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Abstract

A method for the reliable automatic synchronization of the drift-time
spectra of ATLAS monitored drift-tubes and for the determination of the
maximum drift-time is presented. The Fermi function for the measurement
of the maximum drift time has been adapted to the particular shape of the
drift-time spectrum characteristic for Ar:CO2(93:7) at 3 bar which is used
in the ATLAS muon chambers.

1 Introduction

The monitored drift tubes used in the ATLAS muon spectrometer measure the
time interval 7; between the passage of a muon through the tube and the in-
stance of time when the electrons which are the ionization product of muon-atom
collisions in the gas arrive at the anode wire of the tube. This drift time 7, is a
strictly monotone function of the distance r of the muon track from the wire. In
practice, 7, is not measured directly, but the time interval

Tm = tu + 74+ Tu,electronics — ttrigga (1)

where ?,, is the time when the muon hits the tube, ;,;4, the time when the trigger
gives the start pulse of the TDC connected to the tube, and 7, ciectronics 1S the
propagation time of the MDT signal. The term ¢, 417, cicctronics — ttrigg 15 the same
for all events. It can, however, slightly differ from tube to tube. It defines the
position of the drift-time spectrum of the tube with respect to the event time.
If the temperature, the pressure, and the gas mixture are the same in all drift
tubes of a muon chamber, they have the same r-t relation after their drift time



spectra have been synchronized. In the present article, we describe an algorithm
which allows a reliable automatic synchronization of the spectra. We will use the
leading edge of the drift time spectrum to match the spectra. Our algorithm also
enables us to measure the length of the drift time spectra. The length of the
spectrum is a very useful quantity, as differences in the lengths from tube to tube
indicate a different operational behavior of tubes.

2 Phenomenological Parameterization of the
Rising and Falling Edge of the
Drift-Time Spectrum

Figure 1 shows the typical drift-time spectrum of a uniformly illuminated MDT
of 3 em diameter filled with Ar:CO9(93:7) at 3 bar absolute pressure and 3080 V'
operating voltage. The data presented in figure 1 were obtained with the MPI
BOS prototype chamber in the CERN H8 beam in September 1999. At zero drift
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Figure 1: Drift-time spectrum of a drift tube filled with Ar:CO2(93:7) at 3 bar absolute
pressure.

time we see a sharp rise and, at 700 ns drift time, a fall-off, which is less steep
than the rise because of the inefficiency of the tube at its wall.

We will use the step at the beginning of the drift time spectrum to synchronize
the drift time spectra in a chamber. For a tube with perfect resolution the rising
edge of the spectrum would have infinite slope and the initial part of the spectrum
would be a step function. The resolution of the drift tube makes this rise finite.
This smeared out step can quite well be described by a Fermi function F,

A
F(t) = —; (2)
l1+e ™



herein A, is the maximum value F achieves for ¢t — oo, F(tg) = 42, and the
"temperature” Ty corresponds to the slope of the edge. The slope at t = ¢ is
A
Ty

In practice, due to accidental hits, one can find entries for ¢ < ¢, which the

Fermi function does not describe. Therefore, on the left hand side of ¢, it looks
as if the well-known drift-time spectrum sits on a plateau of height py. In this
region, the Fermi function F' has to be replaced by the modified function

A
1+e T

In order to synchronize the drift-time spectra of the tubes in a muon chamber
one has to fit this function G' to the leading of the spectrum of each individual
tube and shift it by —t.

On first sight, one would expect the function G to fit the falling edge of the
drift-time spectrum as well with different values for py, Ag, and T5. In case of
Ar:CO,, however, the drift-time distribution is not constant on the left hand
side of the falling edge, but approximately linearly decreasing. Hence, a more
appropriate parameterization of the falling edge is

amt + A,
H(t) :=pm+ ————. (4)

t—tm

1+ e Tm

This funcrtion approximates for ¢ < t,, a line with the intersect A,, and the slope
Q. Figure 2 shows a characteristic fit of G and H to the drift-time spectrum.

3 Algorithm

As the functions G and H only describe the rising and the falling edge of the
spectrum, one cannot fit these functions to the complete spectrum. In principal
there are three methods which circumvent this problem.

The first method is to describe the area in between the edges by a polynomial
as described in [1]. The major drawback of this method is that it introduces
extra parameters, which are of no interest, into the fit. As these parameters are
correlated to the values of ¢y, and ¢, it can affect these values.

In the second approach, one selects the area of the spectrum where G' and H
describe its shape correctly. However, our experience is that even after a proper
choice of these areas the fit can fail.

The method which is described here is to select an area for each of the pa-
rameters pg, Ao, Pm, @m, and A,,, and calculate them analytically. The selection
is performed by an automatic pattern recognition. This pattern recognition also
returns the areas for the fits. In the fit the parameters mentioned above are fixed
to the calculated values. This guarantees a fast and reliable convergence of the
fit.
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Figure 2: Typical fits of the leading and falling edge of the drift-time spectrum

3.1 Determination of the Fit Area and Calculation of the
fixed Parameters

The areas which have to be selected are shown in figure 3. The fitted functions
are approximately flat in the py, Ay, and p,, region and the function values are
approximately the corresponding parameters. Therefore the mean of the bin
contents in the corresponding regions is the best value for the parameters. In
the region used for the determination of the parameters A,, and a,, the fitted
function approximates a line with these two parameters as its intersection and
slope. To determine these parameters one puts a line to the spectrum in this
region.
The fits are performed inside the areas marked with “¢y fit” and “t,,,, fit”.

3.1.1 The Variable Bin Width Histogram (VBH)

The pattern recognition is based on the concept of bins with equal content [3].
We will refer to that by the term “variable bin width histogram(VBH)”. This
histogram has a fixed number of entries (bin content) in each histogram bin. The
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Figure 3: Relevant areas of the spectrum

density of the data is represented by the width of the bin. Wide bins correspond
to a low density and small bins to a high density.

It is known, that in a conventional histogram the binning should be chosen
such that each bin has a certain minimum number of entries per histogram bin.
A binning that is to fine, leads to a high statistical fluctuation for the number of
entries in each bin, and a binning that is too coarse results in a bad resolution.
The VBH performs the task of finding the ideal binwidth automatically, and for
each reagion of the histogram seperately.

As the TDC-data comes already binned due to the digitization, and as one
wants a unique assignment of a hit to a VBH-bin, the bin content has to be set
higher than the biggest number of entries in a TDC-bin. The pattern recognition
relies on the bin content being two times the content of the highest TDC-bin.

As the background is hopefully low, the first bin tends to cover not only the
complete py area, but also part of the rising edge of the spectrum. This would
prevent the pattern recognition from finding the p, area. The same goes for the
pm area. Therefore we impose a maximum bin width. This setting is one of
the values which has to be tuned to the properties of the detector gas, the tube



diameter, and the TDC-digitization. In our case we use a maximum bin width
of 20ns for the ty fit and 40 ns for the t,,,, fit.

For our one-dimensional problem the creation of this histogram is quite simple.
The TDC entries are sorted by the time value. The start of the lowest VBH bin
is the lowest TDC value. One walks through the sorted hits. The algorithm for
creating the VBH is shown in figure 4.

In figure 5 the areas which are important for the pattern recognition are shown
magnified. In addition to the spectrum in TDC-binning the bin width of the VBH
histogram is shown.

3.1.2 Selection of the Areas

In the upper left magnification in figure 5 one can see that the start of the slope
lies in the last VBH bin which has the maximum bin width. The left border of
this bin is the right border of the py area.

In the plateau region, the bin width of the VBH fluctuates between two values.
This is due to the fact that the TDC-data are binned. As we have set the bin
content to two times the highest TDC bin, the bin width is either two times or
three times the TDC bin width. The principle of the Ay area selection is to select
the smallest region which contains all bins which have the smallest bin width.
This can lead to problems if the spectrum has spikes. A small modification of
this concept makes our algorithm more robust. We sort the VBH bins by size,
starting with the smallest. We memorize the width of the fifth of these sorted
VBH bin. The Aj area is the smallest area which contains all VBH bins of this
size. If the spectrum has no unusual spikes, the memorized width is the smallest
bin width, otherwise the spike leads to smaller bins.

In the lower magnification in figure 5 one can see that, after the falling edge,
all VBH bins have the maximum bin width. We search for the first VBH-bin
which comes after the rising slope of the spectrum, which has the maximum bin
width and whose right neighbour also has the maximum bin width.

The right border of this bin is the start of the p,, area. As the background
in the left of the spectrum is flat, the p,, region extends to the end of the TDC
range.

For the a,,-p,area we need the part of the spectrum which decreases approx-
imately linearly. As this area is quite large, the selection can be made quite
coarse. The right border is simply set to a fixed distance from the left boarder
of the p,, area (usually 40 ns). Its width is also set to a fixed length (400 ns is
a good value for Ar:C0,).

3.1.3 Calculation of the Parameters

The parameters pgy, A,, and p,,, are the mean of the TDC-bin-content over the cor-
responding areas. The parameters o, and A,, are the result of a linear regression
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Figure 4: Filling the VBH
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Figure 5: The important areas of the spectrum and the binning of the VBH



over the selected region.

3.2 Fitting

The area for the ¢, fit consists of the py area, the Ay area, and the intermediate
region. The combination of the «,,-A,, area, the p,, area and the region in
between these is the t,,,, fit area.

As a start value for ¢, and t,, the centers of the regions between the po/ppm
and the Ag/au,, Ap, regions are used. The analytically calculated parameters are
fixed. The fit is performed with a fitting package like MINUIT.

For the fit one does not use the VBH histogram, but the original TDC data.
This has two reasons. First the maximum bin width does not represent the true
density of hits in regions with a low density and second the histogram in TDC
binning contains the maximum amount of information.

4 Test of the Pattern Recognition and Fitting
Procedure

We tested the fit in about 250 cases from Monte Carlo and 50 cases from the
MPI BOS prototype chamber acquired at the 1999 test beam in H8. These fits
never failed unless the presence of the spectrum could not be seen by eye.

For a more quantitative study we created a big Monte-Carlo sample with
2080000 hits in one tube. We split these hits in two ways. First we made 52 sub-
samples with 40000 hits each and second we made 13 subsamples each containing
160000 hits. We let the algorithm run over all these subsamples.

The results for the quantity ¢, and the quantity ¢y — 27 are shown in figure 6.
Here one can also see that the fit never failed as all results were in a +30 region
around the mean of the distribution.

Looking at the RMS of the results one notices that, for 40000 events the
fluctuation of ¢y — 27} is a little bit and for 160000 events per fit considerably
smaller than ty. If one looks at the behavior of these quantities for an increasing
statistics one gets the following:

Tto,40000events _ 044 _ 1 4
- 032 %
Ot,160000events
Oty—2Tp,40000events _  0.42 21 (5)
— 020 <

Oto—2Tp,160000events

So ty — 2Ty follows the expected \/—IN statistical scaling rule, but not .

The reason for this seems to be an uncertainty in the determination of Aj.
As the corresponding region is not completely flat, and the spectrum drops at
both sides of the region, the value strongly depends on the selection of the region.
This selection has a low precision.
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Figure 7: Correlations in the Fermi function

In figure 7 one sees how Ay influences ¢,. This figure shows the function G
with two different sets of parameters. They both approximate the same rising
edge, but Ay is shifted. As t; is the value, where

1
G(t = t[)) — Po = 5140, (6)

10



to will be shifted. But the tangent of G' at t = ¢y hardly changes. The point
where this line crosses the background level is at t = ty — 27,. Therefore g is
strongly correlated to Ay, while ty — 27} is not. As Ay is an unstable parameter,
to — 2T} is more stable than ¢, for high statistics.

As one has less hits with a high drift time, the values for ¢,, have a higher
RMS. The value corresponding to tqg — 27y in the t,,,, fit is t,, + 27,,. As the
slope at the end of the spectrum is not well defined due to the low statistic it is
not useful to use this value for the synchronisation of drift-time spectra.

5 Summary

The use of a pattern recognition using variable bin width histograms not only
makes an automatic selection of the fit regions, but enables us to calculate some
of the fit parameters analytically. This results in a stable and fully automatic
method of synchronizing the spectra and measuring the maximum drift time.

The parameters of the pattern recognition which have to be set, namely the
maximum bin width and the widths of some areas, may depend on the TDC
properties and the background noise, but are the same for all tubes. So these
parameters have to be set only once for a given setup.

For high statistics (more than 40000 hits) the value ¢, — 2T} is more stable
than ¢y and therefore more useful for the synchronisation of the spectra.
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