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ABSTRACT

New results are presented for fractal structures and intermittency in QCD parton showers. The particle momenta define a fractal curve
in energy-momentum space with a dimension 1 + 1/306, /27, i.e one plus the anomalous dimension of QCD. For the distributions
in small y-regions the property with jets within jets corresponds to a fractal structure with a dimension +/3¢, /27 (for high
moments). At lower energies in the PEP-PETRA range the soft hadronization is important. The experimental data can be understood
if the properties of the directly produced pions are carefully taken into account.

1. INTRODUCTION

The results presented in this talk are obtained in
collaboration with A. Nilsson and C. Sjogren in Lund. A
more extensive discussion is presented in refs. [1,2].

e*e” -annihilation into hadrons is often described in
terms of two phases, a hard perturbative phase, described
in terms of quarks and gluons, and a soft phase in which
the energy of these partons is transformed into the
observable hadrons. The latter phase can be described in
terms of clusters or in terms of strings.

To study the hard phase we use two important tools:

* The dipole formulation of QCD cascades [3]

» An infrared stable measure on parton states [4].

Dipole formulation

A high energy g7 -system radiates gluons according to
the dipole formula
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The phase space available is given by the relation
2|y|<In(s / k?), which is a triangular regionina y —Ink
diagram. If two gluons are emitted, then the distribution
of the hardest gluon is described by eq. (1), while the
distribution of the second, softer, gluon corresponds to
two dipoles, one between the quark and the first gluon,
and the second between this gluon and the antiquark [5].

The total phase space available in the two dipoles
corresponds to adding a fold to the triangular region in
the y—Ink?-plane (see fig. 1), with the constraint
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k?, < k%,. This procedure can be generalized so that the
distribution of a third, still softer, gluon corresponds to
three dipoles, etc. Thus, with many gluons the gluonic
phase space can be represented by the multifaceted
surface in fig. 1. Each gluon adds a fold to the surface,
which increases the phase space for softer gluons.

Fig. 1
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In this process the recoils are neglected, as is normal in
the leading log approximation. Recoil effects and
kinematical constraints can be taken into account in a MC
simulation program. Such a program called ARIADNE is
developed by U. Pettersson and L. Lénnblad [6].

Multiplicity measure

In string fragmentation the hadronic multiplicity for a
simple ¢g -system is proportional to Ins. The hadrons
are evenly distributed in rapidity, which means that their
energy-momentum four-vectors are distributed around a
hyperbola (cf fig. 2a).

For a ¢ g-system, we obtain in the Lund string model
a bent string with two straight segments. If the energy in
the segments is s,, and s,,, the average multiplicity, n,
is given by the relation

(n)~Ins, +1ns, =Ins+Ink] )
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Fig. 1. The phase space available for a gluon emitted by a high
energy g -system is a triangular region in the y —In kZ -plane.
Fig. 2a. In a ¢ -system the hadron momenta are distributed
around a hyperbola in energy-momentum space. b. For a multi-
gluon state the hadron momenta are distributed around a curve (the
x-curve) which smoothly follows the parton momenta.



Here k, is the transverse momentum of the gluon. The
momentum distribution of the hadrons is in this case
given by two hyperbolae.

For a multigluon state we find in the same way

{n)~ Zln(si,iH /n1§) =

=In(s/m)+ T In(k}; [ m)= A 3)

This expression, which we call A, is an "effective
rapidity range". It is possible to calculate the distribution
P(A,s) in A for fixed s [4]. Thus we find e.g.

A= \/;TO—II(Z aoL) ~(Ins)"* exp(2 o, lns)

where o, / L=3a, /2% 4)

The quantity A can be generalized in an infrared stable
way. For a fixed energy W the perturbative cascade
gives a parton state with definite parton momenta, and
thus a definite value of A. The soft hadronization
mechanism then gives a certain hadronic state with a
hadron multiplicity n which depends only on A and not
on W [7].

For the momentum distribution of the hadrons it turns
out that it is possible to generalize the hyperbolae in the
q7 - and ggGg-cases (fig. 2a) and define a timelike curve
in energy-momentum space [7]. This curve (called the x-
curve) follows smoothly the (colour ordered) parton
momenta (see fig. 2b). The length of the x-curve is given
by A and if we just cut it into equal pieces, then we
obtain an average momentum distribution of the hadrons.
The soft hadronization just adds limited fluctuations
around this average. These features give a quantitative
meaning to the notion of local parton-hadron duality.

2. FRACTAL STRUCTURES AND INTER-
MITTENCY IN THE PERT. PHASE [1]

The x-curve has a fractal structure

The x-curve is "longer" if it is studied with a higher
resolution (cf Koch's snowflake curve). The invariant
length is shorter, and is thus not a suitable measure. We
divide the curve in pieces with a certain invariant length
§corresponding to a given resolution and we define the
length of each piece as the length of a hyperbola passing
through the endpoints, which is ~ 1n(§ / mg) Thus we
define the length S obtained with the resolution §.

S ~ (no of pieces)- In($ / m]) )

Within the analytic approximation discussed above we
find for asymptotic energies (s >> § >> m; )

S ~(lns)"* exp(z a, Ins)(ln.s“)m exp(—2 a,Ins ) (6)

Thus we see that the fractal dimension D is given by
the following expression
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Fig. 3. The length S of the x-curve, as a function of the

resolution §, in e*e” -annihilation at 1000 GeV. The dashed line is

the analytic approximation and the solid line shows the MC results.
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In the square root we recognize the anomalous
dimension of QCD. Thus the x-curve gives a geometrical
interpretation of this anomalous dimension. It is possible
to calculate S(s,5) also with the Monte Carlo simulation
program, which takes recoils and kinematical constraints
better into account. The result is shown in fig. 3.

Distributions in y

A lot of interest has recently focused on the notion of
intermittency. It was suggested by Bialas and Peschanski
[8] to study the factorial moments of multiplicity
distributions in a rapidity range dy.If we use normal
moments, or scaled normal moments

C, =(n?)/{ny* ®)
rather than the factorial moments, then it is possible to
study also noninteger variables, e.g. the piece of the x-
curve which has its tangent within an interval in y. This
would represent the hadron distribution without the noise
from the soft hadronization, and thus reveal the properties
of the perturbative cascade. If C, has a powerlike

behaviour, C, ~(1/ 8y’ , this can be interpreted in terms
of a (multi)fractal dimension D, =1-p /(¢ —1) [9,10].

The feature of QCD with jets within jets within jets,
similar to a Cantor dust, gives fractal properties.We see
that for large ¢-values (l") is dominated by few events
with large values of A. These are events with a hard jet
where the tip of the jet is inside the y-range dy = 6.

It is possible to show that the multiplicity in this tip
corresponds to an e‘e -annihilation event with a cms
energy given by W = k, §. Summing over all possible jet
transverse momenta we then obtain
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Fig. 4. Moments C2 and C4 for the x-curve (solid lines)

compared with normal moments C " and factorial moments F; for

the hadron distribution. M o< 1/ § is the number of bins,

With no jets we would obtain a background
contribution A =& corresponding to a straight string.
This gives

(1), =5 a0)

When g and s are large and § is small the jet tips
dominate, while when ¢ and s are small and § large,
the background dominates. From eqs. (9,10) we get the
dimension

D, =+3a,(s8")/ 2
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If we include the rest of the jets and not only the tips,

we obtain a sum of terms with dimension between’

v3c, /27 and 1. Fig. 4 shows MC results for the scaled
moments of the A -distribution at 200 GeV. Here the
slope of the curve is given by (g —1)(1— Dq). We note
that for & large the curve is rather flat because D ~ 1. For
smaller & it becomes steeper and D is closer to
1/3(1, /2x. For very small § it flattens out again,
because the running ¢, becomes larger when s§°
becomes small. It is also possible to use Monte Carlo to
study the variation with ¢. For small ¢ the terms with
higher dimensions dominate while for larger g the jet tips
dominate giving lower dimensions.

Hadron distributions

The perturbative QCD cascade gives a partonic state
with a certain value of A within a given rapidity
window. The soft hadroniztaion gives a definite hadronic
multiplicity n. If the distribution in n for fixed A4 is
Poissonian, then the factorial moments of »n,C,(n), are
equal to the normal moments of the A -distributions
C,(A). In this case the normal multiplicity moments
C,(n) blow up for small rapidity windows. However, in
string fragmentation the fluctuations are smaller than in a
Poisson distribution. Furthermore, the production of
particles in neighbouring bins are correlated.

995

Fig. 4 shows both normal moments and factorial
moments for the hadron distribution, compared with the

" moments from the x-curve. We see that indeed the normal

moments shoot up above the x-curve for small §y but
that they nevertheless are closer to the x-curve than the
factorial moments, which are much further below., It is
not clear if this also implies that the normal moments are
more related to the underlying dynamics of perturbative
QCD.

3. INTERMITTENT EFFECTS IN SOFT
HADRONIZATION [2]

In many experiments [11] InF, rises with In(1/ 8y)
with a steeper slope than Monte Carlo calculations based
on Lund string [12] or the Webber cluster model {13].

These models are tuned to fit other variables, and are
not retuned to reproduce the intermittency slopes. We
have found that in the Lund model a large part of the
effect is due to directly produced pions which are
neighbours in rank (i.e. pions which are not decay
products of p's and @'s and other resonances). This
implies that the result is very sensitive to the vector to
pseudoscalar ratio. The default value in the MC is
P/(V+P)=0.5, and we note that the vector meson
production measured by NA22 [14] and EMC [15] is
smaller than the corresponding MC results.

This observation also implies that the result is very
sensitive to the fragmentation p, for direct pions, i.e. the
p, (with respect to the string direction) given to the pions
in the rest frame of the string.

The production of gg-pairs in the string can be
described as a tunnelling process [16,12]. This gives a
Gaussian distribution in the transverse momenta %, . The
produced quark must also fit into the bound state meson
wavefunction. This effect is estimated to produce an extra
factor (m, y! where m, is the transverse mass of the
meson [12]. This can explain the suppression of vector
mesons relative to the pseudoscalar mesons. It also
favours small p, for pions which have a small mass, an
effect which is neglected in the MC programs.
Furthermore, it causes correlations so that the pions tend
to come in bunches, which increases the intermittency
even more.

In fig. 5 we show results obtained with
V /(V + P) = 0.35 and where the p, of the direct pions is
suppressed to (p})=(0.07)" (in the rest frame of the
string).

We note, however, that the TASSO data shown in fig.
5 are not corrected. When the MC generated events are
processed through the detector simulation, the result is
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Fig. 5. Normalized factorial moments F, and F, for e*¢”at 36
GeV. The squares are the uncorrected data from TASSO [17]. The
dashed lines show results from the ARTADNE MC with default
values for the parameters and the solid lines show results where
V /(V + P)=0.35 and the directly produced pions have reduced
P, with respect to the string.

increased [17]. We also note that the MC does not include
the Bose-Einstein effect. This effect must increase the
slopes of the factorial moments. It can not be the
dominant effect, because it would give a larger signal for
same sign particles, in contradiction with the data
[17,18]. Direct charged pions which are neighbours in
rank must have opposite charges. Thus the effect
discussed above is largest for particles of opposite
charges. We conclude that with about equal contributions
from detector acceptance, Bose-Einstein interference and
the effect from directly produced pions discussed here, it
is likely that we can satisfactorily describe the difference
between the MC simulations and the data in fig. 5.

We also note that the reduced p, for direct pions also
can explain the large K / x ratio at high p, observed at
the ISR [19].

We finally note that the effects discussed here should

be noticeable not only in ¢*e”-annihilation, but also in
DIS and hadronic collisions if the particles also here are
produced from a stringlike colour field.

4. CONCLUSIONS

A. For the hard perturbative phase of QCD we
have found the following properties.

» The so-called x-curve is defined on a parton state
and gives the average momentum distribution of the final
hadrons. It is a fractal curve, embedded in four-
dimensional energy-momentum space (cf Koch's
snowflake curve). If suitably defined the length increases
with the resolution according to a dimension
D=1+.30, /2x. Thus the x-curve provides a
geometrical interpretation of the anomalous dimension of
QCD. We also note that the dimension varies with the
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resolution in accordance with the running coupling
constant o,.

« For the distributions in y the feature with jets
within jets corresponds to a fractal structure (cf Cantor

dust). For large energies and high moments the
multifractal dimensions D, are given by 3¢, /27, ie.
we find again the anomalous dimension of QCD.

« For the hadronic multiplicity we note that the
normal moments are closer to the x-curve results than the
factorial moments.

B. For the soft hadronization phase we have
observed that in the Lund string fragmentation model the
intermittency signal is most sensitive to directly produced
pions which are neighbours in rank. From the ¢7-
tunnelling mechanism we expect that direct pions have
smaller p, than other hadrons. This effect is neglected in
the MC. We expect that together with Bose-Einstein
interference it can account for the discrepancy between
data and MC results for the intermittency signal.
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DISCUSSION

M. Feindt (Univ. Hamburg): 1 want to make a com-
ment on the difference between the TASSO and CELLO
results: A major difference is that we accept tracks in a
much larger solid angle interval than TASSO. Thus the
rapidity distribution of TASSO has a larger “hole” in the
central region. This also can effect the absolute height of
the factorial moments.

They also used an older version (6.3) of the LUND Monte
Carlo.

In the quantitative evaluation of slopes and comparison
with Monte Carlo predictions, one should keep in mind
that the data points are strongly correlated with each
other such that the actual x> may be very different from
what one would estimate by counting error bars. Thus,
even the TASSO data do not really show significant de-
viation from the LUND Monte Carlo, and CELLO, HRS
and DELPHI data are well described by LUND.

@. M. Markytan (Inst. High Energy Physics, Vienna):
How is the fractal dimension obtained from the Lund
dipole radiation of gluons model related to that from
experimental analysis? Is it larger than one, or seems
to be close to zero?

A. G. Gustafson: The fractal dimension of the z curve
is larger than one as it is embedded in 3-dimensional
space. It corresponds to the Koch curve. In rapid-
ity, the fractal dimension is V3a, /27, and must be
between one and zero. (The plot of D, shows a de-
crease from one to about 0.5.) In the subsequent
hadronization, the neighbouring particles in the Lund
string have a strong influence. Local parton-hadron
duality to hold requires a Lorentz-invariant cutoff of
the parton evolution cascade.

@. K. Sugana (ANL): I have two comments about your
MC fit to the TASSO data. First, it is amazing how
well the MC can reproduce the general shape of the
rise of moments. Second, the steep rise of moments
above M = 32 does not agree with the CELLO data.
Therefore, it should be checked by other experiments.

A. G. Gustafson: The steep rise above M = 4 in MC
may be statistical fluctuation and should not be taken
too seriously at this moment.
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