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moduli space but break supersymmetry in others. In the context of the four-dimensional
theory, we investigate what happens when the Kahler moduli are changed from the super-
symmetric to the non-supersymmetric region. Our results provide a low-energy description
of supersymmetry breaking by internal gauge fields as well as a physical picture for the
mathematical notion of bundle stability. Specifically, we find that at the transition be-
tween the two regions an additional anomalous U(1) symmetry appears under which some
of the states in the low-energy theory acquire charges. We compute the associated D-term
contribution to the four-dimensional potential which contains a Ké&hler-moduli dependent
Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term
correctly reproduces the expected physics. Several mathematical conclusions concerning
vector bundle stability are drawn from our arguments. We also discuss possible physical
applications of our results to heterotic model building and moduli stabilisation.
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1 Introduction

Heterotic compactifications on Calabi-Yau manifolds necessarily have gauge field expec-
tation values (vevs) in the internal dimensions. This feature, which is a consequence of
demanding that the total charge for the Neveu-Schwarz form should vanish on the internal
compact space, gives rise to much of the complexity and structure of these theories [1, 2].
One of the interesting properties of these gauge field vevs concerns their supersymmetry
preserving properties. The internal field strength, F', is usually chosen so as to preserve
N = 1 supersymmetry in the four-dimensional effective theory. This can be imposed by
demanding that the ten-dimensional gaugino supersymmetry variations vanish. This leads
to the conditions

gPF, =0, Fg=F5;=0 (1.1)



which are known as the Hermitian Yang-Mills equations (here, a and b are holomorphic and
anti-holomorphic indices on the Calabi-Yau, respectively). However, if one chooses gauge
fields satisfying the Hermitian Yang-Mills equations and, hence, preserving supersymmetry
at one point in moduli space, and then changes the values of the moduli, one can find
that egs. (1.1) fail to have a solution and supersymmetry becomes broken [3, 4]. More
specifically, it is possible to demarcate regions in Kéhler moduli space where the gauge
field vevs can preserve supersymmetry and regions where they necessarily break it [5, 6].
Given the explicit dependence of the egs. (1.1) on the metric, and hence the Kéhler moduli,
such a behaviour is perhaps not surprising.

What happens in the effective field theory when the moduli evolve such that the gauge
fields break supersymmetry? One can see from the dimensional reduction of the ten-
dimensional effective action of the Fg x Eg heterotic theory that there will be a positive
definite potential in the non-supersymmetric region of Kéhler moduli space. The argument
goes as follows. Consider the following three terms in the ten-dimensional effective action.

1 o 2 2

Spartial = ——Qg V=g {tr (F(l)) + tr <F(2)> — trRZ} . (1.2)
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The notation here is standard [2] with the field strengths F(1) and F(?) being associ-

ated to the two Ejg factors in the gauge group. One consequence of the ten-dimensional

Bianchi Identity,

3a/
_ 2= (1) (1) (2) (2) _
dH \/5 (trF ANFY 4+ tr VYN F trR A R) , (1.3)

is its integrability condition,
/ J A <tr FOANFWD 4 tr FO A RO —trR/\R) =0, (1.4)
Msg

where J is the Kahler form. Now, suppose that we begin with a supersymmetric field
configuration, and then vary the Kéhler moduli while keeping the other moduli fixed. The
background gauge field strengths are then (1, 1) forms to lowest order (as is the curvature
two-form). Using this observation, and the fact that we are working, again to lowest order,
with a Ricci flat metric on a manifold of SU(3) holonomy, equation (1.4) can be rewritten
as follows:

& <tr (F(l))2 +tr <F(2)>2 —trR% — tr <F551)ga5>2 —tr (Fﬁ)g“b)2> =0.(1.5)
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Using this relation in (1.2), we arrive at the following result
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partial 2
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V=g {tr <F;B)ga ) +tr (Fég)ga > } . (1.6)
The terms in eq. (1.6) form a part of the ten-dimensional theory which does not contain any
four-dimensional derivatives. It therefore contributes, upon dimensional reduction, to the
potential of the four dimensional theory. In the case of a supersymmetric field configuration,



the terms in the integrand of (1.6) vanish, these being precisely the squares of the first
equation in (1.1). Thus, in this case, no potential is generated. However, if the Kéhler
moduli are varied such that the gauge field vevs are no longer supersymmetric, (1.6) no
longer vanishes and we obtain a positive definite contribution to the potential energy seen
in four dimensions. Thus, we are led to a picture of a perturbative potential which, while
positive definite in the non-supersymmetric regions of moduli space, vanishes precisely
where the gauge field vevs preserve supersymmetry.

Beyond what is described above, it might seem difficult to write down the exact ex-
pression for this potential in terms of the moduli fields. Naively it seems like we need to
know the metric and gauge connection on the Calabi-Yau 3-fold. These quantities are of
course unknown, except possibly numerically [7—10]. In fact, however, one can analytically
derive the exact form of this potential as an explicit function of the moduli fields. This
will be the main focus of the present paper.

Before we can discuss the explicit form of this potential, it is useful to briefly review
the mathematical language normally used to describe supersymmetry within a heterotic
compactification. The question of whether a supersymmetric vacuum exists can be an-
swered by a mathematical analysis of the associated holomorphic vector bundle, V', based
on the Donaldson-Uhlenbeck-Yau theorem [3, 4] and the notion of slope-stability. We will
explicitly carry this out later in the paper. For the purpose of the present general discussion
it suffices to know that the supersymmetry properties of V' are governed by a (maximally)
destabilizing sub-bundle F C V and a number associated it, called the slope pu(F), which
is a function of the Kihler moduli, ¢, of the Calabi-Yau manifold. The vector bundle V is
slope-stable and, hence, the associated gauge field is supersymmetric, in the part of Kahler
moduli space where p(F) < u(V), and it is unstable and supersymmetry is broken where
w(F) > uw(V). The boundary between those regions, defined by p(F) = p(V), divides the
Kahler cone into regions of preserved and broken supersymmetry. Such a co-dimension
one “boundary” will be referred to as a stability “wall” in the K&hler cone. In the fol-
lowing sections, we will demonstrate that, in fact, the potential given in (1.6), reproduces
this structure.

We are now in a position to summarize our main results. For concreteness, we will
illustrate the structure of our effective theory for a bundle V' with an internal gauge group
G = SU(3), but analogous statements hold for other SU(n) groups. In this case, p(V') = 0.
For a general point in the supersymmetric region of the Kéahler moduli space, that is for
w(F) < 0, the low-energy gauge group is Fg (times a possible hidden gauge group which is
not relevant to our discussion), the commutant of SU(3) within Eg. The matter field content
consists of a certain number of families and anti-families in 27 and 27 representations,
respectively, plus a number of singlet fields which can be interpreted as the bundle moduli
of V. For specific examples, the number of these multiplets can be computed from the
bundle cohomology of V' and we will do this later in the paper. So far, this is simply the
field content of a standard heterotic Calabi-Yau compactification.

Next, we consider the theory at the stability wall, that is, the boundary between
supersymmetric and non-supersymmetric regions in the Ké&hler cone where pu(F) = 0.
Here, we find that the structure group of the bundle “degenerates” to S(U(2) x U(1)) and,



hence, the low-energy gauge group enhances from Eg to Egx U(1). This theory has the same
chiral asymmetry between 27 and 27 multiplets as the theory at a generic supersymmetric
point in moduli space (although their individual numbers may change), bundle moduli for
the S(U(2) x U(1)) bundle and additional singlet fields C*. The families/anti-families and
the C fields carry a charge under the additional U(1) symmetry. It is well-known, in
the context of heterotic compactifications [11, 12, 14], that a low-energy U(1) symmetry
which arises from of a U(1) factor in the internal gauge group is anomalous in the Green-
Schwarz sense. The U(1) vector field is massive as a consequence of the Higgs mechanism.
In addition, associated to this U(1) is a D-term which contains a Fayet-Illiopolous (FI)
contribution.! In our case, we find that the U(1) D-term takes the following form at lowest
order in the expansions of heterotic M-theory, and close to the boundary between the

supersymmetric and non-supersymmetric regions:

DYO = () = 3 QMG MY (1.7)

M,N

Here G ;7 is a positive definite metric and Q' are the U(1) charges of the fields C*. The
FI term, f(t'), takes the form (up to a positive constant of proportionality)

() ~ 27 (1)
with V the Calabi-Yau volume and u(F) is the slope parameter (described above) of a
sub-bundle. The associated D-term potential is the explicit form of the potential described
in equation (1.6).

Let us discuss this D-term (1.7) in the various regions of the Kéahler cone. At the
stability wall, ;(F) = 0, the FI term vanishes and, hence, the fields C™ have a vanishing
vacuum expectation value. The combination of Kéahler moduli perpendicular to the sta-
bility wall receives a mass from the FI term and represents the Higgs particle. Its axionic
superpartner is absorbed by the U(1) vector field. All of the C* fields are massless at the
stability wall. Now we move into the region p(F) < 0 where supersymmetry should be
preserved. In this region, the FI term is negative and the fields C™ develop a compen-
sating vev to set DY) = 0. Of course, this only works if there is at least one negative
U(1) charge Q% and we will verify that this is indeed the case. In this way, we find that
supersymmetry is preserved in the region p(F) < 0, as expected. One might also ask about
matching the number of states we observe in this theory to the results obtained from a
standard analysis of the supersymmetric region. We find that when the fields C* develop
a vev, the U(1) gauge boson receives an additional contribution to its mass and eventually
becomes so massive that it should be dropped from the low-energy spectrum. In this way,
we recover the Fg symmetry at a generic superymmetric point. Further, due to the non-
vanishing C'* vevs, one combination of fields, predominately made up from C* fields, now

!We note that for internal gauge fields with structure group G = U(1), it is known [11, 12, 14, 15] that
eq. (1.6) leads to a D-term potential associated with a Green-Schwarz anomalous U(1) symmetry [12, 14].
In fact, it is not difficult to derive this D-term potential from eq. (1.6). In the present paper, however, we
are interested in the case of non-Abelian internal gauge groups, specifically G = SU(n).



becomes the Higgs multiplet and should be removed from the spectrum. For a matching
of states between the theory at the stability wall and at a generic supersymmetric point
in moduli space we need, therefore, that the number of S(U(2) x U(1)) bundle moduli
plus the number of C* fields equals the number of SU(3) bundle moduli plus one. Again,
we will explicitly verify that this is true in general. What happens if we move into the
region u(F) > 0 where we expect supersymmetry to be broken? The above D-term will
only lead to broken supersymmetry in this region if the C'* fields cannot compensate for
the, now positive, FI term. In other words, all of the charges, Q, need to be negative if
our D-term is to reproduce the supersymmetry properties of the gauge bundle as derived
in higher dimensions. We will show that this is indeed always the case. In summary, the
above D-term reproduces all of the expected features of supersymmetry breaking induced
by internal gauge fields, a subject usually studied in the context of algebraic geometry.
As such, it provides a physical picture for the mathematical notion of slope stability for
vector bundles and it opens up a range of physical applications, for example in relation to
heterotic model building and moduli stabilisation.

In the remainder of this paper, we derive the potential described above, in detail, from
first principles. In the next section, we discuss the ten-dimensional picture, by introducing
the mathematical description of supersymmetric and non-supersymmetric gauge field vevs
in terms of vector bundles via the theorem of Donaldson, Uhlenbeck, and Yau [3, 4]. We
describe how one may study any given model to see if it preserves or breaks supersym-
metry at a given point in moduli space. Section 3 uses this technology to show, from a
ten-dimensional perspective, how supersymmetric and non-supersymmetric regions, with
stability walls between them, arise in the Kahler cone. In section 4, we describe the
four-dimensional effective description of this phenomenon and derive the D-term (1.7). In
section 5, we confirm the picture described in this introduction by studying the vacuum
space of the four-dimensional effective theory. Higher order corrections are explored in sec-
tion 6. In section 7, we conclude and discuss further work. Certain mathematical details
and a conjecture are provided in appendix A. In appendix B, we provide another detailed
example of a bundle exhibiting a stability wall in the K&hler cone and the explicit field
theory describing it.

2 Vector bundle stability in heterotic compactifications

A supersymmetric heterotic string compactification requires the geometric input of a com-
plex three-dimensional Calabi-Yau manifold, X, and a holomorphic vector bundle, V', de-
fined over X. The gauge connection, A, on V with associated field strength, F', must satisfy
the Hermitian Yang-Mills equations (1.1). On a holomorphic vector bundle, V', one can
always choose a connection with a purely (1,1) field strength, F', so that the last two con-
ditions in (1.1), F,;y = F.; = 0, are satisfied. To solve the first equation (1.1), g“EFl—m =0,
is more difficult, at least for the case of non-Abelian bundle structure groups. However,
for Calabi-Yau manifolds, there exists a powerful way of transforming this equation into
a problem in algebraic geometry. For Ké&hler manifolds, the Donaldson-Uhlenbeck-Yau
theorem [3, 4] states that on each poly-stable holomorphic vector bundle V', there exists a



unique connection satisfying the Hermitian Yang-Mills equation (1.1). Thus, to verify that
our vector bundle is consistent with supersymmetry we need to verify that it possesses the
property of poly-stability.

The concept of stability of a bundle (or coherent sheaf), F, over a Kahler three-fold,
X, is defined by means of a quantity called the slope:

M(f)zﬁ/xcl(f)mu. (2.1)

Here, J is the Kéhler form on X, and rk(F) and ¢; (F) are the rank and the first Chern class
of F, respectively. A bundle V' is now called stable (resp. semi-stable) if for all sub-sheaves
F C V with 0 < rk(F) < rk(V) the slope satisfies

p(F) < (V) (resp. (F) < p(V)). (2.2)

A bundle is poly-stable if it can be decomposed into a direct sum of stable bundles (V =
,, Vi), which all have the same slope (u(V;) = (V). It follows that every stable bundle
is poly-stable and, in turn, every poly-stable bundle is semi-stable.? Thus, as a series of
implications: stable = poly-stable = semi-stable.

In this work, we will consider holomorphic vector bundles with structure group SU(n)
with n = 3,4,5. Since the slope of these bundles vanishes(¢; (V) = 0 for SU(n) bundles),
in order for V to be stable we must have that all proper sub-sheaves, F, of V' have strictly
negative slope. Thus if 7 C V we require,

u(F) <0. (2.3)

But what qualifies a sheaf F to be a sub-sheaf of V7 This is simply the condition that it
has smaller rank and that there exists an embedding F — V. The space of homomorphisms
between F and V', denoted Homx (F, V'), is isomorphic to the space of global holomorphic
sections H(X, F* ® V). Hence, we have that

V stable <= u(F) <0 VFst. 0<rk(F)<nand 0CFCV. (2.4)

To begin our study of stability, we will first re-write the slope condition (2.1) into a
form better suited to our purposes. Given a basis of harmonic (1, 1) forms J; on X, where
i,j=1,...,h%(X), we expand the Kihler form as J = t'.J; with the ' being the Kihler
moduli. Inserting this into eq. (2.1), the slope of a sheaf F can then be written as

1

A Jtk 2
Tk(f)dz]kcl(f)t t s ( 5)

p(F) =

where the djj, = [y Ji A Jj A Ji are the triple intersection numbers of X, and ¢;(F) =
¢ (F)J;. Tt is useful to define the “dual Kihler moduli”, s;, by

S; = dl'jktjtk . (26)

2Note that the converse to these statements do not hold. That is, not every semi-stable bundle is
poly-stable, etc.



The slope then turns into

WF) = e (7). (27)

and is, hence, given by a simple dot product between the first Chern class of F and the
dual Kéahler moduli s;. As stated above, we are interested in bundles V with structure
group G = SU(n) so that ¢;(V) = 0 and u(V) = 0. Using eq. (2.7), stability for such a
bundle V' then amounts to the condition

1

Tk(}_)cil(]:)si <0, (2.8)

W(F) =

for all 7 C V. Hence, for a given de-stabilizing sub-sheaf F C V, eq. (2.8) divides s;
space into two regions (the condition p(F) = 0 defines a co-dimension 1 hyperplane in
s; space). To understand stability of a bundle, we need to analyse, for all relevant sub-
sheaves F C V, how these regions relate to the Kéhler cone (the allowed set of Kéhler
parameters s;). Concretely, this amounts to finding a region in the Kéhler cone which is
not de-stabilised by any sub-sheaf F C V.

A choice of a vector s; is referred to as a ‘polarization’. That is, the bundle which is
stable with respect to all polarizations is stable everywhere in the Kéhler cone. However,
viewed from the perspective of physics, this is actually a stronger condition than we require.
In a heterotic compactification, we shall define our low-energy effective theory perturba-
tively around a particular vacuum corresponding to some point in moduli space. So, it is
sufficient to show that the bundle is stable somewhere in the Kéhler cone (with the hope
that we may eventually stabilize the moduli within this region). In previous work [16, 17],
several of the authors made use of this viewpoint to formulate stability criteria for bun-
dles defined over Calabi-Yau manifolds with hA%!(X) > 1. The resulting algorithm is a
generalization of the stability condition given by Hoppe [18] which, in its original form,
applies to Calabi-Yau manifolds with 21! (X) = 1. In ref. [17], we describe this algorithmic
method for determining the stable regions of a bundle. We will not repeat the details of
this analysis here, but rather highlight some of its important features in the following.

2.1 Algorithmic testing of slope stability

Vector bundle stability is a notoriously difficult property to prove. The main obstacle arises
in classifying all possible sub-sheaves, F, of the bundle V. There are no general techniques
known for identifying such sub-sheaves or for computing their topological properties such
as Chern classes (and, hence, their slopes from eq. (2.1)). However, as described in ref. [17],
despite these obstacles, progress can be made by systematically constraining the possible
sub-sheaves, F C V.

2.1.1 Sub-line bundles and stability

In this section we will demonstrate that, in order to prove stability at any given point in
Kéhler moduli space, it is sufficient to test the slope criteria (2.2) for all sub-line bundles
L of certain anti-symmetric powers, AFV, of the bundle V.



To begin, consider a rank-n vector bundle V' over a projective variety X. If F is a
sub-sheaf of V' then it injects into V' via the resolution

0—-F—-V-K—-0, (2.9)

with rk(F) < rk(V) and £ = V/F. We shall consider such sub-sheaves one rank at a
time. First, we observe that since V is a vector bundle, it is torsion-free and, thus, has
no rank-zero sub-sheaves. So, we begin with the case of a rank one sub-sheaf. Since F is

torsion free, there is an injection

Ay (2.10)

where F** is the double-dual of F. A locally free coherent sheaf, £, is isomorphic to its
double-dual, that is £** ~ L. Since F is rank one and torsion free, it can be shown that
F** is locally free and, hence, a line bundle [19]. Dualizing the sequence (2.9) we obtain

0— K" = V* = F* = Ext'(K,0x) — Ext'(V,Ox) (2.11)

where Ext! is the sheaf Ext on X. We now observe that Ext!(V, Ox) = 0 since V is locally
free. Moreover, there exists an open subset U C X so that K|y is locally free, hence
Ext! (K, Ox) is a torsion sheaf on X. Therefore, Ext! (K, Ox)* = 0. Thus dualizing (2.11),
and using (2.10) we have

FCFrCcV™=V. (2.12)

It is straightforward to show that p(F) = w(F**). Thus, instead of checking the slope
condition (2.2) for all rank-one torsion-free sub-sheaves of V, it suffices to check it for all
sub-line bundles. But what about sub-sheaves of higher rank?

Let F be a torsion free sub-sheaf of rank & (with 1 < & < n). Once again, we have an
inclusion 0 — F — V which in turn induces a mapping

N F — ARy (2.13)

which can also be shown to be an injection [20]. By definition of the anti-symmetric tensor
power AF, AFF is a rank one sheaf. Since F is torsion free, so is A*F [21]. Next, by an
argument similar to the one given above (in and around (2.10)), we can argue that there is
a line bundle £ associated to AFF, namely £ = (AFF)**. Note that in general for a rank
n bundle V,

n—1

el (AFV) = (k B 1>01(V) . (2.14)

Thus we observe that for SU(n) bundles, which have ¢; (V) = 0, it follows that ¢; (AFV) = 0
as well. Likewise, we see that applied to a rank k, sub-line bundle, F, (2.14) gives us
w(AFF) = ku(F). Therefore, for each rank k de-stabilizing sub-sheaf of V we have a
corresponding de-stabilizing sub-line bundle £ C AFV. Thus in proving stability of an
SU(n) vector bundle V, we need only show that if £ C A*V, then

u(L) < w(A*V) =0 (2.15)



for all k£ with 0 < k < n. Since line bundles are classified by their first Chern class on a
Riemannian manifold, this is a dramatic simplification of the problem of stability. Rather
than the untenable problem of considering all sub-sheaves, we have only to analyze and
constrain the well-defined set of line bundle sub-sheaves of A*V.

2.1.2 Constraints on line bundle sub-sheaves

What constraints can we place on the line bundles which must be considered in examining
the stability of an SU(n) bundle V7 Using the results of the previous subsection, we begin
by considering a line bundle sub-sheaf £ of AFV. We present several simple characteristics
that distinguish line bundle sub-sheaves of stable SU(n) bundles.

First, as discussed in (2.4), by definition, if £ C AFV then

Homy (£, A*V) #0 . (2.16)

Therefore, we have a non-trivial cohomology condition to check for any candidate line
bundle sub-sheaf? of V. Note that in this section, we will consider the mapping of £ — A*V
for generic values of the bundle moduli of V.

The second observation is that for SU(n) bundles, if V is stable then H(X,V) =
HO(X,V*) = 0. Indeed, if H°(X, V) were non-vanishing, then it is clear that Hom x (O, V') =
HY(X,0*® V)= H’X,V) # 0 and, hence, that the trivial sheaf O would de-stabilize V'
for any choice of Kéhler moduli. A similar argument holds for V* which is stable exactly if
V is. For this reason, checking that H(X,V) = H°(X,V*) = 0 for an SU(n) bundle V is
a useful first test for stability which we can carry out before proceeding further. Assuming
this has been verified, it is clear that all possible de-stabilizing line bundle sub-sheaves,
L CV (or L C V*), must satisfy H*(X,L) = 0. Furthermore, if an SU(n) bundle is
stable then its anti-symmetric tensor powers, A*V, are at least semi-stable [19, 21]. As a
result, by scanning for possible line bundle sub-sheaves of AKV for all values of k, we can
definitively determine the region of stability of the SU(n) bundle V. If we discover that
for a fixed polarization, AFV is destabilized by a line bundle £, then by the observations
above, we know that V itself is unstable for this choice of Kéhler form.

To summarize, the method of analyzing the stability of an SU(n) bundle at any given
point in Kéhler moduli space proceeds as follows.

e Check that H°(X,V) = H°(X,V*) = 0.
Should this not be the case, the bundle is unstable everywhere in Kéhler cone and
we can stop.

e Consider all possible line bundles L, as classified by their first Chern class.

The results of the previous subsection assure us that we need only consider line
bundles rather than all sheaves of rank k < n.

*Note that Homx (£, A®(V)) # 0 implies that £ is a line bundle sub-sheaf rather than a sub-line bundle
of V. This follows from the fact that while injective maps exist, the image of £ in V' may not be a bundle.
Equivalently, it is possible that V/L is not always a bundle [22].



e Discard all line bundles, £, for which Hom(L, AKV) = 0 for all k < n.

If Hom(L, A\FV') = 0, such a line bundle is not a sub sheaf of A¥V for any k < n and
thus need not be considered.? As a simplification, for k = 1,n — 1, we can discard
all line bundles with H°(X,£) # 0. Indeed, since we have already verified that
HY(X,V) = H°X,V*) =0, such line bundles cannot inject into V and A" 'V ~ V*.

e Check the slope of the remaining line bundles.

We must check the slope (L) of the remaining line bundles at the point in Kéhler
moduli space we are considering. If there exist no line bundles such that p(L) >
(V) =0, then V is slope-stable at this point in Kihler moduli space.’?

3 Stability walls in the Kahler cone

The stability condition (2.8) clearly depends on the choice of Kéhler parameters and thus
a bundle need not be stable throughout its entire Kéhler cone. Furthermore, the choice
of bundle moduli can affect which potentially de-stabilizing sub-sheaves inject into V. In
principle then, “walls” between regions of stability/instability such as those depicted in
the (dual) Kéhler cone in figure 1 can occur. In the neighborhood of such stability walls,
the supersymmetric structure of the low energy effective theory must be studied in more
detail than in the stable region. We begin by exploring the structure of stability walls in
Kéahler moduli space.

While this discussion can be applied to a Kéahler cone of any size, to illustrate this
concept, we will consider a two-dimensional Kihler cone (that is, h''1(X) = 2) given by
the positive quadrant in the (s1,s2) plane of dual Ké&hler moduli. Suppose that V is an
SU(n) bundle V and that a stability wall® of the form shown in figure 1 is generated by a
de-stabilizing sub-sheaf F C V with ¢;(F) = —kJ; +m.Ja, where k > 0 and m > 0.7 From
eq. (2.8), the slope of such a sub-sheaf is given by

WF) = A F)s = 5

(—ks1 4+ msa) . (3.1)

This means that, for all Kéhler parameters (si, s2) where u(F) > 0, that is, for sa/s; >
k/m, the bundle is unstable while for u(F) < 0, or sa/s1 < k/m, it is potentially stable,
subject, of course, to other possible destabilizing sub-sheaves. For example, in addition,
there may exist a sub-sheaf with first Chern class given by ¢;(F) = pJ; — qJ2, where p > 0

4 As an additional simplifying technique, we note that while scanning for possible line bundle sub-sheaves
of APV if it is true that H°(X,AFV) =0V k, we can eliminate any line bundles for which H°(X, £) # 0.

®For a fixed polarization, if (L) > 0, for some line bundle £ C ARV, then V is unstable. However, if
(L) = 0, one cannot conclude that V' itself is necessarily stable/unstable. This last case must be analyzed
on an individual basis.

®In general, for an h'!'(X)-dimensional Kéhler moduli space, the stability wall will be a (h"'(X) — 1)-
dimensional hyperplane.

"Note that for an h'*(X)-dimensional, positive Kithler cone, if F is to define a stability wall, ¢} (F) must
contain at least one negative and one positive component. For this reason, a bundle defined on a manifold
with h**(X) = 1 is stable everywhere or nowhere.
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Figure 1. A two-dimensional dual Kéahler cone, defined by s1 > 0 and s > 0, where s; = dijktjtk.
Shown are two de-stabilizing sub-sheaves F; and Fy with first Chern classes given by c¢;(Fy) =
(—k,m) and ¢1(F2) = (p, —q) for some integers k,m,p,q. The bundle V is stable between the lines
with slopes k/m and p/q.

and ¢ > 0, which would yield a lower boundary line with slope p/q. If these two sub-sheaves
are the “maximally destabilizing” ones on either side of the Kéahler cone, then the bundle
is supersymmetric for all values p/q < so/s; < k/m. For a two-dimensional Kéhler cone,
the supersymmetric region of a general bundle will be defined by these upper and lower
boundaries as illustrated in figure 1. For the present discussion, we will focus our attention

on the theory near one of these boundary lines.

What happens on the line with slope k/m itself? There, the bundle is manifestly
semi-stable since p(F) = u(V) = 0. However, to decide whether the low energy theory is
supersymmetric or not, we must consider not only our position in Kéahler moduli space,
but in bundle moduli space as well. If we examine this line in Kéhler moduli space while
remaining at an arbitrary point in bundle moduli space for which V is an indecomposable
rank n bundle, then supersymmetry will be broken. This must be the case since super-
symmetric vacua exist if and only if the bundle is poly-stable. A semi-stable bundle can
only be poly-stable if it is a direct sum of stable bundles. Therefore, the stability wall in
Kahler moduli space will only correspond to a supersymmetric solution if the bundle de-
composes into a direct sum V' — F @ K where rk(F)+1k(K) = rk(V) and ¢;(F) = —c1(K).
Such bundle decompositions near a wall of semi-stability were discussed for K3 manifolds
in ref. [5].

At this special “decomposable” locus in bundle moduli space, the bundle is split and
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poly-stable. While the topological quantities of V' remain the same at this locus, other
important features of the bundle and the corresponding low energy theory can change. For
instance, at this decomposable locus, the structure group of an SU(n) bundle will become
S(U(n1) x U(ng)) with ny = rk(F) and ny = rk(K). As we shall discuss in detail in
the next section, this change in the structure group of V will also alter the visible gauge
symmetry of the four-dimensional theory. For instance, if rk(V') = 3, then the commutant
of S(U(2) x U(1)) in Eg is no longer Eg, but is enhanced to Eg x U(1).

Before one can study such supersymmetric theories further, it is prudent to ask whether
such a decomposable point exists? Fortunately, it can be shown that if there exists a sub-
sheaf F of V which injects into V', then there will always exist a natural decomposition
of V into direct sum F @ V/F. If we define the relationship between F and V via an

‘extension’ short exact sequence
0—-F—=V-=V/F—-D0, (3.2)

then it is well-known that the space of possible extensions is given by Ext!(V/F,F) [23].
Furthermore, the zero-element of the Ext group corresponds to the decomposable locus
V = F @ K, where K = V/F. Finally, note that if a single indecomposable sub-sheaf F
defines a stability wall in moduli space, then, by definition, it (and (V/F)*) must be stable.®

The decomposition, V' — F @ V/F, can be best described by considering a Jordan-
Holder filtration of V' [24]. Points on a moduli space of strictly semi-stable bundles do not
correspond to unique objects, rather they represent an “S-Equivalence class” [19, 24, 25].
Two bundles are S-equivalent if their Jordan-Holder graded sums Gr(V) = FieV/Fi&...
are isomorphic. For any S-equivalence class, there is a unique poly-stable representative
up to isomorphism. That is, there is a unique graded sum in which the summands are
stable bundles and, as a result, we can consider the decomposition of V' into this sum on
the stability wall. We will now present a simple example of a Calabi-Yau manifold X and
a bundle V' which exhibits a stability wall.

3.1 A stability wall example

Up to this point, our entire discussion has been completely general. Let us now exemplify
our previous comments by considering a bundle defined on the complete intersection Calabi-
Yau manifold [26],
]P>1
X- [

]P>3

i] , (3.3)

defined by a polynomial of bi-degree (2, 4) in the ambient space P* x P3. This manifold has
two Kéhler moduli, so h'*'(X) = 2. A basis of harmonic (1, 1) forms is given by the Kihler
forms J; and Jo of the ambient projective spaces P! and P? (pulled back to X). We denote
the corresponding Kihler moduli by ¢! and #?. The Kihler cone is the positive quadrant

t! > 0 and ¢ > 0 and the non-zero triple intersection numbers are given by djos = 4 and

81t is possible that F could be a direct sum of stable objects with the same slope. In this case, we would
simply obtain a further decomposition for V, that is, V. ~ Fi & Fo b .. ..
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da2o = 2. From eq. (2.6), we can calculate the dual Kéhler moduli s; and so and we find
s1=4(t%)%, so=8tM2 +2(t%)? . (3.4)

Hence, expressed in terms of these dual Kéahler moduli, the Kéahler cone is the positive
quadrant above the line s9/s; = 1/2. Line bundles on X are characterised by two integers,
k and [, and are denoted by Ox(k,l). Their first Chern class is given by ¢1(Ox (k1)) =
kJiy +1Js.

We will define a rank 3 monad bundle [16, 27, 28] on this space by the short ex-
act sequence

0=V — 0x(1,0) ® Ox (1, —1) @ Ox(0,1)%2 L5 0x(2,1) — 0. (3.5)

The bundle V is defined as the kernel of the map f. This map is derived from polynomials of
bi-degree ((1,1), (1,2), (2,0), (2,0)) (mapping sections of Ox(1,0)®0x (1, -1)&Ox (0,1)%?
to sections of Ox(2,1)). The rank of V' is three and ¢; (V') = 0 so that the structure group is
generically SU(3). At a generic point in moduli space, the only non-vanishing cohomology
of this SU(3) bundle is h'(X,V) = 2. This means there are two families in 27 multiplets
and no anti-families in 27. The moduli space of V has dimension

RHX,V @ V*) =22, (3.6)

so that we have 22 Fg singlet fields which should be interpreted as bundle moduli.” We
select the bundle (3.5) solely because it provides a straightforward example of a bundle
with both supersymmetric and non-supersymmetric regions in its moduli space, and make
no attempt here to consider models with fully realistic particle spectra.

To analyze the stability of this rank three bundle we must consider the potentially
de-stabilizing rank one and two sub-sheaves. As discussed in the previous subsections, this
may be done more simply by considering potentially de-stabilizing line bundle sub-sheaves
of V and A2V =2 V*,

Beginning with rank one sub-sheaves, we consider all sub-line bundles of V. One can
verify that H°(X,V) = 0 for the bundle (3.5) and that all line bundles O (k,[), where
k,l > 0 have sections. Hence, such semi-positive line bundles need not be considered.
Further, semi-negative line bundles Ox (k,[), where k,I < 0 always have a negative slope
in the interior of the Kéhler cone and are irrelevant. It is, therefore, clear that the only
line bundles we need to consider are those with ‘mixed’ positive/negative entries in their
first Chern classes. That is, £ is given by Ox(—k, m) or Ox(p,—q) for k,m,p,q > 0. We
seek such line bundles for which Homx (£, V) # 0. A straightforward but lengthy analysis
(see [16, 17] for details) yields that if £ = Ox(—k, m) then Homx (£, V) # 0 for k > 3 and
m = 1. Further, Ox(p, —¢q) does not inject for any values of p,q. Hence, the “maximally
destabilizing” rank one sub-sheaf corresponds to the line bundle £; = Ox(—3,1) and we
have the short exact sequence

0—-L -V -=>V/L;—0. (3.7)

See [28, 29] for general formulae for the spectra and moduli of monad bundles.
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This implies that above a line with slope s3/s; = 3 in the Kéhler cone, the bundle is
definitely unstable while it may be stable below this line.

However, we still need to consider rank two destabilizing sub-sheaves or, equivalently,
rank one line bundle sub-sheaves of A2V. As before, we find that no lower boundary exists,
that is, Homx (O(p, —¢q), A?V) = 0 for all values of p,q > 0. For the upper boundary, we
consider sub-bundles of the form £ = Ox(—k,m) in A2V. Since V is an SU(n) bundle we
have A2V ~ V*. This means we can extract information about A2V from the dual

0— Ox(=2,-1) = Ox(=1,0) ® Ox(~1,1) ® Ox(0,-1)P? = V* =0  (3.8)
of the monad sequence (3.5). Twisting this sequence by £* = Ox (k, —m) we get

0— Ox(k—2,-1-—m)
— Ox(k—=1,-m)®O0x(k—1,1—=m) ® Ox(k,—1 —m)®? - L*@V* - 0. (3.9)

One can verify from this sequence that Homx (£, A?V) = HY(X,L* ® V*) # 0 only for
L =0O(—k,1)and k > 1. Hence, the maximally destabilizing line bundle is L5 = Ox(—1,1)
and we have

0= L= V" =V"/Ly—0. (3.10)

Thus, V* is stable only below the line with slope s2/s1 = 1. Equivalently, this implies that
there is a rank two sub-sheaf, F of V with ¢;(F) = —J; + Jo and

0-F—->V-V/F—-0. (3.11)

Since the rank two sub-sheaf F de-stabilizes a larger region of the dual Kéhler cone then
the rank one sub-sheaf £, the existence of £1 = Ox(—3,1) is irrelevant here. While there
are an infinite number of sub-sheaves that de-stabilize some portion of the Kéhler cone, for
this bundle there is only one relevant stability wall which is determined by the rank two
sub-sheaf F C V. From eq. (3.1), the slope of this sub-sheaf is given by

W) = (=51 + ) (3.12)
and it follows that V' is stable below the line with slope sa/s; = 1. The dual Kéhler cone,
together with the region of stability, are plotted in figure 2.

The discussion of the last two sections is rather mathematical in nature. It would be
desirable to have more physical insight into what is going on, and to be able to describe
stability walls in the Ké&hler cone in terms of the four-dimensional effective action. To
this end, in the next section, we will study the effective four-dimensional theory describing
fluctuations about the stability wall, that is, the locus in moduli space where the bundle
structure group decomposes. We will then use these results, and the ones of the present
section, to discuss what happens physically as one crosses a wall of stability.
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Figure 2. The dual Kéhler cone and the regions of stability /instability for the monad bundle
described in section 3.1. Here L; and Ls are line bundle sub-sheaves of V' and A?(V) respectively.
The boundaries of the dual Kahler cone are denoted by the se-axis and the line with slope 1/2.

4 Effective field theory at the decomposable locus

In this section, we will compute the potential in the four-dimensional effective theory near
the locus in bundle moduli space where the sequence 0 — F — V — K — 0 becomes the
trivial extension, that is, where the bundle decomposes as V = F ¢ K. To perform such a
computation, the first thing we need to know is the low energy spectrum. We will describe
this in two stages; first presenting those fields which descend from ten-dimensional gauge
fields before continuing to describe those which arise from other sources.

4.1 Four-dimensional spectrum from the gauge sector

As stated in the previous section, it is clear from the sequence 0 — F — V — K — 0,
and the fact that ¢; (V) vanishes, that 7 and K have equal and opposite first Chern class.
Thus, at the decomposable point in bundle moduli space the structure group of V is
S(U(n1) x U(nz)), where ny +ng = n. It will turn out that this is not the most convenient
way in which to express this group for what follows, in particular for the calculation of the
spectrum. As such, we will now carry out a little bit of group theory in order to obtain a
more suitable form.

Locally, at the level of Lie algebras, S(U(ni) x U(ng)) is equivalent to SU(n;) x
SU(n2) x U(1). Elements of the former group are defined by a pair (A, B), where A
and B are nq X n1 and me X mo unitary matrices respectively, satisfying the condition

det Adet B = 1. Elements of SU(n;) x SU(ng) x U(1) are defined by a triplet (A, B,¢&),
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where A and B are ny X n1 and ng X ny special unitary matrices respectively and £ is the
U(1) phase. We may define a map o : SU(n1) x SU(n2) x U(1) — S(U(n1) x U(ng)) by
(A,B,E) — (A, B) = (™A, (£%)™B) and it is easy to verify that this map is onto and that
Ker(o) = Zp,n,- Hence, globally S(U(n1) x U(ng)) = (SU(n1) x SU(ng) x U(1))/Zn,n,-
To understand the matter content of the low energy heterotic theory we must consider the
branching of the adjoint of Eg under the bundle structure group and its commutant. In
the standard texts [30], these branchings are given in terms of SU(ny) x SU(ng) x U(1)
rather than S(U(n;) x U(ng)) which is why we have discussed the relation between those
two groups.

For the sake of brevity we will only consider one possible structure group in the main
text of this paper. We shall detail in full the case SU(3) — S(U(2) x U(1)) and note that
all other SU(n) decompositions follow in an entirely analogous manner.! We consider,
then, the case where we have an SU(3) structure group at a generic point in moduli
space, degenerating to SU(2) x U(1) at the stability wall about which we construct our low
energy theory. This gives us a low energy gauge group Fg x U(1) at this locus. Under the
decomposition Fg D Eg x SU(2) x U(1) the adjoint of Eg decomposes as follows.

248 = (1,1)0 + (1,2)_5 + (1,2)3 + (1,3)0 + (78, 1) (4.1)
—|—(27, 1)2 + (27, 2)_1 =+ (2_7, 1)_2 =+ (2_7, 2)1

In the above decomposition, the first number in the bracket is the Fg representation, the
second number is that of a SU(2) representation and the subscript is the U(1) charge. We
note that our sign conventions differ somewhat from those of [30].

The field content of the low energy theory is determined by the first and zeroth coho-
mologies of various combinations of F and K as determined by the decomposition (4.1).
The first cohomologies tell us about scalars and the zeroth about gauge bosons in the
four-dimensional effective theory. We must remember that the groups SU(2) and U(1) in
the above branching are not directly the structure groups of F and K in the decomposi-
tion V= F @& K. Rather, since F is a rank two bundle with non-vanishing first Chern
class its structure group is U(2). Further, the structure group of K is U(1) with the addi-
tional constraint that ci(F) + ¢1(K) = 0,!! so that the overall structure group of F @ K
is S(U(2) x U(1)). The proceeding group theory discussion tells us that the elements of
this structure group are given by (€A, (£%)?) where (A, &) € SU(2) x U(1). We have sum-
marised the information about the various representations and cohomologies, associated to
low-energy chiral multiplets, in table 1. Note that the charges given as a subscript in the
first column refer to the U(1) C SU(2) x U(1) while the charges in the last column refer to

For example, there are two possible decompositions for an SU(3) bundle. First, we have SU(3) —
S(U(2) x U(1)) =~ SU(2) x U(1), corresponding to V' — F & K, a sum of a rank two and a rank one bundle.
There is a second possibility, namely SU(3) — S(U(1) x U(1) x U(1)) ~ U(1) x U(1), corresponding to a
decomposition into three line bundles: V' — L1 ® L2 @ L3. In this latter case, one would find two additional
low energy U(1) symmetries. In the interests of brevity, we will only detail the case of a single U(1) here.

"Note that we have assumed here that it is the rank 2 sub-sheaf which injects everywhere and destabilizes
V. The same analysis can be repeated assuming that it is the rank 1 sub-sheaf which is destabilizing
without changing the result. This is because the only information which will enter the considerations of
this subsection is the nature of the bundle at the decomposable locus in bundle moduli space.
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Representation | Cohomology | Physical U(1) charge
(1,2) 3 HY (X, F®K*) —3/2
(1,2)3 HY (X, F*®K) 3/2
(1,3)o HY (X, F ® F*) 0
(27,1), HY(X,K) 1
(27,2)_4 HY(X,F) -1/2
(27,1) 2 HY(X,K*) -1
(27,2); HY(X,F*) 1/2

Table 1. Representations, cohomologies and U(1) charges associated to the zero modes which arise
at the stability wall. The first column gives the representation under Eg x SU(2) x U(1), the second
column is the relevant cohomology involving F and K, and the last column is the charge of the
states under the U(1) which is in the commutant of S(U(2) x U(1)) in Fs.

the U(1) in the commutant of S(U(2) x U(1)) in Es. Let us interpret the fields that appear
here carefully. The (27,1)2, (27,1)_2, (27,2)_; and (27,2); multiplets unambiguously
represent matter fields while the (1,3)p multiplet clearly corresponds to moduli of the
S(U(2) x U(1)) bundle. The remaining two cohomologies, however, are a little bit more
subtle to interpret. From the point of view of the theory at stability wall - the point of
view we are considering here - these fields are charged under a visible sector gauge group
(the enhanced U(1)) and, hence, they are matter fields. However, it would also not be
unreasonable to regard them as bundle moduli. In general, we think of the cohomology
H'(X,V ® V*) as representing bundle moduli.!? At the stability wall, where the bundle
V' decomposes as V = F & K, this bundle cohomology splits into various parts as

H (X, VeV =H(X,FoFYo H(X,F*oK)®e H'(X,F2K"). (4.2)

Here, we have used that K is a line bundle in the case we are considering and that
HY(X,0) = 0 on a Calabi-Yau manifold. Thus, it is not unreasonable to interpret
HY(X,F*®K) and H'(X,F ® K*) as giving rise to bundle moduli. Thinking about the
perturbations such degrees of freedom would contribute to the higher dimensional gauge
field, we see that they describe the deformations of the split bundle where F and K are
mixed into one another; that is, they parametrize movement in moduli space away from
the decomposable locus. However, we stress that, in this work, the effective field theory
that we will derive will describe perturbations around the decomposable locus, and hence,
we will think of the charged fields in H'(X, F* ® K) and H(X,F ® K*) as matter. In the
following, these fields will be denoted by C'.

4.2 Four dimensional spectrum from the gravitational sector

In addition to the fields of the previous subsection, we have the usual low energy moduli
from the gravitational sector of the eleven-dimensional theory. It is important to note

2More precisely, as a vector space, HI(X, V ® V™) can be viewed as the tangent space to bundle moduli
space.
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that some of these moduli are also charged under the U(1) symmetry in the low energy
gauge group even though they do not descend from higher-dimensional gauge fields. The
moduli fields which are not associated to the Eg x Eg gauge fields include the dilaton, the
(complexified) Kéhler moduli, the complex structure moduli and possible five-brane moduli.
It turns out that, of these fields, only the complex structure moduli are not charged under
the U(1) symmetry. For now, we will focus on tree level results where only the Kéhler
moduli are of importance. The other fields will come into play in section 6 where we
calculate what, in the weakly coupled language, correspond to one-loop corrections. For
reasons which will become clear, the following arguments will be carried out using the
language of the strongly-coupled Eg x FEg heterotic string [31]-[35], that is, M-theory on
the orbifold S'/Z,. However, analogous arguments leading to the same results can be
presented starting with the weakly-coupled ten-dimensional theory [2].

In terms of higher-dimensional fields, the Kihler moduli 7%, where i, j,k = 1,..., hb1(X)
can be written as follows.

T =t + 2iy’ (4.3)

Here t' are the Kihler parameters of the Calabi-Yau manifold, which we have already
encountered in our bundle stability analysis, and x* are the associated T-axions which
descend from the M-theory three-form as

Cliap = XiJmE . (4-4)

We recall that {.J;} is a basis of harmonic (1, 1) forms on the Calabi-Yau manifold, chosen
to be dual to a basis {C'} of the second Calabi-Yau homology such that

1 A
m/cijj:(S;’ (4.5)
where v is an arbitrary coordinate volume of the Calabi-Yau space. The index 11 refers
to the coordinate of the S'/Zs orbifold, and a,b,... and a,b, ... denote holomorphic and
anti-holomorphic Calabi-Yau indices.

It is a well-known fact that anti-symmetric tensor fields in heterotic theories
transform under FEg x Fg gauge transformations [2]. Consider a local infinitesimal
gauge transformation,

0Ax = —Dye (4.6)
where the derivative is covariant and e is the gauge transformation parameter. Under such
a change of gauge the two-form C114p transforms as

_ (AL o
0C11aB = (477) 4775(96 Jtr(eFag) , (4.7)

where A,B = 0,...,9 label the coordinates transverse to the S'/Zs orbifold. Let us
concentrate first on the internal components of equation (4.7) by writing 6Cy;,5 = 9X*J;.5-
Integration over C* x S'/Z, then leads to the following gauge transformation

5{:-656% / tr(eF) (4.8)
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for the T-axions, where we have introduced the dimensionless O(K?l ) combination

o ()8
©S¢R = (47T 4 pvt/3 (4.9)

and 7p is the coordinate volume of the S!/Zy interval. The constants es and ep are the

of constants

usual expansion parameters defining four-dimensional heterotic M-theory [36]. In weakly

/3 where vy is the Calabi-Yau coordinate volume

coupled language, €se% = 8ma//(4vig)
in the 10-dimensional theory. Hence, the effects considered here are order o’ but at tree
level. Corrections which are one-loop from a weakly coupled perspective will be discussed
in section 6. Normally, the transformation (4.8) does not lead to a non-trivial gauge
transformation of the T-axions under the visible sector gauge group. This is because if
F is nonzero, in order for y to have a non-trivial transformation according to (4.8), then
I breaks the associated gauge symmetry at the compactification scale and so it does not
appear as a factor in the visible sector gauge group. However, in our case we have a U(1)
factor in the structure group of our bundle which, due to its self commutation, is both
visible and hidden at the same time. In particular, F' can have a non-trivial vev in the
U(1) direction without breaking the associated visible sector gauge symmetry.

Thus, for our case, we have a non-trivial U(1) transformation for the moduli 7%. If
we consider a gauge transformation associated with the additional U(1) seen in the visible
sector, with a gauge parameter denoted by €, we may rewrite (4.8) in terms of the first

Chern ¢ (F) of the de-stabilizing sub-sheaf F as follows.

ox' = —%656%6 ¢ (F) (4.10)

In addition, the singlet matter fields C* carry a U(1) charge Q% and transform linearly as
sCt = —ieQtol . (4.11)

It is known [11-13] that a low-energy U(1) symmetry in heterotic compactifications which
arises as the commutant of a U(1) factor in the internal bundle structure group is generally
anomalous in the Green-Schwarz sense. In this case, the triangle anomalies in the four-
dimensional theory are cancelled by an anomalous variation of the gauge kinetic function,
as usual. Perhaps not so well-known, but explained in detail in ref. [14], is that this
includes an anomalous variation of the T-modulus dependent threshold corrections of the
gauge kinetic function which transforms under (4.10). We stress that this is different
from the perhaps better known “universal” anomalous U(1) where the triangle anomaly is
cancelled by a variation of the dilaton only [11, 13]. This universal anomaly arises when the
anomalous U(1) symmetry has no internal counterpart in the bundle structure group. Such
a situation can arise in the SO(32) heterotic string but not in smooth compactifications
of the Fg x Eg theory. Hence, in the present context we are always dealing with a “non-
universal” anomalous U(1) symmetry which transforms the T-moduli as in eq. (4.10). In
general, amomalous U(1) symmetries are associated to FI terms in the four-dimensional
theory. While the universal heterotic U(1) implies the well-known dilaton-dependent FI
term [11, 13], the present non-universal case leads to a T-dependent FI term [14] at leading
order. We will now derive this FI term explicitly.
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4.3 The four dimensional potential

The potential of an N' = 1 supersymmetric theory contains two types of contribution:
those from D and F-terms. As we will see later, F-terms are less relevant in our context,
so we focus on D-terms and their associated potential. To do this, we need to know the
Kahler potential of the fields involved. Having deferred loop corrections to section 6, we
concentrate here on the leading order which only involves the T-moduli 7% = ¢ + 2iy’ and
the singlet matter fields C. We will work in the usual approximation keeping only leading
terms in C* and in inverse powers of the T-moduli. The usual Kihler potential for the
T-moduli is given by

kiKp=—InV, V= %IC : (4.12)

where V is the Calabi-Yau volume and K is the cubic polynomial
K = dijit'tth = édijk(Ti + THY(T? + T (T* +TF) . (4.13)
The C* part of the Kihler potential has the form
Kmatter = Gy C*CM (4.14)

Here Gprjs is the matter field space metric, which depends on the various moduli in the
theory. The precise form of this metric will not be needed but it will be important that it
is positive definite.

We now have all of the information we require to compute the D-term contribution to
the four dimensional theory’s potential. Given that we have identified the transformation
properties of our low-energy fields, in particular under the U(1) symmetry, this derivation
is standard and can, in a somewhat different context, be found in the literature (see for
example, [14, 15]). Nevertheless, we will carry this out explicitly, to present a complete
and coherent argument. According to the usual structure of four-dimensional N' = 1
supergravity, the D-terms are determined by the following equations [37].

_ - 9
XTI = D" 4.1
9r1Jj ZaM] ( 5)
d
X — 4~ _pn 4.16
91J o7 ( )

Here, the M7 represent all of the fields in the theory, g; 7 the complete field space metric, and
7 is an index labeling the adjoint of the gauge group. The quantities X are the holomorphic
Killing vectors which generate those analytic isometries of the Kéhler field space which can
be gauged. Under such a gauge transformation, the fields M’ then transform as

SMT = —enxIn (4.17)

where € are the gauge parameters. We can now determine the Killing vector for the U(1)
symmetry by comparing this expression with the field transformations (4.10) and (4.11)
which we have derived from the higher-dimensional theory. This leads to

4 3 4
X' = igese%cﬁ(}") (4.18)
XE =qQtct . (4.19)
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Inserting this Killing vector into (4.15) and solving for the associated U(1) D-term we obtain

3 ege? u(F iy
DY) — G HQR% -y QG ycteM, (4.20)
4 LM

where k3 = K2, /(v27p) is the four-dimensional Planck constant. Here, we have neglected
contributions to this D-term from 27 and 27 multiplets charged under the U(1) symmetry.
As long as Eg remains unbroken these further contributions vanish and, for our explicit
example, this will indeed be enforced by the Eg D-terms. We note that the above D-term
consists of a FI piece which is proportional to the slope

1 . 1 . . 1 . . _ . _
WF) = 561 (F)si = §dijkc’1(]~')tjtk = gdikcl (F)(T7 + T (T" +T*) (4.21)
of the destabilizing sub-sheaf F and a standard matter field piece. We also recall that V

is the Calabi-Yau volume given in eq. (4.12).

5 Stability walls in the effective theory

In this section, we will study the vacuum structure of the effective theory derived in the
previous section. Our aim is to show how this four-dimensional, field theory based analysis
reproduces features seen in the mathematical, ten-dimensional analysis of section 3. In
other words, we would like to show how the abstract mathematical concept of bundle
stability and its implications for supersymmetry can be understood in a physical way, from
our four-dimensional effective theory. It is clear from the expression (4.20) for the D-term
that the nature of the four-dimensional vacuum space crucially depends on the charges Q
of the matter field singlets C*. We begin with a general discussion and then illustrate the
main points with the example discussed in section 3.1.

We need to understand how the interplay between the FI and matter field terms
in eq. (4.20) can reproduce the expected pattern of broken or unbroken supersymmetry.
A crucial observation is that the FI term is proportional, with a positive constant of
proportionality, to the slope, u(F), of the destabilizing sub-sheaf F. We recall from our
previous discussion that this slope is negative in the part of the Kéhler moduli space where
the bundle is stable and hence supersymmetric, and that it is positive where the bundle
breaks supersymmetry. The stability wall which separates these two regions in Kahler
moduli space is defined by u(F) = 0. Given these features of the FI term, one can ask
how the D-term (4.20) for u(F) < 0 can vanish and hence preserve supersymmetry as we
would expect. To achieve this, the FI term obviously has to be cancelled by the matter field
contribution in (4.20) through a suitable adjustment of the matter field vevs. This will work
precisely if there is at least one negatively charged matter field C*, with Q¥ < 0 present.
On the other hand, if the D-term (4.20) is to be non-zero and thus break supersymmetry
for u(F) > 0, as we expect it should, all matter fields need to be negatively charged; that is,
there should be no matter fields with @* > 0. The D-term (4.20) then becomes a sum of
two positive definite terms in the non-supersymmetric region and there is no way in which
they can cancel each other.
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Hence, for the D-term to correctly describe the expected pattern of supersymmetry
breaking the zero modes at the stability wall are constrained in a specific way. Let us
focus on our main class of examples, namely bundles V' with SU(3) structure group which
decompose as V = F@ K, where F is the rank two de-stabilizing sub-sheaf (and K is locally
free). Then we can indeed show that the required constraints on the particle spectrum
are satisfied. We recall from table 1 that the singlet matter fields C'* correspond to the
cohomology groups H'(X, F ® K*) and H' (X, F* ®K), where the former leads to negative
and the latter to positive charge. Then one can show the following

Lemma 1. Let V be a holomorphic vector bundle with structure group SU(3) defined over
X, a Calabi-Yau 3-fold. If F is a rank 2, stable sub-sheaf of V', defining the “wall” in the
dual Kdhler cone given by uw(F) = 0, such that V is stable for u(F) < 0 and unstable for
w(F) >0, then HY (X, F @ (V/F)*) # 0 and H (X, F* @ V/F) =0 (for any effective field
theory describing only V ).*3

The proof of this lemma (generalized to SU(n) bundles) is provided in appendix A. It
states that all singlet matter fields C'* result from the cohomology group H'(X, F®K*) and
therefore, from table 1, are negatively charged, as required. The fact that all of the fields C'*
carry U(1) charges of the same sign means, of course, that the U(1) symmetry is anomalous.
This is in line with expectations and we know that this triangle anomaly is cancelled by
the four-dimensional version of the Green-Schwarz mechanism. Since we are dealing with
a non-universal anomalous U(1), as discussed, this involves an anomalous variation of the
threshold correction to the gauge kinetic function induced by the transformation (4.10) of
the T-axions. Details of this can be found in ref. [14].

We would now like to discuss the D-term (4.20) and its associated vacuum space and
particle masses in more detail. This will provide us with a general picture of how the
theory at the stability wall relates to the standard heterotic low-energy theory at a generic
point in the supersymmetric part of Kahler moduli space. As mentioned before, we will
focus on the part of the moduli space where Eg is unbroken, so that we do not need to
consider vevs of 27 and 27 multiplets. Hence, the fields of central interest are the T-moduli
T? = t' +2ix" and the singlet matter fields C”. Tt is clear that the D-term (4.20) gives mass
to precisely one real combination of the Kihler moduli #* and the matter fields C*, the
Higgs field. Expanding (4.20) around a vacuum (that is, a vanishing D-term, DY) = 0) by
writing ¢ = (t*) + 6t' and O = (C*) + §CT, we find that this massive linear combination
is given by

2

DY = —%%ijc{(f)&k e (<0L> 5CM 4 5oL <C >) . (5.1)

4 LM

where
0?Iny
- Otio
BIf HY(X, F* ® V/F) # 0 then the bundle defined by the extension Ext'(F,V/F) = H (X, F* @ V/F)
is mot isomorphic to V. This case corresponds to a branch structure in the effective field theory which

Gij = (5.2)

provides a transition to a new vector bundle and will be explored in more detail in [38].
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is the Kéhler moduli space metric, expressed in terms of the Calabi-Yau volume V as
defined in eq. (4.12). In this discussion, we are ignoring terms which are higher order in
<CL > and inverse powers of t'. The Goldstone mode, the corresponding linear combination
of T-axions x* and C phases, is absorbed by the U(1) vector boson in the super-Higgs
effect. Since supersymmetry is unbroken, the mass of the linear combination (5.1) and the
U(1) vector boson must be equal and they can be computed from eq. (5.1) or from the x*
and C* kinetic terms. Either way one finds the mass is given by

1 [ (3eser)? ; y -
mio =5 | g AP AIG + L QGO0 | 63)

where s = Re(9) is the real part of the dilaton. To obtain this result from eq. (5.1) it is
necessary to canonically normalise the kinetic terms ﬁGij&Sti&W‘ and G ;06CL95CM .

Let us discuss this result, beginning at a point on the stability wall. At the stability
wall, 1(F) = 0 and it follows from eq. (4.20) that (C*) = 0 in order to have a vanishing D-
term. Hence, at the stability wall the Higgs field is a linear combination of K&hler moduli
§t* only, while the Goldstone mode consists of T-axions x’. The U(1) and Higgs mass
are then given by the first term in eq. (5.3) which scales like 1/(st?) for a typical Kihler
modulus ¢t. This is to be compared with the mass of a typical gauge sector massive mode
which scales as 1/(st). We see that the U(1) and Higgs masses are suppressed by a factor
1/t and, hence, that in the large radius limit and close to the stability wall it is consistent
to keep these fields in the low energy theory.

What happens as we move away from the stability wall into the supersymmetric region?
From eq. (4.20) the matter field vevs (C*) are now non-vanishing and their fluctuations
5CT contribute to the Higgs fields and the Goldstone mode. Once we move sufficiently
away from the stability wall, so that u(F) = O(t2), eq. (4.20) implies G ;;CECM ~ 1/t
Hence, far away from the stability wall, the U(1) mass (5.3) scales as 1/(st) and becomes
comparable to a typical heavy gauge sector mass. In this limit, we should, therefore, remove
the U(1) vector multiplet and the Higgs multiplet from the low-energy theory. In this way,
we recover the standard Fg gauge group at a generic supersymmetric point in the Kéahler
moduli space.

What about the matching of chiral multiplets to the usual analysis? First, we note
that far away from the stability wall the Higgs multiplet becomes predominantly a linear
combination of the matter fields C*. This means that there are massless “T-moduli” in this
region, which are slightly corrected versions of the naively defined fields, consistent with
the expectation from standard heterotic compactifications. As for the Fjg singlet matter
fields, at the stability wall we have h'(X,F @ (V/F)*) fields C* and h' (X, F ® F*) bundle
moduli. Away from the stability wall, one combination of C” fields is removed from the
low-energy theory so that we remain with h'(X,F @ (V/F)*) + h} (X, F @ F*) — 1 singlet
fields. To match standard heterotic compactifications, this must equal h'(X,V ® V*), the
number of bundle moduli at a generic supersymmetric point in Kéhler moduli space. That
is is indeed always the case is stated in the following lemma.
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Lemma 2. Let V be a holomorphic vector bundle with structure group SU(3) defined over
X, a Calabi-Yau 3-fold. If F is a rank 2, stable sub-sheaf of V', defining the “wall” in the
dual Kdhler cone given by ci(F)s; = 0, such that V is stable for u(F) < 0 and unstable
for u(F) > 0, and further, HY (X, F* @ V/F) =0, then

(X, VeV =h(X,FoV/F))+h(X,FeF) -1, (5.4)

where h'(X,V ® V*) is the generic dimension of bundle moduli space when V is a sta-
ble bundle.

The proof of this lemma can be found in appendix A.

In summary, we see that the D-term (4.20) correctly reproduces all of the expected
physical features of gauge bundle supersymmetry. Specifically, the D-term vanishes and,
hence, preserves supersymmetry precisely in the region where the gauge bundle is stable
while it is non-vanishing in the region where the bundle is unstable. We have seen that in
the large radius limit and at the stability wall it is consistent to keep the massive U(1) vector
multiplet and the Higgs multiplet in the low energy theory. Away from the stability wall,
however, these fields develop heavy masses and have to be dropped. In this way, we recover
the usual heterotic effective theory at a generic, supersymmetric point in moduli space.

It is clear that the physics of the non-supersymmetric region of the Kéahler cone is
dominated by the potential wall due to the non-vanishing D-term (4.20). Since there is
no perturbative vacuum in this region, we shall refrain from discussing the mass spectrum
in this part of field space. However, to finish this section we shall make a few comments
about the regime of the non-supersymmetric region where our effective field theory analysis
is valid. In addition to the usual expansions of heterotic M-theory, which will be discussed
in more detail in section 6, validity of our approach requires that the potentials present
should be below the compactification scale. Furthermore, the C' field vevs should not be
too large, since we have assumed they were small in deriving the effective potential in this
section. Obviously, both of these conditions are satisfied close to the transition between the
supersymmetric and non-supersymmetric regions of moduli space and, as such, the above
discussion can be trusted. Far into the non-supersymmetric region one may not expect a
four dimensional description to exist at all. The potential grows in size as we penetrate
inside this zone until eventually it becomes of the same mass scale as heavy states which
have been truncated in our analysis. To give some idea of scale, let us examine the size
of the potential in the non-supersymmetric region when all C* vevs vanish. At a typcial
non-supersymmetric point in field space, the ratio of this potential to the fourth power of
a typical mass of a heavy gauge sector state is of order s, the dilaton, when working in
string units. As such, in a valid regime of the effective theory where s is large, one should
typically not include regions with such a potential in the four-dimensional theory. Close
to the boundary with the supersymmetric region (where the D-term potential vanishes
exactly), however, the potential is surpressed from its usual scale by the smallness of
w(F)?/ V43 which smoothly increases from zero as we enter the non-supersymmetric part
of the Kéahler cone. Thus, we can trust our analysis and investigate this potential in the
four-dimensional theory in the region near to the boundary where (u(F)?/V*3)s < 1.
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Representation Cohomology | Physical U(1)charge | Dimension of Cohomology

(1,2)_3 HY (X, F®K*) —-3/2 16

(1,2)3 HY (X, F* 2 K) 3/2 0

(1,3)0 HY X, F ® F*) 0 7

(27,1)9 HY(X,K) 1 0
(27,2)_4 HY(X,F) -1/2 2
(27,1) 5 HY (X, K") -1 0

(27,2); HY(X,F*) 1/2 0

Table 2. Particle content of the model defined by the bundle (3.5) at the decomposable locus
where V = F & K, with F defined by (5.5) and K = Ox (1, —1).

5.1 An example

To illustrate the above general discussion, let us return to the example of section 3.1.
Recall, that we have defined the monad bundle, (3.5) on the complete intersection Calabi-
Yau manifold (3.3). As mentioned in section 3.1, we find that the SU(3) bundle, V,
decomposes as V. — F @ K where £ = Ox(1,—1) is a line bundle. The de-stabilizing
sub-sheaf F C V has rank two' and is described by the monad

0—F — Ox(1,0)® Ox(0,1)%? - 0x(2,1) = 0. (5.5)

The locus in the moduli space of V' where it decomposes as V = F @ K corresponds to
setting to setting to zero the bi-degree (1,2) polynomials in the monad map, f, given in
(3.5). Using the results of refs. [17, 28], we can calculate the dimensions of the cohomology
groups of F and K listed in table 1. The results are summarised in table 2. The only
matter fields present which are charged under the additional U(1) symmetry appear in
the first and fifth row in the table. They both have negative charge under the four-
dimensional U(1), listed in the third column. In particular, this means that the singlet
matter fields C'*, which correspond to the first row in the table, are all negatively charged,
in accordance with Lemma 1. Further, in this particular model it turns out that the 27
matter multiplets are also negatively charged. This means, by gauge invariance, that the
F-term part of the potential vanishes. Having only 27 but no 27 multiplets means the 27
vevs will be forced to zero by the Eg D-terms. Hence, they do not contribute to the U(1) D-
term (4.20). For the present example and all models with similar particle content, the U(1)
D-term (4.20) therefore describes the full vacuum space. In general, models with positively
charged Fg multiplets or anti-families in 27 exist. For such models one would expect
superpotential terms or D-flat directions with non-vanishing 27 and 27 vevs, leading to
a more complicated structure of the vacuum space. As explained before, for such models
the U(1) D-term (4.20) describes the part of the vacuum space where Fg is unbroken.

141n this example F is a bundle that injects into V everywhere in moduli space, while K is a line-bundle
and only injects at the decomposable point. That F is indeed a bundle and not simply a sheaf has been
checked explicitly using the computer algebra packages [39].
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Figure 3. The potential in the dual Kahler cone as a functions of the two dual Kahler variables.
The potential has been minimized with respect to the C fields (which are not plotted here). The
flat region of the potential is where the bundle is stable. The positive definite potential wall which
one encounters upon entering the region where the bundle is unstable can clearly be seen, arising
at the line with slope = 1.

A generalised expression, including the family and anti-family degrees of freedom in the
D-term, can trivially be derived.
From egs. (4.20) the D-term for this example reads

3 eseh u(F) 3 & i

U1l LA~AM

T K:ZR oo Ty > GimCreY, (5.6)
L,M=1

where, from egs. (3.12), (3.4), the slope is given by

1
w(F) = §(—.sl +59), s1 =412, s =8t +2(t?)?. (5.7)

For the volume we have 1
V=21 (t%)? + §( 23 (5.8)

In figure 3 we plot the D-term potential (5.6) as a function of the dual Kéhler cone variables
51 and 89, defined in eq. (3.4). The C'* vevs, which are not plotted due to lack of dimensions,
have been chosen to be at their minimum. The potential rising from zero in the unstable
region is clearly visible, as is the stability wall determined by the line with slope 1 (in
agreement with the bundle stability regions shown in figure 2). Figure 4 shows the D-term
potential from eq. (5.6) as a function of the coordinate sq, with s, chosen such that the plot
traces a line perpendicular to the stability wall in the Kéhler cone, and the radius |C| of a
representative singlet matter field. This figure makes it clear that there is no “boundary”
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1.

Figure 4. The D-term potential from eq. (5.6), as a function of s, a dual Kahler modulus, and the
absolute value, |C|, of a representative singlet matter field C. In this plot we have chosen so = 4—s;
so that we are examining a line in Kahler moduli space perpendicular to the boundary between the
supersymmetric and non-supersymmetric regions. The boundary itself is found at s; = 2 in this
diagram. Since the exact form of the Kahler potential for the matter fields is not known, a simple,
canonical form has been chosen for illustrative purposes.

to the vacuum space at the stability wall in Kahler moduli space if one considers the full
field space of the theory.
At the stability wall, where t> = 4t! and (C%) = 0, the variation of the D-
term (5.6) becomes
U _ 9eser 1

= 46t — 5¢2) . 5.9
6402 (t1)2( ) (5.9)

This shows that it is the combination 46t — 6¢? of Kihler moduli perpendicular to the
stability wall which becomes massive at this point, as is also evident from figure 4. The
mass of this linear combination is given by

2 3(656%)2 1
m = —> &8 )
v 2567 s(t1)?

(5.10)

This expression shows explicitly the aforementioned 1/t? scaling of the U(1) vector and
Higgs masses which justifies keeping these states in the low-energy theory close to the
stability wall. As discussed earlier, far away from the stability wall the Higgs multiplet
becomes pre-dominantly a linear combination of the C'* multiplets and there are two mass-
less Kéhler moduli as one would expect at a generic point in the supersymmetric region.
From table 2, we have 16 singlet matter fields C* and 7 bundle moduli at the stability wall.
With one of the C* becoming massive one would expect 16 + 7 — 1 = 22 bundle moduli
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at a generic supersymmetric point in moduli space and this is indeed the number we have
computed for this example, see eq. (3.6). This illustrates the general statement in Lemma
2. An additional example, with an unrelated manifold and method of bundle construction
is provided in appendix B.

5.2 Results in bundle stability from the effective theory

So far, we have used mathematical information on vector bundle stability to construct
a low-energy description of bundle supersymmetry. Now that we have established such
a picture, let us reverse our approach and see if can recover some of the mathematical
results in bundle stability from the effective field theory. A key fact to remember is the
interpretation of the charged matter fields, C”, as bundle moduli of the SU(3) bundle - as
described in section 4. When these fields vanish the bundle decomposes as V = F & I,
and has structure group S(U(2) x U(1)). For non-vanishing C* vevs, at a generic point
in moduli space, the bundle no longer splits up into a direct sum of sub-bundles, and the
structure group reverts to SU(3).

First, in what we would expect to be the supersymmetric region of Kahler moduli
space, the fields C* must acquire a vev if the D-term is to vanish. From this observation,
we reproduce the fact that the bundle will only produce a supersymmetric vacuum in the
so-called “stable” region of Kahler moduli space, if it is at a generic (that is, non-split) point
in its moduli space, that is, if the structure group is SU(3). If, in the normally “stable”
region of Kahler moduli space, the bundle moduli move to the decomposable locus where
the structure group is S(U(2) x U(1)), the D-term is non-vanishing and supersymmetry is
broken. This is all in perfect agreement with the algebro-geometric analysis presented in
section 2.

As we learned in section 2, at the stability wall in K&hler moduli space, in order to
have a supersymmetric theory, the bundle must be split and semi-stable; that is, it must
decompose into a direct sum of stable bundles of the same slope. From (4.20) we again
see this behaviour reproduced. The FI term vanishes on this line in Kéhler moduli space.
Hence, the vanishing of the D-term required by supersymmetry forces the C* field vevs to
vanish - taking us precisely to the split point in bundle moduli space.

As before, our discussion here allows us to go further than has been previously possible
and discuss what happens in the region where supersymmetry is spontaneously broken as
well. Although the D-term (4.20) cannot vanish in this part of moduli space, for fixed
Kihler moduli, the D-term potential can be minimized by vanishing fields C*. Thus, the
bundle will relax to the decomposable locus in bundle moduli space throughout this region,
as well as at the stability wall, in the absence of non-perturbative effects.

As a final comment, it is interesting to note that the D-term (4.20) does not depend on
the complex structure fields. Thus, it should also be true that the stability regions derived
in section 3 are not dependent on the choice of complex structure, for those bundles which
can give rise to supersymmetric theories in four dimensions. This result, which is somewhat
surprising from a mathematical perspective, will be discussed further in the appendix.
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6 Higher order corrections

In the analysis of proceeding sections we have worked to first order in the strong coupling
expansion parameter, eg, and the square of the matter fields. The strong coupling expan-
sion parameter €g itself, as opposed to the combination ese% which is what was defined
in (4.9) and has appeared heretofore, is given by the following [31, 36],

_ (K11\%/3 27mp
s= (%) 5 (6.1)

In the weakly coupled langauge, we have been working, up to this point, at string the-
ory tree-level. One can do better than this and work out those O(e%) corrections that
correspond to string one-loop corrections.!® In particular, the D-term given in (4.20), re-
ceives e% corrections which can be calculated. Corrections to the matter field part of the
D-term (4.20) are uninteresting. The only fact that we have used about this term is the
positive definite nature of the matter field metric G ;;, and this will not be changed by
such corrections. However, the O(e%) corrections to the FI term are of some interest and we
now proceed to derive these. At lowest order, the T-moduli had a non-trivial U(1) trans-
formation while all other moduli fields were invariant. As we will see, at higher order, the
dilaton S and the five-brane position moduli Z¢, where o = 1,..., N numbers the differ-
ent five-branes, also transform non-trivially. We start by defining these four-dimensional
superfields in terms of the underlying geometric fields. The definition of the T-moduli,
TP = ' + 2ix’, is as previously given (see eq. (4.3)). For the dilaton and the five-brane
moduli we have [42, 43]

N N

S =W+ meg Z Btz +i <O‘ + 27eg Z Bf‘x%i) (6.2)
a=1 a

Z% = B (t'20 + 2i(—nlva + X'z4)) - (6.3)

Here, 1} is the Calabi-Yau volume averaged over the orbifold and o is the dilatonic axion,
the dual of the four-dimensional two-form B, = Ci1,,. Further, z, is the distance from
the left orbifold fixed plane to the a-th five-brane, the 3{* are the charges associated to
the a-th five-brane and ni, = 82/(3,(8%)?). The fields v, are axions located on the
five-brane world-volumes. In order to compute the corrections to the D-term, we need
to consider the U(1) transformations of the fields at order €%. For the T-moduli and the
matter fields, these transformations are given in egs. (4.10) and (4.11) with no further
corrections at O(e%). The transformation of the dilaton and five-brane position superfields
are slightly more subtle in their origin. To discuss the dilaton, we consider the relevant
terms in the four-dimensional effective action which involve the two-form B, = Ciiu.
These terms are [14]

1 3 ;
Sip = _2—2/ [VOQH A*xH + Zwe%e%cﬁ(}")&B ANF| (6.4)
Ky J My

15 Corrections corresponding to higher orders in a’ would require knowledge of the Kihler potential for
bundle moduli, which is only known for special cases [40]. For a discussion of higher order corrections in
o’ to the supersymmetry /slope stability condition in the Type II context, see e.g. [41].
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where H = dB + ... and the dots indicate a Chern-Simons three-form which is irrelevant
for the present discussion. Further, F' = dA is the field strength of the U(1) gauge field A
and the integer charges (3; of the Eg sector under consideration are defined as

1

1
Bi 162 / (tr A 2trR A R> A J; (6.5)

In order to dualise the two-form B to the dilatonic axion o, we set Hy = dB and add to
the above action the term
1

2

HyNdo . (6.6)
Ky J My

By integrating out Hy, we find the kinetic term

1 1
S4d,d 1= —— (—E N *E) (6.7)
ua ’@21 v %2

for the dilatonic axion o, where the “field strength” ¥ is defined as
3 99
Y. =do— gﬂ'eseRcl(]—")ﬂiA . (6.8)

This field strength needs to be invariant under U(1) gauge transformations with 0 A = — De,
which implies the following transfomation law for the dilatonic axion.

do = —gﬂeée%{ci (F)p; €. (6.9)

The five-brane axions v, do not transform under U(1) transformations, so the x! transfor-
mation (4.10) and the above o transformation (6.9) are all we have to take into account
at the component field level. Note that, from egs. (6.2), (6.3) and (4.3), this implies non-
trivial transformations for all superfields S, Z* and T". In particular, the five-brane moduli
superfields Z in eq. (6.3) pick up a non-trivial transformation through their dependence
on the T-axions x'.

Taking these new field transformations into account, we may now calculate the cor-
rection to our D-term, (4.20), at order e%. For this we need the relevant corrections to the
Kéhler potential. In eq. (4.12) we have already given the Kéhler potential for the 7-moduli
which remains unchanged at the orders we require. The Kéahler potential for the dilaton
and the five-brane moduli is given by

« + Za)2

N
S (
Kg=—In|S+8—meg Yy 2 (6.10)
azlﬁi(T +T)

Given these expressions, we may follow exactly the same procedure as in section 4 to obtain
the corrected D-term

DYO = f NG M (6.11)

LM
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Here, the FI term f is given by

f=rf0 +f(1 (6.12)
3 esed p(F)
0) — SR ) 1
/ 16 k3 YV (6.13)
3meded 1 ; al (2% + Z9)?
1) — SR ot z 14
f 82 S+5 Z: BQTZ—FTZ)ﬂ 1(F) (6.14)

We see that the leading contribution, f ©), to the FI term precisely reproduces our previous
result (4.20) while the correction term fM s surpressed by an extra power of eg, as
expected. As mentioned earlier, the second term in (6.11) will also receive corrections.
However, since these small corrections cannot change the sign of this term they are of no
immediate interest to us here.

The O(e%) correction f (1) to the FI term depends on fields other than the Kéhler
moduli. This means that the position of the stability wall in the K&hler cone will change
slightly as we change, for example, the value of the dilaton or the five-brane moduli Z¢.
Naively, this suggests that we have lost the link, as espoused in the rest of the paper,
between the mathematical stability analysis and the four-dimensional effective field theory.
However, this is not the case.

The crucial point is that the four-dimensional fields which appear in the above expres-
sion are not quite those which are “experienced by the gauge fields”. In heterotic M-theory,
the vacuum solution in eleven dimensions includes a warping in the eleventh direction which
introduces dependence of the Kéhler moduli on the orbifold coordinate. In other words,
the six dimensional manifold changes shape slightly as we traverse the S'/Zy orbifold di-
rection. The four dimensional Kihler moduli # which appear in the above expressions (for
example, in eq. (6.11)) are the orbifold average of these varying Kéhler parameters. The
gauge fields of our bundle, however, reside on one of the orbifold fixed planes at either end
of the interval. Thus, in performing the stability analysis of sections 2 and 3, it is not the
averaged quantities which are relevant, but the K&hler moduli of the Calabi-Yau 3-fold
at the relevant orbifold fixed plane. It is precisely the difference between those Kéahler
parameters at the orbifold fixed plane and the averaged ones which accounts for the cor-
rection given in equation (6.14). This may be checked explicitly using the expressions for
the warping of heterotic M-theory given in refs. [32, 33, 35, 42]. Note that, in the case of
Abelian bundles, such corrections have been discovered elsewhere in the literature [15, 44].

To make this precise, let us drop the requirement that we write the FI term in terms of
four-dimensional superfields. Instead, we introduce the Kéhler moduli 5; of the Calabi-Yau
manifold on the relevant orbifold fixed plane (as opposed to the averaged Kéhler moduli
s;) and denote by ji(F) = ¢} (F)3;/2 and V the corresponding slope and volume. Then one
can show that the corrected D-term (6.11) can be written as

3 eses i F = I
DV — e (v ) -y QG yctcM (6.15)
4 L,M
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All correction terms have disappeared and the FI term is proportional to the slope com-
puted for Kahler parameters on the orbifold plane, where the bundle is actually defined.
This is precisely the slope one would define in a mathematical context. Hence, our inter-
pretation of the U(1) D-term in terms of gauge bundle stability is completely unchanged
by higher order corrections.

7 Conclusions and further work

In this paper, we have explored in detail the structure of heterotic theories near a stability
wall, separating regions in Kahler moduli space where a non-Abelian internal gauge bundle
preserves or breaks supersymmetry. We have found four-dimensional effective theories valid
near such boundaries which provide us with an explicit low-energy description of bundle
supersymmetry breaking and with a physical picture for the mathematical notion of slope
stability. A key observation in our analysis is that at a stability wall the structure group
of the internal gauge bundle decomposes and acquires a U(1) factor. This leads to an
additional U(1) symmetry in the four-dimensional effective theory which is Green-Schwarz
anomalous. The associated U(1) D-term consists of a FI term and a matter field term and
it controls the supersymmetry properties of the bundle from a four-dimensional point of
view. Specifically, the FI term is proportional to the slope p(F) of the destabilizing sub-
sheaf 7 C V of the internal vector bundle V. For negative slope the bundle V' is stable. In
the four-dimensional theory this is reproduced, since non-trivial vacuum expectation values
of U(1) charged matter fields compensate the FI term so that the U(1) D-term vanishes
and supersymmetry is preserved. For positive slope, that is an unstable bundle V', the FI
term changes sign. As all U(1) charges have the same sign, the FI term cannot be cancelled
by matter field vevs in this case and supersymmetry is broken. In four dimensions, the
relation between the theory at the stability wall and at a generic supersymmetric point is
governed by the super-Higgs effect. As one moves away from the stability wall the U(1)
vector field mass increases and has to be removed from the low-energy theory, together
with the associated Higgs multiplet. The implied matching of degrees of freedom can be
precisely reproduced by a cohomology calculation. We have also shown that our results are
robust under corrections suppressed from the leading effects by a power of eg (the strong
coupling expansion parameter), corresponding to string one-loop corrections. While the FI
term does receive corrections at this order, they have a simple interpretation in terms of
11-dimensional geometry. While the standard four-dimensional Kéhler moduli t* = Re(7")
measure the average Calabi-Yau size across the orbifold, the gauge bundle and its stability
properties are sensitive to the Calabi-Yau moduli, #*, on the relevant orbifold fixed plane.
The order e% corrections to the FI term simply accounts for the difference between those
two types of moduli when the D-term is expressed in terms of the standard four-dimensional
fields t*. In other words, the order e% terms disappear when the D-term is written in terms
of t*. Hence, these one-loop corrections do not suggest a modification of the mathematical
notion of bundle stability but simply reflect the fact that the gauge fields are localised in
the orbifold direction. We stress that the basic picture we provide here, while illustrated
for the sake of clarity with vector bundles with SU(3) structure group decomposing into

,32,



S(U(2) x U(1)), is very general. We expect its main features to holds for any Calabi-Yau
three-fold and for any construction of vector bundles. Indeed, the validity of our approach
has been checked in a large number of disparate examples.

Our results suggest many further directions for research, some mathematical in nature
and some physical. It would be of great interest to study various generalisations and
extensions of the mechanism described in this paper. In the present paper, we have focused,
when describing examples, on simple cases with two Kéhler moduli, so that the stability
walls in Kahler moduli space are lines. We stress, however, that the phenomenon we
have described is much more general and appears in Kéahler cones of any dimensionality
greater than one. In general, the stable region is a sub-cone of the Kéhler cone with each
co-dimension one face giving rise to a D-term of the type we have described. At each
generic point on the stability wall only one of these D-term will be relevant. However,
for more than two Kéhler moduli co-dimension one faces can intersect so that there are
special loci on the stability wall where two or more D-terms need to be considered at a
time. Further study of more complicated examples would be an interesting future line
of research. Further generalisation could involve considering more complicated splitting
types at the stability wall, such as SU(3) — S(U(1) x U(1) x U(1)), and SU(n) bundle
structure groups with n > 3. Indeed, the authors have already studied such cases in detail
and hope to present examples of this type in future work. An interesting observation is
that the four-dimensional effective field theory only depends on the structure of the gauge
bundle at the split locus in moduli space. This suggests that phenomena similar to the
ones described here can link nominally different bundles together via smooth transitions
in physical moduli space. The authors are currenty actively investigating this effect.

From a more phenomenological perspective, the potential we provide may be of some
interest in moduli stabilization [45]. Its perturbative nature means that this potential is
relatively steep. Thus, if one were to balance it against a non-perturbative potential, such
as that due to membrane instantons, one might be able to obtain a naturally small scale of
supersymmetry breaking. An investigation of whether such an idea is phenomenologically
viable is underway. Global remnants of the anomalous U(1) symmetry at the stability wall
may have implications for the structure of the theory even at a generic supersymmetric
point in moduli space. For example, one might be able to conclude that certain super-
potential terms are forbidden. Such considerations may be used to constrain the type of
vector bundles which can lead to realistic low-energy models.

Finally one can imagine attempting to use the analysis described in this work to
investigate what may be said about bundle stability purely from the point of view of
the four-dimensional effective theory. One goal of such work would be to give a simple
set of rules, for example based on four-dimensional anomaly cancellation, which would
guarantee that a given vector bundle on a Calabi-Yau manifold is stable in a certain region

of moduli space.
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A Two lemmas and a conjecture

In this section, we will state the two lemmas used in section 5 (regarding the dimensions of
certain cohomology groups) somewhat more formally and provide proofs. These results will
be an example of the types of cohomology conditions one can derive in the context of slope
stability. Similar conditions can be derived when different SU(n) bundle decompositions
are considered or when additional enhanced U(1) symmetries are present. Furthermore,
we will make a conjecture regarding the complex structure dependence of a stability wall.

Let X be a Calabi-Yau three-fold with Kahler form J and V' a holomorphic vector
bundle defined over X with structure group SU(n), where n = 3,4,5. We will consider
a case in which a single sub-sheaf F C V of rank n — 1 de-stabilizes V' in some part of
the Kéhler moduli space of X. We define the slope, u(F), of F for a given polarization

J = t5J, by
W(F) = rk(lf) /X L (FYATAT. (A1)

Let us further suppose that F itself is slope-stable and has a slope such that it destabilizes

only part of the Kahler cone (as in figure 1 in section 3). Thus, V' is stable for polarizations
J with p(F) < 0 and unstable for polarizations J with u(F) > 0. The two regions are
separated by a stability wall in K&hler moduli space where p(F) = 0 and V' is semi-stable.

Using the short exact sequence
0—-F—->V-V/F-0, (A.2)

we note, as in sections 3 and 4, that we can write V. = F @ V/F as an element in its
S-equivalence class.

Our physical four-dimensional picture of bundle stability suggests certain conditions
on bundle cohomology which we now discuss. Due to the Fayet-Iliopoulos (FI) D-term
(4.20) derived in this paper, the preservation of supersymmetry in the effective theory
depends upon the existence (or absence) of certain charged matter fields (the fields C'*
in (4.20)) described by HY(X,F ® (V/F)*) and H' (X, F* @ V/F). Specifically, in order
to preserve supersymmetry in the region of moduli space with u(F) < 0, the fields C*
described by H' (X, F ® (V/F)*) must acquire a vacuum expectation value and cancel the
FI term in (4.20), hence setting the potential to zero in this region of Kéhler moduli space.
In particular, this means that such fields must exist and hence H*(X,F @ (V/F)*) # 0.
On the other hand, if the region of moduli space for which p(F) > 0 is to have broken
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supersymmetry, there must be no fields C* described by H'(X, F* @ V/F) = 0. Stating
this more formally, we must have the following Lemma:

Lemma I. Let V' be a holomorphic vector bundle with structure group SU(n) (n = 3,4,5)
defined over X, a Calabi- Yau 3-fold with Kdhler form J. If F is a rank (n—1), stable sub-
sheaf of V', defining a “stability wall” in in the Kdhler cone given by pu(F) = 0, such that V
is stable for u(F) < 0 and unstable for p(F) > 0 (and V/F is locally free), then H*(X,F®
(V/F)*) #0 and HY(X,F* @ V/F) =0 (for any effective field theory describing V).

Proof. We begin with the first condition H'(X,F ® (V/F)*) # 0. Consider twisting the
sequence (A.2) by the line bundle £*, where K = (V/F)** ~ V/F. This leads to the short
exact sequence

0-FRK' - VK -KK"—0. (A.3)

Then the associated long exact sequence in cohomology contains the terms
0— HYX,FoK") - H'(X,VoKk") - H(X,K®K*) - H(X,FoK*) — ... (A4)

Because V' is stable for pu(F) < 0, it must follow that at a generic point in the bundle
moduli space of V, H'(X,V ® K*) = 0 (otherwise K would be a sub-sheaf of V and
would destabilize V). Furthermore, since K is a line-bundle on a Calabi-Yau manifold,
HY(X,K ®K*) = 1. As a result, we have

0— H(X,K®K") - HY(X,FRK*) — ... (A.5)

and it is clear that we must have H'(X,F ® K*) # 0 in order to avoid a contradiction.
However, since the value of this cohomology is unaffected as we move to the decomposable
locus in the moduli space of V' (as described in section 3), we see that H' (X, F®(V/F)*) #
0 is satisfied, as expected.

We turn now to the second cohomology condition that we must investigate. In order
for the theory to break supersymmetry above the line with u(F) = 0, it must be the case
that H'(X, F*®V/F) = 0. This too follows immediately from the definition of a stability
boundary. Suppose that H' (X, F* @ V/F) # 0, then there exists a non-trivial extension:

0=V/F—-V—=F—0. (A.6)

But, by definition, this implies that there exists an injective map from V/F to V at generic
points in moduli space (away from the decomposable locus). Thus, we must ask, can 1%
be isomorphic to V'? If this is the case, then V/F is a sub-sheaf of V' that destabilizes
V in the region pu(F) < 0. But by construction, we know that F destabilizes V in the
region with x(F) > 0, hence the bundle is stable nowhere in Kéhler moduli space. This is
a contradiction, since we are considering the situation in which the line p(F) = 0 defines
the boundary of a stable/unstable transition in the moduli space. Thus, if V is stable
for u(F) < 0, then the extension Ext'(V/F,F) = HY(X,F* @ V/F) defining V is not
isomorphic to V. Thus, if H' (X, F* ® V/F) # 0 we are considering an effective theory in
which branch structure is present, connecting more than one vector bundle. However, for
the statement of this lemma, we shall consider only the effective theory describing V. [
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Note that similar vanishing conjectures could be formulated for other possible bundle
decompositions of V. However, in the presence of additional U(1) gauge fields and differ-
ent decompositions of Eg under these symmetries, each case must be investigated on an
individual basis.

Next, we turn to the proof of the second lemma in section 5. It states the following:

Lemma II. Let V be a holomorphic vector bundle with structure group SU(n) defined over
X, a Calabi-Yau 3-fold with Kdhler form J. If F is a rank n — 1, stable sub-sheaf of V,
defining a stability wall in in the Kdhler cone given by u(F) = 0, such that V is stable for
w(F) < 0 and unstable for p(F) > 0 (and V/F is locally free), and HY(X,F* @ V/F) =
0, then

X, VeV =X,FeV/F))+h (X, FeF) -1, (A7)

where h'(X,V ® V*) is the generic dimension of bundle moduli space when V is a sta-
ble bundle.

Proof. Consider once again the short exact sequence (A.2) which defines the sub-sheaf F.
In order to relate the generic (stable) bundle moduli of V' to the possible deformations of
F @ K, we will compute h!(X,V ® V*) using (A.2). To begin, we consider the following
three short exact sequences that follow directly from (A.2).

0=-FRV VeV KeV*—0 (A.8)
0> FRIK - FRV - FF —0 (A.9)
0K =KV - K®F -0 (A.10)

From these sequences we can consider long exact sequences in cohomology. We begin with
(A.9). Using the results of Lemma I, and the fact that for this class of examples V' is stable
for u(F) < 0, we have HY(X, F ® V*) =0 and H?(X,F ® K*) = 0. Thus,

0— H' (X, FoF") - H(X,F®K*) - HY(X,FoV*) - HY (X, FQF*) — 0. (A.11)

Next, from (A.10), we note that since K is a line bundle, C®K* ~ O and hence, H'(X,K®
K*) = 0 and by Lemma I, we have that H'(X,K ® F*) = 0. Further, we have H%(X,K ®
F*) = 0 since F is stable. Hence, it follows that

RO(X,K®V*)=1 and AY(X,K@V*)=0. (A.12)
Substituting this information into the cohomology sequence for (A.8), we find
0—-H X, VeV*) - H(X,KoV*) - H(X,FoV*) - H(X,VeV*) -0 (A.13)
Then, in terms of dimensions:
RHX, VoV =X, VeV -hX, Ko V) +h (X, Fo V" (A.14)
and upon substitution

WX, VeV -1+h(X,FF) +h(FeoF)+h (X, FoK"). (A.15)
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Finally, since V and F are stable h%(X,V @ V*) = 1 = h}(X,F ® F*) and we arrive at
the result,
MX, VoV =X, FoK)+h(FoF) -1 (A.16)

as required. O

We end this section by a statement of a conjecture. This is less easy to verify than the
cohomology conditions described above, though we have found it to be true in all the cases
that we have investigated. The central result of this paper is the form of the FI D-term
given in (4.20) which reproduces the notion of vector bundle stability for a supersymmetric,
anomaly free'® bundle. As discussed in section 5, the form of this potential clearly does
not depend on the complex structure moduli of the Calabi-Yau manifold X. In addition,
using the techniques of section 3, we have searched through numerous examples, and have
yet to find a complex structure dependent boundary wall for an anomaly free bundle. As
a result, we posit the conjecture:

Conjecture. Let V' be an anomaly-free holomorphic vector bundle with structure group
SU(n) (n = 3,4,5) defined over X, a Calabi-Yau 3-fold. If there exists a wall of semi-
stability of V' in Kdhler moduli space (defining the boundary between stable and unstable
regions), then the position of this wall is independent of the complex structure moduli of X .

This conjecture is a consequence of our field-theoretical approach to slope-stability but
it is not obvious to the authors how to prove it from an algebraic geometry viewpoint.

B Another example

To highlight the versatility of the formalism developed in this paper, in this section we will
sketch another example bundle, its regions of stability in the Kahler cone and the effective
field theory modeling this behavior.

We shall once again consider a bundle defined on a complete intersection Calabi-Yau
manifold, X. The so-called ‘bi-cubic’ 3-fold:

2
X:[P

P2 |3

3] , (B.1)

defined by a polynomial of bi-degree (3,3) in the ambient space P? x P2. As in our previous
example, h1!(X) = 2 and the Kihler cone is the positive quadrant ¢! > 0 and t*> > 0. The
non-zero triple intersection numbers are given by di22 = 3 and dy12 = 3. It follows that
the dual Kahler moduli s; and sy are

s1 =322t +17), sy =3t1 (26> +t1). (B.2)

16Recall that a vector bundle V in the Es x Fs heterotic theory defines an anomaly free superymmetric
theory if cho (T X) — ch2(V) = W where W is an effective class of X [2, 46, 47]. This condition is necessary
here, as without it anti five-branes or a non-supersymmetric hidden bundle would be required to make
the reduction from eleven to four dimensions consistent. This would result in a theory which was not
supersymmetric in four dimensions [48, 49], and as such the analysis of this paper would not apply.
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Hence, the dual Kahler cone in this case is the entire positive quadrant. We shall define
line bundles Ox (m,n) on this space using the same notation as in section 3.1.

On the given manifold, we define a bundle, V', by extension [50],
0—-W-—-V—-L—-0, (B.3)
where £ is a line bundle and W is a rank 2, U(2) monad bundle defined as follows

0—W — 0x(2,00% = 0x(2,2) = 0 (B.4)
L=0x(—4,2).

Since the first chern classes of £ and W satisfy
aa(W)=—-c1(L) (B.5)

the extension bundle V' defined by (B.3) has ¢;(V') = 0 and hence defines an SU(3) bundle.
Furthermore, V' is a non-trivial extension of £ by W (i.e. V is not simply the sum W & L
since Ext! (L, W) # 0). The spectrum of the four dimensional Eg theory associated to V'
consists of 18 27 matter fields and 18 27’s for a net chiral asymmetry of zero. In addition,
there are generically h'(X,V ® V*) = 530 bundle moduli.

We can now ask, what are the regions of stability of V' in the Kéhler cone? A simple
analysis using the techniques of section 2.1.2 verifies first that W is an everywhere stable
U(2) bundle, and furthermore, that W is generically the only de-stabilizing sub-sheaf of V.
Thus, since ¢1(W) = 4J; — 2J9, V itself is stable above the line with slope s3/s1 = 2 and
unstable beneath it. We will now reproduce this geometric result from the point of view
of the effective field theory developed in this work.

As was argued in section 3, at the line of semi-stablility in the dual Kéhler cone
defined by so = 2s1, V will be forced away from an SU(3) configuration towards the
structure group S(U(2) x U(1)) (and the four dimensional symmetry will be enhanced to
Es x U(1)). As in the example given in 5.1, V' decomposes as V = F & K where in this
case F = W and K = L (as defined above in (B.4)). Note that the split locus is simply
the zero of the group Ext! (L, W) which describes the space of possible extensions. Using
the results of [16, 27, 28] to compute the cohomology of W and £ on the bi-cubic, and
the representation decomposition given in table 1, we find that non-vanishing massless
spectrum of V' at the decomposable locus is given by

(X, W)_ 1y = 18 WYX, L% =18, (B.6)
MXWRW)y=9 h'(X,W®L) 3,=0522. (B.7)

The subscript on the cohomology denotes the U(1) charge of the fields. We may now write
down the U(1) D-term (4.20) contribution to the potential

3 eseh w(W) 3 O i

u() _ 2 &ser V) 9 L

DY = = 2 vt § G CtCM (B.8)
LM=1
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where here, from (B.4), the slope is given by

1
w(W) = 5(481 —259) (B.9)
while for the volume we have 5
V= §(t1t2)(t1 +1%). (B.10)

The relevant charged matter fields C% in this case are the fields in H'(X, W ® L£*),
since the fields associated to H'(X,W) and H'(X, L*) will have vevs forced to zero by
the requirement that Fg remains unbroken. As we would predict based from the algebro-
geometric results of the stability analysis, negatively charged matter is present so that the
vevs of the charged fields can adjust to cancel the FI term when p(F) < 0, setting the
D-term to zero. Thus, supersymmetry is preserved for the region of dual Kéhler moduli
space defined by so > 2s1. However, since there is no positively charged matter available,
for the region of moduli space where p(F) > 0, the FI term cannot be cancelled and
supersymmetry is broken. This is in agreement with what we would expect from the
general results of Lemma 1.

Finally, for this example, we can verify the general predictions of Lemma 2 by consid-
ering the number of bundle moduli associated to V' at a generic point in its moduli space
as well as at the decomposable locus. According to Lemma 2, we would expect there to
be one extra light modulus at the stability wall. For the bundle V' defined by (B.3), at
a generic point in its moduli space, h!'(X,V ® V*) = 530. Moreover, using the results of
(B.6) we observe that at the decomposable locus, the number of bundle moduli is given by
RH(X, W @ W*) + hY (X, W ® L£*) = 531. Thus, as described in section 5, as we move in
Kahler moduli space away from the stability wall, one degree of freedom is made massive
by the Higgs mechanism, (5.3), as expected.
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