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Introduction
The wobbling motion in a nucleus arises due

to the unequal distribution of moment of in-
ertia (MOI) along the three principal axes of
a triaxial deformed core. This phenomenon is
observed as consecutive rotational bands with
increasing excitation energy, corresponding to
successive wobbling phonons (nω) [1]. Thus,
the yrast band corresponds to nω = 0. In
recent times, the wobbling motion has been
reported in a few odd-A nuclei [1, 2, 3]. In
all cases, the signature partner band of nω

= 0 have been observed. In contrast to the
case of signature partners, the unidirectional
∆I = 1 transitions from the levels of higher
nω to lower nω bands have predominantly E2
characters. In some cases, a nω = 2 phonon
bands have been identified [4]. The only odd-
neutron nucleus, which exhibits the wobbling
phenomenon, is 105Pd [5]. In this nucleus, a
4th negative parity band was reported [6], but
its origin remains unknown. Hence, we have
studied the electromagnetic properties of the
excited levels belonging to this band.

Experiment
The high-spin states of 105Pd were pro-

duced via fusion-evaporation. A 63 MeV 13C
beam from 14-UD Pelletron of TIFR hit a 1
mg/cm2 enriched 96Zr target with a 9 mg/cm2

206Pb backing. De-excitation γ rays were de-
tected using the Indian National Gamma Ar-
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ray (INGA) [7], consisting of 18 Compton-
suppressed clover detectors arranged in five
rings at various angles: three at 40◦, two at
65◦, four at 90◦, three at 115◦, three at 140◦

and three at 157◦ with respect to the beam
direction. A Pixie-16-based data acquisition
system [8] recorded two and higher-fold co-
incidence data. The data were sorted in a
γ-γ symmetric matrix and γ-γ-γ cube using
the multiparameter time-stamped-based coin-
cidence search (MARCOS) program [8]. The
matrix and cube were used with the RAD-
WARE program LEVIT8R [9] to establish the
low-lying negative parity levels of 105Pd. The
partial level scheme of 105Pd is shown in Fig. 1,
where transition widths correspond to relative
intensities. The Ratio of Directional Correla-
tions from Oriented states (RDCO) and linear
polarization (P) of the emitted gamma rays
were carried out to determine their multipo-
larities and electromagnetic characters.

Analysis and Results
The measured RDCO and polarisation val-

ues are consistent with the previously reported
measurements [5]. As seen from Fig. 1, Band 4
and Band 3 have interconnected ∆I = 1 tran-
sitions, which rules out the possibility of Band
4 being a nω = 2 wobbling band. The 17/2−,
21/2− and 25/2− levels of Band 3 decay to the
15/2−, 19/2− and 23/2− levels of both Band 1
and Band 4. The ∆I = 1 transitions between
Bands 3 −→ 1 show a very large mixing ratio
(δ), which means these transitions have large
E2 components (≈ 85%). The same holds true
for the ∆I = 1 transition of 253.5 keV decay-
ing from Band 4 to Band 2. Thus, Band 2
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FIG. 1: Partial level scheme of 105Pd

(nω = 0) and Band 4 (nω = 1) form a pair of
wobbling bands. On the other hand, the ∆I =
1 transitions between Bands 3 −→ 4 are almost
purely magnetic in character (E2 component
≤ 2%).

8 9 10 11 12 13

I (h- )

0

0.1

0.2

Expt. 

8 9 10 11 12 13

I (h- )

0

0.2

0.4

0.6

0.8

1

9 10 11 12 13 14

I (h- )

0

0.5

1

1.5

B
(M

1
) o

u
t/

B
(E

2
) in

 (
µ

2

n
/e

2
b

2
)

9 10 11 12 13 14

I (h- )

1

2

3

B
(E

2
) o

u
t/

B
(E

2
) in

8 9 10 11 12 13

I (h- )

0

0.5

1

1.5

2

2.5

8 9 10 11 12 13

I (h- )

0

0.1

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2: The ratio of the rates of the out-band ∆I
= 1 transitions and the in-band E2 transitions of
105Pd. The values for transitions between (Band
3 to 1) and (Band 4 to 2) are shown in (a) and
(d); and (b) and (e) respectively. The values for
the interband transitions between Band 3 and 4
are shown in (c) and (f).

This large difference in the E2 component
is reflected in the ratios of the reduced transi-
tion rate, which are plotted in Fig. 2. Band 3

−→ 1 transitions have a large collective con-

tribution, i.e. a higher value for B(E2)out

B(E2)in

(Fig. 2(a)), which is an experimental signa-
ture of nuclear wobbling. But, the tran-
sitions between Band 3 and 4 exhibit sig-

nificantly larger B(M1)out

B(E2)in
values (Fig. 2(f))

compared to the values for transitions from
Band 3 to 1 (Fig. 2(d)) or Band 4 to 2
(Fig. 2(e)). The characteristic staggering be-

haviour of the B(M1)out

B(E2)in
values between the

two signature partner bands can also be ob-
served in Fig. 2(f). Thus, the present data
establish Bands 3 and 4 as signature partners
which have nω = 1 configuration.

Conclusion
The signature partner bands for nω = 0 have

been observed in all the nuclei which exhibit
wobbling motion. We have reported the first
observation of nω = 1 signature partner bands
in 105Pd.
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