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Zusammenfassung

Die numerische Relativititstheorie ist ein unverzichtbares Werkzeug fiir astrophysikalische
Simulationen in starken Schwerefeldern. Sie ermoglicht es uns, die relativistische Dynamik
um kompakte Objekte, einschliefllich Neutronensterne und Schwarze Locher, genau zu er-
fassen und die Gravitationswellensignale aus dem System zu extrahieren. In dieser Disserta-
tion verwende ich numerische Relativitatssimulationen, um verschiedene astrophysikalische
Systeme zu untersuchen, namlich den Gezeiten-Sternzerriss eines Weiflen Zwergs um ein su-
permassereiches Schwarzes Loch, die Verschmelzung von bindren Neutronensternen (BNS)
und den Kollaps von Sternen.

Im ersten Teil dieser Dissertation untersuche ich den Gezeiten-zerriss eines Weiflen Zwergs
um ein supermassereiches Schwarzes Loch. Gezeiten-Sternzerrissereignisse (GSZE) treten
auf, wenn ein Stern sich iiber seinen Roche-Radius ausdehnt und durch die Gezeitenkrafte
auflerhalb des Schwarzen Lochs zerrissen wird. Der gravitativ gebundene Anteil der Stern-
fragmente fallt daraufhin auf das Schwarze Loch zuriick und bildet ein Akkretionsscheibe
mit potenziellem Jet-Ausbruch, der helle Emissionen von elektromagnetischer Strahlung,
einschlielich optischer/UV- und Rontgenstrahlung, erzeugt. Weifle Zwerg GSZE sind beson-
ders interessant, da sie Einblicke in die Entwicklung von Schwarzen Lochern mit Massen von
Mgy < 10° M, und deren Wachstum liefern konnen. Allerdings ist die Simulation von GSZE
extrem schwierig, da sie eine grofle Spanne von Langenskalen und Zeitskalen umspannen. Um
dies zu losen, habe ich eine neue Methode fiir vollstandig numerische Relativitatssimulationen
entwickelt, die es mir ermoglicht, den Gezeiten-Sternzerriss eines Weiflen Zwergs um ein su-
permassereiches Schwarzes Loch, zum ersten Mal, zu simulieren.

Der zweite Teil dieser Dissertation untersucht die Verschmelzung von Neutronenstern-
paaren in der massiven Skalar-Tensor-Theorie. Diese Theorie, vorgeschlagen von Damour und
Esposito-Farese, fiihrt einen zusatzlichen skalaren Freiheitsgrad ein, welcher die Struktur von
Neutronensternen andert und zu unterscheidbaren Merkmalen in Gravitationswellensignalen
fithren kann. Ich habe eine Reihe von numerischen Simulationen durchgefiihrt, um die nicht-
linearen Effekte dieser Theorie in BNS-Verschmelzungen zu quantifizieren und Signale in
Gravitationswellensignalen zu untersuchen.

Im letzten Teil der Arbeit untersuche ich numerische Relativitdtssimulationen unter achsen-

symmetrischen Konfigurationen. Die Einfiihrung der Achsensymmetrie senkt die Rechenkosten
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fiir numerische Simulationen drastisch, indem sie die Grofle des Problems auf zwei raumliche
Dimensionen reduziert, was eine langere Simulationszeit fiir physikalische Systeme ermdglicht
als dreidimensionale Simulationen. Zunachst betrachte ich das Kollapsar-System, bei dem ich
ein annaherndes Freifallmodell konstruiere, das aus einem Schwarzen Loch und einfallendem
Material besteht, das von massereichen Vorldufersternen ausgeht, um effiziente numerische
Simulationen zu ermdglichen. Dann stelle ich SACRA-2D vor, einen neuen MPI- und OpenMP-
parallelisierten, voll relativistischen Hydrodynamik Code in dynamischer Raumzeit unter
axialer Symmetrie mit der Cartoon-Methode, der die von mir entwickelten Finite-Volumen-
Schock-Capturing-Schemata fiir Hydrodynamik verwendet. Schliellich wird eine physikalis-
che Anwendung von SACRA-2D vorgestellt, bei der das Wendepunktkriterium von differentiell

rotierenden NS in der Skalar-Tensor-Theorie unter asymmetrischer Storung untersucht wird.
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Abstract

Numerical Relativity is an essential tool for astrophysical simulations under strong gravity.
It allows us to capture the relativistic dynamics around compact objects, including neutron
stars and black holes, and accurately extract the gravitational wave signal from the system.
In this thesis, I utilize numerical relativity simulations to study various astrophysical systems,
namely the tidal disruption of a white dwarf around a supermassive black hole, binary neutron
star (BNS) merger, and collapsar.

In the first part of this thesis, I investigate the tidal disruption of a white dwarf around
a supermassive black hole. Tidal disruption events (TDEs) occur when a star passes closer
to the tidal radius and gets torn apart by the tidal force outside the black hole’s event
horizon. The bounded fraction of tidal debris subsequently falls back onto the black hole and
circularizes to form an accretion disk with potential jet launching, generating a luminous flare
of electromagnetic radiation including optical/UV and X-ray emission. White dwarf TDEs
are particularly interesting as they could provide insights into low-mass supermassive black
holes Mgy < 10° M, and the growth of massive black holes. However, simulating TDEs is
extremely challenging due to the vast range of length scales and time scales involved. To
overcome this, I developed a new method for full numerical relativity simulations, allowing
me to evolve the tidal disruption of a white dwarf around a supermassive black hole for the
first time.

The second part of this thesis explores the BNS merger in the massive scalar tensor theory.
This theory, proposed by Damour and Esposito-Farese, introduces an additional scalar degree
of freedom that can alter the structure of neutron stars and lead to distinctive features in
gravitational wave (GW) signals. I conducted a series of numerical studies to quantify the
non-linear effects of this theory in binary neutron star mergers and explore signatures in GW
signals. My collaborators and I started by constructing initial data for quasi-equilibrium
configurations of binary neutron stars that are self-consistent with the massive scalar-tensor
theory, from which we suggested a constraint on the scalar mass. To further understand
the scalar effect on the coalescence dynamics and the post-merger remnant, I extended the
numerical relativity code SACRA-MPI to the massive scalar tensor theory and performed a
set of numerical simulations. I found that the modified gravity effect in the massive scalar

tensor theory can significantly alter the final fate of the merger remnant and provide various
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distinctive features that appear in a wide range of binary parameters. The presence of the
scalar field can also provide additional support from gravitational collapse, modifying the
final disk mass around the black hole and subsequent post-merger ejecta. I demonstrated
that a gravitational effect like scalarization can lead to a violation in quasi-universal relations.

In the last part of the thesis, I explore numerical relativity simulations under axisymmetric
configurations. Imposing axisymmetry drastically lowers the computation cost for numerical
simulation by reducing the problem’s size to two spatial dimensions, which facilitates a longer
simulation time of physical systems than three-dimensional simulations. I first consider
the collapsar system where I construct an approximate free-fall model consisting of a black
hole and infalling material started from large-mass progenitor stars to facilitate efficient
numerical simulations. Then, I introduce SACRA-2D, a new MPI and OpenMP parallelized,
fully relativistic hydrodynamics (GRHD) code in dynamical spacetime under axial symmetry
with the cartoon method, using the finite-volume shock-capturing schemes for hydrodynamics
I developed. Finally, one physical application of SACRA-2D is presented, which examines the
turning-point criterion of differential rotating NS in scalar-tensor theory under asymmetric

perturbation.
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1.1 Overview and motivationon . . . . . . . . . . i i i i it it v vt et vt v 1
1.2 Formulation in Numerical Relativity . . . . . . . ... ... 000000, 3

This thesis is based on the publication [209, 293, 303, 304, 305, 306]. Throughout this thesis,
the geometrical units of ¢ = 1 = G are used where ¢ and G are the speed of light and the
gravitational constant, respectively, but when it is necessary to clarify the units, G and c are
recovered. The subscripts a, b, ¢,--- denote the spacetime coordinates while ¢, 7, k,--- the
spatial coordinates, respectively. This chapter provides an overview of the thesis and a basic

introduction of numerical relativity.

1.1 Overview and motivationon

The first part of the thesis (Part I) is dedicated to studying the tidal disruption of white
dwarfs by supermassive black holes through numerical relativity. Tidal disruption events
(TDEs) occur when a star passes closer to the tidal radius and gets torn apart by the tidal
force outside the event horizon of the black hole. The bounded fraction of tidal debris
subsequently falls back onto the black hole and circularizes to form an accretion disk with
potential jet launching, generating a luminous flare of radiation, including optical/UV and
X-ray emission. With over one hundred events already detected in different telescopes and
expected over several tens of thousands of detections in future transient surveys, TDEs act
as an excellent and promising astrophysical laboratory to probe the parameters of massive

black holes and the composition of the disrupted stars. This is particularly interesting if the
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companion star is a white dwarf, as white dwarf TDEs could occur for intermediate-mass
black holes (Mpy < 10° My,), potentially associated with GW signals, which could provide
rich information on intermediate-mass black holes if detected and help understand the dwarf
galaxy as well as the growth of massive black holes. However, numerical simulation of TDEs
is extremely challenging because it requires resolving vastly different length scales over a long
time. To address this, I developed a new method to evolve the tidal disruption of a white
dwarf around a supermassive black hole using numerical relativity simulation (Chapter 2).
The new formalism enables us to study the tidal disruption criteria in the relativistic regime
for the first time.

Part Il discusses the process of binary neutron star merger under the framework of al-
ternative theories of gravity. Although Einstein’s theory of general relativity (GR) passes
many tests through observation of the Solar system and binary pulsars observation with
flying colors, the incongruity of GR with quantum description demands a modification of
gravity theory. The detection of the first GW signal from binary black holes mergers by
Laser Interferometer Gravitational Observatory (LIGO) and Virgo collaborations [2] marks
the beginning of the precision GW astrophysics era, providing us with a new and unique
tool to stringently test GR in an extremely dynamical and strong field gravity regime. To
better understand how detailed GW signatures correspond to specific features of alterna-
tive gravity, it is useful to conduct in-depth studies of specific alternative theories. One of
the most established modified theories of gravity is the DEF type of scalar-tensor theory
[142, 143] proposed as the low-energy limit of string theory where an additional scalar degree
of freedom is introduced with the scalar field coupled to the spacetime curvature. In this
theory class, a neutron star can spontaneously scalarize under specific conditions, altering
its structure. The influence of the scalar field on the stellar structure is strongly degenerate
with that of the supranuclear equation of states. That said, there are some effects exclusive
to the scalar field. For example, the presence of scalar charge for neutron stars gives rise
to additional dipolar radiation and speeds up the orbital decay of a binary due to the extra
energy lost. This allows pulsar timing observations to rule out the massless DEF theory
basically [419] and put a lower bound on the scalar mass of 2> 10716 eV as the scalar effect
is smeared off beyond the corresponding Compton wavelength. In Part II, my collaborator
and I conducted a series of numerical studies aiming to quantify the non-linear feature of
massive DEF theory in binary neutron star mergers and explore distinctive signatures in
GW signals, paying particular attention to scalar mass in ~ 107 eV with corresponding
Compton wavelength ~ 20 km, which could have scalar interaction imprinted in the late
inspiral phase. In Chapter 3, we constructed initial data for quasi-equilibrium configurations
of binary neutron stars that are self-consistent with DEF theory. From that, we compared
orbital energy obtained from the numerical data with the event GW170817 and suggested

a constraint on scalar mass > 107! eV if both neutron stars are scalarized in the inspiral
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phase. To further understand the scalar effect on the dynamics of the coalescence and the
postmerger remnant, in Chapter 4 we extended the numerical relativity code SACRA-MPI to
the massive DEF theory and performed a set of numerical simulations to study comprehen-
sively the dependence on scalar mass and coupling strength. In Chapter 5, we demonstrated
a gravitational effect like scalarization could lead to a violation in quasi-universal relations
of GW signals.

In the final part of the thesis, Part [1I, we explore the applications of numerical relativ-
ity under axisymmetric configurations. Numerical relativity simulations are a crucial tool
for understanding the behavior of complex astrophysical systems, such as binary neutron
star mergers and black hole-neutron star mergers. However, these simulations are often
computationally expensive and require significant resources to perform. In contrast, some
specific systems can be approximated to be axisymmetric, reducing the problem’s size to two
spatial dimensions and drastically lowering the computation cost for numerical simulation.
For example, axisymmetric simulations have been useful in studying the long-term evolu-
tion of post-merger remnants from neutron star mergers and the core-collapse supernova.
In particular, to speed up the simulation of the collapsar, we developed a free-fall model in
Chapter 6 composed of a spinning black hole and infalling matter that self-consistently sat-
isfies constraint equations of general relativity. We also implemented SACRA-2D, a new MPI
and OpenMP parallelized, fully relativistic general-relativistic hydrodynamic (GRHD) code
in dynamical spacetime under axial symmetry with the cartoon method, described in Chap-
ter 7, which utilized the two-to-one fixed mesh refinement and the state-of-the-art HLLC
Riemann solver. Finally, we apply SACRA-2D in Chapter 8 to study the dynamical stability

of differentially rotating neutron stars in scalar-tensor theory.

1.2 Formulation in Numerical Relativity

1.2.1 The 341 decomposition

The Einstein equation connects the spacetime curvature and the stress-energy momentum

tensor T, by

1
“) Rap — §gab(4)R =

87;—4GTab, (1.1)
where g, is the metric, ® Ry, is the Ricci tensor, MR := g,,Y R® is the Ricci scalar. The
non-linear nature of the Einstein equations makes it challenging to find even the approxi-
mate solutions for dynamical systems. Therefore, numerical simulation becomes a reliable
way, sometimes the only method, to describe these systems accurately. To perform these
simulations, one must reformulate the Einstein equations as an initial-value problem, which

can be accomplished by the 3+1 decomposition. The following section will briefly outline the
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3+1 decomposition of spacetime and summarize some useful relations that are often used in
the later chapters. We refer the readers to the numerical relativity books from Baumgarte

and Shapiro [56] and Shibata [430] for a more detailed introduction.

In 341 decomposition, the spacetime manifold is foliated into a set of non-intersecting
spacelike hypersurfaces 3, each defined as a level surface of the coordinate time t. We can

construct the future-directed timelike unit four-vector n® normal to ¥; given by
a ab ab —-1/2
n® = g%ny, Nng = —aV,t, o= (—g Vatvbt) (1.2)

where the lapse function o > 0 determines the proper time aAt between consecutive hyper-
surfaces 3; and ;1 a¢, and V,, is the covarivant derivative associated with g,;. The induced

spatial metric 74, on the hypersurface can therefore be defined as

Yab = Gab T NaMp. (1.3)

This allows us to construct the spatial projection tensor 7%, and the time projection tensor

N% as
Y4 = 0% + nny, N = —nny, (14)

which decomposes any generic four-vector V¢ into spatial part ¥%,V'* and timelike part N, V?,
and also define on ¥, the corresponding spatial counterparts of Ricci tensor R;;, Ricci scalar
R, connection coefficients I'";;, as well as the covariant derivative D, for generic tensor

Tz as
DT ey = V"V eV e Ve Ve VaT O gy, with Doy = 0. (1.5)
Consequently, the time unit vector ¢* := (9/9t)" can be decomposed as
t* = an® + p°, B = %t?, (1.6)

where 3¢ is the shift vector that measures the changes of spatial coordinates on the successive
hypersurfaces. The extrinsic curvature K, is defined by the spatial projection of the gradient

of n, on X, as

1
Kab = _Vacvcnb = _Eﬁn’)/ab) (17)

where L,, is the Lie derivative with respect to n®. Note that for pure spatial tensor, e.g., Vus,
£ and K, it would be sufficient only to consider the spatial components, and hence only

the spatial indices are shown (i.e., v;;, 8° and Kj;).



Chapter 1. Introduction 5

Under the 3+1 decomposition, the line element is therefore given by
ds® = —a’dt® + i (ﬂidt + dxi) (ﬂjdt + da:j) , (1.8)
and the stress-energy momentum tensor 7j;, is decomposed into
Top = prnamp + Janp + Jona + Sab, (1.9)
where

pn = Tegnn®, Jo = —T.gyan®, Sap = Teay a)- (1.10)

In the Arnowitt—Deser—Misner (ADM) formulation [38, 532], the Einstein equations in
Eq. (1.1) are rewritten into a set of constraint and evolution equations of the dynamical

variables (v;;, K;;) given by

R — K;; K" + K* = 167py, (Hamiltonian constraint)  (1.11a)
D;K{ — D;K = 8rJ;, (Momentum constraint) (1.11b)
(0, — Bkﬁk) Yij = —2aK + 30,85 + ;1 0;8%, (Evolution for ~;;) (1.11¢)

1
— 8 | S; — 5 i (S — pn) (Evolution for K;;) (1.11d)
— DiDjOé + Klkajﬁk + Kjkaiﬁk7

where K := 7% K;; is the trace of the extrinsic curvature.

In addition to the 341 formulation, the conformal decomposition, originally developed
by Lichnerowicz [310] and York [349, 530, 531] for initial data construction, is often used
to factor out the gravitational potential part from the spatial metric in numerical relativity.
Under such formulation, the conformal spatial metric 7;; and the conformal traceless extrinsic

curvature flz-j are defined by

Vij = ¢_4%j, (1.12a)

~ 1
Ay =yt (Kij - §%JK> , (1.12b)

with the conformal factor 1 usually chosen to be

vi= (/)" (1.13)

where v := det(v;;) and f := det(f;;) with f;; being the flat spatial metric. The corresponding

conformal Ricci tensor R;;, Ricci scalar R, connection coefficient I, and covariant derivative
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operator D; can be defined in a similar manner. The basic equations in the ADM formulation
Eq. (1.11) can hence be rewritten in the conformal decomposition formulation for variables

(Fij I‘L'j, ¥, K) with two additional algebraic constraints

det(7;;) = f, A9 A = 0. (1.14)

1.2.2 The Baumgarte-Shapiro—Shibata—Nakamura formulation

Despite the well-definedness of the 3+1 formulation, it forms a weakly hyperbolic system
and is not well-posed. If we numerically integrate the evolution equations directly, any small
numerical error will grow inevitably without bound. A strongly hyperbolic reformulation is
necessary to maintain a stable evolution. Shibata and Nakamura [133] recasted the equations
by introducing a new independent variable F; := f jij(»O)%k with D](-O) being the covariant
derivative associated with f;; (the so-called F; version). Later, Baumgarte and Shapiro
[55] proposed the I' version by instead defining I := —Dﬁmiij , which gives essentially
the same basic equations with slightly simpler form. This reformulation established the so-
called Baumgarte-Shapiro—Shibata—Nakamura (BSSN) formulation, one of the most popular
formulations in numerical relativity. The evolution equations of the BSSN formulation in the

Cartesian coordinate are summarized below

0, —BEO W = 1W aK — 0,5%), 1.15a
3
. ~ - - 2
(0i—B%0k) 7 = —20Aij + 7 0;8" + 7jx0: 8" — g%’jakﬂk, (1.15b)
(at—ﬁk(?k)flij = W2 (OzRZ‘j - DZ'DjOé — SWOéSij)TF + o <KAZ] - 2AzkA]k)
) ) - (1.15¢)
+ A 0,8 + Api0; 8" — gAijakﬂkv
01— B0 K = dra(S's + B) + o ( A4 + 1K) — D,D'a, 1.15d
J 3
~ . ~.. ~ o~ 1 .. -~ .
(at—ﬁkak)f‘z = —2A”0joz + 2« (F;kA]k — §~UajK — %A’]ij — 87'(’3/7']5]‘) ( )
1.15e
2 .. . . 1 .. ~ . .
+ g’?ﬂkrzjkalﬂl +77%0,0,.8" + g’?ljajakﬂk — 319 ,0;6,

where SijTF =S — %%jSkk corresponds to the tracefree part of a tensor S;; and W := P2
is introduced to avoid divergent term of 1) appeared in the black hole [328] (y = ™% is

employed for some studies e.g., [119]).

1.2.3 Gauge conditions

The evolution equations from the 341 decomposition are not sufficient for numerical integra-

tion. One still has the gauge freedom to impose the coordinate conditions by specifying the
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lapse function « and the shift vectors 5°. A proper choice of coordinates should avoid any
singularities, such as coordinate singularities and black hole singularity. One typical choice

for lapse « is the maximal slicing condition defined as
K =0= 0K, (1.16)
which yields a continuity equation for proper volume /7y

Ory/7 = 0 (VB | (1.17)

which shows v remains regular as long as a regular shift 5° is chosen, suggesting this is
likely to have a singularity-avoidance property. This time slicing condition forms an elliptic

equation for «

Y/D;iDja = o [Ki; K7 + 47 (p+ S*) ] (1.18)
which, combined with the Hamiltonian constraint, is often used in constructing the initial
data given by

1

. T _
’72] z‘Dj (Oélp)ZOél/J gAijAZJ+ R+27T'¢4 (p—|—Skk) . (119)

co

The next issue is defining a spatial slicing condition with a "regular” shift 5¢. Smarr and

York [163] proposed the minimal distortion gauge defined by
D; (v'*047) =0, (1.20)
which minimizes the global change rate of 49 in every hypersurface based on the action I
I= [ #2(05,) (@) 7377 (1.21)

hence the name "minimal distortion”. Provided that the initial condition does not contain
large coordinate distortion, this gauge condition can eliminate coordinate-related fluctuations
on 4%, which is desirable for long-term stable numerical evolution. The minimal distortion
gauge can be further written into a vector elliptic equation for 3% by combining the evolution

equation of 7;; as
kPP i Lcii D Pk o Pl N T . T AY: 6
Y DjDkﬁ + §’7 DjDkB + R jﬂ + Yy Dkﬁ + Y Dkﬁ — 5’7 Dkﬁ Dj lniﬂ (1.22)
o~ 4 .
=2 A Do + 307/ D;K + 167y S (1.23)

Despite the excellent physical property of the maximal slicing and minimal distortion
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gauge conditions, the fact that they take forms in elliptic type equations makes it compu-
tationally expensive for practical use. On the other hand, the dynamical gauge conditions,
which take forms in hyperbolic equations, are numerically more favorable. In particular,
the moving-puncture gauge [26, 42, 119] was established to become the standard gauge in

numerical relativity written as
(0 — B*0)) @ = —2aK, (14log slicing) (1.24a)
. 3.
(0, — B*0) B = ZBZ7

(hyperbolic Gamma-driver) (1.24b)

where B is a new auxiliary variable and np is a constant of order 1/M with M being the

total mass of the system.
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Breakdown of Contributions

This chapter is based on the publication: “Numerical-relativity simulation for tidal disruption
of white dwarfs by a supermassive black hole” in Phys.Rev.D 107 (2023) 4, 043033 [304] by
A. T.-L. Lam, M. Shibata and K. Kiuchi. I modified the code SACRA-MPI developed by
M. Shibata and K. Kiuchi to include the unequal levels in moving box structure and the
trumpet black hole background for the tidal disruption project. I also constructed an initial
data solver that consists of a supermassive black hole and a white dwarf in an elliptic orbit
built upon the open-source code octree-mg. All the numerical simulations were carried out
by me and all the plots were generated by me. K. Kiuchi provided constructive comments

on the manuscript written partially by me and M. Shibata.

Overview

In this Chapter, we study tidal disruption of white dwarfs in elliptic orbits with the eccen-
tricity of ~ 1/3-2/3 by a nonspinning supermassive black hole of mass Mgy = 10°M, in
fully general relativistic simulations targeting the extreme mass-ratio inspiral leading even-

tually to tidal disruption. Numerical-relativity simulations are performed by employing a
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suitable formulation in which the weak self-gravity of white dwarfs is accurately solved. We
reconfirm that tidal disruption occurs for white dwarfs of the typical mass of ~ 0.6M, and

radius ~ 1.2 x 10* km near the marginally bound orbit around a nonspinning black hole with
MBH 5 4 x 105M®.

2.1 Introduction

Tidal disruption of ordinary stars and/or white dwarfs by supermassive black holes has
been revealed to be one of the major sources of bright electromagnetic transients (see, e.g.,
Refs. [27, 410, 505]), which have been actively observed in the last decade. In addition,
gravitational waves emitted by tidal disruption of white dwarfs closely orbiting supermassive
black holes could be observable by Laser Interferometer Space Antenna (LISA) [31]. Elec-
tromagnetic signals associated with tidal excitation (e.g., Ref. [506]) or mass stripping (e.g.,
Refs. [274, 313, 318, 335] for related works) or tidal disruption (e.g., Refs. [400, 401]) of white
dwarfs can be an important electromagnetic counterpart of gravitational waves. Because the
expected event rate is not so high [324] that the signal-to-noise ratio of gravitational waves for
the LISA sensitivity is unlikely to be very high, the discovery of the possible electromagnetic
counterparts will help extract gravitational waves from the noisy data in the LISA mission.

The condition for mass shedding and tidal disruption during the cross encounter of stars

with supermassive black holes is often described by the so-called S-parameter defined by

gi="t (2.1)

Tp

where 7, is the periastron radius for the orbit and r; is the Hill’s radius [240] defined by

M 1/3
Tt;:R*( ) , (2.2)

M.

with R, the stellar radius, M, the stellar mass, and Mgy the mass of the supermassive
black hole, respectively. Since the early 1990s (see, e.g., Refs. [157, 273, 302]), a large
number of numerical simulations have been performed in the last three decades (see, e.g.,
Refs. [325, 399] for reviews of the latest works and Refs. [212, 404, 405, 406, 407, 408] for
some of the most advanced works). They have shown that mass stripping can take place
at the close encounter if £ is larger than about 0.5, and tidal disruption can take place if
f 2 1 for stars in parabolic orbits (see, e.g., Refs. [222, 326, 399] for Newtonian simulation
works, and also early semianalytical work [320, 321]). It is also shown that for close orbits
around a black hole, the general relativistic effect can significantly reduce the critical value
of § for the tidal disruption [407]. Indeed, general relativistic works show that for circular

orbits near the innermost stable circular orbit of black holes, the mass shedding can occur
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even for 5 ~ 0.4 [190, 254].

However, the previous analyses have been carried out in Newtonian gravity or in relativis-
tic gravity of a black hole with Newtonian (or no) gravity for the companion star or in a tidal
approximation with a relativistic tidal potential [190, 254, 327]. To date, no fully general
relativistic (the so-called numerical-relativity) simulation, i.e., a simulation with no approxi-
mation except for the finite differencing, has been done for the tidal disruption problem with
B <1 (but see Refs. [172, 174, 225] for a head-on and an off-axis collision).

Numerical-relativity simulation is suitable for the tidal disruption problem for the case
that the orbit at the tidal disruption is highly general-relativistic. This is particularly the
case for tidal disruption of white dwarfs by supermassive black holes because it can occur
only for orbits very close to the black-hole horizon. Advantages of the numerical-relativity
simulation are: (i) the redistribution of the energy and angular momentum of the star can
be followed in a straightforward manner and (ii) we can directly follow the matter motion
after the tidal disruption including the subsequent disk formation.

In this Chapter, we present a result of numerical-relativity simulations for tidal disruption
of white dwarfs of typical mass (0.6-0.8M) by a supermassive black hole with relatively
low mass (Mg = 10°My,) for the first time. For simplicity, the white dwarfs are modeled
by the I' = 5/3 polytropic equation of state. As a first step toward more detailed and
systematic studies, we focus on tidal disruption of white dwarfs in mildly elliptic orbits
aiming at confirming that our numerical-relativity approach is suitable for reproducing the
criteria of tidal disruption, which has been already investigated in many previous works
referred to above.

This Chapter is organised as follows. In Section 2.2, we describe our formulation for
evolving gravitational fields, matter fields, and for providing initial data of a star in elliptic
orbits around supermassive black holes. In Section 2.3, numerical results are presented paying

particular attention to the criterion for tidal disruption. Section 2.4 is devoted to a summary.

2.2 Basic equations for the time evolution

2.2.1 Gravitational field

First, we reformulate the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 122]
in numerical relativity to a form suitable for the simulation of high-mass ratio binaries, in
particular for accurately computing a weak self-gravity of white dwarfs. Throughout this
Chapter, high-mass ratio binaries imply those composed of a very massive black hole of mass
Mgy 2 10°Mg and a white dwarf (or an ordinary star) of mass of M, = O(Mg) with the
radius R, 2 103 km, for which the compactness defined by M, /R, is smaller than 1073.

We consider the two-body problem with a compact orbit of the orbital separation r <
30Mpy. With such setting, the magnitude of the gravitational field generated by the black



14 2.2. Basic equations for the time evolution

hole, which is defined by gup — 1 is, of order Mgy /r > 1072, Here g4, and 7, are the space-
time metric and Minkowski metric, respectively. On the other hand, the magnitude of the
gravitational field generated by white dwarfs and ordinary stars is of order M, /R, < 1073,
which is much smaller than that by the black hole. To accurately preserve the nearly equilib-
rium state of such stars during their orbits, an accurate computation of the gravitational field
by them is required. However, if we simply solve Einstein’s equation, a numerical error for
the computation of the black-hole gravitational field can significantly affect the gravitational
field for the white dwarfs/ordinary stars. To avoid this numerical problem, we separate out
the gravitational field into the black hole part and other part, although we still solve fully
nonlinear equations. The idea employed here is similar to that of Ref. [174], but we develop

a formalism based on the BSSN formalism (see Eq. (1.15) in Chapter 1).

In this problem, we employ a variation of puncture gauge [25], in which the evolution

equations for o and 3' are written by replacing the advective derivatives 9; — 98" to 0, as

Oov = =20 K, (2.3a)
atﬁl — ZBZ, (23b)
@Bi = 8tf\l - nBBi, (23C)

where B’ is an auxiliary three-component variable and 7p is a constant of order Mg}

By introducing a static black-hole solution for the geometric variables, ag, G5, 755, Wo,

fl?j, and K, and by writing all the variables by
OCZOZ()+OCS, Bz:ﬁé‘i‘ﬂ;a 5/2]:5/?]—’_5/@8‘77 W:W0+WS7
Ay =AY + A3, K = Ky + K., =1} +T, (2.4)

we then write down the equations for as, 37, Viis Wes fLs-j, K, and fz (these are denoted by
a representative variable Qs as follows). Specifically, the evolution equations Eq. (1.15) and
Eq. (2.3) of the geometrical variables (denoted by a representative variable () are schemati-

cally written in the form

0Q = F(Q). (2.5)

Then, for the decomposition of @ = Qy + Qs with F(Qg) = 0 (under the conditions of
0;Qo = 0), we write the equation for Q) as

01Qs = F(Qo + Qs) — F(Qo). (2.6)

In numerical simulation, F'(Q)y) obtained from finite difference is nonzero, which contains the

truncation error of evolving the stationary background metric numerically. Here, we added
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the second term in the right-hand side to explicitly subtract the leading error of evolving the
background metric so that the right-hand side of the evolution equation of ()5 does not have

the zeroth order terms in @)

Any static black-hole solutions can be used for ag, i, -+, but in the BSSN formalism
with the puncture gauge, the metric relaxes to a solution in the limit hypersurface with
Ky = 0. Using such a trumpet-puncture black hole also allows us to construct the initial
data in the conformal-thin-sandwich (CTS) formalism [53] (see Section 2.2.3). Thus, in the
present formalism, it is appropriate to employ such a solution. In the nonspinning black hole,

the analytic solution is known and is written as [180]

IMpy  2TME,
pr— 1 _— 2.
ao \/ R 16R: (2.72)
i 3vV/3Mg i
W = %, (2.7¢)
3 =6y, e, TH=0, (2.7d)
- 3v/3 M2 xiad

and Ky = 0 where R is a function of r determined by [54]

(2R + Mgu + /AR? + 4Mgu R + 3M3y
"= 1
(2.8)
(4 4+ 3v/2)(2R — 3Mgp)
8R + 6 Mgy + 31/8R2 + 8Mpu R + 6 M2,

] h

We note that r = 0 corresponds to R = 3Mpp/2 and the event horizon is located at R = 2Mpy

(i.e., r = 0.78 Mpy) in this solution.

2.2.2 Hydrodynamics

In this Chapter we model white dwarfs simply by the polytropic equation of state,
P =kp", (2.9)

where P and p are the pressure and rest-mass density, respectively, x the polytropic constant,

and I' adiabatic index for which we set to be 5/3. For the hydrodynamics, we solve the
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continuity and Euler equations,

Va(pu®) =0, (2.10a)
VT4 =0, (2.10Db)

and
Tap = (p+ pe + Pluguy + Pgay, (2.11)

where € and u® are the specific internal energy and four velocity, respectively. In this work,
we do not solve the energy equation, and determine e simply by ¢ = kp' ~1/(I" — 1), which is
derived from the condition that the specific entropy is conserved for the fluid elements. The

continuity and Euler equations are solved in the same scheme as that used in Refs. [278, 526].

The motivation for using the polytropic equation of state comes from the fact that our
primary purpose of this Chapter is to explore the tidal disruption condition for a relatively
low value of 8 < 1 and the formation of shocks by the tidal compression does not play
any role. We here focus only on the process of tidal disruption and subsequent short-term
evolution of the tidally disrupted material. After the tidal disruption, the fluid is highly
elongated and during the long-term evolution of the fluid elements with different specific
energy and angular momentum, they collide and shocks are likely to be formed. For such
a phase, the shock heating will play an important role. Our plan is to follow this phase by

solving the energy equation with a more general equation of state.

2.2.3 Initial condition

First, we describe the formulation employed in this Chapter for computing the initial data
in which white dwarfs are approximately in an equilibrium state in their comoving frame.
From Eq. (2.10b), we have

puV,(hu;) + VP =0, (2.12)

where h is the specific enthalpy defined by h := 14 ¢+ P/p. To derive Eq. (2.12), we used
Eq. (2.10a).

For the isentropic fluid, the first law of thermodynamics is written as
pdh = dP, (2.13)

where d() denotes the variation of a quantity () in the fluid rest frame. In the polytropic
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equations of state employed in this work, we obtain the relation

dP dP
h = / — and Inh= [ —. (2.14)
p ph
In this situation, Eq. (2.12) is rewritten to
u“Va(hui) + 8Zh/ = 0. (215)

Then, we define k* := u®/u’. Using this quantity, Eq. (2.15) is written to
u' L (huy) — u'hu,Vik®* + 0;h = 0, (2.16)

where £, denotes the Lie derivative with respect to k*. The second term of Eq. (2.16) is

written as
u'hu,Vik* = u'hu,V;(u®/ut) = ho; Inu’, (2.17)
where we used u®u, = —1. Thus, Eq. (2.16) is written to
Li.(hu;) + 0;(h/u') = 0. (2.18)

We consider an initial condition for a system composed of a star of mass M, and radius
R,, for which the center is located on the x-axis, around a massive black hole of mass
Mgy > M, and Mgy > R, which is located at a coordinate origin. We assume that the star
predominantly moves toward the y-direction with the identical specific momentum. Thus we
set v = u'/u' = —f + V* where V' = V§’, with V being a constant to be determined.
Here the term of [ is added to simplify the iteration process for computing quasiequilibrium

states. Then, u! is calculated from

—-1/2

u' = [a® — (V" + B) (W + 5] (2.19)

In the present context, L (hu;) can be assumed to be zero for i = y and z, because the star
has momentarily translation invariance for the motion toward the y- and z-directions. By
contrast, with respect to the x-direction, the star receives the force from the massive black
hole. Since the radius of the star, R,, is much smaller than the orbital separation, xy, and g is
larger than the black-hole radius of ~ Mgy, Ly (hu;) for the z—direction can be approximated
by 0;[A(x — x)] where we take A to be a constant, which should be approximately the
Newtonian gravitational acceleration caused by the black-hole written as ~ —Mpy/x3 for
xo > 0. Then, Eq. (2.18) is integrated to give

A(x — o) + uﬁ =C, (2.20)
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where C' is an integration constant. We note that Eq. (2.20) is not an exact first integral
of the Euler equation but can be considered as an approximate one for obtaining an initial

condition in which the star is in an approximate equilibrium state.

For computing initial conditions, we assume the line elements of the form
ds? = —(a? — B.B*)dt* + 2Bpdtdx® + 8 da'da?, (2.21)

where 1) is the conformal factor. Using the Isenberg-Wilson-Mathews formalism [253, 516],

the basic equations are written as

-7
7 L
Ala)) = 2ma)®(py, + 25) + goap—7A,~jA”, (2.22b)
0, A", = 8mJyS, (2.22¢)
where
n = ph(au)? = P S = ph[(au')? — 1] + 3P, J; = phaulu; 2.23
pn = ph( : p : p ,

and A is the flat Laplacian. Aij is defined from the extrinsic curvature, flij, by Aij = z/JGij

and K is set to be zero. Using the CTS decomposition [58, 533] with trumpet-puncture

6
Al — AW o 7 ij
AV = Af + 5~ (L6)"Y, (2.24)
Eq. (2.22¢) is rewritten as
0,07 Bt + gdwajakﬁf = 16may*J' + (LB)"” 0;In (ap™%) (2.25)

where (L))" = (607 + 670, B — 26" 0),8F). Note that although there are some works
in constructing binary black holes initial data with trumpet-puncture [131, 158, 250], this
is, to our knowledge, the first attempt combining the CTS decomposition and puncture
method with the limit (trumpet) hypersurface in constructing quasi-equilibrium initial data
in nonvacuum spacetime. We assume that the contribution to the extrinsic curvature from
the black hole is negligible because the orbital momentum of the black hole is negligible in
this problem, and thus, we set the black hole at rest (however, it is straightforward to take

into account the small black-hole motion [462] in our formalism.)

For a solution of the initial data, we have to determine the free parameters, A, C, and V.
In the polytropic equation of state, we can consider x as well as the central density p. as free
parameters. In the following, we first consider that V' and the rest mass of the star are input

parameters and A, C, and xk are parameters to be determined during the iteration process in
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numerical computation. Our method to adjust s to a desired value will be described later.

To determine these three parameters we need three conditions, for which we choose the
following relations. First, we fix the location of the surface of white dwarfs along the z-axis
as x =z (referred to as point 1) and x = x5 (point 2). Typically, we choose z1 + x5 = 2.
At the surface, h = 1, and thus, Eq. (2.20) gives

1 1
Uy L)

where v} and u}, are the values of u' at points 1 and 2. In addition, we fix the rest mass of
the star which is defined by

My = /d%poz@/ﬁut, (2.27)

where m, is approximately equal to the gravitational mass M, because the star is only weakly

self-gravitating.

Using the condition (2.26), the values of C' and A are determined, and subsequently, h
is determined from Eq. (2.20). In the polytropic equation of state, the rest-mass density is

written as

. . 1/(F—1)
R .

and thus, from Eq. (2.27), x is determined for given values of m, and xs — x;. Once these

free parameters are determined, the rest-mass density is obtained from Eq. (2.28).

For a realistic setting, we have to obtain the desired values of the mass of the star and the
value of k. The value of k is controlled by varying the stellar diameter x5 — x; for a given

value of m,.

To take into account the effect of the black-hole gravity, we employ the puncture formu-

lation by setting
v=dote,  adb=ae+ X,  F=giesl A=A+ Ay (229)

where 1, ap, 35, and A?j denote the solutions of vacuum Einstein’s equation shown al-
ready in Section 2.2.1. Then we numerically solve the equations for ¢, X, 8¥, and Afj from
Egs. (2.22a), (2.22b), (2.24) and (2.25). The initial data is prepared using the octree-mg
code [488], an open source multigrid library with an octree adaptive-mesh refinement (AMR)

grid, which we modified to support a fourth-order finite-difference elliptic solver.
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Figure 2.1: Maximum density as a function of time for model M7V165 (top) with N = 40, 60, 70, and model
M8V17 (bottom) with N = 60, 82, 102. We find that a fair convergence is obtained with N = 60.

2.3 Numerical simulation

2.3.1 Setup

The simulation is performed using an AMR algorithm with the equatorial symmetry imposed
on the z = 0 (equatorial) plane using the SACRA-TD code (for SACRA see Refs. [278, 520]).
We prepare two sets of finer domains, one of which comoves with a white dwarf and the
other of which is located around the center and covers the massive black hole. Because the
radius of the white dwarf, R,, is smaller than the black-hole horizon radius ~ Mgy, we need
to prepare more domains for resolving the white dwarf. In addition to these domains, we
prepare coarser domains that contain both the finer domains in their inside. All the domains
are covered by (2N +1,2N +1, N+ 1) grid points for (z,y, z) with N being an even number.

Specifically, each domain is labeled by ¢ which runs as 0,1,2,-- %6y, " ,BH, " * *  tmax-
The grid resolution for the domains with 5, < ¢ < igy is identical with that with igg + 1 <
i < 2igy — ifix + 1(< imax), respectively. For 0 < i < iy, the center of the domain is located
at the origin, at which a black hole is present. Strictly speaking, the black hole moves due to
the backreaction against the motion of the companion star, but this motion is tiny because
of the condition Mgy > M,. For these domains, the ith level covers a half cubic region of
[—L;: L] x [=L; : L;] x[0: L;] where L; = NAx;, Az; is the grid spacing for the ith level,
and the grid spacing for each level is determined by Az; 1 = Az;/2 (i =0,1,2,--- ,igg — 1
~ 0.8Mgy.

For the moving domains that cover the white dwarf, the center is chosen to approximately

and i =igg + 1, -+, imax — 1) with Az, 11 = A, and Ly,
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Table 2.1: Models considered in this Chapter and the fate (last column). M7V16a and M7V16b correspond to the
models with R, = 8.5 x 10% and 7.0 x 103 km, respectively. For other models, R, ~ 104(M*/0.7M®)*1/3 km.
rp and r, 4 are periastron radius in the present coordinates and the Schwarzschild coordinates, respectively.
TD and OC denote tidal disruption and appreciable oscillation of white dwarfs, and NN denotes that no
appreciable tidal effect is found.

1D \%4 M*(M@) Tp/MBH rp,A/MBH J/MBH ﬁ Fate
M6V1i6e  0.160 0.6 4.401 5.456 3.775 0.72 TD
Mrvie  0.160 0.7 4.401 5.456 3.775 0.65 TD
M7Viéa 0.160 0.7 4.401 5.456 3.775 0.55 TD
M7vVieb 0.160 0.7 4.401 5.456 3.775 0.45 TD/OC
M8vVi6e  0.160 0.8 4.401 5.456 3.775 0.59 TD
M7V1i65  0.165 0.7 5.770 6.813 3.897  0.52 TD
M8V1ies5  0.165 0.8 5.770 6.813 3.897 0.47 TD/OC
M6V17  0.170 0.6 7.030 8.065 4.019 0.49 TD/OC
M7vV17  0.170 0.7 7.030 8.065 4.019 0.44 oC
M8vV1i7  0.170 0.8 7.030 8.065 4.019 0.40 ocC
M6V175  0.175 0.6 8.317 9.346 4.142 0.42 oC
M7vi8  0.180 0.7 9.681 10.707 4.265 0.33 NN

agree with the location of the density maximum. In the present context, the local density
maximum is approximately located along a geodesic around the supermassive black hole.
The size of the finest domain with 7 = 7,,.x, Lmax, 1S chosen so that it is 1.3-1.5R,. We check
the convergence of two different models with three grid resolutions as illustrated in Fig. 2.1.
Higher resolution is used for model M8V17 to measure the spin up of the white dwarf more
accurately (see Section 2.3.2). We obtain good convergence for both models, and thus, we

employ N = 60 as the standard resolution in this Chapter.

2.3.2 Numerical results

In this Chapter we focus on the case that the black-hole mass is Mpy = 10° M, the white-
dwarf mass is M, = 0.6, 0.7, and 0.8M. For the polytropic equation of state, the stellar
radius, R,, is proportional to MG £01 a fixed value of k. Thus, for I' = 5/3, the
stellar radius depends only weakly on the stellar mass. In the present case we basically choose
the value of  so that R, ~ 1.0 x 10*(M,/0.7M,)~"*km. For M, = 0.7M and V = 0.160,
we also prepare two additional cases where k is chosen such that R, = 8.5 x 10° km and
R, = 7.0 x 10® km.

The initial separation is set to be xyg = 20Mpy (it is &~ 21.01Mpy in the Schwarzschild
coordinates), and V is chosen to be 0.160, 0.165, 0.170, 0.175, and 0.180 (see Table 2.1).
The corresponding specific angular momentum of the white dwarf is J ~ 3.7748, 3.8968,
4.0192, 4.142, and 4.2653Mpy, and the resulting periastron radius is 7,/ Mpu(rp,a/Mpn) =
4.401(5.456), 5.770 (6.813), 7.030 (8.065), 8.317 (9.346), and 9.681 (10.707) where in the
parenthesis the values in the Schwarzschild coordinate, i.e., areal radius (hereafter denoted

by 7,.4), are described. In Fig. 2.2, we plot the geodesics only for one orbital period for
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Figure 2.2: Geodesics for V = 0.160, 0.165, 0.170, 0.175 and 0.180 in the coordinates of g%,. Those only
for one orbital period started from z = 20Mpy and y = z = 0 are plotted. The filled circle at the center
represents the black hole with the coordinate radius of its event horizon r =~ 0.78 Mpy.

V = 0.160, 0.165, 0.170, and 0.180.

With these settings, the white dwarf has an elliptic orbit around the black hole with
the periastron at r, ~ (4.4-10)Mpy, and thus, the eccentricity is approximately defined by
e = (xg —1p)/(xo +1p) is = 1/3-2/3. Here, xo(= 20Mpy) and r, are defined in the radial
coordinates of the metric of g%, and thus, the values of e slightly change if we define it in

the areal coordinate (Schwarzschild radial coordinate).

For the models mentioned above, the value of 3 is in the range between 0.33 and 0.72 and

—~1/3 -1 —2/3
B~ 059 (L M. NP rpa Myn ™ (2.30)
107 km ) \0.7M, 6 Mpx 105 M, !

where the areal radius 7, 4 is used for the definition of § in this section. For V' = 0.160 and
0.165 with M, = 0.6-0.8M, we find 0.50 < g < 0.7, and thus, the white dwarf is expected

estimated by
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Figure 2.3: The maximum density as a function of time for V' = 0.160, 0.165, 0.170, and 0.180 with M, =
0.7Mg. The maximum density is normalized by the initial value denoted by pg.

to be strongly perturbed by the black-hole tidal field for M, = 0.6-0.8M. By contrast, for
V =0.180, 8 < 0.35 with M, = 0.7M, and thus, the tidal force of the black hole is likely to

be too weak to perturb the white dwarf.

For V = 0.170, f ~ 0.49, 0.44, and 0.40 with M, = 0.6, 0.7, and 0.8M respectively.
In these cases, tidal disruption is not very likely to take place but the tidal force from the
black hole should induce the stellar oscillation on the white dwarf. Because for I' = 5/3, the
stellar radius depends only weakly on the stellar mass, the presence or absence of the tidal
disruption is likely to depend primarily on the value of V' (or the specific angular momentum
of the white dwarfs) in the present setting. In the following, we will show that our code can
reproduce all these expected phenomena.

Fig. 2.3 plots the evolution of the maximum density for V' = 0.160, 0.165, 0.170, and 0.180
with M, = 0.7M.. We note that for Mgy = 105M, the orbital period for these parameters
are in the range from ~ 220s for V' = 0.160 to ~ 250s for V' = 0.180. The figure shows the
results expected in the previous paragraphs: For M7V16 and M7V165, the white dwarfs are
tidally disrupted while approaching the black hole irrespective of the white-dwarf mass. For
M7V17 (B = 0.44), the white dwarf is perturbed by the black hole near the periastron but it
is not tidally disrupted. After the close encounter, the white dwarf is in an oscillating state
due to the instantaneous tidal force received from the black hole. By contrast, for M7V18, the
maximum density is approximately preserved to be constant, suggesting no disruption occurs
and the tidal effect is negligible. Note that such tidal field may still perturb the white dwarf

and produce detectable electromagnetic or gravitational-wave signal if a sufficient amplitude
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Figure 2.4: The maximum density as a function of time for the cases that stellar oscillation occurs (0.5 = 3 2>
0.4). The red, blue, and green curves show the results with M, = 0.6Mg, 0.7M and 0.8M, respectively.
The maximum density is normalized by the initial value denoted by pg.

of oscillation is induced.

In Fig. 2.3, the results of M7V16 (5 = 0.65), M7V16a (5 = 0.55) and M7V16b (5 = 0.45) are
also compared. As expected, for the first two models, the white dwarfs are tidally disrupted,
while for the most compact white dwarf, the tidal disruption does not occur although it is
perturbed significantly by the black-hole tidal force. This illustrates that the 5 parameter is
a good indicator for assessing whether tidal disruption takes place or not irrespective of the

white-dwarf radius.

Fig. 2.4 shows the evolution of the maximum density when stellar oscillation is induced.
For M6V17 (8 = 0.49), the white dwarf is significantly elongated by the tidal force from
the black hole; the central density is decreased to less than 50% of the original value after
passing through the periastron. Associated with the tidal effect, the mass is lost from the
white dwarf. However, with the increase of the orbital radius, the central density increases
again, resulting in a less massive white dwarf. This is also the case for M8V165 (8 = 0.47) and
M7V16b (/5 = 0.45). These results indicate that the critical value of § for the tidal disruption is
~ 0.50 and the threshold value for exciting a high-amplitude oscillation is g ~ 0.45. Fig. 2.4
also shows that even for 0.40 < 8 < 0.45 an appreciable oscillation is excited by the tidal

force.

In Fig. 2.5 and Table 2.1, we summarize the fates of white dwarfs as a result of the tidal
interaction. It is found that for S = 0.5 tidal disruption takes place and for § = 0.4, the
white dwarfs are perturbed appreciably by the black-hole tidal field. All these results agree
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Figure 2.5: A summary for the fate of the white dwarfs in the plane of M, and 5. TD and OC denote that
tidal disruption and appreciable oscillation of the white dwarfs are observed after the close encounter of the
white dwarfs with the black hole. NN denotes that no appreciable tidal effect is observed.

approximately with the expectation from the previous studies.

For M7V16, tidal disruption takes place but only a small fraction of the white dwarf matter
falls into the black hole because the fluid elements have specific angular momentum large
enough to escape capturing by the black hole. Most of the tidally disrupted matter ap-
proximately maintains the original elliptic orbit (see Fig. 2.6) although the matter has an
elongated profile. To clarify the eventual matter distribution around the black hole, we will
need to follow the matter motion for more than 10 orbits. This topic is one of our major

research targets in the future.

For 0.4 < B < 0.5, the white dwarf will be continuously perturbed by the black-hole
tidal force whenever it passes through the periastron. In addition, the angular momentum is
transported during the tidal interaction, and it will lead to the transport of the orbital angular
momentum to the white dwarf, resulting in a spin-up of it. According to a perturbation study

for the stellar encounter, the energy deposition during the tidal interaction in one orbit is



26 2.3. Numerical simulation

—— orbit
BH

S

[(cwd/B) 0101607

N

0.1

~15-10 =5 0 5 10 15 20
X/Mpgy

Figure 2.6: The density profiles of the tidally-disrupted white dwarf for the model V' = 0.160 and M, = 0.7M,
(M7V16). The units of the length scale for the density plots are GMpp/c? ~ 1.48 x 10° km. The solid and
dashed curves show the time evolution for the location of the maximum density and the elliptic orbit shown
in Fig. 2.2 for V = 0.160 (i.e., geodesic). The length scale of x and y axes is shown in units of Mpy.

written approximately as [375]

M2\ (Mgu\> [ R.\°
AEtid N ftid ( R* ) < M* > (TP7A> 2 31
M2 ( ‘ )
. (3) g

where fiq is a factor of O(0.1), which depends on  and the equation of state. Associated

with the energy deposition near the periastron, the angular momentum deposition is also

deposited. In one orbit it is approximately estimated by AJgim ~ AEua/Q, [296] where

Q, = \/Mgu/r3 4, and thus,
M 32 1 R\
AJspin - fspinM* V M*R* < BH) < )

M* Tp,A

= fspinM* V M*R*ﬁg/Q,

where fpin is a coefficient of the same order of the magnitude of fi;q.

(2.32)
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Figure 2.7: The rescaled change in angular momentum AJy,;,/ (M* \/M*R*ﬂg/Q) as a function of time for
the stellar oscillation scenario (M8V17). This agrees with the analytic expression Eq. (2.32) if fspin ~ 0.1-0.3.

Because the maximum spin angular momentum of the star is approximately written as
M./M,R,, we find that AJg,, can be more than 0.1% of the maximum spin if a white dwarf
passes through a close orbit with 5 = 0.4. We approximate the orbit angular momentum

Jorbit and the spin angular momentum Jypi, of the white dwarf as

Jorbit = My ((x) (uy) = (y) (uz)) (2.33a)

Jspin = /d3x¢6ph (2 = (2)) (uy = (uy)) = (y = (¥) (ua = (ua))], (2.33b)

where M), := [ d®z¢%ph and the volume average of quantity ¢ is defined as (¢) := Mih [ dx®phyg.
In such decomposition, the sum of orbital and spin angular momentum equals the total an-
gular momentum of the white dwarfs. We analyzed the spin angular momentum gain of the
white dwarfs for M8V17, and we indeed find AJy/(M./M,R.3%?) ~ 0.1-0.3 as shown in
Fig. 2.7. Note that the spin up of white dwarf AJy,, is about 107 of the total angular
momentum, and hence, it is not easy to determine AJy,, accurately. Although we cannot
achieve a good convergence in AJg,,, we are able to obtain a noticeable rise in Jy;, during

the close encounter, which suggests fopin ~ 0.1-0.3, consistent with the above analytic result.

For close orbits, the tidal angular-momentum transport can dominate over the orbital
angular momentum loss by gravitational-radiation reaction. Assuming that gravitational
waves are most efficiently emitted near the periastron at which we may approximate the

orbit to be circular, the angular momentum dissipation by gravitational waves in one orbit
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can be written as [368]

647 M2 M? 7e?
Adaw ~ Tﬁ% (1 + i) , (2.34)
A 8

where e denotes the eccentricity. Thus, the ratio of AJyq to AJgw is written as

—5/2 -3 -2 5 -1
AJspin ~ 231 p,A 2 [ Mg M, R, " 7e? (2.35)
AJGW P 4MBH 105M@ 07M@ 104 km 8 . .
Thus it is larger than unity for r, 4 S TMgu/c*, R, =~ 10" km, Mgy = 10°My, M, = 0.7TM,

and fqpin = 0.2. This is also the case for the ratio of AEyq/AEqw where AEgy is the energy

dissipated by gravitational waves in one orbit. Thus, near the tidal disruption orbit, the

orbital evolution would be primarily determined not by the gravitational-wave emission but
by the tidal effect. To clarify the eventual fate of such a white dwarf, we obviously need a
long-term accurate simulation. Such a topic is one of our future targets.

We note that both AJg,i, and AJgw are much smaller than the orbital angular momen-
tum of order M, \/m. Thus, the cumulative effect of the tidal angular momentum
transport plays an important role just prior to the tidal disruption. By repeated tidal
interaction, the spin angular velocity of the white dwarfs is likely to be enhanced up to
~ MYZ /3 = p3/20M}% JRY?. In addition, the stellar oscillation for which the oscillation
energy is comparable to or larger than the rotational kinetic energy should be excited. As a
result, mass loss could be induced, resulting in the increase of the stellar radius and enhanc-
ing the importance of tidal interaction. In this type of the system, the tidal disruption is
unlikely to take place by one strong impact by the black-hole tidal force but likely to do as a

result of a secular increase of the stellar radius (see, e.g., Refs. [141, 313] for related studies).

2.4 Discussion

We reported a new numerical-relativity code which enables us to explore tidal disruption
of white dwarfs by a relatively low-mass supermassive black hole. As a first step toward
more detailed future studies, we paid attention to the condition for tidal disruption of white
dwarfs with typical mass range in elliptic orbits by a nonspinning supermassive black hole.
We showed that our code is capable of determining the condition for the tidal disruption. As
expected from previous general relativistic works (e.g., Refs. [254, 407]), the tidal disruption
takes place for 5 2 0.5 and an appreciable oscillation of the white dwarfs are induced by
the black-hole tidal effect for 5 = 0.4 for orbits close to the black hole in the I' = 5/3
polytropic equation of state. The critical value for the onset of the tidal disruption is smaller
than that obtained by Newtonian analysis. For white dwarfs with M, = 0.6M; and R, =
1.2 x 10*km, B can be larger than 0.4 even for Mgy ~ 4 x 10°M,, if the periastron radius is
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7p.a = 4Mpy. Our result indicates that in such systems with a relatively low-mass (but not
intermediate-mass) supermassive black hole for which gravitational waves in the late inspiral
phase can be detected by LISA [31], tidal disruption can occur for typical white dwarfs. For
spinning black holes with the dimensionless spin parameter of 2 0.9, 1, 4 can be smaller than
~ 1.7Mgy [47]. For such black holes, tidal disruption of typical-mass white dwarfs may occur
even for Mgy ~ 10°M,. Investigation of this possibility is a future issue.

There are several issues to be explored. The first one is to extend our implementation for
spinning black holes. Since no analytic solution is known for the spacetime of spinning black
holes on the limit hypersurface, we need to develop a method to provide g%, for employing
the formulation introduced in this Chapter. One straightforward way to prepare such data
is just to numerically perform a simulation for a spinning black hole (in vacuum) until the
hypersurface reaches the limit hypersurface as a first step, and then, the obtained data are
saved and used in the subsequent simulations with white dwarfs. A more subtle issue along
this line is to prepare the initial condition. For nonspinning black holes, we can assume
that the conformal flatness of the three metric, and as a result, the initial-value equations
are composed only of elliptic-type equations with the flat Laplacian. For the spinning black
holes, the basic equations are composed of elliptic-type equations of complicated Laplacian,
and hence, the numerical computation could be more demanding, although in principle it
would be still possible to obtain an initial condition. We plan to explore this strategy in the
subsequent work.

For modeling realistic white dwarfs it is necessary to implement a realistic equation of
state. If we assume that the temperature of the white dwarfs is sufficiently low and the
pressure is dominated by that of degenerate electrons, it is straightforward to implement
this.

More challenging issue is to follow the hydrodynamics of tidally disrupted white-dwarf
matter for a long term. After the tidal disruption, the matter of the white dwarf is likely
to move around the black hole for many orbits. During such orbits, the matter collides each
other, and eventually, a compact disk will be formed after the circularization. Such disks are
likely to be hot due to the shock heating, and thus, it can be a source of electromagnetic
counterparts of the tidal disruption. In the presence of magnetic fields, magnetorotational
instability [43] occurs in the disk, and the magnetic fields will be amplified. If the amplified
magnetic field eventually penetrates the black hole and if the black hole is appreciably spin-
ning, a jet may be launched through the Blandford-Znajek effect [95]. After the amplification
of the magnetic fields, a turbulent state will be developed in the disk and mass ejection could
occur by the effective viscosity or magneto-centrifugal force [94]. The ejecta may be a source
of electromagnetic signals. One long-term issue is to investigate such scenarios by general

relativistic magnetohydrodynamics.
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Breakdown of Contribution

This chapter is based on the publication: “Binary neutron star mergers in massive scalar-
tensor theory: Quasiequilibrium states and dynamical enhancement of the scalarization” in
Phys.Rev.D 108 (2023) 6, 064057 [294] by H.-J. Kuan, K. V. Aelst, A. T.-L. Lam and
M. Shibata. K. V. Aelst developed the initial data solver of binary neutron stars in massive
scalar-tensor theory based on the open-source code FUKA. The modified gravitational field
equations in quasi-equilibria were derived by H.-J. Kuan and me. I also proposed a change
of scalar field variable to better capture the asymptotic exponential decay, and helped fixing
some bugs during the development of the initial data code. The numerical calculation of
the quasi-equilibrium sequences was performed by H.-J. Kuan. K. V. Aelst and I provided

constructive comments on the manuscript written partially by H.-J. Kuan and M. Shibata.
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Overview

In this Chapter, we study quasi-equilibrium sequences of binary neutron stars in the frame-
work of Damour-Esposito-Farese-type scalar-tensor theory of gravity with a massive scalar
field, paying particular attention to the case where neutron stars are already spontaneously
scalarized at distant orbits, i.e., in the high coupling constant case. Although scalar effects
are largely quenched when the separation a is 2 3—6 times of the Compton length-scale that
is defined by the scalar mass, we show that the interaction between the scalar fields of the two
neutron stars generates a scalar cloud surrounding the binary at the price of orbital energy
when a < 3-6 times of the Compton length-scale. This enables us to constrain the scalar
mass m, from gravitational-wave observations of binary neutron star mergers by inspecting
the dephasing due to such phenomenon. In particular, the event GW170817 is suggestive of
a constraint of my 2 107! €V and the coupling strength should be mild if the neutron stars

in this system were spontaneously scalarized.

3.1 Introduction

General relativity (GR) has been put against a variety of observations and yet been chal-
lenged, while it has also proven to be incomplete from the theoretical point of view for its
nonrenormalizability (e.g., [50, 51]). Among the extensions to GR present in the literature,
Damour-Esposito-Farese (DEF) type of scalar-tensor (ST) theory of gravity is perhaps most
widely considered. In such theory, the gravity around a scalarized compact object acquires
a distinct feature from that in GR, modifying the trajectory of orbiting companions. In par-
ticular, the motion of binaries will be influenced to deviate from the GR prediction if there
is scalar interaction between the two components at play. In addition, scalar waves will be
emitted from binaries consisting of differently scalarized components, constituting extra loss
of orbital energy. Lacking the evidence of the aforementioned two effects in the pulsar timing
observation of neutron star-white dwarf (NS-WD) binaries has placed strong constraints on
ST theories with a massless scalar field [33, 74, 145, 197, 224, 419]. Such constraints are
rather stringent for the presence of a scalar charge of neutron stars (NSs) [128, 538]. These
constraints can, however, be mitigated by the inclusion of scalar mass m, [28, 385]. The
scalar effects beyond the associated Compton length-scale Acomp = hc/my are smeared out,
thus naturally accounting for the non-detection of scalar dynamics that could take place in
these binaries. In particular, the constraints by the pulsar timing are lifted to a large extent
if the scalar field has a light mass my > 10719 eV (corresponding to a Compton length-scale
Xeomp < 1.5 x 10° km) [385]. With this small mass, the scalar interaction within NS-WD bi-
naries and the emission of scalar waves from them are suppressed, leading to identical orbital
evolution with that in GR. Therefore, including a scalar mass not only increases the dimen-

sion of the parameter space by one but unlocks the previously ruled-out region. However,
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NS-WD binaries could barely put constraints on the massive theory since a light scalar field
is enough to lift the constraining power of pulsar timing observations. On the other hand,
an ever-stringent lower bound on the scalar mass may be placed by pre-merger gravitational
waves (GWs) from coalescing binary neutron stars (BNSs).

For BNS mergers, the growth of the scalar field can be activated by the gravitational
compactness of the binary, defined as the ratio of the total mass to the orbital separation,
forming another kind of scalarization [16, 409, 432, 450] (see also [270, 271, 361, 415] for
semi-analytical modeling) other than the spontaneous ones [34, 143]. In the same spirit as
pulsar timing constraints, the absence of both kinds of scalarization in the event GW170817
suggests that spontaneously scalarized NSs are unlikely present in the associated coalescing
BNS if the scalar field is massless [537]. To probe massive ST theory by GW physics, a
pursue of scalar masses 10712-107! eV is of particular interest since the associated Compton
length-scale is comparable with or smaller than the typical orbital separation of ~ 30200 km
when the BNS comes in the detection window.

It is widely known that the uncertainty on the theory of gravity is degenerate with that
on the nuclear equations of state (EOS) [418, 469]. Among other things, the twin star in GR
predicted from some EOS embracing hadron-quark phase transition has an analog in the ST
theory [292]. Nonetheless, certain scalar-induced phenomena have no counterparts in GR,
e.g., the presence of scalar-type GWs from binary motions [142], core-collapse of giant stars
[39, 126, 216, 398, 473], and radial [466] and polar [289] oscillations of NSs (see [167] for a
recent, extensive review). An observation of such ST-exclusive effects can therefore probe
the nature of gravity, and limit the parameter space of ST theories without the potential
for misinterpreting EOS effects. The dynamics during the late inspiral up to merger, and
the associated GW emission from BNSs in a ST theory that admits spontaneous and/or
dynamical scalarization may shed unique light on the nature of gravity [4, 15], thus deserving
qualitative investigation.

For mass of m, = 107! eV, the scalar effects are shielded in the early inspiral and the
interaction only becomes dynamically important when the binary approaches merger. Since
the effects occur in a highly non-linear regime of the theory, it can only be investigated
numerically. Although certain attempts have been made in the massless case (mg = 0)
[16, 235, 323, 450, 486], numerical study of the BNS dynamics in theories with a massive
scalar field has not been performed. We thus endeavour to address such issue numerically as
a non-trivial scalar mass is necessary to account for the aforementioned observations. For this
purpose, preparing appropriate initial data (ID) is rather imperative in order to guarantee
accurate simulations.

As the first step towards the derivation of accurate BNS dynamics and the emitted GWs,
we develop an ID code to generate equilibrium states of BNSs, which are expected to deliver

certain information on the dynamics of coalescence since the sequence of equilibria can be
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viewed as the leading order approximations of the inspiraling process. In particular, the
constructed equilibria can (i) offer an approximate estimate on the luminosity of GWs [142,
186], and (ii) qualitatively investigate scalar effects in the inspiral stage on top of (iii) paving
the way toward future numerical-relativity studies of BNS mergers. By scrutinising the
constructed sequences, we found that a lower bound of m, > 107! eV for strong couplings
can be readily drawn. Although quantitative analysis of the waveforms can supplement the
effort of waveform-modelling (e.g., [100]) to examine the imprint of modified gravity from

GWs, the relevant investigation will be deferred to later work in this series.

In this Chapter, we pay particular attention to the sequences of BNSs in which each NS is
spontaneously scalarized, i.e., the coupling constant B is high [see Eq. (3.2)]. Broadly speak-
ing, inspiraling scalarized BNSs are speculated to be classified into three stages depending on
the following three parameters: the orbital separation a, the gravitational wavelength Agy,
which is &~ a¥?M~Y/2/2(> a) for binaries in circular orbits with M the total mass of the
binary, and the Compton length-scale Acomp. For (I) Agw > @ > Acomp, no effect associated
with the scalar field appears and hence the sequences of BNSs can be identical to those in
GR; (II) for Agyw > Acomp 2 @, the scalar-wave emission is suppressed because of the relation
Asw > Acomp, While the interaction between the scalar clouds of the two NSs can play a role
in modifying the binary orbit; (III) for Xcomp > Agw > @, both the scalar-wave emission and
interaction of the two scalar clouds are present. For the categories (IT) and (IIT), the orbital
evolution of the BNSs can be different from that in GR. One of the primary purposes of this

Chapter is to confirm these speculations.

This Chapter is organised as follows. Section 3.2 briefly reviews the ST theory under study,
including the connection to other formalisms adopted in the literature, the equations to be
solved for quasi-equilibrium states of binaries, and the constraints on the theory parameters
from current observations of binary pulsar timing and GWs from coalescing BNS. In Sec. 3.3,
we describe the asymptotic properties of stationary spacetimes in this theory, which provide
quantitative measures for the quality of the quasi-equilibrium states constructed here. Section
3.4 forms the main part of the article, where the sequences of BNS are computed (Sec. 3.4.1),
and demonstrates the scalar effects in the binary evolution especially in terms of the cycles
in the GW (Sec. 3.4.2). An elaboration on how the enhancement of scalarization influences
the onset of mass-shedding follows in Sec. 3.4.3. Discussion and potential implications of a
detection of such effects are given in Sec. 3.5. Throughout this Chapter, the reduced Plank

constant set to h = 1.
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3.2 Theoretical and observational aspects of the theory

3.2.1 Basic equations

The action of the scalar-tensor theory in the Jordan frame is written as [104, 259]

s Poy/ =g [ch _ g veg U(qﬁ)] - / Loy gp(l+e),  (31)

¢

where R and V, are the Ricci scalar and covariant derivative associated with the metric g,s,

16w

p is the rest-mass density, and ¢ is the specific internal energy. In the action, w(¢) describes

the coupling between the metric and the scalar field ¢, for which the following expression:

o
w(o) +3/2

is adopted in the present article with B as the dimensionless coupling constant [150]. For

= BIng, (3.2)

latter use, we introduce the variable ¢ via
21n ¢ = 2, (3.3)

with respect to which the scalar potential,

B Zmigﬁqﬁ?

(¢) — 5 (3.4)

is chosen for the scalar mass m, [298]. Along with the scalar mass, a Compton length-scale,

~ ms  \7
Xcomp ~ 19.7km <m> (35)

is introduced.

Denoting the Einstein tensor associated with the metric g, as G, the equation of motion

associated with the action can then be written down as

Gab :8W¢_1Tab + w(¢)¢_2 [va¢vb¢ - %gabvc¢vc¢:|

o2 (3.6)
+67 (VaVid — g VeV°0) — 52610 g,
and
a 1 dw c 4m?¢¢2
VaV ¢ = W |:87TT — %Vdﬁv (b + B } 5 (37)

where 7' = T, *. The equation of motion for the matter in the Jordan frame is the same as
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in GR, i.e.,
V., T% = 0. (3.8)
The fluid is assumed to be a perfect fluid, for which the stress-energy tensor has the form
T = phu®u® + Pg®, (3.9)

where P is the pressure, h = 1 + ¢ + P/p is the specific enthalpy, and u® is the 4-velocity of
the fluid, respectively.

3.2.2 Connection to the Einstein frame

To draw the connection to a large part of the literature, where the Einstein frame is often
considered due to certain advantages with respect to the Jordan frame, we provide the re-
lations between these two frames in this subsection, while we will stick to the Jordan frame
in the rest of the article. The scalar field in the Einstein frame, denoted by ¢, is defined by

assuming that the Weyl relation between the metric fields in the two frames is
Gab = A(?)*ab; (3.10)
where A(@) = ¢~ /2 = %%*/2 and f, is a dimensionless constant. Thus,
o=/ 2z =Bz (311)

In addition, the potential in the Einstein frame, V, related to U via U = 4V ¢?, is given by

L5
V= §mig02, (3.12)

which makes clear the physical meaning of the parameter m, as the scalar mass.

The two parameters in the DEF theory are defined as the asymptotic values of the first and
second derivative of the logarithmic coupling function [142, 143]. Let the asymptotic value
of the Jordan frame scalar field be g, thus the one in the Einstein frame being ¢, = o/ B
by Eq. (3.11), one then has

dIn A Bopo
« = = ) 3.13
DEF d@ o \/E ( )
and
d?*In A
BoEr = 152 = fo = —B/2. (3.14)
L PP

As long as the transformations of the fields between the two frames are mathematically well-



Chapter 3. Quasi-equilibrium states and dynamical enhancement of the scalarization 39

defined (e.g., one-to-one relations should be guaranteed [215]), the physics can be equally

validly discussed in whichever frame [191].

3.2.3 Gravitational field equations in quasi-equilibria

We describe here the basic gravitational field equations for computing quasi-equilibria of
BNSs in circular orbits. Following previous works [253, 515] (and see, e.g., [485] for a review),
we solve the constraint equations under the maximal slicing condition, assuming conformal
flatness for the 3-spatial metric v;; = W™2f;;, where W is a conformal factor and f;; is the

flat 3-metric.

The momentum constraint is written as

. , 2 2
0= Mj = DiKlj — DJK - 87T§Z5_1Jj + QOK]ZDZQO - (]. + E - %) CI)DJQO - (IOD]'CI), (315)
where ® = —a~1(9; — 8*0,)¢ is the "momentum” of the scalar field. The Hamiltonian
constraint is written as
2 ij -1 2 3, 2 k
0=H=R+K*—K;K”—16m¢ " py — 55 (®° + DrpD"p)

(3.16)

k 2 k 2mgp* ¢

—2[-K®p+ Dy D + (14 ¢*) Dyp D] = —2—,

where R is the Ricci scalar with respect to v;; and pp, = o?T"™.

The elliptic equations for generating binary ID (assuming conformal flatness) are written

down as (see [150, 486] for equations in ST theories with a massless scalar field)

242 2 2 2
Aw — ¢—1w5 (27Tph + m¢¢ ¥ ) o lw—7AUAz] . lﬂBw5@2T¢_1 _ wa)
4B 8 2 4 (317
1 3 y | y
=4 (14 5 - 59) PO + el w0~ x0w)0re),
7 _ .. 3 3 )
Ax = 216~ X (on + 29) + ¥ Ay AY — Sa By T — (;1 + E>x¢4mis@2¢
1 3 ’ 3 y
=X (34 5= 362) 1000 - S0t o~ xaw)Ose),
(3.18)
AB' + 1 f90,(0,8%) = 16wy~  f19.J;
3" ’ (3.19)

— 2 TAT (T O — T Ox) — 2xp T TAY 00,
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and

Ap = 20 By 0¢ ' T — o f V(i) 050 — 7 (x ' Oix + 0™ 0:0)(95) + mi pd,  (3.20)

where A denotes the flat Laplacian, ¢ = W12 x = a1, S = T;;77, and we used the
definition

A =10 (Kij — %fy”K) : (3.21)
We also assumed that the “momentum” of the scalar field ¢, denoted by ®, vanishes given
that the scalar-radiation reaction time scale is much longer than the orbital time scale. From
Eq. (3.20) we see that the asymptotic value of the scalar field, ¢g, can be oscillatory (e.g.,
[149]) or zero for stationary solutions. We adopt the latter case in the present work, i.e.,
©o = 0. By modifying the elliptic equations (3.17)—(3.19) and introducing equation (3.20),
we generalise the public spectral code FUKA [363] to this ST theory for generating the BNSs
in quasi-equilibrium.

Note that, for large distances, FUKA uses a compactified domain to bring infinity to a
finite numerical distance (this allows in particular to properly impose boundary conditions
at infinity). Given the asymptotic exponential decay of the scalar field ¢, its profile is better
captured in such a domain if Eq. (3.20) is rewritten in terms of an auxiliary scalar field

¢ = @ cosh(myr), which gives

2m, tanh(mr)

A& =mj [2cosh*(mgr) + ¢ — 1] € + € + 2my tanh(mgr) ' 0;¢

+ 27 By g T — cosh™?(myr)é [ f90,£0;€ — 2my€ tanh(myr )7 0;¢ (3:22)

+ mifQ tanh2(m¢7’)} — (x 'O + v to) [fijﬁjé’ — myé tanh(mgr)f |,

where 7 is the unit radial vector. The first term in the right-hand side suggests a Helmholtzian
nature of the equation, which, however, asymptotically reduces to a Laplacian one under the
assumption of this Chapter that ¢ — 1 at r — oo.

3.2.4 Spontaneous scalarization with massive fields

In isolated NSs and for a given coupling strength B, scalarization is triggered by tachyonic
instability if the NS exceeds a threshold compactness determined by the theory parameters
and the EOS. In particular, the conditions to be met for spontaneous scalarization in a
spherical NS are approximately k% > 0 and kR, — /2 for k* = —(2n BT + m3) [298]. In
the massless theory, the threshold is only weakly EOS-dependent for some coupling strength,
given that —T =~ p [30, 143, 450, 521]. However, this universality is lost from the non-

vanishing my [527]. Instead of studying the EOS dependence of the threshold, we focus on a
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Figure 3.1: Boundaries of the scalarization projected on the mi — B\/M, 1.4 plane for a variety of stellar
masses, which separate the upper region where stars do not harbour a static scalar field from the lower region
of scalarized NSs. Here the notations M, 1.4 = M, /1.4 Mg and my _11 = m¢/10_11 eV are used, and the
APR4 EOS is adopted.

particular EOS (ARP4 [22]) and look at how the scalarization criterion is modified by m.

In Fig. 3.1, we trace out the marginally-scalarized configuration on the mi;B v/'M, plane
where M, denotes the mass of the NS (see Sec. 3.3.2 for more details on defining stellar mass).
We observe that the critical coupling strength B for scalarization correlates approximately
with the squared mass of the scalar field, and the relation depends only slightly on the specific
stellar mass. For the considered EOS, we find the fitting formula

2
me 2
~ 1252z + 154 3.23
(1.6 x 1011 eV) S (3:23)

where

T = (1%) (12\4]\}@)1/2' (3.24)

Therefore, for a given scalar mass, the critical coupling strength is approximately a function

of M,. In particular, the critical coupling strength B, for massless ST theories is solved as

. M —1/2
B™ 0 ~ 9.6 * . 3.25
crit (14 M@) ( )

We see also that the critical coupling strength increases monotonically with my, (i.e., 0Beit/Omg >
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0). This tendency continues up to the mass large enough to eliminate scalarization for any
coupling strength [385]. For NSs whose typical radius is ~ 10 km, mass of mg = 2 x 107! eV
severely suppresses scalarization in NSs since the associated Compton length is shorter than
the stellar size. We thus only consider masses smaller than this limit.

In addition, the presence of scalar hair provides extra supporting force, thus sustaining
more matter for a given stellar mass (the meaning of stellar mass will be further clarified in

Section 3.3.2), i.e., the stellar rest mass

M, = /put\/—gdgx (3.26)

is larger for stronger scalarization. As an illustration, assuming ms = 1.33 x 10~'* eV, EOS
APRA4, and M, = 1.35 M, one has M,, = 1.5021 M, for B = 15.5, while M,, increases by
0.015 M, for B = 17.

3.2.5 Current Constraints

Pulsar-timing observations in NS-WD binaries [33, 197, 419] or in galactic NS-NS binaries
[287] can constrain the parameters of ST theories based on scalar-wave emissivity (assuming
mg S 1071eV). In fact, the ST theory with a massless scalar field and a high coupling
constant B 2 9 (i.e., fprr S —4.5) is ruled out by the network of pulsar systems [128, 538].
However, a tiny value of mgy > 7\; (here A,y denotes the wavelength of scalar waves which is
comparable to the gravitational wavelength) can account for the absence of scalar radiation
and the reason is as follows. The propagation group speed of scalar waves (v,) with the

frequency wyg,, can be approximately written as

vg = /1 —miw2 = (1+ mi?\éw)_lﬂ, (3.27)

where we note that the relation between the wavelength and frequency is Agw = (W2, —

oW
~1/2 This speed is much slower than the speed of light for Agw > Acomp, thus essentially

my)
prohibiting the scalar-wave emission (e.g., [28, 398]).

Aside from the scalar-wave emissivity, the gravitational field around scalarized NSs can
be appreciably different from that in GR within a few times of Acomp (see Fig. 3.2 below).
Accordingly, the orbital motion around the scalarized NS should be modified for orbital sep-
arations comparable with Acomp. Such modification is, however, not seen in the observations.
A small value of the mass my > 1/a(~ 107V for observed NS-WD systems) is then
necessary to circumvent the current observational constraint if the NSs are scalarized (e.g.,
[385]). We note that this mass range can also accommodate what is observed from the triple
system PSR J0337+1715 [116] (see Fig. 2 therein). In addition, simultaneous mass-radius

measurements by monitoring rotating hot spot patterns of pulsars can also probe the theory
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parameters [152, 497], while the constraints obtained in this way are currently weaker than

the aforementioned ones.

The tensorial gravitational waveforms observed for a BNS can constrain the theory by
measuring the scalar-radiation-induced phase shift [378]. For the specific event GW170817,
the observation does not support significant scalar effects in inspiral stages [331, 537], while
the induced/dynamical scalarization in late-inspiral-to-merger phase remains unconstrained
due to the insufficient sensitivity to the late inspiral waveform. An upper limit of B < 9—9.4
is thus suggested for massless scalar field if the two NSs are slowly rotating (cf. Fig. 13
in [537]; we note again that their parameter is § = —B/2). This constraint substantially
prevents spontaneous scalarization in NSs. In order to revive the existence of scalarized
NSs, the Compton length-scale has to be much smaller than the constraint from the pulsar
systems, because the orbital separation of inspiraling BNSs in the range of GW observations
is quite small, within ~ 20-200 km. However, the scalar effects in this regime is not trivial,

so that the present numerical work is required; see Sec. 3.4 for more details.

Although much less stringent, the gravitational phenomena in the solar system (e.g.,
Shapiro time delay measured by Cassini tracking) put constraints on the scalar mass my 2
10717 eV [28, 365]. Possible constraints on the massive theories may also be placed by extreme
mass-ratio inspirals (EMRIs) where superradiance modifies orbital dynamics [109], e.g., with
the presence of floating orbits on resonance ‘islands’ [535], thus leading to phase shifts in
gravitational waveforms (much similar to the ramification of non-Kerr black hole spacetimes
[155, 156]). However, it has recently been pointed out that the scalar imprint in the waveforms

may be indistinguishable from GR waveform baselines for my < 4 x 1072 eV [49].

3.3 Virial theorem, tensor mass, and asymptotic behavior of the

geometry

In the present article, we assume the conformally flat (Isenberg-Wilson-Mathews [253, 515])
approximation (see [199, 445, 501, 502] for a construction without this approximation), helical
symmetry, and maximal slicing (i.e., K = 0) for the spacetime. The quasi-equilibrium
states in this formalism satisfy the viral relation [99, 199, 432, 445]. Thus, we will validate
the numerical solutions of the quasi-equilibria by the virial theorem, which is described
for massive ST theory in Sec. 3.3.1. We then define the tensor mass in Sec. 3.3.2, which

characterizes the physical mass of the system.
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Figure 3.2: Relevant properties of isolated NSs in ST theories: Deviation between () — 1) and (y — 1) as a
function of the areal radius 1?7 (top) and the profile of the scalar field (bottom) for NSs with M, = 1.35 M.
Theories with Xcomp = 15km (my = 1.33 x 107 eV; left) and Xcomp = 30km (m, = 6.65 x 10712 eV; right)
are considered. For each scalar mass, four coupling strengths are adopted and listed in the legend. Note that
the NS for B = 15 and Acomp = 15km is not scalarized, and thus, the geometry is the same as in GR. Vertical
lines mark the first four times of the associated Compton length-scale. The stellar radius (areal radius) for
this model is &~ 11.1 km.

3.3.1 Virial theorem

Given that the asymptotic behavior of the scalar field in the Einstein frame reads

M-
P =go+ —Ce ™ +0(r?), (3.28)
r
we have the following relations for r — oo,

vV BMg;
0 =g+ ——2Le ™" + O(r~?). (3.29)
r

Since  approaches ¢y exponentially at » — oo, the scalar charges \/§M¢, does not contribute

to the mass in the system. Thus, the virial relation is written in the same form as in GR
(cf. [432])

My = Mapwm, (3.30)

where Mapy is the Arnowitt—Deser—Misner (ADM) mass and Mk denotes the Komar mass
defined by

1
Ay

where we have assumed the existence of a timelike Killing vector £ fulfilling n,£* = —a.

My =

7{ dS,n,pV e, (3.31)
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3.3.2 Tensor Mass

As the ADM mass in the Einstein frame decreases monotonically when GWs propagate away
and is positively defined [309, 411, 412], we refer it to the mass of a given system following,
e.g., [165, 432], and define it as the tensor mass Mt to be distinguishable from the ADM
mass in the Jordan frame (Mapyr). As a specific example, the stellar mass refers to the tensor
mass of a NS, i.e., M, = Mr. In the massless ST theories, the tensor mass is written as the
sum of the ADM mass and scalar charge [309]. As mentioned in Sec. 3.3.1, the scalar charge
does not contribute to the mass of the system in the massive ST theories. Thus, we simply
have Mt = Mapum. If the virial theorem is satisfied, the tensor mass is also equal to the

Komar mass.

3.3.3 Asymptotic behavior of the geometry

In GR, the asymptotic behavior of ¢/ and x at a large distance in isotropic coordinates is
described as (e.g., [199])

M
b=14+ ;?M +0(r?), (3.32a)
2My — M
x=1-—""E AN L o2, (3.32D)
2r
Thus, the equality
(Y —1Dr=-Kx-1r (3.33)

holds at r — oo, if the virial relation is satisfied. For spherical stars in equilibrium, this
relation is satisfied for the entire region outside the stellar surface, » = R,, because of the
presence of Birkhoff’s theorem in GR [89, 258].

By contrast, Eq. (3.33) is satisfied only at r — oo in ST theories because the scalar clouds
contribute to ¥ and x in a different way. The deviation from the equality of Eq. (3.33) outside
the star is considered as a manifestation of ST theories. In particular, we plot in Fig. 3.2 the
violation of the equality of » — 1 =1 — x (upper panels) and the profile of ¢ (lower panels)
for spherical NS models with M, = 1.35 M. Two scalar masses are considered with the
associated Compton length-scale being Acomp =~ 15km (left) and 30km (right). By picking
several values of B for each value of mg, we consider NSs scalarized to different extents. We
see that the equality (3.33) holds for r >> X.omp, while the deviation can be = 1072% for
V?*r < 4Xcomp Where the amplitude of the scalar field is appreciably non-zero. This clearly
indicates that the presence of the scalar cloud can appreciably modify the binary motion if
the orbital separation is smaller than a few times of Acomp.

It is also found that for larger values of B, the maximum value of || is larger, and as a

result, the region, in which the equality of Eq. (3.33), is breached is wider. Thus, for larger
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Figure 3.3: Quasi-equilibrium sequences for symmetric binaries with each NS having 1.35 Mg. The binding
energy is plotted as a function of orbital frequency in the top, while the deviation of various theories from
the 4PN analytic estimates of GR is shown in the bottom. Two EOS have been adopted for GR sequences,
viz. APR4 (blue-circle) and H4 (pink-circle), while two scalar masses, mg = 1.33 x 1071 eV (left; Xeomp =~
15 km) and mg = 4 x 10712 eV (right; Xcomp =~ 50 km), are considered for ST sequences. Depending
on different ST parameters, scenarios of dynamical enhancement of the scalarization (colorful solid) and
dynamical scalarization (dash-dotted) manifest. The vertical gray lines relate the binary separation and
MineQor, based on the GR sequence.

values of B, the scalar could modify the binary motion from a larger distance (see Sec. 3.4.1).

3.4 Binary neutron stars in quasi-equilibria

The major purpose of this Chapter is to clarify in which cases the effect of the scalarization
of NSs can be identified by observing GWs from inspiraling BNSs. Given that the current
GW detectors are able to detect signals for f ~ 20-10% Hz, where the separation between
the members of a BNS is less than ~ 200 km (for NS masses of ~ 1.4M), the scalar mass of

interest will then be
mg >1x1072eV, (3.34)

associated with Compton length scales of < 200km. We consider m, = 4 X 10712 eV (Acomp =
50km) and m, = 1.33 x 10~ eV (Acomp ~ 15km) as two canonical cases to demonstrate
the role played by the scalar mass, as well as coupling strength, in the last several orbits of
BNSs. To model the hydrodynamical equilibria of NSs, we adopted the piecewise-polytropic
approximated EOS APR4 [386]. The details of our implementation are essentially the same
as those in [185], and thus we will not repeat them here.

Denoting the tensor masses of the two NSs when they were in isolation as M, ; and

M, o, the total mass M, = M, + M, o is kept constant along each binary sequence. In
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Figure 3.4: Same as Fig. 3.3, but for asymmetric binaries with 1.5 Mg + 1.2 Mg,.

this work, we choose Mi,s = 2.7 M, while consider two values for the mass ratio, viz. ¢ =
M, 5/M,, = 1and 0.8. Each quasi-equilibrium state on a particular sequence is characterized

by a dimensionless orbital angular velocity M2, and the orbital binding energy defined
by

. MT - Minf

Ey, = .
b - (3.35)

We compare the curves of Ey, as a function of M), with that in GR and identify the
effect of the scalar field. Specifically, we will show that the scalar-related dynamical response
in the late time can noticeably expedite the merger (Sec. 3.4.2), while the orbital frequency
at the last orbit increases only slightly compared to the GR value [255, 260] (see also Section
3.4.3).

The quality of the constructed configurations is examined by checking the violation of
Eq. (3.30), i.e.,

| Mk — Mapw|
Mapm

Evirial = ; (3.36)
which has been found to be less than 0.06% for our results. In addition, we evolved some of
the obtained quasi-equilibrium states with our numerical code (developed from the previous
code [150]) for a few orbits to validate our ID solver. We confirmed that the BNSs have quasi-
circular orbits with a small eccentricity of 1072, which is approximately the same magnitude
as that in [186].
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Figure 3.5: Radial profile of the scalar field for equal-mass binaries at different stages, undergoing enhance-
ment of scalarization (top) and dynamical scalarization (bottom). The color is darker for closer separation
with the orbital separation a listed in the legend. The coupling strengths are set to B = 15.8 (top) and
B = 15.2 (bottom), respectively, while the scalar mass is assumed to be m, = 1.33 x 1071 eV. We adopt
the APR4 EOS for NSs.
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3.4.1 Quasi-equilibrium sequences

In Figs. 3.3 and 3.4, we plot the binding energy of binaries as a function of their orbital
frequency. To represent the evolution track of a BNS, at least to the leading order, the
rest mass of binaries is constant along each sequence [500], while we note that it may vary
from one sequence to another depending on B and m,, (see Sec. 3.2.4). The virial violation
(3.36) for the constructed binaries is at most 0.06%, i.e., much smaller than the absolute
value of the orbital binding energy. In both figures, we also show the GR curve (solid-circle)
constructed by the original FUKA library [363] for the EOS APR4 (light blue) and H4 (pink),
and 4th order post-Newtonian (PN) approximation |78, 93] to clarify the scalar imprints. The
deviation of the numerically constructed sequences from the 4PN prediction is denoted by
AEy, (bottom panels). Estimating the adiabatic tidal contribution by the difference between
the GR sequence and the 4PN estimates, we see that scalar effects are similar to the enhanced
tidal response for equal-mass binaries, so that systems with a soft EOS in ST theory could
accidentally be identified as GR binaries with a stiffer EOS (see also below).

For each considered scalar mass, we choose 4 coupling strengthes that admit spontaneous
scalarization (solid), as well as one slightly below the critical value (dashed-dotted). The
former leads to the scenario of dynamical enhancement of the scalarization at a close orbit,
resulting from the scalar-cloud interaction (see the upper panel of Fig. 3.5), while for the
latter, the scenario is similar to the so-called dynamical scalarization (see the lower panel
of Fig. 3.5), although the mechanism of the scalar-field enhancement is identical for both
cases. The dynamical scalarization takes place for an orbital separation of a S 1.7Xcomp,
slightly outside the Compton length scale, while the dynamical enhancement of the scalar-
ization can do for more distant orbits of @ < 3-6X.omp Mmainly contingent on the scalar mass.
This enhancement starts at more distant orbits for larger values of B. The reason for this
enhancement of the scalar fields outside the Compton length-scale is that even though the
scalar field amplitude of one star decays exponentially outside that scale, it still has an appre-
ciable value along the line connecting to its companion when the orbital separation is close
enough. The same applies to the scalar field in the companion. The interaction between the
tails of the scalar field induces a phenomenon similar to dynamical scalarization, leading to
the enhancement of the scalar cloud around each NS. We note that for lower values of B with
which the maximum amplitude of the scalar field is low, i.e., ¢ < 1072, the enhancement of

the scalar amplitude does not appreciably take place.

It is worth noting that BNSs follow the same evolution track as in GR even if spontaneously
scalarized NS is present when a 2 3-6Xcomp for the cases considered here, viz. my = 1.33 x
107" eV (left panels) and mg = 4 x 107'2 eV (right panels) cases. This critical distance
within which the scalar imprint reveals matches well with the size of the scalar cloud of an
isolated NS (Fig. 3.2). During this epoch [Stage (I) defined in Sec. 3.1], the scalar-wave
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emission is also negligible because the relation Agy > Acomp is satisfied, and therefore, the
ST theory is likely indistinguishable from GR. This indicates that for Acomp < 10km (i.e.,
my = 2 x 10711 eV), the orbital evolution in this ST theory agrees with that in GR.

As the binary separation shrinks to a S 3-6Xcomp While gy is still larger than Aeomp [Stage
(IT)], we can observe the bifurcation of scalarized sequences from GR ones in both figures,
though the scalar-emission is expected to be highly suppressed by the scalar mass. This
me-induced suppression will however be eventually avoided when the binary evolves to Stage
(IIT). The difference between (II) and (III) cannot be seen in quasi-equilibrium sequences
since the radiation is approximately ignored in construction. In a future work, we will revisit
this aspect.

A word of caution is appropriate here. The curves of Ej, for a non-zero mass m, cases
are similar to those in GR assuming a stiffer NS EOS, where the NS radius (i.e. tidal
deformability) is high enough (see e.g., [485]). For example, we plot in Fig. 3.6 the deviation
from 4PN binding energy for a sequence of a particular ST theory with the EOS APR4, and
for a GR sequence with the EOS H4, for which the tidal deformability is about 3.5 times larger
than that for EOS APR4 [216]. We see that the two curves coincide when My o1, < 0.03,
indicating that the effect of the scalar-field interaction entangles with that of the NS EOS
until late-inspiral. On the other hand, the curves of Ej, for mg = 4 x 107'2 eV cannot be
reproduced by the NS EOS effect because the deviation from the GR curve sets in at a
distant orbit. An approximate estimate taking into account the previous GR studies (e.g.,
[185]) gives that the tidal effect of the NS is appreciable only for M Qo1 2 0.02 (i.e., an
orbital separation of ~ 50 km) for a NS with a radius of ~ 15km. Therefore, if Acomp 2 20 km,
the scalar-field interaction effect may be distinguished from the NS EOS effect assuming that
the NS radius is less than 14km [6, 16]. This suggests that by observing GWs from BNSs,
the mass of the scalar field could be bounded from below for a hypothetically high value of
B.

3.4.2 Cyecles in gravitational waveform

The above conclusion can be further evidenced by looking at the number of cycles, N/, from
a given orbital frequency up to merger. Here we estimate AN in an adiabatic manner by
integrating the orbital frequency along the quasi-equilibrium states. Following [185, 186], we

express the energy balance equation as

dE,
—r =T (3.37)

whereby the orbit shrinks at the rate,

A,  F
dt  dBEy/dQon’

(3.38)
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Figure 3.6: Deviation from 4PN approximant in the binding energy as a function of orbital frequency. Two
EOSs, APR4 (blue curves) and H4 (purple curve), are employed. Einstein’s gravity is assumed for both EOSs
(solid curves), on top of which the curve of one specific ST theory with EOS APR4 is overplotted (dash-dot
curve).

Binary components (mg, B) N
(0.03, 10.5) 25.66
(0.03, 11) 24.62
(0.03, 12) 23.33
(0.03, 15) 21.86

1.35M¢ + 1.35M, (0.03,19) 19.80
(0.1, 15.2) 27.27
(0.1, 16) 26.65
(0.1, 17) 25.92
(0.1, 20) 22.13
(0.1, 30) 21.13
(0.03, 10) 27.46
(0.03, 11) 24.60
(0.03, 12) 23.74
(0.03, 15) 22.34

15My + 1.2M, (0.03, 18) 20.60
(0.1, 14.5) 27.71
(0.1, 16) 27.34
(0.1, 17) 26.64
(0.1, 20) 24.60
(0.1, 29) 20.84

Table 3.1: Number of cycles when the binary evolves during fev = 240-957 Hz for a variety of ST parameters.
In this table we present the dimensionless scalar mass with a note that mgy = 0.1 = 1.33 x 107! eV.
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Figure 3.7: Parameter space of the considered massive ST theory. Relation (3.23) for stellar masses of 1.5 Mg,
(purple), 1.35 Mg (green), and 1.2 Mg, (pink) are plotted as dashed lines. The markers present the viability of
the corresponded ST theory after GW170817 especially for binaries with spontaneously scalarized NSs (filled
markers). Specifically, circles (crosses) denote (un)acceptable parameters concerning with the two chosen
binary configurations, while triangle marks the theory only allowed by the 1.5 Mg + 1.2 M, binary.
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Figure 3.8: Mass-shedding indicator as a function of orbital frequency for binaries 1.35 Mg + 1.35 Mg, (top)
and 1.5 Mg + 1.2 Mg (bottom). Sequences with dynamical enhancement of the scalarization are shown as
solid curves, those with dynamical scalarization as dashed-dotted curves, and the GR sequence is the dotted-
solid curve. The ARP4 EOS is employed to model NSs.

An orbit number of

1 Qorb
= 5 —onr
N=o / dQo /dt -

1 232 dE),
= — x
2nMins J F(z) dx

will accumulate during the inspiral when the orbital frequency evolves from €; to 2., where
we introduce © = (MintQo)??. In numerical integration of Eq. (3.39), we adopt the ansatz
(cf. Eq. (68) of [185]),

By = BN 4+ axb + b2 + ca®, (3.39)

to fit the derivative of binding energy with respect to {2,,,. Here we adopt 4PN result of the
binding energy as the principle part (E{™N; Eq. (5.6) of [78]), and a, b, and ¢ are the fitting
coefficients. In our consideration of energy flux, we ignore the scalar radiation based on two
reasons: (i) the emissivity of such radiation is limited over most of the orbital evolution,
and (ii) the energy lost via scalar channel is already subdominant to that via traditional
GW in the massless ST theory as estimated by [486], let alone the situation in massive ST
theory. Therefore, we adopt the 3.5PN approximation for the energy flux, which is given by
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(Eq. (314) of [92])

32 1247 35 44711 9271 65
F = —V2x5{1 + (—— — —u) z + 42?4 (—m + Mu—l— 1_81/2) 7’
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where v = ¢/(1 + ¢)? is the symmetric mass ratio.

Regulating the upper and lower limits of the integration such that the associated GW
frequencies are fuy, >~ 240 Hz (MintQor, = 0.01) and fuy >~ 957 Hz (MineQop, = 0.04), we list
the accumulated GW cycles in Tab. 3.1. The almost stiffest and softest EOS that are allowed
by GW170817 have been estimated to be H4 and APRA4, respectively, through the analysis
where GR is assumed as the theory of gravity [8]. We, however, adopt them to elaborate
possible constraints on the ST theory that could be placed by this event. The number of
cycles obtained in GR are 27.45 and 26.24 for APR4 and H4, respectively, for ¢ = 1, while
there are 27.71 and 26.03 cycles for ¢ = 0.8. Therefore, the uncertainty in the EOS can also
be interpreted as the ambiguity of the gravity theory if the resulted A/ in a certain ST theory
lies between those for EOS APR4 and H4.

Together with cases with other values of m, not shown in the table, our results are
summarized in Fig. 3.7 where the circles and crosses denote the acceptable and unacceptable
parameters with respect to the observational results of GW170817. Focusing on systems
involving spontaneously scalarized NSs (filled markers), we see that scalar mass of my <
10~ eV can hardly account for the variation due to EOS, and thus are disfavored after
GW170817 in the event that one of the NSs is spontaneously scalarized. It is also interesting
to note that there are some parameters allowed by 1.5 M +1.2 M, binaries that are exhibited
by equal-mass binaries, and thus a more stringent constraint is concluded from the cases with
q = 1. For systems with small mass ratio, the scalarization in the lighter star is much weaker
than that in the heavier star, and thus the strength of scalar interaction between the binary
is inconsequential. This somehow contradicts the intuitive feeling that one gained from the
experience that the more strict constraint is obtained from increasingly asymmetric binaries
when analysing the pulsar timing observations in the massless theory, where the emissivity
of the scalar wave will not be switched off by the scalar mass. Here, instead, the merger is
accelerated due to the excess in the lost of orbital energy when developing scalar cloud in

the binary.
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3.4.3 Mass-shedding Criterion

The contact of the two NSs could be understood as the moment when one of them loses the
feature of being individual. An indicator of such loss of integrity is the formation of a cusp
along the direction towards the companion, which can be quantitatively assessed through the
ratio between the radial gradient of enthalpy at the pole and at the equatorial point facing

the companion [221, 485]. In particular, a dimensionless factor [221],

Olnh Olnh\ "
xms—( = )q( o ) , (3.41)

pole

is useful to identify cusp formation: y,s = 1 for static NSs, while x,,s = 0 when the cusp
is constituted. Since spectral methods cannot resolve well the NS if a cusp is formed at the
region closest to the companion, it is unfeasible to construct a configuration with y,,s < 1.
In addition, conformal flatness is unlikely to be a fair approximation at very close orbits.
In this work, the closest configurations we generated are at a stage less than 1 orbit, i.e.,
< 2 ms, before merger.

Figure 3.8 shows the mass-shedding indicator s as a function of the orbital frequency for
the symmetric (top panels) and asymmetric (bottom panels) binaries under our consideration.
Several features are observed, including (i) the binaries pertaining to the stiffer EOS H4 start
to contact at a lower orbital frequency since the tidal effect is more pronounced; (ii) dynamical
scalarization does not affect much €21, at the onset of mass shedding; (iii) the deformation
indicator y at a given (), is less for increasingly scalarized configuration, which is due to
the extra attractive force provided by the scalar field, and is in line with the finding of [450]
that the central density of NS components keep increasing until merger while a decrease is
seen shortly before the merger in GR. However, for the viable ST parameters summarised in

Fig. 3.7, the onset of mass-shedding is not sizeably affected by scalar effects.

3.5 Discussion

In order to consistently investigate the constraints that could be obtained from observed grav-
itational waveforms, a detailed understanding of the dynamics during late-inspiral-to-merger
is requisite. Owing to the non-linearity manifesting in this regime, numerical-relativity simu-
lation is crucial and serves as the unique tool for this purpose. Constructing quasi-equilibrium
states as ID is therefore the first step for the accurate modelling of the gravitational wave-
forms. We provided reliable ID of binaries consisting of two spontaneously scalarized NSs in
massive ST theories since a massless scalar field is excluded by pulsar-timing observations
for theories with a high coupling constant B. The scalar mass gives rise to certain hurdles

in solving the elliptic-type equation (3.20) due to the exponentially-decaying behavior of the
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scalar field [Eq. (3.28)]. An auxiliary scalar field £ is introduced for better treatment by the
spectral code FUKA [363], and is solved for according to the modified equation (3.22).

For equilibrium states of binaries generated here, the asymptotic equality (3.30), dictated
by the virial theorem, is met within 0.06%, and some of them have been evolved for a
few orbits to reaffirm that the quasi-circular motion is guaranteed. The constructed binary
configurations thus provide the essential setup for future numerical-relativity study of BNSs
in massive ST theories. In addition to future use, qualitative characteristics of the scalar
influence can be readily extracted by comparing the equilibria to GR ones. In particular,
it is confirmed that the quasi-equilibrium sequences in the ST theory are indistinguishable
from that in GR until the orbital separation becomes approximately 3—6 times the Compton
length scale of the scalar field, i.e., a 2 3-6Acomp. Then, at a ~ 3-6Acomp, the enhancement
of the scalar field sets in due to the interaction of the scalar clouds of the two NSs (Figs. 3.3
and 3.4). Accordingly, the gravitational fields will be modified, resulting in the deviation of

the quasi-equilibrium sequences from GR.

To quantify the deviation of sequences in ST from those in GR, we estimate the number
of cycles in GWs accumulating over a certain range of orbital frequency [Eq. (3.39)]. The
tolerance in the stiffness of EOS concluded from GW170817 roughly spans over from the
EOS APR4 to H4 [4, 16], and thus we adopt the EOS APR4 to derive conservative bounds
on the ST parameters, provided that the scalar effects contribute to waveforms in a similar
way as tidal effects (Fig. 3.6). We found that the cycles undergone by GWs indeed decrease
with a stronger scalar cloud (Tab. 3.1) and/or a stiffer EOS. The error budget in A defined
by the EOS APR4 to H4 can thus be translated to the upper bound on the scalar-induced
dephasing in waveforms. Comparing the cycles of ST binaries pertaining to the EOS APR4
to those of GR binaries following the EOS H4, our results are summarised in Fig. 3.7, where
a lower bound of m, 2 107! eV can be reckoned. We also noticed that the most stringent
limit is placed by equal-mass binaries, implying that the derived constraint on the scalar
mass assuming a spontaneously scalarized NS is in part of the BNS should be robust even
though we do not span over a wide range of mass ratio. For m, 2 107''eV and a mild
coupling strength B < 17, the scalar-cloud interaction effect is not appreciable during the
inspiral stage of BNSs despite that both members are scalarized, and can be seen only when
the binary is just outside the last stable orbit. The onset of mass-shedding for plausible ST
theories essentially matches to the GR cases (cf. Figs. 3.7 and Fig. 3.8).

It is important to note yet another layer of complication for the degeneracy between tidal
effects, both adiabatic [1416] and dynamical ones, and the late enhancement of scalarization,
either dynamically triggered or through interacting scalar clouds as suggested by Figs. 3.3 and
3.4 (see also [323]). It has been known that NSs’ tidal response will be modified in ST theories
with a massless scalar field so that (i) the tidal effect will appear at 3PN order [145] or even

at 1PN order [179] in the case of dynamical scalarization, (ii) the Love number will increase
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or decrease depending on the compactness and the ST parameters [112, 248, 362, 528], and
(iii) a novel class of Love number is introduced by the scalar field, leading to, e.g., dipolar
tidal effects [77, 504]. Relevant studies in the massive ST theory have not been addressed to
our knowledge, and a numerical study of scalar-induced modulation in finite-size effects will
constitute an essential step toward testing ST theories with GW physics. In this series of

investigation, we hope to address this issue to some extent.
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Properties of post-merger remnants
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Breakdown of Contribution

This chapter is based on the publication: “Binary neutron star mergers in massive scalar-
tensor theory: Properties of postmerger remnants” in Phys.Rev.D 110 (2024) 10, 104018 [305]
by A. T.-L. Lam, H.-J. Kuan, M. Shibata, K. V. Aelst and K. Kiuchi. I extended the code
SACRA-MPI developed by M. Shibata and K. Kiuchi to the massive scalar-tensor theory. All
the numerical simulations of the binary neutron stars mergers were carried out by me. The
initial data used in the simulations were constructed by me and H.-J. Kuan using the code
developed by K. V. Aelst. I analysed the data and generated all the figures. H.-J. Kuan,

M. Shibata and K. Kiuchi provided constructive comments on the manuscript written by me.

Overview

In this Chapter, we investigate the properties of post-merger remnants of binary neutron star
mergers in the framework of Damour-Esposito-Farese-type scalar-tensor theory of gravity
with a massive scalar field by numerical relativity simulation. It is found that the threshold

mass for prompt collapse is raised in the presence of the excited scalar field. Our simulation
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results also suggest the existence of long-lived ¢—mode in hypermassive neutron stars due
to the presence of the massive scalar field which enhances the quasi-radial oscillation in the
remnant. We investigate the descalarization condition in hypermassive neutron stars and

discover a distinctive signature in post-merger gravitational waves.

4.1 Introduction

After the monumental event GW170817 [4, 5, 6, 265], huge effort has been devoted to model-
ing the physics involved in the course of binary neutron star (BNS) mergers with the hope of
learning more about the nuclear equation of state (EOS) of matters in extreme environment,
exploring r-process nucleosynthesis in the merger ejecta, and understanding the non-linear
nature of gravity. In particular, through measuring the size of matter effects of the neutron
star (NS) members in the late inspiral stages for this event, the stiffness of the EOS has
been constrained to a narrow range [8, 35, 121, 147, 162]. In addition, general relativity
(GR) has been proven to reproduce gravitational effects accurately, at least up to the stage
shortly before the merger. Considering the Damour-Esposito-Farese type extension to GR
(DEF theory in what follows), this can be translated to an upper bound on the coupling con-
stant, which prohibits spontaneous scalarization in isolated NSs for massless scalar field [537]
while admitting of mild scalarization for massive cases as shown in Chapter 3. A plausible
agent to push the known constraints further is the remnant system in the aftermath of the
merger, where higher-energy physics, for which details have not been yet understood, can
play an important role. The evolution process of BNS remnants is also the key determinant
of multimessenger signals [79, 431]: the properties of the electromagnetic (EM) signals de-
pend strongly on the mass and the composition of ejecta from the remnant including some
ultra-relativistic jets [267], and post-merger gravitational waves (GWs) encode information
about BNS parameters [245, 276, 428].

Joint detection of EM and GW signals provides a unique avenue to learn the details of post-
merger systems such as the lifetime of the remnant NSs. The latter quantity is sensitive to
the EOS and underlying gravitational theory. Although GR functions quite well throughout
the inspiral history of binaries, beyond-GR signatures may reveal shortly before, during, and
after the merger. For example, the DEF theory can admit dynamical scalarization and/or
enhanced scalar cloud in the parameter region corresponding to GW170817 as mentioned in
Chapter 3. Besides, the additional scalar degree of freedom can lead to qualitative differences
in the post-merger waveform, and impact the evolution of the object produced in the merger.
The goal here is thus to extensively investigate the outcomes of BNS mergers in the DEF
theory, whereas magnetic, neutrino, and thermal physics are not taken into account as we
focus on the post-merger stage only for a short timescale.

In most BNS mergers, either a hypermassive neutron star (HMNS, which is stabilized by
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a high degree of angular momentum with a differential rotation [57, 425, 441]) is formed and
lives for some time before collapsing to a black hole, or a prompt collapse occurs if the total
mass of the BNS exceeds a threshold Miy,,. The threshold mass for the prompt collapse is
sensitive to the nuclear EOS [431, 439]. On the other hand, it is expected to be rare that a
supramassive NS is produced from a BNS since the total mass of the system should be less
than the maximum mass that is supportable by rigid rotation (M.). An empirical relation
of such critical value is M, ~ 1.2Mroy with Mroy the maximum mass of a spherical cold
NS of a given EOS [134, 135, 136], which then suggests M. < 2.6 Mg, (e.g., [394, 452]). Some
population studies thus suggest that only < 15% of BNSs has a total mass lower than M.,
[185] (see also [487]). In the present work, we focus on scenarios with total mass larger than
M., i.e., a black hole 4+ torus will be formed either shortly after the merger or after the
rotational profile is modified within the HMNS [168, 243].

The presence of a torus surrounding the black hole plays an essential role in determining
the post-merger emissions, such as short gamma ray bursts [277, 439] and kilonovae [133,
140, 203, 268]. The amount of matter ejected to form the torus depends strongly on the total
mass, and the nuclear EOS for both prompt collapse and HMNS formation scenarios [160),
242, 244, 276] (see also [131] for a review). In the latter scenario, the lifetime of HMNS, 7,
is the main factor that determines the torus mass especially when the BNS is of (nearly)
equal mass, since the matter injection from the central object ceases upon the formation of
the black hole [243].

It has been known that the value of 74 for short-lived HMNSs is determined primarily by
the BNS’s total mass if the system is moderately symmetric (e.g., [64, 79, 242, 264, 286, 439)])
in GR. Under the framework of the DEF theory, the lifetime of HMNSs is also likely to be
sensitive to the scalar parameters, which are the strength of the coupling (B) of the scalar
field to the metric functions, and the mass of the scalar field (mg). In addition to their
lifetime, the scalar field can also exist in the HMNSs for a certain time, 75(< 7). Depending
on 7y, three possibilities for the outcome are generically expected: (i) prompt collapse to a
black hole, (ii) short-lived HMNS formation, and (iii) long but finite lived HMNS formation.
In the presence of an excited scalar field in the DEF theory, 75 further divides channel (iii)
into (iii.a) long-lived scalarized HMNSs and (iii.b) those descalarizing at some point. The
two characteristic time-scales are dependent on the source and theory parameters, namely,
the total mass and mass ratio of the BNSs, (M, ¢), the EOS, B, and my4. The main goal of
the present study is to investigate how the two crucial timescales are modified by the scalar

quantities by performing numerical-relativity simulations for equal-mass BNSs.

This Chapter is organized as follows. Section 4.2 briefly introduces the DEF theory, the
associated 3+ 1 decomposition for numerical evolution, the EOS employed, the details of the
numerical setup, and the parameters we consider in this work. In Section 4.3 we discuss in

detail the post-merger scenarios including the formation of a long-lived HMNS, a short-lived
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HMNS, and prompt collapse to a black hole, and investigate the effect of the scalar field
on the HMNS lifetime and the threshold mass. The properties of the remnant including
dynamical ejecta, GW signal, mass of the final black hole and disk with potential quantities
relevant to observation are given in Section 4.4. Section 4.5 is devoted to summary and

discussion. Throughout this Chapter, the reduced Plank constant set to h = 1.

4.2 Formalism

4.2.1 Evolutionary Equations

The associated equations for the metric and scalar fields in the DEF theory are written in
Egs. (3.6) and (3.7). Since we evolve the scalar field quantity ¢ := +/21In ¢ rather than ¢, we

rewrite Eq. (3.7) in terms of ¢ as
VoV =21¢~ ' BTp — o(Vep)(Vep) + mipo, (4.1)

which will be used to derive the evolution equation for the auxiliary scalar field.

The evolution equations for gravitational and scalar fields can be derived by 3+1 decom-
position (see Ref. [150] for the detailed derivation in the massless DEF case). Following
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 433], we can obtain the

modified evolution equations in the Cartesian coordinates as follows [298]:
(8 —B OR)W = %W (aK — 9,8%), (4.2a)
(0:—B*0)7:; = —2041211'3‘ + Fik0; 8% + Y0 B — ;’?z‘jakﬁk, (4.2b)
(0—B"0)) Ay = W2 [aRy; — DiDja — 87ag~'Sy]™ +a (K/Lj - 221%21/“)
+ Ay 03" + A0, B* — gﬁijakﬁk + adpd (4.2¢)

— aW? [wp®DypDyp + ¢ D;D;o]

(0—B"Oh) K = 4map(S% + pn) + aK; K9 — D;D'a
3 1
+ awg®? — (5 + g) amgp*e (4.2d)

(026%* — DyoDo) |,

. 3
+ag™! [DiDlgzb ~ K¢y — 3mp?BT + 373
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(=B h)p = —a®, (4.2f)
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1 ) (4.2g)
+aK® + 2ra¢p BTp + amipo.

We adopt the moving-puncture gauge Eq. (1.24) for the lapse function and shift vector. The
Hamiltonian and momentum constraints are listed in Egs. (3.15) and (3.16), and will not be

repeated here.

In the Jordan frame, the scalar field does not affect the matter evolution explicitly, and
thus, the equations of motion for matter are the same as those in GR. We assume a perfect
fluid in form Eq. (3.9). In addition to Eq. (3.8), we solve the continuity equation, V,(pu®) = 0.

4.2.2 Equation of state

We adopt the piecewise-polytropic approximation [386] for the barotropic EOS APR4 [23],
MPAT1 [347], and H4 [301], which cover a range of stiffness favored by GW170817 [8, 162, 186].
In addition, we adopt the following description for the thermal pressure, which is associated

with the generation of shocks in the plunge and post-merger stages:

P = PCOld(p) + Pth(pa 6)7 (43>

where the cold contribution to the pressure, P.4(p), is dictated by the cold EOS, and the
thermal contribution is assumed to take the form [250]

P, = (Tt — 1) péetn, (4.4)

with the adiabatic index I'y, for heated matter, and € = € — €.q is the residual in the
specific internal energy that is not included in the cold EOS. In general, T'y, depends on
the temperature and rest mass density [62], while it has been suggested that a (reasonable)
constant approximation suffices for investigating the fate of the merger remnant [64, 242, 446].
We choose I'y, = 1.8 for our simulations. Depending on the EOS and theory parameters,
NSs in a coalescing BNS can remain unscalarized up to merger, be dynamically scalarized in

the late inspiral, or be spontaneously scalarized at large separation [16, 361, 415, 450, 486].
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4.2.3 Numerical setup

We implement the Z4c version of the evolution equations by extending the code developed
in [526], which was parallellised to SACRA-MPI in [278]. SACRA-MPI employs a box-in-box
adaptive mesh refinement with 2:1 refinement and imposes equatorial mirror symmetry on
the z = 0 orbital plane. For the simulations shown in this article, each NS is covered by 4
comoving finer concentric boxes, with 6 coarser domains underneath containing both piles of
the finer domains. The size of the finest domain is chosen to be about 1.3 to 1.5 times of NS
radius. All domains are covered by (2N, 2N, N) grid points for (x,y, z) with N being an even
number. We employ the finite-volume scheme with a reflux prescription and Harten-Lax-
van Leer contact (HLLC) Riemann solver, as that implemented in [281], for hydrodynamics

evolution to better conserve the total baryon mass of the system.

For the outer boundary condition, we use the outgoing boundary condition for metric vari-

ables following [433] and specifically include an additional term for the scalar field variables
Q= (p,®) as

Qt,r) = (1 - %) Q(t — At,r — Ar)e ™8T (4.5)

to capture the exponential decay tail due to the mass term my. Here, Ar = cAt with At the
time step in numerical computation. We test the convergence of our code in three different
resolutions (see Section 4.6). Unless otherwise specified, we adopt N = 94 as the standard
resolution of this Chapter which corresponds to Az = 157 m in the finest box. The details

of the numerical setup can be found in Table 4.1 in Section 4.6.

The primary purpose of this Chapter is to investigate how the scenarios of post-merger
remnants depend on the binary mass, B, mg, and the EOS while restricting ourselves to
equal-mass binaries. However, rather than specifying the binary mass as the sum of the

ADM masses of the two NS members, we identify the binary mass as the total rest mass,

M, = /put\/—gd?’x, (4.6)

contained in the binary. Taking into account the GW event GW170817, scalar masses of
mg 2 107 eV are favored unless the coupling constant B is so small that the NSs in
the observed system are non-scalarized as described in Chapter 3. This condition on my is
several orders of magnitude greater than the constraint concluded from the pulsar timing
observations, which is my > 107 eV [150, 385, 527], while more rigorous Bayesian inference
studies are required to transform the suggestion of my = 107 eV into a constraint (for
strong couplings). On the other hand, a mass of my, = 2 x 107! €V would significantly
suppress scalarization in NSs since the associated Compton length is shorter than the stellar

size. Aiming to study the scalar’s influence on BNS mergers, we focus on cases where NSs can
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Figure 4.1: Critical baryon rest-mass of NSs that are marginally scalarized when isolated as functions of the
coupling constant B for my = 1.33 x 107! eV. The plus markers indicate the coupling strength which we
choose to generate the mass sequences for each EOS.

develop scalar cloud before and /or after merger, and thus the range of interest of my is narrow.
We will consider only one canonical value for the scalar mass, viz. my = 1.33 x 1071 eV
(Acomp = 14.8 km), to quantitatively study how B influences the lifetimes of the HMNSs (7y)
and scalar cloud (75) in post-merger systems.

For each EOS, we choose three different coupling strengthes B such that an isolated NS
with M, = 1.60M would be either non-scalarized, marginally scalarized or spontaneously
scalarized as illustrated in Fig. 4.1. We explore a wide range of NS’s baryon mass spanning
from 1.60M, to 1.90M, as summarized in Section 4.7 with Tables 4.3 to 4.5 for APR4, MPA1
and H4 EOS, respectively, to investigate different outcomes of post-merger remnants. Each
model is referred to in the manner of the example: MPA1 B16.5M1.70 corresponds to the
equal mass binary with the MPA1 EOS, B = 16.5, and M, = 1.70M, for an individual NS.
Since the coupling strengthes considered are not very strong, the ADM mass (Mapy) of the
isolated NS deviates only slightly (< 1072 M) from the star having the same baryon mass
in GR.

We construct the BNS initial data in a quasi-equalibrium state by generalizing the public
spectral code FUKA [363] to the massive DEF theory. The BNS configurations are prepared
with an initial separation of 44.31 km, with which the BNS models experience 35 orbits be-
fore merger. Note that in our numerical simulation, the virial error of the initial data defined
by the relative difference of ADM mass and Komar mass, are always smaller than 0.04%.
We refer the readers to Chapter 3 for the detailed initial data formulation for constructing

quasi-equilibrium states of BNS in the massive DEF theory.
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4.2.4 Gravitational Wave Extraction

The information of GWs emitted is obtained by extracting the complex Weyl scalar ¥, in
the local wave zone (see, e.g., [278, 280, 526] for details). The Weyl scalar W, is decomposed

into (I, m) modes with spin-weighted harmonics as

ret Z \Ill m ret 2Y2m(9 ¢) (47)

where the retarded time ¢, is defined by [245, 278)]

D
=t —D — 2M¢1 —1]. 4.
tret t inf 111 (ZMinf ) ( 8)

Here, My := Miapm + Mo apm is the total ADM mass of the isolated NSs separated at

spatial infinity and D is the areal radius of the extraction sphere approximated as [278§]

Mine
D=~Ryl(1 4.9
(1+58) (1.9)

by assuming isotropic coordinates of non-rotating black holes in the wave zone with Ry being
the corresponding coordinate radius. We evaluate W, at the finite radius Ry = 480 My ~
709 km and then analytically extrapolate the waveform toward null infinity by Nakano’s
method [317, 350, 351]. We shall focus only on the dominant (I, |m|) = (2,2) mode in this
work because the contribution from other higher-multipole modes is minor for the equal-mass

BNSs. The harmonic mode of GWs can be evaluated by integrating \Ifil’m twice in time given

by

hlm( ret) — hlm ret) Zhlm( ret)

tret
o lm // "
= / dt’ / v (4.10)

_ \Ijlm f) 270 f bret
‘/ Y armax(p. fou) P ’

where the last line shows the fixed frequency method of [389] we employed for the calculation
and fe is the cutoff frequency set to be 0.8 M€/ (27) with Qg being the initial angular
velocity of the binary obtained from the initial data. The merger time tyerge is defined at the
time of the peak GW strain h*>? := b3 — ih%?, where h3” and h%* are the plus and cross
polarization of [ = m = 2 GWs, respectively. We also calculate the instantaneous frequency
faw of the (2,2) mode by

1 h*Z,QhQ,Q
faw = 5 -Tm <—|h272|2 > : (4.11)
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where the asterisk and dot symbols denote the complex conjugate and the time derivative,
respectively. The interval between #,e,6c and the apparent horizon formation time top defines
the lifetime of HMNSs (i.e., Ty = tan — tmerge), and the lifetime of the scalar cloud, 7, is

determined by the interval between the merger and the descalarization in the HMNSs (if at

all).
We obtain the amplitude of the Fourier spectrum of GWs following [242, 27()]
; R (NP + B2 ()12
Rzt = o 1 X 4.12
() \/ ! , (412

from the Fourier transforms of plus h2*(f) and cross h%*(f) polarization of GWs with f
being the GW’s frequency. The dimensionless effective amplitude heg(f) of GWs is defined
by

het(f) == fR**(f). (4.13)

The propagation group velocity of scalar waves (v,) is stretched by my, and the dispersion

relation is given by [10, 294] (see also Chapter 3)
vg = (1+m2x2,) "7, (4.14)

with A4, being the wavelength of the scalar wave. For Xgw > Acomp, the speed of scalar
waves is much lower than the speed of light, and thus, essentially prohibiting the emission of
scalar waves [29, 398]. In this work, we consider a zero asymptotic value for the scalar field
(po = 0), and consequently, scalar waves do not couple to the interferometer leaving no extra

mode such as the breathing and longitude modes in emitted GWs.

4.3 Post-merger scenarios

In GR, the final fate of the post-merger remnant of BNSs depends primarily on the total
mass and the EOS, while the mass of dynamical ejecta and the torus formed around the
post-merger black hole (if at all) should be also sensitive to the mass ratio [160, 393, 444].
In terms of the HMNS’s lifetime, we categorise the final outcome of BNS mergers into three

different scenarios:
1. prompt collapse to black hole,
2. short-lived HMNS formation (g < 10 ms),
3. long-lived HMNS formation (75 > 10 ms),

where the criteria of 10 ms is a subjective choice. On top of the above categorization for
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BNS remnants, the presence of a scalar field introduces more variety in the final states (see
Fig. 4.2).
All the possible outcomes are showcased in Fig. 4.3, where the evolution of the relative

difference of maximum rest-mass density,

5pmax = pmax<t)/pmax(t = 0) - 17 (415)

and the maximum scalar-field amplitude’,

Pamp 1= sgn(p) max(|gl), (4.16)

are plotted for four selected models with MPA1 EOS and scalar-field parameters (B, my) =
(16,1.33 x 107" e¢V).  We briefly summarize all the possible scenarios of the scalar field
evolution according to Fig. 4.3, and leave the in-depth discussion to the following sections.
In the pre-merger phase, the scalar field can be excited if the NSs are compact enough to
undergo spontaneous scalarization (blue and yellow lines) or dynamical scalarization (green
line). Otherwise, the scalar field remains insignificant up to merger (red line). As we will
show in Section 4.3.3, the scalarization history of the BNS plays an important role in the
prompt-collapse threshold mass. In the post-merger phase, depending on the final mass of
the HMNS, it can either be spontaneously scalarized (red) or "descalarize” after a certain
time to form an oscillating scalar cloud with appreciable amplitude. In the case where black
holes are formed (blue and yellow), the scalar field does not dissipate away entirely, and an
oscillating scalar cloud forms from the fossil scalar field instead. Although we will discuss
different outcomes of BNS mergers based on the lifetimes of the HMNS and the scalar cloud,
it should be noted that these timescales are not to be taken as exact for simulated models.
In fact, it is impossible to determine accurately the lifetimes in the numerical simulation in
practice since the HMNS after the merger is close to a marginally stable state, and any small
perturbation (including numerical errors) will alter its collapse time and thus the dynamics
is extremely sensitive to the grid resolution. Thus, the values can be considered as an
approximate estimate and the scenarios characterized by them are still qualitatively robust.

It can be noticed that the scalar field @, experiences ~ 10% perturbation for scalarized
binaries in the inspiral phase, which indicates that the scalar field has not yet perfectly
reached the quasi-equilibrium state. One possible reason is the insufficient grid resolution
to resolve the exponential falloff tail of the scalar field in our initial data solver. The other
possible reason is that the zero scalar field "momentum” ® = 0 condition employed in
our initial data formulation [294] described in Chapter 3 could possibly induce some initial

perturbation in the system. While any initial perturbation of the scalar field in the massless

1Since the change of sign of ¢ — —¢ does not alter the evolution of the system, we adopt the convention of negative value
of ¢ when spontaneous scalarization happens. Therefore, we flip the sign of ¢ in the plots if positive ¢ arises when the HMNS
is spontaneously scalarized unless ¢ experiences change of sign in the scalarization/descalarization process.
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Figure 4.2: Summary of all the models in this work. The circle, triangle and black star markers represent the
final fate of postmerger remnant as long-lived HMNSs, short-lived HMNSs, and prompt collapse to a black
hole, respectively. The filled (resp. hollow) markers indicate the presence (resp. absence) of spontaneous
scalarization for isolated NS while the plus markers indicate the occurrence of dynamical scalarization. The
models that undergo descalarization are marked in the red color.
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Pamp

—10

t— tmerge (ms)
— 1.60M, —— 172M, —— 1.84M, 1.86 M.,

Figure 4.3: Evolution of the relative difference of maximum rest-mass density 6 pmax := Pmax(t)/Pmax(t = 0)—1
(top) and of the maximum scalar field amplitude @amp (bottom) with different initial baryon rest mass of
individual NS with MPA1 EOS. The scalar-field parameters are set as B = 16 and m, = 1.33 x 107! eV.

DEF theory [150, 486] can freely propagate out and dissipate quickly, in the presence of non-
zero scalar mass mgy perturbations with a wavelength smaller than the Compton wavelength
will be trapped and remain in the vicinity of the system. Nonetheless, the initial perturbation
of the rest-mass density dpmax is less than 1%, and hence, we believe that the effect of the

scalar field perturbation is minor.

4.3.1 Long-lived neutron star remnant

We first recap the key criterion for spontaneous scalarization in a single star following [143,
298, 450], which is also useful in explaining the evolution of the scalar field in the HMNS.
The onset of scalarization can be approximately described by taking the weak field limit of

Eq. (4.1) with an average value of T' within the star radius R, T, as
(A —mi)p =2rBT, (4.17)

where A is the flat Laplacian. Denoting k? := —(2rBT+m3), the conditions for scalarization
are given as k* > 0 and kR — 7 /2 for R the NS’s radius [298, 450]. For the case of B > (0 and
assuming that the relativistic corrections to matter are small (i.e., T ~ —p), scalarization

is likely to happen if T ~ —p < Tuy := —m}/(2rB). However, scalarization is unlikely to
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Figure 4.4: Snapshots of the rest-mass density p (left column of each panel) and scalar field ¢ (right column
of each panel) on the equatorial plane for the cases of long-lived HMNS formation with the MPA1 EOS.
The baryon mass M; of each NS in units of My and coupling strength B are (M, B) = (1.60,16.0) (left)
(My, B) = (1.80,17.0) (middle) (My, B) = (1.70,16.5) (right). The time for each snapshot is indicated in the

red boxes with time measured from the onset of merger.



72 4.3. Post-merger scenarios

occur if a bulk of HMNS’s interior is ultrarelativistic with T'= —ph+4P > T.;. The critical
value of T' depends on the actual profile of the star, while T}, still serves as a good indicator
for understanding the scalarization criterion (see below).

Shortly after the merger, an ultrarelativistic region can be formed in the HMNS for some
cases, where the descalarization soon ensues. However, the core of a natal HMNS may not be
in an ultrarelativistic regime even though possessing a much higher central density than that
of the progenitors. In this case, scalarization may occur in the HMNS even if the progenitors
remain unscalarized up to the merger (i.e., for a not-extremely large value of B). However,
the subsequent mass accretion may lead to the emergence of a region with T > T, resulting
in a descalarization. In the event of a marginal descalarization, the scalar cloud trapped by
the central object oscillates with a larger amplitude than the case where the condition of
T > Ty is conspicuously satisfied.

Before delineating different scalarization and descalarization scenarios for long-lived HMNSs
in the following subsections, we demonstrate each channel by a representative model in
Fig. 4.4, in which the snapshots of rest-mass density (left column of each panel) and scalar
field (right column of each panel) on the equatorial plane in the post-merger phase are dis-
played. For MPA1 B16.0.M1.60, the HNMS never reaches the ultrarelativistic regime and
remains scalarized until the end of the simulation, while the descalarization upon the crite-
rion is met fully and marginally for MPA1 B17.0.M1.80 and MPA1 B16.5 M1.70, respectively.

4.3.1.1 Long-lived scalarized HMNS

Fig. 4.5 shows the evolution of the maximum rest-mass density pm.x and scalar-field amplitude
©@amp for selected models that yield a long-lived HMNS for three different EOSs. We first
focus on the cases for which the HMNS confidently (solid) and marginally (dashed; present
only for the H4 EOS) remains spontaneous scalarized at ¢ — tperge = 10 ms. Some models
with small values of B do not exhibit dynamical scalarization during the inspiral phase, but
scalarization can still occur in the post-merger phase (e.g., MPA1 B16.0_M1.60), because the
HMNS has a higher compactness compared to the corresponding isolated NS so that even
for a small value of B, /—=TR ~ VPR ~ \/W in the resulting HMNS can be high enough
to fulfill the criterion of spontaneous scalarization.

Generally, the scalar field for scalarized HMNSs first gets amplified during merger and
then settles down to a certain saturation level (|| ~ 0.5 —0.7 in our cases) in a time interval
of ~ 2 ms. The exact timescale depends on the coupling strength B; for example, the scalar
field for H4 B17.5M1.60 takes ~ 1.7 ms to grow to the peak value after merger, while for
H4 B17.0.M1.60 it takes ~ 2.1 ms. This illustrates that it typically takes longer for the scalar
field to grow to saturation for a weaker coupling, in line with the previous numerical studies
where massless scalar field is considered [150].

The enhancement or activation of the scalar field during merger introduces an oscillation



Chapter 4. Properties of post-merger remnants

73

APR4

— DBI15.3.M1.48 — DBI15.8.M1.50 — DBI16.3:M1.52
.......... B15371\1160

B15.8 M1.60 e B16.3-M1.60

MPA1
— BI6.OM1.60 —— BI6.5M1.66 —— BI17.0.ML70
---------- B16.0.M1.82 = B16.5.M1.80 - B17.0.M1.80

Pamp

H4

— DBI7.5:M1.60 — BI8.0-M1.60
----- B17.5.M1.64 ----- BI18.0_-M1.66

— BI7.0-M1.60

Pamp
|

o

at

4 6 8
tmerge (I11S)

t —
Figure 4.5: Evolution of the maximum rest-mass density pmax and scalar-field amplitude @ump, for the long-
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curves correspond to spontaneously scalarized HMNS formation, and the dotted curves correspond to models
in which descalarization happens within 10 ms after the merger.
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for it in the HMNS. Due to the non-zero mass of the scalar field, this oscillation does not
dissipate quickly in contrast to the massless case [150], but instead gets trapped and persists
for a timescale longer than 10 ms after the onset of merger with appreciable oscillation am-
plitude < 0.1 for ¢. The oscillation frequency of the scalar field coincides with the one for
the rest-mass density at around 1 kHz. The mode associated with this pattern is believed to
attribute to the radial p—mode since it falls in the band of a radial mode [333] of scalarized
HMNSs.

For H4 B17.0_M1.60 (blue solid line), H4 B17.5_M1.64 (green dashed), and H4 B18.0_M1.66
(red dashed) in the bottom panel of Fig. 4.5, we find a unique feature. For these models, the
scalar fields go to zero at ~ 10 ms after the onset of merger, and a black hole forms very soon
afterward as we can see that the rest-mass density is also growing rapidly. The descalariza-
tion shortly prior to the black hole formation is not triggered by the criterion 7' > T., but
rather should be attributed to the no-hair theorem in the DEF theory (e.g., [470] and the

references therein).

4.3.1.2 Descalarized HMNS

In this section, we pay attention to the models for which the long-lived HMNSs undergo
descalarization that is induced by the secular contraction of the HMNS due to the GW
emission and angular momentum redistribution via gravitational torque associated with the
non-axisymmetric structure of the merger remnant.

The dotted curves in Fig. 4.5 show the evolution of models that descalarize over a dy-
namical timescale after the onset of merger. Taking MPA1 B16.0.M1.82 as an example (blue
dotted curve in the middle panel), we find that the scalar field promptly goes to zero when the
maximum density rises to become ultrarelativistic during the post-merger evolution. How-
ever, the scalar field does not stop at zero but instead form an oscillating scalar cloud around
the HMNS with an appreciable amplitude of < 0.1, which differs from the massless case in
which the scalar field is completely turned off after descalarization [150]. A note is necessary
here to say that the term “descalarized HMNS” does not mean the scalar field is totally
dissipated, but rather, it represents an HMNS with a long-lived oscillating scalar field with
the zero time-averaged value (pamp) = 0. Owing to the residue scalar cloud, it is non-trivial
to determine definitely the time when descalarization happens, and we simply define the
descalarization time 7g as the time of the first zero crossing of the scalar field amplitude @amp
during the post-merger phase.

To further understand the condition of the descalarization, we show the evolution of the
scalar-field amplitude @um, together with T at the maximum density, T'(pmax), in Fig. 4.6
for model MPA1_B16.0_M1.82 for which the prompt descalarization happens during the post-
merger phase with 7 = 0.60 ms. Here, T'(pmax) in units of the nuclear saturation density

Poue (=2 x 10 g/cm?) is plotted. In the inspiral phase, the NSs are initially spontaneously
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Figure 4.6: For a prompt descalarization scenario MPA1 B16.0_M1.82, left panels show the evolution of the
scalar-field amplitude @amp (top left) and trace of stress-energy momentum tensor T := T°, (bottom left)
in units of the nuclear saturation density ppuc = 2 x 10 g/ecm? at maximum density pmax point. The blue
dotted vertical line and the black dashed horizontal line show the descalarization time 7g and the critical
value Teit, respectively. The blue stars indicate the time of the snapshots of ¢ (top right) and T' (bottom
right) on equatorial (z-y) and vertical (x-z) planes.
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scalarized which is consistent with the scalarization condition T'(pmax) < Terit as the central
value of T ~ —2pyu.. Once the NSs merge, T'(pmax) raises rapidly due to the increase in
maximum density and thermal contribution from shock heating, and immediately flips sign
to become positive. Soon after the scalar field crosses T, the descalarization occurs. Note
that T'(pmax) fluctuates around T, for a few times due to the radial oscillation, temporally
satisfying the scalarization condition (7" < Tiy;) during those cycles. As it turns out, the
scalar field is likely to temporarily reach a high value as in spontaneous scalarization, and

hence introduces large oscillation after 7s.

AS T(pmax) shifts further away from T, the scalar field quickly damps, leaving an os-
cillating scalar cloud around the HMNS. In contrast to the ¢-mode in spherical NSs in the
massless DEF theory, for which the damping time of ¢ is < 1 ms [333], the residual scalar
cloud persists for more than 10 ms in the massive case, forming a long-lived quasi-normal
mode with appreciable amplitude ~ (O(0.1). Such a long-lived ¢-mode observed in both
scalarized and descalarized cases is consistent with the results of [319], which suggests that
the presence of mass term m, could significantly extend the lifetime of the radial ¢—mode in
the massive Brans-Dicke scalar-tensor theory. Also shown in the right panels of Fig. 4.6 are
the snapshots of the scalar field ¢ and T at 7.389 ms after the onset of merger. Despite of
the large value of T' ~ 2py, at the center which forbids the HMNS from being spontaneously
scalarized, it still contains considerable matter with 7' < T.,;; surrounding the center, whose
size is comparable to the Compton wavelength Xoomp = 14.8 km. This creates an off-centered
potential well in the right-hand-side of Eq. (4.17) and as such traps the scalar field in a
hollow sphere shape as shown in Fig. 4.6, which is different from the scalar field profile of
spontaneous scalarized HMNSs in Fig. 4.4, for which the peak value of ¢ is located at the
center of the NSs (see also [174]).

Other than the prompt descalarization scenario, the HMNS can still be subsequently
descalarized due to the secular contraction. In some models shown as red dotted curves
in Fig. 4.5, such as APR4_B16.3_M1.60 and MPA1_B17.0_M1.80, the HMNSs remain sponta-
neously scalarized for a few ms after the onset of merger. Meanwhile the rest-mass density
Pmax continues increasing due to the contraction resulting from the angular momentum dissi-
pation by the GW emission and the angular momentum redistribution via gravitational torque
associated with the non-axisymmetric structure of the HMNS until it reaches the ultrarel-
ativistic limit and triggers the descalarization. However, if the maximum rest-mass density
of the HMNS settles down to a value very close to the critical value for scalarization, the
HMNS may undergo several cycles going between states of scalarization and descalarization
due to the density fluctuation caused by the radial oscillation. Fig. 4.7 shows the evolution
of maximum density pmax and scalar-field amplitude @,m, for the marginally descalarized
models, which are denoted as the least massive descalarized HMNS along the mass sequence.

As the transition state between scalarized and descalarized HMNSs, any perturbation in den-
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Figure 4.7: Evolution of the maximum density pmax (top) and scalar-field amplitude @amp for marginally
descalarized models with APR4 and MPA1 EOSs.

sity allow the HMNS to temporarily reach the scalarization criteria and drive the scalar field
towards the level of the spontaneously scalarized HMNS. Different from the hollow spherical
scalar clouds formed around the descalarized HMNS, the scalar cloud’s profile still peaks at
the center, similar to the spontaneously scalarized models in the marginally descalarized as
illustrated in Fig. 4.4 for model MPA1 B16.5 M1.70 (right panel). Therefore, it contains a
much stronger oscillation in ¢ than for other descalarized models with the amplitude ~ 0.5.

In addition to the strong scalar-cloud oscillation, the marginally descalarized models also
have a much lower frequency of ¢—mode with < 500 Hz. We perform Fourier transform of
wimp for the post-merger phase of long-lived HMNSs to obtain the characteristic frequency?
since the scalar field enters the modified Einstein field equations, Eq. (3.6), as ¢ ~ ¢* and
thus ¢? is physically more relevant to hydrodynamics. Indeed, we find a better agreement
between the Fourier spectrum of p..° and cpzmp. To obtain a cleaner spectrum, we cut the

transient evolution of scalar field after the change of the scalarization state, which is the first

2Note that instead of the conventional choice pamp used in other studies [319, 333], we choose specifically ngmp for the
Fourier analysis which introduces an extra factor of 2 in frequency for the perturbation of ¢ if the background scalar field is zero
(i.e. in the case of a descalarized HMNS with time-averaged (@amp) = 0). However, this choice does not alter the frequency of
the Fourier spectrum for the spontaneously scalarized HMNS case.

3While the perturbation of rest-mass density p is decoupled with ¢ in the GR branch of static spherical stars [333], the
evolution of p would still be affected by ¢ even for the descalarized HMNS case in full dynamical simulation.
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baryon mass of the system for the long-lived HMNS scenario. The cross and circle markers indicate the
models with and without descalarization, respectively.

2 ms after the onset of merger for the scalarized cases, while for the descalarized cases we
cut the first few ms after the descalarization happened until the scalar field reaches at most
twice of its final amplitude.

Denoting fy peak as the peak frequency of the Fourier spectrum of gpimp, which is believed to
be the ¢p-mode of the HMNS, Fig. 4.8 summerizes how f4 ,cak varies along the mass sequence
for the APR4 and MPA1 EOSs, for which a descalarized HMNS can be formed. The cross
and circle markers indicate the models with and without descalarization, respectively. As the
total baryon rest-mass of the scalarized HMNS increases, fy peax drops and eventually reaches
its minimum at the marginally descalarized models. After that, fy ek rises along the mass
sequence for the descalarized HMNS. This is consistent with the characteristics of ¢-mode
as shown in Fig. 2c in [333] for which the mode frequency of the spontaneously scalarized
branch first drops to zero at the bifurcation point, indicating the end of the scalarized state
due to the mode instability, and then rises again in the GR branch. Therefore, we believe
that the dominant mode in gozmp is the radial ¢-mode and the zero-frequency point of f4 ,eak

at the marginally descalarized model indicates the bifurcation point of scalarized and GR
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Figure 4.9: Lifetimes of the excited scalar field (dashed) and HMNS (solid) for the DEF theory with m, =
1.33 x 107! eV while various coupling strengths as functions of the total mass Mins := Mapm,1 + Mapm,2
of NSs for APR4 (top) MPA1 (middle), and H4 (bottom) EOSs.

branches.

We summerize 1 (solid) and 75 (dashed) for the simulated models whenever they can
be determined in Fig. 4.9. The scalar cloud’s lifetime 75 depends strongly on the coupling
strength B as shown by the dashed curves in Fig. 4.9. In general, 75 is longer for the larger
values of B. It is noticed that the descalarization of HMNSs only occurs in APR4 and MPA1
EOSs, while all the models with the H4 EOS (bottom panel) only descalarize right before the
collapse, i.e., the lifetimes 74 and 75 overlapped with each other. Although we pick up weak
coupling strengths that induces the scalarization for the static spherical NSs, ranging from
B = 17 to 18 for H4 EOS, the critical coupling strength B for the marginally scalarization
decreases rapidly for more massive NSs as shown in Fig. 4.1. For static spherical NSs with
total baryon mass greater than 20, spontaneously scalarization can happen for much lower

coupling B < 16 in H4 EOS, and we expect such critical value of B could go even lower for
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more massive HMNSs with M, > 3M,. Therefore, the coupling constant B we covered is
relatively strong for HMNSs, prolonging the scalarization time and thus explain the strong

scalarization behavior.

4.3.2 Delayed collapse

When the total mass of merger remnants is slightly below the threshold mass My, the
HMNS survives for a short period of time and then collapses to a black hole after subsequent
angular momentum dissipation by the GW emission and angular momentum transport via the
gravitational torque associated with non-axisymmetric structure of the HMNS. We classify
these delayed collapse models with 7y < 10 ms as a short-lived HMNS. We expect that the
collapse could be further delayed if the HMNS is spontaneously scalarized since the scalar
field will weaken the gravitational force on the surrounding matter. Fig. 4.10 shows the
evolution of pmax and @amp, for short-lived HMNS models. HMNSs with the H4 EOS always
remain spontaneously scalarized until the formation of a black hole because of the choice
of the relatively strong coupling strength. Then, the descalarization occurs when the black
hole is formed and the scalar field is quickly dissipated due to the no-hair theorem. On
the other hand, HMNSs pertaining to the APR4 and MPA1 EOSs undergo descalarization
earlier before the black hole formation, leaving an oscillating scalar cloud. These descalarized
HMNSs have a mass > MS$R and yet they still survive for a few ms before forming a black
hole. This indicates that the small-amplitude scalar cloud |[¢| < 0.1 provides a temporal
support to stave off the collapse.

Taking one particular model as an example (same one as the red curve for MPA1 in
Fig. 4.10), we find that the evolution of the scalar field and the HMNS in this scenario is
visualized in Fig. 4.11 through the snapshots of the rest-mass density (left) and scalar field
(right) on the equatorial plane. The HMNS descalarizes at < 2 ms after the onset of merger
and forms a hollow spherical scalar cloud around it (middle), similar to the scalar profile of
the descalarized models (cf, Fig. 4.6). The scalar cloud delays the collapse of the HMNS until
5.67 ms after the onset of merger. Eventually, a black hole is formed, which is surrounded
by a long-lived quasi-bound state of the scalar cloud with the amplitude of ~ 10~ (bottom)

because of the non-zero mass of the scalar field (see more details in Section 4.3.3).

4.3.3 Prompt collapse and the threshold mass

Shortly after the fully GR BNS merger simulations were feasible, Refs. [144, 1416] showed that
there is a mass limit on the BNSs beyond which they immediately collapse into a black hole
within a dynamical timescale < 1 ms. In GR, the threshold mass M$R of NSs for which the
prompt collapse proceeds has been vastly studied for different EOSs, whereby it was found
that this threshold mass varies for different EOSs [64, 79, 242, 264, 286, 439], but is not



Chapter 4. Properties of post-merger remnants

Figure 4.10:

APR4
— B15.3.M1.62 — B15.8 M1.64 — B16.3.M1.62
B2 i
g o 1 1
SETN H \
E :
0.5 §
=N
g 00 ; ]Av
0.5 :
MPA1
— B16.0.M1.84 — B16.5.M1.82 — B17.0.M1.82
) T
m»—i
=)
£ o0 !
Q‘E \ |
31
g 00 }. /\ JAN \//\
§0 AN
0.5
H4
— B17.0_.M1.68 — B17.5_M1.68 —— BI18.0.M1.68
- :
55 2
£ o0 |
Qﬂ H
gl
0.0 \- AR
& P
S 0.5 A
S R 0 p) i 6 3

Evolution of maximum density pmax (top) and scalar field amplitude @amp for short-lived

t — tmerge (IS)

10

HMNS cases. The dashed line indicate the collapse time for the corresponding models.



82 4.3. Post-merger scenarios

MPA1 B17.0_ M1.82

0 30 —30 30
x (km) x (km)

Figure 4.11: Snapshots of rest-mass density p and scalar field ¢ on the equatorial plane for a short-lived
HMNS model MPA1 B17.0.M1.82 at the onset of merger (top), before the formation of apparent horizon
(middle), and at 10.9 ms after the onset of merger (bottom). The time after the onset of merger is indicated
in the red box and the black filled circles plotted at the bottom panels show the location of the black hole.
Notice the varying scale rule for ¢ in different panels.
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sensitive to the mass ratio unless the system is appreciably asymmetric as ¢ < 0.7 [71]. The
threshold masses for the considered EOSs, APR4, MPA1, and H4, have been found to be
2.825 Mg, 3.225 M, and 3.125 M, respectively, in [70] with GR hydrodynamics simulations
under conformal flatness approximation. In addition to dynamical studies, the threshold
mass can also be approximately determined by the maximum mass of differentially rotating
NSs along a constant angular momentum sequence for a given EOS; i.e., the turning-point
criteria is approximately valid to a large extent, provided that the rotational law can be
phenomenologically modeled [262, 346, 511]. However in the DEF theory, there could emerge
a scalarized branch of equilibrium under the same EOS, angular momentum, and rotational
law. The presence of the scalar field in spontaneously scalarized NS will effectively increase
the stiffness of the EOS, providing additional support against gravitational collapse and thus
the maximum achievable on the scalar branch has been shown to exceed that on the GR-
sequence [474]. This suggests the existence of HMNSs heavier than the prompt collapse
threshold in GR, i.e., the final remnant with mass greater than M, in GR may not undergo

prompt collapse if it is scalarized.

In practical simulations, there is no clear criterion to classify the outcome as the prompt
collapse scenario. Some studies [242] used monotonically increasing feature of pp.x after
the onset of merger as an indication of the prompt collapse, while some used monotonically
decreasing feature of the minimum value of the lapse function, ., toward zero as a criterion
[71]. In this study, we employ the minimum lapse function ., as the indicator for the prompt
collapse when it decreases monotonically in the merger phase. Although ay,;, is a gauge
dependent variable, it directly reflects the geometrical property compared to the maximum
rest-mass density pmax in the DEF framework since the contribution of hydrodynamics is
coupled to the scalar field as ¢~ T, [cf. Eq. (3.6)]. When the remnant undergoes gravitational
collapse, the scalar field |p| drops to zero drastically due to the no-hair theorem and causes

a small bump in the evolution of the rest-mass density ppax

To better resolve the threshold mass for prompt collapse, we increase the grid resolution in
binary mass sequence such that the least massive prompt collapse model and the most massive
delayed collapse model differ by AM, = 0.02 M, in total baryon mass (i.e., AM, = 0.01 M,
for each NS). We define the threshold mass as My, 1= (Mint pc + Mines1.)/2 following [70] in
which Mine pc and My g1, are the ADM masses of least massive prompt collapse model and

most massive delayed collapse model at infinite orbital separation, respectively.

Fig. 4.12 shows the threshold mass of NSs with different values of B for the three EOSs
considered. We investigate the dependence of My, on B until it reaches the minimum
coupling strength B (circle markers in Fig. 4.12) with which spontaneous scalarization is
possible for spherically symmetric NSs as shown in Fig. 4.1. The shaded region indicates
the error bar given by M, pc and Miyssr,. For the weak coupling case B S Bt the NSs

are not scalarized in the inspiral phase, and thus, the contribution of the scalar field is
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Figure 4.12: Threshold mass My, for equal-mass BNSs as a function of the coupling constant B for APR4
(red), MPA1 (green), and H4 (blue) EOSs. The circle markers indicate the minimum value of the coupling
strength B with which spontaneous scalarization is possible for sphereically symmetric NSs. The width of
each curve reflects the bin size of the mass sampling.

negligible. For this case, the resultant threshold masses are essentially the same as in GR
with MSR = 2.816 M, 3.174 My, and 3.091 M, for APR4, MPA1, and H4 EOSs, respectively.
Although the obtained threshold masses MS® are by ~ 1% lower than the corresponding
values found in [70], this could be due to the systematic error caused by the conformal
flatness approximation employed in their study which cannot accurately evolve spacetime
with high angular momentum. This is in agreement with [286] in which the obtained My, is

also lower than those in [60].

As the coupling strength B increases, the threshold mass My, begins to rise when the
scalar effect becomes important. Note that whether the threshold mass M;,,, is modified from
GR is determined by scalarization history of the BNS in the inspiral phase. If spontaneous
scalarization or dynamical scalarization happens before the merger, the scalar field is large
enough to alter the subsequent evolution of the remnant HMNS. Otherwise, even if the final
remnant could be potentially scalarized with the associated mass and angular momentum,
the scalarization time is longer than the dynamical time of the remnant so that the prompt
collapse can happen before the HMNS reaches a state of spontaneous scalarization. This can
be found in model H4 B16.5_M1.71 shown in Fig. 4.13 (red) for which the scalar field grows
exponentially in the merger phase, hinting a sign of scalarization. However, the remnant
undergoes prompt collapse before the scalar field is significantly amplified, and hence, the
scalar effect is negligible throughout the evolution process. On the other hand, dynamical

scalarization kicks in and gets saturated at 2-3 ms before merger for model APR4 B14.8 M1.62
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Figure 4.13: Evolution of the maximum scalar-field amplitude |@amp| for three different collapse models.
The H4_.B16.5M1.71 (red) and H4_.B18.0.M1.78 (blue) are prompt collapse models while APR4_B14.8 M1.62

(green) is a delayed collapse model. The colored dotted lines show the collapse times for the corresponding
models.

(green in Fig. 4.13). Hence, the final remnant is evaded from prompt collapse with total
massof 2.887M;, greater than threshold mass in GR M§R of 2.816 M, because appreciable
scalar field is built up in the inspiral phase through the scalarization process.

As mentioned in Section 4.3.2, after the HMNS collapses, a quasi-bound state of the
oscillating scalar cloud will form around the black hole from the fossil scalar field if the
system undergoes scalarization beforehand. Fig. 4.13 shows that the scalar field for model
H4 B18.0_M1.78 (blue) quickly dissipates most of its energy after the prompt collapse. Nonethe-
less, a small fraction of the original scalar field remains and settles down to a long-lived
oscillating cloud with the amplitude ~ 10~*. The final scalar cloud contains dominantly a

monopole component as illustrated at the bottom panels of Fig. 4.11 and Fig. 4.14.

4.4 Properties of remnants

4.4.1 Dynamical ejecta

First, we briefly discuss the material ejected from the BNS merger in the DEF theory.
One common method to identify the unbounded fluid element is to use geodesic criteria
u; < —1 for particles moving on ballistic trajectories [85, 244, 266, 352, 379]. We define

the total baryon rest-mass M., total energy F, and total internal energy Us; of the ejected
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Figure 4.14: Snapshots of rest-mass density p and scalar field ¢ on the equatorial plane for a prompt collapse
model H4 B18.0_M1.78 at three different time slices. The time after the onset of merger is indicated in the
red box and the black filled circles denote the black hole.
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material by
M;(t) ::/ pu'/—gd’z, (4.18a)
u<—1
Ee(t) == / T,ntn"/ydx, (4.18b)
u<—1
Ue;(t) ::/ pu'e/—gd’x, (4.18¢)
u<—1
and approximate the kinetic energy T;; as
Ti(t) := Eqj — Mej — Uy;. (4.19)

Assuming that the ejecta has non-relativistic motion, we then estimate the average velocity
ey Of it as [244]

2T,

T (4.20)

Vej (t) =

However, the influence of gravitational potential still remains in 7¢; as evaluated within the
computation domain < 7500 km, hence overestimating the ejecta velocity. We therefore

further estimate the extrapolated velocity vejex following [125, 233] as

Min
Vejex(t) := \/vgj -2 ! , (4.21)

Uej X (t - tmerge)

where v, is evaluated at time ¢. In this Chapter we define the mass Mgy, and the average
velocity vgyn of unbounded dynamical ejecta at 10 ms after the onset of merger from M,; and
Vej,ex, Tespectively. Note that due to the residual eccentricity e ~ 1072 in our simulations and
limited grid resolution, the total mass of the ejected material could be altered by O(10%)

compared to circular orbits [196].

Fig. 4.15 summaries the total mass Mgy, and extrapolated average velocity vgy, of the
dynamical ejecta. The circle, triangle, and cross markers represent long-lived HMNS, short-
lived HMNS and prompt collapse models, respectively. The error bars are estimated by the
convergence test for long-lived HMNSs, short-lived HMNSs and prompt collapse cases: see
Section 4.6. Since the collapse time is very sensitive to the grid resolution in the short-lived
HMNS formation and hence alters the final ejecta properties, the corresponding error bar
is much larger than the other two cases. The ejecta mass Mgy, falls in the range of 1073~
1072 M., depending on the EOS for the long-lived HMNS formation case with the average
velocity vayn ~ 0.2¢-0.3¢c. The ejecta mass is found to be often very low as < 1073 M, for the

prompt collapse case (in particular for the H4 EOS) due to inefficient time for outward angular
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Figure 4.15: Dynamical ejecta mass (Mgyn) and extrapolated average velocity (vayn) as functions of mass
Miy¢ for all the simulated BNS models. Each panel refers to a given EOS, while different coupling strengths B
are distinguished by different colors. The circle, triangle, and cross markers represent long-lived HMNS, short-
lived HMNS, and prompt collapse models, respectively. The error bars are estimated from the convergence
test shown in Section 4.6.
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momentum transport. For the APR4 and MPA1 EOSs, the ejecta mass is not extremently
low as > 1072M. The reason for this is that we pay particular attention to the BNS mass
which is close to the threshold of the prompt collapse, and thus, shock heating effects at the
merger induce a certain amount of the dynamical mass ejection. For these models the ejecta
velocity becomes fairly high 0.3-0.4¢ because the shock heating is the dominant source of the
dynamical mass ejection.

We find that the ejecta properties are determined primarily by the lifetime of HMNSs
while the scalar effect is minor for the long-lived/short-lived HMNS formation case. This is
reasonable because the dynamical ejecta quickly escapes the Compton wavelength Xeomp ~
15 km of the scalar field, and hence, the ejecta evolution is not significantly influenced by the
scalar effect. This picture may change for lower values of m,, while observationally allowed

values of B will be further bounded to lower values.

4.4.2 Black hole and disk

For models that undergoes gravitational collapse to a black hole, we estimate the parameters
of the black hole from the equatorial circumferential radius C, and the area Ap of the
apparent horizon by assuming that the spacetime is approximately stationary with negligible
effect from the matter. The black hole’s mass Mgy and dimensionless spin parameter ygp

can be approximately computed via [449]

Ce
Mgy = — 4.22
BH 4:71'7 ( )

Apn ?
=3 /1 - -1 4.2
XBH (SWM]_%H ) ) ( 3)

respectively. Here, we evaluate Mgy and ygmg at 10 ms after the apparent horizon is formed.

The total bounded baryon rest mass outside the apparent horizon is determined via
Mdisk(t) = / put\/ —gd?’x — Mej (t), (424)
T>TAH

with 7ag = rau(0, ¢) being the coordinate radius of the apparent horizon. We also refer to
the final disk mass Maisko as Maisk(t — tap = 10ms), where we recall that ¢y is the first
formation time of the apparent horizon.

We summarize the properties of the black hole and disk in Fig. 4.16 for short-lived HMNS
formation and prompt collapse models. For the prompt collapse models (cross markers),
the remnant disk mass is significantly suppressed with Mgsko S 1072 My, due to the in-
sufficient time for angular momentum to be transported outwards and hence most of the
matter falls into the BH as shown by the relatively high Mgy /M, factor and dimensionless

spin parameter ygg. Nonetheless, the dynamical timescale for the remnant to collapse to a
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Figure 4.16: Summary of final black hole and disk properties for short-lived HMNS formation (dot markers)
and prompt collapse (cross markers) cases with APR4 (top), MPA1 (middle), and H4 (bottom) EOSs. For
each EOS subplot, the black hole mass scaled by the total mass Mgy /Mt (top), dimensionless spin parameter
xeu (middle), and the final disk mass Mgisk,0 (bottom) are shown. The error bars are estimated from the
convergence test shown in Section 4.6.
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black hole is slightly extended for larger values of B due to the decrease in compactness of
isolated NSs. For example, the lifetime 7 rises from 0.83 ms in H4_B17.0.M1.80 to 1.01 ms
in H4 B18.0_M1.80 as the coupling strength B is increased from 17 to 18. As a result, more
matter remains outside the black hole, yielding a slight decrease in Mgy and ypg.

For the short-lived HMNS formation case, the disk mass is much higher than for the
prompt collapse case, and typically falls in the range of ~ 1072 — 10~2 M. Simultaneously,
the resultant black hole mass and spin are lower. This result is consistent with that found
in GR hydrodynamics; the lifetime of the HMNS primarily determines the final disk mass in
the case of equal-mass BNSs. Since My, could be modified for large enough values of B in
the DEF theory, the disk mass could be significantly modified compared to in GR with the
same value of M.

Fig. 4.17 shows the snapshots of the disk on the z-z plane at 10 ms after the formation of
the apparent horizon for MPA1_B16.0_M1.86 and MPA1_B17.0_M1.86. Despite of their similar
masses Miys (AMiye < 0.002My,), the short-lived HMNS formation model MPA1 B17.0_M1.86
has a thick torus with mass Mgix o = 7.3 X 1073 M, outside the horizon, while only a thin
disk with tiny mass Mg = 5.1 X 10~*M,, remains in the black hole’s proximity for the
prompt collapse model MPA1_B16.0_M1.86.

4.4.3 Characteristics of gravitational waves from descalarized HMNS

In this Chapter, we focus on the discussion for a property of post-merger waveforms that
is special to the scenarios involving a descalarization, while leaving more extensive investi-
gation about other scenarios to future paper (Lam et al., in preparation). Taking model
APR4 B15.8 M1.56 as an example, Fig. 4.18 shows the plus polarization (top) and simultane-
ous frequency [Eq. (4.11); bottom] of the GW signal. We denote the instantaneous frequency
at the onset of merger at which the absolute amplitude |h| reaches its maximum as fierge.
which is sometimes denoted as fpeak O f2max in the literature. We also define f; ea as the
frequency as the dominant peak in the Fourier spectrum of h.g in the post-merger phase,
which is attributed to the I = m = 2 mode of the HMNS [194, 242, 428 477, 483, 484].
The acceleration spectral density (ASD) h+/f (Hz"'/?) is plotted in Fig. 4.19 for this model
assuming a source distance of 50 Mpc. Since the HMNS in this model undergoes descalar-
ization at 5.6 ms after the onset of merger, we perform the Fourier analysis of the waveform
within two different time segments before and after descalarization indicated by the solid
blue curves on the top and bottom panels in Fig. 4.19, respectively, while the spectrum of
the whole waveform is shown by the black dashed curve. By comparing the spectrum of
the whole waveform to that of the two time windows, we find that the f5 peax is determined
primarily by the state of the HMNS at a few ms after the onset of merger. In the later time
window, we find an up-wind shift in f5 ,cax after the descalarization since the compactness

of the HMNS increase during this process. Both the increased compactness and the higher
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Figure 4.17: Snapshots of rest-mass density p on the z-z plane for a prompt collapse model MPA1 B16.0_M1.86
(top) and a short-lived HMNS formation model MPA1 B17.0_M1.86 (bottom) at 10 ms after the formation of
apparent horizon. The black filled circles at the center denote the black hole.
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Figure 4.19: ASD hy/f (Hz"/2) of APR4 B15.8.M1.56 at a distance of 50 Mpc. The black dashed curve
indicates the ASD of the the whole waveform and the vertical red dashed line indicates the fa peax. The blue
line in the upper and lower panels show respectively the ASD of the waveform before and after the onset of
descalarization (5.6 ms after merge).

f2,peax are similar characteristics of the GW signature shared with the influence of a phase
transition from confined hadronic matter to deconfined quark matter (e.g., [68, 69, 91, 512]).

For comparison, we show in Fig. 4.20 the ASD in two time segments separated by 5 ms
after the onset of merger for model H4 B18.0 M1.64, whereas the remnant HMNS remains
scalarization in the post-merger phase. The fs ek does not shift in the absence of a state
transition in the HMNS throughout the post-merger phase, which verifies that the shift in

fo.peax 1s indeed caused by the state transition of descalarization.

4.5 Summary and Discussion

We performed numerical relativity simulations to study the properties of post-merger rem-

nants and GW emission from BNS mergers in the DEF theory with a massive scalar field.
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We focused on a canonical scalar mass of my = 1.33 x 107! eV suggested in Chapter 3
to explore a wide range of NS mass and coupling strength B for the APR4, MPA1, and H4
EOSs. In the framework of the DEF theory, a scalar cloud can be induced in NSs and HMNSs
by spontaneous scalarization or through dynamical scalarization in the binary system. This
additional scalar field modifies the classic picture of BNS post-merger remnants. In the pres-
ence of scalarization, the lifetime of the HMNSs is prolonged due to the extra support from
the scalar field. This raises the threshold mass for the prompt collapse by 0.1-0.2 M, which
depends on the EOS (Fig. 4.12).

For lower BNSs from which a long-lived HMNS is formed, the excited scalar field also
changes its dynamics from GR one. We find that the remnant can undergo descalarization
if the maximum density reaches a certain critical value to become ultrarelativistic (Fig. 4.6),
either due to the merger or subsequent post-merger evolution by the GW emission and
the angular momentum redistribution via gravitational torque associated with the non-
axisymmetric structure of the remnant. Afterward, an oscillating scalar cloud remains in
the vicinity of the descalarized HMNS, and lasts over 10 ms after descalarization with ap-
preciable amplitude Ap < 0.1 (Figs. 4.5 and 4.7) instead of rapidly dissipating away as that
would happen for a massless scalar field. Not only in a descalarized HMNS can we observe a
long-lived ¢-mode. Even for HMNSs that remain scalarized to the end of the simulation, the
¢—mode excited during merger is exhibited (Fig. 4.5), and helps enhancing a quasi-radial
oscillation in the HMNS. Such a long-lived scalar cloud can also be found even after the
HMNS collapses to a black hole while with much smaller amplitude (Fig. 4.13).

The scalar field alters the lifetime of HMNSs (Fig. 4.9), which in turn modifies the dy-
namical ejecta mass and disk mass. This may give a different kilonova signature from the
GR prediction for a system with the same mass. We also observe an upward shift in f5 peax
frequency in post-merger GW signal due to the transition in the HMNS’s state caused by
descalarization (Fig. 4.19), which assembles the characteristics of the EOS phase transition
when deconfined quark matter reveals. The result for more detailed analysis of gravitational

waveforms and their spectra will be presented in a separate paper.

4.6 Convergence test

We summarize the details of numerical setup used in the simulations in Table 4.1. We adopt
N = 94 as the standard resolution throughout this Chapter.

Fig. 4.21 shows a result of the convergence test considering models of long-lived HMNSs,
MPA1 B16.5M1.76 (Fig. 4.21a), short-lived HMNSs, MPA1_B16.5M1.82 (Fig. 4.21b), and
prompt collapse, MPA1 B16.5 M1.88 (Fig. 4.21c) with three different grid-resolutions as N =
(110,94, 78). We obtain convergent result in the inspiral phase , while the poor resolution in

the post-merger phase become notable in the presence of shocks. In particular for the short-
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Table 4.1: Numerical setups for the simulations. The grid number for covering one positive direction (IV), the
grid spacing in the finest refinement level (Az), the total size of computation domain [—L, L], total number
of moving boxes (ngyx) and fixed (non-moving) boxes (ngy), total number of refinement depths (d) and the

extraction radius (rex).

N Az (m) L (10%m) Ty Nfix d Tex (kM)
78 189 7.56 8 6 10 709
94 157 7.56 8 6 10 709
110 134 7.56 8 6 10 709
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Figure 4.21: Convergence test for three different models. In each subplot, the upper panel shows the evolution
of maximum density pmax with resolution Ny = 110 (red), Ny = 94 (green) and N3 = 78 (blue), together
with the relative error |0pmax| := |Pmax/P1,max — 1| in Na 3 with respect to the highest resolution p1 max. The
lower panel shows the evolution of scalar field pam, and the relative error [§@amp?| = |Pamp>/®1.amp> — 1] in
the corresponding resolutions. The black dashed line shows the merger time in N; while the colored dotted
lines in (b) and (c) show the collapse time in different resolutions respectively.
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Table 4.2: Errors of remnant properties for long-lived HMNSs, short-lived HMNSs and prompt collapse cases.

Models AMdyn Avdyn 102 A Mgisk M@ AMpy AXBH 10—3
1074 Mg 1073 Mg
Long-lived HMNS 2.5 1.0 - - -
Short-lived HMNS 23.3 5.9 5.9 x10~° 2.7 1.5
Prompt Collapse 7.1 3.6 1.6 x10~2 29.2 15.2

lived HMNS formation model, MPA1 B16.5_M1.82 (Fig. 4.21b), pmax and @.mp deviate signifi-
cantly at 2ms after the onset of merger with non-converging collapse time since the evolution
of the marginally stable HMNS is extremely sensitive to the grid resolution. Nonetheless, we
find consistent evolution of pyax and @amp for the cases of long-lived HMNS formation model,
MPA1 B16.5M1.76 (Fig. 4.21a), and prompt collapse model, MPA1 B16.5 M1.88 (Fig. 4.21c).
In addition, the descalarization time 75 and the collapse time in MPA1 B16.5M1.76 and
MPA1 B16.5 M1.88, respectively, have a good convergence. This indicates that the standard
resolution Az = 157 m we employed throughout this Chapter is acceptable to explore the
scenarios of long-lived HMNS formation and prompt collapse.

We estimate the errors of dynamical ejecta mass Mgy, and velocity v4y,, remnant disk mass
Mgisx and black hole parameters Mgy, xgu by their difference under the three resolutions

considered, which are given by Table 4.2.

4.7 List of the selected Models

In Tables 4.3, 4.4, 4.5, we summarize the outcomes for all the models considered in this

paper.
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Table 4.3: Summary of outcomes for the BNS mergers in the massive DEF theory with APR4 EOS. The
first column lists the model name which combines EOS, coupling strength B, and baryon mass of each NS in
units of Mg. The second column shows the ADM mass Mapnm of each isolated NS. The third column shows
the state of pre-merger scalarization with symbols x, A and () corresponding to no scalarization, dynamical
scalarization, and spontaneous scalarization in the pre-merger phase, respectively. The fourth column lists
the post-merger remnants with LL, SL and PC being a long-lived HMNS, a short-lived HMNS, and prompt
collapse. The last two columns summerize the lifetime of the HMNS 7y and scalar cloud 7g for the cases of
LL and SL, with ’-’ representing the absence of descalarization in the post-merger phase.

Model name Mapm Pre-merger Fate i (ms) 75 (ms)
(Mo) ®

APR4 B13.8_M1.57 1.4041 X LL > 10 -

APR4_B13.8_M1.58 1.4119 X PC 1.13 -

APR4 B14.3_M1.57 1.4041 X LL > 10 -

APR4 B14.3_M1.58 1.4119 X PC 1.13 -

APR4_B14.8_M1.62 1.4436 A SL 2.13 0.52
APR4 B14.8_M1.63 1.4514 A PC 1.17 0.50
APR4_B15.3_M1.48 1.3323 A LL > 10 -

APR4_B15.3_M1.50 1.3500 A LL > 10 -

APR4 B15.3_M1.52 1.3643 O LL > 10 5.28
APR4_ B15.3_M1.54 1.3802 O LL > 10 4.06
APR4_B15.3_M1.56 1.3961 O LL > 10 4.65
APR4 B15.3_M1.58 1.4118 O LL > 10 1.66
APR4 B15.3_M1.60 1.4277 O LL > 10 1.86
APR4_ B15.3_M1.62 1.4433 O SL 2.50 0.63
APR4_ B15.3_M1.64 1.4590 O SL 2.21 0.58
APR4_B15.3_M1.65 1.4668 O PC 1.15 0.57
APR4 B15.3_M1.66 1.4747 O PC 1.00 0.55
APR4_ B15.3_M1.68 1.4900 O PC 0.92 0.53
APR4 B15.8_M1.50 1.3481 O LL > 10 -

APR4 B15.8_M1.52 1.3642 O LL > 10 -

APR4_ B15.8_M1.54 1.3800 O LL > 10 6.20
APR4 _B15.8_M1.56 1.3960 O LL > 10 5.55
APR4 B15.8_M1.58 1.4116 O LL > 10 4.38
APR4 B15.8_M1.60 1.4274 O LL > 10 1.97
APR4_B15.8_M1.62 1.4430 O LL > 10 1.65
APR4_B15.8_M1.64 1.4586 O SL 2.21 1.82
APR4 B15.8_M1.65 1.4664 O SL 3.06 0.82
APR4 B15.8_M1.66 1.4742 O PC 1.31 0.67
APR4_B15.8_M1.67 1.4820 O PC 1.06 0.64
APR4 _ B15.8_M1.68 1.4897 O PC 0.98 0.60
APR4_ B15.8_M1.70 1.5052 O PC 0.91 0.57
APR4 B16.3M1.52 1.3637 O LL =10 5

APR4_B16.3_M1.54 1.3797 O LL > 10 -

APR4 B16.3_M1.56 1.3955 O LL > 10 6.02
APR4 B16.3_M1.58 1.4111 O LL > 10 5.40
APR4_B16.3_M1.60 1.4268 O LL > 10 4.07
APR4_ B16.3_M1.62 1.4425 O SL 5.03 2.97
APR4 B16.3_M1.64 1.4580 O SL 3.21 1.73
APR4 B16.3_M1.66 1.4737 O SL 2.23 1.70
APR4_ B16.3_M1.68 1.4891 O SL 1.89 0.92
APR4_B16.3_M1.69 1.4967 O SL 1.12 0.78
APR4 B16.3_M1.70 1.5046 O PC 1.03 0.71
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Table 4.4: Same as Table 4.3 but for the MPA1 EOS.

Model name MapMm Pre-merger Fate 7g (ms) Ts (ms)
(Mo) ©
MPA1_B15.0.M1.78 1.5830 X LL > 10 -
MPA1 B15.0.M1.79 1.5910 X PC 1.18 -
MPA1_B15.5_M1.78 1.5830 X SL 3.06 -
MPA1_B15.5_M1.79 1.5910 X PC 1.18 -
MPA1_B16.0_M1.60 1.4399 X LL > 10 -
MPA1_B16.0_M1.62 1.4559 X LL > 10 -
MPA1_B16.0_M1.64 1.4721 X LL > 10 -
MPA1 B16.0_M1.66 1.4880 X LL > 10 -
MPA1_B16.0_M1.68 1.5040 X LL > 10 9.27
MPA1_B16.0_M1.70 1.5200 X LL > 10 2.76
MPA1 B16.0_M1.72 1.5358 A LL > 10 3.00
MPA1 B16.0.M1.74 1.5537 A LL > 10 2.01
MPA1_B16.0_M1.76 1.5674 O LL > 10 2.64
MPA1_B16.0_M1.78 1.5832 O LL > 10 0.66
MPA1_B16.0_M1.80 1.5989 O LL > 10 0.63
MPA1 B16.0_M1.82 1.6145 O LL > 10 0.61
MPA1_B16.0_M1.84 1.6299 O SL 2.37 0.57
MPA1_B16.0_M1.85 1.6377 O PC 1.30 0.56
MPA1_B16.0_M1.86 1.6456 O PC 1.15 0.55
MPA1_B16.5_M1.60 1.4399 A LL > 10 -
MPA1_B16.5_M1.62 1.4559 O LL > 10 -
MPA1 B16.5 M1.64 1.4719 O LL > 10 -
MPA1 B16.5_M1.66 1.4880 O LL > 10 -
MPA1_B16.5_M1.68 1.5039 O LL > 10 -
MPA1_B16.5M1.70 1.5197 O LL > 10 6.38
MPA1 B16.5_M1.72 1.5357 O LL > 10 10.5
MPA1 B16.5M1.74 1.5514 O LL > 10 5.74
MPA1_B16.5_M1.76 1.5673 O LL > 10 4.41
MPA1_B16.5M1.78 1.5830 O LL > 10 1.94
MPA1_B16.5_M1.80 1.5986 O LL > 10 1.90
MPA1 B16.5_M1.82 1.6142 O SL 6.57 0.76
MPA1_B16.5_M1.84 1.6296 O SL 2.75 0.67
MPA1_B16.5_M1.86 1.6453 O SL 2.77 0.62
MPA1_B16.5_M1.87 1.6531 O PC 1.27 0.61
MPA1 B16.5_M1.88 1.6607 O PC 1.11 0.60
MPA1_B16.5_M1.90 1.6761 O PC 0.95 0.57
MPA1 B17.0_M1.70 1.5196 O LL > 10 -
MPA1 B17.0.M1.72 1.5353 O LL > 10 -
MPA1_B17.0.M1.74 1.5511 O LL > 10 -
MPA1_B17.0.M1.76 1.5670 O LL > 10 5.79
MPA1 B17.0.M1.78 1.5824 O LL > 10 4.47
MPA1 B17.0_M1.80 1.5981 O LL > 10 3.27
MPA1_B17.0_M1.82 1.6139 O SL 5.67 1.90
MPA1_B17.0_.M1.84 1.6293 O SL 2.50 1.90
MPA1 B17.0_M1.86 1.6447 O SL 2.69 0.85
MPA1 B17.0_M1.87 1.6525 O SL 2.95 0.74
MPA1_B17.0_M1.88 1.6601 O PC 1.36 0.69
MPA1_B17.0_M1.90 1.6757 O PC 1.12 0.64
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Table 4.5: Same as Table 4.3 but for the H4 EOS.

Model name Mapm Pre-merger Fate i (ms) 75 (ms)
(Mg) ®
H4 B15.0.M1.70 1.5414 X SL 3.69 -
H4 B15.0.M1.71 1.5494 X PC 1.37 -
H4 B15.5.M1.70 1.5414 X SL 2.59 -
H4 B15.5 M1.71 1.5494 X PC 1.37 -
H4 B16.0_M1.70 1.5414 X SL 2.68 -
H4 B16.0.M1.71 1.5494 X PC 1.37 -
H4 B16.5M1.70 1.5414 X SL 2.84 -
H4 B16.5M1.71 1.5494 X PC 1.36 -
H4_B17.0.M1.60 1.4594 X LL > 10 -
H4_ B17.0.M1.62 1.4758 X SL 8.54 8.40
H4 B17.0_M1.64 1.4923 X SL 7.35 7.22
H4 B17.0_M1.66 1.5087 X SL 8.39 8.32
H4 B17.0_M1.68 1.5251 X SL 2.43 2.30
H4 B17.0M1.70 1.5414 X SL 3.94 3.84
H4 B17.0.M1.72 1.5575 X SL 2.24 2.13
H4 B17.0.M1.74 1.5738 A SL 1.52 1.56
H4 B17.0_.M1.75 1.5867 A PC 1.18 1.12
H4 B17.0_M1.76 1.5899 O PC 1.00 1.06
H4 B17.0.M1.78 1.6060 O PC 0.92 0.95
H4 B17.0.M1.80 1.6221 O PC 0.83 0.87
H4_ B17.5_M1.60 1.4594 X LL > 10 -
H4 B17.5_M1.62 1.4758 X LL > 10 -
H4 B17.5M1.64 1.4922 X LL > 10 -
H4 B17.5_M1.66 1.5087 A SL 6.63 6.53
H4 B17.5_M1.68 1.5251 O SL 7.00 7.95
H4 B17.5M1.70 1.5413 O SL 4.66 4.62
H4 B17.5M1.72 1.5575 O SL 2.27 2.24
H4 B17.5_M1.74 1.5736 O SL 2.11 1.95
H4_ B17.5M1.75 1.5818 O SL 2.16 2.01
H4 B17.5M1.76 1.5898 O PC 1.27 1.16
H4 B17.5_M1.78 1.6058 O PC 1.00 1.03
H4 B17.5.M1.80 1.6216 O PC 0.90 0.96
H4 B17.5.M1.82 1.6377 O PC 0.87 0.90
H4 B17.5_M1.84 1.6535 O PC 0.78 0.83
H4 B17.5_M1.86 1.6694 O PC 0.73 0.81
H4_B18.0_M1.60 1.4594 O LL > 10 -
H4 B18.0_M1.62 1.4758 O LL > 10 -
H4 B18.0.M1.64 1.4922 O LL > 10 -
H4_ B18.0_M1.66 1.5086 O LL > 10 9.96
H4 B18.0_M1.68 1.5249 O SL 7.63 7.59
H4 B18.0.M1.70 1.5410 O SL 5.82 5.79
H4 B18.0.M1.72 1.5572 O SL 2.29 2.22
H4 B18.0_M1.74 1.5733 O SL 2.11 2.14
H4_ B18.0.M1.76 1.5894 O SL 2.02 1.95
H4 B18.0.M1.77 1.5973 O SL 2.55 2.49
H4 B18.0_M1.78 1.6053 O PC 1.16 1.10
H4_B18.0_M1.80 1.6212 O PC 1.01 1.02
H4 B18.0.M1.82 1.6371 O PC 0.87 0.95
H4 B18.0_M1.84 1.6529 O PC 0.81 0.91
H4 B18.0_M1.86 1.6687 O PC 0.82 0.86
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Breakdown of Contribution

This chapter is based on the preprint submitted to Phys. Rev. Lett.: “Accessing universal re-
lations of binary neutron star waveforms in massive scalar-tensor theory” in arXiv:2410.00137
[306] by A. T.-L. Lam, Y. Gao, H.-J. Kuan, M. Shibata, K. V. Aelst and K. Kiuchi. The
tidal deformability of the neutron stars in scalar-tensor theory was calculated by Y. Gao. All
the numerical simulations were carried out by me using the massive scalar-tensor extension
of SACRA-MPI developed by me. The initial data were constructed by me using the initial
data solver developed by K. V. Aelst. The simulation results were analysed by me and all the
figures except figure 1 were generated by me. M. Shibata and K. Kiuchi provided constructive

comments on the manuscript partially written by me, H.-J. Kuan and Y. Gao.
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Overview

In this Chapter, we investigate how the quasi-universal relations connecting tidal deformabil-
ity with gravitational waveform characteristics and/or properties of individual neutron stars
that were proposed in the literature within general relativity would be influenced in the mas-
sive Damour-Esposito-Farese-type scalar-tensor gravity. For this purpose, we systematically
perform numerical relativity simulations of ~ 120 binary neutron star mergers with varying
scalar coupling constants. Although only three neutron-star equations of state are adopted,
a clear breach of universality can be observed in the datasets. In addition to presenting
difficulties in constructing quasi-universal relations in alternative gravity theories, we also
briefly compare the impacts of non-general-relativity physics on the waveform features and

those due to the first order or cross-over quantum chromodynamical phase transition.

5.1 Introduction

Coalescence of binary neutron stars (BNSs) offers a unique avenue to test gravity in its
strong regime and to probe thermodynamic states of matter at subatomic densities. The
gravitational wave (GW) signal originating from such a process was detected for the first
time in 2017 by LIGO and VIRGO observatories [1, 20], though only in the late-inspiral
epoch. This event, GW170817 [6, 11, 12], has led to certain constraints on gravitation
[10, 87, 366] and the equation of state (EOS) of nuclear matter [7, 122, 163, 381]. The
analysis was conducted assuming general relativity (GR) as the underlying theory of gravity
to agnostically bound the observation’s deviation from the prediction of GR. However, tests of
a specific alternative theory of gravity require the development of waveform templates within
the theory and may entail certain modifications in the data analysis formalism. Although
analytic efforts in waveform modeling have been devoted to some theories, e.g., the scalar-
tensor theory and the scalar-Gauss-Bonnet theory, a lot remains to be done to establish
machinery at the same level of sophistication as that in GR to analyze GWs.

GWs emitted during and in the aftermath of the merger would lie in the frequency band
of 2-4 kHz if the system produces a hypermassive neutron star (HMNS) as a transient
remnant [60, 242, 447]. The current ground-based GW detectors are less sensitive in these
bands [3, 13, 17]; in fact, even with the design sensitivity of Advanced LIGO, the postmerger
waveform of a GW170817-like event might only have a SNR of ~ 2-3, which can hardly
be detected. However, waveforms at a few kHz may be reachable with the next-generation
detectors such as the Einstein Telescope [101, 238, 377] and the Cosmic Explorer [18,; 184, 390],
for which the sensitivity is by a factor of 2 10 higher than those of current detectors.

Postmerger waveforms are informative of the dynamics of remnant systems. Of par-
ticular interest are the mergers that lead to an HMNS temporarily supported by differen-
tial rotations [57, 446] and high thermal pressure [62, 243, 262, 346]. The fluid motions
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within these remnants will emit a loud GW transient over ~ 10-20ms with characteris-
tic frequencies corresponding to the oscillation modes excited in the remnant massive NS
[60, 243, 358, 428, 444, 446, 483, 484]. The dominant peak in the spectrum can be related
to the fundamental mode of the remnant, whose frequency depends sensitively on both the
EOS and the underlying gravitational theory [96, 289, 468]. Therefore, the measurement of
this frequency provides combined information about the nature of gravity and supranuclear

matters.

However, to what extent we can learn about the gravitation and the EOS is subject to
at least these technical and theoretical challenges: (i) the morphology of the postmerger
waveforms are qualitatively different from that of inspiral, requiring different modeling and
analysis strategies [123, 130, 367], and (ii) the influences of the microphysics and the grav-
itational aspects of the problem on waveforms are strongly degenerate [418], which hinders
a clear determination of matter effects and deviations from GR. One of the cogent propos-
als to address the latter issue appeals to quasi-universal relations that connect the spectral
properties of postmerger waveforms with properties of cold stars in isolation or participating

in a coalescing binary.

Within GR, these quasi-universal relations are leveraged to infer quantities that are not
directly observable [124, 330, 494, 522, 523 524], facilitate efficient Bayesian analysis [105,
106, 376, 479, 514}, and develop phenomenological waveform models by reducing the matter’s
degrees of freedom [66, 82, 484, 525]. In alternative theories, the EOS-insensitive feature of
these relations will be useful in disentangling the EOS effects from gravity, and thus can help
to distinguish non-GR imprints from the uncertainties of EOS. However, this method requires
a cautious evaluation of the reliability of these relations in the gravity theory under study
to prevent any contamination in the inference. Taking the massive Damour-Esposito-Farese-
type (DEF; [142, 143, 144, 145]) scalar-tensor theory of gravity as an example, whose action is
given as Eq. (3.1) [294, 298, 305] (see also Chapters 3 and 4), we illustrate in the remainder of
this chapter that many (if not all) of the quasi-universal relations on the market are actually
breached, hinting at a strong caveat of using them for Bayesian analysis. The scalar mass
has been constrained by pulsar observations [32, 419, 538] as my > 1071 eV [385, 527] . In
addition, GW170817 can tentatively suggest a lower bound on scalar mass as mg > 10712 eV
[204, 536] (see also Chapter 3). In this chapter, we will consider mg = 1.33 x 107! eV
(Compton wavelength of ~ 15km), which suffices to demonstrate the main conclusion: we
will emphasize the violation of the quasi-universal relations, which can only be more profound

for smaller m,.

For the simulations considered in this chapter, the coupling constants have been chosen
such that the non-GR effects can only marginally appear during inspiral to respect the
observation of GW170817 in Chapter 4 In particular, the radius-mass and tidal deformability-

mass relations are shown in Fig. 5.1 (see Section 5.6 for the equations for computing tidal
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deformability in the massive DEF theory). We can see a qualitative difference between the
sequence of the H4 EOS and those of the other two EOS: the scalarized sequence of equilibria
of static, spherical stars does not merge into the GR branch in the high-density regime. The
steep softening behavior of the H4 EOS at the high density prevents the revealing of a
core that features a negative trace of the energy-stress tensor, staving off the conditions for
descalarization (see, e.g., the discussion in Sec. III of [150]). The complete catalog of the
simulated system is listed in Section 5.6, while the details of numerical schemes and setups
can be found in Chapter 4 as well as in [450, 486]. We also note that the simulations included
in this chapter focus on the post-merger evolution and thus the quasi-equilibrium states of
binaries were prepared at < 5 orbits before the merger as initial data.

Throughout, we denote the ratio between the masses of binary as ¢ = my/m; < 1, the
instantaneous frequency of GWs at the merger as f,cak, the GW amplitude at the merger as
hpeax (here the merger time is defined as the moment when the GW amplitude reaches the
maximal), the threshold mass for prompt collapse to a black hole as My,,, and the frequency
of the dominant peak in the post-merger waveform as f,. The numerical results presented
here are limited to simulations of equal-mass binaries, including those performed in the recent
work included in Chapter 4 using theory-consistent quasi-equilibrium states as initial data

described in Chapter 3 and some simulations within GR newly performed here.

5.2 Correlations between A and GW characteristics

The main tidal signature in inspiral waveforms depends predominantly on the binary tidal
deformability A = 16(my + 12my)m?*A, /13M° + (1 < 2), where M = m, + my and the tidal
deformability of the individual stars are A; and A, respectively [187, 192, 241, 248, 509].
The estimate on A for GW170817 yielded, though loosely, the first constraints on the yet
unknown EOS of NS while assuming GR as the gravitational theory. On the observation
front, measurability of A is within the uncertainty of o; ~ 400 at the 20 level with current
detectors [11, 247, 312] and is expected to be improved to o < 50 at the 1o level in the fifth
observation mission [374, 383]. It is owing to this dominant role of A in affecting the phasing
of waveforms that several quasi-universal relations have been proposed to relate it with GW
properties as introduced as follows.

Using numerical simulations, a quasi-universal relation between A and fpeak 1s found for
1.35 4+ 1.35 M, irrotational binaries [32, 387]. The validity of this relation is extended in
[84, 391, 484] to binaries with individual NSs having a mass of 1.2-1.65 M, while keep-
ing binaries as symmetric and irrotational. Aside from reading off the numerical results,
Bernuzzi et al. [82] also discover this universality by inspecting effective-one-body wave-
form models, where the mass range is further extended to include the mass close to the

Tolman—Oppenheimer—Volkoff limit for the respective EOS and includes a small spin up to
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Figure 5.1: The radius-mass (top), and the tidal deformability-mass (bottom) relations for the considered

theories. The lines labeled ”GR” represent the cases identical to those in GR. Three EOSs are considered
in the piecewise-polytropic approximation [386]rezz16. For each EOS, a variety of scalar coupling constants
(labels on the plot) are adopted while fixing the scalar mass as my = 1.33 X 107 eV.
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5.2. Correlations between A and GW characteristics
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Figure 5.2: Relations between binary tidal deformability A and the GW’s frequency at the moment of merger
(top), the frequency of the dominant peak of the postmerger waveform (middle), and the maximal strain of
emitted GWs (bottom). The filled stars are the results of our simulations in GR, while open circles, triangles,
and squares are for models with spontaneous scalarization, dynamical scalarization and no scalarization in
the inspiral phase, respectively. The dashed lines are the fitting formula proposed in [280].
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x| = 0.1. The influence of mass-ratio on this relation is pointed out later on, which is
evidenced by the simulations of asymmetric, irrotational binaries with varying mass ratios
between 0.734-1 [278, 280]. This motivates Kiuchi et al. [280] to generalize the relation to
capturing the effect of asymmetry, and subsequently, the coefficients of the fitting formula
acquire a g-dependence.

The top panel of Fig. 5.2 shows our numerical results' (the filled markers denote the GR
data) together with the relation established in [280] when setting the coefficients for equal-
mass binaries (dashed line). First we see that the GR data deviates slightly from the fitting
formula, but this is within the uncertainty of the fitting formula itself (4%; shaded area). The
largest deviation is found as < 5.8% in the middle range of A, which is near the low (high)
end of our H4 (APR4 and MPA1) samples. We can also notice that the binaries that do
not exhibit scalarization before the merger (squares) obey well the quasi-universal relation,
which can be expected since the inspiral dynamics leading up to the merger are equivalent
to in GR for these cases.

On the other hand, the relation tends to underestimate fpeax for a given A for either
spontaneously (circles) or dynamically (triangles) scalarized mergers, indicating that the
orbital frequency right before the merger is systematically enhanced compared to the case
where the scalar phenomenon is silent. Although the deviation is still within the formula’s
uncertainty and does not show a decisive violation, the mergers with large A (i.e., the stiff
EOS H4) display a clear disagreement with the formula. In particular, fyea for the EOS H4
is roughly constant for A'/® 2 3.4, and thus differ further from the relation to the right of
the plot.

On top of the GW frequency at the merger, Refs. [83, 105, 107, 280] demonstrated that A
can also be quasi-universally related to f, for a quite wide range of mass ratios (0.67 < ¢ < 1)
while commenting on a possible violation of the universality when including spinning and/or
magnetized binaries. The relation is also proposed in [391, 484], while their simulations were
limited to nearly equal-mass binaries. Our data together with the formula in [280] are shown
in the middle panel of Fig. 5.2, where the shaded area presents the fitting uncertainty of
9%. We note that mergers promptly collapsing into a black hole are not shown here since
no information of fy can be extracted. For the GR cases, data points with the APR4 and
MPA1 EOSs lie on the line within a minor deviation of < 1%, while those with the H4
EOS are on the boundary of the fitting uncertainty. In contrast to the A-M fpeak relation,
the scalar field is always activated in the aftermath of the merger for the adopted coupling
constants. Therefore, fy is naturally expected to be different from what would be predicted
in GR. Indeed, we observe a systematic reduction in f, when AY® < 3.4, for the chosen
samples with the soft EOSs APR4 and MPA1. However, the cases with the H4 EOS are

INumercial uncertainties in determining the considered characteristic properties is much less then the uncertainties of each
fitting formula, and thus are not shown on Fig. 5.2. However, we provide some information about the numerical uncertainties
in Section 5.6.
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quite consistent between GR and the considered DEF theories. The reason could be that the
scalar cloud is already developing shortly before the merger for the APR4 and MPA1 EOS,
as indicated by the larger GW strain (cf. Fig. 5.2 for hyea). By contrast, the scalar field
only started to grow after the merger for the simulations with the H4 EOS. The influence
of the scalar field on the f5 is therefore minor in the first few milliseconds, i.e., during the
strongest emitting window of f, mode. That said, there is still a difference between GR and
the DEF scenarios: a prompt collapse realizes for AY/5 < 3.8 in GR, while an HMNS can still
be formed until A'/® < 3.4 depending on B.

Kiuchi et al. [280] further provide relations of A to hpeak. We again compare our numerical
data of hpea With their formula, shown in the bottom panel of Fig. 5.2. Our GR results
progressively exceed the fitting formula for lower A, and the deviation reaches < 3.3% to the
left side of the plot. In general, cases that are not scalarized in the inspiral epoch, including
those in the DEF theory with weak scalar coupling and those in GR, align well with quasi-
universal relations. However, binaries endowed with a scalar cloud during inspiral exhibit a

systematic upward shift from this trend.

5.3 Correlations between f; and properties of individual NS

On top of the above relations, the frequency of the dominant mode in postmerger waveforms
can also be universally connected to the certain properites of a cold spherical neutron star in
isolation, e.g., the Love number (A ) and radius (Ry¢) of the 1.6 M NS, assuming no strong
phase transitions. In particular, Bauswein et al. proposed a fo-R; ¢ relation [63, 65] (see also
[60]) from their simulations of 1.35 + 1.35 M, binaries while adopting the conformal flatness
condition (CFC). The data set for seeking such a relation has been significantly extended by
including different M while keeping ¢ = 1 in [314]. In the above work, the authors found
different relations for each M and this dependence on M is also found later in [123]. On the
other hand, focusing on binaries with similar total binary mass (viz. 2.7 and 2.6 M) for mass
ratios 0.8 < ¢ < 1, Refs. [67, 243] showed a consistent fitting, while the data spread broader
away from the fitting formula as quantified in [280]. This relation is substantially revised
by including also the chirp mass as additional fitting parameter in [508]. In that work, the
authors adopted the combined numerical results of equal-mass binary mergers under CFC
with individual NS’ mass ranging from 1.2-1.9 M, and the simulations withdrawing CFC of
unequal-mass binaries with ¢ > 0.49 for a mass range of 0.94-1.94 M, released in the CORE
database [161].

In Fig. 5.3, we show the comparison with the quasi-universal relation obtained in [67]. Even
in GR, the formula can only approximately describe the cases with the EOS H4, while the
systems with the other softer EOSs are significantly below. The relative deviation is depicted

in the bottom panel, where we see that the formula tends to overestimate f5 frequency by
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Figure 5.3: Correlation between fo/M and R; ¢ for the considered EOS (see plot legends) and various of B.
The numerical results are denoted in the same manner as in Fig. 5.2. The quasi-universal relation proposed
in [67] is shown as the dashed curve, while the relative deviation of our numerical results to the formula is
given in the bottom panel.
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2 10% for the APR4 and MPA1 EOSs. Focusing on the numerical data, it can be noticed
that Ry is larger in the DEF theories for the APR4 and MPA1 EOSs, while the trend is
reversed for the H4 EOS. The overall reduced value of f; in the DEF theories can seemingly
be explained by the effective stiffening for the APR4 and MPA1 EOSs. However, such a
rationale does not apply to the H4 EOS, indicating that the interplay between gravity and
matter is non-trivial and more investigation is needed to understand their competition in
determining the stellar structure.

We have also compared the numerical results with the fs-A;¢ relation in Lioutas et al.
[314]. The situation is more or less the same as the comparison with fo-R; ¢ relation, and

therefore we do not present it here.

5.4 Degeneracy with QCD phase transition

Certain caveats have already been raised that the tightness of quasi-universal relations can
be broadened by including a wider set of EOS [382] or violated by either a strong, first-
order [68, 91, 210, 228, 311, 345, 372, 373, 383, 512] or cross-over phase transition [219].
Consequently, an inconsistency between the inference on the EOS from the inspiral and
postmerger waveforms is speculated as an indicator of phase transitions occurring during the
merger process. In particular, the f; peak will have a higher frequency than what would
be predicted by the quasi-universal relations for EOS with first-order phase transition since
matters will be softened when the new degree of freedom emerges. On the other hand,
matters will experience a stiffening at 3-4 ny followed by a softening at 4-5 ng for the cross-
over phase transition scenario [72, 73], leading to a reduced f,. Here ng = 0.16 fm~ is the
nuclear saturation number density.

However, the connection between the violation in the quasi-universal relations and matter
phase transition should be carefully revisited as it can also arise from a modification in the
underlying gravitational theory, as shown in this chapter. The similarity between modified
gravity and QCD phase transition in terms of postmerger waveforms does not end here. After
baryons crush to form exotic particles, the EOS can be stiffened or softened depending on
the nature of the QCD phase transition (see above). In turn, the core can become less or
more compact thereby adjusting the frequency of fluid oscillation and the associated GWs
[90, 512]. This process can also manifest in scalarized HMNSs (cf. Fig. 5.2). In particular,
the scalar activity in HMNSs pertaining to H4 can lead to a higher f, than the prediction
by the quasi-universal relation (see the deviation in f, for 3.3 < A5 < 3.7 in Fig. 5.2),
reminiscent of the influence of a first-order nuclear phase transition. On the other hand, the
coupling between the scalar field and matter tends to reduce f; for the EOSs APR4 and
MPA1, mimicking the cross-over phase transition (see the deviation in f; for AY/5 <34 in
Fig. 5.2).
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There is a distinction between the QCD phase transition and the gravitational transition of
states: an interface (e.g., quark-hadron) will reveal in the former process, supporting a class
of oscillation modes (i-mode) that may leave certain imprints in GW signals [308, 192, 540].
On the other hand, there is a class of mode linked to the scalar field, i.e., ¢-mode [96, 333].
In principle, the quadrupole member of ¢-mode can emit GWs as a result of the entrained
fluid motions. Both the i- and ¢-modes have typically the frequency of several hundred Hz,
and the largely overlapped frequency band makes it non-trivial to tell them apart even if this

weak emission could be detected.

5.5 Conclusion

We systematically performed numerical simulations of BNS mergers in GR and DEF theo-
ries to solve for the waveforms throughout inspiral up to the merger, where the considered
scalar coupling constants are summarized in Fig. 5.1. Based on the numerical data, we ex-
amine several quasi-universal relations connecting the binary tidal deformability to waveform
characteristics. For the mergers that scalarization does not realize before merger, the GW’s
frequency and amplitude at the merger in the DEF theories aligned well with the fitting
formula valid in GR (cf. the top and bottom panels of Fig. 5.2). These two relations can,

however, be significantly violated if scalarization occurs in the inspiral phase.

Although we only take three EOSs into account, our results already suggest a serious
caveat when applying quasi-universal relations established in GR to probe the EOS and
gravity in modified gravity. In particular, we demonstrated that a gravitational effect like
scalarization could also lead to a violation in quasi-universal, mimicking the similar violation
that could be caused by a strong phase transition. This indicates that one cannot take the
future disagreement between the detected GW signal and the predictions of quasi-universal
relations as a smoking gun of either effect. Recent studies [138, 139] show that three distinct
kinds of finite-size effects are present in the DEF theory attributing to the matter, scalar
field and a mixed type, respectively. The imprint of each of them on the waveform differs
in sign and/or the scaling with frequency. Measuring these effects within sufficiently small
statistical error with future detectors could thus help disentangle EOS and gravity effects.
In any case, much more investigation remains to be done to further discriminate one effect
from the other. Also, thermal effects in postmerger signals still remain to be explored [62,
83, 188, 189, 339, 384, 446], and thus the quasi-universal relations are to be inspected even
for EOS without phase transition and within GR.
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5.6 Supplemental materials

This section provides the formalism for computing the tidal deformability of scalarized neu-
tron stars in the massive Damour-Esposito-Farese-type scalar-tensor theory. In addition, the
catalogs of the coupling constants, binary parameters, and the equations of state adopted in
the numerical simulations are summarized, and the quantities associated with the gravita-

tional waves are also listed.

5.6.1 Tidal deformability of neutron stars in massive scalar tensor gravity

The action of Damour-Esposito-Farese-type (DEF) scalar-tensor theory of gravity in Jordan
frame is given by Eq. (3.1). The field equations are conveniently formulated using the metric
Jap in the Einstein frame. This metric is related to the Jordan frame metric g, through a

conformal transformation given by Eq. (3.10).

The line element of the spherical background in the Einstein frame can be written as

ds® = g datde” = —e"Vde* + dr® 4+ 77 (d6® +sin®0d¢?) ,  (5.1)

1
1—2m(r)/r
In general relativity, the metric component g;; of a tidally-deformed neutron star can be
expanded as

(1 + gse) M 3Qi (; ; 1o 1 Lo i 3
_72_7_W nn]—§53 +O ﬁ +§(€ij$l’]+0(7”), (52)
where &;; is the tidal field generated by the companion star, ();; is the quadrupolar moment

of the neutron star induced by the tidal field, and n* = z*/r. To the linear order of &, the

induced quadrupole );; can be written as
Qij = —A&; - (5.3)

Here the parameter A measures the tidal deformability of the star and can be related to
the [ = 2 tidal Love number via ks = 3AR™/2 for R the circumferential radius of the star
[192, 241].

In the massive Damour-Esposito-Farese-type scalar-tensor theory considered in the main
text, both the scalar and tensor fields respond to the external tidal field induced by either
tensor or scalar fields. Therefore, we should also expand the metric in terms of perturbations
in the scalar field besides &;; to determine the tidal deformability. In addition to the tensor
and scalar tidal deformabilities, one also needs to consider a third kind of tidal deformability
describing the tensor/scalar multipole moments induced by a scalar/tensor field as noted

by Creci et al. [138]. However, the asymptotic behavior of a massive scalar field ¢ and its
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perturbation 6@ read
1
7, 05 = —eTI, (5:4)

where \; = 2mhc/mg is the Compton length scale of the Yukawa suppression associated with
the scalar mass mg. Such exponential decay does not affect the expansion in Eq. (5.2) on any
order of 1/r, which is different from the massless case [113, 138, 362]. We thus only need to
consider the tensor tidal deformability of scalarized NSs for the massive theories considered

in the present work.

Restriciting to the even-parity, static, and [ = 2 perutrbations in the Reege-Wheeler gauge,

the perturbation in the metric and the scalar field can be, respectively, written as

€VH0 H1 0 0
i H, H (1 - Qmm) 0 0
0§ =Yonu(0,0) | 2/ ' , (5.5)
0 0 r2K 0
0 0 0 r2sin?0K
and

where Hy, Hs, K, and dp are perturbed quantities depending r, and Y5, are the spherical

harmonics.

Following the procedure in Hinderer [241], we substitute Eqs. (5.5-5.6) into the linearized
Einstein equations dG# = 8mdT* and denote Hy = —Hy = H(r) to obtain

H =0, (5.7a)
K' =—H —VH—45¢¢', (5.7b)
H" + c1H' + coH = ¢50, (5.7¢)
0" + di1dg" + dodp = d,H. (5.7d)

Here (') denotes the derivative respect to r, and

r3 (8rAt(e —p) + V) + 4m — 4r

Cc1 = d1 = — 2’["(7“ _ 2m) s (58&)
9 4|, Oe Oe ., 4
cs =4ds = |r° | =8maA® |[(— —1De+ (=— —9p| + 2rp (167TA p— V)
op op (5.8b)
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_ AmwA'r(e+p) e + [r* (V =167 A*p) —4m]g*  , ,

0 r—2m  Op r—2m Y
r@rriAlp+dm—r)V. V2 (5.50)
(r —2m)? 4(r — 2m)?
N —6472 A3p?rS + 4 A*r3(5e(r — 2m) — 26mp + 9pr) — 4m?* + 12mr — 612
r2(r — 2m)? ’
g = 4ra?Alr(e + p) Oe
0 r—2m Op - 84
96 Atri(e — p) + 167TA37“2§27‘3(6 — 3p) + 16r(r — 2m)@” + r2% + 24 (5.8d)

Ar(r — 2m)

In general relativity, we have ¢, = d; = 0, and the perturbations for the tensor field and the

scalar field decouple.

Egs. (5.7¢-5.7d) are linear equations for H and d@. Thus, to solve them, one can integrate

the coupled equations twice with the following initial values [248, 362]

=0, &, =0 (5.9)
H|, =0, H'| =0, 6¢|, =ry 071, =2r (5.10)

for ry a tiny radius near the center of the star. Then one makes a linear combination of
the two integrated results to construct a solution whose asymptotic value of dp vanishes at

In practice, we integrate the system to a sufficiently large radius r = r, and ignore the

scalar field for » > ry,. Defining

H/
c=" , and y:r

)
rlr—ry H =T

(5.11)

the tidal deformability, which is in the same form as the GR case, can be calculated as (e.g.,

[241])

e
5

3(1 —20)%2 —y +2C(y — 1)]In(1 — 2C) 4 2C[6 — 3y + 3C(5y — 8)]} "

A :%r;’; (1-2C)°2+2C(y — 1) —y] x {4C° [13 = 11y + C(3y — 2) + 2C*(1 + y)]
+

(5.12)

The tidal deformability used in the main text is then obtained as A = A\/M?® for M the mass
of the star.
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5.6.2 Catalog of simulated binaries and theories

We list in Tables 5.1 to 5.3 the information for every simulations, including the ADM mass
of coalescing neutron stars, binary tidal deformability, parameters of the DEF theories, the
status of scalar field before merger, spectral properties of GWs, and the total energy lost
via GWs. In particular, we performed a convergence study on model MPA B16.5 M1.76
with numerical setup outlined in Section 4.6. The results of the convergence test are also
listed in the last two rows in Table 5.2 as MPA B16.5 M1.76_1r and MPA B16.5 M1.76_hr for
low and high resolution respectively. For each resolution, we determine fpeax as the GW's
frequency where its strain reaches maximum, and evaluate f; by conducting a Fast Fourier
Transform (FFT) to the GW data from merger time up to 25 ms post-merger. A cubic-spline
interpolation is then applied to the spectrum to identify the dominant peak as the f; mode.
We found that the f; estimated from simulations with different resolutions agree within 20
Hz, which is smaller than the FFT frequency bin size of 50 Hz, i.e., the deviation is less
than the bin size of frequency domain analysis. Even when taking the frequency bin size as
a conservative estimate of uncertainty, this corresponds to an uncertainty of less than < 2%.
The deviation in fpe.x is even lower as < 1%. We note that the deviation quoted here is
for the value of f,cak and fo per se, whereas the uncertainties in the fitting formula provided
in the main text are expressed in terms of logarithmic values. Therefore, the numerical
uncertainties presented here are significantly smaller than those associated with the fitting

formula.
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Table 5.1: Summary of outcomes for the BNS mergers in the massive DEF theory with APR4 EOS. The
first column lists the model name which combines EOS, coupling strength B, and baryon mass of each NS in
units of Mg. The second column shows the ADM mass Mapwm of each isolated NS. The third column shows
the state of pre-merger scalarization with symbols x, A and () corresponding to no scalarization, dynamical
scalarization, and spontaneous scalarization in the pre-merger phase, respectively. The fourth column lists
the binary tidal deformability A. The last four columns summarize the properties of GWs.

Model name Mapm (Mg)  Inspiral ¢ A fpeak f2 (kHz) Dhpeax/M
(kHz)
APR4 B13.8_M1.57 1.4041 X 251.5 2.100 - 0.280
APR4 B13.8_M1.58 1.4119 X 242.8 2.105 - 0.281
APR4 B14.3_M1.57 1.4041 X 251.5 2.101 - 0.280
APR4 B14.3_M1.58 1.4119 X 242.8 2.105 - 0.281
APR4 B14.8_M1.62 1.4436 A 210.5 2.231 - 0.298
APR4 B14.8.M1.63 1.4514 A 203.2 2.252 - 0.300
APR4 B15.3_M1.48 1.3323 A 348.8 2.204 3.121 0.282
APR4 B15.3_.M1.50 1.3500 A 321.6 2.181 3.049 0.285
APR4 B15.3.M1.52 1.3643 O 300.7 2.199 3.008 0.288
APR4 B15.3_ M1.54 1.3802 O 279.6 2.213 3.123 0.292
APR4 B15.3_M1.56 1.3961 O 260.4 2.201 3.186 0.294
APR4 B15.3.M1.58 1.4118 O 242.9 2.215 3.417 0.298
APR4 B15.3_M1.60 1.4277 O 226.7 2.232 3.544 0.300
APR4 B15.3_M1.62 1.4433 O 212.0 2.226 - 0.303
APR4 B15.3_M1.64 1.4590 O 198.4 2.237 - 0.304
APR4 B15.3_M1.65 1.4668 O 192.0 2.224 - 0.305
APR4 B15.3_M1.66 1.4747 O 185.7 2.220 - 0.307
APR4 B15.3.M1.68 1.4900 O 174.3 2.246 - 0.308
APR4 _B15.8_M1.50 1.3481 O 321.4 2.192 3.075 0.290
APR4 B15.8_M1.52 1.3642 O 299.3 2.204 3.045 0.294
APR4 B15.8_M1.54 1.3800 O 279.3 2.217 2.990 0.296
APR4 B15.8_M1.56 1.3960 O 260.9 2.209 3.070 0.299
APR4 B15.8_M1.58 1.4116 O 244.3 2.183 3.270 0.301
APR4 B15.8_M1.60 1.4274 O 228.8 2.203 3.557 0.304
APR4 B15.8_M1.62 1.4430 O 214.5 2.221 3.591 0.305
APR4 B15.8_M1.64 1.4586 O 201.3 2.218 - 0.308
APR4 _B15.8_M1.66 1.4742 O 189.0 2.222 - 0.310
APR4 B15.8_M1.67 1.4819 O 183.3 2.222 - 0.311
APR4 B15.8_M1.68 1.4897 O 177.7 2.239 - 0.312
APR4 B15.8_.M1.70 1.5052 O 167.0 2.220 - 0.314
APR4 B16.3_M1.52 1.3637 O 300.1 2.204 3.044 0.297
APR4 B16.3.M1.54 1.3797 O 280.6 2.196 3.090 0.299
APR4 B16.3_M1.56 1.3955 O 263.0 2.216 3.123 0.302
APR4 B16.3_M1.58 1.4111 O 246.8 2.179 3.113 0.304
APR4 B16.3_M1.60 1.4268 O 231.9 2.212 3.196 0.307
APR4 B16.3_M1.62 1.4425 O 217.9 2.205 - 0.309
APR4 B16.3_M1.64 1.4580 O 205.0 2.203 - 0.311
APR4 B16.3_M1.66 1.4737 O 193.0 2.231 - 0.313
APR4 B16.3_M1.68 1.4891 O 181.8 2.215 - 0.315
APR4 B16.3_M1.69 1.4967 O 176.6 2.229 - 0.316
APR4 B16.3_.M1.70 1.5046 O 171.4 2.231 - 0.317
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Table 5.2: Same as Table 5.1 but for the MPA1 EOS.
Model name Mapm (Mg)  Inspiral ¢ A fpeak f2 (kHz) Dhpear/M
(kHz)
MPA1 B15.0.M1.78 1.5830 X 236.4 1.911 - 0.283
MPA1 B15.0.M1.79 1.5910 X 229.1 1.911 - 0.284
MPA1 B15.5.M1.78 1.5830 X 236.4 1.911 - 0.283
MPA1 B15.5M1.79 1.5910 X 229.1 1.910 - 0.284
MPA1_ B16.0_M1.60 1.4399 X 419.3 1.798 2.757 0.261
MPA1 B16.0.M1.62 1.4559 X 392.9 1.806 2.761 0.264
MPA1 B16.0.M1.64 1.4721 X 368.0 1.834 - 0.270
MPA1_B16.0.M1.66 1.4880 X 345.1 1.834 2.820 0.267
MPA1 B16.0_M1.68 1.5040 X 323.6 1.821 2.839 0.270
MPA1 B16.0.M1.70 1.5200 X 303.5 1.966 2.699 0.278
MPA1 B16.0.M1.72 1.5358 A 285.0 1.964 2.779 0.287
MPA1 B16.0.M1.74 1.5537 A 265.5 1.989 3.011 0.290
MPA1 B16.0.M1.76 1.5674 O 251.4 2.001 3.033 0.292
MPA1 B16.0.M1.78 1.5832 O 236.4 1.978 3.116 0.294
MPA1_B16.0.M1.80 1.5989 O 222.5 1.987 3.146 0.296
MPA1 B16.0.M1.82 1.6145 O 209.6 1.977 3.214 0.299
MPA1_ B16.0_M1.84 1.6299 O 197.7 1.984 - 0.302
MPA1_B16.0.M1.85 1.6377 O 192.0 2.000 - 0.303
MPA1_ B16.0.M1.86 1.6456 O 186.4 2.006 - 0.304
MPA1_B16.5.M1.60 1.4399 A 419.3 1.930 2.668 0.276
MPA1 B16.5M1.62 1.4559 O 391.9 1.934 2.735 0.277
MPA1 B16.5M1.64 1.4719 O 366.7 1.948 2.812 0.280
MPA1 B16.5M1.66 1.4880 O 343.3 1.965 2.756 0.284
MPA1 B16.5M1.68 1.5039 O 322.0 1.970 2.787 0.286
MPA1 B16.5M1.70 1.5197 O 302.5 1.955 2.746 0.288
MPA1 B16.5M1.72 1.5357 O 284.2 1.965 2.864 0.291
MPA1 B16.5M1.74 1.5514 O 267.6 1.970 2.916 0.294
MPA1 B16.5.M1.76 1.5673 O 251.9 1.971 2.914 0.296
MPA1 B16.5_M1.78 1.5830 O 237.5 1.966 2.980 0.298
MPA1 B16.5_M1.80 1.5986 O 224.2 1.975 3.053 0.301
MPA1_B16.5_M1.82 1.6142 O 211.6 1.973 - 0.303
MPA1 B16.5_M1.84 1.6296 O 200.1 1.979 - 0.304
MPA1 B16.5M1.86 1.6453 O 189.1 1.988 - 0.306
MPA1 B16.5_M1.87 1.6531 O 183.9 1.996 - 0.307
MPA1 B16.5_M1.88 1.6607 O 178.9 2.000 - 0.308
MPA1 B16.5.M1.90 1.6761 O 169.4 2.019 - 0.310
MPA1 B17.0.M1.70 1.5196 O 302.2 1.967 2.777 0.292
MPA1_B17.0_M1.72 1.5353 O 285.0 1.951 2.842 0.294
MPA1 B17.0.M1.74 1.5511 O 268.8 1.946 2.759 0.297
MPA1 B17.0.M1.76 1.5670 O 253.7 1.953 2.856 0.300
MPA1 B17.0.M1.78 1.5824 O 239.9 1.972 2.821 0.302
MPA1_B17.0_M1.80 1.5981 O 226.8 1.968 2.981 0.303
MPA1 B17.0.M1.82 1.6139 O 214.4 1.969 - 0.305
MPA1 B17.0.M1.84 1.6293 O 203.1 1.990 - 0.307
MPA1 B17.0_M1.86 1.6447 O 192.4 1.999 - 0.309
MPA1 B17.0.M1.87 1.6525 O 187.3 1.998 - 0.310
MPA1 B17.0.M1.88 1.6601 O 182.5 1.992 - 0.311
MPA1_B17.0.M1.90 1.6757 O 172.9 1.994 - 0.312
MPA1_B16.5_M1.76_1r 1.5673 O 251.9 1.956 2.893 0.295
MPA1 B16.5M1.76_hr 1.5673 O 251.9 1.962 2.909 0.296
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Table 5.3: Same as Table 5.1 but for the H4 EOS.

Model name Mapm (M) Inspiral @ A fpeak f2 (kHz) Dhpear/M
(kHz)
H4_B15.0.M1.70 1.5414 X 470.0 1.653 - 0.255
H4_ B15.0M1.71 1.5494 X 453.2 1.655 - 0.256
H4_B15.5M1.70 1.5414 X 470.0 1.654 - 0.255
H4_ B15.5 M1.71 1.5494 X 453.2 1.655 - 0.256
H4_B16.0.M1.70 1.5414 X 470.0 1.654 - 0.255
H4_ B16.0.M1.71 1.5494 X 453.2 1.655 - 0.256
H4_B16.5M1.70 1.5414 X 470.0 1.668 - 0.255
H4_ B16.5M1.71 1.5494 X 453.2 1.669 - 0.257
H4_B17.0.M1.50 1.3762 X 986.3 1.607 2.551 0.231
H4_B17.0.M1.60 1.4594 X 680.3 1.612 2.747 0.241
H4_B17.0.M1.62 1.4758 X 632.1 1.637 2.831 0.245
H4_B17.0.M1.64 1.4923 X 587.0 1.634 2.874 0.247
H4_B17.0_M1.66 1.5087 X 545.2 1.621 2.842 0.249
H4_B17.0.M1.68 1.5251 X 506.1 1.655 - 0.253
H4_B17.0.M1.70 1.5414 X 470.0 1.653 - 0.255
H4 B17.0.M1.72 1.5575 X 436.6 1.648 - 0.257
H4_B17.0.M1.74 1.5738 A 405.1 1.846 - 0.280
H4_ B17.0M1.75 1.5867 A 381.9 1.874 - 0.281
H4 B17.0.M1.76 1.5899 O 370.3 1.851 - 0.283
H4 B17.0.M1.78 1.6060 O 336.8 1.868 - 0.286
H4_B17.0.M1.80 1.6220 O 307.6 1.878 - 0.289
H4_B17.5_M1.50 1.3762 X 986.3 1.606 2.553 0.231
H4 B17.5.M1.60 1.4594 X 680.3 1.622 2.725 0.241
H4_B17.5_M1.62 1.4758 X 632.1 1.636 2.736 0.245
H4_B17.5M1.64 1.4923 X 587.0 1.651 2.798 0.247
H4_B17.5_M1.66 1.5087 A 545.2 1.913 2.847 0.273
H4_ B17.5_M1.68 1.5251 O 498.2 1.903 2.854 0.275
H4_B17.5M1.70 1.5413 O 451.2 1.867 - 0.279
H4_B17.5M1.72 1.5575 O 410.4 1.852 - 0.283
H4 B17.5M1.74 1.5736 O 374.8 1.872 - 0.287
H4 B17.5M1.75 1.5818 O 358.3 1.863 - 0.288
H4_B17.5M1.76 1.5898 O 343.1 1.877 - 0.289
H4_ B17.5M1.78 1.6058 O 315.3 1.877 - 0.291
H4_B17.5.M1.80 1.6216 O 290.6 1.910 - 0.294
H4 B17.5.M1.82 1.6377 O 268.0 1.915 - 0.297
H4_B17.5M1.84 1.6535 O 247.9 1.956 - 0.301
H4 B17.5_M1.86 1.6694 O 229.5 1.957 - 0.304
H4_B18.0_M1.48 1.3594 X 1062.8 1.610 2.539 0.229
H4_B18.0_M1.50 1.3762 X 986.3 1.609 2.516 0.231
H4_B18.0_M1.52 1.3929 X 916.2 1.618 2.569 0.233
H4_B18.0_M1.60 1.4594 O 677.4 1.962 2.673 0.269
H4_B18.0_M1.62 1.4758 O 609.6 1.912 2.767 0.273
H4_B18.0_M1.64 1.4922 O 551.2 1.923 2.700 0.276
H4_B18.0_M1.66 1.5086 O 500.5 1.880 2.800 0.279
H4_B18.0.M1.68 1.5249 O 456.4 1.877 2.809 0.283
H4_B18.0.M1.70 1.5410 O 417.9 1.855 2.861 0.286
H4_ B18.0M1.72 1.5572 O 383.6 1.892 - 0.289
H4_B18.0.M1.74 1.5733 O 353.0 1.890 - 0.292
H4_ B18.0.M1.76 1.5894 O 325.7 1.899 - 0.294
H4 B18.0.M1.77 1.5973 O 313.3 1.907 - 0.295
H4_B18.0.M1.78 1.6053 O 301.3 1.903 - 0.297
H4_B18.0_M1.80 1.6212 O 279.3 1.931 - 0.300
H4_B18.0.M1.82 1.6371 O 259.2 1.947 - 0.302
H4_B18.0.M1.84 1.6529 O 241.0 1.937 - 0.305
H4_B18.0.M1.86 1.6687 O 224.3 1.950 - 0.307
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Table 5.4: Same as Table 5.1 but for the APR4, MPA1 and H4 EOSs in GR. The first column lists the model
name which combines EOS and baryon mass of each NS in units of Mg.

Model name MADM (M@) A fpeak f2 (kHZ) theak/M
(kHz)
APR4 M1.48 1.3323 348.5 2.015 3.287 0.267
APR4 M1.50 1.3483 323.5 2.037 3.318 0.270
APR4 _M1.52 1.3643 300.9 2.042 3.417 0.272
APR4_M1.54 1.3802 279.2 2.058 3.456 0.276
APR4 _M1.56 1.3961 260.2 2.075 3.463 0.278
APR4 M1.58 1.4119 241.8 2.102 - 0.281
APR4_M1.60 1.4277 225.7 2.114 - 0.283
APR4_M1.62 1.4434 210.2 2.128 - 0.286
APR4 M1.64 1.4591 196.1 2.150 - 0.288
APR4 M1.66 1.4747 182.9 2.158 - 0.292
APR4 _M1.68 1.4903 170.5 2.178 - 0.294
MPA1 M1.70 1.5198 303.0 1.858 2.971 0.273
MPA1 M1.72 1.5357 285.4 1.868 3.036 0.275
MPA1 M1.74 1.5515 267.3 1.878 3.014 0.277
MPA1 M1.76 1.5673 250.9 1.900 3.087 0.280
MPA1 M1.78 1.5831 236.0 1.903 3.226 0.283
MPA1 M1.79 1.5909 228.5 1.909 - 0.283
MPA1_M1.80 1.5988 221.9 1.909 - 0.285
MPA1 _M1.82 1.6144 208.6 1.900 - 0.286
MPA1_M1.84 1.6300 196.6 1.914 - 0.288
MPA1_M1.86 1.6456 184.6 1.933 - 0.291
MPA1_M1.88 1.6611 174.2 1.934 - 0.294
H4 M1.46 1.3426 1145.9 1.586 2.549 0.229
H4 M1.48 1.3594 1062.8 1.585 2.451 0.229
H4_M1.50 1.3762 986.3 1.584 2.615 0.232
H4 M1.52 1.3929 916.2 1.595 2.688 0.233
H4 M1.54 1.4096 850.3 1.617 2.628 0.235
H4 M1.56 1.4262 789.4 1.614 2.745 0.237
H4_M1.58 1.4428 732.9 1.616 - 0.240
H4_M1.60 1.4593 678.9 1.632 - 0.241
H4 M1.62 1.4758 631.7 1.644 - 0.246
H4 M1.64 1.4923 586.0 1.637 - 0.248
H4_M1.66 1.5086 543.9 1.644 - 0.250
H4_M1.68 1.5250 505.1 1.624 - 0.252
H4 M1.70 1.5413 469.2 1.635 - 0.254
H4 M1.71 1.5494 452.4 1.627 - 0.256
H4 M1.72 1.5576 436.0 1.630 - 0.257
H4 M1.74 1.5738 404.5 1.640 - 0.260
H4 M1.76 1.5899 375.4 1.647 - 0.263
H4 M1.78 1.6061 348.4 1.643 - 0.265

H4_M1.80 1.6221 323.4 1.670 - 0.268
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Breakdown of Contribution

This chapter is based on the publication: “Supernovalike explosions of massive rotating stars
from disks surrounding a black hole” in Phys.Rev.D 109 (2024) 2, 023031 [209] by S. Fu-
jibayashi, A. T.-L. Lam, M. Shibata and Y. Sekiguchi. The axisymmetric numerical code
was developed by S. Fujibayashi, M. Shibata and Y. Sekiguchi. I developed a free-fall model
of a massive rotating star to approximate the stage when a rotating black hole is formed after
the gravitational collapse of the star with an envelope in a free-fall state. The initial data were
constructed by me using the open-source code octree-mg modified by me. S. Fujibayashi
carried out all the numerical simulations and generated all the figures. Y. Sekiguchi provided
constructive comments on the manuscript partially written by S. Fujibayashi, M. Shibata

and me.
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Overview

In this Chapter, we perform a new general-relativistic viscous-radiation hydrodynamics sim-
ulation for supernova-like explosion associated with stellar core collapse of rotating massive
stars to a system of a black hole and a massive torus paying particular attention to large-
mass progenitor stars with the zero-age main-sequence mass of Myzang = 20, 35, and 45M
of Ref. [21]. Assuming that a black hole is formed in a short timescale after the onset of the
stellar collapse, the new simulations are started from initial data of a spinning black hole and
infalling matter that self-consistently satisfy the constraint equations of general relativity.
It is found that with a reasonable size of the viscous parameter, the supernova-like explo-
sion is driven by the viscous heating effect in the torus around the black hole irrespective of
the progenitor mass. The typical explosion energy and ejecta mass for the large-mass cases
(Mzams = 35 and 45M,) are ~ 10°%erg and ~ 5My, respectively, with **Ni mass larger
than 0.15M. These are consistent with the observational data of stripped-envelope and
high-energy supernovae such as broad-lined type Ic supernovae. This indicates that rotating
stellar collapses of massive stars to a black hole surrounded by a massive torus can be a
central engine for high-energy supernovae. By artificially varying the angular velocity of the
initial data, we explore the dependence of the explosion energy and ejecta mass on the initial
angular momentum and find that the large explosion energy ~ 10°2 erg and large *Ni mass

> 0.15M, are possible only when a large-mass compact torus with mass = 1M is formed.

6.1 Introduction

Gravitational-wave observations by advanced LIGO and advanced Virgo have shown that
stellar-mass black holes with a wide mass range between ~ 3M; and ~ 100M, are com-
monplace in the universe [19, 489]. It is natural to consider that a majority of these black
holes are formed from core collapse of massive stars. In particular for large black-hole mass,
Mgy 2 20M,, the black holes are likely to be formed shortly after the stellar core collapse
with a short proto-neutron star stage or directly during the stellar core collapse. However, it
is still not very clear how these black holes are formed. One way to understand the formation
process of the black holes is to detect electromagnetic signals emitted during the formation
and subsequent evolution processes such as gamma-ray bursts [370, 518]. However, the ob-
servational information of the stellar center is limited because the formed black hole is hidden
by the dense matter surrounding it. Therefore, to understand the formation and evolution
processes of the black holes during the stellar core collapse, theoretical studies play a crucial
role.

A numerical-relativity simulation incorporating the relevant physics such as neutrino
transfer, equation of state for high-density matter, and angular-momentum transport is the

chosen way to theoretically understand the formation and evolution processes of stellar-
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mass black holes. In our previous work [205], we performed numerical-relativity simulations
with approximate neutrino transfer and shear viscous hydrodynamics employing relatively
low-mass (9 and 20M,,), compact, rotating progenitor stars derived by stellar evolution cal-
culations of Ref. [21]. We showed that these stars collapse to a black hole shortly after the
formation of a proto-neutron star and subsequently the black holes grow due to the mass
accretion from the infalling envelope. In the long-term (several seconds) evolution, an ac-
cretion disk is developed due to the centrifugal force of late-time infalling matter. The disk
subsequently becomes a geometrically thick torus by the effects of viscous heating, viscous
angular momentum transport, and shock heating. During an early stage in which the neu-
trino cooling efficiency and the ram pressure by the infalling matter are high, the outflow of
the matter from the torus is prohibited. However, in a later stage, the neutrino cooling effi-
ciency and the ram pressure become low enough to induce the mass outflow from the system,
leading to a supernova-like explosion for the entire progenitor star (see also Ref. [261] for a

related work).

The previous work [205] also showed that the explosion energy may be larger than that
of the typical supernovae if the progenitor stars are rapidly rotating and a high mass-infall
rate onto the torus is achieved. In such a case, a compact and massive (2 1M) disk/torus
can be formed around a black hole and the viscous and shock heating on the disk/torus
can provide a large amount of the thermal energy, which can be the source for an energetic
explosion. The viscous heating rate in a disk is written approximately as El, ~ UMiorus§2?
with the torus mass M., angular velocity €2, and shear viscous coefficient v. In the alpha

viscous prescription [417], v is written as
v=a,cH, (6.1)

where «,, is the so-called alpha parameter, ¢, is the sound velocity, and H is the scale height

of the torus approximately written as H = ¢;/Q. Then, the viscous heating rate is

. M
E}/ -~ 4 1052 < y, > torus
< 10%ere/s \ g5 ) \ 3L,

" 2 May \ V2 R ~3/2 62)
109 cm/s 10M,, 10Mpy ’ ’

where we used Q ~ /Mpy/R3 with Mgy and R being the black hole mass and cylindrical

radius of the torus. Here, the viscosity is supposed to be induced effectively by magne-
tohydrodynamics turbulence; see e.g., Refs [44, 232, 234, 237, 279, 420, 481], which shows

a, = O(1072). In the presence of matter infall onto the disk/torus, strong shear layers are
also formed at the shock surfaces outside the disk/torus, and hence, the viscous heating can

be even more enhanced.
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The timescale of the viscous heating in the disk/torus is written as

R2
t, =
a,ceH
_1 -2 1/2 1/2
~ 4.7s ( A > % Mer i ) (6-3>
0.03 109 cm/s 10M,, 10Mgg

and thus, the total dissipated energy is approximately

Eyty ~ MtorusMBH
R
Morus 10-Z\4BH
~ 1.8 x10% L . 6.4
a0 (e ) () 6

Hence, if a fraction of the energy released by the viscous heating contributes to the outflow
of the matter, it is possible to achieve a supernova-like explosion with a very large explosion
energy of order 10°? erg in the presence of a compact and large-mass torus of Migs ~ 0.1
1M,

In this chapter, we continue our exploration of this problem for more massive progenitor
stars with zero-age main-sequence mass Myzanvs = 35 and 45M, as well as Mzams = 20M .
Following our previous work, we employ the stellar evolution models by Aguilera-Dena et
al. [21]. Since these stars have compact and very massive cores at the onset of the collapse,
we may expect formation of a black hole shortly after the core bounce [357] (but see Ref. [1 18]
for a counter example). In this work, therefore, we assume the black-hole formation after the
core bounce without an explosion in the proto-neutron star stage. Under this assumption,
we prepare an initial condition composed of a spinning black hole and infalling matter that
self-consistently satisfy constraint equations of general relativity. The initial condition is
prepared for a stage with no accretion disk/torus formation. With such initial data, we per-
form a neutrino-radiation viscous hydrodynamics simulation in full general relativity paying
particular attention to the disk/torus formation and evolution, and subsequent development

of the matter outflow, which leads to a supernova-like explosion.

This chapter is organized as follows: In Sec. 6.2, we summarize the progenitor models which
we employ and then describe how to set up the initial condition composed of a spinning black
hole and infalling matter. Section 6.3 presents the results of numerical-relativity simulations
focusing on the mechanism of the explosion, the explosion energy, the ejecta property, and
predicted light curves of the supernova-like explosion. Section 6.4 is devoted to a summary.
In Section 6.5, we describe a formulation for the initial-value problem of general relativity
that we employ in this chapter. In Sections 6.6 and 6.7, supplemental numerical results are

presented. Throughout this chapter, kg denotes Boltzmann’s constant.
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6.2 Models and initial conditions

We employ massive and very compact progenitor stars among the stellar evolution models
of Ref. [21]. Specifically, we select the stars with the mass of the zero-age main-sequence
state, Myzams = 20, 35, and 45M,,. For these stars, we may suppose that a black hole would
be formed in a short timescale after the core bounce because the compactness parameter of
Ref. [357] is very large. !

Assuming the conservation of the specific angular momentum during the formation and
subsequent growth of a black hole, it is possible to approximately determine the mass and
angular momentum of the formed black hole for a given profile of the specific angular mo-
mentum as a function of the enclosed mass j(m) [427, 438], if the region with the enclosed
mass m collapses to the black hole without forming a disk. In the following, we assume that
the angular velocity profile €2 is a function of spherical radius only, as is done in the stellar
evolution calculation [21], and thus, the specific angular momentum j represents the angular

average as
1 2 T 2
j= W/o /0 Q(T)T’4 sin® 0dfdyp = §T2Q(T). (6.5)

Since j is a function of r, m is as well.
Then, we choose the mass of the black hole, Mgy o, which is much larger than the maximum
mass of neutron stars of < 3My. The resulting angular momentum, Jgg o, of the black hole

1S written as

Mgu,0
JBH,O == / j(m')dm’ (66)
0

We note that for the choice of Mgy, j(m) with any value of m < Mpp o has to be smaller
than the specific angular momentum of the innermost stable circular orbit jisco [48] of the

black hole of mass m and angular momentum

J(m) = /Omj(m')dm'. (6.7)

Since the angular momentum of the black hole is determined by specifying the enclosed mass,
Jisco is a function of the enclosed mass m in this context.

Figure 6.1 shows j as a function of m for Mzams = 9, 20, 35, and 45M of Ref. [21]
(solid curves). We also plot jisco by the dotted curves. The filled circles denote the points
at which j = jisco is satisfied (we refer to the corresponding mass as Misco). This figure
shows that for any model, j(m) < jisco is satisfied for m < Msco and indicates that for
the progenitor models with Myzanms = 20, 35, and 45M, a black hole is likely to grow to
Mgy = Misco = 8, 15, and 22M, prior to the disk formation. In the presence of the viscous

1Even for extremely compact progenitor stars, a supernova explosion may occur and a black hole may not be formed via
neutrino heating [118] and/or via magnetohydrodynamics effects [117, 355, 356], although our previous simulations for the 20M,
progenitor model indicate that the assumption of the black-hole formation may be valid for the progenitor models of Ref. [21].
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Figure 6.1: Specific angular momentum, j, as a function of the enclosed mass, m, for the models of Myzans =
9, 20, 35, and 45M, in Ref. [21] (solid curves). We also plot jisco for a given black hole of mass m and
corresponding angular momentum J(m) by the dotted curves. The filled circles denote the points at which
Jj = Jisco is satisfied for each stellar model.

angular-momentum transport, the disk formation is delayed and black holes with larger mass

can be formed before the disk formation.

The next step is to determine the profile of the infalling matter located outside the black
hole. For this, we approximate that the envelope in the progenitor stars is in a free-fall state
during the collapse. To characterize the profile, we employ a solution of Oppenheimer-Snyder
collapse (e.g., Ref. [369]) for our free-fall approximation because the centrifugal effect before
the disk formation is minor for the collapsing matter. Then, the fluid motion in the stellar

envelope during the collapse is given by

1
'rm<7—m) = §Tm,0 (1 =+ cos 77) ) (68>

[.3

.

T = max(T — Ty0,0) = 8L70 (n+sinn), (6.9)
m

where 7, is the areal radius of the mass shell with the enclosed mass m, rp, 0 = rp(7m = 0),
Tm,o 1s the starting time of the free-fall (see below), 7, is the free-fall time of the mass shell,
and 7 is an auxiliary parameter. For simplicity, we assume that the matter in the envelope

has zero radial velocity initially and begins to free-fall when the sound wave propagated from

o gy
Tn0 = ) 6.10
;0 \/O CS(T) ( )

the center reaches the radius at
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Table 6.1: Model description. Model name, mass of the zero-age main-sequence stars, Mzans, employed
angular velocity profile, initial rest mass (including the fraction which is transformed to the black hole),
initial mass and dimensionless spin of the black hole, the ratio of the matter angular momentum Jy,,¢ to
the black-hole angular momentum Jgp,o = M]%H,OXO’ alpha parameter for viscosity, and grid spacing for the
central region, Axg, respectively. The last two columns present the mass and dimensionless spin of the black
hole at the termination of the simulations. Note that for model AD20-7.8, we stopped the simulation on
the way of further significant black-hole growth (see Fig. 6.5). The results for model AD20x1 are taken from
Ref. [205)].

Model Mz ams Qprofile  M,o Mpuo Xo  Jmat Azg  Mpuf XBHS
(M) (M) i () (M)
AD20-7.8 500, orgmal 151 7.8 060 993 003 250 (10.4) (0.74)
AD20-9 20M ¢ original 15.1 9.0 0.72 5.60 0.03 216 10.8 0.79
AD20-10 20M ¢ original 15.0 10.0 0.83 3.86 0.03 240 10.9 0.84
AD35-15 35Mg, original 25.5 15.0 0.66 4.32 0.03 360 20.2 0.81

AD35-15-hi 35Mg original 254 150 066 453 0.03 300 19.6 0.81
AD35-15-mv 35Mg original 25,5 15,0 0.66 433 0.06 360  19.6 0.79
AD35-15-hv 35M¢ original 25,5 150 0.66 4.32 0.10 360 18.9 0.78
AD35x0.5-21.5 35Ms  originalx0.5 25.5 21.5 048 0.84 0.03 516  25.1 0.60
AD35x0.6-21.5 35Ms  originalx0.6 255 21.5 0.58 0.84 0.03 516 245 0.66
AD35x0.8-18 35Ms  originalx0.8 254 180  0.63 213 0.03 432 222 0.75
AD35x1.2-12.5 35My  originalx1.2 25,5 125  0.69 818 0.03 300 18.2 0.85
AD45-22 45M o original 326 220 064 271 0.03 528  28.0 0.77
AD45-25 45M o original 324 250 073 145 0.03 600  27.7 0.75
AD45-25-hv 45M o original 324 250 073 145 0.10 600  26.8 0.74
AD20x1 20Mg original 15.1 — — — — 175 11.2 0.73

Then, the black-hole formation time 7 = gy can be estimated as

Ry fimo gr
= — i — 6.11
TBH SMong (nBH + sinngw) + /0 ) (6.11)
where cos gy = 4Mpu 0/ Reuo — 1 and Rpp is the areal radius of a mass shell with enclosed
mass Mpp,o. Note that the mass shell for 7,,9 > 7y does not start infalling. The radial

velocity of the matter is then given approximately by

. Orm _2m ("m0 — Tm(Tm))
W= = I e (6.12)

Since we use the spinning black-hole puncture in quasi-isotropic coordinates for the initial-
ization of geometric variables (see Section 6.5), we need to perform coordinate transformation

to quasi-isotropic coordinates (7,6, ¢) for consistency as

1
f:§<rm—m+\/r$n—2mrm+a?n>, (6.13)

where a,, = J(m)/m and we assumed the conservation of the rest mass, m, and angular
momentum J(m) along radial geodesics of infalling mass shells. As a result, the weighted

rest-mass density p,, angular momentum density j@, and radial velocity ur (see Section 6.5
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for the definition of them) are given by

1 Om
* == A 14
p 4772 Or (6.14)
_ 1
Jo S gr on 9, (6.15)
i T OF
T P2,

_ r? \/Qm (Tymo — T'm) (6.16)

T(m+2F —ry) T'm,0"m

while other thermodynamical quantities such as the specific enthalpy (h) and temperature
(T') are obtained from the initial entropy of the matter assuming the adiabatic flow. In
addition, we assume that the electron fraction is unchanged in the free-fall. After all the
hydrodynamical quantities are set, we initialize the geometrical quantities following an initial-

value formulation presented in Section 6.5.

The initial data is prepared using the multigrid solver code modified based on octree-mg
[188], an open source multigrid library, with an octree adaptive-mesh refinement (AMR)
grid. This code can provide more accurate initial data than in our previous chapter [205],
and hence, enables us to explore the explosion energy and ejecta mass, which are sensitive to
the accuracy of the gravitational field in the outer region of progenitor stars, with a better

accuracy.

In numerical computation, we cut out the outer part of the progenitor stars with r 2
10°km, because our simulation time is at most ~ 20s, and hence, the matter in such an
outer region does not fall into the central region, i.e., it does not give any effect on the

evolution of a black hole and a disk/torus.

Table 6.1 lists the models employed and their parameters, i.e., the initial total rest mass
in the computational domain (including that of the matter transformed to the black hole),
the initial mass and dimensionless spin of the black hole, the ratio of the matter angular
momentum to the black-hole angular momentum, the alpha viscous parameter (see Sec. 6.3
for the definition), the grid spacing that covers the central region as well as the mass and
dimensionless spin of the black hole at the termination of each simulation. The last number for
the model name denotes the initial black-hole mass. Here, the black-hole mass is determined
from the equatorial circumferential radius, C,, of apparent horizons (e.g., see Ref. [430]) by

Ce

Mgy = —. 1
o= (617)

The dimensionless spin, Y, is determined from the ratio of the meridian circumferential radius
C, to C. using the relation between x and C./C, for Kerr black holes [130]. We also confirm
that the area of the apparent horizons, Aag, is written as Aag = 87 MZH(1 + /1 — x2) for
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the given set of Mpy and y within 0.1% error.

For the models with Mzams = 20, 35, and 45M,, the rest-mass of the matter located
outside the black hole is ~ 7, 10, and 10Mg for Mpuo = 8, 15, and 22M. This suggests
that for the 35M and 45M ., models, the energy source available for the explosion is larger.
For the stellar models of Ref. [21], the stellar radius R, ~ 3 x 10° km depends only weakly on
the stellar mass M, at the onset of the stellar core collapse. This implies that a compactness,
defined by C, = GM,/(c*R.), and the density at a given radius are larger for the larger
values of Myans, leading to a higher mass infall rate. This dependency is reflected in the
explosion energy as discussed in Sec. 6.3.4. It should be also mentioned that the angular
momentum of the matter outside the black hole, J.¢, is larger than that of the black hole,

JBH,0 = XOMBH702, for all the models with the original angular velocity.

In this chapter, the model with Mzanys = 35Mg, and a,, = 0.03 (AD35-15) is taken as a
fiducial model. We perform additional simulations by uniformly multiplying constant fac-
tors 0.5, 0.6, 0.8, and 1.2 to the angular velocity of this fiducial model (each is referred to
as AD35-15x0.5, AD35-15x0.6, AD35-15x0.8, and AD35-15x1.2). This exploration is moti-
vated by the fact that the stellar evolution calculation is carried out assuming the spherical
morphology and the results for the angular velocity profile may have a systematic uncertainty:.
By varying the angular velocity we explore the dependence of the ejecta mass and explosion
energy on the initial angular momentum. We also perform simulations with «, = 0.06 and
0.10 for the model with Myzans = 35M.

As we already mentioned, Fig. 6.1 indicates that it would be safe to choose Mpp o ~ 8, 15,
and 22M at which a disk starts forming. By performing numerical simulations, we find that
it is practically possible to employ larger values of Mgy, because in an early stage of the disk
evolution during which the viscous timescale of the disk is shorter than its growth timescale,
the matter in the disk quickly falls into the black hole. Thus, we also employ Mgy =9 and
10Mg for Mzams = 20Mg and Mpp o = 25Mg for Mzams = 45M. With these settings, the
computational costs are saved because we can employ a larger grid spacing (see Sec. 6.3).
Although the setting is different from the more reliable one (with a smaller value of Mgy ), it
is indeed found that the results for the explosion energy and ejecta mass depend only weakly
on the initial choice of Mgy if the boost of Mgy is within ~ 15%. However, Mpy o should
not be taken to be too large. For example, for Mzams = 20M; with Mpry = 10Mg, the
final black-hole spin is overestimated, because a part of the high-angular-momentum matter
that should form the disk in reality is incorrectly taken inside the black hole for the initial

condition.
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Figure 6.2: Snapshots of the profiles for several quantities at selected time slices for model AD35-15. At
each time, the rest-mass density (top-left), entropy per baryon (top-right), temperature (bottom-left), and
electron fraction (bottom-right) are displayed. The poloidal velocity field is depicted with arrows, the length
of which is logarithmically proportional to the magnitude of the poloidal velocity. See the key shown in the
top-left legend for the scale. Note that for the third to sixth panels, the regions displayed are wider than
those for the first and second panels. The filled circles at the center denote the inside of apparent horizons.
An animation for this model can be found in https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/
share/AD35-15-multiscale.mp4
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Figure 6.3: The same as Fig. 6.2 but for larger viscosity model AD35-15-hv. An animation for this model can
be found in https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-hv-multiscale.
mp4
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6.3 Numerical results

6.3.1 Set-up

Numerical simulations are performed employing the same formulations as in our previous
studies [201, 202, 203]. For the viscous hydrodynamics simulation, we have to give the

viscous parameter v [201, 202, 203]. Following our previous works we write it in the form
v = min(c, 0.1¢) by, (6.18)

where (i, := «, H is considered as a typical eddy scale in the turbulence. To conservatively
incorporate the viscous effect, we set up the upper limit (0.1¢) for the term proportional to
the sound velocity in this chapter. Following previous works, we choose H = 2GMgy/c?,
where the black-hole mass Mpy is determined by Eq. (6.17) at each time (see Sec. 6.2). This
choice of H is conservative because it should be much larger than 2G Mgy/ c? in an outer
region of the disk/torus. However, we will show that even with such a conservative choice,
the viscous effect becomes strong enough to induce a stellar explosion. In other words, the

key to the explosion is the viscous effect in an inner region of the torus.

The simulation is performed on a two-dimensional domain of R and z as in our previous
works [201, 202]. For both directions, the following nonuniform grid is used for the present
numerical simulation: For z < 7TGMggo/4c¢® (x = R or 2), a uniform grid with the grid
spacing, typically, of Az &~ 0.016GMgpo/c* is used, while outside this region, the grid
spacing Azx; is increased uniformly as Ax;,; = 1.01Ax;, where the subscript i denotes the
i-th grid. The black-hole horizon is always located in the uniform grid zone.

For the fiducial model with Myzays = 35M, and «,, = 0.03, we additionally perform a
high-resolution simulation with Az ~ 0.0135Mpn to examine the numerical convergence
(model AD35-15-hi). For this we also prepare the uniform grid for x < 7GMpg/4c¢® and
non-uniform one with Az;,; = 1.01Ax; for the outer region. The dependence of the numerical

results on the grid resolution is briefly summarized in Section 6.7.

Because we start from the initial data of a black hole and infalling matter, we can take a
large value of Az, from the beginning of the simulation. For example, for Mgy = 15Mg,
Az is chosen as 360m (i.e., Axg = 0.016 Mpn o). If we started the same simulation from the
pre-collapse star, we had to prepare a computational domain that could resolve the black-
hole formation and subsequent evolution. At the formation of the black hole, its mass is
~ 3Mg, and hence, if we require the grid spacing that can resolve the black hole at birth
with an accuracy as good as the present setting, we have to prepare Axy ~ 72 m. Therefore by
starting the simulation from a black hole and infalling matter, we can save the computational

costs significantly.

A caution is appropriate here: For the lower grid resolutions (larger values of Azy/Mpy),
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the black hole is less accurately resolved, leading to the overestimation of the black-hole mass
and underestimation of the black-hole spin in our implementation [201] (see also Section 6.6).
This is in particular the case for model AD20-7.8 as well as for model AD20x1 for which the
early evolution of the black hole during the stage of Mgy ~ 3M is less accurately computed.
For other models, we choose Azy < 0.016G Mgg/c?, with which the black hole is evolved in
a good accuracy (see Section 6.6).

As we mentioned in Sec. 6.2, we cut out the matter for r > 10° km although the original
stellar surface is located at ~ 3 x 10°km. The matter in the outer region can affect the
explosion dynamics when the exploded matter interacts with it. However, the total mass of
the cut-out matter is about 0.6, 1.1, and 1.3M for Mzams = 20, 35, and 45M, [21], and
thus, they are much smaller than the ejecta mass for most of the models (see Sec. 6.3).

We stop the simulation when a shock wave associated with the explosion from the disk/torus
reaches the outer boundary (at r ~ 10° km) for Mgy = 35M,, and 45M,. For Mgy = 20M,
for which Axq is small and more computational resources are required for a long-term com-
putation, we stopped the simulations before the explosion energy and ejecta mass saturate to
save the computational time, because our main focus in this chapter is the explosion property

for large-mass progenitor stars.

6.3.2 Explosion mechanisms

6.3.2.1 General feature

First, we summarize how the disk and torus are formed and evolved, leading to the eventual
explosion (see Figs. 6.2 and 6.3). As we find from Fig. 6.1, broadly speaking, the specific
angular momentum of the infalling matter increases with the enclosed mass, thus with the
radius. The matter located in the inner region does not have the specific angular momen-
tum large enough to form a disk or torus around the black hole. Thus, in an early stage of
the black-hole evolution, most of the infalling matter simply falls into the black hole. Dur-
ing this stage, the centrifugal force of the infalling matter does not play an important role.
Subsequently, the matter with sufficiently large specific angular momentum starts forming a
geometrically thin disk (see the first panel of Fig. 6.2). After the formation of the disk, a
strong shear layer is established between the infalling matter and the shock surface outside
the disk. Thus, viscous heating efficiently generates the thermal energy. Also, shock dissi-
pation efficiently proceeds around the shock surface. By these heating mechanisms, the disk
subsequently becomes geometrically thick, leading to the formation of a torus (see the second
panel of Fig. 6.2).

After its formation, the torus gradually grows due to the continuous matter infall, while
the black hole grows due to the matter infall primarily from the polar region. During the

evolution of the torus, the kinetic energy of the infalling matter is dissipated around the shock
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Figure 6.4: Time evolution of the total neutrino luminosity (left) and cooling efficiency (right) for models of
Myzams = 20M (top panels), 35M¢ with three different values of the viscous coefficient (second top panels),
35M¢ with different initial angular momentum (third top panels), and 45M¢ (bottom panels). The time is
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the legend.
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surface just outside the torus, which increases the temperature and entropy per baryon of the
torus (see the second and third panels of Fig. 6.2 and the first panel of Fig. 6.3). Since the
shock surface is non-spherical while the matter infall proceeds nearly spherically, the shear
layer is also formed, enhancing the viscous heating. The oblique shocks formed around the
shock surface play a role in enhancing the matter infall onto the black hole and inner region
of the torus from the polar region. This enhances the efficiency of the viscous heating in the
inner region.

In the early stage of the torus evolution, the ram pressure of the infalling matter is too high
to induce an outflow from the torus. In addition, the neutrino cooling suppresses the viscous
heating effect. However, the ram pressure of the infalling matter continuously decreases
because of the decrease in its density, and also, the neutrino cooling efficiency becomes lower
in a later stage (see below for more details). As a result, the thermal pressure of the torus
generated by the viscous and shock heating eventually exceeds the ram pressure. Then, an
outflow from the torus sets in, inducing the explosion of the entire star (see the fourth, fifth,
and sixth panels of Fig. 6.2 and the second and third panels of Fig. 6.3).

The viscous heating as well as the shock dissipation are most efficient around the shock
surface in the vicinity of the torus. Thus, the outward motion of the outflow is initially
induced along the torus surface. The matter of the outward motion has high entropy per
baryon, and thus, the outward motion accompanies convective motion, which redistributes
the thermal energy to a wide region. Thus, although the matter initially moves toward a
particular direction, subsequent motion becomes quasi-isotropic, and the explosion occurs in
a nearly spherical way.

Although the viscous and shock heating are universally the explosion sources, the efficiency
of the heating and evolution process of the torus depend on the neutrino cooling (see Fig. 6.4).
In the presence of an efficient cooling by neutrinos, the torus relaxes to a neutrino-dominated-
accretion-flow (NDAF) state. On the other hand, if the neutrino cooling is not efficient, the
explosion takes place in the absence of the NDAF state and the explosion sets in earlier. For
example, for model AD35-15 for which the NDAF stage is present the explosion sets in at
t ~ 7s while for model AD35-15-hv for which the NDAF stage is absent the explosion set is
at t ~ 5s (compare Figs. 6.2 and 6.3).

Even after the onset of the explosion, the matter infall continues for at least several seconds
near the rotational axis, around which the matter with small specific angular momentum
continuously falls onto the black hole and the inner region of the torus. This matter infall to

the torus contributes to the efficient viscous and shock heating, sustaining the explosion.

6.3.2.2 Dependence of the progenitor mass

As mentioned in Sec. 6.2, more massive progenitor stars are more compact and thus have

higher mass-infall rates, which are advantageous for generating more thermal energy (see
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below). By contrast, the neutrino luminosity tends to be smaller for more massive progenitor
stars at the torus formation (compare the models with original rotation profiles AD20-9,
AD35-15, and AD45-25: see left panels of Fig. 6.4). This is due to the larger radius of the
innermost stable circular orbit around the black hole for more massive models. That is, for
more massive models, which form more massive black holes, the density and temperature
of the torus are lower [202], and the neutrino luminosity is also lower. Consequently, the
thermal energy generated by the viscous heating is efficiently used for the explosion of the
system. Indeed the right panel of Fig. 6.4 shows that the neutrino cooling efficiency defined
by L,/ Mpnc? is lower for more massive progenitor models. This results in a shorter (or no)
NDAF phase, leading to a quick explosion. The lower neutrino cooling efficiency, in addition
to the higher mass-infall rate, is advantageous for large explosion energy (see Sec. 6.3.4).
This situation is in contrast to the usual core-collapse supernova explosion, in which higher
neutrino luminosity of proto-neutron stars is advantageous for an earlier explosion (e.g.,

Ref. [257]).

For the fixed viscous parameter o, = 0.03, Mzams = 20 and 35M models (AD20-9 and
AD35-15) have high neutrino cooling efficiency appreciably exceeds 0.01 (see Fig. 6.4), and
have a NDAF phase. As a result, the explosion for these models is delayed after the torus
formation. By contrast, no NDAF phase is found for 45M, models (AD45-22 and AD45-25),
which drive the explosion shortly after the torus formation. We note that the presence or
absence of the NDAF phase depends not only on the progenitor stars but also on the viscous
coefficient and the initial angular momentum of the progenitor star, as discussed in the

following subsections.

6.3.2.3 Dependence on the viscous coefficient

For the 35M,, progenitor, we perform three simulations varying the viscous coefficient and
find that the evolution of the system depends qualitatively on the magnitude of «,. For large
values of o, i.e., 0.06 and 0.10, the evolution toward the explosion is the qualitatively same
as those for the 45M; models: The explosion sets in in a relatively short timescale after the
formation of the torus with no NDAF phase (cf. Fig. 6.3). By contrast, for a,, = 0.03, the
explosion is delayed because the neutrino cooling efficiency is sufficiently high to suppress
the outward motion of the matter by the viscous and shock heating in the early evolution
stage of the torus. For this model, the explosion is started only when the mass infalling rate
is sufficiently low. This difference results from the stronger effects of the viscous heating
and angular momentum transport for the larger viscosity, by which the torus expands more

rapidly, reducing the neutrino cooling efficiency in an early stage.
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6.3.2.4 Dependence on the initial angular momentum

The dependence of the evolution process of the system on the initial angular momentum is
explored for the models of Myays = 35M, with a fixed value of o, (= 0.03). For our models,
a disk and/or a torus surrounding a black hole is always formed, but their mass depends
strongly on the initial angular momentum: For larger initial angular momentum, it is larger
and, as a result, the explosion can be more energetic and mass ejection is more enhanced (see
Sec. 6.3.4).

Models AD35-15 and AD35x1.2-12.5 achieve a high neutrino cooling efficiency and NDAF
phase after the formation of tori (see Fig. 6.4). By contrast models AD35x0.6-21.5 and
AD35x0.8-18.0 do not achieve the NDAF phase. This illustrates that larger angular mo-
mentum stars are more subject to the NDAF phase after the formation of a torus around a
black hole.

For a model with sufficiently reduced angular momentum (AD35x0.5-21.5), the disk is
too sparse and low-mass (< 0.5M) to find explosion in our simulation time. In this case,
the geometrically-thick torus formation is not also found in the simulation time. Even for
this case, however, a low-mass disk may be a source of a transient at a very late stage, i.e.,
t > 10s: As discussed in Ref. [263], in this case, the final configuration is likely to be a
black hole surrounded only by a low-mass low-compactness disk, which could be evolved by
a viscous hydrodynamics effect (resulting from magnetohydrodynamics turbulence) leading
to mass ejection. If this happens, a blue, rapidly varying optical transient may be generated

after long-term evolution of the accretion disk formed in late time [263].

6.3.3 Evolution of black holes

Figure 6.5 shows the evolution of the mass and dimensionless spin of the black holes for all the
models studied in this chapter. Note that for model AD20-10, we stopped the evolution of the
gravitational field at ¢t =~ 8 s to save computational time because the total mass of the matter
in the computational region was smaller than 10% of the black-hole mass, and moreover,
model AD20-9 is our main model for Myzays = 20M . Both the mass and dimensionless spin
increase steeply prior to the onset of the explosion, but after that, they relax toward final
values. The final black-hole mass is 50-60% of Mzaws; large-mass black holes such as observed
by gravitational-wave observations [19, 489] are naturally formed from the progenitor models
of Ref. [21]. For the models with larger values of «,, the final mass and dimensionless
spin of the black hole are slightly smaller, because higher viscous heating efficiency as well as
viscous angular momentum transport enhances the mass ejection while preventing the matter
infall onto the black hole. However the dependence on «,, is not very strong; the mass and
dimensionless spin decrease by ~ 1M and 0.03, respectively, for the change of o, from 0.03
to 0.1.
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Table 6.2: Summary of the quantities associated with the explosion for the models for which the simulation
is performed for sufficiently long time: Time at the onset of the explosion measured from the torus formation
time, texp (the values in the parenthesis denote the simulation time), explosion energy, Eexp, and ejecta mass,
Me,j, measured at the termination of the simulation, the ejecta velocity defined by vej = \/2Fexp/Me;j, and
synthesized ®Ni mass My;. In the last two columns, we also list the mass of an ejecta component with the
temperature satisfying 7' > 5 x 10° K during the ejection process and the average value of the entropy per
baryon for the ejecta. For model AD35x0.5-21.5, we do not find explosion. For most of the models, the
explosion energy was still increasing at the termination of the simulations, and thus, the values shown here
are considered as the lower bound.

Model texp (S) Eexp Me‘ Vej MNi M>5 GK <S> /]{ZB
(10°terg) (Mo) (10°cm/s) (Mo) (Mo)
AD20-9 3.8 (3.8) 2.2 2.2 1.0 0.24 0.44 17
AD20-10 <0.1 (0.1) 2.6 2.6 1.0 0.20 0.44 17
AD35-15 2.8 (7.1) 6.5 4.2 1.2 0.18  0.55 23
AD35-15-hi 2.0 (6.3) 7.0 5.0 1.2 0.24 0.72 28
AD35-15-mv 0.8 (5.1) 8.1 4.1 1.4 0.41 1.02 26
AD35-15-hv 0.5 (4.8) 10.1 5.9 14 0.15 0.69 39

AD35x0.5-21.5 —

2.1 1.0 1.5 0.04 0.16 34

AD35x0.6-21.5 0.7 (9.2)

AD35x0.8-18 0.8 (7.2) 4.4 2.6 1.7 015  0.52 32
AD35x1.2-12.5 3.9 (7.4) 6.8 5.3 1.1 0.38  0.90 23
AD45-22 0.6 (5.9) 11.5 3.7 1.8 028  0.95 33
AD45-25 <0.1 (0.1) 8.4 43 1.4 046  1.15 27
AD45-25-hv <0.1(0.1) 130 47 1.7 025  0.87 43

Accompanied with the formation of a massive disk/torus around a black hole, the black-
hole spin is naturally increased. For all the models with no modification of the initial angular
momentum, the dimensionless spin of the black holes is ~ 0.75-0.85 at the termination of the
numerical simulation (cf. Table 6.1). The high spin is advantageous for efficiently converting
the released gravitational potential energy to the thermal energy.

For smaller and larger initial angular momentum models with Myzays = 35Mg, the re-
sulting final value of the dimensionless spin of the black hole, x¢, is smaller and larger,
respectively, while the final black-hole mass is larger and smaller, respectively. However, x;
varies only £0.05 for the change of the initial angular momentum by +20% (compare the
results for models AD35x0.8-18, AD35-15, and AD35x1.2-12.5). Thus, the final black hole
spin is likely to be fairly high as long as a disk/torus with a few M is formed around the
black hole. By contrast, for model AD35x0.5-21.5, for which a substantial amount of the
infalling matter falls into the black hole, the final value of x is much smaller than those of
the other 35 M, models, while the final mass is much larger than others.

Models AD45-22 and AD45-25 started the simulations from different black-hole mass. How-
ever, the final mass and dimensional spin for these models have similar values. This appears
to be also the case for models AD20-7.8 and AD20-9. These results indicate that in the early
stage of the disk evolution, a substantial fraction of the matter in the disk quickly falls into
the black hole by the viscous effect, and the simulation may be started from a black-hole
mass which is slightly larger than those predicted from Fig. 6.1.
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6.3.4 Ejecta mass and explosion energy

Figure 6.6 shows the time evolution of the explosion energy (left panels) and ejecta mass
(right panels) for all the models studied in this chapter (see also Table 6.2) except for model
AD35x0.5-21.5, for which explosion is not found in the simulation time. At the termination of
the simulations, the explosion energy is still increasing for most of the models, and hence, the
values listed in Table 6.2 are considered to be the lower bound. However, broadly speaking,
we may conclude that (i) for Mzams = 20My, the explosion energy is a few times 10°! erg,
i.e., comparable to or slightly larger than that of the ordinary supernovae, while (ii) for
Myzams = 35M, and 45M, it is ~ 10°%erg, i.e., about one order of magnitude larger than
the ordinary supernovae, for the original progenitor models with no modification of the

angular momentum profile.

The increasing explosion energy at the termination of the simulation stems from the fact
that there is still matter infalling into the vicinity of the black hole. As seen in the left panels
of Fig. 6.4, there is still viscous heating of order 105! erg/s, which increases the explosion
energy even in the later phase at which the shock wave reaches the outer boundary and

ejecta mass does not increase any longer.

The large explosion energy of the massive progenitor models stems from their relatively
large compactness. As we already mentioned in Sec. 6.2, for the pre-collapse models of
Ref. [21], the compactness of the progenitor star C, = GM,/(c*R,) is larger for the more
massive stellar models. Broadly speaking, the mass infall rate during the collapse is propor-
tional to M, /tg o C¥? where tg = \/W is the free-fall timescale. Thus, the mass-infall
rate is higher for the larger-compactness progenitor models. The higher mass-infall rate en-
hances the viscous and shock heating rates around the inner region of the disk/torus, which

result in the larger explosion energy for the more massive progenitor models.

For models with larger values of «a,,, the explosion energy and ejecta mass are naturally
larger. Fundamentally, the viscous effect should come effectively from the magnetohydrody-
namical turbulence and hydrodynamical shear in the present context. Thus, the explosion
energy and ejecta mass can be accurately determined only by a magnetohydrodynamics sim-
ulation. However, the present study indicates that the dependence of these quantities on
a,, is not very strong; even for the 10/3 times larger value of «,,, the explosion energy and
ejecta mass increase within a factor of 2. In particular, the explosion energy and ejecta mass
show similar values for Mzans = 35M, with o, = 0.03 and 0.06. Therefore it is reasonable
to conclude that the explosion energy can reach Fe, ~ 10°2erg with the ejecta mass of
Me; = 4-5My, for the present choice of the massive progenitor stars, if the turbulent state is
excited and the resulting effective viscosity with a,, = O(1072) is generated around the inner

region of the accretion disk/torus.

The modification of the initial angular momentum profile for the progenitor stars of
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Myzanvs = 35M, has an impact on the explosion energy and ejecta mass, in particular for
the case that we reduce it by more than 40%. The ejecta mass decreases monotonically with
the decrease of the initial angular momentum because the total mass outside the black hole
is initially smaller and the mass of the resulting disk/torus becomes smaller for the smaller
initial angular momentum. The ejecta mass becomes ~ 1M, for the reduction of the angular
momentum by 40% (model AD35x0.6-21.5) and smaller than 0.4M, (i.e., < M. — Mppuy)
by the 50% reduction (model AD35x0.5-21.5). For model AD35x0.6-21.5, the explosion
energy is ~ 2 x 10°! erg, which is comparable to that of ordinary supernovae. This suggests
that a rapid rotation as well as the large compactness of the progenitor star is the key to the

large explosion energy.

For the models of Mpy = 20M; and 45Ms, we performed simulations with different
initial black-hole mass. We find a fair agreement of the final values of explosion energy and
ejecta mass, although their time evolution depends weakly on the initial setting. Thus, the
ejecta-related quantities can be approximately obtained even if we start the simulations with

black-hole mass larger than the value expected at the disk formation (see Sec. 6.2).

For Mzams = 20M,, we compare the present results with that in our previous work [205].
We find that both the explosion energy and ejecta mass were underestimated in the previous
study because the simulation time was too short. For obtaining the accurate explosion energy
and ejecta mass for this case, we needed a long-term simulation with the duration of 2 10s

after the onset of the explosion.

Even in the present study, the ejecta mass for Mgy = 20M, does not relax to a saturated
value at the termination of the simulation. For this model, the expanding shock is still inside
the computational domain, and a significant amount of unshocked, bound matter is present
in the outer region of the star. The progenitor star for this model is less compact than the
more massive progenitor stars, and hence, it takes more time (in units of Mgy) to follow the
ejecta generation. In the longer-term energy injection from the accretion torus, the ejecta

mass may be increased to M, o — Mgt ~ 4Me.

At the termination of the simulations for Mzams = 35Ms and 45,, we typically find
M, o — Mgus — M = 1-2Mg, which is still bound by the black hole. Since the black-hole
mass increases slowly with time even at the termination of the simulations, most part of this
mass will eventually fall into the black hole, and a fraction will be ejected from the system
via the viscous heating and viscous angular momentum transport. However, this is a minor

part compared with the matter ejected earlier.

As mentioned in Sec. 6.2, we discard the stellar matter with » > 10° km in our simulation
for which the mass is ~ 1Ms. Thus the ejecta mass may be larger than those listed in
Table 6.2 by this amount, but this possible increase is a small fraction of the numerical result

of M; for most of the models.
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6.3.5 Nickel mass and predicted light curve

Using the time evolution of the thermodynamical quantities on the tracer particles [205],
post-process nucleosynthesis calculations are performed with a open-source nuclear reaction
network code torch [191] with 495 isotopes, paying particular attention to the °Ni produc-

tion.

Table 6.2 lists the mass of *°Ni, My;, for selected models. The %°Ni mass is found to
be always larger than 0.15M; and ~ 3-11% of the total ejecta mass for all the models
except for the models with significant angular momentum reduction (AD35x0.5-21.5 and
AD35x0.6-21.5). The %°Ni mass does not have strong correlation with the ejecta mass
because the *Ni production efficiency depends strongly on the thermal history of the matter
during the explosion. In Table 6.2, we also show the mass of the ejecta that experiences a
state with 7' > 5GK (= 5 x 10°K), M.5¢k, and the average entropy per baryon, (s)/kg,
for the ejecta. The °°Ni production primarily occurs for T' > 5 GK, while it is suppressed
for the ejecta with a high entropy per baryon [480]. No clear correlation between My; and
the viscous coefficient is found (compare the results for models AD35-15, AD35-15-mv, and
AD35-15-hv). This stems from the fact that the high viscous heating can enhance not only
the fraction of the ejecta with T' > 5 GK, but also the entropy per baryon. In our results,

the "Ni mass is approximately written as (see Fig. 6.7)

Mg ai [ (s) \7°
My = . 6.19
N 2 (17kB (6.19)

It is also worth pointing out that M-.5qk is by more than a factor of ~ 2 larger than My;
for the models studied in this chapter. Thus, Ms5qk overestimates the *°Ni mass for the

present models.

By contrast, a clear correlation is found between My; and the angular momentum of the
progenitor stars for the Myzans = 35M model; larger angular momentum results in the larger
°Ni mass. This correlation stems from the larger mass and lower entropy per baryon of the
ejecta for the larger initial angular momentum. The latter is associated with the difference in
the evolution of the torus before the explosion sets in. For larger-angular-momentum models
AD35-15 and AD35x1.2-12.5, the explosion takes place after a quasi-stationary NDAF phase
of the torus, during which neutrino emission extracts the entropy of the torus efficiently. In
addition, the explosion after the quasi-stationary phase is less violent [205]. These factors
result in the lower entropy of the ejecta. This situation is in clear contrast with those
for smaller-angular-momentum models AD35x0.6-21.5 and AD35x0.8-18.0, for which the
explosion takes place in a relatively short timescale after the formation of the torus because
of the lower neutrino cooling efficiency and lower ram pressure of infalling matter. For these

models, a high entropy generated by the shock dissipation at the formation of the torus is
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directly reflected in that of the ejecta.

For the Myzays = 45M models, the °°Ni mass is larger, > 0.25M,, reflecting the large
mass fraction of the high-temperature ejecta component. The larger values of M~5qxk for
these models result from the earlier explosion than for less massive progenitor models (see
Sec. 6.3.2). A significant difference is found between the results of models AD45-22 and
AD45-25 in spite of the facts that for these models the explosion energy and ejecta mass
show similar values. This illustrates that the °Ni mass depends sensitively on the thermal
condition of the ejecta.

Figure 6.8 displays the **Ni mass as a function of the explosion energy (left panel) and
the average ejecta velocity (right panel). Together with the numerical results shown by the
filled symbol, we plot the observational data for stripped-envelope supernovae, some of which
are broad-lined type Ic supernovae, taken from Refs. [217, 482], by the open symbols. It is
found that our numerical results reproduce the relations between My; and Eey, or My; and
vej for high-energy supernovae with Eey, = 2-10 x 10°! erg and with ve; = 1-2 x 10 cm/s,
suggesting that a fraction of these supernovae may be driven by the explosion from a torus
surrounding a massive black hole of Mgy ~ 10-30M,,. Our result is consistent with a recent
model [211].

Using the explosion energy, ejecta mass, and *Ni mass as input parameters, we derive
model light curves for the supernova-like explosion using the Arnett’s model [37]. In this
modelling, we use the same prescription as described in our previous work [205]. The resulting
light curves are displayed in Fig 6.9. As predicted from the explosion energy, ejecta mass, and
%Ni mass, the peak luminosity and timescale of the luminosity decline for most of the models
are in good agreement with the observed data for high-energy supernovae like the broad-lined
type Ic supernovae or type Ib/Ic supernovae. For model AD35x0.6-21.6, the peak luminosity
is lower than those for other models due to the smaller ejecta mass and explosion energy,
indicating that a rapid rotation may be necessary to reproduce the brightness of high-energy
supernovae.

We note that the luminosity predicted by the Arnett model for given °Ni mass may be
underestimated by a factor of a few (see Refs. [153, 154, 272]). Thus, the explosion models
presented in this chapter may show more luminous light curves than in Fig. 6.9, i.e., most of
them may be good models for broad lined type Ic supernovae, as Fig. 6.8 indicates. To clarify
this point, we need a more detailed radiation transfer study for deriving the light curves in

follow-up work.

6.4 Summary

We studied the fate after the collapse of rotating massive stars that form a black hole and a

disk/torus by performing a neutrino-radiation viscous-hydrodynamics simulation in general
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relativity and employing the stellar evolution models by Aguilera-Dena et al. [21] as initial
data. Specifically, we employed rapidly rotating and compact progenitor stars as base models
and constructed a system of a spinning black hole and infalling matter as the initial conditions.
For most of the models we employed, a system of a black hole surrounded by a massive torus
is formed during the time evolution.

Due to the viscous heating as well as shock heating around the surface of the torus, thermal
energy is generated and becomes the source for the explosion of the system. For the massive
models (Mzams = 35Mg, and 45M), the ejecta mass is 4-5M; and the explosion energy
is ~ 10%2 ergs, i.e., much larger than typical supernovae. The explosion energy is enhanced
for larger viscous coefficients. By contrast, the explosion energy for the 20M. model is of
order 10°! erg. The primary reason for this difference is that for the more massive models,
the compactness of the progenitor stars is larger, the mass infall rate to the central part is
higher, and as a result, the viscous and shock heating efficiency are enhanced to get large
explosion energy.

For Mzanms = 35M, we performed simulations artificially varying the initial angular
momentum for a fairly wide range. For its change by £20%, the explosion energy and ejecta
mass do not vary significantly. However, for the reduction by 50%, we did not find the torus
formation and explosion in our simulation time, although a small-mass disk is formed. This
indicates that for high-energy explosion from the torus, a rapid rotation of the progenitor
stars that results in a rapidly spinning black hole with xy 2 0.7 and a massive torus with
mass 2 1M, is necessary.

For the simulations with the original progenitor models of Ref. [21], the final black-hole spin
is always 0.75—0.85, and thus, a rapidly spinning black hole is the outcome. The final black-
hole mass is ~ 10-30M,, which are 50-60% of the progenitor mass. Even for the model with
initially reduced angular momentum (model AD35x0.5-21.5) the final dimensionless spin is
~ 0.6. Since the black-hole dimensionless spin is high, in the presence of electromagnetic
fields, the Blandford-Znajek effect is likely to play an important role [95] for launching an
energetic jet or outflow along the spin axis of the black hole. If a relativistic jet is produced,
a gamma-ray burst will be also launched (see Refs. [110, 219, 285] for simulation works). Our
present explosion models may naturally explain the association between the gamma-ray burst
and supernova-like explosion [120)] if a jet is really launched. To demonstrate that a relativistic
jet is indeed launched, it is necessary to perform a magnetohydrodynamics simulation, which
is one of our follow-up works to be done. In the presence of a jet, energy available for the
explosion and °°Ni production is additionally injected, and also, observed relativistic motion
in supernova-associated gamma-ray bursts will be naturally modelled [120]. Exploring this
additional effect is an important subject for developing a model for supernova-associated

gamma-ray bursts.

For model AD35x0.5-21.5, energetic explosion from the torus is not found although a fairly
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rapidly spinning black hole is formed. In such a case, a gamma-ray burst may be launched
in the presence of a strong magnetic field penetrating the black hole, while supernova-like
explosion is likely absent. A wide variety of the final outcomes, which the present work
illustrates, suggest that there may be a variety of possibilities on the high-energy phenomena

depending on the initial angular momentum profiles in the progenitor stars.

For the case that an explosion occurs, an appreciable amount of ®°Ni is synthesized. We
find that the *Ni mass is always larger than 0.15M and ~ 3-11% of the total ejecta mass
for rapidly rotating progenitor stars. For the models with reduced angular momentum, the
%Ni mass is significantly smaller. This illustrates that rapidly rotating progenitor stars are

necessary for the significant °°Ni production.

The relations between the explosion energy and *°Ni mass and between the average ejecta
velocity and °Ni mass are similar to the observational data for stripped-envelope supernovae
with large explosion energy > 10°'erg. As a natural consequence, the model light curves
derived from our numerical results are also in good agreement with the observational data.
This suggests a possibility that some of high-energy stripped-envelope supernovae may take
place from a system of a spinning black hole and a massive torus. As discussed above,
a gamma-ray burst is likely to accompany with such supernovae if a strong magnetic field
penetrating the spinning black hole is developed. Therefore, supernova-associated gamma-ray

bursts may be naturally explained in this model.

6.5 Initial data for collapsing stars onto a spinning black hole

We consider an axisymmetric initial data with the line element written in the form

di* = *3;;dz’ dx? = * [qu(dRQ +d2?) + Rngoﬂ ,
(6.20)

where 4;; is the conformal three metric and 1 is a conformal factor, both of which are
functions of R and z. We suppose that ¢ is a given function of R and z. We require that the
metric reduces to that of Kerr black holes in the quasi-isotropic coordinates in the absence

of matter [288], i.e.,

—1/4
o= k= —— (6.21)
Tl/QEK/
>
el = e = :TI/‘Q (6.22)
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where

Ex = (rg +a*)Xx +2Ma’rg sin® 6, (6.23)
Yk = 1% +a’cos’h, (6.24)

M is the black-hole mass, a is the black-hole spin, 7k is the radial coordinate in the Boyer-
Lindquiest coordinates of Kerr black holes, r = v/ R? + 22, and tanf = R/z. The relation

between rx and r is
2

=14 M+ (6.25)
r

where 15 := v/ M? — a?/2 denotes the location of the black-hole horizon in the quasi-isotropic
coordinates. In the following, we assume ¢ = gx. We note that for r — 0, ¥x — ry/r and
gk — 0.

From the extrinsic curvature K;;, we define f(ij = 2Ky, Kij = ¢6Kij, Ki = PPOKY,
and the subscripts of Rij is raised by 4¥. In the following, we assume that the trace of
the extrinsic curvature is zero, i.e., (KRR + f(“)e2q + K¥?R% = 0. Then, for the metric of

Eq. (6.20), the momentum constraint is written in the form:

1

}—%aR(RIA{RR> + @f(RZ — (KRR + Kzz)(ﬁRq — R_1> = 87TJR¢662q, (626)
1 ~ ~ N N

EOR(RKRZ) +0.K.. — (Kpr + K..)0.q = 87J.4%*, (6.27)
1 . .

EaR(RKRw) + 0.K.,, = 8 J %%, (6.28)

where J; = aT" with « the lapse function and T"” the energy-momentum tensor. In the
formalism presented here, we will give J; to determine the geometric quantities, and hence,

we do not have to specify a.

We then write the conformal-tracefree extrinsic curvature as

(6.29)

YR

A N A 2 N A
Kij = DiW; + D;W; = 29 D" + K

where D; is the covariant derivative with respect to 4;;, W' is a conformal three vector, i.e.,
W; = 4;W*, and Kfj is the contribution from the black hole, which is tracefree. Each
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component of Kj;;, necessary for the momentum constraint, is written as

. %% 1
KRR = ORWR — ?R — @Wz — 2W303q + 2Wzazq + gleI/V,
KRZ = aRWz + azWR - 2WRazq - QWzaRQ7

5 W 1
K., =0.W, — OgWg — ?R + 2WrOrq — 2W.0.q + gdivW,

. W, .
Kpp = 0pW, — 227 + K,
K., = 0.W, + KX (6.30)

Zp?

where divW = 0gWr + Wr/R + 0,W,,

. HpR® HpRz
K E F

KR(p = 75 + i ) (631)

- HpR*: HpR?

K E F
Kzgo - 3 - v ) (632)
and Hg and Hp are [102, 103]
Hy— Ma|[(r — aQ)EK;L 2r2 (ré + a?)] | (6.33)
)y
K
Ho — _2Ma3rK\/7"I2< — 2]\427"K + a?sin® QCOSQ‘ (6.34)
Xk
Here, Kfj satisfies the ¢-component of the momentum constraint for J, = 0
1 N ~
EaR(RK}é@) +0.K%, =0. (6.35)
Then the equations for W; are written as
1 1 ) 8 .. 2W
|:A — ﬁ] WR + gaR<d1VW)2 (812%(] + 83(]) WR — <§d1VW — TR) 83(]

% _ — 6 2q

+2 ORWZ + R (‘LWR azq = 87TJR77Z) e, (636)
1 8 2W,
AW, + gaz(diVW)Z (012361 + afq) W, — (gdivW — RR) 0.q
W,

—2 (8RWZ + 5 - 8ZWR) Orq = 8mJ.%*, (6.37)

1 _
[A - ﬁ} W? =8rJ %R, (6.38)
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where W¢ := W?/R and A denotes the flat Laplacian,
2 1 2
A =05+ EaR + 07 (6.39)

For a given function of J,¢% 2%, the equation for W? is solved with the outer boundary
condition of W% o =2 and the inner boundary conditions, W% o« R for R — 0 and 9,W% =
at z = 0.

To simplify the procedure for the numerical solution of Wx and W,, we may rewrite these

variables using (see, e.g., Ref. [130] for a similar formulation in Cartesian coordinates)
1
Wi =B, — /(x+ BaR + B.2), (6.40)

where x and B; are new functions to be solved instead of Wx and W, and i denotes R or z.

With this prescription, we find

1 1 .
1 1
and
1 1
AW, + gaz(divW) =AB, — éaz [Ax + R(A — R ?)Br+ 2AB,] . (6.43)

Thus, by choosing the equation for Ay as
Ax = —R(A — R"*)Bg — 2AB,, (6.44)
we obtain the equations for Bg, B,, and x in simple forms as

1
{A—ﬁ} Brp = Sg, (6.45)

AB, = S., (6.46)
Ax = —RSgp-—2z5,, (6.47)
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where
2
Sw = 2(0hg+0%) Wa+ (mg _ %) Ong
W, 6.2
—2 ORBZ + R - GZBR (9zq + 87TJR¢ (& q’ (648)
2
S, = 2 (af%q + 8§q) W, + (QdivB — %) 0.q
W, 6 2
+2 | OrB, + ? — 0,Bg GRq + 87TJZ¢ e q’ (649)
and A )
divB (: gleW) = GRBR + EBR + (9ZBZ (650)

We note that in Sg and S, the second spatial derivative of By, B,, and x is not present.

Because Sg and S, fall off sufficiently rapidly in the far region (with O(r~°)), the elliptic
equations (6.45)—(6.47) can be solved in a straightforward manner with the outer boundary

conditions
1
BRocﬁ, Bzocﬁ, X o< (6.51)
The boundary conditions at R = 0 are
BR X R, QRBZ =0= aRX, (652)
and the boundary conditions at z = 0 are
0.Br =0=0.x, B, x z. (6.53)

For the equation of Bg, it may be better to solve the equation for B = Br/R to guarantee
the boundary condition, 0gBsz = 0, at R = 0. For this case the kernel operator of the

equation becomes

(8]2% - %83 - 83) By = (6.54)

Here, we note that Jp o R and g o sin?d at §# — 0, and thus, the regularity of Sg/R at
R = 0 is guaranteed.

If we consider that J;1%e% is a given function, the Hamiltonian constraint is solved for an

obtained numerical solution of Kw In this context, the Hamiltonian constraint is written as

1 ~ 1 o
Aw = §w€2qR - 27T,0Hw562q — S—WKin”, (655)

where pg = o?T" and R is the Ricci scalar with respect to the given conformal metric, 4;;,
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i.e., ¢ = gk. In the present context (e.g., Ref. [129]),
R=—2e72(8% + 8°)q. (6.56)

We also note that we will consider to give py (not T%), and hence, we do not have to specify

.

For the decomposition of ¢ = 1k + ¢, Eq. (6.55) is rewritten as

Lo,z 5 2 | ey 1 -k pkij
B¢ = OR = 2mpy e = i KK+ g Ky K (6.57)
where we used
Aty = 1@/11(62”? _ L}A(K}A(KU (6.58)
8 8y ¥

The boundary conditions for ¢ are

Orfr(p —1)] =0 at r — oo, (6.59)
Opd =0 at R=0, (6.60)
0.0=0 at z=0. (6.61)

For r — 0, ¢k oc r™, K K" oc 778, and R — 2a2/r?, the right-hand side of Eq. (6.57) is
regular anywhere. Thus, it is also straightforward to solve this equation under the boundary

conditions shown above.

For the perfect fluid,
T" = phutu” + Pg", (6.62)

where p, h, u*, P, and g" are the rest-mass density, specific enthalpy, four velocity, pressure,

and spacetime metric. Then we obtain

J; = Jap%e® = phoulu;®e®® = p.hu;, (6.63)
S = pup®e® = p.h(au') — PySe?, (6.64)

where p, = paul1)%e?? is the weighted rest-mass density which satisfies the continuity equa-
tion,

1
Ops + EaR (Rpv™) + 0.(p.v*) =0, (6.65)

with v* = u'/u’ and au' = \/1 + Y~*4iu;u;. Thus, the total rest mass of the system is
obtained by
M, = ZW/RdeZ P (6.66)
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The angular momentum of the matter is also obtained by

J=2r / RdRdz J,,. (6.67)

In numerical computation, (,0*, Y, T, j¢, UR, uz> are provided using the data of the collapsing
matter (see Sec. 6.2), and the field equations, e.g., (6.45), (6.46), (6.47), and (6.57), are solved

iteratively until the rest-mass density p and all metric variables converge.

6.6 Accuracy of the black-hole quantities

To ascertain numerical accuracy in evaluating the mass and dimensionless spin of black holes,
we evolve isolated spinning black holes using similar grid resolutions to those used in the
present work, initially preparing a Kerr black hole in quasi-isotropic coordinates [288] with
x = 0.8. Numerical evolution is carried out until £ = 80,000Mgy. To save the computational
costs, the outer boundary is located at ~ 800Mpy along each axis. The simulations are
performed for Az/Mpy = 0.012, 0.016, and 0.020 which are employed for the uniform grid
zone with x < 0.72Mgy where x denotes R or z. For x > 0.72Mpgy the grid spacing is
increased with the rate of 1.01 as in viscous hydrodynamics simulations. In this section, the
results are shown in units of Mgy = 1 (with ¢ = 1 = G). For example, for Mgy = 15M,
80,000 Mpy ~ 5.9s and 800Mpy ~ 1.8 x 10*km.

Figure 6.10 shows the evolution of the mass and dimensionless spin. A bump found at
t ~ 1,600Mgy is due to a slight reflection of numerical errors from the outer boundary: In
this test simulations, the initial data are Kerr black holes in the quasi-isotropic coordinates,
and thus, during the time evolution, the metric form is varied due to the change of the
slicing, approaching those on the limiting hypersurface (trumpet hypersurface). During this
variation, the gauge modes are propagated outward with the speed of light and some of the
modes are reflected at the outer boundary toward the inner region causing a high-frequency
numerical noise. This oscillation spuriously and slightly perturbs the horizon in particular
for the high-resolution runs, but the oscillation does not grow in time and the error size
associated with this is minor.

Besides this numerical error, the accuracy of the mass and the area of the apparent horizon
converge approximately at fourth order with respect to the grid spacing Az. The numerical
error for the mass and dimensionless spin increase approximately linearly in time, but for
x = 0.8 with Az < 0.016 Mgy, which is the typical grid resolution of the present chapter,
the errors in mass and dimensionless spin are within ~ 1.6% and Ay ~ 0.004, respectively,
at t = 80,000Mpy. For Az = 0.020Mgy, the error size is more than twice as large as that
with Az = 0.016 Mpy. This illustrates that a sufficiently high grid resolution is necessary
to accurately evolve the black hole. For model AD20-7.8 with Az/Mpny ~ 0.0215, the
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grid resolution in the early stage of the black-hole evolution is so low that the mass and
dimensionless spin are likely to be overestimated and underestimated, respectively. This
is also the case for model AD20x1 [205]. For this model the grid resolution for the early
black-hole evolution was not so high that the black-hole mass and dimensionless spin were
overestimated and underestimated, respectively. As a result, the specific angular momentum
at the innermost stable circular orbit around the black hole was spuriously overestimated in
the numerical computation, and thus, the matter around the black hole were more subject
to falling into the black hole. This leaded to the overestimation of the black-hole mass and
underestimation of the disk/torus mass. For this model, the NDAF phase was not found [205],

but this might be a spurious result due to the poor grid resolution.

6.7 Dependence on the grid resolution

In this section, we compare the results of models AD35-15 and AD35-15-hi as a convergence
test. Figure 6.11 shows the evolution of the mass and dimensionless spin (left) and the ex-
plosion energy and ejecta mass (right). We find a fair agreement between the results for
different grid resolutions. For the black-hole mass, the higher-resolution results slightly in
smaller mass. The primary reason for this is that with the higher-resolution, the viscous
heating is more efficient, enhancing larger ejecta mass (see the right upper panel) while sup-
pressing the accretion onto the black hole. Thus the black-hole mass presented in Fig. 6.5
may be slightly overestimated for their late stages while the ejecta mass may be underesti-
mated in Fig. 6.6. The explosion energy are also slightly larger for the higher grid resolution,

reflecting more energy injection from the viscous heating.
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result in Ref. [205] by the dashed curves.

y | '. ‘ZOA‘UO' = ;0‘8 .' = T . 'OHZOYOG
P ® 12 ® o, =003 *  a,=010
06 @ 45M,
081 |
4
20.6 1 |
= °
L04r7 2.0 |
o @ L S *
N "
y . . . ) . . .

0 15 20 25 30 35 40 45 50
(s)/kn

Figure 6.7: My;/Mss5cx as a function of (s)/kp. The dotted curve denotes ({s)/17kg)~*/%/2.



Chapter 6. Supernova-like explosion of massive rotating stars from disks surrounding a black hole 157

109 ¢ 1 100 ¢
o2 o 1t
— o, o — g ° *x @
Q * = o
=4 ® =
— 10~ — 10*
Z. Z.
< <
= =
1072 ® 201/ ® <08 ® My * =010 7 1072 ® 20 ® x08 ® My * a,=010
@ 35M, @ x12 ® =003 Taddia+2019 ® 35M, @ x12 ® =003 Taddia+2019
x0.6 @ M, A o, =006 Gomez+2022 x0.6 @ 451, A o, =006 Gomez+2022
1071 100 10! 0 5 10 15 20 25
Bexp (107 exg) e (1000 km/s)

Figure 6.8: Mpy; as a function of the explosion energy FEey,, (left) and average ejecta velocity vej (right). The
open symbols denote the observational data for stripped-envelope supernovae, some of which are broad-lined
type Ic supernovae, taken from Refs. [217, 482].

T
K =0.1cm?/g
10% ¢ 3
—
=02
o0 10% F
o
[}
=
3
2
~
1041 L
—— AD20-9 AD35x0.6-21.5 ——— AD45-25-]
—— AD20-10 AD35x0.8-18 b
AD35-15 —— AD356x1.2-12.5 Ie
—— AD35-15-mv —— AD45-22 Ie-BL
——— AD35-15-hv —— AD45-25
104() L L L L L L

—40 =20 0 20 40 60 80 100 120 140
t— tp(vak (dRY)

Figure 6.9: Bolometric light curves for all exploded models in this chapter. Light curves for different models
are plotted in different colors and line thicknesses. The filled circles along each curve indicate the time at
which the ejecta becomes optically thin to thermal photons. The shaded regions denote templates of the
bolometric light curves with standard deviations for type Ib, Ic, and Ic-BL taken from Ref. [322].



158 6.7. Dependence on the grid resolution

104 s s
Ax=0.016Mpy —

E 1.03 Ax:O.OZOMEEI - —

< 1.02

\ S —

z 101 —

| f—uw—

M

08 pr—e

0.79
0 1 2 3 4 5 6 7 8

1/(10* Mgy

Figure 6.10: Evolution of the mass (upper panel) and dimensionless spin (lower panel) of spinning black holes
for x = 0.8 with the grid resolutions of Az/Mgy = 0.012, 0.016, and 0.020.

2 or
s 20 | 4L
g - o
S e =3r
= 18 | F
%) ~ <2+
~— // =
E 16 /‘/ 1r —— AD35-15
= 4 ‘ AD35-15 _ AD35-15-hi --- 0= T ApEs-ish ]
: : : : B
0.8 | [ T 26T
P T5F
x 7 = 4
0.7 v =3t
L ?2 L
SeNi
0.6 I I I I 0 J
0 5 10 15 20

1 (s)

Figure 6.11: Left: The same as the middle panel of Fig. 6.5 but for the comparison between the results of
models AD35-15 (solid curves) and AD35-15-hi (dashed curves). Right: The ejecta mass (upper panel) and
explosion energy (lower panel) for models AD35-15 and AD35-15-hi.



Chapter 7. SACRA-2D 159
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Breakdown of Contribution

This chapter is based on the preprint submitted to Phys. Rev. D: “SACRA-2D: New azisym-
metric general relativistic hydrodynamics code with fixed mesh refinement” in arXiv:2502.03223
[303] by A. T.-L. Lam and M. Shibata. The numerical code SACRA-2D was fully developed
by me. I carried out all the numerical simulations. The initial data for the test problem of
supermassive star collapse was provided by M. Shibata. M. Shibata provided constructive

comments on the manuscript written by me.

Overview

In this Chapter, we present SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic
hydrodynamics (GRHD) code in dynamical spacetime under axial symmetry with the cartoon
method using the finite-volume shock-capturing schemes for hydrodynamics. Specifically, we
implemented the state-of-the-art Harten-Lax—Van Leer contact Riemann solver and found

better accuracy than the standard Total Variation Diminishing Lax-Friedrich Riemann solver.
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The spacetime evolves under the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c
constraint propagation. We demonstrate the accuracy of the code with some benchmark tests
and excellent agreement with other codes in the literature. A wide variety of test simulations,
including the head-on collision of black holes, the migration and collapse of neutron stars,
and the collapse of a rotating supermassive star to a massive black hole and a disk, is also

performed to show the robustness of our new code.

7.1 Introduction

In hydrodynamics and magnetohydrodynamics simulations, the finite volume method with
the high-resolution shock-capturing (HRSC) scheme is commonly used due to its conservative
nature and capability to resolve sharp discontinuities, such as shocks, that often appear in
the fluid’s motion. One popular HRSC scheme is the family of the Harten, Lax and van
Leer (HLL) based approximate Riemann solver [229], which utilizes a subset of waves in the
Riemann fan. While most existing numerical relativity (magneto)hydrodynamics codes (e.g.,
[80, 129, 182, 195, 234, 344, 348, 380, 507]) employ the Harten-Lax—van Leer—Einfeldt solver
[297] that includes only shocks and rarefactions, it is known to be very diffusive [236, 336,
337, 193] and the accuracy for long-term simulation could be deteriorated. This is relevant
for modeling the long-term evolution of post-merger remnant from neutron-star mergers
[214], particularly important when considering the magnetohydrodynamical processes [281].
The authors in [281, 513] have reported a new implementation of the HLL contact (HLLC)
solver, which is a more sophisticated Riemann solver that restores the contact discontinuity
in the Riemann fan. A recent study also demonstrates its significance even in the inspiral
phase of the binary neutron stars, where the dynamical tidal effect on the gravitational
waveform can only be manifested with the HLLC solver [295]. Consequently, employing the
HLLC solver (or a more accurate solver) for astrophysical simulations is crucial for accurate
(magneto)hydrodynamics and gravitational wave signals.

Despite many relativistic astrophysical systems requiring spatially three-dimensional sim-
ulation to fully capture the dynamics, such numerical studies are usually computationally
expensive, prohibiting us from studying a wider range of parameters. On the other hand,
we could approximate specific systems to be axisymmetric, reducing the problem’s size to
two spatial dimensions and drastically lowering the computation cost for numerical simu-
lation. This allows us to follow the physical system for a much longer time scale beyond
the current capability of three-dimensional simulations. Indeed, axisymmetric GRHD code
with dynamical spacetime has been used extensively to study various astrophysical systems,
such as the dynamics of isolated neutron stars [275, 427, 434] and hypermassive neutron
stars [168, 169, 170, 171, 447, 453], stellar collapse [299, 413, 414, 435, 448] and collap-

sar scenario [204, 207, 209, 456, 458] (see also Chapter 6), collapse of supermassive stars
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(208, 315, 342, 438, 451, 451, 498, 499], black hole-torus system [340, 341, 423], higher-
dimensional spacetime [534], and merger remnants from binary neutron stars and black hole-
neutron star [200, 201, 202, 206, 454, 455].

In addition to astrophysical events, there has recently been an increasing interest in nu-
merical relativity simulations of modified theories of gravity, aiming to search for distinctive
features in the strong field regime that may provide shreds of evidence with current and
future observations. In particular, a major effort has been put into analyzing the proper-
ties of compact objects, including black holes and neutron stars, as well as investigating the
gravitational wave signals from the coalescence of binary compact objects in modified gravity
theories such as the scalar-tensor theory (STT) [294, 305, 306, 450, 486] (see also Chapters 3
to 5), the scalar Gauss-Bonnet theory [176, 293, 396, 397, 461, 517], the dynamical Chern-
Simon gravity [151, 359, 360, 395], and the STT with kinetic screening [38, 440]. However, the
three-dimensional setups are computationally too costly to perform numerical experiments to
survey new theories systematically, which is particularly important in exploring a well-posed
formulation for certain theories. While one-dimensional simulation has been vastly used to
explore the effect of the modification in gravity (e.g., [126, 290, 291, 292, 332, 473]), axisym-
metric GRHD code can act as a bedrock for an efficient alternative to implementing various
alternative theories of gravity and helping to gain new intuition in the regime of non-zero
angular momentum. The cartoon method has been shown to be very useful for studying
long-term dynamics, for example, core-collapse supernova in STT [298] and the superradiant
instability of a Proca field [173, 175].

This Chapter reports the implementation SACRA-2D, a new MPI and OpenMP parallelized,
fully relativistic GRHD code in dynamical spacetime under axial symmetry with the cartoon
method. The code is written in FORTRAN90 with the numerical algorithm and technique
closely resembling the three-dimensional moving box numerical relativity code SACRA-MPI
[278, 526]. We implemented the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism
[55, 433] with Z4c constraint propagation [81, 239] to solve Einstein’s equations. The finite-
volume shock-capturing scheme is employed for GRHD. Specifically, we implemented the
total variation diminishing Lax-Friedrichs (TVDLF) solver and the state-of-the-art HLLC

solver for the approximate Riemann solver.

In the following, we first outline the grid structure of SACRA-2D in Section 7.2.1. We
then describe the implementation for dynamical spacetime in Section 7.2.2, specifically the
details of the cartoon method in Section 7.2.2.2, followed by the formulation for GRHD in
Section 7.2.3. In Section 7.3, we validate our code with several benchmark test problems,
addressing the accuracy and performance of SACRA-2D. The parallelization efficiency is dis-

cussed in Section 7.3.4.
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7.2 Formulation

7.2.1 Grid structure

The grid setting of SACRA-2D is very similar to that of the ”box-in-box” simulation [115, 526].
We employ the two-to-one fixed mesh refinement (FMR) structure in the computational
domain, which is composed of a hierarchy of nested concentric grids overlaying on top of
each other. It consists of L levels of FMR domains, each of which contains an even number

of grids N in both x and z directions with the grid spacing written as

Ax(o) = $max/N7 AZ(O) = ZmaX/Nv
AzV = Az=Y /2, Az =AY /9, (7.1)
for I = 1,2,---,L — 1, where x,., and z,,, are the size of computational domain, and

levels 0 and (L — 1) represent the coarsest and finest levels, respectively. The metric and

hydrodynamics variables are assigned at cell-centered positions with coordinates

1 1
= (5-5) 20 A= (h5) 820, (72)

for j,k € [1,N] on the I-th FMR level. The cell interfaces 7

()
4172 and Z41 ATE located at
x;l) + Az®/2 and z,(f) + A2W /2, respectively.

In addition to the local N grid cells, extra buffer cells are necessary for calculating deriva-
tives with finite different schemes and reconstructing the hydrodynamics variables. For sixth-
order accuracy in spatial derivative, four buffer zones are required to handle the lopsided finite
difference for the advection term (see Section 7.2.2) as well as the prolongation scheme at the
refinement boundary. We also allocate an additional four buffer cells on top of the original
four buffer zones to facilitate the adaptive time update in the time integration scheme (see
Section 7.2.4 for more details). Therefore, in SACRA-2D, we set up a total of (4 + 4) buffer
cells in each direction for the purpose of time integration. However, the number of buffer cells
can be easily adjusted if a higher/lower order scheme is used [e.g., (3 + 3) for fourth-order

accuracy.

7.2.2 Einstein’s equations

7.2.2.1 Basic equations

Following the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [55, 433] introduced

in Chapter 1 with Z4c constraint propagation [81, 239], we reformulate the field equations
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defining a set of geometric variables in Cartesian coordinates below,

Fig =P g, hij == ij — fij, W=7 (7.3a)
g ~ _ 1
K = ’)/Z‘jKU, Aij = ’QZ) 4 <KZ] — g’}/”K) s (73b>
I = —0,7", K=K —20, (7.3¢)
where h;; is the residual of spatial metric, © := —n,Z® is a constraint in Z4 system [97, 98,

223], and K is a variable used for the evolution equations.

The evolution equations for the geometric variables in Cartesian coordinates are given by

(O—BEO) W — %W [o (& +20) — 0,5"] (7.4a)
(050 s = ~204; + i + 408" — 23008", (7.4D)
(9—B"0) Aij = W? [aR; — DiDja — 87aSy]™ + o | (K +20) Ay - 244, )
+ A0 B + And,pt — § AyonB", (7
(O — B0 K = dnal(ST; + rhop) + ak® + a [Aijfxij + % (K + 2@)2] ~D;Dia,  (7.4d)
(0 —BF 0T = —2499;a + 20 {f;‘.kfv‘k — %”‘J’aj (2K +©) — %fvﬂ‘ajw —~ 8Wﬂ'sj] -
+ gajkfijkalﬁl + 405,081 + év’fajﬁkﬂk — M 0,5 — 20k (r . wm,) o
(0,—B*0,)0 — %a lR W g (& + 2@)2] _ Samp — 20K0, (7.4f)

where (pp, S;, Sij) are the 3 + 1 decomposition of the stress-energy tensor T, given by
Eq. (1.10). The constraint damping parameter  is chosen to be x = 5 x 1073M~! in
this work with M being the total mass of the system. We also enforce the following algebraic

constraints during the evolution
det(3;;) =1 and F9A; =0, (7.5)

as the numerical error could induce violations in these constraints. Specifically, we reset the
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metric variables after each time integration given by

i = det(Fy) "3, (7.6a)
WY = det (%)W, (7.6b)
~ o ~ 1 -
AT = det (%) V8 <Az’j - g%‘ﬂklAkz) ; (7.6¢)
K = K 440 A, (7.64)

to satisfy the algebraic constraints.

We adopt the standard moving-puncture gauge condition [26, 42, 119] for the lapse function
and shift vector as in Eq. (1.24). We employ the standard initial gauge choice for the lapse
function o = v~2 and the shift vector 8° = 0 = B® for all the tests in Section 7.3 unless

stated otherwise.

The spatial derivatives in the right-hand side of BSSN equations, Eq. (7.4), are evaluated
with a sixth-order central finite difference, while the sixth-order lopsided finite difference is
used for the advection terms in the left-hand side of Eq. (7.4) to guarantee the stability.
To reduce high-frequency noise, we include eighth-order Kreiss-Oliger (KO) dissipation for

geometric variables () in x and z directions as
(/256) (A0 + AZ°0F) Q, (7.7)

with the damping parameter € set to be 0.5.

7.2.2.2 Cartoon method

We employ the cartoon method [24, 421, 426] to impose the axial symmetry on the geometric
variables defined in the Cartesian coordinates. Three extra layers of the computational
domain are constructed upon and below the z-z plane with y = +jAy (j = 1,---,3) as
required by the sixth-order central finite difference. Einstein’s equations are solved only
on the y = 0 plane while the geometric variables Q(x, £jAy, z) on the y = +jAy planes
are obtained by first interpolating the variables Q®(z,0,2) at the same radial distance
w = /2% + (jAy)® on the y = 0 plane using Lagrange’s formula with nine nearby points
[z; — 4Ax, x; + 4Az] along the = direction and then apply rotation using the assumption of

axial symmetric as

Q = Q(O)a Qz = Q,(ZO)7
QA = AABQ(BE))7 sz = Q,(Z(;)7 (78)

Qa, = AABQ%O;, Qap = AACABDQ(C('))Da
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where @), @);, and );; denote, respectively, the scalar, vector, and tensor types of geometric

variables, in BSSN formulation, and A4 is the rotational matrix given by

ALE = (Cosgb —singb) ’ (7.9)

sing  cos¢

with tan ¢ := +jAy/w. Note that the subscripts A and B run z or y. The interpolated
values with eighth-order accuracy result in an expected sixth-order accuracy in the second
derivative, and allow us to compute the spatial derivative in the y-direction using the finite
difference scheme in the same manner as in 3D Cartesian coordinates. In particular, we
enforce the derivatives {0, 0yy, 0y} on {Q,Q., Q..} to be zero in all equations to avoid
double precision errors arising from the arithmetic operation of finite difference. As we set
Ay = Az® for all FMR levels, the interpolation coefficients remain the same across all the
FMR levels. Hence, the coefficients can be easily pre-computed and saved for later use to

speed up the calculation.

Since the neighboring nine points x;£4Ax are required for the interpolation, the geometric
variables located on the extra layers y = +jAy at the edge of the FMR level with grid points
x € [N +5, N +8] cannot be determined, which causes trouble in obtaining the xy-derivative
Oyy for grid points z € [N +1, N +4]. To avoid this problem, we instead adopt the following

form
Oy Quz = x—g — Ty Oy@y = =5 + =, (7.10a)
8nyxZ == ny - Tya anyyz - — IQ + T 5 (710b)
axy@:c:r =2 (x_zy - Ty) 5 axy@yy = -2 (:U_Zy — Ty) s (710C)
Oy Quy = Dus sz L - ny, (7.10d)

for the vector (); and tensor ();; quantities located at grid points x € [N+1, N+4]. Although
the coordinate singularity 1/x appears in the source term of Eq. (7.10), it is justified since
the grid points x € [N + 1, N + 4] are located at the edge of the refinement boundary far

from the symmetric axis with non-zero .
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7.2.2.3 Boundary condition

For the outer boundary, we impose the outgoing boundary condition [433] for metric variables
() located at radial distance r in the form

At
Q" (r) = (1 — —) Q" (r — At), (7.11)
r
in order to preserve r(QQ along the characteristic curves r — ¢ = constant. Here, Q™ and Q" *
are variables in the current ¢ and previous t — At time step, respectively, and we interpolate

Q"' at r — At with second-order Lagrange interpolation.

Since the Z4c prescription allows the propagation and damping of constraints by intro-
ducing the auxiliary variable ©, constraint violation will be induced at the outer boundary
and propagate inwards if the boundary condition above is used. While one could avoid this
by implementing constraint preserving boundary condition [403], we instead adopt a simple
treatment for © following [300]. We set an effective radius 74, beyond which the damping pa-
rameter x and the source term for © are multiplied by an additional factor exp[—(z?+2?)/r2,]
to suppress the propagation of constraint violation terms exponentially. We typically set as
T74 S Limax/6 equivalent to a factor of ~ 1071 at the outer boundary, which corresponds to
the same order of error as double precision. We found that this simple treatment is good
enough to maintain a stable evolution for the long term without any significant growth in

constraint violation.

7.2.3 General relativistic hydrodynamics

7.2.3.1 Basic equations

This section briefly summarizes the formulation for general relativistic hydrodynamics (GRHD)
under 3+1 decomposition. We refer readers to [392, 430] for more detailed derivation.
The evolution equations for GRHD are based on the conservation of rest-mass and stress-

energy momentum tensor,

V. (pu®) =0, (7.12a)
vV, T =0, (7.12Db)

where p, u*, and P are the rest-mass density, four-velocity, and pressure of the fluid, respec-

tively, and
Ty = phuguy + Pgap (7.13)

is the stress-energy tensor for perfect fluid with i := 1+ e + P/p being the specific enthalpy
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and e being the specific internal energy. V, denotes the covariant derivative with respect to

Gab-

We adopt the finite volume method using the formulation of, e.g., [45] in the reference
metric formalism [127, 343] to solve the hydrodynamical system in cylindrical coordinates
(w, ¢, z) at ¢ = 0 plane. Under such formulation, the GRHD equations can be written in

the following conservative form
1 )
ag+—7&(¢%j:& (7.14)
A

where 4;; is the time-independent reference metric chosen to be flat metric in cylindrical
coordinates; here ¥;; := fi; = diag(1,w, 1), ¥ := det(%;;) is the determinant, q := (¢p, ¢s,, ¢r)

are the conservative variables defined as

4o D pw
qs; | = WO S | = b phwu; , (7.15)
qE E phw? — P

fi are the flux terms written as

(fD)’L _iD’U i
fi— (fsj)l _ Oé¢6 SjU + P(SJ BZ 7 (716)
(fe)' Ew+p<m+g)
with w := —n,u® = au' being the Lorentz factor measure by an Eulerian observer and

v = =+ Y ful

Since Einstein’s equations are solved in Cartesian coordinates (x,y, z) at y = 0 plane, the
hydrodynamic variables can be rewritten in Cartesian coordinates as @ = x and uy = zu,,
which is essentially the same as the conversion to orthonormal frame in reference metric

approach [59]. The source term s := (sp, Sg,, Sg) in Eq. (7.14) can then be evaluated in
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Cartesian coordinates in the forms

sp=0 (7.17a)
-3 -3 2 _ oW .
ss., = PO, (aW ) — W™ phw* |0,a0 — 0;0,8" + Tavivj&w + Woww o, W
, (7.17b)
N (fs,) ,
w
ss, =0 (7.17¢)

2

W 4 .
S5, = P@Z (OKW_3> — W_3phw2 {0204 - @18267' + 70417,@-@1” + WOK’UZ'UZaZW:| (717(1)
Sp = ozKijSZ»j — W3 phw?v' 0,0, (7.17e)

(fs,)?

w
tailed derivation of geometrical source term). Note that we have the conservation of angular

where the final term in sg_ comes from the cylindrical geometry (see [127] for de-
momentum in axial symmetry. In the conservative form of Eq. (7.14) with sp = 0 = sg,,
the conservation of mass and angular momentum can be satisfied numerically with machine

precision.

Here, we write down the explicit discretized form of the volume-averaged equations in

cylindrical coordinates as follows:

1
O <q>j,k = <S>j,k; - AV,
Js

. { [<f>?+%,k AAT 3, =07 14 AA}”_%,,J (7.18)
| A5y — (05 A4,

where AV} and AA;,C are the volume and the surface area of the cell (7, k), respectively,

given by
Tivl %)
AV, = 27r/ / rdrdz = 2nr;AvAz, (7.19a)
a:]._% zk_%
-
AAj:I:%,k = 27T/ xji%dz = 27iji%sz (719b>
Zk,%
B Ti+d
AAJ.J&% =27 xdr = 2rx;Az, (7.19¢)

Nl

i—

., al S).; are € volume averagea o € correspondain uantities, an ' are (§]
(a);, and (s), the vol ged of th ponding quantities, and (f)" th

surface-averaged quantities of the flux terms at the cell interfaces.
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7.2.3.2 Riemann Solver

We adopt the HSRC scheme to handle the flux term in hydrodynamics equations. Both
Total Variation Diminishing Lax-Friedrich (TVDLF) [269, 195, 529] and HLLC [52, 3306, 193]
approximate Riemann solvers are implemented in SACRA-2D. To obtain the numerical flux, we
first reconstruct the left and right states of the primitive variables p = (p, u;, P, €) with 3rd-
order piecewise parabolic method (PPM) [132, 437] at the cell interface. Since the metric
variables are smooth, we employ Lagrangian interpolation to calculate the values at the
interface. For the HLLC solver, we perform the tetrad transformation [281, 513] at the cell

interface after reconstruction to obtain the numerical flux.

Here, we briefly outline the procedure of the HLLC solver and refer readers to [281, 513,
519] for more details on the implementation. To evaluate the numerical flux in the z-direction,

we define a tetrad basis [281, 513] on the surface of 41/, as

a a 1 7
ey =n"=7 (1,-8"), (7.20a)
ety = WB (0.5%), (7.20b)
e((lz)) = WD (07 0, Y2z, _f?yZ) ) (7.20C)
ety = WC(0,0,0,1), (7.20d)
where
: 1 A 1 . 1 .
B = C = D=——=BC, (7.21)

Vo Ve VY 2z

with the corresponding covariant components written as

€(f)o = Mo = — (e, 0,0,0), (7.22a)
ewya = WB(6%,1,0,0), (7.22D)
B(g)a = WﬁlD <_:yﬂﬁyﬁx + :)/acxﬁy7 _:nya :)/3617 0) ) (722C)
eya =WC (B, %) . (7.22d)

This allows us to transform the primitive variables from the Eulerian frame p to the tetrad

frame p by
Uy = e@) Up, (7.23)

)

w2 =1+ U(£>U( ), (724)
Vi) = Uiy /v (7.25)

We can then obtain the left (L) and right (R) states of the conservative variables qr /g =
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a(Pr/r) and the flux terms f/z = £@)(pyx) in the tetrad frame from the corresponding

left /right states of the primitive variables pz /g as

D pw

a) = | Sg) | = | Phwvgy | (7.26)
E phw? + P
N\ (@)
<fD> A Do@)

@) = | ()" | = [ S0+ 7o) | (7.27)
(7)"” (E+ P)o®

which essentially have the same expression as in special relativistic hydrodynamics. Now,
we can employ the HLLC solver in the local Minkowski spacetime [336] to calculate the

numerical flux as

(19 for Ap > o) e
w6y _ fc(z) for A\ < vi(;:t)erface < Ac : (7.28)
EG) for Ae < vl e < An
LEY) for A < v fuce
where A, is the characteristic speed of the contact discontinuity, Ui(raf‘c)erface = 07/ (av/77%) is

the interface velocity [281, 513], f'c(i)/CR and qf;)/cR are the intermediate states obtained from

the jump condition
£ n =Ep + Ar/r (dﬁi)/cR - ﬁf}@ , (7.29)

and Ar,/p are the left/right characteristic speed given by

A =min(A(pL)”, A(Pr) "), (7.30)
)\R = max()\(f)L)*, )\(ﬁR)Jr), (731)
ME(p) = ﬁ {v(i) (1-¢c)+ cs\/(l —0v2)[1 =022 — (1 - ¢32) v(@Q]} : (7.32)

with v? := v(%)v(;) and cs being the sound speed. The characteristic speed \. can be obtained

by imposing the continuity condition of the pressure across the contact discontinuity as [336]
L) @) o HLL S AR HLL

(FH) 7 N2 = | B (ES) 7| o+ St =0, (7.33)

S(a)

where @ and f@HLL pepresent the HLL state of the conserved quantities and flux, respec-
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tively, given by

Arlir — Ardp + £ — £
GIHLL _ RAR Lqr +1; R 7 (7.34)
AR — )\L
)\R — AL '
The pressure P, in the intermediate state can be therefore determined by
~ (#)
Pc = PCL = PCR = _)\c ( ELL) <f§I(L)L> ) (736)
and the conserved quantities in the intermediate ¢L/cR states can be obtained by
Aji — 0@
Derjer = DL/RA—I;\/R, (7.37a)
L/R — “\¢
1
S(;),CL/CR - )\L/R — A
(7.37Db)
< [0y (v k) + 72 ).
EL/R <>\L/R — UE%/)]{) + PCAC — PL/RUg}/)R
EcL/cR = . (737C)

)\L/R - >\c

Once the numerical flux in the tetrad frame is evaluated, we can eventually transform it back

to the Eulerian observer frame given by

;80 | + v | e, fS(%>(@ . (7.38)

7.2.3.3 Equation of state

We implement a hybrid equation of state (EOS) in the current version of SACRA-2D where
the pressure P and the specific internal energy e are split into the cold part Pe.oq/€colq and

thermal part Py, /e as
P = P + P, € = €cold T €th- (7.39)

The cold part is described by a phenomenological piecewise polytropic (PWP) EOS [386]
where the realistic EOS is approximated by n pieces of polytrope depending on the transi-

tional density p;. The pressure P.,q and the specific internal energy e..,q are parameterized
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by the rest-mass density p as

Pcold = KzPFZ
K; ; for pii < p<pi 7.40
€cold = Pri_l + Aei pit P P ( )
ri—1
where ¢ runs from 1 to n with py := 0, K; and I'; are the polytropic constant and index,

respectively, and Ag; is determined by imposing the continuity condition on the specific

internal energy.
In addition to the cold part, we add the thermal part adopting the gamma-law EOS given
by
P =p ([T — 1) €m, (7.41)

where I'y, is a constant typically set to 5/3 in the present work.

7.2.3.4 Recovery of primitive variables

The recovery of primitive variables (p,u;, P, €) from conserved variables q is non-trivial and
can only be done numerically. We implement the primitive recovery procedure for GRHD
mentioned in Appendix C of [213]. Here, we briefly outline the implementation of the recovery

procedure:

1. Evaluate the rescaled quantities that are fixed in the iterations

\/SiSi —E—l . r
D ) q_D ’ . 1_'_qa

ri=

2. Set the bounds [z_, z; ] for the root defined as

k2 O (7.43)

Z_: ,
V1—k2/4 VISR

3. Within the interval [z_, z; ], we find the root of f(z) =0 with the master function f(z)
defined as

, (7.44)
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where

o )

p2)(1+é(2))

D (7.45)
pz) = 20’

w(z) = V1+ 22

In SACRA_2D, we numerically solve Eq. (7.44) using the Illinois method for bracketing root-
finding. We also set an upper limit for Lorentz factor wp.x (typically set to be wya = 100)
and rescale S; whenever k exceeds certain upper bound following [213]. While this method is
robust and always converges to a solution, it does not guarantee that the converged solution

satisfies the physical condition. In particular when the obtained specific internal energy falls
EOS

below the minimum allowed values of EOS (e < €,5>), we employ an additional primitive
recovery using only the conversed density and momentum (D, S;) together with the zero

temperature EOS h = he,q(p) following a similar procedure.

1. Set the bounds [z_, z] for the root defined as
z_ =0, Zp =7 (7.46)

2. Within the interval [z_, z,], we find the root of f(z) = 0 with the master function f(z)
defined as

(7.47)

where

i) = 2 i(z) = VI§ 22 (7.48)

w(z)

3. Reset the conversed energy E from primitive variables.

In addition, we impose an artificial atmosphere by defining a lower bound p.i, and reset
the rest-mass density p after the primitive recovery whenever it falls below the bound p =
max(p, patm) t0 maintain stable evolution in the low-density region. The cutoff density patm :=
Pmax fatm depends on the initial maximum density pna.x Where the auxiliary factor fa, is
typically set to be < 10715,
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7.2.4 FMR setting

We adopt the fourth-order explicit Runge-Kutta scheme (RK4) in order to evolve the metric
function stably [430]. Following the time update scheme in [115], the adaptive time step is
employed using the Berger-Oliger algorithm [76]. We allow sub-cycling of time integration

starting from level lg, with a time step for each FMR level set to be

. A=), for 1 <1 < gy,
At = (7.49)
AtV /2 for | > Ig,.

The parameter g, limits the time step in the coarse levels to avoid error induced by over-large
At and reduce the effect from the outer boundary. However, it usually makes no difference

L-1)

practically. The time step in the finest level At is related to the grid size as

At = copp min(AzE=Y | AL, (7.50)

where the Courant-Friedrichs-Lewy (CFL) factor ccpy, is set to be 0.5 unless stated otherwise.
In SACRA-2D, the buffer zone’s (4 + 4) structure is employed, where the outer 4 buffer cells
[N + 5, N + 8| are used for time interpolation between different time slices, while the inner
4 buffer cells [N + 1, N + 4] act as a buffer zone to dissipate any oscillatory behavior in the
time-interpolated values. This corresponds to the [1, N + 4] domain for the first three stages
of RK4 time integration and [1, N] for the last stage.

To obtain the buffer zone at the child level from its parent, we employ the eighth-order
Lagrange interpolation for geometric variables and minmod limiter to reconstruct the prim-
itive hydrodynamics variables p for the prolongation in space. For the time interpolation in
grid [N + 5, N + 8|, we employ a second-order Lagrange interpolation of three time slices
{t"=1, ¢ t" "1} of its parent level for time t" < ¢ < ¢"*!. Since the buffer zone does not affect
the conservation of the hydrodynamics quantities in the FMR setting, we interpolate the
primitive variables p and construct the conserved variables directly following [178] to avoid
additional primitive recovery in the buffer zone. A limiter procedure is also introduced for
fluid variables p following [520] to maintain numerical stability, where we modify the time

interpolation to first order with time levels {t", "1} if the following relation holds:
(pn+1 _ pn) (pn _ pn—l) < 0. (751)

After each time matching step between the child and parent levels, the grid values are
transferred from the child level (fine grid) to the parent level (coarse grid) in the overlap
region. More specifically, the grids (z,z) € ([1, N],[1, N]) in the child level is mapped to
(x,2) € ([1,N/2],[1,N/2]) in the parent level. In this restriction procedure, we employ an

eighth-order Lagrange interpolation for the geometric variables, and the following conserva-
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tive scheme [478)]

2j

2k
= L ® 0)
= D DD DI T (7.52)
Ji:k m=2j—1n=2k—1

for the conserved variables q with j,k = 1,---, N/2. The primitive recovery procedure is
carried out afterward to obtain the updated primitive variables p.

As the parent and child levels evolve in a different time step, the numerical flux across the
refinement boundary becomes inconsistent and introduce violation of conservation in mass
and angular momentum. To solve this, we store the numerical flux of all conserved variables
at the same refinement boundary for both fine and coarse levels during the time integration.
After each level finishes the sub-cycling and matches time with its parent level, we correct
the conserved variables next to the refinement boundary in the coarse grid by adding the

difference of numerical fluxes between the coarse and fine interface [75, 177, 388].

7.2.5 Hybrid Parallelization

SACRA-2D is hybrid parallelized by MPI and OpenMP. We employ a simple domain-based
decomposition for MPI parallelization. Each level is divided into Myp; X Mypr blocks of
subdomains (Mypr X 2M\rp; in the absence of the mirror symmetry with respect to the z =0
plane), where Myp; is the number of blocks in = and z directions. The choices of Myp; are
limited by the number of grids N, which requires N/Myp; to be an even number. OpenMP
further parallelizes the subdomains, with Ny, being the number of OpenMP threads in each
MPI rank. The total number of cores required for the simulation is then determined by
Mypr X Mypr X Nipe-

7.2.6 Diagnostics

7.2.6.1 Constraints, mass, and angular momentum

We monitor the overall constraint violations by computing the corresponding Lo-norm every

timestep as
[[H|]2 = / (R+ K? — K;; K — 167rhoy,) dV, (7.53a)
Ml = [ (D)7, = Dk — s) v (7.53)

where ‘H and M; are the Hamiltonian and momentum constraints, respectively. Under
axisymmetry, the momentum constraints M, and M, evaluated are effectively M, and M,

in cylindrical coordinates, respectively.
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We also compute the total baryon mass and angular momentum as

My, = / D\/ydV = / W3 pwadV, (7.54a)
J = /Sm/f_de = /W3phwuy$dV, (7.54b)

which should be conserved. The gravitational mass and angular momentum of the system

are also obtained by analyzing the asymptotic behavior of the geometric quantities.

7.2.6.2 Extraction of gravitational wave

We extract gravitational waves from the numerical data using the outgoing component of
Newman-Penrose quantity W, [353], which can be expressed by the electric part E,. :=

Capean’n® and magnetic part Bae := 2Copere® can®n® of Weyl tensor Cupeq as [371, 520]
Wy = — (o — i Bug)®im®, (7.55)

where €, is the covariant Levi-Civita tensor and m® is part of the null tetrad (k*, 1%, m®, m®).
Here, k* and [* are outgoing and ingoing null vectors, respectively, where m® is a complex

null vector satisfying

—k%l, =1 =m"m,. (7.56)
We construct a set of spherical shells at different radii composed of Ny cell-centered grids for
0 € [0,7] (0 € [0,7/2] in mirror symmetry) with grid points defined by

T 1

9j:ﬁ9<j_§)’ for j=1,2---, N, (7.57)

and extract W, on the surfaces by Lagrange interpolation. We further decompose ¥, into
tensor spherical harmonic modes (I, m) [115]

i = / W,V (0, 6) d), (7.58)

where Yl_m2 is the spin-weighted spherical harmonic function with s = —2. Due to the axial
symmetry, only the m = 0 modes are extracted with no ¢ dependence. We adopt the accurate

Gauss quadrature scheme for the integration following [371].

7.2.6.3 Apparent horizon finder

To identify the presence of a black hole and to diagnose its properties, we implement an
apparent horizon finder in SACRA-2D. Assuming that the apparent horizon contains the coor-

dinate center (z,z) = (0,0), the horizon radius H can be represented as a function of polar
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angle 6 as r = H(6). Under an axisymmetric configuration, the elliptic equation for the ra-
dius of the apparent horizon is reduced to one-dimensional. We essentially employ the same
method in [526] to solve the equation. We note that even if a black hole is located along the
z-axis different from z = 0, the finder can find the apparent horizon by simply changing the
definition of 6.

Once the radius of the apparent horizon is determined, we then evaluate its area Ay, and
obtain the irreducible mass M;,, and the angular momentum .J of the black hole as
Ay 1

=22 J

a b
irr 5 = — a dA, 759
167 sr f, frard"s (7.59)

where H corresponds to the surface of the apparent horizon, ¢* := (9/9,)%, and s is the unit
radial vector normal to H. As a result, the mass of the black hole can be determined by
2 J?
M = | M: : .
rr + 4M2 (7 60)

irr

Once the black hole is formed, we excise the fluid quantities by setting u; = 0 and the rest-
mass density to zero for r < H(0)/2 to avoid any potential numerical instability which may

be caused by extreme values of hydrodynamics quantities inside the black hole.

7.3 Numerical test

This section presents representative examples of the benchmark test problems with SACRA-2D.
We first examine the metric and GRHD sectors separately with tests considering vacuum
spacetime in Section 7.3.1 and fixed background metric in Section 7.3.2, respectively. The
code is then fully tested in Section 7.3.3 considering problems that cooperate GRHD in

dynamic spacetime.

7.3.1 Vacuum spacetime

7.3.1.1 Trumpet Black hole

We first test our metric solver on a stationary spacetime. Specifically, we consider a non-
rotating black hole in the so-called maximal trumpet coordinate, which is time-independent

under BSSN formalism with the puncture gauge. The analytic solution of the trumpet-
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puncture black hole is given by [54, 180]

2M  27TM*
=/l - — 4+ — .61
a \/ I + 6RE (7.61a)
i 3v3M? i

I5; L (7.61Db)
W= }%, (7.61c)
~ 3vV3M? iyl
Az’j = 4R3 (51.7 - 3?) s (7616)

where M is the mass of the black hole, r is the radial coordinate, and R is the areal radius

in Schwarzschild metric, which is a function of r written as

1/V2

(4 +3v2)(2R — 3M)
S8R+ 6M + 3v/8R%>+8MR + 6 M?>

. (2R+M+\/4R2+4MR+3M2)
N 4

(7.62)

In this coordinate, r = 0 corresponds to an areal radius of R = 3M /2, and the event horizon
radius is located at » ~ 0.78M. To evolve the trumpet data, we use a gauge condition

consistent with the staticity of the solution [102] as

v =—a(l—a)K, (7.63a)
O3 = ZB", (7.63b)
OB = o, — npB', (7.63c)

with a damping parameter ng = 1/M. The slicing condition in Eq. (7.63), compared to the
standard 1+log gauge without advection, gives a lower propagation speed of gauge waves. We
found that the numerical result is closer to the analytical trumpet solution under Eq. (7.63)
due to a smaller effect from the gauge dynamics. We perform numerical evolution of the
trumpet data on a computation domain of L., = 1600M and 11 FMR boxes with different
grid resolutions with N = 64,128, and 256, which corresponds to the grid spacing of Ax =
Az =0.0244M,0.0122M and 0.0061 M, respectively, on the finest level with L = 1.56M.

Although the metric variables should remain unchanged analytically under this gauge
condition in the trumpet solution, numerical errors from the finite difference scheme and
interpolation across the refinement boundaries will induce deviations from the initial values
during the evolution. We evolve the trumpet data up to t = 195M and extract the relative
error of W, ar, and 3" as well as the Hamiltonian constraint violation on the z-axis at z =0

as shown in Fig. 7.1. Regardless of the resolutions, a spike in relative errors appears at
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Figure 7.1: The top three panels show the relativity error of W := 12, lapse function «, and shift vector
B" along the z-axis extracted at t = 195M for three different grid resolutions N = 64,128, and 256. The
bottom panel shows the corresponding absolute violation of Hamiltonian constraints on the same slice. The
black dotted vertical lines indicate the location of the refinement boundaries.
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x = 30M, possibly caused by an outgoing gauge wave. This could introduce additional noise
and induce a loss of convergence [181]. We can recover an expected sixth-order convergence
for metric variables in general, while a roughly fourth-order convergence is found for region
x < 30M where the gauge wave has passed through. Since we start from time-independent
initial data that minimizes gauge dynamics, the Hamiltonian constraint violations do not
contain non-convergent spikes induced by the gauge evolution that appeared in [181], and
convergent results are obtained. In addition, the relative errors and constraint violation show
regularly-spaced spikes on a logarithmic space scale in between x ~ 100M—-1000M , which is a
common feature for mesh-refinement structure as the metric variables experience the sudden

change in grid spacing across the refinement boundary.

7.3.1.2 Spinning Black hole

To further test our metric solver in a system with non-zero angular momentum, we evolve a
near-extreme-spin black hole with the dimensionless spin parameter y = 0.95. We adopt the
spinning black hole in quasi-isotropic coordinates under a new radial coordinate r introduced
in [316] defined by

2
L = 1 (1 I 7"_+> ’ (7.64)

where rgp, is the radial coordinate in Boyer-Lindquist coordinates, r+ = M £+ /M? — a? is
the Boyer-Lindquist radii of inner (—) and outer (+) horizons of the black hole, and M and
a are the black hole mass and spin, respectively. The event horizon in this radial coordinate

is given by

Ty = i (M + M) , (7.65)

which goes to a finite radius M /4 when the black hole approaches the maximum spin a = M.
This gives better initial data for near-extreme-spin black holes compared to quasi-isotropic
coordinates in [288], in which the coordinate radius of the event horizon drops to zero for

a— M.
The corresponding metric components are written as

by (7’ + T—+>
G2 = —~ 47 g2 + %do? +
3 (rgL, — r_)

sin? 0d¢?, (7.66a)

0| (1]
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Kr¢ = Kqﬁr =

Masin® 0 (1 7‘_+> 1
YVEY ar/ \/r(rpL —r_) (7.66Db)

[37"%L + 2a*rg; — a* — @ (r%L — a2) sin? 9] ,

2a3 Mgy, cos 0 sin® 6 Ty rRI — T
Koy = Kyg = — ( __>,/—, 7.66¢
o sVES V4 r )

where 3 = rd; +a%cos? 0, A = ri —2Mrgy + a?, = = (rpp, — a2)2 — Ada?sin? 6, and ®ds?

is the spatial line element.

We transform the metric variables to the Cartesian coordinates on the y = 0 plane and
simulate with a = 0.95M. The computational domain is set to be Tax = Zmax = 2048 M
with 10 FMR levels and three grid resolutions N = 200, 300, and 400, which correspond
to Az/M = 0.02,0.0133, and 0.01, respectively, with the box size L = 4M at the finest
level. We evolve the initial data using the moving puncture gauge of Eq. (1.24) with the
gauge parameter ng = 1/M. In this configuration, while the black hole spacetime remains
stationary, the spatial hypersurface will still evolve under the dynamical gauge conditions
and eventually approaches the trumpet puncture [111, 114, 159, 226, 227].

The upper panel of Fig. 7.2 shows the relative error of the mass M and the spin a of the
black hole measured for the apparent horizon. As we increase the resolution, the relative
error drops and reaches ~ 10~ for the highest resolution with convergence approximately
at sixth-order. On the other hand, the coordinate equatorial e, and polar r, radii of the
apparent horizon evolve under the moving puncture gauge and eventually approach constant
values of req = 0.428M and r, = 0.281M as shown in the bottom panel of Fig. 7.2. Although
both req and r, are gauge-dependent quantities, the values of re, and r, drop as a result of

the hypersurface approaches the trumpet slice of the near-extreme-spin black hole.

7.3.1.3 Black hole head-on collision

To explore the convergence of gravitational waves numerically extracted, we perform a test
simulation of the head-on collision of two non-spinning black holes. Under axial symmetry,
we can set up the Brill-Lindquist initial data [108] which consists of two equal-mass black
holes in isotropic coordinates located on the rotational axis (z-axis) separated by a distance
of 2b in the form of

YpV=1+_——+—, (7.67)
where M, is constant and
ry =\/a2+ (z £ b)% (7.68)

is the radial coordinate distances from the black hole punctures (with y = 0).
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Figure 7.2: The upper panel shows the relative error of black hole mass (solid) and dimensionless spin (dashed)
as functions of time with the initial value of x = 0.95. The bottom panel shows the evolution of equatorial
(solid) and polar (dashed) radii of the apparent horizon in the coordinate radius. The initial radius of the
apparent horizon is located at r = 0.328M. The blue, green, red, and cyan lines indicate the result from
N =200, 300, and 400, respectively.
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Figure 7.3: (I,m) = (2,0) mode of DM, gravitational waves (top) emitted by the head-on collision of two
black holes with extraction radius rex = 30M in three different grid resolutions. The grid spacing Az/M in
the finest level from low to high are 0.015625, 0.0078125, and 0.005208, respectively. The black dashed line
shows the fitted waveform of the analytical ringdown frequency Mw == 0.3737 — 0.0890¢. The bottom panel
shows the absolution error of the resultant waveform between different resolutions.

We pick b = M /2 = M, following [402] and start the simulation under mirror symmetry.
Here, M is the total ADM mass of the system, which also defines the unit of length. In
this setup, two black holes are not initially enclosed by the common horizon [124] but merge
during the time evolution. The computational domain is set as Tyax = Zmax = 1024M with
11 FMR levels, which corresponds to the size L = 1M in the finest box. We perform the
simulations with three grid different resolutions N = 64 (low), 128 (med), and 192 (high)
with corresponding resolutions of Az/M = 0.015625,0.0078125, and 0.005208, respectively,
in the finest level. The non-spinning black holes are released from rest, accelerating toward
each other along the polar axis, and then collide head-on at the origin, forming a perturbed
black hole that promptly rings down to a stationary state by emitting gravitational waves.

Fig. 7.3 shows the accompanying gravitational waves signals extracted at ro, = 30M as a

function of retarded time ¢, defined by [278, 280]

D
tret =t - |:D + 2M In (m - 1):| (769)

where D =~ r[1 + M/ (27")]2 is areal radius of the extraction sphere. The resultant ring-down

waveform emitted after the merger forms an exponentially damped oscillation with frequency
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Mw =~ 0.3737 — 0.0890¢ [86, 402] in the dominant (I,m) = (2,0) mode. The top panel shows
the (I,m) = (2,0) mode of W, in three different grid resolutions, which are all consistent with
the analytical frequency. In addition, the bottom panel of Fig. 7.3 indicates the absolute
errors between the low (Az = 0.015625M) and high (Az = 0.005208M) resolutions as
well as the medium (Ax = 0.0078125M) and high (Ax = 0.005208 M) resolutions as blue
and orange solid lines, respectively. To examine the order of convergence, we scale up the
absolute difference between the medium and high resolutions by a factor of (0.015625% —
0.005208%) /(0.0078125% — 0.005208°%) = 70.06 as shown in the orange dashed line, which
agrees approximately with the blue solid line, suggesting the 6th-order convergence in the
waveform. Note that the absolute error of W, rises, and the convergence is lost for ¢, = 40M.
This is likely caused by the reflection of the outgoing gravitational wave at the refinement
boundaries in the coarse domains for which the wavelength of gravitational waves are not

well resolved.

7.3.2 GRHD with fixed spacetime

In this section, we consider test problems with a fixed background metric in both flat
Minkowski spacetime and curved spacetime (so-called Cowling approximation), focusing on
the hydrodynamics sector to validate our Riemann solver and reconstruction scheme, as well

as examining the convergence of the hydrodynamics solver.

7.3.2.1 One-dimensional shock-tube test

We carry out a one-dimensional shock-tube test problem following [329], which is commonly
used to test the performance of the Riemann solver and reconstruction scheme. For this test,
the cylindrical coordinates in SACRA-2D are converted to the Cartesian coordinates. Under
this setup, the background metric is reduced to the Minkowski flat spacetime with coordinate
vector acting as the tetrad basis, thus allowing us to validate our HLLC solver. We consider
ideal gas law P = p(I" — 1) e with I" = 5/3 giving the initial left and right states by

(10,40/3,0) for x < 0.5,
(p, P,v) = (7.70)
(1,0,0) for x > 0.5,

where v is the velocity in the x direction, i.e., v = u*/u'. The computational domain is set
to be x € [0, 1] with the grid resolution of N = 800 (Az = 0.00125) and no grid refinement.
A third-order PPM scheme is used for reconstruction.

Fig. 7.4 shows the profile of the rest-mass density p, pressure P, and velocity v at t = 0.4
compared to the analytical solutions generated by RIEMANN ! [329]. The initial discontinuity

at x = 0.5 creates left and right propagating shock waves and forms a contact discontinuity in

IThe open-source program RIEMANN is available here.
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Figure 7.4: The density (solid), pressure (dashed), and velocity (dotted) profile of one-dimensional shock-tube
problem at ¢ = 0.4 obtained by TVDLF (blue) and HLLC (orange) Riemann solvers. The black solid curve
indicates the analytical solution.

between, which is located at = 0.786 for ¢t = 0.4. Both TVDLF and HLLC solvers (shown
as the blue and orange dots in Fig. 7.4, respectively) can satisfactorily resolve the shocks and
contact discontinuity with similar performance, which is consistent with the result in [281]

when a 3rd-order reconstruction scheme is employed.

7.3.2.2 Bondi accretion

In this test, we simulate the Bondi accretion [231] consisting of a smooth stationary fluid
flow into the black hole that allows us to examine the convergence of hydrodynamics and the
tetrad formulation for the HLLC solver under a non-trivial spacetime without shocks. To
fit it in the puncture formalism of our code, we consider the Bondi solution in the maximal
trumpet coordinate of a non-rotating black hole spacetime [338], which does not exhibit
coordinate pathology across the event horizon (see Eq. (7.61) for the background metric).
We adopt the same parameters following [513] for our setup with an adiabatic index of
[' = 4/3, an adiabat of K = 1, and a critical radius of r. = 8M with a mass accretion
rate Mo = 0.0848 where M is the black hole mass. The hydrodynamics quantities within
r = 0.4M are fixed as an inner boundary condition. Six different grid resolutions with
N = 32,64, 128, and 256 are considered for the convergence test. The computational domain
IS Tmax = Zmax = 16M without mesh refinement. In addition, we carry out another set of
simulations with 3 refinement levels under the same parameters to test our FMR setting,
which corresponds to a box size L = 4M and in the finest box. Specifically, we examine the

convergence of the profile of the rest-mass density p by evaluating the L;-norm er; defined
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The upper and bottom panels Fig. 7.5 show the radial profiles of the rest-mass density p
and the radial velocity —v" of the Bondi flow, respectively. The markers show the profiles
extracted at t = 20M in the resolution of N = 128 with the TVDLF solver labeled in blue and
the HLLC solver labeled in orange, which agrees approximately with the analytical solution
indicated by the black dashed curves. The bottom panel of Fig. 7.5 plots the L;-norm of
the error of the rest-mass density p concerning the different grid spacing. The TVDLF and
HLLC solvers have the same performance due to the smoothness of the accretion flow, as
many other studies have shown (e.g., Refs. [281, 348, 437]). The result demonstrates an
approximate second-order convergence in both solvers regardless of our FMR setting, which

is consistent with the accuracy of our implementation of the Riemann solvers.

7.3.2.3 Rayleigh-Taylor instability from the modified Bondi flow

To further validate our HLLC solver and demonstrate its improvement over the TVDLF
solver, we modify the configuration of the Bondi flow to induce Rayleigh-Taylor instability.
Following [519], we change the initial setup within a radius » < 3M[1 + 0.05(cos(800) + 1)]

as
P = O-lpbondi7 P = 50Pbondia u, =0, (772)

where pponai and Poong; are the density and pressure profiles of the Bondi flow in Sec-
tion 7.3.2.2, respectively. This introduces a hot, low-density bubble in the inner region
with the perturbed interface. The hot bubble rises and pushes through the infalling high-
density Bondi flow that later on develops the Rayleigh-Taylor-like instability (or sometimes
referred to as the Richtmyer-Meshkov instability). We employ the same grid setup as in
Section 7.3.2.2 with a grid resolution of N = 512 (Az = 0.03125M).

Fig. 7.6 shows the snapshots of the rest-mass density profile extracted at t/M = 0 (top
row), 25 (middle row), and 50 (bottom row). The left and right columns correspond to the
results of the TVDLEF solver and the HLLC solver, respectively. When the hot low-density
gas expands and compresses the infalling flow, instability fingers develop at ¢ = 5M and
eventually spread inwards at ¢ = 50/ . The HLLC solver can resolve the Richtmyer-Meshkov
instability better than the TVDLEF solver, with the instability finger’s fine structure more
sharply captured as illustrated in Fig. 7.6. This demonstrates that the HLLC solver performs
better than the TVDLF solver, effectively improving spatial resolution.
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Figure 7.5: Radial profiles of rest-mass density p (top) and radial velocity —v" (middle) extracted at t = 20M
with the grid resolution of N = 128 using TVDLF (blue) and HLLC (orange) Riemann solvers. The bottom
panel shows the L1 norm of the error in rest-mass density er,;(p) with respective to different grid resolutions
in the finest box. The solid and dotted lines show the results in the uniform grid setting and the 3 levels
FMR setting, respectively. The numerical results are consistent with the second-order convergence (dashed
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Figure 7.6: Rest-mass density p in the modified Bondi flow with TVDLF (left) and HLLC (right) Riemann
solvers. The snapshots are extracted at /M = 0 (top), 25 (middle), and 50 (bottom).
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7.3.3 GRHD with dynamical spacetime

In this section, we perform test simulations that solve both hydrodynamics and metric sectors

to confirm the full capacity of the code.

7.3.3.1 Stable rotating neutron star

We first evolve a stable rotating neutron star in equilibrium configuration with initial data
constructed by the open-source code RNS [175] using the MPA1 EOS [347]. Specifically, a
uniformly rotating neutron star with baryon mass M, = 1.80M; and angular momentum
J = 1.80]\/[(% is considered with the ADM mass Mapy = 1.65M and the ratio of rotational
kinetic energy to gravitational potential energy § = 0.11. At such a high angular frequency
Q) = 6.28 x10° rad/s, the neutron star is close to its mass shedding limit. Its shape is flattened
to become an oblate spheroid with the ratio between the coordinate radius at pole r, and
equator req as rp/req = 0.63. While such a rapidly rotating neutron star may be subjected
to non-axisymmetric m = 2 bar mode instability [176], it is stable against axial symmetric
perturbation. Hence, maintaining the system stable for a long time in the simulation poses
a test problem.

We set the computational domain as z,c = Zmax = 4726 km with 10 FMR levels and
grid resolution with N = 192, which correspond to the size L = 9.23 km and the resolution
Azr = Az = 48 m in the finest box. We also carried out the test with a lower resolution
N = 96 as a comparison. Since the polar and equatorial radii of the neutron star are
rp = 8.34 km and roq = 13.25 km, respectively, the refinement boundary of the finest box
in this setup cuts through a part of the neutron star as illustrated in the upper panels of
Fig. 7.8. This allows us to test the treatment of fluxes and the reconstruction scheme across
the refinement boundary with the adaptive time update scheme. The MPA1 EOS for the
cold EOS part and I" thermal law with I'y, = 5/3 are employed. We perform two sets of
simulations using different Riemann solvers and evolve the neutron star up to t = 250 ms,
about ~ 250 times the rotational period, which is long enough to examine the quality of
the simulation. In both runs, the mirror symmetry with respect to the equatorial plane is
imposed, and the atmosphere factor fam is set to be 10720 and I, = 4.

The top panel of Fig. 7.7 shows the evolution of the rest-mass density at the center p.,
which is maintained throughout the simulation with initial oscillation amplitude ~ 0.1%
and < 0.2% shift after 250 ms for both TVDLF and HLLC Riemann solvers for N = 192.
The shift converges approximately at the second order. The oscillation amplitude of p,. is
noticeably damped out faster for the TVDLF solver than the HLLC solver. This indicates
that the diffusive nature of the TVDLF solver numerically dissipates the oscillation energy,
as another study [281] also has a similar finding.

The conservation of baryon mass and angular momentum is achieved remarkably well,
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Figure 7.7: From top to bottom, the panels show, respectively, the evolution of central rest-mass density
Pe, the relative difference of total baryon mass and angular momentum, and the Lo-norm of Hamiltonian

constraint violation for the evolution of a rotating neutron star. The solid and dotted lines show the results
of N =192 and 96, respectively.
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Figure 7.8: Snapshot of the rest-mass density of the rapidly rotating neutron star with TVDLF (left) and
HLLC (right) Riemann solvers for N = 192. The top and bottom rows are extracted at t = 0 s and ¢t = 250 ms,
respectively. The green solid lines indicate the boundaries of the FMR levels.
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as shown in the second and third panels of Fig. 7.7, with an error of machine precision at
~ 10 ms, which validates our treatment of numerical flux across the refinement boundary.
Shortly after that, the relative difference raised to < 107! irrespective of the grid resolution
as the matter on the neutron star surface expanded to the atmosphere due to the artificial
heating at the surface. Due to the inability of the TVDLF solver to resolve the contact
discontinuity, the effect of the surface heating is much stronger, creating an artificial out-
flow and an atmosphere with density p ~ 10° g/cm® as shown in the bottom left panel of
Fig. 7.8. This outflow eventually escapes from the computational domain after ~ 100 ms
and continuously increases the relative differences of the rest mass and angular momentum
to ~ 1077 at the end of the simulation. On the other hand, these relative differences in the
HLLC solver remain < 1071 at the end of the simulation irrespective of the grid resolution.
This is because the HLLC solver resolves the surface of the neutron star (i.e., the contact
discontinuity) much better than the TVDLF solver, as shown in the profiles of the rest-mass
density p in Fig. 7.8. At the end of the simulation (¢ = 250 ms), the rest-mass density in the
atmosphere outside the stellar surface is about 10*-10% g/cm? for the HLLC solver, which is
five orders of magnitude lower than the TVDLEF solver, demonstrating a significant improve-
ment in reducing the artificial surface heating. Note that the structure of the neutron star
remains intact across the refinement boundary as shown by the green solid line in Fig. 7.10
without any noticeable numerical artifact despite the adaptive time step treatment. This

validates our implementation of the FMR scheme.

7.3.3.2 Migration of an unstable neutron star

To further test the nonlinear dynamics of matter and spacetime, we perform one standard test
problem that simulates the migration of an unstable neutron star [81, 116, 127, 137, 193, 354].
We construct a Tolman—Oppenheimer—Volkoff (TOV) neutron star in the unstable branch of
the mass-radius curve with polytropic EOS K = 100, I' = 2, and central rest-mass density
pe = 8 x 1073 (in the unit of ¢ = G = M = 1). Since the unstable branch has a smaller
absolute value of the binding energy than its stable companion for this EOS, the unstable
neutron star would migrate to the corresponding stable state with the same baryon mass in
the simulation. The computational domain is set to be Zyax = Zmax = 2215 km in the grid
resolution of N = 128 with 9 FMR levels, which corresponds to the box size L = 8.65 km
with the grid spacing Ax = 67.6 m in the finest level. We carry out two sets of simulations
for this system under the mirror symmetry, one using the I' thermal law with I'y, = 2, and
another adopting the "adiabatic” EOS [193] which neglects the thermal part and enforces
zero temperature by discarding the energy equation for £. For both runs, the HLLC Riemann
solver is employed with atmosphere factor fam = 107 and g, = 4.

The top panel of Fig. 7.9 shows the evolution of the central rest-mass density p. as a
function of time for the I' thermal law EOS and adiabatic EOS shown in blue solid and
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Figure 7.9: The top and middle panels show, respectively, the evolution of the central rest-mass density p,
and the relative difference of the total baryon mass M, as a function of time with the I' thermal law EOS
(solid) and adiabatic EOS (dotted). The magenta dashed line on the top panel indicates central rest-mass
density ps = 1.346 x 1073 of the neutron-star model that lies on the stable branch of the mass-radius curve
with the same baryon mass. The red star markers specify the time extracted for the snapshots shown in
Fig. 7.10. The bottom panel shows the Lo-norm of constraint violations for the I' thermal law EOS model.
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Figure 7.10: Profiles of the rest-mass density p of the unstable neutron star in the migration test extracted
at t = 0 s (top left), 758 us (top right), 1.26 ms (bottom left), and 50.0 ms (bottom right) with the I" thermal
law EOS employed. The green solid lines indicate the boundaries of the FMR levels.
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dotted lines, respectively. The red markers indicate the time extracted for the profiles of
rest-mass density shown in Fig. 7.10, and the horizontal magenta dashed line denotes the
central rest-mass density p, = 1.346 x 1073 of the neutron star model on the stable branch
with the same baryon mass. Here, we first focus on the result from the I' thermal law model.
At the start, the neutron star with an initial radius of 6.31 km immediately swells and tries to
migrate to the corresponding stable state. The central rest-mass density p. rapidly declines
and drops below p; to reach its first minimum at ¢t = 758 us, with the stellar radius stretching
to almost four times larger. The neutron star compresses and shrinks subsequently until p,.
reaches its maximum at ¢t = 1.26 ms, then expands again and hits the infalling matter,
forming a shock wave that propagates outwards and ejects a small amount of matter with a
high velocity from the stellar surface to the atmosphere. We find that the highest velocity
of the ejecta is 0.98¢ (Lorentz factor of ~ 5), and our code can follow the motion of such a
high-velocity component. The matter ejected by this ejection process eventually leaves the
computation domain, which accounts for the sudden rise in the relative difference of total
baryon mass, as shown in the middle panel of Fig. 7.9.

Nonetheless, the oscillations of p. are gradually damped out in the I" thermal law EOS since
the kinetic energy is dissipated to thermal energy through shock heating. After ¢ ~ 50 ms, the
neutron star approximately settles to a new stable state with p,. slightly below ps. In contrast,
the neutron star under the adiabatic EOS oscillates with a nearly constant amplitude in the
absence of thermal dissipation as the energy converts back and forth between gravitational
binding energy and kinetic energy, which is consistent with the result in [193]. This also
explains the lower relative difference of total baryon mass since less matter is ejected without
shock heating.

We also monitor the Lo-norm of the constraint violation of the system as shown in the
bottom panel of Fig. 7.9. The Hamiltonian and momentum constraints are well under control,

with violations damped out and stabilized under the Z4c prescription.

7.3.3.3 Migration of an unstable rotating neutron star

In this test, we simulate the rotating neutron stars that are very close to the turning point of
the mass versus energy density (Mapy-€.) curve to examine the performance of SACRA-2D. We
consider uniformly rotating neutron stars in both the stable and unstable branches indicated
as the red crosses in Fig. 7.11 with the same baryon mass M, = 3.050M; and angular
momentum J = 1.800M2 constructed by RNS using the MPA1 EOS. The parameters of the
stable and unstable models are listed in Table 7.1. Note that the ADM mass at the turning
point Mapy = 2.5113M, is only &~ 0.04% higher than the models we selected, which poses
a challenge for numerical codes in resolving the model accurately.

Since the unstable model has a higher ADM mass and, hence, a smaller absolute value of

binding energy than the stable one, the unstable neutron star can migrate to the stable con-
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Figure 7.11: The mass versus energy-density (Mapm-¢e.) curve of the uniformly rotating neutron star of

J = 1.800M§> with the MPA1 EOS. The red crosses indicate the models selected for the simulations. The
left marker lies on the stable branch, while the right is on the unstable branch. The turning point is located
at e, = 2.0695 x 10*° [cgs] with Mapy = 2.5113 M.

Table 7.1: The parameters of the stable and unstable models used in the simulations.

Models \ stable unstable
Central energy density e, x 10™ [cgs] 1.9691 2.1798
Central rest-mass density p. x 10%° [cgs] 1.4219 1.5151
ADM mass Mapm [Mg] 2.510220 2.510248
Baryon mass M, [Mg)] 3.0500 3.0500
Angular frequency Q x 103 [rad/s] 4.6795 4.7925
Equatorial radius req [km] 7.425 7.215
Axial ratio 1, /Teq 0.940 0.937




Chapter 7. SACRA-2D 197

x 1010

unstable

unstable+pert.
stable

— |AM,/My(t = 0)]
4 AT/ J(t = 0)]

Rel. Diff.

10~ 107 10"
t (ms)

Figure 7.12: The panels show the evolution of central rest-mass density p. (top), the relative difference
of total baryon mass M, and angular momentum J (middle), and the Ls-norm of Hamiltonian constraint
violation [|H||2 (bottom) as functions of time. The green, blue, and red solid curves illustrate the results
from the unstable model, unstable plus initial perturbation model, and stable model, respectively. The blue
vertical dashed line indicates the black hole formation time tyg = 0.931 ms for the unstable plus initial
perturbation model.
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Figure 7.13: The panels show the mass Mpy (top) and angular momentum Jpy (bottom) of the remnant
black hole after collapse for unstable plus initial perturbation model. The blue vertical dashed line indicates
the black hole formation time tay = 0.931 ms. The magenta horizontal dotted lines denote the ADM mass
Mapnm = 2.510248 Mg and the angular momentum J = 1.800M% of the rotating neutron star obtained from
RNS.

figuration similar to the non-rotating case in Section 7.3.3.2, given that the initial numerical
perturbation is tiny. On the other hand, to examine the performance of SACRA-2D for the
black hole formation, we consider an additional run by introducing a small ingoing radial

velocity inside the unstable neutron star in forms
Uy = —5 % 10722/ Rey, u, = —5 x 1072/ Rey, (7.73)

as an initial perturbation to initiate the collapse, where R, is the star’s equatorial coordinate
radius. The computational domain is set to be Xyax = Zmax = 4431 km in the grid resolution
of N = 256 with 10 FMR levels, which corresponds to the box size L = 8.65 km with the
grid spacing Az = 33.8 m in the finest level. We carry out three sets of simulations in total
under the mirror symmetry, including one for stable neutron star, one for unstable neutron
star without initial perturbation, and one for unstable neutron star with initial perturbation.
We employ the I' thermal law EOS with I'y, = 5/3 and the HLLC Riemann solver for all
runs with atmosphere factor f, = 1072 and lg, = 4. We perform the simulations up to
70 ms, about ~ 50 cycles of rotation, for models that do not undergo gravitational collapse.

If the neutron star collapses, we end the run at 30 ms after the black hole is formed.

Fig. 7.12, from top to bottom, shows the evolution of the central rest-mass density p.., the
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Figure 7.14: The profiles of the rest-mass density p of the collapse of an unstable rotating neutron star
extracted at t = 0 s (top left), 0.90 ms (top right), 1.08 ms (bottom left), and 36.1 ms (bottom right). The
green solid lines indicate the boundaries of the FMR levels, and the magenta dashed curves in the bottom
panels denote the apparent horizon surface of the black hole.
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relative differences of total baryon mass M, and angular momentum J, and the Lo-norm of
the Hamiltonian constraint violation ||#||; as functions of time. The rotating neutron star
on the stable branch remains stable throughout the simulation with oscillation amplitude
~ 0.5% of the central rest-mass density p., which agrees with the turning point theorem
[198]. In contrast, the central rest-mass density p. of the unstable model (green solid lines)
quickly drops and oscillates around the value of its stable counterpart, eventually damped
and settling down to the stable state. Despite the central rest-mass density of the unstable
neutron star being only 6.6% larger than the stable model, the code can still resolve the
migration of the unstable model remarkably well. Since the oscillation is comparably small,
no matter is ejected essentially during the migration. As a result, the baryon mass M, and

angular momentum J are well conserved with a relative difference < 10712

Nonetheless, if an initial perturbation is introduced in the unstable model (blue lines
in Fig. 7.12), the rotating neutron star immediately undergoes gravitational collapse due
to the perturbation with an increasing central rest-mass density p.. After a short time,
the neutron star compactness becomes so high that ultimately, a black hole is formed at
tag = 0.931 ms and swallows the whole star within the black hole, leaving basically nothing
outside the apparent horizon at the end, which agrees with the finding in [127] (see the top
right and bottom left panels in Fig. 7.14 for the profiles of the rest-mass density p before
and after the formation of the black hole). The resultant black hole essentially inherits the
initial neutron star’s ADM mass and angular momentum with negligible loss. The mass Mgy
and angular momentum Jgy of the black hole extracted from the apparent horizon indeed
show excellent agreement with derivation < 0.03% as shown in Fig. 7.13. This demonstrates
the robustness and the accuracy of both the metric solver and the apparent horizon finder.
During the collapsing phase, the baryon mass M, and angular momentum J are conserved
down to machine precision until the black hole is formed and the fluid excision is activated.
The Hamiltonian constraint violation ||H||, also experiences a sudden jump at tay due to
the appearance of irregularity at the origin when the puncture is formed and then quickly

damped out and stabilized afterward.

In addition, we examine the gravitational wave signal from the collapse scenario of the
perturbed unstable model. Since the collapse happens promptly after the start of the sim-
ulation, the initial junk radiation will contaminate the subsequent gravitational wave signal
that immediately follows under the Z4c constraint propagating description. Therefore, for
this particular result shown in Fig. 7.15, we perform the simulation with the BSSN formu-
lation to obtain a cleaner numerical waveform, and we confirm that the overall dynamics of
the BSSN run are the same as in the Z4c run shown above. The (I,m) = (2,0) mode of
DV, black hole ringdown gravitational waves after the collapse is extracted in various radii
as a function of t,oq — tag shown in Fig. 7.15, where ¢, is the retarded time and ¢y is the

black hole formation time. The waveforms agree with each other regardless the extraction
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Figure 7.15: (I,m) = (2,0) mode of DMapm ¥4 gravitational waves extracted at 7o = 591 km (blue), 517 km
(red), and 443 km (green) of the gravitational collapse of the unstable rotating neutron star as a function of

retarded time t,et.

Table 7.2: The parameters of the SMS and the remnant black hole in the simulations. T' is the adiabatic
index, M is the gravitational mass of the system, 3 is the ratio of rotational kinetic energy to gravitational
potential energy, J is the angular momentum Req is the equatorial circumferential radius, and Mpy and x
are the mass and dimensionless spin of the remnant black hole, respectively.
r M(Mg) B J/M? Req/M Mpnu/M X
1.3347 1.54 x 10° 0.00895 0.826 452.6 0.952 0.701

radii 7ex = 591 km, 517 km, and 443 km. We also compare our numerical waveform with the
analytical black hole quasinormal modes frequency Mppw = 0.3767 —0.0884: [36] considering
the final black hole mass Mpy = 2.51 M, and the dimensionless spin parameter y = 0.2857.
The fitted analytical ringdown waveform shown as the black dashed line in Fig. 7.15 matches
our result. We found the total radiated energy to be ~ 1.8 x 107 Map.

7.3.3.4 Gravitational collapse of a supermassive star

For the final test, we simulate the gravitational collapse of a rotating supermassive star
(SMS) to a black hole. In this problem, the SMS with a radius of &~ 450M collapses to a
black hole and a disk, and hence, we have to follow a much larger dynamical range than that
of neutron-star collapses. For this problem, our FMR algorithm becomes, in particular, the
robust tool.

We consider a uniformly rotating supermassive star constructed by the polytropic EOS
P = Kp" with the polytropic index I' = 1.3347, which approximates the SMS core in helium-

burning phase close to the marginally stable state [157] and is approximately the same as the
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Figure 7.16: The evolution of the central rest-mass density p. (top), relative differences in baryon mass M,
and angular momentum J (middle), and the L2-norm of the Hamiltonian constraint violation ||H||2 as a
function of time ¢ in M for the gravitational collapse of the SMS. The blue vertical dashed line indicates the
black hole formation time tay = 3373M.
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Figure 7.17: The snapshot of the rest-mass density p extracted at different time ¢ = 0.0M (top left), ¢t =
3361M (top right), t = 3374M (bottom left), and ¢ = 10216 M (bottom right) for the gravitational collapse
of the SMS. The green solid lines indicate the boundaries of the FMR levels.
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Figure 7.18: The evolution of remnant black hole mass Mgy (top) and dimensionless spin parameter y
(bottom) after collapse of the SMS. The black hole is formed at tag = 3373M.
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and 69M (green) of the gravitational collapse of the SMS as a function of retarded time t,ot — tap.
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model He4 of [208]. The parameters of the model employed are listed in Table 7.2.

The computational domain is set to be Tpax = 2Zmax = 1101M with N = 128 and 10
refinement levels in total, which corresponds to the size of L = 2.15M and the grid resolution
Ar = Az = 0.0168M in the finest box. The I' law EOS P = p(I" — 1)e is employed for
the simulation with the HLLC solve and the atmospheric factor fam = 1072°. To initiate
the collapse, we reduce the pressure by 20% uniformly within the star. With our FMR
setup, the computational cost for this simulation is relatively cheap, with the simulation time
t ~ 10800M costing about 600 CPUhrs in total under the parallelization setting [Myp; X
Mypr X Ny = [4 % 4 x 5.

Once the pressure is depleted, the matter starts to fall in, resulting in an exponential
growth in the central rest-mass density p.. As in [208], about 95% of the SMS collapses
into a black hole, and the remaining matter forms a torus around the black hole and ejecta,
which is driven by a shock formed around the surface of the torus as shown in the bottom
row of the snapshots in Fig. 7.17. The final dimensionless spin of the black hole is =~ 0.70,
which is appreciably smaller than the dimensionless spin of the system (see Table 7.2 and
also Fig. 7.18 for the evolution of remnant black hole). The ejecta mass is ~ 1% of the total
mass, and this result agrees with that of [208].

Figure 7.19 plots gravitational waveform (the (I,m) = (2,0) mode of ¥,) during the
formation of the black hole. As found in [451], the waveform is composed of a precursor,
which is emitted before the formation of the black hole, a burst wave, which is emitted
near the formation time of the black hole, and a ring down. The total radiated energy is
~ 1.08 x 107°M which agrees with the result in [451].

7.3.4 Strong scaling test

This section presents a test to assess the strong scaling of SACRA-2D. The simulations were
performed on the cluster Sakura at the Max Planck Computing and Data Facility, which
comprises Intel(R) Xeon(R) Gold 6248 CPU with a clock rate of 2.50 GHz. We performed
a series of simulations in different parallelization settings using the same configuration in
Section 7.3.3.1 except N = 960 and 9 FMR levels were adopted here, which corresponds to
35 cycles of RK4 integration in each time iteration, and measured the average computational
time required per iteration. A wide range of MPI setting with the number of MPI ranks in
each direction Myp; € {2,4,8,16,24,32} (see Section 7.2.5 for definition of Myp; and Ny, ),
covering 4 to 5120 cores in total. Fig. 7.20 shows the average computational time per iteration
in seconds as a function of the number of cores used. The solid line with the same colors
denotes models with the same MPI setting but in different numbers of OpenMP threads Ny,
and the star markers represent the models with Ny, = 1. The black dashed line indicates
the ideal scaling considering 2 x 2 MPI setting with a single OpenMP thread Ny, = 1 (i.e.

4 cores in total). The result shows an efficiency of about 70% for a small number of Ny,
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and the performance worsens for an excessive number of OpenMP threads. This suggests
the optimal setting to be N/Myp; 2 30 for the MPI setting and Ny, < N/Mypr/10 for the
OpenMP threads.

7.4 Summary

We present SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic hydrodynamics
code in dynamical spacetime under axial symmetry with the cartoon method. The code em-
ploys a cell-centered grid with FMR and an adaptive time-step scheme. We implement the
finite volume method with the state-of-the-art HLLC approximate Riemann solver for hy-
drodynamics and the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c constraint
transport for spacetime evolution.

We examined SACRA-2D with several benchmark tests, including problems in the vac-
uum spacetime or the Cowling approximation and simulations of GRHD under dynamics
spacetime. We showed a sixth-order convergence of the metric solver and the gravitational
waveform in the trumpet black hole and head-on collision tests, respectively. We also demon-
strated the power of the HLLC Riemann solver, which effectively improves spatial resolution
in the modified Bondi flow test and reduces the artificial shock heating at the stellar surface
in the simulation of a stable rotating neutron star. In particular, we show the outstanding
robustness and efficiency of SACRA-2D in problems like examining the stability of rotating
neutron stars adjoining the turning point and resolving the supermassive star collapse. In
addition, we performed a strong scaling test and showed an efficiency of about 70%.

In the future, we plan to implement magnetohydrodynamics with the HLLD Riemann
solver and the constrained transport scheme [281], as well as implementing radiation hy-
drodynamics for neutrino physics. We will also use SACRA-2D to explore systems in the
alternative theories of gravity (see Chapter 8), and astrophysical applications such as black
hole-disk collisions [196].
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Breakdown of Contribution

This chapter is based on the preprint submitted to Phys. Rev. D: “Azisymmetric stability
of neutron stars as extreme rotators in massive scalar-tensor theory” in arXiv:2502.03973
[307] by A. T.-L. Lam, K. V. Staykov, H.-J. Kuan, D. D. Doneva and S. S. Yazadjiev. I
extended my numerical code SACRA-2D to massive scalar-tensor theory. The initial data of the
differential rotating neutron star were provided by K. V. Staykov using the code developed
K. V. Staykov and D. D. Doneva based on the open-source RNS code. All the numerical
simulation and data analysis were carried out by me. D. D. Doneva and S. S. Yazadjiev

provided constructive comments on the manuscript written partially by me and H.-J. Kuan.

Overview

Differentially rotating scalarized neutron stars, mimickers of binary merger remnants, can
possess an enormous angular momentum larger than what could possibly be sustained in a

neutron star in general relativity by about one order of magnitude. A natural question to ask
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is whether these solutions are stable and thus can realize in a binary coalescence. With this
motivation in mind, we examine the criterion of dynamical stability against axisymmetric
perturbations for these ultra-rotators by numerically tracking their nonlinear evolution in
an axisymmetric setup. We demonstrate that the turning-point criterion still serves as a
sufficient condition for asymmetric (in)stability. Our findings open an interesting question
of whether the merger of two scalarized neutron stars can produce (possibly short-lived)

ultra-highly rotating merger remnants.

8.1 Introduction

In the next (5™; expected to start in 2027) observing of the international gravitational wave
(GW) network, more binary neutron star (BNS) mergers are expected to be witnessed. The
improving sensitivity of the observatory, especially the high-frequency band > 10% Hz, is
thought to be promising to further resolve the waveforms produced in the post-merger phases.
Although certain important information can already be acquired from the pre-merger wave-
forms such as the bulk properties of the source and the adiabatic tidal response of the
neutron star (NS) members [9, 14], the post-merger segment of the waveforms delivers in-
formation supplementary to the aforementioned ones [391, 428 472 514]. In particular,
the newly formed hypermassive NS (HMNS), which is supported against radial collapse
by differential rotation, thermal pressure, and/or magnetic force, carries rich information.
For example, the oscillations frequencies and the lifetime of HMNS are not only strongly
tied to the internal structure of the star (i.e., to the nuclear equation of state (EOS); e.g.,
(63, 67, 242, 243, 391, 477]), but closely related to the nature of gravity (e.g., see Chapters 4
and 5).

Scalar-tensor theories of gravity are amongst the most natural and well-motivated alter-
natives to general relativity (GR). Considering the Damour-Esposito-Farese type of scalar-
tensor theory (DEF theory hereafter), current pulsar timing observations severely constrain
the massless scalar field sector of the theory [538] while only weak bounds can be imposed
in the massive case [28], namely a lower bound of mg 2 1071 eV [385, 527] on the scalar
mass. The constraint on m, can be pushed further by the null evidence of scalarization in
the detected waveform (< 500 Hz) of GW170817 [15, 16]. In particular, the progenitors
of GW170817 are unlikely to be scalarized if the scalar field is massless [331, 537], while a
scalarized progenitor can still be reconciled with the observed waveform if the scalar field
is sufficiently massive with > 10712 eV [294, 520] (see also Chapter 3). On top of binary
systems dynamics, the x-ray pulse profiles emitted by hot spots at NS surfaces infer the mass
and radius of NSs [510], which in turn can be used as an independent probe to the EOS and
gravitational nature [248, 459, 460, 467, 497].

Within the valid parameter space, Refs. [164, 165, 166, 474] demonstrated in a series of
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works the existence of stationary, axisymmetric scalarized NSs with an angular momentum
exceeding the maximum in GR for a given EOS and rotational law. Such super-rotating NSs
have very similar properties to the HMNSs produced after mergers of BNS, which inherit
most of the angular momentum of the progenitor binary, thus spinning differentially at a large
rate. Although the maximal angular momentum of HMNSs produced by the merger of non-
spinning, quasi-circular binaries is roughly bounded as J < 8 M2 in GR (e.g, [185, 490, 502]),
larger values may be achievable in mergers of dynamically-formed binaries in globular clusters

or mergers of NSs having high spins.

The determination of stability of these super-rotating scalarized NSs can be expected to
limit the class of HMNSs in the post-merger phase. The turning-point criterion has been
shown to be powerful in detecting secular instabilities and in most cases, its results coincide
with the ones from perturbation analysis, i.e., the onset of instability is typically associated
with an extremum of a properly chosen function of the stellar equilibrium properties [164,
465]. The onset location of secular instability has also been studied by numerical simulations
[41, 134, 135, 136, 193, 443], where the validity of the turning-point criterion for uniformly

rotating NSs is confirmed.

Here, we briefly recap the turning-point criterion. For axisymmetric spinning NSs and
assuming a barotropic EOS, the gravitational mass Mg of an NS can be parameterized by
the central energy density €., i.e., Mg = Mg(e.). In addition, the variations in Mg, angular

momentum J, and baryon number N are related via
dMg = QdJ + pdN, (8.1)

where € is the angular velocity of the star, and u is the chemical potential. The turning-point
theorem states that the point where d.J/de. = dN/de. = 0 separates the stable segment from

the secularly unstable one, and the segment satisfying

@ dJ N d_,u dN
de. de.  de. de,.

>0 (8.2)

is on the unstable side [198]. From this, we see that the onset of secular instability is marked
by the turn-point of My along a one-parameter curve with a fixed J or total baryon mass

My. In particular, for a sequence of equilibria with a fixed J, the tuning-point,

OMc¢(e.)

ol e 0 (8.3)

corresponds to the configuration having the maximal N and thus M, while the turning-point
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for a constant M, sequence, i.e.,

OMc¢(e.)

860 MO 07 (8 )

reflects the minimum of J [134]. A remark to be made is that when deriving the theorem for
uniformly rotating equilibria, Friedman et al. [198] assumed that, due to viscosity, uniformly
rotating equilibria will never become differentially rotating as the final state, i.e., the rota-
tional law can be maintained after the perturbation is damped by viscosity. In other words,
this criterion is established by comparing neighboring, rigidly rotating configurations along
the one-parameter curve.

On the other hand, the applicability of this theorem to NSs obeying a differential rotation
law is not established analytically since the rotational law may be altered by any perturba-
tion. Thus, the equilibria do not form a one-parameter family but rather a family of infinite
dimensions (to which a turning-point theorem is still possible to hold in some form [165]).
While not shown analytically, numerical studies suggest that the turning-point criterion ap-
proximately applies to differential rotating NSs [262, 346, 511] in GR. The goal here is to
examine the validity of the criterion for high-J stars in scalar-tensor theories, which have no
counterparts in GR, through axisymmetric numerical relativity simulations. In particular,
we will numerically evolve the stellar profiles to determine if the configuration is stable to a
random numerical perturbation, or if some instabilities will operate so that the initial state
will migrate to a final state which may be another neutron star configuration or a black hole.

This Chapter is organised as follows: Section 8.2 introduces the basic equations for con-
structing differentially rotating, scalarized NSs and the scheme for axisymmetric evolution.

We provide the numerical results in Section 8.3 and discuss them in Section 8.4.

8.2 Basic Equations

The formulation for constructing initial data in the considered theory will be described in

Section 8.2.1. The detailed setup of numerical evolution will then follow in Section 8.2.2.

8.2.1 Profiles from RNS

A modified RNS code [475] for generating initial data of equilibrium states of scalarized NSs
in the DEF theory has been developed in a series of works [165, 166, 474] from simpler
to more sophisticated rotation laws. The code uses a modified [134] Komatsu—Eriguchi—
Hachisu (KEH) [283] scheme for constructing rotating equilibrium neutron star models. For
mathematical and numerical convenience, the calculation of equilibrium models is performed

in the so-called Einstein frame, which is later transformed into the physical Jordan frame



Chapter 8. Axisymmetric stability of neutron stars in massive STT 213

used by the evolution code. The two frames are related through a conformal transformation

of the metric, and a detailed discussion can be found in [165].

The modified RNS code adopts quasi-isotropic coordinate, in which the metric is expressed
in the spherical coordinate (r,60, $) as [183, 283, 284]

ds® = —eT7dt* + " r? sin? 0(dp* — wdt)?
+ €7 (dr? + r*d6?) (8.5)
= — (a? = Ypp@?)dt* — 2w Yppdddt + vijda'da?

where « and ;; is the lapse function and spatial metric, respectively. The shift vector 5* is

expressed as (see, e.g., Sec. 4 of [364])
B = —w(9y)". (8.6)

Here, w is the frame-dragging factor, and the spatial metric 7;; is

e 4 0 0
Y=t 0 ear? 0
0 0 e*r?sin?f (8.7)
= 9"
for
2
=W tn=/12 and q= 3 2r—n+o0), (8.8)

where 1) is the conformal factor and 7;; is the conformal spatial metric with its determinant
det(7;;) = det(fi;) same as the flat background metric f;;. In the above expressions, 7, @, o,
and 7 are all functions of r and # only since we consider axisymmetric NSs. For non-spinning

7 and thus the metric v;; = €7 f;; is conformally flat, while the

NSs, we have "7 = e
metric will be distorted from the conformal flatness due to the dragging effect when the star
is rotating. The determinant of 7;; in the Cartesian coordinates is v := det (y;;) = e*7 177,
which again reduces to v = €% for non-rotating configurations. For the considered gauge

and coordinate, the extrinsic curvature tensor, defined as

20K;; = D;f; + D;f3;, (8.9)
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has the form (see, e.g., Egs. (2.43) and (2.44) of [220])

00 2w
—eMr?sin? 6 or
. 0

W

where “”s are the ellipsis of the symmetric part and D; is the covariant derivative associated
with the spatial metric v;;.

For the matter profile, the 4-velocity of matter is expressed as

w

ut = (1,0,0,9), (8.11)

Va? = Ypew?

with w := (1 — v?)~'/2 being the Lorentz factor and v the proper velocity, given by

v=(Q —w)rsind. (8.12)
The spin of the star,
u?
Q(r.0) = —, (8.13)

is specified by a certain rotation law as well as the stellar structure. We note that {2 is the
same in both the Einstein and Jordan frames, thus not further complicating the transition

of the quantities in the two codes.

In the present article, we adopt the 4-parameter differential rotation law introduced by
Uryu et al. [503] (see also [251, 252]),

1+ (—F )p
B2Q.
Q=Q — (8.14)
1+ (A2QC>

where F' = u'ug is the redshifted angular momentum per unit rest mass. This rotation
law allows for the maximum of the angular velocity to be away from the center, which is
a common characteristic seen in remnants in merger simulations, e.g., [(1, 148, 266]. Here,
two constants have been fixed to p = 1 and ¢ = 3 [251, 252, 539]. This choice allows one
to derive an analytical expression for the first integral of the hydrostationary equilibrium,
which is required for the RNS code. The other two parameters, A and B, are not given
explicitly. Instead, the ratios \j = Quax/Qe and Ay = Q./Q., where €. is the angular
velocity at the equator, €2, is the angular velocity at the center and ., is the maximum of
the angular velocity, are given. From them, one can obtain and solve an algebraic system for
A and B. Those ratios control the shape of the neutron star. In the present article we use
(A1, A9) = (1.5,0.5) which correspond to the quasi-toroidal models [4174]. When the rotation
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Table 8.1: Parameters of different sequences considered in this Chapter, where the scalar mass my and
coupling constant B (second column), the angular momentum fixed for each sequence (third column), and
the central energy density of the NS at the onset of asymmetric instability (last column) are collated.

Sequence name (mg, B) J (M32)  €gnre [x10%7 cgs]
n0_B12_J8 (0, 12) 8 1.16
m0_B12_J12 (0, 12) 12 1.12
m0_B12_J20 (0, 12) 20 1.056
m0_B12_J40 (0, 12) 40 NA
m0.01_B12_J8 (0.01, 12) 8 1.15
m0.01_B12_J12 (0.01, 12) 12 1.08
m0.01_B12_J20 (0.01, 12) 20 NA
m0.01_B12_J30 (0.01, 12) 30 NA

law F' is given, the angular momentum of the star is determined via

J :/ aphF\/yd*z, (8.15)
r<R,

for a given rest-mass density p and specific enthalpy A distributions inside the star.

8.2.2 Evolution equations

The modified evolution equations in DEF theory under Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation [55, 305, 433] (see also Chapter 4) in the Cartesian coordinates are writ-
ten in Eq. (4.2). We adopted the moving puncture gauge [26, 42, 119] for the lapse function
and shift vector given by Eq. (1.24).

The cartoon method [24] has proven to be a robust scheme to evolve axisymmetric space-
time [421, 426, 427, 134]. We extended the 2D cartoon code SACRA-2D developed in Chapter 7
to include the evolution equations of DEF theory with Z4c constraint propagation [81, 239].
SACRA-2D employs a fixed mesh refinement with 2:1 refinement and imposes equatorial mirror
symmetry on the z = 0 plane. For the simulations included in this Chapter, the differen-
tially rotating NS is covered by 9 refinement levels with at least 150 grid points covering the
equatorial radius of the NS. We adopted 6" order finite difference for the field equations and
HLLC Riemann solver [281, 336, 513] for hydrodynamics.

8.3 Numerical results

We construct axis-symmetric, spinning NSs obeying the rotational law (8.14) for several fixed
values of J that will be used as initial data for the nonlinear evolution code. The representa-

tive sequences are summarized in Table 8.1, where we consider the massless DEF theory and
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Figure 8.1: Dynamical stability of sequences (a) m0_-B12_J8 (b) m0_B12_J12 (c) m0_B12_J20 (d) m0_B12_J40.
The blue circles and red crosses indicate the regions where the star is dynamically stable and unstable
respectively.
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a massive scalar field theory with my = 0.01 (~ 1.33 x 10712 eV). We fix B = 12 and focus
on MPA1 EOS [347] as a representative example. We perform axis-symmetric relativistic
simulations for selected models from these sequences, especially close to the maximum mass
point, where possible. The goal is to examine the stability and study the outcome of unstable
models. We start with the massless theory (Section 8.3.1) followed by a study of the massive
scalar field case (Section 8.3.2).

8.3.1 Massless scalar field case

For the massless cases, a turning point can be found for three of the considered angular
momenta in Table 8.1, while the sequence with J = 40 has no turning point, i.e. no maximum
of the mass was reached. A general behavior of the solutions generated by the RNS code is
that with the increase of the angular momentum, the solution branches get shorter, and they
get terminated before reaching the turning point. The reason is numerical — the RNS code can
not converge to a unique solution. Different numerical schemes may be useful to overcome
this problem, such as the spectral method used in [36, 218], that is out of the scope of the
present Chapter.

Along each sequence, we study the (asymmetric) stability of 10-20 models, most of which
condense near the maximum mass point. The results are summarized in Fig. 8.1, where we see
that for cases a), b) and ¢) the marginally stable model is slightly left to the maximum of the
mass, implying that the turning-point criterion approximately predicts the onset of instability
for these sequences. For case d), where no turning point was reached in the equilibrium
sequence, all neutron star models are stable. For the stable models, the perturbations in the
maximum density and central scalar field damp in a dynamical timescale, then settle back
to the initial values. Taking the model m0_B12_J20 as an example, which is very close to the
turning-point along the sequence of J = 20, the evolution of the maximum rest-mass density
and the central value of the scalar field are shown Fig. 8.2 (red), where we see that the initial
noise is dissipated after < 5 ms. On the other hand, the unstable models will collapse into a
black hole in a dynamical timescale. For one such example m0_B12_J12, the evolution of the
maximal rest-mass density shows a runaway growth in less than 3 ms (red in Fig. 8.3). After
the formation of a black hole, the scalar field dissipates exponentially to < 10~ since black
holes in this theory obey the no-hair theorem and thus cannot possess a stationary scalar
field [230, 471].

In addition, the rotational law is well-maintained over several dynamical timescales in
our simulations for stable models. For one stable example, we plot the profiles of rest-mass

density, scalar field, and the specific angular momentum,

J = huyg, (8.16)
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at the initial moment and at 15 ms in Fig. 8.4. Apart from a tiny amount of matter that
escapes from the surface, the structure of rest-mass density and scalar field remain unaltered
to a large extent, i.e., the model is rather stable to axisymmetric perturbations, and the
numerical accuracy is robust. In particular, the profile of specific angular momentum within
the HMNS is well preserved after 15 ms, showing that the rotational profile is also stable
under such perturbations. We also note that the onset of instability is not sensitive to the

employed resolutions.

8.3.2 Massive case

We also examine the criterion along fixed-J sequences for a massive scalar field with m, =
0.01(~ 1.33 x 1072 eV). This value is chosen in order to be in agreement with binary neutron
star merger observations [294] (see also Chapter 3). It is a rather large value, and it effectively
confines the scalar field in a radius several times larger with respect to the neutron star size.

The chosen models are presented in Fig. 8.5. No turning point is found for the sequences
with J = 20 and 30 due to the same reason explained above, and the models are stable
against axisymmetric perturbations. For the sequences with J = 8 and 12, a turning point
exists and we find that the onset of instability is in the close vicinity of the turning point, i.e.,
the turning point criterion approximately holds. In the massive theory, we also demonstrate
that unstable models will collapse into a black hole within a dynamical timescale. As a
representative example, we plot the evolution of the maximum rest-mass density as well as
the scalar field extracted at a certain distance inside the star for m0.01_B12_J12 (red curves
in Figs. 8.1 and 8.5). We again observe a runaway growth in p,.x and a strong suppression
in the scalar profile after the black hole forms. Following the collapse, the scalar field decays
to a magnitude of ~ 1073 over the dynamical timescale. The decay rate is much slower
than the massless case at late times, as shown in the bottom panel of Fig. 8.3, and can be
attributed to the dispersion relation of scalar waves [126, 216, 292, 398, 473]. In particular,

the propagation group speed of waves at the frequency wy is given as Eq. (3.27)
vy = (14+mix*) 12, (8.17)

where A denotes the wavelength. It can thus be seen that the scalar waves with wavelengths
A2 1/my (ie., wy < my) will dissipate over a prolonged damping timescale.

To further assess the turning point criteria, we extract the spectrum of axisymmetric
oscillations in the frequency band < 2 kHz for the sequence m0.01 B12_J8 before the turning
point as shown in Fig. 8.6. The modes are extracted by performing Fourier analysis on
the central rest-mass density p. and the central scalar field . marked as circles and crosses,
respectively, in Fig. 8.6. We observe that two classes of modes emerge in the spectrum, which

is speculated to be the quasi-radial m = 0 fundamental mode (blue) and ¢-mode (red). We
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Figure 8.4: Snapshots for a stable model in m0_B12_J20, whose central energy density is ¢, = 1.052 x
10* g/cm®. The initial profiles are shown in the left column, including rest-mass density (top), scalar field
(middle), and specific angular momentum in the code unit (bottom). The profiles at 15.2 ms for them are
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Figure 8.5: Dynamical stability of sequences (a) m0.01.B12_J8 (b) m0.01.B12_J12 (¢) m0.01.B12_J20 (d)
m0.01 B12_J40. The blue circles and red crosses indicate the regions where the star is dynamically stable
and unstable, respectively.

found that the frequency of ¢p-mode decreases as the central internal energy €. approaches the
turning point and eventually reaches a value very close to the Yukawa cutoff frequency of the
scalar field f, := wy/(27) in the stable model closest to the turning point. This suggests that
the dynamical instability near the turning point arises from the ¢-mode reaching the cutoff
frequency, whereas, in GR, it is triggered by the fundamental mode hitting zero frequency

(e.g., [282]). This is similar to the mode analysis in the static case [96, 333, 334].

8.4 Discussion

By performing fully relativistic 2D simulations, we examine the well-known turning-point cri-
terion dictating the condition for one kind of instability among many others. This criterion
has been rigorously proven for rigidly rotating configurations by [198] in pure GR, while the
extension of it to more general configurations seems only plausible by the use of numerical sim-
ulations. In this work, we evolve scalarized neutron stars along constant-angular-momentum

sequences to pin down the onset of an axis-symmetric instability for various of the theory
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Figure 8.6: Spectrum of the axisymmetric oscillations in the frequency band < 2 kHz for the sequence
m0.01.B12_J8 (cf. Fig. 8.5 for its Mg-¢. relation). Two classes of modes are observed, namely, the quasi-
radial m = 0 fundamental (blue) and ¢- (red) modes. The modes identified by the Fourier spectrum of
oscillating central rest-mass density are marked as circles, while those identified from oscillating central
scalar field are denoted as crosses. Agreement between the analysis of either quantity is observed. The
Yukawa cutoff f. := wg/(27) is presented as the dotted horizontal line.

parameters as well as J (Table 8.1). Our results suggest that the criterion for rigidly rotating
bodies in GR [i.e., Eq. (8.3)] is largely valid also for differentially rotating stars in the DEF
theory, and the observed onset of instability agrees within the numerical error at the turning
point along the constant—J sequences (Figs. 8.1 and 8.5). For a representative stable model
with J = 20, we see that the density and scalar profiles as well as the rotational law are
perfectly preserved when we terminate the simulation at 2 15 ms (Fig. 8.4). A word of
caution is appropriate here. Other instabilities, such as one-arm and bar-mode instabilities
[364], can be activated in reality as 3D simulations suggest [178, 436]. Here, the results are

limited to axisymmetric (in)stability that is cared of in the turning-point criterion.
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Chapter 9

Conclusions and Future work

This thesis discussed some innovative applications of numerical relativity on various astro-
physical systems. In Part I, by making use of the new method in numerical relativity that
eliminates the leading numerical error from the supermassive black hole, we are able to
conduct self-consistently numerical studies on tidal disruption events of a white dwarf by
a non-spinning supermassive black hole to study the disruption criteria. Our results show
that the tidal disruption takes place for 5 = 0.5, and an appreciable oscillation of the white
dwarfs is induced by the black-hole tidal effect for 8 2 0.4 for orbits close to the black hole
in the I' = 5/3 polytropic equation of state, which is consistent with the previous analytical
studies. In the next step, we plan to extend the study for spinning black holes. Currently, a
popular model for explaining the UV /optical emission of TDE is the stream-stream collision
of tidal debris caused by relativistic apsidal precession. If a white dwarf or star is tidally
disrupted close to a spinning black hole, the spin-induced precession could avoid stream col-
lisions, causing a significant delay for ~ 10 winding orbitals before stream self-interaction,
resulting in a “dark period”. However, most studies exploring the spin effect rely on approx-
imation schemes with Post-Newtonian prescriptions. Therefore, it is essential to perform a
general relativistic hydrodynamics simulation of a white dwarf tidally disrupted by a spinning
black hole in an inclined plane in a self-consistent approach to deepen our understanding of
the black hole spin effect on the dynamics of tidal disruption and subsequent mass accre-
tion. A more challenging issue is to follow the long-term hydrodynamics evolution of the
tidally disrupted debris to study the subsequent disk formation, which could be a source of

electromagnetic counterpart.

In Part II of the thesis, we conducted a series of numerical studies aiming to quantify the
non-linear feature of massive DEF theory in binary neutron star mergers and explore distinc-
tive signatures in GW signals, paying particular attention to scalar mass in ~ 107! eV with

corresponding Compton wavelength ~ 20 km, which could have scalar interaction imprinted
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in the late inspiral phase. Starting from constructing initial data for quasi-equilibrium con-
figurations of binary neutron stars that are self-consistent with DEF theory in Chapter 3, we
compared orbital energy obtained from the numerical data with the event GW170817 and
suggested a constraint on scalar mass > 107! eV if both neutron stars are scalarized in the
inspiral phase. To further understand the scalar effect on the dynamics of the coalescence and
the postmerger remnant, we extended the numerical relativity code SACRA-MPI to the mas-
sive DEF theory and performed a set of numerical simulations to study comprehensively the
dependence on scalar mass and coupling strength in Chapter 4. We found that the modified
effect in DEF theory can significantly alter the final fate of the merger remnant and provide
various distinctive features that appear in a wide range of binary parameters. The presence
of a scalar field could also provide additional support from gravitational collapse. It raises
the threshold mass for prompt collapse and prolongs the lifetime of short-lived hypermassive,
which can modify the final disk mass around the black hole and subsequent post-merger
ejecta. When a hypermassive neutron star is formed after the merger, the scalar field can be
dissipated when the core density of the remnant rises to reach an ultra-relativistic regime,
leading to descalarization. Such a state transition in the scalar field can introduce a shift in
f2 frequency in post-merger GW signal, sharing the similar influence of a phase transition
from confined hadronic matter to deconfined quark matter. This motivates us to investigate
in Chapter 5 systematically the possible modification in quasi-universal relations of merger
waveform in DEF theory. Through analyzing ~ 120 numerical simulations, we demonstrated
that a gravitational effect like scalarization could lead to a violation in quasi-universal rela-
tions. In the future, we plan to explore the scalar imprint on the inspiral waveform of binary

neutron stars to construct a more accurate waveform model.

In the final part of the thesis (Part IIT), we explore different physical scenarios under ax-
isymmetric configuration. The free-fall initial data model introduced in Chapter 6 allows us
to study more efficiently the final fate after the collapse of rotating massive stars that form a
black hole and a torus by skipping the initial collapse phase. By performing general relativis-
tic neutrino-radiation viscous-hydrodynamics simulations, we found °°Ni mass > 0.15 M
and ~ 3 — 11% of the total ejecta mass for rapidly rotating progenitor stars. The model
light curves derived from our numerical results agree with the observational data, which
suggests a possibility that some of the high-energy stripped-envelope supernovae may take
place from a system of a spinning black hole and a massive torus. In Chapter 7, we present
SACRA-2D, a new MPI and OpenMP parallelized, fully relativistic hydrodynamics code in
dynamical spacetime under axial symmetry with the cartoon method. The code employs a
cell-centered grid with fixed mesh refinement and an adaptive time-step scheme. We imple-
ment the finite volume method with the state-of-the-art HLLC approximate Riemann solver
for hydrodynamics and the Baumgarte-Shapiro-Shibata-Nakamura formalism with Z4c con-

straint transport for spacetime evolution. With the new and more efficient code SACRA-2D, we
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examine the well-known turning-point criterion of differentially rotating neutron stars in DEF
scalar-tensor theory. By evolving scalarized neutron stars along constant-angular-momentum
sequences, we can pin down the onset of an axis-symmetric instability. Our results suggest
that the criterion for rigidly rotating bodies in GR are largely valid also for differentially
rotating stars in the DEF theory, and the observed onset of instability agrees with the nu-
merical error at the turning point along the constant—-momentum sequence. In the future,
we plan to implement magnetohydrodynamics with the HLLD Riemann solver and the con-
strained transport scheme, as well as implement neutrino-radiation viscous-hydrodynamics.
With more sophisticated microphysics and magnetohydrodynamics implemented, we can use
SACRA-2D to explore various systems, including collapsar, supermassive star collapse, and
black hole disk system.
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