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Abstract: The evolution of primordial black holes formed during the reheating phase is revisited. For

reheating temperatures in the range of 1012–1013 GeV, the initial masses are respectively of the order of

1010–108 MP, where MP is the Planck mass. These newborn black holes have a small charge-to-mass

ratio of the order of 10−3, a consequence of statistical fluctuations present in the plasma constituting

the collapsing matter. Charged black holes can be rapidly discharged by the Schwinger mechanism,

but one expects that, for very light black holes satisfying the condition M/MP << MP/mW (mW is

the mass of the heaviest standard model charged W-boson), the pair production process is probably

strongly quenched. Under these conditions, these black holes evaporate until attaining extremality

with final masses of about 107–105 MP. Timescales to reach extremality as a function of the initial

charge excess were computed, as well as the evolution of the horizon temperature and the charge-to-

mass ratio. The behavior of the horizon temperature can be understood in terms of the well-known

discontinuity present in the heat capacity for a critical charge-to-mass ratio Q/
√

GM =
√

3/2.

Keywords: charged black holes; luminosity evolution; dark matter

1. Introduction

The non-detection of supersymmetric signals in experiments performed with the Large
Hadron Collider led to the abandonment of the idea that particles issued from minimal
extension theories of the Standard Model could be the major constituents of dark matter [1].
Consequently, old suggestions proposing that dark matter particles could be primordial
black holes [2,3] have been revived in the past years. Black holes with masses less than
the solar value that could be formed early in the universe were analyzed by [2], while [3]
postulated that as a consequence of the Hawking evaporation process, black hole relics with
Planck masses (MP) result and could constitute the dark matter present in the universe.
Notice that, postulating the existence of stable Planck mass relics, quantum effects were
indirectly considered since this is equivalent to saying that the black hole horizon radius
cannot be smaller than the Compton wavelength associated with the black hole itself.

In a flat Friedmann–Robertson–Walker universe, primordial black holes (PBHs) with
masses in the range of 106–109 MP are expected to be formed at the end of the inflation,
during the oscillatory and decay phase of the inflaton field or during the reheating [4–10].
They may also be formed naturally at high peaks of the curvature power spectrum resulting
from a single-field inflation [11]. According to the scenario developed by [12], PBHs can
be formed at the end of the inflationary era during a long oscillatory phase of the inflaton
field that extends the reheating timescale. In this picture, PBHs have a characteristic
mass M ≃ 4π(M2

P/H∗), where H∗ is the Hubble scale during inflation. In the slow-roll
approximation, we have H∗ ≃ (π/16)M2

PrAs, where r is the amplitude ratio between the
tensor and the scalar power spectra and As is the amplitude of the scalar power spectrum.
Using data from Planck-2018, one obtains H∗ ≃ 1013 GeV, which implies a typical mass of
about 106MP for primordial black holes formed in this scenario.

Two main aspects play a central role in the formation process: first, for each horizon-
sized space-time region, there exists a critical threshold value for the density (or mass)
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contrast δc that separates the late evolution between the formation of a black hole and the
dispersion of the perturbation by pressure forces; second, when the overdensity perturba-
tion is close to the critical value, the final mass of the black hole may be a small fraction of
the horizon mass [13]. However, as we shall see later, the Bekenstein entropy bound [14]
fixes a minimum mass that is able to collapse and form a black hole.

One of the great difficulties with these light PBHs is their short lifetime against the
Hawking evaporation mechanism, since only PBHs with masses greater than 3 × 1014 g can
survive up to today. The evaporation process can be quenched if black holes are extremal
since, in this case, the horizon temperature is zero, extinguishing the emission process.
Extremal black hole solutions can be obtained in Kerr (K) or in Reissner–Nordstrom (RN)
space-times as well as in some non-singular metrics [15]. In the case of rotating black
holes, it has been argued [16] that, besides mass, angular momentum is also lost during the
evaporation process, and consequently, an extremal condition is difficult to be maintained
under these circumstances. This difficulty can be circumvented if Planck-sized BHs are
quantized [17], since, in this case, a stable fundamental state exists with a mass equal
to the Planck value and spin J = h̄. Another alternative was discussed by [18], who
considered asymptotically free gravitational theories with a limiting curvature in which
stable remnant solutions exist. The horizon temperature in these relics is zero, and their
masses are determined by the inverse limiting curvature.

A charged (RN) black hole is also an alternative permitting extremal solutions. How-
ever, there are two major obstacles for the existence of charged BHs in nature. The first
is the Schwinger mechanism, which is able to neutralize the BH charge in a very short
timescale [19,20]. In other words, the presence of an intense electric field across the BH
horizon changes the vacuum polarization state and separates virtual particle–anti-particle
pairs [21]. Particles with the same BH charge are “repelled”, while particles with an op-
posite charge cross the horizon, contributing to discharging the BH. However, the usual
equations describing the Schwinger pair production rate near the BH horizon are valid
only if the horizon radius of the black hole is larger than the Compton wavelength of
the related particle [22,23], or in other words, the condition (M/MP) > (MP/m) must
be satisfied (however, see an opposite argument in [20]). Boson and fermion pairs can be
produced by the Schwinger mechanism, and when the aforementioned condition is applied
to the heaviest charged bosons W±, the black hole mass should satisfy M > 4.1 × 1012 g
in order that the discharge process would be efficient. As we shall see, PBHs considered
in the present investigation have masses much smaller than this limit, and consequently,
we could expect that the neutralization of the BH charge by this mechanism would be
strongly weakened. Unfortunately, for “light” BHs, no explicit relation for the pair pro-
duction rate is available in the literature, but some numerical calculations by [24] point
to the following reduction factors: for a ratio between the horizon radius and the Comp-
ton wavelength GMm/h̄c = 0.271, the production rate is decreased by 10%, while for a
ratio GMm/h̄c = 0.160, the production rate is reduced by one-half. This picture is not
substantially modified if, besides the charge, the BH has some angular momentum [25].
It is worth mentioning that the Hawking emission mechanism, although at a slower rate,
may also contribute to neutralizing the black hole. If ±e is the charge of the emitted particle
and ϕH is the electric potential at the BH horizon, the electrostatic energy term ±eϕH

contributes to the chemical potential of the particle, introducing a slight asymmetry in
the emission process. Particles having charges with the same signal as that of the BH are
emitted preferentially and hence contribute to the neutralization of the BH [20].

As we shall see below, dynamical studies suggest that the newborn BH is not in an
extremal state, and in such a situation, the BH loses mass due to the Hawking mechanism,
approaching an extremal condition if the Schwinger process is in fact quenched as one
expects for light black holes. In the present investigation, primordial black holes formed at
the reheating epoch are considered. These black holes are expected to have a small electric
charge, a consequence of Poisson fluctuations present in the collapsing volume. If this is the
case, once formed, the black hole begins to evaporate, increasing its charge-to-mass ratio
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until the extremal condition is fulfilled. In this state, the black hole is stable and could be a
possible candidate to explain the nature of dark matter particles. In this paper are reported
new numerical calculations of the evaporation lifetime of an initially charged black hole, and
a comparison is performed with the well-known results for Schwarzschild BHs. The time
evolution of the luminosity and of the horizon temperature are also computed, both
having a behavior distinct from those of a non-charged BH. In particular, when the initial
charge-to-mass ratio satisfies the condition Q/

√
GM ≥

√
3/2, the horizon temperature

decreases as the evaporation proceeds, since the heat capacity becomes positive beyond the
aforementioned critical value of the charge-to-mass ratio. The paper is organized as follows:
in Section 2, the black hole formation scenario is discussed and the initial charge-to-mass
ratio is estimated; in Section 3, numerical examples are presented, as well as “classical”
calculations of the evaporation lifetime of a charged BH, keeping constant its initial charge;
and in Section 4, the main conclusions are given.

2. The BH Formation Scenario

Presently, there is no consensus among in scientific community concerning the mecha-
nisms able to produce a charge separation during the gravitational collapse. Some possible
scenarios have been reviewed in [26], including, in particular, the possibility that an initial
charge excess produced by statistical fluctuations could be present in the collapsing matter.
However, the resulting initial charge-to-mass ratio due to such a mechanism is expected to
be small and, hence, unable to avoid the loss of a substantial fraction of the initial mass by
the Hawking evaporation process. In fact, some dynamical studies indicate the formation
of a non-extremal black hole as a consequence of the gravitational collapse of electrically
charged matter [27]. Late evolutionary phases are dominated by the Hawking evaporation
as the BH approaches extremality. The presence of a charge excess during the collapse of
massive perturbations may produce some unexpected effects as, for instance, the Cauchy
horizon may be replaced by a space-like central singularity that depends on the value of
the critical Schwinger field [28].

The maximum expected mass MH collapsing into a BH corresponds to scales com-
parable to the Hubble radius [29]. Past numerical studies of the gravitational collapse
considered different setups [30–32], concluding that scaling and self-similarity solutions
exist near the threshold of black hole formation. In general, the resulting black hole mass
scales as M ∝ K(δ − δc)γ, where δc ≃ 0.45 is the critical density contrast above which
black hole formation occurs, and K ≃ 3.3 and γ ≃ 0.36 are constants whose values have
been empirically determined [13,32,33]. More recently, a new investigation on the density
contrast threshold for black hole formation confirms those values derived by numerical
experiments [34]. Here, we adopt such results, and consequently, the mass of the newborn
BH can be expressed as

M = K(δ − δc)
γ MH (1)

Assuming that BHs are formed during or just after reheating, the mass inside the Hubble
radius is given by

MH

MP
=

√

45

16π3
g−1/2

e f

(

MP

Trh

)2

(2)

In the above equation ge f is the effective number of degrees of freedom of the cosmic
plasma constituted by SM particles. Notice that, in principle, very small black holes could
be formed considering density fluctuations close to the critical value δc. However, there is a
lower limit for the BH mass imposed by the Bekenstein “universal” entropy bound [14].
In other words, the entropy of the collapsing matter must be smaller than that of the
resulting black hole. This condition imposes a lower bound for the BH mass given by

M

MP
≥ 1

3πβ

(

MP

Trh

)

(1 + ε)−2 (3)
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In Equation (3), the parameter β represents the efficiency of the gravitational collapse,
taking into account, for instance, radiative losses. The charge-to-mass ratio parameter ε
was defined as in [35], i.e.,

ε2 = 1 − Q2

GM2
(4)

where Q is the BH charge. Notice that an extremal RN black hole occurs when ε → 0,
and when ε → 1, the usual Schwarzschild case is recovered. With this definition of
the charge-to-mass parameter, the horizon radius of an RN black hole can be written as
rH = (GM/c2)(1 + ε). Combining Equations (2) and (3) implies that

(δ − δc)
γ ≥ 1.41

(1 + ε)2

(

MP

Trh

)−1

(5)

and the numerical factor was obtained by assuming β = 0.8. For example, for
Trh = 1013 GeV and ε = 0.1, the Bekenstein bound is satisfied if | δ − δc |> 2 × 10−17.

In order to perform numerical calculations, the initial mass M0 of the BH was estimated
under the assumption that mass density fluctuations have a Gaussian distribution. In this
case, defining x =| δ − δc |, the BH number density distribution is given by

dNBH

dM
=

dNBH

dδ

dδ

dM
∝ x1−γe

− (x+δc)2

2σ2
0 (6)

and shown in Figure 1. For the mean square density fluctuation, we adopted the value
σ0 ≃ 6.0 × 10−5 that results from the observed temperature fluctuation present in the
the cosmic microwave background angular power spectrum, assuming an adiabatic re-
lation between these two thermodynamic variables. In this case, the distribution in
Figure 1 peaks approximately at | δ − δc |= 5.12 × 10−9, corresponding to a BH mass
of M = 3.42 × 10−3MH , a value adopted as the representative mass of primordial black
holes in our scenario. In order to compute the mass inside the horizon, two values for the
reheating temperature were assumed, respectively, equal to 1012 GeV and 1013 GeV. These
values are consistent with an upper limit of 1014 GeV obtained by [36] and with estimates
by [37] derived from different inflaton decay models. In this case, the horizon masses
corresponding to the assumed reheating temperatures are, respectively, 4.33 × 1012 MP and
4.33 × 1010 MP, and the resulting initial BH masses are, respectively, M ≃ 1.48 × 1010 MP

and M ≃ 1.48 × 108 MP. A similar analysis was performed in [33], but the authors consid-
ered Gaussian fluctuations without the presence of a critical density and late formation
epochs. Consequently, they have obtained more massive black holes. It is worth mentioning
that, due to the Bekenstein limit, the minimum BH masses are about 107 MP and 105 MP,
respectively, for Trh = 1012 GeV and 1013 GeV.

Figure 1. Number density of black holes formed per unit of mass as a function of the black hole mass

in units of the Planck mass. The vertical axis has relative units due to the normalization procedure

adopted to perform the plot.
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The Initial Charge-to-Mass Ratio

In the present scenario, we assume that a slight charge excess due to Poisson fluctua-
tions is initially present in the collapsing matter. Requiring that the total number of both
positive (N+) and negative (N−) charges obeys the Poisson statistics, define the variable ∆

such as ∆ = (N+ − N−), which obeys the Skellam distribution. Clearly, the average value
of such a variable is < ∆ >= 0, while the variance is < ∆

2
>= 2N, with N standing for

the mean value of either positive or negative charges. With these definitions, the expected
initial charge excess Q within the collapsing volume is given by the variance of the Skellam
distribution, or in other words,

Q2 = 2αδ2
+(h̄c)N (7)

where α is the electromagnetic fine structure constant and δ+ = 0.597 is the mean SM
charge per particle once heavy charged bosons, leptons, and quarks are present in the
cosmic plasma at reheating. The total number of charged particles (positive or negative) is
given by nchVc, where nch is the charge density and Vc is the collapsing volume that can
be written as Vc = Mc2/ρ, where M is the black hole mass and ρ is the energy density of
the cosmic plasma at reheating. Using the usual relativistic expressions for the energy and
particle density, one obtains, after some algebraic manipulation,

Q2

GM2
= 60 αδ2

+

(

g+

ge f

)

ζ(3)

π4

(

MP

M

)(

MP

Trh

)

(8)

where g+ and ge f are, respectively, the numbers of degrees of freedom appearing in the
number charge density and in the energy density. Replacing Equations (1) and (2) into
Equation (8), one obtains

Q2

GM2
=

80√
5π5

g+ζ(3)

g1/2
e f

αδ2
+

(K | δ − δc |γ)

(

Trh

MP

)

(9)

Numerically, we have

Q√
GM

= 2.46

√

Trh

MP
(10)

For the aforementioned reheating temperatures, i.e., 1012–1013 GeV, one obtains, respec-
tively, charge-to-mass ratios Q/

√
GM = 7.04 × 10−4 and 2.22 × 10−3. Hence, as expected,

the statistical charge fluctuation mechanism is not efficient enough to produce extremal
black holes, and in fact, these objects have very small charge-to-mass ratios, implying an
important mass loss by the Hawking evaporation mechanism before reaching extremality.

3. Hawking Evaporation of a Charged Black Hole

As seen above, black holes formed at the reheating phase may have a charge (positive
or negative) acquired as a consequence of statistical fluctuations within the collapsing
region. Since the initial charge-to-mass ratio is quite small, these black holes begin to
evaporate. We expect that, while they lose mass during the evaporation process, their
charge is kept more or less constant since the Schwinger mechanism is probably quenched
by the fact that the horizon radius of these black holes is much smaller that the Compton
wavelength of the heaviest standard model charged boson. It is worth mentioning that
once extremality is reached, such an argument is reinforced since the horizon radius has
considerably shrunk. Moreover, the charge stability in a quasi-extremal situation was
also investigated by [38], who proposed a thermal interpretation of the Schwinger effect.
The authors assumed that the Schwinger temperature is equivalent to the Davies–Unruh
temperature of particles accelerated by the electric field of the black hole and the scalar
curvature of an AdS2 × S2 geometry. As a consequence, they found a charge upper bound
for an extremal black hole to remain stable against the Schwinger effect. The evaporation
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of a charged black hole, including also the discharge by the Schwinger mechanism, was
investigated by [39], but only massive black holes were considered since, for these objects,
no restrictions exist concerning the quenching condition discussed above.

In these conditions, it is interesting to estimate the timescale required to reach ex-
tremality since the initial charge-to-mass ratio considerably affects the evaporation rate.
The evaporation process of quasi-extremal black holes was considered, among others,
in [40], which adopted the Vaidya metric; that is, the mass parameter varies, but the charge
is kept constant. Here, similar computations were performed in order to estimate the
timescale necessary to attain extremality. Small charge variations due to the slight asymme-
try in the emission of charged particles were neglected since the BH was assumed to radiate
like a “grey” body. The “grey” body factor Γs is related to the absorption cross section σs by
the relation

Γs =
σs

π

(

E

h̄c

)2

(11)

where s and E are, respectively, the spin and the energy of the particle. Recent calculations
of grey body factors can be found in [41,42]. Including corrections due to the presence of
a charge in the expression of the horizon area and temperature, the mass loss rate can be
expressed by the equation

dM

dt
= −β

[

h̄c4

(GM)2

]

f (ε) (12)

where f (ε) = ε4/(1 + ε)6 and the parameter ε was already defined by Equation (4). The pa-
rameter β depends on the grey body factors and, hence, on the black hole mass, including
the contribution of all fields emitted in the temperature (mass) range of interest. Notice
that for light BHs, as those considered here, the Hawking radiation is constituted essen-
tially by photons, neutrinos, and gravitons. For Schwarzschild black holes, numerical
values of β were obtained in [43] and, more recently, in [42]. Here, we have estimated
β = 2.34 × 10−2, a value that agrees with the results in [43] when ε → 1, a limit corre-
sponding to Schwarzschild black holes of a small mass (or high horizon temperature). It is
worth mentioning that, in the context of effective gravity field theories, second (and even
third)-order terms have been introduced in the Schwarzschild metric, aiming to represent
quantum corrections [44,45]. These terms are responsible for the appearance of a Cauchy
horizon and higher-order corrections to the (area) entropy. The horizon temperature is
also affected by these quantum effects, but corrections are important only for black holes
having a few Planck masses [46] and, hence, not relevant to the primordial black holes
considered here.

Equation (12) can be written in a dimensionless form by defining the new variables
y = M/M0, where M0 is the initial black hole mass and τ = t/t∗, where t∗ is a characteristic
timescale defined below. In this case, the equation above can be recast as

dy

dτ
= − f (y)

y2
(13)

with the characteristic timescale t∗ being defined by

t∗ =
tP

β

(

M0

MP

)3

(14)

where tP is the Planck time. Using Equation (4), the function f (y) can be explicitly written as

f (y) =

(

1 −
y2

f

y2

)2





1 +

√

√

√

√

1 −
y2

f

y2







−6

(15)
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where the ratio between the final and initial BH masses y f = M f /M0 was introduced. It
should be emphasized that the parameter y f depends only on the initial charge-to-mass

ratio, that is, y f = Q/
√

GM0. Notice that the differential Equation (13) takes into account
the variation of the particle emission rate not only because the BH mass decreases but also
because the charge-to-mass ratio ε changes as the BH loses mass. Equation (13) should be
solved with the initial condition y(0) = 1. Then, the dimensionless evaporation timescale
τ∗ is obtained when the extremal condition is reached, i.e., when y(τ∗) = y f , which is
equivalent to the condition ε(τ∗) = 0. The dependence of evaporation lifetime (tev) on the
initial BH mass appears explicitly in the definition of the scale factor t∗ (Equation (14)) since
tev = t∗τ∗. It should be emphasized that tev is, in fact, the timescale for the BH to reach
extremality since a remnant is left.

It is important to say few words about some conceptual aspects concerning the evap-
oration timescale. The solution of the evaporation equations assumes an asymptotically
flat space-time, but strictly speaking, black holes are imbedded in an expanding cosmo-
logical background. This problem was already discussed 80 years ago by Einstein and
Strauss [47], who investigated the boundary conditions between a static Schwarzschild
metric and an expanding background modeled as fluid having an uniform density and zero
pressure. Lately, these junction conditions (known today as Israel conditions [48]) were
also discussed, among others, in [49–52]. In general, the inner Schwarzschild space-time is
expressed in terms of curvature coordinates (R, T), while beyond the boundary, the cos-
mological metric is expressed in terms of coordinates (R, τ), where τ is the time measured
by geodesic clocks fixed in the cosmological fluid, which serves as a source in Einstein’s
equation. The transformation between the time coordinate T and the geodesic time τ can
be found, for instance, in [50,53]. Hence, for a distant comoving observer located in the
cosmological background, the measured Hawking energy flux is not exactly the same as
that expected for a distant observer from the black hole. According to [53], Equation (13)
should be corrected by a function f (ϵ) that decreases the mass loss rate. The variable ϵ is
essentially given by the ratio between the black hole horizon radius and the Hubble radius,
that is, ϵ = 2GMH/c3. Considering only first-order terms, the correction factor is given
by [53]

f (ϵ) ≃ (1 − 2ϵ1/3) (16)

Such a correction is more relevant just after the black hole formation since once the evap-
oration begins, the event horizon shrinks and the Hubble radius grows as the universe
expands, decreasing the value of ϵ. For the black hole masses considered in the present
work, one has ϵ1/3 ≃ 9× 10−5, indicating that the difference in the mass loss rate measured
between distant observers using curvature time or geodesic time is very small.

Just after formation, these PBHs begins to evaporate, but they can also accrete mass.
Accretion may counterbalance losses by evaporation or affect the stability when extremality
is attained. The accretion rate of relativistic matter was computed in [54] and is given by

dM

dt
= g(ε)π

(GM)2

c5
ρ(T) (17)

where ρ(T) is the energy density of the cosmic plasma and the function g(ε) depends on
the charge-to-mass-ratio. For small values of the charge-to-mass ratio, g(ε) ≃ 55.42, while
for an extremal black hole, g(ε) ≃ 32.84. Thus, the accretion efficiency decreases for an
increasing charge. The accretion timescale is of the order of | M/(dM/dt) |, and for a
temperatures of about T ∼ 1012 GeV, it is of the order of 10−19 s. This timescale is quite
short but longer than the evaporation timescale, and one should expect that the evolution
of the black hole mass is not too much affected by such a process [55]. Moreover, the energy
density of the relativistic matter depends on the fourth power of the temperature, and
due to the expansion of the universe, the temperature decreases rapidly over a timescale
| T/(dT/dt) |= H−1, which is of the order of 10−30 s, still shorter than the accretion
time-scale. Hence, the adiabatic cooling of the universe inhibits the growth of the black
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hole, which will not be affected by the accretion process. In fact, we have included an
accretion term on the right side of Equation (13), and our results without such a term are
not modified.

Numerical solutions of Equation (13) for different values of the initial charge-to-
mass ratio permit for obtaining how the Hawking evaporation lifetime is affected by the
presence of a charge. Numerically, we have assumed that extremality is attained when the
condition ε(τ∗) ≤ 10−15 is satisfied. However, for values of y f ≥ 0.02, the latter condition
is approached very slowly and another time variable x was introduced in Equation (13)
by defining x = lg(1 + τ). With this definition, the initial condition is not modified since
τ = 0 implies also that x = 0 and Equation (13) becomes

dy

dx
= −ex f (y)

y2
(18)

Results of these calculations are shown in Figure 2. Inspection of Figure 2 indicates that
the evaporation lifetime increases noticeably only for initial charge-to-mass ratios higher
than ∼0.02, as already mentioned, and tends toward “infinity” as y f → 1. In our scenario,
the initial charge-to-mass ratio acquired by statistical Poisson fluctuations is quite small,
and hence, the lifetime to reach extremality does not differ considerably from the value of
the (total) evaporation lifetime of a Schwarzschild black hole having the same mass.

Figure 2. Ratio between the evaporation lifetime of a Reissner-Nordstrom and that of a Schwarzschild

black hole as a function of the initial charge-to-mass ratio.

The evolution of a charged BH during the evaporation process differs in some distinct
aspects from that describing a Schwarzschild BH. First, it is necessary to recall that the
energy of a Schwarzschild black hole differs from that of an RN black hole. The energy of
the former is simply associated with its mass, that is, E = Mc2, while the energy of the latter
also depends on the electric field potential. In the general relativity theory, the equivalence
between mass and energy means that only combined effects can be measured by distance
observers. In other words, the mass/energy contained in an arbitrary space-time volume is
not well-defined and the energy–momentum tensor of matter plus all non-gravitational
fields no longer satisfies the condition Tk

k;i = 0. Hence, the contribution from the gravita-
tional field (or that of any other field) must be included in the construction of an adequate
energy–momentum quantity that satisfies the divergence relation like the one in a flat
space-time. Despite the many attempts to solve this problem in the past decades [56–58],
there is still no agreed definition, except at infinity in asymptotically flat space-times. In fact,
the energy–momentum of the gravitational field is a pseudo-tensor that explicitly depends
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on the metric, and its first derivative vanishes in a locally flat space-time due to the strong
equivalence principle.

Due to the absence of a local energy density of the gravitational field, it is tempting to
introduce a meaningful quasi-local energy defined inside a given bounded region of the
space-time. In fact, some useful definitions of such a quasi-local energy exist in the litera-
ture as, for instance, the Brown–York energy [59], the Hawking–Hayward energy [60,61],
the Chen–Nester energy [62], and the Misner–Sharp (MS) energy [63]. Since the MS energy
is defined in a spherically symmetric space-time, we will adopt such a formulation to
estimate the energy (or effective mass) of a Reissner–Nordstrom black hole. It should be
mentioned that the relation derived from the MS approach agrees with that resulting from
the gravitational pseudo-tensor defined by Einstein [57]. Since the metric of an RN black
hole is spherically symmetric, it can be represented as

ds2 = habdxadxb + r2dΩ
2
2 (19)

where dΩ
2
2 = sin2 θdθdϕ and the indices a, b correspond, respectively, to the coordinates

t, r. The two-tensor hab can be represented by the matrix

h ≡
(

− f (r) 0
0 1/ f (r)

)

(20)

Under these conditions, the MS energy inside a volume of ab areal radius r is (geometric
units used)

EMS =
r

2

(

1 − hab∂ar∂br
)

(21)

For an RN black hole

f (r) = 1 − 2M

r
+

Q2

r2
(22)

and from these equations, one obtains

EMS = M − Q2

2r+
(23)

where we have now defined the choice of the horizon as the boundary surface. Had we
adopted Einstein’s prescription for the pseudo-tensor representing the gravitational field,
the same result would be obtained [57]. The energy given by Equation (23) is sometimes
defined as “irreducible mass” of the black hole, including the electromagnetic field contri-
bution to the gravitational mass. As a consequence, there is a slight difference between the
amount of mass loss and energy loss during the evaporation process. For instance, if the
initial charge-to-mass ratio is y f = 0.1, the black hole will lose 90% of its mass and about
95% of its original energy, indicating that about 5% of the electromagnetic energy was lost
in the process.

Hence, the black hole “luminosity” was computed here as

L =
dE

dt
=

dE

dM

dM

dt
(24)

From Equation (24) and using Equations (12) and (23), one obtains, after some algebra and
using the same dimensionless variables,

L = − dy

dx
+ ex

[

(y f /y)4

2y2

ε3

(1 + ε)8
+

(y f /y)2

2y2

ε4

(1 + ε)7

]

(25)

Notice that the parameter ε is a function of the initial charge-to-mass ratio and of the mass
and should be explicated as in Equation (15).
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In the early evolutionary phases, for small charge-to-mass ratios, the horizon temper-
ature, the luminosity, and the charge-to-mass parameter ε do not vary significantly, but
near the end, there is a sudden decrease in the parameter ε and a sudden increase in the
horizon temperature and luminosity. Almost the totality of the radiated energy occurs
in a short time interval, producing in reality a “burst” as it can be seen on the left panel
of Figure 3. Increasing the initial charge-to-mass value to y f = 0.60, the behavior of the
considered parameters changes dramatically. The parameter ε decreases at a small rate in
the very first evolutionary phases, then decreases very rapidly and, in the final phase, goes
to zero (extremality) very slowly. Both the temperature and the luminosity increase in the
first moments, pass through a maximum (both maxima are close, but they do not coincide
exactly), and then decrease and go to zero, as shown on the right panel of Figure 3.

Figure 3. Plot of the luminosity (blue curve), charge-to-mass parameter ε (red curve), and horizon

temperature (black curve) as a function of the dimensionless time x = lg(1 + τ). Ordinates are in

arbitrary units in order to permit all curves to be plotted in the same figure. On the left panel, curves

correspond to a model characterized by y f = 0.01, while on the right panel, the model is defined by

y f = 0.60.

The Horizon Temperature Evolution

The evolution of the horizon temperature as a function of the initial charge-to-mass
ratio deserves a more detailed analysis. Extending the thermodynamic concepts of physical
systems to black holes, the heat capacity can be defined as

Cx = (∂E/∂T)x (26)

Notice that some authors [64] define the heat capacity in terms of entropy, that is,
Cx = T(∂S/∂T)x, but our analysis is not modified by adopting this last definition. In the
case of a Schwarzschild black hole, its energy and its horizon temperature depend only
on the mass, i.e., E = M and T = 1/(8πM) (in natural units). Consequently, one obtains
the very well-known result, that is, C = −8πM2, or in other words, the heat capacity is
negative. This means that, during the evaporation process, the energy of the black hole
decreases, but its horizon temperature increases.

The situation is not exactly the same in the case of a RN black hole, since both the
energy and the horizon temperature depend now on the mass and on the charge. If the
charge is kept constant during the evaporation process, Equation (26) can be rewritten as

CQ = [∂E(M, Q)/∂M]Q/[∂T(M, Q)/∂M]Q (27)
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For an RN black hole, the energy is given by Equation (23), while the horizon temperature
is given as

T(M, Q) =
1

4πr+

(

1 − Q2

r2
+

)

(28)

In these equations, we must take into account when computing the derivatives that the
horizon radius is also a function of the mass and charge (r+ = M(1 +

√

1 − (Q/M)2)).
Computing the heat capacity from Equation (27), using Equations (23) and (28), gives after
some algebra

CQ = −πM2

[

y2
f − 2(1 +

√

1 − y2
f )
]2

[

1 − 2y2
f +

√

1 − y2
f

] (29)

and as before, y f is the initial charge-to-mass ratio. It is trivial to show that when y f = 0,
the usual Schwarzschild result is recovered. Moreover, Equation (29) has a discontinuity at
y f =

√
3/2, as first remarked in [64]. Therefore, if the initial charge-to-mass ratio is less

than
√

3/2, the heat capacity is negative and the horizon temperature increases as the evap-
oration proceeds. Once the charge-to-mass ratio becomes slightly higher than the critical
value, the heat capacity becomes positive and the horizon temperature decreases during the
remainder of the evaporation process. Notice that the temperature maximum occurs at the
discontinuity point. The discontinuity present in the heat capacity is interpreted by some
authors as a “phase transition”. However, both the energy and the entropy are continuous
at the critical charge-to-mass value, and in this case, the “phase transition” interpretation
does not seem to be adequate.

Figure 4 illustrates this behavior, showing the horizon temperature evolution for two
initial values of the charge-to-mass ratio y f . The black curve corresponds to y f = 0.40, a

value smaller where the critical value y f =
√

3/2; the temperature grows initially, passes
by a maximum corresponding to the discontinuity point, and then decreases to zero, when
the extremality is attained. The blue curve corresponds to y f = 0.90, an initial charge-to-
mass ratio higher than the critical value. As expected, the horizon temperature is always
decreasing since the heat capacity is positive in this charge-to-mass range.

Figure 4. Evolution of the horizon temperature for two different values of the initial charge-to-mass

ratio: y f = 0.40 (black curve) and y f = 0.90 (blue curve).

As already mentioned, in our scenario, the initial electric charge present in the collaps-
ing matter is quite small, and as we have seen, the black hole loses a substantial fraction
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of its mass before reaching extremality. Moreover, the energy injected by the evaporation
process occurs in a very short timescale, as it can be seen on the left panel of Figure 3. It is
interesting to check if such a sudden energy injection perturbs the energetics of the cosmic
plasma. In Table 1 is given the time interval between the black hole formation at reheating
and extremality (column 3) and the cosmic plasma temperature at that moment (column 4).
Notice that, taking into account our precedent discussion on coordinate/geodesic time, we
have neglected in Table 1 small corrections that are of the order of ϵ1/3.

Table 1. Evaporation timescale and temperature of the cosmic plasma.

Trh (GeV) M0/MP tev (s) T (GeV)

1012 1.48 × 1010 1.59 × 10−10 38.0

1013 1.48 × 108 1.06 × 10−16 4.7 × 104

The computed timescales given in Table 1 indicate that all the energy injection occurs
before nucleosynthesis, which should be expected a priori since the considered PBHs
have small masses. However, for the case in which the adopted reheating temperature is
1012 GeV, the BHs achieve their evolution around or after the electroweak phase transition,
expected to occur at around T ∼ 100 GeV. In this case, the expected variation of the energy
density of the cosmic plasma is

∆ε = 1.036 × 10−25(∆E)

(

MP

M f

)

fBH(
ge f

g0
)

(

T

T0

)3

(30)

where ∆E is the energy lost along the evaporation process, M f is the BH mass at extremality,
fBH is the dark matter fraction in the form of black holes, g0 and T0 are respectively the
present number of degrees of freedom and the temperature of relativistic matter, and ge f

and T are the corresponding values for the considered epoch. For BHs reaching extremality
when the temperature of the universe is about 38 GeV, the resulting energy injection
corresponds to a ratio of about 2 × 10−8 with respect to the background value. Therefore,
these PBHs should not affect the energetic balance of the electroweak phase transition.

These estimates indicate that the evaporation ends quite early and that the nucleosyn-
thesis process should not be affected. However, an investigation in [65] established an
upper limit to the charge density present during the nucleosynthesis era in order to avoid
perturbations in the helium production process. They derived a charge upper limit of
4.1 × 10−41 | e |, where e is the fundamental charge. In our scenario, there is no privileged
positive or negative charge excess among PBHs, but statistical fluctuations are expected.
In this case, the charge excess density that could be produced by PBHs is

nch =
M

| e |

√

2GnBH

VH
(31)

where M is the black hole mass when extremality is reached, VH is the present causal
volume of the universe, and nBH is the present BH density that is given by

nBH =
3H2

0 Ωdm

8πGM
fdm ≃ 1.04 × 10−25

(

MP

M

)

fdm (32)

where fdm is the fraction of dark matter under the form of PBHs. Using the numbers
derived previously, the estimated charge density fluctuation is more than 10 orders of
magnitude smaller than the upper bound estimated by [65]. Similarly, using the isotropy of
the cosmic microwave background [66], they were able to impose additional constraints
on a possible charge asymmetry in the universe. They found that any charge excess per
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baryon must be less than | q+ − q− |< 10−26 | e |. Using a similar analysis, fluctuations on
the charge excess per baryon due to black holes are of the order of

| q+ − q− |≃
√

2G

| e | nb

(

nBH

VH

)1/2

M (33)

where nb is the baryon density. The equation above gives for the case Trh = 1012 GeV a
maximum charge excess of about 2.1 × 10−44 | e |, which is about 22 orders of magnitude
smaller than the bound imposed by [66].

4. Conclusions

In the present investigation, black holes formed just after the inflaton oscillatory phase,
during the reheating, were considered. The masses of these black holes are less than
that defined by the causal horizon, since they were scaled by matter fluctuations whose
amplitudes are equal or above a critical value derived from numerical simulations of the
gravitational collapse. Assuming a Gaussian field for the fluctuations, the initial masses M0

of these primordial black holes peak at 1.48 × 1010 MP and 1.48 × 108 MP, corresponding
to adopted reheating temperatures, respectively, of Trh = 1012 GeV and Trh = 1013 GeV.

Despite the absence of a convincing mechanism leading to charge separation in the
collapsing matter, we assumed that a small charge could be present due to Poisson fluctua-
tions. As a consequence, a black hole with a small charge-to-mass ratio could be formed at
the end of the gravitational collapse. According to our computations, charge-to-mass ratios
Q/

√
GM0 equal to 7.0 × 10−4 and 2.2 × 10−3 result, respectively, if the adopted reheating

temperatures are Trh = 1012 GeV and Trh = 1013 GeV.
Although the initial electric charges in these black holes are rather small, they are able

to generate electric fields at the horizon large enough to produce particle–anti-particle pairs,
which may discharge the black hole completely. However, as we have discussed previously,
some authors claim that the efficiency of the Schwinger mechanism is dramatically weak-
ened when the condition GM0mp/h̄c = M0mp/M2

P << 1 is satisfied. For PBHs having
masses of about 1010 Mp and considering massive charged bosons of masses mp of around
100 GeV, the ratio between the horizon radius and the Compton wavelength of the particle
is about 10−7, largely satisfying the latter condition.

Once formed, these PBHs begin to evaporate, and if the initial charge remains constant,
they attain the extremal condition and remain stable. The final mass essentially depends on
the initial charge-to-mass ratio. Thus, for the parameters mentioned above, the final masses
are, respectively, 1.0 × 107 MP and 3.3 × 105 MP if the adopted reheating temperatures are
Trh = 1012 GeV and Trh = 1013 GeV. These are the expected masses if these black holes are
considered as possible dark matter candidates.

The evolution of the evaporation process was followed numerically for different initial
charge-to-mass ratios y f . As it can be seen in Figure 2, for y f ≤ 0.04, the timescale to reach
extremality does not differ appreciably from the evaporation lifetime of a Schwarzschild
black hole having the same initial mass. However, for higher values of y f , the timescale
grows almost exponentially. For instance, if y f = 0.8, the timescale to extremality is about

2 × 106 times the evaporation lifetime of a Schwarzschild black hole of the same mass.
These black holes reach extremality well before the nucleosynthesis era and do not perturb
the process.

On the one hand, it is well known that the heat capacity of a Schwarzschild black hole
is always negative; that is, the horizon temperature increases along the evaporation process.
On the other hand, this is not the case in the evolution of a Reissner–Nordstrom black hole
since there exists a discontinuity in the heat capacity as the charge-to-mass ratio evolves
during the evaporation process. Before the discontinuity, the heat capacity is negative, but
beyond this critical point, the heat capacity becomes positive. The critical point corresponds
to a charge-to-mass ratio equal to

√
3/2 ≃ 0.86602. Hence, if y f is initially smaller than the

critical charge-to-mass ratio, the horizon temperature increases and then decreases once the
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critical point is crossed. Notice that there is no discontinuity in the evolution of the horizon
temperature (or in the entropy) at the critical point, which corresponds to the maximum
attained horizon temperature. Clearly, if y f is larger than the critical value, the horizon
temperature always decreases along the evaporation process, as illustrated in Figure 4.

In conclusion, charged primordial black holes, after losing a substantial mass fraction
by Hawking evaporation, attain extremality, being potential dark matter candidates. Never-
theless, their stability against charge losses depends on future research on the effectiveness
of the Schwinger pair production mechanism for very light black holes.
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