

Observation of signature partner bands in ^{105}Pd with one wobbling phonon configuration

A. Karmakar^{1,2}*, P. Datta³, N. Rather⁴, S. Pal⁵, R. Palit⁵, and S. Chattopadhyay^{1,2†}

¹ Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064

² Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumna - 400 094

³ Ananda Mohan College, Kolkata- 700009

⁴ Department of Physics, Islamic University of Science and Technology, Awanipora, 192 122 and

⁵ Tata Institute of Fundamental Research, Mumbai- 400005

Introduction

The wobbling motion in a nucleus arises due to the unequal distribution of moment of inertia (MOI) along the three principal axes of a triaxial deformed core. This phenomenon is observed as consecutive rotational bands with increasing excitation energy, corresponding to successive wobbling phonons (n_ω) [1]. Thus, the yrast band corresponds to $n_\omega = 0$. In recent times, the wobbling motion has been reported in a few odd-A nuclei [1, 2, 3]. In all cases, the signature partner band of $n_\omega = 0$ have been observed. In contrast to the case of signature partners, the unidirectional $\Delta I = 1$ transitions from the levels of higher n_ω to lower n_ω bands have predominantly E2 characters. In some cases, a $n_\omega = 2$ phonon bands have been identified [4]. The only odd-neutron nucleus, which exhibits the wobbling phenomenon, is ^{105}Pd [5]. In this nucleus, a 4th negative parity band was reported [6], but its origin remains unknown. Hence, we have studied the electromagnetic properties of the excited levels belonging to this band.

Experiment

The high-spin states of ^{105}Pd were produced via fusion-evaporation. A 63 MeV ^{13}C beam from 14-UD Pelletron of TIFR hit a 1 mg/cm² enriched ^{96}Zr target with a 9 mg/cm² ^{206}Pb backing. De-excitation γ rays were detected using the Indian National Gamma Ar-

ray (INGA) [7], consisting of 18 Compton-suppressed clover detectors arranged in five rings at various angles: three at 40°, two at 65°, four at 90°, three at 115°, three at 140° and three at 157° with respect to the beam direction. A Pixie-16-based data acquisition system [8] recorded two and higher-fold coincidence data. The data were sorted in a $\gamma\gamma$ symmetric matrix and $\gamma\gamma\gamma$ cube using the multiparameter time-stamped-based coincidence search (MARCOS) program [8]. The matrix and cube were used with the RADWARE program LEVIT8R [9] to establish the low-lying negative parity levels of ^{105}Pd . The partial level scheme of ^{105}Pd is shown in Fig. 1, where transition widths correspond to relative intensities. The Ratio of Directional Correlations from Oriented states (R_{DCO}) and linear polarization (P) of the emitted gamma rays were carried out to determine their multipolarities and electromagnetic characters.

Analysis and Results

The measured R_{DCO} and polarisation values are consistent with the previously reported measurements [5]. As seen from Fig. 1, Band 4 and Band 3 have interconnected $\Delta I = 1$ transitions, which rules out the possibility of Band 4 being a $n_\omega = 2$ wobbling band. The 17/2⁻, 21/2⁻ and 25/2⁻ levels of Band 3 decay to the 15/2⁻, 19/2⁻ and 23/2⁻ levels of both Band 1 and Band 4. The $\Delta I = 1$ transitions between Bands 3 \rightarrow 1 show a very large mixing ratio (δ), which means these transitions have large E2 components ($\approx 85\%$). The same holds true for the $\Delta I = 1$ transition of 253.5 keV decaying from Band 4 to Band 2. Thus, Band 2

*Electronic address: anindita.karmakar@saha.ac.in

†Electronic address: sukalyan.chattopadhyay@saha.ac.in

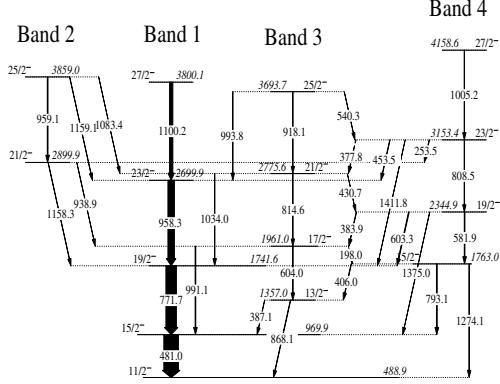


FIG. 1: Partial level scheme of ^{105}Pd

($n_\omega = 0$) and Band 4 ($n_\omega = 1$) form a pair of wobbling bands. On the other hand, the $\Delta I = 1$ transitions between Bands 3 \rightarrow 4 are almost purely magnetic in character (E2 component $\leq 2\%$).

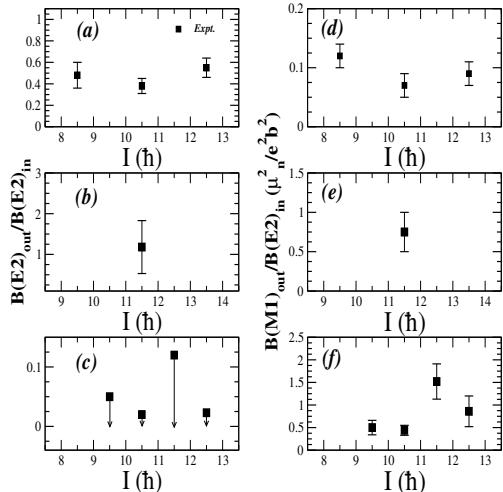


FIG. 2: The ratio of the rates of the out-band $\Delta I = 1$ transitions and the in-band E2 transitions of ^{105}Pd . The values for transitions between (Band 3 to 1) and (Band 4 to 2) are shown in (a) and (d); and (b) and (e) respectively. The values for the interband transitions between Band 3 and 4 are shown in (c) and (f).

This large difference in the E2 component is reflected in the ratios of the reduced transition rate, which are plotted in Fig. 2. Band 3

$\rightarrow 1$ transitions have a large collective contribution, i.e. a higher value for $\frac{B(E2)_{out}}{B(E2)_{in}}$ (Fig. 2(a)), which is an experimental signature of nuclear wobbling. But, the transitions between Band 3 and 4 exhibit significantly larger $\frac{B(M1)_{out}}{B(E2)_{in}}$ values (Fig. 2(f)) compared to the values for transitions from Band 3 to 1 (Fig. 2(d)) or Band 4 to 2 (Fig. 2(e)). The characteristic staggering behaviour of the $\frac{B(M1)_{out}}{B(E2)_{in}}$ values between the two signature partner bands can also be observed in Fig. 2(f). Thus, the present data establish Bands 3 and 4 as signature partners which have $n_\omega = 1$ configuration.

Conclusion

The signature partner bands for $n_\omega = 0$ have been observed in all the nuclei which exhibit wobbling motion. We have reported the first observation of $n_\omega = 1$ signature partner bands in ^{105}Pd .

Acknowledgements

We are thankful to INGA collaboration for constant support and the operators of TIFR, Mumbai for quality beam. A.K. acknowledges the financial support from CSIR.

References

- [1] S. W. Ødegård *et al.*, Phys. Rev. Lett. **86**, 5866 (2001).
- [2] J. T. Matta *et al.*, Phys. Rev. Lett. **114**, 082501 (2015).
- [3] S. Nandi *et al.*, Phys. Rev. Lett. **125**, 132501 (2020).
- [4] S. Chakraborty *et al.*, Phys. Lett. B **811**, 135854 (2020).
- [5] J. Timár *et al.*, Phys. Rev. Lett. **122**, 062501 (2019).
- [6] J. Timár *et al.*, J. Phys.: Conf. Ser. **1555** 012025.
- [7] S. Muralithar *et al.*, Nucl. Instrum. Methods A **622**, 281 (2010).
- [8] R. Palit *et al.*, **680**, 90 (2012).
- [9] D. C. Radford, Nucl. Instrum. Methods A **361**, 297 (1995).
- [10] Md. A. Asgar *et al.*, Proceedings of the DAE Symp. on Nucl. Phys. **62** (2017)