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Abstract. This paper reports on the activities aimed at improving the architecture and performance of the
ATLAS Eventlndex implementation in Hadoop. The Eventlndex contains tens of billions of event
records, each of which consists of ~100 bytes, all having the same probability to be searched or counted.
Data formats represent one important area for optimizing the performance and storage footprint of
applications based on Hadoop. This work reports on the production usage and on tests using several data
formats including Map Files, Apache Parquet, Avro, and various compression algorithms. The query
engine plays also a critical role in the architecture. This paper reports on the use of HBase for the
EventIndex, focussing on the optimizations performed in production and on the scalability tests.
Additional engines that have been tested include Cloudera Impala, in particular for its SQL interface, and
the optimizations for data warehouse workloads and reports.

1. The ATLAS EventIndex project

The ATLAS Eventlndex [1] is a metadata catalogue of all real and simulated data produced by the
ATLAS experiment [2], one of seven particle detectors constructed for the CERN Large Hadron
Collider [3]. It was designed in 2012-2013 and implemented in 2014; the first data (all LHC Run 1
data collected in 2009-2013) were loaded at the beginning of 2015.

1.1. System requirements and use cases
The ATLAS EventIndex system has to scale to the order of several 10'° events (the number of events
expected for LHC Run 2 between 2015 and 2018), be flexible in its schemas to accommodate a variety
of quantities to be stored that could change in the future, use established and possibly open-source
technologies and be “easy” to develop, deploy and operate.

The main use cases that were identified for this service are [4]:

» Event picking: given a list of run numbers and event numbers, trigger stream, event format
and processing version, find the events and return pointers to them to the user that issued the
query, who can then use the data management tools to retrieve them.

»  Trigger checks and event skimming: the population of events that passed given triggers and of
events that passed multiple triggers can be retrieved from the event catalogue. Similarly, a
trigger-based event selection can be done, retrieving the references to the selected events and
then the events themselves.

*  Production consistency checks: each production cycle should be checked for completeness
(the number of produced events is the same as the number of input events) and consistency
(no duplicated events).
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1.2. Current architecture

The ATLAS EventIndex collects the data from distributed computer centres and stores them in a
central storage at CERN. The system is divided into few functional packages that implement data
acquisition, storage, access and monitoring:

*  The Data Collection system collects data from jobs at Tier-0 or on the Grid that produce new
data. The Eventlndex information for each permanent output file is transmitted to a central
server at CERN where it is validated, reformatted and stored in the Eventlndex storage
system.

*  The Core Storage system accepts data from the Data Collection system and physically stores it
in its own storage space, accepts queries from the front-end web server and returns the results.

*  The Query Server is a web service that acts as a front-end to the storage system. It provides a
command-line interface and a web interface that can be used to find and retrieve the stored
information.

»  The Trigger Decoding service unpacks the trigger information of each event and makes it
readily available in the event records.

»  The monitoring system provides continuous information on the health and load of all the
servers involved, as well as on the data traffic and query response times.

The Core Storage is one of the critical parts of the system as it integrates all other packages by
consolidating the data and making them available to be accessed by users via the Query Server. Thus it
is important that it is robust and delivers the required performance for both data ingestion and data
access. Apache Hadoop [5] was chosen as the main backend technology for storing and accessing
data. It met all criteria from the project requirements (in section 1.1) and, differently from other
shared storage technologies like relational databases, in various tests at CERN [6] has proven that it is
horizontally scalable.

The rest of this paper eclaborates on the internal design of the Core Storage and potential
improvements that can bring the use of alternative approaches available in the Hadoop ecosystem for
storing and accessing the data. In particular, the results evaluation of the most popular Hadoop file
formats and storage engines with ATLAS Eventlndex data and workloads are discussed and
concluded.

2. Core Storage — implementation, usage and bottlenecks
In order to understand how the core layer of the ATLAS Eventlndex can profit from adopting recent
technologies, it is important to explain some key implementation aspects of this component.

2.1. Storage implementation
The Core Storage package is responsible for implementing persistent storage based on Apache
Hadoop and implementing data accessing interfaces. It consists of two components:

* Catalogue — an inventory of all imported datasets and their internal schema. All catalogue data
are stored in an HBase database running on the same Hadoop cluster as the EventIndex data.

*  HDFS namespace — a distributed placeholder for the data. The data are physically stored on
the Hadoop Distributed Files system in a format called MapFile [7]. A MapFile is a union of
two files (Sequence Files [8]). The first one holds raw data in a sequence of key-value pairs
and the other one holds an index to the raw data stored in the first file. The MapFile, compared
to other file formats available on Hadoop, is unique, as it allows having sequential scans and
random data lookups at the same time.

2.2. Event Index record content

Each indexed event is stored in a MapFile format as a separate record that in average is 1.5 kB long
and has 56 attributes encoded in various types. Most of them are arrays of characters, few are integers
and floating point numbers. The main attributes are:
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»  Event identification: run number (integer), event number (long), trigger stream (string), event
format (string) and processing version (string).
» Trigger information: the list of trigger chains passed by the given event (string).
*  References of the event. the GUIDs (Global Unique IDentifiers) (string).
In the third quarter of 2016 there are 6x10° records stored in HDFS that occupy tens of Terabytes (not
including data replication).

2.3. Data access paths
There are two typical access paths that satisfy all the use cases:

»  Event picking — lookup for a random event by identification attributes. It is the main use case
of the ATLAS Eventlndex. Until the end of 2015, this access was implemented by using
Catalogue-based data pruning and lookup for relevant records in a MapFile by built-in index.

* Data scanning — full scan of a population of events in order to perform event skimming or
trigger-based selection. For this type of access path, a MapReduce job is used in order to
perform distributed and scalable data filtering.

2.4. Limitation of the Core Storage implementation
During a review of the ATLAS EventIndex project in late 2015, a few limitations have been identified
in the Core Storage implementation:

+ Data ingestion into MapFile format is complex, as it requires sorting datasets by key values
before storing them physically in HDFS. Typically this means launching a MapReduce job
that will perform data sorting in a distributed way, which in case of small data sets (that can be
easily sorted in a single host memory) is suboptimal. The average measured ingestion speed
into MapFile format was 6.4 kHz per a collection set.

* Due to the extra effort (mentioned above) needed when loading data into MapFiles, a number
of staging areas with duplicated data are created and maintained.

» Data and metadata are separated and served by different components. This means that any data
access operations have extra cost (latency) of combing raw data with its metadata — direct
access to raw data is not possible. Additionally, this implies that using any of popular open-
source community frameworks to process the data is not possible.

* Random data lookup of MapFiles is performed on the client side — index files are downloaded
to a client machine where they are processed in order to obtain the final location of events of
interest in HDFS. This can potentially cause a performance problem when the network
connectivity between HDFS and the client is poor or when a single client machine performs
multiple requests in parallel like in the case of Query Server. Typical event lookup speed
when using MapFiles is around 4s.

Most of the limitations identified during the review were related to the usage of the MapFile file
format as a container for the data. For this reason, a new initiative of evaluating alternative
possibilities of storing data in Hadoop ecosystem was started. The main goal was to understand if Core
Storage could significantly profit from using a different format for the data representation.

3. Evaluation of alternative modern storage approaches for Core Storage
This chapter describes a performance comparison of some popular data formats and storage engines
available in the Hadoop ecosystem to evaluate space efficiency, ingestion performance, analytic scans
and random data lookup. This should help in understanding how (and when) each of the evaluated
technologies can improve handling of the ATLAS EventIndex big data workloads.

During the evaluation, the same ATLAS EventIndex data sets have been stored on the same Hadoop
cluster using different storage techniques and compression algorithms (Snappy, GZip or BZip2).
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3.1. Hardware and storage configuration
The data access and ingestion tests were performed on a cluster composed of 14 physical machines,
each equipped with:

* 2x8cores @ 2.60GHz

* 64 GBof RAM

* 2x24 SAS drives
Hadoop was installed from Cloudera Data Hub (CDH) distribution version 5.7.0, which includes:

* Hadoop core 2.6.0

* Impala2.5.0

e Hive 1.1.0

* HBase 1.2.0 (configured JVM heap size for region servers = 30 GB)

* (not from CDH) Kudu 1.0 (configured memory limit = 30 GB)
Apache Impala (incubating) was used as a data ingestion and data access framework in all the
conducted tests presented later in this report.

3.2. Evaluated formats and technologies

With respect to recent trends on the market and evaluations done with various storage techniques in
the past at CERN [9], four candidate technologies for storing the data in the Hadoop ecosystem have
been chosen.

3.2.1. Apache Avro [10] is a data serialization standard for compact binary format widely used for
storing persistent data in HDFS as well as for communication protocols. One of the advantages of
using Avro is lightweight and fast data serialization and deserialization, which can deliver very good
ingestion performance.

Even though it does not have any internal index (like in the case of MapFiles), the HDFS directory-
based partitioning technique can be applied to quickly navigate to the collections of interest when fast
random data access is needed. In the test a tuple of runnumber, project and streamname was used as a
partitioning key. This allowed obtaining good balance between the number of partitions (few
thousands) and an average partitions size (hundreds of megabytes).

3.2.2. Apache Parquet [11] is a column-oriented data serialization standard for efficient data
analytics. Additional optimizations include encodings (RLE, Dictionary, Bit packing), and the
compression applied on series of values from the same columns that gives very good compaction
ratios. When storing data in HDFS in Parquet format, the same partitioning strategy was used as in the
Avro case.

3.2.3. Apache HBase [12] is a scalable and distributed NoSQL database on HDFS for storing key-
value pairs. Keys are indexed, which typically provides very quick access to the records. When storing
ATLAS EventIndex data into HBase each event attribute was stored in a separate cell, and the row key
was composed as a concatenation of an event identification attributes (runnumber, eventnumber,
project, streamname, datatype and version). Additionally, encoding of the row key was enabled in
order to reduce the size of HBase blocks (without this, each row would have the length of 8KB)

3.2.4. Apache Kudu [13] is new scalable and distributed table-based storage. Kudu provides
indexing and columnar data organization to achieve a good compromise between ingestion speed and
analytics performance. In the evaluation all literal types were set to be stored with a dictionary
encoding and numeric types with bit shuffle encoding. Additionally, a combination of range and hash
partitioning was introduced, by using the first column (runnumber) of the primary key (composed of
the same event attributes like in HBase case) as a partitioning key.
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3.3. Measurement results

Despite the effort made to obtain as precise results as possible, they should not be treated as universal
and fundamental benchmarks of the tested technologies. There are too many variables that could
influence the tests and make them more case specific, like the chosen test cases, the data model used,
the hardware specification and configuration, and the software stack used for data processing.

3.3.1. Space utilization
B No compression Snappy M GZip/BZip2

2500

2173
0
£ 2000
@ 1559 1506
= 1500
I
G 890
Z 1000 777
§ 49 326
o 500 171 189 308 217
& 87 90

. o — I -

kudu parquet hbase avro mapfile

Figure 1: Average row length in bytes for each tested format and compression type.

Measuring the average record size after storing the same data sets (millions of records) using different
techniques and compression algorithms allows estimating what would be the expected volume of
production data when migrated to the chosen format and the space savings associated with that.
According to the measured results (Figure 1), data encoded with Kudu and Parquet delivered the best
compaction ratios. Using compression algorithms like Snappy or GZip can further reduce the volume
significantly — by a factor 10 comparing to the original data set encoding with MapFiles.

HBase, due to the way it stores the data, is a less space efficient solution. Although compressing the
HBase blocks gives quite good ratios, however, it is still far away from those obtain with Kudu and
Parquet.

On the other hand, Apache Avro delivers similar results in terms of space occupancy like other
HDFS row stores e.g. MapFiles.

3.3.2. Ingestion speed
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Figure 2: Average ingestion speed in kHz into a single data partition for each tested data format.
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Measuring records ingestion speed into a single data partition should reflect the performance of
writing to the ATLAS Eventlndex Core Storage system that can be expected when using different
storage techniques. The results of this test are presented on Figure 2.

In general, it is difficult to make a valid performance comparison between writing data to files and
writing data to a storage engine. However, because Apache Impala performs writing into a single
HDFS directory (Hive partition) serially, the results obtained for HDFS formats and HBase or Kudu
can be directly compared for single data partition ingestion efficiency.

Writing to HDFS files encoded with Avro or Parquet delivered much better results (at least by a
factor 5) than storage engines like HBase and Kudu. Since Avro has the most lightweight encoder, it
achieved the best ingestion performance. At the other end of the spectrum, HBase in this test was very
slow (worse than Kudu). This most likely was caused by the length of the row key (6 concatenated
columns), that in average was around 60 bytes. HBase has to encode a key for each of the columns in a
row separately, which for long records (with many columns) can be suboptimal.

3.3.3. Random data lookup
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Figure 3: Average random record lookup latency [in seconds] per data format.

Retrieving a non-key attribute from a record by providing a record identifier (a compound key) is the
main use case of the EventIndex (see 1.1). With respect to that, a list of runnumber-eventnumber pairs
was used in order to retrieve their corresponding GUID.

According to the measured results (Figure 3), when accessing data by a record key, Kudu and
HBase were the fastest ones, because of the usage of built-in indexing. Values on the plot were
measured with cold caches. Using Apache Impala for random lookup test is suboptimal for Kudu and
HBase as a significant amount of time is spent to set up a query (planning, code generation etc.) before
it really gets executed — typically this takes about 200 ms. Therefore for low latency data access it is
advised to skip Impala and use dedicated APIs; we tried also this approach and results for Kudu and
HBase were similar — with cold cache <200 ms and with warmed up cache <80 ms.

In opposite to Kudu and HBase, retrieving data from an individual record stored in Avro format
can only be done in a brute force scan of an entire data partition (reminder — data are partitioned by
part of a record key, so partition pruning was applied in such case). An average partition is sized in
GB, thus getting the desired record takes seconds (depending on I/O throughput) and uses a significant
amount of the cluster resources. This ultimately reduces the number of concurrent queries that can be
executed at a full speed on a cluster.

The same problem applies to Parquet; however, the columnar nature of the format allows
performing partition scans relatively fast. Thanks to column projection and column predicate push
down, a scan input set is ultimately reduced from GBs to just a few MBs (effectively only 3 columns
were scanned out of 56).
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3.3.4. Data processing speed
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Figure 4: Average scan speed per CPU core [kHz] for each tested format.

The data scanning test was performed as a simplified use case of event skimming or trigger based
selection. The idea was to extract a trigger chain information from all the events and later count only
the ones that met certain condition (substring matching).

Due to the input set reduction by applying column projection, Parquet in this test has left behind
Avro (Figure 4). It was not only the most efficient in terms of per-core processing rates but also the
fastest to finish the processing. The unit of data access parallelization in the case of Parquet and Avro
is an HDFS file block — thanks to that it is very easy to evenly distribute processing across all the
resources available on a Hadoop cluster.

In terms of scanning efficiency Kudu (with Snappy compression) was not far from Parquet. It
profited from column projection. Scanning data stored in Kudu and HBase might be imbalanced since
a single table partition is the unit of a scan parallelization in both cases. Therefore the amount of
resource involved in a scan depends on the number of given table partitions, their sizes and their
distribution across a cluster. In this test case, it was not possible to use Kudu’s native predicate push
down feature, as Kudu did not support the used predicate. Additional tests proved that Kudu scans
could be faster than Parquet when supported predicates are in use.

Before performing the test with HBase the scanned column was separated in a dedicated HBase
column family — this improved the scanning efficiency by factor 5. That was still far away from
Parquet or Kudu.

3.4. Summary of the evaluation

The performed tests of major data storing techniques with the ATLAS EvenIndex workloads delivered
valuable information about the key aspects to be considered when deciding to deploy any of these
techniques:

»  Storage efficiency — with Parquet or Kudu and Snappy compression the total volume of the
data can be reduced by a factor 10 comparing to uncompressed simple serialization format.

*  Data ingestion speed — all tested file based solutions provide faster ingestion rates (between
x2 and x10) than specialized storage engines or MapFiles (sorted sequence).

*  Random data access time — using HBase or Kudu, typical random data lookup speed is below
500ms. With smart HDFS namespace partitioning Parquet could deliver random lookup on a
level of a second but consumes more resources.

*  Data analytics — with Parquet or Kudu it is possible to perform fast and scalable (typically
more than 300k records per second per CPU core) data aggregation, filtering and reporting.

*  Support of in-place data mutation — HBase and Kudu can modify records (schema and values)
in-place where it is not possible with data stored directly in HDFS files.
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Figure 5: A schematic view of the results of the tests on Hadoop data formats and storage engines. Kudu and
Parquet appear as good compromises between random data lookup and scalable data analytics performance.

Apache Avro has proven to be a fast universal encoder for structured data. Due to very efficient
serialization and deserialization, this format can guarantee very good performance whenever an access
to all the attributes of a record is required at the same time — data transportation, staging areas etc.

On the other hand Apache HBase delivers very good random data access performance and the
biggest flexibility in structuring stored data (schema-less tables). The performance of batch processing
of HBase data heavily depends on a chosen data model and typically cannot compete on this field with
the other tested technologies. Therefore any analytics with HBase data should be performed rather
rarely.

Notably, compression algorithms played a significant role not only in reducing the data volume but
also in enhancing the performance of data ingestion and data access. In all those fields the Snappy
codec delivered the best results for all tested technologies, much better than plain encoding without
compression (except in the case of Avro).

4. Hybrid system

Alternatively to a single storage technology implementation, a hybrid system could be considered
composed of a raw storage for batch processing (like Parquet) and indexing layer (like HBase) for
random access. This would allow to fully profit from technologies specialization/optimization on
certain access paths and deliver the best performance. Notably, such approach comes at the price of
data duplication, overall complexity of a system architecture and higher maintenance costs.

At the end of 2015 as a follow-up of the initial evaluation of available storage techniques, an

attempt for building a hybrid system for the ATLAS EventIlndex was conducted in two ways:

* Indexing the most relevant data (event identification and references of the event) in a separate
relational system (Oracle) [14]. The assumption here was that this index should be self-
contained and does not keep pointers to the complete event records available on HDFS.

* Indexing events by event number and run number in HBase database. In this approach the
indexing key resolves to GUID and pointers to the complete records stored on HDFS.

So far both systems have proven to deliver very good events picking performance on a level of tens of
milliseconds — an order of magnitude faster than the original approach when using MapFiles solely.
The only concern when running a hybrid approach in both cases is the system size and internal
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coherence — robust procedures for handling HDFS raw data sets updates and propagating them to
indexing databases with low latency have to be maintained and monitored.

5. Conclusions

The study of improving the ATLAS Eventlndex Core Storage performance has shown a potential for
enhancing the current implementation efficiency in many aspects, like reduction of overall data
volume, simplifying ingestion and increasing the performance of data access. Columnar stores like
Apache Parquet and Apache Kudu appear to be very good candidates for future data storage systems
as they guarantee very good flexibility between fast data ingestion, fast random data lookup and
scalable data analytics by keeping the system simplicity (Figure 5). On this field, Kudu appears to be
more suited for the ATLAS EventIndex use case because of fast event lookup and simplified ingestion
procedures. However, deep evaluation of Apache Kudu disclosed a lack of important functionalities
(like security) and maintenance problems that makes Kudu in the currently available version (1.0.1)
not fully production ready.

On the other hand, deployment of additional indexing platforms to improve fast data access (HBase
and Oracle) provided satisfactory results for the main use cases of the ATLAS EventIndex. This came
at a price of extra complexity of the system and extra maintenance effort. However, at the given state
of development of the project, it pays off.

In the longer term, there are plans to consolidate the data onto a single platform. With respect to
that, Apache Kudu seems to be the best choice. Therefore further monitoring of the technology
evolution is foreseen.
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