
A
TL

-S
O

FT
-P

R
O

C
-2

01
7-

04
3

06
Fe

br
ua

ry
20

17

A study of data representation in Hadoop to optimize data 1

storage and search performance for the ATLAS EventIndex 2

Z. Baranowski1, L. Canali1, R. Toebbicke1, J. Hrivnac2, D. Barberis3 3

1 CERN, Geneva, Switzerland; 4
2 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France; 5
3 Università di Genova and INFN, Genova, Italy 6

Abstract. This paper reports on the activities aimed at improving the architecture and performance of the 7
ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event 8
records, each of which consists of ~100 bytes, all having the same probability to be searched or counted. 9
Data formats represent one important area for optimizing the performance and storage footprint of 10
applications based on Hadoop. This work reports on the production usage and on tests using several data 11
formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query 12
engine plays also a critical role in the architecture. This paper reports on the use of HBase for the 13
EventIndex, focussing on the optimizations performed in production and on the scalability tests. 14
Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and 15
the optimizations for data warehouse workloads and reports. 16

1. The ATLAS EventIndex project 17
The ATLAS EventIndex [1] is a metadata catalogue of all real and simulated data produced by the 18

ATLAS experiment [2], one of seven particle detectors constructed for the CERN Large Hadron 19

Collider [3]. It was designed in 2012-2013 and implemented in 2014; the first data (all LHC Run 1 20

data collected in 2009-2013) were loaded at the beginning of 2015. 21

1.1. System requirements and use cases 22

The ATLAS EventIndex system has to scale to the order of several 1010 events (the number of events 23

expected for LHC Run 2 between 2015 and 2018), be flexible in its schemas to accommodate a variety 24

of quantities to be stored that could change in the future, use established and possibly open-source 25

technologies and be “easy” to develop, deploy and operate. 26

 The main use cases that were identified for this service are [4]: 27

• Event picking: given a list of run numbers and event numbers, trigger stream, event format 28

and processing version, find the events and return pointers to them to the user that issued the 29

query, who can then use the data management tools to retrieve them. 30

• Trigger checks and event skimming: the population of events that passed given triggers and of 31

events that passed multiple triggers can be retrieved from the event catalogue. Similarly, a 32

trigger-based event selection can be done, retrieving the references to the selected events and 33

then the events themselves. 34

• Production consistency checks: each production cycle should be checked for completeness 35

(the number of produced events is the same as the number of input events) and consistency 36

(no duplicated events). 37

 38

1.2. Current architecture 39

The ATLAS EventIndex collects the data from distributed computer centres and stores them in a 40

central storage at CERN. The system is divided into few functional packages that implement data 41

acquisition, storage, access and monitoring: 42

• The Data Collection system collects data from jobs at Tier-0 or on the Grid that produce new 43

data. The EventIndex information for each permanent output file is transmitted to a central 44

server at CERN where it is validated, reformatted and stored in the EventIndex storage 45

system. 46

• The Core Storage system accepts data from the Data Collection system and physically stores it 47

in its own storage space, accepts queries from the front-end web server and returns the results. 48

• The Query Server is a web service that acts as a front-end to the storage system. It provides a 49

command-line interface and a web interface that can be used to find and retrieve the stored 50

information. 51

• The Trigger Decoding service unpacks the trigger information of each event and makes it 52

readily available in the event records. 53

• The monitoring system provides continuous information on the health and load of all the 54

servers involved, as well as on the data traffic and query response times. 55

 The Core Storage is one of the critical parts of the system as it integrates all other packages by 56

consolidating the data and making them available to be accessed by users via the Query Server. Thus it 57

is important that it is robust and delivers the required performance for both data ingestion and data 58

access. Apache Hadoop [5] was chosen as the main backend technology for storing and accessing 59

data. It met all criteria from the project requirements (in section 1.1) and, differently from other 60

shared storage technologies like relational databases, in various tests at CERN [6] has proven that it is 61

horizontally scalable. 62

 The rest of this paper elaborates on the internal design of the Core Storage and potential 63

improvements that can bring the use of alternative approaches available in the Hadoop ecosystem for 64

storing and accessing the data. In particular, the results evaluation of the most popular Hadoop file 65

formats and storage engines with ATLAS EventIndex data and workloads are discussed and 66

concluded. 67

2. Core Storage – implementation, usage and bottlenecks 68
In order to understand how the core layer of the ATLAS EventIndex can profit from adopting recent 69

technologies, it is important to explain some key implementation aspects of this component. 70

2.1. Storage implementation 71

The Core Storage package is responsible for implementing persistent storage based on Apache 72

Hadoop and implementing data accessing interfaces. It consists of two components: 73

• Catalogue – an inventory of all imported datasets and their internal schema. All catalogue data 74

are stored in an HBase database running on the same Hadoop cluster as the EventIndex data. 75

• HDFS namespace – a distributed placeholder for the data. The data are physically stored on 76

the Hadoop Distributed Files system in a format called MapFile [7]. A MapFile is a union of 77

two files (Sequence Files [8]). The first one holds raw data in a sequence of key-value pairs 78

and the other one holds an index to the raw data stored in the first file. The MapFile, compared 79

to other file formats available on Hadoop, is unique, as it allows having sequential scans and 80

random data lookups at the same time. 81

2.2. Event Index record content 82

Each indexed event is stored in a MapFile format as a separate record that in average is 1.5 kB long 83

and has 56 attributes encoded in various types. Most of them are arrays of characters, few are integers 84

and floating point numbers. The main attributes are: 85

• Event identification: run number (integer), event number (long), trigger stream (string), event 86

format (string) and processing version (string). 87

• Trigger information: the list of trigger chains passed by the given event (string). 88

• References of the event: the GUIDs (Global Unique IDentifiers) (string). 89

In the third quarter of 2016 there are 6x109 records stored in HDFS that occupy tens of Terabytes (not 90

including data replication). 91

2.3. Data access paths 92

There are two typical access paths that satisfy all the use cases: 93

• Event picking – lookup for a random event by identification attributes. It is the main use case 94

of the ATLAS EventIndex. Until the end of 2015, this access was implemented by using 95

Catalogue-based data pruning and lookup for relevant records in a MapFile by built-in index. 96

• Data scanning – full scan of a population of events in order to perform event skimming or 97

trigger-based selection. For this type of access path, a MapReduce job is used in order to 98

perform distributed and scalable data filtering. 99

2.4. Limitation of the Core Storage implementation 100

During a review of the ATLAS EventIndex project in late 2015, a few limitations have been identified 101

in the Core Storage implementation: 102

• Data ingestion into MapFile format is complex, as it requires sorting datasets by key values 103

before storing them physically in HDFS. Typically this means launching a MapReduce job 104

that will perform data sorting in a distributed way, which in case of small data sets (that can be 105

easily sorted in a single host memory) is suboptimal. The average measured ingestion speed 106

into MapFile format was 6.4 kHz per a collection set. 107

• Due to the extra effort (mentioned above) needed when loading data into MapFiles, a number 108

of staging areas with duplicated data are created and maintained. 109

• Data and metadata are separated and served by different components. This means that any data 110

access operations have extra cost (latency) of combing raw data with its metadata – direct 111

access to raw data is not possible. Additionally, this implies that using any of popular open-112

source community frameworks to process the data is not possible. 113

• Random data lookup of MapFiles is performed on the client side – index files are downloaded 114

to a client machine where they are processed in order to obtain the final location of events of 115

interest in HDFS. This can potentially cause a performance problem when the network 116

connectivity between HDFS and the client is poor or when a single client machine performs 117

multiple requests in parallel like in the case of Query Server. Typical event lookup speed 118

when using MapFiles is around 4s. 119

Most of the limitations identified during the review were related to the usage of the MapFile file 120

format as a container for the data. For this reason, a new initiative of evaluating alternative 121

possibilities of storing data in Hadoop ecosystem was started. The main goal was to understand if Core 122

Storage could significantly profit from using a different format for the data representation. 123

3. Evaluation of alternative modern storage approaches for Core Storage 124
This chapter describes a performance comparison of some popular data formats and storage engines 125

available in the Hadoop ecosystem to evaluate space efficiency, ingestion performance, analytic scans 126

and random data lookup. This should help in understanding how (and when) each of the evaluated 127

technologies can improve handling of the ATLAS EventIndex big data workloads. 128

 During the evaluation, the same ATLAS EventIndex data sets have been stored on the same Hadoop 129

cluster using different storage techniques and compression algorithms (Snappy, GZip or BZip2). 130

 131

 132

3.1. Hardware and storage configuration 133

The data access and ingestion tests were performed on a cluster composed of 14 physical machines, 134

each equipped with: 135

• 2 x 8 cores @ 2.60GHz 136

• 64 GB of RAM 137

• 2 x 24 SAS drives 138

Hadoop was installed from Cloudera Data Hub (CDH) distribution version 5.7.0, which includes: 139

• Hadoop core 2.6.0 140

• Impala 2.5.0 141

• Hive 1.1.0 142

• HBase 1.2.0 (configured JVM heap size for region servers = 30 GB) 143

• (not from CDH) Kudu 1.0 (configured memory limit = 30 GB) 144

Apache Impala (incubating) was used as a data ingestion and data access framework in all the 145

conducted tests presented later in this report. 146

3.2. Evaluated formats and technologies 147

With respect to recent trends on the market and evaluations done with various storage techniques in 148

the past at CERN [9], four candidate technologies for storing the data in the Hadoop ecosystem have 149

been chosen. 150

3.2.1. Apache Avro [10] is a data serialization standard for compact binary format widely used for 151

storing persistent data in HDFS as well as for communication protocols. One of the advantages of 152

using Avro is lightweight and fast data serialization and deserialization, which can deliver very good 153

ingestion performance. 154

 Even though it does not have any internal index (like in the case of MapFiles), the HDFS directory-155

based partitioning technique can be applied to quickly navigate to the collections of interest when fast 156

random data access is needed. In the test a tuple of runnumber, project and streamname was used as a 157

partitioning key. This allowed obtaining good balance between the number of partitions (few 158

thousands) and an average partitions size (hundreds of megabytes). 159

3.2.2. Apache Parquet [11] is a column-oriented data serialization standard for efficient data 160

analytics. Additional optimizations include encodings (RLE, Dictionary, Bit packing), and the 161

compression applied on series of values from the same columns that gives very good compaction 162

ratios. When storing data in HDFS in Parquet format, the same partitioning strategy was used as in the 163

Avro case. 164

3.2.3. Apache HBase [12] is a scalable and distributed NoSQL database on HDFS for storing key-165

value pairs. Keys are indexed, which typically provides very quick access to the records. When storing 166

ATLAS EventIndex data into HBase each event attribute was stored in a separate cell, and the row key 167

was composed as a concatenation of an event identification attributes (runnumber, eventnumber, 168

project, streamname, datatype and version). Additionally, encoding of the row key was enabled in 169

order to reduce the size of HBase blocks (without this, each row would have the length of 8KB) 170

3.2.4. Apache Kudu [13] is new scalable and distributed table-based storage. Kudu provides 171

indexing and columnar data organization to achieve a good compromise between ingestion speed and 172

analytics performance. In the evaluation all literal types were set to be stored with a dictionary 173

encoding and numeric types with bit shuffle encoding. Additionally, a combination of range and hash 174

partitioning was introduced, by using the first column (runnumber) of the primary key (composed of 175

the same event attributes like in HBase case) as a partitioning key. 176

 177

3.3. Measurement results 178

Despite the effort made to obtain as precise results as possible, they should not be treated as universal 179

and fundamental benchmarks of the tested technologies. There are too many variables that could 180

influence the tests and make them more case specific, like the chosen test cases, the data model used, 181

the hardware specification and configuration, and the software stack used for data processing. 182

3.3.1. Space utilization 183

 184
 185

Figure 1: Average row length in bytes for each tested format and compression type. 186

Measuring the average record size after storing the same data sets (millions of records) using different 187

techniques and compression algorithms allows estimating what would be the expected volume of 188

production data when migrated to the chosen format and the space savings associated with that. 189

According to the measured results (Figure 1), data encoded with Kudu and Parquet delivered the best 190

compaction ratios. Using compression algorithms like Snappy or GZip can further reduce the volume 191

significantly – by a factor 10 comparing to the original data set encoding with MapFiles. 192

 HBase, due to the way it stores the data, is a less space efficient solution. Although compressing the 193

HBase blocks gives quite good ratios, however, it is still far away from those obtain with Kudu and 194

Parquet. 195

 On the other hand, Apache Avro delivers similar results in terms of space occupancy like other 196

HDFS row stores e.g. MapFiles. 197

3.3.2. Ingestion speed 198

 199
 200

Figure 2: Average ingestion speed in kHz into a single data partition for each tested data format. 201

777
890

2173

1559 1506

171 189

495
326

87 90
308 217

0

500

1000

1500

2000

2500

kudu parquet hbase avro mapfile

R
O

W
 L

EN
G

TH
 IN

 B
YT

ES

No compression Snappy GZip/BZip2

7.21

64

6.5

115

6.411.34

85

4.6

70

10.9

38

4.6

49

0

20

40

60

80

100

120

140

kudu parquet hbase avro mapfileA
V

ER
A

G
E

IN
SE

R
TI

O
N

 R
A

TE
 (

K
H

Z)

No compression Snappy GZip/BZip2

Measuring records ingestion speed into a single data partition should reflect the performance of 202

writing to the ATLAS EventIndex Core Storage system that can be expected when using different 203

storage techniques. The results of this test are presented on Figure 2. 204

 In general, it is difficult to make a valid performance comparison between writing data to files and 205

writing data to a storage engine. However, because Apache Impala performs writing into a single 206

HDFS directory (Hive partition) serially, the results obtained for HDFS formats and HBase or Kudu 207

can be directly compared for single data partition ingestion efficiency. 208

 Writing to HDFS files encoded with Avro or Parquet delivered much better results (at least by a 209

factor 5) than storage engines like HBase and Kudu. Since Avro has the most lightweight encoder, it 210

achieved the best ingestion performance. At the other end of the spectrum, HBase in this test was very 211

slow (worse than Kudu). This most likely was caused by the length of the row key (6 concatenated 212

columns), that in average was around 60 bytes. HBase has to encode a key for each of the columns in a 213

row separately, which for long records (with many columns) can be suboptimal. 214

3.3.3. Random data lookup 215

 216
 217

Figure 3: Average random record lookup latency [in seconds] per data format. 218

Retrieving a non-key attribute from a record by providing a record identifier (a compound key) is the 219

main use case of the EventIndex (see 1.1). With respect to that, a list of runnumber-eventnumber pairs 220

was used in order to retrieve their corresponding GUID. 221

 According to the measured results (Figure 3), when accessing data by a record key, Kudu and 222

HBase were the fastest ones, because of the usage of built-in indexing. Values on the plot were 223

measured with cold caches. Using Apache Impala for random lookup test is suboptimal for Kudu and 224

HBase as a significant amount of time is spent to set up a query (planning, code generation etc.) before 225

it really gets executed – typically this takes about 200 ms. Therefore for low latency data access it is 226

advised to skip Impala and use dedicated APIs; we tried also this approach and results for Kudu and 227

HBase were similar – with cold cache <200 ms and with warmed up cache <80 ms. 228

In opposite to Kudu and HBase, retrieving data from an individual record stored in Avro format 229

can only be done in a brute force scan of an entire data partition (reminder – data are partitioned by 230

part of a record key, so partition pruning was applied in such case). An average partition is sized in 231

GB, thus getting the desired record takes seconds (depending on I/O throughput) and uses a significant 232

amount of the cluster resources. This ultimately reduces the number of concurrent queries that can be 233

executed at a full speed on a cluster. 234

The same problem applies to Parquet; however, the columnar nature of the format allows 235

performing partition scans relatively fast. Thanks to column projection and column predicate push 236

down, a scan input set is ultimately reduced from GBs to just a few MBs (effectively only 3 columns 237

were scanned out of 56). 238

0.27 0.62 0.83

16

3.7

0.45 0.86 0.28

19

0.32 0.89 0.43

27

0

5

10

15

20

25

30

kudu parquet hbase avro mapfile

A
V

ER
A

G
E

R
A

N
D

O
M

 L
O

O
K

U
P

LA

TE
N

C
Y

[S
]

No compression Snappy GZip/BZip2

3.3.4. Data processing speed 239

 240
 241

Figure 4: Average scan speed per CPU core [kHz] for each tested format. 242

The data scanning test was performed as a simplified use case of event skimming or trigger based 243

selection. The idea was to extract a trigger chain information from all the events and later count only 244

the ones that met certain condition (substring matching). 245

 Due to the input set reduction by applying column projection, Parquet in this test has left behind 246

Avro (Figure 4). It was not only the most efficient in terms of per-core processing rates but also the 247

fastest to finish the processing. The unit of data access parallelization in the case of Parquet and Avro 248

is an HDFS file block – thanks to that it is very easy to evenly distribute processing across all the 249

resources available on a Hadoop cluster. 250

In terms of scanning efficiency Kudu (with Snappy compression) was not far from Parquet. It 251

profited from column projection. Scanning data stored in Kudu and HBase might be imbalanced since 252

a single table partition is the unit of a scan parallelization in both cases. Therefore the amount of 253

resource involved in a scan depends on the number of given table partitions, their sizes and their 254

distribution across a cluster. In this test case, it was not possible to use Kudu’s native predicate push 255

down feature, as Kudu did not support the used predicate. Additional tests proved that Kudu scans 256

could be faster than Parquet when supported predicates are in use. 257

Before performing the test with HBase the scanned column was separated in a dedicated HBase 258

column family – this improved the scanning efficiency by factor 5. That was still far away from 259

Parquet or Kudu. 260

3.4. Summary of the evaluation 261

The performed tests of major data storing techniques with the ATLAS EvenIndex workloads delivered 262

valuable information about the key aspects to be considered when deciding to deploy any of these 263

techniques: 264

• Storage efficiency – with Parquet or Kudu and Snappy compression the total volume of the 265

data can be reduced by a factor 10 comparing to uncompressed simple serialization format. 266

• Data ingestion speed – all tested file based solutions provide faster ingestion rates (between 267

x2 and x10) than specialized storage engines or MapFiles (sorted sequence). 268

• Random data access time – using HBase or Kudu, typical random data lookup speed is below 269

500ms. With smart HDFS namespace partitioning Parquet could deliver random lookup on a 270

level of a second but consumes more resources. 271

• Data analytics – with Parquet or Kudu it is possible to perform fast and scalable (typically 272

more than 300k records per second per CPU core) data aggregation, filtering and reporting. 273

• Support of in-place data mutation – HBase and Kudu can modify records (schema and values) 274

in-place where it is not possible with data stored directly in HDFS files. 275

136

237

100

232

44

345

488

130

215
260

435

109
62

0

100

200

300

400

500

600

kudu parquet hbase avro mapfile

A
V

ER
A

G
E

SC
A

N
 R

A
TE

 (
K

H
Z)

No compression Snappy GZip/BZip2

 276

 277
Figure 5: A schematic view of the results of the tests on Hadoop data formats and storage engines. Kudu and 278
Parquet appear as good compromises between random data lookup and scalable data analytics performance. 279

 Apache Avro has proven to be a fast universal encoder for structured data. Due to very efficient 280

serialization and deserialization, this format can guarantee very good performance whenever an access 281

to all the attributes of a record is required at the same time – data transportation, staging areas etc. 282

 On the other hand Apache HBase delivers very good random data access performance and the 283

biggest flexibility in structuring stored data (schema-less tables). The performance of batch processing 284

of HBase data heavily depends on a chosen data model and typically cannot compete on this field with 285

the other tested technologies. Therefore any analytics with HBase data should be performed rather 286

rarely. 287

 Notably, compression algorithms played a significant role not only in reducing the data volume but 288

also in enhancing the performance of data ingestion and data access. In all those fields the Snappy 289

codec delivered the best results for all tested technologies, much better than plain encoding without 290

compression (except in the case of Avro). 291

4. Hybrid system 292
Alternatively to a single storage technology implementation, a hybrid system could be considered 293

composed of a raw storage for batch processing (like Parquet) and indexing layer (like HBase) for 294

random access. This would allow to fully profit from technologies specialization/optimization on 295

certain access paths and deliver the best performance. Notably, such approach comes at the price of 296

data duplication, overall complexity of a system architecture and higher maintenance costs. 297

At the end of 2015 as a follow-up of the initial evaluation of available storage techniques, an 298

attempt for building a hybrid system for the ATLAS EventIndex was conducted in two ways: 299

• Indexing the most relevant data (event identification and references of the event) in a separate 300

relational system (Oracle) [14]. The assumption here was that this index should be self-301

contained and does not keep pointers to the complete event records available on HDFS. 302

• Indexing events by event number and run number in HBase database. In this approach the 303

indexing key resolves to GUID and pointers to the complete records stored on HDFS. 304

So far both systems have proven to deliver very good events picking performance on a level of tens of 305

milliseconds – an order of magnitude faster than the original approach when using MapFiles solely. 306

The only concern when running a hybrid approach in both cases is the system size and internal 307

coherence – robust procedures for handling HDFS raw data sets updates and propagating them to 308

indexing databases with low latency have to be maintained and monitored. 309

5. Conclusions 310
The study of improving the ATLAS EventIndex Core Storage performance has shown a potential for 311

enhancing the current implementation efficiency in many aspects, like reduction of overall data 312

volume, simplifying ingestion and increasing the performance of data access. Columnar stores like 313

Apache Parquet and Apache Kudu appear to be very good candidates for future data storage systems 314

as they guarantee very good flexibility between fast data ingestion, fast random data lookup and 315

scalable data analytics by keeping the system simplicity (Figure 5). On this field, Kudu appears to be 316

more suited for the ATLAS EventIndex use case because of fast event lookup and simplified ingestion 317

procedures. However, deep evaluation of Apache Kudu disclosed a lack of important functionalities 318

(like security) and maintenance problems that makes Kudu in the currently available version (1.0.1) 319

not fully production ready. 320

 On the other hand, deployment of additional indexing platforms to improve fast data access (HBase 321

and Oracle) provided satisfactory results for the main use cases of the ATLAS EventIndex. This came 322

at a price of extra complexity of the system and extra maintenance effort. However, at the given state 323

of development of the project, it pays off. 324

 In the longer term, there are plans to consolidate the data onto a single platform. With respect to 325

that, Apache Kudu seems to be the best choice. Therefore further monitoring of the technology 326

evolution is foreseen. 327

References 328
[1] Barberis D et al. 2014 The ATLAS EventIndex: an event catalogue for experiments collecting 329

large amounts of data, J. Phys. Conf. Ser. 513 042002 doi:10.1088/1742-6596/513/4/042002 330

[2] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider, 331

JINST 3 S08003 doi:10.1088/1748-0221/3/08/S08003 332

[3] Large Hadroon Collider http://home.cern/topics/large-hadron-collider 333

[4] Barberis D et al. 2015 The ATLAS EventIndex: architecture, design choices, deployment and 334

first operation experience, J. Phys. Conf. Ser. 664 042003 doi:10.1088/1742-335

6596/664/4/042003 336

[5] http://hadoop.apache.org 337

[6] Baranowski Z, Canali L and Grancher E 2013 Sequential data access with Oracle and Hadoop: a 338

performance comparison, J. Phys. Conf. Ser. 513 042001 339

doi:10.1088/1742-6596/513/4/042001 340

[7] https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/MapFile.html 341

[8] https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/SequenceFile.html 342

[9] Baranowski Z et al. 2015 Scale out databases for CERN use cases, J. Phys. Conf. Ser. 664 343

042002 doi:10.1088/1742-6596/664/4/042002 344

[10] https://avro.apache.org 345

[11] https://parquet.apache.org 346

[12] https://hbase.apache.org 347

[13] https://kudu.apache.org 348

[14] Gallas E et al. 2016 an Oracle-based Event Index for ATLAS, (to appear in J. Phys.: Conf. Ser., 349

Computing in High Energy and Nuclear Physics 2016 International Conference) 350

http://home.cern/topics/large-hadron-collider
http://hadoop.apache.org/
https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/MapFile.html
https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/SequenceFile.html
https://avro.apache.org/
https://parquet.apache.org/
https://hbase.apache.org/
https://kudu.apache.org/

