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Abstract. This paper reports on the activities aimed at improving the architecture and performance of the 7 
ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event 8 
records, each of which consists of ~100 bytes, all having the same probability to be searched or counted. 9 
Data formats represent one important area for optimizing the performance and storage footprint of 10 
applications based on Hadoop. This work reports on the production usage and on tests using several data 11 
formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query 12 
engine plays also a critical role in the architecture. This paper reports on the use of HBase for the 13 
EventIndex, focussing on the optimizations performed in production and on the scalability tests. 14 
Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and 15 
the optimizations for data warehouse workloads and reports.  16 

1.  The ATLAS EventIndex project 17 
The ATLAS EventIndex [1] is a metadata catalogue of all real and simulated data produced by the 18 

ATLAS experiment [2], one of seven particle detectors constructed for the CERN Large Hadron 19 

Collider [3].  It was designed in 2012-2013 and implemented in 2014; the first data (all LHC Run 1 20 

data collected in 2009-2013) were loaded at the beginning of 2015. 21 

1.1.  System requirements and use cases 22 

The ATLAS EventIndex system has to scale to the order of several 1010 events (the number of events 23 

expected for LHC Run 2 between 2015 and 2018), be flexible in its schemas to accommodate a variety 24 

of quantities to be stored that could change in the future, use established and possibly open-source 25 

technologies and be “easy” to develop, deploy and operate. 26 

    The main use cases that were identified for this service are [4]: 27 

• Event picking: given a list of run numbers and event numbers, trigger stream, event format 28 

and processing version, find the events and return pointers to them to the user that issued the 29 

query, who can then use the data management tools to retrieve them. 30 

• Trigger checks and event skimming: the population of events that passed given triggers and of 31 

events that passed multiple triggers can be retrieved from the event catalogue. Similarly, a 32 

trigger-based event selection can be done, retrieving the references to the selected events and 33 

then the events themselves. 34 

• Production consistency checks: each production cycle should be checked for completeness 35 

(the number of produced events is the same as the number of input events) and consistency 36 

(no duplicated events). 37 
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1.2.  Current architecture  39 

The ATLAS EventIndex collects the data from distributed computer centres and stores them in a 40 

central storage at CERN. The system is divided into few functional packages that implement data 41 

acquisition, storage, access and monitoring: 42 

• The Data Collection system collects data from jobs at Tier-0 or on the Grid that produce new 43 

data. The EventIndex information for each permanent output file is transmitted to a central 44 

server at CERN where it is validated, reformatted and stored in the EventIndex storage 45 

system. 46 

• The Core Storage system accepts data from the Data Collection system and physically stores it 47 

in its own storage space, accepts queries from the front-end web server and returns the results. 48 

• The Query Server is a web service that acts as a front-end to the storage system. It provides a 49 

command-line interface and a web interface that can be used to find and retrieve the stored 50 

information. 51 

• The Trigger Decoding service unpacks the trigger information of each event and makes it 52 

readily available in the event records. 53 

• The monitoring system provides continuous information on the health and load of all the 54 

servers involved, as well as on the data traffic and query response times.  55 

    The Core Storage is one of the critical parts of the system as it integrates all other packages by 56 

consolidating the data and making them available to be accessed by users via the Query Server. Thus it 57 

is important that it is robust and delivers the required performance for both data ingestion and data 58 

access. Apache Hadoop [5] was chosen as the main backend technology for storing and accessing 59 

data.  It met all criteria from the project requirements (in section 1.1) and, differently from other 60 

shared storage technologies like relational databases, in various tests at CERN [6] has proven that it is 61 

horizontally scalable. 62 

    The rest of this paper elaborates on the internal design of the Core Storage and potential 63 

improvements that can bring the use of alternative approaches available in the Hadoop ecosystem for 64 

storing and accessing the data. In particular, the results evaluation of the most popular Hadoop file 65 

formats and storage engines with ATLAS EventIndex data and workloads are discussed and 66 

concluded. 67 

2.  Core Storage – implementation, usage and bottlenecks 68 
In order to understand how the core layer of the ATLAS EventIndex can profit from adopting recent 69 

technologies, it is important to explain some key implementation aspects of this component. 70 

2.1.  Storage implementation  71 

The Core Storage package is responsible for implementing persistent storage based on Apache 72 

Hadoop and implementing data accessing interfaces. It consists of two components: 73 

• Catalogue – an inventory of all imported datasets and their internal schema. All catalogue data 74 

are stored in an HBase database running on the same Hadoop cluster as the EventIndex data.   75 

• HDFS namespace – a distributed placeholder for the data. The data are physically stored on 76 

the Hadoop Distributed Files system in a format called MapFile [7]. A MapFile is a union of 77 

two files (Sequence Files [8]). The first one holds raw data in a sequence of key-value pairs 78 

and the other one holds an index to the raw data stored in the first file. The MapFile, compared 79 

to other file formats available on Hadoop, is unique, as it allows having sequential scans and 80 

random data lookups at the same time. 81 

2.2.  Event Index record content 82 

Each indexed event is stored in a MapFile format as a separate record that in average is 1.5 kB long 83 

and has 56 attributes encoded in various types. Most of them are arrays of characters, few are integers 84 

and floating point numbers. The main attributes are: 85 



 

 

 

 

 

 

• Event identification: run number (integer), event number (long), trigger stream (string), event 86 

format (string) and processing version (string).  87 

• Trigger information: the list of trigger chains passed by the given event (string). 88 

• References of the event: the GUIDs (Global Unique IDentifiers) (string). 89 

In the third quarter of 2016 there are 6x109 records stored in HDFS that occupy tens of Terabytes (not 90 

including data replication). 91 

2.3.  Data access paths 92 

There are two typical access paths that satisfy all the use cases: 93 

• Event picking – lookup for a random event by identification attributes. It is the main use case 94 

of the ATLAS EventIndex. Until the end of 2015, this access was implemented by using 95 

Catalogue-based data pruning and lookup for relevant records in a MapFile by built-in index. 96 

• Data scanning – full scan of a population of events in order to perform event skimming or 97 

trigger-based selection. For this type of access path, a MapReduce job is used in order to 98 

perform distributed and scalable data filtering. 99 

2.4.  Limitation of the Core Storage implementation 100 

During a review of the ATLAS EventIndex project in late 2015, a few limitations have been identified 101 

in the Core Storage implementation: 102 

• Data ingestion into MapFile format is complex, as it requires sorting datasets by key values 103 

before storing them physically in HDFS. Typically this means launching a MapReduce job 104 

that will perform data sorting in a distributed way, which in case of small data sets (that can be 105 

easily sorted in a single host memory) is suboptimal. The average measured ingestion speed 106 

into MapFile format was 6.4 kHz per a collection set. 107 

• Due to the extra effort (mentioned above) needed when loading data into MapFiles, a number 108 

of staging areas with duplicated data are created and maintained. 109 

• Data and metadata are separated and served by different components. This means that any data 110 

access operations have extra cost (latency) of combing raw data with its metadata – direct 111 

access to raw data is not possible. Additionally, this implies that using any of popular open-112 

source community frameworks to process the data is not possible. 113 

• Random data lookup of MapFiles is performed on the client side – index files are downloaded 114 

to a client machine where they are processed in order to obtain the final location of events of 115 

interest in HDFS. This can potentially cause a performance problem when the network 116 

connectivity between HDFS and the client is poor or when a single client machine performs 117 

multiple requests in parallel like in the case of Query Server. Typical event lookup speed 118 

when using MapFiles is around 4s. 119 

Most of the limitations identified during the review were related to the usage of the MapFile file 120 

format as a container for the data. For this reason, a new initiative of evaluating alternative 121 

possibilities of storing data in Hadoop ecosystem was started. The main goal was to understand if Core 122 

Storage could significantly profit from using a different format for the data representation. 123 

3.  Evaluation of alternative modern storage approaches for Core Storage 124 
This chapter describes a performance comparison of some popular data formats and storage engines 125 

available in the Hadoop ecosystem to evaluate space efficiency, ingestion performance, analytic scans 126 

and random data lookup. This should help in understanding how (and when) each of the evaluated 127 

technologies can improve handling of the ATLAS EventIndex big data workloads. 128 

    During the evaluation, the same ATLAS EventIndex data sets have been stored on the same Hadoop 129 

cluster using different storage techniques and compression algorithms (Snappy, GZip or BZip2).  130 

 131 
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3.1.  Hardware and storage configuration 133 

The data access and ingestion tests were performed on a cluster composed of 14 physical machines, 134 

each equipped with: 135 

• 2 x 8 cores @ 2.60GHz 136 

• 64 GB of RAM 137 

• 2 x 24 SAS drives 138 

Hadoop was installed from Cloudera Data Hub (CDH) distribution version 5.7.0, which includes: 139 

• Hadoop core 2.6.0 140 

• Impala 2.5.0 141 

• Hive 1.1.0 142 

• HBase 1.2.0 (configured JVM heap size for region servers = 30 GB) 143 

• (not from CDH) Kudu 1.0  (configured memory limit = 30 GB) 144 

Apache Impala (incubating) was used as a data ingestion and data access framework in all the 145 

conducted tests presented later in this report. 146 

3.2.  Evaluated formats and technologies 147 

With respect to recent trends on the market and evaluations done with various storage techniques in 148 

the past at CERN [9], four candidate technologies for storing the data in the Hadoop ecosystem have 149 

been chosen. 150 

3.2.1.  Apache Avro [10] is a data serialization standard for compact binary format widely used for 151 

storing persistent data in HDFS as well as for communication protocols. One of the advantages of 152 

using Avro is lightweight and fast data serialization and deserialization, which can deliver very good 153 

ingestion performance.  154 

    Even though it does not have any internal index (like in the case of MapFiles), the HDFS directory-155 

based partitioning technique can be applied to quickly navigate to the collections of interest when fast 156 

random data access is needed. In the test a tuple of runnumber, project and streamname was used as a 157 

partitioning key. This allowed obtaining good balance between the number of partitions (few 158 

thousands) and an average partitions size (hundreds of megabytes). 159 

3.2.2.  Apache Parquet [11] is a column-oriented data serialization standard for efficient data 160 

analytics. Additional optimizations include encodings (RLE, Dictionary, Bit packing), and the 161 

compression applied on series of values from the same columns that gives very good compaction 162 

ratios. When storing data in HDFS in Parquet format, the same partitioning strategy was used as in the 163 

Avro case. 164 

3.2.3.  Apache HBase [12] is a scalable and distributed NoSQL database on HDFS for storing key-165 

value pairs. Keys are indexed, which typically provides very quick access to the records. When storing 166 

ATLAS EventIndex data into HBase each event attribute was stored in a separate cell, and the row key 167 

was composed as a concatenation of an event identification attributes (runnumber, eventnumber, 168 

project, streamname, datatype and version). Additionally, encoding of the row key was enabled in 169 

order to reduce the size of HBase blocks (without this, each row would have the length of 8KB) 170 

3.2.4.  Apache Kudu [13] is new scalable and distributed table-based storage. Kudu provides 171 

indexing and columnar data organization to achieve a good compromise between ingestion speed and 172 

analytics performance. In the evaluation all literal types were set to be stored with a dictionary 173 

encoding and numeric types with bit shuffle encoding. Additionally, a combination of range and hash 174 

partitioning was introduced, by using the first column (runnumber) of the primary key (composed of 175 

the same event attributes like in HBase case) as a partitioning key. 176 
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3.3.  Measurement results 178 

Despite the effort made to obtain as precise results as possible, they should not be treated as universal 179 

and fundamental benchmarks of the tested technologies. There are too many variables that could 180 

influence the tests and make them more case specific, like the chosen test cases, the data model used, 181 

the hardware specification and configuration, and the software stack used for data processing. 182 

3.3.1.  Space utilization 183 

 184 
 185 

Figure 1: Average row length in bytes for each tested format and compression type. 186 

Measuring the average record size after storing the same data sets (millions of records) using different 187 

techniques and compression algorithms allows estimating what would be the expected volume of 188 

production data when migrated to the chosen format and the space savings associated with that. 189 

According to the measured results (Figure 1), data encoded with Kudu and Parquet delivered the best 190 

compaction ratios. Using compression algorithms like Snappy or GZip can further reduce the volume 191 

significantly – by a factor 10 comparing to the original data set encoding with MapFiles. 192 

    HBase, due to the way it stores the data, is a less space efficient solution. Although compressing the 193 

HBase blocks gives quite good ratios, however, it is still far away from those obtain with Kudu and 194 

Parquet. 195 

    On the other hand, Apache Avro delivers similar results in terms of space occupancy like other 196 

HDFS row stores e.g. MapFiles. 197 

3.3.2.  Ingestion speed 198 

 199 
 200 

Figure 2: Average ingestion speed in kHz into a single data partition for each tested data format. 201 
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Measuring records ingestion speed into a single data partition should reflect the performance of 202 

writing to the ATLAS EventIndex Core Storage system that can be expected when using different 203 

storage techniques. The results of this test are presented on Figure 2. 204 

    In general, it is difficult to make a valid performance comparison between writing data to files and 205 

writing data to a storage engine. However, because Apache Impala performs writing into a single 206 

HDFS directory (Hive partition) serially, the results obtained for HDFS formats and HBase or Kudu 207 

can be directly compared for single data partition ingestion efficiency.  208 

    Writing to HDFS files encoded with Avro or Parquet delivered much better results (at least by a 209 

factor 5) than storage engines like HBase and Kudu. Since Avro has the most lightweight encoder, it 210 

achieved the best ingestion performance. At the other end of the spectrum, HBase in this test was very 211 

slow (worse than Kudu). This most likely was caused by the length of the row key (6 concatenated 212 

columns), that in average was around 60 bytes. HBase has to encode a key for each of the columns in a 213 

row separately, which for long records (with many columns) can be suboptimal. 214 

3.3.3.  Random data lookup 215 

 216 
 217 

Figure 3: Average random record lookup latency [in seconds] per data format. 218 

Retrieving a non-key attribute from a record by providing a record identifier (a compound key) is the 219 

main use case of the EventIndex (see 1.1). With respect to that, a list of runnumber-eventnumber pairs 220 

was used in order to retrieve their corresponding GUID. 221 

    According to the measured results (Figure 3), when accessing data by a record key, Kudu and 222 

HBase were the fastest ones, because of the usage of built-in indexing. Values on the plot were 223 

measured with cold caches. Using Apache Impala for random lookup test is suboptimal for Kudu and 224 

HBase as a significant amount of time is spent to set up a query (planning, code generation etc.) before 225 

it really gets executed – typically this takes about 200 ms. Therefore for low latency data access it is 226 

advised to skip Impala and use dedicated APIs; we tried also this approach and results for Kudu and 227 

HBase were similar – with cold cache <200 ms and with warmed up cache <80 ms.  228 

In opposite to Kudu and HBase, retrieving data from an individual record stored in Avro format 229 

can only be done in a brute force scan of an entire data partition (reminder – data are partitioned by 230 

part of a record key, so partition pruning was applied in such case). An average partition is sized in 231 

GB, thus getting the desired record takes seconds (depending on I/O throughput) and uses a significant 232 

amount of the cluster resources. This ultimately reduces the number of concurrent queries that can be 233 

executed at a full speed on a cluster. 234 

The same problem applies to Parquet; however, the columnar nature of the format allows 235 

performing partition scans relatively fast. Thanks to column projection and column predicate push 236 

down, a scan input set is ultimately reduced from GBs to just a few MBs (effectively only 3 columns 237 

were scanned out of 56). 238 
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3.3.4.  Data processing speed 239 

 240 
 241 

Figure 4: Average scan speed per CPU core [kHz] for each tested format. 242 

The data scanning test was performed as a simplified use case of event skimming or trigger based 243 

selection. The idea was to extract a trigger chain information from all the events and later count only 244 

the ones that met certain condition (substring matching).  245 

    Due to the input set reduction by applying column projection, Parquet in this test has left behind 246 

Avro (Figure 4). It was not only the most efficient in terms of per-core processing rates but also the 247 

fastest to finish the processing. The unit of data access parallelization in the case of Parquet and Avro 248 

is an HDFS file block – thanks to that it is very easy to evenly distribute processing across all the 249 

resources available on a Hadoop cluster. 250 

In terms of scanning efficiency Kudu (with Snappy compression) was not far from Parquet. It 251 

profited from column projection. Scanning data stored in Kudu and HBase might be imbalanced since 252 

a single table partition is the unit of a scan parallelization in both cases. Therefore the amount of 253 

resource involved in a scan depends on the number of given table partitions, their sizes and their 254 

distribution across a cluster. In this test case, it was not possible to use Kudu’s native predicate push 255 

down feature, as Kudu did not support the used predicate. Additional tests proved that Kudu scans 256 

could be faster than Parquet when supported predicates are in use. 257 

Before performing the test with HBase the scanned column was separated in a dedicated HBase 258 

column family – this improved the scanning efficiency by factor 5. That was still far away from 259 

Parquet or Kudu. 260 

3.4.  Summary of the evaluation 261 

The performed tests of major data storing techniques with the ATLAS EvenIndex workloads delivered 262 

valuable information about the key aspects to be considered when deciding to deploy any of these 263 

techniques: 264 

• Storage efficiency – with Parquet or Kudu and Snappy compression the total volume of the 265 

data can be reduced by a factor 10 comparing to uncompressed simple serialization format. 266 

• Data ingestion speed – all tested file based solutions provide faster ingestion rates (between 267 

x2 and x10) than specialized storage engines or MapFiles (sorted sequence). 268 

• Random data access time – using HBase or Kudu, typical random data lookup speed is below 269 

500ms. With smart HDFS namespace partitioning Parquet could deliver random lookup on a 270 

level of a second but consumes more resources. 271 

• Data analytics – with Parquet or Kudu it is possible to perform fast and scalable (typically 272 

more than 300k records per second per CPU core) data aggregation, filtering and reporting. 273 

• Support of in-place data mutation – HBase and Kudu can modify records (schema and values) 274 

in-place where it is not possible with data stored directly in HDFS files. 275 
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 277 
Figure 5: A schematic view of the results of the tests on Hadoop data formats and storage engines. Kudu and 278 
Parquet appear as good compromises between random data lookup and scalable data analytics performance.  279 

    Apache Avro has proven to be a fast universal encoder for structured data. Due to very efficient 280 

serialization and deserialization, this format can guarantee very good performance whenever an access 281 

to all the attributes of a record is required at the same time – data transportation, staging areas etc. 282 

    On the other hand Apache HBase delivers very good random data access performance and the 283 

biggest flexibility in structuring stored data (schema-less tables). The performance of batch processing 284 

of HBase data heavily depends on a chosen data model and typically cannot compete on this field with 285 

the other tested technologies. Therefore any analytics with HBase data should be performed rather 286 

rarely. 287 

    Notably, compression algorithms played a significant role not only in reducing the data volume but 288 

also in enhancing the performance of data ingestion and data access. In all those fields the Snappy 289 

codec delivered the best results for all tested technologies, much better than plain encoding without 290 

compression (except in the case of Avro). 291 

4.  Hybrid system 292 
Alternatively to a single storage technology implementation, a hybrid system could be considered 293 

composed of a raw storage for batch processing (like Parquet) and indexing layer (like HBase) for 294 

random access. This would allow to fully profit from technologies specialization/optimization on 295 

certain access paths and deliver the best performance. Notably, such approach comes at the price of 296 

data duplication, overall complexity of a system architecture and higher maintenance costs. 297 

At the end of 2015 as a follow-up of the initial evaluation of available storage techniques, an 298 

attempt for building a hybrid system for the ATLAS EventIndex was conducted in two ways: 299 

• Indexing the most relevant data (event identification and references of the event) in a separate 300 

relational system (Oracle) [14]. The assumption here was that this index should be self-301 

contained and does not keep pointers to the complete event records available on HDFS. 302 

• Indexing events by event number and run number in HBase database. In this approach the 303 

indexing key resolves to GUID and pointers to the complete records stored on HDFS. 304 

So far both systems have proven to deliver very good events picking performance on a level of tens of 305 

milliseconds – an order of magnitude faster than the original approach when using MapFiles solely. 306 

The only concern when running a hybrid approach in both cases is the system size and internal 307 



 

 

 

 

 

 

coherence – robust procedures for handling HDFS raw data sets updates and propagating them to 308 

indexing databases with low latency have to be maintained and monitored.  309 

5.  Conclusions 310 
The study of improving the ATLAS EventIndex Core Storage performance has shown a potential for 311 

enhancing the current implementation efficiency in many aspects, like reduction of overall data 312 

volume, simplifying ingestion and increasing the performance of data access. Columnar stores like 313 

Apache Parquet and Apache Kudu appear to be very good candidates for future data storage systems 314 

as they guarantee very good flexibility between fast data ingestion, fast random data lookup and 315 

scalable data analytics by keeping the system simplicity (Figure 5). On this field, Kudu appears to be 316 

more suited for the ATLAS EventIndex use case because of fast event lookup and simplified ingestion 317 

procedures. However, deep evaluation of Apache Kudu disclosed a lack of important functionalities 318 

(like security) and maintenance problems that makes Kudu in the currently available version (1.0.1) 319 

not fully production ready.  320 

    On the other hand, deployment of additional indexing platforms to improve fast data access (HBase 321 

and Oracle) provided satisfactory results for the main use cases of the ATLAS EventIndex. This came 322 

at a price of extra complexity of the system and extra maintenance effort. However, at the given state 323 

of development of the project, it pays off.  324 

    In the longer term, there are plans to consolidate the data onto a single platform. With respect to 325 

that, Apache Kudu seems to be the best choice. Therefore further monitoring of the technology 326 

evolution is foreseen. 327 
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