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ABSTRACT 

New results are presented for fractal structures and intermittency in QCD parton showers. The particle momenta define a fractal curve 
in energy-momentum space with a dimension 1 + -\J3(XS / 2/F, i.e one plus the anomalous dimension of QCD. For the distributions 
in small y-regions the property with jets within jets corresponds to a fractal structure with a dimension -\J3CCS /2K (for high 
moments). At lower energies in the PEP-PETRA range the soft hadronization is important. The experimental data can be understood 
if the properties of the directly produced pions are carefully taken into account. 

1. INTRODUCTION 
The results presented in this talk are obtained in 

collaboration with A. Nilsson and C. Sjogren in Lund. A 
more extensive discussion is presented in refs. [1,2]. 

e+e~ -annihilation into hadrons is often described in 
terms of two phases, a hard perturbative phase, described 
in terms of quarks and gluons, and a soft phase in which 
the energy of these partons is transformed into the 
observable hadrons. The latter phase can be described in 
terms of clusters or in terms of strings. 

To study the hard phase we use two important tools: 
• The dipole formulation of QCD cascades [3] 
• An infrared stable measure on parton states [4]. 
Dipole formulation 
A high energy qq -system radiates gluons according to 

the dipole formula 

dn = ^^dyd<p (1) 
An kL 

The phase space available is given by the relation 
2|y| ^ ln(5" Ik]), which is a triangular region in a y - In k\ 
diagram. If two gluons are emitted, then the distribution 
of the hardest gluon is described by eq. (1), while the 
distribution of the second, softer, gluon corresponds to 
two dipoles, one between the quark and the first gluon, 
and the second between this gluon and the antiquark [5]. 

The total phase space available in the two dipoles 
corresponds to adding a fold to the triangular region in 
the y - In k\ -plane (see fig. 1), with the constraint 
k2

L2 < k\x. This procedure can be generalized so that the 
distribution of a third, still softer, gluon corresponds to 
three dipoles, etc. Thus, with many gluons the gluonic 
phase space can be represented by the multifaceted 
surface in fig. 1. Each gluon adds a fold to the surface, 
which increases the phase space for softer gluons. 

In this process the recoils are neglected, as is normal in 
the leading log approximation. Recoil effects and 
kinematical constraints can be taken into account in a MC 
simulation program. Such a program called ARIADNE is 
developed by U. Pettersson and L. Lônnblad [6]. 

Multiplicity measure 
In string fragmentation the hadronic multiplicity for a 

simple -system is proportional to Ins. The hadrons 
are evenly distributed in rapidity, which means that their 
energy-momentum four-vectors are distributed around a 
hyperbola (cf fig. 2a). 

For a qqg -system, we obtain in the Lund string model 
a bent string with two straight segments. If the energy in 
the segments is sn and s23, the average multiplicity, n, 
is given by the relation 

{n}~1nsl2 + l n 5 ,

2 3 « l n s + lnfcj (2) 

Fig. 1. The phase space available for a gluon emitted by a high 
energy qq -system is a triangular region in the y - In k\ -plane. 

Fig. 2a. In a qq -system the hadron momenta are distributed 
around a hyperbola in energy-momentum space, b. For a multi-
gluon state the hadron momenta are distributed around a curve (the 
x-curve) which smoothly follows the parton momenta. 
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Here k± is the transverse momentum of the gluon. The 
momentum distribution of the hadrons is in this case 
given by two hyperbolae. 

For a multigluon state we find in the same way 

This expression, which we call A, is an effective 
rapidity range". It is possible to calculate the distribution 
P(Xfs) in X for fixed s [4]. Thus we find e.g. 

The quantity A can be generalized in an infrared stable 
way. For a fixed energy W the perturbative cascade 
gives a parton state with definite parton momenta, and 
thus a definite value of X. The soft hadronization 
mechanism then gives a certain hadronic state with a 
hadron multiplicity n which depends only on X and not 
on W [7]. 

For the momentum distribution of the hadrons it turns 
out that it is possible to generalize the hyperbolae in the 
qq- and qqg -cases (fig. 2a) and define a timelike curve 
in energy-momentum space [7]. This curve (called the x-
curve) follows smoothly the (colour ordered) parton 
momenta (see fig. 2b). The length of the x-curve is given 
by X and if we just cut it into equal pieces, then we 
obtain an average momentum distribution of the hadrons. 
The soft hadronization just adds limited fluctuations 
around this average. These features give a quantitative 
meaning to the notion of local parton-hadron duality. 

2. FRACTAL STRUCTURES AND INTER­
MITTENCY IN THE PERT. PHASE [1] 

The x-curve has a fractal structure 
The x-curve is "longer" if it is studied with a higher 

resolution (cf Koch's snowflake curve). The invariant 
length is shorter, and is thus not a suitable measure. We 
divide the curve in pieces with a certain invariant length 
s corresponding to a given resolution and we define the 
length of each piece as the length of a hyperbola passing 

through the endpoints, which is R ]n(s /ml). Thus we 
define the length S obtained with the resolution S. 

S ~ (no of pieces) • ln(,y / ml ) (5) 
Within the analytic approximation discussed above we 

find for asymptotic energies (s » s»ml) 

Thus we see that the fractal dimension D is given by 
the following expression 

Fig. 3. The length S of the x-curve, as a tuncuon oi tne 
resolution 5, in e+e~ -annihilation at 1000 GeV. The dashed line is 
the analytic approximation and the solid line shows the MC results. 

in the square root we recognize the anomalous 
dimension of QCD. Thus the x-curve gives a geometrical 
interpretation of this anomalous dimension. It is possible 
to calculate S(s,s) also with the Monte Carlo simulation 
program, which takes recoils and kinematical constraints 
better into account. The result is shown in fig. 3. 

Distributions in y 
A lot of interest has recently focused on the notion of 

intermittency. It was suggested by Bialas and Peschanski 
[8] to study the factorial moments of multiplicity 
distributions in a rapidity range 5y.If we use normal 
moments, or scaled normal moments 

Cq=(n")/(ny (8) 
rather than the factorial moments, then it is possible to 
study also noninteger variables, e.g. the piece of the x-
curve which has its tangent within an interval in y. This 
would represent the hadron distribution without the noise 
from the soft hadronization, and thus reveal the properties 
of the perturbative cascade. If Cq has a powerlike 
behaviour, Cq ~ (l / 5y)p, this can be interpreted in terms 
of a (multi)fractal dimension Dq = l-p/(q-l) [9,10]. 

The feature of QCD with jets within jets within jets, 
similar to a Cantor dust, gives fractal properties.We see 
that for large #-values (A*) is dominated by few events 
with large values of X. These are events with a hard jet 
where the tip of the jet is inside the y -range Sy = S. 

It is possible to show that the multiplicity in this tip 
corresponds to an e+e~-annihilation event with a cms 
energy given by W = k±S. Summing over all possible jet 
transverse momenta we then obtain 
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Fig. 4 . Moments Ci and C 4 for the x-curve (solid lines) 
compared with normal moments Cq and factorial moments F for 
the hadron distribution. M 1 / 8 is the number of bins. 

With no jets we would obtain a background 
contribution A = 8 corresponding to a straight string. 
This gives 

< 1 0 > 

When 4 and s are large and 5 is small the jet tips 
dominate, while when q and s are small and 8 large, 
the background dominates. From eqs. (9,10) we get the 
dimension 

If we include the rest of the jets and not only the tips, 
we obtain a sum of terms with dimension between 
^iajln and 1. Fig. 4 shows MC results for the scaled 
moments of the A-distribution at 200 GeV. Here the 
slope of the curve is given by (q-l)(l- Dq}. We note 
that for S large the curve is rather flat because D ~ 1. For 
smaller 8 it becomes steeper and D is closer to 
^3as I 2K . For very small 8 it flattens out again, 
because the running as becomes larger when sS2 

becomes small. It is also possible to use Monte Carlo to 
study the variation with q. For small q the terms with 
higher dimensions dominate while for larger q the jet tips 
dominate giving lower dimensions. 

Hadron distributions 
The perturbative QCD cascade gives a partonic state 

with a certain value of A within a given rapidity 
window. The soft hadroniztaion gives a definite hadronic 
multiplicity n. If the distribution in n for fixed A is 
Poissonian, then the factorial moments of n,Cq(n), are 
equal to the normal moments of the A-distributions 
Cq(X). In this case the normal multiplicity moments 
Cq(n) blow up for small rapidity windows. However, in 
string fragmentation the fluctuations are smaller than in a 
Poisson distribution. Furthermore, the production of 
particles in neighbouring bins are correlated. 

Fig. 4 shows both normal moments and factorial 
moments for the hadron distribution, compared with the 
moments from the x-curve. We see that indeed the normal 
moments shoot up above the x-curve for small 8y but 
that they nevertheless are closer to the x-curve than the 
factorial moments, which are much further below. It is 
not clear if this also implies that the normal moments are 
more related to the underlying dynamics of perturbative 
QCD. 

3. INTERMITTENT EFFECTS IN SOFT 
HADRONIZATION [2] 

In many experiments [11] \nFq rises with ln( l /5y) 
with a steeper slope than Monte Carlo calculations based 
on Lund string [12] or the Webber cluster model [13]. 

These models are tuned to fit other variables, and are 
not retuned to reproduce the intermittency slopes. We 
have found that in the Lund model a large part of the 
effect is due to directly produced pions which are 
neighbours in rank (i.e. pions which are not decay 
products of p's and CD's and other resonances). This 
implies that the result is very sensitive to the vector to 
pseudoscalar ratio. The default value in the MC is 
P/(V + P) = Q.5, and we note that the vector meson 
production measured by NA22 [14] and EMC [15] is 
smaller than the corresponding MC results. 

This observation also implies that the result is very 
sensitive to the fragmentation pL for direct pions, i.e. the 
p± (with respect to the string direction) given to the pions 
in the rest frame of the string. 

The production of qr -̂pairs in the string can be 
described as a tunnelling process [16,12]. This gives a 
Gaussian distribution in the transverse momenta kL. The 
produced quark must also fit into the bound state meson 
wavefunction. This effect is estimated to produce an extra 
factor (mxy\ where m1 is the transverse mass of the 
meson [12], This can explain the suppression of vector 
mesons relative to the pseudoscalar mesons. It also 
favours small p± for pions which have a small mass, an 
effect which is neglected in the MC programs. 
Furthermore, it causes correlations so that the pions tend 
to come in bunches, which increases the intermittency 
even more. 

In fig. 5 we show results obtained with 
VI (V + P) = 0.35 and where the pL of the direct pions is 
suppressed to = (0.07) 2 (in the rest frame of the 
string). 

We note, however, that the TASSO data shown in fig. 
5 are not corrected. When the MC generated events are 
processed through the detector simulation, the result is 
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Fig. 5. Normalized factorial moments F2 and F 3 for e+e~al 36 
GeV. The squares are the uncorrected data from TASSO [17]. The 
dashed lines show results from the ARIADNE MC with default 
values for the parameters and the solid lines show results where 
VI (V + P) = 0.35 and the directly produced pions have reduced 
p± with respect to the string. 

increased [17]. We also note that the MC does not include 
the Bose-Einstein effect. This effect must increase the 
slopes of the factorial moments. It can not be the 
dominant effect, because it would give a larger signal for 
same sign particles, in contradiction with the data 
[17,18]. Direct charged pions which are neighbours in 
rank must have opposite charges. Thus the effect 
discussed above is largest for particles of opposite 
charges. We conclude that with about equal contributions 
from detector acceptance, Bose-Einstein interference and 
the effect from directly produced pions discussed here, it 
is likely that we can satisfactorily describe the difference 
between the MC simulations and the data in fig. 5. 

We also note that the reduced p± for direct pions also 
can explain the large KI k ratio at high pL observed at 
the ISR [19]. 

We finally note that the effects discussed here should 
be noticeable not only in ^"-annihilation, but also in 
DIS and hadronic collisions if the particles also here are 
produced from a stringlike colour field. 

4. CONCLUSIONS 
A. For the hard perturbative phase of QCD we 

have found the following properties. 
• The so-called x-curve is defined on a parton state 

and gives the average momentum distribution of the final 
hadrons. It is a fractal curve, embedded in four-
dimensional energy-momentum space (cf Koch's 
snowflake curve). If suitably defined the length increases 
with the resolution according to a dimension 
D = l + ^ 3 a , /2k. Thus the x-curve provides a 
geometrical interpretation of the anomalous dimension of 
QCD. We also note that the dimension varies with the 

resolution in accordance with the running coupling 
constant AS. 

• For the distributions in y the feature with jets 
within jets corresponds to a fractal structure (cf Cantor 
dust). For large energies and high moments the 
multifractal dimensions D are given by ^3ccs 12k, i.e. 
we find again the anomalous dimension of QCD. 

• For the hadronic multiplicity we note that the 
normal moments are closer to the x-curve results than the 
factorial moments. 

B . For the soft hadronization phase we have 
observed that in the Lund string fragmentation model the 
intermittency signal is most sensitive to directly produced 
pions which are neighbours in rank. From the qq~ 
tunnelling mechanism we expect that direct pions have 
smaller pL than other hadrons. This effect is neglected in 
the MC. We expect that together with Bose-Einstein 
interference it can account for the discrepancy between 
data and MC results for the intermittency signal. 
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DISCUSSION 

M . Feindt (Univ. Hamburg): I want to make a com­
ment on the difference between the TASSO and CELLO 
results: A major difference is that we accept tracks in a 
much, larger solid angle interval than TASSO. Thus the 
rapidity distribution of TASSO has a larger "hole" in the 
central region. This also can effect the absolute height of 
the factorial moments . 
They also used an older version (6.3) of the L U N D Monte 
Carlo. 
In the quantitative evaluation of slopes and comparison 
with Monte Carlo predictions, one should keep in mind 
that the data points axe strongly correlated with each 
other such that the actual x 2 may be very different from 
what one would est imate by counting error bars. Thus, 
even the TASSO data do not really show significant de­
viation from the L U N D Monte Carlo, and CELLO, HRS 
and D E L P H I data are well described by L U N D . 

Q. M . M a r k y t a n (Inst. High Energy Physics, Vienna): 
How is the fractal dimension obtained from the Lund 
dipole radiation of gluons model related to that from 
experimental analysis? Is it larger than one, or seems 
to be close to zero? 

A. G , Gustafson : The fractal dimension of the x curve 
is larger than one as it is embedded in 3-dimensional 
space. It corresponds to the Koch curve. In rapid­
ity, the fractal dimension is y/3as/2ir, and must be 
between one and zero. (The plot of Dq shows a de­
crease from one to about 0.5.) In the subsequent 
hadronization, the neighbouring particles in the Lund 
string have a strong influence. Local parton-hadron 
duality to hold requires a Lorentz-invariant cutoff of 
the parton evolution cascade. 

Q. K . S u g a n a (ANL): I have two comments about your 
M C fit to the TASSO data. First, it is amazing how 
well the M C can reproduce the general shape of the 
rise of moments . Second, the steep rise of moments 
above M = 32 does not agree with the CELLO data. 
Therefore, it should be checked by other experiments. 

A. G . Gustafson : The steep rise above M = 4 in MC 
may be statistical fluctuation and should not be taken 
too seriously at this moment . 
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