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1 Introduction

1/16-BPS states have recently played a crucial role in analyzing the duality between Type-IIB
string theory in AdS5 × S5 and 4D N = 4 super-Yang Mills [1–27]. Such states can be
accurately counted by computing the superconformal index, a grand canonical partition
function with multiple chemical potentials for the black hole angular momenta and R-charges
turned on. On the boundary side the superconformal index can be obtained exactly since its
independent of the coupling [28, 29]. Expanding the exact answer in the large N limit, most
contributions to the superconformal index were matched with a corresponding Euclidean
gravity saddles, with the dominant contributions given by well-known supersymmetric black
hole solutions [25]. The computation of the superconformal index, on both the boundary
and the bulk side, has provided a detailed check of holography and a detailed counting
of black hole micro-states.
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A lot less is known about black hole states that are not protected by supersymmetry. In
particular, an important issue in classical black hole thermodynamics is the breakdown of the
statistical description of black holes [30, 31], occurring at low temperatures whose scale is
power-law suppressed in the number of degrees of freedom describing the black hole. When
quantum effects are included, two resolutions to this thermodynamic breakdown were found.
First, for non-supersymmetric black holes in flatspace or AdS, a recent computation [32]
which accounted for quantum effects occurring in the near-horizon region of near-extremal
black holes showed an effective continuum of states with a strongly modified spectrum at
the scale identified in [30]. In the second resolution, due to the addition of fermionic degrees
of freedom in the computation of quantum effects, the spectrum of nearly-supersymmetric
black holes in supergravity in 4D flatspace or (4, 4) supergravity in AdS3 was shown to be
drastically different [33]: there is an exact degeneracy of supersymmetric black holes at
extremality followed by a gap precisely at the energy scale at which a failure of black hole
thermodynamics is predicted. Thus, quantum effects in the near-horizon region proved to
be important in both cases. However, exact degeneracies at extremality and gaps between
extremal and near-extremal states which were predicted in stringy constructions [34–36]
were only found in supersymmetric theories.

In the case of supersymmetric black holes in AdS5, we want to ask whether there is a gap
(with an appropriate power-law suppression in N) in the spectrum of masses between the
1/16-BPS black holes and the lightest unprotected black hole state (which we call near-BPS)
in a sector with the same angular momenta and R-charge quantum numbers. These states
preserve less supersymmetry than their flatspace counterparts, and a rigorous understanding
of whether a gap is truly present has, up to the point of this paper, not been achieved.1
Even when it comes to the 1/16-BPS states themselves, not all of their properties are known.
Firstly, the superconformal index cannot distinguish whether such states are purely bosonic
or a combination of bosonic and fermionic states, which would yield cancellations in the
index. In other words, it is unclear whether the entropy associated to the index precisely
matches the actual entropy of BPS black holes. Secondly, from the gravitational perspective,
the degeneracy of the extremal 1/16-BPS states has not been rigorously understood due to
the presence of an infinite number of zero modes observed when computing the one-loop
determinant for black holes at extremality.2

In this paper, we address all these questions by computing the low-temperature expansion
of the partition function of near-BPS black holes. (By near-BPS we mean the regime where
the temperature is smaller than the scale set by the size of the black hole, so that the AdS2
near-horizon region is present.) At zero temperature, the leading contribution to the partition
function comes from 1/16 BPS black holes that exhibit an SU(1, 1|1) isometry in their near-
horizon region [37]. As the temperature is turned on, the SU(1, 1|1) isometry is broken and we
explain how the gravitational modes associated to this breaking are effectively captured by the

1In the supersymmetric flatspace and (4, 4) AdS3 cases the presence of a gap in stringy examples was
explained in [35, 36]. We could not find a string theory argument about the existence of the gap in the
literature.

2As we will explain shortly, these zero-modes get lifted when studying the partition function at small but
non-zero temperature. This regularizes the one-loop determinant in the finite temperature partition function
and this regularization will be responsible for the observed degeneracy among supersymmetric black holes.
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N = 2 super-Schwarzian theory [33, 38–42].3 At small temperatures, the super-Schwarzian
theory and the associated modes in supergravity become strongly coupled. Luckily the
partition function of the super-Schwarzian can be found exactly and this consequently allows
us to reliably compute the low-temperature corrections to the free energy of such black holes,
appearing at linear order in T (from classically evaluating the super-Schwarzian action and
the black hole action) and logarithmic order in T (from evaluating quantum corrections in
the super-Schwarzian or, equivalently, specific set of modes of the graviton, gravitino and
gauge fields in the black hole background). This calculation is valid up to temperatures
that are much smaller than the one identified in [30].

Studying these quantum corrections to the black hole spectrum leads to the main results
of our paper. We find that there is indeed a gap between the 1/16-BPS state and the
lightest near-BPS black hole states precisely at the energy scale identified in [30] (once
again, in contrast to the non-supersymmetric case of black holes in AdS5). Above this
gap there is a continuum of states whose density we can predict (a precise understanding
of the discreteness of the spectrum in this sector would require a better non-perturbative
understanding of type IIB string theory). Additionally, we find that the 1/16 BPS black
hole states all have the same charges, to leading order in N , confirming that there is no
cancellation in the superconformal index. This improves a previous argument for black holes
with an emergent SU(1, 1|1) symmetry described in [44], that did not take into account the
physics from the Schwarzian mode. This is important since there are also theories with an
emergent SU(1, 1|1) symmetry and vanishing index, and we show this does not happen for
the 1/16-BPS states of N = 4 Yang Mills.

Before diving into a more quantitative description of our results, it is useful to first
describe some of the properties of the black hole solutions whose spectrum we determine
in this paper. When viewed from the 10D perspective, such black hole solutions have five
angular momenta: two angular momenta parametrizing rotations in AdS5 as well as three
angular momenta parametrizing rotations on the S5. On the boundary side, the former are
the angular momenta of the dual state within the conformal group, which we will denote by
J1,2 while the latter are three Cartans of the SO(6) R-symmetry group, which for simplicity
we will set to all be equal and denote by R. The mass of the black hole can be fixed in terms
of the temperature in addition to these five charges. For extremal BPS black holes, their mass
can be determined in terms of four (of the five) angular momenta since there is an additional
non-linear relation between these charges necessary in order for Killing spinor solutions to
exist in the geometry while at zero-temperature. For instance, the BPS value of R as well as
the mass of the black hole, are uniquely determined at the BPS value by J1,2.

With the quantum numbers of such black holes in mind, our computation of the partition
function predicts the density of states of the near-BPS black holes as a function of the scaling

3The relation between these black holes and the N = 2 Schwarzian theory was explored at the classical
level in [42, 43].

– 3 –



J
H
E
P
0
7
(
2
0
2
5
)
2
2
0

dimension ∆ of the corresponding states in N = 4 Yang Mills. The answer is given by

ρR,J1,J2(∆) ∼ eS
∗
(
δR,R∗δ (∆−∆BPS)︸ ︷︷ ︸

Degenerate
1/16−BPS black holes

+
sinh

(
π
2

√
1

∆gap
(∆−∆extremal)

)
2π(∆−∆BPS)︸ ︷︷ ︸

Continuum density of states
above the gap

Θ(∆−∆extremal)︸ ︷︷ ︸
Gap resulting

from quantum corrections

+ (R→ R+ 1)︸ ︷︷ ︸
Degeneracy within

supermultiplet

)
.

(1.1)

The first line represents the degenerate contribution of extremal states when the R-charge is
fixed to its BPS value R∗ by the angular momenta J1,2. The degeneracy is precisely found
to be eS∗ , where S∗ is the Bekenstein-Hawking entropy of the extremal supersymmetric
black hole.4 The second line represents the contribution of the continuum of states (with
non-perturbative gaps expected to be exponentially small in N) starting at the scaling
dimension ∆extremal which then represents the extremal black hole state. This gives a gap
above the BPS scaling dimension ∆BPS (defined for R = R⋆), that scales as

∆extremal(R)−∆BPS = 1
2(R−R⋆) + ∆gap (2R− 2R∗ − 1)2 ,

∆gap = ∆̃(J1, J2)
N2 +O

( 1
N3

)
, (1.2)

where N is related to the 5D Newton constant by N2 =
πℓ3AdS5

2G5
, and where we rescale the

two angular momenta J1,2 = N2J1,2,5 and where ∆̃(J1,J2) is a function that we determine
exactly. Since the states that are part of the continuum are unprotected, they come in
super-multiplets with charges R and R+ 1. Now we can see the meaning of the gap scale
∆gap. For any charge R ̸= R⋆, the spectrum starts at ∆extremal(R) with no gap. But for
R = R⋆, we have the BPS states at scaling dimension ∆BPS and the first excited state above
them in this charge sector start at ∆BPS + ∆gap (the continuum sector at R = R⋆ comes
from supermultiplets with highest R-charge R⋆ and R⋆ + 1). This is a large-N analysis and
therefore we cannot rule out the possibility of an order O(1) number of states between ∆BPS
and ∆BPS +∆gap. We conjecture that ∆gap is the true gap of the theory at large N .

When the chemical potential of the R-symmetry is fixed appropriately, the grand canonical
partition function can also be used to compute the superconformal index of such black holes
and the only contribution comes from the first line of (1.1). This result can be obtained by
directly computing the corresponding supersymmetric index in the N = 2 super-Schwarzian
theory. This matches the result from the leading gravity saddle found in [8, 25] and,
additionally, shows that the one-loop determinant from the gravitational theory matches the
computation of the index in the boundary theory. An interesting feature that comes out of

4This degeneracy is up to corrections logarithmic in S∗ or, equivalently, up to logarithmic area corrections
in the free energy.

5Since J1,2 do not need to scale with any parameter in the theory for the black holes discussed in this
paper.
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our analysis is that the IR R-charge of the N = 2 super-Schwarzian theory is shifted by a
known value R∗ compared to the UV R-charge of N = 4 Yang Mills.

We would like to emphasize that since we work in a mostly canonical ensemble where
almost all charges are fixed, we avoid the subtleties encountered in the grand canonical
ensemble regarding which sheet the superconformal index is computed [24]. In our formalism,
these issues would appear from attempting to sum over charges to construct the grand
canonical answer.

Additionally, we compute the leading (in α′) non-zero stringy correction to the black
hole spectrum. While as expected the scaling dimension and charges of BPS states remains
unaffected, ∆gap and the scaling dimension of the extremal state ∆extremal(R) are affected,
and are pushed towards lower energies. Nevertheless, because the N = 2 super-Schwarzian
theory remains a good effective description even in the presence of stringy corrections, the
overall dependence of the density of states on ∆gap and ∆extremal(R) remains as in (1.1).

A technical difficulty in our computation comes from identifying the correct parameters
of the N = 2 super-Schwarzian, that capture the correct breaking of the SU(1, 1|1) isometry
as the temperature of the near-1/16 BPS black holes is increased. In particular, there are
multiple version of the N = 2 super-Schwarzian since the R-symmetry group associated to the
breaking of the near-horizon isometry is U(1). One can change the radius of the associated
U(1) mode in the super-Schwarzian by choosing a different value for the fundamental charge
in the theory, and, additionally, one can add a topological θ-angle term associated to this
U(1) mode in the super-Schwarzian action. Depending on this fundamental charge and on the
value of θ, the N = 2 super-Schwarzian density of states can have widely different behaviors:6
for instance, in some cases there is gap and the BPS states are purely bosonic, while in others
the theory has no such gap and has degenerate bosonic and fermionic BPS states (leading
to possible cancellations in the superconformal index). For black hole in AdS5, we explain
how each parameter is fixed from the perspective of the N = 4 SYM boundary theory and of
the bulk supergravity theory. In particular, we find that the fundamental R-charge in the
super-Schwarzian is fixed to be 1 from the quantization of the SO(6) R-symmetry charges
and two angular momenta along S3 and find that θ = 0 by carefully evaluating the 10D
supergravity action. Fixing these two parameters determines the value of the gap and density
of states that we described above. Moreover, we also determine the Schwarzian energy and
R-charge in the IR, in terms of the N = 4 SYM scaling dimensions ∆ and R-charge R.

One might however wonder whether there are near-BPS black holes in AdS/CFT whose
density of states is also controlled by the N = 2 super-Schwarzian but with different values
for the fundamental charge and θ-angle. For instance, one might ponder whether there are
situations when there is no thermodynamic mass gap above the BPS state. We construct
such near-BPS black holes in AdS3 for N = (2, 2) and N = (2, 0) supergravity. We explain
how, in such a case, the density of states predicted by the super-Schwarzian can also be
obtained from modular invariance in the boundary 2D N = (2, 2) superconformal field theory
by making mild assumptions about the boundary theory (i.e. that it has large central charge
and a non-vanishing twist gap).7

6This is closely related to how the spectrum of a particle moving on a circle is also controlled by the radius
of the circle and by the θ-angle term that one can also add to the action [45].

7As noticed in [40, 46] in theories with other amounts of supersymmetry, this connection originates from
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The rest of this paper, is organized as follows. In section 2 we first describe the connection
between the Schwarzian theory and the spectrum of near-extremal black holes more broadly.
We then describe the various features of the N = 2 super-Schwarzian theories which will be
needed to extract the spectrum of near-BPS black holes. In section 3, we give a detailed
description of the BPS and near-BPS black hole solutions in AdS5. We work in a mixed
ensemble with some charges fixed, and argue that in this ensemble the index is always in a
deconfined phase. We follow this by an analysis focused on the steps necessary to determine
the coupling, fundamental charge and θ-angle in the corresponding N = 2 super-Schwarzian
theory by analyzing the low-temperature expansion of the action and the super-algebra of the
near-horizon isometry present for BPS black holes. Putting these results together, we give a
detailed discussion of the spectrum of near-BPS black holes. We conclude with a discussion
about the leading stringy corrections to the spectrum of such black holes. We discuss further
appearance of the N = 2 super-Schwarzian within holography in section 4 for black holes in
(2, 2) supergravity in AdS3, dual to heavy states in 2D (2, 2) SCFTs. Finally, in section 5
we discuss possible non-perturbative corrections to the spectrum of N = 4 SYM and 2D
(2, 2) SCFTs and conjecture that the gap persists in the spectrum even when including states
that exhibit string excitations in the black hole background.

2 The N = 2 super-Schwarzian

2.1 From the Schwarzian to near-extremal black holes

The connection between the dynamics of near-extremal black holes and the one-dimensional
Schwarzian theory has been extensively studied [32, 33, 47–61]. Through this connection, a
better understanding of the spectrum of near-extremal black holes has been achieved and
the previously open question about the existence of a thermodynamic mass gap has been
resolved for a variety of near-extremal black holes [32, 33]. Nevertheless, there are still
near-extremal black holes whose connection to the Schwarzian has not yet been completely
understood and consequently, their spectrum near-extremality remains unknown. One such
example, are the near-BPS black holes in AdS5 whose connection to the Schwarzian will be
extensively discussed in section 3. It is useful to first review the general mechanism through
which the spectrum of near-extremal black holes is related to that of the Schwarzian with
various amounts of supersymmetry.

The clear-cut way to understand the relation between the two spectra is by performing a
dimensional reduction of the full gravitational theory in the near-horizon region to AdS2 and
isolate the low-energy modes whose one-loop determinant solely is temperature T dependent
at leading order. In the limit in which the inverse-temperature β is much larger than the
horizon size of the black hole at extremality r0 (β ≫ r0) and under the assumption that the
extremal entropy S0 is the largest dimensionless parameter in the problem, the theory that
results from the dimensional reduction is a two-dimensional theory of gravity coupled to a
dilaton field (which parametrizes the area of the sphere on which the reduction is performed).
In addition, the two-dimensional theory includes gauge fields that result either from the

the equality between the partition function of the (super)Schwarzian and the semiclassical limit (large central
charge) of the vacuum (super)Virasoro character.
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s-wave reduction of gauge fields (whose gauge group we will denote by G) in the original
theory or as Kaluza-Klein modes that capture the isometry group of the space on which the
dimensional reduction was performed (whose gauge group we will denote by Giso). In theories
of supergravity which include fermions in higher dimensions, an analogous procedure leads to
a coupling between a dilatino field and the gravitino in the 2D theory. Expanding this action
in S0, one finds that the theory can be approximated by JT gravity plus a BF theory whose
gauge group is GBF = G×Giso. For higher dimensional theories of supergravity, the dilaton
and metric as well as the gauge field entering in the BF theory all couple to the gravitino
and dilatino. Fluctuations in the region outside of the near-horizon region can be captured
by a boundary term for the JT gravity action and for the BF action computed along the
curve that separates the near-horizon region from the asymptotic region.

For concreteness, we will briefly review the example of large near-extremal Reissner-
Nordstrom black holes in (bosonic) Einstein-Maxwell theory in AdS5 (i.e. whose horizon size
at extremality r0 is much larger than the AdS5 size r0 ≫ ℓAdS5 and whose inverse-temperature
β ≫ r0). The spectrum of such black holes was extensively studied in [32]. Following the
steps outlined above, the canonical partition function of such black holes can be expressed as

Z(β, Q, J1,2 = 0) = TrQ e−βH

= S0(Q)# eS0(Q)−βE0(Q)
∫
DϕDgµνe

−
∫

AdS2
ϕ(R+ΛAdS2 )−ϕb(Q)

ϵ

∫
∂AdS2

(K−1)
[
1 +O (1/S0)

]
= S0(Q)# eS0(Q)−βE0(Q)

∫
Df(τ)

SL(2,R) e
ϕb(Q)

∫ β

0 dτSch(f,τ)
[
1 +O (1/S0)

]

= S0(Q)#︸ ︷︷ ︸
Sen’s logarithmic

corrections

(
1

MSL(2)β

)3/2

︸ ︷︷ ︸
Schwarzian

all-loop correction

exp
(
S0(Q)− βM0(Q) + 2π2

MSL(2)β

)
︸ ︷︷ ︸

Extremal entropy,
extremal energy,

and the Schwarzian ∼1/β correction
to the action

[
1 +O

( 1
S0

)]
,

(2.1)

where the extremal mass M0(Q), the “extremal entropy” S0(Q) and the Schwarzian coupling
denoted by ϕb(Q) (or by the more physically meaningful notation M−1

SL(2) which we shall
explain shortly) are given by8

M0(Q) ∼ G
1/3
5 (|Q|)4/3

ℓ2AdS5

, S0(Q) ∼ |Q| , ϕb(Q) =M−1
SL(2) ∼

ℓ2AdS5
|Q|

2
3

G
1
3
5

, (2.2)

where ℓAdS5 is the radius of AdS5 and G5 is the Newton constant. To obtain the first line
of (2.1), we peform a dimensional reduction on S3 in the AdS2 × S3 near-horizon region and
then expand the resulting action at large S0. For large black holes, the radius of AdS2 is the
same as the radius of AdS5, which fixes ΛAdS2 = 6/(ℓ2AdS5

). The leading order result yields the
action of JT gravity, whose degrees of freedom are the 2D metric of the near-horizon region

8Here, Q can be viewed as the charge associated to the supergravity gauge field A, whose conventions we
set in (3.1) and thereafter. For reader convenience, in this section we leave the radius of AdS5 to be arbitrary
and set to ℓAdS5 .
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and the dilaton ϕ which parametrizes the size of S3. Above, the BF terms associated to the
gauge group GBF = U(1)× SO(4) do not give a non-trivial contribution since we are fixing
both the U(1) and SO(4) fluxes when fixing the charge of the black hole to Q and its angular
momenta J1 = J2 = 0 (this will be contrasted with the case of the grand-canonical partition
function below) [62]. There is additionally a Gibbons-Hawking-York (GHY) boundary term
at the edge of the near-horizon region where the dilaton (fixed to ϕ|∂AdS2 = ϕb/ϵ) as well as
the induced boundary metric are fixed (to have a proper boundary length β/ϵ).

In addition to these modes there are also KK modes obtained from the dimensional
reduction on S3. The one-loop determinant of most KK modes corresponding to massless
fields in the original theory yield logarithmic corrections to the extremal entropy, given by
S#

0 which can in principle be computed using the methods in [32, 63–66].9 Here, the exact
value of # depends on the massless field content in the original gravitational theory and is
unimportant in the analysis of this paper since it does not affect the energy dependence of the
density of states but only its overall scaling. The remaining modes which are not taken into
account are precisely the JT gravity modes which we have separated in the first line of (2.1).
At zero temperature, these are the zero-modes that are ubiquitous when computing one-loop
determinants in black hole backgrounds and are given by the set of large diffeomorphisms
which do not vanish close to the boundary of the near-horizon region.10 However, when
working at finite temperature, these zero-modes are lifted and become the boundary modes of
the near-horizon region weighed by the Schwarzian action. This can be seen when going from
the first to the second line of (2.1) by integrating out the dilaton and rewriting the GHY
term in terms of a field f(τ) which parametrizes the set of possible large diffeomorphisms.
Equivalently, f(τ) parametrizes the shape of the boundary of the near-horizon region. The
Schwarzian theory can be seen to be weekly-coupled when T ≫MSL(2) and becomes strongly
coupled when T ∼ MSL(2). Finally, to go from the second to the third line and compute
the partition function for any coupling, one can use the fact that the path integral of the
Schwarzian theory is exactly solvable and is in fact one-loop exact. This one-loop determinant
can be obtained by accounting for the three remaining bosonic zero-modes that survive even
at finite temperature and are due to the near-horizon SL(2,R) isometry.

The low-temperature expansion of the action is sufficient to obtain the full partition
function in (2.1). This is because the Schwarzian theory can be viewed as the effective theory
for the breaking of the near-horizon SL(2,R) isometry, as the temperature is turned-on. This
motivates denoting the Schwarzian coupling by MSL(2).

The result in (2.1) implies that the density of states obtained by Laplace transform-
ing (2.1),

ρ(E,Q) = S0(Q)# eS0(Q) sinh
(
2π
√

E

MSL(2)

)
Θ(E −M0) . (2.3)

Before we proceed, it is worth pondering the meaning of the continuum of states in (2.3).
The partition function (2.1) is obtained in a 1/S0 expansion and we have only kept the

9For fields that are not massless in the original gravitational theory the one-loop determinant yields an
answer that, to leading order, is independent of the extremal entropy S0.

10See for instance [65] for a treatment of these modes.
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leading order term. Consequently, the density of states (2.3) also receives perturbative and
non-perturbative corrections in S0. Such corrections, which we do not have control over,
could in principle lead to a discretum of states as one would expect from the perspective of
the boundary dual CFT. Nevertheless, (2.3) is still useful: when integrating the density of
states within some energy interval we should obtain the number of black hole microstates
within that energy interval, once again, up to 1/S0 corrections.

For the purposes of this paper, it is also useful to study the partition function in the
grand-canonical ensemble, imposing that the holonomy of the U(1) gauge field is fixed to
e
∮
A = e−βµ at the boundary of the spacetime, along the thermal circle. The partition

function can be instructively rewritten as,

Z(β, µ) = Tr e−βH−βµQ

= S#
0(

MSL(2)β
)3/2 e

S0−βµQ∗−βM0+ 2π2
MSL(2)β

∑
q∈Z

e2πξq−βMU(1)
q2
4

= S#
0 e

S0−βµQ∗−βM0+ 2π2
MSL(2)β

∑
n∈Z

1
M

3/2
SL(2)M

1/2
U(1)β

2
e

4π2(ξ+in)2
MU(1)β , (2.4)

The grand-canonical partition function can be obtained from (2.1) by summing over fixed
charges. This sum is dominated by the charge Q∗, which in terms of the chemical potential µ
is given by the solution of µ = ∂QM0(Q)|Q=Q∗ .11 Above, q can be viewed as the quadratic
fluctuation around the charge Q∗. Similarly, ξ/β can be viewed as the effective U(1) chemical
potential in the near-horizon region, while MU(1) can be viewed as the coupling of the U(1)
mode associated to the s-wave gauge field in the near-horizon region. For concreteness, these
are given by the thermodynamic relations

2πξ =
(
∂S0
∂Q

)
T=0

, MU(1) =
2

(∂Q/∂µ)T=0
. (2.5)

After Poisson resummation in q, one can obtain the sum over n in (2.4). The sum over
n represents a sum over classical saddles for the solutions of the gauge field. The partition
function need only depend on the holonomy associated to the chemical potential ξ imposed
in the near-horizon region. Thus, the partition function should be periodic under shift of
ξ → ξ + in with n ∈ Z, which is precisely what the sum over classical saddles implements.
Similar to the Schwarzian, excitations of the gauge field in the black hole background are
captured by large U(1) gauge transformations that do not vanish at the boundary of the
near-horizon region. Such transformations can be parametrized by a U(1) mode that captures
the breaking of the U(1) symmetry as the chemical potential is turned on. Like the Schwarzian,
this theory is one-loop exact, and its on-shell action and one-loop determinant are captured
in the sum over n in (2.4). Once again, the full partition function of this effective theory can
be read off from the low-temperature expansion of the on-shell action.

We can additionally fix the angular velocities of the black hole instead of its angular
momenta. This can be done by setting the holonomy of the SO(4) gauge field that is obtained

11S0, M0, MSL(2) and MU(1) in (2.4) depend on the charge Q = Q∗ as in (2.2) and (2.5).
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from the dimensional reduction to ei
∮
B = e−βω1Ĵ1−βω2Ĵ2 where Ĵ1 and Ĵ2 are two Cartans of

SO(4) whose eigenvalues are J1 and J2. Similar to the U(1) mode, excitations of the SO(4)
gauge field can be captured by an SO(4) valued field which parametrizes non-vanishing gauge
transformations at the boundary of the near-horizon region. As above, there are multiple
saddles for this SO(4)-mode, which is once again due to the fact that the partition function
does not explicitly depend on ω1 or ω2, but rather on the holonomy e−βω1Ĵ1−βω2Ĵ2 .

The black holes described above should also appear in the bosonic truncation of a
supergravity theory. Nevertheless, black holes which at extremality preserve some amount of
supersymmetry are instead described by different versions of the super-Schwarzian theory.
This is because the effective theory which computes the low-temperature expansion of the
partition function does not only capture the breaking of the near-horizon bosonic isometry
group SL(2,R) × GBF ; instead, it captures the breaking of a super-group. As mentioned
above, in such a case there are additional modes that remain massless in the near-horizon
region, which contribute in the low-temperature expansion of the partition function - these
are the dilatino and the gravitino. These modes do not decouple from the bosonic modes
and consequently the sum over n in (2.4) has a more complicated dependence with β and n.
Nevertheless, as we will explain in section 2.3 the couplings determining the low-temperature
expansion of the partition function can still be read-off from the on-shell action, as was
the case in (2.1) or (2.4).

Thus, instead of performing the full-dimensional reduction, in this paper we will take
the simpler approach of reading off the effective action which captures the low-temperature
expansion of the partition function. As discussed above, we will identify this effective theory by
(a) the near-horizon isometry that gets broken when the temperature, chemical potential and
angular velocities are turned on and (b) the low-temperature expansion of the on-shell action.
This will determine the correct version of the super-Schwarzian theory needed to describe
the near-BPS black holes discussed in this paper. Before diving into that identification, it is
useful to first discuss the properties of the effective theory that will end up being important
in our analysis, the N = 2 super-Schwarzian theory.

2.2 The model

The N = 2 super-Schwarzian theory was described in detail in [38]. It is a theory that is
described by N = 2 super-reparametrizations. Just like in the bosonic case, the bulk origin
of these super-reparametrizations is given by the action of super-diffeomorphisms on the
metric, gravitino and gauge field at the boundary of the near-horizon region. After imposing
the appropriate chirality constrains, these super-reparametrizations can be described in
super-space coordinates (τ, θ, θ) → (τ ′, θ′, θ′) in terms of two time-dependent bosonic fields
f(τ) and eirσ(τ) ∈ U(1), where r is a normalization constant we will discuss below, as well
as two fermionic fields η(τ) and η(τ):

τ ′ = f(τ) + . . . , (2.6)

θ′ = eirσ(τ)
√
f ′(τ)θ + η(τ) + . . . (2.7)

θ
′ = e−irσ(τ)

√
f ′(τ)θ + η(τ) + . . . , (2.8)
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where the dots can be obtained by explicitly solving the super-reparametrizations constraints.
The fields entering in these super-reparametrizations become the degrees of freedom of the
N = 2 super-Schwarzian theory. The Schwarzian derivative is then given by

S(f, σ, η, η) = ∂τDθ
′

Dθ
′ − ∂τDθ

′

Dθ′
− 2 ∂τθ

′∂τθ
′

(Dθ′)(Dθ′)
= . . .+ θθSb(f, σ, η, η) , (2.9)

from which one can write the N = 2 super-Schwarzian action in terms of super-coordinates

IN=2 Schw = − 1
MSU(1,1|1)

∫
dτdθdθS = − 1

MSU(1,1|1)

∫
dτSb , (2.10)

= 1
MSU(1,1|1)

∫
Sch(f, τ) + 2(∂τσ)2 + (fermions) . (2.11)

Just like in (2.1), the action of the N = 2 super-Schwarzian can be obtained from an N = 2
bulk JT theory which in addition to the metric and dilton present in the bosonic theory
described in section 2.1, also contains fermionic super-partners, the gravitino and dilatino as
well as a U(1) R-symmetry gauge field coupled to a zero-form Lagrange multiplier [67, 68].
After integrating-out the dilaton, dilatino and U(1) Lagrange multiplier what remains are only
the large super-diffeomorphisms describing the transformations of the metric, gravitino and
U(1) gauge field at the boundary of the near-horizon region. These can be again parametrized
by the fields f(τ), σ(τ), η(τ) and η(τ) entering in (2.6). Once again, just like for the bosonic
counter-part (2.1), these super-diffeomorphisms enter in the boundary terms necessary for
the N = 2 JT theory to satisfy the variational principle when imposing Dirichlet boundary
conditions for all the aforementioned fields. Plugging in the large super-diffeomorphisms
parametrized by f(τ), σ(τ), η(τ) and η(τ), these boundary terms are then precisely equal
to the super-Schwarzian action (2.10). When performing the path integral over the set of
large super-diffeomorphisms which are weighed by the boundary term, one should be careful
to not over-count identical super-geometries. For this reason, we should quotient the path
integral over these modes by whatever super-isometry is present in the bulk. In N = 2 JT
gravity this is SU(1, 1|1). These super-isometries can be explicitly identified in (2.11) as a
global SU(1, 1|1) acting on the fields f, σ, η, η [38]. Consequently, we should quotient the
space of configurations of f, σ, η, η by such transformations.

In addition, one can add a topological term in the bulk associated to the U(1) R-symmetry
gauge field. On the boundary, one should add to the action an associated topological term
to the U(1) mode, σ:

Itopological = iθr

∫
dτ (∂τσ) , (2.12)

Due to its topological nature this term is also invariant under the SU(1, 1|1) transformations.
Because eirσ(τ) ∈ U(1) and thus σ ∼ σ + 2π/r, we can identify theories with θ ∼ θ + 2π
and will therefore restrict to θ ∈ [0, 2π). From the bulk perspective, since the boundary
holonomy of the U(1) R-symmetry gauge field is given by ei(σ(β+τ)−σ(τ)), r is determined by
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the smallest R-charge among any field that could possibly be coupled to the U(1) R-symmetry
gauge field in N = 2 JT.12

As in (2.1), we will next review the features of the resulting partition function

Z(β, α) =
∫ DfDσDηDη

SU(1, 1|1) e−IN=2 Schw−Itopological , (2.13)

where the partition function depends on the inverse temperature β which sets the length
of the thermal circle and on a U(1) chemical potential α associated to the mode σ, under
which fermionic fields are also charged. Thus, the periodicity conditions for the resulting
path integral become f(τ + β) = f(τ), eiσ(τ+β) = e2πiαeiσ(τ), η(τ + β) = −e2πirαη(τ) and
similarly for η.

2.3 Exact partition function and its spectrum

The partition function of the N = 2 super-Schwarzian theory can be computed exactly [39, 40].
We work in conventions where the U(1)R charge of the complex supercharge is one and the
minimal R-charge of fundamental fields is fractional and given by r. Consistency of the
spectrum with N = 2 supersymmetry requires that 1/r is an integer, since states related by
applying a supercharge should both be in the spectrum. The partition function is one-loop
exact and given by [39, 40]

ZN=2 Schw(β, α) =
∑
n∈ 1

r
·Z

ei rθn
2 cos (π(α+ n))
π (1− 4(α+ n)2) e

S0+ 2π2
βMSU(1,1|1)

(1−4(α+n)2)
. (2.14)

The sum over n is a sum over saddles analogous to the previous result (2.4), where the U(1)R
mode σ(τ) has different windings around the thermal circle, σ(τ + β) = σ(τ) + 2πn/r. The
exponential terms all come from the evaluation of the classical action on the saddle point
configurations. Finally, the prefactor of the exponentials is the one loop determinant of
the Schwarzian mode, U(1)R mode, and the fermions. The non-trivial dependence on the
chemical potential comes from the fermions, while the possible β dependence in the one-loop
determinant cancels since SU(1, 1|1) has four bosonic and four fermionic generators. When
the theta angle in (2.12) vanishes, the partition function is invariant under α ∼ α + 1/r.
Thus, for simplicity, we can restrict to α ∈ [0, 1/r). The theory is also charge conjugation
invariant only when θ = 0 or θ = π, since only then is the partition function real.

Supersymmetry in the on-shell action. The contribution of the SL(2,R) Schwarzian
mode to the action is independent of the winding mode n and gives 2π2

βMSU(1,1|1)
, while the

contribution of the U(1)R mode is given by − 8π2

βMSU(1,1|1)
(α + n)2. Thus, the equality of

coupling seen in (2.11), translates to a relation between the α-dependent terms in the on-shell
and the α independent terms, in the convention in which α ∼ α + 1/r.

12In the context of SYK, r = 1/q̂ in [38] and represents the number of fermionic fields that are needed to
construct the N = 2 SYK supercharges. However, in section 3 we will find that the relevant effective theory
has r = 1 which is not realized by any known SYK model.
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Density of states within each supermultiplet. We can Fourier transform the above
result to obtain the decomposition of ZN=2 Schw(β, α) as a sum over U(1)R charges Z, with
the smallest charge equal to r. Because of supersymmetry the spectrum should organize itself
in supermultiplets (Z)⊕ (Z − 1) for states with E ̸= 0 and solely charge Z for states with
E = 0. Based on symmetry principles the partition function should thus be decomposed as

ZN=2 Schw(β, α) =
∑
Z

e2πiαZρext(Z) +
∑
Z

∫
dEe−βE

(
ei2παZ + ei2πα(Z−1)

)
ρcont(Z,E).

(2.15)
In contrast to Schwarzian theories with smaller amounts of supersymmetry (N = 0 and
N = 1), the density of states for N = 2 splits into an extremal piece and a continuous
piece. Since the first term in (2.15) is temperature independent, this implies that those
states are extremal and yield an exact Dirac delta-function in the density of states at E = 0.
Rewriting (2.14) as in (2.15), gives [40]

ZN=2 Schw(α, β) =
∑

Z∈r·Z− rθ
2π
,

|Z|< 1
2

e2πiαZ eS0 r cos (πZ) (2.16)

+
∑

Z∈r·Z− rθ
2π

r
(
e2πiαZ + e2πiα(Z−1)

) ∫ ∞

Egap(Z)
dEe−βE

eS0 sinh
(
2π
√

2
MSU(1,1|1)

(E − Egap(Z))
)

2πE ,

where Egap(Z) ≡
MSU(1,1|1)

8 (Z − 1
2)2 denote the energy gap for a supermultiplet labeled by the

charge Z. The first line in (2.16) captures the contribution of BPS states that have E = 0
and whose R-charges Z can thus take the values Z ∈ r · Z− rθ

2π , with the constrain |Z| < 1
2

which ensures the density of states is positive. The contribution of the second line captures
the non-BPS states which have a continuous density.

The BPS to non-BPS energy gap. When does such a theory have a gap between the
BPS states and lightest non-BPS state? If Z = 1/2 is included in the sum over charges
in (2.16), then Egap(Z = 1/2) = 0 which implies that there is a continuum of states starting
at E = 0 and that there is no gap in the spectrum. For θ = 0, there is no gap if 1/r is even
and there is a gap if 1/r is odd. For θ = π, the opposite is true: there is no gap if 1/r is even
and the gap is present if 1/r is odd. If θ ̸= {0 or π}, then the gap is always present.

The supersymmetric index. For particular values of the U(1)R chemical potential α,
the grand canonical partition function computes a supersymmetric index. In particular,
for any α such that ei2πα = −1 the fermionic degrees of freedom η and η become periodic
and consequently, turning on this fugacity is equivalent to the insertion of (−1)F in the
super-Schwarzian path integral. This works for any αk = k − 1/2 with k = 1, . . . , r−1. For
r = 1 there is only one index (with α = 1/2) and if we fix −π ≤ θ ≤ π then it is given by

I = ZN=2 Schw(β, α = 1/2) = eS0e−i
θ
2 cos

(
θ

2

)
. (2.17)

In such a case, note that Z(β → ∞, α→ 0) = Z(β, α→ 1
2) which implies that in such a case

the “ground state” of the N = 2 super-Schwarzian are purely bosonic.
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The ’t Hooft anomaly. Finally, we will comment on the symmetries of the particular
theories with θ = 0 and θ = π, for which charge conjugation invariance appears, at least
classically. For a related toy model see appendix D of [45]. When θ = 0 and 1/r ∈ Z the
theory presents both charge conjugation and U(1)R symmetry. This is evident from the
fact the partition function (2.14) is real and that the charges are integer multiples of r.
Instead, the theory with θ = π has a ’t Hooft anomaly between charge conjugation and U(1)R
symmetries. For example, the localization calculation leading to (2.14) is manifestly charge
conjugation invariant, since it is real. Nevertheless, the spectrum in (2.16) is shifted by a
half-integer unit of charge, inconsistent with U(1)R symmetry. This issue can be fixed by
shifting the charge by a constant Z → Z + r/2, making the charge operator still commutes
with the Hamiltonian; however, the price to pay is to break charge conjugation invariance.
For this reason the theory with θ = π has a ’t Hooft anomaly, while θ = 0 preserves the
symmetries at the quantum level.

3 BPS and near-1/16 BPS black holes in AdS5

In the previous section, we have reviewed the role Jackiw-Teitelboim gravity and the
Schwarzian theory play in determining the form of the spectrum of near extremal black
holes in general. It can be thought of as the soft mode coming from the broken symmetries
that emerge in the near extremal limit. We also consider in particular the case of a broken
SU(1, 1|1) symmetry which is described by N = 2 Schwarzian theory.

In this section we are going to apply this to 1/16-BPS black holes in AdS5 × S5, which
AdS/CFT predicts are dual to 1/16 BPS states in N = 4 Super Yang-Mills. We will begin by
reviewing general properties of these black holes in sections 3.1 and 3.2, taken from [6], but
see also [4, 5, 7, 69, 70]. Black holes in AdS5 have a-priori several related but distinct limits:

• The near-extremal limit in which T → 0.

• The extremal black holes in which T = 0.

• The supersymmetric limit in which the geometry has Killing spinors.

• The BPS limit which has T = 0 and an enhanced set of Killing spinors.

By adjusting the parameters of the solution, one may move independently off of extremal
and supersymmetric surfaces in parameter space [8, 71]. We adopt the convention of these
references to refer to the intersection of these surfaces as the BPS limit.

Recently the Bekenstein-Hawking entropy of exactly 1/16-BPS black holes was reproduced
from the superconformal index of N = 4 Yang Mills [8–10, 28, 29]. The goal of this section
is to reproduce this result from the point of view of the gravitational path integral, and in
the process predict the spectrum of excited black holes states above the BPS ones; these
states are not protected by exact supersymmetry. In section 3.3 we specify a mixed ensemble
where some charges are fixed that will allow us to use the results of section 3.1 without
requiring the most general black hole solution. In section 3.4 we analyze the BPS limit and
show the black holes have an AdS2 × S3 × S5 throat with an emergent SU(1, 1|1) symmetry.
We identify then the N = 2 Schwarzian theory controlling the near BPS spectrum from the
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explicit breaking of this superconformal group. In section 3.5 we verify this at the level of
the classical action of the black hole saddle and in section 3.6 we put everything together
and give a picture of the spectrum of nearly 1/16-BPS states in N = 4 Yang Mills.

3.1 General black hole solutions in AdS5

The goal of this paper is to extract information about the spectrum of nearly 1/16-BPS states
in N = 4 Yang Mills. According to AdS/CFT, these states are dual to black holes and we will
study their spectrum using the gravitational path integral. Since we want to know the energy
and charges of these states, we will compute and derive the spectrum from the dual field
theory partition function on S1

β×S3 with angular velocities and chemical potentials conjugate
to the SO(6) R-charges turned on. From the bulk perspective, the gravitational path integral
instructs us to sum over all geometries satisfying boundary conditions appropriate for our
choice of ensemble in asymptotically AdS5. Therefore we need to know black hole solutions
carrying these charges, which we briefly review next, mostly to establish our conventions.

The theory of gravity in asymptotically AdS5 space dual to four dimensional N = 4
Yang Mills arises from a dimensional reduction of ten dimensional type IIB supergravity
on AdS5 × S5. From this perspective the SO(6) gauge symmetry in the bulk is identified
with the isometries of S5, with the SO(6) charges associated to rotations along the S5. Since
SO(6) has rank three it leads to three gauge fields A1,2,3 and charges R1,2,3. The resulting
theory in AdS5 is quite complicated, but simplifies drastically when the rotation happens
symmetrically along the three Cartan directions on S5, meaning A ≡ A1 = A2 = A3 and
R ≡ R1 = R2 = R3. We will restrict only to that case in this paper, the reduction leads to
a simple theory of minimal gauged supergravity on AdS5 with a single gauge field.13 The
bosonic part of the action is given by (e.g. [72, 73]):

I ⊃ 1
16πG5

∫ [
(R+ 12) ∗ 1− 2

3F ∧ ∗F + 8
27F ∧ F ∧A

]
. (3.1)

We work in units in which ℓAdS5 = 1 and the gauge coupling g has been set to 1. When this
effective action is obtained from string theory, the dimensionful parameters will appear in
the full action through the 5D Newton constant G5. The Chern-Simons term affects both
the definition of asymptotic electric charges and the value of the on-shell action.

Before writing the solutions we should determine the boundary conditions. We will
parametrize the bulk by coordinates (τ, r, θ, ϕ, ψ) where (ϕ, ψ) are 2π periodic and θ ∈ [0, π2 ].
The coordinates (τ, θ, ϕ, ψ) also parametrize the boundary S1 × S3 at large radius r. This
means that the metric should behave asymptotically, after a rescaling of r, as ds2 = dr2

r2 +
r2 (dτ2 + dΩ2

3
)
+ O(r0), with the unit S3 element dΩ2

3 = dθ2 + sin2 θdϕ2 + cos2 θdψ2. In
order to fix the R-charge chemical potential to be Φ, we fix the gauge field holonomy at
large r through A = −Φdτ +O(r−1). The above electric potential is related to the R-charge
chemical potentials as Φ1 = Φ2 = Φ3 = 2

3Φ [25]. Following [74] we fix the angular velocities
along the S3 and the temperature through the identification

(τ, θ, ϕ, ψ) ∼ (τ + β, θ, ϕ− iΩ1β, ψ − iΩ2β). (3.2)
13Note that, as in almost all string constructions of AdS/CFT, the radius of the sphere is of the same order

as the AdS radius. The five-dimensional theory studied here is a consistent truncation of the 10D theory, and
all black hole solutions we study may be uplifted to 10D type IIB, as we show in 3.4.
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A general solution with this asymptotic behavior is a charged rotating black hole with unequal
angular momenta. The solution, which we write in Lorentzian signature for simplicity defining
t = −iτ , was found in [6], but we follow the conventions of [25]. In terms of asymptotically
static coordinates the metric is given by

ds2 =− ∆θdt
(
2νq + ρ2 (r2 + 1

)
dt
)

ρ2ΞaΞb
+ 2νqw

ρ2 + ρ2dr2

∆r
+
ft
(

∆θdt
ΞaΞb

− w
)

2

ρ4 (3.3)

+ ρ2dθ2

∆θ
+
(
a2 + r2) sin2 θdϕ2

Ξa
+
(
b2 + r2) cos2 θdψ2

Ξb
,

A = 3q
2ρ2

(∆θdt

ΞaΞb
− w

)
− Φdt, (3.4)

where

ν = a cos2 θdψ + b sin2 θdϕ, ρ =
√
a2 cos2 θ + b2 sin2 θ + r2, (3.5)

∆r =
(
a2 + r2) (b2 + r2) (r2 + 1

)
+ 2abq + q2

r2 − 2m, (3.6)

ft = 2abρ2q + 2mρ2 − q2, ∆θ = 1− a2 cos2 θ − b2 sin2 θ, (3.7)

Ξa = 1− a2, Ξb = 1− b2, w = a sin2 θdϕ

Ξa
+ b cos2 θdψ

Ξb
. (3.8)

The above metric gives a four parameter family of solutions for charged and rotating black
holes in five dimensions, parametrized by (m, q, a, b), where we will restrict to 0 < a, b < 1.
These parameters are related to (m, q, a, b) → (β,Φ,Ω1,Ω2) by imposing the solution is
smooth at the Euclidean horizon, located at the radius r+ defined as the largest positive root
of ∆r(r+) = 0. We trade from now on the variable m by r+ through

m =
(
a2 + r2

+
) (
b2 + r2

+
) (
r2

+ + 1
)
+ 2abq + q2

2r2
+

. (3.9)

One can show the solution is smooth with appropriate choice of parameters following the
methods in [74]. The cycle becoming contractible at the horizon is generated by the vector
field V = ∂

∂t + Ω1
∂
∂ϕ + Ω2

∂
∂ψ , where

Ω1 = a
(
b2 + r2

+
) (
r2

+ + 1
)
+ bq(

a2 + r2
+
) (
b2 + r2

+
)
+ abq

, Ω2 = b
(
a2 + r2

+
) (
r2

+ + 1
)
+ aq(

a2 + r2
+
) (
b2 + r2

+
)
+ abq

, (3.10)

denote angular velocities on the horizon. Smoothness also determines the temperature to be

β−1 = T = r4
+
((
a2 + b2 + 2r2

+
)
+ 1

)
− (ab+ q)2

2πr+
((
a2 + r2

+
) (
b2 + r2

+
)
+ abq

) . (3.11)

The chemical potential at the boundary is fixed by the asymptotic value of A→ −Φdt,
when r → ∞. The relation between Φ and q is determined by demanding the solution is
regular at the Euclidean horizon. Finally smoothness of the gauge potential A at the horizon
AµV

µ|r+ = 0 gives the final relation

Φ = 3qr2
+

2[
(
a2 + r2

+
) (
b2 + r2

+
)
+ abq] . (3.12)
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Altogether, smoothness gave us the four relations needed to solve for (r+, q, a, b) in terms
of (β,Φ,Ω1,Ω2). Interestingly, in addition to the solution we have just discussed, there are
other distinct solutions with the same boundary conditions obtained by integer shifts of the
chemical potentials an angular velocities, first analyzed in the context of AdS5 black holes
in [25]. We will comment on these solutions in section 3.3, where they play an important
role in our analysis.

Alternatively, these black holes can be identified through specifying the values of their
four conserved charges (E,R, J1, J2) canonically conjugate to (β,Φ,Ω1,Ω2). The charges
can be defined by the ADM procedure which gives

E = π (2abq (Ξa + Ξb) +m (−ΞaΞb + 2Ξa + 2Ξb))
4G5Ξ2

aΞ2
b

+ 3π
32G5

, R = πq

2G5ΞaΞb
, (3.13)

J1 = π
(
bq
(
a2 + 1

)
+ 2am

)
4G5Ξ2

aΞb
J2 = π

(
aq
(
b2 + 1

)
+ 2bm

)
4G5ΞaΞ2

b

.

(3.14)

The energy of vacuum AdS5 is given by E0 = 3π
32G5

. We will denote the black hole mass by
M ≡ E − E0. To reiterate, R is proportional to the angular momenta along S5 distributed
symmetrically along the Cartan directions.

Having found the solution of the equations of motion filling the boundary conditions, we
can approximate the partition function in this grand-canonical ensemble by the exponential
of the classical action

Z(β,Ω1,Ω2,Φ1,Φ2,Φ3) ∼ e−IGCE(β,Ω1,Ω2,Φ1,Φ2,Φ3). (3.15)

As mentioned above, there are other saddles which are relevant in the near-extremal limit
which we discuss in section 3.3 but ignore for now. The action IGCE(β,Ω1,2,Φ1,2,3), including
now the GHY boundary term and the holographic counterterm [75] appropriate to this
ensemble where we fix the metric and gauge potential at infinity, is given by

I = 1
16πG5

∫
d5x

√
−gL+ 1

8πG5

∫
∂
d4x

√
−hK − 3

8πG5

∫
∂
d4x

√
−h

(
1 + Rh

12

)
, (3.16)

where h = g|bdy and Rh is the Ricci curvature scalar of h. Evaluating all contributions to the
on-shell action (3.16), together with the Chern-Simons term, one obtains [76, 77]

IGCE = πβ

4G5ΞaΞb

(
m− (r2

+ + a2)(r2
+ + b2)− q2r2

+
(r2

+ + a2)(r2
+ + b2) + abq

)
+ 3πβ

32G5
. (3.17)

Defining the Bekenstein-Hawking entropy as the area of the horizon

S = A

4G5
= π2 ((a2 + r2

+
) (
b2 + r2

+
)
+ abq

)
2G5r+ΞaΞb

, (3.18)

the on-shell action satisfies the so-called quantum statistical relation,

IGCE = β(E − TS − Ω1J1 − Ω2J2 − ΦR), (3.19)
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which can explicitly be checked using the expressions for the charges and potentials. Finally,
if we want to compute the partition function in a fixed charge sector we need to not only
write (r+, q, a, b) in terms of the charges but also add the apropriate boundary terms in the
action to make the variational principle well-defined [78]. For example, if we wanted to fix the
charge R this amounts to adding an extra I → I + βΦR term in the action, understanding
that Φ should be written as a function of charges, and similarly for angular momentum.

3.2 The 1/16-BPS black hole solution

As discussed in the introduction of section 3, the general AdS5 black hole solution has different
limits corresponding to extremality (T → 0) and supersymmetry (existence of a Killing spinor).
Written in terms of charges, the supersymmetric (but not yet extremal) condition is [79]

M −
(3
2R+ J1 + J2

) ∣∣∣∣
SUSY

= 0, (3.20)

which after inserting the explicit expressions for M , R, and J1,2 valid for both BPS and
non-BPS black holes, takes the form

q = m

1 + a+ b
. (3.21)

We next want to impose extremality, meaning that the solution has zero temperature. This
can be achieved by imposing the further condition

m = (a+ b)(1 + a)(1 + b)(1 + a+ b). (3.22)

The size of the horizon for these BPS black holes is given by the simple expression

r+ = r∗ ≡
√
(a+ b+ ab). (3.23)

In terms of r∗ the constraint (3.21) becomes q = q∗ = (a + b)(1 + a)(1 + b). It is easy to
check that (3.21) together with (3.22) implies that T = 0. This means that, while in general
one could have supersymmetric non-extremal (T ̸= 0) black holes (as discussed below these
are generically complex solutions), imposing extremality (and reality conditions in Lorentzian
signature) leads to the BPS condition, which is the intersection of the supersymmetric and
extremal surfaces. Note that this also means that BPS black holes are now labeled by only
two parameters (a, b), through the relations (r∗(a, b), q∗(a, b)). In the above, following [8],
we introduced the ( )∗-notation, which from now on will denote quantities evaluated after
imposing supersymmetry and extremality.

The black hole solutions that are both extremal and supersymmetric are the ones dual
the 1/16-BPS states in U(N) N = 4 Yang Mills at large N . In terms of the parameters
(a, b) the BPS value of the Bekenstein-Hawking entropy is

S∗ = π2(a+ b)
√
ab+ a+ b

2G5(1− a)(1− b) . (3.24)

Importantly, we cannot yet determine from gravity whether this is the true entropy of BPS
states without including quantum effects from the gravity path integral, as explained in
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section 2. The field theory calculation of the index supports this interpretation of S∗ which
we will verify from gravity as well below. The BPS values for the energy and charges are

M∗ = −π
(
2a2b2 + a3(b+ 1) + a

(
b3 − 3

)
+ b

(
b2 − 3

))
4G5(a− 1)2(b− 1)2 , R∗ = π(a+ b)

2G5(1− a)(1− b) , (3.25)

J∗
1 = π(a+ b)(a(b+ 2) + b)

4G5(a− 1)2(1− b) , J∗
2 = π(a+ b)(ab+ a+ 2b)

4G5(1− a)(b− 1)2 .

(3.26)

It is easy to verify the relation M∗ − 3
2R

∗ − J∗
1 − J∗

2 = 0. Thus, due to the BPS constraints,
given the angular momenta J∗

1 and J∗
2 we uniquely determine the equal U(1)3 ∈ SO(6) charge

R∗ for the BPS black hole. A field theory explanation of this constraint from the point of
view of N = 4 Yang Mills was suggested in [80, 81]. The chemical potentials associated to
the BPS black holes are given by Φ∗ = 3

2 , Ω∗
1 = Ω∗

2 = 1.
This restriction on parameters by the BPS condition is not unfamiliar. In the case of

black holes in four dimensional ungauged supergravity, supersymmetry only implies that the
mass is equal to the charge, while BPS states satisfy the further condition that the angular
momentum vanishes. A motivation for this is obvious in this example, black holes with
real angular momentum that are supersymmetric have a naked singularity in Lorentzian
signature.14 The issue with supersymmetric non-extremal AdS5 black holes is instead the
presence of closed timelike curves (CTC) in Lorentzian signature outside the horizon [6], and
imposing extremality together with supersymmetry removes this pathology.

3.3 What we want to compute

In this section we clarify two issues that arise from the discussion so far. The first is that
in the grand-canonical ensemble the solution reviewed in section 3.1 is not the only one.
Take for example the gauge potential A. While we demanded that AµV µ|horizon = 0, the
gauge invariant statement that the holonomy is trivial along a contractible cycle allows
for more general values of the potential at the horizon, which can be removed by a large
gauge transformation but lead to physically distinct solutions. The other saddles are mostly
subleading but become important at low temperatures, which is the regime of interest of this
paper. They were considered in the near extremal limit in the context of a different black
hole solution in [32, 33], and we will discuss them in the context of AdS3 in section 4. Besides
these saddles, there is a large family of complex geometries contributing in the grandcanonical
ensemble to the same partition function with a rich phase diagram, see for example [25].

The second issue is related to the fact that the supergravity theory considered above
and the corresponding electrically charged black holes arise from the dimensional reduction
of Type IIB supergravity solutions on S5 in the sector in which the solutions have equal
Kaluza-Klein momenta R ≡ R1 = R2 = R3 on the S5 factor. In a grand canonical ensemble,
even if we fix the chemical potentials conjugate to the R-charges Ri to be equal, these new
solutions discussed in the previous paragraph will inevitably involve configurations that do

14From a Euclidean perspective, having supersymmetric solutions with imaginary angular momentum
and non-zero temperature is perfectly fine, giving a real smooth metric, and just computes the index from
gravity [82].
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not respect this symmetry. This would require dealing with the much more complicated
solution of type IIB with scalar fields turned on [83], which we will not attempt in this paper.

We will try to ameliorate these issues in the following way. First, we will choose an
ensemble for which only configurations with R1 = R2 = R3 contribute and for which all
charges that can be fixed without breaking supersymmetry are fixed. In this ensemble, the
number of saddles is drastically reduced compared to the fully grandcanonical one, and we
will focus only on the ones obtained by starting with the original black hole and shifting
chemical potentials. Second, we will use information about the UV completion of the theory
given by N = 4 Yang Mills to determine the specific shifted solutions that have to be summed
over. Our conventions in this subsection closely follow those of [25].

We begin by identifying the new solutions of the equations of motion. The most obvious
way to generate new solutions is the following. Looking at the boundary conditions specified
in section 3.1 it is clear that any geometry obtained by an integer shift Ωi → Ωi + 2πiZ

β

solves the same equations with the same boundary condition, while being physically distinct.
Therefore, the gravitational path integral instructs us to sum over all of them. Something
similar is true for the gauge potential. Two configurations related by A→ A+ 2πiZ

β dt satisfy
the same gauge invariant boundary condition at infinity while continuing to be smooth since
the extra integer flux can be undone by a large gauge transformation. This is not surprising
since the R-charge chemical potential in AdS5 corresponds to angular velocity along S5

direction in ten dimensions. The partition function with all chemical potentials fixed is given
in the large N limit by a sum over saddles

Z(β,Ω1,Ω2,Φi) = Tr[e−βH+βΩ1J1+βΩ2J2+ 1
2βΦ1R1+ 1

2βΦ2R2+ 1
2βΦ3R3 ]

→
∑

n1,n2,m1,m2,m3

Zone-loop e
−IGCE(β,Ω1+ 2πin1

β
,Ω2+ 2πin2

β
,Φ1+ 2πim1

β
,Φ2+ 2πim2

β
,Φ3+ 2πim3

β
)
,

(3.27)

where IGCE(β,Ω1,Ω2,Φ1,Φ2,Φ3) is the action of the black hole considered in [83] with
Dirichlet boundary conditions. When Φ1 = Φ2 = Φ3 = 2

3Φ (which along with the factors
of 1

2 in (3.27) defines our normalization for Φi) this action above becomes equivalent to
the action computed in section 3.1. We will discuss the one-loop contribution later. At
this point we need to make a choice regarding the range of integers that are allowed in
the sum (3.27). One option is to consider more carefully the global nature of the gauge
groups in five dimensions from a ten dimensional perspective given by Type IIB. A simpler
option is to use AdS/CFT and analyze the properties of this partition function given by
N = 4 Yang Mills, which we turn to next.

The N = 4 Yang Mills theory has the superconformal symmetry PSU(2, 2|4), and parallel
to the gravity analysis we decompose the Lorentz and R-symmetry factors to the Cartan
subalgebra U(1)J1 × U(1)J2 × U(1)3

Ri
, with i = 1, 2, 3. In N = 1 language, this theory is a

particular instance of a vector multiplet coupled to a triplet of adjoint chiral multiplets Xi,
where we normalize the R-charges such that Ri assigns charge 2 to the corresponding chiral
multiplet. This means that scalars have even integer R-charge and fermions have odd integer
R-charge. States of the theory are also labeled by the two angular momenta J1, J2 which as
usual are integer or half-integer and satisfy spin statistics. With these conventions, the fermion
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number operator, is given by F = 2J1,2 = Ri mod 2. This constraint implies a particular
periodicity of the grand canonical partition function under shifts of the chemical potential [25],
which we can use to deduce the allowed saddles we need to include. Comparing with the
gravitational answer (3.27), the constraint implies the following restriction on the solutions:

m1 +m2 +m3 + n1 + n2 = 2Z. (3.28)

This determines the saddles that should in principle be included based on smoothness and
global properties of the gauge groups.15 The need to sum over saddles was pointed out in
this context in [25] for supersymmetric configurations only, but is true more broadly.

This brings us to our second issue. We see clearly now that even if we restrict to
Φ1 = Φ2 = Φ3 = 2

3Φ, the sum over integers will necessarily involve configurations outside
the scope of section 3.1. In order to resolve this we will go to a mixed ensemble where some
charges will be fixed. First of all we will introduce some notation, writing the grand-canonical
partition function as

Z(β,Ω1,Ω2,Φi) = Tr[e−β{Q,Q†}+β(Ω1−1)J1+β(Ω2−1)J2+ 1
2β(Φ1−1)R1+ 1

2β(Φ2−1)R2+ 1
2β(Φ3−1)R3 ],

(3.29)
where {Q,Q†} = H − J1 − J2 − 1

2(R1 + R2 + R3) and Q,Q† is the supercharge preserved
by the 1/16-BPS states at zero temperature. This will allow us later to make a more
direct connection with the superconformal index [29]. The definition of {Q,Q†} is chosen
to match the supersymmetry condition, (3.20), when all Ri are equal. We redefine the
chemical potentials to track their temperature scaled deviations from their BPS values [8],
as well as new flavor charges

j1,2 ≡ J1,2 +
R3
2 , q1,2 ≡ R1,2 −R3

2 , (3.30)

which commute with the N = 1 subalgebra, as well as

∆1,2 = β

2πi(Φ1,2 − 1), ω1,2 = β

2πi(Ω1,2 − 1), α = β

4πiφ, (3.31)

where

φ = Φ1 +Φ2 +Φ3 − Ω1 − Ω2 − 1 . (3.32)

In terms of these, the grand canonical partition function becomes

Z(β, ω1, ω2,∆1,∆2, φ) = Tr[e−β{Q,Q†}+2πiω1j1+2πiω2j2+2πi∆1q1+2πi∆2q2+2πiαR3 ]. (3.33)

These variables have the advantage of removing the constraints between the integer shifts ap-
pearing in the different solutions. Indeed, the partition function (3.27) with a constraint (3.28)
can be equivalently written as

Z(β, ω1, ω2,∆1,∆2, α) =
∑

n1,n2,m,m1,m2

Zone-loop e
−IGCE(β,ω1+n1,ω2+n2,∆1+m1,∆2+m2,α+m),

(3.34)
15Actually, there should be more restrictions on these integers since otherwise the sum strictly diverges.

A rationale for which saddles should be included or not is currently under investigation [84]. Additional
restrictions besides (3.28) also were observed in [25] when computing the superconformal index. These issues
are not relevant in the limit considered in this paper.
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with unconstrained integers (m,m1,m2, n1, n2). This in part motivates these redefinitions.
If we expect to obtain an emergent N = 2 Schwarzian mode in the nearly 1/16-BPS limit,
it should come with a sum over saddles involving an unconstrained integer.

Avoiding black hole solutions with unequal R-charges suggests we use a mixed ensemble
in which we fix the inverse temperature β and the BPS chemical potential α, but Laplace
transform with respect to the other potentials to obtain a trace over charges. For simplicity
we will also work in an ensemble of fixed j1,2 charges

Z(β, j1, j2, q1, q2, α) = Trj1,j2,q1,q2 [e−β{Q,Q
†}+2πiαR3 ] (3.35)

=
∫ 1

0
dω1

∫ 1

0
dω2

∫ 1

0
d∆1

∫ 1

0
d∆2e

−2πi∆1q1−2πi∆2q2−2πiω1j1−2πiω2j2Z(β, ω1, ω2,∆1,∆2, α).

(3.36)

To ease the notation we will use the same letter to denote the generators j1,2, q1,2 and their
fixed numerical values in the ensemble. To work with equal charges R1 = R2 = R3, we set
q1 = q2 = 0, which leaves us with one free U(1) charge which we have previously called
R in the gravity solution. As mentioned above, solutions with more general charges are
increasingly difficult to construct [7, 70, 79, 83, 85] because one must include scalar moduli
corresponding to deformations of the S5 metric, and are outside the scope of the present
work. The mixed ensemble at equal U(1)3 charges is then:

Z(β, j1, j2, α) = Trj1,2,q1,2=0[e−β{Q,Q
†}+2πiαR3 ] (3.37)

=
∫ 1

0
dω1

∫ 1

0
dω2

∫ 1

0
d∆1

∫ 1

0
d∆2e

−2πiω1j1−2πiω2j2Z(β, ω1, ω2,∆1,∆2, α). (3.38)

Now we can put everything together and write an expression for the semiclassical limit of
the partition function in the mixed ensemble we are interested in, with

fixed α, j1,2 and R1 −R2 = R1 −R3 = 0 . (3.39)

The answer is a sum over a single integer-valued family of saddles

Z(β, j1, j2, α) =
∑
n∈Z

Zone-loope
−IGCE(q1=0,q2=0,j1,j2,α+n)−2πiω1j1−2πiω2j2 (3.40)

≡
∑
n∈Z

Zone-loope
−IME(β,j1,j2,α+n). (3.41)

In the first line we write the action in this mixed ensemble as the grand-canonical action
IGCE(q1 = 0, q2 = 0, j1, j2, α+ n) plus the evaluation of the boundary terms needed to make
the variational problem well-defined (adapting [78] to our problem) resulting in the extra
terms 2πiω1j1 + 2πiω2j2. In these last two terms ω1 and ω2 should be written in terms
of the quantities that are fixed in this ensemble. In the second line we defined the total
value of the action as IME(β, j1, j2, α).

We now have only the sum over the integer shifts of the holonomy corresponding to the
BPS potential in (3.40). The sum over saddles has the schematic form of (2.14) in which
the integer parameter r = 1. Different values of m can be interpreted as different winding
sectors of the Schwarzian U(1) boson (seen in section 2.3), or in the bulk, as sectors of an
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abelian gauge field in JT gravity. Here however we see they are the holonomies of a particular
linear combination of 10D Kaluza-Klein gauge fields.

Either from the Schwarzian theory perspective or from the AdS5/N = 4 Yang Mills
perspective, a black hole where we set α = 1/2 is supersymmetric and this is equivalent
to inserting (−1)F = eiπR3 in the path integral. At these values of chemical potentials
we will see the gravity answer matches with the superconformal index. We would like to
emphasize that the index (evaluated in the ensemble we are working with) is always in a
deconfined phase in the large N limit. The standard superconformal index is studied in
the fully grand-canonical ensemble, defined as

Ĩ(β, ω1, ω2,∆1,∆2) ≡ Tr[eiπR3e−β{Q,Q
†}+2πiω1j1+2πiω2j2+2πi∆1q1+2πi∆2q2 ], (3.42)

and computed for N = 4 Yang Mills in [28, 29]. In our ensemble, the index obtained from
evaluating I(β, j1, j2) ≡ Z(β, j1, j2, α = 1/2) is related to the superconformal index of [28, 29]
by the following exact relation16

I(β, j1, j2) = Trj1,2,q1,2=0[(−1)F e−β{Q,Q†}] (3.43)

=
∫ 1

0
dω1

∫ 1

0
dω2

∫ 1

0
d∆1

∫ 1

0
d∆2e

−2πiω1j1−2πiω2j2 Ĩ(β, ω1, ω2,∆1,∆2). (3.44)

While the superconformal index Ĩ(β, ω1, ω2,∆1,∆2) can be in a confined phase for some
ranges of parameters, hiding the black hole behavior [21, 23, 24], the index I(β, j1, j2) defined
above (with some charges fixed) is always dominated by the black hole saddle. We leave
for future work verifying this from a boundary perspective.

In section 3.5, we will see that not only does (3.40) share the same sum over U(1) saddles
of the N = 2 super-Schwarzian partition function, but it also has the same classical action
as a function of β and α in the limit of low temperatures and fixed α. From this, we will
determine the one-loop determinant around each saddle in section 3.6.

3.4 Near horizon geometry and supersymmetries

Having discussed the general black hole solution, the mixed ensemble partition function, and
the saddles that contribute to it, we turn our attention to the near-extremal (and specifically
near-BPS) limits. For the AdS5 black hole (3.3), the exact supersymmetric and extremal
limits have a near-horizon geometry described by AdS2, and upon uplifting to 10D, the
solution is a specific fibration of AdS2 × S3 × S5 which we describe in detail.

In the strict BPS near-horizon limit, we show the solution develops emergent supercon-
formal isometries. On the bosonic side, there is both an emergent SL(2,R) for the AdS2
as well as a U(1) which rotates the solution along a particular combination of angles on
S3 × S5. For the fermions, we find as expected a doubling of the number of supersymmetries
corresponding to the appearance of a conformal Killing spinor.

Altogether, the BPS gravity theory has a local SU(1, 1|1) superconformal algebra of
symmetries in the near horizon region, but finite temperature quantum corrections explicitly

16We can generalize this calculation to an ensemble with fixed q1,2 ̸= 0 by a similar formula. This should
also display always a deconfined phase, although the bulk analysis is more complicated.
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break this local symmetry to a global SU(1, 1|1) which acts as isometries of the near-AdS2
saddles. The N = 2 Schwarzian theory captures the breaking of these symmetries. In order to
demonstrate that we have identified the correct pattern of symmetry breaking (and thus the
correct Schwarzian), we consider the BPS limit of the leading saddle and compute explicitly
the global super-isometries of the 10D solution explained above.

In contrast to other parts of section 3, in this subsection we will set the rotation parameters
a = b for simplicity. This will not change the general structure of the symmetry algebra,
but it will impact the specific form of the Killing vectors and Killing spinors. Much of
this section is based on the analysis of [37], but see also [86]. Details of the supergravity
analysis are given in appendix B.

In the original coordinates (t, r, θ, ϕ, ψ) the metric is asymptotically static and the Killing
horizon is generated by

V = ∂

∂t
+Ω1

∂

∂ϕ
+Ω2

∂

∂ψ
. (3.45)

For the purpose of determining the near horizon geometry, it is convenient to switch to
corotating coordinates, in which V = ∂

∂t becomes null at the horizon. This amounts to
changing angles (ϕ, ψ) to (ϕ̃, ψ̃), such that ϕ = ϕ̃ + Ω1 t and ψ = ψ̃ + Ω2 t. In these
coordinates the horizon becomes static and the asymptotic metric is now rotating. In the
BPS limit, going to corotating coordinates amounts to

ϕ = ϕ̃+Ω∗
1 t = ϕ̃+ t, ψ = ψ̃ +Ω∗

2 t = ψ̃ + t. (3.46)

The near-horizon limit is now taken by setting

r →
√
a(a+ 2) + r, (3.47)

and expanding for r ≪ r∗. In what follows, we introduce parameters

ω =
√

2a
1− a

, λ =
√
1 + 3ω2 . (3.48)

We also make a further general coordinate transformation in which we scale

r = ω

4λ(1 + a)
√

a

2 + a
r̃ , (3.49)

then drop the tilde for notational convenience. This leads to a particular fibration of AdS2×S3:

ds2
5 =

(
ω

2λ

)2
(
−r2dt2 + dr2

r2

)
+ 3

(
ω2

4 σ
L
3 + ω

4λrdt
)2

+ ω2dΩ2
3, (3.50)

A = −3
2

(
ω2

4 σ
L
3 + ω

4λrdt
)
, (3.51)

where dΩ2
3 = dθ2 +cos2 θdψ̃2 +sin2 θdϕ̃2 is the metric on S3, and σL3 = 2(cos2 θdψ̃+sin2 θdϕ̃).

To determine the Killing spinors and Killing vectors in this geometry, we follow [37]
and work with a 10D lift of the above metric. While it is not strictly necessary to work
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in 10D, this presentation serves to set our conventions and gives a geometrical origin for
all the symmetries of the solution. Working with the leading order Type IIB supergravity
theory, the massless fields are the NS-NS sector fields (GMN , B

(2)
MN ,Φ), the RR-form fields

(C(0), C(2), C(4)), as well as complex Weyl spinors and gravitinos (λ,ΨM ) of the same chirality.
The field strength F (5) = dC(4) is self-dual, F (5) = ⋆(10)F

(5). In the empty AdS5 × S5 as well
as the 1/16-BPS AdS backgrounds of IIB supergravity, we may set the axio-dilaton (Φ, C(0))
to a constant, all fermions (λ,ΨM ) to zero, and only turn on a supersymmetric background
for the metric and the 5-form flux (GMN , FMNPQR). In Einstein frame, there is no explicit
dependence on the scalars, no Chern-Simons terms, and the action takes the simple form:

SIIB = 1
16πG10

∫
d10x

√
−G

(
R(10) −

1
4 · 5!FM1...M5F

M1...M5

)
. (3.52)

As is standard for theories with self-dual gauge fields, above we wrote the kinetic term for
F (5), but one should always impose the F = ∗F equation of motion by hand.17

The near-horizon metric and gauge field may now be uplifted to a 10D solution. This
is now given by [72, 90]:

ds2
10 = ds2

5 +
3∑
i=1

[
(dµi)2 + µ2

i

(
dξi −

2
3A
)2
]
, (3.53)

F (5) = (1 + ∗(10))
[
−4 vol(5) −

1
3

3∑
i=1

d(µ2
i ) ∧ dξi ∧ ∗(5)F

(2)
]
, (3.54)

where we introduced µ1 = sin α̃, µ2 = cos α̃ sin β̃, µ3 = cos α̃ cos β̃. The angles α̃ ∈ [0, π2 ],
β̃ ∈ [0, π2 ], ξi ∈ [0, 2π], parametrize the sphere S5.

In the 10D background, the supersymmetry transformation of the gravitino is

δϵΨM = (∂M + 1
4ω

AB
M ΓAB)ϵ+

i

16 · 5!FN1...N5ΓN1...N5ΓM ϵ . (3.55)

Using this, the independent Killing spinors are found to be

ϵ1 =
√

8λ
ω2r

e−
i
2 (ξ1+ξ2+ξ3)

[
ϵ+0 −

(
irt

2 + 3ω
2λ

)
Γ4Γ9ϵ+0

]
, (3.56)

ϵ2 =

√
ω2r

8λ e
− i

2 (ξ1+ξ2+ξ3)ϵ−0 , (3.57)

where ϵ+0 and ϵ−0 are constant Majorana-Weyl spinors determined from integrability
condition for Killing spinors (B.22). They are parametrized by two arbitrary real parameters
each, giving four real parameters in total. This means that the near-horizon region preserves
four supersymmetries, in contrast to full geometry of the 1

16 BPS black hole we started
with [91, 92].

17In practice, one can work with the covariant equations of motion [87], perform a dimensional reduction on
S5 and then use the 5D action (3.1). The generation of the Chern-Simons term comes from reducing the F (5)

equation of motion [88, 89].
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Knowing the Killing spinors of the near-horizon metric, we can immediately find its
Killing vectors by computing linearly independent Killing spinor bilinears ϵIΓaϵJ . After
appropriately normalizing the constant spinors ϵ±0 we find Killing vectors

D = −t∂t + r∂r, (3.58)

Z = iω2

λ2 (∂ξ1 + ∂ξ2 + ∂ξ3)−
i

2λ2 (∂ϕ̃ + ∂ψ̃), (3.59)

E+ = − iω
2

4λ ∂t, (3.60)

E− = 8iλ
ω2 rt∂r +

(
−4iλ
ω2 t

2 + 4i(9ω2 − 4λ2)
ω2λ

1
r2

)
∂t (3.61)

+ 8i
λ2ω

1
r
(∂ξ1 + ∂ξ2 + ∂ξ3) +

12i
λ2ω

1
r
(∂ϕ̃ + ∂ψ̃). (3.62)

One can verify that with the above normalization they satisfy the following commutation
relations

[D,E±] = ±E±, [D,Z] = 0, (3.63)
[Z, E±] = 0, [E+, E−] = 2D . (3.64)

We can thus identify D, E± as the generators of SL(2,R) and Z as a U(1) R-symmetry
generator. Using a standard procedure of determining spacetime isometry superalgebras [93–
96] we can interpret the above commutation relations as giving the bosonic part of the
isometry superalgebra through

[QB(ki),QB(kj)] = QB([ki, kj ]), (3.65)

with QB(ki) denoting the bosonic generator associated to Killing vector ki. To determine
the rest of the superalgebra we follow the prescription

[QB(k),QF (ϵ)] = QF (Lkϵ), (3.66)
{QF (ϵI),QF (ϵJ)} = QB(ϵIΓϵJ), (3.67)

where QF (ϵI) denotes now the fermionic generators associated to Killing spinor ϵI , and the
Killing vectors act on the Killing spinors through the spinorial Lie derivative [96], shown
explicitly in (B.52). With that, we obtain18

{Q2,Q1} = Z +D, {Q1,Q2} = Z −D, (3.68)
{Q2,Q2} = E+, {Q1,Q1} = E−, (3.69)

together with

[Q1,Z] = −1
2Q1, [Q1,Z] = 1

2Q1, [Q2,Z] = −1
2Q2, [Q2,Z] = 1

2Q2,

[Q1, D] = 1
2Q1, [Q1, D] = 1

2Q1, [Q2, D] = −1
2Q2, [Q2, D] = −1

2Q2,

[Q1, E+] = Q2, [Q1, E+] = −Q2, [Q2, E+] = 0, [Q2, E+] = 0,
[Q1, E−] = 0, [Q1, E−] = 0, [Q2, E−] = Q1, [Q2, E−] = −Q1 , (3.70)

18Note that here and below, we used the conventions of [37] and [97], which differs from some conventions
for the N = 2 superconformal algebra such as those in [98].
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which can be identified as the SU(1, 1|1) superalgebra that the extremal black holes exhibit
in their near-horizon region.

It is worth mentioning, as explained in [37] (which was specialized to the case J1 = J2,
Ri = R), that the solution has additional bosonic isometries SU(2)× U(3) which do not mix
with SU(1, 1|1). In principle we could introduce more general charges or chemical potentials
corresponding to these symmetries, but as we have already explained in the discussion
surrounding (3.39), we are working in a mixed ensemble in which some combination of
the rotations and R-charges is held fixed, so these extra symmetries play no role in the
thermodynamics.

In the standard example of AdS2 at low but non-zero temperature, the boundary modes
of the metric become strongly coupled, and the gravitational path integral reduces to that of
JT gravity at leading order in eS0 and β. JT gravity may itself by written as an SL(2,R) BF
theory in the first order formulation of gravity, subject to the correct boundary conditions
from the second order formalism [99]. In the present example, superconformal symmetry of
the 10D solution implies that both the boundary modes of the metric and its superpartners
become strongly coupled, and the effective two-dimensional theory in the AdS2 throat should
instead be based on a SU(1, 1|1) BF theory. In the present work, we have not attempted
to derive the full two-dimensional dilaton supergravity, however, this point of view is not
essential for our argument. A reader interested in dimensional reductions to JT supergravity
as well as the relation to super-BF theory may consult [33, 41, 68, 100–103].

3.5 The low-temperature expansion of the action

The purpose of this section is to show the emergence of the N = 2 Jackiw-Teitelboim mode
in the near 1/16-BPS limit. This was anticipated in the previous section based on the pattern
of symmetry breaking of nearly 1/16-BPS states. We will work in an ensemble of fixed j1,
j2 and q1 = q2 = 0. For simplicity we focus first on saddles with integer n = 0 since the
general case can be obtained by a simple shift of the chemical potential α → α + n, with
n ∈ Z. Instead of implementing a dimensional reduction of type IIB supergravity near the
horizon to obtain JT gravity, we will take a shortcut and match the classical action. We
leave a full treatement of the reduction for future work.

We now turn to expansion of the on-shell action around the 1/16-BPS values of parameters
T = 0 and φ = 0. We turn on non-zero values of T and chemical potential φ and assume
T, φ ≪ 1, keeping α = β

4πiφ fixed. As explained above, in the fixed (β, j1,2, q1,2 = 0, α)
ensemble the classical action involves new boundary terms compared with the grand canonical
ensemble

IME(β, j1, j2, α) = IGCE(q1 = 0, q2 = 0, j1, j2, α) + 2πiω1j1 + 2πiω2j2, (3.71)

where the GCE action is evaluated at necessary chemical potentials and angular momenta
such that it is dominates by the quantum numbers q1 = 0, q2 = 0, j1, and j2. To set up the
calculation, we begin picking a⋆, b⋆ to correspond to the zero temperature 1/16-BPS black
hole. The parameters a⋆, b⋆ determines the fixed values of j1,2 in the mixed ensemble through

j1 = N2 (a∗ + b∗) (a∗ + 1) (b∗ + 1)
2 (a∗ − 1)2 (1− b∗)

, j2 = N2 (a∗ + b∗) (a∗ + 1) (b∗ + 1)
2 (1− a∗) (b∗ − 1)2 , (3.72)
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where we restored the N dependence by replacing G5 = π
2N2 to make the comparison with

N = 4 Yang Mills more transparent. Next we go away from the 1/16-BPS black hole by
expanding around these values (r⋆, q⋆, a⋆, b⋆) → (r⋆ + δr, q⋆ + δq, a⋆ + δa, b⋆ + δb) where
(r⋆, q⋆, a⋆, b⋆) are determined in terms of j1 and j2 due to the nonlinear relation imposed for
BPS black holes. Imposing then that we work with fixed (T, φ, j1, j2), fixes the expansion
parameters δr, δq, δa , δb in terms of T and φ, using the expressions given in section 3.1.
We carry this out in detail in appendix A. It is convenient to write all formulas in terms of
a⋆ and b⋆, understanding they should be thought of as functions of j1 and j2.

The final answer for the action in the low temperature expansion in the mixed ensemble
is given by

IME(β, j1, j2, α) = βE0 − S∗ − 1
2βφR

∗ − 2π2

βMSU(1,1|1)

(
1 +

(
βφ

2π

)2)
,

= βE0 − S∗ − 2πiαR∗ − 2π2

βMSU(1,1|1)
(1− 4α2), (3.73)

where we defined the BPS Bekenstein-Hawking entropy and R-charge by the expressions

S∗ ≡ N2π(a∗ + b∗)
√
a∗b∗ + a∗ + b∗

(1− a∗)(1− b∗) , (3.74)

R∗ ≡ N2 (a∗ + b∗)
(1− a∗)(1− b∗) , (3.75)

and as in (2.1), we defined the parameter MSU(1,1|1) explicitly as

1
MSU(1,1|1)

= N2 (a∗ + b∗)2 (3− a∗b∗ + a∗ + b∗)
8 (1− a∗) (1− b∗) (3a∗b∗ + 3a∗ + a∗2 + b∗2 + 3b∗ + 1) . (3.76)

Other evidence of the dynamics in the near-extremal limit being controlled by the breaking
of SU(1, 1|1) was given in [42], which also identified (3.76) as the relevant energy scale.

Now we can put everything together and write a formula giving an approximation of
the mixed ensemble partition function in the nearly 1/16-BPS limit after including the
sum over saddles

Z(β, j1, j2, α) = e2πiαR⋆
e−βE0

∑
n∈Z

Zone-loop e
S⋆+ 2π2

βMSU(1,1|1)
(1−4(α+n)2)

, (3.77)

where for now we ignored the one-loop corrections. This is precisely the classical partition
function as computed by the N = 2 Schwarzian action, as given in (2.14). In this identification,
S⋆ corresponds to the topological term S0 in the Schwarzian theory. The only difference is
the first term e2πiαR⋆ . Since for the theory under consideration the R charge is an integer,
that phase is not affected by the sum over saddles and can be pulled in front of the sum
in (3.77). This term comes from the fact that there is a mismatch between R, (the R-charge
in the UV) and the Schwarzian U(1)R charge Z given by Z = R−R⋆. This is analogous to
how in section 2.1, the grand-canonical ensemble was dominated by some charge Q∗ around
which excitations were captured by a U(1) whose contribution once again consisted of a
sum over saddles (2.4). Additionally, we observe that the R-charge of the supercharge is
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the same as the fundamental charge, so we have r = 1 compared to (2.14). Finally, there
are no Schwarzian θ terms arising from our UV theory which would have appeared through
an imaginary contribution to the action, iθn for each saddle in (3.77). Such a topological
term might have been present due to the Chern-Simons term in the 5d action (3.1), but
turns out to be absent here.

In the general case, the equations above depend non-trivially on the angular momenta
j1,2 through the complicated dependence on a⋆ and b⋆. This dependence becomes simpler in
the limit where for example a⋆ → 1 and b⋆ → 1. In this limit J1,2 ≡ j1,2/N

2 → ∞, and we get

S⋆ ∼ N2√3
(J1J2

2
)1/3

, R⋆ ∼ N2
(J1J2

2
)1/3

,
1

MSU(1,1|1)
∼ N2 2

3
(J1J2

2
)1/3

∼ 2R⋆
3 .

(3.78)
Since in this limit R⋆ ∼ N2O(J 2/3), we see that in defining j1,2, the contribution from R⋆

is subleading compared with J⋆1,2. Therefore in this limit we can also identify J1,2 with the
angular momentum along S3 ⊂ AdS5 directly.

3.6 The black hole spectrum including quantum corrections

The classical analysis above determined that the relevant effective theory which describes the
near-horizon region (as a function of the temperature and chemical potential) is the N = 2
super-Schwarzian theory. Following the conventions in section 2.3, the low-temperature
expansion of the action yields the coupling M−1

SU(1,1|1) in (3.76), as well as the r unit-charge
and θ-angle:

r = 1 , θ = 0 . (3.79)

Combining the classical analysis above with the quantum corrections from the Schwarzian
mode gives the following prediction for the mixed ensemble partition function from gravity:

Z(β, j1, j2, α) = e2πiαR⋆
e−βE0

∑
n∈Z

2 cos (π(α+ n))
π (1− 4(α+ n)2) e

S⋆+ 2π2
βMSU(1,1|1)

(1−4(α+n)2)
. (3.80)

As explained in section 2.1, if we work in an ensemble where we fix all charges except the one
that couples to the Schwarzian mode, the one-loop determinant coming from all additional
fields is a constant proportional to N#. These corrections were recently studied in the
context of AdS5 black holes in, for example, [104]. These appear in the exponential as logN
corrections. These will not be the focus of our discussion and therefore in the equation
above we absorbed them into S⋆ itself. Following 2.3, the quantum corrected partition
function can also be written

Z(β,j1,j2,α)=e−βE0e2πiαR⋆ ∑
ZSch∈Z

(
δZSch,0 e

S⋆ (3.81)

+
(
e2πiαZSch+e2πiα(ZSch−1)

)∫ ∞

Egap(ZSch)
dESche

−βESch
eS⋆ sinh

(
2π
√

2
MSU(1,1|1)

(ESch−Egap(ZSch))
)

2πESch

)
,

where we defined Egap(ZSch) =
MSU(1,1|1)

8 (ZSch − 1
2)2. We introduce in the equation above the

variables ESch and ZSch when performing the Laplace transform. These are to be interpreted
as the energy and charge respectively of the effective N = 2 Schwarzian mode arising in the IR.
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We can relate the Schwarzian charge and energy defined above to N = 4 Yang Mills data
in a simple way. First by taking into account in (3.81) the e2πiαR⋆ prefactor, and remembering
from the discussion in section 3.3 that α couples to R, we see the N = 4 Yang Mills R-charge
is shifted by R⋆ with respect to the Schwarzian charge. Second, we observe that temperature
in (3.81) couples to E0 + ESch. We can use E = E0 +∆ to relate the Schwarzian energy to
the N = 4 Yang Mills scaling dimension. It is useful to first define

∆BPS ≡ j1 + j2 +
1
2R

⋆, (3.82)

which is the scaling dimension of the 1/16-BPS extremal states. It is also useful to define the
scaling dimension obtained from imposing the supersymmetric constraints as

∆SUSY(R) ≡ j1 + j2 +
1
2R, (3.83)

with ∆SUSY(R⋆) = ∆BPS. Combining these definitions with the fact that temperature in
Z(β, j1, j2, α) couples to E − J1 − J2 − 1

2(R1 +R2 +R3) allows us to find ∆ in terms of ESch.
To summarize, the N = 4 Yang Mills data is given by

∆ = ∆BPS + ESch + 1
2ZSch, (3.84)

R = R⋆ + ZSch. (3.85)

Using this identification, we can interpret both lines of equation (3.81) in terms of the
spectrum of nearly 1/16-BPS states in N = 4 Yang Mills. The first line represent the
1/16-BPS states. They have ZSch = 0 and therefore R = R⋆ and ∆ = ∆BPS, and their
degeneracy is equal to exp (S⋆) in the large N limit. The superconformal index corresponds
to α = 1/2, and this only gets contributions from the BPS states since otherwise the two
states in the supermultiplet with charge ZSch and ZSch − 1 cancel in the second line of (3.81).
The answer then for the index is, as usually assumed, given by

I(β, j1, j2) ≡ eβE0Z(β, j1, j2, α = 1/2), (3.86)
= (−1)R⋆

eS
⋆(j1,j2). (3.87)

The first term is the overall sign depending on whether R⋆ is even or odd. Consequently, if
R⋆ is even we find that the BPS states are bosonic, while when R⋆ is odd we find that the
BPS states are fermionic. In either case, there is no cancellation (at least to this order in N)
in the superconformal index and thus the matching between the index and the entropy of
BPS black holes is accurate. The change in sign of the index as R⋆ goes from even to odd
was also observed explicitly in the boundary theory, in the calculations of [17].

Going beyond the BPS states, the second line of (3.81) gives the spectrum of non
supersymmetric black holes. These can be extremal or not. For example when R ̸= R⋆ the
spectrum presents extremal black holes when

∆extremal(R ̸= R⋆) = min±
[
∆BPS + 1

2

(
R−R⋆ + 1

2 ± 1
2

)
+
MSU(1,1|1)

8

(
R−R⋆ ± 1

2

)2
]
,

(3.88)
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-3 -2 -1 1 2 3 4

R−R⋆

∆−∆BPS

(b) R = R⋆

(a) Regions with black holes

(b) R = R⋆

(c) R ̸= R⋆

Figure 1. (a) The figure shows a sketch of the (R,∆) plane for fixed j1 and j2. The red region
indicates the forbidden region with ∆ < ∆SUSY(R). The vertical gray lines denote the continuum
sector of the black hole spectrum starting at the quantum corrected extremal value ∆extremal(R) for
R ̸= R⋆. The blue line denotes the classical extremality bound. When R = R⋆ the lightest black hole
has dimension ∆BPS (black dot) and then a continuum above a gap ∆gap. (b) Density of states with
charge R = R⋆ corresponding to the vertical line at the origin of figure a. (c) Density of state for
other charges R ̸= R⋆.

that have zero-temperature but are not supersymmetric and only when R = R⋆ the two notions
match ∆extremal(R = R⋆) = ∆BPS. The minimum is taken between the two supermultiplets
with charge R states. The degeneracy for these black holes predicted by (3.81) goes to zero
instead of being exponential in N2.19 The result for the energy of the extremal states should
be compared to the naive classical answer, which in an (R−R⋆)/R⋆ expansion is given by,

∆classical
extremal = ∆BPS + 1

2(R−R⋆) +
MSU(1,1|1)

8 (R−R⋆)2. (3.89)

Interestingly, for instance when R ≥ R⋆, the quantum corrected extremal energy in (3.88)
is lower than the naive classical value in (3.89).20 Having a quantum corrected energy
ground state below the extremality bound has a possible interpretation in the context of
the weak gravity conjecture [105]. While usually such corrections are seen to come from
higher-derivative terms in the action21 (which we will in fact discuss in section 3.7), in this
case, the correction comes from the temperature dependence of the one-loop determinant
in the gravitational path integral. We summarize all these results about the spectrum of
extremal black holes states in figure 1(a).

With the expression above we can derive the result quoted in the introduction regarding
the spectrum of black hole states in N = 4 Yang Mills for states with charge R = R⋆.

19This is similar to the behavior for non-supersymmetric black holes studied in [32].
20This also occurs for sufficiently negative values of R − R⋆.
21See [106] and references therein for a review.
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Figure 2. The energy above the supersymmetric bound (left column) and the entropy (right column)
as a function of temperature in the canonical ensemble with R = R⋆ (top line) and an example of
R ̸= R⋆ (bottom line). The black curve represents the result which includes quantum corrections,
while the blue curve is obtained by computing the naive semi-classical answer.

These come from the 1/16-BPS states counted by the first line of (3.81), but also from
supermultiplets in the second line with maximal R-charge R⋆ + 1. These states appear at
a scaling dimension in the range

∆ > ∆BPS +∆gap , with ∆gap ≡
MSU(1,1|1)

32 . (3.90)

From this expression we can determine the gap between the 1/16-BPS black hole and the
lowest black hole state with charge R⋆, which we denote by ∆gap. Using (3.76), the quantum
corrections at low energies in the gravitational path integral thus gives

∆gap = ∆̃(J1, J2)
N2 , ∆̃(J1, J2) =

(1− a∗) (1− b∗)
(
3a∗b∗ + 3a∗ + a∗2 + b∗2 + 3b∗ + 1

)
4 (a∗ + b∗)2 (3− a∗b∗ + a∗ + b∗)

,

(3.91)
where a⋆, b⋆ are functions of J1,2 ≡ j1,2/N

2 given above. Moreover, the density of states
at charge R⋆ above this gap is given by

ρ(∆, j1, j2,R⋆) = eS
⋆
δ(∆−∆BPS)+

eS
⋆ sinh

(
π

√
∆−∆BPS−∆gap

4∆gap

)
π(∆−∆BPS)

Θ(∆−∆BPS−∆gap),

(3.92)
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where S⋆, ∆gap and ∆BPS are the functions of j1 and j2 given above. A similar formula can be
rewritten for states with R ̸= R⋆, although the delta function is not present for these states

ρ(∆, j1, j2, R) =
eS

⋆ sinh
(
π

√
∆−∆extremal(R)

4∆gap

)
2π(∆−∆SUSY(R))

Θ(∆−∆extremal(R))

+
eS

⋆ sinh
(
π

√
∆−∆extremal(R+1)

4∆gap

)
2π(∆−∆SUSY(R+ 1)) Θ(∆−∆extremal(R+ 1)), (3.93)

where we have suppressed the dependence of all parameters on j1 and j2. For both cases, we
plot the results in figures 1(b) and (c). As in section 2.1, the continuum part of the density
of states (3.92) and (3.93) receives perturbative and non-perturbative corrections in N . We
expect that in the continuum region these corrections could lead to non-perturbative gaps
in the spectrum, which we expect to be exponentially small in N .

We can also compare the quantum corrected entropies and energies at fixed R with
corresponding semiclassical results. We show this in figure 2.

As a final comment, it is reasonable to ask whether there are other BPS states with
general charge R not necessarily equal to R⋆. There is evidence that there are BPS black
hole solutions with generic charges [107, 108]. These are found by incorporating scalar hair,
and can be interpreted as a black hole with a condensate of BPS particles outside the horizon.
The entropy of these solutions is expected to be subleading since they do not dominate the
superconformal index, but this deserves further study.

3.7 Type IIB string corrections to the Schwarzian Result

A basic essential feature of the original AdS/CFT correspondence between Type IIB string
theory on AdS5 ×S5 and N = 4 Super Yang-Mills is that there are two expansion parameters
on both sides of the duality. In the bulk, this is because there are two different length scales
corresponding to the string scale and the Planck scale:

L4
AdS5

ℓ4planck
∼ N ,

L4
AdS5

ℓ4string
∼ g2

YMN ≡ λ . (3.94)

With LAdS5 = 1, ℓstring =
√
α′, we have

G5 = π

2N2 ⇒ G10 = 8π6g2
s(α′)4 , gs =

g2
YM

2π , α′ = 1√
2g2
YMN

= 1√
2λ

.

(3.95)
In the preceding sections, we have analyzed the euclidean gravity partition function of
black holes only in the limit of N → ∞, λ → ∞. In the bulk, this is the limit of classical
supergravity with all higher derivative terms due to string corrections and loop corrections
suppressed. To our knowledge, this is the only limit in which the rotating black hole solutions
such as those in section 3.1 are known. The spectrum of these black holes in this limit is dual
to the spectrum of N = 4 SYM at large N and strong coupling. However, to first order in
the ‘t Hooft expansion, we can actually evaluate the first correction to the Schwarzian result
using only the leading gravity solution and knowledge of the corrected 10-dimensional action.
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In the 10D uplift of the black hole solution (3.53), the only IIB fields turned on are the
metric and the five form; therefore we may use the α′ corrected action:

SIIB = 1
16πG10

∫
d10x

√
G

(
R(10) −

1
4 · 5!(F5)2 + γW

)
, (3.96)

where in a particular scheme the 8-derivative term can be written in terms of the Weyl
tensor C and:

γ = π3

128ζ(3)(α
′)3 , W ∼ C4 + (supersymmetric completion) . (3.97)

In [109], the action of this form was used to compute corrections to the free energy of
the near-extremal D3-brane, but the full supersymmetric completion of W was not known.
Following earlier work of [110, 111], [112] found W to be a sum of 20 monomials built from
the Weyl tensor CMNPQ and a certain polynomial of derivatives of F5 denoted TMNPQRS .
In the application to AdS5 black holes, [113] carefully computed the effective action and its
valuation on the AdS5 black hole. In perturbation theory, the shift in the on-shell action due
to the new terms comes entirely from evaluating the leading solution on the perturbation [114],
and [113] found the final result in the case of equal rotation to be relatively simple:22

1
16πG10

γ

∫
W
∣∣∣
BH

= −α
′3

G5

3π4ζ(3)β(m+ q)2(m− q − 2aq)(m− q + 2aq)
2(1− a2) 1

2 (r2
+ + a2)15/2

. (3.98)

Evaluating this correction in the near-BPS limit in terms of N = 4 Yang Mills data we find

1
16πG10

γ

∫
W
∣∣∣
BH

=
2π2δMSU(1,1|1)
βM2

SU(1,1|1)
(1− 4α2) + . . . , (3.99)

δMSU(1,1|1)
MSU(1,1|1)

= − 1
λ3/2

3π3ζ(3)(1 + a∗)3(1− a∗)3/2

2a∗7/2(3− a∗)
, (3.100)

where MSU(1,1|1) ∼ N−2 is the answer found above in (3.76) evaluated at b∗ = a∗. From this
expression it is easy to find the correction to the gap δ∆gap = ∆gapδMSU(1,1|1)/MSU(1,1|1) ∼
N−2λ−3/2. To write a more explicit expression, we can take the limit 1 − a⋆ small, such
that J ≡ j1/N

2 = j2/N
2 ≫ 1. In this limit

∆gap(λ) = ∆gap(λ = ∞)
(
1− 1

λ3/2
12π3ζ(3)√

J
+ . . .

)
. (3.101)

In particular we find that the gap above the supersymmetric bound in figure 1(a) becomes
smaller due to α′ corrections and the extremal states deviate even further from their naive
classical value. As mentioned in the previous section, stringy corrections to the extremality
bound, in particular their sign (which in this case proved to be negative) are typically important
in the context of the weak gravity conjecture program (once again, see [106] for a review).

22The final expression given in equation 16 of [113] v2 is off by a factor of N−4. We thank J. Melo and J.
Santos for confirming it.

– 34 –



J
H
E
P
0
7
(
2
0
2
5
)
2
2
0

To get a sense about the importance of stringy corrections it is useful to compare their
magnitude to that of the quantum corrections discussed in section 3.6, when it comes to
the energy of the extremal black hole states. Writing

∆extremal = ∆BPS + 1
2(R−R⋆) + 4

(
∆gap + δ∆gap︸ ︷︷ ︸

Stringy
corrections

)(
R−R⋆ − 1

2︸ ︷︷ ︸
Schwarzian
quantum

corrections

)2
, (3.102)

for R > R⋆.23 In such a case, both the quantum corrections and the stringy corrections push
the extremal black hole states below the classical extremality bound. Nevertheless, when
it comes to the energy at extremality, the stringy corrections can become more important
then the Schwarzian quantum corrections, when

|δ∆gap|
∆gap

>
1

R−R⋆
. (3.103)

This can occur when we can scale R⋆ → ∞ while making R−R⋆ ≫ 1 with (R−R⋆)/R⋆ → 0.
Thus, the contribution of the Schwarzian quantum corrections and the stringy corrections to
the extremal energy could exchange dominance when R − R⋆ ∼ λ3/2.

4 Further examples: black holes in N = (2, 2) supergravity in AdS3

In this section we will consider a simpler theory with similar properties as those of the
one studied above. We consider (2, 2) supergravity in an asymptotically AdS3 spacetime.
Regardless of the matter content, it has rotating and charged black holes solutions which at low
temperatures, in a certain charge sector, also present an emergent SU(1, 1|1) symmetry in the
IR. We will show this is true using the Virasoro symmetry following the approach of [33, 115].

We will focus on the contribution from supergravity only. The reason is that the pure
gravity answer is universal and an approximation of the full spectrum for holographic theories,
either for large central charge [116] or for large angular momentum sector [117]. We will
focus mostly on the role that integer spectral flow has on the spectrum, using the technical
results derived in [118].

4.1 States and representations of 2D N = (2, 2) CFT

We consider a theory with a gravity sector in asymptotically AdS3 given by Chern-Simons
theory with group SU(1, 1|1)L × SU(1, 1|1)R, and an asymptotic symmetry algebra given
by N = (2, 2) Virasoro symmetry. The left- and right-mover generators contain a bosonic
Virasoro algebra generated by stress tensor TL and TR, the complex supercurrent G±

L and G±
R

and a U(1) current JL and JR. We denote the charges associated to the U(1) currents by QL
and QR respectively. The Virasoro central charge cL = cR = c is given by ĉ ≡ c/3 = 1+ 2b−2,
which defines the parameters ĉ and b.

We will consider this theory when the boundary is a complexified torus with moduli τ
and τ and define q = e2πiτ and q = e−2πiτ . We also introduce a chemical potential z and

23There is a similar expression for R < R⋆ which will lead to similar conclusions.
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z conjugated to the U(1) charges QL and QR. A state with charge (QL, QR) contributes
then with a weight yQLyQR , where we define y = e2πiz.

Before analyzing the black hole spectrum in this theory, we will first quickly review the
different types of representations of the (2, 2) Virasoro algebra that can appear. We will
describe the left-moving case in the NS sector for concreteness. A general representation
is labeled by a scaling dimension ∆ and charge Q. Unitarity implies ∆ > |Q|/2 and
0 ≤ |Q| < ĉ − 1. The character of this representation, after summing over descendants,
is given by

chNS(∆, Q; τ, z) = q∆− ĉ−1
8 yQ

θ3(τ, z)
η(τ)3 . (4.1)

When the bound on dimension is saturated ∆ = |Q|/2 and 0 < |Q| < ĉ, the representations
are BPS and preserve one supercharge. The character of these representations is given by

chNS(Q; τ, z) = q
|Q|
2 − ĉ−1

8 yQ
1

1 + ysgn(Q)q1/2
θ3(τ, z)
η(τ)3 . (4.2)

The denominator comes from the preserved supercharge. Finally, we have the vacuum
representation with ∆ = Q = 0, preserving two supercharges. The character is given by

chNS(τ, z) ≡ q−
ĉ−1

8
1− q

(1 + yq1/2)(1 + y−1q1/2)
θ3(q, y)
η(q)3 . (4.3)

The denominator comes form the preserved supersymetry, while the numerator comes from
the preserved SL(2,R) symmetry.

This can be extended to other sectors by simple transformations. First of all, we can
insert a (−1)F by simply shifting y → −y. We can also go to the Ramond sector by shifting
z → z + τ/2. In the next section, we will be interested in computing the partition function
with Ramond boundary conditions such that fermions are periodic along the spatial circle.
Since we will study black holes, this circle is not contractible.

4.2 Naive spectrum

We now move to computing the contribution to the black hole partition function from the
supergravity sector. We will study it in the RR sector, as explained above. This can be related
to the partition function in vacuum AdS3 by a modular transformation τ → −1/τ and z → z/τ .
After this transformation, the spatial direction becomes time-like and therefore it involves a
(−1)F insertion. On the other hand, time becomes space and the boundary conditions are
anti-periodic. Therefore the black hole partition function is given by the vacuum characters in
the NS sector, with a (−1)F insertion ZBTZ,RR = |e−iπ

ĉz2
τ chNS(−1/τ, z/τ+1/2)|2. The origin

of the prefactor is explained in [119]. After replacing the explicit form of this character we get

ZBTZ,RR = e
πi
τ

ĉ
4 (1−4z2)−πi

τ
ĉ
4 (1−4z2)

∣∣∣1− q′

η(q′)
1

η(q′)
θ3(q′,−y′)∏

±(1− y′±1q′1/2)

∣∣∣2, (4.4)

where q′ = e2πi(−1/τ) and y′ = e2πi(z/τ). The first term is the exponential of the classical
action on the black hole background. The second term is the one-loop determinant around
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this solution, where we wrote first the graviton contribution, then the U(1)R Chern-Simons
one, and finally that from the gravitini. This is exact for pure gravity, but also reproduces a
universal feature of the spectrum in the large central charge for holographic theories [116]
or large angular momentum for theories with a twist gap [117].

From this expression for the partition function, we can extract the black hole spectrum
expanding it in a sum over the characters introduced above. Explicitly, we define the density
of states from

ZBTZ,RR =
∑

EL,ER

∑
QL,QR

ρQL,QR
(EL, ER) chR(EL, QL; τ, z)chR(ER, QR; τ , z),

+
∑
ER

∑
QL,QR

ρQL,QR
(ER) chR(QL; τ, z)chR(ER, QR; τ , z) + (L ↔ R),

+
∑

QL,QR

ρQL,QR
chR(QL; τ, z)chR(QR; τ , z). (4.5)

We defined the energy of the states in terms of dimensions as E ≡ ∆− ĉ/8. There are three
types of terms from each line, the first involves left- and right-moving generic representations,
the second either left or right BPS representations, and the final one involves both left
and right BPS representations. To ease notation, the density of states in each sector is
differentiated only by the arguments in ρ.

The density of states as a function of charge and energy can be extracted from the
following modular transformation for the vacuum character

e−iπ
ĉz2

τ chNS(−1/τ, z/τ + 1/2) =
∫ ∞

0
dP

∫ ∞

−∞
dQS(P,Q)chR

( ĉ
8 + b2Q2

4 + P 2, Q; τ, z
)

+2
∫ 1

0
dQ sin [πQ]

∑
n∈Z

q
k
2n

2
yknchR(Q; τ, z + nτ) , (4.6)

where we defined following [120] the modular S-matrix

S(P,Q) ≡
sinh(2πbP ) sinh

(
2πP
b

)
b−1 sinh

(
πbP + iπb2ω

2

)
sinh

(
πbP − iπb

2Q
2

) . (4.7)

Taking the square of this expression we can compute ρQL,QR
(EL, ER) comparing with (4.5).

The answer for the fully degenerate states is given by a product of a left- and right-moving
modular S-matrices, together with the Jacobian appearing when replacing an integral over
P to an integral over energies. The full answer is

ρQL,QR
(EL, ER) =

sinh
(
2π
√

2
ĉ−1(EL − Q2

L

2(ĉ−1))
)
sinh

(
2π
√

ĉ−1
2 (EL − Q2

L

2(ĉ−1))
)

2
√

ĉ−1
2 (EL − Q2

L

2(ĉ−1))
∣∣∣ sinh (π√ 2

ĉ−1(EL − Q2
L

2(ĉ−1)) +
iπQL

ĉ−1

)∣∣∣2 × (L → R),

(4.8)
whenever EL/R > Q2

L/R/(2(ĉ− 1)) and zero otherwise. The energy spectrum is continuous
but which is fine since we believe that non-perturbative corrections could fix that.

However, the first issue is that the spectrum involves an integral over QL/R ∈ (−∞,+∞).
This corresponds to an R-symmetry group being R instead of U(1). This will be resolved
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in the next section by including additional saddles we so far ignored. This is the problem
that [118] address. A second issue is the contribution from the BPS states. We see that it
involves a sum over integer spectral flowed characters and its not clear how to interpret that
sector of the spectrum. The sum over saddles in the next section will correct both problems.

Before explaining the resolution of these issues we will take the near extremal limit of
the continuum part and show it matches the N = 2 Schwarzian answer. For theories with
large ĉ and at large ER and fixed EL ∼ O(1/ĉ) the density of states is

ρQL,QR
(EL, ER) ≈ eS0

sinh
(
2π
√
2Φr(EL − Q2

L
8Φr

)
)

2πEL
, (4.9)

where defined S0 = 2π
√

ĉ−1
2 (ER − Q2

R

2(ĉ−1)) and MSU(1,1|1) = 4/(ĉ − 1) to make a direct
comparison with the N = 2 JT gravity answer. Notice that given the standard 2D CFT
conventions, the N = 2 supermultiplet has charge assignment (Q+ 1/2)⊕ (Q− 1/2), and
therefore there is a shift of the charge ZSch = QCFT + 1/2 needed in order to match with
the Schwarzian answer.

4.3 Corrected spectrum

As emphasized in [118] this cannot be the whole story since the spectrum derived from this
partition function has a continuum value of charges. From the bulk perspective, we need to
sum over saddles that recover the discreteness of charge. From the boundary perspective,
we need to include the integer spectral flow generator as part of the algebra.

We will begin by describing the boundary perspective. The spectral flow generators Uη
are defined more generally, in terms of a real parameter η, by the following transformation
of the currents

U−1
η LnUη = Ln + ηJn +

ĉ

2η
2δ0,n, (4.10)

U−1
η JnUη = Jn + ĉηδ0,n, (4.11)

U−1
η G±

s Uη = G±
s±η. (4.12)

The extended algebra we will consider includes, besides the stress tensor, U(1) current and
supergenerators, the integer spectral flow generator U±1/r for integer 1/r ∈ Z. The reason
to parametrize this integer by r is to make a connection later with the spectrum described
in section 2.3. It was shown in [118] that the modular properties of representations of this
extended algebra are only consistent when the central charge has the form

ĉ = 1 + 2rk, k ∈ Z, (4.13)

where k is a positive integer that can be chosen independently of the integer 1/r. We will
see below that when this generator is included in the algebra the spectrum of charges is
fractional Q ∈ r · Z. Before showing that we will present the new set of extended characters,
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written in the NS sector for concreteness, given by

χNS(∆, Q, s; τ, z) =
∑

n∈s+r−1·Z
q

ĉn2
2 yĉnchNS(∆, Q; τ, z + nτ), (4.14)

χNS(Q, s; τ, z) =
∑

n∈s+r−1·Z
q

ĉn2
2 yĉnchNS(Q; τ, z + nτ), (4.15)

χNS(s; τ, z) =
∑

n∈s+r−1·Z
q

ĉn2
2 yĉnchNS(τ, z + nτ), (4.16)

for generic BPS and vacuum representations respectively. The states are further parametrized
by an integer s ∈ Z1/r. Similar formulas can be written for the R sector, and including a
(−1)F , after performing half-integer spectral flow and shifting y → −y respectevely.

So far we discussed the boundary theory. In the bulk theory, the choice of r corresponds
to the choice of the size of U(1)R. Picking the correct gauge group is not trivial since it
determines the allowed gauge transformations and therefore which set of saddles are to be
considered gauge equivalent or not. When we fix r, a new set of saddles appears under the
shift of the chemical potential z → z + n, for n ∈ r−1 · Z. These saddles have the same
boundary conditions as n = 0 up to a global gauge transformation. The sum over these
saddles is equivalent to implementing the sum over integer spectral flow. For BTZ in the
RR sector we have ZBTZ,RR = |e−iπ

ĉz2
τ χNS(0;−1/τ, z/τ + 1/2)|2. This can again be written

explicitly in a way that makes it bulk interpretations clear. The partition function is give by

ZBTZ,RR =
∑

n,n∈r−1·Z
e

πi
τ

ĉ
4 (1−4(z+n)2)−πi

τ
ĉ
4 (1−4(z+n)2)

∣∣∣1− q′

η(q′)
1

η(q′)
θ3(q′,−y′q′n)∏

±(1− y′±1q′±nq′1/2)

∣∣∣2.
(4.17)

Again the first term is the exponential of the classical action, while the second term is the
one-loop determinant in the new saddles.

As mentioned above, it was shown in [118] that the extended characters have consistent
modular transformations when the central charge is fractional. For the vacuum representation
case that we need their result is

e−iπ
ĉz2

τ χNS(0;−1/τ, z/τ + 1/2) =
∫ ∞

0
dP

∑
Q∈r·Z

ĉ−1

r S(P,Q) χR
( ĉ
8 + b2Q2

4 + P 2, Q, 0; τ, z
)

+
∑

Q∈r·Z
ĉ−1

,0<Q<1
2r sin [πQ]

∑
r∈ZN

χR(Q, r; τ, z), (4.18)

where S(P,Q) is the same function defined above. Now we see that both problems are
resolved. The charge spectrum is discrete with a fractional unit charge r and the modular
transformation involves the same representations that are allowed by the extended algebra.
The overall factor of r in the right-hand side is required to reproduce (4.6) in the r → 0 limit.

Having the modular properties of the vacuum character of the extended algebra, we can
extract the improved spectrum for a finite fractional charge r. First of all it is easy to see that
other than the fact that charge is discrete the continuum density of states ρQL,QR

(EL, ER)
is exactly the same as in the previous case (4.8), up to an extra factor of r from (4.18)
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and the final answer is

ρQL,QR
(EL, ER) = r

sinh
(
2π
√

2
ĉ−1(EL − Q2

L

2(ĉ−1))
)
sinh

(
2π
√

ĉ−1
2 (EL − Q2

L

2(ĉ−1))
)

2
√

ĉ−1
2 (EL − Q2

L

2(ĉ−1))
∣∣∣ sinh (π√ 2

ĉ−1(EL − Q2
L

2(ĉ−1)) +
iπQL

ĉ−1

)∣∣∣2 × (L → R),

(4.19)
whenever EL/R > Q2

L/R/(2(ĉ − 1)) and QL/R ∈ r · Zĉ−1 and zero otherwise. In the near
extremal limit, at large ĉ, this is exactly the same as the N = 2 Schwarzian answer with
coupling MSU(1,1|1) = 2/(rk), for large k. Moreover, the answer is still universal either
for holographic theories at large ĉ [116] or any theory with a twist gap at large angular
momentum [117]. We can also extract the density of states of BPS states, when either ER = 0
or EL = 0, from the black hole spectrum. Then answer when ER = 0 is

ρQL,QR
(ER) = 2r sin(πQL) 2r

sinh
(
2π
√

2
ĉ−1(ER − Q2

R

2(ĉ−1))
)
sinh

(
2π
√

ĉ−1
2 (ER − Q2

R

2(ĉ−1))
)

2
√

ĉ−1
2 (ER − Q2

R

2(ĉ−1))
∣∣∣ sinh (π√ 2

ĉ−1(ER − Q2
R

2(ĉ−1)) +
iπQR

ĉ−1

)∣∣∣2
(4.20)

The answer when EL = 0 is completely analogous. In the near extremal limit with large ER,
we reproduce the Schwarzian theory answer ρQL,QR

(ER) ≈ eS02r sin(πQL) where S0 is the
same function of ER and QR as defined in the previous section. Finally we can look at full
BPS states with EL = ER = 0. The answer for pure N = (2, 2) gravity is

ρQL,QR
= 2r sin(πQL) 2r sin(πQR). (4.21)

This example is beyond the near extremal regime and therefore is not universal for N = (2, 2)
CFTs either from the regime considered by [116] nor [117].

The elliptic genus of these theories vanishes. This can be resolved by defining a refined
elliptic genus analogous to [38], assuming an exact Z1/r symmetry. The situation simplifies
when r = 1, since in that case BPS states come only with zero charge and the usual elliptic
genus does not vanish anymore.

Finally, even though this discussion has been done for the case of N = (2, 2) super-
symmetry, this can be generalized to cases with N = (0, 2) using the results of [115] or
N = (4, 2) using [33].

5 Discussion and future work

In this paper, we have argued that the spectrum of 1/16-BPS and near-1/16-BPS black
holes can be obtained by studying the appropriate version of the N = 2 super-Schwarzian
theory. From this, we have shown that the gravitational path integral correctly reproduces
the degeneracies and charges of BPS states in N = 4 super Yang-Mills, while at the same
time predicting various gaps between these BPS states and a “dense set” of near-BPS black
hole states. Above this gap we find a continuum of states (to leading order in S0) and predict
what the density of states in this region is. There are however numerous open questions,
some of which we hope to address in future work.
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Extension to theories with less supersymmetry. We expect similar conclusions to hold
about the spectrum of BPS and near-BPS black holes in bulk theories with less supersymmetry.
For example, one can consider type IIB string theory in a spacetime that is asymptotically
AdS5 ×M5, where M5 is a Sasaki-Einstein space. For each such M5, the bulk has a dual
description in terms of a four-dimensional N = 1 superconformal field theory. The BPS and
near-BPS black hole solutions reviewed in section 3.1 and 3.2 are also valid in a space that is
asymptotically AdS5×M5 [121, 122]; however, in contrast to the case discussed in 3.1 the bulk
does not have an SO(6) R-symmetry gauge field with the three Cartans whose eigenvalues
we labeled by R1,2,3, but instead generically has a single U(1) R-symmetry gauge field. Since
in section 3.3 – 3.5 we have solely focused on the case when R1,2,3 = R, the analysis of the
isometry of the near-horizon region as well as that of the low-temperature expansion of the
on-shell action should similarly hold for theories in AdS5 ×M5. Consequently, we expect
that the spectrum of near-BPS black holes is also controlled by the N = 2 super-Schwarzian
theory. Nevertheless, a detailed check, regarding the correct value of r and θ-angle, needs to
be performed in order to be certain that the spectrum is described by precisely the same
super-Schwarzian theory for all Sasaki-Einstein spaces.

Non-perturbative corrections. In this paper we have focused on the leading quantum
corrections around the leading near-BPS black hole geometry in AdS5×S5 with a nearly AdS2
throat. When computing quantities not protected by supersymmetry, such as the partition
function with all chemical potentials turned on, there can be a variety of non-perturbative
geometries contributing, including for example spacetime wormholes.

The situation from the perspective of the gravitational path integral is different when
computing protected quantities such as the index [82] or even some quantities that are not
protected by supersymmetry, such as the zero temperature partition function which yields the
degeneracy of 1/16-BPS states. In that case, we expect a reduced number of geometries to
contribute when they preserve supersymmetry. These have been considered in [82] in the case
of throats with emergent PSU(1, 1|2) symmetry (in contrast to the SU(1, 1|1) near-horizon
geometry considered in this paper), where it was shown quantum corrections are described
by a deformation of the N = 4 Super-Schwarzian theory. This result from the N = 4
Super-Schwarzian theory is consistent with examples of black holes in type IIA where the
exact index was shown to be reproduced by a sum over these orbifolds [123].

Nevertheless, similar results should hold for the black holes discussed in this paper due
to similarities between the effective theory of N = 2 JT gravity found in this paper and
N = 4 JT gravity analyzed in [82]. Both theories have vacuum BPS states, all with the same
spin-statistics, that are separated by a gap for the lightest near-BPS states. In both cases,
even though the boundary conditions are supersymmetric for α = 1/2, the only geometry
which preserves supersymmetry in the bulk is the one with n = 0 (for the case discussed in
this paper, see (3.80)). A similar calculation as that in [82] shows that, from the perspective of
the near-horizon geometry, the only other geometries preserving supersymmetry in N = 2 JT
gravity are particular orbifolds of AdS2 (these were considered in bosonic gravity previously
in [124–126]). In particular, the contribution of higher genus geometries or, more broadly,
any near-horizon geometry that involves spacetime wormhole can be seen to vanish in N = 2
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S3 S5

̸= 0 = 0 .

Figure 3. Possible non-perturbative contributions to the index of black holes in AdS5 × S5. Using
N = 2 super-JT gravity one can show that all geometries involving “spacetime wormholes”, such
as the one on the right side, vanish. The only surviving contributions are orbifolds of the original
AdS2 × S3 × S5 near-horizon geometry which we show on the left side. In such a case the angle of the
defect, the rotation on S3 and that on S5 are all related in order for supersymmetry to be preserved
and for the spacetime to be smooth. These geometries were also explicitly seen in [25] as subleading
corrections to the superconformal index.

JT gravity. Consequently, in the full gravitational path integral only orbifolds of AdS2 that
can be uplifted to smooth AdS2 × S3 × S5 geometries contribute.

Have these geometries already been observed from the boundary side? When expanding
the N = 4 Yang Mills superconformal index in large N , while the leading contribution is
given by the black hole considered in section 3.1, there are subleading contributions which
corresponds to supersymmetric orbifolds of the black hole geometry [25]. We leave a detailed
comparison of these contributions, including the effect of the N = 2 super-JT one-loop
determinant, for future work. We should however stress that as opposed to the case in [123],
which have a PSU(1, 1|2) near-horizon isometry, for the superconformal index in N = 4 Yang
Mills there are contributions at large N which cannot be interpreted as orbifolds of the black
hole [25], such as contributions from wrapped D-branes or black hole solutions which are
yet unknown. It would be interesting to investigate if these non-perturbative corrections
can be analyzed also in the context of the near-BPS limit.

Beyond computing the index, the effect of geometries of higher topology or with a larger
number of defects in the near-horizon region (from higher-dimensional generalizations of
Seifert geometries [125]) on the N = 2 super-JT path integral, shows that a gap is present in
the spectrum associated to each specific geometry.24 While such geometries are off-shell (for
example, the equation of motion for the dilaton cannot be satisfied on such geometries [99])
they can nevertheless be systematically accounted for using the sum over topologies in the
N = 2 super-JT path integral. Thus, when summing over all geometries we expect that they
might yield non-perturbative corrections (in N2) to the value of the gap, but will not affect
its existence by inserting additional states between the extremal BPS state and the lightest
near-BPS black hole state coming from the original black hole saddle.

One can additionally discuss non-perturbative effects coming from different (possibly
supersymmetric) black hole solutions which have not yet been understood analytically. For
instance, as previously mentioned, [107, 108] found numerical evidence for black hole solutions

24The gap was also found to persist when accounting for other topologies in the N = 4 super-JT path
integral [82].
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that support scalar hair and can be supersymmetric even away from R ̸= R⋆. Such black
holes would yield corrections to the spectrum found in figure 1 that would, once again, be
non-perturbatively suppressed in N2. Nevertheless, one might hope to analyze such solutions
at low-temperatures in Euclidean signature where we expect there to still be an AdS2×S3×S5

near-horizon region. If at extremality the near-horizon super-isometry is still SU(1, 1|1), we
expect that the temperature dependence of quantum corrections around these new saddles
still be captured by the N = 2 super-Schwarzian. Thus, we expect that even if sectors with
R ̸= R⋆ are populated by new BPS solutions, energy gaps should still be present within each
charge sector; moreover, even if the degeneracy of the 1/16-BPS black states that we have
found in the R = R⋆ sector is affected by such non-perturbative corrections coming from
hairy black holes, the gap should be unaffected within that charged sector.

Thus, this (albeit incomplete) accounting for possible gravitational non-perturbative
effects, all of which preserve the existence of the mass gap, along with the fact that the
leading order stringy corrections also did not affect its present, prompts us to conjecture that
the gap persists within each large charge sector of N = 4 Yang-Mills.

An effective field theory for near-BPS states from the boundary-side. We derived
the spectrum of nearly 1/16-BPS black hole states from a bulk AdS5 × S5 calculation. Due
to AdS/CFT, this makes a prediction for the spectrum of N = 4 Yang Mills. This raises the
question of how to derive the same spectrum from an independent boundary CFT argument.
This would be an extremely non-trivial check of holography that would help understand
quantum aspects of gravity in these black hole backgrounds better. At weak ’t Hooft coupling
some of the states with the black hole quantum numbers were constructed in [80, 81] in
the limit of large spin J/N2 ≫ 1, and some interaction effects were considered. We leave
for future work to identify the most relevant interactions in this limit, and to derive the
emergence of a softly broken SU(1, 1|1) symmetry. This would give the first example of
a quantum theory describing a local nearly AdS2 background, as opposed to SYK which
describes a highly non-local bulk.
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A Details on the low temperature expansion

In this section we explain in more details how to expand the action

IME(β, j1, j2, α) = IGCE(q1 = 0, q2 = 0, j1, j2, α) + 2πiω1j1 + 2πiω2j2, (A.1)

around its BPS limit [42]. We start with introducing four expansion parameters (ϵr, ϵq, ϵa, ϵb)
such that

r2
+ = r∗2 + ϵr, q = q∗ + ϵq, a = a∗ + ϵa, b = b∗ + ϵb, (A.2)

where parameters (a∗, b∗) are defined through the BPS configuration of fixed charges

j1(a∗, b∗) =
π (a∗ + b∗) (a∗ + 1) (b∗ + 1)

4G5 (a∗ − 1)2 (1− b∗)
, j2(a∗, b∗) =

π (a∗ + b∗) (a∗ + 1) (b∗ + 1)
4G5 (1− a∗) (b∗ − 1)2 . (A.3)

We want to perform the expansion in such a way that the variables (T, φ, j1, j2) are fixed.
This imposes the following four relations, since the fixed parameters in the PCE ensemble are:

φ = φ(r+, q, a, b), T = T (r+, q, a, b), j1(a∗, b∗) = j1(r+, q, a, b), j2(a∗, b∗) = j2(r+, q, a, b).
(A.4)

Using these relations, we can now express the expansion parameters (ϵr, ϵq, ϵa, ϵb) in terms
of (T, φ). For our purposes, it will be enough to work to second order in ϵ’s. Inverting the
above relations order by order, we find solutions in the form

ϵX = ϵX,φφ+ ϵX,TT + ϵX,φ2φ2 + ϵX,T 2T 2 + ϵX,φT (φT ) , (A.5)

where X = r, q, a or b. The first order coefficients are given through

ϵr,φφ+ ϵr,TT =
(a∗ + b∗) (a∗ + 1) (b∗ + 1)

(
2πT

√
a∗b∗ + a∗ + b∗ + φ (a∗b∗ + a∗ + b∗)

)
2
(
3a∗ (b∗ + 1) + (a∗)2 + (b∗)2 + 3b∗ + 1

) ,

(A.6)

ϵq,φφ+ ϵq,TT = 3φ (a∗ + b∗)2 (a∗ + 1)2 (b∗ + 1)2

4
(
3a∗ (b∗ + 1) + (a∗)2 + (b∗)2 + 3b∗ + 1

) , (A.7)

ϵa,φφ+ ϵa,TT = φ (a∗ + b∗) (a∗ − 1) (a∗ + 1) (b∗ + 1)
4
(
3a∗ (b∗ + 1) + (a∗)2 + (b∗)2 + 3b∗ + 1

) , (A.8)

ϵb,φφ+ ϵb,TT = φ (a∗ + b∗) (a∗ + 1) (b∗ − 1) (b∗ + 1)
4
(
3a∗ (b∗ + 1) + (a∗)2 + (b∗)2 + 3b∗ + 1

) . (A.9)

Following the same logic we derive second order coefficients. Their form is more complicated
for general (a∗, b∗). For reader’s convenience we provide simplified formulas for the case
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a∗ = b∗ as a potential check

ϵr,φ2 = a∗2 (15a∗5 + 35a∗4 + 24a∗3 − 28a∗2 + a∗ + 1
)

4 (5a∗ + 1) 3 , (A.10)

ϵr,φT = 3πa∗2 (a∗ + 1) 3√a∗ (a∗ + 2)
(5a∗ + 1) 3 , (A.11)

ϵr,T 2 = 4π2a∗2 (a∗4 + 7a∗3 + 5a∗2 + 9a∗ + 2
)

(5a∗ + 1) 3 , (A.12)

ϵq,φ2 = a∗3 (30a∗5 + 84a∗4 + 105a∗3 + 7a∗2 − 11a∗ + 1
)

2 (5a∗ + 1) 3 , (A.13)

ϵq,φT = −3πa∗3 (a∗ + 1) 3 (7a∗2 − 10a∗ − 3
)√

a∗ (a∗ + 2) (5a∗ + 1) 3 , (A.14)

ϵq,T 2 = 2π2a∗3 (6a∗4 + 51a∗3 + 13a∗2 + a∗ + 1
)

(5a∗ + 1) 3 , (A.15)

ϵa,φ2 = (a∗ − 1) 2a∗3 (5a∗2 + 7a∗ + 6
)

4 (a∗ + 1) (5a∗ + 1) 3 , (A.16)

ϵa,φT = −π (a
∗ − 1) a∗2 (a∗ + 1)

(
7a∗2 − 10a∗ − 3

)
2
√
a∗ (a∗ + 2) (5a∗ + 1) 3 , (A.17)

ϵa,T 2 = π2 (a∗ − 1) a∗2 (2a∗3 + 15a∗2 + 6a∗ + 1
)

(a∗ + 1) (5a∗ + 1) 3 , (A.18)

ϵb,φ2 = (a∗ − 1) 2a∗3 (5a∗2 + 7a∗ + 6
)

4 (a∗ + 1) (5a∗ + 1) 3 , (A.19)

ϵb,φT = −π (a
∗ − 1) a∗2 (a∗ + 1)

(
7a∗2 − 10a∗ − 3

)
2
√
a∗ (a∗ + 2) (5a∗ + 1) 3 , (A.20)

ϵb,T 2 = π2 (a∗ − 1) a∗2 (2a∗3 + 15a∗2 + 6a∗ + 1
)

(a∗ + 1) (5a∗ + 1) 3 . (A.21)

With this we can now expand the quantity of interest to second order in (ϵr, ϵq, ϵa, ϵb) and
insert the relations (ϵr(T, φ), ϵq(T, φ), ϵa(T, φ), ϵb(T, φ)) derived above. As a last step, in
the resulting expansion we keep only terms up to second order in (φ, T ) (to get to higher
orders we would also need to solve for ϵ’s to higher order). Applying this to procedure to
our partial canonical action leads us to the result (3.73).

B Details on Killing spinors

In this section we verify explicitly the Killing spinors (3.57) and Killing vectors (3.58)–(3.62)
of the near-horizon geometry lifted to ten-dimensions (3.53). This has been first derived
in [37]. Here we review the construction in order to account for differences in conventions
and provide reader with necessary formulas.
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Lets recall that we work with a ten dimensional lift [72, 90]

ds2
10 = ds2

5 +
3∑
i=1

[
dµ2

i + µ2
i

(
dξi −

2
3A
)2
]
, (B.1)

F (5) = (1 + ∗(10))
[
−4 vol(5) −

1
3

3∑
i=1

d(µ2
i ) ∧ dξi ∧ ∗(5)F

(2)
]
, (B.2)

where the Hodge star is defined as ∗(n)ωµ1...µn−p = 1
p!ϵ

ν1...νp
µ1...µn−p ων1...νp , and we work with

ϵ0123456789 = ϵ01234 = 1. We introduced

µ1 = sin α̃, µ2 = cos α̃ sin β̃, µ3 = cos α̃ cos β̃, (B.3)

and the angles which parametrize the S5 are α̃ ∈ [0, π2 ], β̃ ∈ [0, π2 ], ξi ∈ [0, 2π]. The
near-horizon 5d metric and the gauge field are given by25

ds2
5 =

(
ω

2λ

)2
(
−r2dt2 + dr2

r2

)
+ 3

(
ω2

4 σ
L
3 + ω

4λrdt
)2

+ ω2dΩ2
3, (B.4)

A = −3
2

(
ω2

4 σ
L
3 + ω

4λrdt
)
. (B.5)

In the above dΩ2
3 = dθ2+cos2 θdψ̃2+sin2 θdϕ̃2 is the metric on S3, σL3 = 2(cos2 θdψ̃+sin2 θdϕ̃),

ν̃ = a cos2 θdψ̃ + a sin2 θdϕ̃, and the parameters are given through a as

λ =
√
1 + 3ω2, ω =

√
2a√

1− a
. (B.6)

We work with corotating angles (ψ̃, ϕ̃), related to original coordinates via ψ = ψ̃+ t, ϕ = ϕ̃+ t.
The 5d tetrads of the near-horizon metric are given by

e0 = ωrdt

4λ − 3
2ω

2
(
cos2 θdψ̃ + sin2 θdϕ̃

)
, (B.7)

e1 = ωdr

2λr , (B.8)

e2 = 1
2ω sin(2θ)(dψ̃ − dϕ̃) sin(ψ̃ + ϕ̃) + ωdθ cos(ψ̃ + ϕ̃), (B.9)

e3 = 1
2ω sin(2θ)(dψ̃ − dϕ̃) cos(ψ̃ + ϕ̃)− ωdθ sin(ψ̃ + ϕ̃), (B.10)

e4 = λω
(
cos2 θdψ̃ + sin2 θdϕ̃

)
. (B.11)

For tetrads in the lifted 10d metric, in addition to the above tetrads, we also have

e5 = dα̃, (B.12)
e6 = cos α̃dβ̃, (B.13)

e7 = sin α̃ cos α̃
(
dξ1 − sin2 β̃dξ2 − cos2 β̃dξ3

)
, (B.14)

e8 = cos α̃ sin β̃ cos β̃(dξ2 − dξ3), (B.15)

e9 = − cos2 α̃
(
sin2 β̃dξ2 + cos2 β̃dξ3

)
− sin2 α̃dξ1 +

2A
3 . (B.16)

25The relation between the near-horizon gauge field used here and the one used in [37] is Ahere = −
√

3Athere.
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In this basis, the electromagnetic fields are explicitly given by

F (2) = −3
2

(
3e1 ∧ e4 − 2λ

ω
e0 ∧ e1 − e2 ∧ e3

)
, (B.17)

F (5) = −4(e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8 ∧ e9) (B.18)

− 2
3(e

5 ∧ e7 + e6 ∧ e8) ∧ (∗(5)F
(2) − e9 ∧ F (2)). (B.19)

Our goal is to verify the solutions to the Killing spinor equation

∇̂M ϵK ≡
(
∂M + 1

4ωMABΓAΓB
)
ϵK + i

1920F
(5)
A1A2A3A4A5

ΓA1A2A3A4A5ΓM ϵK = 0. (B.20)

Here M,N denotes spacetime indices and Ai, Bi denotes frame indices; ϵK = ϵR + iϵI where
ϵR, ϵI are both Majorana-Weyl spinors satisfying the chirality condition

Γ11ϵK ≡ Γ0Γ1 . . .Γ9ϵK = ϵK . (B.21)

A common strategy for solving the Killing spinor equation, is to first use the algebraic
integrability condition [∇̂M1 , ∇̂N1 ]ϵK = 0 to restrict the space of possible solutions, and
then solve a simplified Killing spinor equation on the restricted subspace. In our case, the
integrability condition takes the form [91][

RM1N1S1S2 −
1
48F

(5)
M1S1R1R2R3

F
(5) R1R2R3
N1S2

]
ΓS1S2ϵK

+
[
i

24∇[M1F
(5)
N1]S1S2S3S4

+ 1
96F

(5)
M1N1R1R2S1

F
(5)R1R2

S2S3S4

]
ΓS1S2S3S4ϵK = 0. (B.22)

This implies the following projection conditions

Γ23ϵK = −iϵK , Γ57ϵK = −iϵK , Γ0149ϵK = iϵK . (B.23)

Let us now choose a general constant spinor ϵ0 = ϵ0,R + iϵ0,I , subject to all four of the above
projection conditions. Such a spinor is now labeled by four independent real parameters. We
can split it into two chiralities under projector P± = 1

2(1 ± Γ09) such that

ϵ0 = ϵ+0 + ϵ−0 , Γ09ϵ±0 = ∓ϵ±0 . (B.24)

With these definitions, one can now verify that two independent spinors

ϵ1 =
√

8λ
ω2r

e−
i
2 (ξ1+ξ2+ξ3)

[
ϵ+0 −

(
irt

2 + 3ω
2λ

)
Γ4Γ9ϵ+0

]
, (B.25)

ϵ2 =

√
ω2r

8λ e
− i

2 (ξ1+ξ2+ξ3)ϵ−0 , (B.26)

satisfy the Killing spinor equation. Because the above spinors are labeled by four independent
real parameters, we conclude that the 10d lift of the near-horizon geometry preserves
four supersymmetries. Note that this is in contrast with the full black hole geometry,
which preserves only two supersymmetries [91]. This means that there is a supersymmetry
enhancement in the near-horizon region.
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Knowing the Killing spinors of the near-horizon geometry, we can now find its Killing
vectors by computing independent Killing spinor bilinears

(ϵIΓAϵJ)ẽA, (B.27)

where ẽa denotes the dual tetrad basis, explicitly given by

ẽ0 = 4λ∂t − rω(∂ξ1 + ∂ξ2 + ∂ξ3)
rω

, (B.28)

ẽ1 = 2λr∂r
ω

, (B.29)

ẽ2 =
cos(ψ̃ + ϕ̃)∂θ + tan θ sin(ψ̃ + ϕ̃)

(
∂ψ̃ − cot2 θ ∂ϕ̃

)
ω

, (B.30)

ẽ3 =
− sin(ψ̃ + ϕ̃)∂θ + tan θ cos(ψ̃ + ϕ̃)∂ψ̃ − cot θ cos(ψ̃ + ϕ̃)∂ϕ̃

ω
, (B.31)

ẽ4 = 6∂t
r

+
−2ω2(∂ξ1 + ∂ξ2 + ∂ξ3) + ∂ψ̃ + ∂ϕ̃

λω
, (B.32)

together with

ẽ5 = ∂α̃, (B.33)
ẽ6 = secα̃ ∂β̃ , (B.34)

ẽ7 = 1
4 sin2(2α̃)

(
csc3 α̃ secα̃ ∂ξ1 − csc α̃ sec3α̃ (∂ξ2 + ∂ξ3)

)
, (B.35)

ẽ8 = secα̃ cot β̃∂ξ2 − secα̃ tan β̃∂ξ3 , (B.36)
ẽ9 = −∂ξ1 − ∂ξ2 − ∂ξ3 . (B.37)

The bilinears are found to be

(ϵ2ΓAϵ1)ẽA = ϵ−0 Γ4ϵ+0
2iλ
ω

(Z +D) = Z +D, (B.38)

(ϵ1ΓAϵ2)ẽA = ϵ+0 Γ4ϵ−0
2iλ
ω

(Z −D) = Z −D, (B.39)

(ϵ2ΓAϵ2)ẽA = ϵ−0 Γ0ϵ−0
2iλ
ω
E+ = E+, (B.40)

(ϵ1ΓAϵ1)ẽA = ϵ+0 Γ0ϵ+0
2iλ
ω
E− = E−, (B.41)

where we have chosen a specific normalization for constant spinors ϵ±0 and introduced four
independent Killing vectors (Z, D,E+, E−). They are defined as

D = −t∂t + r∂r, (B.42)

Z = iω2

λ2 (∂ξ1 + ∂ξ2 + ∂ξ3)−
i

2λ2 (∂ϕ̃ + ∂ψ̃), (B.43)

E+ = − iω
2

4λ ∂t, (B.44)

E− = 8iλ
ω2 rt∂r +

(
−4iλ
ω2 t

2 + 4i(9ω2 − 4λ2)
ω2λ

1
r2

)
∂t (B.45)

+ 8i
λ2ω

1
r
(∂ξ1 + ∂ξ2 + ∂ξ3) +

12i
λ2ω

1
r
(∂ϕ̃ + ∂ψ̃). (B.46)
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With these definitions one can verify the algebra

[D,E±] = ±E±, [D,Z] = 0, (B.47)
[Z, E±] = 0, [E+, E−] = 2D, (B.48)

which allows us to identify (D,E+, E−) as SL(2,R) generators and Z as the U(1) generator
of R-symmetry.

We are now in a position to fully determine the isometry superalgebra of the near-
horizon geometry [93–96]. A standard prescription is to associate bosonic generators QB(ki)
and fermionic generators QF (ϵI) to Killing vectors and Killing spinors respectively. The
superalgebra is then determined from the relations

[QB(ki),QB(kj)] = QB([ki, kj ]), (B.49)
[QB(k),QF (ϵ)] = QF (Lkϵ), (B.50)

{QF (ϵI),QF (ϵJ)} = QB(ϵIγϵJ), (B.51)

where we introduced the spinorial Lie derivative [96] through which Killing vectors act on
Killing spinors

Lkϵ = kM
(
∂M ϵ+

1
4ωMABΓAΓBϵ

)
+ 1

4D[AkB]ΓAΓAϵ. (B.52)

In the above ωMAB denotes the spin connection, and

DAkB = ẽMA (∂MkB − ω C
M BkC). (B.53)

From (B.49) we immediately read off the bosonic part of isometry algebra as (B.47), (B.48).
Similarly, (B.51) together with (B.38)–(B.41) imply non-vanishing anticommutators

{Q2,Q1} = Z +D, {Q1,Q2} = Z −D, (B.54)
{Q2,Q2} = E+, {Q1,Q1} = E−. (B.55)

Lastly, to determine the commutators of bosonic and fermionic generators we can either
compute the spinorial Lie derivatives or try to solve the super Jacobi identity. Here we
take the former approach. The Lie derivatives of the Killing spinors in the directions of
Killing vectors are found to be

LZϵ1 = 1
2ϵ1, LZϵ1 = −1

2ϵ1, LZϵ2 = 1
2ϵ2, LZϵ2 = −1

2ϵ2, (B.56)

LDϵ1 = −1
2ϵ1, LDϵ1 = −1

2ϵ1, LDϵ2 = 1
2ϵ2, LDϵ2 = 1

2ϵ2, (B.57)

LE+ϵ1 = −ϵ2, LE+ϵ1 = ϵ2, LE+ϵ2 = 0, LE+ϵ2 = 0, (B.58)
LE−ϵ1 = 0, LE−ϵ1 = 0, LE−ϵ2 = −ϵ1, LE−ϵ2 = ϵ1, (B.59)

from which we identify commutation relations

[Q1,Z] = −1
2Q1, [Q1,Z] = 1

2Q1, [Q2,Z] = −1
2Q2, [Q2,Z] = 1

2Q2, (B.60)

[Q1, D] = 1
2Q1, [Q1, D] = 1

2Q1, [Q2, D] = −1
2Q2, [Q2, D] = −1

2Q2, (B.61)

[Q1, E+] = Q2, [Q1, E+] = −Q2, [Q2, E+] = 0, [Q2, E+] = 0, (B.62)
[Q1, E−] = 0, [Q1, E−] = 0, [Q2, E−] = Q1, [Q2, E−] = −Q1, (B.63)
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As a consistency check, we can verify that the above superalgebra indeed satisfies the super
Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0, (B.64)

where one has to choose |x| = 0 for bosonic and |x| = 1 for fermionic generators, and the
(anti)commutators are defined through

[x, y] = −(−1)|x||y|[y, x]. (B.65)
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