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Resumo 

Neste trabalho é apresentado um modelo particular de cosmologia quânti- 

ca, onde, após o surgimento quântico de um universo com curvatura positiva, 

ocorre uma mudança de topologia resultando em um universo de curvatura 

negativa e topologia não-trivial, o qual evolui posteriormente segundo o mo- 

delo do Big Bang. Para tanto, a cosmologia quântica ‘padrão’ é apresen- 

tada e então estendida segundo uma proposta de De Lorenci et ai; dentro 

desse contexto discutem-se também brevemente alguns problemas de física 

matemática associados ao uso de espaços com topologia não-trivial. 

Palavras-chave: cosmologia, topologia, cosmologia quântica. 

Áreas do conhecimento: 1.05.01.02-9, 1.05.01.03-7. 



Abstract 

In this work a particular model of quantum cosmology is presented, where, 

after the quantum creation of an universe with positive curvature, there is a 

topology change resulting in an universe with negative curvature and non- 

trivial topology, which later evolves according to the standard Big Bang 

model. For this, the ‘standard’ quantum cosmology is presented and then 

extended following a proposal by De Lorenci et al.-, in this context are also 

discussed briefly some problems in mathematical physics associated to the 

use of spaces with non-trivial topology. 

Keywords: cosmology, topology, quantum cosmology. 
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1 

Apresentação 

0 Coelho Branco pôs seus óculos. 

“Por onde devo eu começar, 

por favor, vossa Majestade?”, 

perguntou ele. 

“Comece pelo começo,” 

o Rei disse gravemente, 

“e continue até que você chegue ao fim; 

então pare.” 

Lewis Carrol, em ‘Alice no País das Maravilhas'. 

O livro “Curso de Física Básica”, de H. Moisés Nussenzveig, começa seu 

capítulo introdutório com uma seção intitulada ‘Para que serve a física?’, 

onde aparece o seguinte texto [1]: 
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"A motivação básica da ciência sempre tem sido a de entender o 

mundo. E a mesma curiosidade que leva um menino a desmontar 

um relógio para saber como funciona. De que são feitas as coisas? 

Como e por que se movem os corpos celestes? Qual é a natureza 

da eletricidade e do magnetismo? O que é a luz? Qual a origem do 

Universo? Estas são algumas das grandes questões que têm sido 

abordadas pelos físicos.” 

Este trabalho, cuja proposta principal é expor um estudo do uso de 

topologias não-triviais na descrição quântica da origem do universo, segue 

a ‘motivação básica da ciência’ exposta no parágrafo acima, onde se destaca 

não a exigência de rçspostas finais, únicas e definitivas, mas principalmente 

a formulação de perguntas pertinentes. 

De forma bastante simplificada este trabalho pode ser resumido como 

uma apresentação de um modelo simples e particular de cosmologia quântica, 

baseado principalmente num formalismo desenvolvido por De Lorenci et al. 

[2], na busca de uma das possíveis respostas para a nem um pouco óbvia 

questão ‘Que tipo de previsão pode-se ter para a topologia global do uni- 

verso?’. Tal questão não é óbvia por envolver a pouco lembrada preocupação 

com a topologia global do universo; na cosmologia padrão, de modo geral, 

quase não se assume que existe tal questão. 

No desenvolvimento desta tese alguns assuntos mais básicos serão abor- 

dados inicialmente, passo a passo, na intenção de que este trabalho seja 

compreendido de forma lógica e mais ou menos linear. Os capítulos que 

se seguem, tratam, portanto, em sequência, dos fundamentos da cosmolo- 

gia, indo da clássica cosmologia padrão do modelo do Big Bang, no capítulo 

‘O padrão clássico’, até a sua recente extensão quântica, no capítulo ‘O 

padrão quântico’, passando-se então à descrição topológica de espaços - 

‘Problemas topológicos’ - para só então mostrar-se, por fim, como a 

topologia pode aparecer numa particular descrição quântica da origem do 

universo - ‘Mudança de topologia’; um último capítulo, ‘Comentários 

finais’, serve de epílogo para a linha de raciocínio apresentada. 
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Além desses capítulos esta tese apresenta um único apêndice ‘introdutó- 

rio’, ‘Relatividade e Cosmologia’, cujo propósito é apenas mostrar algu- 

mas idéias e cálculos mais elementares que não caberiam no texto principal, já 

que este deve apresentar certa objetividade, procurando-se assim, ao mesmo 

tempo, escrever um trabalho algo completo e ‘auto-contido’. 

Em todo o texto a notação usada tem índices latinos (a, b, ...) indo de 

1 a 3, e índices gregos {fi, v, ...) indo de 0 a 3; as unidades usadas são as 

unidades ‘naturais’ onde c = G = 1, exceto quando tais constantes aparecem 

explicitamente. 
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2 

O padrão clássico 

0 Universo não é uma idéia minha. 

A minha idéia do Universo é que é uma idéia minha. 

A noite não anoitece pelos meus olhos, 

A minha idéia da noite é que anoitece por meus olhos. 

Fora de eu pensar e de haver quaisquer pensamentos 

A noite anoitece concretamente 

E o fulgor das estrelas existe como se tivesse peso. 

Poema de Alberto Caeiro, um dos ‘outros eus’ de Fernando Pessoa. 

A cosmologia quântica é uma teoria preocupada com os momentos inici- 

ais do universo, usada para quando sua dimensão é pequena; após o início 

quântico, porém, assume-se que o universo segue o modelo do Big Bang. Por 

quê? O que há neste modelo do Big Bang que o faz ser o modelo padrão da 

cosmologia clássica? 

O atual status da teoria do Big Bang pode ser avaliado, por exemplo, 

pela seguinte citação, retirada de um livro de divulgação científica recente- 

mente traduzido para o português, “As sete maiores descobertas científicas 

da história” [3]: 
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"Este livro identifica as maiores dentre essas descobertas - sete 

achados tão fundamentais que quase todo o resto do que a hu- 

manidade conhece da ciência se baseia neles: 

1. A gravidade e as leis básicas da física 

2. A estrutura do átomo 

3. O Princípio da Relatividade 

4. O Big-Bang e a formação do universo 

5. A evolução e o Princípio da Seleção Natural 

6. A célula e a genética 

7. A estrutura da molécula de DNA 

Essas são as descobertas do que é 

É claro que nem todos são tão positivistas [4]: 

"O universo começou em uma violenta explosão que ocorreu há 

cerca de 15 bilhões de anos atrás: esta é a moderna hipótese que 

tomou o lugar dos mitos clássicos da Grécia e de Roma, das antigas 

China e índia. (...) Talvez daqui a mil anos no futuro, a teoria do 

big bang será ela mesma vista como um mito do século vinte." 

Contudo, há ótimas indicações observacionais de que o Big Bang é quase 

mais que uma teoria, de que ele praticamente representaria “o que é”; tais in- 

dicações começaram na década de 1920, quando a teoria não existia de forma 

organizada, com a descoberta, pelo astrônomo Edwin Hubble, do desvio para 

o vermelho das galáxias, efeito conhecido hoje pelo nome genérico de lei de 

Hubble. Outra observação importante para o modelo, a descoberta da ra- 

diação cósmica de fundo, ocorreu na década de 60, feita por Arno Penzias 

e Robert Wilson. Mais recentemente, diversas leituras de quantidades (ou 
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abundâncias) de elementos químicos leves - ^He, ‘^He, Li - aumentaram 

a confiança na teoria por estarem de acordo com os valores por ela preditos 

[5]: 

Presentemente há bom acordo entre as abundâncias primordiais 

preditas de todos esses 4 elementos e suas abundâncias observadas 

(...). Este é um feito verdadeiramente notável, e forte evidência de 

que o modelo padrão é válido em tempos tão iniciais quanto 10“^ 

sec após o bang.” 

A intenção deste capítulo não é apresentar o modelo cosmológico padrão 

de forma completa ou atraente, ou mesmo de forma introdutória; esse papel 

é cumprido muito mais eficientemente do que poderia ser feito aqui em uma 

infinidade de textos escritos por diversos autores, com diferentes enfoques 

e profundidades. O que há neste capítulo é apenas um resumo de alguns 

resultados gerais que serão úteis no desenvolvimento posterior deste trabalho, 

como, por exemplo, soluções de alguns casos particulares para o fator de 

escala a (t), destacando-se o resultado conhecido genericamente como solução 

de de Sitter, de grande importância nos modelos mais simples de cosmologia 

quântica e que aparece como solução inflacionária mais comum; desse modo, 

há também aqui uma seção com um resumo do uso de campos escalares na 

obtenção de soluções inflacionárias simples e, logo após, uma outra seção com 

uma pequena discussão das parametrizações permitidas pela solução de de 

Sitter. 

2.1 Soluções gerais para o fator de escala 

A partir da tradicional métrica ‘padrão’, conhecida como métrica de Fried- 

mann-Lemaítre-Robertson-Walker (FLRW), 

(2.1) 
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onde fc = 0 ou ±1, pode-se escrever a equação de Friedmann como sendo 

Sttp -f- A 

3 
(2.2) 

Estas duas expressões podem ser reescritas usando-se uma nova coordenada 

temporal 77, tal que [6] 

dt = adr) ; 

assim, têm-se uma métrica ‘conforme’, 

dr“^ 
ds^ = [a (ry)]' dr] — 

1 — kr^ 
+ {d9^ -f sin^ Odíp^^ 

(2.3) 

(2,4) 

e a equação de Friedmann reescreve-se como 

k 87rp-|-A 
(2.5) 

sendo ' = d/dr\\ esta forma da equação de Friedmann é interessante para 

obtenção de soluções cosmológicas genéricas quando A = 0. 

Na presença da constante cosmológica, isto é, quando A 7^ 0, é mais 

interessante usar um outro tipo de transformação [7], 

u = /?a " (2.6) 

com ^ sendo uma constante e n 7^ 0, levando a se escrever a equação de 

Friedmann como 

A hipótese final para a obtenção de soluções, seja na presença ou na 

ausência da constante cosmológica, consiste em supor uma dependência da 

densidade de matéria do tipo 

p = Aa" ; (2.8) 
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Soluções para o fator de escala com A = 0 

a partir da hipótese p = XaP' 

n a{t) Comentários 

[2íO! — 

2-3/2 (3a)2/3í2/3 

t 

+ ka~'^ 

{2a)~^ [e“‘ + A:e-“‘] 

-4 

-3 

-2 

-1 

0 

radiação 

matéria* 

expansão linear** 

expansão quadrática 

expansão exponencial*** 

Tabela 2.1: Resumo de algumas soluções (nem todas físicas) da eq. de 

Friedmann com A = 0 para o fator de escala a (í) ; = SttA/S. 

‘Somente a solução para fc = 0, conhecida como Einstein-de Sitter, é mostrada 

aqui; a solução mais geral só pode ser escrita em termos do tempo conforme t). 
"Expansão linear é uma característica do modelo de Milne, uma solução de vácuo 

com fc = —1 [8]. 
”*A expansão exponencial é característica do modelo de de Sitter, uma solução 

de vácuo com constante cosmológica. 
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Soluções para o fator de escala com A > 0 * 

a partir da hipótese p = Aa” 

n a{t) Comentários 

-4 

-3 

-2 

-1 

0 

2'yt 

^l/3^-2/3ginh2/3 3^í/2 

[sinh7Í + k(3e~'^^] 

/?7“^ [^sinh^ 7Í + Â:;5^7^e“'^‘j 

(27)"^ [e^'* + Ãe-T'*] 

radiação” 

matéria”* 

vácuo; de Sitter 

Tabela 2.2; Resumo de algumas soluções da eq. de Friedmann (nem todas 

físicas) com constante cosmológica positiva para 0 fator de escala a{t) ; 

= SttA/S; 7^ = A/3. 

‘Aqui não aparecem as soluções estáticas como, por exemplo, a solução de Ein- 

stein, onde a = 2“^3a = 
“A única solução mostrada aqui é com A: = 0; a solução mais geral, dada em 

termos de funções elípticas, depende dos valores de A e A [8]. 

“*0 mesmo dito na nota anterior se aplica aqui. 
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a partir desta hipótese pode-se obter, por exemplo, da equação (2.5), uma 

solução geral^ do fator de escala em termos do tempo conforme 77, 

-l/(n+2) 

0(77) = 
'87tA 

. 3k 
sm -2/(n+2) y/k 

71 d” 2 
V (2.9) 

de onde se pode, então, obter soluções em termos do tempo cosmológico t a 

partir da equação (2.3). Assim, soluções do fator de escala, a (í), para alguns 

valores de n são mostradas nas Tabelas 2.1 e 2.2, uma para soluções sem a 

constante cosmológica e outra para soluções onde a constante cosmológica 

está presente, estas últimas obtidas a partir de (2.7). 

2.2 Campos escalares e inflação 

0 tipo mais simples de tensor momento-energia não-nulo que se pode usar 

nas equações de Einstein é o devido a um campo escalar (f, 

onde 

C = d^^d^ip/2-V{if) (2.11) 

é a densidade Lagrangeana associada a esse campo. Da equação de con- 

servação desse tensor, 

T",; = 0 , (2.12) 

OU por uso das equações de Euler-Lagrange generalizadas 

= 0 , (2. 

^Note-se que para n = 2 a solução é 

— -\7 \-^£— 
d(f ^ d {dfj,(f) 

a (77) = exp ± 
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junto com a idéia de que o campo escalar em estudo é homogêneo e isotrópico, 

obtém-se, então, que a equação governando a evolução desse campo é 

onde usou-se a definição da constante de Hubble, H =à /a. Essa equação se 

soma, portanto, à equação de Friedmann, escrita agora, por comparação do 

tensor momento-energia do campo escalar com aquele de um fluido perfeito, 

como 

onde K = 87t/3, para, desse modo, fornecer o comportamento do sistema 

formado pelo campo escalar num espaço-tempo de FLRW; note-se que as 

incógnitas deste sistema de duas equações são três; o campo ip, que evolui no 

tempo, ou seja, (p = íp{t), o fator de escala a, que também evolui no tempo, 

isto é, a = a (í), e 0 potencial do campo escalar, V = V (<^), e, assim, alguma 

hipótese extra deve ser fornecida para a solução do sistema. 

As assim chamadas soluções inflacionárias são aquelas em que o fator 

de escala cresce rapidamente, em alguns casos exponencialmente, com o 

tempo; um modo simples de obter uma dessas soluções, conhecido como 

aproximação de slow-roll, consiste em desprezar, ao mesmo tempo, os ter- 

mos com o parâmetro de curvatura e a constante cosmológica na equação de 

Friedmann, e o termo da segunda derivada do campo escalar na equação do 

campo, assumindo-se ainda que o termo de energia potencial V {(p) do campo 

escalar é muito mais importante que o termo de energia cinética /2, de 

modo que o sistema a se resolver passa a ser 

V -1-3- +3H P> +y' = 0 , (2.14) 

(2.15) 

(2.16) 

A solução obtida para o fator de escala nessa aproximação é 

a = oo exp íj (2.17) 
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Outra possibilidade consiste em usar como hipótese extra um determi- 

nado tipo de potencial, obedecendo a certos requisitos; assim, vários tipos 

de potenciais já foram propostos, dentre os quais podem-se destacar alguns 

tipos encontrados na literatura: 

• potencial exponencial [9], 

Vi = ; (2.18) 

• potencial na forma de potências de cp [10], 

(2.19) 

• potencial na forma de cosseno [11], 

(2.20) 

Note-se que em todos estes casos, n e q são parâmetros ‘ajustáveis’. Tais 

potenciais, todos ‘postulados’ para espaços flat, em que a curvatura é nula, 

são plotados de forma comparativa na Figura 2.1, para demonstrar de forma 

qualitativa o seu comportamento. 

Soluções inflacionárias simples podem ser obtidas usando como ansatz 

(ou ponto de partida) relações entre as variáveis e a e/ou suas derivadas, 

relações estas sugeridas por análise dimensional. Por exemplo, usando que 
. 2 

tem dimensão de densidade de energia, ou seja. 

kg 

m- ’ 
(2.21) 

e notando-se que a tem dimensão de comprimento, pode-se usar como idéia 

a relação 

(2.22) 
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Figura 2.1; Gráfico de diferentes potenciais inflacionários em função do campo 

escalar ç?. 

sendo assim que 

[A^l = [^^1 [a^] = 
kg • m c* 

G 

Tal proposta leva a 

como solução do fator de escala^, onde agora^ 

Stt 

“ =TT"+3 

A 

(2.23) 

(2.24) 

(2.25) 

k — 47tA^ 

^42 
(2.26) 

2Outras possíveis soluções apresentadas para este ansatz particular são a (t) = a~^y/r, 

se r > 0, e a(í) = a“^sinaí, se r < 0 com < 0. Tais soluções não fornecem um 

universo em expansão. 
^Note-se que esta definição de a não deve ser confundida com a que aparece anterior- 

mente no texto. 

15 



Ansatz 

Resumo 

a{t) Comentários 

Aa~2 

(jH 
.2 .2 
^ =e H 

à 

A{t- to) 

—atl 

±(-g)5 (t-to) 

2/3 + qe 

de Sitter 

expansão ‘polinomial’ 

expansão linear 

de Sitter 

Tabela 2.3: Resumo de relações entre campos escalares e soluções inflacionárias; 

os parâmetros a, s, q e P se relacionam, respectivamente, com as constantes A, 

a e e. 

sendo A uma constante de integração; tal solução é uma forma genérica das 

soluções de de Sitter. Resultados similares a este, resumindo as soluções 

apresentadas na referência [12], são mostrados na Tabela 2.3. 

O importante a se perceber aqui, porém, é que a solução inflacionária mais 

comumente relatada na literatura, do tipo exponencial, é obtida quase que 

naturalmente, seja por uso de aproximações ou análise dimensional, quando 

do uso de um campo escalar; tal solução exponencial do fator de escala é 

característica do modelo de de Sitter, que por isso será visto na próxima 

seção. 
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2.3 Parametrizações da solução de de Sitter 

Uma solução simples das equações de Einstein na ausência de matéria, isto 

é, no vácuo, e com constante cosmológica A positiva^, é representada pela 

expressão do elemento de linha do espaço conhecido como espaço de de Sitter, 

ds^ = dd - {d9‘^ + sin^ (2.27) 

Tal expressão nada mais é que o caso flat, isto é, em que A: = 0, da expressão 

tradicional 

ds^ = dd — (í) 
dr"^ 

1 — kr'^ 
+ (dd^ + sin^ 6d(p^^ (2.28) 

com^ 

a{t) = 
e'*'* + ke 

27 
(2.29) 

e 7^ = A/3. 

Uma forma comum de representar tal solução é como um hiperbolóide, 

isto é, uma superfície hiperbólica num espaço fictício 5-dimensional, superfície 

essa dada por um vínculo [14], 

2 I 2 , 2 , 2 2 X +y + Z + W — V (2.30) 

sendo que o espaço 5-dimensional possui uma métrica lorentziana, com ele- 

mento de linha® 

ds^ = dv^ — dw'^ — dx^ — d]d — dz^ . (2.31) 

■*No caso de uma constante cosmológica negativa a solução é conhecida como anti-de 

Sitter, representada pelo elemento dè linha [13] 

= dt^ — 7“^ cos^ 7Í [dx^ + sinh^ x (d^^ + sin^ ddtp^)] , 

representando um espaço hiperbólico, de curvatura negativa. 

®Note-se que se A: = 0, aparece em a{t) um fator extra (27)”^ não presente na ex- 

pressão do intervalo. Tal fator pode ser facilmente eliminado por um reescalonamento das 

coordenadas. 
®0 espaço anti-de Sitter também pode ser embebido num hiperbolóide de 5 dimensões. 
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As coordenadas (í, r, 6, (p) podem ser introduzidas nesse hiperbolóide atra- 

vés das equações 

' V = ^ sinh 7Í + 

w = ^ cosh7Í — 

< X = e'*'V sin 0 COS (/? , (2.32) 

y — e<^r sin 9 sin 

z — e'>'V COS 9 

dando o elemento de linha da equação (2.27); neste caso a parametrização 

do hiperbolóide é incompleta, pois w + v > 0. 

Outra parametrização bastante comum é dada pelo elemento de linha 

ds^ = dt^ —^ ^cosh^ 7í) \^-)^ + sin^ x {d9^ + sin^ 9díp^'^ (2.33) 

que segue as relações 

t; = ^ sinh 7Í 

w = ^ cosh 7Í COS X 

< X = i cosh 7Í sin X sin 0 COS (/? . (2-34) 

y = ^ cosh 7Í sin x sin 9 sin p) 

2 = i cosh jt sin X COS 9 

Tal parametrização possui topologia global R x ou seja, representa um 

espaço fechado, esférico, e o seu elemento de linha é obtido das equações 

(2.28) e (2.29) fazendo-se k = +1 e r = sin x- Outra parametrização seme- 

lhante, mas representando um espaço hiperbólico, de topologia R x H^, é 

só que agora com 0 vínculo [13] 

+ y'^ + = —7 ^ 

e o elemento de linha 

ds^ = dv^ + dw^ — dx^ — dy^ — dz^ . 
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obtida com k = —1 e r = sinhx: 

ds'^ — df' - ^ (sinh^ jtj [c?x^ + sinh^ x {dO^ + sin^ , (2.35) 

onde 
u = ^ sinh 7? cosh x 

lü z= i cosh 7Í 

X — - sinh 7Í sinh x sin 9 cos ^ (2.36) 

y = ^ sinh -jt sinh x sin 9 sin cp 

z — ^ sinh 7Í sinh x cos 9 
> / 

É importante citar que originalmente, em 1917, de Sitter [15] apresentou 

uma forma estática de um universo plano e vazio, 

ds^ = cos^ jfd t —df^ ^ sin^ 7f [d9^ 4- sin^ ddyp'^ ; 
T 

tal forma aceita a parametrização 

u = ;^ sinh 7 t cos jr 

w = ^ cosh 7 t cos 7f 

X = ^ sin 7f sin 9 cos (p 

j/ = i sin 7f sin 9 sin ip _ i 

z = - sin 7f cos 9 

Eddington reapresentou esta solução de outro modo. 

ds^ = (1 — 7^ r \dt 
dr 

l-72r 

_ A 
usando a transformação r= 7 ^ sin 7r, o que possibilita escrever 

V — ^^1 — 7^^ sinh7 t 

w = - y 1 — 72 r cosh 7 t 
A . 

X =r sm y cos (p 
A . „ . 

y =r sm 9 sm p 

z =r cos 9 

(2.37) 

(2.38) 

r (d9^ + sin^ 9dp^^ , (2.39) 

(2.40) 
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Esta nova parametrização representa um universo estático^, e pode ser obtida 

diretamente de (2.27) ou (2.32) através das transformações 

(2.41) 
í= í — 1 In \/l — 

ou de (2.34) e (2.36) por meio das relações 

(2.42) 

aparecendo nela a idéia de um horizonte de eventos cosmológico, idéia essa 

que fica patente quando se compara a equação (2.39) com a expressão do 

^Também o espaço anti-de Sitter, hiperbólico, pode ser posto numa forma estática, 

através das transformações 

Ís = 7“^ COS 7Í sinh x 

u = 7“^ arctan [tan 7Í sech x] 

que levam aos elementos de linha 

ou 

onde usou-se que s = 7 ^ sinh 7 s. 

20 



(2.43) 

intervalo para a solução de buraco negro de Schwarzschild®, 

~ ~ ~ I 2m ~ Odíp'^^ 
r 

Tal solução representa um espaço com um horizonte de eventos para r — 2m; 

no caso do espaço de de Sitter o horizonte de eventos aparece em r= 7~h 

Observando que o elemento de linha dado pela equação (2.35), de cur- 

vatura negativa, pode ser visto como um cone de luz futuro para um evento 

qualquer num background dado pelo espaço de de Sitter plano, pode-se su- 

gerir que há, nesse caso, a possibilidade de geração de bolhas de curvatura 

negativa que evoluem independentemente como universos isolados, com um 

horizonte de eventos cosmológico separando-os do universo original. Essa é, 

basicamente e de forma bastante simples, uma idéia que, apresentada em 

[16], pode, em princípio, ser descrita num formalismo quântico e estendida 

para se estudar a possibilidade de surgimento quântico de um universo de 

curvatura negativa; para tanto, porém, é necessário primeiro estudar o for- 

malismo quântico mais básico que se aplica à cosmologia e, portanto, este 

será 0 assunto do próximo capítulo. 

*Note-se que essa solução é válida paxa as equações de Einstein sem constante cos- 

mológica. Uma forma mais geral dessa solução, obtida das equações de Einstein com 

constante cosmológica, e conhecida como solução de Schwarzschild-de Sitter [8], é repre- 

sentada pelo elemento de linha 

ds^ = f (m,7) dt^ — — r — (d6^ -I- sin^ Odip"^) , 
/ (m, 7) 

onde 

/(m,7) = 1 - —-7^2 . 
r 
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3 

O padrão quântico 

0 que é ela? Um espírito? Um corpo? 

Uma espécie de espírito ou de corpo? 

Se pudéssemos dizer: “um certo nada, que é e não é” 

- eis o nome que lhe daria. 

Mas tinha de existir de qualquer maneira, 

para poder tomar estas formas visíveis e complexas. 

Santo Agostinho, em ‘Confissões’. 

Pode-se especular que a teoria por trás do Big Bang, a relatividade 

geral, não seja válida para situações envolvendo a escala de Planck^, e que 

para sistemas nestas condições a descrição mais adequada seja baseada na 

mecânica quântica; tal suposição abre caminho para tentativas de uma des- 

escala de Planck é aquela cujas dimensões são da ordem das dimensões construídas 

apenas com as constantes fundamentais c, G, h e ks; explicitamente, pode-se ter a massa 

de Planck, mpi = y/fícfG « 2,2 x 10~®p, o comprimento de Planck, ípi — yJhG/c? w 
1,6 X 10“^^cm, a temperatura de Planck, Tpi = \Jhd‘ jG w 1,4 x 10^“^K, e assim por 

diante [17]. 
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crição quântica do universo primordial, possibilitando o que se convencionou 

chamar de cosmologia quântica. 

Ao se tentar, porém, descrever o universo de forma quântica surgem al- 

guns problemas formais, tais como decidir qual o processo de quantização a 

se seguir. Na mecânica quântica há, de forma geral, duas descrições possíveis, 

uma mais simples, envolvendo apenas equações diferenciais, como a equação 

de Schroedinger, e outra mais sofisticada, formulada por Richard Feynman, 

usando integrais de trajetória, ambas, porém, podendo ser obtidas a partir 

da integral de ação que descreve os sistema a se quantizar; na cosmologia 

quântica há propostas envolvendo as duas descrições, exemplificadas por li- 

nhas de trabalho que podem ser agrupadas, de forma simplificada, sob os 

nomes de “tunelamento a partir do nada” [18, 19] (do inglês tunneling from 

nothing) e “proposta [da condição de contorno] sem-fronteiras” [20] (do inglês 

no-houndary proposal). 

Neste trabalho somente uma visão bastante geral da cosmologia quântica 

será apresentada^, isto é, aquela que possui forte analogia com a equação de 

Schroedinger e a mecânica quântica mais introdutória, sem haver grande pre- 

ocupação com a existência (ou não) de problemas inerentes ao formalismo 

que leva a tal descrição^, com a intenção de mostrar como o problema da 

forma do universo aparece ou não - ou pode vir a aparecer - em modelos 

simples de cosmologia quântica. Assim, as duas próximas seções descrevem 

brevemente o formalismo Hamiltoniano geraF que, seguido por processos de 

quantização canônicos, leva à equação diferencial de Wheeler-deWitt, análoga 

a uma equação de Schroedinger independente do tempo; em seguida, numa 

última seção, são apresentados modos simples de se obter soluções de cos- 

mologia quântica para um universo com matéria, abrindo caminho para a 

descrição de um modelo particular onde há a possibilidade de mudança de 

abordagem deste texto segue de perto as referências [5], [21] e [22]. 
^Sobre críticas às interpretações mais comuns dos modelos usuais de cosmologia 

quântica veja-se, por exemplo, [23]. 

^Sobre este assunto uma visão mais completa pode ser encontrada em [17], [24] e [25]. 
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topologia. 

3.1 Formalismo Hamiltoniano 

Na mecânica clássica as equações de movimento de um sistema qualquer 

podem ser vistas como provenientes das variações da função Lagrangeana L 

que mantém estacionária a ação S , 

5 = y Ldt , (3.1) 

sendo L uma função das coordenadas do sistema e suas derivadas, que re- 

presentam os graus de liberdade do sistema; uma forma generalizada dessa 

expressão para um espaço-tempo n-dimensional envolve o uso de uma função 

densidade Lagrangeana £, 

^ — J = J cTxy/^L , (3.2) 

onde g é o determinante da métrica do espaço-tempo n-dimensional onde a 

integração deve ser feita. A função densidade Lagrangeana que produz as 

equações de Einstein da relatividade geral é 

Cgrav = -^[R + 2A] , (3.3) 

onde agora g é o determinante da métrica quadridimensional e R é o 

escalar de Ricci; tal função densidade ainda produzirá as mesmas equações se 

a ela se adicionar uma quadridivergência e, assim, a ação S pode ser reescrita 

adicionando-se um termo de fronteira, isto é, 

S = [ d^xCgrav + 2 / d^xy/hK (3.4) 
Jm JdM 

onde K é uma função definida na fronteira tridimensional dM, de métrica 

hij, do espaço-tempo quadridimensional M; o fator 2 multiplicando a integral 

de superfície foi colocado por conveniência. 
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Esta abordagem permite obter uma expressão alternativa - e equivalente 

- da função densidade Lagrangeana da relatividade geral a partir de uma 

forma da métrica onde se explicita a divisão entre espaço e tempo das coor- 

denadas; tal divisão particular da métrica, conhecida como formalismo ADM 

(Arnowitt-Deser-Misner) [26], é feita através do uso de uma função de retardo 

(do inglês lapse function) N e de uma função de deslocamento (do inglês shift 

function) N'’, 

— 9nudx^dx^ (3.5) 

= (Ndt)^ - hij (^N^dt + dx^) [N^dt + dx^) . 

Basta agora definir a curvatura extrínseca Kij, 

Kij = 
1 

m 

1 

d i 
Niu + N.u - i\j 

dNi 
+ 

dNi 

dx^ dx^ 

dt 

- 2rn,iv‘- htj (3.6) 

de traço K = N^Kij, para se reescrever o escalar de Ricci como sendo 

R = KijR 

= Kij -(2) R 

= {hijhki - hikhji) K^^K^^ -(3) R , (3.7) 

onde é a curvatura da parte espacial da variedade em consideração; 

como esperado, a única diferença que se obtém entre esta forma do escalar 

de Ricci e a ‘tradicional’ é uma quadridivergência que não influi na obtenção 

das equações de movimento. Desse modo, a densidade Lagrangeana da rela- 

tividade geral pode ser reescrita como 

= + , (3.8) 

onde usou-se a igualdade — N\/h. 
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Desta densidade Lagrangeana, e usando a definição da curvatura extrín- 

seca, pode obter-se momentos conjugados às ‘coordenadas’ N, iV® e h{j, 

ÔC 
7T = —^ = 0 , 7T® 

ô N 

5C grav _ Q 

5 N'' 

ir« = - K‘>) ; 
6 hij ISir ' > 

(3.9) 

(3.10) 

as duas primeiras equações são os vínculos ‘primários’ do sistema, enquanto 

a terceira permite a montagem dos escalares 

h 
Tr'^^TTij = 

(IGtt)' 
(/s:^ + K^^Kij) 

TT^hii = -rr—K , 
IGtt 

de modo que se pode escrever 

IQttN 

“7T 
■K^^TTij - 

(3.11) 

(3.12) 

(3.13) 

Com as quantidades apresentadas até agora uma densidade Hamilto- 

neana, Hgrav, pode ser construída a partir da relação 

'^grav -— ^ ^ ^ij ^grav j 

podendo-se mostrar que ela se divide em duas partes, 

Kgrav = Nn + N^Ui , 

onde 

(3.14) 

(3.15) 

n = 
IGtt 

Vh 

IGtt 

7T •'7T. 
{TT^^hijY 

V 

\/h 
= {hikhjt + hiihjk - hijhki) -I- ^ [2A R 

= lG7rGijfe/7r'-^7r*' + ^ [2A i?] (3.1G) 
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é a super-Hamiltoniana do sistema, e 

W = -27rg (3.17) 

é o supermomento; a divisão da densidade Hamiltoniana nestas quantidades 

permite a observação de dois vínculos secundários do sistema, já que pode se 

escrever as igualdades 

5H 
*={7T,ÍÍ} = —= «=0 (3.18) 

e 

ir‘={v‘,H} = ^ = n‘ = 0, (3.19) 

onde H = Ím (fixTigraví e {u, t»} é o parênteses de Poisson das quantidades u 

e V. 

3.2 Quantização 

Identificando os momentos tt*-' obtidos na seção anterior com os operadores 

diferenciais dados pela relação 

S 

ôhi 
(3.20) 

V 

e usando que as equações dos vínculos primários e secundários obtidas ante- 

riormente podem ser interpretadas como condições impostas por operadores 

quânticos sobre uma função de onda dependente das 3-métricas, ^ [/ly], pode- 

se escrever a partir do vínculo da super-Hamiltoniana a equação diferencial 

_S ô__ 

óhij óhiçi 

s/h 

(IGtt)^ 
(2A -(3) r) ^ [hij] = 0 , (3.21) 

® Note-se que aqui poderia aparecer um fator (167t)~^ colocado arbitrariamente na for- 

mulação do operador de momento para fazer a equação de Wheeler-deWitt obtida coincidir 

com a forma mais comumente apresentada na literatura, isto é, aquela que aparece, por 

exemplo, nas referências [21] e [24]; em [5] o fator usado é (167t)~^^^ enquanto que em [2] 

e [27] não há fator algum. 
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conhecida como equação de Wheeler-deWitt; tal equação, obtida desconside- 

rando-se a possibilidade da presença de matéria, pode ser facilmente genera- 

lizada para incluir um termo devido a um tensor momento-energia 

_ô ô_ 

ôhij óhff^i 

y/h 

(Iôtt)" 
(2A R - leTrToo) ^ [hij] = 0 (3.22) 

Como a equação de Wheeler-deWitt envolve derivadas funcionais feitas 

sobre uma função de onda definida no espaço 6-dimensional das 3-métricas 

hij, espaço esse conhecido como superespaço, são usadas algumas simpli- 

ficações que levam a equações diferenciais ordinárias, tais como a restrição 

a soluções válidas apenas em um mini ou midisuperespaço, que é um subes- 

paço do superespaço original. Outra simplificação, presente já no processo 

geral de quantização mostrado até agora, consiste em ignorar completamente 

possíveis ambigüidades na ordenação dos termos tt*-! hij presentes na Hamil- 

toniana; tal problema pode ser contornado usando-se como procedimento 

padrão a identificação 

7T —> -h^Q-P 
dq dq 

(3.23) 

onde 7T é 0 momento associado à coordenada generalizada q, e p é uma cons- 

tante numérica. 

Estes procedimentos simplificadores fornecem, para um universo sem ma- 

téria, descrito pelo elemento de linha de FLRW, a equação diferencial 

pd^íf / k _ Q 

do? ^ a da 3 / 

onde a é o fator de escala, evk = /aí y/hd^x é 0 volume do espaço considerado; 

no caso mais simples, em que p = 0, essa equação se resume a 

da^ \à^ 3 J 
(3.25) 

totalmente análoga a uma equação de Schroedinger independente do tempo 

para uma partícula sujeita ao potencial 
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U{a) 
9vla^ í k A\ 

\a^ 3 / 167r‘^'y'^h^ 
? (3.26) 

onde 7^ = A/3; este potencial tem sua forma bastante dependente do parâme- 

tro de curvatura k, tal como aparece na Figura 3.1, levando ao aparecimento 

de uma região classicamente proibida e outra classicamente permitida apenas 

no caso de curvatura positiva â: = -1-1, sendo este, então, o único caso em 

que há uma probabilidade fisicamente bem-definida de se ter a criação do 

universo por “tunelamento a partir do nada”®. 

Deve-se notar que a equação (3.25) não tem solução analítica, podendo-se, 

contudo, buscar soluções ‘semiclássicas’ do tipo 

í' = exp (3.27) 

a substituição dessa hipótese na equação (3.25) leva a 

i 1 í k 2^ n 

h da^ k? ydoj ^ ) 

®Como, neste modelo, há o aparecimento de uma barreira de potencial apenas no caso 

em que fc = +1, pode-se até pensar que um universo com curvatura positiva é o único 

modelo permitido pela cosmologia quântica, como fica claro em outras citações [28]: 

"Uma conclusão fundamental de nossa investigação é que apenas um universo 

espacialmente compacto pode se originar como um evento de tunelamento 

quântico. (...) 0 estado inicial de nosso universo tem uma geometria fc = 1 

compacta, e a questão surge: De onde isto veio?" 

e[29] 

"(...) é claro que um universo aberto não pode surgir via tunelamento 

quântico." 

Do mesmo modo, diversos textos com exemplos básicos de soluções de cosmologia quântica 

só apresentam funções de onda obtidas para universos com curvatura positiva [5, 21, 22, 27]. 
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Figura 3.1; Comportamento qualitativo do potencial U (a). 

ou, após reagrupamento dos termos, 

ih 
(PS 

do? 

9vla^ 

\daJ 167t2 
-7 0; 

desconsiderando-se o termo contendo h a solução dessa equação é 

= -^ (a - -yV) 
3/2 

47T7^ 

e, assim. 

'F (a) = exp 
IVk 

AttHy 
(jc — 

3/2 

(3.29) 

(3.30) 

(3.31) 

note-se que essa solução bastante simples, sem matéria, apresenta uma de- 

pendência no volume Vk do espaço considerado, sem espaço para outro tipo 

de invariante topológico. 

A solução representada pela equação (3.31) é similar àquelas obtidas pelo 

método WKB^, que têm sua validade bem definida para o caso de curvatura 

positiva, quando há uma barreira de potencial dividindo o sistema em duas 

^Ver, por exemplo, [22]. 
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regiões permitindo escrever a solução completa como sendo composta de duas 

partes, 

e 

í^/(o<a<7 exp 

(a > 7“^) oc exp - 

ilT 

~2h^ 
(l - 7^0^) 

3/2 
(3.32) 

(3.33) 

onde usou-se que = 27t^. 

3.3 Soluções com matéria 

Como exemplo mais simples de modelo de cosmologia quântica onde se leva 

em conta a existência de matéria pode-se, por exemplo, usar um campo 

escalar, bastando escrever uma densidade Lagrangeana, 

>^0 = -^g^''dn<Í>^u(t> - V (0) 

extrair dela o momento associado ao campo, 

3 • 
7T0 — . — VfçCl (p , 

5 (f> 

e, a partir daí, obter a Hamiltoniana 

H — 7T(j Qf ~\~7Tfp (j) , 

procedendo-se então a quantização usual 

que leva à equação 

^2 p d 
+ - 

3 a2 9vla‘^ 

(3.34) 

(3.35) 

(3.36) 

 ,  — - — - —V 
do? ah da A-ko^ d<f? 3 3 ^ 

(3.37) 

^(a,(^)=0 . 

(3.38) 
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Outros tipos de matéria podem ser adicionados analogamente. 

É importante reafirmar que as equações diferenciais obtidas nos mode- 

los mais simples de cosmologia quântica são sempre análogas a equações de 

Schroedinger independentes do tempo, ou seja, nesses modelos mais básicos 

há o problema da ausência de definição de uma variável temporal, o que é, na 

verdade, não um problema desses modelos, mas sim um problema fundamen- 

tal, intrínseco, da cosmologia quântica: de forma simplificada, pode-se dizer 

que se na mecânica quântica tradicional há sempre um observador externo 

ao sistema quantizado e em relação ao qual podem ser definidas medidas 

de tempo, na cosmologia quântica o sistema quantizado é o universo todo, 

incluindo todos os observadores - assim, neste último caso, como se pode 

definir uma variável temporal intrínseca? 

Uma das propostas para se contornar esse problema consiste em usar como 

‘relógio’ interno do sistema um campo de ‘poeira’ representando uma dis- 

tribuição irrotacional de matéria, conhecido como fluido de referência gaus- 

siano [30], que pode ser descrito pela densidade Lagrangeana 

A = x/=í + m?)-v (Ç) 

e pelas equações 

e 

= 
m 

(3.39) 

(3.40) 

u‘'u^ = 1 (3-41) 

onde é a. quadrivelocidade do campo ^ de partículas de massa m, densidade 

de número de partículas n e energia potencial U; tais características deste 

fluido fazem com que o momento associado a ele apareça de forma linear 

na formulação Hamiltoniana, o que corresponde a uma derivada de primeira 

ordem na equação diferencial obtida após o processo de quantização, e a um 

termo que, na função de onda do universo, faz uma perfeita analogia com 
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uma variável temporal. Tal tipo de campo é, assim, útil quando se quer 

analisar algum comportamento evolutivo da função de onda do universo, tal 

como a mudança de topologia que será vista no penúltimo capítulo desta 

tese®. 

®Sobre o uso de um fluido de referência como relógio interno do sistema há duas citações 

interessantes, a primeira contida no artigo “Tempo na gravidade quântica: uma hipótese”, 

de C. Rovelli [31] 

“O tempo não existe por si mesmo. O tempo toma seu sentido dos objetos: 

do fato que eventos estão no passado, ou que eles estão aqui agora, ou que 

irão se seguir no futuro. Não é possível que se meça o tempo por ele mesmo; 

ele pode somente ser medido por observar-se o movimento dos objetos, ou a 

sua pacífica quietude.” 

e a outra presente num artigo mais específico, “Fluido de referência gaussiano e inter- 

pretação da geometrodinãmica quântica”, de Kuchar e Torre [30] 

“Muito antes das pessoas descobrirem como tratar a gravidade como um sis- 

tema dinâmico e se preocuparem com a sua quantização, elas inventaram um 

aparato conceituai para o reconhecimento de eventos: a noção de um fluido 

de referência. As partículas do fluido identificam pontos do espaço, e relógios 

carregados por elas identificam instantes de tempo." 

Uma das pessoas a ter essa idéia foi Einstein [32]: 

"(...) a marcha dos relógios é influenciada pelos campos gravitacionais, de 

tal forma que uma definição física do tempo que seja feita diretamente com o 

auxílio de relógios não possui de forma alguma o mesmo grau de evidência que 

na Teoria da Relatividade Especial. 

Por isso utilizamos corpos de referência não rígidos, que não apenas têm um 

movimento arbitrário, mas que também, durante o movimento, passam por 

mudanças arbitrárias de forma. (...) Este corpo de referência não rígido, 

que não sem razão poderiamos denominar ‘molusco de referência', equivale no 

essencial a um sistema de coordenadas gaussiano quadridimensional qualquer.” 
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4 

Problemas topológicos 

0 universo (que outros chamam a Biblioteca) compõe-se 

de um número indefinido, e talvez infinito, de galerias hexagonais, 

com vastos postos de ventilação no centro, 

cercados por balaustradas baixíssimas. 

De qualquer hexágono, vêem-se os andares inferiores e superiores: 

interminavelmente. 

Jorge Luís Borges, em 'A Biblioteca de Babel'. 

A pergunta ‘Qual é a forma do espaço?’ foi recentemente trazida à tona 

por várias publicações destinadas à popularização da ciência, por causa dos 

resultados de medidas da radiação cósmica de fundo, feitas com balões, e ba- 

tizadas como Boomeraiig^ e Maxirna. A revista brasileira Superinteressante, 

^Os resultados do experimento Boomerang indicam um universo com 0.88 < Dq < 1-12 

[33], ou seja, um universo com curvatura quase nula, algo previsto pela teoria infiacionária, 

e que em princípio não exclui a hipótese de um universo hiperbólico ou esférico, pois o 

período inflacionário não muda a curvatura anterior do universo, apenas a diminui em 

valor absoluto: em modelos ‘bem-sucedidos’ de inflação o valor atual de ômega, fio, se 

relaciona, aproximadamente, com o valor de ômega antes do período de inflação, fli, por 
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por exemplo, no mês de julho de 2000 [34] traz impressa em sua capa, en- 

tre outras, a manchete “A forma do universo: astrônomos descobrem que o 

Cosmo é plano”. A revista francesa Science et Vie de junho [35] traz uma 

seqüência de artigos^ onde o físico italiano Paolo de Bernardis afirma que 

“podemos dizer com uma grande certeza que o Universo é plano” 

Na descrição cosmológica permitida pela relatividade geral, vista no se- 

gundo capítulo desta tese, a dinâmica (ou evolução temporal) do universo é 

dada, basicamente, por equações que, a partir do conteúdo de matéria ex- 

presso no tensor momento-energia e da constante cosmológica, fornecem o 

fator de escala a (t) em função do tempo e do parâmetro de curvatura fc; 

contudo, estas equações determinam apenas a geometria local do universo, 

não sua forma global ou, melhor dizendo, sua topologia [37]: 

“Qual é a forma do espaço? E plana, ou é curva? Ele é belamente 

esparramado, ou é dobrado e amassado? É finito, ou é infinito? 

Qual dos seguintes se parece mais com o espaço: (a) uma folha de 

papel, (b) um deserto infinito, (c) uma bolha de sabão, (d) uma 

rosquinha, (e) um desenho de Escher, (f) um cone de sorvete, (g) 

os ramos de uma árvore, ou (h) um corpo humano?” 

O objetivo deste capítulo, que quebra um pouco a seqüência até agora 

apresentada neste trabalho, é mostrar que a pergunta ‘Qual é a forma do 

espaço?’ pode ter muitas diferentes respostas, mesmo para um único valor do 

meio da expressão [5] 

|íío - 1| exp [-2Ntot] - 1| , 

sendo Ntot a quantidade total de inflação do modelo. Além disso, durante sua evolução 

clássica 0 universo não pode mudar de topologia. 
^Num desses artigos há uma grande ilustração onde se rotula como excluída a hipótese 

de um universo curvo; leia-se a nota anterior. 
publicação americana Astronomy de agosto [36], um pouco mais cuidadosa, tem 

como cabeçalho para o artigo ‘Desvendando o universo plano’ a frase “Novas observações 

da radiação cósmica de fundo sugerem que o universo é plano e irá se expandir para sempre 

numa taxa acelerada” (o itálico é meu). 
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parâmetro de curvatura k\ a idéia de se estudar problemas topológicos é de- 

terminar quais invariantes ou quais medidas podem determinar as diferenças 

entre essas possíveis respostas. Um exemplo simples de um desses problemas 

é a determinação de autovalores da equação de Helmholtz em espaços com 

topologias não-triviais^; mais fundamental, porém, é a busca por uma clas- 

sificação matemática desses espaços não-triviais: assim, mesmo com o risco 

de uso de um excesso de didatismo, a primeira seção deste capítulo descreve 

brevemente a classificação e representação de espaços bi e tridimensionais de 

topologia não-trivial, passando-se depois, então, a duas seções descrevendo 

estudos de problemas práticos relacionados a espaços compactos de topolo- 

gia não-trivial, a primeira delas não diretamente ligada ao assunto que é 

título desta tese, a cosmologia quãntica, mas a um problema matemático que 

aparece na cosmologia clássica®, enquanto a segunda mostra um problema 

cuja solução terá utilidade no modelo de cosmologia quãntica apresentado no 

próximo capítulo. 

4.1 Noções básicas de topologia 

Um dos mais simples espaços de topologia não-trivial é o bitoro plano, for- 

mado pela identificação (ou colagem) dos lados opostos de um retângulo 

(sem inversão de sentido), e conhecido como T^; tal espaço é finito, mas sem 

fronteiras, e pode ser representado de forma equivalente pela colagem das 

faces opostas de um hexágono, ambas as representações (retangular e hexa- 

gonal) podendo ser obtidas pelo ‘corte’ da superfície bidimensional de um 

toro real®, que é uma superfície fechada ao redor de uma perfuração central 

(uma cãmara-de-ar). 

‘‘Ver, por exemplo, [38] e as referências lá contidas. 

5Ver [39, 40]. 
® A equivalência entre as duas representações do bitoro plano pode ser vista através do 

cálculo de um invciriante conhecido como número de Euler, x, definido para uma superfície 

S através dos números F de faces (ou polígonos), E de arestas (ou lados), e V de vértices, 
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Tanto um retângulo quanto um hexágono servem para, através do uso 

de infinitas cópias, preencher sem falhas o espaço Euclideano infinito ; 

este processo de recobrimento ilustra, intuitivamente, o primeiro passo no 

processo de classificação de um espaço compacto, de topologia não-trivial: 

o que se faz é usar - como ladrilhos numa parede - infinitas cópias de um 

polígono fundamental, dividindo assim adequadamente o espaço infinito que 

é recoberto (chamado então de espaço de recobrimento); cada polígono fun- 

damental, com as devidas identificações de pares de lados, representa o espaço 

fechado, de topologia não-trivial, em estudo. 

Na representação poligonal de um espaço de topologia não-trivial pode-se 

ter curvas fechadas (ou loops) que só voltam ao ponto de partida ao atraves- 

sar um ou mais dos lados do polígono; se uma destas curvas, começando num 

ponto X do polígono fundamental, ao invés de voltar para dentro do polígono 

inicial, é estendida pelas cópias presentes no espaço de recobrimento, vai 

terminar num ponto x' numa das cópias. Há desse modo uma identificação 

possível entre os pontos xex', por deslocamentos dentro do espaço de recobri- 

mento; são estes deslocamentos (ou isometrias) que, formando um grupo, T 

(dito grupo de holonomia), caracterizam a divisão do espaço de recobrimento 

em polígonos fundamentais, ou seja, caracterizam, em última instância, o 

espaço de topologia não-trivial representado pelo polígono fundamental. 

Dito isso, pode-se resumir o processo de classificação das topologias de 

uma determinada variedade em três passos [41]: 

• determinação do espaço de recobrimento; 

constituintes da superfície: 

X{S) = F-E + V 

O bitoro, quando formado pela colagem de um retângulo, possui uma face (o próprio 

retângulo), duas arestas (dois lados distintos) e um único vértice (os quatro vértices do 

retângulo sâo identificados no processo de colagem); assim, neste caso, x = l — 2 + 1 = 0. 

Já no caso do bitoro hexágonal há uma face (o hexágono), três arestas (os lados são 

identificados em pares) e dois vértices (neste caso os vértices sâo identificados em grupos 

de três); logo, de novo, x = l~2 + l = 0, confirmando o resultado x (T^) = 0. 
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• determinação do poliedro fundamental; 

• cálculo do grupo de holonomia F. 

O bitoro plano tem a mesma topologia da superfície do toro real, só que 

com curvatura constante, nula. A superfície de uma esfera, que é fínita e sem 

perfurações, representa, por sua vez, um espaço bidimensional de curvatura 

positiva constante^, o S'^, que também pode ser dividido por um ‘polígono 

fundamental’; a linha do equador, por exemplo, divide a esfera em duas 

calotas iguais, com cada ponto de uma calota podendo ser ligado - e identifi- 

cado - a um outro ponto na outra calota por uma linha que passa no centro 

da esfera (um diâmetro). Desse modo, a esfera passa a ter duas cópias do 

espaço conhecido como espaço projetivo, ou que é multiplamente conexo 

e não-orientável-, pode-se ver que o grupo dos movimentos que identificam 

os pontos nas duas cópias do espaço projetivo possui apenas dois elemen- 

tos, a identidade e o elemento que leva de um ponto x ao seu homólogo x', 

caracterizando o grupo cíclico® isomorfo ao grupo Z2, o que, por sua vez, 

permite escrever como um espaço quociente: P^ = Enquanto a 

área da esfera unitária é 47t, a área do plano projetivo é 27t; na esfera a maior 

distância entre dois pontos (dois polos) é tt, e no plano projetivo é 7t/2. 

^Para calcular o número de Euler de uma esfera é interessante notar que ele pode 

ser calculado divididindo-se a superfície em estudo em pedaços poligonais menores. O 

bitoro retangular, por exemplo, pode ser dividido em dois retângulos por um segmento 

de reta vertical; a superfície do bitoro paasa então a ter duas faces (dois retângulos), 

quatro arestas (a única horizontal agora dividida em duas, mais duas verticais) e dois 

vértices (o novo vértice é o que aparece nas duas extremidades do segmento de reta); 

assim, X (7’^) = 2- 4 + 2 = 0. Tal processo de divisão da superfície (triangulação) permite 

o cálculo do número de Euler da esfera por sua divisão em oito triângulos, usando-se 0 

equador e dois meridianos, criando doze arestas e seis vértices (dois nos pólos e quatro no 

equador): x [S^) = 8 - 12 + 6 = 2. 
®0 grupo cíclico de ordem p (ou seja, é um grupo finito com p elementos), Cp, com 

p > 2, é formado por potências de um único elemento: Cp = (a°,a^,a^,...,aP“^). Tal 

grupo é isomorfo (isto é, tem uma correspondência elemento a elemento) ao grupo de 

inteiros modulo p, conhecido como Zp, isto é, a’’ e Cp r e Zp [42]. 
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No caso de curvatura negativa, o espaço de topologia não-trivial mais 

simples, finito e sem fronteiras, é formado pela identificação de pares de la- 

dos de um octágono®; tal espaço representa a superfície de um toro duplo^° 

(um ‘oito’ ou ‘rosquinha dupla’). Seguindo a idéia de divisão do espaço de 

recobrimento, o espaço hiperbólico bidimensional H'^, infinito, pode ser re- 

coberto por infinitos destes octágonos, notando-se, porém, que enquanto no 

espaço Euclideano os lados de um polígono fundamental são formados por re- 

tas, no espaço hiperbólico os lados devem ser formados por hipérboles. Vale 

a pena citar que diferentes espaços hiperbólicos compactos bidimensionais 

podem ser construídos com polígonos de 4g lados, com g > 2, todos repre- 

sentando g toros unidos^pode-se mostrar, pelo teorema de Gauss-Bonnet 

[44], que a área de cada um desses espaços é dada pela expressão simples 

Ag = Att {g — 1), o que, em princípio, permite classificar as superfícies bidi- 

mensionais hiperbólicas por área. 

É importante ressaltar que, ao contrário do que ocorre com um espaço 

plano bidimensional ou mesmo com o espaço 5^, o espaço hiperbólico 

não pode ser posto (ou imerso) no espaço Euclideano tridimensional E^\ 

seu ‘lugar natural’ é um espaço Lorentziano tridimensional (um espaço de 

Minkowski) e, assim, é interessante, para visualização, projetar o espaço 

no espaço Euclideano num processo totalmente análogo ao de criação de 

mapas planos da superfície esférica da Terra, destacando-se, em particular, 

os modelos de Klein e Poincaré, onde todo o espaço H'^ é projetado num 

®Há pelos menos dois modos distintos de se fazer a identificação dos lados, ambos 

oriundos do mesmo toro duplo [43]; o mais simples é identificar os lados opostos. 
^°Só por curiosidade: o número de Euler deste espaço é x = 1—4+1 = —2. O importante 

a se notar aqui é que pode-se ter, imersas no espaço Euclideano tridimensional, superfícies 

bidimensionais fechadas com g furos {g = 0,1,2,...): o número de Euler de cada uma 

dessas superfícies é x = 2 — 2p; o número g é conhecido como genus da superfície, e cada 

superfície é um ‘toro g-uplo’. 
^^Tal resultado indica que o invariante g mede o número de ‘perfurações’ de uma su- 

perfície bidimensional orientável. 
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disco aberto de raio unitário^^. 

As idéias apresentadas aqui para espaços bidimensionais podem ser gene- 

ralizadas para espaços tridimensionais com poucas modificações; por exem- 

plo, ao invés de polígonos fundamentais o que se tem em três dimensões são 

poliedros fundamentais. Em perfeita analogia com o bitoro plano, pode-se 

construir por identificação das faces oposteis de um paralelepípedo, o tritoro 

plano (também conhecido como Ei), além de outros 5 espaços compactos 

planos orientáveis. Igualmente, a tri-esfera pode ser dividida em duas 

cópias do espaço projetivo IZ2, podendo-se obter também por di- 

visão da tri-esfera outros espaços fechados de curvatura positiva, tais como 

os espaços lente^^ Lp,ç e o espaço dodecaédrico de Poincaré^^; o volume de 

cada um desses espaços compactos de curvatura positiva é, obviamente, sem- 

^^Uma superfície bidimensional de curvatura constante A: = 0, ±1 pode ser descrita 

pela métrica Çij = diag [l, 1, k~^], com o vínculo + k (x^ -f = 1, o que permite a 

parametrização 

X = k~^P sinEPpcosíp, y = k~^P sink^Ppsmip, z = cosk^Pp. 

Um novo sistema de coordenadas, uk = x/z e vk = y/z, pode ser usado para definir 

uma projeção generalizada, que, no caso hiperbólico, é conhecida como projeção (ou rep- 

resentação) de Klein, bastante útil por ‘reduzir’ todo o espaço hiperbólico a um círculo 

de raio unitário. Nesta projeção as hipérbolas do espaço são transformadas em retas 

e, assim, 0 octágono que representa o toro duplo passa a ser visto como um octágono com 

lados retos. A projeção de Poincaré pode ser definida analogamente, com up = x/(l -I- z) 

e vp = y/{l + z); nesse caso as hipérbolas do espaço são transformadas em arcos de 

circunferência. 
^^Para construir um espaço lente colam-se as superfícies dos dois hemisférios idênticos 

de uma esfera tridimensional maciça, com uma rotação horária de um ângulo 2'Kq/p, sendo 

qep dois números primos entre si [45]; alternativamente, pode-se colar pela base poligonal 

de p-lados dois prismas piramidais, identificando-se as faces triangulares de um prisma com 

as do outro após a rotação de um ângulo 2t:q/p. São necessárias p cópias de um espaço 

lente Lp,, para preencher a esfera S^. 
^‘‘O espaço dodecaédrico de Poincaré é formado pela identificação das faces opostas 

de um dodecaedro com ângulos diedros de 120°, com um giro de 30°; neste caso tem-se 

Poincaré = S^/I, Onde I é O grupo de simetria do icosaedro, de ordem 60 [41]. 
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pre uma fração daquele da esfera S^, isto é, vol{M = S^/V) = 27T^/|r|, 

sendo |r| a ordem do grupo F. Ainda, os modelos de Klein e Poincaré do 

espaço hiperbólico tridimensional infinito projetam tal espaço no inte- 

rior de uma esfera de raio unitário, também em analogia com o caso bidi- 

mensional. Contudo, enquanto a classificação dos espaços bidimensionais 

compactos é completa, a dos espaços tridimensionais compactos não o é: 

os espaços hiperbólicos compactos tridimensionais, por exemplo, podem ser 

classificados por meio de seus volumes, mas não se tem certeza de qual é 

0 menor volume possível para tal tipo de espaços - o menor conhecido é a 

variedade de Weeks-Matveev-Fomenko, com volweeks = 0,942707; assim, e 

devido ainda à imensa complexidade dos poliedros fundamentais possíveis, 

no caso hiperbólico tridimensional é bastante conveniente ter-se um catálogo 

de espaços, tal como o apresentado no software SnapPea [46]. 

4.2 Autovalores da equação de Helmholtz 

Como um exemplo dos problemas teóricos que surgem no uso de espaços 

compactos em física pode-se examinar a determinação dos autovalores^^ k da 

equação de Helmholtz^® 

= 0 (4.1) 

num desses espaços; tal problema aparece relacionado, por exemplo, à de- 

terminação dos harmônicos produzidos por um tambor formado por uma 

superfície de topologia não-trivial ou, mais realisticamente, à análise dos mo- 

dos fundamentais possivelmente observáveis na radiação cósmica de fundo no 

caso do universo ser multiplamente conexo. Já que a equação de Helmholtz 

^^Não se deve confundir este k com o parâmetro de curvatura da cosmologia. 
importante declarar que o texto deste capítulo fundamenta-se quase que integral- 

mente num estudo paralelo desenvolvido por mim - e ainda sob análise paxa publicação - 

[47] durante o período de elaboração desta tese. 
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é uma equação de autovalores do operador de Laplace-Beltrami [44] 

V" = 4=9^ \^Í9g‘“'^A (4.2) 
V9 

definido para um espaço n-dimensional com métrica e onde g = jdet [g^u]\, 

um primeiro passo no sentido de se resolver o problema da obtenção dos 

autovalores consiste em definir as coordenadas a se usar, para daí então 

obter soluções analíticas genéricas; a não-trivialidade do espaço é posta nas 

condições de contorno que as soluções devem obedecer, condições estas que, 

de forma geral, envolvem algum tipo de periodicidade no espaço de reco- 

brimento, periodicidade esta claramente relacionada às isometrias do espaço 

compacto em estudo. 

No espaço Euclideano a equação de Helmholtz é facilmente resolvida em 

termos de funções trigonométricas das coordenadas cartesianas comuns; as 

condições periódicas que tais soluções devem obedecer num espaço compacto 

de curvatura nula estão ligadas, nos casos mais simples, a translações simples, 

isto é, como exemplo pode-se escrever 

{x,y) = ^ {x + Li,y + L2) , (4.3) 

sendo Li e L2 as distâncias características do quadrilátero fundamental, no 

caso bidimensional; tal tipo de condição de contorno vai produzir autovalores 

discretos calculáveis analiticamente. 

No espaço hiperbólico também não é difícil obter soluções analíticas da 

equação de Helmholtz; a maior dificuldade a se enfrentar envolve as condições 

de contorno presentes nos espaços hiperbólicos compactos, que, nos casos 

mais simples, estão relacionadas à invariância das soluções por transforma- 

ções de Lorentz, G, isto é, a identificação entre dois pontos x e x' é feita de 

modo que 

(x) = 'í (x' = Gx) . (4.4) 

Como tal exigência não é facilmente satisfeita por qualquer tipo de função, 

certos sistemas de coordenadas mostram-se mais adequados à obtenção de 
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soluções gerais do que outros. Infelizmente, mesmo assim obtém-se como re- 

sultado geral que não é possível expressar os autovalores em formas analíticas 

fechadas e, desse modo, o uso de métodos numéricos se torna interessante; 

contudo, os resultados obtidos por métodos numéricos devem ser confirmados 

nas soluções gerais encontradas. 

Como exemplo deste processo de busca por soluções da equação de Helm- 

holtz pode-se usar o caso bidimensional do toro duplo; o espaço hiperbólico 

pode ser representado em pelo menos duas parametrizações diferentes^^, 

uma ‘circular’ com as coordenadas (x, <^) e outra ‘hiperbólica’ com as coor- 

denadas (p, ü;), 

X = sinh X COS <p = sinh p 

< y = sinh X sin (p = cosh p sinh a; , (4.5) 

z = cosh X = cosh p cosh u) 

ambas obedecendo ao vínculo 

x^Xi = —1 (4.6) 

num espaço tridimensional com a métrica 

Pij =diag[l,l,-l] . (4.7) 

Partindo-se dessas parametrizações pode-se obter, em ambos os casos, solu- 

ções da equação de Helmholtz em termos de produtos de funções trigonomé- 

tricas - da coordenada <p, num caso, e da coordenada u no outro - e funções 

associadas de Legendre (ver Tabela 4.1). 

^^0 nome parametrização circular vem da expressão 

= sinh^ \ i 

que é a equação de um círculo de raio sinhx, mostrando que a coordenada x pode ser 

vista como uma coordenada radial no plano xy. Já o nome parametrização hiperbólica 

vem da expressão 
2/^ sinh~^ tu — = 1 , 

válida para o» 7^ 0, que representa uma hipérbole no plano xy. 
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Problema bidimensional: ^ {xi,X2) = A (xi) B (^2) 

= A;2 - 

‘circular’ ‘hiperbólica’ 

{Xi,X2) 

X sinh X COS ip sinh p 

y sinh X sin p cosh p sinh u 

coshx cosh p cosh u 

A{xi) $ = oi COS 5<p + Ü2 sin 5if Çl = Ü3 COS Xu + 04 sin Xtü 

B{x2) X = (coshx) 

+í'2Qii,v„ (coshx) 

R = (í sinh p) 

+&4Q'A , (í sinh p) j+ip 

X = ^1 — tanh^ x) 
TTpr 

R= (1 — tanh^ p) x 

k^!a+a (tanhp) 

+W^i+ix (tanhp) 

Tabela 4.1: Resumo do estudo da equação de Helmholtz em um espaço 

hiperbólico bidimensional. 

44 



Dois pontos P e P', cada um em uma diferente cópia adjacente do 

octágono que representa o toro duplo, são identificados pela relação [43] 

P' = ^jir/iP , (4.8) 

onde 

A •j7r/4 = Ri ■jir/A 

/ 1 0 0 \ 

0 cosh 77 sinh 77 

\ 0 sinh 77 cosh 77 / 

p—1 (4.9) 

é uma combinação de um boost de Lorentz de rapidez^® 77 na direção y com 

rotações de um ângulo ítt/4 no plano xy, 

Rjn/A — 

^ cos(j7r/4) 

sin (Í7t/4) 

V 0 

— sin(j7r/4) 0'' 

cos(j7r/4) 0 

0 1 ] 

(4.10) ■ 

com 0 < j < 3, cada valor de j correspondendo a uma diferente ‘cunha’ do 

octágono. 

No caso j = 0, que corresponde à cunha 

377 7/ ÕTT / , , 
tan—<-<tan— , (4.11) 

8 X 8 

tem-se, na parametrização hiperbólica. 

/ sinh p' ^ 

cosh p' sinh u' 

\ cosh p'cosh o;' / 

/ 1 0 0 \ 

0 cosh 77 sinh 77 

\ 0 sinh 77 cosh 77 / 

/ sinh p '' 

cosh p sinh {u + 77) 

\ cosh p cosh (07 + 77) / 

/ sinh p \ 

cosh p sinh o; 

\ cosh p cosh o; / 

(4.12) 

valor 77 = 2arccosh [l + \/Õ\ vem do diâmetro do círculo inscrito no octágono que 

representa o toro duplo, e não deve ser confundido com 0 tempo conforme 77 que apareceu 

no capítulo anterior. 
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ou seja, sob a mais simples transformação do toro duplo, tem-se o; —>• o; -f- ?y, 

uma condição de periodicidade adequada para soluções contendo funções 

trigonométricas da coordenada u). A outra parametrização, ‘circular’, mos- 

tra-se mais adequada para condições de contorno envolvendo periodicidade 

angular ou radial. 

A análise do problema tridimensional é similar já que o espaço pode 

ser visto como uma superfície dada pelo vínculo 

x^x^j, = -1 

num espaço de Minkowski quadridimensional com a métrica 

V = [1.1.1.-1] • 

(4.13) 

(4.14) 

Isto permite uma generalização quase óbvia das parametrizações circular e 

hiperbólica 

w — sinh X sin (p sin 6 = sinh p sin p 

X = sinh X COS v? sin 0 = sinh p cos p 

y = sinh x cos 9 = cosh p sinh u 

z = cosh X = cosh p cosh u 

(4.16) 

ligadas agora pelas relações trigonométricas 

sinh X sin 0 = sinh p 

cosh X = cosh p cosh u 

que podem ser escritas na forma mais geral 

(4.16) 

sin \/kx sin 9 = sin y/kp 

cos V^X = cos y/kp cos y/kuj 
(4.17) 

Contudo, as soluções da equação de Helmholtz obtidas destas parametriza- 

ções envolvem ao menos uma função bastante complicada e, assim, é interes- 
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Problema tridimensional: ^ (xi, X2,Xs) — A (xi) B (X2) C (X3) 

= \ — 

‘circular’ ‘hiperbólica’ ‘bi-hiperbólica’ 

(Xi,X2,X3) 

w sinh X sin cp sin 9 sinh p sin sinhÇ 

X sinh X COS y? sin 9 sinh p COS ip cosh Ç sinh p 

y sinh X COS 0 cosh p sinh uj cosh ^ cosh p sinh uj 

coshx cosh p cosh Lü cosh Ç cosh p cosh uj 

A{xi) $ = oi COS 5p 

+G2 sin 5(p 

$ = 03 COS ô(p 

+Ü4 sin Sip 

íl = COS Ao; 

~\~dQ sin Xlü 

B{X2) Q = biP^4_^^ (cos9) 

(cos 9) 

Q = Ò3 COS Ao; 

+64 sin Xu 

R = sech2 px 

(tanh p) 

+ 

b6Q’'_i^ix (tanhp) 

C'(X3) X = —isinh 2 

(coshx) 

+ 

^^Q^-í+q (coshx) 

5 = 

C3F [a, 7; cr] 

+ 

F\a+q,0+q-,2-'r,a] 
cosh^P p 

S = cosh 2 Ç X 

C5p’!i+^ (tanhO 

+ 

C6<3!.i+^ (tanh 0 

a _ 7+Í(?±A 

a — 'y—iSíX 
P — 2 

7 = 1 ±g 

cr = sech^ p 

Tabela 4.2: Resumo do estudo da equação de Helmholtz em um espaço 

hiperbólico tridimensional. 

47 



sante introduzir uma terceira parametrização, 

w ■ sinh Ç 

X = cosh Ç sinh p 

y = cosh Ç cosh p sinh u> 

z = cosh Ç cosh p cosh u 

(4.18) 

chamada ‘bi-hiperbólica’, que fornece soluções em termos de produtos de 

funções trigonométricas da coordenada u e funções associadas de Legendre 

das coordenadas Ç e p (ver Tabela 4.2). 

4.3 Integração em espaços compactos 

Outro problema que surge no uso de espaços compactos é o cálculo de in- 

tegrais de funções dentro desses espaços^^; a grande dificuldade que surge 

quando se usa um espaço fechado de topologia não-trivial consiste na de- 

terminação dos limites de integração dados pelo poliedro fundamental, difi- 

culdade essa que pode ser superada através do emprego de parametrizações 

adequadas. No caso específico de variedades tridimensionais hiperbólicas tal 

problema é, em princípio, mais básico, pois tais variedades são classificadas 

através de seus volumes; na prática, o que se usam são volumes tabelados, 

ou então fórmulas já algo padronizadas para o cálculo dos volumes, o que 

pouco auxilia no cálculo de integrais genéricas. 

Um exemplo de como o cálculo de integrais em espaços compactos não é 

trivial pode ser visto no cálculo da aparentemente simples integral 

onde k — 0,±1, x é uma coordenada radial medida a partir do centro do 

poliedro fundamental, dO. = úiíOdOdtp, e é um espaço compacto tridi- 

mensional genérico. Em geral tem-se x = X 6, assim, pode-se escrever, 

^®Esta seção descreve um estudo meu apresentado na referência [48]. 

(4.19) 
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num primeiro passo, 

= L , (4.20) 

O que exige a determinação dos limites dados pela função xo es- 

pecíficos para cada variedade V^-, como não é simples determinar a forma 

exata dessa função - dependendo da forma do poliedro fundamental, é quase 

impossível - pode-se, então, estabelecer os limites 

47T- 
sm 2\/^Xi, 

2v^ 
< /jt < 47T 

sin 2v^Xr 

2y/k 
(4.21) 

sendo Xmin e Xmax) respectivamente, os raios da esfera inscrita e circunscrita 

ao poliedro fundamental que representa a variedade V^. 

Um modo de se conseguir resultados mais precisos da integral consiste 

em reescrevê-la em termos do conjunto de coordenadas cilíndricas (p, <p, ui) da 

parametrização hiperbólica tridimensional, a partir das relações dadas pela 

equação (4.17), representadas também por uma relação entre elementos de 

linha. 

2 Sin \/fcx g-j^2 ^ . 

(4.22) 

Tal reformulação do problema em termos de novas coordenadas é vantajosa 

porque qualquer poliedro fundamental pode ser dividido por geodésicas do 

espaço em estudo em n tetraedros^° ABC D formados por quatro triângulos 

construção desses tetraedros obedece a três passos: 

• para cada face do poliedro fundamental desenha-se uma geodésica perpendicular 

ao plano dessa face conectando-o ao centro A do poliedro, e perfurando esse plano 

num ponto B; 

• para cada aresta do poliedro fundamental desenha-se uma geodésica perpendicular 

a ela ou ao seu prolongamento e conectando-a ao ponto B relativo à face à qucd 

esta aresta pertence, cruzando esta tiresta ou seu prolongamento num ponto C; 
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retângulos, com um deles, BCD, por exemplo, servindo então como base 

do tetraedro, que vai ter assim altura Uq = dAB', tal divisão em tetraedros 

permite, portanto, por uso de simples identidades trigonométricas no plano, 

a obtenção dos limites de integração para cada tetraedro, limites estes dados 

pelas relações 

0 < u < cüQ = dAB, 0 < < C B D (4.23) 

0 < p < Po ^) = arctan 
„ A ^sm y/kuj 

tan B A C  
COS <p 

O passo seguinte no cálculo de Ik consiste em notar que 

cos^ \/kx — sin^ \fkx 
Ii^ = j ^ cos^ Vkx ~ sin^ V^x] dxdO, = k J ^ 

sm' Vkx 

(4.24) 

dV 

(4.25) 

ou 

^ /v3 Vkx-l]dV = k [csc^ Vkx-‘^]dV , (4.26) 

onde 

dV = k~^ sin^ Vkxdxd^ , (4-27) 

ou, em coordenadas cilíndricas, 

dV = sinVkp COS VkpdpdüL)d(p . (4.28) 

Agora, a partir da equação (4.26) pode-se seguir dois caminhos; o primeiro 

consiste em usar a identidade 

csc^ Vkx = 
1 sec' y/kl w 

1 — cos^ Vkp cos^ Vku sin^ Vkp + tan^ Vku 
(4.29) 

• finalização do tetraedro por ligação com um dos dois vértices D da aresta usada no 

passo anterior. 

Alguns dos tetraedros formados neste procedimento vão ser ‘negativos’, isto é, cobrem 

regiões fora do poliedro fundamental; uma integração no poliedro fundamental consiste 

na diferença entre as integrais feitas nos tetraedros ‘positivos’ e as feitas nos tetraedros 

‘negativos’. E importante notar que por essa construção a base BCD de cada tetraedro 

pertence ao plano de uma face do poliedro fundamental. 
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e daí escrever 

{rCBD rdAB 

i ‘‘‘^Jo 

du 

2 COS^ y/k( 
In 

u 
sin^ \/kpo + tan^ Vkco - 2v„ 

(4.30) 

onde Vn é o volume do tetraedro em consideração; embora se possa ainda 

continuar com a integração para obter uma integral simples ao invés de uma 

integral dupla, o valor final de já pode ser obtido desta expressão pela 

soma das n integrações numéricas destas funções Ik,n feitas para cada um 

dos tetraedros que compõem o poliedro fundamental a partir dos dados da 

variedade V^. 

Contudo, alternativamente, pode-se voltar a (4.26) e notar que pode-se 

escrever 

cot^ Vkx — l] dV ViV^dV-kv , (4.31) 

onde 

ViV* = k cot^ \/kx (4.32) 

é uma equação que, em princípio, admite várias soluções para o trivetor 1^*; 

escolhendo arbitrariamente uma solução que só contenha, em coordenadas 

esféricas, uma única componente radial, encontra-se que 

V^ = - [^/ícot ^/kx + kxcsc^ n/Ix] = - + E 

onde a última igualdade mostra claramente o comportamento desta solução 

quando fc = 0. Tal resultado permite o uso do teorema de Stokes para fazer-se 

f ViV'dV= f kcot^VkxdV= í guV^rddA , (4.34) 
Jv^ jy3 Js=dv^ 

onde S = dV^ é a fronteira formada pelas faces de cada tetraedro com- 

ponente do poliedro fundamental, gij = diag [^1, cos^ v^p, sin^ Vkp\, 

é um vetor normal à fronteira obedecendo ao vínculo nPrij = 1, ou seja, 

sec \/fcp, e dA = sin y/kpdpdíp-, note-se que agora, em coor- 

denadas cilíndricas, somente a componente V‘^ = V^d^u, normal às faces do 

poliedro fundamental, é importante. 
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Integração da função / = cosh 2x 

em alguns espaços hiperbólicos 

Variedade volume /-I 2n sinh 2xmin 27t sinh 2xr 

Weeks 0,942707 9,284737 7,76109 13,4518 

Thurston 0,981369 9,48385 8,09029 13,3355 

m036(-3,2) 2,029883 13,48972 11,3208 23,4987 

m016(—4,3) 2,343017 14,55261 11,7314 18,3142 

m036(-2,3) 2,568971 15,316705 12,6901 20,6181 

Best 4,68594 21,4948 17,2847 49,6976 

?;3469(+3,l) 5,137941 22,541799 15,2178 57,1996 

Tabela 4.3: Resumo dos resultados obtidos na integração da função / = cosh 2x 

em algumas variedades hiperbólicas; os dados de cada poliedro fundamental 

foram obtidos no programa SnapPea, assim como os volumes e os raios das 

circunferências inscrita e circunscrita que dão os valores dos limites estimados 

para cada integral. 

Como exemplo dos resultados que podem ser obtidos com os métodos 

acima foram escolhidas algumas variedades hiperbólicas compactas para o 

cálculo da integral Ik, listando-se os valores obtidos na Tabela 4.3, ao lado 

dos quais aparecem os volumes e os valores dos limites estimados para cada 

uma das variedades; o ‘esqueleto’ do poliedro fundamental de seis dessas var- 

iedades aparece nas Figuras 4.1 a 4.6. Embora as variedades usadas possuam 

um certo grau de simetria que facilita os cálculos por gerar um menor número 

de tipos de tetraedros na divisão do poliedro fundamental, o procedimento 

apresentado aqui é válido, em princípio, para qualquer variedade compacta. 

Como ‘subproduto’ do procedimento apresentado acima pode-se obter 

expressões para o cálculo do volume de um espaço compacto a partir dos 

dados de seu poliedro fundamental; para o caso de espaços hiperbólicos tem- 
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se, para cada tetraedro componente do poliedro fundamental, 

_ r<^BD 

^ Jo T 

arctanh tanhüJq\I\ + sec^iptan^B AC 
— Lü 

1 + sec^ p tan^ B AC 
> (4.35) 

r^o düJ 

^ Jo T 

arctanh tan C B D ^cot^ B AC csch^ a; — 1^ 
-1/21 

Vcot^BACcsch^a;-^ 

(4.36) 

onde iüQ = dAB\ os resultados obtidos com estas expressões podem ser com- 

parados com os obtidos pelas fórmulas tradicionais apresentadas, por exem- 

plo, em [49, 50, 51], ou com os resultados tabelados apresentados na literatura 

para alguns espaços compactos. 
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Figura 4.1: Variedade de Weeks. Figura 4.4: m036(-2,3). 

Figura 4.2: Variedade de Thurston. Figura 4.5: m016(-4,3). 

Figura 4.3: Variedade de Best. Figura 4.6: v3469(+3,l). 
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5 

Um modelo com mudança de 

topologia 

Mudam-se os tempos, mudam-se as vontades. 

Muda-se o ser, muda-se a confiança. 

Todo o mundo é composto de mudança. 

Tomando sempre novas qualidades. 

Início de soneto de Camões. 

Nos capítulos anteriores tentou-se apresentar, numa seqüência lógica, al- 

gumas características básicas do modelo padrão da cosmologia clássica, tais 

como a descrição da dinâmica do universo pela equação de Friedmann, rela- 

cionando 0 fator de escala do universo e a sua densidade de matéria com o uso 

de um parâmetro de curvatura, a existência de problemas topológicos dentro 

dessa descrição, e algo da fundação teórica por trás dos modelos mais simples 

que tentam fazer uma extensão quântica desse padrão clássico. Este capítulo, 

que pretende ser o desfecho dessa seqüência, tem por intenção mostrar um 

modelo cosmológico particular, que busca unir esses estudos descritos an- 

teriormente, já que um modelo mais completo do universo deve, partindo 
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da relatividade geral, ir além dela, enfrentando a necessidade de prever de 

alguma forma qual pode ser a topologia global do universo, previsão essa 

que possivelmente só pode ser formulada numa teoria que inclua a mecânica 

quântica. 

Não é difícil argumentar que um modelo que inclua a cosmologia quântica 

deva levar em conta a existência de possíveis mudanças quânticas de topologia 

[52): 

“A questão de se a topologia do espaço pode mudar é básica na 

busca por uma teoria de gravitação quântica. Os teoremas de Ge- 

roch [1] e Tipler [2] são largamente entendidos como mostrando 

que não há mudança de topologia na relatividade geral clássica, de 

modo que nós devemos olhar para a teoria quântica para vê-la, se 

ela ocorrer. Embora a afirmação definitiva sobre a ocorrência de 

mudança de topologia poder muito bem ter que esperar até que nós 

tenhamos uma teoria de gravitação quântica completamente desen- 

volvida é entretanto geralmente acreditado que uma mudança de 

topologia realmente ocorre. (...) [1] Geroch, R.P. - J. Math. Phys. 

8, 782 (1967). [2] Tipler, F.J. - Ann. Phys. 108, 1 (1970)." 

O modelo aqui apresentado é interessante por aceitar tal possibilidade, 

tentando quantizá-la por meio de regras de seleção para as transições quânti- 

cas entre as diferentes possíveis topologias do universo. Como resultado, há 

nesse modelo a demonstração da existência de possíveis mecanismos teóricos 

que permitiriam o surgimento quântico de um universo fechado com cur- 

vatura negativa. 

Seguem-se, então, duas seções: na primeira, ‘Teoria’, a base teórica do 

modelo é apresentada, enquanto na segunda, ‘Números’, são mostrados al- 

guns resultados numéricos. 
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5.1 Teoria 

No capítulo ‘O padrão clássico’ mostrou-se que, usando o elemento de linha 

de FLRW, há uma solução exponencial da equação de Friedmann, com três 

possíveis valores do parâmetro de curvatura, /: = 0 ou ±1; os elementos 

de linha representando tais soluções podem ser vistos como sendo obtidos 

por diferentes parametrizações de regiões de um hiperbolóide 5-dimensional, 

mostrando-se também que tais soluções apresentam um horizonte de eventos 

similar ao de buracos negros. 

Tais características levam a se poder sugerir um modelo de criação do 

universo envolvendo uma mudança de topologia entre duas destas soluções 

com diferentes curvaturas: o universo inicial possuiria curvatura positiva e 

em algum de seus pontos ocorreria o surgimento quântico de um universo 

de curvatura negativa, possivelmente separado do universo inicial por um 

horizonte de eventos; tal universo de curvatura negativa, visto como uma 

solução de vácuo ou de densidade de matéria constante, evoluiria até se 

tornar um universo de curvatura negativa dominado por matéria. 

Este modelo, originalmente proposto para espaços com topologia trivial, 

pode ser ‘estendido’ para incluir topologias diferentes da trivial, através de 

uma seqüência de quatro passos [53]: 

• criação quântica, a partir de um ‘instanton’^, de um universo com geo- 

metria da solução de de Sitter de curvatura positiva e topologia não- 

trivial; 

• mudança quântica de topologia do universo para um espaço de de Sitter 

de curvatura negativa e topologia não-trivial; 

• inflação deste universo de de Sitter hiperbólico; 

^Um instanton é uma solução clássica das equações de campo euclideauizadas de um 

determinado sistema, de Cciráter local no tempo e amáloga a um sóliton [54]. 
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• transição de fase do universo de de Sitter hiperbólico, por meio de de- 

caimento do campo inflacionário (reaquecimento), levando à criação de 

matéria, com conseqüente início da evolução de um universo hiperbólico 

segundo a cosmologia padrão (modelo do Big Bang). 

O primeiro passo envolve a ‘transformação’ de um instanton de topologia 

S^^/T em um espaço-tempo de topologia R x S^/T: se F é o grupo trivial, 

formado apenas pela identidade, o processo envolve a passagem de uma es- 

fera 5^, dada pelo vínculo + x‘^x<i = 1, e obtida como solução das 

equações de Einstein euclideanizadas, para um espaço-tempo com seção es- 

pacial esférica; contudo, em geral F pode ser um grupo qualquer de isometrias 

de ação livre - sem pontos flxos - e propriamente descontínua^ em S^. Nem 

todo o instanton, representado simbolicamente como Mr = 5^/F, é usado 

na solução; o seu ‘hemisfério’ inferior, no qual x° < 0, possui como fronteira 

uma esfera equatorial, onde x^ = 0, representada como S = OMr, onde 

ocorre a ‘criação’ do espaço-tempo de estrutura lorentziana Mr = R'X 5'^/F, 

podendo-se, portanto, descrever a solução completa como sendo dada pela 

união M. = M.R Us M-r. 

A parte da solução representada pelo instanton tem a métrica dada pelo 

elemento de linha 

= díl-I-7“^cos^7Í£; 4-sin^ X + sin^ , (5.1) 

com um tempo ír sendo um tempo euclidianizado, enquanto a parte com 

topologia esférica pode ser descrita pelo elemento de linha 

ds^ — —dt^ + 7~^ cosh^ 7í \d"}^ + sin^ x + sin^ 0dyj^j j . (5.2) 

extensão da ação de F de para 5'^ é feita ‘naturalmente’ vendo-se S‘* como sendo 

formado por infinitas esferas 5^ paralelas à uma esfera equatorial, já que toda esfera 5" 

pode ser vista como formada por infinittis esferas 5"“^, com n > 2. As esferas paralelas 

presentes nos polos de 5“* são, na verdade, pontos, o que faria do espaço quociente 5^/F 

não uma variedade, mas sim um orbifold, pois nessas esferas a ação de F não será mais 

livre. 
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A mudança quântica de topologia desse universo esférico para um uni- 

verso hiperbólico pode ser analisada partindo-se do formalismo da cosmolo- 

gia quântica descrito brevemente no capítulo ‘O padrão quântico’; o ansatz 

deste modelo particular, desenvolvido por De Lorenci et ai, e apresentado 

em detalhe em [2], consiste da métrica presente no elemento de linha 

ds^ = NHx,t)~ 
NUx,t) 

dt^ - 2Ny^ (x, t) dxdt 
(X, t) 

-a^ (X, t) \dx^ + (x, t) dÜ^ {9, (p) (5.3) 

com {9, íç) — sin^ 9d9d(f, e da densidade Lagrangeana 

C = ■'grav + + Cç (5.4) 

representando a gravitação, um campo escalar çí> e um campo de poeira^ 

de onde pode-se buscar, como soluções de primeira ordem, funções de onda 

do universo do tipo 

^ = exp (5.5) 

onde 5 é a ação do sistema, e a e P são variáveis canônicas apropriadas 

construídas a partir do conjunto formado pelo fator de escala a e pela função 

a das coordenadas esférica radial X) do escalar de curvatura k e do tempo 

cosmológico t, 

a = \na, P = —2\n{aa) . (5.6) 

Tais funções de onda, quando substituídas nos vínculos da super-Hamilto- 

niana e do supermomento, 

n^ = 0 (5.7) 

e 

= 0 (5.8) 

^Ver seção 3.3. 
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levam às equações diferenciais funcionais 

,Q+/3 1 Í6S' 

8 Ua j ^ 

1 ÍÔS\ ÍÕS' 1 ÍÔS^ 
+:c -r- 

IS^S 1 Ô^S lô^S Í3ÔS lôS 
+ ::ir^ + X 

2 \ôaj \ôpj 2 \5(l) 

S{0) 
8Sa^ 2õaôp 2 5(j)‘^ \8Sa 4 5a 

5S 
+e“ ^V + -TT 

-2a ,5S ^,5S JS JS d Í5S^ 

onde V é um ‘superpotencial’ dado pela expressão 

V = -^R+^ + U{<f>) + V{0 , 

= 0 , 

0 (5.9) 

(5.10) 

(5.11) 

e onde o sinal' significa derivação em relação à variável x- Em [2] aparecem 

algumas soluções WKB destas equações válidas no midisuperespaço onde 

a' = 0 , (f)' = 0 , = 0 , a 

Duas destas soluções são as funções^ e 

sin Vkx 

Vk 
(5.12) 

3-C 
- V6 + 2Cln (-e-“/?') 

(5.13) 

onde 

f = f{a,P) = P'e — fít„-a-l3 
(5.15) 

*Eqs. (48) e (49) da ref. [2]. 
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e 

dr = dxdO sin 9d(p . 

Das definições das coordenadas a e P nota-se que 

pi^—a—0 _ ^ ^ In g—f—2 Infua)] 

dx 

1 f da da^ 

aa\dx'^^dxy 

{aaY 

^ a a 
= -2 - + - a^a 

e, então, 

f = (/3'e-«-0)' = |- /cr a\ 2 
—2 1 a^a 

V cr a 

0 que, após alguns passos, se escreve como 

(/J'e-*-‘>)' = -2A|^ + 

Analogamente, 
a' a' 

= -2 - -f - , 
V cr a 

a — In {—P') = In a — In 
'a' a'' 

a a 
= ln 

a 

2{v+Í) 

gO ^/2 _ 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Substituindo esses resultados nas expressões de 5, e 5, o que se obtêm é 

’■ = èX* 

27T 

o" 

a 
2„2 Ç > a CT 

(5.23) 
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e 

5o = 

+ 

i-/ 
27T J\ V I ma cr \ (7 / \ a I \ a I a 

2n Jv a a 

e} 

-VsTC - (/»V3 + 2C 
cr 

2 2 a a 

(5.24) 

õr^’5 Usando agora a ‘simplificação 

a' = 0 (5.25) 

tais expressões se resumem a 

= drj—s(a)Ç- f-) 
27t I rna J 

+ V6 + 2Cln 
a 

2(^)J 

2 2 a (7 

(5.26) 

S2 = ^í dr\—s{a)^ + i{-]\^VsTC-(l>VsT^ 
2tt Jv^ ma \ a la 

2 2 a a 

onde definiu-se 

Pondo® 

nota-se que 

7, 

cr = 
sin \/fcx 

\ík 

® Equação (47) da referência [2]. 

® Equação (47) de [2]. 

(5.27) 

(5.28) 

(5.29) 

k T 1 
S (cr) = —[cos^ Vkx - sin^ V^x] = ^ (l “ 2/ccr^) . (5.30) 
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Desse modo, pode-se definir duas funções de onda do universo, 

'iSi 
s exp 

^2 = exp 

. h . 

'ÍS2' 

. h . 

(5.31) 

(5.32) 

que, assumindo, ainda como em [2], que C = —i, podem ser escritas como 

L 
'íi = exp < Fk^ 

27rh Jv^ 
dr I - <!>\ 

13 i 
H- \/6 — 2z In 

í, =exp I FiÇ-— í^) -7\/3 - ! - 0V3 - 2i 

2(í) 

2 2 a a 

(5.33) 

(5.34) 

onde 

ou seja. 

27r/im Jv^ \ y/k 
- 1 dxd9sm9d(p (5.35) 

Fk = j ^ j^sin^ ~ cos^ v^x] dxd9 sin 9dip , (5.36) 
2'Khm 

o que permite a integração em Xi fornecendo 

sin \/kxCOS VXxl ^ 
F = ° í 

^ 2'Khm Jv 

ou, simplesmente^. 

V3 Vk 
d9 sin 9díp (5.37) 

Jo 

= í 
2Khm Jv 

sin2\/^Xo {9,1^, V^) 
d^sin^dt^ . (5.38) 

Iv3 2y/k 

Esta ‘função’ Fk é basicamente um coeficiente numérico obtido por inte- 

gração no volume 3-dimensional da variedade de curvatura k considerada, 

^CompaxEir com as equações (70), (71) e (72) de [2]. 
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cujo papel nas funções de onda e pode ser visto mais claramente se 

elas são escritas como sendo 

onde Ak (a, (f)) é um fator de normalização da função de onda; ignorando- 

se o problema da normalização pode-se propor que a possível mudança de 

topologia ocorreria para um determinado valor ^ do campo de poeira, quando 

a = õ e 0 = 0, de modo que a probabilidade condicional de ter-se A: = — 1, 0 

ou 4-1 seria 

Pc [k\a,(j)) 

—\ |2 
1^ (A:, a, 0) 

X!ik=0,±l 1^ (^) 

Al (q,0) 

Efc=o,±i^fc (õ,0) 

(5.39) 

Assim, quando Ç —>• ±00 tem-se um dos Pc (k\ã,(f>^ igual a um e os outros 

dois iguais a zero, dependendo do valor de Fk- 

Para o cálculo das funções Fk é interessante voltar um passo atrás, para 

notar que 

Fk = —7— f cos2VTxcíX^^sin0dí/? (5.40) 
zTrnm Jv^. 

e, assim, 

2'Khvn}^ ’ 

onde 

Ik= cos2\/kxdxd0s\n9d<p 
Jv3 

(5.41) 

(5.42) 

é a função que aparece no capítulo ‘Problemas topológicos’; logo, o maior 

problema a se enfrentar consiste em calcular essa função para diferentes va- 

riedades, podendo-se assim obter regras de seleção para a transição entre 

essas diferentes variedades. 

Por fim, é importante notar que a solução cosmológica obtida deve prever 

uma fase infiacionária do universo; tal fase deve aparecer, por exemplo, no 
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Figura 5.1: Desenho qualitativo do potencial U {(p)] A é a região de topologia 

esférica S^/T, B é onde o tunelamento para o espaço hiperbólico ocorre, C é a 

região de inflação, e D é a região de reaquecimento. Pode-se comparar a forma 

deste potencial com a forma dos potenciais apresentados no capítulo 'O padrão 

clássico’. 

potencial do campo escalar presente. Neste caso particular em estudo as 

soluções apresentadas têm 

[/(</,) = y (e) = 0 , (5.43) 

o que restringe um pouco a liberdade de ‘escolha’ do potencial U (0); contudo, 

pode-se propor, sem perda de generalidade, que, como os potenciais U {<p) e 

V (Ç) entram como uma soma na expressão do superpotencial V, é possível 

propor que 

í7(0)-fy(O = O , (5.44) 

e, assim, sugerir uma forma qualitatitiva do potencial U {(p) como a apresen- 

tada na Figura 5.1. 

5.2 Números 

Para obter resultados numéricos onde verifica-se a possibilidade da mudança 

de topologia pode-se escolher duas ou mais dentre a infinidade de seções 

espaciais possíveis, com qualquer curvatura, e calcular as funções Fk para 

essas seções espaciais que representam diferentes espaços, a fim de obter-se 
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as probabilidades condicionais para cada espaço. Em [2], onde as funções 

Ffc foram apenas estimadas, escolheu-se o tritoro T^, de curvatura nula, a 

esfera e o espaço dodecaédrico de Poincaré D^, de curvatura positiva, e 

o espaço de Best P, de curvatura negativa; já em [53] escolheu-se o espaço 

lente L(50,1), de curvatura positiva, e a variedade de Weeks, de curvatura 

negativa, com = 0 e = g, 284737, de modo que 

lim Pc{k = 4-1) = (5.45) 
Ç—>—oo 

Ç-^-00 j^Weeks ^ j'^^VVeefcsj _|_ 0^ exp 

e 

lim Pc{k = -1) = 
í-^+oo 

lim 
Í^+OO 

j^Weeks gj^p ^^pWeeks^ 

j^Weeks ^ g^^p |’^^WeeA:sj _|_ ^ g^^p 

(5.46) 

= 1 , 

OU seja, neste caso específico o universo começaria com uma função de onda 

representando um espaço lente para depois passar a um espaço hiperbólico. 

Pode-se considerar [55] que o universo permanece na fase transiente de 

curvatura esférica por um tempo </, e que após a mudança de topologia o 

universo hiperbólico tem o seu tempo começando com o valor rj, valor esse 

que pode ser obtido, por exemplo, exigindo-se que o raio da circunferência 

circunscrita à célula fundamental do universo hiperbólico, que para o caso da 

variedade de Weeks é r^ax = 0,752470, seja menor que o raio do horizonte 

de partículas desse universo, definido como 

Th 
í \ - r dr' _ r -fdr' _ 

~ JTi a{r') Jtí sinh7r' 

tanh ^ 

tanh ^ 
(5.47) 

onde T > Ti, assim, se th (t) > Tmax tem-se 



(5.49) 

contudo, tanh ^ < 1 e, portanto, deve-se ter 

exp (rmax) tanh ^ < 1 > 

ou seja. 

Tj < - arctanh [exp (-rmax)] 
7 

(5.50) 

o que, usando números, é 

Ti < 1,023237“^ (5.51) 

Usando agora este número como valor de Tj, isto é, Tí = 1,023237“^ pode-se, 

então, estimar o valor de í/ exigindo-se a continuidade do fator de escala na 

mudança de topologia; assim, 

cosh 7Í/ = sinh 1,02323, (5.52) 

e daí í/ = 0,6392337“\ um valor que corrobora a idéia de que a fase esférica 

do universo se encontraria dentro da escala de Planck [53]. 

A quantidade de inflação sofrida pelo universo hiperbólico, ou seu número 

de e-foldings, dado como [5] 

At = ln q(u) 

a (a) 
= ln 

sinh 7Ti 

sinh 7Tj 
(5.53) 

onde Ti é o momento final da fase inflacionária, é outra estimativa interessante 

a se fazer; para tal cálculo pode-se supor que no instante Ti, quando o universo 

passa da equação de estado p = —p para p = p/3, há uma continuidade do 

fator de escala, valendo então a relação 

— sinh7Ti = a (ti) , (5.54) 

onde a (r) = y/2ra + é a solução do fator de escala para um universo de 

curvatura negativa dominado por radiação e sem constante cosmológica, com 

o; = {SnGprad,o/^c^)^^^ Oq, sendo Prad,o = 4,6477 X 10“^^ g cm~^ a densidade 
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de radiação atual, e Oq — 4,5 x 10^® m o valor presente do fator de escala®. 

Assim, 

Ti ~ 727-' , (5.55) 

e a quantidade de inflação seria AT ~ 71, um resultado maior, por exemplo, 

que os valores mínimos de e-foldings necessários para resolver o problema de 

excesso de entropia do universo, 24 < iVjnin < 68, tal como apresentado em 

[5]. 

®0 valor do fator de escala é obtido das quantidades Hq = 65 km s ^ Mpc~^ e 

fio = 0,9 pela relação oq = f\/l — fio. 
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6 

Comentários finais 

Há ruídos que não se ouvem mais (...) 

ruídos que apenas rompiam o silêncio. 

E hoje o que mais se precisa é de silêncios 

que interrompam o ruído. 

Mário Quintana, ‘No princípio do fim'. 

Pretendeu-se mostrar num dos capítulos deste trabalho que, supondo- 

se que a teoria por trás do Big Bang, a relatividade geral, não seja válida 

para situações envolvendo a escala de Planck, pode-se tentar construir uma 

descrição quântica do universo primordial; tal campo de especulação cons- 

titui uma nova disciplina da física, a cosmologia quântica, que, contudo, 

não é livre de problemas básicos, sendo um deles a interpretação de seus 

resultados^ e outro a sua testabilidade. A cosmologia padrão, entretanto, 

não fornece previsões para a topologia global do universo; neste trabalho, 

viu-se que a cosmologia quântica, ainda que bastante provisoriamente, traz 

^ Sobre a interpretação de soluções da cosmologia quântica veja-se, por exemplo, o artigo 

[56]. 
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em si uma possível abordagem deste problema, talvez a única presente na 

física moderna. Assim, seria interessante prosseguir no estudo de soluções de 

cosmologia quântica que permitam quantificar previsões sobre a topologia do 

universo. 

Entretanto, deve-se notar que pode-se ver esta tese não apenas como 

a apresentação de um estudo em cosmologia quântica, mas como fazendo 

parte de uma linha de pesquisa mais geral, cujo tema é o estudo das pro- 

priedades de soluções cosmológicas com topologias não-triviais, sejam elas 

soluções clássicas ou quânticas^; tais soluções são pouco conhecidas e es- 

tudadas, haja visto o exemplo dado da equação de Helmholtz em espaços 

hiperbólicos, um problema ainda em aberto que pode servir de assunto para 

futuros trabalhos. 

De qualquer modo, os prognósticos envolvendo o prosseguimento dos es- 

tudos dos temas envolvidos nesta tese são animadores, já que há ainda muito 

trabalho teórico e/ou observacional a ser feito envolvendo o uso de topologias 

não-triviais em cosmologia, lembrando-se sempre que para obter respostas é 

importante, em primeiro lugar, refletir sobre quais seriam as perguntas ade- 

quadas a se fazer, nunca se afastando daquela motivação básica da ciência 

apresentada no primeiro capítulo. 

^Há uma tese ‘irmã’ desta [57] que trata da busca de previsões observacionais. 
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7 

Apêndice: relatividade e 

cosmologia 

Se você quiser descobrir qualquer coisa dos físicos teóricos 

acerca dos métodos que eles usam, 

eu 0 aconselho a se aferrar firmemente a um princípio: 

não ouça suas palavras, 

fixe a atenção em suas obras. 

Albert Einstein, em "Como eu vejo o mundo". 

Uma tese de doutorado exige em seu texto principal um estilo sintético 

e resumido no qual, em geral, se espera uma ênfase na linguagem técnica 

do assunto abordado; aqui, neste apêndice, porém, pretende-se fugir um 

pouco desta norma, mostrando-se por exemplo, citações que, embora nem 

um pouco fundamentais para o desenvolvimento básico do tema central da 

tese, têm por objetivo apresentar, de modo quase informal, algumas das 

idéias da cosmologia clássica e o uso, nela, de topologias não-triviais\ 

claro que com isso há a possibilidade de entediar ou até mesmo ofender alguns 
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Além disso, cabe dizer que o propósito de se ter neste trabalho um breve 

resumo da teoria envolvida na cosmologia padrão está na suposição - talvez 

algo pretensiosa — de que o todo deste texto tenha uma certa completeza. 

Assim, aqui é resumida a teoria da relatividade geral e, como exemplo básico 

de seu uso em cosmologia, é mostrada uma forma algo incomum de obtenção 

da solução padrão da cosmologia, conhecida como métrica de Friedmann- 

Lemaitre-Robertson-Walker (nome substituido por sua abreviação FLRW, 

em todo o texto). 

7.1 Resumo de relatividade geral 

Num artigo em que expõe a teoria da relatividade geral, “A base da teoria 

da relatividade geral”, de 1916, Albert Einstein escreve [61]: 

“(...) a teoria da relatividade especial não sai da mecânica clássica 

através do postulado da relatividade, mas através do postulado 

da constância da velocidade da luz no vácuo, de onde, em com- 

binação com o princípio da relatividade especial, segue, do modo 

bem conhecido, a relatividade da simultaneidade, a transformação 

de Lorentz, e as leis relacionadas ao comportamento de corpos em 

movimento e relógios.” 

Um conceito fundamental para a compreensão da relatividade especial é 

a de invariantes, quantidades independentes do sistema de coordenadas es- 

colhido para se tomarem medidas físicas. Um desses invariantes, explicitado 

no parágrafo acima, é a velocidade da luz no vácuo, c; outro, o intervalo ou 

elemento de linha. 

ds^ = c^dt^ — dx^ — dy^ — dz^ , (7.1) 

leitores da b2inca: a esses leitores peço desculpas, e que esqueçam esse apêndice; contudo, 

se houver outros leitores que queiram conhecer textos mais informais e introdutórios sobre 

os assuntos centrais desta tese posso sugerir as referências [58, 59, 60]. 
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pode ser naturalmente obtido das transformações de Lorentz. É importante 

notar, tal como fez Hermann Minkowski, em 1908, numa citação bastante 

conhecida [61, 62], 

"Os pontos de vista sobre o espaço e o tempo que pretendo 

apresentar-lhes provieram do terreno da física experimental, e aí 

reside sua força. São radicais. Daqui em diante, o espaço, por 

si só, e o tempo, por si só, estão condenados a desvanecer-se em 

meras sombras, e apenas um tipo de união dos dois conservará uma 

realidade independente." 

que há na relatividade a definição do espaço-tempo como uma entidade 

matemática quadridimensional, com as coordenadas do tempo e do espaço 

podendo ser representadas por uma matriz linha ou coluna que representa 

um tensor de primeira ordem, onde o índice grego // pode ter valores 

de 0 a 3; assim, de forma mais genérica, e usando-se o sistema de unidades 

naturais em que c = 1, o intervalo se escreve como 

ds^ = dx'^ — dx^ — dx"^ — dx^ . (7.2) 

A relatividade geral amplia este conceito de intervalo pelo uso da geome- 

tria Riemmanniana, expressa pela introdução, na expressão do intervalo, de 

um tensor de segunda ordem, chamado por Einstein de ‘tensor funda- 

mental’. Tal objeto de caráter geométrico, que pode ser representado por 

uma matriz quadrada 4x4 com componentes que são funções das coorde- 

nadas, hoje recebe o nome mais simples de tensor métrico ou métrica; na 

notação atual, 

ds^ = g^i^dx^dx’' , (7.3) 

onde se usa a convenção de soma: índices repetidos indicam uma soma em 

todo o espectro de valores possíveis daqueles índices. A importância da 

métrica está na informação que ela contêm, pois^ [61] 

^Deve ser ressaltado aqui que pode-se, nesse ponto, fazer uma pergunta simples - por 

que a métrica representa o campo gravitacionail? - cuja resposta pode ser apenas que é a 
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“(•••) as quantidades g^r devem ser vistas do ponto de vista físico 

como sendo as quantidades que descrevem o campo gravitacional 

em relação ao sistema de referência escolhido.” 

A idéia básica por trás da descrição de mundo dada pela relatividade 

geral está em que a geometria do espaço-tempo é moldada pela matéria e 

energia presentes, tal como uma folha de borracha pode ser moldada por 

pesos colocados sobre ela; as dificuldades matemáticas da teoria vêm do uso 

da geometria Riemanniana para descrição do espaço-tempo [64]: 

“Já que o espaço-tempo é um espaço riemanniano, possui as suas 

propriedades geométricas, isto é, a sua curvatura, que varia em 

função da distribuição e do movimento da matéria: no espaço- 

tempo einsteniano, os corpos não se deslocam mais em linha reta, 

como no espaço usual, mas segundo geodésicas.” 

Toda a parte matemática da teoria pode ser, portanto, estruturada a 

partir da métrica e de conceitos da geometria Riemanniana: com a métrica 

e suas primeira e segunda derivadas parciais podem ser construídas diversas 

quantidades geométricas, tensoriais, tais como o símbolo de Christoffel (ou 

conexão métrica). 

dx‘' 

dgpu 

dxP — 2^ ^ d” g^p,!/ 9pi^,p] (7.4) 

que permite a definição de uma derivada generalizada ou covariante 

^ = dpTi-: + r“,7X:: + - - > (7-5) 

os tensores de Ricci, R^,^, e Riemann (ou de curvatura), R^^ppu, tais que 

— 9 ^9acR ppu — R^ppv — ~ ^^PP,V d” ~ ^^pa^pv i (7-6) 

métrica que tem tal característica nesta descrição geométrica da gravitação, que é só uma 

das descrições possíveis. Sobre tal discussão é interessante ler o prefácio do livro de Steven 

Weinberg, ‘Gravitation and Cosmology’ [63], e ver descrições alternativas da gravitação, 

como o teleparalelismo, que é uma teoria de gauge equivalente à relatividade geral. 
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0 escalar de curvatura, R, que nada mais é que o tensor de Ricci com seus 

dois índices contraídos, 

V = , (7.7) 

e o tensor de Einstein, 

Gfj,u = Rfiu — -RQiíi/ ■ (7.8) 

Uma propriedade deste último tensor que o torna interessante é sua di- 

vergência nula, 

, (7.9) 

propriedade esta que, na relatividade geral, também é satisfeita pela métrica, 

^fi9a0 = 0 , (7.10) 

e pelo tensor momento-energia que representa o conteúdo de matéria e 

energia em consideração, 

V^T>^‘' = 0 . (7.11) 

Assim, pode-se considerar a igualdade relativa entre as duas quantidades 

e T^'', de modo que 

Gf,u - ^9nu = , (7.12) 

sendo « e A duas constantes, a primeira chamada constante de acoplamento 

e a segunda constante cosmológica. Tal equação, conhecida como Equação 

de Einstein, é, na verdade, um conjunto de equações diferenciais parciais 

acopladas, similar à equação de Poisson modificada 

- A0 = 47T/ÍP , (7.13) 

tal como apontado pelo próprio Einstein. 

Agora, de posse deste instrumental os próximos passos necessários neste 

processo para a obtenção de soluções cosmológicas são a ‘escolha’ de um 

tensor momento-energia adequado e de uma hipótese inicial para a métrica; 
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no caso cosmológico a métrica, como foi dito, deve ter sua parte espacial 

isotrópica e homogênea, em cada momento de tempo, o que em outras 

palavras, significa que ela deve ter curvatura espacial constante, restringindo, 

assim, as possibilidades de escolha. 

A cosmologia padrão usa, além disso, o postulado de Weyl, que estabe- 

lece que o universo além de ser homogêneo e isotrópico possui matéria que 

pode ser representada por meio de um tensor de energia-momento bastante 

simples, descrevendo um fluido perfeito, 

-{p + p) , (7.14) 

onde p é a densidade da matéria presente no fluido, p é a pressão desse fluido, 

Ufj, é a. 4-velocidade (extensão da velocidade comum para o espaço-tempo 4- 

dimensional) desse fluido e é, novamente, a métrica do espaço-tempo. 

Portanto, a cosmologia moderna usa três ingredientes básicos na sua re- 

ceita de evolução do universo [7]: 

• a relatividade geral, que diz que a matéria curva o espaço-tempo, idéia 

que pode ser ‘traduzida’ matematicamente na equação de Einstein; 

• o princípio cosmológico, que diz que o universo é isotrópico e ho- 

mogêneo; 

• o princípio de Weyl, que diz que a matéria no universo se distribui 

como num fluido perfeito. 

Misturar esses ingredientes corretamente não é difícil; é apenas uma 

questão de técnica matemática, e não é nada que exija a presença de um 

c/le/muitíssimo talentoso. 
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7.2 Obtenção da métrica de FLRW 

Como exemplo de uso da relatividade geral pode-se obter a métrica de FLRW 

a partir da métrica de Minkowski, 

ds^ = dt^ — ^dx^ -f- dy^ + dz^ , (7.15) 

que é a que serve de base para a relatividade restrita; em coordenadas 

esféricas tal métrica se escreve 

ds^ = dt^ — ^dr“^ + {dO"^ -f sin^ Odiç^y^ . (7-16) 

Este simples exemplo de expressão de intervalo pode ser reescrito ainda uma 

outra vez, pondo-se 

(7.17) 

de modo que 

ds^ = dt^ — \^duj^ -f- dO^ -\- sin^ 9dip^ . (7.18) 

Note-se que como 0 < r < oo, então —oo < u < oo. De acordo com o 

apresentado no início deste resumo de relatividade geral, pode-se tentar uma 

possível generalização dessa expressão fazendo-se uma substituição ‘especial’. 

e‘^ —> a (í) b (u) , (7.19) 

de forma que 

ds^ = dt^ — (t) (cu) ^du"^ -f dO^ -f sin^ Odip^ . (7.20) 

Para verificar que tipo de solução tal generalização irá produzir nas Equa- 

ções de Einstein tem-se que calcular um punhado de componentes do tensor 

de Riemann; uma forma mais simples de obter tais componentes consiste em 

usar o método de Cartan [25, 26, 65], onde 

ds^ = , (7.21) 



sendo um conjunto de 1-formas tal que 

7^^ = dm^[l,-l,-l,-l] , (7.22) 

isto é, 

ds^ = - (a;*)^ . (7.23) 

Neste método o grupo de formas é manipulado de modo a obter-se no primeiro 

passo sua derivada exterior, du)'', de onde retiram-se os ‘coeficientes de rota- 

ção’ 

du^ = -cu'; A . (7.24) 

Tais coeficientes de rotação são eles próprios também ‘derivados’, para obter- 

se os coeficientes que se relacionam diretamente com as componentes do 

tensor de Riemann: 

+ w- A A . (7.25) 

A partir deste ponto tem-se tudo que se necessita para resolver as equações 

de Einstein. 

No caso particular em estudo pode-se usar o grupo de tetradas 

= {dt, abdu, abd6, absinddip) 

e, assim. 

du^ = 0 , 

du^ 

I 1 ^0 1 
du = -u A u , 

a 

u 0 V 
-u° -f —^U^ A u 
a ar 

du 3 _ a n ò' 1 cot 9 9 
-U° + —U^ + 
a ar ab 

Au^ 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 
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de onde sai que 

U) If 

0 Hu^ 

0 —a~^h~^Bu^ 

a-^h-^Büj'^ 0 

a~^b~^Büj^ cot 9a~^b~^u^ 

Hu^ 

—a~^b~^Buj^ 

— cot 9a~^b~^üj^ 

0 

(7.31) 

sendo que H =a a“\ B = b'b~^, • = d/dt e ' = d/du. 

O próximo passo lógico consiste em obter as derivadas externas dos com- 

ponentes dessa forma: 

du\ = -u° A üj^ , 
a 

du!% = í -a;° d- 
ab' 1 

a262 
u A o;^ , 

(7.32) 

(7.33) 

, n / a n ab' 1 a cot 9 A , 

a 

du\ = 
o?b'^ 

b" íh'' 
A a;^ , 

düj\ = 
b" íb'' 

uj^ cot 9u^ y A o;'^ , 

e daí obter as componentes do tensor de Riemann, 

a pO   pO   pO   _ 101 — 202 — -n. 303 — . i 

, 2 
a ' 

a 

R\u = ^313 = I - 1 - a 

2 

a2ò2 

b" (y' 

■^^323 ~ I I 
a 

a a2ft2 i-(r 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 
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as componentes do tensor de Ricci, 

Rii — ~ — 2 < 

Roo — —3— , 
a 

b" íb'' 
2'» 

a 

a 

R22 — R33 —  
'b" 

\ b 
-11-2 1- 

a 

e o escalar de curvatura 

R=-6 
a \ a 

+ 
.b" 
2- - 1- - 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

Tais resultados podem ser substituídos nas equações de Einstein sem proble- 

ma, considerando-se que o referencial cosmológico é aquele próprio do fluido 

perfeito, em que = (1,0,0,0) e, neste caso, tem-se também goo = 1, de 

modo que 

Too = P (7.45) 

Tu = -P9ii . (7.46) 

Além disso, da igualdade entre e 522 sai que Tu = T22 ou Gn = G22, isto 

e, 

ò" íb'' 'b" 
- 1 (7.47) 

enquanto que de Goo = obtém-se 

2 

31-1 - 
1 

a^b^ 

.b" 
= Sttp + A . (7.48) 

Estas duas equações fornecem tudo que se pode esperar de o (í) e 6 (cu). 
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Uma solução simples é obtida pondo-se uma constante de ‘separação’, k, 

3 ( - I — Sttp — A 2 _ 

>?-(?: 
= -Zk . (7.49) 

Assim, as equações diferenciais a se resolver são a equação de Friedmann, 

= -k , (7.50) 

. \ 2 
a \ Sttp -f- A 

e o sistema dado pelas equações 

í-(í) 

Notando-se a igualdade 

reescreve-se a equação (7.52) como 

0'=0’-. 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

uma equação diferencial 

Assim, 

cujo resultado é 

b' 1 -|- Qoe^‘^ 

b 1 — 

1 — üQe^'^ 

(7.55) 

(7.66) 
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Substituindo essa solução na equação do sistema original que envolve k, 

equação (7.51), ou na equivalente 

= (7.57) 

obtida por soma de (7.51) com (7.52) multiplicada por —2, pode-se ver que 

ao = -k , (7.58) 

OU seja, 
4feoe" 

A + k (&oe‘^)^ 

Usando agora que r = b (o;) - e, conseqüentemente. 

(7.59) 

dr = b'dui = by/\ — kb‘^du (7.60) 

- reobtém-se a expressão tradicional de FLRW em termos da coordenada 

radial r, 

ds^ = dt^ — (í) 
dr“^ 

1 — kr"^ 
+ r‘ [de -1- sin^ edíp^^j (7.61) 

Note-se que essa solução só especifica a geometria do espaço, e não a sua 

topologia. Assim, espaços com topologias diferentes da trivial, finitos e sem 

fronteiras, mesmo que inomogêneos^, também se encaixam nessa solução de 

FLRW, algo que é mencionado em poucos textos básicos de relatividade e 

cosmologia^. 

A idéia do uso de espaços compactos, com topologia não-trivial, em cos- 

mologia, foi 'pressentida’ pelo próprio Albert Einstein, em um artigo de 1917, 

“Considerações cosmológicas sobre a teoria da relatividade geral”^, em que ele 

^Uma interessante discussão sobre este assunto é apresentada em [66]. 

■*0 assunto é mencionado, por exemplo, nas referências [8, 26, 67] 
nesse artigo que Einstein introduz a constante cosmológica para manter o seu modelo 

de universo estático. 
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se preocupa com o bom comportamento da relatividade geral em condições 

que incluem como fronteiras do universo o infinito [61]: 

"(...) eu não consegui formular condições de fronteira para a in- 

finitude espacial [do universo]. Contudo, há ainda uma possível 

escapatória (...). Pois se fosse possível ver o universo como um 

contínuo que é finito (fechado) com respeito às suas dimensões es- 

paciais, nós não teríamos necessidade nenhuma de tais condições 

de fronteira.” 

Em um texto de divulgação científica [32] Einstein volta a esta idéia: 

"(...) é possível imaginar espaços fechados que não possuem limites. 

Entre estes, o espaço esférico (ou o elíptico) destaca-se por sua 

simplicidade, já que todos os seus pontos são equivalentes. Coloca- 

se então, a astrônomos e físicos, a interessantíssima questão de 

saber se o Universo em que vivemos é infinito ou, à maneira do 

mundo esférico, finito.” 

Muito embora Einstein em ambos os textos estivesse defendendo sua 

predileção por um universo fechado esférico, a questão final desta última 

citação ainda hoje é válida®. 

®Um histórico do uso de topologias não-triviais em cosmologia é dado em [68]. 

83 



Bibliografia 

[1] Nussenzveig, H.M. - “Curso de Física Básica”, vol. 1, Edgard-Blucher, 

São Paulo, 1981. 

[2] De Lorenci, V.A.; Martin, J.; Pinto-Neto, N.; Soares, I.D. - Phys. Rev. 

D56 (2), 3329 (1997); gr-qc 9701024 (1997). 

[3] Brody, D.E.; Brody, A.R. - “As sete maiores descobertas científicas da 

história”, Companhia das Letras, São Paulo, 2000. 

[4] Silk, J. - “A Short History ofthe Universe”, Scientific American Library, 

1994. 

[õ] Kolb, E.W.; Turner, M.S. - “The Early Universe”, Addison-Wesley, 

1993. 

[6] Landau, L.; Lifshitz, E.M. - “The classical theory of fields”, Pergamon 

Press, 1983. 

[7] D’Inverno, R. - “Introducing Einstein’s Relativity”, Oxford University 

Press, 1992. 

[8] Rindler, W. - “Essential Relativity”, Springer-Verlag, Berlim, 1977. 

[9] Ratra, B.; Peebles, P.J.E. - Phys. Rev. D37, 3406 (1998). 

[10] Islam, J.N. - “An introduction to mathematical cosmology”, Cambridge, 

1991. 

84 



[11] Adams, F.C. et alli - Phys. Rev. D47, (1993) 426. 

[12] Ellis, G.F.R.; Madsen, M.S. - Class. Quant. Grav. 8, 667 (1991). 

[13] Hawking, S.W.; Ellis, G.F.R. - “The large scale structure of space-time”, 

Cambridge, 1973. 

[14] Birrell, N.D.; Davies, P.C.W. - “Quantum Field Theory in Curved 

Space”, Cambridge University Press, Cambridge, 1982. 

[15] Gron, O.; Eriksen, E. - Int. J. Mod. Phys. D4, 115 (1991). 

[16] Gott III, J.R. - Nature 295, 304 (1982). 

[17] Wald, R.M. - “General Relativity”, Chicago University Press, 1980. 

[18] Vilenkin, A. - Phys. Lett. B117, 25 (1982). 

[19] Vilenkin, A. - Phys. Rev. D27, 2848 (1983). 

[20] Hartle, J.B.; Hawking, S.W. - Phys. Rev. D28, 2960 (1983). 

[21] Elbaz, E. - “Quantum: the quantum theory of particles, fields and par- 

ticles”, Springer, 1998. 

[22] Atkatz, D. - Am. J. Phys. 62, 619 (1994). 

[23] Gott, J.R.; Li, Li-Xin - Phys. Rev. D58, 023501 (1998). 

[24] DeWitt, B.S. - Phys. Rev. 160 (5), 1113 (1967). 

[25] Ryan, M.P; Shepley, L.C. - “Homogeneous relativistic cosmologies”, 

Princeton, New Jersey, 1975. 

[26] Misner, C.W.; Thorne, K.S.; Wheeler, J.A. - “Gravitation”, Freeman, 

San Francisco, 1973. 

85 



[27] Hartle, J.B. - “The Quantum Mechanics of Cosmology”, in Coleman, 

S. (ed.) - “Quantum cosmology and baby universes”, World Scientific, 

1991. 

[28] Atkatz, D.; Pageis, H. - Phys. Rev. D25, 2065 (1982). 

[29] Norbury, J.W. - Eur. Jour. Phys. 19, 143 (1998). 

[30] Kuchar, K.V.; Torre, C.G. - Phys. Rev. D43 (2), 419 (1991). 

[31] Titus Lucretius Caro, in Rovelli, C. - Phys. Rev. D43 (2), 442 (1991). 

[32] Einstein, A. - “A teoria da relatividade especial e geral”, Contraponto, 

Rio de Janeiro, 1999. 

[33] de Bernardis, P. - astro-ph 0004404 (2000). 

[34] Superinteressante 154, Ed. Abril, São Paulo, 2000. 

[35] Science et Vie 993, Excelsior Publications, Paris, 2000. 

[36] Astronomy 28 (8), Kalmbach Publishing Co., Waukesha, 2000. 

[37] Rucker, R. - “The fourth dimension and how to get there”, Penguin, 

Londres, 1986. 

[38] Cutiérrez, C.; Yánez, J.M. - Am. J. Phys. 65 (8), 739 (1997). 

[39] Cornish, N.J.; Spergel, D.N. -math.DG 9906017 (1999). 

[40] Cornish, N.J.; Spergel, D.; Starkman, C. - astro-ph 9708225 (1997). 

[41] Lachièze-Rey, M.; Luminet, J.P. - Phys. Rep. 254, 135 (1995). 

[42] Jones, H.F. - “Groups, representations andphysics”, Institute of Physics 

Publishing, 1994. 

[43] Balazs, N.L.; Voros, A. - Phys. Rep. 143, 109 (1986). 

86 



[44] Frankel, T. - “The geometry of physics: an introduction”, Cambridge 

University Press, 1997. 

[45] Thurston, W.P. - “Three-dimensional geometry and topology”, vol. 1, 

Princeton University Press, 1997. 

[46] SnapPea, software obtido gratuitamente de www.northnet.org/weeks . 

[47] e Costa, S.S. - “Study of the Helmholtz equation in compact hyperbolic 

spaces”, não-publicado (2000). 

[48] e Costa, S.S. - Phys. Rev. D62 (4), 047303 (2000). 

[49] Coxeter, H.S.M. - “Non-euclidean geometry”, 5“ ed., University of 

Toronto Press, 1965. 

[50] Coxeter, H.S.M. - “Twelve geometric essays”, Southern Illinois Univer- 

sity Press, 1968. 

[51] Coolidge, J.L. - “The elements of non-euclidean geometry”, Oxford Uni- 

versity Press, 1927. 

[52] Dowker, H.F.; Garcia, R.S. - Class. Quant. Grav. 15, 1859 (1998). 

[53] e Costa, S.S.; Fagundes, H.V. - gr-qc 9911110 (1999). 

[54] Itzykson, C.; Zuber, J.B. - “Quantum Field Theory”, McGraw-Hill, 

1985. 

[55] e Costa, S.S.; Fagundes, H.V. - Gen. Rei Grav. 31, 863 (1999). 

[56] Santini, E.S. - gr-qc 005092 (2000). 

[57] Gaussmann, E. - “Polarização da luz e outros efeitos em universos mul- 

tiplamente conexos”, IFT-T.005/00 (2000). 

[58] Thurston, W.P.; Weeks, J.P. - Sei. Am. 251 (1), 94 (1984). 

87 



[59] Halliwell, J.J. - Sei. Am. 265 (6), 28 (1991). 

[60] Luminet, J.P.; Starkman, G.D.; Weeks, J.R. - Sei. Am. 280 (4), 68 

(1999). 

[61] Einstein, A.; Lorentz, H. A.; Weyl, H.; Minkowski, H. - “The prineiple 

of relativity”, Dover, New York, 1952. 

[62] Pais, A. - “ “Sutil é o Senhor...”: a ciêneia e a vida de Albert Einstein”, 

Nova Fronteira, Rio de Janeiro, 1995. 

[63] Weinberg, S. - “Gravitation and Cosmology”, John Wiley and Sons, 

New York, 1972. 

[64] Rival, M. - “Os grandes experimentos eientifieos”, Jorge Zahar Ed., Rio 

de Janeiro, 1997. 

[65] Hughston, L.P.; Tod, K.P. - “An Introduetion to General Relativity”, 

Cambridge University Press, 1990. 

[66] Fagundes, H. - Gen. Rei. Grav. 24 (2), 199 (1992). 

[67] Ellis, G.F.R.; Williams, R.M. - “Fiat and eurved spaeetimes”, Oxford 

University Press, Oxford, 1988. 

[68] Luminet, J.P. - gr-qc 9804006 (1998). 

88 




