

1 A study of data representation in Hadoop to optimize data 2 storage and search performance for the ATLAS EventIndex

3 **Z. Baranowski¹, L. Canali¹, R. Toebbeke¹, J. Hrivnac², D. Barberis³**

4 ¹ CERN, Geneva, Switzerland;

5 ² LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France;

6 ³ Università di Genova and INFN, Genova, Italy

7 **Abstract.** This paper reports on the activities aimed at improving the architecture and performance of the
8 ATLAS EventIndex implementation in Hadoop. The EventIndex contains tens of billions of event
9 records, each of which consists of \sim 100 bytes, all having the same probability to be searched or counted.
10 Data formats represent one important area for optimizing the performance and storage footprint of
11 applications based on Hadoop. This work reports on the production usage and on tests using several data
12 formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query
13 engine plays also a critical role in the architecture. This paper reports on the use of HBase for the
14 EventIndex, focussing on the optimizations performed in production and on the scalability tests.
15 Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and
16 the optimizations for data warehouse workloads and reports.

17 **1. The ATLAS EventIndex project**

18 The ATLAS EventIndex [1] is a metadata catalogue of all real and simulated data produced by the
19 ATLAS experiment [2], one of seven particle detectors constructed for the CERN Large Hadron
20 Collider [3]. It was designed in 2012-2013 and implemented in 2014; the first data (all LHC Run 1
21 data collected in 2009-2013) were loaded at the beginning of 2015.

22 *1.1. System requirements and use cases*

23 The ATLAS EventIndex system has to scale to the order of several 10^{10} events (the number of events
24 expected for LHC Run 2 between 2015 and 2018), be flexible in its schemas to accommodate a variety
25 of quantities to be stored that could change in the future, use established and possibly open-source
26 technologies and be “easy” to develop, deploy and operate.

27 The main use cases that were identified for this service are [4]:

- 28 • Event picking: given a list of run numbers and event numbers, trigger stream, event format
29 and processing version, find the events and return pointers to them to the user that issued the
30 query, who can then use the data management tools to retrieve them.
- 31 • Trigger checks and event skimming: the population of events that passed given triggers and of
32 events that passed multiple triggers can be retrieved from the event catalogue. Similarly, a
33 trigger-based event selection can be done, retrieving the references to the selected events and
34 then the events themselves.
- 35 • Production consistency checks: each production cycle should be checked for completeness
36 (the number of produced events is the same as the number of input events) and consistency
37 (no duplicated events).

39 *1.2. Current architecture*

40 The ATLAS EventIndex collects the data from distributed computer centres and stores them in a
41 central storage at CERN. The system is divided into few functional packages that implement data
42 acquisition, storage, access and monitoring:

- 43 • *The Data Collection* system collects data from jobs at Tier-0 or on the Grid that produce new
44 data. The EventIndex information for each permanent output file is transmitted to a central
45 server at CERN where it is validated, reformatted and stored in the EventIndex storage
46 system.
- 47 • *The Core Storage* system accepts data from the Data Collection system and physically stores it
48 in its own storage space, accepts queries from the front-end web server and returns the results.
- 49 • *The Query Server* is a web service that acts as a front-end to the storage system. It provides a
50 command-line interface and a web interface that can be used to find and retrieve the stored
51 information.
- 52 • *The Trigger Decoding* service unpacks the trigger information of each event and makes it
53 readily available in the event records.
- 54 • *The monitoring* system provides continuous information on the health and load of all the
55 servers involved, as well as on the data traffic and query response times.

56 The Core Storage is one of the critical parts of the system as it integrates all other packages by
57 consolidating the data and making them available to be accessed by users via the Query Server. Thus it
58 is important that it is robust and delivers the required performance for both data ingestion and data
59 access. Apache Hadoop [5] was chosen as the main backend technology for storing and accessing
60 data. It met all criteria from the project requirements (in section 1.1) and, differently from other
61 shared storage technologies like relational databases, in various tests at CERN [6] has proven that it is
62 horizontally scalable.

63 The rest of this paper elaborates on the internal design of the Core Storage and potential
64 improvements that can bring the use of alternative approaches available in the Hadoop ecosystem for
65 storing and accessing the data. In particular, the results evaluation of the most popular Hadoop file
66 formats and storage engines with ATLAS EventIndex data and workloads are discussed and
67 concluded.

68 **2. Core Storage – implementation, usage and bottlenecks**

69 In order to understand how the core layer of the ATLAS EventIndex can profit from adopting recent
70 technologies, it is important to explain some key implementation aspects of this component.

71 *2.1. Storage implementation*

72 The Core Storage package is responsible for implementing persistent storage based on Apache
73 Hadoop and implementing data accessing interfaces. It consists of two components:

- 74 • *Catalogue* – an inventory of all imported datasets and their internal schema. All catalogue data
75 are stored in an HBase database running on the same Hadoop cluster as the EventIndex data.
- 76 • *HDFS namespace* – a distributed placeholder for the data. The data are physically stored on
77 the Hadoop Distributed Files system in a format called MapFile [7]. A MapFile is a union of
78 two files (Sequence Files [8]). The first one holds raw data in a sequence of key-value pairs
79 and the other one holds an index to the raw data stored in the first file. The MapFile, compared
80 to other file formats available on Hadoop, is unique, as it allows having sequential scans and
81 random data lookups at the same time.

82 *2.2. Event Index record content*

83 Each indexed event is stored in a MapFile format as a separate record that in average is 1.5 kB long
84 and has 56 attributes encoded in various types. Most of them are arrays of characters, few are integers
85 and floating point numbers. The main attributes are:

86 • *Event identification*: run number (integer), event number (long), trigger stream (string), event
87 format (string) and processing version (string).
88 • *Trigger information*: the list of trigger chains passed by the given event (string).
89 • *References of the event*: the GUIDs (Global Unique IDentifiers) (string).

90 In the third quarter of 2016 there are 6×10^9 records stored in HDFS that occupy tens of Terabytes (not
91 including data replication).

92 2.3. Data access paths

93 There are two typical access paths that satisfy all the use cases:

94 • *Event picking* – lookup for a random event by identification attributes. It is the main use case
95 of the ATLAS EventIndex. Until the end of 2015, this access was implemented by using
96 Catalogue-based data pruning and lookup for relevant records in a MapFile by built-in index.
97 • *Data scanning* – full scan of a population of events in order to perform event skimming or
98 trigger-based selection. For this type of access path, a MapReduce job is used in order to
99 perform distributed and scalable data filtering.

100 2.4. Limitation of the Core Storage implementation

101 During a review of the ATLAS EventIndex project in late 2015, a few limitations have been identified
102 in the Core Storage implementation:

103 • Data ingestion into MapFile format is complex, as it requires sorting datasets by key values
104 before storing them physically in HDFS. Typically this means launching a MapReduce job
105 that will perform data sorting in a distributed way, which in case of small data sets (that can be
106 easily sorted in a single host memory) is suboptimal. The average measured ingestion speed
107 into MapFile format was 6.4 kHz per a collection set.
108 • Due to the extra effort (mentioned above) needed when loading data into MapFiles, a number
109 of staging areas with duplicated data are created and maintained.
110 • Data and metadata are separated and served by different components. This means that any data
111 access operations have extra cost (latency) of combining raw data with its metadata – direct
112 access to raw data is not possible. Additionally, this implies that using any of popular open-
113 source community frameworks to process the data is not possible.
114 • Random data lookup of MapFiles is performed on the client side – index files are downloaded
115 to a client machine where they are processed in order to obtain the final location of events of
116 interest in HDFS. This can potentially cause a performance problem when the network
117 connectivity between HDFS and the client is poor or when a single client machine performs
118 multiple requests in parallel like in the case of Query Server. Typical event lookup speed
119 when using MapFiles is around 4s.

120 Most of the limitations identified during the review were related to the usage of the MapFile file
121 format as a container for the data. For this reason, a new initiative of evaluating alternative
122 possibilities of storing data in Hadoop ecosystem was started. The main goal was to understand if Core
123 Storage could significantly profit from using a different format for the data representation.

124 3. Evaluation of alternative modern storage approaches for Core Storage

125 This chapter describes a performance comparison of some popular data formats and storage engines
126 available in the Hadoop ecosystem to evaluate space efficiency, ingestion performance, analytic scans
127 and random data lookup. This should help in understanding how (and when) each of the evaluated
128 technologies can improve handling of the ATLAS EventIndex big data workloads.

129 During the evaluation, the same ATLAS EventIndex data sets have been stored on the same Hadoop
130 cluster using different storage techniques and compression algorithms (Snappy, GZip or BZip2).
131
132

133 3.1. *Hardware and storage configuration*

134 The data access and ingestion tests were performed on a cluster composed of 14 physical machines,
135 each equipped with:

- 136 • 2 x 8 cores @ 2.60GHz
- 137 • 64 GB of RAM
- 138 • 2 x 24 SAS drives

139 Hadoop was installed from Cloudera Data Hub (CDH) distribution version 5.7.0, which includes:

- 140 • Hadoop core 2.6.0
- 141 • Impala 2.5.0
- 142 • Hive 1.1.0
- 143 • HBase 1.2.0 (configured JVM heap size for region servers = 30 GB)
- 144 • (not from CDH) Kudu 1.0 (configured memory limit = 30 GB)

145 Apache Impala (incubating) was used as a data ingestion and data access framework in all the
146 conducted tests presented later in this report.

147 3.2. *Evaluated formats and technologies*

148 With respect to recent trends on the market and evaluations done with various storage techniques in
149 the past at CERN [9], four candidate technologies for storing the data in the Hadoop ecosystem have
150 been chosen.

151 3.2.1. *Apache Avro* [10] is a data serialization standard for compact binary format widely used for
152 storing persistent data in HDFS as well as for communication protocols. One of the advantages of
153 using Avro is lightweight and fast data serialization and deserialization, which can deliver very good
154 ingestion performance.

155 Even though it does not have any internal index (like in the case of MapFiles), the HDFS directory-
156 based partitioning technique can be applied to quickly navigate to the collections of interest when fast
157 random data access is needed. In the test a tuple of *runnumber*, *project* and *streamname* was used as a
158 partitioning key. This allowed obtaining good balance between the number of partitions (few
159 thousands) and an average partitions size (hundreds of megabytes).

160 3.2.2. *Apache Parquet* [11] is a column-oriented data serialization standard for efficient data
161 analytics. Additional optimizations include encodings (RLE, Dictionary, Bit packing), and the
162 compression applied on series of values from the same columns that gives very good compaction
163 ratios. When storing data in HDFS in Parquet format, the same partitioning strategy was used as in the
164 Avro case.

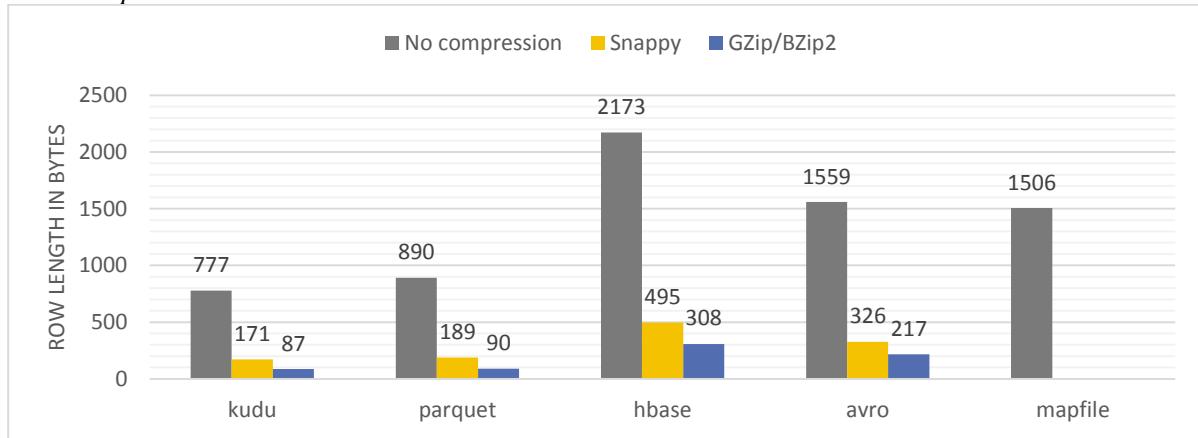
165 3.2.3. *Apache HBase* [12] is a scalable and distributed NoSQL database on HDFS for storing key-
166 value pairs. Keys are indexed, which typically provides very quick access to the records. When storing
167 ATLAS EventIndex data into HBase each event attribute was stored in a separate cell, and the row key
168 was composed as a concatenation of an event identification attributes (*runnumber*, *eventnumber*,
169 *project*, *streamname*, *datatype* and *version*). Additionally, encoding of the row key was enabled in
170 order to reduce the size of HBase blocks (without this, each row would have the length of 8KB)

171 3.2.4. *Apache Kudu* [13] is new scalable and distributed table-based storage. Kudu provides
172 indexing and columnar data organization to achieve a good compromise between ingestion speed and
173 analytics performance. In the evaluation all literal types were set to be stored with a dictionary
174 encoding and numeric types with bit shuffle encoding. Additionally, a combination of range and hash
175 partitioning was introduced, by using the first column (*runnumber*) of the primary key (composed of
176 the same event attributes like in HBase case) as a partitioning key.

178 **3.3. Measurement results**

179 Despite the effort made to obtain as precise results as possible, they should not be treated as universal
 180 and fundamental benchmarks of the tested technologies. There are too many variables that could
 181 influence the tests and make them more case specific, like the chosen test cases, the data model used,
 182 the hardware specification and configuration, and the software stack used for data processing.

183 **3.3.1. Space utilization**



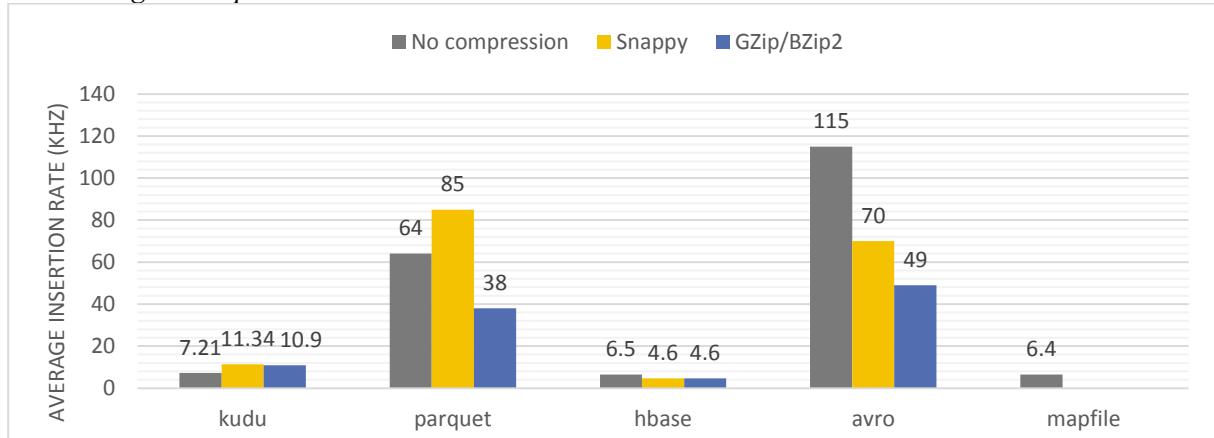
184 *Figure 1: Average row length in bytes for each tested format and compression type.*

185 Measuring the average record size after storing the same data sets (millions of records) using different
 186 techniques and compression algorithms allows estimating what would be the expected volume of
 187 production data when migrated to the chosen format and the space savings associated with that.
 188 According to the measured results (Figure 1), data encoded with Kudu and Parquet delivered the best
 189 compaction ratios. Using compression algorithms like Snappy or GZip can further reduce the volume
 190 significantly – by a factor 10 comparing to the original data set encoding with MapFiles.

191 HBase, due to the way it stores the data, is a less space efficient solution. Although compressing the
 192 HBase blocks gives quite good ratios, however, it is still far away from those obtain with Kudu and
 193 Parquet.

194 On the other hand, Apache Avro delivers similar results in terms of space occupancy like other
 195 HDFS row stores e.g. MapFiles.

196 **3.3.2. Ingestion speed**



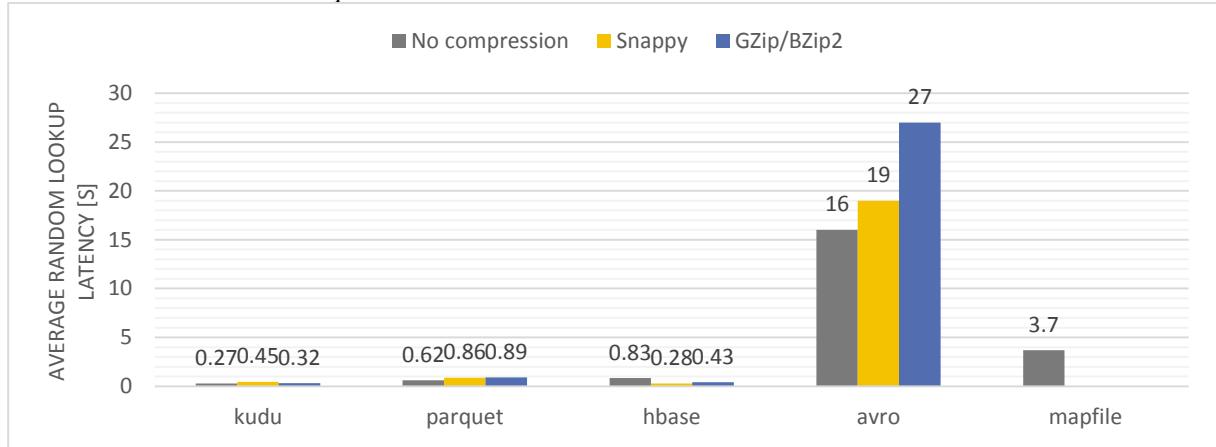
197 *Figure 2: Average ingestion speed in kHz into a single data partition for each tested data format.*

202 Measuring records ingestion speed into a single data partition should reflect the performance of
 203 writing to the ATLAS EventIndex Core Storage system that can be expected when using different
 204 storage techniques. The results of this test are presented on Figure 2.

205 In general, it is difficult to make a valid performance comparison between writing data to files and
 206 writing data to a storage engine. However, because Apache Impala performs writing into a single
 207 HDFS directory (Hive partition) serially, the results obtained for HDFS formats and HBase or Kudu
 208 can be directly compared for single data partition ingestion efficiency.

209 Writing to HDFS files encoded with Avro or Parquet delivered much better results (at least by a
 210 factor 5) than storage engines like HBase and Kudu. Since Avro has the most lightweight encoder, it
 211 achieved the best ingestion performance. At the other end of the spectrum, HBase in this test was very
 212 slow (worse than Kudu). This most likely was caused by the length of the row key (6 concatenated
 213 columns), that in average was around 60 bytes. HBase has to encode a key for each of the columns in a
 214 row separately, which for long records (with many columns) can be suboptimal.

215 *3.3.3. Random data lookup*



216
 217
 218 *Figure 3: Average random record lookup latency [in seconds] per data format.*

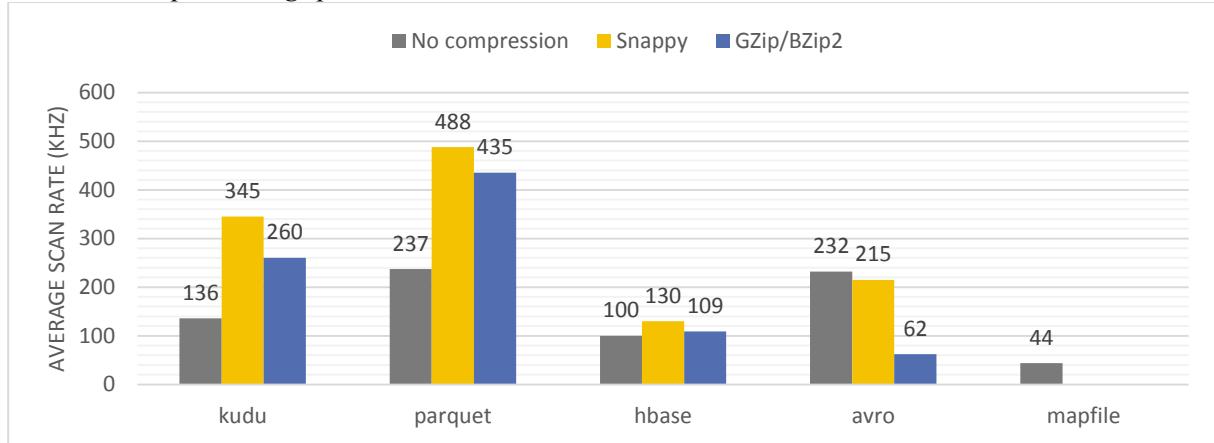
219 Retrieving a non-key attribute from a record by providing a record identifier (a compound key) is the
 220 main use case of the EventIndex (see 1.1). With respect to that, a list of runnumber-eventnumber pairs
 221 was used in order to retrieve their corresponding GUID.

222 According to the measured results (Figure 3), when accessing data by a record key, Kudu and
 223 HBase were the fastest ones, because of the usage of built-in indexing. Values on the plot were
 224 measured with cold caches. Using Apache Impala for random lookup test is suboptimal for Kudu and
 225 HBase as a significant amount of time is spent to set up a query (planning, code generation etc.) before
 226 it really gets executed – typically this takes about 200 ms. Therefore for low latency data access it is
 227 advised to skip Impala and use dedicated APIs; we tried also this approach and results for Kudu and
 228 HBase were similar – with cold cache <200 ms and with warmed up cache <80 ms.

229 In opposite to Kudu and HBase, retrieving data from an individual record stored in Avro format
 230 can only be done in a brute force scan of an entire data partition (reminder – data are partitioned by
 231 part of a record key, so partition pruning was applied in such case). An average partition is sized in
 232 GB, thus getting the desired record takes seconds (depending on I/O throughput) and uses a significant
 233 amount of the cluster resources. This ultimately reduces the number of concurrent queries that can be
 234 executed at a full speed on a cluster.

235 The same problem applies to Parquet; however, the columnar nature of the format allows
 236 performing partition scans relatively fast. Thanks to column projection and column predicate push
 237 down, a scan input set is ultimately reduced from GBs to just a few MBs (effectively only 3 columns
 238 were scanned out of 56).

3.3.4. Data processing speed



240
241
242

Figure 4: Average scan speed per CPU core [kHz] for each tested format.

243 The data scanning test was performed as a simplified use case of event skimming or trigger based
244 selection. The idea was to extract a trigger chain information from all the events and later count only
245 the ones that met certain condition (substring matching).

246 Due to the input set reduction by applying column projection, Parquet in this test has left behind
247 Avro (Figure 4). It was not only the most efficient in terms of per-core processing rates but also the
248 fastest to finish the processing. The unit of data access parallelization in the case of Parquet and Avro
249 is an HDFS file block – thanks to that it is very easy to evenly distribute processing across all the
250 resources available on a Hadoop cluster.

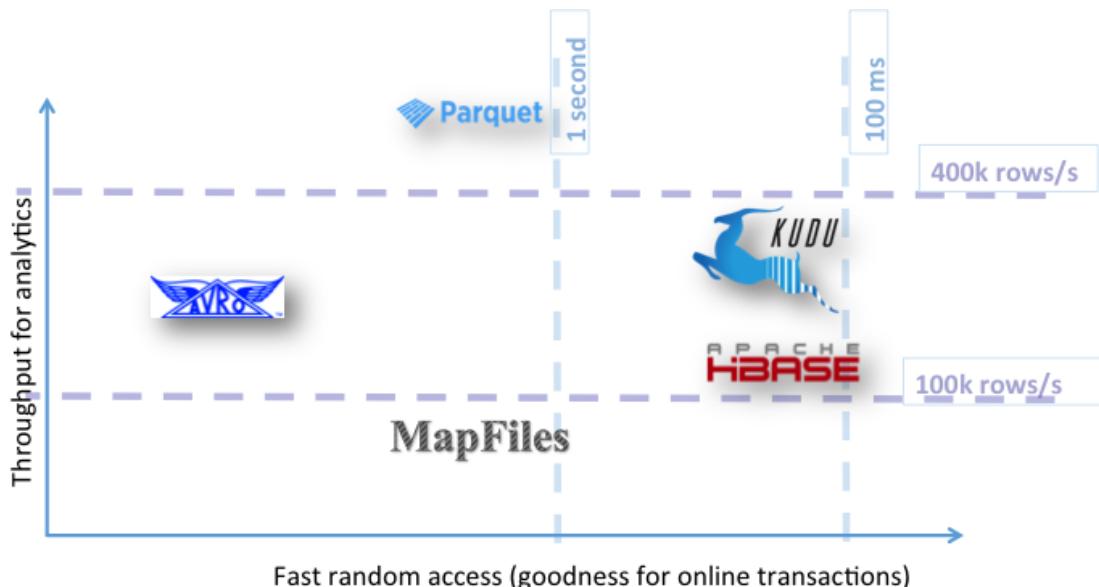
251 In terms of scanning efficiency Kudu (with Snappy compression) was not far from Parquet. It
252 profited from column projection. Scanning data stored in Kudu and HBase might be imbalanced since
253 a single table partition is the unit of a scan parallelization in both cases. Therefore the amount of
254 resource involved in a scan depends on the number of given table partitions, their sizes and their
255 distribution across a cluster. In this test case, it was not possible to use Kudu's native predicate push
256 down feature, as Kudu did not support the used predicate. Additional tests proved that Kudu scans
257 could be faster than Parquet when supported predicates are in use.

258 Before performing the test with HBase the scanned column was separated in a dedicated HBase
259 column family – this improved the scanning efficiency by factor 5. That was still far away from
260 Parquet or Kudu.

261 3.4. Summary of the evaluation

262 The performed tests of major data storing techniques with the ATLAS EvenIndex workloads delivered
263 valuable information about the key aspects to be considered when deciding to deploy any of these
264 techniques:

- 265 • *Storage efficiency* – with Parquet or Kudu and Snappy compression the total volume of the
266 data can be reduced by a factor 10 comparing to uncompressed simple serialization format.
- 267 • *Data ingestion speed* – all tested file based solutions provide faster ingestion rates (between
268 x2 and x10) than specialized storage engines or MapFiles (sorted sequence).
- 269 • *Random data access time* – using HBase or Kudu, typical random data lookup speed is below
270 500ms. With smart HDFS namespace partitioning Parquet could deliver random lookup on a
271 level of a second but consumes more resources.
- 272 • *Data analytics* – with Parquet or Kudu it is possible to perform fast and scalable (typically
273 more than 300k records per second per CPU core) data aggregation, filtering and reporting.
- 274 • *Support of in-place data mutation* – HBase and Kudu can modify records (schema and values)
275 in-place where it is not possible with data stored directly in HDFS files.

277 **Fast random access (goodness for online transactions)**278 *Figure 5: A schematic view of the results of the tests on Hadoop data formats and storage engines. Kudu and*
279 *Parquet appear as good compromises between random data lookup and scalable data analytics performance.*280 Apache Avro has proven to be a fast universal encoder for structured data. Due to very efficient
281 serialization and deserialization, this format can guarantee very good performance whenever an access
282 to all the attributes of a record is required at the same time – data transportation, staging areas etc.283 On the other hand Apache HBase delivers very good random data access performance and the
284 biggest flexibility in structuring stored data (schema-less tables). The performance of batch processing
285 of HBase data heavily depends on a chosen data model and typically cannot compete on this field with
286 the other tested technologies. Therefore any analytics with HBase data should be performed rather
287 rarely.288 Notably, compression algorithms played a significant role not only in reducing the data volume but
289 also in enhancing the performance of data ingestion and data access. In all those fields the Snappy
290 codec delivered the best results for all tested technologies, much better than plain encoding without
291 compression (except in the case of Avro).292

4. Hybrid system

293 Alternatively to a single storage technology implementation, a hybrid system could be considered
294 composed of a raw storage for batch processing (like Parquet) and indexing layer (like HBase) for
295 random access. This would allow to fully profit from technologies specialization/optimization on
296 certain access paths and deliver the best performance. Notably, such approach comes at the price of
297 data duplication, overall complexity of a system architecture and higher maintenance costs.298 At the end of 2015 as a follow-up of the initial evaluation of available storage techniques, an
299 attempt for building a hybrid system for the ATLAS EventIndex was conducted in two ways:300

- 301 • Indexing the most relevant data (event identification and references of the event) in a separate
302 relational system (Oracle) [14]. The assumption here was that this index should be self-
303 contained and does not keep pointers to the complete event records available on HDFS.
- 304 • Indexing events by event number and run number in HBase database. In this approach the
305 indexing key resolves to GUID and pointers to the complete records stored on HDFS.

306 So far both systems have proven to deliver very good events picking performance on a level of tens of
307 milliseconds – an order of magnitude faster than the original approach when using MapFiles solely.
The only concern when running a hybrid approach in both cases is the system size and internal

308 coherence – robust procedures for handling HDFS raw data sets updates and propagating them to
309 indexing databases with low latency have to be maintained and monitored.

310 **5. Conclusions**

311 The study of improving the ATLAS EventIndex Core Storage performance has shown a potential for
312 enhancing the current implementation efficiency in many aspects, like reduction of overall data
313 volume, simplifying ingestion and increasing the performance of data access. Columnar stores like
314 Apache Parquet and Apache Kudu appear to be very good candidates for future data storage systems
315 as they guarantee very good flexibility between fast data ingestion, fast random data lookup and
316 scalable data analytics by keeping the system simplicity (Figure 5). On this field, Kudu appears to be
317 more suited for the ATLAS EventIndex use case because of fast event lookup and simplified ingestion
318 procedures. However, deep evaluation of Apache Kudu disclosed a lack of important functionalities
319 (like security) and maintenance problems that makes Kudu in the currently available version (1.0.1)
320 not fully production ready.

321 On the other hand, deployment of additional indexing platforms to improve fast data access (HBase
322 and Oracle) provided satisfactory results for the main use cases of the ATLAS EventIndex. This came
323 at a price of extra complexity of the system and extra maintenance effort. However, at the given state
324 of development of the project, it pays off.

325 In the longer term, there are plans to consolidate the data onto a single platform. With respect to
326 that, Apache Kudu seems to be the best choice. Therefore further monitoring of the technology
327 evolution is foreseen.

328 **References**

- 329 [1] Barberis D et al. 2014 The ATLAS EventIndex: an event catalogue for experiments collecting
330 large amounts of data, *J. Phys. Conf. Ser.* 513 042002 doi:10.1088/1742-6596/513/4/042002
- 331 [2] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider,
332 *JINST* 3 S08003 doi:10.1088/1748-0221/3/08/S08003
- 333 [3] Large Hadron Collider <http://home.cern/topics/large-hadron-collider>
- 334 [4] Barberis D et al. 2015 The ATLAS EventIndex: architecture, design choices, deployment and
335 first operation experience, *J. Phys. Conf. Ser.* 664 042003 doi:10.1088/1742-
336 6596/664/4/042003
- 337 [5] <http://hadoop.apache.org>
- 338 [6] Baranowski Z, Canali L and Grancher E 2013 Sequential data access with Oracle and Hadoop: a
339 performance comparison, *J. Phys. Conf. Ser.* 513 042001
340 doi:10.1088/1742-6596/513/4/042001
- 341 [7] <https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/MapFile.html>
- 342 [8] <https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/SequenceFile.html>
- 343 [9] Baranowski Z et al. 2015 Scale out databases for CERN use cases, *J. Phys. Conf. Ser.* 664
344 042002 doi:10.1088/1742-6596/664/4/042002
- 345 [10] <https://avro.apache.org>
- 346 [11] <https://parquet.apache.org>
- 347 [12] <https://hbase.apache.org>
- 348 [13] <https://kudu.apache.org>
- 349 [14] Gallas E et al. 2016 an Oracle-based Event Index for ATLAS, (to appear in *J. Phys.: Conf. Ser.*,
350 Computing in High Energy and Nuclear Physics 2016 International Conference)