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Abstract: Neural network is a dynamical system described by two different types of degrees of
freedom: fast-changing non-trainable variables (e.g., state of neurons) and slow-changing trainable
variables (e.g., weights and biases). We show that the non-equilibrium dynamics of trainable
variables can be described by the Madelung equations, if the number of neurons is fixed, and by
the Schrodinger equation, if the learning system is capable of adjusting its own parameters such
as the number of neurons, step size and mini-batch size. We argue that the Lorentz symmetries
and curved space-time can emerge from the interplay between stochastic entropy production and
entropy destruction due to learning. We show that the non-equilibrium dynamics of non-trainable
variables can be described by the geodesic equation (in the emergent space-time) for localized states
of neurons, and by the Einstein equations (with cosmological constant) for the entire network. We
conclude that the quantum description of trainable variables and the gravitational description of
non-trainable variables are dual in the sense that they provide alternative macroscopic descriptions
of the same learning system, defined microscopically as a neural network.

Keywords: general relativity; quantum mechanics; neural networks; thermodynamics of learning

1. Introduction

Quantum mechanics is a well-defined mathematical framework that proved to be
very successful for modeling a wide range of complex phenomena in high energy and con-
densed matter physics, but it fails to give any reasonable explanations for a phenomenon
as simple as a measurement, i.e., the measurement problem. It is completely unclear what
is actually happening with the wave-function during the measurement and what role (if
any) observers play in the process. Unfortunately, none of the current interpretations of
quantum mechanics provide a satisfactory answer to the above questions. In the Copen-
hagen interpretation it is simply postulated that during measurement the wave-function
undergoes a sudden collapse. That is fine, but then one should view quantum mechanics
as a phenomenological theory with its limits of validity. In the many-worlds interpretation
the wave-function describes the state of the entire universe which evolves unitarily and
nothing ever collapses [1]. That is an opposite view where quantum mechanics is a fun-
damental theory, but it is not a very useful theory as it makes no probabilistic predictions
that could be checked experimentally. In the recent years, the so-called emergent quantum
mechanics is becoming more popular [2-9], but what is usually missing is a microscopic
description of the dynamics from which the complex wave-function and the Schrodinger
equation could emerge. Moreover, if quantum mechanics does emerge from a statistical
theory, for example, due to averaging over some hidden variables [10], then the hidden
variables must be non-local [11]. In this paper we describe a microscopic theory of neural
networks from which the quantum behavior does emerge (for the trainable variables) and
the hidden variables (or the non-trainable variables) are non-local [12,13]. In fact, as we
shall see, the very notion of locality is also an emergent phenomenon that arises from the
learning dynamics of neural networks.

General relativity is another well-defined mathematical framework that was devel-
oped for modeling a wide range of astrophysical and cosmological phenomena, but it is
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also incomplete since it does not describe what happens in space-time singularities and it
does not directly explain the indirect observations of dark matter, dark energy and cosmic
inflation. Of course, we can also treat general relativity as a (highly successful, but still)
phenomenological theory with its own limits of validity and model all of these phenomena
with phenomenological fields, but then certain important questions cannot be answered.
And that includes not only very general questions about the nature of dark matter, dark
energy and cosmic inflation, but also more specific questions about assigning probabilities
to cosmological observations, i.e., the measure problem [14]. Perhaps, in a more complete
theory of quantum gravity all of these questions would have answers and, in fact, some
progress in developing such a theory had been made in context of AdS/CFT [15-17] and
loop quantum gravity [18-20]. Another possibility is that gravity is an emergent phe-
nomenon [21-24] similar to thermodynamics, and then it does not make sense to quantize
the metric tensor as all other fields, but, instead, we should try to figure out from which
microscopic theory the general theory of relativity could emerge. In this paper we describe
how not only general relativity, but also quantum mechanics, Lorentz invariance and
space-time can all emerge from the learning dynamics of neural networks [12]. Note that
the idea of using neural networks to describe gravity was also explored in Ref. [25] in the
context of quantum neural networks and black holes, and in Ref. [26] in the context of
matrix models and cosmology.

The paper is organized as follows. In the following section we define the microscopic
theory of neural networks and develop a statistical description of the learning phenomenon.
In Section 3 we derive Madelung equations which can be used for modeling the dynamics
of trainable variables both in and out of equilibrium. In Section 4 we show that if the
learning system is capable of adjusting its own parameters such as step size, mini-batch
size and/or acceptance of neurons, then the trainable variables must evolve according
to the Schrodinger equation. In Section 5 we consider the dynamics of non-trainable
variables of individual neurons to show how the null, time-like and space-like vectors
emerge. In Section 6 we exploit the freedom of local transformations to define an emergent
space-time and the metric tensor. In Section 7 we consider minimally interacting states of
neurons to show that the neurons must move along geodesics in the emergent space-time.
In Section 8 we argue that the dynamics of non-trainable variables in the entire network
must be described by an action which is equivalent to the Einstein-Hilbert action up to
a boundary term and by the cosmological constant which imposes a constraint on the
number of neurons. The main results of the paper are discussed in Section 9.

2. Neural Networks
In general, a neural network can be defined as a septuple (x, b, pa, W, b, f, H), where:

X, column state vector of boundary (i.e., input/output) and bulk (i.e., hidden) neurons,
P, boundary projection operator to subspace spanned by boundary neurons,

Pa (Px), probability distribution which describes the training dataset,

©, weight matrix which describes connections and interactions between neurons,

b, column bias vector which describes bias in the inputs of individual neurons,

f(y), activation map which describes a non-linear part of the dynamics,

H(x,b,w) = H(x, q), loss function where q denotes collectively both b and .

NG L=

(See Ref. [27] for details.) There are two types of degrees of freedom: non-trainable
variables q (or the bias vector b and weight matrix ©) and non-trainable variables x (or
the state of boundary Px and bulk (I — P)x neurons). The state of the boundary neurons
is updated either periodically or randomly from a training dataset which is described by
some probability distribution py(xy), and between the updates both bulk and boundary
neurons evolve according to

x(t) = f(@dx(t—1) +b), (1)
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where the activation map acts separately on each component, ie., fi(y) = fi(y;) (e.g.,
hyperbolic tangent tanh(y), rectifier linear unit function max(0, x), etc.)

The main objective of learning is to find the trainable variables q (or the bias vector b
and weight matrix @) which minimize the time-average of some loss function. For example,
the boundary loss function is

1
H(xq) = 5(x- f(dx + b)) P(x — f(x + b)) )
and the bulk loss function can be defined as

H(x,q) = %(x—f(szer))T(xff(deer))+%V(x,q) (3)
where in addition to the first term, which represents a sum of local errors over all neu-
rons, there may be a second term which represents either local objectives or constraints
imposed by a neural architecture [27]. Note that the boundary loss is usually used in
supervised learning, but the bulk loss may be used for both supervised and unsupervised
learning tasks.

To develop a statistical description of learning [27], consider a joint probability distri-
bution over both trainable q and non-trainable x variables,

p(x,q) = p(q)p(x|q), 4)

where p(q) and p(x|q) denote, respectively, the marginal and conditional distributions. If
the non-trainable variables quickly equilibrate, then their distribution must be given by the
maximum entropy distribution [28,29],

p(x|q) o pa(x) exp(~pH(x q)), ®)
where j is a Lagrange multiplier which imposes a constraint on the loss function,

u(a) = [ a¥x p(xla)H(x,q). ©)
The corresponding free energy is
1
Fla ) = glog( [ ¥ pals ) exp(—Hi(x ) )
where the explicit and implicit dependencies of the free energy F(q, t) on time ¢ are due

to, respectively, stochastic dynamics of py(x, t) and learning dynamics of q(t). The total
change of the free energy is given by

. _ q doF(q,t)  9F(q,t)

E)qk ot
_ 8F(q,t))2 JF(q,t)
(o) e ©

where we assume that the trainable variables experience a classical drift in the direction of
the gradient of the free energy,

dgy dF(q,t
M __0fa ) ©)
dt oqx
Note that the parameter < can be either positive or negative depending on whether
the free energy is minimized or maximized with resect to a given trainable variable. If
evolution is dominated by stochastic dynamics, then according to the second law of
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Sp, F,«]

thermodynamics the entropy must increase and then the free energy is minimized, but
if evolution is dominated by learning, then according to the second law of learning the
entropy must decrease and then the free energy can be maximized [27]. We will come back
to the issue of sign of v in the following sections.

3. Madelung Equations

On the shortest time scales (or when the free energy F(q, t) does not change signif-
icantly) the dynamics of the probability density p(q,t) can be modeled by the Fokker-
Planck equation,

ap(q,t) porlat)  dagy
ot 2 ok < ok dfp(q't)>
ap(q, JF(q,t
Z3% ( pa;lk : + fg:ilk )p(q't)>' 10

where we used (9) and D is the diffusion coefficient. On longer time scales the dynamics of
the free energy is given by (8) and an additional assumption must be made. By following
the analysis of Refs. [12,13,27] we assume that the long time scale dynamics is governed by
the principle of stationary entropy production [9]. The principle states that the path taken
by a system is the one for which the entropy production is stationary, subject to whatever
constraints are imposed on the system.

The entropy production of trainable variables q can be estimated by calculating the
total change in the Shannon entropy,

Sq =~ /qu p(a.t)logp(q t), (11)
which can be expressed as
AS / dt qu logp — /T dt qud—p (12)
1 dt 0 dt
T dlogp oF
— [ ardqp(D (ng) + EPZ ). 13
/0 qp( ; 9 7; Ik 0 (19

where in the first line we used conservation of probabilities, i.e., [ dXg p(q,t) = 1 and
in the second line we used (10), integrated by parts and neglected the boundary terms
by imposing either periodic or vanishing boundary conditions. Equation (13) describes
the system on short time scales, but on longer time scales an addition constraint must
be imposed to satisfy (8). The overall optimization problem is solved by constraining
deviations of the free energy production (8) from its time-averaged value using the method
of Lagrange multipliers. The corresponding “action” functional is given by,

ASq—oc/qup(/ dt(’f; <’f§>)—f),

2
/dtqup<DZ<a gp) Zalogpal—" zx'yZ(aF> —txaaI;—i-sz)
k

i 9k
-2 -
K o dlogp JoF \" dF
/0 dtd qp((D 404);( 20 ) —l—a’y;(aqk asr FaV ). (14)

In the second line we defined the “potential”

via =+ () 15
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where (...), is the time average, and in the third line we completed the square to define

- lo ,t
Fq t) = F(q/t) + % (16)
and also used conservation of probabilities, i.e., [ d¥q p(q,t) = 1.
Note that in Refs. [12,13,27] a functional similar to (14) was obtained, but only in a
near equilibrium limit or when the entropy production due to learning is negligible, i.e.,

9k

the free energy F — F which allowed us to keep all the terms. By varying S[p, [, a] with
respect to p and F (i.e., original probability distribution, but shifted free energy (16)) we
also obtain the Madelung hydrodynamic equations [30],

2
< DY} (abgp ) . In contrast, in (14) we completed the square and redefined

?°F
,)/ Zk aq%

d ]
Zp o= Y (17)
5P ;aqk( p)
9 9 19 W PP
—u; = —) Up=—Ui— ——|V—-— 18
ot ; g Maqj< 2M 2 og? (1%
with “velocity” of the fluid
1 oF
o= L 9F 19
€= Mag (19)
and “mass” .
M= Z, (20)
but the “Planck’s constant” is now
h= 1 @a - 1. (21)
a\ oy

Therefore, we conclude, that the Madelung description of trainable variables must
remain valid arbitrary far away from the learning equilibrium, suggesting that the effect is
more general than previously thought.

4. Schrodinger Equation

All of the solutions of the Madelung Equations (17) and (18) are also solutions of the
Schrodinger equation, but the opposite is not true [31] and so the system is not exactly
quantum. To study a limit when a fully quantum behavior emerges we have to assume that
the learning system is described by a grand canonical ensemble of neurons and that the
exact number of neurons N is unobservable [13]. Then a constant shift in the free energy is
unobservable, i.e.,

F~F+uN VN € Z. (22)

where the “chemical potential” of neurons (or another Lagrange multiplier which imposes
a constraint on the number of neurons) is defined as

u = +27h. (23)

Using (22) the functional (14) can be rewritten as,

T n 9" oY oY
— K o gl 9t g Y 1 *
S[¥) _a/O dt d¥g <2M; S0 G VY ‘I’) (24)
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where the “wave-function” is .
iF
Y= ﬁexp(h). (25)

(See Ref. [13] for details.)
It is assumed that 71, D and « are all positive, but y and u can be either positive or
negative. By combining (21) and (23) we obtain a quadratic equation,

(ﬂ)ztxz — %tx +1=0, (26)

whose solutions are

e = . 27)

For the real solutions to exist, the following inequality must be satisfied
B

. >\£]:n. (28)

—12r

Evidently, for |ypu/D| > 4mr the inequality (28) cannot be satisfied and thus the
quantum (or Schrodinger, but not Madelung) description breaks down. To restore the
quantumness the learning system must readjust , ¢ and/or D such that the inequality
(28) is saturated. In other words the learning system must decrease either the step size, the
mini-batch size and /or the chemical potential by v, D and y until

]lD”\ — 4. (29)

However, if we want the “Planck constant” to remain constant, then the chemical
potential (23) must be constant, and the only parameters that should vary are the number
of neurons, the step size and the mini-batch size, or N, ¥ and D. Evidently, the learning
efficiently which is achievable only through quantumness (e.g., quantum annealing) is
tightly connected to the ability of the learning system to dynamically adjust its own
parameters (e.g., step size, mini-batch size, number of neurons). On the other hand the
Madelung description is always appropriate both in and out of equilibrium.

5. Lorentz Symmetry

In the previous sections we discussed the entropy production AS, of trainable variables
q, but the dynamics of non-trainable variables was described only at the level of its free
energy. In this section we are interested instead in the entropy production AS, of non-
trainable variables x which we approximate as a sum of entropy productions of individual
neurons,

ASy(t) = Y AS.;(t). (30)
i
It is assumed that the state of neurons changes quasi-periodically [12], i.e.,
) - 2t +1) = = 2t +d—1) = 2} (E+d).... (31)

For concreteness, we assume that d = 3 which corresponds to the three spatial
dimensions. Then, the entropy production can be modeled as a function of “displacements”,

, 1
1 (1) = (7 (1 +3) —x{(1)), (32)
and computational time ¢, i.e.

ASyi(t) = ASy; (X7 (8), ). (33)
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In general, there are two contributions to the entropy production: positive due to
the second law of thermodynamics and negative due to the second law of learning [27].
The main idea is to model the positive entropy production as some non-negative function
0 +(t) > 0 of computational time ¢ and the negative entropy production (or entropy
destruction) as some non-positive function o; _ (x7(t)) < 0 of displacements x¢(t). Then
the total entropy production is given by

ASyi(xf (1), 1) = 03,4 (1) + 03, (3 (1)) = 2 (1) + 0, (] (¢)) (34)

where we defined a monotonic function

V() = /(;t dty/o; (7). (35)

In addition, the entropy destruction ¢; _ (x%(t)) < 0 must vanish if there are no
displacements x{ = (0,0,0) which implies that there are no zeroth and first order terms in
a perturbative expansion around origin, i.e.

0; (¥ (1)) ~ = Y iap 7 (5)2] (1) (36)
ab

Here g; 5 (t) is some positive definite matrix and the displacements ¢ (¢) are assumed
to be small so that the third order terms can be neglected. By substituting (36) in (34)
we obtain

ASi (3 (1), 1) ~ 3] ()7 = Y 810 4§ (3] (1) (37)
ab
and if we define temporal components of the matrix, gjg0 = —1 and gj0, = giq0 = 0,

then (37) takes a more covariant form (For brevity of notations summation over repeated
raised and lowered indices is implied everywhere unless explicitly stated otherwise.)

DS (H1(1)) & —gigu 2 (D (1) (38)

for metric signature (—, +, +, +). Note that for very large displacements the third order
terms may become important and then the approximation in (36) would break down and
the Lorentz symmetry in (38) would be broken.

It is convenient to think of x!' as a four-vector in the tangent space at the “position”
of i’th neuron. Indeed, if, macroscopically, one can only observe the entropy (or entropy
production), then we have Lorentz invariance in a sense that different representation of
the four-vectors xf‘ , that are connected to each other through Lorentz transformations,
are indistinguishable. In a local equilibrium, the stochastic entropy production 1?()? is
balanced by the entropy destruction due to learning g; ;5 14 ()1?(t) and the entropy remains
constant. Therefore, the null displacement vectors, g; ., X! (t)%¥ (t) = 0, describe neurons in
equilibrium, AS, ; = 0. Moreover, the time-like displacement vectors, g; ,,, xly (£)x¥(t) <0,
describe neurons for which stochastic dynamics dominates, AS, ; > 0, and the space-like
displacement vectors, g; ,,, 2l (£)1Y(t) > 0, (if such displacement vectors can be stable)
describe neurons for which learning dynamics dominates, AS, ; < 0.

6. Emergent Space-Time

!
The local space-time coordinates of individual neurons, xf , can be transformed using
shifts, rotations and boosts, i.e.

!

xl(t) = Ail”y/xly (t) +al!, (39)
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where A, # W is a Lorentz matrix. If the matrix g; ,,, is transformed using inverse Lorentz
. e
matrix AW ,
! v
g]/lv(xi) = Ai,yy Ai,V Sip'v's (40)

then the entropy production does not change,

ASy; = \/*Siwx?(f)x?(t) (41)
= V (A g ) (A5 ) (A, ()
= i (O3 (0). @)

(Note that we adopted a standard notation of primed-unprimed indices often used for
coordinate transformations [32]). The main idea is to exploit the freedom of transformations
to make an appropriately weighted average of g; ,, matrices as close to the flat metric 77,y
as possible,

Li 8iguy/Gie” 2 (7 0)sin (5 0)
¥ e A )i ()

Suv(t, Xl a2, x3) =

~ Nuv, (43)

where g; = det(g; ;) and summation in the exponent is taken over only spatial components,
a,b =1,2,3. For simplicity, we assume that all of the local space-times are transformed
into “synchronous gauge” with global time coordinate

t:xO:x? (44)
and

goo(x) = -1

gao(x) = 0 (45)

gOu(x) =

Note that from now on the coordinate time is denoted by t = x” which need not be
the same as computational time.
It is convenient to introduce the curly brackets notation,

(=Y (2m) 32 3 (T O)sia (1), (46)

and then the (weighted average) metric tensor (43) can be expressed as

o) = {8 /3i}
glﬂ/( )_ {\/g} (47)

and (weighted average) inverse metric tensor is defined as

{" vai}

g(x) = RS

(48)
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It is not immediately clear what is the relation between g*"(x) and g, (x), but if the
emergent space-time is nearly flat (43), then we can expand both (48) and (47) around flat
metric to obtain

Qg = M+ €hjy +O(e) (49)
glyv _ ;7#1/ _ erlwﬂvﬁhi,aﬁ + 0(62) (50)

and verify that the product of the (weighted average) metric tensor and of the (weighted
average) inverse metric tensor is indeed identity,

{g?v\/g} {giva/3i}
{vat  {vai}

x,vBy,. ; ; i

g"gua

Q

= JK + O(€2).

In general, the curly brackets (46) can be used for mapping discrete indices i to

continuous spatial coordinates (xl, x2, x3). For example, the total number of neurons can

be expressed as

/de{\/@} = Z/d%@ o2 (2 =xf (1) giap (P =27 (1) _ Zl =N, (52)

which suggests that

() = (V&) 3)

should be interpreted as the number density of neurons in the emergent space. Moreover,
using the perturbative expansions (49) and (50) we can check that the determinant of the
metric tensor g, is the same as the weighted sum of determinants of g; 4, i.e.,

—det(guu(x)) = 1/det(gm)
- 1+ gTrhab +O(e?)

{(1+ §Tr(hiw))/Si}

e ¢
{1} + e{Tr(hia)}
{1} + 5{Tr(hi ) }
= {V&} +0()

= /—8(x) +O(e).

(%)

+ O(e?) (54)

7. Geodesic Equation

The proper time of a given neuron can be identified with the square root of the entropy
production (65), i.e.,

At(t) = AS; .

~ \/ — i XL ()XY (). (55)
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If we are interested in a more macroscopic and localized distribution of neurons, then
their average entropy production can be approximated using the metric tensor (47),

at(t) = \/as)

~ oy g 2 (0 (1). (56)

In a continuum limit (56) becomes,

— = AT = \/ Suv (i) X7 ()XY (t), (57)
which is usually expressed as a square of infinitesimal line element,
dt* = —gu(x;) dxf(t)dxiv(t). (58)

By integrating the proper time from initial position xly (0) at time ¢ = 0 to final position
x!'(T) at time t = T we obtain,
T dt
|t
o dt

T
|ty =gz 2 (0. (59)

According to the principle of stationary entropy production, it is expected that the
neuron would “travel” along a path (from initial xf (0) to final xﬁl (T) position) which
extremizes (in this case maximizes) the entropy production or, equivalently, the proper
time 7[x} (T)| x!'(0)].

By setting variations of the proper time (59) with resect to the trajectory xf (t) to zero,

al
=
~
3
=
=
=
Q

1%

=0 (60)

we obtain the geodesic equation

(L odx ) dad dxP o
an T TR (61)

or, equivalently, in terms of proper time

e dx dxP -
dt? “pdr dt

where the Christoffel symbol is defined as

1 ag ag ang 3
I-.;t _ Lo v vB . B
7 g ( oxP ox« oxV ) (6 )

(See Ref. [32] for a detailed derivation of the geodesic equation.) This result suggests that
in the limit of minimal interactions, described by the metric tensor g, (x;), the localized
states of neurons are expected to move along geodesics in the emergent space-time.
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8. Einstein Equations

In this section, we are interested in the total entropy production of the non-trainable
variables in the entire neural network during global time interval T,

T
BSy[g] ~ /O dt Y ASyi(x(0),1). (64)

The entropy production of individual neurons (38) in the synchronous gauge is

B8 (H(1)) ~ 1= goay 3 () (1), (65)

and after integrating by parts we obtain

dx?(t) dxb(t)
/()dtZ( TR )

- /dtz P ) 2(t) + NT (66)
= 0 8iab— 3,5 ar X

Q

ASy[g]

where we have neglected the boundary term. We can also drop the constant term NT
(which is irrelevant for variational problems) and rewrite the entropy production using
Gaussian integration formula,

t
asdls) = [ e i PO (1) ygi(am) 326 0Tl =00)

d2x? (t Tt (D))ot (20 —x
= [ an O (2 -2 i) e s 0)

d*xf
) —/0 o {gi,ab s (0 (xb_x?(t))\/é}, 67)

where in the last line the definition of curly brackets (46) was used. Using the geodesic
Equation (61) the total entropy production (67) can be recast into the following form,

T dx? dx () dxP (¢
as:lgl ~ — [ dtd?’x(fg,g(x){;tlgi,ab(xb—x?(t)) u x;f)@} (69)

P
0 200) SO 1)

To proceed further, we make a crucial assumption that on average,

def () dxl(t) 1/ 4p

In other words, we assume that displacement of i"th neuron depends equally on its own

covariance matrix g?ﬁ and on the weighted average covariance matrix ¢*f(x;). Then by
plugging (69) into (67) and using (53) and (48) we get,
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ASxg]

Q

1 /T dx?
[ (0] Thian (2 = 50) v} - gt {sin (2~ 22 0) v}

Sﬁ{ﬁgmb (x = xb(0) g vai } —Tip{gian(x* = af (t)>g?ﬁ\/§}>

1 /T d d
2 Jy % (8 (V) T Ve
1 /T d
), ‘”dgx(V =88 T~ Ty (V88" )>' 70)

It is now easy to show that (70) is equivalent to the Einstein-Hilbert action up to a
boundary term, i.e.

1 d
ASelg] ~ 5 / dtd’x (V—*gg“ﬁri‘ﬁf% ~Thpos (Hg"‘@) (71)
0 )
= /dtd3x v—gg" (ri‘ﬁf% - FZ"YFEV + szﬂ - MF@) -+ boundary term
= / dtd®x \/—gg*P R, + boundary term

where the Ricci tensor is

d d
—T17H 7 Err M H
Ryw = gl = T T, + 5 5Tk — 5 5T (72)

By setting variations of the entropy production AS,[g] with respect to the inverse
metric tensor g*” to zero we obtain the vacuum Einstein equations,

SASy[g]
oghv

1
-0 = Ry — Eg"‘ﬁzz,,éﬁgw =0. (73)

(See Ref. [32] for a detailed derivation of the Einstein equations from the Einstein-Hilbert
action.)

So far the total number of neurons N was fixed, but, as was argued in Ref. [13] and
in Section 4, for the quantumness to emerge the number of neurons N must vary. Such
variations can be introduced into the variational problem by defining a functional,

Slg, Al ASy[g] +2A(N — N)

/ dtdx /=3 (g% Ryp —2) +2AN, (74)

where we used (71), (52) and (53). By varying S[g, A] with resect to the inverse metric g"¥,
we obtain Einstein equations with cosmological constant, i.e.

1
R‘uv - EglxﬁRrx‘Bgyv + Agyv =0. (75)

Evidently, the Lagrange multiplier 2A constraints the average number of neurons and
plays a role of the cosmological constant A in the gravitational description of non-trainable
variables. We recall that in the quantum description of trainable variables (see Section 4)
the Lagrange multiplier y = £27h also constraints the average number of neurons, but
instead it plays the role of the Planck’s constant 7. Evidently, the role of the Lagrange
multipliers 2A and p = 327t/ in the gravitational description of non-trainable variables
and in quantum description of trainable variables is very different.

In statistical description, the parameter A would play the role of a “chemical potential”
which would be responsible for both “neurogenesis” and “neurodegeneration”. If the
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parameter can vary in time, then for a system with a small number of neurons (e.g., early
Universe) A would be larger, but for a systems with a large number of neurons (e.g., late
Universe) A would be smaller. This can potentially explain both: the early-time accelerated
expansion (i.e., cosmic inflation) and the late-time accelerated expansion (i.e., the dark
energy), but for the former case a more thorough modeling of the spatial variations of the
number density of neurons is required. In addition, the dynamics of trainable variables
q(f) must be described by either Madelung or Schrodinger equations (see Sections 3 and 4)
and thus additional equations of motions must be satisfied and additional constraints must
be imposed. However, from the point of view of the metric dynamics, there should exist an
appropriately defined energy momentum tensor T, that would be acting as a source in
the Einstein equations,

1
R;u/ - Ega‘Bsz,Bgyv + Ag;w = KTyv- (76)

In addition, it is important to model possible deviations from the assumption (69) in
the context of astrophysical observations of, for example, dark matter. Of course, all such
generalizations require a more careful modeling of the dynamics of the trainable variables
which is beyond the scope of this paper.

9. Discussion

All successful physical models are built on top of mathematical frameworks or theories.
These theories are never proven in a rigorous mathematical sense, but instead they are
validated through either repeated experiments or observations of the Universe around
us. In the twenties century two such theories were first proposed—quantum mechanics
and general relativity—and then successfully applied to modeling physical phenomena
on a wide range of scales from 10~!° m (i.e., high-energy experiments) to 1072 m (i.e.,
cosmological observations). However, all of the attempts to treat one of these theories as
fundamental, and the other one as emergent have so far failed (i.e., the problem of quantum
gravity). In addition, both theories seem to fall apart with introduction of macroscopic
observers like ourselves. In some sense, the situation with observers was even worse than
with physical phenomena, since we did not even have a mathematical framework for
modeling observers. Indeed, there is not a single self-consistent and paradox-free definition
of macroscopic observers that could describe what is actually happening with quantum
state during measurement (i.e., the measurement problem) or how to assign probabilities
to cosmological observations (i.e., the measure problem). Fortunately, the situation is
changing and now we do have a mathematical framework of neural networks which can
describe many (if not all) biological phenomena [33]. The main question, however, remains:
can the theory of neural networks be the fundamental theory [12] from which (not only
macroscopic observers [34] or some complex phenomena [35], but) all biological and
physical phenomena emerge? If so, then the theories of quantum mechanics and general
relativity must not be fundamental, but emergent.

The idea that quantum mechanics can emerge from anything classical, including neural
networks, is very counterintuitive. And the main problem is not that in quantum mechanics
we are dealing with probabilities and in classical physics everything is deterministic. Even
in quantum mechanics the wave-function ¥(q) evolves deterministically and it is only
because of the measurements the probabilities p(q) = |¥(q)|? arise. In fact, this is not very
different from statistical mechanics, but what is difference is that in quantum mechanics
not only probabilities, or square-root of probabilities |'¥(q)|, but also the complex phase
of the wave-function Im(log(¥(q))), evolves according to the Schrodinger equations. To
show that this might be possible in a given dynamical system requires two non-trivial steps.
The first step is to provide a microscopic interpretation of the complex phase which, in
the case of neural networks, is the free energy of non-trainable variables Im(log(¥(q))) =
F(q)/h. Note that the microscopic interpretation of the phase was also given in Ref. [9]
for constrained systems and in Ref. [12,27] for equilibrium systems, but as was shown
in Section 3 similar results also hold for non-equilibrium systems. The second step is to
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show that the complex phase, or the free energy F(q) in the case of neural networks, is
multivalued. The multivaluedness condition is essential for the fully quantum behaivor to
emerge [31] and in the case of neural networks it is satisfied for a grand-canonical ensemble
of neurons [13]. In Section 4 we extended this result to non-equilibrium systems that are
capable of adjusting its own parameters (e.g., number of neurons, step size, mini-batch
size). More precisely, we have shown that the quantum description of neural networks
is appropriate for modeling the non-equilibrium dynamics of trainable variables with
non-trainable (or hidden) variables modeled through their free energy and the number of
neurons constrained by a Lagrange multiplier which plays the role of the Planck constant.

The problem of emergent gravity [21-24] is even more complicated, just because it is
impossible to study the emergence of general relativity until the space, time and space-time
symmetries had already emerged. In the context of neural networks, the problem was first
studied in Ref. [27] and more specifically in Ref. [12], but in both cases the description was
too phenomenological or architecture-dependent for anything substantial to be said about
the nature of dark energy, dark matter or cosmic inflation. In this paper we improved
our understanding of the emergent gravity on several fronts. First of all, we showed that
the Lorentz symmetries emerge from the equilibrium dynamics for null vectors, from
the stochastic entropy production for time-like vectors and from the entropy destruction
due to learning for space-like vectors. This is in agreement with a common view that
“time” has a thermodynamic origin, but it also suggests that “space” must emerge from
learning. Secondly, we used the freedom of Lorentz transformations to define the emergent
space-time and the metric tensor which is, by construction, as close as possible to being flat.
In fact, it was essential for the space-time to be nearly flat and we expect the relativistic
description to break down in regions of high curvature. Thirdly, we considered localized
states of neurons, with minimal interactions described by the metric tensor, to show that
they must move along geodesics in the emergent space-time. And finally, we showed
that the general relativistic description is appropriate for modeling the dynamics of non-
trainable variables with trainable variables modeled through their energy-momentum
tensor and with the number of neurons constrained by a Lagrange multiplier which plays
the role of the cosmological constant.

In conclusion, we would like to emphasize that the quantum and gravitational descrip-
tions presented in this paper are dual in the sense that they provide alternative macroscopic
descriptions of the same learning system, defined microscopically as a neural network.
This duality does not have an obvious connection to the holographic duality [15-17] al-
though such possibility was discussed in Ref. [12]. On the other hand, a fully quantum
descriptions can only emerge from a neural network if the number of neurons is not fixed
in which case a constraint on the number of neurons must be imposed in both sectors, i.e.,
gravitational and quantum. The Lagrange multiplier which imposes the constraint in the
quantum description is the Planck constant (see Section 4), but the Lagrange multiplier
which imposes the constant in the gravitational description is the cosmological constant
(see Section 8). This implies that a quantum system can only be dual to a gravitational
system with cosmological constant as in AdS/CFT [15-17], but the sign of the cosmological
constant can be arbitrary.
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