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A b s t r a c t  

W e  study ordered vector  spaces  which  are at  the  s a m e  t i m e  Lie a lgebras  and  sat i s fy  

certain compatibility conditions between the algebraic and the order structure. The 
main point is that the ordering of the Lie algebra is completely determined by the 
induced ordering on a Caftan algebra. 

I n t r o d u c t i o n  

A physical quantity in quantum mechanics is usually described by a self- 
adjoint operator  in Hilbert space. All the information on the physical properties 
is provided by the  spectral resolution of the corresponding operator.  The  quanti- 
ties of a whole physical system are then  described by the  space A of self adjoint 
elements in a C*-algebra. Alfsen and Shultz noted in [AS76] that  the spectral 
theory of A can be described fully in terms of A and its positive cone A + . Petrov 
Suggests in [Pe85] to describe a quan tum mechanical system by an ordered vector 
space L,  which in addit ion carries the stucture of a Lie algebra, related to the  
dynamics and the symmetries of the system. He asks for the invariance of the  
positive cone and an order unit under  the  group G of inner automorphisms of L.  
In addition the notions of compatibility arising from the order and the algebraic 
structure have to aggree in his approach. 

In this note we establish some basic results concerning the  s tructure of 
finite dimensional Lie algebras of the aforementioned type. For the simplicity of 



12 

the  exposition we do not use Alfsen and Shultz's version of a spectral  theory for 
ordered vector spaces, but  the more algebraic version of Riedel (see [R183]). At 
the  present stage of Petrov's  approach there doesn' t  seem to be a physical reason 
to prefer any of the (inequivalent) versions. 

Definit ions 

Let L be an ordered vector space and L + the positive cone with respect 
to the order. For any element z E L we define the order ideal i~ generated by 
/~ = (L + - I R . z ) N ( I R . z - L + ) .  An element e E L is called an order unit i f / c  = L. 
We assume tha t  L has order units and fix one. A fundamental unit is an element 
p E [0, e] = {x E L:0 < z < e} for which I v n I e _ p  = (0} holds. We denote 
the set of all fundamenta l  units in L by ~L .  If p E ~'L then an element z ~ L 
is called compatible with p, wri t ten p II z ,  if z E I v ~ Ie_p.  The ~-commutang 
K;j:(z) of  an element z E L is the  set K:~-(z) = (p  E 9rL:p [t z} .  Finally we call 
B~:(z) = {p E K:a:(z):p II q for all q E ~L} the ~-bicommutant of a: E L.  The  
basic condition which allows one to do a spectral theory  on ordered vector spaces 
is the spectral condition: 

SC1  Any bounded increasing sequence in L has a supremum in L.  

S C 2  For all z E L there is a p E BT(z) such tha t  lrvz > 0 and ~r~_v~ < 0 
where rp: Ip (9 Ie-p  --~ Ip and z',_p: I v @ I,_~, --* I~, are the canonical 
projections. 

A set ( e x ) ~ e ~  of fundamental  units is called a spectral set if the  following condi- 
tions hold: 

SS1 ~ < / z = > e ~ _ < e g  for all ~ , # E I R .  

8S2  e~ = inf~<~e~ in L for all A E IR. 

SS3  e = supremes, in L and 0 = i n f ~ m e ~  in L.  

A spectral set {e~}~e~ is called a spectral resolution of an element • E L if 
e~, E )C~(z) for all X E ]lEt and z-~a: < )~e~ as well as lre-e~x > ) ~ ( e -  e; O. 
The  spectral  theory for ordered vector spaces as laid down in [Ri83] implies the  
existence and  uniqueness of spectral resolutions. This allows to extend the  notion 
of compatibil i ty to arbi t rary elements of L by saying z and y are compatible,  
wr i t ten  again z tt y ,  if z is compatible with all the elements in the  spectral  
resolution of y .  Thus  it makes sense to define the eommutant lC(z) = (y  E L:y  [[ 
z )  of z and the  bicommutant B(x) = {y E L : y  II ~ for an e ~(~)}  of ~. The 
results of [Ri83] then show that  / ~ : ( z )  = K~(z)MYL and B~(z)  = B(z)M ~ .  

In the sequel we will assume tha t  L is a finite dimensional real Lie algebra. 
It will be called spectrally ordered if the following conditions hold, 
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SO1 (L, L +, e) is an ordered vector space with order  unit satisfying the spectral  
condition. 

SO2 L + is invariant under  the inner automorphisms of L.  

SO3 e is fixed under  the inner automorphisms of L.  

SO4 For all z , y  e L we have [~,y] = 0 if and only if • II Y. 

C a r t a n  a l g e b r a s  

If L is spectrally ordered then the order unit is central  in /5  and contained 
in the  interior of the  positive cone L + . In fact, if we differentiate the equation 
eadZe = e we find [z,e] = 0 for all z E IR. Moreover, since e is an order  unit ,  we 
know tha t  L = I~ C (L + - ]R.e) so that  e E int L + . If we now use the  results of 
[EH86] we find tha t  any spectraUy ordered Lie algebra must be compact, that  is, 
its group of inner automorphisms is compact.  There  is a complete classification 
of invariant (under inner automorphisms) convex cones in Lie algebras in terms 
of their intersection with an arbi t rary compactly embedded Car tan  subalgebra (see 
[HHL87]). In compact  Lie algebras all Caf tan  algebras are compact ly  embedded.  
In this case the  classification result is the following. 

1. T h e o r e m .  Let L be a compact Lie algebra and H a Caftan subalgebra of 
L.  Moreover let G = (ead z: x E L)  be the group of inner automorphisrns of L and 
Z(H,  G) and N ( H ,  G) the centralizer and the normalizer of H in G respectively. 
Consider the finite group ~V(H,L)  = N ( H , G ) / Z ( H , G )  which operates on H .  
Then the map W ~-~ W M H is a bijection between the set of  G-invariant convez 
Cones W in L with W -  W = L and W N - W  = .[0} and the ,et  of  W ( H , L ) -  
invariant convez cones C in H with C - C  = H and C N - C  = .[0].. The inverse 
of the map is C ~ conv{G.C}.  • 

This suggests that  we t ry  to describe (L ,L+,e )  via ( H , H + , e ) ,  where 
H + = L + [3 H .  In part icular  we want to see how the  spectral  and compatibili ty 
conditions of (L, L +, e) are reflected in (H,  H +, e).  

Until  fur ther  notice we will assume in the  following tha t  (L ,L+,e )  is a 
fixed spectrally ordered Lie algebra and H is a fixed Car tan  algebra in L .  

. L e m m a .  Let h E H ,  then we have 

(i) H c 
(ii) H .  

(iii) B(h) c_ H .  

(iv) B(h) = H if and only if h is regular, which is the case i f  and only if 
= 
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P r o o f .  y E ]C(H) if and only if V I[ z for all z E H ,  which by (SO4) is 
equivalent to y e Z(H,L) = H. This implies (ii), whereas (i) is clear in view of 
this argument.  Now we note that  if y E B(h) then y [I z for all z ~/C(h) so that  
y [[ z for all z E H by (i), which then shows Y E/C(H) = H and thus proves (iii). 
Finally we remark that  h is regular if and only if Z(h, L) = H hence if and only if 

= {y e i : y  {l h} = ~ (h ) .  But this in turn  is e q ~ , ~ e n t  to B(h) = ~ ( n )  = H 
and the lemma is proved. It 

Lemma 2 allows us to conclude that  the spectral resolution {ex} of an 
element h E H consists entirely of elements of H .  In fact [Ri83,Prop.3.9] says 
that  aJ~ the ex are contained in B(h) C_ H .  

Our next goal is to show that  the fundamental  units in the spectral 
resolution of h E H are not only elements of H ,  but  also fundamental  units 
of the ordered vector space ( H , H  +) with order unit e E Z(L) f l int  L + C_ int H + . 
To that  end recall that  in a compact Lie algebra we can always find an inner 
product  which is invariant under inner automorphisms.  We choose one on L and 
consider the orthogonal projection PH: L ---* H onto H .  This projection can be 
defined in terms of an integral over Z(It, G) and therefore leaves the cone L + 
invariant. We claim that  

(1) PH([o, ~]) = [o,~] n H = [O,~]H = {V ~ H:O < V < ~}- 
In fact if y C [0, z] = L + n ( z -  L +) then Pn(y) C (L + N H ) n  (z - ( L  + n i l ) )  
because of PH(L*) C_ L + M H and PH(x) -- z. But then PH([0, ~]) _C [0, z] M H C_ 

[0, ~]H = P . ( [0 ,  ~]H) c p . ( [0 ,  ~]). 
Now we can show that  

(2) H fl ~'L C 9v/_/. 

By (1) it suffices to show that  J p M J e _ p  = {0} for p e ~- / ,MH where Jp = 
(H+ - n~.p) n (n~.p-  H+) and J._~ = (H+ - ~ . ( e - p ) )  n (n~. (e-  p ) -  H+)  are 
the respective order ideals in H .  But it is clear that  Jp c C_ Ip and J ,_p C_ I~_p so 
that  (2) follows. Note that  it now also follows from (1) that  the spectral resolution 
of an element h E H is not only a spectral set in L consisting of elements of H ,  
but is again a spectral set if viewed as a set of fundamental  units in the ordered 
space (H, H +, e). Even more is true: 

3. L e m m a .  Let {e~} be a spectral resolution of h E H in L. Then {e~} is 
a spectral resolution of h in H.  

P r o o f .  We just remarked that  {ex} is a spectral set in ( H , H  +, e). Moreover 
we have e~ E K:(h) for all h E H by Lemma 2. Thus it only remains to show that  
the canonical projections ee~: J ~  $ J~-e~ --* Je~ and ¢~_~ : Je~ • J , -e~ -'~ J e - ~  
satisfy ee l (h )  ~ Aex and ¢ , -e~(h)  _> A ( e -  cA). We fix a A and let h = z' +z"  e 
Je~ $ J t -ex-  Recall that  Jex ~ Iex a~xld Je-e~, ~ /e--ex- Moreover the  maps ~be~ 
and ¢~_~ are the restrictions of ~r~ and ~r~_~ so that  ¢ ~  ( h )  = z ~ = ~ r ~ ( h )  < 

)~ex and ¢~ _~ ( h )=z"=~r~_~(h )>_~(e - ex )  in L hence,by  (1),in H. 
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Now we can prove the main result of this section. 

4. T h e o r e m .  Let ( L , L + , e )  be a spectraIIy ordered Lie algebra and 11 a 
Caftan subalgebra of  L ,  then (11,11+,e) with H + = L+ M11 is a spectrally ordered 
abelian Lie algebra. 

P r o o f .  First we show that  (11, H+,e )  satisfies the spectral condition. To do 
this, consider h E 11 with a spectral resolution {ex} in L,  hence in H .  Choosing 

= 0 we find ¢e0(h) < 0 and ¢ ,_ ,0(h)  > 0. Therefore p = e - e 0  E K:(h) 
satisfies ¢p(h) > 0 and ¢ ,_p(h)  < 0, which show that  ( H , H + , e )  satisfies 
condition (SB1) from IRIS3]. T h u s  we can apply IRIS3, Cor.3.21] to conclude that  
(H, H +, e) satisfies the spectral condition. It remains to show that  (H, H +, e) 
also satisfies (SO1) through (SO4). But  we have just  shown that  (S01) holds 
and conditions (SO2) and (SO3) are trivially satisfied. For (SO4) it suffices to 
show that  two elements h and h t in H ,  which are compatible in L,  are also 
compatible in H .  Considering spectral resolutions in L,  we may assume that  
h and h' are fundamental  units in L.  Since h and h I are compatible in L we 
know that  h' E I/~ $ I e _ h .  This means that  we can write h' as a + b  with 
a = za - rah = s~h - y~ E Ih and b = xb - r b ( e  - -  h) = sb(e - h) - Yb E h ,  where 
r~, rb ,sa ,sb  E IR and z~.zb,ya,yb E L + • If we now apply PH to h ' ,a  and b, and 
recall that  PH(L +) C H + we find that  h' , = Pu(a)  + Pn(b)  and Pu(a)  E Jh as 
well as PH(b) E .le-h which is exactly what  we had to show. • 

Note that  Theorem 4 implies also the converse of inclusion of (2): 

(2') 11 n TL = ~'~ .  

In fact, since (11,11+, e) satisfies the  spectral condition, spectral resolutions in 
H are unique, hence must  agree with the spectral resolution coming from L.  
Since the  spectral resolution of a fundamental  unit h in H is singleton, this single 
element must  also form the spectral resolution of h in L,  which in tu rn  means that  
h is also a fundamental  unit  in L.  But Theorem 4 yields even more information. 

5. Coro l l a ry .  Let (L, L +, e) be a spectrally ordered Lie algebra and 1t a 
Caftan algebra in L ,  then 11+ is a simplieial cone, that is, a polyhedral cone 
spanned by d i m H  cztremal rays. 

P r o o f .  Since (11, H +, e) is spectralty ordered abelian it follows from [AS?6] 
that  it is, as an ordered vector space, isomorphic to some ( C ( X ) , C ( X ) + , f )  for 
a compact  space X .  Thus the claim follows since H is finite dimensional. • 

Let us summarize: 

6. T h e o r e m .  Let ( L , L + , e )  be a spectralIy ordered Lie algebra and H a 
Cartan algebra in L .  Then H + = L + N H  is a ~V(H,L)- invar iant  simplicial cone 
in H which contains e in its interior. The triple (H, H +, e) is a speetrally ordered 
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abelian Lie algebra whose fundamental units are precisely those fundamental units 
of (L ,L+,e )  which are contained in H .  The positive cone L + of L can be 
retrieved from H + via L + = conv{G.H}, where G is the (compact} group of 
inner antomorphisms of L .  • 

Conclusion 

Theorem 6 yields a series of rather stringent necessary conditions on 
( H , H  +, e) for the ordered Lie algebra with order unit (L ,L+,e )  to be spectrally 
ordered. What remains to be done, is to find a good way to check when a 
fundamental unit in H is a fundamental unit in L. This, together with the 
fact that any element of L is contained in some conjugate of H would pave the 
way to a converse of Theorem 6 (see [Ri83, Prop.3.20 and Cor.3.21]), and hence 
to a classification of finite dimensional spectraUy ordered Lie algebras. 
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