MT. In the massless ST theories, the tensor mass is written as the

sum of the ADM mass and scalar charge [309]. As mentioned in Sec. 3.3.1, the scalar charge

does not contribute to the mass of the system in the massive ST theories. Thus, we simply

have MT = MADM. If the virial theorem is satisfied, the tensor mass is also equal to the

Komar mass.

3.3.3 Asymptotic behavior of the geometry

In GR, the asymptotic behavior of ψ and χ at a large distance in isotropic coordinates is

described as (e.g., [199])

ψ = 1 +
MADM

2r
+O(r−2), (3.32a)

χ = 1− 2MK −MADM

2r
+O(r−2). (3.32b)

Thus, the equality

(ψ − 1)r = −(χ− 1)r, (3.33)

holds at r → ∞, if the virial relation is satisfied. For spherical stars in equilibrium, this

relation is satisfied for the entire region outside the stellar surface, r = R⋆, because of the

presence of Birkhoff’s theorem in GR [89, 258].

By contrast, Eq. (3.33) is satisfied only at r → ∞ in ST theories because the scalar clouds

contribute to ψ and χ in a different way. The deviation from the equality of Eq. (3.33) outside

the star is considered as a manifestation of ST theories. In particular, we plot in Fig. 3.2 the

violation of the equality of ψ − 1 = 1− χ (upper panels) and the profile of φ (lower panels)

for spherical NS models with M⋆ = 1.35M⊙. Two scalar masses are considered with the

associated Compton length-scale being λ̄comp ≃ 15 km (left) and 30 km (right). By picking

several values of B for each value of mϕ, we consider NSs scalarized to different extents. We

see that the equality (3.33) holds for r ≫ λ̄comp, while the deviation can be ≳ 10−2% for

ψ2r ≲ 4λ̄comp where the amplitude of the scalar field is appreciably non-zero. This clearly

indicates that the presence of the scalar cloud can appreciably modify the binary motion if

the orbital separation is smaller than a few times of λ̄comp.

It is also found that for larger values of B, the maximum value of |φ| is larger, and as a

result, the region, in which the equality of Eq. (3.33), is breached is wider. Thus, for larger
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Figure 3.3: Quasi-equilibrium sequences for symmetric binaries with each NS having 1.35M⊙. The binding
energy is plotted as a function of orbital frequency in the top, while the deviation of various theories from
the 4PN analytic estimates of GR is shown in the bottom. Two EOS have been adopted for GR sequences,
viz. APR4 (blue-circle) and H4 (pink-circle), while two scalar masses, mϕ = 1.33 × 10−11 eV (left; λ̄comp ≃
15 km) and mϕ = 4 × 10−12 eV (right; λ̄comp ≃ 50 km), are considered for ST sequences. Depending
on different ST parameters, scenarios of dynamical enhancement of the scalarization (colorful solid) and
dynamical scalarization (dash-dotted) manifest. The vertical gray lines relate the binary separation and
MinfΩorb based on the GR sequence.

values of B, the scalar could modify the binary motion from a larger distance (see Sec. 3.4.1).

3.4 Binary neutron stars in quasi-equilibria

The major purpose of this Chapter is to clarify in which cases the effect of the scalarization

of NSs can be identified by observing GWs from inspiraling BNSs. Given that the current

GW detectors are able to detect signals for f ≈ 20–103 Hz, where the separation between

the members of a BNS is less than ∼ 200 km (for NS masses of ∼ 1.4M⊙), the scalar mass of

interest will then be

mϕ ≥ 1× 10−12 eV, (3.34)

associated with Compton length scales of ≤ 200 km. We consider mϕ = 4×10−12 eV (λ̄comp ≈
50 km) and mϕ = 1.33 × 10−11 eV (λ̄comp ≈ 15 km) as two canonical cases to demonstrate

the role played by the scalar mass, as well as coupling strength, in the last several orbits of

BNSs. To model the hydrodynamical equilibria of NSs, we adopted the piecewise-polytropic

approximated EOS APR4 [386]. The details of our implementation are essentially the same

as those in [485], and thus we will not repeat them here.

Denoting the tensor masses of the two NSs when they were in isolation as M⋆,1 and

M⋆,2, the total mass Minf = M⋆,1 + M⋆,2 is kept constant along each binary sequence. In
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Figure 3.4: Same as Fig. 3.3, but for asymmetric binaries with 1.5M⊙ + 1.2M⊙.

this work, we choose Minf = 2.7M⊙, while consider two values for the mass ratio, viz. q =

M⋆,2/M⋆,1 = 1 and 0.8. Each quasi-equilibrium state on a particular sequence is characterized

by a dimensionless orbital angular velocity MinfΩorb and the orbital binding energy defined

by

Eb =
MT −Minf

Minf

. (3.35)

We compare the curves of Eb as a function of MinfΩorb with that in GR and identify the

effect of the scalar field. Specifically, we will show that the scalar-related dynamical response

in the late time can noticeably expedite the merger (Sec. 3.4.2), while the orbital frequency

at the last orbit increases only slightly compared to the GR value [255, 260] (see also Section

3.4.3).

The quality of the constructed configurations is examined by checking the violation of

Eq. (3.30), i.e.,

Evirial =
|MK −MADM|

MADM

, (3.36)

which has been found to be less than 0.06% for our results. In addition, we evolved some of

the obtained quasi-equilibrium states with our numerical code (developed from the previous

code [450]) for a few orbits to validate our ID solver. We confirmed that the BNSs have quasi-

circular orbits with a small eccentricity of 10−2, which is approximately the same magnitude

as that in [486].
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Figure 3.5: Radial profile of the scalar field for equal-mass binaries at different stages, undergoing enhance-
ment of scalarization (top) and dynamical scalarization (bottom). The color is darker for closer separation
with the orbital separation a listed in the legend. The coupling strengths are set to B = 15.8 (top) and
B = 15.2 (bottom), respectively, while the scalar mass is assumed to be mϕ = 1.33 × 10−11 eV. We adopt
the APR4 EOS for NSs.
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3.4.1 Quasi-equilibrium sequences

In Figs. 3.3 and 3.4, we plot the binding energy of binaries as a function of their orbital

frequency. To represent the evolution track of a BNS, at least to the leading order, the

rest mass of binaries is constant along each sequence [500], while we note that it may vary

from one sequence to another depending on B and mϕ (see Sec. 3.2.4). The virial violation

(3.36) for the constructed binaries is at most 0.06%, i.e., much smaller than the absolute

value of the orbital binding energy. In both figures, we also show the GR curve (solid-circle)

constructed by the original FUKA library [363] for the EOS APR4 (light blue) and H4 (pink),

and 4th order post-Newtonian (PN) approximation [78, 93] to clarify the scalar imprints. The

deviation of the numerically constructed sequences from the 4PN prediction is denoted by

∆Eb (bottom panels). Estimating the adiabatic tidal contribution by the difference between

the GR sequence and the 4PN estimates, we see that scalar effects are similar to the enhanced

tidal response for equal-mass binaries, so that systems with a soft EOS in ST theory could

accidentally be identified as GR binaries with a stiffer EOS (see also below).

For each considered scalar mass, we choose 4 coupling strengthes that admit spontaneous

scalarization (solid), as well as one slightly below the critical value (dashed-dotted). The

former leads to the scenario of dynamical enhancement of the scalarization at a close orbit,

resulting from the scalar-cloud interaction (see the upper panel of Fig. 3.5), while for the

latter, the scenario is similar to the so-called dynamical scalarization (see the lower panel

of Fig. 3.5), although the mechanism of the scalar-field enhancement is identical for both

cases. The dynamical scalarization takes place for an orbital separation of a ≲ 1.7λ̄comp,

slightly outside the Compton length scale, while the dynamical enhancement of the scalar-

ization can do for more distant orbits of a ≲ 3–6λ̄comp mainly contingent on the scalar mass.

This enhancement starts at more distant orbits for larger values of B. The reason for this

enhancement of the scalar fields outside the Compton length-scale is that even though the

scalar field amplitude of one star decays exponentially outside that scale, it still has an appre-

ciable value along the line connecting to its companion when the orbital separation is close

enough. The same applies to the scalar field in the companion. The interaction between the

tails of the scalar field induces a phenomenon similar to dynamical scalarization, leading to

the enhancement of the scalar cloud around each NS. We note that for lower values of B with

which the maximum amplitude of the scalar field is low, i.e., φ ≲ 10−2, the enhancement of

the scalar amplitude does not appreciably take place.

It is worth noting that BNSs follow the same evolution track as in GR even if spontaneously

scalarized NS is present when a ≳ 3–6λ̄comp for the cases considered here, viz. mϕ = 1.33 ×
10−11 eV (left panels) and mϕ = 4 × 10−12 eV (right panels) cases. This critical distance

within which the scalar imprint reveals matches well with the size of the scalar cloud of an

isolated NS (Fig. 3.2). During this epoch [Stage (I) defined in Sec. 3.1], the scalar-wave



50 3.4. Binary neutron stars in quasi-equilibria

emission is also negligible because the relation λ̄gw > λ̄comp is satisfied, and therefore, the

ST theory is likely indistinguishable from GR. This indicates that for λ̄comp ≲ 10 km (i.e.,

mϕ ≳ 2× 10−11 eV), the orbital evolution in this ST theory agrees with that in GR.

As the binary separation shrinks to a ≲ 3–6λ̄comp while λ̄gw is still larger than λ̄comp [Stage

(II)], we can observe the bifurcation of scalarized sequences from GR ones in both figures,

though the scalar-emission is expected to be highly suppressed by the scalar mass. This

mϕ-induced suppression will however be eventually avoided when the binary evolves to Stage

(III). The difference between (II) and (III) cannot be seen in quasi-equilibrium sequences

since the radiation is approximately ignored in construction. In a future work, we will revisit

this aspect.

A word of caution is appropriate here. The curves of Eb for a non-zero mass mϕ cases

are similar to those in GR assuming a stiffer NS EOS, where the NS radius (i.e. tidal

deformability) is high enough (see e.g., [485]). For example, we plot in Fig. 3.6 the deviation

from 4PN binding energy for a sequence of a particular ST theory with the EOS APR4, and

for a GR sequence with the EOS H4, for which the tidal deformability is about 3.5 times larger

than that for EOS APR4 [246]. We see that the two curves coincide when MinfΩorb < 0.03,

indicating that the effect of the scalar-field interaction entangles with that of the NS EOS

until late-inspiral. On the other hand, the curves of Eb for mϕ = 4 × 10−12 eV cannot be

reproduced by the NS EOS effect because the deviation from the GR curve sets in at a

distant orbit. An approximate estimate taking into account the previous GR studies (e.g.,

[485]) gives that the tidal effect of the NS is appreciable only for MinfΩorb ≳ 0.02 (i.e., an

orbital separation of ∼ 50 km) for a NS with a radius of ∼ 15 km. Therefore, if λ̄comp ≳ 20 km,

the scalar-field interaction effect may be distinguished from the NS EOS effect assuming that

the NS radius is less than 14 km [6, 16]. This suggests that by observing GWs from BNSs,

the mass of the scalar field could be bounded from below for a hypothetically high value of

B.

3.4.2 Cycles in gravitational waveform

The above conclusion can be further evidenced by looking at the number of cycles, N , from

a given orbital frequency up to merger. Here we estimate N in an adiabatic manner by

integrating the orbital frequency along the quasi-equilibrium states. Following [485, 486], we

express the energy balance equation as

dEb

dt
= −F , (3.37)

whereby the orbit shrinks at the rate,

dΩorb

dt
= − F

dEb/dΩorb

. (3.38)
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Figure 3.6: Deviation from 4PN approximant in the binding energy as a function of orbital frequency. Two
EOSs, APR4 (blue curves) and H4 (purple curve), are employed. Einstein’s gravity is assumed for both EOSs
(solid curves), on top of which the curve of one specific ST theory with EOS APR4 is overplotted (dash-dot
curve).

Binary components (mϕ, B) N

1.35M⊙ + 1.35M⊙

(0.03, 10.5) 25.66
(0.03, 11) 24.62
(0.03, 12) 23.33
(0.03, 15) 21.86
(0.03, 19) 19.80

(0.1 , 15.2) 27.27
(0.1 , 16) 26.65
(0.1 , 17) 25.92
(0.1 , 20) 22.13
(0.1 , 30) 21.13

1.5M⊙ + 1.2M⊙

(0.03, 10) 27.46
(0.03, 11) 24.60
(0.03, 12) 23.74
(0.03, 15) 22.34
(0.03, 18) 20.60

(0.1 , 14.5) 27.71
(0.1 , 16) 27.34
(0.1 , 17) 26.64
(0.1 , 20) 24.60
(0.1 , 29) 20.84

Table 3.1: Number of cycles when the binary evolves during fgw = 240–957 Hz for a variety of ST parameters.
In this table we present the dimensionless scalar mass with a note that mϕ = 0.1 = 1.33× 10−11 eV.

.
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Figure 3.7: Parameter space of the considered massive ST theory. Relation (3.23) for stellar masses of 1.5M⊙
(purple), 1.35M⊙ (green), and 1.2M⊙ (pink) are plotted as dashed lines. The markers present the viability of
the corresponded ST theory after GW170817 especially for binaries with spontaneously scalarized NSs (filled
markers). Specifically, circles (crosses) denote (un)acceptable parameters concerning with the two chosen
binary configurations, while triangle marks the theory only allowed by the 1.5M⊙ + 1.2M⊙ binary.
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Figure 3.8: Mass-shedding indicator as a function of orbital frequency for binaries 1.35M⊙ + 1.35M⊙ (top)
and 1.5M⊙ + 1.2M⊙ (bottom). Sequences with dynamical enhancement of the scalarization are shown as
solid curves, those with dynamical scalarization as dashed-dotted curves, and the GR sequence is the dotted-
solid curve. The ARP4 EOS is employed to model NSs.

An orbit number of

N =
1

2π

Z
Ωorb

dΩorb/dt
dΩorb

= − 1

2πMinf

Z
x3/2

F(x)

dEb

dx
dx

will accumulate during the inspiral when the orbital frequency evolves from Ωi to Ωe, where

we introduce x = (MinfΩorb)
2/3. In numerical integration of Eq. (3.39), we adopt the ansatz

(cf. Eq. (68) of [485]),

Eb = E4PN
b + ax6 + bx7 + cx8, (3.39)

to fit the derivative of binding energy with respect to Ωorb. Here we adopt 4PN result of the

binding energy as the principle part (E4PN
b ; Eq. (5.6) of [78]), and a, b, and c are the fitting

coefficients. In our consideration of energy flux, we ignore the scalar radiation based on two

reasons: (i) the emissivity of such radiation is limited over most of the orbital evolution,

and (ii) the energy lost via scalar channel is already subdominant to that via traditional

GW in the massless ST theory as estimated by [486], let alone the situation in massive ST

theory. Therefore, we adopt the 3.5PN approximation for the energy flux, which is given by
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(Eq. (314) of [92])
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(3.40)

where ν = q/(1 + q)2 is the symmetric mass ratio.

Regulating the upper and lower limits of the integration such that the associated GW

frequencies are fgw ≃ 240 Hz (MinfΩorb = 0.01) and fgw ≃ 957 Hz (MinfΩorb = 0.04), we list

the accumulated GW cycles in Tab. 3.1. The almost stiffest and softest EOS that are allowed

by GW170817 have been estimated to be H4 and APR4, respectively, through the analysis

where GR is assumed as the theory of gravity [8]. We, however, adopt them to elaborate

possible constraints on the ST theory that could be placed by this event. The number of

cycles obtained in GR are 27.45 and 26.24 for APR4 and H4, respectively, for q = 1, while

there are 27.71 and 26.03 cycles for q = 0.8. Therefore, the uncertainty in the EOS can also

be interpreted as the ambiguity of the gravity theory if the resulted N in a certain ST theory

lies between those for EOS APR4 and H4.

Together with cases with other values of mϕ not shown in the table, our results are

summarized in Fig. 3.7 where the circles and crosses denote the acceptable and unacceptable

parameters with respect to the observational results of GW170817. Focusing on systems

involving spontaneously scalarized NSs (filled markers), we see that scalar mass of mϕ ≤
10−11 eV can hardly account for the variation due to EOS, and thus are disfavored after

GW170817 in the event that one of the NSs is spontaneously scalarized. It is also interesting

to note that there are some parameters allowed by 1.5M⊙+1.2M⊙ binaries that are exhibited

by equal-mass binaries, and thus a more stringent constraint is concluded from the cases with

q = 1. For systems with small mass ratio, the scalarization in the lighter star is much weaker

than that in the heavier star, and thus the strength of scalar interaction between the binary

is inconsequential. This somehow contradicts the intuitive feeling that one gained from the

experience that the more strict constraint is obtained from increasingly asymmetric binaries

when analysing the pulsar timing observations in the massless theory, where the emissivity

of the scalar wave will not be switched off by the scalar mass. Here, instead, the merger is

accelerated due to the excess in the lost of orbital energy when developing scalar cloud in

the binary.
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3.4.3 Mass-shedding Criterion

The contact of the two NSs could be understood as the moment when one of them loses the

feature of being individual. An indicator of such loss of integrity is the formation of a cusp

along the direction towards the companion, which can be quantitatively assessed through the

ratio between the radial gradient of enthalpy at the pole and at the equatorial point facing

the companion [221, 485]. In particular, a dimensionless factor [221],

χms =

�
∂ ln h

∂r

�

eq

�
∂ ln h

∂r

�−1

pole

, (3.41)

is useful to identify cusp formation: χms = 1 for static NSs, while χms = 0 when the cusp

is constituted. Since spectral methods cannot resolve well the NS if a cusp is formed at the

region closest to the companion, it is unfeasible to construct a configuration with χms ≪ 1.

In addition, conformal flatness is unlikely to be a fair approximation at very close orbits.

In this work, the closest configurations we generated are at a stage less than 1 orbit, i.e.,

≲ 2 ms, before merger.

Figure 3.8 shows the mass-shedding indicator χms as a function of the orbital frequency for

the symmetric (top panels) and asymmetric (bottom panels) binaries under our consideration.

Several features are observed, including (i) the binaries pertaining to the stiffer EOS H4 start

to contact at a lower orbital frequency since the tidal effect is more pronounced; (ii) dynamical

scalarization does not affect much Ωorb at the onset of mass shedding; (iii) the deformation

indicator χ at a given Ωorb is less for increasingly scalarized configuration, which is due to

the extra attractive force provided by the scalar field, and is in line with the finding of [450]

that the central density of NS components keep increasing until merger while a decrease is

seen shortly before the merger in GR. However, for the viable ST parameters summarised in

Fig. 3.7, the onset of mass-shedding is not sizeably affected by scalar effects.

3.5 Discussion

In order to consistently investigate the constraints that could be obtained from observed grav-

itational waveforms, a detailed understanding of the dynamics during late-inspiral-to-merger

is requisite. Owing to the non-linearity manifesting in this regime, numerical-relativity simu-

lation is crucial and serves as the unique tool for this purpose. Constructing quasi-equilibrium

states as ID is therefore the first step for the accurate modelling of the gravitational wave-

forms. We provided reliable ID of binaries consisting of two spontaneously scalarized NSs in

massive ST theories since a massless scalar field is excluded by pulsar-timing observations

for theories with a high coupling constant B. The scalar mass gives rise to certain hurdles

in solving the elliptic-type equation (3.20) due to the exponentially-decaying behavior of the
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scalar field [Eq. (3.28)]. An auxiliary scalar field ξ is introduced for better treatment by the

spectral code FUKA [363], and is solved for according to the modified equation (3.22).

For equilibrium states of binaries generated here, the asymptotic equality (3.30), dictated

by the virial theorem, is met within 0.06%, and some of them have been evolved for a

few orbits to reaffirm that the quasi-circular motion is guaranteed. The constructed binary

configurations thus provide the essential setup for future numerical-relativity study of BNSs

in massive ST theories. In addition to future use, qualitative characteristics of the scalar

influence can be readily extracted by comparing the equilibria to GR ones. In particular,

it is confirmed that the quasi-equilibrium sequences in the ST theory are indistinguishable

from that in GR until the orbital separation becomes approximately 3–6 times the Compton

length scale of the scalar field, i.e., a ≳ 3–6λ̄comp. Then, at a ∼ 3–6λ̄comp, the enhancement

of the scalar field sets in due to the interaction of the scalar clouds of the two NSs (Figs. 3.3

and 3.4). Accordingly, the gravitational fields will be modified, resulting in the deviation of

the quasi-equilibrium sequences from GR.

To quantify the deviation of sequences in ST from those in GR, we estimate the number

of cycles in GWs accumulating over a certain range of orbital frequency [Eq. (3.39)]. The

tolerance in the stiffness of EOS concluded from GW170817 roughly spans over from the

EOS APR4 to H4 [4, 16], and thus we adopt the EOS APR4 to derive conservative bounds

on the ST parameters, provided that the scalar effects contribute to waveforms in a similar

way as tidal effects (Fig. 3.6). We found that the cycles undergone by GWs indeed decrease

with a stronger scalar cloud (Tab. 3.1) and/or a stiffer EOS. The error budget in N defined

by the EOS APR4 to H4 can thus be translated to the upper bound on the scalar-induced

dephasing in waveforms. Comparing the cycles of ST binaries pertaining to the EOS APR4

to those of GR binaries following the EOS H4, our results are summarised in Fig. 3.7, where

a lower bound of mϕ ≳ 10−11 eV can be reckoned. We also noticed that the most stringent

limit is placed by equal-mass binaries, implying that the derived constraint on the scalar

mass assuming a spontaneously scalarized NS is in part of the BNS should be robust even

though we do not span over a wide range of mass ratio. For mϕ ≳ 10−11 eV and a mild

coupling strength B ≲ 17, the scalar-cloud interaction effect is not appreciable during the

inspiral stage of BNSs despite that both members are scalarized, and can be seen only when

the binary is just outside the last stable orbit. The onset of mass-shedding for plausible ST

theories essentially matches to the GR cases (cf. Figs. 3.7 and Fig. 3.8).

It is important to note yet another layer of complication for the degeneracy between tidal

effects, both adiabatic [146] and dynamical ones, and the late enhancement of scalarization,

either dynamically triggered or through interacting scalar clouds as suggested by Figs. 3.3 and

3.4 (see also [323]). It has been known that NSs’ tidal response will be modified in ST theories

with a massless scalar field so that (i) the tidal effect will appear at 3PN order [145] or even

at 1PN order [179] in the case of dynamical scalarization, (ii) the Love number will increase
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or decrease depending on the compactness and the ST parameters [112, 248, 362, 528], and

(iii) a novel class of Love number is introduced by the scalar field, leading to, e.g., dipolar

tidal effects [77, 504]. Relevant studies in the massive ST theory have not been addressed to

our knowledge, and a numerical study of scalar-induced modulation in finite-size effects will

constitute an essential step toward testing ST theories with GW physics. In this series of

investigation, we hope to address this issue to some extent.
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Chapter 4

Properties of post-merger remnants
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Breakdown of Contribution

This chapter is based on the publication: “Binary neutron star mergers in massive scalar-

tensor theory: Properties of postmerger remnants” in Phys.Rev.D 110 (2024) 10, 104018 [305]

by A. T.-L. Lam, H.-J. Kuan, M. Shibata, K. V. Aelst and K. Kiuchi. I extended the code

SACRA-MPI developed by M. Shibata and K. Kiuchi to the massive scalar-tensor theory. All

the numerical simulations of the binary neutron stars mergers were carried out by me. The

initial data used in the simulations were constructed by me and H.-J. Kuan using the code

developed by K. V. Aelst. I analysed the data and generated all the figures. H.-J. Kuan,

M. Shibata and K. Kiuchi provided constructive comments on the manuscript written by me.

Overview

In this Chapter, we investigate the properties of post-merger remnants of binary neutron star

mergers in the framework of Damour-Esposito-Farese-type scalar-tensor theory of gravity

with a massive scalar field by numerical relativity simulation. It is found that the threshold

mass for prompt collapse is raised in the presence of the excited scalar field. Our simulation
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results also suggest the existence of long-lived ϕ−mode in hypermassive neutron stars due

to the presence of the massive scalar field which enhances the quasi-radial oscillation in the

remnant. We investigate the descalarization condition in hypermassive neutron stars and

discover a distinctive signature in post-merger gravitational waves.

4.1 Introduction

After the monumental event GW170817 [4, 5, 6, 265], huge effort has been devoted to model-

ing the physics involved in the course of binary neutron star (BNS) mergers with the hope of

learning more about the nuclear equation of state (EOS) of matters in extreme environment,

exploring r-process nucleosynthesis in the merger ejecta, and understanding the non-linear

nature of gravity. In particular, through measuring the size of matter effects of the neutron

star (NS) members in the late inspiral stages for this event, the stiffness of the EOS has

been constrained to a narrow range [8, 35, 121, 147, 162]. In addition, general relativity

(GR) has been proven to reproduce gravitational effects accurately, at least up to the stage

shortly before the merger. Considering the Damour-Esposito-Farese type extension to GR

(DEF theory in what follows), this can be translated to an upper bound on the coupling con-

stant, which prohibits spontaneous scalarization in isolated NSs for massless scalar field [537]

while admitting of mild scalarization for massive cases as shown in Chapter 3. A plausible

agent to push the known constraints further is the remnant system in the aftermath of the

merger, where higher-energy physics, for which details have not been yet understood, can

play an important role. The evolution process of BNS remnants is also the key determinant

of multimessenger signals [79, 431]: the properties of the electromagnetic (EM) signals de-

pend strongly on the mass and the composition of ejecta from the remnant including some

ultra-relativistic jets [267], and post-merger gravitational waves (GWs) encode information

about BNS parameters [245, 276, 428].

Joint detection of EM and GW signals provides a unique avenue to learn the details of post-

merger systems such as the lifetime of the remnant NSs. The latter quantity is sensitive to

the EOS and underlying gravitational theory. Although GR functions quite well throughout

the inspiral history of binaries, beyond-GR signatures may reveal shortly before, during, and

after the merger. For example, the DEF theory can admit dynamical scalarization and/or

enhanced scalar cloud in the parameter region corresponding to GW170817 as mentioned in

Chapter 3. Besides, the additional scalar degree of freedom can lead to qualitative differences

in the post-merger waveform, and impact the evolution of the object produced in the merger.

The goal here is thus to extensively investigate the outcomes of BNS mergers in the DEF

theory, whereas magnetic, neutrino, and thermal physics are not taken into account as we

focus on the post-merger stage only for a short timescale.

In most BNS mergers, either a hypermassive neutron star (HMNS, which is stabilized by
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a high degree of angular momentum with a differential rotation [57, 425, 441]) is formed and

lives for some time before collapsing to a black hole, or a prompt collapse occurs if the total

mass of the BNS exceeds a threshold Mthr. The threshold mass for the prompt collapse is

sensitive to the nuclear EOS [431, 439]. On the other hand, it is expected to be rare that a

supramassive NS is produced from a BNS since the total mass of the system should be less

than the maximum mass that is supportable by rigid rotation (Mc). An empirical relation

of such critical value is Mc ≃ 1.2MTOV with MTOV the maximum mass of a spherical cold

NS of a given EOS [134, 135, 136], which then suggests Mc ≲ 2.6M⊙ (e.g., [394, 452]). Some

population studies thus suggest that only ≲ 15% of BNSs has a total mass lower than Mc

[185] (see also [487]). In the present work, we focus on scenarios with total mass larger than

Mc, i.e., a black hole + torus will be formed either shortly after the merger or after the

rotational profile is modified within the HMNS [168, 243].

The presence of a torus surrounding the black hole plays an essential role in determining

the post-merger emissions, such as short gamma ray bursts [277, 439] and kilonovae [133,

140, 203, 268]. The amount of matter ejected to form the torus depends strongly on the total

mass, and the nuclear EOS for both prompt collapse and HMNS formation scenarios [160,

242, 244, 276] (see also [431] for a review). In the latter scenario, the lifetime of HMNS, τH,

is the main factor that determines the torus mass especially when the BNS is of (nearly)

equal mass, since the matter injection from the central object ceases upon the formation of

the black hole [243].

It has been known that the value of τH for short-lived HMNSs is determined primarily by

the BNS’s total mass if the system is moderately symmetric (e.g., [64, 79, 242, 264, 286, 439])

in GR. Under the framework of the DEF theory, the lifetime of HMNSs is also likely to be

sensitive to the scalar parameters, which are the strength of the coupling (B) of the scalar

field to the metric functions, and the mass of the scalar field (mϕ). In addition to their

lifetime, the scalar field can also exist in the HMNSs for a certain time, τS(≤ τH). Depending

on τH, three possibilities for the outcome are generically expected: (i) prompt collapse to a

black hole, (ii) short-lived HMNS formation, and (iii) long but finite lived HMNS formation.

In the presence of an excited scalar field in the DEF theory, τS further divides channel (iii)

into (iii.a) long-lived scalarized HMNSs and (iii.b) those descalarizing at some point. The

two characteristic time-scales are dependent on the source and theory parameters, namely,

the total mass and mass ratio of the BNSs, (Mtot, q), the EOS, B, and mϕ. The main goal of

the present study is to investigate how the two crucial timescales are modified by the scalar

quantities by performing numerical-relativity simulations for equal-mass BNSs.

This Chapter is organized as follows. Section 4.2 briefly introduces the DEF theory, the

associated 3+1 decomposition for numerical evolution, the EOS employed, the details of the

numerical setup, and the parameters we consider in this work. In Section 4.3 we discuss in

detail the post-merger scenarios including the formation of a long-lived HMNS, a short-lived
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HMNS, and prompt collapse to a black hole, and investigate the effect of the scalar field

on the HMNS lifetime and the threshold mass. The properties of the remnant including

dynamical ejecta, GW signal, mass of the final black hole and disk with potential quantities

relevant to observation are given in Section 4.4. Section 4.5 is devoted to summary and

discussion. Throughout this Chapter, the reduced Plank constant set to ℏ = 1.

4.2 Formalism

4.2.1 Evolutionary Equations

The associated equations for the metric and scalar fields in the DEF theory are written in

Eqs. (3.6) and (3.7). Since we evolve the scalar field quantity φ :=
√
2 lnϕ rather than ϕ, we

rewrite Eq. (3.7) in terms of φ as

∇a∇aφ =2πϕ−1BTφ− φ(∇cφ)(∇cφ) +m2
ϕφϕ, (4.1)

which will be used to derive the evolution equation for the auxiliary scalar field.

The evolution equations for gravitational and scalar fields can be derived by 3+1 decom-

position (see Ref. [450] for the detailed derivation in the massless DEF case). Following

the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 433], we can obtain the

modified evolution equations in the Cartesian coordinates as follows [298]:

(∂t−βk∂k)W =
1

3
W


αK − ∂kβ

k
�
, (4.2a)

(∂t−βk∂k)γ̃ij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k, (4.2b)

(∂t−βk∂k)Ãij = W 2
�
αRij −DiDjα− 8παϕ−1Sij

�TF
+ α

�
KÃij − 2ÃikÃj

k
�

+ Ãkj∂iβ
k + Ãki∂jβ

k − 2

3
Ãij∂kβ

k + αÃijφΦ

− αW 2
�
ωφ2DiφDjφ+ ϕ−1DiDjϕ

�TF
,

(4.2c)

(∂t−βk∂k)K = 4παϕ−1(Si
i + ρh) + αKijK

ij −DiD
iα

+ αωφ2Φ2 −
�
3

2
+

1

B

�
αm2

ϕφ
2ϕ

+ αϕ−1
h
DiD

iϕ−KΦϕφ− 3πφ2BT +
3

2φ2ϕ


Φ2ϕ2φ2 −DkϕD

kϕ
� i

,

(4.2d)
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(∂t−βk∂k)Γ̃
i = 2α

�
Γ̃i
jkÃ

jk − 2

3
γ̃ij∂jK − 3

W
Ãij∂jW

�

− 2Ãij∂jα− 2αγ̃ij

�
8πϕ−1Jj − φKj

kDkφ+

�
1 +

2

B
− φ2

2

�
ΦDjφ+ φDjΦ

�

+ γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k − γ̃klΓ̃j
kl∂jβ

i +
2

3
γ̃jkΓ̃i

jk∂lβ
l,

(4.2e)

(∂t−βk∂k)φ = −αΦ, (4.2f)

(∂t−βk∂k)Φ = −αDiD
iφ− (Diα)D

iφ− αφ(∇aφ)∇aφ

+ αKΦ+ 2παϕ−1BTφ+ αm2
ϕφϕ.

(4.2g)

We adopt the moving-puncture gauge Eq. (1.24) for the lapse function and shift vector. The

Hamiltonian and momentum constraints are listed in Eqs. (3.15) and (3.16), and will not be

repeated here.

In the Jordan frame, the scalar field does not affect the matter evolution explicitly, and

thus, the equations of motion for matter are the same as those in GR. We assume a perfect

fluid in form Eq. (3.9). In addition to Eq. (3.8), we solve the continuity equation,∇a(ρu
a) = 0.

4.2.2 Equation of state

We adopt the piecewise-polytropic approximation [386] for the barotropic EOS APR4 [23],

MPA1 [347], and H4 [301], which cover a range of stiffness favored by GW170817 [8, 162, 186].

In addition, we adopt the following description for the thermal pressure, which is associated

with the generation of shocks in the plunge and post-merger stages:

P = Pcold(ρ) + Pth(ρ, ϵ), (4.3)

where the cold contribution to the pressure, Pcold(ρ), is dictated by the cold EOS, and the

thermal contribution is assumed to take the form [256]

Pth = (Γth − 1)ρϵth, (4.4)

with the adiabatic index Γth for heated matter, and ϵth = ϵ − ϵcold is the residual in the

specific internal energy that is not included in the cold EOS. In general, Γth depends on

the temperature and rest mass density [62], while it has been suggested that a (reasonable)

constant approximation suffices for investigating the fate of the merger remnant [64, 242, 446].

We choose Γth = 1.8 for our simulations. Depending on the EOS and theory parameters,

NSs in a coalescing BNS can remain unscalarized up to merger, be dynamically scalarized in

the late inspiral, or be spontaneously scalarized at large separation [46, 361, 415, 450, 486].
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4.2.3 Numerical setup

We implement the Z4c version of the evolution equations by extending the code developed

in [526], which was parallellised to SACRA-MPI in [278]. SACRA-MPI employs a box-in-box

adaptive mesh refinement with 2:1 refinement and imposes equatorial mirror symmetry on

the z = 0 orbital plane. For the simulations shown in this article, each NS is covered by 4

comoving finer concentric boxes, with 6 coarser domains underneath containing both piles of

the finer domains. The size of the finest domain is chosen to be about 1.3 to 1.5 times of NS

radius. All domains are covered by (2N, 2N,N) grid points for (x, y, z) with N being an even

number. We employ the finite-volume scheme with a reflux prescription and Harten-Lax-

van Leer contact (HLLC) Riemann solver, as that implemented in [281], for hydrodynamics

evolution to better conserve the total baryon mass of the system.

For the outer boundary condition, we use the outgoing boundary condition for metric vari-

ables following [433] and specifically include an additional term for the scalar field variables

Q = (φ,Φ) as

Q(t, r) =

�
1− ∆r

r

�
Q(t−∆t, r −∆r)e−mϕ∆r, (4.5)

to capture the exponential decay tail due to the mass term mϕ. Here, ∆r = c∆t with ∆t the

time step in numerical computation. We test the convergence of our code in three different

resolutions (see Section 4.6). Unless otherwise specified, we adopt N = 94 as the standard

resolution of this Chapter which corresponds to ∆x = 157 m in the finest box. The details

of the numerical setup can be found in Table 4.1 in Section 4.6.

The primary purpose of this Chapter is to investigate how the scenarios of post-merger

remnants depend on the binary mass, B, mϕ, and the EOS while restricting ourselves to

equal-mass binaries. However, rather than specifying the binary mass as the sum of the

ADM masses of the two NS members, we identify the binary mass as the total rest mass,

Mb :=

Z
ρut

√−gd3x, (4.6)

contained in the binary. Taking into account the GW event GW170817, scalar masses of

mϕ ≳ 10−11 eV are favored unless the coupling constant B is so small that the NSs in

the observed system are non-scalarized as described in Chapter 3. This condition on mϕ is

several orders of magnitude greater than the constraint concluded from the pulsar timing

observations, which is mϕ ≳ 10−15 eV [150, 385, 527], while more rigorous Bayesian inference

studies are required to transform the suggestion of mϕ ≳ 10−11 eV into a constraint (for

strong couplings). On the other hand, a mass of mϕ ≳ 2 × 10−11 eV would significantly

suppress scalarization in NSs since the associated Compton length is shorter than the stellar

size. Aiming to study the scalar’s influence on BNS mergers, we focus on cases where NSs can
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Figure 4.1: Critical baryon rest-mass of NSs that are marginally scalarized when isolated as functions of the
coupling constant B for mϕ = 1.33 × 10−11 eV. The plus markers indicate the coupling strength which we
choose to generate the mass sequences for each EOS.

develop scalar cloud before and/or after merger, and thus the range of interest ofmϕ is narrow.

We will consider only one canonical value for the scalar mass, viz. mϕ = 1.33 × 10−11 eV

(λ̄comp = 14.8 km), to quantitatively study how B influences the lifetimes of the HMNSs (τH)

and scalar cloud (τS) in post-merger systems.

For each EOS, we choose three different coupling strengthes B such that an isolated NS

with Mb = 1.60M⊙ would be either non-scalarized, marginally scalarized or spontaneously

scalarized as illustrated in Fig. 4.1. We explore a wide range of NS’s baryon mass spanning

from 1.60M⊙ to 1.90M⊙ as summarized in Section 4.7 with Tables 4.3 to 4.5 for APR4, MPA1

and H4 EOS, respectively, to investigate different outcomes of post-merger remnants. Each

model is referred to in the manner of the example: MPA1 B16.5 M1.70 corresponds to the

equal mass binary with the MPA1 EOS, B = 16.5, and Mb = 1.70M⊙ for an individual NS.

Since the coupling strengthes considered are not very strong, the ADM mass (MADM) of the

isolated NS deviates only slightly (≲ 10−3 M⊙) from the star having the same baryon mass

in GR.

We construct the BNS initial data in a quasi-equalibrium state by generalizing the public

spectral code FUKA [363] to the massive DEF theory. The BNS configurations are prepared

with an initial separation of 44.31 km, with which the BNS models experience 3–5 orbits be-

fore merger. Note that in our numerical simulation, the virial error of the initial data defined

by the relative difference of ADM mass and Komar mass, are always smaller than 0.04%.

We refer the readers to Chapter 3 for the detailed initial data formulation for constructing

quasi-equilibrium states of BNS in the massive DEF theory.
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4.2.4 Gravitational Wave Extraction

The information of GWs emitted is obtained by extracting the complex Weyl scalar Ψ4 in

the local wave zone (see, e.g., [278, 280, 526] for details). The Weyl scalar Ψ4 is decomposed

into (l,m) modes with spin-weighted harmonics as

Ψ4(tret) =
X

l,m

Ψl,m
4 (tret)−2Ylm(θ,ϕ), (4.7)

where the retarded time tret is defined by [245, 278]

tret := t−D − 2Minf ln

�
D

2Minf

− 1

�
. (4.8)

Here, Minf := M1,ADM + M2,ADM is the total ADM mass of the isolated NSs separated at

spatial infinity and D is the areal radius of the extraction sphere approximated as [278]

D ≈ R0

�
1 +

Minf

2R0

�2

, (4.9)

by assuming isotropic coordinates of non-rotating black holes in the wave zone with R0 being

the corresponding coordinate radius. We evaluate Ψ4 at the finite radius R0 = 480 M⊙ ≈
709 km and then analytically extrapolate the waveform toward null infinity by Nakano’s

method [317, 350, 351]. We shall focus only on the dominant (l, |m|) = (2, 2) mode in this

work because the contribution from other higher-multipole modes is minor for the equal-mass

BNSs. The harmonic mode of GWs can be evaluated by integrating Ψl,m
4 twice in time given

by

hl,m(tret) = hl,m
+ (tret)− ihl,m

× (tret)

= −
Z tret

dt′
Z t′

Ψl,m
4 (t′′)dt′′

=

Z
df ′ Ψ̃l,m

4 (f ′)

(2πmax(f ′, fcut))2
e2πif

′tret ,

(4.10)

where the last line shows the fixed frequency method of [389] we employed for the calculation

and fcut is the cutoff frequency set to be 0.8MinfΩ0/(2π) with Ω0 being the initial angular

velocity of the binary obtained from the initial data. The merger time tmerge is defined at the

time of the peak GW strain h2,2 := h2,2
+ − ih2,2

× , where h2,2
+ and h2,2

× are the plus and cross

polarization of l = m = 2 GWs, respectively. We also calculate the instantaneous frequency

fGW of the (2, 2) mode by

fGW =
1

2π
Im

 
h∗2,2ḣ2,2

|h2,2|2

!
, (4.11)
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where the asterisk and dot symbols denote the complex conjugate and the time derivative,

respectively. The interval between tmerge and the apparent horizon formation time tAH defines

the lifetime of HMNSs (i.e., τH := tAH − tmerge), and the lifetime of the scalar cloud, τS, is

determined by the interval between the merger and the descalarization in the HMNSs (if at

all).

We obtain the amplitude of the Fourier spectrum of GWs following [242, 276]

h̃(f)2,2 =

s
|h̃2,2

+ (f)|2 + |h̃2,2
× (f)|2

2
, (4.12)

from the Fourier transforms of plus h̃2,2
+ (f) and cross h̃2,2

× (f) polarization of GWs with f

being the GW’s frequency. The dimensionless effective amplitude heff(f) of GWs is defined

by

heff(f) := fh̃2,2(f). (4.13)

The propagation group velocity of scalar waves (vg) is stretched by mϕ, and the dispersion

relation is given by [40, 294] (see also Chapter 3)

vg =

1 +m2

ϕλ̄
2
gw

�−1/2
, (4.14)

with λ̄gw being the wavelength of the scalar wave. For λ̄gw ≫ λ̄comp, the speed of scalar

waves is much lower than the speed of light, and thus, essentially prohibiting the emission of

scalar waves [29, 398]. In this work, we consider a zero asymptotic value for the scalar field

(φ0 = 0), and consequently, scalar waves do not couple to the interferometer leaving no extra

mode such as the breathing and longitude modes in emitted GWs.

4.3 Post-merger scenarios

In GR, the final fate of the post-merger remnant of BNSs depends primarily on the total

mass and the EOS, while the mass of dynamical ejecta and the torus formed around the

post-merger black hole (if at all) should be also sensitive to the mass ratio [160, 393, 444].

In terms of the HMNS’s lifetime, we categorise the final outcome of BNS mergers into three

different scenarios:

1. prompt collapse to black hole,

2. short-lived HMNS formation (τH < 10 ms),

3. long-lived HMNS formation (τH > 10 ms),

where the criteria of 10 ms is a subjective choice. On top of the above categorization for
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BNS remnants, the presence of a scalar field introduces more variety in the final states (see

Fig. 4.2).

All the possible outcomes are showcased in Fig. 4.3, where the evolution of the relative

difference of maximum rest-mass density,

δρmax := ρmax(t)/ρmax(t = 0)− 1, (4.15)

and the maximum scalar-field amplitude1,

φamp := sgn(φ)max(|φ|), (4.16)

are plotted for four selected models with MPA1 EOS and scalar-field parameters (B,mϕ) =

(16, 1.33 × 10−11 eV). We briefly summarize all the possible scenarios of the scalar field

evolution according to Fig. 4.3, and leave the in-depth discussion to the following sections.

In the pre-merger phase, the scalar field can be excited if the NSs are compact enough to

undergo spontaneous scalarization (blue and yellow lines) or dynamical scalarization (green

line). Otherwise, the scalar field remains insignificant up to merger (red line). As we will

show in Section 4.3.3, the scalarization history of the BNS plays an important role in the

prompt-collapse threshold mass. In the post-merger phase, depending on the final mass of

the HMNS, it can either be spontaneously scalarized (red) or ”descalarize” after a certain

time to form an oscillating scalar cloud with appreciable amplitude. In the case where black

holes are formed (blue and yellow), the scalar field does not dissipate away entirely, and an

oscillating scalar cloud forms from the fossil scalar field instead. Although we will discuss

different outcomes of BNS mergers based on the lifetimes of the HMNS and the scalar cloud,

it should be noted that these timescales are not to be taken as exact for simulated models.

In fact, it is impossible to determine accurately the lifetimes in the numerical simulation in

practice since the HMNS after the merger is close to a marginally stable state, and any small

perturbation (including numerical errors) will alter its collapse time and thus the dynamics

is extremely sensitive to the grid resolution. Thus, the values can be considered as an

approximate estimate and the scenarios characterized by them are still qualitatively robust.

It can be noticed that the scalar field φamp experiences ∼ 10% perturbation for scalarized

binaries in the inspiral phase, which indicates that the scalar field has not yet perfectly

reached the quasi-equilibrium state. One possible reason is the insufficient grid resolution

to resolve the exponential falloff tail of the scalar field in our initial data solver. The other

possible reason is that the zero scalar field ”momentum” Φ = 0 condition employed in

our initial data formulation [294] described in Chapter 3 could possibly induce some initial

perturbation in the system. While any initial perturbation of the scalar field in the massless

1Since the change of sign of φ → −φ does not alter the evolution of the system, we adopt the convention of negative value
of φ when spontaneous scalarization happens. Therefore, we flip the sign of φ in the plots if positive φ arises when the HMNS
is spontaneously scalarized unless φ experiences change of sign in the scalarization/descalarization process.
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Figure 4.2: Summary of all the models in this work. The circle, triangle and black star markers represent the
final fate of postmerger remnant as long-lived HMNSs, short-lived HMNSs, and prompt collapse to a black
hole, respectively. The filled (resp. hollow) markers indicate the presence (resp. absence) of spontaneous
scalarization for isolated NS while the plus markers indicate the occurrence of dynamical scalarization. The
models that undergo descalarization are marked in the red color.
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Figure 4.3: Evolution of the relative difference of maximum rest-mass density δρmax := ρmax(t)/ρmax(t = 0)−1
(top) and of the maximum scalar field amplitude φamp (bottom) with different initial baryon rest mass of
individual NS with MPA1 EOS. The scalar-field parameters are set as B = 16 and mϕ = 1.33× 10−11 eV.

DEF theory [450, 486] can freely propagate out and dissipate quickly, in the presence of non-

zero scalar mass mϕ perturbations with a wavelength smaller than the Compton wavelength

will be trapped and remain in the vicinity of the system. Nonetheless, the initial perturbation

of the rest-mass density δρmax is less than 1%, and hence, we believe that the effect of the

scalar field perturbation is minor.

4.3.1 Long-lived neutron star remnant

We first recap the key criterion for spontaneous scalarization in a single star following [143,

298, 450], which is also useful in explaining the evolution of the scalar field in the HMNS.

The onset of scalarization can be approximately described by taking the weak field limit of

Eq. (4.1) with an average value of T within the star radius R, T̄ , as

(∆−m2
ϕ)φ = 2πBT̄φ, (4.17)

where ∆ is the flat Laplacian. Denoting k2 := −(2πBT̄+m2
ϕ), the conditions for scalarization

are given as k2 > 0 and kR → π/2 for R the NS’s radius [298, 450]. For the case of B > 0 and

assuming that the relativistic corrections to matter are small (i.e., T̄ ∼ −ρ), scalarization

is likely to happen if T̄ ∼ −ρ < Tcrit := −m2
ϕ/(2πB). However, scalarization is unlikely to
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Figure 4.4: Snapshots of the rest-mass density ρ (left column of each panel) and scalar field φ (right column
of each panel) on the equatorial plane for the cases of long-lived HMNS formation with the MPA1 EOS.
The baryon mass Mb of each NS in units of M⊙ and coupling strength B are (Mb, B) = (1.60, 16.0) (left)
(Mb, B) = (1.80, 17.0) (middle) (Mb, B) = (1.70, 16.5) (right). The time for each snapshot is indicated in the
red boxes with time measured from the onset of merger.
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occur if a bulk of HMNS’s interior is ultrarelativistic with T = −ρh+4P > Tcrit. The critical

value of T̄ depends on the actual profile of the star, while Tcrit still serves as a good indicator

for understanding the scalarization criterion (see below).

Shortly after the merger, an ultrarelativistic region can be formed in the HMNS for some

cases, where the descalarization soon ensues. However, the core of a natal HMNS may not be

in an ultrarelativistic regime even though possessing a much higher central density than that

of the progenitors. In this case, scalarization may occur in the HMNS even if the progenitors

remain unscalarized up to the merger (i.e., for a not-extremely large value of B). However,

the subsequent mass accretion may lead to the emergence of a region with T̄ > Tcrit, resulting

in a descalarization. In the event of a marginal descalarization, the scalar cloud trapped by

the central object oscillates with a larger amplitude than the case where the condition of

T̄ > Tcrit is conspicuously satisfied.

Before delineating different scalarization and descalarization scenarios for long-lived HMNSs

in the following subsections, we demonstrate each channel by a representative model in

Fig. 4.4, in which the snapshots of rest-mass density (left column of each panel) and scalar

field (right column of each panel) on the equatorial plane in the post-merger phase are dis-

played. For MPA1 B16.0 M1.60, the HNMS never reaches the ultrarelativistic regime and

remains scalarized until the end of the simulation, while the descalarization upon the crite-

rion is met fully and marginally for MPA1 B17.0 M1.80 and MPA1 B16.5 M1.70, respectively.

4.3.1.1 Long-lived scalarized HMNS

Fig. 4.5 shows the evolution of the maximum rest-mass density ρmax and scalar-field amplitude

φamp for selected models that yield a long-lived HMNS for three different EOSs. We first

focus on the cases for which the HMNS confidently (solid) and marginally (dashed; present

only for the H4 EOS) remains spontaneous scalarized at t − tmerge = 10 ms. Some models

with small values of B do not exhibit dynamical scalarization during the inspiral phase, but

scalarization can still occur in the post-merger phase (e.g., MPA1 B16.0 M1.60), because the

HMNS has a higher compactness compared to the corresponding isolated NS so that even

for a small value of B,
√
−TR ∼ √

ρR ∼
p

M/R in the resulting HMNS can be high enough

to fulfill the criterion of spontaneous scalarization.

Generally, the scalar field for scalarized HMNSs first gets amplified during merger and

then settles down to a certain saturation level (|φ| ∼ 0.5−0.7 in our cases) in a time interval

of ∼ 2 ms. The exact timescale depends on the coupling strength B; for example, the scalar

field for H4 B17.5 M1.60 takes ≈ 1.7 ms to grow to the peak value after merger, while for

H4 B17.0 M1.60 it takes ≈ 2.1 ms. This illustrates that it typically takes longer for the scalar

field to grow to saturation for a weaker coupling, in line with the previous numerical studies

where massless scalar field is considered [450].

The enhancement or activation of the scalar field during merger introduces an oscillation



Chapter 4. Properties of post-merger remnants 73

1.0

1.5

ρ
m
ax

[1
01

5
g/
cm

3
]

APR4

B15.3 M1.48

B15.3 M1.60

B15.8 M1.50

B15.8 M1.60

B16.3 M1.52

B16.3 M1.60

−0.5

0.0

φ
am

p

0.75

1.00

1.25

ρ
m
ax

[1
01

5
g/
cm

3
]

MPA1

B16.0 M1.60

B16.0 M1.82

B16.5 M1.66

B16.5 M1.80

B17.0 M1.70

B17.0 M1.80

−0.5

0.0

0.5

φ
am

p

1

2

ρ
m
ax

[1
01

5
g/
cm

3
]

H4

B17.0 M1.60 B17.5 M1.60

B17.5 M1.64

B18.0 M1.60

B18.0 M1.66

−4 −2 0 2 4 6 8 10
t− tmerge (ms)

−1.0

−0.5

0.0

φ
am

p

Figure 4.5: Evolution of the maximum rest-mass density ρmax and scalar-field amplitude φamp for the long-
lived HMNS formation with APR4 (top), MPA1 (middle), and H4 (bottom) EOS. The solid and dashed
curves correspond to spontaneously scalarized HMNS formation, and the dotted curves correspond to models
in which descalarization happens within 10ms after the merger.
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for it in the HMNS. Due to the non-zero mass of the scalar field, this oscillation does not

dissipate quickly in contrast to the massless case [450], but instead gets trapped and persists

for a timescale longer than 10ms after the onset of merger with appreciable oscillation am-

plitude ≲ 0.1 for φ. The oscillation frequency of the scalar field coincides with the one for

the rest-mass density at around 1 kHz. The mode associated with this pattern is believed to

attribute to the radial ϕ−mode since it falls in the band of a radial mode [333] of scalarized

HMNSs.

For H4 B17.0 M1.60 (blue solid line), H4 B17.5 M1.64 (green dashed), and H4 B18.0 M1.66

(red dashed) in the bottom panel of Fig. 4.5, we find a unique feature. For these models, the

scalar fields go to zero at ∼ 10ms after the onset of merger, and a black hole forms very soon

afterward as we can see that the rest-mass density is also growing rapidly. The descalariza-

tion shortly prior to the black hole formation is not triggered by the criterion T̄ > Tcrit, but

rather should be attributed to the no-hair theorem in the DEF theory (e.g., [470] and the

references therein).

4.3.1.2 Descalarized HMNS

In this section, we pay attention to the models for which the long-lived HMNSs undergo

descalarization that is induced by the secular contraction of the HMNS due to the GW

emission and angular momentum redistribution via gravitational torque associated with the

non-axisymmetric structure of the merger remnant.

The dotted curves in Fig. 4.5 show the evolution of models that descalarize over a dy-

namical timescale after the onset of merger. Taking MPA1 B16.0 M1.82 as an example (blue

dotted curve in the middle panel), we find that the scalar field promptly goes to zero when the

maximum density rises to become ultrarelativistic during the post-merger evolution. How-

ever, the scalar field does not stop at zero but instead form an oscillating scalar cloud around

the HMNS with an appreciable amplitude of ≲ 0.1, which differs from the massless case in

which the scalar field is completely turned off after descalarization [450]. A note is necessary

here to say that the term “descalarized HMNS” does not mean the scalar field is totally

dissipated, but rather, it represents an HMNS with a long-lived oscillating scalar field with

the zero time-averaged value ⟨φamp⟩ = 0. Owing to the residue scalar cloud, it is non-trivial

to determine definitely the time when descalarization happens, and we simply define the

descalarization time τS as the time of the first zero crossing of the scalar field amplitude φamp

during the post-merger phase.

To further understand the condition of the descalarization, we show the evolution of the

scalar-field amplitude φamp together with T at the maximum density, T (ρmax), in Fig. 4.6

for model MPA1 B16.0 M1.82 for which the prompt descalarization happens during the post-

merger phase with τS = 0.60 ms. Here, T (ρmax) in units of the nuclear saturation density

ρnuc (= 2× 1014 g/cm3) is plotted. In the inspiral phase, the NSs are initially spontaneously
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Figure 4.6: For a prompt descalarization scenario MPA1 B16.0 M1.82, left panels show the evolution of the
scalar-field amplitude φamp (top left) and trace of stress-energy momentum tensor T := T a

a (bottom left)
in units of the nuclear saturation density ρnuc = 2× 1014 g/cm3 at maximum density ρmax point. The blue
dotted vertical line and the black dashed horizontal line show the descalarization time τS and the critical
value Tcrit, respectively. The blue stars indicate the time of the snapshots of φ (top right) and T (bottom
right) on equatorial (x-y) and vertical (x-z) planes.
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scalarized which is consistent with the scalarization condition T (ρmax) < Tcrit as the central

value of T ≈ −2ρnuc. Once the NSs merge, T (ρmax) raises rapidly due to the increase in

maximum density and thermal contribution from shock heating, and immediately flips sign

to become positive. Soon after the scalar field crosses Tcrit, the descalarization occurs. Note

that T (ρmax) fluctuates around Tcrit for a few times due to the radial oscillation, temporally

satisfying the scalarization condition (T < Tcrit) during those cycles. As it turns out, the

scalar field is likely to temporarily reach a high value as in spontaneous scalarization, and

hence introduces large oscillation after τS.

As T (ρmax) shifts further away from Tcrit, the scalar field quickly damps, leaving an os-

cillating scalar cloud around the HMNS. In contrast to the ϕ-mode in spherical NSs in the

massless DEF theory, for which the damping time of φ is ≲ 1 ms [333], the residual scalar

cloud persists for more than 10 ms in the massive case, forming a long-lived quasi-normal

mode with appreciable amplitude ∼ O(0.1). Such a long-lived ϕ-mode observed in both

scalarized and descalarized cases is consistent with the results of [319], which suggests that

the presence of mass term mϕ could significantly extend the lifetime of the radial ϕ−mode in

the massive Brans-Dicke scalar-tensor theory. Also shown in the right panels of Fig. 4.6 are

the snapshots of the scalar field φ and T at 7.389 ms after the onset of merger. Despite of

the large value of T ∼ 2ρnuc at the center which forbids the HMNS from being spontaneously

scalarized, it still contains considerable matter with T < Tcrit surrounding the center, whose

size is comparable to the Compton wavelength λ̄comp = 14.8 km. This creates an off-centered

potential well in the right-hand-side of Eq. (4.17) and as such traps the scalar field in a

hollow sphere shape as shown in Fig. 4.6, which is different from the scalar field profile of

spontaneous scalarized HMNSs in Fig. 4.4, for which the peak value of φ is located at the

center of the NSs (see also [474]).

Other than the prompt descalarization scenario, the HMNS can still be subsequently

descalarized due to the secular contraction. In some models shown as red dotted curves

in Fig. 4.5, such as APR4 B16.3 M1.60 and MPA1 B17.0 M1.80, the HMNSs remain sponta-

neously scalarized for a few ms after the onset of merger. Meanwhile the rest-mass density

ρmax continues increasing due to the contraction resulting from the angular momentum dissi-

pation by the GW emission and the angular momentum redistribution via gravitational torque

associated with the non-axisymmetric structure of the HMNS until it reaches the ultrarel-

ativistic limit and triggers the descalarization. However, if the maximum rest-mass density

of the HMNS settles down to a value very close to the critical value for scalarization, the

HMNS may undergo several cycles going between states of scalarization and descalarization

due to the density fluctuation caused by the radial oscillation. Fig. 4.7 shows the evolution

of maximum density ρmax and scalar-field amplitude φamp for the marginally descalarized

models, which are denoted as the least massive descalarized HMNS along the mass sequence.

As the transition state between scalarized and descalarized HMNSs, any perturbation in den-
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Figure 4.7: Evolution of the maximum density ρmax (top) and scalar-field amplitude φamp for marginally
descalarized models with APR4 and MPA1 EOSs.

sity allow the HMNS to temporarily reach the scalarization criteria and drive the scalar field

towards the level of the spontaneously scalarized HMNS. Different from the hollow spherical

scalar clouds formed around the descalarized HMNS, the scalar cloud’s profile still peaks at

the center, similar to the spontaneously scalarized models in the marginally descalarized as

illustrated in Fig. 4.4 for model MPA1 B16.5 M1.70 (right panel). Therefore, it contains a

much stronger oscillation in φ than for other descalarized models with the amplitude ∼ 0.5.

In addition to the strong scalar-cloud oscillation, the marginally descalarized models also

have a much lower frequency of ϕ–mode with ≲ 500 Hz. We perform Fourier transform of

φ2
amp for the post-merger phase of long-lived HMNSs to obtain the characteristic frequency2

since the scalar field enters the modified Einstein field equations, Eq. (3.6), as ϕ ∼ φ2 and

thus φ2 is physically more relevant to hydrodynamics. Indeed, we find a better agreement

between the Fourier spectrum of ρmax
3 and φ2

amp. To obtain a cleaner spectrum, we cut the

transient evolution of scalar field after the change of the scalarization state, which is the first

2Note that instead of the conventional choice φamp used in other studies [319, 333], we choose specifically φ2
amp for the

Fourier analysis which introduces an extra factor of 2 in frequency for the perturbation of φ if the background scalar field is zero
(i.e. in the case of a descalarized HMNS with time-averaged ⟨φamp⟩ = 0). However, this choice does not alter the frequency of
the Fourier spectrum for the spontaneously scalarized HMNS case.

3While the perturbation of rest-mass density ρ is decoupled with φ in the GR branch of static spherical stars [333], the
evolution of ρ would still be affected by φ even for the descalarized HMNS case in full dynamical simulation.
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2 ms after the onset of merger for the scalarized cases, while for the descalarized cases we

cut the first few ms after the descalarization happened until the scalar field reaches at most

twice of its final amplitude.

Denoting fϕ,peak as the peak frequency of the Fourier spectrum of φ2
amp, which is believed to

be the ϕ-mode of the HMNS, Fig. 4.8 summerizes how fϕ,peak varies along the mass sequence

for the APR4 and MPA1 EOSs, for which a descalarized HMNS can be formed. The cross

and circle markers indicate the models with and without descalarization, respectively. As the

total baryon rest-mass of the scalarized HMNS increases, fϕ,peak drops and eventually reaches

its minimum at the marginally descalarized models. After that, fϕ,peak rises along the mass

sequence for the descalarized HMNS. This is consistent with the characteristics of ϕ-mode

as shown in Fig. 2c in [333] for which the mode frequency of the spontaneously scalarized

branch first drops to zero at the bifurcation point, indicating the end of the scalarized state

due to the mode instability, and then rises again in the GR branch. Therefore, we believe

that the dominant mode in φ2
amp is the radial ϕ-mode and the zero-frequency point of fϕ,peak

at the marginally descalarized model indicates the bifurcation point of scalarized and GR
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Figure 4.9: Lifetimes of the excited scalar field (dashed) and HMNS (solid) for the DEF theory with mϕ =
1.33 × 10−11 eV while various coupling strengths as functions of the total mass Minf := MADM,1 +MADM,2

of NSs for APR4 (top) MPA1 (middle), and H4 (bottom) EOSs.

branches.

We summerize τH (solid) and τS (dashed) for the simulated models whenever they can

be determined in Fig. 4.9. The scalar cloud’s lifetime τS depends strongly on the coupling

strength B as shown by the dashed curves in Fig. 4.9. In general, τS is longer for the larger

values of B. It is noticed that the descalarization of HMNSs only occurs in APR4 and MPA1

EOSs, while all the models with the H4 EOS (bottom panel) only descalarize right before the

collapse, i.e., the lifetimes τH and τS overlapped with each other. Although we pick up weak

coupling strengths that induces the scalarization for the static spherical NSs, ranging from

B = 17 to 18 for H4 EOS, the critical coupling strength B for the marginally scalarization

decreases rapidly for more massive NSs as shown in Fig. 4.1. For static spherical NSs with

total baryon mass greater than 2M⊙, spontaneously scalarization can happen for much lower

coupling B < 16 in H4 EOS, and we expect such critical value of B could go even lower for
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more massive HMNSs with Mb > 3M⊙. Therefore, the coupling constant B we covered is

relatively strong for HMNSs, prolonging the scalarization time and thus explain the strong

scalarization behavior.

4.3.2 Delayed collapse

When the total mass of merger remnants is slightly below the threshold mass Mthr, the

HMNS survives for a short period of time and then collapses to a black hole after subsequent

angular momentum dissipation by the GW emission and angular momentum transport via the

gravitational torque associated with non-axisymmetric structure of the HMNS. We classify

these delayed collapse models with τH < 10 ms as a short-lived HMNS. We expect that the

collapse could be further delayed if the HMNS is spontaneously scalarized since the scalar

field will weaken the gravitational force on the surrounding matter. Fig. 4.10 shows the

evolution of ρmax and φamp for short-lived HMNS models. HMNSs with the H4 EOS always

remain spontaneously scalarized until the formation of a black hole because of the choice

of the relatively strong coupling strength. Then, the descalarization occurs when the black

hole is formed and the scalar field is quickly dissipated due to the no-hair theorem. On

the other hand, HMNSs pertaining to the APR4 and MPA1 EOSs undergo descalarization

earlier before the black hole formation, leaving an oscillating scalar cloud. These descalarized

HMNSs have a mass > MGR
thr and yet they still survive for a few ms before forming a black

hole. This indicates that the small-amplitude scalar cloud |φ| ≲ 0.1 provides a temporal

support to stave off the collapse.

Taking one particular model as an example (same one as the red curve for MPA1 in

Fig. 4.10), we find that the evolution of the scalar field and the HMNS in this scenario is

visualized in Fig. 4.11 through the snapshots of the rest-mass density (left) and scalar field

(right) on the equatorial plane. The HMNS descalarizes at ≲ 2 ms after the onset of merger

and forms a hollow spherical scalar cloud around it (middle), similar to the scalar profile of

the descalarized models (cf, Fig. 4.6). The scalar cloud delays the collapse of the HMNS until

5.67 ms after the onset of merger. Eventually, a black hole is formed, which is surrounded

by a long-lived quasi-bound state of the scalar cloud with the amplitude of ∼ 10−4 (bottom)

because of the non-zero mass of the scalar field (see more details in Section 4.3.3).

4.3.3 Prompt collapse and the threshold mass

Shortly after the fully GR BNS merger simulations were feasible, Refs. [444, 446] showed that

there is a mass limit on the BNSs beyond which they immediately collapse into a black hole

within a dynamical timescale ≲ 1 ms. In GR, the threshold mass MGR
thr of NSs for which the

prompt collapse proceeds has been vastly studied for different EOSs, whereby it was found

that this threshold mass varies for different EOSs [64, 79, 242, 264, 286, 439], but is not
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Figure 4.10: Evolution of maximum density ρmax (top) and scalar field amplitude φamp for short-lived
HMNS cases. The dashed line indicate the collapse time for the corresponding models.
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Figure 4.11: Snapshots of rest-mass density ρ and scalar field φ on the equatorial plane for a short-lived
HMNS model MPA1 B17.0 M1.82 at the onset of merger (top), before the formation of apparent horizon
(middle), and at 10.9 ms after the onset of merger (bottom). The time after the onset of merger is indicated
in the red box and the black filled circles plotted at the bottom panels show the location of the black hole.
Notice the varying scale rule for φ in different panels.
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sensitive to the mass ratio unless the system is appreciably asymmetric as q < 0.7 [71]. The

threshold masses for the considered EOSs, APR4, MPA1, and H4, have been found to be

2.825 M⊙, 3.225 M⊙ and 3.125 M⊙, respectively, in [70] with GR hydrodynamics simulations

under conformal flatness approximation. In addition to dynamical studies, the threshold

mass can also be approximately determined by the maximum mass of differentially rotating

NSs along a constant angular momentum sequence for a given EOS, i.e., the turning-point

criteria is approximately valid to a large extent, provided that the rotational law can be

phenomenologically modeled [262, 346, 511]. However in the DEF theory, there could emerge

a scalarized branch of equilibrium under the same EOS, angular momentum, and rotational

law. The presence of the scalar field in spontaneously scalarized NS will effectively increase

the stiffness of the EOS, providing additional support against gravitational collapse and thus

the maximum achievable on the scalar branch has been shown to exceed that on the GR-

sequence [474]. This suggests the existence of HMNSs heavier than the prompt collapse

threshold in GR, i.e., the final remnant with mass greater than Mthr in GR may not undergo

prompt collapse if it is scalarized.

In practical simulations, there is no clear criterion to classify the outcome as the prompt

collapse scenario. Some studies [242] used monotonically increasing feature of ρmax after

the onset of merger as an indication of the prompt collapse, while some used monotonically

decreasing feature of the minimum value of the lapse function, αmin, toward zero as a criterion

[71]. In this study, we employ the minimum lapse function αmin as the indicator for the prompt

collapse when it decreases monotonically in the merger phase. Although αmin is a gauge

dependent variable, it directly reflects the geometrical property compared to the maximum

rest-mass density ρmax in the DEF framework since the contribution of hydrodynamics is

coupled to the scalar field as ϕ−1Tab [cf. Eq. (3.6)]. When the remnant undergoes gravitational

collapse, the scalar field |φ| drops to zero drastically due to the no-hair theorem and causes

a small bump in the evolution of the rest-mass density ρmax

To better resolve the threshold mass for prompt collapse, we increase the grid resolution in

binary mass sequence such that the least massive prompt collapse model and the most massive

delayed collapse model differ by ∆Mb = 0.02 M⊙ in total baryon mass (i.e., ∆Mb = 0.01M⊙

for each NS). We define the threshold mass as Mthr := (Minf,PC +Minf,SL)/2 following [70] in

which Minf,PC and Minf,SL are the ADM masses of least massive prompt collapse model and

most massive delayed collapse model at infinite orbital separation, respectively.

Fig. 4.12 shows the threshold mass of NSs with different values of B for the three EOSs

considered. We investigate the dependence of Mthr on B until it reaches the minimum

coupling strength Bcrit (circle markers in Fig. 4.12) with which spontaneous scalarization is

possible for spherically symmetric NSs as shown in Fig. 4.1. The shaded region indicates

the error bar given by Minf,PC and Minf,SL. For the weak coupling case B ≲ Bcrit, the NSs

are not scalarized in the inspiral phase, and thus, the contribution of the scalar field is
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Figure 4.12: Threshold mass Mthr for equal-mass BNSs as a function of the coupling constant B for APR4
(red), MPA1 (green), and H4 (blue) EOSs. The circle markers indicate the minimum value of the coupling
strength Bcrit with which spontaneous scalarization is possible for sphereically symmetric NSs. The width of
each curve reflects the bin size of the mass sampling.

negligible. For this case, the resultant threshold masses are essentially the same as in GR

with MGR
thr = 2.816M⊙, 3.174M⊙, and 3.091M⊙ for APR4, MPA1, and H4 EOSs, respectively.

Although the obtained threshold masses MGR
thr are by ∼ 1% lower than the corresponding

values found in [70], this could be due to the systematic error caused by the conformal

flatness approximation employed in their study which cannot accurately evolve spacetime

with high angular momentum. This is in agreement with [286] in which the obtained Mthr is

also lower than those in [66].

As the coupling strength B increases, the threshold mass Mthr begins to rise when the

scalar effect becomes important. Note that whether the threshold mass Mthr is modified from

GR is determined by scalarization history of the BNS in the inspiral phase. If spontaneous

scalarization or dynamical scalarization happens before the merger, the scalar field is large

enough to alter the subsequent evolution of the remnant HMNS. Otherwise, even if the final

remnant could be potentially scalarized with the associated mass and angular momentum,

the scalarization time is longer than the dynamical time of the remnant so that the prompt

collapse can happen before the HMNS reaches a state of spontaneous scalarization. This can

be found in model H4 B16.5 M1.71 shown in Fig. 4.13 (red) for which the scalar field grows

exponentially in the merger phase, hinting a sign of scalarization. However, the remnant

undergoes prompt collapse before the scalar field is significantly amplified, and hence, the

scalar effect is negligible throughout the evolution process. On the other hand, dynamical

scalarization kicks in and gets saturated at 2–3 ms before merger for model APR4 B14.8 M1.62



Chapter 4. Properties of post-merger remnants 85

−5 0 5 10 15
t− tmerge (ms)

10−8

10−6

10−4

10−2

100

|φ
am

p
|

H4 B16.5 M1.71 APR4 B14.8 M1.62 H4 B18.0 M1.78

Figure 4.13: Evolution of the maximum scalar-field amplitude |φamp| for three different collapse models.
The H4 B16.5 M1.71 (red) and H4 B18.0 M1.78 (blue) are prompt collapse models while APR4 B14.8 M1.62

(green) is a delayed collapse model. The colored dotted lines show the collapse times for the corresponding
models.

(green in Fig. 4.13). Hence, the final remnant is evaded from prompt collapse with total

massof 2.887M⊙ greater than threshold mass in GR MGR
thr of 2.816M⊙ because appreciable

scalar field is built up in the inspiral phase through the scalarization process.

As mentioned in Section 4.3.2, after the HMNS collapses, a quasi-bound state of the

oscillating scalar cloud will form around the black hole from the fossil scalar field if the

system undergoes scalarization beforehand. Fig. 4.13 shows that the scalar field for model

H4 B18.0 M1.78 (blue) quickly dissipates most of its energy after the prompt collapse. Nonethe-

less, a small fraction of the original scalar field remains and settles down to a long-lived

oscillating cloud with the amplitude ∼ 10−4. The final scalar cloud contains dominantly a

monopole component as illustrated at the bottom panels of Fig. 4.11 and Fig. 4.14.

4.4 Properties of remnants

4.4.1 Dynamical ejecta

First, we briefly discuss the material ejected from the BNS merger in the DEF theory.

One common method to identify the unbounded fluid element is to use geodesic criteria

ut ≤ −1 for particles moving on ballistic trajectories [85, 244, 266, 352, 379]. We define

the total baryon rest-mass Mej, total energy Eej, and total internal energy Uej of the ejected
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Figure 4.14: Snapshots of rest-mass density ρ and scalar field φ on the equatorial plane for a prompt collapse
model H4 B18.0 M1.78 at three different time slices. The time after the onset of merger is indicated in the
red box and the black filled circles denote the black hole.
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material by

Mej(t) :=

Z

ut≤−1

ρut
√−gd3x, (4.18a)

Eej(t) :=

Z

ut≤−1

Tµνn
µnν√γd3x, (4.18b)

Uej(t) :=

Z

ut≤−1

ρutϵ
√−gd3x, (4.18c)

and approximate the kinetic energy Tej as

Tej(t) := Eej −Mej − Uej. (4.19)

Assuming that the ejecta has non-relativistic motion, we then estimate the average velocity

vej of it as [244]

vej(t) :=

s
2Tej

Mej

. (4.20)

However, the influence of gravitational potential still remains in Tej as evaluated within the

computation domain ≲ 7500 km, hence overestimating the ejecta velocity. We therefore

further estimate the extrapolated velocity vej,ex following [125, 233] as

vej,ex(t) :=

s
v2ej − 2

Minf

vej × (t− tmerge)
, (4.21)

where vej is evaluated at time t. In this Chapter we define the mass Mdyn and the average

velocity vdyn of unbounded dynamical ejecta at 10 ms after the onset of merger from Mej and

vej,ex, respectively. Note that due to the residual eccentricity e ∼ 10−2 in our simulations and

limited grid resolution, the total mass of the ejected material could be altered by O(10%)

compared to circular orbits [196].

Fig. 4.15 summaries the total mass Mdyn and extrapolated average velocity vdyn of the

dynamical ejecta. The circle, triangle, and cross markers represent long-lived HMNS, short-

lived HMNS and prompt collapse models, respectively. The error bars are estimated by the

convergence test for long-lived HMNSs, short-lived HMNSs and prompt collapse cases: see

Section 4.6. Since the collapse time is very sensitive to the grid resolution in the short-lived

HMNS formation and hence alters the final ejecta properties, the corresponding error bar

is much larger than the other two cases. The ejecta mass Mdyn falls in the range of 10−3–

10−2 M⊙ depending on the EOS for the long-lived HMNS formation case with the average

velocity vdyn ∼ 0.2c–0.3c. The ejecta mass is found to be often very low as ≲ 10−3 M⊙ for the

prompt collapse case (in particular for the H4 EOS) due to inefficient time for outward angular
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Figure 4.15: Dynamical ejecta mass (Mdyn) and extrapolated average velocity (vdyn) as functions of mass
Minf for all the simulated BNS models. Each panel refers to a given EOS, while different coupling strengths B
are distinguished by different colors. The circle, triangle, and cross markers represent long-lived HMNS, short-
lived HMNS, and prompt collapse models, respectively. The error bars are estimated from the convergence
test shown in Section 4.6.
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momentum transport. For the APR4 and MPA1 EOSs, the ejecta mass is not extremently

low as ≳ 10−3M⊙. The reason for this is that we pay particular attention to the BNS mass

which is close to the threshold of the prompt collapse, and thus, shock heating effects at the

merger induce a certain amount of the dynamical mass ejection. For these models the ejecta

velocity becomes fairly high 0.3–0.4c because the shock heating is the dominant source of the

dynamical mass ejection.

We find that the ejecta properties are determined primarily by the lifetime of HMNSs

while the scalar effect is minor for the long-lived/short-lived HMNS formation case. This is

reasonable because the dynamical ejecta quickly escapes the Compton wavelength λ̄comp ≈
15 km of the scalar field, and hence, the ejecta evolution is not significantly influenced by the

scalar effect. This picture may change for lower values of mϕ, while observationally allowed

values of B will be further bounded to lower values.

4.4.2 Black hole and disk

For models that undergoes gravitational collapse to a black hole, we estimate the parameters

of the black hole from the equatorial circumferential radius Ce and the area AAH of the

apparent horizon by assuming that the spacetime is approximately stationary with negligible

effect from the matter. The black hole’s mass MBH and dimensionless spin parameter χBH

can be approximately computed via [449]

MBH =
Ce

4π
, (4.22)

χBH =

s
1−

�
AAH

8πM2
BH

− 1

�2

, (4.23)

respectively. Here, we evaluate MBH and χBH at 10 ms after the apparent horizon is formed.

The total bounded baryon rest mass outside the apparent horizon is determined via

Mdisk(t) :=

Z

r>rAH

ρut
√−gd3x−Mej(t), (4.24)

with rAH = rAH(θ,ϕ) being the coordinate radius of the apparent horizon. We also refer to

the final disk mass Mdisk,0 as Mdisk(t − tAH = 10ms), where we recall that tAH is the first

formation time of the apparent horizon.

We summarize the properties of the black hole and disk in Fig. 4.16 for short-lived HMNS

formation and prompt collapse models. For the prompt collapse models (cross markers),

the remnant disk mass is significantly suppressed with Mdisk,0 ≲ 10−3 M⊙ due to the in-

sufficient time for angular momentum to be transported outwards and hence most of the

matter falls into the BH as shown by the relatively high MBH/Minf factor and dimensionless

spin parameter χBH. Nonetheless, the dynamical timescale for the remnant to collapse to a
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Figure 4.16: Summary of final black hole and disk properties for short-lived HMNS formation (dot markers)
and prompt collapse (cross markers) cases with APR4 (top), MPA1 (middle), and H4 (bottom) EOSs. For
each EOS subplot, the black hole mass scaled by the total massMBH/Minf (top), dimensionless spin parameter
χBH (middle), and the final disk mass Mdisk,0 (bottom) are shown. The error bars are estimated from the
convergence test shown in Section 4.6.



Chapter 4. Properties of post-merger remnants 91

black hole is slightly extended for larger values of B due to the decrease in compactness of

isolated NSs. For example, the lifetime τH rises from 0.83 ms in H4 B17.0 M1.80 to 1.01 ms

in H4 B18.0 M1.80 as the coupling strength B is increased from 17 to 18. As a result, more

matter remains outside the black hole, yielding a slight decrease in MBH and χBH.

For the short-lived HMNS formation case, the disk mass is much higher than for the

prompt collapse case, and typically falls in the range of ∼ 10−2 − 10−3 M⊙. Simultaneously,

the resultant black hole mass and spin are lower. This result is consistent with that found

in GR hydrodynamics; the lifetime of the HMNS primarily determines the final disk mass in

the case of equal-mass BNSs. Since Mthr could be modified for large enough values of B in

the DEF theory, the disk mass could be significantly modified compared to in GR with the

same value of Minf .

Fig. 4.17 shows the snapshots of the disk on the x-z plane at 10 ms after the formation of

the apparent horizon for MPA1 B16.0 M1.86 and MPA1 B17.0 M1.86. Despite of their similar

masses Minf (∆Minf < 0.002M⊙), the short-lived HMNS formation model MPA1 B17.0 M1.86

has a thick torus with mass Mdisk,0 = 7.3 × 10−3M⊙ outside the horizon, while only a thin

disk with tiny mass Mdisk,0 = 5.1 × 10−4M⊙ remains in the black hole’s proximity for the

prompt collapse model MPA1 B16.0 M1.86.

4.4.3 Characteristics of gravitational waves from descalarized HMNS

In this Chapter, we focus on the discussion for a property of post-merger waveforms that

is special to the scenarios involving a descalarization, while leaving more extensive investi-

gation about other scenarios to future paper (Lam et al., in preparation). Taking model

APR4 B15.8 M1.56 as an example, Fig. 4.18 shows the plus polarization (top) and simultane-

ous frequency [Eq. (4.11); bottom] of the GW signal. We denote the instantaneous frequency

at the onset of merger at which the absolute amplitude |h| reaches its maximum as fmerge,

which is sometimes denoted as fpeak or f2,max in the literature. We also define f2,peak as the

frequency as the dominant peak in the Fourier spectrum of heff in the post-merger phase,

which is attributed to the l = m = 2 mode of the HMNS [194, 242, 428, 477, 483, 484].

The acceleration spectral density (ASD) h̃
√
f (Hz−1/2) is plotted in Fig. 4.19 for this model

assuming a source distance of 50 Mpc. Since the HMNS in this model undergoes descalar-

ization at 5.6 ms after the onset of merger, we perform the Fourier analysis of the waveform

within two different time segments before and after descalarization indicated by the solid

blue curves on the top and bottom panels in Fig. 4.19, respectively, while the spectrum of

the whole waveform is shown by the black dashed curve. By comparing the spectrum of

the whole waveform to that of the two time windows, we find that the f2,peak is determined

primarily by the state of the HMNS at a few ms after the onset of merger. In the later time

window, we find an up-wind shift in f2,peak after the descalarization since the compactness

of the HMNS increase during this process. Both the increased compactness and the higher
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Figure 4.19: ASD h̃
√
f (Hz−1/2) of APR4 B15.8 M1.56 at a distance of 50 Mpc. The black dashed curve

indicates the ASD of the the whole waveform and the vertical red dashed line indicates the f2,peak. The blue
line in the upper and lower panels show respectively the ASD of the waveform before and after the onset of
descalarization (5.6 ms after merge).

f2,peak are similar characteristics of the GW signature shared with the influence of a phase

transition from confined hadronic matter to deconfined quark matter (e.g., [68, 69, 91, 512]).

For comparison, we show in Fig. 4.20 the ASD in two time segments separated by 5 ms

after the onset of merger for model H4 B18.0 M1.64, whereas the remnant HMNS remains

scalarization in the post-merger phase. The f2,peak does not shift in the absence of a state

transition in the HMNS throughout the post-merger phase, which verifies that the shift in

f2,peak is indeed caused by the state transition of descalarization.

4.5 Summary and Discussion

We performed numerical relativity simulations to study the properties of post-merger rem-

nants and GW emission from BNS mergers in the DEF theory with a massive scalar field.
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We focused on a canonical scalar mass of mϕ = 1.33 × 10−11 eV suggested in Chapter 3

to explore a wide range of NS mass and coupling strength B for the APR4, MPA1, and H4

EOSs. In the framework of the DEF theory, a scalar cloud can be induced in NSs and HMNSs

by spontaneous scalarization or through dynamical scalarization in the binary system. This

additional scalar field modifies the classic picture of BNS post-merger remnants. In the pres-

ence of scalarization, the lifetime of the HMNSs is prolonged due to the extra support from

the scalar field. This raises the threshold mass for the prompt collapse by 0.1–0.2 M⊙, which

depends on the EOS (Fig. 4.12).

For lower BNSs from which a long-lived HMNS is formed, the excited scalar field also

changes its dynamics from GR one. We find that the remnant can undergo descalarization

if the maximum density reaches a certain critical value to become ultrarelativistic (Fig. 4.6),

either due to the merger or subsequent post-merger evolution by the GW emission and

the angular momentum redistribution via gravitational torque associated with the non-

axisymmetric structure of the remnant. Afterward, an oscillating scalar cloud remains in

the vicinity of the descalarized HMNS, and lasts over 10 ms after descalarization with ap-

preciable amplitude ∆φ ≲ 0.1 (Figs. 4.5 and 4.7) instead of rapidly dissipating away as that

would happen for a massless scalar field. Not only in a descalarized HMNS can we observe a

long-lived ϕ-mode. Even for HMNSs that remain scalarized to the end of the simulation, the

ϕ−mode excited during merger is exhibited (Fig. 4.5), and helps enhancing a quasi-radial

oscillation in the HMNS. Such a long-lived scalar cloud can also be found even after the

HMNS collapses to a black hole while with much smaller amplitude (Fig. 4.13).

The scalar field alters the lifetime of HMNSs (Fig. 4.9), which in turn modifies the dy-

namical ejecta mass and disk mass. This may give a different kilonova signature from the

GR prediction for a system with the same mass. We also observe an upward shift in f2,peak

frequency in post-merger GW signal due to the transition in the HMNS’s state caused by

descalarization (Fig. 4.19), which assembles the characteristics of the EOS phase transition

when deconfined quark matter reveals. The result for more detailed analysis of gravitational

waveforms and their spectra will be presented in a separate paper.

4.6 Convergence test

We summarize the details of numerical setup used in the simulations in Table 4.1. We adopt

N = 94 as the standard resolution throughout this Chapter.

Fig. 4.21 shows a result of the convergence test considering models of long-lived HMNSs,

MPA1 B16.5 M1.76 (Fig. 4.21a), short-lived HMNSs, MPA1 B16.5 M1.82 (Fig. 4.21b), and

prompt collapse, MPA1 B16.5 M1.88 (Fig. 4.21c) with three different grid-resolutions as N =

(110, 94, 78). We obtain convergent result in the inspiral phase , while the poor resolution in

the post-merger phase become notable in the presence of shocks. In particular for the short-
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Table 4.1: Numerical setups for the simulations. The grid number for covering one positive direction (N), the
grid spacing in the finest refinement level (∆x), the total size of computation domain [−L,L], total number
of moving boxes (nfix) and fixed (non-moving) boxes (nfix), total number of refinement depths (d) and the
extraction radius (rex).

N ∆x (m) L (106m) nmv nfix d rex (km)
78 189 7.56 8 6 10 709
94 157 7.56 8 6 10 709
110 134 7.56 8 6 10 709
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(b) Short-lived HMNSMPA1 B16.5 M1.82.
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Figure 4.21: Convergence test for three different models. In each subplot, the upper panel shows the evolution
of maximum density ρmax with resolution N1 = 110 (red), N2 = 94 (green) and N3 = 78 (blue), together
with the relative error |δρmax| := |ρmax/ρ1,max− 1| in N2,3 with respect to the highest resolution ρ1,max. The
lower panel shows the evolution of scalar field φamp and the relative error |δφamp

2| := |φamp
2/φ1,amp

2 − 1| in
the corresponding resolutions. The black dashed line shows the merger time in N1 while the colored dotted
lines in (b) and (c) show the collapse time in different resolutions respectively.
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Table 4.2: Errors of remnant properties for long-lived HMNSs, short-lived HMNSs and prompt collapse cases.

Models ∆Mdyn

10−4M⊙
∆vdyn 10−2 ∆Mdisk M⊙ ∆MBH

10−3M⊙
∆χBH 10−3

Long-lived HMNS 2.5 1.0 - - -
Short-lived HMNS 23.3 5.9 5.9 ×10−5 2.7 1.5
Prompt Collapse 7.1 3.6 1.6 ×10−2 29.2 15.2

lived HMNS formation model, MPA1 B16.5 M1.82 (Fig. 4.21b), ρmax and φamp deviate signifi-

cantly at 2ms after the onset of merger with non-converging collapse time since the evolution

of the marginally stable HMNS is extremely sensitive to the grid resolution. Nonetheless, we

find consistent evolution of ρmax and φamp for the cases of long-lived HMNS formation model,

MPA1 B16.5 M1.76 (Fig. 4.21a), and prompt collapse model, MPA1 B16.5 M1.88 (Fig. 4.21c).

In addition, the descalarization time τS and the collapse time in MPA1 B16.5 M1.76 and

MPA1 B16.5 M1.88, respectively, have a good convergence. This indicates that the standard

resolution ∆x = 157 m we employed throughout this Chapter is acceptable to explore the

scenarios of long-lived HMNS formation and prompt collapse.

We estimate the errors of dynamical ejecta massMdyn and velocity vdyn, remnant disk mass

Mdisk and black hole parameters MBH, χBH by their difference under the three resolutions

considered, which are given by Table 4.2.

4.7 List of the selected Models

In Tables 4.3, 4.4, 4.5, we summarize the outcomes for all the models considered in this

paper.
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Table 4.3: Summary of outcomes for the BNS mergers in the massive DEF theory with APR4 EOS. The
first column lists the model name which combines EOS, coupling strength B, and baryon mass of each NS in
units of M⊙. The second column shows the ADM mass MADM of each isolated NS. The third column shows
the state of pre-merger scalarization with symbols ×, △ and ⃝ corresponding to no scalarization, dynamical
scalarization, and spontaneous scalarization in the pre-merger phase, respectively. The fourth column lists
the post-merger remnants with LL, SL and PC being a long-lived HMNS, a short-lived HMNS, and prompt
collapse. The last two columns summerize the lifetime of the HMNS τH and scalar cloud τS for the cases of
LL and SL, with ’-’ representing the absence of descalarization in the post-merger phase.

Model name MADM

(M⊙)
Pre-merger

φ
Fate τH (ms) τS (ms)

APR4 B13.8 M1.57 1.4041 × LL > 10 -
APR4 B13.8 M1.58 1.4119 × PC 1.13 -
APR4 B14.3 M1.57 1.4041 × LL > 10 -
APR4 B14.3 M1.58 1.4119 × PC 1.13 -
APR4 B14.8 M1.62 1.4436 △ SL 2.13 0.52
APR4 B14.8 M1.63 1.4514 △ PC 1.17 0.50
APR4 B15.3 M1.48 1.3323 △ LL > 10 -
APR4 B15.3 M1.50 1.3500 △ LL > 10 -
APR4 B15.3 M1.52 1.3643 ⃝ LL > 10 5.28
APR4 B15.3 M1.54 1.3802 ⃝ LL > 10 4.06
APR4 B15.3 M1.56 1.3961 ⃝ LL > 10 4.65
APR4 B15.3 M1.58 1.4118 ⃝ LL > 10 1.66
APR4 B15.3 M1.60 1.4277 ⃝ LL > 10 1.86
APR4 B15.3 M1.62 1.4433 ⃝ SL 2.50 0.63
APR4 B15.3 M1.64 1.4590 ⃝ SL 2.21 0.58
APR4 B15.3 M1.65 1.4668 ⃝ PC 1.15 0.57
APR4 B15.3 M1.66 1.4747 ⃝ PC 1.00 0.55
APR4 B15.3 M1.68 1.4900 ⃝ PC 0.92 0.53
APR4 B15.8 M1.50 1.3481 ⃝ LL > 10 -
APR4 B15.8 M1.52 1.3642 ⃝ LL > 10 -
APR4 B15.8 M1.54 1.3800 ⃝ LL > 10 6.20
APR4 B15.8 M1.56 1.3960 ⃝ LL > 10 5.55
APR4 B15.8 M1.58 1.4116 ⃝ LL > 10 4.38
APR4 B15.8 M1.60 1.4274 ⃝ LL > 10 1.97
APR4 B15.8 M1.62 1.4430 ⃝ LL > 10 1.65
APR4 B15.8 M1.64 1.4586 ⃝ SL 2.21 1.82
APR4 B15.8 M1.65 1.4664 ⃝ SL 3.06 0.82
APR4 B15.8 M1.66 1.4742 ⃝ PC 1.31 0.67
APR4 B15.8 M1.67 1.4820 ⃝ PC 1.06 0.64
APR4 B15.8 M1.68 1.4897 ⃝ PC 0.98 0.60
APR4 B15.8 M1.70 1.5052 ⃝ PC 0.91 0.57
APR4 B16.3 M1.52 1.3637 ⃝ LL > 10 -
APR4 B16.3 M1.54 1.3797 ⃝ LL > 10 -
APR4 B16.3 M1.56 1.3955 ⃝ LL > 10 6.02
APR4 B16.3 M1.58 1.4111 ⃝ LL > 10 5.40
APR4 B16.3 M1.60 1.4268 ⃝ LL > 10 4.07
APR4 B16.3 M1.62 1.4425 ⃝ SL 5.03 2.97
APR4 B16.3 M1.64 1.4580 ⃝ SL 3.21 1.73
APR4 B16.3 M1.66 1.4737 ⃝ SL 2.23 1.70
APR4 B16.3 M1.68 1.4891 ⃝ SL 1.89 0.92
APR4 B16.3 M1.69 1.4967 ⃝ SL 1.12 0.78
APR4 B16.3 M1.70 1.5046 ⃝ PC 1.03 0.71
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Table 4.4: Same as Table 4.3 but for the MPA1 EOS.
Model name MADM

(M⊙)
Pre-merger

φ
Fate τH (ms) τS (ms)

MPA1 B15.0 M1.78 1.5830 × LL > 10 -
MPA1 B15.0 M1.79 1.5910 × PC 1.18 -
MPA1 B15.5 M1.78 1.5830 × SL 3.06 -
MPA1 B15.5 M1.79 1.5910 × PC 1.18 -
MPA1 B16.0 M1.60 1.4399 × LL > 10 -
MPA1 B16.0 M1.62 1.4559 × LL > 10 -
MPA1 B16.0 M1.64 1.4721 × LL > 10 -
MPA1 B16.0 M1.66 1.4880 × LL > 10 -
MPA1 B16.0 M1.68 1.5040 × LL > 10 9.27
MPA1 B16.0 M1.70 1.5200 × LL > 10 2.76
MPA1 B16.0 M1.72 1.5358 △ LL > 10 3.00
MPA1 B16.0 M1.74 1.5537 △ LL > 10 2.01
MPA1 B16.0 M1.76 1.5674 ⃝ LL > 10 2.64
MPA1 B16.0 M1.78 1.5832 ⃝ LL > 10 0.66
MPA1 B16.0 M1.80 1.5989 ⃝ LL > 10 0.63
MPA1 B16.0 M1.82 1.6145 ⃝ LL > 10 0.61
MPA1 B16.0 M1.84 1.6299 ⃝ SL 2.37 0.57
MPA1 B16.0 M1.85 1.6377 ⃝ PC 1.30 0.56
MPA1 B16.0 M1.86 1.6456 ⃝ PC 1.15 0.55
MPA1 B16.5 M1.60 1.4399 △ LL > 10 -
MPA1 B16.5 M1.62 1.4559 ⃝ LL > 10 -
MPA1 B16.5 M1.64 1.4719 ⃝ LL > 10 -
MPA1 B16.5 M1.66 1.4880 ⃝ LL > 10 -
MPA1 B16.5 M1.68 1.5039 ⃝ LL > 10 -
MPA1 B16.5 M1.70 1.5197 ⃝ LL > 10 6.38
MPA1 B16.5 M1.72 1.5357 ⃝ LL > 10 10.5
MPA1 B16.5 M1.74 1.5514 ⃝ LL > 10 5.74
MPA1 B16.5 M1.76 1.5673 ⃝ LL > 10 4.41
MPA1 B16.5 M1.78 1.5830 ⃝ LL > 10 1.94
MPA1 B16.5 M1.80 1.5986 ⃝ LL > 10 1.90
MPA1 B16.5 M1.82 1.6142 ⃝ SL 6.57 0.76
MPA1 B16.5 M1.84 1.6296 ⃝ SL 2.75 0.67
MPA1 B16.5 M1.86 1.6453 ⃝ SL 2.77 0.62
MPA1 B16.5 M1.87 1.6531 ⃝ PC 1.27 0.61
MPA1 B16.5 M1.88 1.6607 ⃝ PC 1.11 0.60
MPA1 B16.5 M1.90 1.6761 ⃝ PC 0.95 0.57
MPA1 B17.0 M1.70 1.5196 ⃝ LL > 10 -
MPA1 B17.0 M1.72 1.5353 ⃝ LL > 10 -
MPA1 B17.0 M1.74 1.5511 ⃝ LL > 10 -
MPA1 B17.0 M1.76 1.5670 ⃝ LL > 10 5.79
MPA1 B17.0 M1.78 1.5824 ⃝ LL > 10 4.47
MPA1 B17.0 M1.80 1.5981 ⃝ LL > 10 3.27
MPA1 B17.0 M1.82 1.6139 ⃝ SL 5.67 1.90
MPA1 B17.0 M1.84 1.6293 ⃝ SL 2.50 1.90
MPA1 B17.0 M1.86 1.6447 ⃝ SL 2.69 0.85
MPA1 B17.0 M1.87 1.6525 ⃝ SL 2.95 0.74
MPA1 B17.0 M1.88 1.6601 ⃝ PC 1.36 0.69
MPA1 B17.0 M1.90 1.6757 ⃝ PC 1.12 0.64
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Table 4.5: Same as Table 4.3 but for the H4 EOS.
Model name MADM

(M⊙)
Pre-merger

φ
Fate τH (ms) τS (ms)

H4 B15.0 M1.70 1.5414 × SL 3.69 -
H4 B15.0 M1.71 1.5494 × PC 1.37 -
H4 B15.5 M1.70 1.5414 × SL 2.59 -
H4 B15.5 M1.71 1.5494 × PC 1.37 -
H4 B16.0 M1.70 1.5414 × SL 2.68 -
H4 B16.0 M1.71 1.5494 × PC 1.37 -
H4 B16.5 M1.70 1.5414 × SL 2.84 -
H4 B16.5 M1.71 1.5494 × PC 1.36 -
H4 B17.0 M1.60 1.4594 × LL > 10 -
H4 B17.0 M1.62 1.4758 × SL 8.54 8.40
H4 B17.0 M1.64 1.4923 × SL 7.35 7.22
H4 B17.0 M1.66 1.5087 × SL 8.39 8.32
H4 B17.0 M1.68 1.5251 × SL 2.43 2.30
H4 B17.0 M1.70 1.5414 × SL 3.94 3.84
H4 B17.0 M1.72 1.5575 × SL 2.24 2.13
H4 B17.0 M1.74 1.5738 △ SL 1.52 1.56
H4 B17.0 M1.75 1.5867 △ PC 1.18 1.12
H4 B17.0 M1.76 1.5899 ⃝ PC 1.00 1.06
H4 B17.0 M1.78 1.6060 ⃝ PC 0.92 0.95
H4 B17.0 M1.80 1.6221 ⃝ PC 0.83 0.87
H4 B17.5 M1.60 1.4594 × LL > 10 -
H4 B17.5 M1.62 1.4758 × LL > 10 -
H4 B17.5 M1.64 1.4922 × LL > 10 -
H4 B17.5 M1.66 1.5087 △ SL 6.63 6.53
H4 B17.5 M1.68 1.5251 ⃝ SL 7.00 7.95
H4 B17.5 M1.70 1.5413 ⃝ SL 4.66 4.62
H4 B17.5 M1.72 1.5575 ⃝ SL 2.27 2.24
H4 B17.5 M1.74 1.5736 ⃝ SL 2.11 1.95
H4 B17.5 M1.75 1.5818 ⃝ SL 2.16 2.01
H4 B17.5 M1.76 1.5898 ⃝ PC 1.27 1.16
H4 B17.5 M1.78 1.6058 ⃝ PC 1.00 1.03
H4 B17.5 M1.80 1.6216 ⃝ PC 0.90 0.96
H4 B17.5 M1.82 1.6377 ⃝ PC 0.87 0.90
H4 B17.5 M1.84 1.6535 ⃝ PC 0.78 0.83
H4 B17.5 M1.86 1.6694 ⃝ PC 0.73 0.81
H4 B18.0 M1.60 1.4594 ⃝ LL > 10 -
H4 B18.0 M1.62 1.4758 ⃝ LL > 10 -
H4 B18.0 M1.64 1.4922 ⃝ LL > 10 -
H4 B18.0 M1.66 1.5086 ⃝ LL > 10 9.96
H4 B18.0 M1.68 1.5249 ⃝ SL 7.63 7.59
H4 B18.0 M1.70 1.5410 ⃝ SL 5.82 5.79
H4 B18.0 M1.72 1.5572 ⃝ SL 2.29 2.22
H4 B18.0 M1.74 1.5733 ⃝ SL 2.11 2.14
H4 B18.0 M1.76 1.5894 ⃝ SL 2.02 1.95
H4 B18.0 M1.77 1.5973 ⃝ SL 2.55 2.49
H4 B18.0 M1.78 1.6053 ⃝ PC 1.16 1.10
H4 B18.0 M1.80 1.6212 ⃝ PC 1.01 1.02
H4 B18.0 M1.82 1.6371 ⃝ PC 0.87 0.95
H4 B18.0 M1.84 1.6529 ⃝ PC 0.81 0.91
H4 B18.0 M1.86 1.6687 ⃝ PC 0.82 0.86
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This chapter is based on the preprint submitted to Phys. Rev. Lett.: “Accessing universal re-

lations of binary neutron star waveforms in massive scalar-tensor theory” in arXiv:2410.00137

[306] by A. T.-L. Lam, Y. Gao, H.-J. Kuan, M. Shibata, K. V. Aelst and K. Kiuchi. The

tidal deformability of the neutron stars in scalar-tensor theory was calculated by Y. Gao. All

the numerical simulations were carried out by me using the massive scalar-tensor extension

of SACRA-MPI developed by me. The initial data were constructed by me using the initial

data solver developed by K. V. Aelst. The simulation results were analysed by me and all the

figures except figure 1 were generated by me. M. Shibata and K. Kiuchi provided constructive

comments on the manuscript partially written by me, H.-J. Kuan and Y. Gao.
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Overview

In this Chapter, we investigate how the quasi-universal relations connecting tidal deformabil-

ity with gravitational waveform characteristics and/or properties of individual neutron stars

that were proposed in the literature within general relativity would be influenced in the mas-

sive Damour-Esposito-Farese-type scalar-tensor gravity. For this purpose, we systematically

perform numerical relativity simulations of ∼ 120 binary neutron star mergers with varying

scalar coupling constants. Although only three neutron-star equations of state are adopted,

a clear breach of universality can be observed in the datasets. In addition to presenting

difficulties in constructing quasi-universal relations in alternative gravity theories, we also

briefly compare the impacts of non-general-relativity physics on the waveform features and

those due to the first order or cross-over quantum chromodynamical phase transition.

5.1 Introduction

Coalescence of binary neutron stars (BNSs) offers a unique avenue to test gravity in its

strong regime and to probe thermodynamic states of matter at subatomic densities. The

gravitational wave (GW) signal originating from such a process was detected for the first

time in 2017 by LIGO and VIRGO observatories [1, 20], though only in the late-inspiral

epoch. This event, GW170817 [6, 11, 12], has led to certain constraints on gravitation

[10, 87, 366] and the equation of state (EOS) of nuclear matter [7, 122, 163, 381]. The

analysis was conducted assuming general relativity (GR) as the underlying theory of gravity

to agnostically bound the observation’s deviation from the prediction of GR. However, tests of

a specific alternative theory of gravity require the development of waveform templates within

the theory and may entail certain modifications in the data analysis formalism. Although

analytic efforts in waveform modeling have been devoted to some theories, e.g., the scalar-

tensor theory and the scalar-Gauss-Bonnet theory, a lot remains to be done to establish

machinery at the same level of sophistication as that in GR to analyze GWs.

GWs emitted during and in the aftermath of the merger would lie in the frequency band

of 2–4 kHz if the system produces a hypermassive neutron star (HMNS) as a transient

remnant [60, 242, 447]. The current ground-based GW detectors are less sensitive in these

bands [3, 13, 17]; in fact, even with the design sensitivity of Advanced LIGO, the postmerger

waveform of a GW170817-like event might only have a SNR of ∼ 2–3, which can hardly

be detected. However, waveforms at a few kHz may be reachable with the next-generation

detectors such as the Einstein Telescope [101, 238, 377] and the Cosmic Explorer [18, 184, 390],

for which the sensitivity is by a factor of ≳ 10 higher than those of current detectors.

Postmerger waveforms are informative of the dynamics of remnant systems. Of par-

ticular interest are the mergers that lead to an HMNS temporarily supported by differen-

tial rotations [57, 446] and high thermal pressure [62, 243, 262, 346]. The fluid motions
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within these remnants will emit a loud GW transient over ∼ 10–20ms with characteris-

tic frequencies corresponding to the oscillation modes excited in the remnant massive NS

[60, 243, 358, 428, 444, 446, 483, 484]. The dominant peak in the spectrum can be related

to the fundamental mode of the remnant, whose frequency depends sensitively on both the

EOS and the underlying gravitational theory [96, 289, 468]. Therefore, the measurement of

this frequency provides combined information about the nature of gravity and supranuclear

matters.

However, to what extent we can learn about the gravitation and the EOS is subject to

at least these technical and theoretical challenges: (i) the morphology of the postmerger

waveforms are qualitatively different from that of inspiral, requiring different modeling and

analysis strategies [123, 130, 367], and (ii) the influences of the microphysics and the grav-

itational aspects of the problem on waveforms are strongly degenerate [418], which hinders

a clear determination of matter effects and deviations from GR. One of the cogent propos-

als to address the latter issue appeals to quasi-universal relations that connect the spectral

properties of postmerger waveforms with properties of cold stars in isolation or participating

in a coalescing binary.

Within GR, these quasi-universal relations are leveraged to infer quantities that are not

directly observable [124, 330, 494, 522, 523, 524], facilitate efficient Bayesian analysis [105,

106, 376, 479, 514], and develop phenomenological waveform models by reducing the matter’s

degrees of freedom [66, 82, 484, 525]. In alternative theories, the EOS-insensitive feature of

these relations will be useful in disentangling the EOS effects from gravity, and thus can help

to distinguish non-GR imprints from the uncertainties of EOS. However, this method requires

a cautious evaluation of the reliability of these relations in the gravity theory under study

to prevent any contamination in the inference. Taking the massive Damour-Esposito-Farese-

type (DEF; [142, 143, 144, 145]) scalar-tensor theory of gravity as an example, whose action is

given as Eq. (3.1) [294, 298, 305] (see also Chapters 3 and 4), we illustrate in the remainder of

this chapter that many (if not all) of the quasi-universal relations on the market are actually

breached, hinting at a strong caveat of using them for Bayesian analysis. The scalar mass

has been constrained by pulsar observations [32, 419, 538] as mϕ > 10−15 eV [385, 527] . In

addition, GW170817 can tentatively suggest a lower bound on scalar mass as mϕ > 10−12 eV

[294, 536] (see also Chapter 3). In this chapter, we will consider mϕ = 1.33 × 10−11 eV

(Compton wavelength of ≈ 15 km), which suffices to demonstrate the main conclusion: we

will emphasize the violation of the quasi-universal relations, which can only be more profound

for smaller mϕ.

For the simulations considered in this chapter, the coupling constants have been chosen

such that the non-GR effects can only marginally appear during inspiral to respect the

observation of GW170817 in Chapter 4 In particular, the radius-mass and tidal deformability-

mass relations are shown in Fig. 5.1 (see Section 5.6 for the equations for computing tidal
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deformability in the massive DEF theory). We can see a qualitative difference between the

sequence of the H4 EOS and those of the other two EOS: the scalarized sequence of equilibria

of static, spherical stars does not merge into the GR branch in the high-density regime. The

steep softening behavior of the H4 EOS at the high density prevents the revealing of a

core that features a negative trace of the energy-stress tensor, staving off the conditions for

descalarization (see, e.g., the discussion in Sec. III of [450]). The complete catalog of the

simulated system is listed in Section 5.6, while the details of numerical schemes and setups

can be found in Chapter 4 as well as in [450, 486]. We also note that the simulations included

in this chapter focus on the post-merger evolution and thus the quasi-equilibrium states of

binaries were prepared at < 5 orbits before the merger as initial data.

Throughout, we denote the ratio between the masses of binary as q = m2/m1 ≤ 1, the

instantaneous frequency of GWs at the merger as fpeak, the GW amplitude at the merger as

hpeak (here the merger time is defined as the moment when the GW amplitude reaches the

maximal), the threshold mass for prompt collapse to a black hole as Mthr, and the frequency

of the dominant peak in the post-merger waveform as f2. The numerical results presented

here are limited to simulations of equal-mass binaries, including those performed in the recent

work included in Chapter 4 using theory-consistent quasi-equilibrium states as initial data

described in Chapter 3 and some simulations within GR newly performed here.

5.2 Correlations between Λ̃ and GW characteristics

The main tidal signature in inspiral waveforms depends predominantly on the binary tidal

deformability Λ̃ = 16(m1 + 12m2)m
4
1Λ1/13M

5 + (1 ↔ 2), where M = m1 +m2 and the tidal

deformability of the individual stars are Λ1 and Λ2, respectively [187, 192, 241, 248, 509].

The estimate on Λ̃ for GW170817 yielded, though loosely, the first constraints on the yet

unknown EOS of NS while assuming GR as the gravitational theory. On the observation

front, measurability of Λ̃ is within the uncertainty of σΛ̃ ∼ 400 at the 2σ level with current

detectors [11, 247, 312] and is expected to be improved to σΛ̃ ≲ 50 at the 1σ level in the fifth

observation mission [374, 383]. It is owing to this dominant role of Λ̃ in affecting the phasing

of waveforms that several quasi-universal relations have been proposed to relate it with GW

properties as introduced as follows.

Using numerical simulations, a quasi-universal relation between Λ̃ and fpeak is found for

1.35 + 1.35M⊙ irrotational binaries [82, 387]. The validity of this relation is extended in

[84, 391, 484] to binaries with individual NSs having a mass of 1.2–1.65M⊙ while keep-

ing binaries as symmetric and irrotational. Aside from reading off the numerical results,

Bernuzzi et al. [82] also discover this universality by inspecting effective-one-body wave-

form models, where the mass range is further extended to include the mass close to the

Tolman–Oppenheimer–Volkoff limit for the respective EOS and includes a small spin up to



Chapter 5. Accessing universal relations of binary neutron star waveforms in massive scalar-tensor
theory 107

10

11

12

13

14

R
/k
m

GR

GR

GR

1.4 1.6 1.8 2.0 2.2 2.4

M/M�

101

102

Λ

Coupling constant B

APR4

13.8

14.3

14.8

15.3

15.8

16.3

MPA1

15.0

15.5

16.0

16.5

17.0

H4

15.0

15.5

16.0

16.5

17.0

17.5

18.0

H4

15.0

15.5

16.0

16.5

17.0

17.5

18.0

Figure 5.1: The radius-mass (top), and the tidal deformability-mass (bottom) relations for the considered
theories. The lines labeled ”GR” represent the cases identical to those in GR. Three EOSs are considered
in the piecewise-polytropic approximation [386]rezz16. For each EOS, a variety of scalar coupling constants
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|χ| = 0.1. The influence of mass-ratio on this relation is pointed out later on, which is

evidenced by the simulations of asymmetric, irrotational binaries with varying mass ratios

between 0.734–1 [278, 280]. This motivates Kiuchi et al. [280] to generalize the relation to

capturing the effect of asymmetry, and subsequently, the coefficients of the fitting formula

acquire a q-dependence.

The top panel of Fig. 5.2 shows our numerical results1 (the filled markers denote the GR

data) together with the relation established in [280] when setting the coefficients for equal-

mass binaries (dashed line). First we see that the GR data deviates slightly from the fitting

formula, but this is within the uncertainty of the fitting formula itself (4%; shaded area). The

largest deviation is found as ≲ 5.8% in the middle range of Λ̃, which is near the low (high)

end of our H4 (APR4 and MPA1) samples. We can also notice that the binaries that do

not exhibit scalarization before the merger (squares) obey well the quasi-universal relation,

which can be expected since the inspiral dynamics leading up to the merger are equivalent

to in GR for these cases.

On the other hand, the relation tends to underestimate fpeak for a given Λ̃ for either

spontaneously (circles) or dynamically (triangles) scalarized mergers, indicating that the

orbital frequency right before the merger is systematically enhanced compared to the case

where the scalar phenomenon is silent. Although the deviation is still within the formula’s

uncertainty and does not show a decisive violation, the mergers with large Λ̃ (i.e., the stiff

EOS H4) display a clear disagreement with the formula. In particular, fpeak for the EOS H4

is roughly constant for Λ̃1/5 ≳ 3.4, and thus differ further from the relation to the right of

the plot.

On top of the GW frequency at the merger, Refs. [83, 105, 107, 280] demonstrated that Λ̃

can also be quasi-universally related to f2 for a quite wide range of mass ratios (0.67 ≤ q ≤ 1)

while commenting on a possible violation of the universality when including spinning and/or

magnetized binaries. The relation is also proposed in [391, 484], while their simulations were

limited to nearly equal-mass binaries. Our data together with the formula in [280] are shown

in the middle panel of Fig. 5.2, where the shaded area presents the fitting uncertainty of

9%. We note that mergers promptly collapsing into a black hole are not shown here since

no information of f2 can be extracted. For the GR cases, data points with the APR4 and

MPA1 EOSs lie on the line within a minor deviation of < 1%, while those with the H4

EOS are on the boundary of the fitting uncertainty. In contrast to the Λ̃-Mfpeak relation,

the scalar field is always activated in the aftermath of the merger for the adopted coupling

constants. Therefore, f2 is naturally expected to be different from what would be predicted

in GR. Indeed, we observe a systematic reduction in f2 when Λ̃1/5 ≲ 3.4, for the chosen

samples with the soft EOSs APR4 and MPA1. However, the cases with the H4 EOS are

1Numercial uncertainties in determining the considered characteristic properties is much less then the uncertainties of each
fitting formula, and thus are not shown on Fig. 5.2. However, we provide some information about the numerical uncertainties
in Section 5.6.
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quite consistent between GR and the considered DEF theories. The reason could be that the

scalar cloud is already developing shortly before the merger for the APR4 and MPA1 EOS,

as indicated by the larger GW strain (cf. Fig. 5.2 for hpeak). By contrast, the scalar field

only started to grow after the merger for the simulations with the H4 EOS. The influence

of the scalar field on the f2 is therefore minor in the first few milliseconds, i.e., during the

strongest emitting window of f2 mode. That said, there is still a difference between GR and

the DEF scenarios: a prompt collapse realizes for Λ̃1/5 ≲ 3.8 in GR, while an HMNS can still

be formed until Λ̃1/5 ≲ 3.4 depending on B.

Kiuchi et al. [280] further provide relations of Λ̃ to hpeak. We again compare our numerical

data of hpeak with their formula, shown in the bottom panel of Fig. 5.2. Our GR results

progressively exceed the fitting formula for lower Λ̃, and the deviation reaches ≲ 3.3% to the

left side of the plot. In general, cases that are not scalarized in the inspiral epoch, including

those in the DEF theory with weak scalar coupling and those in GR, align well with quasi-

universal relations. However, binaries endowed with a scalar cloud during inspiral exhibit a

systematic upward shift from this trend.

5.3 Correlations between f2 and properties of individual NS

On top of the above relations, the frequency of the dominant mode in postmerger waveforms

can also be universally connected to the certain properites of a cold spherical neutron star in

isolation, e.g., the Love number (Λ1.6) and radius (R1.6) of the 1.6M⊙ NS, assuming no strong

phase transitions. In particular, Bauswein et al. proposed a f2-R1.6 relation [63, 65] (see also

[60]) from their simulations of 1.35 + 1.35M⊙ binaries while adopting the conformal flatness

condition (CFC). The data set for seeking such a relation has been significantly extended by

including different M while keeping q = 1 in [314]. In the above work, the authors found

different relations for each M and this dependence on M is also found later in [123]. On the

other hand, focusing on binaries with similar total binary mass (viz. 2.7 and 2.6 M⊙) for mass

ratios 0.8 ≤ q ≤ 1, Refs. [67, 243] showed a consistent fitting, while the data spread broader

away from the fitting formula as quantified in [280]. This relation is substantially revised

by including also the chirp mass as additional fitting parameter in [508]. In that work, the

authors adopted the combined numerical results of equal-mass binary mergers under CFC

with individual NS’ mass ranging from 1.2–1.9 M⊙, and the simulations withdrawing CFC of

unequal-mass binaries with q ≥ 0.49 for a mass range of 0.94–1.94 M⊙ released in the CoRe

database [161].

In Fig. 5.3, we show the comparison with the quasi-universal relation obtained in [67]. Even

in GR, the formula can only approximately describe the cases with the EOS H4, while the

systems with the other softer EOSs are significantly below. The relative deviation is depicted

in the bottom panel, where we see that the formula tends to overestimate f2 frequency by
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Figure 5.3: Correlation between f2/M and R1.6 for the considered EOS (see plot legends) and various of B.
The numerical results are denoted in the same manner as in Fig. 5.2. The quasi-universal relation proposed
in [67] is shown as the dashed curve, while the relative deviation of our numerical results to the formula is
given in the bottom panel.



112 5.4. Degeneracy with QCD phase transition

≳ 10% for the APR4 and MPA1 EOSs. Focusing on the numerical data, it can be noticed

that R1.6 is larger in the DEF theories for the APR4 and MPA1 EOSs, while the trend is

reversed for the H4 EOS. The overall reduced value of f2 in the DEF theories can seemingly

be explained by the effective stiffening for the APR4 and MPA1 EOSs. However, such a

rationale does not apply to the H4 EOS, indicating that the interplay between gravity and

matter is non-trivial and more investigation is needed to understand their competition in

determining the stellar structure.

We have also compared the numerical results with the f2-Λ1.6 relation in Lioutas et al.

[314]. The situation is more or less the same as the comparison with f2-R1.6 relation, and

therefore we do not present it here.

5.4 Degeneracy with QCD phase transition

Certain caveats have already been raised that the tightness of quasi-universal relations can

be broadened by including a wider set of EOS [382] or violated by either a strong, first-

order [68, 91, 210, 228, 311, 345, 372, 373, 383, 512] or cross-over phase transition [249].

Consequently, an inconsistency between the inference on the EOS from the inspiral and

postmerger waveforms is speculated as an indicator of phase transitions occurring during the

merger process. In particular, the f2 peak will have a higher frequency than what would

be predicted by the quasi-universal relations for EOS with first-order phase transition since

matters will be softened when the new degree of freedom emerges. On the other hand,

matters will experience a stiffening at 3–4 n0 followed by a softening at 4–5 n0 for the cross-

over phase transition scenario [72, 73], leading to a reduced f2. Here n0 = 0.16 fm−3 is the

nuclear saturation number density.

However, the connection between the violation in the quasi-universal relations and matter

phase transition should be carefully revisited as it can also arise from a modification in the

underlying gravitational theory, as shown in this chapter. The similarity between modified

gravity and QCD phase transition in terms of postmerger waveforms does not end here. After

baryons crush to form exotic particles, the EOS can be stiffened or softened depending on

the nature of the QCD phase transition (see above). In turn, the core can become less or

more compact thereby adjusting the frequency of fluid oscillation and the associated GWs

[90, 512]. This process can also manifest in scalarized HMNSs (cf. Fig. 5.2). In particular,

the scalar activity in HMNSs pertaining to H4 can lead to a higher f2 than the prediction

by the quasi-universal relation (see the deviation in f2 for 3.3 ≲ Λ̃1/5 ≲ 3.7 in Fig. 5.2),

reminiscent of the influence of a first-order nuclear phase transition. On the other hand, the

coupling between the scalar field and matter tends to reduce f2 for the EOSs APR4 and

MPA1, mimicking the cross-over phase transition (see the deviation in f2 for Λ̃1/5 ≲ 3.4 in

Fig. 5.2).
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There is a distinction between the QCD phase transition and the gravitational transition of

states: an interface (e.g., quark-hadron) will reveal in the former process, supporting a class

of oscillation modes (i-mode) that may leave certain imprints in GW signals [308, 492, 540].

On the other hand, there is a class of mode linked to the scalar field, i.e., ϕ-mode [96, 333].

In principle, the quadrupole member of ϕ-mode can emit GWs as a result of the entrained

fluid motions. Both the i- and ϕ-modes have typically the frequency of several hundred Hz,

and the largely overlapped frequency band makes it non-trivial to tell them apart even if this

weak emission could be detected.

5.5 Conclusion

We systematically performed numerical simulations of BNS mergers in GR and DEF theo-

ries to solve for the waveforms throughout inspiral up to the merger, where the considered

scalar coupling constants are summarized in Fig. 5.1. Based on the numerical data, we ex-

amine several quasi-universal relations connecting the binary tidal deformability to waveform

characteristics. For the mergers that scalarization does not realize before merger, the GW’s

frequency and amplitude at the merger in the DEF theories aligned well with the fitting

formula valid in GR (cf. the top and bottom panels of Fig. 5.2). These two relations can,

however, be significantly violated if scalarization occurs in the inspiral phase.

Although we only take three EOSs into account, our results already suggest a serious

caveat when applying quasi-universal relations established in GR to probe the EOS and

gravity in modified gravity. In particular, we demonstrated that a gravitational effect like

scalarization could also lead to a violation in quasi-universal, mimicking the similar violation

that could be caused by a strong phase transition. This indicates that one cannot take the

future disagreement between the detected GW signal and the predictions of quasi-universal

relations as a smoking gun of either effect. Recent studies [138, 139] show that three distinct

kinds of finite-size effects are present in the DEF theory attributing to the matter, scalar

field and a mixed type, respectively. The imprint of each of them on the waveform differs

in sign and/or the scaling with frequency. Measuring these effects within sufficiently small

statistical error with future detectors could thus help disentangle EOS and gravity effects.

In any case, much more investigation remains to be done to further discriminate one effect

from the other. Also, thermal effects in postmerger signals still remain to be explored [62,

83, 188, 189, 339, 384, 446], and thus the quasi-universal relations are to be inspected even

for EOS without phase transition and within GR.
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5.6 Supplemental materials

This section provides the formalism for computing the tidal deformability of scalarized neu-

tron stars in the massive Damour-Esposito-Farese-type scalar-tensor theory. In addition, the

catalogs of the coupling constants, binary parameters, and the equations of state adopted in

the numerical simulations are summarized, and the quantities associated with the gravita-

tional waves are also listed.

5.6.1 Tidal deformability of neutron stars in massive scalar tensor gravity

The action of Damour-Esposito-Farese-type (DEF) scalar-tensor theory of gravity in Jordan

frame is given by Eq. (3.1). The field equations are conveniently formulated using the metric

g̃ab in the Einstein frame. This metric is related to the Jordan frame metric gab through a

conformal transformation given by Eq. (3.10).

The line element of the spherical background in the Einstein frame can be written as

ds2 = g̃µνdx
µdxν = −eν(r)dt2 +

1

1− 2m(r)/r
dr2 + r2


dθ2 + sin2 θdϕ2

�
, (5.1)

In general relativity, the metric component g̃tt of a tidally-deformed neutron star can be

expanded as

−(1 + g̃tt)

2
= −M

r
− 3Qij

2r3

�
ninj − 1

3
δij

�
+O

�
1

r4

�
+

1

2
Eijxixj +O


r3
�
, (5.2)

where Eij is the tidal field generated by the companion star, Qij is the quadrupolar moment

of the neutron star induced by the tidal field, and ni ≡ xi/r. To the linear order of Eij, the
induced quadrupole Qij can be written as

Qij = −λEij . (5.3)

Here the parameter λ measures the tidal deformability of the star and can be related to

the l = 2 tidal Love number via k2 = 3λR−5/2 for R the circumferential radius of the star

[192, 241].

In the massive Damour-Esposito-Farese-type scalar-tensor theory considered in the main

text, both the scalar and tensor fields respond to the external tidal field induced by either

tensor or scalar fields. Therefore, we should also expand the metric in terms of perturbations

in the scalar field besides Eij to determine the tidal deformability. In addition to the tensor

and scalar tidal deformabilities, one also needs to consider a third kind of tidal deformability

describing the tensor/scalar multipole moments induced by a scalar/tensor field as noted

by Creci et al. [138]. However, the asymptotic behavior of a massive scalar field φ̄ and its
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perturbation δφ̄ read

φ̄, δφ̄ → 1

r
e−r/λφ̄ , (5.4)

where λφ̄ = 2πℏc/mφ̄ is the Compton length scale of the Yukawa suppression associated with

the scalar mass mφ̄. Such exponential decay does not affect the expansion in Eq. (5.2) on any

order of 1/r, which is different from the massless case [113, 138, 362]. We thus only need to

consider the tensor tidal deformability of scalarized NSs for the massive theories considered

in the present work.

Restriciting to the even-parity, static, and l = 2 perutrbations in the Reege-Wheeler gauge,

the perturbation in the metric and the scalar field can be, respectively, written as

δg̃(2m)
µν =Y2m(θ,ϕ)




eνH0 H1 0 0

H1 H2/
�
1− 2m(r)

r

�
0 0

0 0 r2K 0

0 0 0 r2 sin2 θK




, (5.5)

and

δφ̄(2m) =δφ̄Y2m(θ,ϕ) , (5.6)

where H0, H2, K, and δφ̄ are perturbed quantities depending r, and Y2m are the spherical

harmonics.

Following the procedure in Hinderer [241], we substitute Eqs. (5.5-5.6) into the linearized

Einstein equations δGµ
ν = 8πδT µ

ν and denote H0 = −H2 = H(r) to obtain

H1 = 0 , (5.7a)

K ′ = −H ′ − ν ′H − 4δφ̄φ̄′ , (5.7b)

H ′′ + c1H
′ + c0H = csδφ̄, (5.7c)

δφ̄′′ + d1δφ̄
′ + d0δφ̄ = dsH. (5.7d)

Here (′) denotes the derivative respect to r, and

c1 = d1 = −r3 (8πA4(e− p) + V ) + 4m− 4r

2r(r − 2m)
, (5.8a)

cs = 4ds =

�
r2

�
−8παA4

�
(
∂e

∂p
− 1)e+ (

∂e

∂p
− 9)p

�
+ 2rφ̄′ 16πA4p− V

�

+4(r − 2m)φ̄′3 − dV

dφ̄

�
+ 8mφ̄′

�
× 1

r(r − 2m)
,

(5.8b)
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c0 =
4πA4r(e+ p)

r − 2m

∂e

∂p
+

[r3 (V − 16πA4p)− 4m] φ̄′2

r − 2m
− r2φ̄′4

+
r (8πr3A4p+ 4m− r)V

(r − 2m)2
− r4V 2

4(r − 2m)2

+
−64π2A8p2r6 + 4πA4r3(5e(r − 2m)− 26mp+ 9pr)− 4m2 + 12mr − 6r2

r2(r − 2m)2
,

(5.8c)

d0 =
4πα2A4r(e+ p)

r − 2m

∂e

∂p

−
96πα2A4r2(e− p) + 16πA3r2 d

2A
dφ̄2 (e− 3p) + 16r(r − 2m)φ̄′2 + r2 d

2V
dφ̄2 + 24

4r(r − 2m)
.

(5.8d)

In general relativity, we have cs = ds = 0, and the perturbations for the tensor field and the

scalar field decouple.

Eqs. (5.7c-5.7d) are linear equations for H and δφ̄. Thus, to solve them, one can integrate

the coupled equations twice with the following initial values [248, 362]

H|r0 =r20, H ′|r0 = 2r0, δφ̄|r0 = 0, δφ̄′|r0 = 0 (5.9)

H|r0 =0, H ′|r0 = 0, δφ̄|r0 = r20, δφ̄′|r0 = 2r0 (5.10)

for r0 a tiny radius near the center of the star. Then one makes a linear combination of

the two integrated results to construct a solution whose asymptotic value of δφ̄ vanishes at

r ≫ λφ̄.

In practice, we integrate the system to a sufficiently large radius r = rb and ignore the

scalar field for r > rb. Defining

C =
m

r

���
r→rb

, and y =
rH ′

H

����
r→rb

, (5.11)

the tidal deformability, which is in the same form as the GR case, can be calculated as (e.g.,

[241])

λ =
2

3
r5b
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]×

�
4C3

�
13− 11y + C(3y − 2) + 2C2(1 + y)

�

+ 3(1− 2C)2[2− y + 2C(y − 1)] ln(1− 2C) + 2C[6− 3y + 3C(5y − 8)]}−1.

(5.12)

The tidal deformability used in the main text is then obtained as Λ = λ/M5 for M the mass

of the star.
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5.6.2 Catalog of simulated binaries and theories

We list in Tables 5.1 to 5.3 the information for every simulations, including the ADM mass

of coalescing neutron stars, binary tidal deformability, parameters of the DEF theories, the

status of scalar field before merger, spectral properties of GWs, and the total energy lost

via GWs. In particular, we performed a convergence study on model MPA B16.5 M1.76

with numerical setup outlined in Section 4.6. The results of the convergence test are also

listed in the last two rows in Table 5.2 as MPA B16.5 M1.76 lr and MPA B16.5 M1.76 hr for

low and high resolution respectively. For each resolution, we determine fpeak as the GW’s

frequency where its strain reaches maximum, and evaluate f2 by conducting a Fast Fourier

Transform (FFT) to the GW data from merger time up to 25 ms post-merger. A cubic-spline

interpolation is then applied to the spectrum to identify the dominant peak as the f2 mode.

We found that the f2 estimated from simulations with different resolutions agree within 20

Hz, which is smaller than the FFT frequency bin size of 50 Hz, i.e., the deviation is less

than the bin size of frequency domain analysis. Even when taking the frequency bin size as

a conservative estimate of uncertainty, this corresponds to an uncertainty of less than < 2%.

The deviation in fpeak is even lower as < 1%. We note that the deviation quoted here is

for the value of fpeak and f2 per se, whereas the uncertainties in the fitting formula provided

in the main text are expressed in terms of logarithmic values. Therefore, the numerical

uncertainties presented here are significantly smaller than those associated with the fitting

formula.
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Table 5.1: Summary of outcomes for the BNS mergers in the massive DEF theory with APR4 EOS. The
first column lists the model name which combines EOS, coupling strength B, and baryon mass of each NS in
units of M⊙. The second column shows the ADM mass MADM of each isolated NS. The third column shows
the state of pre-merger scalarization with symbols ×, △ and ⃝ corresponding to no scalarization, dynamical
scalarization, and spontaneous scalarization in the pre-merger phase, respectively. The fourth column lists
the binary tidal deformability Λ̃. The last four columns summarize the properties of GWs.

Model name MADM (M⊙) Inspiral φ̄ Λ̃ fpeak
(kHz)

f2 (kHz) Dhpeak/M

APR4 B13.8 M1.57 1.4041 × 251.5 2.100 - 0.280
APR4 B13.8 M1.58 1.4119 × 242.8 2.105 - 0.281
APR4 B14.3 M1.57 1.4041 × 251.5 2.101 - 0.280
APR4 B14.3 M1.58 1.4119 × 242.8 2.105 - 0.281
APR4 B14.8 M1.62 1.4436 △ 210.5 2.231 - 0.298
APR4 B14.8 M1.63 1.4514 △ 203.2 2.252 - 0.300
APR4 B15.3 M1.48 1.3323 △ 348.8 2.204 3.121 0.282
APR4 B15.3 M1.50 1.3500 △ 321.6 2.181 3.049 0.285
APR4 B15.3 M1.52 1.3643 ⃝ 300.7 2.199 3.008 0.288
APR4 B15.3 M1.54 1.3802 ⃝ 279.6 2.213 3.123 0.292
APR4 B15.3 M1.56 1.3961 ⃝ 260.4 2.201 3.186 0.294
APR4 B15.3 M1.58 1.4118 ⃝ 242.9 2.215 3.417 0.298
APR4 B15.3 M1.60 1.4277 ⃝ 226.7 2.232 3.544 0.300
APR4 B15.3 M1.62 1.4433 ⃝ 212.0 2.226 - 0.303
APR4 B15.3 M1.64 1.4590 ⃝ 198.4 2.237 - 0.304
APR4 B15.3 M1.65 1.4668 ⃝ 192.0 2.224 - 0.305
APR4 B15.3 M1.66 1.4747 ⃝ 185.7 2.220 - 0.307
APR4 B15.3 M1.68 1.4900 ⃝ 174.3 2.246 - 0.308
APR4 B15.8 M1.50 1.3481 ⃝ 321.4 2.192 3.075 0.290
APR4 B15.8 M1.52 1.3642 ⃝ 299.3 2.204 3.045 0.294
APR4 B15.8 M1.54 1.3800 ⃝ 279.3 2.217 2.990 0.296
APR4 B15.8 M1.56 1.3960 ⃝ 260.9 2.209 3.070 0.299
APR4 B15.8 M1.58 1.4116 ⃝ 244.3 2.183 3.270 0.301
APR4 B15.8 M1.60 1.4274 ⃝ 228.8 2.203 3.557 0.304
APR4 B15.8 M1.62 1.4430 ⃝ 214.5 2.221 3.591 0.305
APR4 B15.8 M1.64 1.4586 ⃝ 201.3 2.218 - 0.308
APR4 B15.8 M1.66 1.4742 ⃝ 189.0 2.222 - 0.310
APR4 B15.8 M1.67 1.4819 ⃝ 183.3 2.222 - 0.311
APR4 B15.8 M1.68 1.4897 ⃝ 177.7 2.239 - 0.312
APR4 B15.8 M1.70 1.5052 ⃝ 167.0 2.220 - 0.314
APR4 B16.3 M1.52 1.3637 ⃝ 300.1 2.204 3.044 0.297
APR4 B16.3 M1.54 1.3797 ⃝ 280.6 2.196 3.090 0.299
APR4 B16.3 M1.56 1.3955 ⃝ 263.0 2.216 3.123 0.302
APR4 B16.3 M1.58 1.4111 ⃝ 246.8 2.179 3.113 0.304
APR4 B16.3 M1.60 1.4268 ⃝ 231.9 2.212 3.196 0.307
APR4 B16.3 M1.62 1.4425 ⃝ 217.9 2.205 - 0.309
APR4 B16.3 M1.64 1.4580 ⃝ 205.0 2.203 - 0.311
APR4 B16.3 M1.66 1.4737 ⃝ 193.0 2.231 - 0.313
APR4 B16.3 M1.68 1.4891 ⃝ 181.8 2.215 - 0.315
APR4 B16.3 M1.69 1.4967 ⃝ 176.6 2.229 - 0.316
APR4 B16.3 M1.70 1.5046 ⃝ 171.4 2.231 - 0.317
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Table 5.2: Same as Table 5.1 but for the MPA1 EOS.

Model name MADM (M⊙) Inspiral φ̄ Λ̃ fpeak
(kHz)

f2 (kHz) Dhpeak/M

MPA1 B15.0 M1.78 1.5830 × 236.4 1.911 - 0.283
MPA1 B15.0 M1.79 1.5910 × 229.1 1.911 - 0.284
MPA1 B15.5 M1.78 1.5830 × 236.4 1.911 - 0.283
MPA1 B15.5 M1.79 1.5910 × 229.1 1.910 - 0.284
MPA1 B16.0 M1.60 1.4399 × 419.3 1.798 2.757 0.261
MPA1 B16.0 M1.62 1.4559 × 392.9 1.806 2.761 0.264
MPA1 B16.0 M1.64 1.4721 × 368.0 1.834 - 0.270
MPA1 B16.0 M1.66 1.4880 × 345.1 1.834 2.820 0.267
MPA1 B16.0 M1.68 1.5040 × 323.6 1.821 2.839 0.270
MPA1 B16.0 M1.70 1.5200 × 303.5 1.966 2.699 0.278
MPA1 B16.0 M1.72 1.5358 △ 285.0 1.964 2.779 0.287
MPA1 B16.0 M1.74 1.5537 △ 265.5 1.989 3.011 0.290
MPA1 B16.0 M1.76 1.5674 ⃝ 251.4 2.001 3.033 0.292
MPA1 B16.0 M1.78 1.5832 ⃝ 236.4 1.978 3.116 0.294
MPA1 B16.0 M1.80 1.5989 ⃝ 222.5 1.987 3.146 0.296
MPA1 B16.0 M1.82 1.6145 ⃝ 209.6 1.977 3.214 0.299
MPA1 B16.0 M1.84 1.6299 ⃝ 197.7 1.984 - 0.302
MPA1 B16.0 M1.85 1.6377 ⃝ 192.0 2.000 - 0.303
MPA1 B16.0 M1.86 1.6456 ⃝ 186.4 2.006 - 0.304
MPA1 B16.5 M1.60 1.4399 △ 419.3 1.930 2.668 0.276
MPA1 B16.5 M1.62 1.4559 ⃝ 391.9 1.934 2.735 0.277
MPA1 B16.5 M1.64 1.4719 ⃝ 366.7 1.948 2.812 0.280
MPA1 B16.5 M1.66 1.4880 ⃝ 343.3 1.965 2.756 0.284
MPA1 B16.5 M1.68 1.5039 ⃝ 322.0 1.970 2.787 0.286
MPA1 B16.5 M1.70 1.5197 ⃝ 302.5 1.955 2.746 0.288
MPA1 B16.5 M1.72 1.5357 ⃝ 284.2 1.965 2.864 0.291
MPA1 B16.5 M1.74 1.5514 ⃝ 267.6 1.970 2.916 0.294
MPA1 B16.5 M1.76 1.5673 ⃝ 251.9 1.971 2.914 0.296
MPA1 B16.5 M1.78 1.5830 ⃝ 237.5 1.966 2.980 0.298
MPA1 B16.5 M1.80 1.5986 ⃝ 224.2 1.975 3.053 0.301
MPA1 B16.5 M1.82 1.6142 ⃝ 211.6 1.973 - 0.303
MPA1 B16.5 M1.84 1.6296 ⃝ 200.1 1.979 - 0.304
MPA1 B16.5 M1.86 1.6453 ⃝ 189.1 1.988 - 0.306
MPA1 B16.5 M1.87 1.6531 ⃝ 183.9 1.996 - 0.307
MPA1 B16.5 M1.88 1.6607 ⃝ 178.9 2.000 - 0.308
MPA1 B16.5 M1.90 1.6761 ⃝ 169.4 2.019 - 0.310
MPA1 B17.0 M1.70 1.5196 ⃝ 302.2 1.967 2.777 0.292
MPA1 B17.0 M1.72 1.5353 ⃝ 285.0 1.951 2.842 0.294
MPA1 B17.0 M1.74 1.5511 ⃝ 268.8 1.946 2.759 0.297
MPA1 B17.0 M1.76 1.5670 ⃝ 253.7 1.953 2.856 0.300
MPA1 B17.0 M1.78 1.5824 ⃝ 239.9 1.972 2.821 0.302
MPA1 B17.0 M1.80 1.5981 ⃝ 226.8 1.968 2.981 0.303
MPA1 B17.0 M1.82 1.6139 ⃝ 214.4 1.969 - 0.305
MPA1 B17.0 M1.84 1.6293 ⃝ 203.1 1.990 - 0.307
MPA1 B17.0 M1.86 1.6447 ⃝ 192.4 1.999 - 0.309
MPA1 B17.0 M1.87 1.6525 ⃝ 187.3 1.998 - 0.310
MPA1 B17.0 M1.88 1.6601 ⃝ 182.5 1.992 - 0.311
MPA1 B17.0 M1.90 1.6757 ⃝ 172.9 1.994 - 0.312
MPA1 B16.5 M1.76 lr 1.5673 ⃝ 251.9 1.956 2.893 0.295
MPA1 B16.5 M1.76 hr 1.5673 ⃝ 251.9 1.962 2.909 0.296
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Table 5.3: Same as Table 5.1 but for the H4 EOS.

Model name MADM (M⊙) Inspiral φ̄ Λ̃ fpeak
(kHz)

f2 (kHz) Dhpeak/M

H4 B15.0 M1.70 1.5414 × 470.0 1.653 - 0.255
H4 B15.0 M1.71 1.5494 × 453.2 1.655 - 0.256
H4 B15.5 M1.70 1.5414 × 470.0 1.654 - 0.255
H4 B15.5 M1.71 1.5494 × 453.2 1.655 - 0.256
H4 B16.0 M1.70 1.5414 × 470.0 1.654 - 0.255
H4 B16.0 M1.71 1.5494 × 453.2 1.655 - 0.256
H4 B16.5 M1.70 1.5414 × 470.0 1.668 - 0.255
H4 B16.5 M1.71 1.5494 × 453.2 1.669 - 0.257
H4 B17.0 M1.50 1.3762 × 986.3 1.607 2.551 0.231
H4 B17.0 M1.60 1.4594 × 680.3 1.612 2.747 0.241
H4 B17.0 M1.62 1.4758 × 632.1 1.637 2.831 0.245
H4 B17.0 M1.64 1.4923 × 587.0 1.634 2.874 0.247
H4 B17.0 M1.66 1.5087 × 545.2 1.621 2.842 0.249
H4 B17.0 M1.68 1.5251 × 506.1 1.655 - 0.253
H4 B17.0 M1.70 1.5414 × 470.0 1.653 - 0.255
H4 B17.0 M1.72 1.5575 × 436.6 1.648 - 0.257
H4 B17.0 M1.74 1.5738 △ 405.1 1.846 - 0.280
H4 B17.0 M1.75 1.5867 △ 381.9 1.874 - 0.281
H4 B17.0 M1.76 1.5899 ⃝ 370.3 1.851 - 0.283
H4 B17.0 M1.78 1.6060 ⃝ 336.8 1.868 - 0.286
H4 B17.0 M1.80 1.6220 ⃝ 307.6 1.878 - 0.289
H4 B17.5 M1.50 1.3762 × 986.3 1.606 2.553 0.231
H4 B17.5 M1.60 1.4594 × 680.3 1.622 2.725 0.241
H4 B17.5 M1.62 1.4758 × 632.1 1.636 2.736 0.245
H4 B17.5 M1.64 1.4923 × 587.0 1.651 2.798 0.247
H4 B17.5 M1.66 1.5087 △ 545.2 1.913 2.847 0.273
H4 B17.5 M1.68 1.5251 ⃝ 498.2 1.903 2.854 0.275
H4 B17.5 M1.70 1.5413 ⃝ 451.2 1.867 - 0.279
H4 B17.5 M1.72 1.5575 ⃝ 410.4 1.852 - 0.283
H4 B17.5 M1.74 1.5736 ⃝ 374.8 1.872 - 0.287
H4 B17.5 M1.75 1.5818 ⃝ 358.3 1.863 - 0.288
H4 B17.5 M1.76 1.5898 ⃝ 343.1 1.877 - 0.289
H4 B17.5 M1.78 1.6058 ⃝ 315.3 1.877 - 0.291
H4 B17.5 M1.80 1.6216 ⃝ 290.6 1.910 - 0.294
H4 B17.5 M1.82 1.6377 ⃝ 268.0 1.915 - 0.297
H4 B17.5 M1.84 1.6535 ⃝ 247.9 1.956 - 0.301
H4 B17.5 M1.86 1.6694 ⃝ 229.5 1.957 - 0.304
H4 B18.0 M1.48 1.3594 × 1062.8 1.610 2.539 0.229
H4 B18.0 M1.50 1.3762 × 986.3 1.609 2.516 0.231
H4 B18.0 M1.52 1.3929 × 916.2 1.618 2.569 0.233
H4 B18.0 M1.60 1.4594 ⃝ 677.4 1.962 2.673 0.269
H4 B18.0 M1.62 1.4758 ⃝ 609.6 1.912 2.767 0.273
H4 B18.0 M1.64 1.4922 ⃝ 551.2 1.923 2.700 0.276
H4 B18.0 M1.66 1.5086 ⃝ 500.5 1.880 2.800 0.279
H4 B18.0 M1.68 1.5249 ⃝ 456.4 1.877 2.809 0.283
H4 B18.0 M1.70 1.5410 ⃝ 417.9 1.855 2.861 0.286
H4 B18.0 M1.72 1.5572 ⃝ 383.6 1.892 - 0.289
H4 B18.0 M1.74 1.5733 ⃝ 353.0 1.890 - 0.292
H4 B18.0 M1.76 1.5894 ⃝ 325.7 1.899 - 0.294
H4 B18.0 M1.77 1.5973 ⃝ 313.3 1.907 - 0.295
H4 B18.0 M1.78 1.6053 ⃝ 301.3 1.903 - 0.297
H4 B18.0 M1.80 1.6212 ⃝ 279.3 1.931 - 0.300
H4 B18.0 M1.82 1.6371 ⃝ 259.2 1.947 - 0.302
H4 B18.0 M1.84 1.6529 ⃝ 241.0 1.937 - 0.305
H4 B18.0 M1.86 1.6687 ⃝ 224.3 1.950 - 0.307
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Table 5.4: Same as Table 5.1 but for the APR4, MPA1 and H4 EOSs in GR. The first column lists the model
name which combines EOS and baryon mass of each NS in units of M⊙.

Model name MADM (M⊙) Λ̃ fpeak
(kHz)

f2 (kHz) Dhpeak/M

APR4 M1.48 1.3323 348.5 2.015 3.287 0.267
APR4 M1.50 1.3483 323.5 2.037 3.318 0.270
APR4 M1.52 1.3643 300.9 2.042 3.417 0.272
APR4 M1.54 1.3802 279.2 2.058 3.456 0.276
APR4 M1.56 1.3961 260.2 2.075 3.463 0.278
APR4 M1.58 1.4119 241.8 2.102 - 0.281
APR4 M1.60 1.4277 225.7 2.114 - 0.283
APR4 M1.62 1.4434 210.2 2.128 - 0.286
APR4 M1.64 1.4591 196.1 2.150 - 0.288
APR4 M1.66 1.4747 182.9 2.158 - 0.292
APR4 M1.68 1.4903 170.5 2.178 - 0.294
MPA1 M1.70 1.5198 303.0 1.858 2.971 0.273
MPA1 M1.72 1.5357 285.4 1.868 3.036 0.275
MPA1 M1.74 1.5515 267.3 1.878 3.014 0.277
MPA1 M1.76 1.5673 250.9 1.900 3.087 0.280
MPA1 M1.78 1.5831 236.0 1.903 3.226 0.283
MPA1 M1.79 1.5909 228.5 1.909 - 0.283
MPA1 M1.80 1.5988 221.9 1.909 - 0.285
MPA1 M1.82 1.6144 208.6 1.900 - 0.286
MPA1 M1.84 1.6300 196.6 1.914 - 0.288
MPA1 M1.86 1.6456 184.6 1.933 - 0.291
MPA1 M1.88 1.6611 174.2 1.934 - 0.294
H4 M1.46 1.3426 1145.9 1.586 2.549 0.229
H4 M1.48 1.3594 1062.8 1.585 2.451 0.229
H4 M1.50 1.3762 986.3 1.584 2.615 0.232
H4 M1.52 1.3929 916.2 1.595 2.688 0.233
H4 M1.54 1.4096 850.3 1.617 2.628 0.235
H4 M1.56 1.4262 789.4 1.614 2.745 0.237
H4 M1.58 1.4428 732.9 1.616 - 0.240
H4 M1.60 1.4593 678.9 1.632 - 0.241
H4 M1.62 1.4758 631.7 1.644 - 0.246
H4 M1.64 1.4923 586.0 1.637 - 0.248
H4 M1.66 1.5086 543.9 1.644 - 0.250
H4 M1.68 1.5250 505.1 1.624 - 0.252
H4 M1.70 1.5413 469.2 1.635 - 0.254
H4 M1.71 1.5494 452.4 1.627 - 0.256
H4 M1.72 1.5576 436.0 1.630 - 0.257
H4 M1.74 1.5738 404.5 1.640 - 0.260
H4 M1.76 1.5899 375.4 1.647 - 0.263
H4 M1.78 1.6061 348.4 1.643 - 0.265
H4 M1.80 1.6221 323.4 1.670 - 0.268
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Breakdown of Contribution

This chapter is based on the publication: “Supernovalike explosions of massive rotating stars

from disks surrounding a black hole” in Phys.Rev.D 109 (2024) 2, 023031 [209] by S. Fu-

jibayashi, A. T.-L. Lam, M. Shibata and Y. Sekiguchi. The axisymmetric numerical code

was developed by S. Fujibayashi, M. Shibata and Y. Sekiguchi. I developed a free-fall model

of a massive rotating star to approximate the stage when a rotating black hole is formed after

the gravitational collapse of the star with an envelope in a free-fall state. The initial data were

constructed by me using the open-source code octree-mg modified by me. S. Fujibayashi

carried out all the numerical simulations and generated all the figures. Y. Sekiguchi provided

constructive comments on the manuscript partially written by S. Fujibayashi, M. Shibata

and me.
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Overview

In this Chapter, we perform a new general-relativistic viscous-radiation hydrodynamics sim-

ulation for supernova-like explosion associated with stellar core collapse of rotating massive

stars to a system of a black hole and a massive torus paying particular attention to large-

mass progenitor stars with the zero-age main-sequence mass of MZAMS = 20, 35, and 45M⊙

of Ref. [21]. Assuming that a black hole is formed in a short timescale after the onset of the

stellar collapse, the new simulations are started from initial data of a spinning black hole and

infalling matter that self-consistently satisfy the constraint equations of general relativity.

It is found that with a reasonable size of the viscous parameter, the supernova-like explo-

sion is driven by the viscous heating effect in the torus around the black hole irrespective of

the progenitor mass. The typical explosion energy and ejecta mass for the large-mass cases

(MZAMS = 35 and 45M⊙) are ∼ 1052 erg and ∼ 5M⊙, respectively, with 56Ni mass larger

than 0.15M⊙. These are consistent with the observational data of stripped-envelope and

high-energy supernovae such as broad-lined type Ic supernovae. This indicates that rotating

stellar collapses of massive stars to a black hole surrounded by a massive torus can be a

central engine for high-energy supernovae. By artificially varying the angular velocity of the

initial data, we explore the dependence of the explosion energy and ejecta mass on the initial

angular momentum and find that the large explosion energy ∼ 1052 erg and large 56Ni mass

≥ 0.15M⊙ are possible only when a large-mass compact torus with mass ≳ 1M⊙ is formed.

6.1 Introduction

Gravitational-wave observations by advanced LIGO and advanced Virgo have shown that

stellar-mass black holes with a wide mass range between ∼ 3M⊙ and ∼ 100M⊙ are com-

monplace in the universe [19, 489]. It is natural to consider that a majority of these black

holes are formed from core collapse of massive stars. In particular for large black-hole mass,

MBH ≳ 20M⊙, the black holes are likely to be formed shortly after the stellar core collapse

with a short proto-neutron star stage or directly during the stellar core collapse. However, it

is still not very clear how these black holes are formed. One way to understand the formation

process of the black holes is to detect electromagnetic signals emitted during the formation

and subsequent evolution processes such as gamma-ray bursts [370, 518]. However, the ob-

servational information of the stellar center is limited because the formed black hole is hidden

by the dense matter surrounding it. Therefore, to understand the formation and evolution

processes of the black holes during the stellar core collapse, theoretical studies play a crucial

role.

A numerical-relativity simulation incorporating the relevant physics such as neutrino

transfer, equation of state for high-density matter, and angular-momentum transport is the

chosen way to theoretically understand the formation and evolution processes of stellar-
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mass black holes. In our previous work [205], we performed numerical-relativity simulations

with approximate neutrino transfer and shear viscous hydrodynamics employing relatively

low-mass (9 and 20M⊙), compact, rotating progenitor stars derived by stellar evolution cal-

culations of Ref. [21]. We showed that these stars collapse to a black hole shortly after the

formation of a proto-neutron star and subsequently the black holes grow due to the mass

accretion from the infalling envelope. In the long-term (several seconds) evolution, an ac-

cretion disk is developed due to the centrifugal force of late-time infalling matter. The disk

subsequently becomes a geometrically thick torus by the effects of viscous heating, viscous

angular momentum transport, and shock heating. During an early stage in which the neu-

trino cooling efficiency and the ram pressure by the infalling matter are high, the outflow of

the matter from the torus is prohibited. However, in a later stage, the neutrino cooling effi-

ciency and the ram pressure become low enough to induce the mass outflow from the system,

leading to a supernova-like explosion for the entire progenitor star (see also Ref. [261] for a

related work).

The previous work [205] also showed that the explosion energy may be larger than that

of the typical supernovae if the progenitor stars are rapidly rotating and a high mass-infall

rate onto the torus is achieved. In such a case, a compact and massive (≳ 1M⊙) disk/torus

can be formed around a black hole and the viscous and shock heating on the disk/torus

can provide a large amount of the thermal energy, which can be the source for an energetic

explosion. The viscous heating rate in a disk is written approximately as Ėν ∼ νMtorusΩ
2

with the torus mass Mtorus, angular velocity Ω, and shear viscous coefficient ν. In the alpha

viscous prescription [417], ν is written as

ν = ανcsH, (6.1)

where αν is the so-called alpha parameter, cs is the sound velocity, and H is the scale height

of the torus approximately written as H = cs/Ω. Then, the viscous heating rate is

Ėν ∼ 4× 1052 erg/s
� αν

0.03

��
Mtorus

M⊙

�

×
�

cs
109 cm/s

�2 �
MBH

10M⊙

�−1/2 �
R

10MBH

�−3/2

, (6.2)

where we used Ω ≈
p

MBH/R3 with MBH and R being the black hole mass and cylindrical

radius of the torus. Here, the viscosity is supposed to be induced effectively by magne-

tohydrodynamics turbulence; see e.g., Refs [44, 232, 234, 237, 279, 420, 481], which shows

αν = O(10−2). In the presence of matter infall onto the disk/torus, strong shear layers are

also formed at the shock surfaces outside the disk/torus, and hence, the viscous heating can

be even more enhanced.
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The timescale of the viscous heating in the disk/torus is written as

tν :=
R2

ανcsH

≈ 4.7 s
� αν

0.03

�−1
�

cs
109 cm/s

�−2 �
MBH

10M⊙

�1/2 �
R

10MBH

�1/2

, (6.3)

and thus, the total dissipated energy is approximately

Ėνtν ∼ MtorusMBH

R

≈ 1.8× 1053 erg

�
Mtorus

M⊙

��
10MBH

R

�
. (6.4)

Hence, if a fraction of the energy released by the viscous heating contributes to the outflow

of the matter, it is possible to achieve a supernova-like explosion with a very large explosion

energy of order 1052 erg in the presence of a compact and large-mass torus of Mtorus ∼ 0.1–

1M⊙.

In this chapter, we continue our exploration of this problem for more massive progenitor

stars with zero-age main-sequence mass MZAMS = 35 and 45M⊙ as well as MZAMS = 20M⊙.

Following our previous work, we employ the stellar evolution models by Aguilera-Dena et

al. [21]. Since these stars have compact and very massive cores at the onset of the collapse,

we may expect formation of a black hole shortly after the core bounce [357] (but see Ref. [118]

for a counter example). In this work, therefore, we assume the black-hole formation after the

core bounce without an explosion in the proto-neutron star stage. Under this assumption,

we prepare an initial condition composed of a spinning black hole and infalling matter that

self-consistently satisfy constraint equations of general relativity. The initial condition is

prepared for a stage with no accretion disk/torus formation. With such initial data, we per-

form a neutrino-radiation viscous hydrodynamics simulation in full general relativity paying

particular attention to the disk/torus formation and evolution, and subsequent development

of the matter outflow, which leads to a supernova-like explosion.

This chapter is organized as follows: In Sec. 6.2, we summarize the progenitor models which

we employ and then describe how to set up the initial condition composed of a spinning black

hole and infalling matter. Section 6.3 presents the results of numerical-relativity simulations

focusing on the mechanism of the explosion, the explosion energy, the ejecta property, and

predicted light curves of the supernova-like explosion. Section 6.4 is devoted to a summary.

In Section 6.5, we describe a formulation for the initial-value problem of general relativity

that we employ in this chapter. In Sections 6.6 and 6.7, supplemental numerical results are

presented. Throughout this chapter, kB denotes Boltzmann’s constant.
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6.2 Models and initial conditions

We employ massive and very compact progenitor stars among the stellar evolution models

of Ref. [21]. Specifically, we select the stars with the mass of the zero-age main-sequence

state, MZAMS = 20, 35, and 45M⊙. For these stars, we may suppose that a black hole would

be formed in a short timescale after the core bounce because the compactness parameter of

Ref. [357] is very large. 1

Assuming the conservation of the specific angular momentum during the formation and

subsequent growth of a black hole, it is possible to approximately determine the mass and

angular momentum of the formed black hole for a given profile of the specific angular mo-

mentum as a function of the enclosed mass j(m) [427, 438], if the region with the enclosed

mass m collapses to the black hole without forming a disk. In the following, we assume that

the angular velocity profile Ω is a function of spherical radius only, as is done in the stellar

evolution calculation [21], and thus, the specific angular momentum j represents the angular

average as

j =
1

4πr2

Z 2π

0

Z π

0

Ω(r)r4 sin3 θdθdφ =
2

3
r2Ω(r). (6.5)

Since j is a function of r, m is as well.

Then, we choose the mass of the black hole,MBH,0, which is much larger than the maximum

mass of neutron stars of ≲ 3M⊙. The resulting angular momentum, JBH,0, of the black hole

is written as

JBH,0 =

Z MBH,0

0

j(m′)dm′. (6.6)

We note that for the choice of MBH,0, j(m) with any value of m ≤ MBH,0 has to be smaller

than the specific angular momentum of the innermost stable circular orbit jISCO [48] of the

black hole of mass m and angular momentum

J(m) =

Z m

0

j(m′)dm′. (6.7)

Since the angular momentum of the black hole is determined by specifying the enclosed mass,

jISCO is a function of the enclosed mass m in this context.

Figure 6.1 shows j as a function of m for MZAMS = 9, 20, 35, and 45M⊙ of Ref. [21]

(solid curves). We also plot jISCO by the dotted curves. The filled circles denote the points

at which j = jISCO is satisfied (we refer to the corresponding mass as MISCO). This figure

shows that for any model, j(m) < jISCO is satisfied for m < MISCO and indicates that for

the progenitor models with MZAMS = 20, 35, and 45M⊙, a black hole is likely to grow to

MBH = MISCO ≈ 8, 15, and 22M⊙ prior to the disk formation. In the presence of the viscous

1Even for extremely compact progenitor stars, a supernova explosion may occur and a black hole may not be formed via
neutrino heating [118] and/or via magnetohydrodynamics effects [117, 355, 356], although our previous simulations for the 20M⊙
progenitor model indicate that the assumption of the black-hole formation may be valid for the progenitor models of Ref. [21].
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Figure 6.1: Specific angular momentum, j, as a function of the enclosed mass, m, for the models of MZAMS =
9, 20, 35, and 45M⊙ in Ref. [21] (solid curves). We also plot jISCO for a given black hole of mass m and
corresponding angular momentum J(m) by the dotted curves. The filled circles denote the points at which
j = jISCO is satisfied for each stellar model.

angular-momentum transport, the disk formation is delayed and black holes with larger mass

can be formed before the disk formation.

The next step is to determine the profile of the infalling matter located outside the black

hole. For this, we approximate that the envelope in the progenitor stars is in a free-fall state

during the collapse. To characterize the profile, we employ a solution of Oppenheimer-Snyder

collapse (e.g., Ref. [369]) for our free-fall approximation because the centrifugal effect before

the disk formation is minor for the collapsing matter. Then, the fluid motion in the stellar

envelope during the collapse is given by

rm(τm) =
1

2
rm,0 (1 + cos η) , (6.8)

τm := max(τ − τm,0, 0) =

s
r3m,0

8m
(η + sin η) , (6.9)

where rm is the areal radius of the mass shell with the enclosed mass m, rm,0 = rm(τm = 0),

τm,0 is the starting time of the free-fall (see below), τm is the free-fall time of the mass shell,

and η is an auxiliary parameter. For simplicity, we assume that the matter in the envelope

has zero radial velocity initially and begins to free-fall when the sound wave propagated from

the center reaches the radius at

τm,0 =

Z rm,0

0

dr

cs(r)
. (6.10)
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Table 6.1: Model description. Model name, mass of the zero-age main-sequence stars, MZAMS, employed
angular velocity profile, initial rest mass (including the fraction which is transformed to the black hole),
initial mass and dimensionless spin of the black hole, the ratio of the matter angular momentum Jmat to
the black-hole angular momentum JBH,0 = M2

BH,0χ0, alpha parameter for viscosity, and grid spacing for the
central region, ∆x0, respectively. The last two columns present the mass and dimensionless spin of the black
hole at the termination of the simulations. Note that for model AD20-7.8, we stopped the simulation on
the way of further significant black-hole growth (see Fig. 6.5). The results for model AD20x1 are taken from
Ref. [205].

Model MZAMS Ω profile M∗,0
(M⊙)

MBH,0

(M⊙)
χ0 Jmat

/JBH,0

αν ∆x0

(m)
MBH,f

(M⊙)
χBH,f

AD20-7.8 20M⊙ original 15.1 7.8 0.60 9.93 0.03 250 (10.4) (0.74)
AD20-9 20M⊙ original 15.1 9.0 0.72 5.60 0.03 216 10.8 0.79
AD20-10 20M⊙ original 15.0 10.0 0.83 3.86 0.03 240 10.9 0.84
AD35-15 35M⊙ original 25.5 15.0 0.66 4.32 0.03 360 20.2 0.81
AD35-15-hi 35M⊙ original 25.4 15.0 0.66 4.53 0.03 300 19.6 0.81
AD35-15-mv 35M⊙ original 25.5 15.0 0.66 4.33 0.06 360 19.6 0.79
AD35-15-hv 35M⊙ original 25.5 15.0 0.66 4.32 0.10 360 18.9 0.78
AD35x0.5-21.5 35M⊙ original×0.5 25.5 21.5 0.48 0.84 0.03 516 25.1 0.60
AD35x0.6-21.5 35M⊙ original×0.6 25.5 21.5 0.58 0.84 0.03 516 24.5 0.66
AD35x0.8-18 35M⊙ original×0.8 25.4 18.0 0.63 2.13 0.03 432 22.2 0.75
AD35x1.2-12.5 35M⊙ original×1.2 25.5 12.5 0.69 8.18 0.03 300 18.2 0.85
AD45-22 45M⊙ original 32.6 22.0 0.64 2.71 0.03 528 28.0 0.77
AD45-25 45M⊙ original 32.4 25.0 0.73 1.45 0.03 600 27.7 0.75
AD45-25-hv 45M⊙ original 32.4 25.0 0.73 1.45 0.10 600 26.8 0.74
AD20x1 20M⊙ original 15.1 — — — — 175 11.2 0.73

Then, the black-hole formation time τ = τBH can be estimated as

τBH =

s
R3

BH,0

8MBH,0

(ηBH + sin ηBH) +

Z RBH,0

0

dr

cs(r)
, (6.11)

where cos ηBH = 4MBH,0/RBH,0−1 and RBH,0 is the areal radius of a mass shell with enclosed

mass MBH,0. Note that the mass shell for τm,0 > τBH does not start infalling. The radial

velocity of the matter is then given approximately by

ur =
∂rm
∂τ

=

s
2m (rm,0 − rm(τm))

rm,0rm(τm)
. (6.12)

Since we use the spinning black-hole puncture in quasi-isotropic coordinates for the initial-

ization of geometric variables (see Section 6.5), we need to perform coordinate transformation

to quasi-isotropic coordinates (r̄, θ,φ) for consistency as

r̄ =
1

2

�
rm −m+

p
r2m − 2mrm + a2m

�
, (6.13)

where am = J(m)/m and we assumed the conservation of the rest mass, m, and angular

momentum J(m) along radial geodesics of infalling mass shells. As a result, the weighted

rest-mass density ρ∗, angular momentum density Ĵφ, and radial velocity ur̄ (see Section 6.5
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for the definition of them) are given by

ρ∗ =
1

4πr̄2
∂m

∂r̄
, (6.14)

Ĵφ =
3

8πr̄2
∂J(m)

∂r̄
sin2 θ, (6.15)

ur̄ =
r2m
r̄2

∂r̄

∂rm
ur

=
r2m

r̄ (m+ 2r̄ − rm)

s
2m (rm,0 − rm)

rm,0rm
, (6.16)

while other thermodynamical quantities such as the specific enthalpy (h) and temperature

(T ) are obtained from the initial entropy of the matter assuming the adiabatic flow. In

addition, we assume that the electron fraction is unchanged in the free-fall. After all the

hydrodynamical quantities are set, we initialize the geometrical quantities following an initial-

value formulation presented in Section 6.5.

The initial data is prepared using the multigrid solver code modified based on octree-mg

[488], an open source multigrid library, with an octree adaptive-mesh refinement (AMR)

grid. This code can provide more accurate initial data than in our previous chapter [205],

and hence, enables us to explore the explosion energy and ejecta mass, which are sensitive to

the accuracy of the gravitational field in the outer region of progenitor stars, with a better

accuracy.

In numerical computation, we cut out the outer part of the progenitor stars with r ≳
105 km, because our simulation time is at most ∼ 20 s, and hence, the matter in such an

outer region does not fall into the central region, i.e., it does not give any effect on the

evolution of a black hole and a disk/torus.

Table 6.1 lists the models employed and their parameters, i.e., the initial total rest mass

in the computational domain (including that of the matter transformed to the black hole),

the initial mass and dimensionless spin of the black hole, the ratio of the matter angular

momentum to the black-hole angular momentum, the alpha viscous parameter (see Sec. 6.3

for the definition), the grid spacing that covers the central region as well as the mass and

dimensionless spin of the black hole at the termination of each simulation. The last number for

the model name denotes the initial black-hole mass. Here, the black-hole mass is determined

from the equatorial circumferential radius, Ce, of apparent horizons (e.g., see Ref. [430]) by

MBH =
Ce

4π
. (6.17)

The dimensionless spin, χ, is determined from the ratio of the meridian circumferential radius

Cp to Ce using the relation between χ and Ce/Cp for Kerr black holes [430]. We also confirm

that the area of the apparent horizons, AAH, is written as AAH = 8πM2
BH(1 +

p
1− χ2) for



Chapter 6. Supernova-like explosion of massive rotating stars from disks surrounding a black hole 133

the given set of MBH and χ within 0.1% error.

For the models with MZAMS = 20, 35, and 45M⊙, the rest-mass of the matter located

outside the black hole is ≈ 7, 10, and 10M⊙ for MBH,0 = 8, 15, and 22M⊙. This suggests

that for the 35M⊙ and 45M⊙ models, the energy source available for the explosion is larger.

For the stellar models of Ref. [21], the stellar radius R∗ ∼ 3×105 km depends only weakly on

the stellar mass M∗ at the onset of the stellar core collapse. This implies that a compactness,

defined by C∗ = GM∗/(c2R∗), and the density at a given radius are larger for the larger

values of MZAMS, leading to a higher mass infall rate. This dependency is reflected in the

explosion energy as discussed in Sec. 6.3.4. It should be also mentioned that the angular

momentum of the matter outside the black hole, Jmat, is larger than that of the black hole,

JBH,0 = χ0MBH,0
2, for all the models with the original angular velocity.

In this chapter, the model with MZAMS = 35M⊙ and αν = 0.03 (AD35-15) is taken as a

fiducial model. We perform additional simulations by uniformly multiplying constant fac-

tors 0.5, 0.6, 0.8, and 1.2 to the angular velocity of this fiducial model (each is referred to

as AD35-15x0.5, AD35-15x0.6, AD35-15x0.8, and AD35-15x1.2). This exploration is moti-

vated by the fact that the stellar evolution calculation is carried out assuming the spherical

morphology and the results for the angular velocity profile may have a systematic uncertainty.

By varying the angular velocity we explore the dependence of the ejecta mass and explosion

energy on the initial angular momentum. We also perform simulations with αν = 0.06 and

0.10 for the model with MZAMS = 35M⊙.

As we already mentioned, Fig. 6.1 indicates that it would be safe to choose MBH,0 ≈ 8, 15,

and 22M⊙ at which a disk starts forming. By performing numerical simulations, we find that

it is practically possible to employ larger values of MBH,0, because in an early stage of the disk

evolution during which the viscous timescale of the disk is shorter than its growth timescale,

the matter in the disk quickly falls into the black hole. Thus, we also employ MBH,0 = 9 and

10M⊙ for MZAMS = 20M⊙ and MBH,0 = 25M⊙ for MZAMS = 45M⊙. With these settings, the

computational costs are saved because we can employ a larger grid spacing (see Sec. 6.3).

Although the setting is different from the more reliable one (with a smaller value of MBH,0), it

is indeed found that the results for the explosion energy and ejecta mass depend only weakly

on the initial choice of MBH,0 if the boost of MBH,0 is within ∼ 15%. However, MBH,0 should

not be taken to be too large. For example, for MZAMS = 20M⊙ with MBH,0 = 10M⊙, the

final black-hole spin is overestimated, because a part of the high-angular-momentum matter

that should form the disk in reality is incorrectly taken inside the black hole for the initial

condition.
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Figure 6.2: Snapshots of the profiles for several quantities at selected time slices for model AD35-15. At
each time, the rest-mass density (top-left), entropy per baryon (top-right), temperature (bottom-left), and
electron fraction (bottom-right) are displayed. The poloidal velocity field is depicted with arrows, the length
of which is logarithmically proportional to the magnitude of the poloidal velocity. See the key shown in the
top-left legend for the scale. Note that for the third to sixth panels, the regions displayed are wider than
those for the first and second panels. The filled circles at the center denote the inside of apparent horizons.
An animation for this model can be found in https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/

share/AD35-15-multiscale.mp4

Figure 6.3: The same as Fig. 6.2 but for larger viscosity model AD35-15-hv. An animation for this model can
be found in https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-hv-multiscale.

mp4
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6.3 Numerical results

6.3.1 Set-up

Numerical simulations are performed employing the same formulations as in our previous

studies [201, 202, 203]. For the viscous hydrodynamics simulation, we have to give the

viscous parameter ν [201, 202, 203]. Following our previous works we write it in the form

ν = min(cs, 0.1c)ℓtur, (6.18)

where ℓtur := ανH is considered as a typical eddy scale in the turbulence. To conservatively

incorporate the viscous effect, we set up the upper limit (0.1c) for the term proportional to

the sound velocity in this chapter. Following previous works, we choose H = 2GMBH/c
2,

where the black-hole mass MBH is determined by Eq. (6.17) at each time (see Sec. 6.2). This

choice of H is conservative because it should be much larger than 2GMBH/c
2 in an outer

region of the disk/torus. However, we will show that even with such a conservative choice,

the viscous effect becomes strong enough to induce a stellar explosion. In other words, the

key to the explosion is the viscous effect in an inner region of the torus.

The simulation is performed on a two-dimensional domain of R and z as in our previous

works [201, 202]. For both directions, the following nonuniform grid is used for the present

numerical simulation: For x ≲ 7GMBH,0/4c
2 (x = R or z), a uniform grid with the grid

spacing, typically, of ∆x0 ≈ 0.016GMBH,0/c
2 is used, while outside this region, the grid

spacing ∆xi is increased uniformly as ∆xi+1 = 1.01∆xi, where the subscript i denotes the

i-th grid. The black-hole horizon is always located in the uniform grid zone.

For the fiducial model with MZAMS = 35M⊙ and αν = 0.03, we additionally perform a

high-resolution simulation with ∆x ≈ 0.0135MBH,0 to examine the numerical convergence

(model AD35-15-hi). For this we also prepare the uniform grid for x ≲ 7GMBH,0/4c
2 and

non-uniform one with∆xi+1 = 1.01∆xi for the outer region. The dependence of the numerical

results on the grid resolution is briefly summarized in Section 6.7.

Because we start from the initial data of a black hole and infalling matter, we can take a

large value of ∆x0 from the beginning of the simulation. For example, for MBH,0 = 15M⊙,

∆x0 is chosen as 360m (i.e., ∆x0 ≈ 0.016MBH,0). If we started the same simulation from the

pre-collapse star, we had to prepare a computational domain that could resolve the black-

hole formation and subsequent evolution. At the formation of the black hole, its mass is

∼ 3M⊙, and hence, if we require the grid spacing that can resolve the black hole at birth

with an accuracy as good as the present setting, we have to prepare∆x0 ≈ 72m. Therefore by

starting the simulation from a black hole and infalling matter, we can save the computational

costs significantly.

A caution is appropriate here: For the lower grid resolutions (larger values of ∆x0/MBH),
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the black hole is less accurately resolved, leading to the overestimation of the black-hole mass

and underestimation of the black-hole spin in our implementation [201] (see also Section 6.6).

This is in particular the case for model AD20-7.8 as well as for model AD20x1 for which the

early evolution of the black hole during the stage of MBH ≈ 3M⊙ is less accurately computed.

For other models, we choose ∆x0 ≤ 0.016GMBH/c
2, with which the black hole is evolved in

a good accuracy (see Section 6.6).

As we mentioned in Sec. 6.2, we cut out the matter for r ≳ 105 km although the original

stellar surface is located at ∼ 3 × 105 km. The matter in the outer region can affect the

explosion dynamics when the exploded matter interacts with it. However, the total mass of

the cut-out matter is about 0.6, 1.1, and 1.3M⊙ for MZAMS = 20, 35, and 45M⊙ [21], and

thus, they are much smaller than the ejecta mass for most of the models (see Sec. 6.3).

We stop the simulation when a shock wave associated with the explosion from the disk/torus

reaches the outer boundary (at r ≈ 105 km) for MBH = 35M⊙ and 45M⊙. For MBH = 20M⊙

for which ∆x0 is small and more computational resources are required for a long-term com-

putation, we stopped the simulations before the explosion energy and ejecta mass saturate to

save the computational time, because our main focus in this chapter is the explosion property

for large-mass progenitor stars.

6.3.2 Explosion mechanisms

6.3.2.1 General feature

First, we summarize how the disk and torus are formed and evolved, leading to the eventual

explosion (see Figs. 6.2 and 6.3). As we find from Fig. 6.1, broadly speaking, the specific

angular momentum of the infalling matter increases with the enclosed mass, thus with the

radius. The matter located in the inner region does not have the specific angular momen-

tum large enough to form a disk or torus around the black hole. Thus, in an early stage of

the black-hole evolution, most of the infalling matter simply falls into the black hole. Dur-

ing this stage, the centrifugal force of the infalling matter does not play an important role.

Subsequently, the matter with sufficiently large specific angular momentum starts forming a

geometrically thin disk (see the first panel of Fig. 6.2). After the formation of the disk, a

strong shear layer is established between the infalling matter and the shock surface outside

the disk. Thus, viscous heating efficiently generates the thermal energy. Also, shock dissi-

pation efficiently proceeds around the shock surface. By these heating mechanisms, the disk

subsequently becomes geometrically thick, leading to the formation of a torus (see the second

panel of Fig. 6.2).

After its formation, the torus gradually grows due to the continuous matter infall, while

the black hole grows due to the matter infall primarily from the polar region. During the

evolution of the torus, the kinetic energy of the infalling matter is dissipated around the shock
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Figure 6.4: Time evolution of the total neutrino luminosity (left) and cooling efficiency (right) for models of
MZAMS = 20M⊙ (top panels), 35M⊙ with three different values of the viscous coefficient (second top panels),
35M⊙ with different initial angular momentum (third top panels), and 45M⊙ (bottom panels). The time is
shifted so that t = 0 corresponds to the torus formation time for each model. The time offsets are shown in
the legend.
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surface just outside the torus, which increases the temperature and entropy per baryon of the

torus (see the second and third panels of Fig. 6.2 and the first panel of Fig. 6.3). Since the

shock surface is non-spherical while the matter infall proceeds nearly spherically, the shear

layer is also formed, enhancing the viscous heating. The oblique shocks formed around the

shock surface play a role in enhancing the matter infall onto the black hole and inner region

of the torus from the polar region. This enhances the efficiency of the viscous heating in the

inner region.

In the early stage of the torus evolution, the ram pressure of the infalling matter is too high

to induce an outflow from the torus. In addition, the neutrino cooling suppresses the viscous

heating effect. However, the ram pressure of the infalling matter continuously decreases

because of the decrease in its density, and also, the neutrino cooling efficiency becomes lower

in a later stage (see below for more details). As a result, the thermal pressure of the torus

generated by the viscous and shock heating eventually exceeds the ram pressure. Then, an

outflow from the torus sets in, inducing the explosion of the entire star (see the fourth, fifth,

and sixth panels of Fig. 6.2 and the second and third panels of Fig. 6.3).

The viscous heating as well as the shock dissipation are most efficient around the shock

surface in the vicinity of the torus. Thus, the outward motion of the outflow is initially

induced along the torus surface. The matter of the outward motion has high entropy per

baryon, and thus, the outward motion accompanies convective motion, which redistributes

the thermal energy to a wide region. Thus, although the matter initially moves toward a

particular direction, subsequent motion becomes quasi-isotropic, and the explosion occurs in

a nearly spherical way.

Although the viscous and shock heating are universally the explosion sources, the efficiency

of the heating and evolution process of the torus depend on the neutrino cooling (see Fig. 6.4).

In the presence of an efficient cooling by neutrinos, the torus relaxes to a neutrino-dominated-

accretion-flow (NDAF) state. On the other hand, if the neutrino cooling is not efficient, the

explosion takes place in the absence of the NDAF state and the explosion sets in earlier. For

example, for model AD35-15 for which the NDAF stage is present the explosion sets in at

t ∼ 7 s while for model AD35-15-hv for which the NDAF stage is absent the explosion set is

at t ∼ 5 s (compare Figs. 6.2 and 6.3).

Even after the onset of the explosion, the matter infall continues for at least several seconds

near the rotational axis, around which the matter with small specific angular momentum

continuously falls onto the black hole and the inner region of the torus. This matter infall to

the torus contributes to the efficient viscous and shock heating, sustaining the explosion.

6.3.2.2 Dependence of the progenitor mass

As mentioned in Sec. 6.2, more massive progenitor stars are more compact and thus have

higher mass-infall rates, which are advantageous for generating more thermal energy (see
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below). By contrast, the neutrino luminosity tends to be smaller for more massive progenitor

stars at the torus formation (compare the models with original rotation profiles AD20-9,

AD35-15, and AD45-25: see left panels of Fig. 6.4). This is due to the larger radius of the

innermost stable circular orbit around the black hole for more massive models. That is, for

more massive models, which form more massive black holes, the density and temperature

of the torus are lower [202], and the neutrino luminosity is also lower. Consequently, the

thermal energy generated by the viscous heating is efficiently used for the explosion of the

system. Indeed the right panel of Fig. 6.4 shows that the neutrino cooling efficiency defined

by Lν/ṀBHc
2 is lower for more massive progenitor models. This results in a shorter (or no)

NDAF phase, leading to a quick explosion. The lower neutrino cooling efficiency, in addition

to the higher mass-infall rate, is advantageous for large explosion energy (see Sec. 6.3.4).

This situation is in contrast to the usual core-collapse supernova explosion, in which higher

neutrino luminosity of proto-neutron stars is advantageous for an earlier explosion (e.g.,

Ref. [257]).

For the fixed viscous parameter αν = 0.03, MZAMS = 20 and 35M⊙ models (AD20-9 and

AD35-15) have high neutrino cooling efficiency appreciably exceeds 0.01 (see Fig. 6.4), and

have a NDAF phase. As a result, the explosion for these models is delayed after the torus

formation. By contrast, no NDAF phase is found for 45M⊙ models (AD45-22 and AD45-25),

which drive the explosion shortly after the torus formation. We note that the presence or

absence of the NDAF phase depends not only on the progenitor stars but also on the viscous

coefficient and the initial angular momentum of the progenitor star, as discussed in the

following subsections.

6.3.2.3 Dependence on the viscous coefficient

For the 35M⊙ progenitor, we perform three simulations varying the viscous coefficient and

find that the evolution of the system depends qualitatively on the magnitude of αν . For large

values of αν , i.e., 0.06 and 0.10, the evolution toward the explosion is the qualitatively same

as those for the 45M⊙ models: The explosion sets in in a relatively short timescale after the

formation of the torus with no NDAF phase (cf. Fig. 6.3). By contrast, for αν = 0.03, the

explosion is delayed because the neutrino cooling efficiency is sufficiently high to suppress

the outward motion of the matter by the viscous and shock heating in the early evolution

stage of the torus. For this model, the explosion is started only when the mass infalling rate

is sufficiently low. This difference results from the stronger effects of the viscous heating

and angular momentum transport for the larger viscosity, by which the torus expands more

rapidly, reducing the neutrino cooling efficiency in an early stage.
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6.3.2.4 Dependence on the initial angular momentum

The dependence of the evolution process of the system on the initial angular momentum is

explored for the models of MZAMS = 35M⊙ with a fixed value of αν(= 0.03). For our models,

a disk and/or a torus surrounding a black hole is always formed, but their mass depends

strongly on the initial angular momentum: For larger initial angular momentum, it is larger

and, as a result, the explosion can be more energetic and mass ejection is more enhanced (see

Sec. 6.3.4).

Models AD35-15 and AD35x1.2-12.5 achieve a high neutrino cooling efficiency and NDAF

phase after the formation of tori (see Fig. 6.4). By contrast models AD35x0.6-21.5 and

AD35x0.8-18.0 do not achieve the NDAF phase. This illustrates that larger angular mo-

mentum stars are more subject to the NDAF phase after the formation of a torus around a

black hole.

For a model with sufficiently reduced angular momentum (AD35x0.5-21.5), the disk is

too sparse and low-mass (≲ 0.5M⊙) to find explosion in our simulation time. In this case,

the geometrically-thick torus formation is not also found in the simulation time. Even for

this case, however, a low-mass disk may be a source of a transient at a very late stage, i.e.,

t ≫ 10 s: As discussed in Ref. [263], in this case, the final configuration is likely to be a

black hole surrounded only by a low-mass low-compactness disk, which could be evolved by

a viscous hydrodynamics effect (resulting from magnetohydrodynamics turbulence) leading

to mass ejection. If this happens, a blue, rapidly varying optical transient may be generated

after long-term evolution of the accretion disk formed in late time [263].

6.3.3 Evolution of black holes

Figure 6.5 shows the evolution of the mass and dimensionless spin of the black holes for all the

models studied in this chapter. Note that for model AD20-10, we stopped the evolution of the

gravitational field at t ≈ 8 s to save computational time because the total mass of the matter

in the computational region was smaller than 10% of the black-hole mass, and moreover,

model AD20-9 is our main model for MZAMS = 20M⊙. Both the mass and dimensionless spin

increase steeply prior to the onset of the explosion, but after that, they relax toward final

values. The final black-hole mass is 50–60% ofMZAMS; large-mass black holes such as observed

by gravitational-wave observations [19, 489] are naturally formed from the progenitor models

of Ref. [21]. For the models with larger values of αν , the final mass and dimensionless

spin of the black hole are slightly smaller, because higher viscous heating efficiency as well as

viscous angular momentum transport enhances the mass ejection while preventing the matter

infall onto the black hole. However the dependence on αν is not very strong; the mass and

dimensionless spin decrease by ∼ 1M⊙ and 0.03, respectively, for the change of αν from 0.03

to 0.1.
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Figure 6.5: Time evolution of the mass and dimensionless spin of the black holes for models ofMZAMS = 20M⊙
(upper panels), 35M⊙ (middle panels), and 45M⊙ (lower panels). Note that for model AD20-10, we stopped
the evolution of the gravitational field at t ≈ 8 s, and thus, the actual final black-hole mass may be larger.
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Table 6.2: Summary of the quantities associated with the explosion for the models for which the simulation
is performed for sufficiently long time: Time at the onset of the explosion measured from the torus formation
time, texp (the values in the parenthesis denote the simulation time), explosion energy, Eexp, and ejecta mass,

Mej, measured at the termination of the simulation, the ejecta velocity defined by vej =
p
2Eexp/Mej, and

synthesized 56Ni mass MNi. In the last two columns, we also list the mass of an ejecta component with the
temperature satisfying T > 5 × 109 K during the ejection process and the average value of the entropy per
baryon for the ejecta. For model AD35x0.5-21.5, we do not find explosion. For most of the models, the
explosion energy was still increasing at the termination of the simulations, and thus, the values shown here
are considered as the lower bound.

Model texp (s) Eexp

(1051 erg)
Mej

(M⊙)
vej

(109 cm/s)
MNi

(M⊙)
M>5GK

(M⊙)
⟨s⟩/kB

AD20-9 3.8 (3.8) 2.2 2.2 1.0 0.24 0.44 17
AD20-10 <0.1 (0.1) 2.6 2.6 1.0 0.20 0.44 17
AD35-15 2.8 (7.1) 6.5 4.2 1.2 0.18 0.55 23
AD35-15-hi 2.0 (6.3) 7.0 5.0 1.2 0.24 0.72 28
AD35-15-mv 0.8 (5.1) 8.1 4.1 1.4 0.41 1.02 26
AD35-15-hv 0.5 (4.8) 10.1 5.5 1.4 0.15 0.69 39
AD35x0.5-21.5 — — — — — — —
AD35x0.6-21.5 0.7 (9.2) 2.1 1.0 1.5 0.04 0.16 34
AD35x0.8-18 0.8 (7.2) 4.4 2.6 1.7 0.15 0.52 32
AD35x1.2-12.5 3.9 (7.4) 6.8 5.3 1.1 0.38 0.90 23
AD45-22 0.6 (5.9) 11.5 3.7 1.8 0.28 0.95 33
AD45-25 <0.1 (0.1) 8.4 4.3 1.4 0.46 1.15 27
AD45-25-hv <0.1 (0.1) 13.0 4.7 1.7 0.25 0.87 43

Accompanied with the formation of a massive disk/torus around a black hole, the black-

hole spin is naturally increased. For all the models with no modification of the initial angular

momentum, the dimensionless spin of the black holes is ∼ 0.75–0.85 at the termination of the

numerical simulation (cf. Table 6.1). The high spin is advantageous for efficiently converting

the released gravitational potential energy to the thermal energy.

For smaller and larger initial angular momentum models with MZAMS = 35M⊙, the re-

sulting final value of the dimensionless spin of the black hole, χf , is smaller and larger,

respectively, while the final black-hole mass is larger and smaller, respectively. However, χf

varies only ±0.05 for the change of the initial angular momentum by ±20% (compare the

results for models AD35x0.8-18, AD35-15, and AD35x1.2-12.5). Thus, the final black hole

spin is likely to be fairly high as long as a disk/torus with a few M⊙ is formed around the

black hole. By contrast, for model AD35x0.5-21.5, for which a substantial amount of the

infalling matter falls into the black hole, the final value of χ is much smaller than those of

the other 35M⊙ models, while the final mass is much larger than others.

Models AD45-22 and AD45-25 started the simulations from different black-hole mass. How-

ever, the final mass and dimensional spin for these models have similar values. This appears

to be also the case for models AD20-7.8 and AD20-9. These results indicate that in the early

stage of the disk evolution, a substantial fraction of the matter in the disk quickly falls into

the black hole by the viscous effect, and the simulation may be started from a black-hole

mass which is slightly larger than those predicted from Fig. 6.1.
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6.3.4 Ejecta mass and explosion energy

Figure 6.6 shows the time evolution of the explosion energy (left panels) and ejecta mass

(right panels) for all the models studied in this chapter (see also Table 6.2) except for model

AD35x0.5-21.5, for which explosion is not found in the simulation time. At the termination of

the simulations, the explosion energy is still increasing for most of the models, and hence, the

values listed in Table 6.2 are considered to be the lower bound. However, broadly speaking,

we may conclude that (i) for MZAMS = 20M⊙, the explosion energy is a few times 1051 erg,

i.e., comparable to or slightly larger than that of the ordinary supernovae, while (ii) for

MZAMS = 35M⊙ and 45M⊙, it is ∼ 1052 erg, i.e., about one order of magnitude larger than

the ordinary supernovae, for the original progenitor models with no modification of the

angular momentum profile.

The increasing explosion energy at the termination of the simulation stems from the fact

that there is still matter infalling into the vicinity of the black hole. As seen in the left panels

of Fig. 6.4, there is still viscous heating of order 1051 erg/s, which increases the explosion

energy even in the later phase at which the shock wave reaches the outer boundary and

ejecta mass does not increase any longer.

The large explosion energy of the massive progenitor models stems from their relatively

large compactness. As we already mentioned in Sec. 6.2, for the pre-collapse models of

Ref. [21], the compactness of the progenitor star C∗ = GM∗/(c2R∗) is larger for the more

massive stellar models. Broadly speaking, the mass infall rate during the collapse is propor-

tional to M∗/tff ∝ C
3/2
∗ , where tff =

p
R3

∗/M∗ is the free-fall timescale. Thus, the mass-infall

rate is higher for the larger-compactness progenitor models. The higher mass-infall rate en-

hances the viscous and shock heating rates around the inner region of the disk/torus, which

result in the larger explosion energy for the more massive progenitor models.

For models with larger values of αν , the explosion energy and ejecta mass are naturally

larger. Fundamentally, the viscous effect should come effectively from the magnetohydrody-

namical turbulence and hydrodynamical shear in the present context. Thus, the explosion

energy and ejecta mass can be accurately determined only by a magnetohydrodynamics sim-

ulation. However, the present study indicates that the dependence of these quantities on

αν is not very strong; even for the 10/3 times larger value of αν , the explosion energy and

ejecta mass increase within a factor of 2. In particular, the explosion energy and ejecta mass

show similar values for MZAMS = 35M⊙ with αν = 0.03 and 0.06. Therefore it is reasonable

to conclude that the explosion energy can reach Eexp ∼ 1052 erg with the ejecta mass of

Mej = 4–5M⊙ for the present choice of the massive progenitor stars, if the turbulent state is

excited and the resulting effective viscosity with αν = O(10−2) is generated around the inner

region of the accretion disk/torus.

The modification of the initial angular momentum profile for the progenitor stars of
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MZAMS = 35M⊙ has an impact on the explosion energy and ejecta mass, in particular for

the case that we reduce it by more than 40%. The ejecta mass decreases monotonically with

the decrease of the initial angular momentum because the total mass outside the black hole

is initially smaller and the mass of the resulting disk/torus becomes smaller for the smaller

initial angular momentum. The ejecta mass becomes ∼ 1M⊙ for the reduction of the angular

momentum by 40% (model AD35x0.6-21.5) and smaller than 0.4M⊙ (i.e., < M∗,0 −MBH,f)

by the 50% reduction (model AD35x0.5-21.5). For model AD35x0.6-21.5, the explosion

energy is ∼ 2× 1051 erg, which is comparable to that of ordinary supernovae. This suggests

that a rapid rotation as well as the large compactness of the progenitor star is the key to the

large explosion energy.

For the models of MBH = 20M⊙ and 45M⊙, we performed simulations with different

initial black-hole mass. We find a fair agreement of the final values of explosion energy and

ejecta mass, although their time evolution depends weakly on the initial setting. Thus, the

ejecta-related quantities can be approximately obtained even if we start the simulations with

black-hole mass larger than the value expected at the disk formation (see Sec. 6.2).

For MZAMS = 20M⊙, we compare the present results with that in our previous work [205].

We find that both the explosion energy and ejecta mass were underestimated in the previous

study because the simulation time was too short. For obtaining the accurate explosion energy

and ejecta mass for this case, we needed a long-term simulation with the duration of ≳ 10 s

after the onset of the explosion.

Even in the present study, the ejecta mass for MBH = 20M⊙ does not relax to a saturated

value at the termination of the simulation. For this model, the expanding shock is still inside

the computational domain, and a significant amount of unshocked, bound matter is present

in the outer region of the star. The progenitor star for this model is less compact than the

more massive progenitor stars, and hence, it takes more time (in units of MBH) to follow the

ejecta generation. In the longer-term energy injection from the accretion torus, the ejecta

mass may be increased to M∗,0 −MBH,f ∼ 4M⊙.

At the termination of the simulations for MZAMS = 35M⊙ and 45⊙, we typically find

M∗,0 −MBH,f −Mej ≈ 1–2M⊙, which is still bound by the black hole. Since the black-hole

mass increases slowly with time even at the termination of the simulations, most part of this

mass will eventually fall into the black hole, and a fraction will be ejected from the system

via the viscous heating and viscous angular momentum transport. However, this is a minor

part compared with the matter ejected earlier.

As mentioned in Sec. 6.2, we discard the stellar matter with r > 105 km in our simulation

for which the mass is ∼ 1M⊙. Thus the ejecta mass may be larger than those listed in

Table 6.2 by this amount, but this possible increase is a small fraction of the numerical result

of Mej for most of the models.
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6.3.5 Nickel mass and predicted light curve

Using the time evolution of the thermodynamical quantities on the tracer particles [205],

post-process nucleosynthesis calculations are performed with a open-source nuclear reaction

network code torch [491] with 495 isotopes, paying particular attention to the 56Ni produc-

tion.

Table 6.2 lists the mass of 56Ni, MNi, for selected models. The 56Ni mass is found to

be always larger than 0.15M⊙ and ∼ 3–11% of the total ejecta mass for all the models

except for the models with significant angular momentum reduction (AD35x0.5-21.5 and

AD35x0.6-21.5). The 56Ni mass does not have strong correlation with the ejecta mass

because the 56Ni production efficiency depends strongly on the thermal history of the matter

during the explosion. In Table 6.2, we also show the mass of the ejecta that experiences a

state with T > 5GK (= 5 × 109K), M>5GK, and the average entropy per baryon, ⟨s⟩/kB,
for the ejecta. The 56Ni production primarily occurs for T ≳ 5 GK, while it is suppressed

for the ejecta with a high entropy per baryon [480]. No clear correlation between MNi and

the viscous coefficient is found (compare the results for models AD35-15, AD35-15-mv, and

AD35-15-hv). This stems from the fact that the high viscous heating can enhance not only

the fraction of the ejecta with T > 5GK, but also the entropy per baryon. In our results,

the 56Ni mass is approximately written as (see Fig. 6.7)

MNi ≈
M>5 GK

2

� ⟨s⟩
17kB

�−4/5

. (6.19)

It is also worth pointing out that M>5GK is by more than a factor of ∼ 2 larger than MNi

for the models studied in this chapter. Thus, M>5GK overestimates the 56Ni mass for the

present models.

By contrast, a clear correlation is found between MNi and the angular momentum of the

progenitor stars for theMZAMS = 35M⊙ model; larger angular momentum results in the larger
56Ni mass. This correlation stems from the larger mass and lower entropy per baryon of the

ejecta for the larger initial angular momentum. The latter is associated with the difference in

the evolution of the torus before the explosion sets in. For larger-angular-momentum models

AD35-15 and AD35x1.2-12.5, the explosion takes place after a quasi-stationary NDAF phase

of the torus, during which neutrino emission extracts the entropy of the torus efficiently. In

addition, the explosion after the quasi-stationary phase is less violent [205]. These factors

result in the lower entropy of the ejecta. This situation is in clear contrast with those

for smaller-angular-momentum models AD35x0.6-21.5 and AD35x0.8-18.0, for which the

explosion takes place in a relatively short timescale after the formation of the torus because

of the lower neutrino cooling efficiency and lower ram pressure of infalling matter. For these

models, a high entropy generated by the shock dissipation at the formation of the torus is
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directly reflected in that of the ejecta.

For the MZAMS = 45M⊙ models, the 56Ni mass is larger, ≥ 0.25M⊙, reflecting the large

mass fraction of the high-temperature ejecta component. The larger values of M>5GK for

these models result from the earlier explosion than for less massive progenitor models (see

Sec. 6.3.2). A significant difference is found between the results of models AD45-22 and

AD45-25 in spite of the facts that for these models the explosion energy and ejecta mass

show similar values. This illustrates that the 56Ni mass depends sensitively on the thermal

condition of the ejecta.

Figure 6.8 displays the 56Ni mass as a function of the explosion energy (left panel) and

the average ejecta velocity (right panel). Together with the numerical results shown by the

filled symbol, we plot the observational data for stripped-envelope supernovae, some of which

are broad-lined type Ic supernovae, taken from Refs. [217, 482], by the open symbols. It is

found that our numerical results reproduce the relations between MNi and Eexp or MNi and

vej for high-energy supernovae with Eexp = 2–10 × 1051 erg and with vej = 1–2 × 109 cm/s,

suggesting that a fraction of these supernovae may be driven by the explosion from a torus

surrounding a massive black hole of MBH ≈ 10–30M⊙. Our result is consistent with a recent

model [211].

Using the explosion energy, ejecta mass, and 56Ni mass as input parameters, we derive

model light curves for the supernova-like explosion using the Arnett’s model [37]. In this

modelling, we use the same prescription as described in our previous work [205]. The resulting

light curves are displayed in Fig 6.9. As predicted from the explosion energy, ejecta mass, and
56Ni mass, the peak luminosity and timescale of the luminosity decline for most of the models

are in good agreement with the observed data for high-energy supernovae like the broad-lined

type Ic supernovae or type Ib/Ic supernovae. For model AD35x0.6-21.6, the peak luminosity

is lower than those for other models due to the smaller ejecta mass and explosion energy,

indicating that a rapid rotation may be necessary to reproduce the brightness of high-energy

supernovae.

We note that the luminosity predicted by the Arnett model for given 56Ni mass may be

underestimated by a factor of a few (see Refs. [153, 154, 272]). Thus, the explosion models

presented in this chapter may show more luminous light curves than in Fig. 6.9, i.e., most of

them may be good models for broad lined type Ic supernovae, as Fig. 6.8 indicates. To clarify

this point, we need a more detailed radiation transfer study for deriving the light curves in

follow-up work.

6.4 Summary

We studied the fate after the collapse of rotating massive stars that form a black hole and a

disk/torus by performing a neutrino-radiation viscous-hydrodynamics simulation in general
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relativity and employing the stellar evolution models by Aguilera-Dena et al. [21] as initial

data. Specifically, we employed rapidly rotating and compact progenitor stars as base models

and constructed a system of a spinning black hole and infalling matter as the initial conditions.

For most of the models we employed, a system of a black hole surrounded by a massive torus

is formed during the time evolution.

Due to the viscous heating as well as shock heating around the surface of the torus, thermal

energy is generated and becomes the source for the explosion of the system. For the massive

models (MZAMS = 35M⊙ and 45M⊙), the ejecta mass is 4–5M⊙ and the explosion energy

is ∼ 1052 ergs, i.e., much larger than typical supernovae. The explosion energy is enhanced

for larger viscous coefficients. By contrast, the explosion energy for the 20M⊙ model is of

order 1051 erg. The primary reason for this difference is that for the more massive models,

the compactness of the progenitor stars is larger, the mass infall rate to the central part is

higher, and as a result, the viscous and shock heating efficiency are enhanced to get large

explosion energy.

For MZAMS = 35M⊙, we performed simulations artificially varying the initial angular

momentum for a fairly wide range. For its change by ±20%, the explosion energy and ejecta

mass do not vary significantly. However, for the reduction by 50%, we did not find the torus

formation and explosion in our simulation time, although a small-mass disk is formed. This

indicates that for high-energy explosion from the torus, a rapid rotation of the progenitor

stars that results in a rapidly spinning black hole with χ ≳ 0.7 and a massive torus with

mass ≳ 1M⊙ is necessary.

For the simulations with the original progenitor models of Ref. [21], the final black-hole spin

is always 0.75–0.85, and thus, a rapidly spinning black hole is the outcome. The final black-

hole mass is ≈ 10–30M⊙, which are 50–60% of the progenitor mass. Even for the model with

initially reduced angular momentum (model AD35x0.5-21.5) the final dimensionless spin is

≈ 0.6. Since the black-hole dimensionless spin is high, in the presence of electromagnetic

fields, the Blandford-Znajek effect is likely to play an important role [95] for launching an

energetic jet or outflow along the spin axis of the black hole. If a relativistic jet is produced,

a gamma-ray burst will be also launched (see Refs. [110, 219, 285] for simulation works). Our

present explosion models may naturally explain the association between the gamma-ray burst

and supernova-like explosion [120] if a jet is really launched. To demonstrate that a relativistic

jet is indeed launched, it is necessary to perform a magnetohydrodynamics simulation, which

is one of our follow-up works to be done. In the presence of a jet, energy available for the

explosion and 56Ni production is additionally injected, and also, observed relativistic motion

in supernova-associated gamma-ray bursts will be naturally modelled [120]. Exploring this

additional effect is an important subject for developing a model for supernova-associated

gamma-ray bursts.

For model AD35x0.5-21.5, energetic explosion from the torus is not found although a fairly
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rapidly spinning black hole is formed. In such a case, a gamma-ray burst may be launched

in the presence of a strong magnetic field penetrating the black hole, while supernova-like

explosion is likely absent. A wide variety of the final outcomes, which the present work

illustrates, suggest that there may be a variety of possibilities on the high-energy phenomena

depending on the initial angular momentum profiles in the progenitor stars.

For the case that an explosion occurs, an appreciable amount of 56Ni is synthesized. We

find that the 56Ni mass is always larger than 0.15M⊙ and ∼ 3–11% of the total ejecta mass

for rapidly rotating progenitor stars. For the models with reduced angular momentum, the
56Ni mass is significantly smaller. This illustrates that rapidly rotating progenitor stars are

necessary for the significant 56Ni production.

The relations between the explosion energy and 56Ni mass and between the average ejecta

velocity and 56Ni mass are similar to the observational data for stripped-envelope supernovae

with large explosion energy > 1051 erg. As a natural consequence, the model light curves

derived from our numerical results are also in good agreement with the observational data.

This suggests a possibility that some of high-energy stripped-envelope supernovae may take

place from a system of a spinning black hole and a massive torus. As discussed above,

a gamma-ray burst is likely to accompany with such supernovae if a strong magnetic field

penetrating the spinning black hole is developed. Therefore, supernova-associated gamma-ray

bursts may be naturally explained in this model.

6.5 Initial data for collapsing stars onto a spinning black hole

We consider an axisymmetric initial data with the line element written in the form

dl2 = ψ4γ̂ijdx
idxj = ψ4

�
e2q(dR2 + dz2) +R2dφ2

�
,

(6.20)

where γ̂ij is the conformal three metric and ψ is a conformal factor, both of which are

functions of R and z. We suppose that q is a given function of R and z. We require that the

metric reduces to that of Kerr black holes in the quasi-isotropic coordinates in the absence

of matter [288], i.e.,

ψ = ψK =
Ξ
1/4
K

r1/2Σ
1/4
K

, (6.21)

eq = eqK =
ΣK

Ξ
1/2
K

, (6.22)
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where

ΞK = (r2K + a2)ΣK + 2Ma2rK sin2 θ, (6.23)

ΣK = r2K + a2 cos2 θ, (6.24)

M is the black-hole mass, a is the black-hole spin, rK is the radial coordinate in the Boyer-

Lindquiest coordinates of Kerr black holes, r =
√
R2 + z2, and tan θ = R/z. The relation

between rK and r is

rK = r +M +
r2s
r
, (6.25)

where rs :=
√
M2 − a2/2 denotes the location of the black-hole horizon in the quasi-isotropic

coordinates. In the following, we assume q = qK. We note that for r → 0, ΨK → rs/r and

qK → 0.

From the extrinsic curvature Kij, we define K̂ij = ψ2Kij, K̂
i
j = ψ6Ki

j, K̂
ij = ψ10Kij,

and the subscripts of K̂ij is raised by γ̂ij. In the following, we assume that the trace of

the extrinsic curvature is zero, i.e., (K̂RR + K̂zz)e2q + K̂φφR2 = 0. Then, for the metric of

Eq. (6.20), the momentum constraint is written in the form:

1

R
∂R(RK̂RR) + ∂zK̂Rz − (K̂RR + K̂zz)(∂Rq −R−1) = 8πJRψ

6e2q, (6.26)

1

R
∂R(RK̂Rz) + ∂zK̂zz − (K̂RR + K̂zz)∂zq = 8πJzψ

6e2q, (6.27)

1

R
∂R(RK̂Rφ) + ∂zK̂zφ = 8πJφψ

6e2q, (6.28)

where Ji = αT t
i with α the lapse function and T µν the energy-momentum tensor. In the

formalism presented here, we will give Ji to determine the geometric quantities, and hence,

we do not have to specify α.

We then write the conformal-tracefree extrinsic curvature as

K̂ij = D̂iWj + D̂jWi −
2

3
γ̂ijD̂kW

k + K̂K
ij , (6.29)

where D̂i is the covariant derivative with respect to γ̂ij, W
i is a conformal three vector, i.e.,

Wj = γ̂jkW
k, and K̂K

ij is the contribution from the black hole, which is tracefree. Each
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component of K̂ij, necessary for the momentum constraint, is written as

K̂RR = ∂RWR − WR

R
− ∂zWz − 2WR∂Rq + 2Wz∂zq +

1

3
divW,

K̂Rz = ∂RWz + ∂zWR − 2WR∂zq − 2Wz∂Rq,

K̂zz = ∂zWz − ∂RWR − WR

R
+ 2WR∂Rq − 2Wz∂zq +

1

3
divW,

K̂Rφ = ∂RWφ − 2
Wφ

R
+ K̂K

Rφ,

K̂zφ = ∂zWφ + K̂K
zφ, (6.30)

where divW = ∂RWR +WR/R + ∂zWz,

K̂K
Rφ =

HER
3

r5
+

HFRz

r4
, (6.31)

K̂K
zφ =

HER
2z

r5
− HFR

2

r4
, (6.32)

and HE and HF are [102, 103]

HE =
Ma [(r2K − a2)ΣK + 2r2K(r

2
K + a2)]

Σ2
K

, (6.33)

HF = −2Ma3rK
p

r2K − 2MrK + a2 sin2 θ cos θ

Σ2
K

. (6.34)

Here, K̂K
ij satisfies the φ-component of the momentum constraint for Jφ = 0

1

R
∂R(RK̂K

Rφ) + ∂zK̂
K
zφ = 0. (6.35)

Then the equations for Wi are written as

�
∆− 1

R2

�
WR +

1

3
∂R(divW )2


∂2
Rq + ∂2

zq
�
WR −

�
8

3
divW − 2WR

R

�
∂Rq

+2

�
∂RWz +

Wz

R
− ∂zWR

�
∂zq = 8πJRψ

6e2q, (6.36)

∆Wz +
1

3
∂z(divW )2


∂2
Rq + ∂2

zq
�
Wz −

�
8

3
divW − 2WR

R

�
∂zq

−2

�
∂RWz +

Wz

R
− ∂zWR

�
∂Rq = 8πJzψ

6e2q, (6.37)

�
∆− 1

R2

�
W φ̄ = 8πJφψ

6e2qR−1, (6.38)
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where W φ̄ := Wφ/R and ∆ denotes the flat Laplacian,

∆ = ∂2
R +

1

R
∂R + ∂2

z . (6.39)

For a given function of Jφψ
6e−2q, the equation for W φ̄ is solved with the outer boundary

condition ofW φ̄ ∝ r−2 and the inner boundary conditions, W φ̄ ∝ R for R → 0 and ∂zW
φ̄ = 0

at z = 0.

To simplify the procedure for the numerical solution of WR and Wz, we may rewrite these

variables using (see, e.g., Ref. [430] for a similar formulation in Cartesian coordinates)

Wi = Bi −
1

8
∂i(χ+ BRR + Bzz), (6.40)

where χ and Bi are new functions to be solved instead of WR and Wz, and i denotes R or z.

With this prescription, we find

�
∆− 1

R2

�
WR +

1

3
∂R(divW ) (6.41)

=

�
∆− 1

R2

�
BR − 1

6
∂R

�
∆χ+R(∆−R−2)BR + z∆Bz

�
(6.42)

and

∆Wz +
1

3
∂z(divW ) = ∆Bz −

1

6
∂z

�
∆χ+R(∆−R−2)BR + z∆Bz

�
. (6.43)

Thus, by choosing the equation for ∆χ as

∆χ = −R(∆−R−2)BR − z∆Bz, (6.44)

we obtain the equations for BR, Bz, and χ in simple forms as

�
∆− 1

R2

�
BR = SR, (6.45)

∆Bz = Sz, (6.46)

∆χ = −RSR − zSz, (6.47)
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where

SR = 2

∂2
Rq + ∂2

zq
�
WR +

�
2divB − 2WR

R

�
∂Rq

−2

�
∂RBz +

Wz

R
− ∂zBR

�
∂zq + 8πJRψ

6e2q, (6.48)

Sz = 2

∂2
Rq + ∂2

zq
�
Wz +

�
2divB − 2WR

R

�
∂zq

+2

�
∂RBz +

Wz

R
− ∂zBR

�
∂Rq + 8πJzψ

6e2q, (6.49)

and

divB

�
=

4

3
divW

�
= ∂RBR +

1

R
BR + ∂zBz. (6.50)

We note that in SR and Sz the second spatial derivative of BR, Bz, and χ is not present.

Because SR and Sz fall off sufficiently rapidly in the far region (with O(r−6)), the elliptic

equations (6.45)–(6.47) can be solved in a straightforward manner with the outer boundary

conditions

BR ∝ R

r3
, Bz ∝

z

r3
, χ ∝ 1

r
. (6.51)

The boundary conditions at R = 0 are

BR ∝ R, ∂RBz = 0 = ∂Rχ, (6.52)

and the boundary conditions at z = 0 are

∂zBR = 0 = ∂zχ, Bz ∝ z. (6.53)

For the equation of BR, it may be better to solve the equation for BR̄ = BR/R to guarantee

the boundary condition, ∂RBR̄ = 0, at R = 0. For this case the kernel operator of the

equation becomes �
∂2
R +

3

R
∂R + ∂2

z

�
BR̄ =

SR

R
. (6.54)

Here, we note that JR ∝ R and q ∝ sin2 θ at θ → 0, and thus, the regularity of SR/R at

R = 0 is guaranteed.

If we consider that Jiψ
6e2q is a given function, the Hamiltonian constraint is solved for an

obtained numerical solution of K̂ij. In this context, the Hamiltonian constraint is written as

∆ψ =
1

8
ψe2qR̂− 2πρHψ

5e2q − 1

8ψ7
K̂ijK̂

ij, (6.55)

where ρH = α2T tt and R̂ is the Ricci scalar with respect to the given conformal metric, γ̂ij,
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i.e., q = qK. In the present context (e.g., Ref. [429]),

R̂ = −2e−2q(∂2
R + ∂2

z )q. (6.56)

We also note that we will consider to give ρH (not T tt), and hence, we do not have to specify

α.

For the decomposition of ψ = ψK + ϕ, Eq. (6.55) is rewritten as

∆ϕ =
1

8
ϕe2qR̂− 2πρHψ

5e2q − 1

8ψ7
K̂ijK̂

ij +
1

8ψ7
K

K̂K
ij K̂

Kij , (6.57)

where we used

∆ψK =
1

8
ψKe

2qR̂− 1

8ψ7
K

K̂K
ij K̂

Kij . (6.58)

The boundary conditions for ϕ are

∂r[r(ϕ− 1)] = 0 at r → ∞, (6.59)

∂Rϕ = 0 at R = 0, (6.60)

∂zϕ = 0 at z = 0. (6.61)

For r → 0, ψK ∝ r−1, KK
ijK

Kij ∝ r−6, and R̂ → 2a2/r4s , the right-hand side of Eq. (6.57) is

regular anywhere. Thus, it is also straightforward to solve this equation under the boundary

conditions shown above.

For the perfect fluid,

T µν = ρhuµuν + Pgµν , (6.62)

where ρ, h, uµ, P , and gµν are the rest-mass density, specific enthalpy, four velocity, pressure,

and spacetime metric. Then we obtain

Ĵi := Jiψ
6e2q = ρhαutuiψ

6e2q = ρ∗hui, (6.63)

S0 := ρHψ
6e2q = ρ∗h(αu

t)− Pψ6e2q, (6.64)

where ρ∗ = ραutψ6e2q is the weighted rest-mass density which satisfies the continuity equa-

tion,

∂tρ∗ +
1

R
∂R


Rρ∗v

R
�
+ ∂z(ρ∗v

z) = 0, (6.65)

with vi = ui/ut and αut =
p

1 + ψ−4γ̂ijuiuj. Thus, the total rest mass of the system is

obtained by

M∗ = 2π

Z
RdRdz ρ∗. (6.66)
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The angular momentum of the matter is also obtained by

J = 2π

Z
RdRdz Ĵφ. (6.67)

In numerical computation,
�
ρ∗, Ye, T, Ĵϕ, uR, uz

�
are provided using the data of the collapsing

matter (see Sec. 6.2), and the field equations, e.g., (6.45), (6.46), (6.47), and (6.57), are solved

iteratively until the rest-mass density ρ and all metric variables converge.

6.6 Accuracy of the black-hole quantities

To ascertain numerical accuracy in evaluating the mass and dimensionless spin of black holes,

we evolve isolated spinning black holes using similar grid resolutions to those used in the

present work, initially preparing a Kerr black hole in quasi-isotropic coordinates [288] with

χ = 0.8. Numerical evolution is carried out until t = 80, 000MBH. To save the computational

costs, the outer boundary is located at ≈ 800MBH along each axis. The simulations are

performed for ∆x/MBH = 0.012, 0.016, and 0.020 which are employed for the uniform grid

zone with x ≤ 0.72MBH where x denotes R or z. For x > 0.72MBH the grid spacing is

increased with the rate of 1.01 as in viscous hydrodynamics simulations. In this section, the

results are shown in units of MBH = 1 (with c = 1 = G). For example, for MBH = 15M⊙,

80, 000MBH ≈ 5.9 s and 800MBH ≈ 1.8× 104 km.

Figure 6.10 shows the evolution of the mass and dimensionless spin. A bump found at

t ≈ 1, 600MBH is due to a slight reflection of numerical errors from the outer boundary: In

this test simulations, the initial data are Kerr black holes in the quasi-isotropic coordinates,

and thus, during the time evolution, the metric form is varied due to the change of the

slicing, approaching those on the limiting hypersurface (trumpet hypersurface). During this

variation, the gauge modes are propagated outward with the speed of light and some of the

modes are reflected at the outer boundary toward the inner region causing a high-frequency

numerical noise. This oscillation spuriously and slightly perturbs the horizon in particular

for the high-resolution runs, but the oscillation does not grow in time and the error size

associated with this is minor.

Besides this numerical error, the accuracy of the mass and the area of the apparent horizon

converge approximately at fourth order with respect to the grid spacing ∆x. The numerical

error for the mass and dimensionless spin increase approximately linearly in time, but for

χ = 0.8 with ∆x ≤ 0.016MBH, which is the typical grid resolution of the present chapter,

the errors in mass and dimensionless spin are within ≈ 1.6% and ∆χ ≈ 0.004, respectively,

at t = 80, 000MBH. For ∆x = 0.020MBH, the error size is more than twice as large as that

with ∆x = 0.016MBH. This illustrates that a sufficiently high grid resolution is necessary

to accurately evolve the black hole. For model AD20-7.8 with ∆x/MBH,0 ≈ 0.0215, the
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grid resolution in the early stage of the black-hole evolution is so low that the mass and

dimensionless spin are likely to be overestimated and underestimated, respectively. This

is also the case for model AD20x1 [205]. For this model the grid resolution for the early

black-hole evolution was not so high that the black-hole mass and dimensionless spin were

overestimated and underestimated, respectively. As a result, the specific angular momentum

at the innermost stable circular orbit around the black hole was spuriously overestimated in

the numerical computation, and thus, the matter around the black hole were more subject

to falling into the black hole. This leaded to the overestimation of the black-hole mass and

underestimation of the disk/torus mass. For this model, the NDAF phase was not found [205],

but this might be a spurious result due to the poor grid resolution.

6.7 Dependence on the grid resolution

In this section, we compare the results of models AD35-15 and AD35-15-hi as a convergence

test. Figure 6.11 shows the evolution of the mass and dimensionless spin (left) and the ex-

plosion energy and ejecta mass (right). We find a fair agreement between the results for

different grid resolutions. For the black-hole mass, the higher-resolution results slightly in

smaller mass. The primary reason for this is that with the higher-resolution, the viscous

heating is more efficient, enhancing larger ejecta mass (see the right upper panel) while sup-

pressing the accretion onto the black hole. Thus the black-hole mass presented in Fig. 6.5

may be slightly overestimated for their late stages while the ejecta mass may be underesti-

mated in Fig. 6.6. The explosion energy are also slightly larger for the higher grid resolution,

reflecting more energy injection from the viscous heating.
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Breakdown of Contribution

This chapter is based on the preprint submitted to Phys. Rev. D: “SACRA-2D: New axisym-

metric general relativistic hydrodynamics code with fixed mesh refinement” in arXiv:2502.03223

[303] by A. T.-L. Lam and M. Shibata. The numerical code SACRA-2D was fully developed

by me. I carried out all the numerical simulations. The initial data for the test problem of

supermassive star collapse was provided by M. Shibata. M. Shibata provided constructive

comments on the manuscript written by me.

Overview

In this Chapter, we present SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic

hydrodynamics (GRHD) code in dynamical spacetime under axial symmetry with the cartoon

method using the finite-volume shock-capturing schemes for hydrodynamics. Specifically, we

implemented the state-of-the-art Harten-Lax–Van Leer contact Riemann solver and found

better accuracy than the standard Total Variation Diminishing Lax-Friedrich Riemann solver.
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The spacetime evolves under the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c

constraint propagation. We demonstrate the accuracy of the code with some benchmark tests

and excellent agreement with other codes in the literature. A wide variety of test simulations,

including the head-on collision of black holes, the migration and collapse of neutron stars,

and the collapse of a rotating supermassive star to a massive black hole and a disk, is also

performed to show the robustness of our new code.

7.1 Introduction

In hydrodynamics and magnetohydrodynamics simulations, the finite volume method with

the high-resolution shock-capturing (HRSC) scheme is commonly used due to its conservative

nature and capability to resolve sharp discontinuities, such as shocks, that often appear in

the fluid’s motion. One popular HRSC scheme is the family of the Harten, Lax and van

Leer (HLL) based approximate Riemann solver [229], which utilizes a subset of waves in the

Riemann fan. While most existing numerical relativity (magneto)hydrodynamics codes (e.g.,

[80, 129, 182, 195, 234, 344, 348, 380, 507]) employ the Harten-Lax–van Leer–Einfeldt solver

[297] that includes only shocks and rarefactions, it is known to be very diffusive [236, 336,

337, 493] and the accuracy for long-term simulation could be deteriorated. This is relevant

for modeling the long-term evolution of post-merger remnant from neutron-star mergers

[214], particularly important when considering the magnetohydrodynamical processes [281].

The authors in [281, 513] have reported a new implementation of the HLL contact (HLLC)

solver, which is a more sophisticated Riemann solver that restores the contact discontinuity

in the Riemann fan. A recent study also demonstrates its significance even in the inspiral

phase of the binary neutron stars, where the dynamical tidal effect on the gravitational

waveform can only be manifested with the HLLC solver [295]. Consequently, employing the

HLLC solver (or a more accurate solver) for astrophysical simulations is crucial for accurate

(magneto)hydrodynamics and gravitational wave signals.

Despite many relativistic astrophysical systems requiring spatially three-dimensional sim-

ulation to fully capture the dynamics, such numerical studies are usually computationally

expensive, prohibiting us from studying a wider range of parameters. On the other hand,

we could approximate specific systems to be axisymmetric, reducing the problem’s size to

two spatial dimensions and drastically lowering the computation cost for numerical simu-

lation. This allows us to follow the physical system for a much longer time scale beyond

the current capability of three-dimensional simulations. Indeed, axisymmetric GRHD code

with dynamical spacetime has been used extensively to study various astrophysical systems,

such as the dynamics of isolated neutron stars [275, 427, 434] and hypermassive neutron

stars [168, 169, 170, 171, 447, 453], stellar collapse [299, 413, 414, 435, 448] and collap-

sar scenario [204, 207, 209, 456, 458] (see also Chapter 6), collapse of supermassive stars
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[208, 315, 342, 438, 451, 451, 498, 499], black hole-torus system [340, 341, 423], higher-

dimensional spacetime [534], and merger remnants from binary neutron stars and black hole-

neutron star [200, 201, 202, 206, 454, 455].

In addition to astrophysical events, there has recently been an increasing interest in nu-

merical relativity simulations of modified theories of gravity, aiming to search for distinctive

features in the strong field regime that may provide shreds of evidence with current and

future observations. In particular, a major effort has been put into analyzing the proper-

ties of compact objects, including black holes and neutron stars, as well as investigating the

gravitational wave signals from the coalescence of binary compact objects in modified gravity

theories such as the scalar-tensor theory (STT) [294, 305, 306, 450, 486] (see also Chapters 3

to 5), the scalar Gauss-Bonnet theory [176, 293, 396, 397, 461, 517], the dynamical Chern-

Simon gravity [151, 359, 360, 395], and the STT with kinetic screening [88, 440]. However, the

three-dimensional setups are computationally too costly to perform numerical experiments to

survey new theories systematically, which is particularly important in exploring a well-posed

formulation for certain theories. While one-dimensional simulation has been vastly used to

explore the effect of the modification in gravity (e.g., [126, 290, 291, 292, 332, 473]), axisym-

metric GRHD code can act as a bedrock for an efficient alternative to implementing various

alternative theories of gravity and helping to gain new intuition in the regime of non-zero

angular momentum. The cartoon method has been shown to be very useful for studying

long-term dynamics, for example, core-collapse supernova in STT [298] and the superradiant

instability of a Proca field [173, 175].

This Chapter reports the implementation SACRA-2D, a new MPI and OpenMP parallelized,

fully relativistic GRHD code in dynamical spacetime under axial symmetry with the cartoon

method. The code is written in FORTRAN90 with the numerical algorithm and technique

closely resembling the three-dimensional moving box numerical relativity code SACRA-MPI

[278, 526]. We implemented the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism

[55, 433] with Z4c constraint propagation [81, 239] to solve Einstein’s equations. The finite-

volume shock-capturing scheme is employed for GRHD. Specifically, we implemented the

total variation diminishing Lax-Friedrichs (TVDLF) solver and the state-of-the-art HLLC

solver for the approximate Riemann solver.

In the following, we first outline the grid structure of SACRA-2D in Section 7.2.1. We

then describe the implementation for dynamical spacetime in Section 7.2.2, specifically the

details of the cartoon method in Section 7.2.2.2, followed by the formulation for GRHD in

Section 7.2.3. In Section 7.3, we validate our code with several benchmark test problems,

addressing the accuracy and performance of SACRA-2D. The parallelization efficiency is dis-

cussed in Section 7.3.4.
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7.2 Formulation

7.2.1 Grid structure

The grid setting of SACRA-2D is very similar to that of the ”box-in-box” simulation [115, 526].

We employ the two-to-one fixed mesh refinement (FMR) structure in the computational

domain, which is composed of a hierarchy of nested concentric grids overlaying on top of

each other. It consists of L levels of FMR domains, each of which contains an even number

of grids N in both x and z directions with the grid spacing written as

∆x(0) = xmax/N, ∆z(0) = zmax/N,

∆x(l) = ∆x(l−1)/2, ∆z(l) = ∆z(l−1)/2, (7.1)

for l = 1, 2, · · · , L − 1, where xmax and zmax are the size of computational domain, and

levels 0 and (L − 1) represent the coarsest and finest levels, respectively. The metric and

hydrodynamics variables are assigned at cell-centered positions with coordinates

x
(l)
j =

�
j − 1

2

�
∆x(l), z

(l)
k =

�
k − 1

2

�
∆z(l), (7.2)

for j, k ∈ [1, N ] on the l-th FMR level. The cell interfaces x
(l)
j±1/2 and z

(l)
k±1/2 are located at

x
(l)
j ±∆x(l)/2 and z

(l)
k ±∆z(l)/2, respectively.

In addition to the local N grid cells, extra buffer cells are necessary for calculating deriva-

tives with finite different schemes and reconstructing the hydrodynamics variables. For sixth-

order accuracy in spatial derivative, four buffer zones are required to handle the lopsided finite

difference for the advection term (see Section 7.2.2) as well as the prolongation scheme at the

refinement boundary. We also allocate an additional four buffer cells on top of the original

four buffer zones to facilitate the adaptive time update in the time integration scheme (see

Section 7.2.4 for more details). Therefore, in SACRA-2D, we set up a total of (4 + 4) buffer

cells in each direction for the purpose of time integration. However, the number of buffer cells

can be easily adjusted if a higher/lower order scheme is used [e.g., (3 + 3) for fourth-order

accuracy].

7.2.2 Einstein’s equations

7.2.2.1 Basic equations

Following the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 433] introduced

in Chapter 1 with Z4c constraint propagation [81, 239], we reformulate the field equations
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defining a set of geometric variables in Cartesian coordinates below,

γ̃ij := ψ−4γij, hij := γ̃ij − fij, W := ψ−2, (7.3a)

K := γijK
ij, Ãij := ψ−4

�
Kij −

1

3
γijK

�
, (7.3b)

Γ̃i := −∂j γ̃
ij, K̂ := K − 2Θ, (7.3c)

where hij is the residual of spatial metric, Θ := −naZ
a is a constraint in Z4 system [97, 98,

223], and K̂ is a variable used for the evolution equations.

The evolution equations for the geometric variables in Cartesian coordinates are given by

(∂t−βk∂k)W =
1

3
W
h
α
�
K̂ + 2Θ

�
− ∂kβ

k
i
, (7.4a)

(∂t−βk∂k)hij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k, (7.4b)

(∂t−βk∂k)Ãij = W 2 [αRij −DiDjα− 8παSij]
TF + α

h�
K̂ + 2Θ

�
Ãij − 2ÃikÃj

k
i

+ Ãkj∂iβ
k + Ãki∂jβ

k − 2

3
Ãij∂kβ

k,
(7.4c)

(∂t−βk∂k)K̂ = 4πα(Si
i + rhoh) + ακΘ+ α

�
ÃijÃ

ij +
1

3

�
K̂ + 2Θ

�2
�
−DiD

iα, (7.4d)

(∂t−βk∂k)Γ̃
i = −2Ãij∂jα + 2α

�
Γ̃i
jkÃ

jk − 1

3
γ̃ij∂j


2̂K +Θ

�
− 3

W
Ãij∂jW − 8πγ̃ijSj

�

+
2

3
γ̃jkΓ̃i

jk∂lβ
l + γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k − γ̃klΓ̃j
kl∂jβ

i − 2ακ
�
Γ̃i − γ̃klΓ̃j

kl

�
,

(7.4e)

(∂t−βk∂k)Θ =
1

2
α

�
R− ÃijÃ

ij +
2

3

�
K̂ + 2Θ

�2
�
− 8απρh − 2ακΘ, (7.4f)

where (ρh, Si, Sij) are the 3 + 1 decomposition of the stress-energy tensor Tab given by

Eq. (1.10). The constraint damping parameter κ is chosen to be κ = 5 × 10−3M−1 in

this work with M being the total mass of the system. We also enforce the following algebraic

constraints during the evolution

det(γ̃ij) = 1 and γ̃ijÃij = 0, (7.5)

as the numerical error could induce violations in these constraints. Specifically, we reset the
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metric variables after each time integration given by

γ̃new
ij = det(γ̃ij)

−1/3γ̃ij, (7.6a)

W new = det(γ̃ij)
−1/6W, (7.6b)

Ãnew
ij = det(γ̃ij)

−1/3

�
Ãij −

1

3
γ̃ij γ̃

klÃkl

�
, (7.6c)

Knew = K + γ̃ijÃij, (7.6d)

to satisfy the algebraic constraints.

We adopt the standard moving-puncture gauge condition [26, 42, 119] for the lapse function

and shift vector as in Eq. (1.24). We employ the standard initial gauge choice for the lapse

function α = ψ−2 and the shift vector βi = 0 = Bi for all the tests in Section 7.3 unless

stated otherwise.

The spatial derivatives in the right-hand side of BSSN equations, Eq. (7.4), are evaluated

with a sixth-order central finite difference, while the sixth-order lopsided finite difference is

used for the advection terms in the left-hand side of Eq. (7.4) to guarantee the stability.

To reduce high-frequency noise, we include eighth-order Kreiss-Oliger (KO) dissipation for

geometric variables Q in x and z directions as

(ε/256)

∆x8∂8

x +∆z8∂8
z

�
Q, (7.7)

with the damping parameter ε set to be 0.5.

7.2.2.2 Cartoon method

We employ the cartoon method [24, 421, 426] to impose the axial symmetry on the geometric

variables defined in the Cartesian coordinates. Three extra layers of the computational

domain are constructed upon and below the x-z plane with y = ±j∆y (j = 1, · · · , 3) as

required by the sixth-order central finite difference. Einstein’s equations are solved only

on the y = 0 plane while the geometric variables Q(x,±j∆y, z) on the y = ±j∆y planes

are obtained by first interpolating the variables Q(0)(ϖ, 0, z) at the same radial distance

ϖ :=
q

x2 + (j∆y)2 on the y = 0 plane using Lagrange’s formula with nine nearby points

[xj − 4∆x, xj + 4∆x] along the x direction and then apply rotation using the assumption of

axial symmetric as

Q = Q(0), Qz = Q(0)
z ,

QA = ΛA
BQ

(0)
B , Qzz = Q(0)

zz ,

QAz = ΛA
BQ

(0)
Bz, QAB = ΛA

CΛB
DQ

(0)
CD,

(7.8)
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where Q, Qi, and Qij denote, respectively, the scalar, vector, and tensor types of geometric

variables, in BSSN formulation, and ΛA
B is the rotational matrix given by

ΛA
B =

 
cosϕ − sinϕ

sinϕ cosϕ

!
, (7.9)

with tanϕ := ±j∆y/ϖ. Note that the subscripts A and B run x or y. The interpolated

values with eighth-order accuracy result in an expected sixth-order accuracy in the second

derivative, and allow us to compute the spatial derivative in the y-direction using the finite

difference scheme in the same manner as in 3D Cartesian coordinates. In particular, we

enforce the derivatives {∂y, ∂xy, ∂yz} on {Q,Qz, Qzz} to be zero in all equations to avoid

double precision errors arising from the arithmetic operation of finite difference. As we set

∆y(l) = ∆x(l) for all FMR levels, the interpolation coefficients remain the same across all the

FMR levels. Hence, the coefficients can be easily pre-computed and saved for later use to

speed up the calculation.

Since the neighboring nine points xj±4∆x are required for the interpolation, the geometric

variables located on the extra layers y = ±j∆y at the edge of the FMR level with grid points

x ∈ [N +5, N +8] cannot be determined, which causes trouble in obtaining the xy-derivative

∂xy for grid points x ∈ [N +1, N +4]. To avoid this problem, we instead adopt the following

form

∂xyQx =
Qy

x2
− ∂xQy

x
, ∂xyQy = −Qx

x2
+

∂xQx

x
, (7.10a)

∂xyQxz =
Qyz

x2
− ∂xQyz

x
, ∂xyQyz = −Qxz

x2
+

∂xQxz

x
, (7.10b)

∂xyQxx = 2

�
Qxy

x2
− ∂xQxy

x

�
, ∂xyQyy = −2

�
Qxy

x2
− ∂xQxy

x

�
, (7.10c)

∂xyQxy =
Qyy −Qxx

x2
+

∂xQxx − ∂xQyy

x
, (7.10d)

for the vector Qi and tensor Qij quantities located at grid points x ∈ [N+1, N+4]. Although

the coordinate singularity 1/x appears in the source term of Eq. (7.10), it is justified since

the grid points x ∈ [N + 1, N + 4] are located at the edge of the refinement boundary far

from the symmetric axis with non-zero x.



166 7.2. Formulation

7.2.2.3 Boundary condition

For the outer boundary, we impose the outgoing boundary condition [433] for metric variables

Q located at radial distance r in the form

Qn(r) =

�
1− ∆t

r

�
Qn−1(r −∆t), (7.11)

in order to preserve rQ along the characteristic curves r− t = constant. Here, Qn and Qn−1

are variables in the current t and previous t−∆t time step, respectively, and we interpolate

Qn−1 at r −∆t with second-order Lagrange interpolation.

Since the Z4c prescription allows the propagation and damping of constraints by intro-

ducing the auxiliary variable Θ, constraint violation will be induced at the outer boundary

and propagate inwards if the boundary condition above is used. While one could avoid this

by implementing constraint preserving boundary condition [403], we instead adopt a simple

treatment for Θ following [300]. We set an effective radius rZ4, beyond which the damping pa-

rameter κ and the source term for Θ are multiplied by an additional factor exp[−(x2+z2)/r2Z4]

to suppress the propagation of constraint violation terms exponentially. We typically set as

rZ4 ≲ Lmax/6 equivalent to a factor of ∼ 10−16 at the outer boundary, which corresponds to

the same order of error as double precision. We found that this simple treatment is good

enough to maintain a stable evolution for the long term without any significant growth in

constraint violation.

7.2.3 General relativistic hydrodynamics

7.2.3.1 Basic equations

This section briefly summarizes the formulation for general relativistic hydrodynamics (GRHD)

under 3+1 decomposition. We refer readers to [392, 430] for more detailed derivation.

The evolution equations for GRHD are based on the conservation of rest-mass and stress-

energy momentum tensor,

∇a (ρu
a) = 0, (7.12a)

∇bT
ab = 0, (7.12b)

where ρ, ua, and P are the rest-mass density, four-velocity, and pressure of the fluid, respec-

tively, and

Tab := ρhuaub + Pgab (7.13)

is the stress-energy tensor for perfect fluid with h := 1 + ϵ+ P/ρ being the specific enthalpy
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and ϵ being the specific internal energy. ∇a denotes the covariant derivative with respect to

gab.

We adopt the finite volume method using the formulation of, e.g., [45] in the reference

metric formalism [127, 343] to solve the hydrodynamical system in cylindrical coordinates

(ϖ,ϕ, z) at ϕ = 0 plane. Under such formulation, the GRHD equations can be written in

the following conservative form

∂tq+
1√
γ̂
∂i

�p
γ̂f i

�
= s, (7.14)

where γ̂ij is the time-independent reference metric chosen to be flat metric in cylindrical

coordinates; here γ̂ij := fij = diag(1,ϖ, 1), γ̂ := det(γ̂ij) is the determinant, q := (qD, qSi
, qE)

are the conservative variables defined as



qD

qSi

qE


 = ψ6



D

Si

E


 = ψ6




ρw

ρhwui

ρhw2 − P


 , (7.15)

f i are the flux terms written as

f i =




(fD)
i


fSj

�i

(fE)
i


 = αψ6




Dv̄i

Sj v̄
i + P δj

i

Ev̄i + P

�
v̄i +

βi

α

�


 , (7.16)

with w := −nau
a = αut being the Lorentz factor measure by an Eulerian observer and

v̄i := −βi + γijuj/u
t.

Since Einstein’s equations are solved in Cartesian coordinates (x, y, z) at y = 0 plane, the

hydrodynamic variables can be rewritten in Cartesian coordinates as ϖ = x and uϕ = xuy,

which is essentially the same as the conversion to orthonormal frame in reference metric

approach [59]. The source term s := (sD, sSi
, sE) in Eq. (7.14) can then be evaluated in
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Cartesian coordinates in the forms

sD = 0 (7.17a)

sSϖ = P∂x

αW−3

�
−W−3ρhw2

�
∂xα− v̄i∂xβ

i +
W 2

2
αv̄iv̄j∂xγ̃

ij +
4

W
αv̄iv̄

i∂xW

�

+
(fSϕ

)ϕ

ϖ
,

(7.17b)

sSϕ
= 0 (7.17c)

sSz = P∂z

αW−3

�
−W−3ρhw2

�
∂zα− v̄i∂zβ

i +
W 2

2
αv̄iv̄j∂zγ̃

ij +
4

W
αv̄iv̄

i∂zW

�
(7.17d)

sE = αK ijSij −W−3ρhw2v̄i∂iα, (7.17e)

where the final term
(fSϕ

)ϕ

ϖ
in sSϖ comes from the cylindrical geometry (see [127] for de-

tailed derivation of geometrical source term). Note that we have the conservation of angular

momentum in axial symmetry. In the conservative form of Eq. (7.14) with sD = 0 = sSϕ
,

the conservation of mass and angular momentum can be satisfied numerically with machine

precision.

Here, we write down the explicit discretized form of the volume-averaged equations in

cylindrical coordinates as follows:

∂t ⟨q⟩j,k = ⟨s⟩j,k −
1

∆Vj,k

×
nh

⟨f⟩ϖj+ 1
2
,k ∆Aϖ

j+ 1
2
,k
− ⟨f⟩ϖj− 1

2
,k ∆Aϖ

j− 1
2
,k

i

+
h
⟨f⟩zj,k+ 1

2
∆Az

j,k+ 1
2
− ⟨f⟩zj,k− 1

2
∆Az

j,k− 1
2

io
(7.18)

where ∆Vj,k and ∆Ai
j,k are the volume and the surface area of the cell (j, k), respectively,

given by

∆Vj,k = 2π

Z x
j+1

2

x
j− 1

2

Z z
k+1

2

z
k− 1

2

xdxdz = 2πxj∆x∆z, (7.19a)

∆Aϖ
j± 1

2
,k
= 2π

Z z
k+1

2

z
k− 1

2

xj± 1
2
dz = 2πxj± 1

2
∆z, (7.19b)

∆Az
j,k± 1

2
= 2π

Z x
j+1

2

x
j− 1

2

xdx = 2πxj∆x, (7.19c)

⟨q⟩j,k and ⟨s⟩j,k are the volume averaged of the corresponding quantities, and ⟨f⟩i are the

surface-averaged quantities of the flux terms at the cell interfaces.
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7.2.3.2 Riemann Solver

We adopt the HSRC scheme to handle the flux term in hydrodynamics equations. Both

Total Variation Diminishing Lax-Friedrich (TVDLF) [269, 495, 529] and HLLC [52, 336, 493]

approximate Riemann solvers are implemented in SACRA-2D. To obtain the numerical flux, we

first reconstruct the left and right states of the primitive variables p = (ρ, ui, P, ϵ) with 3rd-

order piecewise parabolic method (PPM) [132, 437] at the cell interface. Since the metric

variables are smooth, we employ Lagrangian interpolation to calculate the values at the

interface. For the HLLC solver, we perform the tetrad transformation [281, 513] at the cell

interface after reconstruction to obtain the numerical flux.

Here, we briefly outline the procedure of the HLLC solver and refer readers to [281, 513,

519] for more details on the implementation. To evaluate the numerical flux in the x-direction,

we define a tetrad basis [281, 513] on the surface of xj±1/2 as

ea(t̂) = na =
1

α


1,−βi

�
, (7.20a)

ea(x̂) = WB̂

0, γ̃xi

�
, (7.20b)

ea(ŷ) = WD̂ (0, 0, γ̃zz,−γ̃yz) , (7.20c)

ea(ẑ) = WĈ (0, 0, 0, 1) , (7.20d)

where

B̂ =
1√
γ̃xx

, Ĉ =
1√
γ̃zz

, D̂ =
1√

γ̃xxγ̃zz
= B̂Ĉ, (7.21)

with the corresponding covariant components written as

e(t̂)a = na = − (α, 0, 0, 0) , (7.22a)

e(x̂)a = W−1B̂ (βx, 1, 0, 0) , (7.22b)

e(ŷ)a = W−1D̂ (−γ̃xyβ
x + γ̃xxβ

y,−γ̃xy, γ̃xx, 0) , (7.22c)

e(ẑ)a = W−1Ĉ (βz, γ̃iz) . (7.22d)

This allows us to transform the primitive variables from the Eulerian frame p to the tetrad

frame p̃ by

u(â) = e(â)
bub, (7.23)

w2 = 1 + u(î)u(î), (7.24)

v(î) = u(î)/w. (7.25)

We can then obtain the left (L) and right (R) states of the conservative variables q̃L/R :=
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q̃(p̃L/R) and the flux terms f̃L/R := f̃ (x̂)(p̃L/R) in the tetrad frame from the corresponding

left/right states of the primitive variables p̃L/R as

q̃(p̃) =




D

S(ĵ)

E


 =




ρw

ρhwv(ĵ)

ρhw2 + P


 , (7.26)

f̃ (x̂)(p̃) =




�
f̃D

�(x̂)

�
f̃S(ĵ)

�(x̂)

�
f̃E

�(x̂)




=




Dv(x̂)

S(ĵ)v
(x̂) + P δ

(x̂)

(ĵ)

(E + P ) v(x̂)


 , (7.27)

which essentially have the same expression as in special relativistic hydrodynamics. Now,

we can employ the HLLC solver in the local Minkowski spacetime [336] to calculate the

numerical flux as

f̃ (x̂) =





f̃
(x̂)
L for λL > v

(x̂)
interface

f̃
(x̂)
cL for λL < v

(x̂)
interface < λc

f̃
(x̂)
cR for λc < v

(x̂)
interface < λR

f̃
(x̂)
R for λR < v

(x̂)
interface

, (7.28)

where λc is the characteristic speed of the contact discontinuity, v
(x̂)
interface = βx/ (α

√
γxx) is

the interface velocity [281, 513], f̃
(x̂)
cL/cR and q̃

(x̂)
cL/cR are the intermediate states obtained from

the jump condition

f̃
(x̂)
cL/cR = f̃

(x̂)
L/R + λL/R

�
q̃
(x̂)
cL/cR − q̃

(x̂)
L/R

�
, (7.29)

and λL/R are the left/right characteristic speed given by

λL = min(λ(p̃L)
−,λ(p̃R)

−), (7.30)

λR = max(λ(p̃L)
+,λ(p̃R)

+), (7.31)

λ±(p̃) =
1

1− v2c2s

�
v(x̂)


1− c2s

�
± cs

q
(1− v2) [1− v2c2s − (1− c2s) v

(x̂)2]

�
, (7.32)

with v2 := v(î)v(î) and cs being the sound speed. The characteristic speed λc can be obtained

by imposing the continuity condition of the pressure across the contact discontinuity as [336]

�
f̃HLL
E

�(x̂)

λ2
c −

�
EHLL +

�
f̃HLL
S(x̂)

�(x̂)
�
λc + SHLL

(x̂) = 0, (7.33)

where q̃HLL and f̃ (x̂),HLL represent the HLL state of the conserved quantities and flux, respec-
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tively, given by

q̃HLL =
λRq̃R − λLq̃L + f̃

(x̂)
L − f̃

(x̂)
R

λR − λL

, (7.34)

f̃ (x̂),HLL =
λRf̃

(x̂)
L − λLf̃

(x̂)
R + λRλL (q̃R − q̃L)

λR − λL

. (7.35)

The pressure Pc in the intermediate state can be therefore determined by

Pc = PcL = PcR = −λc

�
f̃HLL
E

�(x̂)

+
�
f̃HLL
S(x̂)

�(x̂)

, (7.36)

and the conserved quantities in the intermediate cL/cR states can be obtained by

DcL/cR = DL/R

λL/R − v
(x̂)
L/R

λL/R − λc

, (7.37a)

S(ĵ),cL/cR =
1

λL/R − λc

×
�
S(ĵ),L/R

�
λL/R − v

(x̂)
L/R

�
+

Pc − PL/R

�
δ
(x̂)

(ĵ)

�
,

(7.37b)

EcL/cR =
EL/R

�
λL/R − v

(x̂)
L/R

�
+ Pcλc − PL/Rv

(x̂)
L/R

λL/R − λc

. (7.37c)

Once the numerical flux in the tetrad frame is evaluated, we can eventually transform it back

to the Eulerian observer frame given by

fx = −βx

α




D

e(î)jS(î)

E


+

√
γxx




�
f̃D

�(x̂)

e(î)j

�
f̃S(î)

�(x̂)

�
f̃E

�(x̂)




. (7.38)

7.2.3.3 Equation of state

We implement a hybrid equation of state (EOS) in the current version of SACRA-2D where

the pressure P and the specific internal energy ϵ are split into the cold part Pcold/ϵcold and

thermal part Pth/ϵth as

P = Pcold + Pth, ϵ = ϵcold + ϵth. (7.39)

The cold part is described by a phenomenological piecewise polytropic (PWP) EOS [386]

where the realistic EOS is approximated by n pieces of polytrope depending on the transi-

tional density ρi. The pressure Pcold and the specific internal energy ϵcold are parameterized
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by the rest-mass density ρ as

Pcold = Kiρ
Γi

ϵcold =
Ki

Γi − 1
ρΓi−1 +∆ϵi

, for ρi−1 ≤ ρ < ρi (7.40)

where i runs from 1 to n with ρ0 := 0, Ki and Γi are the polytropic constant and index,

respectively, and ∆ϵi is determined by imposing the continuity condition on the specific

internal energy.

In addition to the cold part, we add the thermal part adopting the gamma-law EOS given

by

Pth = ρ (Γth − 1) ϵth, (7.41)

where Γth is a constant typically set to 5/3 in the present work.

7.2.3.4 Recovery of primitive variables

The recovery of primitive variables (ρ, ui, P, ϵ) from conserved variables q is non-trivial and

can only be done numerically. We implement the primitive recovery procedure for GRHD

mentioned in Appendix C of [213]. Here, we briefly outline the implementation of the recovery

procedure:

1. Evaluate the rescaled quantities that are fixed in the iterations

r :=

√
SiSi

D
, q :=

E

D
− 1, k :=

r

1 + q
, (7.42)

2. Set the bounds [z−, z+] for the root defined as

z− :=
k/2p

1− k2/4
, z+ :=

k√
1− k2

(7.43)

3. Within the interval [z−, z+], we find the root of f(z) = 0 with the master function f(z)

defined as

f(z) := z − r

ĥ(z)
, (7.44)
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where

ĥ(z) := (1 + ϵ̂)(1 + â(z)),

P̂ (z) := P (ρ̂(z), ϵ̂(z)),

â(z) :=
P̂ (z)

ρ̂(z)(1 + ϵ̂(z))
,

ρ̂(z) :=
D

ŵ(z)
,

ϵ̂(z) := ŵ(z)q − zr +
z2

1 + ŵ(z)
,

ŵ(z) :=
√
1 + z2.

(7.45)

In SACRA 2D, we numerically solve Eq. (7.44) using the Illinois method for bracketing root-

finding. We also set an upper limit for Lorentz factor wmax (typically set to be wmax = 100)

and rescale Si whenever k exceeds certain upper bound following [213]. While this method is

robust and always converges to a solution, it does not guarantee that the converged solution

satisfies the physical condition. In particular when the obtained specific internal energy falls

below the minimum allowed values of EOS (ϵ < ϵEOS
min ), we employ an additional primitive

recovery using only the conversed density and momentum (D,Si) together with the zero

temperature EOS h = hcold(ρ) following a similar procedure.

1. Set the bounds [z−, z+] for the root defined as

z− := 0, z+ := r (7.46)

2. Within the interval [z−, z+], we find the root of f̃(z) = 0 with the master function f̃(z)

defined as

f̃(z) := z − r

hcold(ρ̂(z))
, (7.47)

where

ρ̂(z) :=
D

ŵ(z)
ŵ(z) :=

√
1 + z2 (7.48)

3. Reset the conversed energy E from primitive variables.

In addition, we impose an artificial atmosphere by defining a lower bound ρatm and reset

the rest-mass density ρ after the primitive recovery whenever it falls below the bound ρ =

max(ρ, ρatm) to maintain stable evolution in the low-density region. The cutoff density ρatm :=

ρmaxfatm depends on the initial maximum density ρmax where the auxiliary factor fatm is

typically set to be ≤ 10−15.
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7.2.4 FMR setting

We adopt the fourth-order explicit Runge-Kutta scheme (RK4) in order to evolve the metric

function stably [430]. Following the time update scheme in [115], the adaptive time step is

employed using the Berger-Oliger algorithm [76]. We allow sub-cycling of time integration

starting from level lfix with a time step for each FMR level set to be

∆t(l) =




∆t(l−1), for 1 ≤ l ≤ lfix,

∆t(l−1)/2, for l > lfix.
(7.49)

The parameter lfix limits the time step in the coarse levels to avoid error induced by over-large

∆t and reduce the effect from the outer boundary. However, it usually makes no difference

practically. The time step in the finest level ∆t(L−1) is related to the grid size as

∆t(L−1) = cCFL min(∆x(L−1),∆z(L−1)), (7.50)

where the Courant–Friedrichs–Lewy (CFL) factor cCFL is set to be 0.5 unless stated otherwise.

In SACRA-2D, the buffer zone’s (4 + 4) structure is employed, where the outer 4 buffer cells

[N + 5, N + 8] are used for time interpolation between different time slices, while the inner

4 buffer cells [N + 1, N + 4] act as a buffer zone to dissipate any oscillatory behavior in the

time-interpolated values. This corresponds to the [1, N +4] domain for the first three stages

of RK4 time integration and [1, N ] for the last stage.

To obtain the buffer zone at the child level from its parent, we employ the eighth-order

Lagrange interpolation for geometric variables and minmod limiter to reconstruct the prim-

itive hydrodynamics variables p for the prolongation in space. For the time interpolation in

grid [N + 5, N + 8], we employ a second-order Lagrange interpolation of three time slices

{tn−1, tn, tn+1} of its parent level for time tn < t < tn+1. Since the buffer zone does not affect

the conservation of the hydrodynamics quantities in the FMR setting, we interpolate the

primitive variables p and construct the conserved variables directly following [478] to avoid

additional primitive recovery in the buffer zone. A limiter procedure is also introduced for

fluid variables p following [526] to maintain numerical stability, where we modify the time

interpolation to first order with time levels {tn, tn+1} if the following relation holds:


pn+1 − pn

�
pn − pn−1

�
< 0. (7.51)

After each time matching step between the child and parent levels, the grid values are

transferred from the child level (fine grid) to the parent level (coarse grid) in the overlap

region. More specifically, the grids (x, z) ∈ ([1, N ], [1, N ]) in the child level is mapped to

(x, z) ∈ ([1, N/2], [1, N/2]) in the parent level. In this restriction procedure, we employ an

eighth-order Lagrange interpolation for the geometric variables, and the following conserva-
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tive scheme [478]

q
(l−1)
j,k =

1

∆V
(l−1)
j,k

2jX

m=2j−1

2kX

n=2k−1

q(l)
m,n∆V (l)

m,n, (7.52)

for the conserved variables q with j, k = 1, · · · , N/2. The primitive recovery procedure is

carried out afterward to obtain the updated primitive variables p.

As the parent and child levels evolve in a different time step, the numerical flux across the

refinement boundary becomes inconsistent and introduce violation of conservation in mass

and angular momentum. To solve this, we store the numerical flux of all conserved variables

at the same refinement boundary for both fine and coarse levels during the time integration.

After each level finishes the sub-cycling and matches time with its parent level, we correct

the conserved variables next to the refinement boundary in the coarse grid by adding the

difference of numerical fluxes between the coarse and fine interface [75, 177, 388].

7.2.5 Hybrid Parallelization

SACRA-2D is hybrid parallelized by MPI and OpenMP. We employ a simple domain-based

decomposition for MPI parallelization. Each level is divided into MMPI × MMPI blocks of

subdomains (MMPI×2MMPI in the absence of the mirror symmetry with respect to the z = 0

plane), where MMPI is the number of blocks in x and z directions. The choices of MMPI are

limited by the number of grids N , which requires N/MMPI to be an even number. OpenMP

further parallelizes the subdomains, with Nthr being the number of OpenMP threads in each

MPI rank. The total number of cores required for the simulation is then determined by

MMPI ×MMPI ×Nthr.

7.2.6 Diagnostics

7.2.6.1 Constraints, mass, and angular momentum

We monitor the overall constraint violations by computing the corresponding L2-norm every

timestep as

||H||2 =
Z

R +K2 −KijK
ij − 16πrhoh

�
dV, (7.53a)

||Mi||2 =
Z

DjK
j
i −DiK − 8πJi

�
dV, (7.53b)

where H and Mi are the Hamiltonian and momentum constraints, respectively. Under

axisymmetry, the momentum constraints Mx and My evaluated are effectively Mϖ and Mϕ

in cylindrical coordinates, respectively.
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We also compute the total baryon mass and angular momentum as

Mb =

Z
D
√
γdV =

Z
W−3ρwdV, (7.54a)

J =

Z
Sϕ

√
γdV =

Z
W−3ρhwuyxdV, (7.54b)

which should be conserved. The gravitational mass and angular momentum of the system

are also obtained by analyzing the asymptotic behavior of the geometric quantities.

7.2.6.2 Extraction of gravitational wave

We extract gravitational waves from the numerical data using the outgoing component of

Newman-Penrose quantity Ψ4 [353], which can be expressed by the electric part Eac :=

Cabcdn
bnd and magnetic part Bac :=

1
2
Cabefϵ

ef
cdn

bnd of Weyl tensor Cabcd as [371, 526]

Ψ4 = −(Eac − iBac)m̄
am̄c, (7.55)

where ϵabcd is the covariant Levi-Civita tensor and m̄a is part of the null tetrad (ka, la,ma, m̄a).

Here, ka and la are outgoing and ingoing null vectors, respectively, where ma is a complex

null vector satisfying

−kala = 1 = mam̄a. (7.56)

We construct a set of spherical shells at different radii composed of Nθ cell-centered grids for

θ ∈ [0, π] (θ ∈ [0, π/2] in mirror symmetry) with grid points defined by

θj =
π

Nθ

�
j − 1

2

�
, for j = 1, 2 · · · , Nθ, (7.57)

and extract Ψ4 on the surfaces by Lagrange interpolation. We further decompose Ψ4 into

tensor spherical harmonic modes (l,m) [115]

Ψ
(l,m)
4 =

Z
Ψ4Ȳ

−2
l,m (θ,ϕ) dΩ, (7.58)

where Y −2
l,m is the spin-weighted spherical harmonic function with s = −2. Due to the axial

symmetry, only them = 0 modes are extracted with no ϕ dependence. We adopt the accurate

Gauss quadrature scheme for the integration following [371].

7.2.6.3 Apparent horizon finder

To identify the presence of a black hole and to diagnose its properties, we implement an

apparent horizon finder in SACRA-2D. Assuming that the apparent horizon contains the coor-

dinate center (x, z) = (0, 0), the horizon radius H can be represented as a function of polar
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angle θ as r = H(θ). Under an axisymmetric configuration, the elliptic equation for the ra-

dius of the apparent horizon is reduced to one-dimensional. We essentially employ the same

method in [526] to solve the equation. We note that even if a black hole is located along the

z-axis different from z = 0, the finder can find the apparent horizon by simply changing the

definition of θ.

Once the radius of the apparent horizon is determined, we then evaluate its area AH , and

obtain the irreducible mass Mirr and the angular momentum J of the black hole as

Mirr =

r
AH

16π
, J =

1

8π

I

H
Kabϕ

asbdA, (7.59)

where H corresponds to the surface of the apparent horizon, ϕa := (∂/∂ϕ)
a, and sb is the unit

radial vector normal to H. As a result, the mass of the black hole can be determined by

M =

s
M2

irr +
J2

4M2
irr

. (7.60)

Once the black hole is formed, we excise the fluid quantities by setting ui = 0 and the rest-

mass density to zero for r ≤ H(θ)/2 to avoid any potential numerical instability which may

be caused by extreme values of hydrodynamics quantities inside the black hole.

7.3 Numerical test

This section presents representative examples of the benchmark test problems with SACRA-2D.

We first examine the metric and GRHD sectors separately with tests considering vacuum

spacetime in Section 7.3.1 and fixed background metric in Section 7.3.2, respectively. The

code is then fully tested in Section 7.3.3 considering problems that cooperate GRHD in

dynamic spacetime.

7.3.1 Vacuum spacetime

7.3.1.1 Trumpet Black hole

We first test our metric solver on a stationary spacetime. Specifically, we consider a non-

rotating black hole in the so-called maximal trumpet coordinate, which is time-independent

under BSSN formalism with the puncture gauge. The analytic solution of the trumpet-
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puncture black hole is given by [54, 180]

α =

r
1− 2M

R
+

27M4

16R4
, (7.61a)

βi =
3
√
3M2

4R3
xi, (7.61b)

W =
r

R
, (7.61c)

hij = 0 = K, (7.61d)

Ãij =
3
√
3M2

4R3

�
δij − 3

xixj

r2

�
, (7.61e)

where M is the mass of the black hole, r is the radial coordinate, and R is the areal radius

in Schwarzschild metric, which is a function of r written as

r =

 
2R +M +

√
4R2 + 4MR + 3M2

4

!"
(4 + 3

√
2)(2R− 3M)

8R + 6M + 3
√
8R2 + 8MR + 6M2

#1/√2

.

(7.62)

In this coordinate, r = 0 corresponds to an areal radius of R = 3M/2, and the event horizon

radius is located at r ≈ 0.78M . To evolve the trumpet data, we use a gauge condition

consistent with the staticity of the solution [402] as

∂tα = −α (1− α)K, (7.63a)

∂tβ
i =

3

4
Bi, (7.63b)

∂tB
i = ∂tΓ̃

i − ηBB
i, (7.63c)

with a damping parameter ηB = 1/M . The slicing condition in Eq. (7.63), compared to the

standard 1+log gauge without advection, gives a lower propagation speed of gauge waves. We

found that the numerical result is closer to the analytical trumpet solution under Eq. (7.63)

due to a smaller effect from the gauge dynamics. We perform numerical evolution of the

trumpet data on a computation domain of Lmax = 1600M and 11 FMR boxes with different

grid resolutions with N = 64, 128, and 256, which corresponds to the grid spacing of ∆x =

∆z = 0.0244M, 0.0122M and 0.0061M , respectively, on the finest level with L = 1.56M .

Although the metric variables should remain unchanged analytically under this gauge

condition in the trumpet solution, numerical errors from the finite difference scheme and

interpolation across the refinement boundaries will induce deviations from the initial values

during the evolution. We evolve the trumpet data up to t = 195M and extract the relative

error of W,α, and βr as well as the Hamiltonian constraint violation on the x-axis at z = 0

as shown in Fig. 7.1. Regardless of the resolutions, a spike in relative errors appears at
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Figure 7.1: The top three panels show the relativity error of W := ψ−2, lapse function α, and shift vector
βr along the x-axis extracted at t = 195M for three different grid resolutions N = 64, 128, and 256. The
bottom panel shows the corresponding absolute violation of Hamiltonian constraints on the same slice. The
black dotted vertical lines indicate the location of the refinement boundaries.
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x ≈ 30M , possibly caused by an outgoing gauge wave. This could introduce additional noise

and induce a loss of convergence [181]. We can recover an expected sixth-order convergence

for metric variables in general, while a roughly fourth-order convergence is found for region

x ≲ 30M where the gauge wave has passed through. Since we start from time-independent

initial data that minimizes gauge dynamics, the Hamiltonian constraint violations do not

contain non-convergent spikes induced by the gauge evolution that appeared in [181], and

convergent results are obtained. In addition, the relative errors and constraint violation show

regularly-spaced spikes on a logarithmic space scale in between x ≈ 100M–1000M , which is a

common feature for mesh-refinement structure as the metric variables experience the sudden

change in grid spacing across the refinement boundary.

7.3.1.2 Spinning Black hole

To further test our metric solver in a system with non-zero angular momentum, we evolve a

near-extreme-spin black hole with the dimensionless spin parameter χ = 0.95. We adopt the

spinning black hole in quasi-isotropic coordinates under a new radial coordinate r introduced

in [316] defined by

rBL = r
�
1 +

r+
4r

�2

, (7.64)

where rBL is the radial coordinate in Boyer-Lindquist coordinates, r± = M ±
√
M2 − a2 is

the Boyer-Lindquist radii of inner (−) and outer (+) horizons of the black hole, and M and

a are the black hole mass and spin, respectively. The event horizon in this radial coordinate

is given by

rh =
1

4

�
M +

√
M2 − a2

�
, (7.65)

which goes to a finite radius M/4 when the black hole approaches the maximum spin a = M .

This gives better initial data for near-extreme-spin black holes compared to quasi-isotropic

coordinates in [288], in which the coordinate radius of the event horizon drops to zero for

a → M .

The corresponding metric components are written as

(3)ds2 =
Σ
�
r +

r+
4

�2

r3 (rBL − r−)
dr2 + Σdθ2 +

Ξ

Σ
sin2 θdϕ2, (7.66a)
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Krϕ = Kϕr =
Ma sin2 θ

Σ
√
ΞΣ

�
1 +

r+
4r

� 1p
r (rBL − r−)�

3r4BL + 2a2r2BL − a4 − a2

r2BL − a2

�
sin2 θ

�
,

(7.66b)

Kθϕ = Kϕθ = −2a3MrBL cos θ sin
3 θ

Σ
√
ΞΣ

�
r − r+

4

�rrBL − r−
r

, (7.66c)

where Σ = r2BL + a2 cos2 θ, ∆ = r2BL − 2MrBL + a2, Ξ = (rBL − a2)
2 −∆a2 sin2 θ, and (3)ds2

is the spatial line element.

We transform the metric variables to the Cartesian coordinates on the y = 0 plane and

simulate with a = 0.95M . The computational domain is set to be xmax = zmax = 2048M

with 10 FMR levels and three grid resolutions N = 200, 300, and 400, which correspond

to ∆x/M = 0.02, 0.0133, and 0.01, respectively, with the box size L = 4M at the finest

level. We evolve the initial data using the moving puncture gauge of Eq. (1.24) with the

gauge parameter ηB = 1/M . In this configuration, while the black hole spacetime remains

stationary, the spatial hypersurface will still evolve under the dynamical gauge conditions

and eventually approaches the trumpet puncture [111, 114, 159, 226, 227].

The upper panel of Fig. 7.2 shows the relative error of the mass M and the spin a of the

black hole measured for the apparent horizon. As we increase the resolution, the relative

error drops and reaches ∼ 10−4 for the highest resolution with convergence approximately

at sixth-order. On the other hand, the coordinate equatorial req and polar rp radii of the

apparent horizon evolve under the moving puncture gauge and eventually approach constant

values of req = 0.428M and rp = 0.281M as shown in the bottom panel of Fig. 7.2. Although

both req and rp are gauge-dependent quantities, the values of req and rp drop as a result of

the hypersurface approaches the trumpet slice of the near-extreme-spin black hole.

7.3.1.3 Black hole head-on collision

To explore the convergence of gravitational waves numerically extracted, we perform a test

simulation of the head-on collision of two non-spinning black holes. Under axial symmetry,

we can set up the Brill-Lindquist initial data [108] which consists of two equal-mass black

holes in isotropic coordinates located on the rotational axis (z-axis) separated by a distance

of 2b in the form of

ψ = 1 +
M0

2r+
+

M0

2r−
, (7.67)

where M0 is constant and

r± =

q
x2 + (z ± b)2. (7.68)

is the radial coordinate distances from the black hole punctures (with y = 0).
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Figure 7.2: The upper panel shows the relative error of black hole mass (solid) and dimensionless spin (dashed)
as functions of time with the initial value of χ = 0.95. The bottom panel shows the evolution of equatorial
(solid) and polar (dashed) radii of the apparent horizon in the coordinate radius. The initial radius of the
apparent horizon is located at r = 0.328M . The blue, green, red, and cyan lines indicate the result from
N = 200, 300, and 400, respectively.
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Figure 7.3: (l,m) = (2, 0) mode of DMΨ4 gravitational waves (top) emitted by the head-on collision of two
black holes with extraction radius rex = 30M in three different grid resolutions. The grid spacing ∆x/M in
the finest level from low to high are 0.015625, 0.0078125, and 0.005208, respectively. The black dashed line
shows the fitted waveform of the analytical ringdown frequency Mω ≈ 0.3737 − 0.0890i. The bottom panel
shows the absolution error of the resultant waveform between different resolutions.

We pick b = M/2 = M0 following [402] and start the simulation under mirror symmetry.

Here, M is the total ADM mass of the system, which also defines the unit of length. In

this setup, two black holes are not initially enclosed by the common horizon [424] but merge

during the time evolution. The computational domain is set as xmax = zmax = 1024M with

11 FMR levels, which corresponds to the size L = 1M in the finest box. We perform the

simulations with three grid different resolutions N = 64 (low), 128 (med), and 192 (high)

with corresponding resolutions of ∆x/M = 0.015625, 0.0078125, and 0.005208, respectively,

in the finest level. The non-spinning black holes are released from rest, accelerating toward

each other along the polar axis, and then collide head-on at the origin, forming a perturbed

black hole that promptly rings down to a stationary state by emitting gravitational waves.

Fig. 7.3 shows the accompanying gravitational waves signals extracted at rex = 30M as a

function of retarded time tret defined by [278, 280]

tret = t−
�
D + 2M ln

�
D

2M
− 1

��
, (7.69)

where D ≈ r [1 +M/ (2r)]2 is areal radius of the extraction sphere. The resultant ring-down

waveform emitted after the merger forms an exponentially damped oscillation with frequency
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Mω ≈ 0.3737− 0.0890i [86, 402] in the dominant (l,m) = (2, 0) mode. The top panel shows

the (l,m) = (2, 0) mode of Ψ4 in three different grid resolutions, which are all consistent with

the analytical frequency. In addition, the bottom panel of Fig. 7.3 indicates the absolute

errors between the low (∆x = 0.015625M) and high (∆x = 0.005208M) resolutions as

well as the medium (∆x = 0.0078125M) and high (∆x = 0.005208M) resolutions as blue

and orange solid lines, respectively. To examine the order of convergence, we scale up the

absolute difference between the medium and high resolutions by a factor of (0.0156256 −
0.0052086)/(0.00781256 − 0.0052086) = 70.06 as shown in the orange dashed line, which

agrees approximately with the blue solid line, suggesting the 6th-order convergence in the

waveform. Note that the absolute error of Ψ4 rises, and the convergence is lost for tret ≳ 40M .

This is likely caused by the reflection of the outgoing gravitational wave at the refinement

boundaries in the coarse domains for which the wavelength of gravitational waves are not

well resolved.

7.3.2 GRHD with fixed spacetime

In this section, we consider test problems with a fixed background metric in both flat

Minkowski spacetime and curved spacetime (so-called Cowling approximation), focusing on

the hydrodynamics sector to validate our Riemann solver and reconstruction scheme, as well

as examining the convergence of the hydrodynamics solver.

7.3.2.1 One-dimensional shock-tube test

We carry out a one-dimensional shock-tube test problem following [329], which is commonly

used to test the performance of the Riemann solver and reconstruction scheme. For this test,

the cylindrical coordinates in SACRA-2D are converted to the Cartesian coordinates. Under

this setup, the background metric is reduced to the Minkowski flat spacetime with coordinate

vector acting as the tetrad basis, thus allowing us to validate our HLLC solver. We consider

ideal gas law P = ρ (Γ− 1) ϵ with Γ = 5/3 giving the initial left and right states by

(ρ, P, v) =




(10, 40/3, 0) for x < 0.5,

(1, 0, 0) for x > 0.5,
(7.70)

where v is the velocity in the x direction, i.e., v = ux/ut. The computational domain is set

to be x ∈ [0, 1] with the grid resolution of N = 800 (∆x = 0.00125) and no grid refinement.

A third-order PPM scheme is used for reconstruction.

Fig. 7.4 shows the profile of the rest-mass density ρ, pressure P , and velocity v at t = 0.4

compared to the analytical solutions generated by RIEMANN 1 [329]. The initial discontinuity

at x = 0.5 creates left and right propagating shock waves and forms a contact discontinuity in

1The open-source program RIEMANN is available here.
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Figure 7.4: The density (solid), pressure (dashed), and velocity (dotted) profile of one-dimensional shock-tube
problem at t = 0.4 obtained by TVDLF (blue) and HLLC (orange) Riemann solvers. The black solid curve
indicates the analytical solution.

between, which is located at x = 0.786 for t = 0.4. Both TVDLF and HLLC solvers (shown

as the blue and orange dots in Fig. 7.4, respectively) can satisfactorily resolve the shocks and

contact discontinuity with similar performance, which is consistent with the result in [281]

when a 3rd-order reconstruction scheme is employed.

7.3.2.2 Bondi accretion

In this test, we simulate the Bondi accretion [231] consisting of a smooth stationary fluid

flow into the black hole that allows us to examine the convergence of hydrodynamics and the

tetrad formulation for the HLLC solver under a non-trivial spacetime without shocks. To

fit it in the puncture formalism of our code, we consider the Bondi solution in the maximal

trumpet coordinate of a non-rotating black hole spacetime [338], which does not exhibit

coordinate pathology across the event horizon (see Eq. (7.61) for the background metric).

We adopt the same parameters following [513] for our setup with an adiabatic index of

Γ = 4/3, an adiabat of K = 1, and a critical radius of rc = 8M with a mass accretion

rate Ṁacc = 0.0848 where M is the black hole mass. The hydrodynamics quantities within

r = 0.4M are fixed as an inner boundary condition. Six different grid resolutions with

N = 32, 64, 128, and 256 are considered for the convergence test. The computational domain

is xmax = zmax = 16M without mesh refinement. In addition, we carry out another set of

simulations with 3 refinement levels under the same parameters to test our FMR setting,

which corresponds to a box size L = 4M and in the finest box. Specifically, we examine the

convergence of the profile of the rest-mass density ρ by evaluating the L1-norm ϵL1 defined
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by [513]

ϵL1(ρ) =

R
|ρinitial − ρfinal|

√−gdVR
|ρinitial|

√−gdV
. (7.71)

The upper and bottom panels Fig. 7.5 show the radial profiles of the rest-mass density ρ

and the radial velocity −vr of the Bondi flow, respectively. The markers show the profiles

extracted at t = 20M in the resolution of N = 128 with the TVDLF solver labeled in blue and

the HLLC solver labeled in orange, which agrees approximately with the analytical solution

indicated by the black dashed curves. The bottom panel of Fig. 7.5 plots the L1-norm of

the error of the rest-mass density ρ concerning the different grid spacing. The TVDLF and

HLLC solvers have the same performance due to the smoothness of the accretion flow, as

many other studies have shown (e.g., Refs. [281, 348, 437]). The result demonstrates an

approximate second-order convergence in both solvers regardless of our FMR setting, which

is consistent with the accuracy of our implementation of the Riemann solvers.

7.3.2.3 Rayleigh-Taylor instability from the modified Bondi flow

To further validate our HLLC solver and demonstrate its improvement over the TVDLF

solver, we modify the configuration of the Bondi flow to induce Rayleigh-Taylor instability.

Following [519], we change the initial setup within a radius r < 3M [1 + 0.05(cos(80θ) + 1)]

as

ρ = 0.1ρbondi, P = 50Pbondi, ur = 0, (7.72)

where ρbondi and Pbondi are the density and pressure profiles of the Bondi flow in Sec-

tion 7.3.2.2, respectively. This introduces a hot, low-density bubble in the inner region

with the perturbed interface. The hot bubble rises and pushes through the infalling high-

density Bondi flow that later on develops the Rayleigh-Taylor-like instability (or sometimes

referred to as the Richtmyer-Meshkov instability). We employ the same grid setup as in

Section 7.3.2.2 with a grid resolution of N = 512 (∆x = 0.03125M).

Fig. 7.6 shows the snapshots of the rest-mass density profile extracted at t/M = 0 (top

row), 25 (middle row), and 50 (bottom row). The left and right columns correspond to the

results of the TVDLF solver and the HLLC solver, respectively. When the hot low-density

gas expands and compresses the infalling flow, instability fingers develop at t = 5M and

eventually spread inwards at t = 50M . The HLLC solver can resolve the Richtmyer-Meshkov

instability better than the TVDLF solver, with the instability finger’s fine structure more

sharply captured as illustrated in Fig. 7.6. This demonstrates that the HLLC solver performs

better than the TVDLF solver, effectively improving spatial resolution.
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Figure 7.5: Radial profiles of rest-mass density ρ (top) and radial velocity −vr (middle) extracted at t = 20M
with the grid resolution of N = 128 using TVDLF (blue) and HLLC (orange) Riemann solvers. The bottom
panel shows the L1 norm of the error in rest-mass density ϵL1(ρ) with respective to different grid resolutions
in the finest box. The solid and dotted lines show the results in the uniform grid setting and the 3 levels
FMR setting, respectively. The numerical results are consistent with the second-order convergence (dashed
line).



188 7.3. Numerical test

Figure 7.6: Rest-mass density ρ in the modified Bondi flow with TVDLF (left) and HLLC (right) Riemann
solvers. The snapshots are extracted at t/M = 0 (top), 25 (middle), and 50 (bottom).
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7.3.3 GRHD with dynamical spacetime

In this section, we perform test simulations that solve both hydrodynamics and metric sectors

to confirm the full capacity of the code.

7.3.3.1 Stable rotating neutron star

We first evolve a stable rotating neutron star in equilibrium configuration with initial data

constructed by the open-source code RNS [475] using the MPA1 EOS [347]. Specifically, a

uniformly rotating neutron star with baryon mass Mb = 1.80M⊙ and angular momentum

J = 1.80M2
⊙ is considered with the ADM mass MADM = 1.65M⊙ and the ratio of rotational

kinetic energy to gravitational potential energy β = 0.11. At such a high angular frequency

Ω = 6.28×103 rad/s, the neutron star is close to its mass shedding limit. Its shape is flattened

to become an oblate spheroid with the ratio between the coordinate radius at pole rp and

equator req as rp/req = 0.63. While such a rapidly rotating neutron star may be subjected

to non-axisymmetric m = 2 bar mode instability [476], it is stable against axial symmetric

perturbation. Hence, maintaining the system stable for a long time in the simulation poses

a test problem.

We set the computational domain as xmax = zmax = 4726 km with 10 FMR levels and

grid resolution with N = 192, which correspond to the size L = 9.23 km and the resolution

∆x = ∆z = 48 m in the finest box. We also carried out the test with a lower resolution

N = 96 as a comparison. Since the polar and equatorial radii of the neutron star are

rp = 8.34 km and req = 13.25 km, respectively, the refinement boundary of the finest box

in this setup cuts through a part of the neutron star as illustrated in the upper panels of

Fig. 7.8. This allows us to test the treatment of fluxes and the reconstruction scheme across

the refinement boundary with the adaptive time update scheme. The MPA1 EOS for the

cold EOS part and Γ thermal law with Γth = 5/3 are employed. We perform two sets of

simulations using different Riemann solvers and evolve the neutron star up to t = 250 ms,

about ∼ 250 times the rotational period, which is long enough to examine the quality of

the simulation. In both runs, the mirror symmetry with respect to the equatorial plane is

imposed, and the atmosphere factor fatm is set to be 10−20 and lfix = 4.

The top panel of Fig. 7.7 shows the evolution of the rest-mass density at the center ρc,

which is maintained throughout the simulation with initial oscillation amplitude ∼ 0.1%

and ≲ 0.2% shift after 250 ms for both TVDLF and HLLC Riemann solvers for N = 192.

The shift converges approximately at the second order. The oscillation amplitude of ρc is

noticeably damped out faster for the TVDLF solver than the HLLC solver. This indicates

that the diffusive nature of the TVDLF solver numerically dissipates the oscillation energy,

as another study [281] also has a similar finding.

The conservation of baryon mass and angular momentum is achieved remarkably well,
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Figure 7.7: From top to bottom, the panels show, respectively, the evolution of central rest-mass density
ρc, the relative difference of total baryon mass and angular momentum, and the L2-norm of Hamiltonian
constraint violation for the evolution of a rotating neutron star. The solid and dotted lines show the results
of N = 192 and 96, respectively.
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Figure 7.8: Snapshot of the rest-mass density of the rapidly rotating neutron star with TVDLF (left) and
HLLC (right) Riemann solvers forN = 192. The top and bottom rows are extracted at t = 0 s and t = 250 ms,
respectively. The green solid lines indicate the boundaries of the FMR levels.
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as shown in the second and third panels of Fig. 7.7, with an error of machine precision at

∼ 10 ms, which validates our treatment of numerical flux across the refinement boundary.

Shortly after that, the relative difference raised to ≲ 10−11 irrespective of the grid resolution

as the matter on the neutron star surface expanded to the atmosphere due to the artificial

heating at the surface. Due to the inability of the TVDLF solver to resolve the contact

discontinuity, the effect of the surface heating is much stronger, creating an artificial out-

flow and an atmosphere with density ρ ∼ 109 g/cm3 as shown in the bottom left panel of

Fig. 7.8. This outflow eventually escapes from the computational domain after ∼ 100 ms

and continuously increases the relative differences of the rest mass and angular momentum

to ∼ 10−7 at the end of the simulation. On the other hand, these relative differences in the

HLLC solver remain ≲ 10−10 at the end of the simulation irrespective of the grid resolution.

This is because the HLLC solver resolves the surface of the neutron star (i.e., the contact

discontinuity) much better than the TVDLF solver, as shown in the profiles of the rest-mass

density ρ in Fig. 7.8. At the end of the simulation (t = 250 ms), the rest-mass density in the

atmosphere outside the stellar surface is about 104–105 g/cm3 for the HLLC solver, which is

five orders of magnitude lower than the TVDLF solver, demonstrating a significant improve-

ment in reducing the artificial surface heating. Note that the structure of the neutron star

remains intact across the refinement boundary as shown by the green solid line in Fig. 7.10

without any noticeable numerical artifact despite the adaptive time step treatment. This

validates our implementation of the FMR scheme.

7.3.3.2 Migration of an unstable neutron star

To further test the nonlinear dynamics of matter and spacetime, we perform one standard test

problem that simulates the migration of an unstable neutron star [81, 116, 127, 137, 193, 354].

We construct a Tolman–Oppenheimer–Volkoff (TOV) neutron star in the unstable branch of

the mass-radius curve with polytropic EOS K = 100, Γ = 2, and central rest-mass density

ρc = 8 × 10−3 (in the unit of c = G = M⊙ = 1). Since the unstable branch has a smaller

absolute value of the binding energy than its stable companion for this EOS, the unstable

neutron star would migrate to the corresponding stable state with the same baryon mass in

the simulation. The computational domain is set to be xmax = zmax = 2215 km in the grid

resolution of N = 128 with 9 FMR levels, which corresponds to the box size L = 8.65 km

with the grid spacing ∆x = 67.6 m in the finest level. We carry out two sets of simulations

for this system under the mirror symmetry, one using the Γ thermal law with Γth = 2, and

another adopting the ”adiabatic” EOS [193] which neglects the thermal part and enforces

zero temperature by discarding the energy equation for E. For both runs, the HLLC Riemann

solver is employed with atmosphere factor fatm = 10−15 and lfix = 4.

The top panel of Fig. 7.9 shows the evolution of the central rest-mass density ρc as a

function of time for the Γ thermal law EOS and adiabatic EOS shown in blue solid and
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Figure 7.9: The top and middle panels show, respectively, the evolution of the central rest-mass density ρc
and the relative difference of the total baryon mass Mb as a function of time with the Γ thermal law EOS
(solid) and adiabatic EOS (dotted). The magenta dashed line on the top panel indicates central rest-mass
density ρs = 1.346× 10−3 of the neutron-star model that lies on the stable branch of the mass-radius curve
with the same baryon mass. The red star markers specify the time extracted for the snapshots shown in
Fig. 7.10. The bottom panel shows the L2-norm of constraint violations for the Γ thermal law EOS model.
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Figure 7.10: Profiles of the rest-mass density ρ of the unstable neutron star in the migration test extracted
at t = 0 s (top left), 758 µs (top right), 1.26 ms (bottom left), and 50.0 ms (bottom right) with the Γ thermal
law EOS employed. The green solid lines indicate the boundaries of the FMR levels.
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dotted lines, respectively. The red markers indicate the time extracted for the profiles of

rest-mass density shown in Fig. 7.10, and the horizontal magenta dashed line denotes the

central rest-mass density ρs = 1.346 × 10−3 of the neutron star model on the stable branch

with the same baryon mass. Here, we first focus on the result from the Γ thermal law model.

At the start, the neutron star with an initial radius of 6.31 km immediately swells and tries to

migrate to the corresponding stable state. The central rest-mass density ρc rapidly declines

and drops below ρs to reach its first minimum at t = 758 µs, with the stellar radius stretching

to almost four times larger. The neutron star compresses and shrinks subsequently until ρc

reaches its maximum at t = 1.26 ms, then expands again and hits the infalling matter,

forming a shock wave that propagates outwards and ejects a small amount of matter with a

high velocity from the stellar surface to the atmosphere. We find that the highest velocity

of the ejecta is 0.98c (Lorentz factor of ∼ 5), and our code can follow the motion of such a

high-velocity component. The matter ejected by this ejection process eventually leaves the

computation domain, which accounts for the sudden rise in the relative difference of total

baryon mass, as shown in the middle panel of Fig. 7.9.

Nonetheless, the oscillations of ρc are gradually damped out in the Γ thermal law EOS since

the kinetic energy is dissipated to thermal energy through shock heating. After t ≈ 50 ms, the

neutron star approximately settles to a new stable state with ρc slightly below ρs. In contrast,

the neutron star under the adiabatic EOS oscillates with a nearly constant amplitude in the

absence of thermal dissipation as the energy converts back and forth between gravitational

binding energy and kinetic energy, which is consistent with the result in [193]. This also

explains the lower relative difference of total baryon mass since less matter is ejected without

shock heating.

We also monitor the L2-norm of the constraint violation of the system as shown in the

bottom panel of Fig. 7.9. The Hamiltonian and momentum constraints are well under control,

with violations damped out and stabilized under the Z4c prescription.

7.3.3.3 Migration of an unstable rotating neutron star

In this test, we simulate the rotating neutron stars that are very close to the turning point of

the mass versus energy density (MADM-ec) curve to examine the performance of SACRA-2D. We

consider uniformly rotating neutron stars in both the stable and unstable branches indicated

as the red crosses in Fig. 7.11 with the same baryon mass Mb = 3.050M⊙ and angular

momentum J = 1.800M2
⊙ constructed by RNS using the MPA1 EOS. The parameters of the

stable and unstable models are listed in Table 7.1. Note that the ADM mass at the turning

point MADM = 2.5113M⊙ is only ≈ 0.04% higher than the models we selected, which poses

a challenge for numerical codes in resolving the model accurately.

Since the unstable model has a higher ADM mass and, hence, a smaller absolute value of

binding energy than the stable one, the unstable neutron star can migrate to the stable con-



196 7.3. Numerical test

2.0 2.1 2.2 2.3 2.4
Central energy density ec [cgs] ×1015

2.5000

2.5025

2.5050

2.5075

2.5100

A
D
M

M
as
s
M

A
D
M
(M

�
)

Figure 7.11: The mass versus energy-density (MADM-ec) curve of the uniformly rotating neutron star of
J = 1.800M2

⊙ with the MPA1 EOS. The red crosses indicate the models selected for the simulations. The
left marker lies on the stable branch, while the right is on the unstable branch. The turning point is located
at ec = 2.0695× 1015 [cgs] with MADM = 2.5113M⊙.

Table 7.1: The parameters of the stable and unstable models used in the simulations.
Models stable unstable

Central energy density ec × 1015 [cgs] 1.9691 2.1798
Central rest-mass density ρc × 1015 [cgs] 1.4219 1.5151

ADM mass MADM [M⊙] 2.510220 2.510248
Baryon mass Mb [M⊙] 3.0500 3.0500

Angular frequency Ω× 103 [rad/s] 4.6795 4.7925
Equatorial radius req [km] 7.425 7.215

Axial ratio rp/req 0.940 0.937
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Figure 7.12: The panels show the evolution of central rest-mass density ρc (top), the relative difference
of total baryon mass Mb and angular momentum J (middle), and the L2-norm of Hamiltonian constraint
violation ||H||2 (bottom) as functions of time. The green, blue, and red solid curves illustrate the results
from the unstable model, unstable plus initial perturbation model, and stable model, respectively. The blue
vertical dashed line indicates the black hole formation time tAH = 0.931 ms for the unstable plus initial
perturbation model.



198 7.3. Numerical test

2.5075

2.5100

2.5125
M

B
H
(M

�
)

10−1 100 101

t (ms)

1.795

1.800

J
B
H
(M

2 �
)

Figure 7.13: The panels show the mass MBH (top) and angular momentum JBH (bottom) of the remnant
black hole after collapse for unstable plus initial perturbation model. The blue vertical dashed line indicates
the black hole formation time tAH = 0.931 ms. The magenta horizontal dotted lines denote the ADM mass
MADM = 2.510248M⊙ and the angular momentum J = 1.800M2

⊙ of the rotating neutron star obtained from
RNS.

figuration similar to the non-rotating case in Section 7.3.3.2, given that the initial numerical

perturbation is tiny. On the other hand, to examine the performance of SACRA-2D for the

black hole formation, we consider an additional run by introducing a small ingoing radial

velocity inside the unstable neutron star in forms

ux = −5× 10−3x/Req, uz = −5× 10−3z/Req, (7.73)

as an initial perturbation to initiate the collapse, where Req is the star’s equatorial coordinate

radius. The computational domain is set to be xmax = zmax = 4431 km in the grid resolution

of N = 256 with 10 FMR levels, which corresponds to the box size L = 8.65 km with the

grid spacing ∆x = 33.8 m in the finest level. We carry out three sets of simulations in total

under the mirror symmetry, including one for stable neutron star, one for unstable neutron

star without initial perturbation, and one for unstable neutron star with initial perturbation.

We employ the Γ thermal law EOS with Γth = 5/3 and the HLLC Riemann solver for all

runs with atmosphere factor fatm = 10−20 and lfix = 4. We perform the simulations up to

70 ms, about ∼ 50 cycles of rotation, for models that do not undergo gravitational collapse.

If the neutron star collapses, we end the run at 30 ms after the black hole is formed.

Fig. 7.12, from top to bottom, shows the evolution of the central rest-mass density ρc, the
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Figure 7.14: The profiles of the rest-mass density ρ of the collapse of an unstable rotating neutron star
extracted at t = 0 s (top left), 0.90 ms (top right), 1.08 ms (bottom left), and 36.1 ms (bottom right). The
green solid lines indicate the boundaries of the FMR levels, and the magenta dashed curves in the bottom
panels denote the apparent horizon surface of the black hole.
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relative differences of total baryon mass Mb and angular momentum J , and the L2-norm of

the Hamiltonian constraint violation ||H||2 as functions of time. The rotating neutron star

on the stable branch remains stable throughout the simulation with oscillation amplitude

∼ 0.5% of the central rest-mass density ρc, which agrees with the turning point theorem

[198]. In contrast, the central rest-mass density ρc of the unstable model (green solid lines)

quickly drops and oscillates around the value of its stable counterpart, eventually damped

and settling down to the stable state. Despite the central rest-mass density of the unstable

neutron star being only 6.6% larger than the stable model, the code can still resolve the

migration of the unstable model remarkably well. Since the oscillation is comparably small,

no matter is ejected essentially during the migration. As a result, the baryon mass Mb and

angular momentum J are well conserved with a relative difference ≲ 10−12.

Nonetheless, if an initial perturbation is introduced in the unstable model (blue lines

in Fig. 7.12), the rotating neutron star immediately undergoes gravitational collapse due

to the perturbation with an increasing central rest-mass density ρc. After a short time,

the neutron star compactness becomes so high that ultimately, a black hole is formed at

tAH = 0.931 ms and swallows the whole star within the black hole, leaving basically nothing

outside the apparent horizon at the end, which agrees with the finding in [427] (see the top

right and bottom left panels in Fig. 7.14 for the profiles of the rest-mass density ρ before

and after the formation of the black hole). The resultant black hole essentially inherits the

initial neutron star’s ADM mass and angular momentum with negligible loss. The mass MBH

and angular momentum JBH of the black hole extracted from the apparent horizon indeed

show excellent agreement with derivation ≲ 0.03% as shown in Fig. 7.13. This demonstrates

the robustness and the accuracy of both the metric solver and the apparent horizon finder.

During the collapsing phase, the baryon mass Mb and angular momentum J are conserved

down to machine precision until the black hole is formed and the fluid excision is activated.

The Hamiltonian constraint violation ||H||2 also experiences a sudden jump at tAH due to

the appearance of irregularity at the origin when the puncture is formed and then quickly

damped out and stabilized afterward.

In addition, we examine the gravitational wave signal from the collapse scenario of the

perturbed unstable model. Since the collapse happens promptly after the start of the sim-

ulation, the initial junk radiation will contaminate the subsequent gravitational wave signal

that immediately follows under the Z4c constraint propagating description. Therefore, for

this particular result shown in Fig. 7.15, we perform the simulation with the BSSN formu-

lation to obtain a cleaner numerical waveform, and we confirm that the overall dynamics of

the BSSN run are the same as in the Z4c run shown above. The (l,m) = (2, 0) mode of

DΨ4 black hole ringdown gravitational waves after the collapse is extracted in various radii

as a function of tret − tAH shown in Fig. 7.15, where tret is the retarded time and tAH is the

black hole formation time. The waveforms agree with each other regardless the extraction
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Figure 7.15: (l,m) = (2, 0) mode of DMADMΨ4 gravitational waves extracted at rex = 591 km (blue), 517 km
(red), and 443 km (green) of the gravitational collapse of the unstable rotating neutron star as a function of
retarded time tret.

Table 7.2: The parameters of the SMS and the remnant black hole in the simulations. Γ is the adiabatic
index, M is the gravitational mass of the system, β is the ratio of rotational kinetic energy to gravitational
potential energy, J is the angular momentum Req is the equatorial circumferential radius, and MBH and χ
are the mass and dimensionless spin of the remnant black hole, respectively.

Γ M(M⊙) β J/M2 Req/M MBH/M χ
1.3347 1.54× 105 0.00895 0.826 452.6 0.952 0.701

radii rex = 591 km, 517 km, and 443 km. We also compare our numerical waveform with the

analytical black hole quasinormal modes frequency MBHω = 0.3767−0.0884i [86] considering

the final black hole mass MBH = 2.51M⊙ and the dimensionless spin parameter χ = 0.2857.

The fitted analytical ringdown waveform shown as the black dashed line in Fig. 7.15 matches

our result. We found the total radiated energy to be ∼ 1.8× 10−9MADM.

7.3.3.4 Gravitational collapse of a supermassive star

For the final test, we simulate the gravitational collapse of a rotating supermassive star

(SMS) to a black hole. In this problem, the SMS with a radius of ≈ 450M collapses to a

black hole and a disk, and hence, we have to follow a much larger dynamical range than that

of neutron-star collapses. For this problem, our FMR algorithm becomes, in particular, the

robust tool.

We consider a uniformly rotating supermassive star constructed by the polytropic EOS

P = KρΓ with the polytropic index Γ = 1.3347, which approximates the SMS core in helium-

burning phase close to the marginally stable state [457] and is approximately the same as the
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Figure 7.16: The evolution of the central rest-mass density ρc (top), relative differences in baryon mass Mb

and angular momentum J (middle), and the L2-norm of the Hamiltonian constraint violation ||H||2 as a
function of time t in M for the gravitational collapse of the SMS. The blue vertical dashed line indicates the
black hole formation time tAH = 3373M .
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Figure 7.17: The snapshot of the rest-mass density ρ extracted at different time t = 0.0M (top left), t =
3361M (top right), t = 3374M (bottom left), and t = 10216M (bottom right) for the gravitational collapse
of the SMS. The green solid lines indicate the boundaries of the FMR levels.
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model He4 of [208]. The parameters of the model employed are listed in Table 7.2.

The computational domain is set to be xmax = zmax = 1101M with N = 128 and 10

refinement levels in total, which corresponds to the size of L = 2.15M and the grid resolution

∆x = ∆z = 0.0168M in the finest box. The Γ law EOS P = ρ(Γ − 1)ϵ is employed for

the simulation with the HLLC solve and the atmospheric factor fatm = 10−20. To initiate

the collapse, we reduce the pressure by 20% uniformly within the star. With our FMR

setup, the computational cost for this simulation is relatively cheap, with the simulation time

t ≈ 10800M costing about 600 CPUhrs in total under the parallelization setting [MMPI ×
MMPI ×Nthr = [4× 4× 5].

Once the pressure is depleted, the matter starts to fall in, resulting in an exponential

growth in the central rest-mass density ρc. As in [208], about 95% of the SMS collapses

into a black hole, and the remaining matter forms a torus around the black hole and ejecta,

which is driven by a shock formed around the surface of the torus as shown in the bottom

row of the snapshots in Fig. 7.17. The final dimensionless spin of the black hole is ≈ 0.70,

which is appreciably smaller than the dimensionless spin of the system (see Table 7.2 and

also Fig. 7.18 for the evolution of remnant black hole). The ejecta mass is ∼ 1% of the total

mass, and this result agrees with that of [208].

Figure 7.19 plots gravitational waveform (the (l,m) = (2, 0) mode of Ψ4) during the

formation of the black hole. As found in [451], the waveform is composed of a precursor,

which is emitted before the formation of the black hole, a burst wave, which is emitted

near the formation time of the black hole, and a ring down. The total radiated energy is

≈ 1.08× 10−6M which agrees with the result in [451].

7.3.4 Strong scaling test

This section presents a test to assess the strong scaling of SACRA-2D. The simulations were

performed on the cluster Sakura at the Max Planck Computing and Data Facility, which

comprises Intel(R) Xeon(R) Gold 6248 CPU with a clock rate of 2.50GHz. We performed

a series of simulations in different parallelization settings using the same configuration in

Section 7.3.3.1 except N = 960 and 9 FMR levels were adopted here, which corresponds to

35 cycles of RK4 integration in each time iteration, and measured the average computational

time required per iteration. A wide range of MPI setting with the number of MPI ranks in

each direction MMPI ∈ {2, 4, 8, 16, 24, 32} (see Section 7.2.5 for definition of MMPI and Nthr),

covering 4 to 5120 cores in total. Fig. 7.20 shows the average computational time per iteration

in seconds as a function of the number of cores used. The solid line with the same colors

denotes models with the same MPI setting but in different numbers of OpenMP threads Nthr,

and the star markers represent the models with Nthr = 1. The black dashed line indicates

the ideal scaling considering 2 × 2 MPI setting with a single OpenMP thread Nthr = 1 (i.e.

4 cores in total). The result shows an efficiency of about 70% for a small number of Nthr,
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and the performance worsens for an excessive number of OpenMP threads. This suggests

the optimal setting to be N/MMPI ≳ 30 for the MPI setting and Nthr ≲ N/MMPI/10 for the

OpenMP threads.

7.4 Summary

We present SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic hydrodynamics

code in dynamical spacetime under axial symmetry with the cartoon method. The code em-

ploys a cell-centered grid with FMR and an adaptive time-step scheme. We implement the

finite volume method with the state-of-the-art HLLC approximate Riemann solver for hy-

drodynamics and the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c constraint

transport for spacetime evolution.

We examined SACRA-2D with several benchmark tests, including problems in the vac-

uum spacetime or the Cowling approximation and simulations of GRHD under dynamics

spacetime. We showed a sixth-order convergence of the metric solver and the gravitational

waveform in the trumpet black hole and head-on collision tests, respectively. We also demon-

strated the power of the HLLC Riemann solver, which effectively improves spatial resolution

in the modified Bondi flow test and reduces the artificial shock heating at the stellar surface

in the simulation of a stable rotating neutron star. In particular, we show the outstanding

robustness and efficiency of SACRA-2D in problems like examining the stability of rotating

neutron stars adjoining the turning point and resolving the supermassive star collapse. In

addition, we performed a strong scaling test and showed an efficiency of about 70%.

In the future, we plan to implement magnetohydrodynamics with the HLLD Riemann

solver and the constrained transport scheme [281], as well as implementing radiation hy-

drodynamics for neutrino physics. We will also use SACRA-2D to explore systems in the

alternative theories of gravity (see Chapter 8), and astrophysical applications such as black

hole-disk collisions [496].
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Chapter 8
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stars as extreme rotators in massive
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Breakdown of Contribution

This chapter is based on the preprint submitted to Phys. Rev. D: “Axisymmetric stability

of neutron stars as extreme rotators in massive scalar-tensor theory” in arXiv:2502.03973

[307] by A. T.-L. Lam, K. V. Staykov, H.-J. Kuan, D. D. Doneva and S. S. Yazadjiev. I

extended my numerical code SACRA-2D to massive scalar-tensor theory. The initial data of the

differential rotating neutron star were provided by K. V. Staykov using the code developed

K. V. Staykov and D. D. Doneva based on the open-source RNS code. All the numerical

simulation and data analysis were carried out by me. D. D. Doneva and S. S. Yazadjiev
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Overview

Differentially rotating scalarized neutron stars, mimickers of binary merger remnants, can

possess an enormous angular momentum larger than what could possibly be sustained in a

neutron star in general relativity by about one order of magnitude. A natural question to ask
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is whether these solutions are stable and thus can realize in a binary coalescence. With this

motivation in mind, we examine the criterion of dynamical stability against axisymmetric

perturbations for these ultra-rotators by numerically tracking their nonlinear evolution in

an axisymmetric setup. We demonstrate that the turning-point criterion still serves as a

sufficient condition for asymmetric (in)stability. Our findings open an interesting question

of whether the merger of two scalarized neutron stars can produce (possibly short-lived)

ultra-highly rotating merger remnants.

8.1 Introduction

In the next (5th; expected to start in 2027) observing of the international gravitational wave

(GW) network, more binary neutron star (BNS) mergers are expected to be witnessed. The

improving sensitivity of the observatory, especially the high-frequency band ≳ 103 Hz, is

thought to be promising to further resolve the waveforms produced in the post-merger phases.

Although certain important information can already be acquired from the pre-merger wave-

forms such as the bulk properties of the source and the adiabatic tidal response of the

neutron star (NS) members [9, 14], the post-merger segment of the waveforms delivers in-

formation supplementary to the aforementioned ones [391, 428, 472, 514]. In particular,

the newly formed hypermassive NS (HMNS), which is supported against radial collapse

by differential rotation, thermal pressure, and/or magnetic force, carries rich information.

For example, the oscillations frequencies and the lifetime of HMNS are not only strongly

tied to the internal structure of the star (i.e., to the nuclear equation of state (EOS); e.g.,

[63, 67, 242, 243, 391, 477]), but closely related to the nature of gravity (e.g., see Chapters 4

and 5).

Scalar-tensor theories of gravity are amongst the most natural and well-motivated alter-

natives to general relativity (GR). Considering the Damour-Esposito-Farese type of scalar-

tensor theory (DEF theory hereafter), current pulsar timing observations severely constrain

the massless scalar field sector of the theory [538] while only weak bounds can be imposed

in the massive case [28], namely a lower bound of mϕ ≳ 10−15 eV [385, 527] on the scalar

mass. The constraint on mϕ can be pushed further by the null evidence of scalarization in

the detected waveform (≲ 500 Hz) of GW170817 [15, 16]. In particular, the progenitors

of GW170817 are unlikely to be scalarized if the scalar field is massless [331, 537], while a

scalarized progenitor can still be reconciled with the observed waveform if the scalar field

is sufficiently massive with > 10−12 eV [294, 520] (see also Chapter 3). On top of binary

systems dynamics, the x-ray pulse profiles emitted by hot spots at NS surfaces infer the mass

and radius of NSs [510], which in turn can be used as an independent probe to the EOS and

gravitational nature [248, 459, 460, 467, 497].

Within the valid parameter space, Refs. [164, 165, 166, 474] demonstrated in a series of



Chapter 8. Axisymmetric stability of neutron stars in massive STT 211

works the existence of stationary, axisymmetric scalarized NSs with an angular momentum

exceeding the maximum in GR for a given EOS and rotational law. Such super-rotating NSs

have very similar properties to the HMNSs produced after mergers of BNS, which inherit

most of the angular momentum of the progenitor binary, thus spinning differentially at a large

rate. Although the maximal angular momentum of HMNSs produced by the merger of non-

spinning, quasi-circular binaries is roughly bounded as J ≲ 8 M2
⊙ in GR (e.g, [485, 490, 502]),

larger values may be achievable in mergers of dynamically-formed binaries in globular clusters

or mergers of NSs having high spins.

The determination of stability of these super-rotating scalarized NSs can be expected to

limit the class of HMNSs in the post-merger phase. The turning-point criterion has been

shown to be powerful in detecting secular instabilities and in most cases, its results coincide

with the ones from perturbation analysis, i.e., the onset of instability is typically associated

with an extremum of a properly chosen function of the stellar equilibrium properties [464,

465]. The onset location of secular instability has also been studied by numerical simulations

[41, 134, 135, 136, 193, 443], where the validity of the turning-point criterion for uniformly

rotating NSs is confirmed.

Here, we briefly recap the turning-point criterion. For axisymmetric spinning NSs and

assuming a barotropic EOS, the gravitational mass MG of an NS can be parameterized by

the central energy density ϵc, i.e., MG = MG(ϵc). In addition, the variations in MG, angular

momentum J , and baryon number N are related via

dMG = ΩdJ + µdN, (8.1)

where Ω is the angular velocity of the star, and µ is the chemical potential. The turning-point

theorem states that the point where dJ/dϵc = dN/dϵc = 0 separates the stable segment from

the secularly unstable one, and the segment satisfying

dΩ

dϵc

dJ

dϵc
+

dµ

dϵc

dN

dϵc
> 0 (8.2)

is on the unstable side [198]. From this, we see that the onset of secular instability is marked

by the turn-point of MG along a one-parameter curve with a fixed J or total baryon mass

M0. In particular, for a sequence of equilibria with a fixed J , the tuning-point,

∂MG(ϵc)

∂ϵc

����
J

= 0 (8.3)

corresponds to the configuration having the maximal N and thus M0, while the turning-point
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for a constant M0 sequence, i.e.,

∂MG(ϵc)

∂ϵc

����
M0

= 0, (8.4)

reflects the minimum of J [134]. A remark to be made is that when deriving the theorem for

uniformly rotating equilibria, Friedman et al. [198] assumed that, due to viscosity, uniformly

rotating equilibria will never become differentially rotating as the final state, i.e., the rota-

tional law can be maintained after the perturbation is damped by viscosity. In other words,

this criterion is established by comparing neighboring, rigidly rotating configurations along

the one-parameter curve.

On the other hand, the applicability of this theorem to NSs obeying a differential rotation

law is not established analytically since the rotational law may be altered by any perturba-

tion. Thus, the equilibria do not form a one-parameter family but rather a family of infinite

dimensions (to which a turning-point theorem is still possible to hold in some form [465]).

While not shown analytically, numerical studies suggest that the turning-point criterion ap-

proximately applies to differential rotating NSs [262, 346, 511] in GR. The goal here is to

examine the validity of the criterion for high-J stars in scalar-tensor theories, which have no

counterparts in GR, through axisymmetric numerical relativity simulations. In particular,

we will numerically evolve the stellar profiles to determine if the configuration is stable to a

random numerical perturbation, or if some instabilities will operate so that the initial state

will migrate to a final state which may be another neutron star configuration or a black hole.

This Chapter is organised as follows: Section 8.2 introduces the basic equations for con-

structing differentially rotating, scalarized NSs and the scheme for axisymmetric evolution.

We provide the numerical results in Section 8.3 and discuss them in Section 8.4.

8.2 Basic Equations

The formulation for constructing initial data in the considered theory will be described in

Section 8.2.1. The detailed setup of numerical evolution will then follow in Section 8.2.2.

8.2.1 Profiles from RNS

A modified RNS code [475] for generating initial data of equilibrium states of scalarized NSs

in the DEF theory has been developed in a series of works [165, 166, 474] from simpler

to more sophisticated rotation laws. The code uses a modified [134] Komatsu–Eriguchi–

Hachisu (KEH) [283] scheme for constructing rotating equilibrium neutron star models. For

mathematical and numerical convenience, the calculation of equilibrium models is performed

in the so-called Einstein frame, which is later transformed into the physical Jordan frame
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used by the evolution code. The two frames are related through a conformal transformation

of the metric, and a detailed discussion can be found in [165].

The modified RNS code adopts quasi-isotropic coordinate, in which the metric is expressed

in the spherical coordinate (r, θ,ϕ) as [183, 283, 284]

ds2 = −eη+σdt2 + eη−σr2 sin2 θ(dϕ2 −ϖdt)2

+ e2τ (dr2 + r2dθ2) (8.5)

=− (α2 − γϕϕϖ
2)dt2 − 2ϖγϕϕdϕdt+ γijdx

idxj,

where α and γij is the lapse function and spatial metric, respectively. The shift vector βi is

expressed as (see, e.g., Sec. 4 of [364])

βi = −ϖ(∂ϕ)
i. (8.6)

Here, ϖ is the frame-dragging factor, and the spatial metric γij is

γij = ψ4



e−q 0 0

0 e−qr2 0

0 0 e2qr2 sin2 θ




= ψ4γ̃ij

(8.7)

for

ψ = e(4τ+η−σ)/12 and q =
2

3
(2τ − η + σ) , (8.8)

where ψ is the conformal factor and γ̃ij is the conformal spatial metric with its determinant

det(γ̃ij) = det(fij) same as the flat background metric fij. In the above expressions, τ , ϖ, σ,

and η are all functions of r and θ only since we consider axisymmetric NSs. For non-spinning

NSs, we have eη−σ = e2τ , and thus the metric γij = e2τfij is conformally flat, while the

metric will be distorted from the conformal flatness due to the dragging effect when the star

is rotating. The determinant of γij in the Cartesian coordinates is γ := det (γij) = e4τ+η−σ,

which again reduces to γ = e6τ for non-rotating configurations. For the considered gauge

and coordinate, the extrinsic curvature tensor, defined as

2αKij = Diβj +Djβi, (8.9)
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has the form (see, e.g., Eqs. (2.43) and (2.44) of [220])

Kij =
−eηr2 sin2 θ

2α



0 0 ∂

∂r
ϖ

· 0 ∂
∂θ
ϖ

· · 0


 , (8.10)

where “·”s are the ellipsis of the symmetric part and Di is the covariant derivative associated

with the spatial metric γij.

For the matter profile, the 4-velocity of matter is expressed as

ua =
wp

α2 − γϕϕϖ2
(1, 0, 0,Ω), (8.11)

with w := (1− v2)−1/2 being the Lorentz factor and v the proper velocity, given by

v = (Ω−ϖ)r sin θ. (8.12)

The spin of the star,

Ω(r, θ) =
uϕ

ut
, (8.13)

is specified by a certain rotation law as well as the stellar structure. We note that Ω is the

same in both the Einstein and Jordan frames, thus not further complicating the transition

of the quantities in the two codes.

In the present article, we adopt the 4-parameter differential rotation law introduced by

Uryu et al. [503] (see also [251, 252]),

Ω = Ωc

1 +
�

F
B2Ωc

�p

1 +
�

F
A2Ωc

�p+q , (8.14)

where F = utuϕ is the redshifted angular momentum per unit rest mass. This rotation

law allows for the maximum of the angular velocity to be away from the center, which is

a common characteristic seen in remnants in merger simulations, e.g., [61, 148, 266]. Here,

two constants have been fixed to p = 1 and q = 3 [251, 252, 539]. This choice allows one

to derive an analytical expression for the first integral of the hydrostationary equilibrium,

which is required for the RNS code. The other two parameters, A and B, are not given

explicitly. Instead, the ratios λ1 = Ωmax/Ωc and λ2 = Ωe/Ωc, where Ωe is the angular

velocity at the equator, Ωc is the angular velocity at the center and Ωmax is the maximum of

the angular velocity, are given. From them, one can obtain and solve an algebraic system for

A and B. Those ratios control the shape of the neutron star. In the present article we use

(λ1,λ2) = (1.5, 0.5) which correspond to the quasi-toroidal models [474]. When the rotation
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Table 8.1: Parameters of different sequences considered in this Chapter, where the scalar mass mϕ and
coupling constant B (second column), the angular momentum fixed for each sequence (third column), and
the central energy density of the NS at the onset of asymmetric instability (last column) are collated.

Sequence name (mϕ, B) J (M2
⊙) ϵthre [×1015 cgs]

m0 B12 J8 (0, 12) 8 1.16

m0 B12 J12 (0, 12) 12 1.12

m0 B12 J20 (0, 12) 20 1.056

m0 B12 J40 (0, 12) 40 NA

m0.01 B12 J8 (0.01, 12) 8 1.15

m0.01 B12 J12 (0.01, 12) 12 1.08

m0.01 B12 J20 (0.01, 12) 20 NA

m0.01 B12 J30 (0.01, 12) 30 NA

law F is given, the angular momentum of the star is determined via

J =

Z

r<R⋆

αρhF
√
γd3x, (8.15)

for a given rest-mass density ρ and specific enthalpy h distributions inside the star.

8.2.2 Evolution equations

The modified evolution equations in DEF theory under Baumgarte-Shapiro-Shibata-Nakamura

(BSSN) formulation [55, 305, 433] (see also Chapter 4) in the Cartesian coordinates are writ-

ten in Eq. (4.2). We adopted the moving puncture gauge [26, 42, 119] for the lapse function

and shift vector given by Eq. (1.24).

The cartoon method [24] has proven to be a robust scheme to evolve axisymmetric space-

time [421, 426, 427, 434]. We extended the 2D cartoon code SACRA-2D developed in Chapter 7

to include the evolution equations of DEF theory with Z4c constraint propagation [81, 239].

SACRA-2D employs a fixed mesh refinement with 2:1 refinement and imposes equatorial mirror

symmetry on the z = 0 plane. For the simulations included in this Chapter, the differen-

tially rotating NS is covered by 9 refinement levels with at least 150 grid points covering the

equatorial radius of the NS. We adopted 6th order finite difference for the field equations and

HLLC Riemann solver [281, 336, 513] for hydrodynamics.

8.3 Numerical results

We construct axis-symmetric, spinning NSs obeying the rotational law (8.14) for several fixed

values of J that will be used as initial data for the nonlinear evolution code. The representa-

tive sequences are summarized in Table 8.1, where we consider the massless DEF theory and
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Figure 8.1: Dynamical stability of sequences (a) m0 B12 J8 (b) m0 B12 J12 (c) m0 B12 J20 (d) m0 B12 J40.
The blue circles and red crosses indicate the regions where the star is dynamically stable and unstable
respectively.
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a massive scalar field theory with mϕ = 0.01 (≃ 1.33 × 10−12 eV). We fix B = 12 and focus

on MPA1 EOS [347] as a representative example. We perform axis-symmetric relativistic

simulations for selected models from these sequences, especially close to the maximum mass

point, where possible. The goal is to examine the stability and study the outcome of unstable

models. We start with the massless theory (Section 8.3.1) followed by a study of the massive

scalar field case (Section 8.3.2).

8.3.1 Massless scalar field case

For the massless cases, a turning point can be found for three of the considered angular

momenta in Table 8.1, while the sequence with J = 40 has no turning point, i.e. no maximum

of the mass was reached. A general behavior of the solutions generated by the RNS code is

that with the increase of the angular momentum, the solution branches get shorter, and they

get terminated before reaching the turning point. The reason is numerical – the RNS code can

not converge to a unique solution. Different numerical schemes may be useful to overcome

this problem, such as the spectral method used in [36, 218], that is out of the scope of the

present Chapter.

Along each sequence, we study the (asymmetric) stability of 10–20 models, most of which

condense near the maximum mass point. The results are summarized in Fig. 8.1, where we see

that for cases a), b) and c) the marginally stable model is slightly left to the maximum of the

mass, implying that the turning-point criterion approximately predicts the onset of instability

for these sequences. For case d), where no turning point was reached in the equilibrium

sequence, all neutron star models are stable. For the stable models, the perturbations in the

maximum density and central scalar field damp in a dynamical timescale, then settle back

to the initial values. Taking the model m0 B12 J20 as an example, which is very close to the

turning-point along the sequence of J = 20, the evolution of the maximum rest-mass density

and the central value of the scalar field are shown Fig. 8.2 (red), where we see that the initial

noise is dissipated after < 5 ms. On the other hand, the unstable models will collapse into a

black hole in a dynamical timescale. For one such example m0 B12 J12, the evolution of the

maximal rest-mass density shows a runaway growth in less than 3 ms (red in Fig. 8.3). After

the formation of a black hole, the scalar field dissipates exponentially to < 10−4 since black

holes in this theory obey the no-hair theorem and thus cannot possess a stationary scalar

field [230, 471].

In addition, the rotational law is well-maintained over several dynamical timescales in

our simulations for stable models. For one stable example, we plot the profiles of rest-mass

density, scalar field, and the specific angular momentum,

j := huϕ, (8.16)
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at the initial moment and at 15 ms in Fig. 8.4. Apart from a tiny amount of matter that

escapes from the surface, the structure of rest-mass density and scalar field remain unaltered

to a large extent, i.e., the model is rather stable to axisymmetric perturbations, and the

numerical accuracy is robust. In particular, the profile of specific angular momentum within

the HMNS is well preserved after 15 ms, showing that the rotational profile is also stable

under such perturbations. We also note that the onset of instability is not sensitive to the

employed resolutions.

8.3.2 Massive case

We also examine the criterion along fixed-J sequences for a massive scalar field with mϕ =

0.01(≃ 1.33×10−12 eV). This value is chosen in order to be in agreement with binary neutron

star merger observations [294] (see also Chapter 3). It is a rather large value, and it effectively

confines the scalar field in a radius several times larger with respect to the neutron star size.

The chosen models are presented in Fig. 8.5. No turning point is found for the sequences

with J = 20 and 30 due to the same reason explained above, and the models are stable

against axisymmetric perturbations. For the sequences with J = 8 and 12, a turning point

exists and we find that the onset of instability is in the close vicinity of the turning point, i.e.,

the turning point criterion approximately holds. In the massive theory, we also demonstrate

that unstable models will collapse into a black hole within a dynamical timescale. As a

representative example, we plot the evolution of the maximum rest-mass density as well as

the scalar field extracted at a certain distance inside the star for m0.01 B12 J12 (red curves

in Figs. 8.1 and 8.5). We again observe a runaway growth in ρmax and a strong suppression

in the scalar profile after the black hole forms. Following the collapse, the scalar field decays

to a magnitude of ∼ 10−3 over the dynamical timescale. The decay rate is much slower

than the massless case at late times, as shown in the bottom panel of Fig. 8.3, and can be

attributed to the dispersion relation of scalar waves [126, 216, 292, 398, 473]. In particular,

the propagation group speed of waves at the frequency ωϕ is given as Eq. (3.27)

vg = (1 +m2
ϕλ̄

2)−1/2, (8.17)

where λ̄ denotes the wavelength. It can thus be seen that the scalar waves with wavelengths

λ̄ ≳ 1/mϕ (i.e., ωϕ < mϕ) will dissipate over a prolonged damping timescale.

To further assess the turning point criteria, we extract the spectrum of axisymmetric

oscillations in the frequency band ≤ 2 kHz for the sequence m0.01 B12 J8 before the turning

point as shown in Fig. 8.6. The modes are extracted by performing Fourier analysis on

the central rest-mass density ρc and the central scalar field φc marked as circles and crosses,

respectively, in Fig. 8.6. We observe that two classes of modes emerge in the spectrum, which

is speculated to be the quasi-radial m = 0 fundamental mode (blue) and ϕ-mode (red). We
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found that the frequency of ϕ-mode decreases as the central internal energy ϵc approaches the

turning point and eventually reaches a value very close to the Yukawa cutoff frequency of the

scalar field fc := ωϕ/(2π) in the stable model closest to the turning point. This suggests that

the dynamical instability near the turning point arises from the ϕ-mode reaching the cutoff

frequency, whereas, in GR, it is triggered by the fundamental mode hitting zero frequency

(e.g., [282]). This is similar to the mode analysis in the static case [96, 333, 334].

8.4 Discussion

By performing fully relativistic 2D simulations, we examine the well-known turning-point cri-

terion dictating the condition for one kind of instability among many others. This criterion

has been rigorously proven for rigidly rotating configurations by [198] in pure GR, while the

extension of it to more general configurations seems only plausible by the use of numerical sim-

ulations. In this work, we evolve scalarized neutron stars along constant-angular-momentum

sequences to pin down the onset of an axis-symmetric instability for various of the theory
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Figure 8.6: Spectrum of the axisymmetric oscillations in the frequency band ≤ 2 kHz for the sequence
m0.01 B12 J8 (cf. Fig. 8.5 for its MG-ϵc relation). Two classes of modes are observed, namely, the quasi-
radial m = 0 fundamental (blue) and ϕ- (red) modes. The modes identified by the Fourier spectrum of
oscillating central rest-mass density are marked as circles, while those identified from oscillating central
scalar field are denoted as crosses. Agreement between the analysis of either quantity is observed. The
Yukawa cutoff fc := ωϕ/(2π) is presented as the dotted horizontal line.

parameters as well as J (Table 8.1). Our results suggest that the criterion for rigidly rotating

bodies in GR [i.e., Eq. (8.3)] is largely valid also for differentially rotating stars in the DEF

theory, and the observed onset of instability agrees within the numerical error at the turning

point along the constant–J sequences (Figs. 8.1 and 8.5). For a representative stable model

with J = 20, we see that the density and scalar profiles as well as the rotational law are

perfectly preserved when we terminate the simulation at ≳ 15 ms (Fig. 8.4). A word of

caution is appropriate here. Other instabilities, such as one-arm and bar-mode instabilities

[364], can be activated in reality as 3D simulations suggest [178, 436]. Here, the results are

limited to axisymmetric (in)stability that is cared of in the turning-point criterion.
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Chapter 9

Conclusions and Future work

This thesis discussed some innovative applications of numerical relativity on various astro-

physical systems. In Part I, by making use of the new method in numerical relativity that

eliminates the leading numerical error from the supermassive black hole, we are able to

conduct self-consistently numerical studies on tidal disruption events of a white dwarf by

a non-spinning supermassive black hole to study the disruption criteria. Our results show

that the tidal disruption takes place for β ≳ 0.5, and an appreciable oscillation of the white

dwarfs is induced by the black-hole tidal effect for β ≳ 0.4 for orbits close to the black hole

in the Γ = 5/3 polytropic equation of state, which is consistent with the previous analytical

studies. In the next step, we plan to extend the study for spinning black holes. Currently, a

popular model for explaining the UV/optical emission of TDE is the stream-stream collision

of tidal debris caused by relativistic apsidal precession. If a white dwarf or star is tidally

disrupted close to a spinning black hole, the spin-induced precession could avoid stream col-

lisions, causing a significant delay for ∼ 10 winding orbitals before stream self-interaction,

resulting in a “dark period”. However, most studies exploring the spin effect rely on approx-

imation schemes with Post-Newtonian prescriptions. Therefore, it is essential to perform a

general relativistic hydrodynamics simulation of a white dwarf tidally disrupted by a spinning

black hole in an inclined plane in a self-consistent approach to deepen our understanding of

the black hole spin effect on the dynamics of tidal disruption and subsequent mass accre-

tion. A more challenging issue is to follow the long-term hydrodynamics evolution of the

tidally disrupted debris to study the subsequent disk formation, which could be a source of

electromagnetic counterpart.

In Part II of the thesis, we conducted a series of numerical studies aiming to quantify the

non-linear feature of massive DEF theory in binary neutron star mergers and explore distinc-

tive signatures in GW signals, paying particular attention to scalar mass in ∼ 10−11 eV with

corresponding Compton wavelength ∼ 20 km, which could have scalar interaction imprinted
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in the late inspiral phase. Starting from constructing initial data for quasi-equilibrium con-

figurations of binary neutron stars that are self-consistent with DEF theory in Chapter 3, we

compared orbital energy obtained from the numerical data with the event GW170817 and

suggested a constraint on scalar mass ≳ 10−11 eV if both neutron stars are scalarized in the

inspiral phase. To further understand the scalar effect on the dynamics of the coalescence and

the postmerger remnant, we extended the numerical relativity code SACRA-MPI to the mas-

sive DEF theory and performed a set of numerical simulations to study comprehensively the

dependence on scalar mass and coupling strength in Chapter 4. We found that the modified

effect in DEF theory can significantly alter the final fate of the merger remnant and provide

various distinctive features that appear in a wide range of binary parameters. The presence

of a scalar field could also provide additional support from gravitational collapse. It raises

the threshold mass for prompt collapse and prolongs the lifetime of short-lived hypermassive,

which can modify the final disk mass around the black hole and subsequent post-merger

ejecta. When a hypermassive neutron star is formed after the merger, the scalar field can be

dissipated when the core density of the remnant rises to reach an ultra-relativistic regime,

leading to descalarization. Such a state transition in the scalar field can introduce a shift in

f2 frequency in post-merger GW signal, sharing the similar influence of a phase transition

from confined hadronic matter to deconfined quark matter. This motivates us to investigate

in Chapter 5 systematically the possible modification in quasi-universal relations of merger

waveform in DEF theory. Through analyzing ∼ 120 numerical simulations, we demonstrated

that a gravitational effect like scalarization could lead to a violation in quasi-universal rela-

tions. In the future, we plan to explore the scalar imprint on the inspiral waveform of binary

neutron stars to construct a more accurate waveform model.

In the final part of the thesis (Part III), we explore different physical scenarios under ax-

isymmetric configuration. The free-fall initial data model introduced in Chapter 6 allows us

to study more efficiently the final fate after the collapse of rotating massive stars that form a

black hole and a torus by skipping the initial collapse phase. By performing general relativis-

tic neutrino-radiation viscous-hydrodynamics simulations, we found 56Ni mass > 0.15 M⊙

and ∼ 3 − 11% of the total ejecta mass for rapidly rotating progenitor stars. The model

light curves derived from our numerical results agree with the observational data, which

suggests a possibility that some of the high-energy stripped-envelope supernovae may take

place from a system of a spinning black hole and a massive torus. In Chapter 7, we present

SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic hydrodynamics code in

dynamical spacetime under axial symmetry with the cartoon method. The code employs a

cell-centered grid with fixed mesh refinement and an adaptive time-step scheme. We imple-

ment the finite volume method with the state-of-the-art HLLC approximate Riemann solver

for hydrodynamics and the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c con-

straint transport for spacetime evolution. With the new and more efficient code SACRA-2D, we
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examine the well-known turning-point criterion of differentially rotating neutron stars in DEF

scalar-tensor theory. By evolving scalarized neutron stars along constant-angular-momentum

sequences, we can pin down the onset of an axis-symmetric instability. Our results suggest

that the criterion for rigidly rotating bodies in GR are largely valid also for differentially

rotating stars in the DEF theory, and the observed onset of instability agrees with the nu-

merical error at the turning point along the constant–momentum sequence. In the future,

we plan to implement magnetohydrodynamics with the HLLD Riemann solver and the con-

strained transport scheme, as well as implement neutrino-radiation viscous-hydrodynamics.

With more sophisticated microphysics and magnetohydrodynamics implemented, we can use

SACRA-2D to explore various systems, including collapsar, supermassive star collapse, and

black hole disk system.





Bibliography 229

Bibliography

[1] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015. doi: 10.1088/0264-9381/32/7/074001.

[2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams,

P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar,

L. Aiello, A. Ain, P. Ajith, B. Allen, A. Allocca, P. A. Altin, S. B. Anderson, W. G. Anderson, K. Arai, M. A.

Arain, M. C. Araya, C. C. Arceneaux, J. S. Areeda, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, M. Ast, S. M.

Aston, P. Astone, P. Aufmuth, C. Aulbert, S. Babak, P. Bacon, M. K. M. Bader, P. T. Baker, F. Baldaccini,

G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr,

L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, J. C. Batch,

C. Baune, V. Bavigadda, M. Bazzan, B. Behnke, M. Bejger, C. Belczynski, A. S. Bell, C. J. Bell, B. K. Berger,

J. Bergman, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare,

I. A. Bilenko, G. Billingsley, J. Birch, I. A. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi, C. Biwer,

M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, O. Bock, T. P. Bodiya,

M. Boer, G. Bogaert, C. Bogan, A. Bohe, P. Bojtos, C. Bond, F. Bondu, R. Bonnand, B. A. Boom, R. Bork,

V. Boschi, S. Bose, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E.

Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown,

N. M. Brown, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L.

Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. Callister, E. Calloni, J. B.

Camp, K. C. Cannon, J. Cao, C. D. Capano, E. Capocasa, F. Carbognani, S. Caride, J. Casanueva Diaz,
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[259] P. Jordan. Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Zeitschrift fur Physik, 157

(1):112–121, February 1959. doi: 10.1007/BF01375155.
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[341] Pedro J. Montero, José A. Font, and Masaru Shibata. Influence of Self-Gravity on the Runaway Instability of

Black-Hole-Torus Systems. Phys. Rev. Lett., 104(19):191101, May 2010. doi: 10.1103/PhysRevLett.104.191101.

[342] Pedro J. Montero, Hans-Thomas Janka, and Ewald Müller. Relativistic Collapse and Explosion of Rotating

Supermassive Stars with Thermonuclear Effects. ApJ, 749(1):37, April 2012. doi: 10.1088/0004-637X/749/1/37.

[343] Pedro J. Montero, Thomas W. Baumgarte, and Ewald Müller. General relativistic hydrodynamics in curvilinear

coordinates. Phys. Rev. D, 89(8):084043, April 2014. doi: 10.1103/PhysRevD.89.084043.

[344] E. R. Most, L. Jens Papenfort, and L. Rezzolla. Beyond second-order convergence in simulations of magnetized

binary neutron stars with realistic microphysics. MNRAS, 490(3):3588–3600, December 2019. doi: 10.1093/

mnras/stz2809.

[345] Elias R. Most, L. Jens Papenfort, Veronica Dexheimer, Matthias Hanauske, Stefan Schramm, Horst Stöcker,
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[446] Masaru Shibata, Keisuke Taniguchi, and Kōji Uryū. Merger of binary neutron stars with realistic equations of

state in full general relativity. Phys. Rev. D, 71(8):084021, April 2005. doi: 10.1103/PhysRevD.71.084021.

[447] Masaru Shibata, Matthew D. Duez, Yuk Tung Liu, Stuart L. Shapiro, and Branson C. Stephens. Magnetized

hypermassive neutron star collapse: A Central engine for short gamma-ray bursts. Phys. Rev. Lett., 96:031102,

2006. doi: 10.1103/PhysRevLett.96.031102.



258 Bibliography

[448] Masaru Shibata, Yuk Tung Liu, Stuart L. Shapiro, and Branson C. Stephens. Magnetorotational collapse of

massive stellar cores to neutron stars: Simulations in full general relativity. Phys. Rev. D, 74(10):104026,

November 2006. doi: 10.1103/PhysRevD.74.104026.

[449] Masaru Shibata, Koutarou Kyutoku, Tetsuro Yamamoto, and Keisuke Taniguchi. Gravitational waves from

black hole-neutron star binaries: Classification of waveforms. Phys. Rev. D, 79(4):044030, February 2009. doi:

10.1103/PhysRevD.79.044030.

[450] Masaru Shibata, Keisuke Taniguchi, Hirotada Okawa, and Alessandra Buonanno. Coalescence of binary neutron

stars in a scalar-tensor theory of gravity. Phys. Rev. D, 89(8):084005, April 2014. doi: 10.1103/PhysRevD.89.

084005.

[451] Masaru Shibata, Yuichiro Sekiguchi, Haruki Uchida, and Hideyuki Umeda. Gravitational waves from su-

permassive stars collapsing to a supermassive black hole. Phys. Rev. D, 94(2):021501, July 2016. doi:

10.1103/PhysRevD.94.021501.

[452] Masaru Shibata, Sho Fujibayashi, Kenta Hotokezaka, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi,

and Masaomi Tanaka. Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D,

96(12):123012, 2017. doi: 10.1103/PhysRevD.96.123012.

[453] Masaru Shibata, Kenta Kiuchi, and Yu-ichiro Sekiguchi. General relativistic viscous hydrodynamics of differen-

tially rotating neutron stars. Phys. Rev. D, 95(8):083005, April 2017. doi: 10.1103/PhysRevD.95.083005.

[454] Masaru Shibata, Sho Fujibayashi, and Yuichiro Sekiguchi. Long-term evolution of a merger-remnant neutron

star in general relativistic magnetohydrodynamics: Effect of magnetic winding. Phys. Rev. D, 103(4):043022,

February 2021. doi: 10.1103/PhysRevD.103.043022.

[455] Masaru Shibata, Sho Fujibayashi, and Yuichiro Sekiguchi. Long-term evolution of neutron-star merger remnants

in general relativistic resistive magnetohydrodynamics with a mean-field dynamo term. Phys. Rev. D, 104(6):

063026, September 2021. doi: 10.1103/PhysRevD.104.063026.

[456] Masaru Shibata, Sho Fujibayashi, Alan Tsz-Lok Lam, Kunihito Ioka, and Yuichiro Sekiguchi. Outflow energy

and black-hole spin evolution in collapsar scenarios. Phys. Rev. D, 109(4):043051, February 2024. doi: 10.1103/

PhysRevD.109.043051.

[457] Masaru Shibata, Sho Fujibayashi, Cédric Jockel, and Kyohei Kawaguchi. Threshold Mass of the General-

relativistic Instability for Supermassive Star Cores. Astrophys. J., 978(1):58, 2025. doi: 10.3847/1538-4357/

ad93a4.

[458] Masaru Shibata, Sho Fujibayashi, Shinya Wanajo, Kunihito Ioka, Alan Tsz-Lok Lam, and Yuichiro Sekiguchi.

Self-consistent scenario for jet and stellar explosions in collapsar: General relativistic magnetohydrodynamics

simulation with a dynamo. Phys. Rev. D, 111(12):123017, June 2025. doi: 10.1103/msy2-fwhx.

[459] Hector O. Silva and Nicolás Yunes. Neutron star pulse profiles in scalar-tensor theories of gravity. Phys. Rev. D,

99(4):044034, February 2019. doi: 10.1103/PhysRevD.99.044034.

[460] Hector O. Silva and Nicolás Yunes. Neutron star pulse profile observations as extreme gravity probes. Classical

and Quantum Gravity, 36(17):17LT01, September 2019. doi: 10.1088/1361-6382/ab3560.

[461] Hector O. Silva, Helvi Witek, Matthew Elley, and Nicolás Yunes. Dynamical Descalarization in Binary Black

Hole Mergers. Phys. Rev. Lett., 127(3):031101, July 2021. doi: 10.1103/PhysRevLett.127.031101.

[462] Kyle Slinker, Charles R. Evans, and Mark Hannam. Trumpet initial data for boosted black holes. Phys. Rev. D,

98(4):044014, August 2018. doi: 10.1103/PhysRevD.98.044014.



Bibliography 259

[463] Larry Smarr and James W. York, Jr. Kinematical conditions in the construction of spacetime. Phys. Rev. D,

17(10):2529–2551, May 1978. doi: 10.1103/PhysRevD.17.2529.

[464] R. Sorkin. A Criterion for the Onset of Instability at a Turning Point. ApJ, 249:254, October 1981. doi:

10.1086/159282.

[465] R. D. Sorkin. A Stability Criterion for Many Parameter Equilibrium Families. ApJ, 257:847, June 1982. doi:

10.1086/160034.

[466] Hajime Sotani. Scalar gravitational waves from relativistic stars in scalar-tensor gravity. Phys. Rev. D, 89(6):

064031, March 2014. doi: 10.1103/PhysRevD.89.064031.

[467] Hajime Sotani. Pulse profiles from a pulsar in scalar-tensor gravity. Phys. Rev. D, 96(10):104010, November

2017. doi: 10.1103/PhysRevD.96.104010.

[468] Hajime Sotani and Kostas D. Kokkotas. Probing strong-field scalar-tensor gravity with gravitational wave

asteroseismology. Phys. Rev. D, 70:084026, 2004. doi: 10.1103/PhysRevD.70.084026.

[469] Hajime Sotani and Kostas D. Kokkotas. Maximum mass limit of neutron stars in scalar-tensor gravity.

Phys. Rev. D, 95(4):044032, February 2017. doi: 10.1103/PhysRevD.95.044032.

[470] Thomas P. Sotiriou. Black holes and scalar fields. Classical and Quantum Gravity, 32(21):214002, November

2015. doi: 10.1088/0264-9381/32/21/214002.

[471] Thomas P. Sotiriou and Valerio Faraoni. Black Holes in Scalar-Tensor Gravity. Phys. Rev. Lett., 108(8):081103,

February 2012. doi: 10.1103/PhysRevLett.108.081103.

[472] Theodoros Soultanis, Andreas Bauswein, and Nikolaos Stergioulas. Analytic models of the spectral properties

of gravitational waves from neutron star merger remnants. Phys. Rev. D, 105(4):043020, February 2022. doi:

10.1103/PhysRevD.105.043020.

[473] Ulrich Sperhake, Christopher J. Moore, Roxana Rosca, Michalis Agathos, Davide Gerosa, and Christian D. Ott.

Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-Tensor Gravity. Phys. Rev. Lett., 119

(20):201103, November 2017. doi: 10.1103/PhysRevLett.119.201103.

[474] Kalin V. Staykov, Daniela D. Doneva, Lavinia Heisenberg, Nikolaos Stergioulas, and Stoytcho S. Yazad-

jiev. Differentially rotating scalarized neutron stars with realistic post-merger profile. arXiv e-prints, art.

arXiv:2303.07769, March 2023. doi: 10.48550/arXiv.2303.07769.

[475] Nikolaos Stergioulas and John L. Friedman. Comparing Models of Rapidly Rotating Relativistic Stars Con-

structed by Two Numerical Methods. ApJ, 444:306, May 1995. doi: 10.1086/175605.

[476] Nikolaos Stergioulas and John L. Friedman. Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars.

ApJ, 492(1):301–322, January 1998. doi: 10.1086/305030.

[477] Nikolaos Stergioulas, Andreas Bauswein, Kimon Zagkouris, and Hans-Thomas Janka. Gravitational waves and

non-axisymmetric oscillation modes in mergers of compact object binaries. MNRAS, 418(1):427–436, November

2011. doi: 10.1111/j.1365-2966.2011.19493.x.

[478] James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. The Athena++ Adaptive Mesh

Refinement Framework: Design and Magnetohydrodynamic Solvers. ApJS, 249(1):4, July 2020. doi: 10.3847/

1538-4365/ab929b.

[479] Lami Suleiman and Jocelyn Read. Quasiuniversal relations in the context of future neutron star detections.

Phys. Rev. D, 109(10):103029, 2024. doi: 10.1103/PhysRevD.109.103029.



260 Bibliography

[480] R. Surman, G. C. McLaughlin, and N. Sabbatino. Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accre-

tion Disks. ApJ, 743(2):155, December 2011. doi: 10.1088/0004-637X/743/2/155.

[481] Takeru K. Suzuki and Shu-ichiro Inutsuka. Magnetohydrodynamic Simulations of Global Accretion Disks with

Vertical Magnetic Fields. Astrophys. J., 784:121, 2014. doi: 10.1088/0004-637X/784/2/121.

[482] F. Taddia, J. Sollerman, C. Fremling, C. Barbarino, E. Karamehmetoglu, I. Arcavi, S. B. Cenko, A. V. Fil-

ippenko, A. Gal-Yam, D. Hiramatsu, G. Hosseinzadeh, D. A. Howell, S. R. Kulkarni, R. Laher, R. Lunnan,

F. Masci, P. E. Nugent, A. Nyholm, D. A. Perley, R. Quimby, and J. M. Silverman. Analysis of broad-lined

Type Ic supernovae from the (intermediate) Palomar Transient Factory. A&A, 621:A71, January 2019. doi:

10.1051/0004-6361/201834429.

[483] Kentaro Takami, Luciano Rezzolla, and Luca Baiotti. Constraining the Equation of State of Neutron Stars from

Binary Mergers. Phys. Rev. Lett., 113(9):091104, August 2014. doi: 10.1103/PhysRevLett.113.091104.

[484] Kentaro Takami, Luciano Rezzolla, and Luca Baiotti. Spectral properties of the post-merger gravitational-wave

signal from binary neutron stars. Phys. Rev. D, 91(6):064001, March 2015. doi: 10.1103/PhysRevD.91.064001.

[485] Keisuke Taniguchi and Masaru Shibata. Binary Neutron Stars in Quasi-equilibrium. ApJS, 188(1):187–208,

May 2010. doi: 10.1088/0067-0049/188/1/187.

[486] Keisuke Taniguchi, Masaru Shibata, and Alessandra Buonanno. Quasiequilibrium sequences of binary neutron

stars undergoing dynamical scalarization. Phys. Rev. D, 91(2):024033, January 2015. doi: 10.1103/PhysRevD.

91.024033.

[487] T. M. Tauris, M. Kramer, P. C. C. Freire, N. Wex, H. T. Janka, N. Langer, Ph. Podsiadlowski, E. Bozzo,

S. Chaty, M. U. Kruckow, E. P. J. van den Heuvel, J. Antoniadis, R. P. Breton, and D. J. Champion. Formation

of Double Neutron Star Systems. ApJ, 846(2):170, September 2017. doi: 10.3847/1538-4357/aa7e89.

[488] J. Teunissen and R. Keppens. A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-

AMRVAC. Computer Physics Communications, 245:106866, December 2019. doi: 10.1016/j.cpc.2019.106866.

[489] The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration. GWTC-3: Com-

pact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run.

arXiv e-prints, art. arXiv:2111.03606, November 2021. doi: 10.48550/arXiv.2111.03606.

[490] Wolfgang Tichy. Constructing quasi-equilibrium initial data for binary neutron stars with arbitrary spins.

Phys. Rev. D, 86(6):064024, September 2012. doi: 10.1103/PhysRevD.86.064024.

[491] F. X. Timmes, R. D. Hoffman, and S. E. Woosley. An Inexpensive Nuclear Energy Generation Network for

Stellar Hydrodynamics. ApJS, 129(1):377–398, July 2000. doi: 10.1086/313407.

[492] L. Tonetto and G. Lugones. Discontinuity gravity modes in hybrid stars: assessing the role of rapid and slow

phase conversions. Phys. Rev. D, 101(12):123029, 2020. doi: 10.1103/PhysRevD.101.123029.

[493] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock

Waves, 4(1):25–34, July 1994. doi: 10.1007/BF01414629.

[494] Andoni Torres-Rivas, Katerina Chatziioannou, Andreas Bauswein, and James Alexander Clark. Observing the

post-merger signal of GW170817-like events with improved gravitational-wave detectors. Phys. Rev. D, 99(4):

044014, 2019. doi: 10.1103/PhysRevD.99.044014.
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[501] Kōji Uryū, François Limousin, John L. Friedman, Eric Gourgoulhon, and Masaru Shibata. Binary Neutron

Stars: Equilibrium Models beyond Spatial Conformal Flatness. Phys. Rev. Lett., 97(17):171101, October 2006.

doi: 10.1103/PhysRevLett.97.171101.
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