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Abstract

We study ordered vector spaces which are at the same time Lie algebras and satisfy
certain compatibility conditions between the algebraic and the order structure. The
main point is that the ordering of the Lie algebra is completely determined by the
induced ordering on a Cartan algebra.

Introduction

A physical quantity in quantum mechanics is usually described by a self-
adjoint operator in Hilbert space. All the information on the physical properties
is provided by the spectral resolution of the corresponding operator. The quanti-
ties of a whole physical system are then described by the space A of self adjoint
elements in a C*-algebra. Alfsen and Shultz noted in [AS76] that the spectral
theory of A can be described fully in terms of A and its positive cone A¥. Petrov
suggests in [Pe85] to describe a quantum mechanical system by an ordered vector
space L, which in addition carries the stucture of a Lie algebra, related to the
dynamics and the symmetries of the system. He asks for the invariance of the
Positive cone and an order unit under the group G of inner automorphisms of L.
In addition the notions of compatibility arising from the order and the algebraic
Structure have to aggree in his approach.

In this note we establish some basic results concerning the structure of
finite dimensional Lie algebras of the aforementioned type. For the simplicity of
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the exposition we do not use Alfsen and Shultz’s version of a spectral theory for
ordered vector spaces, but the more algebraic version of Riedel (see [Ri83]). At
the present stage of Petrov’s approach there doesn’t seem to be a physical reason
to prefer any of the (inequivalent) versions.

Definitions

Let L be an ordered vector space and L%t the positive cone with respect
to the order. For any element z € L we define the order ideal I, generated by
I, = (LY —Rz)N(IR-z—L*). Anelement ¢ € L is called an order unitif I, = L.
We assume that L has order units and fix one. A fundamental unit is an element
p €[0,¢] = {z € L:0 < = < e} for which I, N I._, = {0} holds. We denote
the set of all fundamental units in L by F. If p € F;, then an element z € L
is called compatible with p, written p || z,if z € I, ® I._p. The F-commutanit
Kr(z) of an element z € L is the set Kx(z) = {p € Fr:p || z}. Finally we call
Br(z) = {p € Kx(z):p || ¢ for all ¢ € Fr} the F-bicommutant of x € L. The
basic condition which allows one to do a spectral theory on ordered vector spaces
is the spectral condition:

SC1 Any bounded increasing sequence in L has a supremum in L.

SC2 For all z € L thereis a p € Bx(x) such that mpz > 0 and m,_,z < O
where m,: 1, & I._, — I, and m,_,: I, & I,_, — I, are the canonical
projections,.

A set {ex}rem of fundamental units is called a spectral set if the following condi-
tions hold:

§S1 A< pu=er<e, forall A,peclR.

§$S2 e) =infycue, in L forall A € R.

SS83 e = sup,cgpen in L and 0 =infyerey in L.
A spectral set {ex}aemr is called a spectral resolution of an element = € L if
ex € Kx(z) for all A € R and 7,z < Xep as well as m._, ¢ > Ae —ear).
The spectral theory for ordered vector spaces as laid down in [Ri83] implies the
existence and uniqueness of spectral resolutions. This allows to extend the notion
of compatibility to arbitrary elements of L by saying z and y are compatible,
written again z || y, if z is compatible with all the elements in the spectral
resolution of y. Thus it makes sense to define the commutant K(z) = {y € L:y ||
z} of z and the bicommutant B(z) = {y € L:y || z for all z € K(z)} of 2. The
results of [Ri83] then show that Kr(z) = K(z) N F, and Bx(z) = B(z) N Fr.

In the sequel we will assume that L is a finite dimensional real Lie algebra.

It will be called spectrally ordered if the following conditions hold.
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SO1 (L,L*,e) is an ordered vector space with order unit satisfying the spectral
condition.

SO2 L7 isinvariant under the inner automorphisms of L.
SO3 e is fixed under the inner automorphisms of L.
SO4 For all z,y € L we have [z,y] =0 if and only if 2 || y.

Cartan algebras

If L is spectrally ordered then the order unit is central in L and contained
in the interior of the positive cone L1. In fact, if we differentiate the equation
e2¢ — ¢ we find [z,e] = 0 for all € IR. Moreover, since e is an order unit, we
know that L = I, C (Lt — R-€) so that e € int LT. If we now use the results of
[HHBG] we find that any spectrally ordered Lie algebra must be compact, that is,
its group of inner automorphisms is compact. There is a complete classification
of invariant (under inner automorphisms) convex cones in Lie algebras in terms
of their intersection with an arbitrary compactly embedded Cartan subalgebra (see
[HHL87]). In compact Lie algebras all Cartan algebras are compactly embedded.
In this case the classification result is the following.

1. Theorem. Let L be a compact Lie algebra and H a Cartan subalgebra of
L. Moreover let G = (e*d*:z € L) be the group of inner automorphisms of L and
Z(H,G) and N(H,G) the centralizer and the normalizer of H in G respectively.
Consider the finite group W(H,L) = N(H,G)/Z(H,G) which operates on H .
Then the map W — W N H is a bijection between the set of G -invariant convez
cones W in L with W — W =L and W N —W = {0} and the set of W(H,L)-
invariant convez cones C in H with C —C = H and CN—C = {0}. The inverse
of the map is C — conv{G-C}. m

This suggests that we try to describe (L,L%,e) via (H,H™,e), where
H* = L+ n H. In particular we want to see how the spectral and compatibility
conditions of (L,L™,e) are reflected in (H,HT,e).

Until further notice we will assume in the following that (L,L*,e) is a

fixed spectrally ordered Lie algebra and H is a fixed Cartan algebra in L.

2. Lemma. Let h€ H, then we have
(i) H CK(h).
@) K(H)=H.
(i) B(R)C H.
(iv) B(h) = H if and only if h is regular, which is the case if and only if
K(h)=H.
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Proof. y € K(H) if and only if y || z for all z € H, which by (S04) is
equivalent to y € Z(H,L) = H. This implies (ii), whereas (i) is clear in view of
this argument. Now we note that if y € B(h) then y || = for all # € K(h) so that
y || z for all z € H by (i), which then shows y € KX(H) = H and thus proves (iii).
Finally we remark that h is regular if and only if Z(h,L) = H hence if and only if
H = {y € L:y || k} = K(h). But this in turn is equivalent to B(h) = K(H) =H
and the lemma is proved. n

Lemma 2 allows us to conclude that the spectral resolution {ex} of an
element h € H consists entirely of elements of H. In fact [Ri83,Prop.3.9] says
that all the e, are contained in B(h) C H.

Our next goal is to show that the fundamental units in the spectral
resolution of h € H are not only elements of H, but also fundamental units
of the ordered vector space (H,H™) with order unit e € Z(L)Nint LT Cint H+.
To that end recall that in a compact Lie algebra we can always find an inner
product which is invariant under inner automorphisms. We choose one on L and
consider the orthogonal projection Py:L — H onto H. This projection can be
defined in terms of an integral over Z(H,G) and therefore leaves the cone L+
invariant. We claim that

(1) Py([0,2]) = [0,z]N H = [0,z]g ={y € H:0 <y < z}.

In fact if y € [0,2] = LT N (= ~ L) then Pu(y) C (L*¥ nH) N (= — (L* N H))
because of Py(L*) C Lt N H and Pu(z) = z. But then Py ([0,2]) C[0,z]Nn H C
[0,2]u = Pu([0,z]x) € Pu([0,2]).

Now we can show that

(2) HnFp CFy.

By (1) it suffices to show that J, N Je—p = {0} for p € F, N H where Jp =
(H* —Rp)N(R-p— H*Y) and J.—p = (H* —R-(e — p)) N (R-(e — p) — H*) are
the respective order ideals in H. But it is clear that J, C I,, and J,_, C I._, so
that (2) follows. Note that it now also follows from (1) that the spectral resolution
of an element h € H is not only a spectral set in I consisting of elements of H,
but is again a spectral set if viewed as a set of fundamental units in the ordered
space (H,H™",e). Even more is true:

3. Lemma. Let {ex} be a spectral resolution of h € H in L. Then {er} is
a spectral resolution of h in H.

Proof. We just remarked that {ex} is a spectral set in (H,Ht,e). Moreover
we have e) € K(h) for all h € H by Lemma 2. Thus it only remains to show that
the canonical PTOjeCtionS 1/’:;‘: Je,\ @Je—-e,‘ =+ Jey and 1/’e—e;\:JeA @Je—ex —* Je»—c;
satisfy 1., (h) < ey and Pe_, (R) > Ae—er). Wefixa A andlet h=2'+2" €
J., ® Je—e, - Recall that J,, C I, and J._., C I._.,. Moreover the maps .,
and %,.—., are the restrictions of 7., and m._., so that ¥,,(h) = 2' = m,, (k) <
Xey and the—e, (h) = 2" = Te—e,(h) > AM(e —ey) in L hence , by (1), in H. u
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Now we can prove the main result of this section.

4. Theorem. Let (L,L*,e) be a specirally ordered Lie algebra and H a
Cartan subalgebra of L, then (H,H7,e) with Ht = LTNH is a spectrally ordered
abelian Lie algebra.

Proof. First we show that (H,H™,e) satisfies the spectral condition. To do
this, consider h € H with a spectral resolution {e)\} in L, hence in H. Choosing
A = 0 we find ¥.(h) < 0 and te—e,(h) > 0. Therefore p = e — ¢ € K(h)
satisfies ¥,(kh) > 0 and #.—,(h) < 0, which show that (H,H™",e) satisfies
condition (SB1) from [Ri83]. Thus we can apply [Ri83, Cor.3.21] to conclude that
(H,H™,e) satisfies the spectral condition. It remains to show that (H,H,e)
also satisfies (SO1) through (SO4). But we have just shown that (S01) holds
and conditions (SO2) and (SO3) are trivially satisfied. For (SO4) it suffices to
show that two elements h and A' in H, which are compatible in L, are also
compatible in H. Considering spectral resolutions in L, we may assume that
h and h' are fundamental units in L. Since A and h' are compatible in L we
know that h' € It & I._;. This means that we can write h' as a + b with
o=z, —r.h=8,h~y, € I and b= 2z, —rp(e — h) = sp{e — h) — yp € In, where
TasThySa, 9 € IR and z,.74,7,,ys € LT. If we now apply Py to h',a and b, and
recall that Py(Lt) C HY, we find that &' = Py(a) + Py(b) and Py(a) € J as
well as Py (b) € J._p which is exactly what we had to show. u

Note that Theorem 4 implies also the converse of inclusion of (2):
(2" HNFL = Fn.

In fact, since (H,H*,e) satisfies the spectral condition, spectral resolutions in
H are unique, hence must agree with the spectral resolution coming from L.
Since the spectral resolution of a fundamental unit A in H is singleton, this single
element must also form the spectral resolution of & in L, which in turn means that
h is also a fundamental unit in L. But Theorem 4 yields even more information.

5. Corollary.  Let (L,L*,e) be a spectrally ordered Lie algebra and H a
Cartan algebra in L, then H' is a simplicial cone, that is, a polyhedral cone
spanned by dim H extremal rays.

Proof. Since (H,H,e) is spectrally ordered abelian it follows from [AS76]
that it is, as an ordered vector space, isomorphic to some (C(X),C(X)*,f) for
a compact space X. Thus the claim follows since H is finite dimensional. n

Let us summarize:
8. Theorem. Let (L,L*,e) be a specirally ordered Lie algebra and H a

Cartan algebra in L. Then HY = LY NH is a W(H, L)-invariant simplicial cone
in H which contains e in its interior. The triple (H,H*,e) is a spectrally ordered
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abelian Lie algebra whose fundamental units are precisely those fundamental units
of (L,Lt,e) which are contained in H. The positive cone LT of L can be
retrieved from Ht via Lt = conv{G-H}, where G is the (compact) group of
inner automorphisms of L. =

Conclusion

Theorem 6 yields a series of rather stringent necessary conditions on
(H,H™,e) for the ordered Lie algebra with order unit (L,L*,e) to be spectrally
ordered. What remains to be done, is to find a good way to check when a
fundamental unit in H is a fundamental unit in L. This, together with the
fact that any element of L is contained in some conjugate of H would pave the
way to a converse of Theorem 6 (see [Ri83, Prop.3.20 and Cor.3.21]), and hence
to a classification of finite dimensional spectrally ordered Lie algebras.
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