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Bevezetés

A kvantum informécidégeometria egy viszonylag fiatal tudoményteriilet, mely az 1990-
es évek elején a kvantummechanikabol — ezen beliil is a kvantum informaciéelméletbdl — és
a klasszikus informaciégeometriabol fejlédott ki. Targyat tekintve — a klasszikus informa-
cibgeometridhoz hasonloan — a (kvantum) valoszintiségi eloszlasok terét Riemann-sokasag
strukturaval ruhazza fel és kapcsolatokat keres a modell differencidlgeometriai jellem-
z6i és a megfigyelhets fizikai mennyiségek (kvantum valészintiségi valtozok) kozott. A
kvantum informéciégeometria eredményeit tobbek kozott a kvantum informacidelmélet
és a kvantum statisztikus fizika hasznélja fel. Eszkoztarat tekintve elmondhaté, hogy
erGteljesen épit a funkcionalanalizis és differencidlgeometria eredményeire. A klasszikus
valoszintiségszamitassal szemben lényeges kiilonbség az, hogy a kvantum eseményalgeb-
ra — a klasszikus eseményalgebraval ellentétben — egy tipikusan nemdisztributiv, csupan
ortomoduléris halo struktiraval rendelkezik. Ennek a ténynek szamos igen fontos hozadé-
ka van a kvantum informécidelméletre és kvantum informéaciégeometriara vonatkozolag.
A teljesség igénye nélkiil emlitjiilk meg a hatérozatlansagi relaciok és az Gsszefonodott
allapotok létezését, tovabba azt, hogy a klasszikus Fisher-féle informacié a kvantumos
esetre rendkiviil sokféleképpen altalanosithatd. A kvantum eseményalgebra szokésos mo-
dellje egy szeparabilis Hilbert-tér projektorhal6ja. Ebben a dolgozatban csupan véges
dimenziés Hilbert-terekkel leirhaté kvantummechanikai rendszerek informacidogeometriai
elemzésével foglalkozunk. Az ehhez nélkiilézhetetlen lineéris algebra, matrixanalizis és
valoszintiségszamitas ismereteket a dolgozat végén talalhatoé tematikusan rendezett fiig-
gelékekben foglaltuk 6ssze. Ugyancsak ide keriiltek azok a lemmaéak, amelyek tulzottan
technikai jellegiiek vagy amelyek bizonyitasa olyan hosszi és szovevényes, hogy annak
nyomon kovetése tilsdgosan elvonna az Olvaso figyelmét a lényegrél. A targyalas soran
felbukkan6 Riemann-geometrias fogalmaknak Szenthe [81] konyvében lehet utananézni.

Az els fejezetet elGkészits jellegii fejezetnek szanjuk, melyben a kvantum valoszi-
niiségszamitas haldoelméleti vonatkozasaibol kiindulva definidljuk a kvantum informéacio-
geometria alapvetd objektumaét, a kvantummechanikai allapotteret mint differencialhato
sokasagot. Ugyanitt esik sz6 a Fisher-féle informacio lehetséges kvantumos altaldnosité-
sairél és a Petz-féle osztéalyozési tételrsl. A kvantummechanikai allapotteret a Petz-féle
osztéalyozasi tétel altal jellemzett monoton metrikakkal ellatva kiillonb6z6 statisztikus so-
kasdgokat kapunk, melyek késGbbi vizsgalodasaink targyat képezik.

Az elsé fejezetet kovetd harom jol elkiiloniils fejezetben a kvantum informéciogeomet-
ria bizonyos teriiletein elért Gjabb eredményeinket mutatjuk be. A masodik fejezetben
hatarozatlansagi relaciokat vizsgalunk. Rovid torténeti attekintés utan sajat eredménye-
ink ismertetésére tériink ra. Megmutatjuk, hogy a hatérozatlansagi relaciok egy igen tag
csaladja, mely magaban foglalja az in. dinamikai hatarozatlansagi relaciokat s ezen be-
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lill a Heisenberg-féle hatarozatlansagi-elv Robertson altali dltalanositasat, 1ényegében a
kvantummechanikai allapottéren értelmezett kiilonb6zé Riemann-metrikak (és az ezeket
indukal6 operatormonoton fiiggvények) kozotti rendezésre vezethets vissza. Bevezetjiik
az antiszimmetrikus és a szimmetrikus kvantum kovarianciakat és megmutatjuk, hogy a
kozonséges — mar Schrodinger altal is vizsgalt — kvantum kovariancia ezen utobbi kovari-
ancia csaladba sorolhatd. Megmutatjuk, hogy a szimmetrikus kovariancia csalad tagjaival
az antiszimmetrikus csalad feliilr6l becstilhetd és bizonyitjuk azt is, hogy a szamtani ko-
zéphez és a harmonikus kozéphez tartozo operdatormonoton fiiggvények szamtani kdzepe
altal indukalt monoton metrika szolgaltatja a lehetd legélesebb dinamikai hatérozatlan-
ségi relaciot.

A harmadik fejezetben Gsszetett kvantummechanikai rendszereket vizsgalunk. Itt mu-
tatjuk be a dolgozat legfébb eredményét: a 4 x 4-es valos allapotokra vonatkozo sze-
parabilitési valoszintiség meghatarozasat a kézonséges Lebesgue-mértékre vonatkozolag.
Mintegy melléktermékként kapjuk Milz és Strunz sejtésének bizonyitaséat, mely a 4 x 4-es
strtiségmatrixokkal lefrhaté kvantummechanikai rendszerekre kimondja a szeparabilitasi
valoszintiség redukalt allapottol vald fiiggetlenségét. Eredményeiket altalanositjuk arra
az informéciégeometriai szempontbdl relevans esetre is, amikor az allapotteret a négyzet-
gyok fiiggvény éltal szarmaztatott monoton metrikaval latjuk el. Megmutatjuk tovabba,
hogy a 2n x 2n-es stirtiségmatrixok alkotta allapottér el6all az n x n-es stirtiségméatrixok
alkotta allapottér, az n x n-es énadjungalt matrixokbol 4ll6 [—1, I] operator intervallum
és az n X n-es matrixok egységgombjének a direkt szorzataként. Ezt az egyébként messze
nem linearis felbontéast hasznaljuk fel arra, hogy geometriai leirdsat adjuk a 4 x 4-es sze-
parabilis allapotoknak. Kideriil, hogy 4 x 4-es szeparabilis kvantumallapotok pereme egy,
a 2 X 2-es matrixok egységgdmbjén értelmezett fiiggvény grafikonjaként elGallo sokasag
feletti trivialis nyaldbként all els. Ezek utan bevezetiink egy kongruencia transzforma-
ciokra nézve invarians tavolsdgfogalmat az allapottéren, amire nézve meghatarozzuk egy
tetszbleges Osszefonodott allapot tavolsagat a szeparabilis allapotoktol.

A negyedik fejezetet qubit-qubit kvantum csatorndk tanulmanyozésanak szenteljiik.
Ezek a csatornak egy qubit id6fejlédését valamint a — minden kvantumos szamitasi eljaréas
alapjat képez6 — egy qubiten végrehajthaté miiveleteket irjék le. A Choi-féle reprezen-
tacioban a qubit-qubit kvantum csatornak R'? egy kompakt, konvex részsokasagaként
jelennek meg. Erre a sokasagra kés6bb mint qubit csatornék terére hivatkozunk. Beve-
zetjiik a qubit csatorna klasszikus nyomét mint a qubit csatorna klasszikus (diagonalis)
allapotokra torténé megszoritottjat. Ennek egy 2 x 2-es sztochasztikus matrix feleltethetd
meg. Ezek utan meghatarozzuk egy, a qubit csatornék terén egyenletes eloszlasu csator-
na klasszikus nyoményak az eloszlasat. Ezeket az eredményeket felhasznalva fiiggetlen
véletlen qubit csatorna sorozat qubitekre gyakorolt hatasaval a dekoherenciat el6idézé
zajt modellezziik. Ennek a gyakorlati jelentGsége abban all, hogy a kvantumszamito-
gépekben alkalmazott kvantumkapuk sebessége a dekoherencia idejénél gyorsabb kell,
hogy legyen, ezért a dekoherencia sebességének mérése a kvantumszamitogépek megvalo-
sitdsdnak szemszogébdl nézve kulcsfontossagi. A dekoherencia utani allapot informécio
tartalmat a teljesen kevert allapotra vonatkozo relativ entropiaval, a dekoherencia eltti
allapothoz képesti informécié veszteséget pedig a kezdeti allapot dekoherencia utani al-

“ e,

teljesen kevert allapothoz tartas konvergencia sebességének meghatarozasaval zarjuk.



1. fejezet

Stirtiségmatrixok
informaciégeometriaja

A fejezet célja, hogy az olvasodt célorientalt moédon bevezesse a kvantum informécio-
geometria alapvetd modszereibe és biztositsa azt az alapvetd fogalmi keretet, melyre a
tobbi fejezetet épitjiik majd fel.

A fejezet els6 felében kvantumlogikai héldoelméleti megalapozasabol kiindulva defini-
aljuk a kvantummechanikai allapotteret és a fizikai mennyiségeket. Megmutatjuk, hogy
egy véges dimenziés Hilbert-térrel modellezheté kvantummechanikai rendszer allapottere
sima sokasag struktiurdval lathato el és jellemezziik ezen sokasag érintGtereit. A téma
fizikai vonatkozasait illetGen a [43, 64, 82| miivekre és az [50] cikkre utalunk.

A fejezet masodik felében definidljuk a kiilénb6z6 kvantummechanikai allapotterek
kozotti sztochasztikus leképezéseket és az Gin. monoton metrikakat, melyek a klasszikus
Fisher-féle informécié kvantumos altalanositdsanak tekintheték. Roviden sszefoglaljuk
az operator monoton fiiggvényekkel és a beldliik szarmazé kozepekkel kapcsolatos alap-
vetd ismereteket és kimondjuk Petz hires osztélyozasi tételét, amely kapcsolatot teremt a
monoton metrika csaladok és bizonyos operdatormonoton fiiggvények kozott. A téméban
tovabbi tajékozodasi alapként és tovabbi tanulmanyozasra a |2, 8, 9, 42, 58, 59| és [32]
miiveket ajanljuk.

1.1. Kvantum valészintiségszamitasi alapok

A kvantumos és klasszikus események leirasabban a halé mint algebrai struktura és
a halok reprezentéacioi kozponti szerepet jatszanak. Tobbek kozott ez indokolja, hogy a
targyalast egy rovid haldoelméleti bevezetével inditsuk.

1.1.1. Definicié. Egy (£, <) részben rendezett halmazt (azaz ,, <"C L x L reflexiv, tran-
zittv és antiszimmetrikus reldcid) o-halonak nevezink, ha az £ halmaz megszdmldlhato
részhalmazainak létezik legkisebb felsd és legnagyobb also korldtja a L halmazban.

Ha (£, <) 0-halo, akkor tetszéleges (a,)nen C £ megszamlalhatéan végtelen sok ha-

l6elem legkisebb felsd és legnagyobb also korlatjat szokasos modon rendre a \/ a, illetve
neN
a A a, szimbolumok jelolik. Ha pedig a,b € L, akkor az {a,b} halmaz legkisebb fels6
neN
korlatjat a V b, legnagyobb als6 korlatjat pedig a A b jeldli.
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1.1.2. Definicié. Az (£,<,1,0,1) dtist ortokomplementumos o-halonak hivjuk, ha
(£, <,0,1) korlatos o-halo 0 és 1 alsd és felsd korldttal, azaz

L VYaeLl: 0<aés

II. YVae L: a<1 teljesiil.

Az L. L — L ortokomplementacionak nevezett mivelet pedig a kovetkezd tulajdonsdgokkal
rendelkezik:

i. YVae L : (al)L:a
i Ya,be L: a<b=b<at
iti. VYae L: aVatr=1¢éaAat=0.

Az (L£,<,1,0,1) ortokomplementumos o-halot ortomodularisnak mondjuk, ha min-
den a,b € L elemre, ha a < b teljesiil akkor fennéll az

b=aV (bAat) (1.1)

egyenlGség is. Disztributivitasrol pedig akkor beszéliink, ha tetszéleges a, b, c € £ halo-
elemekre
aV(bAc)=(aVb)A(aVc) (1.2)

teljesiil. A ¢ = at vélasztassal az (1.2) egyenletben az ortokomplementécié iii. tulaj-
donsagat és az 1 haldelem fels§ korlat voltat kihasznéalva az (1.1) egyenlSséget kapjuk.
Tehat a disztributivitasbol az ortomodularitas kévetkezik. Megmutathato viszont, hogy
a disztributivitas az ortomodularitashoz képest valodi megszoritast jelent. Errdl a kovet-
kez6 pédéan keresztiil gy6z&dhetiink meg. Tekintsiik az 1.1. abran lathaté tun. Hasse-féle
diagrammal adott halot. Az ortokomplementéciot ezen a halon 0+ =1, a* =bésct =d

1.1. abra. Egy ortomodularis halo, amely nem disztributiv.

egyenlgségekkel definidljuk. Az (1.1) egyenlSség trividlisan fenndll, hiszen a = 0 vagy
b = 1, illetve a = b vélasztas mellett azonossagot kapunk. Masféle moédon pedig nem
tudunk egymassal rendezési relacioban allo elemeket venni ebbdl a halobol. A disztribu-
tivitas nem teljestilése pedig az aV (bAc) =aV0=aés (aVb) A(aVec)=1A1=1sza-
molasokbol kovetkezik. Ezek utan az ortomodularis o-halokat eseményalgebranak fogjuk
nevezni, a héldelemeket pedig eseményeknek hivjuk. Amikor eseményalgebrakrol beszé-
link a tovabbiakban — ha félreértést nem okoz — csak az alaphalmazt (£) irjuk ki. Az
a,b € L események kizarok, ha a A b = 0.
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1.1.3. Definicié. Az L eseményalgebrdan eqy P : L — [0, 1] leképezést allapotnak hivunk,
ha

i. P(1)=1 és

i. ha (ay),cy megszamldlhatoan végtelen sok egymdst pdronként kizdro esemény, akkor

P (\/ an> => P(a).

neN neN

Ha a € L, akkor a P(a) mennyiséget az a esemény valoszintiségének nevezziik.

Ha (Q, F,P) klasszikus Kolmogorov-féle valoszintiségi mezs, akkor az F o-algebra a
,C7 tartalmazésra mint rendezési relaciora nézve disztributiv o-hélo, a P valoszintiségi
mérték pedig egy éllapot ezen a halon. Ezen észrevétel megforditasdnak tekinthets az
az eset, amikor L egy véges sok elemet tartalmazé disztributiv eseményalgebra. Ekkor
ugyanis £ Boole-algebra és Stone-tétele szerint £ mint héld izomorf valamely 2 véges
halmaz P(2)-val jelolt hatvanyhalmazaval, amely a ,,C” tartalmazassal mint rendezéssel
disztributiv halé. Ebben az esetben az L eseményalgebra allapotainak bijektiven megfe-
leltethetSk az €2 feletti diszkrét valoszintiségi eloszlasok.

A klasszikus fizikai jelenségek modellezésére a disztributiv eseményalgebrak elégséges-
nek bizonyultak, a kvantummechanika szamara viszont a disztributivitas tulsagosan nagy
megszoritast jelent, ezért a disztributiv halok korén tul kell 1épni és a kvantummechanika
matematikai modelljét egy sokkal altalanosabb, nem disztributiv eseményalgebréara kell
felépiteni [64].

1.1.4. Definicio. Legyen H Hilbert-tér és jelolje B(H) a H — H korldtos linedris ope-
ratorok C*-algebrdjit. Eqy P € B(H) elemet projekcionak neveziink, ha P = P* = P?
teljestil.

Egy H Hilbert-tér projekcioi és zart alterei kozt a P — Ran(P) megfeleltetés bi-
jekciot hataroz meg. A H Hilbert-tér projekcidinak halmazén bevezethetiink egy ren-
dezést a kovetkezd modon: P és Q) projekciok esetén akkor mondjuk, hogy P < @), ha
Ran(P) C Ran(Q®). Koénnyen ellendrizhets, hogy a H Hilbert-tér projekcivinak £(H)-val
jelolt halmaza az imént bevezetett rendezésre nézve a P +— P+ := I — P miivelettel mint
ortokomplementacioval ellatva ortomodularis o-halo, melyben 0 € B(H) é¢s [ € B(H)
legnagyobb, illetve legkisebb elem.

A tovabbiakban ennél a példanal maradunk és arra az esetre szoritkozunk, amikor a H
Hilbert-tér véges dimenzids. Ezt a matematikai formalizmust hasznaljak példaul spinnel
rendelkezd részecskék spin részének leirasara nem-relativisztikus esetben [29, 43, 85, 84].
A véges dimenzios esetben az L(H) kvantum eseményalgebra allapotait a kovetkezs Glea-
sontol szarmazo tétel jellemzi.

1.1.1. Tétel (Gleason tétele). Legyen H (véges dimenzids) valds vagy komplex Hilbert-
tér. Ha dim(H) # 2, akkor tetszdleges, a H Hilbert-tér L(H)-val jeldlt projekciohdldjdn
értelmezett P . L(H) — [0,1] dllapothoz egyértelmien megadhatd egy p € B (H) egység-
nyomi pozitiv operdtor, melyre

VP e L(H) P(P)=tr(pP)
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teljestl. Tovdbbd igaz az is, hogy B (H) minden p pozitiv, egységnyomi eleme a P
tr(pP) hozzdrendelésen keresztil eqgy L(H) — [0, 1] dllapotot hatdroz meg.

A fenti tétel révén a kvantummechanikai allapottér azonosul a pozitiv matrixok kapja-
nak és az egységnyomu matrixok hipersikjanak a metszetével, ezért ezentil az n-dimenzios
Hilbert-térrel leirt kvantummechanikai rendszer allapottere alatt

D,={DecK"™ | D>0,tr(D)=1} (1.3)

halmazt fogjuk érteni. A D, halmaz elemeit strtségmatrixoknak nevezziik. Ha ki sze-
retnénk hangsilyozni, hogy mely szamtest felett tekintjiikk az n x n-es stiriségmaéatrixok
terét, akkor D), -t irunk, ahol K = R vagy K = C. Konnyen lathato, hogy a D,, x halmaz

azonosithaté az R"(3)? linearis tér egy konvex zart részhalmazéaval, ahol d = dimg(K).
A belsé szorzés folytonossagabol adodoan a D,, halmaz D,,-el jelolt belsejét a szigortan
pozitiv strtiségoperatorok alkotjak.

1.1.5. Definicié. Egy p € D,, dllapotot akkor hivunk tiszta allapotnak, ha rk(p) = 1. A
nem tiszta dllapotokat kevert allapotnak nevezziik.

Az, hogy a p € D, allapot tiszta azzal ekvivalens, hogy p = v ® v alakba irhato,
ahol v a ‘H Hilbert-tér egységvektora, ezért a tiszta allapotokat vektordllapotnak is szokas
hivni. Vegyiik észre, hogy a v és e'%v, § € [0,27) egységvektorok ugyanazt p = v ® v
allapotot hatarozzédk meg. Forditva, ha a v és w egységvektorokhoz ugyanaz a tiszta
allapot tartozik, akkor a v és w vektorok egy egységnyi abszolit értéki konstans szorzéban
kiilonboznek. FEz az észrevétel vezet el oda, hogy a tiszta allapotok azonosithatok a
P(H) = CPI¥™()~1 komplex projektiv tér pontjaival.

Vilagos, hogy az allapottér D,-el jelolt belsejét csupa kevert allapot alkotja. Az
viszont — a kétdimenzios Hilbert-térrel modellezett kvantummechanikai rendszer esetét
leszamitva — nem igaz, hogy az allapottér 0D, peremét csupa tiszta allapot alkotna.
Trivialis ellenpéldaként adodik a

/2 0 0
0 1/2 0 | €Dy
0 0 0

stirtiségmatrix, melynek rangja 2, igy nem reprezentéalhat tiszta allapotot.

1.1.6. Definici6. Azokat az dllapotokat, melyeket diagondlis striségmdatriz reprezentdl
klasszikus allapotok nevezziik.

Az alabbi példaban a legegyszertibb, még éppen nem trivialis kvantummechanikai
allapotteret elemezziik.

1.1.1. Példa (Bloch-gémb). Legyen H = C? és tekintsiik a Do dllapotteret. Az A.1.1
Megjegyzés szerint a {I,01, 09,03} Pauli mdtrizok alkotta rendszer bdzis a 2 X 2-es onad-
Jungdlt mdtrizok vektorterében, ezért minden p € Dy dllapot

pz%([—l—x.g) (1.4)
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3
alakba irhatd, ahol x € R® és x.0 = > w;0;. Megmutathatd, hogy az (1.4) formuldval
j=1

definidlt p mdtriz pontosan akkor pozitiv szemidefinit, ha ||z|| = \/2? + 23 + 23 < 1, igy
a Dy dllapottér pontjai a By (R3) zdrt egységgomb pontjainak bijektiven megfeleltethetdk.
A Dy dllapottér elemeit qubiteknek hivjuk, az (1.4) elddllitast Bloch-reprezentacionak
nevezziik, a Bloch-reprezentdcio x vektorat Bloch-vektor, a Bloch-vektorok végpontjai dltal
lefedett alakzatot pedig Bloch-gomb névvel illetjik. A Bloch-vektor ||x|| hossza a Bloch-
sugar. Az (1.4) elddllitdst szokds még Stokes-paraméterezésnek is nevezni.

Egyszeri szamoldssal ellendrizhetd, hogy ha x € By (R3), akkor a Py = % (I + = a)

1|

mdtrizok ortogondlis projekciokat hatdroznak meg, melyre PP = P_P, = 0 és P, +
P_ = T teljesiil mds széval a {Py,P_} egy teljes eseményrendszer a L(C?) kvantum
eseményalgebraban, ezért az (1.4) formuldval adott p dllapot
1+||$||1( x ) 1—||a:||1( T )
p=——-\(I+—0o|+—=([——.0c (1.5)
2 2 || 2 2 |||

alakban irhato fel, ami az x Bloch-vektorral adott qubit spektrdlfelbontdsa is egyben.

Magasabb dimenziéban a kvantummechanikai dllapottér meglehet&sen bonyolult alak-
zat lehet erre vonatkozoan egy rovid elemzés a 2] dolgozat 104-105. oldalan talalhato.

1.1.2. Tétel. A D,k dllapottér D, x-val jelolt belseje kozdnséges sima sokasdg strukti-
rdval ldthato el.

Bizonyitds. Az allapottér belsejét egyetlenegy térképpel fogjuk lefedni. A koordinata-
zast komplex allapotokra mutatjuk meg, a valos allapotok koordinatazasa hasonloképpen
torténik.

Legyen {e;}; | az n-dimenzios H Hilbert-tér egy ortonormalt béazisa és vezessiik be az

erVe =€ Qe +teRe, és epNep=—iler®e —e @ ey) (1.6)

(1 <k <1<n) operatokokat és a dy = e, ® e, — e, ® e, operatorcsaladot, ahol k =
1,2,...,n — 1. Tekintsiik a

tr(p(e1 V e2))
tr(p(en_'l Ven))
2 tr(pler A es)
¢:Dpc =R pisg(p) = : (1.7)

tr(p(en-1 A €n))

tr(/;dl)

tr(pdn—1)

leképezést. Ellenérizhetd, hogy ez a leképezés kolesonosen egyértelmi és inverzével egyiitt
folytonos, tehat homeomorfizmus az D,, ¢ allapotér és R -1 egy Osszefliggd nyilt halmaza
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koztott. Az allapottér ezen térképezését kanonikus koordindtdzdsnak hiviak. Megjegyez-
ziik, hogy a D, r sokasag térképezése ¢ térképezéstsl annyiban tér el, hogy nem szere-
pelnek a ej A e; operatorokhoz tartozé komponensek. Tehat a D,, x halmaz n + (g)d —1-
dimenzids sima sokasag, ahol d = dimg(K).

A hatérozatlansagi relaciokkal kapcsolatos vizsgalodasaink és az allapottér érintGte-
reinek jellemzése nem nélkiilozheti a fizikai mennyiség és a fizikai mennyiség varhato
értékének a fogalmat. A fizikai mennyiségek absztrakt halomorfizmusokon keresztiil tor-
ténd értelmezése megtalalhato a [82] jegyzetben. Itt — terjedelmi korlatok miatt — meg
kell elégedniink a kovetkezs definicioval.

1.1.7. Definicié. Egy n-dimenzios Hilbert-térrel modellezett kvantummechanikai rend-
szer fizikai mennyiségei (mds néven obeszervabilisei) az n X n-es dnadjungdlt mdtrizok.
Az A € MY fizikai mennyiség vdarhato értékét a p € Dy x dllapotban

E,(A) = tr(pA)
modon definidljuk.

Ha A € M}y fizikai mennyiség, akkor léteznek Py, ..., P, péaronként ortogonalis
projekciok, melyek Gsszege I (azaz Py, ..., P, teljes eseményrendszer), hogy

A= En: AP, (1.8)
=1

teljestil valamilyen Ay, ..., A\, valos szamoknak, melyeket az A fizikai mennyiség lehetséges
értékeinek hivunk. A fenti spektralfelbontasbol az A fizikai mennyiség varhato értékére
az

E,(4) = Y AP, (P) (19)
i=1
osszeg elGallitast kapjuk. A kovetkezd tétel a D, x sokasig érintétereit irja le.

1.1.3. Tétel. A D, x sima sokasdg tetszdleges p € D, x pont feletti T, D, x €érintdtere
1zomorf a zérusnyomi fizikar mennyiségek ( ;‘fK(O)) valds szamtest feletti vektorterével.

Bizonyitds. A bizonyitasban a sima sokasag érintGtérének azon ekvivalens meghataroza-
sat vessziik alapul, amely az érintévektorokat a sokasagban halad6 sima goérbék ekviva-
lencia osztélyaiként definidlja, ahol az ekvivalencia relaci6 az els6rendi érintkezés.

Legyen v : (—1,1) — D, k sima gorbe, melyre v(0) = p € D, k. A tr mivelet linearis
funkcional, ezért

1(3(0)) = lim < tr(7(1) ~ 1(0)) =0

teljesiil, azaz ¥(0) € M;*(0). Tehat a T, D, x érint6tér vektorai (p,¥(0)) alakd parokkal
reprezentalhatok és minden ilyen parra igaz, hogy a masodik elem zérusnyomu fizikai
mennyiség, ezért rogzitett p € D,k esetén a T,D, x érint6tér bedgyazhato a M; (0)
vektortérbe.

Annak belatasara, hogy ez a megfeleltetés sziirjekcio, legyen A tetszéleges zérusnyomu
fizikai mennyiség és tekintsiik a ¢t — y(t) := p + tA sima gorbét és a ¢ (1.7) térképezést.
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A ¢ (D,x) C R™*~! halmaz nyilt, a ~ fiiggvény pedig folytonos. Ebbél kivetkezik, hogy
Je > 0, melyre a v gorbe (—¢,¢) intervallumra torténd megszoritasa teljes egészében az
D, x sokasdgban halad. A 7 : (—e,e) — D, affin leképezés, ezért sima, v(0) = p és
Y(0) = A Az M3 (0) linearis tér tehat nemcsak bedgyazhatoé a T,D, x érintStérbe,
hanem izomorf is vele. O

A D, x sokasagot egyetlen térképpel fedtiik, amely felett az érintényalab trivialis.
Vildgos tehat, hogy 1D,k érintényalab mint vektornyaldb a D, x X M;*(0) szorzat
sokasaggal izomorf. Mas szoval a D,, x sokasag parhuzamosithato.

1.2. Operatormonoton fiiggvények és monoton metrikak

Most, hogy az allapotteret sima sokasag struktiraval lattuk el és jellemeztiik az igy
elsallo sokasag érintGtereit a kovetkezs 1épés, hogy informéacioelméleti szempontbol re-
levans Riemann-metrikakat definidljunk rajta és ezeket jellemezziik. Més teriileteken is
torténtek sikeres probélkozasok az allapottéren értelmezett Riemann-metrikdk alkalma-
zésara. Balian [12] és Streater [80] a statisztikus fizikdban, Tanaka [83] pedig az atlagtér
elméletben alkalmazta Gket sikerrel.

Rogton adodik a kérdés, hogy mit nevezziink informaciéelméleti szempontbol relevans-
nak? Olyan metrikdkat keresiink, melyekkel az allapotteret ellatva a kapott Riemann-
sokasag geometriai jellemzGinek vizsgalatan keresztiil kvantum informacioelméleti kérdé-
seket tudunk megvalaszolni. Ha a metrikdbol szarmazé geodetikus tavolsidgot az egyes
allapotok informécios tavolsagaval — barmit is jelentsen ez — szeretnénk kapcsolatba hoz-
ni, akkor logikus megkovetelni azt, hogy ha két kvantummechanikai allapottér kozott
bizonyos specialis tulajdonsagu leképezésekkel kapcsolatot 1étesitiink, akkor a képtérrsl
visszahtizott metrika a kiindulo teriink allapotait kozelebbinek mutassa, mint annak sajat
metrikaja. ElGszor is tisztazni kell, hogy milyen leképezésekre gondolunk.

1.2.1. Definicié. Egy T : B(H1) — B (Hz) linedris leképezést pozitivnak neveziink, ha
pozitiv elemnek pozitiv elemet feleltet meg, azaz T (B (7—[1)+) CB (7—[2)+. Akkor mondjuk,
hogy a T leképezés k-pozitiv (k € N), ha az

idg(ci) @ T : B(C') @ B(H1) = B(C*) ® B (Ha)

leképezés pozitiv. Ha a T leképezés minden k természetes szamra k-pozitiv, akkor telje-
sen pozitivnak mondjuk. A teljesen pozitiv nyomtarto leképezéseket pedig sztochasztikus
leképezéseknek nevezziik.

Sztochasztikus leképezéseket — masnéven kvantum csatornakat — a 4. fejezetben tér-
gyaljuk majd részletesen.

1.2.2. Definicid. A (g)nen+ metrika csalddot monoton metrika csaladnak nevezzik, ha
g, Riemann metrika a D,, dllapottéren minden n € Nt esetén, tovdbbd minden T : D,, —
D,, sztochasztikus leképezésre, minden p € D, dllapotra és minden A € T,D,, érintdtérbeli
vektorra

(T"9m) (P)(A, A) = gm(T(p))(T(A), T(A)) < gn(p)(A, A)

teljestil.
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Ha H Hilbert-tér, akkor a B (H) énadjungalt elemein a B (H)" pozitiv kap parcialis
rendezést definial az alabbi mdédon

A<B&B-AcBH)™ A BeB(H),,. (1.10)

A monoton metrika csalddok a klasszikus informéacioelméletben definialt Fisher-féle in-
formacio kvantumos altaldnositasai, ezért gyakran kvantum Fisher-informdcionak hivjak
Sket. A klasszikus Fisher-informaciorol és a kvantumos esetre torténd altalanositéssal
kapcsolatos kérdésekrdl a [2] dolgozatban olvashatunk b&vebben.

sa

1.2.3. Definicié. Az f : [0,00) = R fiigguény n-monoton, ha megtartja M;’c elemein
a fent modon definidalt parcidlis rendezést, vagyis

A<B= f(A) < f(B) VA Be M

teljesil.  Akkor mondjuk, hogy az f fiiggvény operatormonoton, ha minden n pozitiv
egészre n-monoton.
Eqgy [ : RT — R operdtormonoton fligguényt szimmetrikusnak neveziink, ha Vo € Rt

esetén fenndll az
)=t (5)

egyenldség. Egy [ operdtormonoton figguény normélt, ha az x = 0 pontra folytonosan
kiterjeszthetd és f(1) =1 teljesiil.

A szimmetrikus, normalt operatormonoton fiiggvények osszességét F,-al jeloljik. Az
Fop halmaz két fontos részhalmaza

Fop ={f € Fop [ F(0) # 0} s Fo, = {f € Fop | f(0) = 0}

Szdmos monoton névé fiiggvényrdl kideriil, hogy nem operatormonoton. Az z +— 22
fiiggvény példaul mégesak nem is 2-monoton. Ennek bizonyitédsa példaval egyiitt meg-
talalhato a [16] konyvben. Az exp : R —]0, 00| exponencialis fiiggvény szintén nem
operatormonoton, s6t Wu azt is megmutatta, hogy egy A C*-algebra A* pozitiv kipjan
az exponencialis fliggvény pontosan akkor monoton, ha az A algebra kommutativ [86].

1.2.1. Példa. Az aldbbi fiigguények mindegyike szimmetrikus, normdlt operdtormonoton
fiigguény.

foule) = 5
fuate) = T

fon(@) = v

frew(w) = lig_(ajl)

fuv(@) = (/T +17
fwvola) = 150 LD

41— )1 -a'E)
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Ezek utan kimondhatjuk Petz hires osztalyozasi tételét, ami a monoton metrika csa-
ladok pontos karakterizécidjat adja.

1.2.1. Tétel (Petz, 1996). A monoton metrikacsalddok és a szimmetrikus, normdlt ope-
ratormonoton fligguények kozott kélcsondsen egyértelmi megfeleltetés létesithetd. Ilyen
bijekciot példaul a kovetkezd modon lehet megadni.

(Vf € Fop)  (97)n : DX M (0) X M (0) = K (p, A, B) = (97)n(p)(A, B) (1.11)

(97)n(p)(A, B) = tr (A (Ré f(LpR;)Ré)_l (B)) : (1.12)

ahol L, és R, in. szuper operdtorok (Bdvebben ldsd: az A.3. Figgelékben). Az igy
definidlt megfeleltetés eqy adott f operdatormonoton fiigguényhez eqy jol meghatdrozott
((9f)n)nen+ monoton metrika csalddot rendel és minden monoton metrikacsaldd elddllit-
hato ezen a modon egy alkalmas f € Fop, operdtormonoton fligguény segitségével.

Bizonyitds. A tétel bizonyitassal egytitt az [59] cikkben talalhato meg. ]

Az A.3. Fiiggelékben taldlhato (A.2) azonositas révén a folytonos fiiggvényszamitas
algebra morfizmus voltat felhasznélva a (g¢), Riemann-metrika a

(9)n(p)(A, B) = tr (A(Gp)alp)(B)) A, B € Mx(0)

ekvivalens alakra irhat6 at, ahol

(@ulp) = (T p7) (}) (o p )T @)

és amirdl a tr ciklikussagat kihasznalva a metrika
(9p)n(UpU)(UAU™, UBU") = (g¢)n(p)(A, B) U €U(n)

unitér invariancidja azonnal leolvashato.

Ratériink a (gs), metrika matrixanak a kiszamitasara a D, x sokasag az 1.1.2. té-
telben bemutatott kanonikus koordinatazésa mellett. A metrika imént belatott unitér
invarianciaja miatt egy fix p € D, x ponthoz valaszthatunk gy {ej}r—1., ortonormalt
bazist, hogy p = >/ _, prer®ey alaki legyen, ahol o (p) = {p1, ..., i} A {ex®ertriz1..n
szorzat bazisban a

@) =105 (1) or e = ﬁ (e ® ) ® (ex @ 1)
k=1 M 11

(1.13)
spektralfelbontast kapjuk.

1.2.2. Tétel. Tegyiik fel, hogy a p € D,k dllapot az {ey}r=1. ., ortonormdlt bdzisban
P = p_y ek @ ey alaki, ahol o (p) = {p1,...,pun}. Ekkor a (1.12) formuldval definidlt
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(9f)n monoton metrika ,mdtriza” T,Dyx = M;%(0) 1.1.2. tételben definidlt {eyV e, ex N
e }1<ker<n U{dr k12, n1 bdzisdra vonatkozolag

=11
M

(gf)n(p)(er Ve, epVe) = ﬁ
2

(9)n(p)(ex N e, ex Aer) = m

ahol minden mds kombindcioban a baziselemek (g¢)n(p) dltal definidlt belsé szorzata nulla.
A fizikusok dltal kedvelt ,ivelem-négyzetes” felirasban a metrika

2 1
d52 = Z _— ((dek A €l)2 + (dek \% €l)2) + _(ddk)(ddl) + _<ddk’)2
1<k<i<n \ tuf </ﬂ> Hn k=t M

alakba irhato.

Bizonyitds. Az (1.13) formulat felhasznalva kapjuk, hogy

(Grlaler Ve)= ! Ve
puf (E)
(Gp)nlex Ne) = ! ek el
uf (%)
(Gf)n(dy) = ! ® ! ®
#)n(di /Lkek ek unen Cn,

ahol (Gy)n(exVer) és (Gr)n(exNep) szamolasanal az f operatormonotonfiiggvény szimmet-
ridjat, (G)n(dy) kiszamitasanal pedig az f normaltsagat hasznaltuk. Ebbdl a metrika
bilinearitasat és M} fent emlitett bazisanak ortogonalitaséat felhasznalva rovid széamolés
utan kapjuk az allitast. O]

1.2.1. Kovetkezmény. A metrika unitér invariancidjabol és az 1.2.2 tételbdl az A.1.4
lemma felhaszndldsdval kévetkezik, hogy ha o(p) = {1, - .., tn}, akkor (Dy, (9¢)n) Riemann-
sokasag térfogati formdja a p € D,, pontban

det ((g7)n(p)) = WH ﬁ , (1.14)

ahol d = dimg (K).

Sziikséges még két fontos unitér-invaridns metrikat megemliteniink az &allapottéren.
Az egyik a Hilbert—Schmidt-metrika vagy més néven lapos metrika, melyet a

gus(p)(A, B) = tr(AB) (1.15)
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formula definidl. Ennek elénye, hogy konnyt vele szamolni és szemléletes jelentéssel bir:
gus(p)(A, B) egyszerden az [A; ;] és [B; ;] matrixelemekbdl alkotott n?-dimenzios vek-
torok standard belsé szorzata. Hatranya, hogy semmilyen informécidelméleti jelentéssel
sem bir.

A normélis eloszlas geometridjabol szarmazik a

gom(p)(A, B) = tr(Ap~'Bp™Y) pe B(K™™)" (1.16)

Thompson-metrika, amire formalisan gea(p)(A4, B) = (9seu )n(p?)(4, B) teljesiil. Ez
a metrika szdmos kellemes tulajdonsaggal bir. Példaul nemcsak unitér invarians, de
kongruencia invarians is, ami azt jelenti, hogy tetszéleges S € K™"*" matrixra a

9eu(SpS*)(SAS™, SBS™) = gaum(p)(A, B)
egyenlGség teljesiil. Ennek fontos kdvetkezménye, hogy a ggps metrikabol szarmazo
geodetikus tavolsig is kongruencia invarians. Hatranya, hogy a D,x C B (K“X")+ 1-

kodimenzi6s részsokasdg nem totalgeodetikus részsokasag erre a metrikdra nézve, ami
azonnal lathato, ha tudjuk, hogy az A, B € B (K”X”)+ pontokat Osszekoz6 geodetikus a

0,1] 3¢ — A#,B = AV (A712BA12) A2 (1.17)

gorbe, a ggpr metrikdbol szarmazod geodetikus tavolgag pedig

5(A, B) = \/tr (log*(A-1/2BA-12)), (1.18)

amir6l megmutathato6, hogy szintén kongruencia-invarians.

Elérebocsatjuk, hogy a Thompson-metrikara nézve az A, B € B (K”X")Jr pontokat
Osszekotd geodetikus felezGpontja az A és B maéatrixok geometriai kozepe. A ggpr met-
rikarol tovabbi informécio a [32| konyv 5.1. alfejezetében talalhato. A fenti két metrika
egyike sem monoton metrika, igy nem szarmaztathatok szimmetrikus, normalt operator-
monoton fiiggvényekbdl. A kvantummechanikai allapottér térfogatat a Hilbert—Schmidt-
metrikabol szarmazo térfogatra nézve Andai [1] és Zyczkowski hataroztak meg [37).

Jogosan vetddhet fel a kérdés az Olvaséban, hogy eddig miért csak az allapottér
belsejével foglalkoztunk és az allapottér peremérsl, valamint a tiszta allapotokrol nem
mondtunk semmit sem. A helyzet az, hogy a D,, allapottér peremes sokasag strukttraval
lathato el, a tiszta allapotok 0D, peremen helyezkednek el. A monoton metrika csaladok
allapottér peremére torténd radialis kiterjeszthetSségét Petz és Sudar vizsgaltak [59]. Azt
talaltak, hogy egy (gs), monoton metrika pontosan akkor terjeszthetd ki tiszta allapotok-
ra, ha a metrikat indexel§ f szimmetrikus, normalt operator monoton fiiggvény regularis,
azaz f(0) # 0. Megmutathato az is, hogy a kiterjesztett metrika a tiszta allapotokon
a CPIm()-1 komplex projektiv térrdl visszahtzott Fubini-Study metrika szamszorosa
lesz.

A fejezet héatralevd részében operator monoton fiiggvényekbdl szérmaztathatd opera-
torkozepekkel, operator monoton fiiggvények integral reprezentacioival és egyéb, késéb-
biekben hasznos operator monoton fliggvényekkel kapcsolatos tételekkel foglalkozunk.
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1.2.4. Definicié. Egy (my,)nen+ fligguénycsaladot matrixkozépnek hivunk, ha
My ( Z?K)Jr x ( Z?K)Jr — ( }S;}K)Jr Vn € N*

leképezés, amely a kovetkezd tulajdonsdgokkal rendelkezik

1. VA e Myt mu(A A) = A,

2. VA,B € My  mn(A, B) = m,(B, A),

3. VA, Be M)y A<B=A<m,(A B)<B,

4. ¥SeC™™ VA, Be M Sm,(A B)S* < (SAS*, SBS*).
Az (my)nen+ fligguénycsalddtol megkoveteljiik tovabbd, hogy teljesitse az

VA, u>0: my(Aiden, piden) = my (A, @) n € N*

konzisztencia feltételt.

Megallapodunk, hogy a tovabbiakban a méatrixkdzepek indexelését elhagyjuk, azaz
az (my)nen+ fliggvénycsalad minden tagjat egységesen m-el jeloljik. Ando és Kubo ja-
pan matematikusok megmutattik, hogy az alfejezet elején bevezetett operdator monoton
fliggvények és a fent definialt matrixkozepek kozott kdlesonosen egyértelmii megfeleltetés
létesithetd [42].

1.2.3. Tétel (Ando, Kubo). Tetszdleges m mdatrizkizéphez egyértelmien megadhatd olyan
f:]0,00) = [0,00) operdtormonoton figguény, melyre ¥Vt € R™ esetén

f) I =m(I,tI) (t>0)
teljesiil, tovabbd 0 < A és 0 < B mdtrixok esetén az
m(A,B) = A2 f (ATPBATY?) AV? = f(BATY) A
eqyenldséqg dll fenn.
Bizonyitds. A tétel bizonyitésa a [32| konyv 198-199. oldalan talalhato. O

Az f operator monoton fliggvényhez asszocialt matrixkézepet my-el jeloljik. Ha egy
pillantést vetiink a monoton metrikadk Petz-tételben szerepls (1.12) alakjara, akkor felfe-
dezhetjiik, hogy a statisztikai sokasag ,,gorbiiltségéért” felel6s (G),(p) szuperoperator

(Gp)n(p) = ms(Ly, Ry) ™ (1.19)

alakba irhato. Ez motivalja, hogy bevezessiik a ¢y = m;l in. Cenzov-Morozova fiigg-
vényt, ami a késébbiekben nagyban egyszertsiti jeloléseinket. Az elnevezés a monoton
metrikakkal kapcsolatos Cenzov—Morozova-tételbdl ered, amirsl bévebben a [2] dolgozat
114. oldalan olvashatunk.

A kovetkez példa mutatja, hogy sok kozismert, pozitiv szampéarokon értelmezett
kozép igazabol valamilyen métrixkozép specialis esete.
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1.2.2. Példa. Az 1.2.1 Példaban bemutatott fsnr, fam €s fra operdtor monoton fiigg-
vények rendre a szdmtani, mértani és harmonikus kozépnek megfeleld mdtrixkézepeket
indukdlyak, melyekre az aldbbu jeloléseket vezetjiik be

1
(VA.B € Mi)" . AVB:=my,, (A, B) = (A+B)
(VA, B e M%) T A#B:=my,, (A B) = AZ(A"2BA 2)2 A2

(VA,Be M%)t : AB:=my, (A B)=2A"+B")".

Ando és Kubo igazoltak azt is, hogy csaktugy mint a pozitiv szampérokon értelmezett
kozepeknél a matrixok szamtani kozepe a legnagyobb és a métrixok harmonikus kozepe

a legkisebb, azaz
A<AIB<m(A,B)<AVB 0<A<B

teljesiil minden m méatrixkozépre. Erdemes még itt megemliteni az A# B geometriai kozép
tovabbi két figyelemre mélté tulajdonségat. Ha A és B pozitiv szemidefinit matrixok, A
pedig invertalhato, akkor a pozitiv méatrixok kuapja altal definialt részbenrendezésre nézve
a legnagyobb X pozitiv matrix, melyre az

(% 5)

matrix pozitiv éppen az A és B matrixok A# B geometriai kbzepe. A geometriai kozép
ezen karakterizaciojabol levezethets, hogy ha P, Q) projekcidk valamely H véges dimen-
zi6s Hilbert-téren, akkor a H projekcio haloban az altalunk korabban geometriai Gton
értelmezett P A () mennyiség

P AQ = P#Q
alakot 6lt. Tovabbi sok érdekes, matrixkozepekkel kapcsolatos tételrsl a [32] konyv 5.1.
fejezetében olvashatunk.

1.2.4. Tétel. Az f € F! reguldris operdtor monoton fiigguényhez

fo) =5 (@ - a-apd).

osszefliggés dltal rendelt f fiigguény operdtor monoton, az f — f hozzdrendelés pedig

bigekcio az Fg, és Fu, halmazok kozott. Minden g € Fg, operdtor monoton figguény-

hez egyértelmiien létezik olyan p, valdszinidségi mérték a [0, 1] intervallumon, hogy a g

figguény
1
T 1+1¢ 1 1
— = dyeg (t e R
g(x) /0 2 (x+t+1+tx> Holt)

integrdl integral alakban dll eld, tovabbd az

L fol 1L+t (x+rt + l—:toc) d:“g(t)
- 1
fo@) ) 5 (v + ) d(®)

integrdllal definidlt f, figguény reguldris operdtor monoton figgvény, melyre fg = g tel-
jestil.
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Bizonyitds. A bizonyitas a [23| cikkben talalhato meg. O

1.2.1. Megjegyzés. Az szimmetrikus, normdlt operdtor monoton fiigguények pontonkénti

rendezésére nézve az % = f () hozzdrendelés rendezés forditd, ezért a % mennyiséq

az [ = fsm operdtor monoton fligguény esetén mazimdlis.

A szimmetrikus normalt operator monoton fiiggvények és a [0, 1] intervallum Borel
o-algebrajan értelmezett valoszintiségi mértékek kozott kolesonosen egyértelmi megfelel-
tetés létesithets. Errdl szol a kovetkezd tétel.

1.2.5. Tétel. Tetszdleges g € Fop, operdtor monoton fligguényhez egyértelmien lézetik
valdszindségi mérték a [0, 1] intervallumon, melyre a g fligguény reciproka

1 1+t 1 1
— = dp(t R
g(x) / 2 ($+t+1+t$) uit) we

[0,1]
integral alakban dll eld.
Bizonyitds. A bizonyitas a [11] és [30] cikkekben talalhaté meg. O

1.3. Osszefoglalas

A fejezet a dolgozat megértéséhez nélkiilozhetetlen kvantum informacié geometriai
ismereteket tartalmazza.

1. A kvantum valoszintségszamitas haloelméleti vonatkozasaibol kiindulva bevezettiik
kvantum informécié geometria alapvet$ objektumat, a kvantummechanikai allapotte-
ret.

2. Megmutattuk, hogy a véges dimenzios Hilbert-terekkel leirt kvantum mechanikai rend-
szerek allapotterének belseje sima sokasag strukturaval lathato el, tovabba ezen soka-
sag érintGterei a zérus nyomu fizikai mennyiségek vektorterével azonosithatok.

3. Definialtuk a sztochasztikus leképezéseket és monoton metrikakat.

4. Bevezettiik a szimmetrikus, norméalt operator monoton fiiggvények csaladjat és ki-
mondtuk Petz hires osztéalyozasi tételét, amely kolcsondsen egyértelmii megfeleltetést
létesit ezen fiiggvénycsalad és a monoton metrika csalddok kozott.

5. Végezetiil a fejezet végén az operator monoton fliggvényekkel és a hozzajuk asszocialt
matrix kozepekkel kapcsolatos alapvetd ismereteket foglaltuk Gssze.



2. fejezet

Hatarozatlansagi relaciok

A Kolmogorov-féle klasszikus valoszintiségszamitas egy X valoszintiségi valtozo szorés-
négyzetét a D?*(X) = E(X?) — E(X)? formuldval értelmezi. Ez minden tovabbi nehézség
nélkiil atvihet6 kvantumos esetre.

2.0.1. Definicio. Az A € M}% fizikar mennyiség szorasnégyzetét — mds szoval varian-
cidjat — a p € Dy dllapotban

D2(4) = E,(A%) — E,(4)" = tr(pA?) — tr(pA)? (2.1
modon értelmezzik.

A Kklasszikus kovariancia fogalom kvantumos altalanositdsa ennél joval nehezebb fel-
adat. Klasszikus esetben az X és Y valoszintségi valtozok kovariancidja Cov(X,Y) =
E(XY)—E(X)E(Y). Ennek formalis altalanositasa kvantumos esetre

Cov,(A,B) =E,(AB) —E,(A)E,(B) A, Be M}y p€Dyx
lenne, ami egymassal nem felcserélheté A, B fizikai mennyiségek esetén két problémat is
felvet. Az egyik az, hogy [A, B] # 0 esetén AB nem 6nadjungalt, azaz nem fizikai mennyi-
ség, kovetkezésképpen E,(AB) modelliinkbél nézve értelmezhetetlen. A mésik probléma
az, hogy ha A és B nem felcserélhetsk, akkor a fenti formalis altalanositas valtozoiban

egy nem szimmetrikus kovariancia fiiggvényt definial. Ezen problémak feloldasa céljabol
Schrodinger 1930-ban bevezette a

Cov,(A,B) =E, (%(AB + BA)) —E,(AE,(B) A BeMx p€Dyx (2.2)
kvantum kovarianciat [67], amely kvantum valoszintiségszamitas keretei kozott jol defini-
alt, valtozoiban mér szimmetrikus mennyiség.

A Schrédinger altal bevezetett kovarianciardl kideriil, hogy a nem felcserélhetd fizikai
mennyiségek kovariancidja — tobb mennyiség esetén pedig a kovariancia matrix determi-
nansa — alulrél becsiilhet6 olyan mennyiségekkel, melyek a tekintett fizikai mennyiségek
és a rendszert leir6 allapot felcserélhetGségét mérik. Az ilyen tipusi egyenlStlenségeket
osszefoglalé néven hatdrozatlansdgi reldcioknak nevezziik. A hatarozatlansagi relaciok 1é-
tezése tipikusan nemkommutativ jelenség, mely klasszikus esetben arra a trividlis tényre

17
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redukalodik, hogy a klasszikus valdszintiségi valtozok kovariancia matrixa pozitiv szemi-
definit.

A fejezetben a hatarozatlansagi relaciok egy specialis tipusat az un. dinamikai hatd-
rozatlansdagi reldciokat tanulméanyozzuk. Ezek kozos vonésa, hogy a kvantum kovariancia
matrix determinansat alulrél becsl6 mennyiség vilagos informécidégeometriai interpreta-
cioval bir, ugyanakkor maga a kvantum kovariancia maéatrix geometriai jelentése ezidaig
tisztazatlan volt. A klasszikus kovariancia kiilonb6zd lehetséges kvantumos altalanosita-
sait vizsgalva bevezetjiik az un. szimmetrikus kovariancia csalddot, melynek tagja tobbek
kozott a Schrodinger-féle (2.2) kvantum kovariancia is. A szimmetrikus kovariancia csa-
lad tagjai a tekintett statisztikai sokasag geometridjabol szarmaztathatok, és a belsliik
szarmazo6 kovariancia matrixok determinansai a dinamikai hatérozatlanségi relaciokhoz
hasonlo, azoknél altalanosabb egyenlGtlenségeket elégitenek ki. A fejezetet ezen egyen-
16tlenségek tanulmanyozasanak szenteljiik. Az itt bemutatott eredményeinket az [5] és
[4] kozleményekben jelentettiik meg.

2.1. Torténeti attekintés

Werner Heisenberg a rola elnevezett, azota hiressé valt kvantummechanikai hatéaro-
zatlansagi elvet gondolatkisérletekbdl és a kvantummechanika Bohr-féle posztuldtuméabol
szarmaztatta 1927-ben heurisztikus meggondolasok segitségével [31]. A Heisenberg-féle
hatarozatlansagi-elv eredeti forméajaban kimondja, hogy egy részecske helyét és impulzu-
sat egyszerre nem lehet tetszéleges pontossaggal megmérni. Amennyiben Az [m] jeldli a

hely mérés bizonytalansagat, Ap [kng] pedig az impulzus mérés bizonytalansagat, akkor

Az - Ap = b, (2.3)

ahol h =~ 6,626-1072*J -s a Planck-alland6. Fontos kihangstlyozni, hogy a Heisenberg-féle
hatarozatlansagi-elv ebben a formajaban csupan egy fizikai elv és nem preciz matematikai
tétel.

A Heisenberg hatarozatlansagi-elvet még ugyanebben az évben Kennard és Weyl fo-
galmazta meg korrektiil és bizonyitotta be [39]. A Kennard és Weyl altal bizonyitott
valtozat (2.4) a hely és impulzus szorasanak (o, illetve o,) szorzatara szolgaltat also

becslést. y "
Oy > — = — 2.4
T = T Y 24)
Kennard és Weyl becslését 1929-ben Robertson altalanositotta tetszéleges fizikai mennyi-
ségekre [60]. A Robertson-féle altalanositas az A és B fizikai mennyiség szorasainak

szorzatara a

DAADE(B) > 1 IE, G4, B])

becslést adja. A Robertson-féle hatarozatlanségi relaciot Schrodinger 1930-ban a kovet-
kez&képpen élesitette [67].

2.1.1. Tétel (Schrodinger). Az A, B € M,% fizikai mennyiségek tetszdleges p € Dy x

dallapotban eleget tesznek a

D (A)D;(B) — Cov,(A, B)? >  [E, (i[4, B])[*

I,
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egyenldségnek, ahol Cov a (2.2) formuldval definidlt kvantum kovariancia.

Bizonyitds. Legyen A, B € M}% tetsz6leges fizikai mennyiség, p € D, x pedig tetszdleges
allapot. Az A, B fizikai mennyiségek

Ag=A—E,(A)I
Bo=B—E,(B)I

centréltjaira a
ltr(pAoBy)|* < DA(A)DA(B) (2.5)

Cauchy—Schwartz—Bunyakovszkij-egyenl6tlenség teljesiil, hiszen az (A, B) +— tr(pA*B)
hozzarendelés belsé szorzast definial a T, D, x érintétéren. Az kapott egyenl6tlenség bal
oldalan all6 mennyiséget kifejtve a

1
t(pAoBo)* = Cov, (A, B)* + £ [E, (i[4, B])
alakot kapjuk, amit visszairva a (2.5) egyenlStlenségbe és atrendezve azt a

D (A)D;(B) — Cov,(A, B)* > + [E, (i[4, B])[*

]

bizonyitand6 egyenl6tlenséget nyerjiik. O]

A Schrédinger altal bizonyitott élesebb hatarozatlansagi relacio

COVP(A, A) COVP(A, B) E, %[A’ Al E, %[A, B
det ( Cov,(B,A) Cov,(B,B) ) 2 det ( E, E%[BvA]% E, 55[37 B]g > (2.6)

atfogalmazasaban a bal oldalon az A és B fizikai mennyiségek kovariancia méatrixa-
nak determinénsa jelenik meg. Ezt a megfigyelést felhasznédlva 1934-ben Robertson a
Schodinger-féle hatarozatlansagi relaciot tetszéleges szamu fizikai mennyiségre altalano-
sitotta [61].

2.1.2. Tétel (Robertson). Fizikai mennyiségek tetszdleges (Ag)r=1
rére fenndll a

.....

determindns egyenldtlenség.
Bizonyitds. A bizonyitas Robertson [61] cikkében talalhato meg. O

A Robertson-féle hatarozatlansagi relacié szembedtls hatranya, hogy paratlan szamu
fizikai mennyiséget véve a (2.7) egyenlStlenség jobb oldalan nulla szerepel, azaz semmivel
sem kapunk tobbet, mint klasszikus esetben.
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Gibilisco és Isola 2006-ban publikalta sejtését [26], miszerint fizikai mennyiségek tet-

széleges (Ap)r=1,..n C M rendszere teljesiti a
f(0) . .
det ([Covy(Ap, Aoy ) = det | |52 (97)n(p) Glp, Adl.ilp, A1) p€Dux
kl=1,...N

(2.8)
determinéns egyenlStlenséget, ahol f € F, operator monoton fiiggvény. A (2.8) egyen-
16tlenséget elGszor N = 1-re és néhany specidlis operdator monoton fliggvényre vizsgal-
tak. Az N =1 ¢és f = fop valamint f = fyy eseteket (a fliggvényeket illetGen lasd:
1.2.1. Példa) Luo bizonyitotta [45, 46]. Az N = 1 esetet altalanos indexeld operator
monoton fliggvény mellett Hansen bizonyitotta be [30]. Roviddel ezt kévetGen — Han-
sentdl fiiggetleniil — Gibilisco, Imperato és Isola is bizonyitottédk a sejtést ugyancsak az
N = 1 esetre, de lényegesen kiilonbozs technikat hasznalva [25]. Két fizikai mennyiség
esetére az [ = fyy fliggvénybdl szarmazd Wigner—Yanase-metrika mellett a sejtést Luo,
Q. Zhang és Z. Zhang igazolta [47, 48, 49]. Ugyancsak két fizikai mennyiségre, de az

fs(x) = % (B8 € [-1,2] \ {0,1}) Wigner—Yanase-Dyson operator monoton
fﬁggvénybél szarmazo metrikaval ellatott allapottérre egymaéstol fliggetleniil Kosaki [41]
és a Yanagi, Furuichi, Kuriyama [88] harmas bizonyitotta a sejtést. Két fizikai mennyi-
ség esetére altalanos monoton metrikaval ellatott allapottér mellett Gibilisco, Imparato
és Isola bizonyitotta a sejtést [25, 26]. Gibilisco és Isola (2.8) sejtését az eredeti forma-
jaban, tetszdleges szamu fizikai mennyiségre Andainak sikeriilt bizonyitani [3]. A (2.8)
egyenl6tlenséget az irodalomban gyakran dinamikar hatdarozatlansdgr reldcio névvel illetik
[24], mert az egyenlGtlenség jobb oldala gy interpretalhato, mint az Ag(t) = el®? Ape~ 1
kE=1,2,...,n iddfiiggs fizikai mennyiségek ¢t = 0 id6ponthoz tartozé érintGvektorai altal
kifeszitett paralellepipedon térfogata.

Gibilisco, Hiai és Petz tanulményoztak elszor a klasszikus kovariancia Schrodinger-
altal bevezetett kvantum kovarianciatol eltérd lehetséges altalanositésait statisztikai so-
kasdgok esetére. Megkovetelték, hogy a fizikai mennyiségek kozti kvantum kovariancia
sztochasztikus leképezések hatasara monoton modon valtozzon és az allapottél siman
fliggjon. Ilyen erés megszoritasok mellett kovariancia gyanant az aldbbi, monoton metri-
kédkhoz hasonl6 moédon definialt

Cov/(p)(A, B) = tr(Af(Ly, R, )R,(B))  fe€Fyp pEDux A BeM (29)

mennyiségek johetnek csak szoba [57|, melyeket Petz-féle f-kovariancidknak fogunk ne-
vezni. Ezekre a kovarianciakra a

det ([Cov/ (0)(Ax, AD] ., ) = det ([/1(0)(0) (g1 )np) Glps Adl,ilo, Ay, )

p € D, hatarozatlansagi reldcio teljesiil minden fy, fo € F, operdtor monoton fiigg-

vényre és zérusnyomu fizikai mennyiségek tetszoleges (Ag)k=1,. v C M2, (0) rendszerére

[24]. A legélesebb egyenlétlenséget pedig az fi(z) = HTI véalasztas mellett kapjuk. Mi

egy, a fentitsl eltérs altalanositast mutatunk, ahol a hatarozatlansigi relacié bal olda-
lan allé6 kovariancia determinédnsa matrix a jobb oldalon szereplé mennyiséghez hasonlo

geometriai interpretacioval bir.
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2.2. Kapcsolat az allapottér geometriajaval

A kvantummechanikai allapottereken unitér invaridns metrikak egy tagabb osztélyat
definialjuk, melynek a Petz &altal bevezetett monoton metrikdk valodi részét képzik, a
belsliik szarmaztatott kiilonféle kvantum kovarianciak pedig dinamikai tipusit hatarozat-
lansagi relaciokat elégitenek ki.

2.2.1. Definici6. Egy ¢ : [0,1]*> — RY szimmetrikus fiiggvényt Cenzov—Morozova-fiigg-
vénynek neveziink, ha [0,1]* C C? egy nyilt kérnyezetére mindkét vdltozdjdaban holomorf
fiigguényként terjeszthetd ki. A Cenzov—Morozova-figguények halmazdt CM jeldli.

2.2.1. Tétel. Tetszdleges c € CM Cenzov—-Morozova-fiigguény unitér invarians Riemann
metrikdt indukdl a D, x dllapottereken a

9:(p)(A, B) = tr (Ac(ly, Rp)(B)) A, B € Mi%(0) p€Dux

hozzdrendelésen keresztil, ahol a c(L,,R,) : K™" — K" szuperoperdtort a Riesz—
Dunford holomorf fiigguénykalkulust felhaszndlva, a

1 -1 -1
C(Lm Rp) = W ffdfﬂﬂ(fl - Lp) © (77] - Rp) dé dn

formuldval értelmezziik. Itt T' C C olyan folytonosan differencidlhato gorbét jelol, melyre
Ran(I") x Ran(I") a ¢ figguény holomorf kiterjesztésének értelmezési tartomdnydba esik és
[ minden o (p)-beli pontot pozitiv kériljardssal pontosan egyszer keril meg. Ha a p dllapot
eqy {ex}k=1..n ortonormdlt bazisban diagondlis o (p) = {1, . .., in} sajdtértékekkel, akkor
a metrika

9e(p)(A, B) = Z A Brac(pr, ) (2.10)

alakot 6lt.
Bizonyitds. Legyen p € D,k rogzitett. A M (0) > B+ ¢(L,, R,)(B) leképezés linea-
ritasa a

e(Ly R,)(B) = (27%) 74 f (&) (E] — p) BT — p) "t de dny

egyenldségrsl azonnal leolvashato. Ebbdl rogton kovetkezik, hogy a g.(p) leképezés bili-
neéris formamez6t hatdroz meg a D,, x allapottéren. Ezen formamezd simasaga a

6:(0)(A, B) = ﬁ 75 75 c(m) tr (AT — p) ' Bl —p) ) dedy (211

alakrol lathato leginkabb. Ugyancsak a (2.11) egyenlet mutatja a g. bilinearis forma-
mez3 unitér invariancidjat, amihez persze a nyomképzés ciklikus tulajdonsagat is fel kell
hasznalni.
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Legyen {ey}r=1.. » ortonormalt bazis, melyben a p € D, k allapot diagonalis o (p) =

{p1, ..., un} sajatértékekkel, azaz p = > e @ ex. A (2.11) egyenlSségbe az {Ey =
k=1
er X el}k,lzl,,,_,n matrix egységeket irva a

c(&,m
ge(p)(ei @ ej, e, @ ey) 27” J(I{J(I{ EIZI ) 77 /M) tr (Eij Bk EpgEy) d€dn

7

de Ay = (s, 11;)515;
7p ]q 27T1 %% 5 ,uz 77 ,U]) 5 n C(u17ﬂj) 1,p97,q
I

formulat kapjuk, amibdl a g.(p) forma bilinearitasat hasznalva a (2.10) bizonyitando
egyenlGséget nyerjiik. Rogzitett p € D,k allapotban mindig megadhato olyan bézis,
melyben a metrika (2.10) alakba irhato, amirél a ¢ fiiggvény pozitivitasat figyelembe
véve latszik, hogy pozitiv definit bilineéris format hataroz meg. n

2.2.2. Definicio. Az A € M} fizikai mennyiség p € Dy x dllapotbeli centrdltjan az
Ay=A—-E,(A)I

fizikai mennyiséget értjik, ami zérusnyoma fizikai mennyiség s igy a A € Mfl‘fK(O) =
T,D,x €rintétér elemének tekinthetd.

A dinamikai hatarozatlansagi relaciok egytdl egyig a kiovetkez§ megfigyelésre vezet-
het6k vissza. A Cenzov-Morozova-fiiggvények kozott a szokasos pontonkénti rendezés az
ezen fliggvényekhez asszocialt metrikak Gram-maétrixainak determinansai kozt ugyanilyen
irdnyt egyenlGtlenséget indukal. Errél szol az alabbi tétel.

2.2.2. Tétel. Legyen p € D, rogzitett dallapot, ci1,co € CM pedig Cenzov-Morozova-
figgvények, melyekre a p € D, x pontban a

egyenldtlenség teljesiil. Fizikai mennyiségek tetszdleges (Ay) K=1,..n Trendszerére definidljuk
a

(Cr)ij = 9o (P)((Ai)g, (45),) k=12

N x N-es Gram-mdtrixokat. Ilyen feltételek mellett a Cy és Cy Gram-mdtrizok determi-
nansaira o
det(Cl) Z det(Cg) + det(C'1 — CQ) + R(p, C1, Co, N) (213)

eqyenldtlenség teljesiil, ahol

N-1

R(p, 01,02, Z ( ) det CI det(C’l CQ)NT
=1

Bizonyitds. A 2.2.1. tételben belattuk, hogy a Cenzov—Morozova-fiiggvényekbdl szarma-
z6 metrikak unitér invariansak, ezért feltehets, hogy a p € D, x allapot diagonalis. A C
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és (', matrixok értelmezésiikbél fakadoan valés elemd szimmetrikus matrixok. A kovet-
kez6 rovid szamolés mutatja, hogy a Cy — Cy méatrix pozitiv szemidefinit. Legyen x € C”
N
tetszéleges és X = > x; (4;),. Ekkor irhatjuk, hogy
j=1

((Cy = Cy)z, x)

I
-
&
S
()
—~
9]
[

(P)((Ai)g» (A))g) = c2(p)((Ad)y , (A)),))

QN

<
Il
—

3

(c1(p) (s ) — c2(p) (pw, Ml))x_ixj [(Ai>o]kz [(Aj)O]kl

VB

-
<
Il
—
=
T~
Il
—

n

(c1(p) (s ) — c2(p) (pns 1)) (Z Ty [(Ai)o]kl> (Z Lj [(Aj>0]kl)

(cr(p) (s 1) — c2(p) iy 110)) | X > 0

ks
Il
—

NE

>
Il
—_

ugyanis a (2.12) egyenl6tlenség értelmében az 6sszeadandok nemnegativak. Hasonlo szé-
moléassal mutathato ki a C) és Cy méatrixok pozitiv szemidefinitsége is.

Ezek utan az A.2.5 Brunn—Minkowski determinans egyenlGtlenséget a Cy és C7 — Cs
valos elemt, pozitiv szemidefinit matrixokra alkalmazva a bizonyitandé egyenlétlenséggel
ekvivalens

2=
2=

det(Cy + (Cy — Co))™ > det(Co) ™ + det(Cy — Cy) ¥
egyenlGtlenséget nyerjiik. O]

2.2.1. Megjegyzés. A 2.2.2. tétel eqy gyengitett vdltozatat kapjuk, ha a (2.13) egyen-
[6tlenség jobb oldaldn szerepld R(p,cy,ca, N) tagot elhagyjuk. A késébbiekben tobbnyire
ezzel az alakkal fogunk dolgozni.

2.3. Szimmetrikus és antiszimmetrikus kvantum kovari-
anciak

Az alabbi definicién keresztiil bevezetjik az tn. szimmetrikus és antiszimmetrikus
f-kovariancidkat. Antiszimmetrikus kovariancidkkal mar eddig is talalkozhattunk a (2.8)
dinamikai hatérozatlansagi relacié jobb oldalan, csak eddig nem neveztiik ket igy. A
szimmetrikus kovariancia ezzel szemben teljesen 1j, altalunk bevezetett kovariancia tipus.

2.3.1. Definicié. Legyen f € F,, operdtor monoton fiiggvény, p € D,k pedig eqy régzitett
dllapot. Az A, B € M} obszervabilisek p pontbeli szimmetrikus és antiszimmetrikus f-
kovarianciajat rendre a

~~

(0)

0

Covi(p)(A, B) = —==(g7)n({p, Ao}, {p, Bo})

(gf)n(l[p7 AO]’ 1[pa BO])

mennyiségekkel definidljuk, ahol Ay és By az A és B fizikai mennyiségek p dllapotbeli
centrdltjai, {p, Ao} = pAo + Aop pedig az antikommutdtor.

S|
AL\D

Cov*(p)(A, B) =
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Mindkét fent definialt kovariancia csalad vilagos geometriai tartalommal bir. Az an-
tiszimmetrikus kovariancidk és a bel6liikk szarmaztatott kovariancia matrixok geometri-
al jelentését a hatéarozatlansigi relaciok torténeti attekintésének végén mér tisztaztuk.
A szimmetrikus kovariancidkhoz analég geometriai jelentés tarsithato. A Covi(p)(A, B)
szimmetrikus f-kovariancia az A(t) = e'* Age'? és B(t) = e'? Bye'? 1d6fliggd fizikai mennyi-
ségek t = 0 id6ponthoz tartozd érintévektorai altal kifeszitett paralelogramma teriile-
te. Ha az f € F,, operator monoton fiiggvény szingularis, azaz f(0) = 0, akkor a
Covi(p)(A, B) = Covi(p)(A, B) = 0 trivialis esetet kapjuk.

2.3.1. Tétel. Legyen f € Fp, operdtor monoton figguény, A, B € M fizikai mennyi-
ségek, p € D,k pedig dllapot, melyrdl feltessziik, hogy diagondlis. Ekkor az A és B fizikai
mennyiségek szimmetrikus és antiszimmetrikus f-kovariancidi

Covi(p)(A, B) = @ Z % [Aoyys [Boli

ov%s :@ - M
Covpp)a,5) = L2 32 S Ly )

alakba irhatck, ahol o (p) = {1, ..., pun}, my pedig az f fligguényhez asszocidlt mdatrizko-
Z€p.

Bizonyitds. A Cenzov—Morozova-fliggvény altal indukalt metrikak (2.10) lokalis formaja-
ba az f fiiggvényhez asszocidlt c; Cenzov-Morozova-fliggvényt irva kapjuk hogy

Covi(p)(A, B) = @(gf)n({/% Aot {p, Bo}) = @ Z ¢ (s ) {p, Ao bl ps Bo b
k=1
SR 3 cxlieo )+ ) A [Bol = 10 > ﬁi‘f(:”J) (Aol [Boly

és

COV?S(p)(A’ B) = @(gf%L(l[pv AO] [:07 BO = (_ Z Mk, ,Ul p, AO]kl[p, BO]

2 :
f0) < F0) o~ (pe — u)?
= D cplps i) (ke — 10)* [Aoly [Boly 5 Z = Ao]kl [Bol
k=1 i=1 " f (ks )
ami épp a bizonyitando volt. O
A fenti lokélis alak felhasznalaséval ellendrizhetjiik, hogy az fsa(x) = £ operator

monoton fliggvény éppen a Schrodinger altal bevezetett (2.2) kvantum kovarianciat adja
a szimmetrikus esetben, azaz a

Covi(p)(A, B) = Cov,(A, B) A,Be M pe€Dux

egyenlgség all fenn. Tehat a Schrodinger-féle kvantum kovariancia a szimmetrikus kova-
riancidk csaladjaba sorolhato be.
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2.3.2. Definicié. Egy f € Fop operdtor monoton fiigguényhez definidljuk az

OO 00 e
el = 8@ M=o
fiigguényeket, melyekbdl a
o FO@—? Oty
Cf (l‘,y)— me(x,y) f( 7y) me(x’y)

Cenzov—Morozova tipusi fligguények
as y e S y
e =t (L) 6 e =at, (2)
x x
maodon szdrmaztathatok.

A 2.3.1. és a 2.2.1. tételeket egymassal kombinalva és a fent bevezetett segédfiiggvé-
nyeket felhasznalva az alabbi érdekes kovetkezményhez jutunk.

2.3.1. Kovetkezmény. Tetszdleges f € F,, operdtor monoton fliggvényre és A, B €
M fizikai mennyiségre minden p € Dy x dllapotban fenndll az

COVf(p) <A7 B) = 9my (/O) (Av B)
COV?(p) (Aa B) = gef, (P) <A7 B)
COV(}S(p) (A’ B) = Jeye (p) (Av B)

eqyenldség, mely jobb oldaldn a megfeleld Cenzov—Morozova-filigguény dltal indezelt met-
rika dll, my pedig az f figgvényhez tartozo kozép.

2.4. Dinamikai hatarozatlansagi relaciok

Legyen f € F,, egy rogzitett operator monoton fiiggvény, p € D, x pedig tetszdleges

77777

antiszimmetrikus f-kovarianciajat a

[Cov‘}(p)(A)]ij = Covjc(p)(Ai, A))

[Covi*(p)(A)],, = Covi(p)(As, 4y) (2.14)

N x N-es kovariancia méatrixokkal definialjuk.

A 2.3.1. kovetkezményt és a 2.2.2. tételt felhasznélva az alabbi, kovariancia méatrixok
determinansai kozti egyenlStlenségekkel kapcesolatos tételt kapjuk, ami a (2.8) dinamikai
hatarozatlansagi relacié altalanositdsanak tekinthetd.

2.4.1. Tétel. Legyenek fi, fo € Fop operdtor monoton figgvények, melyekre az

£1(0) _ F2(0)
MO0

t e [0,00) (2.15)
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egyenldtlenséy teljesiil. Ekkor fizikai mennyiségek tetszdleges A = (Ag)p=1,..8n C M
rendszerének kovariancia mdtrizaira minden p € D, x dllapotban teljesiilnek a

det (Covy (p)(A)) > det (Cov¥’(p)(A)) k=1,2
det (Covy, (p)(A)) > det (Cov’,(p)(A)) (2.16)
det (Cov§(p)(A)) > det (Covi(p)(A))

determindns egyenldtlenségek.

Bizonyitds. Az fi és f, fiiggvényekre megkdvetelt (2.15) pontonkénti majorizacio a cj és
¢4, k = 1,2 Cenzov-Morozova-fiiggvények kozott a

i (x,y) > c(r,y) k=12
j‘( )>Cf2(x7y)
¢ (z,y) > cf(z,y)

egyenldtlenségeket indukalja, ahol z,y € [0, 1].

A 2.2.2. tétel gyengitett valtozatat (lasd: 2.2.1. megjegyzés) a fenti Cenzov—Morozova-
fiiggvényekkel indexelt metrikdkra alkalmazva és a a 2.3.1 kdvetkezményt figyelembe véve
a bizonyitand¢ allitast kapjuk. O]

2.4.1. Kovetkezmény. Az 1.2.1. megjeqyzés értelmében az t — % hdanyados, ahol
f € Fop pontosan akkor mazimdlis a szokdsos pontonkénti rendezésre nézve, ha f = fsm a
szamtani kézépnek megfeleld operdator monoton figguény. Ezt a 2.4.1. tétellel kombindlva
a

det (Covi,, (p)(A)) > det (Covi(p)(A)) > det (Covi*(p)(A)) f € Fop

eqyenldtlenséget nyerjik, melynek csupan elejét és végét tekintve a bevezetdben emlitett
(2.8) Gibilisco-féle dinamikai hatdrozatlansdgi reldciot kapjuk vissza.

A fenti kévetkezmény szerint egy fix f € F,, operator monoton fiiggvényhez tartozo
szimmetrikus kovarianciaboél szarmazoé kovariancia matrix determinansa mindig majorélja
az ugyanazon fiiggvénynek megfelel§ antiszimmetrikus kovarianciaboél szarmazo kovarian-
claméatrix determinansat. A széban forgd determinansok kozti hézag az fr 4 harmonikus
kozéphez tartozo operator monoton fliggvényhez tartozo Petz-féle kovariancia kovariancia
méatrixdnak determinansaval becsiilhets. Errdl szol az alabbi tétel.

2.4.2. Tétel. Legyen f € F,, rogzitett operdtor monoton fliggvény. Ekkor tetszdleges
A, B € M} fizikai mennyiségekre minden p € Dy dllapotban érvényes a

2£(0)Cov/¥4 (p) (A, By) < Covi(p)(A, B) — Cov§(p)(A, B) < Cov/24(p)(Ap, By) (2.17)
becslés, tovabbd fizikai mennyiségek tetszdleges A = (Ag)k=1.. n rendszerét véve az

det (Covi(p)(A)) — det (Cov§(p)(A)) > (2£(0))N det(Coviz4(p)(Ap)) (2.18)

egyenldtlenség teljesiil, ahol Cov/4(p)(Ag) azt a kovariancia mdtrizot jeloli, melynek ij
eleme

[Cov/24 () (Ao)],; = Cov/ea(p) ((A1)y - (A7)y)
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Bizonyitds. Vezessiik be a # : Fop — Fop f(x) = fF(z) = Ty involaciot (b6vebben

lasd: [11] 2.5 Definici6). Tetszéleges g € F,, operator monoton fiiggvényre teljesiil, hogy
fra(r) = 2= < g(x), ezért azt kapjuk, hogy

200

amibgl a bizonyitando (2.17) egyenlétlenségbeli alsé korlatot nyerjik. Az 1.2.4. tételt
kovets 1.2.1 Megjegyzés szerint a

2f(0)x < 2x
@) “T+e

_ Qf(o)f#(gg) > 2£(0)fra(x),

= fra(z)

egyenlGtlenség teljesiil, amibdl a bizonyitandé (2.17) egyenlStlenségbeli felss korlatot kap-
juk.

A 2.2.2. tételt a ci(z,y) = cj(x,y), ez, y) = cF(x,y) ¢ a alz,y) = cj(r,y) —
¢ (z,y), calz,y) = 2f(0)my, , (v, y) fiiggvényparokra alkalmazva a

det (Cov(p)(A)) — det (Cov*(p)(A)) > det (Covi(p)(A) — Covi*(p)(A))
> (2(0))" det(Cov/4(p)(Ao))

bizonyitando6 (2.18) egyenl6tlenséget kapjuk. O

A 2.4.1. kovetkezményben szerepls egyenlGtlenség elejét és végét tekintve lathato,
hogy az f = fsy operdator monoton fiiggvény globalis fels§ korlatot szolgéltat minden
antiszimmetrikus kovariancidhoz. Természetesen vetddik fel a kérdés, hogy létezik-e més
olyan f € F,, operdtor monoton fiiggvény, melyre

det (Covi(p)(A)) > det (Covi®(p)(A)) Vh € Fop (2.19)

teljesiil minden p € D, k allapotban és fizikai mennyiségek tetszéleges A = (Ag)k=1...
rendszerére. Megmutatjuk, hogy létezik ilyen fiiggvény és megadjuk azt az f fliggvényt,
melyre (2.19) globélis fels§ korlat optimalis.

A 2.4.1. tétel értelmében elég talalnunk olyan f € 7, operator monoton fliggvényt,
melyre az

fO0+2P  (1— )

2.20
2f(x) ~2(1+ ) (2:20)
egyenlGtlenség teljestil. Az 1.2.1 Megjegyzés szerint ez a feltétel az
fay< 2 e (22 (2.21)
x .
T 1+ 14+

ckvivalens alakra irhato at.

2.4.1. Lemma. Jeldlje i azt a valdszindségi Borel-mértéket a [0, 1] intervallumon, melyre
a g € Fop operdtor monoton fiigguény reciproka

1 1+t 1 1
— = dp(t e R
g(x) / 2 <x+t+1+tx) plt)

[0,1]
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integrdl alakban dll eld (ldsd: 1.2.5. tétel). Ekkor ha n({0}) < 3, akkor létezik z > 0,
hogy

1 - 1+2 1
o) 20 14 (L2)
teljestil.

Bizonyitdas. Ha u({0}) < 3, akkor valasszunk olyan ¢ > 0 szémot, hogy x([0,¢]) < 3

egyenlGtlenség teljesiiljon és tekintsiik az alabbi becslést

§é522/11;t<xit+TL:m>(mu>§l%;mqad>+“«&u>u;;y'
0,1

1

1
A0,00[3 z %H(EQQ

fiiggvény értékkészlete alulrol korlatos % also korlattal, amibdl

a
1+z (1+¢e)? 1+x 1
0 1 <
g #I0 )+l H < S
egyenlGtlenség kovetkezik, ha x elég kicsi. O

Legyen p olyan valoszintségi mérték a [0, 1] intervallumon, melyre u({0}) = u({1}) =
% teljestil. A p mértékkel elgéllitott g € F,, operator monoton fiiggvény reciproka

L _lfatl, 2
glz) 2\ 2z r+1)"

. 1—2z\°

1+
ami azt jelenti, hogy a g(x) fiiggvényt f-nek valasztva a (2.21) egyenl6tlenségben és az
inverzios formulat (lasd: [23] 6.1. Allitas) alkalmazva az

1 /14« 2x
f(x)zé( 2 +1—|—x>

fiiggvényt kapjuk, melyre a (2.20) egyenlStlenség biztosan teljesiil.

Masrészt az igy konstruélt f fliggvény a (2.19) egyenl6tlenségben optimalis felss kor-
latot szolgaltat, hiszen a 2.4.1 Lemma szerint ahhoz, hogy a fels6 korlat globélis legyen a
u valoszintiségi mértékre p({0}) > % kell, hogy teljesiiljon, a kapott felsd korlat pedig ak-
kor lesz a legkisebb s egyben optimalis, ha p({1}) maximélis. Eredményeinket az alabbi
tételben foglaljuk Gssze.

Ha z > 0, akkor

2
1+

(1 a)?
L+ 2)(1+22)

—g(z) =

> 0,

2.4.3. Tétel. Akkor és csakis akkor dll fenn fizikai mennyiségek tetszdleges A = (Ag)k=1
rendszerére minden p € Dy, x dllapotban a

det (Covjc(p)(A)) > det (Covi®(p)(A)) Vh e Fyp
egyenldtlenség, ha az f(t) > fopu(t) t € [0,00) feltétel teljesiil, ahol

f _1 1+x+ 2T
o\ 2 1+az)
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Az f = f,, valasztas mellett a (2.20) egyenlStlenség bal és jobb oldala kozotti kii-

16nbség
 fo(0)(1+2)? (1—2)* 82

() 2 fopt () 2(1+x) 234722+ 7z +1

melyre ¢'(0) = 0 teljesiil s ezért semmilyen operator monoton fiiggvénnyel sem becstilhetd
alulrol.

2.5. Osszefoglalas

Ebben a fejezetben kvantum mechanikai hatarozatlansagi relaciokat vizsgaltunk in-
formaciogeometriai eszkozokkel. A fejezetet egy rovid torténeti attekintéssel kezdtiik,
ezutan sajat eredményeink ismertetésére tértiink ra.

1. Megmutattuk, hogy a hatarozatlansagi relaciok egy igen tég csaladja lényegében a
kvantummechanikai allapottéren értelmezett kiilonboz6 Riemann-metrikak (és az eze-
ket indukald operatormonoton fiiggvények) kozotti rendezésre vezethetd vissza.

2. Bevezettiik az antiszimmetrikus és a szimmetrikus kvantum kovariancidkat és meg-
mutattuk, hogy a kozonséges -mér Schrodinger altal is vizsgalt— kvantum kovariancia
ezen utobbi kovariancia csaladba sorolhato.

3. Bizonyitottuk, hogy egy szimmetrikus f-kovariancia segitségével definialt kovariancia
matrix determinansa mindig feliilrél becsiili a megfelel6 antiszimmetrikus f-kovariancié-
hoz tartoz6 kovariancia matrix determinansat.

4. Megmutattuk, hogy a szamtani kozéphez és a harmonikus koézéphez tartozo operator-
monoton fiiggvények szamtani kozepe altal indukalt monoton metrika szolgaltatja a
lehet6 legélesebb dinamikai hatarozatlansagi relaciot.
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3. fejezet

Osszetett kvantummechanikai
rendszerek

A kvantummechanikai rendszerek egyesitése és az Osszetett rendszerek részekre bon-
tasa a kvantumelmélet szempontjabol lényeges kérdés [64, 82]. Ezen témakor targyalasa
soran mindenekel6tt az alabbi harom kérdésre kell valaszt adnunk.

1. A kiilonb6z6 Hilbert-terekkel leirt kvantummechanikai rendszerek egyesitettjéhez mi-
lyen Hilbert-teret rendeljiink?

2. Az 0Osszetett rendszer allapotédnak ismeretében a részrendszerek allpota hogyan hata-
rozhaté meg?

3. A komponens-rendszerek miként agyazhatok be az 6sszetett rendszerbe?

A kvantummechanika 6sszetett rendszer képzésre vonatkozo posztulatuma (lasd: [58]
konyv, 9. oldal) kimondja, hogy tetszéleges Gsszetett kvantummechanikai rendszert az
alkoto részrendszerek Hilbert-tereinek tenzorszorzataként elGallo Hilbert-tér ir le. Ha p
egy n € N komponensbdl allo Gsszetett rendszer allapota, akkor a k. részrendszer allapo-
tat definicié szerint a try(p) parcialis nyommal kaphatjuk meg. Ha p; a k. részrendszer
egy allapota, akkor a

Il®®jk—1®pk®[k+l®®[n
H?:l,j;ék dim(#;)

hozzarendelés az Osszetett rendszer egy olyan allapotat hatarozza meg, melyre

Pk pi=

tryo...otrpo...otru(p) =pe ke{l,...,n}

teljesiil. Ez a hozzarendelés a k. részrendszer egy lehetséges bedgyazasat szolgaltatja az
Osszetett rendszerbe.
Ellendrizhetd, hogy ha pp € B(Hi) k € {1,...,n} a részrendszerek stirtiségmatrixai-
n
nak egy tetszéleges rendszere, akkor a p = Q) pr tenzorszorzat az Osszetett rendszer egy
k=1
allapota lesz. Az allapottér konvex halmaz, ezért az ilyen, szorzat alakban el6allo stiri-
ségmatrixok konvex kombinacioja ugyancsak allapot az 6sszetett rendszerben. Az viszont

31
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nem igaz, hogy az Osszetett rendszer minden allapota szorzat allapotok konvex kombi-
nacidjaként éllna el§. Ez a kvantum Osszefonddas jelensége, melyet Einstein, Podolsky
és Rosen fedezett fel [20]. A szorzat allapotok konvex kombinécioiként elGallo allapo-
tokat szeparabilis, mas szoval klasszikusan korrelalt allapotoknak nevezziik. Azokat az
allapotokat, melyek nem allnak el ilyen alakban 0sszefonddott allapotoknak hivjuk. Er-
win Schrodinger a kvantum 6sszefonodas informécidelméleti 1ényegét a kovetkezSképpen
ragadta meg: "Best possible knowledge of the whole does not include the best possible
knowledge of its parts.” vagyis az Osszetett rendszer lehetd legteljesebb ismerete nem
jelenti egyben a részek lehetd legteljesebb ismeretét [66].

A kvantum oOsszefonddas jelensége teszi lehetévé, hogy bizonyos kvantuminformati-
kai algoritmusok (példaul stird kodolas, kvantum teleportécio) nagyobb hatékonysag-
gal mitikodjenek, mintha csupan klasszikusan korrelalt allapotok allndnak rendelkezésre
[14, 15, 58]. Toébbek kozott ez motivalja az sszefonodott allapotok geometridjanak ta-
nulményozasat, amely a kvantum informéciéelméleten beliil 6nall6 kutatasi teriilet és a
témaval kapcsolatban csak az utobbi 6t évben tobb szaz kozlemény jelent meg. Pusztéan
annak eldontése, hogy egy kvantumaéllapot Gsszefonédott vagy szeparabilis bizonyitot-
tan NP-nehéz feladat még akkor is, ha a vizsgalt Osszetett kvantummechanikai rendszer
mindossze két komponenshdl épiil fel [28, 38].

Az Osszetett rendszer allapotterét egy u véges Borel-mértékkel ellatva értelmezhets
az Osszefont allapotok

Vol,,(Osszefonodott allapotok)
Vol,,(Teljes allapottér)

Pent,u =

p mértékre vonatkoz6 geometriai valoszintisége, melyre vonatkozoan a Pep p = 1 — Pent
szeparabilitasi valoszintiség komplementer mennyiség. A Pen, mennyiséget a p = A
Lebesgue-mérték valasztas mellett Zyczkowski, Horodecki, Sanpera és Lewenstein vizs-
galta el6szor |35, 36]. Az imént elsgként idézett, 1998-ban megjelent cikkben a szerzdk
ugy fogalmaznak, hogy a szeparabilitasi valoszintiség tanulmanyozasa filozofiai, gyakor-
lati és fizikai jelent&séggel bir. A szeparabilitasi valoszintség filozofiai jelentGségét a [36]
cikk szerzéi a

"Is the world more classical or more quantum?"

kérdéssel ragadtak meg, mellyel jelen dolgozat ir6ja csak részben ért egyet, hiszen a
kvantummechanikai allapottéren nincs kitiintetett mérték. Kiilonosen indokolatlan volna
a Lebesgue-mértéket annak tekinteni, melyet csupén a vele valé szamolas viszonylagos
egyszeriisége tiintet ki. A szeparabilitasi valészintiség gyakorlati haszna abban rejlik, hogy
kvantum Osszefonddassal kapcsolatos kérdéseket sok esetben Monte-Carlo szimulaciokkal
vizsgalnak, ahol fontos tudni, hogy atlagosan a generalt véletlen allapotok hanyad része
szeparabilis illetve Osszefonddott. A kérdés fizikai jelent&sége pedig abbdl fakad, hogy az
Osszetett rendszerek szeparabilis allapotait a részleges idémegforditas fizikai jelentéssel
bir6 allapotba képzi [34, 55, 65].

Altalanos jol kezelhet6 szeparabilitasi kritérium hidnyaban a szeparabilitasi valoszini-
ség meghatarozaséara iranyul6d probalkozéasok kore a qubit-qubit és qubit-qutrit 6sszetett
rendszerek vizsgalatara korlatozodott. Mindazonéltal a szeparabilitasi valoszintiséget ezi-
daig senkinek sem sikeriilt még ezen egyszerd esetekben sem egzaktul kiszamitani.
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A fejezetben igazoljuk Milz és Strunz szeparabilitasi valoszintiség invarianciajara vo-
natkozo sejtését [51], magat a szeparabilitasi valoszintiséget pedig egzaktul kiszamit-
juk a valds 4 x 4-es stirtiségmatrixokkal leirt Osszetett kvantummechanikai rendszerre.
Eredményeinket altalanositdsaként megmutatjuk, hogy Milz és Strunz sejtése érvény-
ben marad akkor is, ha a D4k allapotteret az faun € Fop operator monoton fiiggvény
altal indexelt monoton metrikaval latjuk el. Megmutatjuk, hogy a Dy, x allapottér a
D,k x Enx x By (K™*") szorzat sokasaggal diffeomorf, ahol

ok =] —LI[={Ae M| -1<A<I}. (3.1)

Ezen felbontas birtokdban geometriailag jellemezziik a Dy, x allapottér un. PPT allapo-
tait, melyek az n = 2 esetben a klasszikusan korrelalt allapotokkal esnek egybe, n > 2
esetén pedig valodi részhalmazhént tartalmazzak azokat. Kiszamitjuk a (gf), monoton
metrika matrixat és térfogati forméjat a D, x x &, x x By (K"*") felbontasra vonatkozoan
és az n = 2 esetben az (1.16) Thompson-metrikat véve vizsgaljuk egy tetszéleges dsszefont
allapot tavolsagat a szeparabilis allapotoktol. Az itt bemutatott eredmények egy részét
a [44] kozleményben jelentettiik meg.

3.1. Kvantum 0Osszefon6das

A kvantum Osszefonddéas geometriajanak megértéséhez vegytlink szemiigyre egy két
komponensbdl allo kvantummechanikai rendszert. Az altalanossig megszoritasa nélkiil
feltehetd, hogy egy K™ és K™ (m,n € N) Hilbert-terekkel leirt kvantummechanikai rend-
szer egyesitésével elGallo Gsszetett kvantummechanikai rendszerrel van dolgunk, melynek
allapottere D, x, a modellezé Hilbert-tér pedig K" = K" @ K. Valos, illetve komplex
szamtest feletti vektorterekben az Gsszeadésra és pozitiv szammal torténd szorzasra zart
halmazokat pozitiv kipoknak nevezziikk. A K™ Hilbert-tér B (K™)" pozitiv operatorai
ilyen pozitiv kipot alkotnak, de a B (K"™) = B (K")®@ B (K™) felbontéasnak koszénhetSen
természetesen adodik egy masik pozitiv kup is, nevezetesen az, amelyet a

N
» A,®B, NeN (3.2)

k=1

alakt operatorok alkotnak, ahol Ay, € B(K") és By € B(K™) k=1,...,N. Ezt a kapot
a B(K")" @ B(K™)" szimbolummal fogjuk jelolni, ami voltaképpen csak jelolés, hiszen
B(K")* és B(K™)" nem vektorterek. Lathato, hogy a B (K")* @ B(K™)* C B(K™)"
tartalmazas teljesiil, ami az n = 1 vagy m = 1 trivialis eseteket leszamitva valodi.

3.1.1. Definici6. A DX . halmaz elemeit, ahol RN = Dy NB (K" @B (K™)* és

m,n > 1 természetes szamok szeparabilis allapotoknak hivjuk. A Dgy i := Dy ®K\DP K
halmaz elemeit pedig 6sszefonddott allapotoknak nevezziik.
Nyilvanvalo, hogy egy p € 8D7Sf£K allapot pontosan akkor tiszta, ha szorzat allapot,

azaz p = p; ® py alaki, ahol py € D,k és ps € Dpyx. A Dsep halmaz konvex zart

halmaz, a Dfle,f’lK - Dnm,K tartalmazasbol és az allapottér kompaktsagabol fakadoan

pedig kompakt. Ez az észrevétel vezet el benniinket a kovetkezd tételhez.
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3.1.1. Tétel. Ha p € Dy i dsszefonddott dllapot, akkor létezik olyan W € My  fizikai
mennyiség és o € R gy, hogy
Es(W) = o

teljesiil minden p € D
W e M}

wmi klasszikusan korreldlt dllapotra, de E,(W) < a. Az ilyen
wn fizikai mennyiséget dsszefonddds taniinak (entanglement witness) nevezzik.
Bizonyitis. A p € DsepK szeparablhs allapotok konvex kompakt halmazt alkotnat a
Mk vektortérben, a {p} C i halmaz pedig konvex és zart. A Hahn-Banach-
tétel elvalasztasi alakja kimondja, hogy létezik olyan ¢ € (M3 K) linearis funkcional és
a € R szam, melyre

(V5 € Dpmg) #(P) 2 a

nm,K

és p(p) < a teljesiil. A ¢ funkciondlhoz pedig megadhat6 olyan W € M3, o fizikai
mennyiség, melyre ¢(A) = tr(AW) A € M3, i teljesiil. Ellendrizhets, hogy az igy
konstrualt W fizikai mennyiség a kivant tulajdonsagokkal rendelkezik. O

A fenti tétel egy ekvivalens alakjara alternativ bizonyitast talalhatunk az [58] kényv
57. oldalan, mely konstruktiv abban az értelemben, hogy rogzitett p € D,,, x Ossze-
fonodott allapothoz explicit W fizikai mennyiséget definial, melyrél megmutatja, hogy
valéban Osszefonodés tant.

Jelolje T' : K™*™ — K™*™ a transzponélast és vezessiik be az [ @ T : K™™*™" —
Kmmxmn parcialis transzponalas miiveletet. Peres figyelte meg és irta le elGszor [56], hogy
a parcialis transzponalas szeparabilis allapotot allapotba képez. Ez egyébként a (3.2)
Osszeg alakrol kozvetleniil leolvashato. Peres tigy vélte, hogy a parcialis transzponalt po-
zitivitasa nem csak sziikséges, de elégséges feltétele is az allapot pozitivitasanak. Peres
ezen sejtése késébb a [33] cikkben ellenpéldéan keresztiil cafolatot nyert. Az azonban —
mint ahogyan azt a [33| cikkben is irjak — megfigyelhetd, hogy a szeparabilis allapotok a
pozitiv leképezéseket ,nem érzik”, azaz tetszdéleges A : K™*™ — K™*™ pozitiv leképezést
véve az I ®@ A : K™xmn — Kmnxmn Jeképezés a szeparabilis allapotokhoz B (K™*) ™ -beli
elemet rendel. A teljesen pozitiv leképezések definicio szerint (lasd: 1.2.1 Definicio) ilyen
tulajdonsaguiak, ezért nem tesznek kiilonbséget szeparabilis és Osszefonddott allapotok
kozott. A pozitiv leképezések viszont méar alkalmasak a szeparabilis allapotok karakteri-
zacidjara, errél szol az alabbi tétel.

3.1.2. Tétel. A p € Dy, dllapot pontosan akkor szepardbilis, ha tetszéleges A : B (K™) —
B (K™) pozitiv leképezést véve (I @ N)p > 0.

Bizonyitds. A bizonyitasrol csak annyit emlitiink meg, hogy a [33] cikkben ezt a tételt
ugy bizonyitjak, hogy megmutatjak azt, hogy ha p € D,,,, x Osszefonddott allapot, akkor
megadhato olyan A : B (K™) — B (K") pozitiv leképezés, melyre (I @ A)p # 0 teljesiil.
I[lyen A pozitiv leképezés konstrualasaban pedig a 3.1.1. tételben bemutatott 6sszefonodas
tanik segitenek. O

Stgrmer és Woronowicz jellemezte a B(C?) — B(C?) és B(C?) — B(C?) matrix-
algebrak kozotti pozitiv leképezéseket [79, 87]. Megmutattak, hogy ezek a leképezések
egységesen

A=ANT +ASToT (3.3)
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alakiak, ahol AS? : B(C*) — B ((Cb) k = 1,2 teljesen pozitiv leképezések, T': B (C*) —
B (C*) a transzpondlas és a = b = 2 vagy a = 2 és b = 3. Ezt a 3.1.2. tétellel kombinalva a
qubit-qubit és qubit-qutrit rendszerekre az alabbi szeparabilitési feltételt nyerjiik, amit a
positive partial transpose kifejezés utan szokas PPT- vagy Peres—Horodecki-kritériumnak
is hivni.

3.1.3. Tétel. Egy p € B(C2?®C»)" vagy p € B(C*®C*) ™ dllapot pontosan akkor
szeparabilis, ha a parcidlis transzpondltja pozitiv.

Bizonyitds. Lattuk, hogy a parcialis transzponélt pozitivitasa az allapot szeparabilitasa-
nak sziikséges feltétele. Ha A B (C?) — B (C?) vagy B (C?) — B(C?) pozitiv leképezés,
akkor a (3.3) altalanos alakbol és a AST k = 1,2 leképezések teljes pozitivitasabol ko-
vetkezik, hogy ha (I ® T')(p) > 0, akkor (I ® A)(p) > 0 is teljestil tetszSleges A pozitiv
leképezésre. A 3.1.2. tételt felhasznélva a bizonyitando6 allitast kapjuk. O

3.1.2. Definicioé. A D,,,x dllapottér PPT kritériumot kielégité dllapotait PPT é&lla-

potoknak nevezziik. A Dy, x dllapottér PPT dllapotainak halmazdra a DEE}TK jelolést
haszndljuk.

3.2. Szeparabilitasi valoszintiség a D,k allapottéren

A D,k allapottér klasszikusan korrelalt allapotai a PPT allapotokkal esnek egyben.
Egy altalanos p € D,k allapot méatrixa

(D, C
P=\ o D,

alaku, ahol C' € K?*? matrix, D; és D, pedig 2 x 2-es énadjungalt méatrixok, melyekre
tr(Dy + Dy) = 1 teljesiil. A PPT-kritérium a p allapotra nézve azt jelenti, hogy a p
allapot pontosan akkor szeparabilis, ha a

aorio = (e Or)

méatrix pozitiv definit.

A szeparabilitas kvéazi egyszerd tesztelhetSsége azt sugallja, hogy a Zyczkowski al-
tal feltett szeparabilitasi valoszintségre vonatkozd kérdés a Hilbert—Schmidt-metrikabol
szarmaz6 mérték! mellett a Dy K = R, C allapottereken egyszerien kiszamolhato. A
tapasztalat azt mutatja, hogy ez kozel sincs igy. A témaban publikalé kutatok koziil
ki kell emelntink P. Slater nevét, aki |70, 71, 72, 73, 74, 75, 76] cikkeiben sokat foglalko-
zott a rebit-rebit?, qubit-qubit és quaterbit-quaterbit rendszerekben a Lebesgue-mértékre
vonatkoz6 szeparabilitasi valoszintiség kérdésével és a szeparabilitasi valoszintiség nume-
rikus meghatéarozasaval. Slater a [72| cikkében eloszlas-rekonstrukeios és kombinatorikus

IEz lényegében a Lebesgue-mérték konstansszorosa, ezért a szeparabilitasi valoszintiség kapcsan lé-
nyegében mindegy, hogy Hilbert—Schmidt-metrikabol szarmazé mértékrsl vagy Lebesgue-mértékrsl be-
széliink.

2A qubit mintajara a Dy g allapottér elemeit rebiteknek nevezziik. A kvaternio elemt 2 x 2-es stirt-
ségmatrixokat pedig az irodalom gyakran quaterbit néven emliti.
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eszkozokkel egy hipergeometrikus fiiggvényeket tartalmazo paraméteres formuldhoz jut
el, amelyrdl sejti, hogy a paraméter megvalasztasatol fiiggéen rendre a rebit-rebit, qubit-
qubit és quaterbit-quaterbit szeparabilitdasi valészintiségeket adja. Slater formuldja a
rebit-rebit rendszerre %—et, a qubit-qubit esetre pedig %—et ad. A formula altal szolgal-
tatott értékek helyességét Fei és Joynt [22] valamint Slater és Dunkl |77, 78| numerikus
szimulaciokkal tamasztotta ala. Itt azonban meg kell jegyezniink, hogy Slater formulaja
nem tekinthets a szeparabilitasi valoszintség egzakt meghatérozasdnak, hiszen lényegé-
ben csak egy 7501 momentumot felhasznélo eloszlas rekonstrukeciorél van szo, ahol a
sorozat véges sok tagjdnak ismeretében az altalanos tag képzési szabalyat a Mathematica
FindSequence parancsaval keresték meg.

A szeparabilitasi valoszintiséggel kapcsolatban a szamunkra kulcsfontossagi elérelé-
pést Milz és Strunz sejtése jelentette [51]. Milz és Strunz D € Dy allapotokat véve
a

De(D) = {p € Dy tra(p) = D} (3.4)

halmazokon vizsgéaltédk a szeparabilitasi valoszintiséget. Milz és Strunz azt sejtette, hogy
a Hilbert—Schmidt metrikaboél szarmazo térfogatra vonatkozé szeparabilitasi valoszintiség
a D € Dy allapot valasztasatol fiiggetlen, a Dy k(D) halmazba esd klasszikusan korrelalt
allapotok térfogata pedig a D allapot Bloch-sugaranak egyszertd polinomialis kifejezése.
Milz és Strunz sejtésiiket in. X allapotokra egzaktul bebizonyitotték, az altalanos esetben
pedig allitasukat meggy6z6 numerikus szimulacioval tdmasztottak ala.

3.2.1. Milz és Strunz sejtésének bizonyitasa

Az alabbiakban bevezetett xq,nq : [0,00) — [0,00) d = 1,2 fiiggvények kulcsszerepet
jatszanak a D,k (K = R, C) allapottéren a Hilbert-Schmidt-metrika és a gy.,, monoton
metrika altal meghatarozott térfogatra vonatkozo szeparabilitasi valoszintiség kiszamita-
sdban.

3.2.1. Definici6. A 4,14 : [0,00) — [0,00) fiigguényeket az alabbi integralokkal defini-
aljuk

na(e) = / det(I — XX*)’%’%1HVE_1XVEH<1 dAa(X), (3.6)
Bl(KQXZ)
10 . .
ahol V. = ( 0 e ) és d = dimg(K).

Vilagos, hogy a x4 és ng fiiggvények inverziéra nézve szimmetrikusak, azaz minden
e > 0 szamra xq(1/¢) = xa(e) és na(1/e) = na(e) teljesiil. A xq(e) = xa(e)/xa(1) normalt
Xq fiiggvény azt méri, hogy egy By (K?*?) gémbben egyenletes eloszlasi pontot a V.71 (.) V2
hasonlosagi transzforméacio milyen valoszintiséggel képez a By (K**?) operatornorma egy-
séggdmb belsejébe. A 7y normélt ny fliggvény hasonlé valészintiségi interpretacioval bir,
de késgbb latni fogjuk, hogy n4(1) = oo, ezért 74(e) = n4(e)/na(1) naiv definicié helyett
egy hatarértéken keresztiil kell definialni a normalt 7, fiiggvényt. A x4 és 7, fiiggvények
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egyfajta geometriai entropiaként a (%ﬁ, 1%8) valoszintiségi eloszlas rendezetlenségét méri.

Ezek a fiiggvények a (0, 1] intervallumon monoton névsk, nullaban nullat, egyben pedig
egyet vesznek fel értékiil.

3.2.1. Lemma. A xi(¢) : [0,1] — [0, 1] fiiggvény a
4 1 1 1\? 1 1
+ s
) =1—— S (s—2) 1 “d
Xaile) 2 (S+s 2 <S s) Og(l—s)) s 00
4 L1l Y, (1) 1
= — s+—-—=[s—=] lo ~ds
2 s 2 S & 1—s S
0

integral alakra irhato dt.

Bizonyitdas. Ez a lemma a Dyr allapottéren a szeparébilitasi valoszintiség meghataroza-
sdhoz sziikséges, bizonyitésa viszonylag hosszi és tulzottan technikai jellegii ahhoz, hogy
itt kozoljiik. A lemma bizonyitaséval a Fiiggelék C.1 pontja foglalkozik. O

Egyébként a xi(e) fiiggvényértéket szolgaltatd (3.7) integral a B.0.2. Definicioban
szereplS polilogaritmus fliggvények felhasznaléasaval zart alakra hozhat6. A 3.1. &dbran a
e+ x1(e) — e € € [0, 1] fiiggvényt abrazoltuk. Lathato, hogy a e — x1(e) fiiggvényt a
[0, 1] intervallumon az identités fliggvény igen jol kozeliti.

0.035

0.03 i

0.025| :

W 0.02f h

€) —

> 0.015
001} §

0.005| .

3.1. abra. Az € — x1(e) — € fiiggvény grafikonja.

A kovetkez6 rovid szakaszban paraméterezéseket vezetiink be a 2 x 2-es valos és komp-
lex, valos és komplex 6nadjungélt matrixokon, illetve a rebitek és qubitek allapotterén.
A {04, 09, 03} Pauli matrixok (lasd: A.1.2. Definici6) az I identitasmatrixszal egyiitt a
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2 x 2-es 6nadjungalt matrixok vektorterének egy ortogonalis bazisat alkotjak a Hilbert—
Schmidt bels§ szorzdsra nézve (lasd: A.1.1. Megjegyzés). Tekintsiik a M3% és M5
vektorterek

R0, z,y) =~ ; L1+ 22 cos(0)a +sin(6)0), (3.8)

0<f<2m z,yeR

RO, ¢,x,y) = ? —2'— it ; y(cos(@) sin(¢)oy + sin(f) sin(@)oz + cos(p)os),  (3.9)

0<f<2m,0<o<mzxz,yeR

koordinatézasait. Ez késébb azért lesz kényelmes, mert az R(0, z,y) és R(0, ¢, z,y) mat-
rixok sajatértékei a (3.8) és (3.9) alakokrol kozvetleniil leolvashatok. Jelolje O(¢) a stan-
dard 2 x 2-es forgatas méatrixot, amely a sik vektorait az origd koriil éramutato jarassal
ellentétesen, ¢ szoggel forgatja el, tovabbé legyen A(z,y) = diag(z,y).

Tekintsiik az U(2) unitér csoport Mirman [52] konyvének 284-285. oldalan talalhato

eiw;ﬂ cos2 ei(w;) sin 2
e = 1 =
U(@7 P, w, T) =€ X i(w=7) 2<1> _ilwt7) %{>

ie” " 2 sin5 e~ 2 CoS=

> (3.10)
0<P<m0<O<2m, 0<w, 7<4m

paraméterezését. A 2 x 2-es komplex maétrixok terét a polaris felbontas segitségével
paraméterezzik.
A 2 x 2-es valos és komplex stirtiségmatrixok terének paraméterezésére a

DO, 1) = %(1 + 1 (cos(8)o1 + sin(6)as)), (3.11)
0<f<2m,0<r<1
DO, ¢p,7) = %(I + 7(cos(0) sin(¢)oy + sin(0) sin(¢)os + cos(¢)os)), (3.12)

0<f<2m,0<op<mO<r<l1

Bloch-paraméterezést vezetjiik be.

A 3.1. tablazatban a R**?, C**?, M3%, M5, Daog, D¢ sokasagok paraméterezéseit
és a paraméterezésekhez tartozo térfogati formakat rendszereztiik.

A 3.2. Tablazatban pedig a xq és ng, d = 1,2 fiiggvények normalizacios konstansait
gytjtottiik ossze.

3.2.1. Példa. A x» fiiggvényhez tartozo x2(1) normalizdcids konstans meghatdrozdsihoz
tekintsik a

Xg(l) = / 1HV171X ‘/’1 lI<1 d)\4d(X) = / 1d)\4d(X)
~—

BI(KQXQ) :“iCZ B1(K2X2)
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Sokasig | Paraméterezés Térfogati forma
r2xz | O(@)A(z,y)O(0), la2—y?|
0<o¢,0<2m,0<uz,y 2
C2><2 R(67 qba xz, y)U(@7 ®7 w, 7—)’ ahol 0 < xy(xzfyz)z : in®
z,y (lasd: (3.9) és (3.10).) o smesin
S | R(6,z,y) (lasd: (3.8)) =)
3¢ | R(0,¢,2,y) (lasd: (3.9).) Y’ gin ¢
Dor | D(,r) (lasd: (3.11).) 5
Doc | R(O,¢,2,y) (lasd: (3.12).) Cine

3.1. tablazat. A R**? C** M3y, M3 sokasagok paraméterezései a hozzajuk tartozo
térfogati formakkal.

7.[.4
xa)=| 3= | %

na(l) = 00 00

3.2. tablazat. Normalizacios konstans a x4 és ng d = 1,2 fiiggvényekhez.

integrdlt. A C**2 sokasdg 3.1 tabldzatban szerepld paraméterezését véve irhatjuk, hogy

Ya(1) = / 1 dda(X)

B (]KQXQ

437 X////:cyx —y’) smgbsin@dgbd@dydx

0

4 2 2\2 _7T_4
= 47" x xy(x y ) dyder = 3
0 0

ahol haszndltuk azt, hogy x,y > 0 esetén az R(0,¢,x,y)U(O, P, w,T) mdtriz normdja
max(z,y).

Most pedig ratériink a normalizalt ny fiiggvény kiszamitasara. Definidljuk az n, fiigg-
vényt az alabbi hatarértékkel

Jdet( —xx) (20 dha(X)

Bl(K2X2)

nd(g) = hm
§-1-0 [ det( — x X+~ (727 ()

Bl(K2X2)
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Ez a hatarérték azért 1étezik, mert a
_58
(L—a?)A—¢?) *[2° — ¢
1
J (1= 2)(1 = 52)77 2 = 52| dha(t, 5)
0

(1—2) (1 —y2) P ay(a® — y?)?

(1 —2)(1 = s2)) 2 st(s® — 12)2dMo(t, 5)

d)\Q (‘Ta y)

o

dAs ([E, y)

o .
o

0, 1]2 Borel o-algebrajan definidlt valoszintiségi mértékek a gyenge-* topologidban az egy-
ségnégyzet {(x,y) € [0,1]] x = 1V y = 1} peremére koncentralt valoszintiségi mértékekhez
tartanak midén § — 1 — 0.

A 7;(e) mennyiséget definialo hatarértékben szerepld integralok unitér transzformaci-
ora nézve invariansak, ezért kijelenthetjiik, hogy a

det(I — xx*)~(%-3)
[ det(I — XX*)(572)3 4 (X)

BI(KQXQ)

dAya(X)

[NIES

valoszintiségi mérték altal meghatarozott eloszlas gyengén konvergél a 0B, (K?*?) opera-
tornorma egységgomb felszinén vett egyenletes eloszléashoz, amint § — 1 — 0.

Az alabbi lemma nem kevesebbet allit, mint hogy az imént koriilményes médon de-
finialt 7, fliggvény a y; fliggvénnyel egyezik meg. Sejtjiik, hogy a Yo = 7y egyenlség is
teljestiil, de ezt ezidaig nem sikeriilt egzaktul bebizonyitanunk.

3.2.2. Lemma. A Y1 és 1 fligguények eqymdssal megegyeznek, vagyis a

Xi(e) =m(e) €€l0,1]
eqyenldség teljestil.
Bizonyitds. A lemma bizonyitésaval a Filiggelék C.2. pontja foglalkozik. [

A rebit-rebit és qubit-qubit rendszerekben a szeparabilitasi valoszintiség kiszamitasa-
hoz tekintsiik a Dy allapottér

D, C
p(Dy, Dy, C) = ( C’i D, )

paraméterezését, ahol Dy, Dy > 0 pozitiv métrixok, D; 4+ Dy € Dy llapot és C € K2*2.
Ezen paraméterezés mellett a p(Dy, Dy, C') allapot masodik részrendszerre vonatkozo par-
cialis nyoma

tI'g(p(Dl, DQ, C)) = D1 + D2 (313)

modon kaphaté meg.
Vezesstik be a

p(D1, Dy, C) = T(p(Dy, Dy, C)) = p(D1, Dy, C*) (3.14)
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involiiciot, ami lényegében a masodik részrendszerre vonatkozé parcialis transzponéalas
és az elemenkénti konjugalas kompozicioja. Az elemenkénti konjugalas egy Dyx — Dix
pozitiv és nyomtartd leképezés, ezért a targyalt 4 x 4-es esetben a szeparabilitas sziikséges
és elégséges feltételét jelenté PPT kritériummal ekvivalens annak megkovetelése, hogy egy
allapot T leképezés altali képe allapot legyen. Ebbél kifolyolag a 4 x 4-es klasszikusan
korrelalt allapotok a

Dix = T (Dax) N Dug (3.15)

metszetként allanak el6.

Miel6tt kimondanank a tételiinket emlékeztetjiik az Olvasot a Milz és Strunz altal
vizsgalt Dy (D) halmaz (3.4) definiciéjara. A (Dy, Do, C) — p(Dy, Do, C') paramétere-
zést véve a Dy k(D) halmaz azon striségmatrixokbol all, melyekre Dy + Dy = D teljesiil.
Vezessiik be a Dig (D) = Dig N Dyx(D) halmazt. Most mar minden technikai kellék
rendelkezésiinkre all, ami a legfé6bb eredményiink bizonyitasahoz sziikséges.

3.2.1. Tétel. Legyen D € Dy egy rogzitett siriségmadtriz. A Dy (D) halmaz térfogata
a Lebesgue-meértékre vonatkozolag

det(D)*~%

Vol (DE(D)) = — 5

(3.16)
X det I — Y X Xd© O ( T) d)\d+2(Y),

—1,I[

ahol | — I, I[={A € M5%| — I < A < I} operdtor intervallum, o(A) pedig az A invertdl-
hato mdtriz szinguldris értek: hanyadosa (ldasd: A.1.2. Lemma).
A szepardbilis dllapotok DZ?HI; halmazdnak Lebesgue-mértékre vonatkozo térfogata pedig

Vol (D7) = / Vol (D2(D)) s (D) (3.17)
Dok
mddon fejezhetd ki, ahol d = dimg(K) = 1,2.
Bizonyitdas. Rogzitett Dy, Dy € « matrixokat véve legyen
C(Dy,Dy) ={C € K2X2| p(D1, D3, C) > 0& p(Dy, Dy, C*) > 0} .
A Fubini-tétel szerint irhaté, hogy
Vol (DiR) = Aeass (T (Dax) N Dyx)
= / / 1dAa(C) dAags3(Dr, Do). (3.18)

Dy, Dy >0 CeC(D1,D2)
tI‘(Dl + Dg) =1

A (3.15) metszet formula szerint tetszéleges Dy, Dy > 0 2 X 2-es 6nadjungalt matri-
xokat véve, melyere tr(D; + D) = 1 teljesiil egy C' € K?*? métrix pontosan akkor eleme
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D, C ~ 0 és D, C*
C* Dy C Dy
teljesiilnek. Az A.2.3. Lemma szerint ez a feltételrendszer az alabbi ekvivalens alakra

irhat6 at

a C(D1, D9) halmaznak, ha a > 0 relaciok szimultan

1> (Dy"*eD, ) DiPeD, " w |1p e, P <

1> (D;*ep ) Dy e« ||py oD P < 1,

ahol ||.|| a kozonséges operatornormét jeloli.
A belsd integral kiszamitasahoz végezziik el a

X = D;V*0p; V2 = (LDII/Q ° RD2_1/2> (©)

helyettesitést. A fiiggelék A.3. pontjaban foglaltakat figyelembe véve kapjuk, hogy a fenti
-1
integral transzformaci6 Jacobi determinansa det (L p-1/2 0 RD_1/2> = det(D;)?det(Dy)%.
1 2

Ezt felhasznéalva a (3.18) integral belss integralja

/ 1 d)\4d(0) = det(Dng)d / ]-H(V*)—lXV||<1 d)\4d(X)

CeC(D1,D2) B1(K2x2)

alakra irhat6 at, ahol V = D;/ 2D1_ 2, Vegyiik észre, hogy a kapott integrédl csak a
o(V) szingularis érték hanyadostol fiigg. Ha feltessziik, hogy a V matrix szingularis
érték felbontasa V' = U;XU,, akkor az operatornorma unitér invarianciajat hasznalva
irhatjuk, hogy |[(V*)7'XV|| = || X' U.X U S0, || = |27 U, XU Z||. Tovabba vegyiik
figyelembe azt is, hogy az X +— U XU, leképezés izometria a Hilbert—Schmidt-normara
nézve. Az alfejezet elején tanulmanyozott y, fliggvény itt 1ép szinre, hiszen az el6z6
gondolatmenetbdl kévetkezik, hogy a

xa(o(V)) = / Ljvs-1xvij<1 dAaa(X)

BI(K2><2)

egyenlGség teljesiil. Az A.1.2. Lemma szerint a 2 x 2-es V matrix szingularis érték
hanyadosa

VI3 g det(D1)

—cosh™1 (7) —cosh™1 (l tr D2D71 )
O_(v) —e 2| det(V)] —e 2 det(D32) ( 1 )

modon fejezhetd ki. Mindezt a (3.18) integralba irva a szeparabilis allapotok térfogatéara
a

Vol (DiR) = / det(DyDy) (Do DY) dAogis(Dy, Ds)

Dy, Dy >0
tr(D1 + Dg) =1

kifejezést nyerjiik, ahol f(DyD;') = xq4 0 exp (— cosh™ ( det(Du) . (DQDI1)>>.

1
2 det(D2)
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Tekintsiik az integracios tartoméany aldbbi paraméterezését

D, = 1(D—|—A)
12 (3.19)
D2 = §(D - A)v

ahol D a Dy allapottéren veszi fel értékét, A pedig a —D < A < D egyenl6tlenségnek
eleget tevs dnadjungalt 2 x 2 matrixok terét futja be3. Ez a paraméterezés azért kézen-
fekvd, mert a (3.13) formula szerint a p(Dy, Dy, C') allapot parcialis nyoma éppen D lesz
és ezért a bels integralban éppen a Milz és Strunz altal tanulmanyozott mennyiséget
kapjuk meg.

Matrixok szorzatanak nyoma a tényezdk ciklikus permutécidira nézve invarians, ezért
az el6z6 integral

Vol (Dj}g) = / Vol (DZ?HI;(D)) dAg;1(D)
Da x

alakba irhato, ahol

s det(D)*
Vol (D%(D)) = —55—

[ — D 'V2ADY/?
X / det(I — (D/2AD™Y2)?)t ([+D1/2AD1/2) dAgi2(A).

}7D7D[

A fenti integralban végezziil el az Y = D™Y2ADY2 = (Lp-1/2 0 Rp-1/2) (A) helyet-
tesitést. Az A.3.1. lemmat kivets megjegyzés szerint az ezen helyettesitéshez tartozod
Jacobi-determinans

det (Lp-12 0 Rpy-1/2) " = det(D)? /2

lesz. Az f (%) =X400 < %) egyenlGséget felhasznalva kapjuk, hogy
. det(D)*~% T—v
Vol (D4’£(D)) = T / det([ - Y2>d Xd© o I—i——Y d)\d+2(Y).
]_17[[
Ezzel a bizonyitas teljes. O

Az alabbi kévetkezményben igazoljuk Milz és Strunz sejtését (lasd: [51] cikk (23)
egyenlet) a Vol (DZ‘?@(D)) mennyiség D redukalt allapottol valo fiiggésére vonatkozolag.

3.2.1. Kovetkezmény. A komplex esetben a Vol (DZ‘?’E(D)) mennyiség
Vol (DR(D)) = Ki x det(D)° = K x (1 — 12)°

modon fejezhetd ki a D € Dyc redukdlt dllapot v Bloch-sugardval, ahol K, és Ky D
dallapottol figgetlen konstans.

3Erre a halmazra a | — D, D[ operétor intervallum jeldlést hasznaljuk.
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Bizonyitds. A (3.16) kifejezés d = 2 paraméter valasztéas mellett adja az elsé egyenlGséget.
A D, ¢ allapottér (3.12) paraméterezését hasznélva pedig kapjuk, hogy det(D) = $(1—r?),

ami Ky = % valasztas mellett a mésodik egyenl&séget adja. O]

3.2.2. Kovetkezmény. Legyen D € Dy rogzitett siriségmdtriz. A Dyx dllapottéren a
D,k (D) halmazra vonatkozo, Lebesque-mérték szerint vett feltételes szepardbilitdsi valo-

s2iniiség a
- /1 =Y
/ Xd00< I—i——Y) dptar2(Y)

]_171[

integrdllal fejezhetd ki, ahol a pgio a Agio Lebesque-mértékre nézve abszolut folytonos

//////

det(I — Y?)4

T [ det(I — 22 dNgia(2)
]_17][

dpai2(Y)

Ao (Y.

Vildgos, hogy a szoban forgo feltételes szepardbilitdsi valdsziniség a D € Dyx redukdlt
dllapottol fiiggetlen, ami eqyrészt igazolja Milz és Strunz feltételes szepardbilitdsi valo-
szintség invariancidjdra vonatkozd sejtését [51]. Madsrészt pedig lehetévé teszi, hogy a
Psep(K) szepardbilitdsi valdsziniséget a Dyx dllapottéren

Preep(K) = / Xd© O (\/%) dprg2(Y) (3.20)

]_17][
alakban fejezziik ki.

Bizonyitds. A 3.2.1. tétel bizonyitasidban bemutatott utat végigkovetve kiszamithatjuk
a Dy k(D) halmaz térfogatat, ami

Vol (Dyx (D)) = Xd(1)det(g# / det(I — Y2 dAgss(Y).

]_Ivl[

Ebbdl pedig a szeparabilitasi valoszintiséget a

f det(I —Y?)dy400 <\/ﬁj> dAg2(Y)

Vol (DiR(D)) -1

Vol (Dyx(D)) xa(1) [ det(I —Y2)dd\g(Y)
}7171[
hanyadost véve kapjuk. Ezzel a bizonyitas teljes. O]
A pigro mérték és a o < %) szingularis érték hanyados ortogonalis (komplex eset-

ben unitér) transzforméciokra nézve invarians. Ezt figyelembe véve a (3.20) integral nagy
mértékben egyszertisithets. A y fliggvény 3.2.1. Lemméban kozolt alakjat felhasznélva
meghatarozhatjuk a rebit-rebit rendszerben a szeparabilitasi valoszintséget a Lebesgue-
mértékre vonatkozolag, ami a Slater altal megjosolt 2—2 értékkel esik egybe.
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3.2.2. Tétel. A rebit-rebit rendszerben a Hilbert—Schmidt-metrikdbol szdrmazd mértékre
vonatkozo szeparabilitdasi valosziniség

29
Psep(]R) - 6_4
Bizonyitds. A fent emlitett unitér invarianciat felhasznalva a (3.20) kifejezésben szerepls
integral
1 =z I
J I (ViR =) - -y dyde
Puep(R) = =——————
J S =21 =) (@ —y)dyde
“1-1
egyszerﬁbb alakba irhato, ahol a nevezd % A szamlaloban végezziik el az u = ;—i,
v o= 1 oy helyetteswest melynek Jacobi determinansa m. Vegyiik figyelembe,
hogy a z a ] — 1, 1 intervallumot a |0, co[ intervallumra képezi

le. A helyettesités elvégzése utan a szamlalo

[ [0 (3) ity e

alak lesz. Ismét helyettesitiink ezittal legyen u = ts és v = 7. Az integréaltranszforma-

ci6 Jacobi determmansa , az 1] integracios tartomany pedig 0 < s < 00, 0 <t < 1 lesz.
A helyettesités elvégzése utan az

co 1
443
// \/@ 128uv (v — dudo //1 256st1 t>dtds
(1+u) (1+v (s +1t)°(1 + st)®
0 O

alakot nyerjiik. A bels6 integralban parcialisan integralva kapjuk, hogy

/)21 (t)(25634t3(1—t2) q 64s® /(6453154()21) (1) i@

sttt T a1 GOt

0
Ezt beirva a szamlalora kapott kifejezésbe kapjuk, hogy

o0

4 434 /
/63 //63t t)dsdt
s+1)8 s+ )41+ st)?
0
35
1
64 [ 11(1 —15) +27t3(1 — ¢2) + 6(1 + t2)(1 + 8> + t*) log(t) , .

0

ahol az utolso tagban az integralok sorrendjét felcseréltiik.
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A kapott integral polilogaritmus fiiggvények felhasznalasaval az alabbi zart alakba
irhato

6 2 2 2 2 4
%4 11(1 — ¢5) + 27¢3(1 — ¢t 2;_6(11;15 )(1 + 82 + t4) log(t) () (0 dt =
_ _Wl—lf [9 (> = 1)° Liy(1 — ) + 9 (#* = 1)° Lig(—t) +
+96 (12 +1) (11 + 282+ 1) (1 — 1)” tanh ™' (£)+
+9 (#% — 13265 — 378¢* — 13262 + 1) (¢ — 1) log(t) log(t + 1)+
+ 2t (=571 — 1211¢° + 78t° — 78t + 1211¢%) +
+ 6t ((—3t" + 401¢° + 882t° + 882t* + 401¢> + 192+

+ (B +t7 =48 + ¢ +t) log(1 — t) — 3) log(t) + 57)] + const,

ahol a x fiiggvény 3.2.1. Lemmaban szerepls alakjat alkalmaztuk. Ebbdl a szamléalora
kapjuk, hogy

1

64 [ 11(1—¢5) 4+ 27¢2(1 — %) + 6(1 + ¢*)(1 + 8> + t*) log(t) , . , 1
T2 2 7 (Xl) (t) dt = —,
3 (t2—1) 4
0
amibdl a szeparabilitasi valoszintiségre
16 _ 1
=—7 29
PsepGR) 35 4 =
2 64
adodik, amivel a bizonyitas teljes. O]

3.2.2. Altalanositas a (Dyx, g, ) statisztikus sokasagra

Az 1.2.1 Kovetlezményben lathattuk, hogy egy (Dyk, gr) statisztikus sokaséag térfogati
formaja

dj2
det(w(p))zﬁ(ﬁ 11 cfw,uj)) (3.21)

det 1<i<j<n

alakba irhato, ahol d = dimg(K), p1,..., 1, a p strtségmatrix sajatértékei, c¢(z,y) =

m pedig az f € F,, operatormonoton fliggvényhez asszocialt Cenzov-Morozova-

fiiggvény v.6. az (1.14) formulaval. Esetiinkben n = 4 és f(z) = y/z, amibdl a térfogati
formara a
23d

det(g(p)) = det(p) 1

d=1,2 (3.22)

kifejezést nyerjiik. A (3.22) térfogati forma kiilonleges tulajdonsaga, hogy a p allapottol
csak annak determinénsan keresziil fiigg. Ez tesz lehetévé, hogy a 3.2.1. tétel bizonyité-
sdnak kismértékd modositasa aran bebizonyitsuk az alabbi tételt.



3.2. SZEPARABILITASI VALOSZINUSEG A D,x ALLAPOTTEREN 47

3.2.3. Tétel. Legyen D € Dy rigzitett sdriségmdtriz. A (DZ?H%(D), Gfors) Sokasdg tér-
fogata formdlisan

5 2 - I
VOlngM (DZ?HI;(D)) = 4det(D)§d_%_l / det( — Y2>%77d oo ( —> dAg2(Y)
]_LI[

se

alakba irhato, a klasszikusan korreldlt dllapotok (DMI;, gﬁ) terének térfogatdra pedig for-
malisan

VOlngM <D‘S&2) - / VOlngM (’DZ?]E(D)) d>‘d+1(D)

Dok

adodik, ahol d = dimg(K) = 1, 2.

Bizonyitds. A det(p(Dy, Da,C)) = det(D;Ds) det(I — Dy /*C D5 C*D; %) szorzat alak-
bol kifolyodlag irhato, hogy

(Dik) = 2% / det(DyDy) =% 2

Dy,Dy >0
tf(Dl -+ DQ) =1

Vol

9fam

* / det(I — Dy *CDF'C* D7) 7473 dia(C) ddaays(Dy, Do),
CeC(D1,D2)
ahol C(Dy, Ds) a 3.2.1. tétel bizonyitasa soran definialt halmaz. A X = lel/ZCD;l/2
helyettesitést elvégezve a belsd integral
d
det(Dng)d / det(] — XX*)_BT_%]_H(V*)leV‘Kl d)\4d(X)
BI(KZXQ)
alakot 6lt, ahol V' = D;/ °D; /2 A 3.2.1. tétel bizonyitasa soran alkalmazott érvelést
megismételve kapjuk, hogy a fenti kifejezésben szereplé masodik tényezs csak a V' méatrix
szingularis érték hanyadosatol fligg és 1y o o(V') alakba irhato. Ebbdl a szeparabilis
allapotok térfogatara a
se =2 1/2 ~—1/2

Vol (DiR) = / 234 det(DyDs) T ng 0 o(DY? DY) dAagys(Dy, Do)

D17 Dy >0

tl"(Dl + DQ) =1

kifejezést kapjuk. A (3.19) paraméterezést alkalmazva az Y = D~1/2AD~Y/2 helyettesi-
téssel a

Vol (Pik) = / Voly,,,,, (PiE(D)) dAasa (D)
D2 x

integralhoz jutunk, ahol

se 5 _ﬁ_ da—2 _[_ Y
Voly, .., (D4,H]2(D)) = 4det(D)z477 ! / det(I —Y?)™ 77d00< H——Y> dAg2(Y).

]
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3.2.3. Kovetkezmény. Tetszdleges D € (Dak, gf.,,) Striségmdtrizot véve a Dy (D)
halmazon a (3.22) térfogati formdhoz rendelt valdsziniségi mértékre vonatkozd feltételes
szeparabilitast valosziniség az

/ oo (\/ﬁ:g dvga(Y) (3.23)

]_Ivl[
integrdllal fejezhetd ki, ahol vgio a Agio Lebesgue-mértékre nézve abszolit folytonos valo-
szintségi meérték:
det(I — Y2)5°

[ det(I — 22)F dhgga(2)
}7171[

dvg2(Y)

d)\d+2 (Y) .

Rogton szembetinik, hogy — csakigy mint a Hilbert—Schmidt-metrikabol szdrmazo mér-
ték esetén — itt is igaz, hogy a Dyx(D) alaki halmazokon a szepardbilitdsi valdsziniség
a D redukdlt dllapottol fiiggetlen. Ez egyrészt azt jelenti, hogy Milz és Strunz szepard-
bilitdsi valdszinidség invariancidjdra vontkozd sejtése (Dak, gs,,) Statisztikus sokasdgon
is érvényben marad, mdsfeldl pedig (Dix, Gs.,,) statisztikus sokasdgon a szepardbilitdsi

valdsziniség a
. 1-Y
7)sep,ngM (K) = Na© o [—i-—Y dvgy2(Y). (3.24)

]_Ivl[
integrallal egyezik meg.

Bizonyitds. A 3.2.3. tételt bizonyitasdban véazolt szamolassal analog modon kiszamithato
a Dy (D) térfogata a gy,,, monoton metrikara vonatkozoan, amire végiil is

d—

Voly,  (Dux(D)) = 41a(1) det (D)3~ F 1 x / det(I — Y2)T dAgia(Y)  (3.25)
]7171[

Volg, . (DYR(D)

2 1 2 _ t fG]\/I 4K

adodik. Ezutan a Peep.grs,,s (K) = Vo (Dre(D)
Ifam 4,K

fliggést kapjuk. m

; hanyadost véve a bizonyitandd Ossze-

A 3.2.2. Lemmaban bizonyitott x; = 7; egyenlSség és a x; fliggvény (3.7) exp-
licit alakja lehet6vé teszi, hogy meghatarozzuk a (Dyg, gy, ) statisztikai sokasadgon a
szeparabilitasi valoszintiséget. Ez a Hilbert—-Schmidt metrikara vonatkozo6 szeparabilita-
si val6szintiség ismereténél annyiban érdekesebb, hogy mig a gy,,, monoton metrikdnak
vilagos informaciogeometriai jelentése van, addig az (1.15) Hilbert—Schmidt metrikahoz
nem tarsul informaciégeometriai kép.

3.2.4. Tétel. A (Dyg, gy, ) statisztikus sokasdgon a szepardbilitdsi valdszintség

P

( ):/18(8(t4+t2)E(1—ti2)—(t2+3)(3t2+1)K(1—t%))fa(t)dt

) ™/t (2 —1)°
~ 0.26223.
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Bizonyitds. A iy = x1 egyenlGséget (lasd: 3.2.2. Lemma és a fliggelék C.2. pontja)
valamint a (3.24) integral unitér invarianciajat felhasznalva irhatjuk, hogy

[T (/) a-aria -t -y ayas

SeP-9fanm 1 =z ) ) ’
J J A=) i1 —y2)7a( ) dy dx
S14
ahol a nevezo’ . A szamlalo kiszamitasahoz a Hilbert—Schmidt eset szamolasiahoz hasz-

nalt stratégiat kovetjuk Az els6 helyettesités utan a szamlalé az alabbi alakot nyeri

ZO/UXI (\/g) (uv)i(léli};);()l—i—v) dudv.

A masodik helyettesités utan pedig azt kapjuk, hogy

[0 (%) st | [ A0 000 e

Az integréalok sorrendjét felcserélve az

1 4 4 1N (42 2 1
/16 CAR)EQ-5) —E+3)CEF VK —5)) o o 4r ~ 0549213
0

3WVE (12 —1)°
integralhoz jutunk, melynek értékét numerikusan tudjuk csak kiszémitani. Itt K és E a

teljes els6- és masodfaju teljes elliptikus integralt jeloli (lasd: B.0.3. Definicio).
A nevezével torténd osztas utan a szeparabilitasi valoszintiségre a bizonyitando

8B MBI ) - (43 EETDE (- 4)
(R)—/ W\/l_f(tQ—l)3

értéket nyerjik. O]

3.2.3. Ellen6rzo szamitasok

Ellenérzésképpen kiszamitjuk a Dy allapottér térfogatat a Lebesgue-mértékre nézve
és a kapott eredményeket Osszevetjik az Andai [1] és Zyczkowski [37] altal kapottakkal.
A 3.2.2. Kovetkezmény bizonyitasadban mar taldlkozhattunk a D4k allapottér térfogaté-
nak

Vol <D4’K) = / Vol (D47K(D)) d)\d+1(D> (326)

Do x
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alaku kifejezésével, ami

vOl(D4,K):X;6(j) X / det(D)4d‘§d)\d+1(D)>< / det(I —Y?)4drgp2(Y) (3.27)

Do x 1—-1,I]

modon bomlik szorzatta.

A fenti felbontas tényezdi a valos esetben:

9
xi1(1) = 572
T s
Da r
925,/2
/ det(I — Y2)d\y(Y) = ;)g”.
}7171[
A komplex esetben a
4
e
Xa(1) = 3
det(D)® dAs(D) = T
/ (D) dr(D) 2% 2 x5 xTx11x13x 2
Da ¢
210
_v2)2 _
/ det(1 = V2P AN(Y) = 5t

]7171[

tényezdket kapjuk.

A kapottakat a (3.27) szorzat felbontasba beirva a 4 x 4-es valos illetve komplex allapottér
térfogatara a

7T4

V2 x 26 x 33 x 35

7T6

V2 x 21 x 34 x 53 x 72 x 11 x 13

értékeket nyerjiik, ami egy kettShatvany szorzotol eltekintve megegyezik a Zyczkowski [37]
és Andai (lasd: [1] dolgozat 1. és 2. tétele) kapottakkal. A kettGhatvany faktor eltérés az
allapottéren Hilbert—Schmidt metrika altalunk figyelembe nem vett kettGhatvany alakt
konstans térfogati formajabol fakad.

Az Andai altal tanulméanyozott 2 x 2-es esettel ellentétben (lasd: [1] dolgozat 1. Ko-
vetkezmény) a (Dyk, g7, ) statisztikus sokasag térfogata mind a valés mind a komplex
esetben végtelen, hiszen d = 1,2 esetén 1y(1) = oo (lasd: 3.2. tablazat) és a (Dyk, gsan)
statisztikus sokasag térfogata

Voly,.,, (Dag) = 414(1) X / det(D)34 % "1 drg i1 (D) x / det(I — Y2) % dhgia(Y)

Da x 1—-1,I]

Vol (D4’R) =

VOl (D47(c) =

(3.28)

modon bomlik szorzatta.
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3.3. A Dy, x allapotterek geometriaja

A 2n-dimenzios Hilbert-terekkel leirt kvantummechanikai rendszerekre a K** =~ K" ®
K? izomorfizmus révén gondolhatunk tgy is, mint dsszetett rendszerekre, melyek egy n-
dimenzios Hilbert-térrel leirt kvantummechanikai rendszerbél és egy kétdimenzios Hilbert-
térrel leirt rendszebdl épiilnek fel. Ilyen rendszernek tekinthets az egy fotonbdl és egy
véges szabadségi fokt kvantummechanikai rendszerbdl allo Osszetett rendszer vagy tobb
qubit egyiittese, amely egy véges sok qubittel dolgoz6 kvantumszamitogép kvantum re-
giszterének is felfoghatd. Kordbban sz6 volt arrél, hogy a kvantum osszefondédas a kvan-
tumos algoritmusok szempontjaboél bizonyos értelemben erdéforrasnak tekinthetd, ami in-
dokolja, hogy a Dy, x allapotterek és ezen beldl a Dy’ klasszikusan korreldlt allapotok
geometriajat tanulmanyozzuk.

3.3.1. A Dy, allapotterek szorzat struktiraja

Ebben a pontban megmutatjuk, hogy a D, x allapottér diffeomorf a D, x x &, x X
B; (K"*™) szorzat sokasaggal, ahol &,k a K test feletti n x n-es 6nadjungalt matrixok
alkotta (3.1) operator intervallumot jeloli. Megmutatjuk, hogy a fenti szorzat elgallités-
ban az allapotok masodik komponensre vonatkozo parcialis nyoma az els§ komponensre
torténd projekcioval fejezhetd ki, tovabba meghatérozzuk tetszéleges gy monoton metrika
alakjat ezen szorzat felbontésra vonatkozoan.

3.3.1. Definicié. Az A® B = (AY2BAY?)Y2 mdtrizot az A és B pozitiv definit mdtrivok
szemiszimmetrikus szorzatanak nevezziik.

Legyen D € D,k allapot, Z € &,k és X € By (K™*") kontrakcio. Vezessiik be a

I X

on (D, Z,X)=5,(D,Z) { X+ I

} S.(D, Z) (3.29)

leképezést, ahol

(3.30)

142
Sn(D,Z):[D®2 0 ]

0 Do2

valamint a
Hn,K = Dn,K X En,lK X Bl (Knxn)

jelolést. Megallapodunk abban, hogy a ¢ és S leképezések indexét nem irjuk ki, ha ez
nem vezet félreértésre.

3.3.1. Tétel. A ¢:1l,x = Dok (D, Z,X) — ¢(D, Z, X) leképezés diffeomorfizmus, a

¢
I, ———— Dok

Yl / (3.31)
Dn,K

diagramm pedig kommutativ, ahol try : Doy, x — D, x a mdsodik részrendszerre vonatkozo
parcidlis nyom, pr; pedig a D,k dllapottérre vonatkozo projekciot jeldls.
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Bizonyitds. A (3.29) alakban a matrix szorzésokat elvégezve

1 DY*(I + Z)D'/? (Do(I+2)X(Do(I-2))
¢(D,2,X) =35 (Do (I —-2Z)X*(Do(I+2)) D'V*(I — Z)D'/? ’

adodik, amibdl az
1
(tro00) (D, Z,X) = 5 (DY*(I + Z)D'/* + DV*(I = Z)D'*) = D = pr, (D, Z, X)

egyenldséget kapjuk tetszéleges D € D, k, Z € E,x és X € By (K"*") esetén. Ez igazolja
a (3.31) diagramm kommutativitasat.

Most pedig a ¢ leképezés diffeomorfizmus voltanak bizonyitasara tériink ra. ElGszor
megmutatjuk, hogy ¢ sziirjektiv és meghatarozzuk az inverzét. Legyen P : K** — K" az
elsé n koordinatara, @ : K®* — K" pedig az utolsé n koordinatara torténd vetités, azaz

K2 3 (21,...,200)" = P((21,...,200)") = (21, ..., 2,)"
K* 3 (21,...,220)" = Q((z1,...,220)") = (Tpp1, ..., 120) .
Egy tetszbleges p € Dy, x allapot
P ( PpP* PpQ* )
QpP* QpQ*
blokk matrix alakban irhato fel. Errél és ¢(D, Z, X) alakjabol leolvashato, hogy a

D = trz(p)
Z = D72 (PpP* — QpQ*) D'/ = try(p)~/* (PpP* — QpQ*) tra(p) ~/?

—1 -1
X = (D o #) PpQ* (D %) %) = (PpP*) " PpQ*(QpQ*) "/

egyenlGségeknek kell teljesiilni, amibdl a ¢ leképezés inverzére a

¢~ (p) = (tra(p), tra(p) ™2 (PpP* — QpQ*) tra(p) "2, (PpP*) 2 PpQ* (QpQ*)?)
(3.32)
alakot kapjuk. Amint p befutja a D,, x nyilt allapotteret, tra(p) a D, k allapotteret futja
be. ApeB (]K2")+ pozitivitas miatt PpP* > 0 és QpQ* > 0 egyszerre teljesiil, ami Z-re
al+ 7 >0¢é I—Z >0 egyenlStlenségeket adja, ebbdl pedig —1 < Z < I kovetkezik.
Az A.2.3. Lemmaban foglalt pozitivités feltétel szerint a

QpQ* — QpP* (PpP*)™ PpQ* > 0

egyenl6tlenségnek kell teljesiilni, ami az X*X < [ feltétellel ekvivalens. Ez utobbi fel-
tétel pedig az A.2.4. Lemma szerint ||X|| < 1 alakba irhato at. Tehat ¢ bijekcio a
Dy, x allapottér és a II, x sokasag kozott. A ¢ és ¢! leképezések linedris és bilineras
leképezések, valamint az A — A~ invertalas és az A — A2 operator négyzetgyok alkal-
mas kompozicidiként allnak el6. Ezek a leképezések pedig az értelmezési tartoméanyukon
differencialhatok, igy kompoziciojuk is az. Ezzel belattuk, hogy a ¢ és ¢! leképezések
differencidlhatok. Tehat ¢ tényleg diffeomorfizmus a Dy, x és II,, x sokasagok kozott. [
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A ¢, és ¢, diffeomorfizmusok segitségével tetszéleges Day, x — Doy x leképezés re-
dukalt allapotokra val6 megszoritdsa konnyedén elGallithato. Ha pedig egy tetszGleges
Dinx — Dmx, Enk — Emk s By (K™") — By (K™*™) leképezés harmast adunk meg,
akkor ezek segitségével II, x — II,, x leképezéseket definidlhatunk, melyek a ¢, és ¢,
diffeomorfizmusok révén leképezéseket indukalnak a Do, x és Da,y, x allapotterek kozott.
Ezzel a technikdval rengeteg nem trivialis Dy, x — Doy, k leképezés adhatoé meg.

3.3.1. Kovetkezmény. Tekintsink egy n darab kvantum bitbél (rebit, ha K = R és
qubit, ha K = C) dllo dsszetett kvantummechanikai rendszert, melyhez a Daon x dllapottér
tartozik. A 3.3.1. tétel n-szeri alkalmazdsdval kapjuk, hogy a Dan x dllapottér belsd a

I (e (57

szorzat sokasdggal diffeomorf.

All,x = Dk x Enx x By (K™™) szorzat sokasag érintStere tetszdleges (D, Z, X) €
Dyx X Enx x By (K™™) pontban a

TDDnJK X TZgn,K X TXBl (Knxn> = fiK(O) X MZ%K x KX

direkt szorzattal izomorf. Legyen f € F, operator monoton fiiggvény, g; pedig a neki
megfelel6 monoton metrika a Dy, x allapottéren. Vizsgaljuk a gy metrika ¢ leképezés
altali ¢*g; visszahtizottjat.

Legyen U € U(K*") unitér matrix és definialjuk a [y : K2*2n — K220 g (A) =
U*AU unitér konjugalast. Ezzel a jeloléssel a gy monoton metrika unitér invarianciaja
g5 = Brrg5 ekvivalens alakban irhato fel. Ebbdl kapjuk, hogy

95 = Bugy = 995 = 0"Bugs = ay¢ gy, (3.33)

ahol ay = ¢ 1o fyog. A ¢*gr = af¢* gy egyenlSség értelmében ¢* gy kiszamitasanal fel-
tehetd, hogy a tekintett pontot a ¢ leképezés diagonalis allapotba viszi. Ezzel ekvivalens,
hogy a II,, x sokasag tekintett pontja (D, Z,0) alaku, ahol D és Z diagonalis.

A most kovetkezé gondolatmenetben feltessziik, hogy D € D, k és Z € &, x diagonélis
matrixok, tovabba Dy, Dy € M3 (0), Zo, Zy € M3y és Xo, Xg € K™ A ¢, [, x —
Do,k leképezés (D, Z,0) € 11, x pontbeli derivaltja

(D, Z,0)(Dy, Zo, Xo) = S(D, Z) { )? )ff } S(D, Z)
0
—(@S)(D.2)(00. 20) +5(0.2) | £ | 5(0.2)
0
(3.34)
DY2(I + Z)D'/? 0 s
ahol S*(D,Z) =1 [ ( 0 ) DUA(I - Z)D? }, melynek derivéltja
Dl EEI 1/2 1/2
(dS?)(D, Z)(Do, Z) = [ prigr (Do) + DE@ DA L) O .
0 —572r— (Do) — DY? @ DV?(Zy)
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Itt AHB az A és B matrixok A® B+ B® A Kroenecker-6sszegét jeloli, mellyel az operator
négyzetgyok Ay onadjungalt métrix iranyu derivaltja egy A pozitiv matrix helyen

o

(VA )~ (Ag) = / e~V A getVA gy

0

modon fejezhets ki. Végiil a D és Z matrixok felcserélhetGségét felhasznalva kapjuk,
hogy

dgb(Dv Zv O)(D07 207 XO) =

B 1 Dl/;g;_EBZ])EI(DO) + D12 ®D1/2(Z0) D1/2(1+Z)1/2 ® D1/2<[ _ Z)1/2(X0)

C 2| DVHI—2)V2@ DVA(I+ 2)V2(Xy)  BEUZZBL Dy _ D2 g DY (7)
A ¢*gy visszahtzott metrika a (D, Z,0) pontban
¢"95(D, Z,0) (Do, Zo, Xo), (Dy, Zy, Xg)) = tr (Do, Zo, Xo0)¢*G4(D, Z,0)(D5, Zg, X5)")
alakba irhato, ahol

¢*Gf(D7 Z? 0) = (d¢(D7 Z? 0)>*Gf(¢(D7 27 O)) d¢<D7 Z? 0)

egy [Gijlij=123 szuperoperatorokat tartalmazoé 3 x 3-as szimmetrikus hipermatrixszal
adhaté meg, melynek zérustol kiillonbozdé elemei

- 2 2
1 (I+2Z)D'?@8T (I-Z)DY?®81
Gu =7 |er(Tprgz, Rprez) (D/EBI terlprz Rpee) | —piagr
1[ (I+2Z)DY?@81 (I -Z)DY?®81
Gz = 1 _Cf(LD#vRD#)W - Cf@p#f%%)w D'? @ D'?
1
Gao = 1 cr(Lprez, Rpriz) +Cf(LD%’RD%)} D®D
1
Gz = §Cf(LD¥7RD¥)D(I+ Z)® D - Z),

ahol ¢y az f € F,, operator monoton fiiggvényhez asszocialt Cenzov-Morozova-fiiggvény.

3.3.2. Tétel. Legyen f € F,p, operdtor monoton fligguény. A ¢*g; visszahizott metrikdval
elldtott 11, x sokasdg térfogati formdja egy olyan (D, Z,0) € II, x pontban, melynek ¢
dltali képe a diag(p, . . ., pan) diagondlis dllapot

(MY

nd—1

eyt -2y (2
2(%)5-3 o<k<i<en \ fuf <%>

\det(¢°G (D, 2,0)) =

Bizonyitds. A szoban forgo térfogati forma a det ((d¢(D, Z,0))*d¢(D, Z,0)) determi-
nans négyzetgyokének és a megfelels (1.14) alaku térfogati formanak a szorzataként all
el6. A (D, Z,0))* d@(D, Z,0) : ME%(0) x My x K" — M (0) x M x Ko<
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linearis leképezéshez asszocialt szuperoperator elemi G szimmetrikus hipermatrix nem
zérus elemei

o _Ll|(U+z)prEr 2+ (I-2z)DV?@BI\’
Ny D/2E] D/2E]

1 [(I+2Z)D'Y?*8BI (I—-Z)D'?@I] _,
Gra =~ — DY? @ D/?
12 4[ DIEEI DIEEI ©

1
G22:§D®D

1
Gss = 5D(I+2)® D(I - Z).

Ebbél
det (( d¢(D, Z, O))* d¢<D, Z, 0)) = det(G) = det(Ggg) det<G22> det(GH - G21G521G12>,
ami

det ((do(D, Z,0))* d(D, Z,0)) =

det(2D(I + Z) @ D(I — Z)) det(2D & D)

AT (D) X det

(I+2)DV?@BI1\>
D/2@E ]

(I-Z)DV?@I\® 1((I+Z)DVBI (I-Z)DV@EI\
DV2E] 2 DV2E] DV2E]
odim (K™ ™) +dim(M;?y )
= 1Em (Do) det(D(I +Z)® D(I — Z))det(D ® D) det(21)
_det(D(I + Z) ® D(I — Z))det(D @ D)
- 9dim(Day, k)

alakba frhato at. Itt iigyelni kell arra, hogy a D ® D tenzorszorzatot mint M3 — M3
szuperoperéatort kell tekinteni, melynek igy determinansa det(D ® D) = det(D)"—1d+2
lesz. A DI+ 2Z)® D(I —Z): K™ — K™ linearis leképezés determinansa pedig
det(D(I +Z)® D(I — Z)) = det(D)*?det(I — Z%)"¢ lesz.

Ebbél kapjuk, hogy

det ((do(D, Z,0))*d¢(D, Z,0)) = det(D)Bn=Dd+2 det (1 — 7%,

92n+(%')d—1
melynek négyzetgyokét a Dy, x sokasag diag(pi, .. ., f2,) diagonalis allapotbeli térfogati
forméjaval Osszeszorozva kapjuk a bizonyitandé formulat. O]

3.3.2. Kovetkezmény. A visszahizott metrika térfogati formdja a Hilbert—Schmidt-
metrika €s az fam € Fop operdtor monoton fliggvény dltal szdrmaztatott monoton metrika
esetében a redukdlt dllapot D és az I — Z? mdtrix determindnsai alkalmas hatvdnyainak
szorzataként fejezhetd ki. Rovid szamolds utan a Hilbert-Schmidt-metrika esetén a

Vdet(¢*Gus(D, Z, X)) = z\fl det(D)BrDa+ det(] — Z2)%
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térfogati formdt kapjuk, az foum € Fop operdtor monoton figgvény dltal szarmaztatott
monoton metrika visszahizottjat véve alapul

d_
2

1
2

det(I — z?)Bn=1)
2(2;>d_% det(D)(”_l)% det([ _ XX*)(n—l)%—i-%

\det(# Gy, (D, Z, X)) =
adedik.

3.3.2. PPT Allapotok a Dy, k allapottereken

A D,, x allapottéren is érvényes az a megallapitas, hogy az allapotok matrix ele-
menkénti konjugélasa egy pozitiv és nyomtartd leképezés, ennél fogva pedig a Peres—
Horodecki-féle feltétellel ekvivalens annak megkovetelése, hogy egy allapot T altali képe
allapot legyen, ahol T' : K2"*2n — K?*1X2" g parciélis transzponalds. A ¢ : 11, x — Doy
diffeomorfizmus altali sképre vonatkozoan mindez azt jelenti, hogy egy ¢(D, Z, X) alla-
pot pontosan akkor PPT &llapot, ha az X € By (K™*™) komponensre igaz, hogy

(V' XV <1 (3.35)

ahol V = (Do 52) (Do 2) " = (Do (I - 2)) (Do (I + Z))". Az aldbbi lemma
fontos informéciot szolgaltat a V' matrix szingularis érték felbontasara vonatkozolag.

3.3.1. Lemma. Legyen D € D,k dllapot és Z € E,x tetszdleges mdtriz, tovdibbd V =
(Do (I-2) (Do (I +2)"". Ekkor az A=V*V és B = ﬁ—g onadjungdlt matrizok
unitér hasonldk.

Bizonyitds. Elég megmutatni, hogy minden k& = 1,2,...,n kitevére a tr(A*) = tr(B¥)
nyomok kozti egyenlGség teljesiil. Ebbdl kovetkezik, hogy az A és B pozitiv méatrixok
karakterisztikus polinomja egyenld, ami maga utéan vonja, hogy az A és B métrixok
unitér hasonlok. A nyomképzés ciklikussagat felhasznalva irhato, hogy

tr(A*) = tr

(Po(I+2) " (Do(-2) (Do (+2)™)]
—tw|(Do(I+2)! (Dlﬂﬂp—lﬂ) CDoU-2V (el

I+7
I—27\"
I+7

r k
= tr (Dl/QﬂD_l/Q) ] = tr

_ k _
177 —tr(B) k=1,2,...,n.

]

A fenti lemma kovetkezménye, hogy minden D € D,k allapothoz és Z € &, g mét-
rixhoz megadhatok olyan Uy(D, Z),Us(D, Z) € U(K") unitér méatrixok, hogy

V=Do(I-2)Do(I+2)"=U(D,2)% (,/%) Uy(D, 2)
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teljesiil, ahol X ( yan Z) diagonélis matrix, mely f6atlojaban az > (0 matrix sajat-

I+Z
értékeit tartalmazza csokkend sorrendben. Ezzel a (3.35) PPT-feltétel

(V) XV = 2(,/%) Us(D, Z)XUy(D, Z)% («/ﬁ—;) <1

alakot olt.

3.3.2. Definici6. Vezessiik be a © = 0,, : I, x — I, x
(D, Z,X)—0O(D,Z,X)= (D, Z,Us(D, Z)* XUy (D, Z)*)
leképezést, amely a 11, x sokasdg diffeomorfizmusa.

A fenti gondolatmenetet kévetve adodik, hogy egy (D, Z, X) € Il x pont ¢, o O,
II,, = Ds, k leképezés altali képe pontosan akkor PPT allapot, ha teljesiil, hogy

=(ir7) =)< (330

Ezzel a II, x szorzat sokasig ¢, o O, diffeomorfizmus altal PPT allapotoknak megfe-
leltetett pontjait lényegében jellemeztiik. Eredményeinket az alabbi tételben foglaljuk
Ossze.

3.3.3. Tétel. Legyen IR = (¢, 0 ©,) " (Dyr k) C M. Ekkor

-1
11—z I1—Z
merr=p, 7. X . B, (K™*™) |1 b e XX S
n,K JKX (7)€€1KX 1( )> <I+Z I+7

teljestil.

3.3.3. Kovetkezmény. A fenti tétel egyik kovetkezménye, hogy egy p € Da,x dllapot
teljesiti-e a Peres—Horodecki-féle parcidlis transzpondldsi feltételt, nem fiigg attol, hogy mi
a szoban dllapot Dyx részrendszerre vonakozd tra(p) parcidlis nyoma. Ez a megfigyelés
jelentds mértékben dltaldnositja Milz és Strunz 4 x 4-es PPT dllapotokra vonatkozd [51]
ctkkben kozolt sejtését.

A (3.36) feltétel bal oldala csupén az , /=2 o Z pozitiv matrix sajatértékeinek egymashoz

viszonyitott aranyatol fiigg, nem fiigg azok sorrendjétél és Gsszegétsl. Ez az észrevétel
motivalja az 7 : A,y > x 0By (K™*") — [0, 1]

. 1
) =min L e ) 337

fliggvény bevezetését, ahol A,_1> = {(p1,...,pn) D1 > ..., 20, >0, _pr=1} a
rendezett (n — 1)-szimplex.
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3.3.4. Tétel. A DyY} C Donx 1észsokasdy diffeomorf egy Dyx X Flox x R -nyaldbbal,
melynek bdzis sokasdga az r: Ap_1 > x 0By (K™") — [0, 1] figgvény nyilt epigrdfia. Itt
Fl,x =UK")JU(K)" az in. zdszld sokasdg (flag manifold).

Bizonyitds. Az allitas azonnal kovetkezik a 3.3.3. tételbol és a IINE" C II,, k részsokasag

PPT _ I—a?.diag(p)? 77 > D e Dn,K; U e Fln,K, a>0
e {(DJHEEE@WUvﬁX B (0,r(p,7)), pEApr1s, X EIBy (KM

paraméterezésébdl. O

A 3.3.2. kovetkezményben foglaltakat a PPT-allapotok 3.3.3 tételbeli jellemzésével
kombinalva megkaphatjuk a PPT-allapotok geometriai valoszintiségét tetszGleges péaros
dimenziés kvantummechanikai allapottéren a Hilbert—Schmidt-metrikabdl és a gy, mo-
noton metrikdbol szarmazo térfogatra vonatkozoan egyarant. Ez altalanositja a 3.2.2 és
3.2.3 kovetkezményekben tett megéllapitasokat. A 3.1.3. tételben megfogalmazott Peres—
Horodecki-kritérium értelmében az n = 3 esetben K = R esetén a rebit-retrit?, K = C
esetén pedig a qubit-qutrit szeparabilitasi valoszindségre kapunk explicit formulat. A Dg x
allapottereken a szeparabilitasi valoszintiség szintén intenziven kutatott kérdés, melynek
Slater kvazi-Monte—Carlo szimulaciok segitségével tanulmanyozott [68, 69].

3.3.5. Tétel. A PPT dllapotok geometriai valdszinisége a Doy, x dllapottéren a Hilbert—
Schmidt-metrikdbol szdarmazo térfogatra vonatkozoan a

Popt e (Do) = / £(2)du(2)

g’n,JK
nd
formuldval fejezhetd ki ahol du(Z) = ; det(l—(;)zéd)dg/\ +(n)d(Z) d)\nJr(g)d(Z) valdszintségi
gn,]K " 2

sa

mérték az €, x C M:% operdtor intervallumon és

=z =z
Vol(B; (Kmxn))

A gy, monoton metrika esetén pedig a

‘MMM)

J le( I Z)flxz( =2)||<1

PWWW@W@:/M@@@)

Sn,]K
. : _ det(I—72)Br-D§ -3 ;
formuldt kapjuk, ahol dv(Z) = otz +(n)d(Z) d)\n+(g)d(Z) és
En K nri2

I — XX*)~(-Di-31 .
Bl(Kfnxn)( ) 2(V7%) 1XE< =)
[ (= XX*) D83 d)eh(X)

Bl(Kan)

M%) =

4A 2 x 2-es stirtiségmatrixokkal leirt kvantummechanikai rendszerekre hasznalt elnevezésének analog-
jaiként bevezetjik a 3 x 3-as valés és komplex allapotokkal jellemezhet6 rendszerekre a ,retrit” illetve
squtrit” elnevezéseket.



3.3. A Doy ALLAPOTTEREK GEOMETRIAJA 29

Bizonyitds. A PPT allapotok geometriai valoszintisége egy ¢ unitér invarians metrikaval
ellatott Dy, x allapottéren a

Voly(Dyoik) — Voligee)~(IT, ')
VOl (Dgn K) - VO1(¢O®)*g(Hn,K)

Prprg(Dank) =

formulaval kaphato meg.
A 3.3.2. kovetkezményben kapott térfogati format felhasznalva a g = ggg Hilbert—
Schmidt-metrika esetén kapjuk, hogy

[ det(I — Z%)% f(Z)d,,

gn]K
Prrtgns(Dan) = . / 1(2) du(z
prtans(Ponst) = = L Ay,
8n,]K
nd
hol du(Z) = U=2%)2 w(Z) €
aho dﬂ( ) gf det(I*ZQ)%dd)‘nJr(n)d(Z) d)\n+<2)d( )es
n,K 2

i TR (D) )

Vol(B; (Knxn))

f(2) =

A gy,,, monoton metrika valasztas mellett pedig azt kapjuk, hogy

[ det(I — 2%)BnDi-2p(Z) A, (14(2)
gn]K 2
P Dy i) = - / hZ)dv(Z),
PPT’gf(;M( 2 7]K) f det[ ZQ)(3n 1)575 d)\ ()d(Z) ( ) ( )
gn]K gn,]K
d_ 1
h 1 d Z — det(I—ZQ)(3n71>77§ d)\ . Z A
aho V( ) gf det(IfZQ)(snfl)%f%d/\n+<")d(Z) n+(2)d( ) es
n,K 2
I— XX*)~(-Di-31 5 A p2a(X
sy ) (/) el o )

S (= XX DTS g (X)

Bl(Kan)
0

Ha példaul az n = 3, K = C esethez tartozé qubit-qutrit szeparébilitasi valoszini-
séget szeretnénk meghatarozni, akkor — az n = 2 esethez hasonléan — a fenti integralok
unitér invarianciajat felhasznalva elég egy ,.csupan” 21-dimenziés sokasagon integralni az
eredeti 35-dimenziés Dgx allapottér helyett. Nyilvanvalo, hogy az f és h fliggvények
csak a beléjiik irt matrixok sajatértékeinek egymashoz viszonyitott aranyaitol fiiggnek,
és lényegében a 19 és 72 fiiggvények tobbdimenzids altalanositasainak felelnek meg.
Ezekre a fiiggvényekre egyfajta ,,geometriai entropiaként” lehet gondolni, hiszen azt mé-
rik, hogy a hasonléségi transzformécioval deformélt By (K2*2) egységgémbnek mekkora
hanyada kozos a deformalatlan gémbbel. Szemléletesen mondhatjuk azt, hogy minél
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rendezetlenebb a deforméld pozitiv métrix sajatértékeibsl képzett valoszintségi eloszlas,
annal nagyobb lesz a szoban forgd kozos rész térfogata. A legrendezetlenebb eset az iden-
titas pozitiv szdmszorosaival torténé hasonlosagi transzformaciohoz tartozik és valoban
fAI) = h(AI) =1 X > 0 esetén. Mindez egybevag azzal az intuitiv képpel, hogy egy
¢(D, Z, X) alaka allapot pontosan akkor szeparabilis, ha || X]|| elég ,kicsi”. Azt pedig,
hogy mennyire kell kicsinek lenni || X||-nek ahhoz, hogy ¢(D, Z, X) klasszikusan korrelalt

legyen Z mondja meg. Minél nagyobb entrépiaju a ,/ﬁ—g /tr (,/ﬁ—é) stirtiségmatrix
spektruma, annal nagyobbra valaszthato || X||.

A qubit-qutrit példara vonatkozolag ez azt jelentené, hogy az eredeti ,35-0s integ-
ral” harmas integralla redukalhaté. Mindazonaltal a kutatas jelenlegi fazisdban még a
Yo fliggvényre sem rendelkeziink kezelhetS formulaval. A x, fliggvény meghatarozasara
iranyulé probalkozasainkat a fliggelék D. pontjaban gyijtottiik Gssze.

3.3.3. ésszefonédottség mérése a Dyx és Dgx allapotterken

Egy 6sszefonodott allapot szeparabilitdsanak mértékét az allapot szeparabilis allapo-
toktol mért tavolsagaval jellemezhetjiik. Attol fiiggden, hogy milyen tavolsidg fogalom-
mal dolgozunk, kiilonb6z6 6sszefonddottsagot mérd mennyiségeket (angolul entanglement
measures) kapunk. Mi most ebben a pontban egy lehetséges, természetes moédon adodo,
Osszefonddottsdgot méré mennyiséget definialunk.

Tekintsiink egy ¢(D, Z, X) € Ds, x alakt allapotot, ahol (D, Z, X) € 11,  és vezessiik
bea P, : I,k — Il,x Pu(D,Z,X) = (D, Z,aX) a € [0,1] leképezést, ami a Dsy, x

allapottéren a
D, C D, aC
{ D, } — [ oC* Dy } a € [0,1] (3.38)

részleges pinching-nek felel meg. Tetszoleges 6sszefonodott allapotot reprezentélo (D, Z, X)) €
II,, x pontot véve az a — P,(D,Z, X) o € [0,1] folytonos gérbe Gsszekoti egymassal a
(D, Z,X) és a szeparalt allapotnak megfelels (D, Z,0) pontokat. Léteznie kell tehat egy
olyan agp € (0,1) paraméter értéknek, melyre ¢(P,, (D, Z, X)) € 0Dy teljesiil. A

#(D, Z, X) allapot sszefonodottsagat a ¢(D,Z, X) és ¢(Pa,,, (D, Z, X)) pozitiv métri-
xok (1.18) Thompson-féle tavolsagaval is jellemezhetjiik.

3.3.3. Definici6. Egy p € DS‘,‘;K osszefonddott kvantumdllapot Thompson-féle 6sszefono-
ddsi mértéke alatt a

TME(p) =6 (¢ 0 Pa,, 00~ (p),p)

mennyiséget értjik, ahol § az (1.16) formuldval definidlt Thompson-tdvolsdyg.

A a Dyx és Dgx allapotterken a PPT-feltétel teljesiilése a szeparabilitassal ekviva-
lens, ezért a PPT allapotok el6z6 pontban kapott geometria jellemzését felhasznélva a
Thompson-féle 6sszefonddési mértékre a kovetkezs eredmény adodik.

3.3.6. Tétel. Eqgy p = ¢(D, Z, X) alaki dllapot Thompson-féle dsszefondddsi mértéke

1
]+ozot|X] I—ozot|X] 2
TME(p) = |tr | log? [ ——2&°="1 tr ( log? [ ——2&2= 1
(v) [(g< rrxy ) Tree Ui
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alakba irhato, ahol cgp = min { 1, ! ‘ }

—1
2(V#2) x=(VE2)
Bizonyitds. A Thompson-metrika kongruencia invarianciajabol fakadoan tetszéleges a €
[0,1] esetén a p = ¢(D,Z,X) és a ¢ o Po(D,Z, X) allapotok Thompson-tavolsaga a

I X 1 X . . . :
{ } és { @ } pozitiv matrixok Thompson-tavolsdgaval egyezik meg, ami

X+ I aX* I
| I X1 I ax1[ 1 Xx1°°
| x* 1 aX* T X+ I

(L 7] Lo 7))

HS
= ||logo 0 X
modon fejezhets ki, ahol ¢ : (—=1,1) — R ¢(x) = 1;:’;5”, ||.||ms pedig a matrixok Hilbert—
Schmidt-normajat jeloli. A )?* 0 métrix spektruma az | X| és —| X | matrixok spekt-
rumainak egyesitéseként all els, ezért
0 X | I+ o X]| I —a|X|
2 _ 2 2 B e}
tr(log OQ({X* O—)>—tr(log ([+]X| + tr ( log = |X]
irhato.
A PPT tulajdonséag (3.36) jellemzését felhasznalva kapjuk, hogy
. 1
Qopr = min {1, — .
2(Vi) xe (V)|

Ezzel a bizonyités teljes. O

3.4. Osszefoglalas

Ebben a fejezetben 6sszetett kvantum mechanikai rendszereket tanulméanyoztunk.

1. Meghataroztuk a 4 x 4-es valos elemi strtségméatrixok alkotta kvantummechanikai
allapottéren a szeparabilitasi valoszintiséget.

2. Bizonyitottuk Milz és Strunz szeparabilitasi valoszintiség redukalt allapottol valo fiig-
getlenségére vonatkozo sejtését.

3. Eredményeinket altaldnositottuk arra az informéaciégeometriai szempontbol relevans
esetre is, amikor az allapottér a négyzetgyok fiiggvény altal szarmaztatott monoton
metrikaval van ellatva.

4. Megmutattuk, hogy a 2n x 2n-es stirtiségmatrixok alkotta allapottér diffeomorf az
n X n-es striségmatrixok alkotta allapottér, az n x n-es énadjungalt méatrixokbol allo
| — I, 1] operétor intervallum és az n X n-es matrixok operatornormara vonatkozo
egységgombjének a direkt szorzataval.



62 3. FEJEZET. OSSZETETT KVANTUMMECHANIKAI RENDSZEREK

5. Ezt a szorzat sokasag reprezentaciot hasznaltuk fel arra, hogy geometriai leirasat ad-
jam a 4 x 4-es szeparabilis allapotoknak. Kideriil, hogy a 4 x 4-es szeparabilis kvan-
tumallapotok pereme egy, a 2 x 2-es méatrixok egységgémbjén értelmezett fliggvény
grafikonjaként elGallo sokasag feletti trivialis nyalabként all els.

6. Végezetiil bevezettiink egy kongruencia transzformaciokra nézve invarians tavolsag-
fogalmat az allapottéren, amire nézve meghataroztuk egy tetszéleges Gsszefonddott
allapot tavolsagat a szeparabilis allapotoktol.



4. fejezet

Kvantum csatornak

A monoton metrikdk kapcsan mar definialtuk a teljesen pozitiv lineéris leképezése-
ket. A nyomtarté teljesen pozitiv leképezések allapotteret allapottérbe visznek. Az ilyen
hozzarendeléseket sztochasztikus leképezésnek hivtuk. A sztochasztikus leképezés szino-
niméja a kvantum csatorna. Ez az elnevezés a kdvetkezd fizikai képbdl ered.

A kvantummechanika zart rendszer idéfejlédésére vonatkozo posztulatumanak (lasd:
[58] kényv 12-13. oldal) véges dimenziés Hilbert-terekkel modellezett rendszerekre vo-
natkoz6 megfogalmazasa kimondja, hogy ha a rendszeren egy I C R id&intervallumban
nem végziink mérést, akkor a rendszer id6fejlédését leiro (p;)ier statisztikus operatorsereg
kiilonboz6 tagjai kozott a

Pt = U(ta S),OSU(t, 8)* (t7 5 € I)

osszefiiggés all fenn, ahol U(t, s) az an. unitér propagdtor. Az unitér propagator unitér
matrixok egy csaladja, melynek tagjaira a

(1) Vt,r,s e T U(t,r)U(r,s) = U(t,s)
(2) ,a (t,s) — U(t, s) leképezés folytonos minden (t,s) € I x I pontban”

feltételek teljesiilnek.

A nyilt kvantummechanikai rendszerek id&fejlédését leirhatjuk oly médon, hogy a
rendszer és kornyezete altal alkotott zart, Osszetett kvantummechanikai rendszer idéfej-
16désének eredményeként adodo allapotot a vizsgalt nyilt kvantummechanikai rendszer
allapotterére vetitjiik. Ez a gyakorlatban egy H Hilbert-térrel leirt kvantummechanikai
rendszerre nézve a kovetkezst jelenti:

1. ApyeB (7—[)+ kezdeti allapotot a pg — p = ’;?i;f:g hozzarendeléssel a rendszer és
kornyezete altal alkotott zart, osszetett kvantummechanikai rendszer egy allapotanak

feleltetik meg, ahol ‘Hg Hilbert-térrel a kornyezetet modellezziik.

2. A zért rendszer idéfejlddését leird posztulatum értelmében az idéfejlédés eredménye-
ként egy olyan allapotot kapunk, ami UpU* alakba irhato, ahol U € U(H Q@ H ) unitér
operator.

3. Végiil az idéfejlédés eredményeként adodé p; € B(H)" allapotot a py = try (UpU*)
parcialis nyomképzéssel kapjuk meg.

63
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Vilagos, hogy ha U € U(H ® Hp) unitér operator, akkor a py — p; hozzarendelés egy
B(H)" — B(H)" sztochasztikus leképezést hataroz meg. Ennek forditottja is igaz, ezt
altalanositja az alabbi tétel.

4.0.1. Tétel. Legyen T : My'c — Ml linedris leképezés. Ekkor a kivetkezd kijelenté-
sek ekvivalensek:

1. T teljesen pozitiv.

2. Léteznek olyan K; : C* — C™ j = 1,...,r linedris leképezések, melyekkel a T leképezés

T=) Lk oRx:=> K;®K;
j=1

J=1
maodon dllithatd eld. (Ez az un. Kraus-reprezentdcid.)

3. AT leképezés T = try oLy o Ry« alakban dll eld, ahol eqgy U : C* — C™ @ C" linedris
leképezés. (Ezt Stinespring-reprezentdacionak hivjdk.)

A fenti feltételek teljestilése mellett T pontosan akkor nyomtartd, ha Z;Zl K7 K; = idcn
teljesiil. Ezzel ekvivalens az, hogy U izometria.

Bizonyitds. A bizonyitas az [53] jegyzet 5. oldalan talalhato meg. ]

A kvantum csatorndk a kvantum informécio feldolgozasban és tovabbitasban kulcs-
szerepet jatszanak, hiszen minden qubiteken végezheté miiveletnek kvantum csatornak
feleltehets meg. Ezt a fejezetet véletlen qubit csatornék tanulmanyozasanak szenteljiik.
A fejezetben bemutatott eredmények egy részét a 6] és [7] dolgozatokban jelentettiik
meg. A véletlen qubit csatornak vizsgalata tobb szempontbol is érdekes feladat. Egy
kvantum algoritmus lényegében kvantum csatornék egy sorozata, ahol az egyes 1épések
hibéi a végeredményben kumulélédva jelennek meg. Az egyes lépéseket terhel hibékat
véletlen kvantum csatornék segitségével modellezhetjiik, ezen keresztiil pedig az eredmény
hibaja kontrollalhat6. Ugyancsak véletlen kvantum csatornak segitségével modellezhets a
kvantum regisztereket terhels kiilsé zaj is, mely végs6 soron dekoherenciahoz és a regisz-
terben tarolt informécié elvesztéséhez vezet. Véletlen kvantum csatornékat alkalmaznak

Véletlen kvantum csatornak spektralis jellemz&inek vizsgélataval Bruzda, Cappellini,
Sommers és Zyczkowski [18] foglalkozott. Igazoltak a linearis algebrabol ismert Perron—
Frobenius-tétel kvantumos altalanositasiat és numerikusan vizsgaltak specidlis kvantum
csatornak iteraltjainak hatasat véletlen allapotokon.

4.1. Qubit csatornak reprezentacioi

A kvantum csatornak az alabbi tétel értelmében egy kompakt sokasag pontjainak
feleltethet6k meg, ami lehetévé teszi, hogy informéciégeometriai eszkézokkel vizsgaljuk
Gket.

4.1.1. Tétel (Choi). Egy T : M} — M3 pozitiv leképezésre nézve ekvivalensek az
aldbbi kijelentések:
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1. T n-pozitiv (ldsd: 1.2.1. Definicid).

2. A C™ vektortér tetszdleges {ej }r=1.. n bdzisit véve a

CT = (id(Can X T) (Z(@j X ej) X (67; X €j)> € (C”X" ® (Cme oY Cnanm

ij=1
mdtrix pozitiv definit.

3. T teljesen pozitiv.

Bizonyitds. A bizonyitas Choi [19] dolgozataban taldlhato meg. O

A 4.1.1. tételben szerepls Cp € C" ™™ matrixot a T leképezés Choi-matrixanak
vagy Choi-reprezentansanak nevezik. Ezek utan kvantum csatornék tere alatt a lehetséges
Choi-reprezentansok altal alkotott kompakt sokasagot értjiik.

4.1.1. Definicié. Egy T : D, ¢ — D, ¢ qubit-csatorndt egységdrzének (mds szoval uni-
talisnak ) neveziink, ha T'(iden) = idem teljesiil.

Tetsz6leges n € N esetén az idcnm méatrix egy m, : D, c — D,,c kvantum csatorna
Choi-reprezentansanak felel meg. A C" vektortér egy rogzitett {ey } =1, . bazisabol nézve
a T, csatorna az allapotok diagonélison kiviili elemeit kinulldzza, ezért a D, ¢ allapotteret
a A, _1 klasszikus allapotok terére vetiti le.

4.1.2. Definicié. Egy T : D,, ¢ — Dy, c kvantum csatorna klasszikus nyoma alatt a
Pr=m,0T oy,

hozzdrendeléssel definidlt Pr : A,_1 — A,,_1 klasszikus csatorndt értjik, ahol v, :
An—1 — Dy c a klasszikus n pontra koncentrdlt diszkrét eloszldsok diagondlis bedgyazdsa
az dllapottérbe.

A Choi reprezentaci6 egy @) : Dy c — Dy qubit csatornanak egy olyan Cg 4 x 4-es
matrixot feleltet meg, ami

Co = ( gi g;z > Q11, Q12, @21, Q22 € C° (4.1)

blokk matrix alakba irhato, ahol Q;; = Q(e;®¢;) i, j = 1,2, {e1, e2} pedig C? egy rogzitett
bazisa. A Cg matrix pontosan akkor hataroz meg qubit csatornat, ha @11, Q2 € Dac,
Qa1 = QFy, trQ12 = 0 és Cp > 0. A matrixelemekre vonatkozoan ezek a feltételek R!?
vektortér egy kompakt konvex részsokasagat jelolik ki, melyet O-val fogunk jelolni. Az
unitalis qubit csatornak Choi reprezentéacioi a Q11 + Qa2 = I feltételt is teljesitik, amibdl
kovetkezik, hogy az unitalis qubit csatornak kolcsonosen egyértelmi megfeleltetésben
allnak az R? vektortér egy kompakt konvex részsokasagaval. Ezt a részsokasagot a Q!
szimbolummal jeloljiik.

Kozvetlen szamolas tutjan meggy6zédhetiink rola, hogy a (4.1) blokk méatrix alakban
adott qubit csatorna klasszikus nyoméanak a

p (e 42
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Markov-lanc dtmenetmatrix felel meg.
A Bloch-reprezentaciot hasznalva tetszbleges Q : C?*? — C?*2 nyomtart6 linearis
leképezés
1 1
Q(E([—Fx-a)):§(I+(U+Tx)-a) (4.3)
alakba irhato, ahol v € R? és T egy 3 x 3-as valos matrix. Ez az elsallitas akkor lesz
igazan hasznos szamunkra, amikor qubitek véletlen csatornak altali képét vizsgaljuk. A

(4.3) alakrol altalaban nehéz eldonteni, hogy a szoban forgé nyomtartod leképezés teljesen
pozitiv-e. Ezt a kérdést Ruskai, Szarek és Werner tanulméanyozta [63].

4.2. Eloszlas a klasszikus csatornak felett

A Q és Q! sokasagokat normalt térfogati formakkal ellatva valoszintségi eloszlasokat
adhatunk meg a qubit csatornak és unitalis qubit csatornak terén. A Lebesgue-mérték
alkalmas konstansszorosat véve az egyenletes eloszlast kapjuk. A kovetkezd lemma koz-
ponti szerepet jatszik az egyenletes eloszlast qubit csatornak klasszikus csatornak feletti
eloszlasanak a kiszamitasaban.

4.2.1. Lemma. Legyen T' € M;% pozitiv definit mdtriz, | € R és p > 0 valds szdmok.

Tovabba legyen L eqy m-dimenzios altere a K™ vektortérnek, x pedig egy régzitett vektor.

Jelolje az M = T(L) altér ortogondlis kiegészitdjére vald projekcict Py és definidljuk a
EXT,p, Lyx) ={y € L| (w+y,T(x+y) <pn}, TyeR;
EC(T’M’L’x):{yEL| <ZL‘—|—y,T($—|—y)></L}, TijE(C;

integrdacios tartomdnyokat. Ekkor

F_1G,— 4
[ o T+ ) ) = 2 g2
det(T],)
ER(T,u,L,x)
€s . o
— ! _ 2moi2moll 2ym+1
[t T ) Do) = P g2

EC (Tvuszx)

ahol T|L a T linedris leképezés L altérre torténd megszoritisa €s zg = Py1 VTz.

Bizonyitds. A lemmat csak a valos esetre bizonyitjuk, a komplex eset bizonyitésa hason-
l6an torténik. A T matrixrol feltettiik, hogy pozitiv definit, ezért vehets az 6 /T pozitiv
négyzetgyoke.

Tekintsitk a & : L — R™ ®(y) := \/LE\/T(JU + y) leképezést és valasszunk az L altéren

egy tetszbleges ey, . .., e, ortonormalt bazist. A Ran(®) képtér egy lehetséges paraméte-

rezése
1 m
2(Y1y -y Ym) = — T (:E + Zyiei> ,
VH i=1
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a Ran(®) képtéren indukalt metrika pedig g;; = <g—;,g—;> = <\/Lﬁﬁei,\/iﬁﬁej> =
i j

% (€, Te;), amibol a ® leképezés Jacobi determinansanak inverzére \/ﬁ adodik. Ir-

hatjuk tehét, hogy

/ (4 (o 49, T+ 1)) dAn(y) =

ER(T“LL,L,IE)

T

B \/det(T\L)@(

(1= [2[1*) dAm(2).
EX(Tp,L,x))
A ®(EX(T, u, L, x)) integracios tartomény a Ran(®) affin altér és a By (R™) origd kozép-
ponti golyé metszeteként all el (lasd: 4.1. abra). A ®(EX(T, u, L, z)) halmaz pontosan

akkor nem iires, ha a Ran(®) affin altér origotél mért tavolsdga nem nagyobb, mint 1,
azaz d* = ;_1L||ZO||2 = 71L||PML\/T$||2 < 1. A kapott integralt gémbi koordinatarend-

N

20 1

OEXT, 4, L, v
- (EX(T, p, L, x))

Sl

Ran(®)
4.1. abra. Integracios tartomény (vazlat).

szert bevezetve szamitjuk ki. A szogek szerinti integralasokat elvégezve kapjuk, hogy
Fo (11— d2)(+m‘”/2, amib6l a sugar irdnyt integralra

V1—d?

m l m—1
W2 +1 9 m=1_ / ( 7“2 ) ( r )
—F,, (1 —-d°).? 1-— dr
Vdet(T],) 1 s+ ) 1-2) \Vi-&

adodik. A u = \/1+7 helyettesitést elvégezve a bizonyitandé alakot nyerjiik. O

4.2.1. Megjegyzés. Ha A € B(C™")" egy n x n-es pozitiv definit mdtriz, L < C" pedig
eqy altér és M = /A=Y(L), akkor M+ = /A(L") teljesiil, ugyanis

M* = (VAL = ker(P,VA-Y) = VALY,
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4.2.1. Altalanos qubit csatornak

Az altalanos és egységdrzé qubit csatornak térfogatdnak meghatarozasanal ugyanazt
a stratégiat kovetjiik. ElGszor egy alkalmas unitér transzformaciot valasztva a Choi rep-
rezentanst szamolasi szempontbol kénnyebben kezelhet§ alakra transzformaljuk. Ezek
utan a paraméterteret alacsonyabb dimenzios részekre osztjuk, melyeken a 4.2.1. lemma
felhasznalasaval integralva kapjuk a kivant eredményt.

Tekintsiik a Q C R'? sokasag alabbi paraméterezését

S8

Qo SUe

ahol a, f € [0,1] és @ > 0. A fenti @) csatorna klasszikus nyoma a ( ; i :; ) 2 X 2-es

Markov atmenet métrixszal adhaté meg. Tekintsiik az

1 000
0010
U= 010 0 (4.5)
0001
unitér matrixot és definidljuk az A matrixot mint a () unitér konjugaltjat
a c¢ b d
o | € F e g
A=U"QU = b e loa —c , (4.6)
d g —-¢ 1—f

mely pontosan akkor pozitiv definit, ha ) az, ezért A a Q sokasag egy ekvivalens para-
méterezését szolgaltatja.

4.2.2. Lemma. Legyen A egy nxn-es pozitiv definit mdtriz, T = det(A)A™!, L < C" egy

altér, x € L+ és M = /TL. Ekkor ha dim(L+) = 1, akkor ||Pyov/Tz|)? = ditA’i)H I

Bizonyitds. A 4.2.1. megjegyzés értelmében M+ = A(L*). Ha dim(L*) = 1, ak-
kor {by = |[V/Az||"'"\/ Az} az M* altér egy ortonormalt béazisa, amibsl Py = by @ by
kovetkezik. Irhatjuk tehat, hogy

Py VTP = det(4)| (b, VAT = S,

Ezzel a bizonyités teljes. O

4.2.1. Tétel. Az dltaldnos qubit csatorndk Q C R'? terének térfogata a Lebesgque-mértékre
vonatkozoan
27°

Vol(Q) = 5
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A térfogat eloszldsdt a klasszikus csatorndk felett a

7
Via, f) = 2—0F1F§G3,0G3,1
a’fP10((1 — a)(1 = f) — af)*+
15af(1 —a)(1 — f) — 9a*f?] ifa+ f<1

(1—a)’(1 = f°[10((L = a)(1 = f) — af)*+

15af(1 —a)(1—f)—9(1 —a)*(1 — f)? ifa+ f>1.
figguény irja le.
Bizonyitds. A (4.4) paraméterezéshez tartozo térfogati forma 27 d\j5. Egy (4.6) alakban
felirt matrix pontosan akkor hataroz meg csatornat, ha pozitiv definit és a, f € [0, 1].
Az A.2.1. lemma értelmében A pozitivitasa a det(A;) > 0¢ = 1,2, 3,4 bal fels¢ sarokmi-
nor determinansok pozitivitasaval ekvivalens. Tegyiik fel, hogy a és f adottak.

Ha az Aj bal fels6 3 x 3-as sarokminort rogzitjiik, akkor a 4.2.1. és 4.2.2. lemmak
felhasznalasaval kapjuk, hogy

V(43) = / 2T d)\,
EC(Tg,(l—f) det(A3),L3,I3)
c|? 2
27F3G3,0 <(1 - f) - (1|7|a))+ det(A3)?
N det(T3|Ld)

27F3G370 —a _ . 02 2 e
= oo (=@ =)= [eP) det(Ay)

ahol Lz = Span{(1,0,0)7,(0,1,0)T} és x5 = (0,0, —c)T.
Ha A, rogzitett, akkor

V(Ay) = / V(Ag)dNy =
EC(TQ,(l—(l) det(Ag),(C2,0)
27F3G30 2\ 2
= 27330 1 a1 — ) —
T (== )= )’
>< / (1~ a) det(As) — (. Toy) dAa(y)
EIC(Ty,(1—a) det(A2),C2,0)
2
= 27F32G370G3,1 ((1 — CL)(l — f) — ‘C|2)+ det(A2)2
adodik.
A det(As) > 0 feltételbdl rogzitett a és f mellett kapjuk, hogy

27
V(aa f) = @FngZG&OG&l

@’ fP10((1 = a)(1 = f) — af)*+
15af(1 —a)(1— f) — 9a®f?] ifa+f<1

(1—=a)*(1 = £)’[10((1 —a)(1 = f) — af)*+
15af(l—a)(l—f)—9(1—a)?1—f)?  ifa+tf>1
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(lasd: 4.2. abra), amibdl a Q sokasag térfogatara kapjuk, hogy

5

V(Q) = / Via, f)dadf = 427”25 ~ 0.129532.

[0,1]2

AN
"'3‘3’33‘\

/IMWQ‘»

4.2. abra. A Vol(Q) térfogat eloszlasa a klasszikus csatornak felett.

4.2.2. Egységdrz6 qubit csatornak

Tekintsiik a Q' C R sokasag alabbi paraméterezését

a b c d

b 1—a e —c
Q= c e l—a —b |’

d —¢ —-b a

ahola € [0,1] és @ > 0. A fenti egység6rz6 qubit csatorna klasszikus nyoma a (

duplan sztochasztikus métrixszal adhato meg.
Tekintsiik az

o O = O
O = O O
o O O
_— o O O

1—a

(4.7)

1—a
a

)
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unitér matrixot és definialjuk az A méatrixot mint a () unitér konjugaltjat

1—a e b —c
A—vqu=| ¢ l-ac b (4.8)
b c a d ’
—C b d a

mely pontosan akkor pozitiv definit, ha ) az, ezért A a Q sokasag egy ekvivalens para-
méterezését szolgaltatja.

Ahhoz, hogy a 4.2.1. lemmat hasznalni majd tudjuk sziikségiink lesz az alabbi rész-
eredményre.

4.2.3. Lemma. Jeldlje az A madtriz bal felsé k x k-as részmdtrizat A,. FEkkor ha Ls =
—1
Span{ (0,0, )T} és M = /A3 (Ls), akkor \/ A3 ' Pyi/A3' = ( f(l)QT 8 ) teljestil.

Bizonyitds. A 4.2.1. megjegyzés szerint M+ = \/Z(Ll). Ha az uy és us Ly-beli vektorok
As-ortogonalisak, azaz (u;, Azu;) = &;; teljesiil, akkor a {v/Azuy, /Asus} rendszer az M=+
altér ortonormalt bézisa lesz. Irhato tehét, hogy

Py = \/A_3u1 ® \/ Asuy + \/ Asug ® v/ Agus = \/ Az(ug @ uq + us ® ug)+/ As,

amibdl kovetkezik, hogy \/A3_1PML Agl = U ® Uy + us ® uy. Vezessik be a B =

A 0 matrixot. Konnyen lathato, hogy (x, By) = (x, Asy) teljesiil minden x,y €
0T 1

Ly vektorra. Legyen u; = v B~le;, i = 1,2, ahol (e;); = 6, i,j = 1,2 az L3 altér

standard béazisa. Végiil azt kapjuk, hogy u1 @u;+us®@ue = vV B~ (e1®e1+e3Re)V B~ =
—1

( I?)QT 8 ) , mellyel a bizonyités teljes. O

4.2.2. Tétel. Az eqységorz6 qubit csatorndk Q' C R terének térfogata a Lebesque-
mértékre vonatkozolag

2mt

VOI(QI) = E

A térfogat eloszldsa a klasszikus eqységdrzd csatorndk felett a
V(a) = 2°7*a*(1 — a)*
formuldval fejezhetd ki.

Bizonyitds. A Q' sokasag (4.7) paraméterezéséhez tartozo térfogati forma 27dN\g. Egy
(4.8) alakban adott A méatrix pontosan akkor hatéroz meg unitalis csatornat, ha pozitiv
definit. Az A maéatrix pozitivitdsabol persze kovetkezik, hogy a € [0,1]. Az &altalanos
eset bizonyitasahoz hasonloan, a bal fels§ sarok minorokra vonatkozolag a det(A;) > 0
i =1,2,3,4 feltételek teljesiilését koveteljiik meg. Legyen elGszor a € [0, 1] rogzitett.
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Az As sarok minort rogzitve a 4.2.1. és 4.2.3. lemmékat felhasznalva kapjuk, hogy

V(A3) = / 2Td\y =

EC(T3,adet(A3),L3,z3)

N djtﬁ(ig) (“ - <f"'3’ ( 14(1)27‘1 8 ) x3>)+det(A3>,

ahol Lz = Span{(0,0,1)”} és z3 = (—c, —b,0)".
—1
Igaz tovabbé, hogy <£L‘3, < IééQT 8 ) x3> = <y,01A2_101y>, ahol y = (b, c)T.

Ha A, fix, akkor

E‘C(Tg,adet(Ag),(CQ,O)
= 2R / (@ —(y, 0145 1y))  (a— (v, Ay 'y)) dda(y).

EC(T%,a det(Az2),C2,0)

Az y = v/a\/Ayz helyettesitést elvégezve kapjuk, hogy

V(Ay) = 2°Fia* det(Ay) / (1—=(z,Bz)), (1- I12][?) dAa(2),
{#:]|2]I<1}
ahol a B = /Ay0, A, 01/A; énadjungalt matrixra det(B) = 1 teljesiil. Az imént felirt

integralban a B matrixot egy hozza unitér hasonldé métrixszal helyettesitve az integral
értéke nem valtozik, ezért feltehets, hogy B diagonalis. Ebbdl kovetkezik, hogy V(As)

V(Ay) = 25F1a* det(Ay)

1
[ (1N - flaP) 0= faP - ) )
{=:4l1<1) !
alakba irhato, ahol p a B méatrix nagyobbik sajatértékét jeloli.
A fenti integralban az integraciés tartomanyt két egydimenzios polar koordinatarend-
szer Descartes-szorzataval paraméterezziik. A szogek szerinti integralokbol egy F?2 szorz6
tényez6t kapunk, a sugar iranyu integral pedig

1
V(A4s) = 2°Fja’ det(AZ)/ (1 — g — ;r%) (1 =7f = 73)4rirgdrydry

R2 "
2573 3 — 1
= 2T gt det(Ag)H
3 u(1+ )

Elemi matrixmtveletek segitségével a B matrix nagyobbik sajatértéke

L 29(e)? 23(e)? \
H=1F ey T \/(1 i det(AQ)) -1
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alakban irhat6 fel, amibdl a

27, 23(e)? S(e)?
Vide) = —5—atdet(4s) (1 T det(Ay) (\/ det(Az) + S(e)? 1))

alakot nyerjiik.
Ebbdl egy a térfogat klasszikus unitélis csatornék feletti eloszlésara a

V(a) = / V(AQ) d/\g(e)

bizonyitandé alakot kapjuk (lasd: 4.3. abra). A Q! sokasag térfogatara pedig

1
4

2
V(Ql) _ 2271_4/0/4(1 _ a)4 da = % ~ 0.61847
0

adodik.

1.6

1.4

1.2F

0.6

0.4f

0.2f

4.3. dbra. A Vol(Q') térfogat eloszlasa klasszikus csatornak felett.

73
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Jogosan vetddhet fel a kérdés, hogy miért csak qubit-qubit csatornakat vizsgalunk. A
véalaszt a fellépd integralok rohamosan emelkedd komplexitasaban kell keresniink. Ahhoz
pédaul, hogy modszertinkkel a D, ¢ — D, ¢ unitédlis qubit csatornak terének térfoga-
tat kiszamitsuk, elkeriilhetetlen, hogy az n x n-es duplan sztochasztikus méatrixok terén
integraljunk. A Birkhoff-von Neumann-tétel szerint az n x n-es duplan szochasztikus
matrixok az n X n-es permutacidomatrixok konvex kombinaciéiként allnak els, ami egy
sokdimenziés politop, és amit Birkhoff-politopként tartanak szémon. Az n x n-es duplan
szochasztikus matrixok alkotta Birkhoff-politop térfogata csupan n = 1,2,...,10 esetén
ismert, altalanos n-re eddig csak asszimptotikus formulat publikaltak [54].

4.3. Véletlen qubit csatornak

A V(a) ésV(a, f) fiiggvények ismeretében lehetdség nyilik arra, hogy tetszéleges qubit
véletlen, egyenletes eloszlast egységérz6 vagy altaldnos qubit csatorna &ltali képének
radialis eloszlasat kiszamitsuk a Bloch-gomb belsejében. Ehhez a qubit csatornak (4.3)
Bloch-reprezentaciojat hasznéljuk fel.

A (4.4) formuléban szerepl§  Choi-méatrixszal adott qubit csatorna Bloch-reprezen-
tansa

R(b+ g) R(d+e) S(d+e) Rb-—g)
v=| —S(b+yg) T=| -S(d—e) R(d—e) =S(b—9) |, (4.9)
a+ f—1 2% (c) 23(c) a—f

amirdl leolvashato, hogy egy (0,0, r) Bloch-vektorral adott qubit @) csatorna altali képé-
nek os-iranyu komponense (1 + r)a + (1 —r)f — 1. Ha a csatorna egységérzd, akkor a
os-iranyu komponensre a r(2a — 1) értéket kapjuk.

Egy tetszdleges O : R3 — R3 ortogonalis linearis transzformacié qubit csatornat hata-
roz meg a Stokes-paraméterezésen keresztiil. Megallapodunk abban, hogy az ortogonalis
transzforméacié és a bel6le szarmazé qubit csatorna kozott jeldlésben nem tesziink kii-
16nbséget.

4.3.1. Lemma. Legyen O € R3*3 tetszileges ortogondlis mdtriz, O € Q' pedig a neki
megfeleld qubit csatorna. Ekkor az Lo,Ro : @ = Q Lo(Q) = 0o @, Ro(Q) = Qo O

leképezések Jacobi determindnsa 1.

Bizonyitds. A bizonyitas valojaban egy Maple segitségével végzett szamolas. A program-
kodot és a futasi eredményt az E. fliggeléekben kozoltiik. ]

A fenti lemma kévetkezménye, hogy ha @ akar a Q, akar a Q' halmazon egyenletes
eloszlasu qubit csatorna, akkor tetszéleges py € Dy qubit-et véve a Q(pg) véletlen qubit
Bloch-vektoranak eloszlasa gémbszimmetrikus.

4.3.1. Tétel. Legyen Q a Q' halmazon egyenletes eloszldsi qubit csatorna. Ekkor egy
tetszdleges qubit () dltali képének Bloch-sugara a

4

0= g (- () (9 0

striségfigguény szerinti eloszldst koveti, ahol r € (0,1) az eredeti Bloch-sugdr.
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Bizonyitds. Tegytik fel, hogy a transzformécionak alavetett qubit Bloch-sugara r € (0, 1).
A 4.3.1. lemma értelmében feltehetd, hogy a kiindulé qubit Bloch-vektora (0,0,r). Ko-
rabbi megjegyzésiink értelmében a () altali kép Bloch-vektoranak harmadik komponense
r(2a — 1), ahol a a csatorna klasszikus nyoméat paraméterezi a (4.7) felirasban. Ebbdl a
r(2a — 1) mennyiség eloszlasara kapjuk, hogy

0, ha z < —r
P(r(2a—1)<z)=P <a < L (f + 1)) =9 — ;(}H)V(a) da ha z € (—r,7)
2 \r Vol(Q1) 0 ’ ’
1, ha z > r.

Innen a o3 iranyu komponens striiségfiiggvénye

71'4 z 2 4
fos(2) = i[@(r@a —1) < z) = { TeI@) <1 - (5) ) ,  haze(-nr)
dz 0 egyébként.

Ugyancsak a 4.3.1. lemmat alkalmazva kapjuk, hogy a @) altali kép Bloch-vektora gémb-
szimmetrikus eloszlast. A B.0.4. lemmat felhasznalva a  altali kép Bloch-sugaranak
stirtiségfiiggvényére kapjuk, hogy

K(p,T) = m (1 - <§>2) ([;))2 L0.)(p)-

]

Legyen () egyenletes eloszlast unitalis qubit csatorna és X egy tetszéleges r € (0, 1)
Bloch-sugari qubit @ altali képe. Az Y = (X/r)? valosziniiségi valtozot tekintve irhato,
hogy P(Y < y) = P(X < r\/y), amibdl Y strtségfiiggvényére kapjuk, hogy

7T4

= = (=)’
25 2vol(Qh) o YT

foly) = d%m <) = K(rvi,7)

(4.10)
ami egy 5(%,4) eloszlasu valoszintiségi valtozo strtiségfiiggvénye. Kaptuk tehét, hogy
X ~rVY, ahol Y ~ (%, 4). A fenti gondolatmenetet iteralva az alabbi fontos kévetkez-
ményt nyerjiik.

4.3.1. Kovetkezmény. Legyen QQ1,Q)s,... fiiggetlen eqyenletes eloszldsiu unitdlis qubit
csatorndk eqy sorozata és n € Nt. Ekkor egy r € (0,1) Bloch-sugari qubit Q10 ...0Q,
csatorna kompozicid-szorzat dltali képének Bloch-sugara egy v [ [}, /Yi, valdszintiségi vdl-
tozoval megegyezd eloszlasi, ahol Y1,Ys, ... fliggetlen, azonos B(%, 4) eloszldsi valdszini-
ségi valtozok sorozata.

4.3.2. Tétel. Legyen QQ eqy Q halmazon egyenletes eloszldsiu qubit csatorna, py = %] €
Dy ¢ pedig a teljesen kevert dllapot. Ekkor a Q(po) véletlen qubit Bloch-sugardnak eloszldsa
az

f(r)=40r*(r — 1)°((r+2)* = 6) r€|[0,1]

sturiségfiggvénnyel adhato meg.
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Bizonyitds. A (4.9) Bloch-reprezentaciorol leolvashato, hogy a Q(po) qubit Bloch-vekto-
rénak os iranya komponense a + f — 1. A o3 iranya komponens eloszlasa szimmetrikus,
ezért feltehetd, hogy z € [0,1]. Ezek utén a o3 iranya komponens striiségfiiggvényét a

1
[V(a,z+1—a)da

fos(2) = 5 =201+ 72+ 1722+ T2+ 1)(1 - 2)7
JV(a,z4+1-a)da
0

formuléval fejezhetjiik ki. Ebbgl a B.0.4. lemma révén a Bloch-sugér eloszlédsanak stirt-
ségfiiggvényére a
f(r) =40r*(r — 1)%((r +2)> = 6) r€[0,1]

bizonyitand6 formulét nyerjiik. O]

Megfigyelhets, hogy a véletlen klasszikus csatornédkkal ellentétben a véletlen qubit
csatornak a teljesen kevert &allapotot egy tipikus r > 0 sugérra képezik le (lasd: 4.4.
abra).

25

T

1.5r

0.5

T

4.4. abra. Teljesen kevert qubit kvantum allapot és véletlen qubit (vastag vonal) illetve
klasszikus (vékony vonal) csatorna altali képe kozti Hilbert—Schmidt-tavolsag eloszlasa.

4.4. A zaj egy lehetséges modellje

Egy egyetlen qubitbdl all6 hipotetikus kvantum regisztert terhel6 egységnyi ideig tar-
t0 kiilsG zaj hatasa egy véletlen qubit csatornaval modellezhetd. Azt szeretnénk vizsgalni,
hogy a kiils§ zaj milyen gyorsan rombolja le a qubitben tarolt informaciot. Az informa-
ciovesztés mérésére a kvantum relativ entropiat hasznaljuk.
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4.4.1. Definicié. Legyenek p,o0 € D,k tetszdleges dllapotok. A p dllapot o dllapotra
vonatkozo kvantum relativ entropidja alatt az

S(pllo) = tr(plog(p)) — tr(plog(o))
mennyiséget értjik.

Szemléletesen szolva a S(p||o) mennyiség a p kvantum allapot informaciotobbletét
méri a o allapothoz képest.

4.4.2. Definici6. Legyen Q1,Qo, . .. fiiggetlen, egyenletes eloszldsu qubit csatorndk soro-
zata €s p, = Qno...0Q1(po), ahol py rogzitett kiinduld qubit dllapot. A p, qubit maradék

c stz

forméacio veszteséget pedig L(pog,n) = S(po||pn) mddon definidljuk.
Az (1.5) spektralfelbontast felhasznéalva kézvetlen szamolassal megmutathato, hogy

+ 7, 1—r,

1
R(po,n) = log(1 +7,) + log(1 —7,) (4.11)
1+ 1+ 1-— 1-—
L(po,n) = 27“0 log( 27“0) + 27“0 log( 2“)
1+ 7o cos(ay) 147, 1 — 7 cos(ay) 1—r,
— 1 — 1 4.12
5 0g | —5 5 gl =5 | (4.12)

ahol rg,r, € [0,1] a py és p, qubitek Bloch-sugara, «, pedig a pg és p, qubitek Bloch-
vektorai altal bezéart szog.

Legyen Qq,Q», ... fliggetlen, egyenletes eloszlast unitélis qubit csatornak egy soro-
zata. A log(x) < x — 1, > 0 egyenl6tlenségbdl kovetkezik az R(pg, n) mennyiségre
érvényes R(pg,n) < 12 fels becslés. Ezt felhasznalva irhatjuk, hogy

1 1 .
P (R(po,m > ;) <P (ri > ﬁ) < n’E(ry) = n*rgB(Y)",

ahol Y ~ B(3,4) és 0 <E(Y)" < 1. Ebb6l 307 | P (R(po,n) > =5) < oo kovetkezik, ami
a B.0.5. Borel-Cantelli-lemmaéval egyiitt azt adja, hogy

lim R(pg,n) =0 P —m.b.

n—oo
Ebbdl az érvelésbdl persze kovetkezik az is, hogy lim,, .o, 7, = 0 P — m.b., amibdl pedig

1+7’0 1—7“0

log(1 4 ro) +

lim L(pg,n) = log(1 — 79) P —m.b.

n—o0

kovetkezik. A B.0.6. iteralt logaritmus tétel segitségével a megbecsiilhetjiik a konvergen-
cia sebességét is. A 4.3.1. kovetkezmény értelmében r,, ~ ro[[;_; VY%, ahol Y7,Y5, ...
fiiggetlen, azonos B(2,4) eloszlast valoszintiségi valtozok sorozata. Irhatjuk, hogy

n
" D09s04) | /3 Tog Tog ()
To H /Yk = roe 2E(log(Y))€72 2n log log(n)fn’
k=1
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M és a B.0.6. iteralt logaritmus tétel szerint

o 1 n  log(
ahol gn o 1/ 2nloglog(n) Zk:l D(log(Yz))
majdnem biztosan igaz, hogy liminf, ., &, = —1 és limsup, &, = 1. Kozvetlen
szamolas utan meggy6zédhetiink rola, hogy az R(po,n) fiiggvényt a

0 I2k
k=1

[0, 1]-on egyenletesen konvergens, pozitiv tagt hatvanysor éllitja el6. Ebb&l nekiink most
annyi kell, hogy 2 < R(pp,n) < r2. Ezt az iteralt logaritmus tételes meggondolés-
sal kombinalva kapjuk, hogy tetszGleges ¢ > 1 valasztéds mellett P — m.b. véges sok n

kivételével igaz az alabbi becslés

™n

rgenE(log(Y))ef]DJ(log(Yk))\ /2nloglog(n)e < R(p(b n) < 7,genE(log(Y))6]1]>(log(Yk))\ /2nlog log(n)E.

A po kiindul6 allapothoz képesti informacioé veszteséget masodrendig Taylor-sorba
fejtve a

2

log(1 — 79) — rurocos(ay) + %” +0(r*), (4.13)

1+T0 — T

1
L(pg,n) = log(1 + 7o) +
Osszefiiggést nyerjiik, amirél leolvashato, hogy a L(pg, n) mennyiség az alkalmazott vélet-
len csatorndk szamaval P-m.b. exponencialis sebességgel tart a S(po||3]) relativ entropi-
ahoz.

4.5. Osszefoglalas

A fejezetben qubit-qubit kvantum csatornakat vizsgaltunk geometriai eszkozokkel.

1. Bevezettiik a qubit csatorna klasszikus nyomat mint a qubit csatorna klasszikus (dia-
gondlis) allapotokra torténd megszoritottjat.

2. Meghataroztuk egy, a qubit csatornék terén egyenletes eloszlasu csatorna klasszikus
nyoméanak az eloszlésat és kiszamitottuk a qubit csatornak terének a térfogatat a
Hilbert—Schmidt metrikira vonatkozolag.

3. Eredményeinket felhasznalva fiiggetlen véletlen qubit csatorna sorozat qubitekre gya-
korolt hatasaval a dekoherenciat el6idéz6 zajt modelleztiik.

4. A dekoherencia utani allapot informéci6 tartalmat a teljesen kevert allapotra vonatko-
z6 relativ entropiaval, a dekoherencia elGtti dllapothoz képesti informéacioé veszteséget
pedig a kezdeti allapot dekoherencia utani allapotra vonatkozo relativ entropidjaval
jellemeztiik.

5. Végiil meghataroztuk a teljesen kevert allapothoz valé konvergencia ratajat.



Koszonetnyilvanitas

Szeretnék ezittal koszonetet mondani témavezetémnek, Dr. Andai Attilanak a BME
TTK Analizis Tanszék egyetemi docensének, hogy koézremiikodésével megismerkedhet-
tem a kvantum informéciégeometria alapveté modszereivel. Segitséget nyujtott a szak-
irodalom beszerzésében, igényeimnek megfelelGen, folyamatosan ellatott tanécsokkal, tt-
mutatéasokkal, lektoralta a dolgozatomat (szakmai és irodalmi szempontboél egyarant).
Kérdéseimre mindig 6rommel és érthetGen valaszolt, és mindig rendelkezésre allt, amikor
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Szeretném megkdszonni sziileimnek a tanulmanyaim végzéséhez nytjtott anyagi és mo-
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a szdmomra megteremtette.
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A. fuggelék

Linearis algebra

A.1. MAtrixok

A.1.1. Definici6. Legyen (H,(.,.)) Hilbert-tér és x,y € H. Jelilje x @y azt a H — H
linedris leképezést, melyet a H > z — x ® y(z) = (z,y)x hozzdrendelés értelmez.

A.1.1. Lemma. Tetszdleges V € K™™" mdtriz elddllithato

V = U120, (A.1)
alakban, ahol Uy, Uy € K™™ unitér madtrizok és X € K™ pedig nemnegativ elemi diago-
nalis matriz.
Bizonyitds. A fenti linearis algebréaban kozismert felbontést szingularis érték felbontasnak

nevezik, a bizonyitas Bathia [16] konyvének 6. oldalan talalhato meg. O

Az (A.1) felbontasban szereplé ¥ matrix diagonalisanak elemeit a V' méatrix szingularis
értékeinek nevezziik. Az (A.1) alakbol lathato, hogy a V maétrix szingularis értékei a
VV*V matrix sajatértékeivel egyeznek meg.

A.1.2. Lemma. Legyen A 2 x 2-es invertdlhatd mdtriz o1 > o9 > 0 szinguldris értékek-
kel. Az A mdtriz operdtornormdja és a o(A) = oy/oy mddon definidlt szinguldris érték
hanyadosa az

1 HAH%,S)

Lcosh™1( 1
HAH = ]det(A ‘62 <2|det(A)|

092 —cosh™! (l HAH%{S)
det(A
O'(A):U—Ze 2 [ det(A)]
1

formuldkkal fejezhetd ki, ahol ||.||gs a kozdnséges Hilbert-Schmidt normdt jeloli.

Bizonyitds. Ahogy azt korabban is irtuk, az A matrix szingularis értékei a v A* A matrix
sajatérékeiként kaphatok meg, ami

B 1| A] |2 141\
o1z = VIdeU AN S TV Faeiay) 1

+1cosh™! (1 7HAH2HS )

1/2

2 Tdet(A)]

= /] det(A)e .

89
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Ebbdl pedig a kivant formulakat kapjuk az operdtornormaéra és a szingularis érték hanya-
dosra. =

Jelolje az A n x n-es matrix bal fels6 ¢ x i-es részmatrixat A;, aholt=1,... n.

A.1.3. Lemma. Legyen A n X n-es invertdlhato mdtriz és 1 < k <n esetén (A" )gy1..n
jelolje az A=Y mdtrizbdl az elsé k sor és oszlop torlésével elddllo mdtrizot. Az (A_l)kﬂmn
mdtriz determindnsa

~ det(A)

det((A™ s, n)

Az el6z6 lemma a Jacobi-tétel egy specidlis esete (lasd: [27].). Az A.1.3. lemmat a
kovetkez6 ekvivalens alakban hasznaljuk.

A.1.1. Kévetkezmény. Ha A n x n-es invertdlhato mdtriz, akkor a T = det(A)(A™1)
madtrix determindnsa

det((T)py1,..n) = det(Ay) det(A)"+F
modon fejezhetd ki, ahol 1 < k < n.

A.1.4. Lemma. Legyen A € K"*" invertdlhato mdtriz és u,v € K". FEkkor az A+u®v
mdatrix determindnsa

det(A+u®wv) = (1+ (v, Au)) det(A)

alakba irhato.

Bizonyitds. A bizonyitas a [89] konyvben talalhato meg. ]
. (01 (0 =i . (10 o
A.1.2. Definici6. A o1 = < 10 ), 09 = ( i 0 ) €s 03 = ( 0 1 ) mdtrizokat

Pauli-métrixoknak nevezzik.

L sa

A.1.1. Megjegyzés. A {\%],\%al,\%ag, ﬂag} mdtrizok az M5 altér egy ortonor-

malt bazisdat alkotjik a Hilbert-Schmadt belsd szorzdsra nézve.

A.2. Pozitiv definit matrixok

A.2.1. Lemma (Sylvester-féle pozitivitasi feltétel). Egy A n x n-es dnadjungdlt mdtrix
akkor és csakis akkor pozitiv definit, ha sarok minorainak determindnsa pozitiv, azaz

Bizonyitds. A bizonyitas teljes indukcioval torténhet. Az n = 1 eset nyilvanval6. Tegyiik
fel, hogy minden n-nél kisebb méreti matrixra igaz az allitas.

(=) Ez a konnyebbik irdny. Legyen A tetsz6leges n x m-es 6nadjungélt pozitiv definit
matrix. A pozitiv definitségbdl kévetkezik, hogy det(A) > 0, a t&bbi principalis minor
pozitivitasa pedig az indukcios feltevésbdl adodik.

(<) Tegyiik fel, hogy az A n x n-es hermitikus matrix principalis minorai pozitiv deter-
minansiak. Az indukcios feltevés szerint a A,_; sarokminor pozitiv definit. Ha A nem
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lenne pozitiv definit, akkor a det(A) > 0 feltétel értelmében lenne két negativ sajatér-
téke. Jelolje ezeket o > 0 és [ < 0, a hozzajuk tartozo sajatvektorokat pedig a és b.
Az A o6nadjungéltsagabol a L b kovetkezik. Létezik tehat olyan 7 € K konstans, melyre
v = a + 7.b vektor utols6 koordinataja zérus. Egyfelsl (v, Av) = a + |7*8 < 0, masfelsl
pedig az A,,_; sarokminor pozitivitdsa miatt (v, Av) > 0. O

A.2.2. Lemma. Legyen A az n X n-es onadjungdlt mdtriz (a;;); j=1,.n elemekkel, az
x vektor pedig dlljon az A mdtrix utolso oszlopdnak elsé n — 1 elemébdl, azaz x =
(@11, .-y Ano1n). Ekkor az A mdtriz determindnsa a

det(A) = apy det(A,—1) — (z, Tx)
mddon fejezhetd ki, ahol T = det(A,_1)(A,_1)7 .

Bizonyitds. Az A matrix determinénsét az utolso sor szerint kifejtve a kivant egyenléséget
kapjuk. [

A.2.3. Lemma. Az aldbbi négyzetes blokkokbdl felépiilé” hermaitikus blokkmdtrix

(D C
b= ( c* D, )
pontosan akkor pozitiv, ha Dy > 0 és D1—CDy*C* > 0 vagy D, > 0 és Dy—C*D;'C > 0.

Bizonyitds. Ez az allitds nem mas, mint a blokkmétrixok Schur-komplemenssel megfo-
galmazott pozitivitasi feltétele. A bizonyitéas a [89] konyv 34. oldalan talalhato. m

A fenti lemméaban megfogalmazott két feltétel — magatol értet6dé moédon — csak egy-
szerre teljesiilhet.

A.2.4. Lemma. Ha X tetszdleges négyzetes matrixz, akkor X*X pozitiv szemidefinit és
X*X < I pontosan akkor teljesil, ha || X|| < 1.

Bizonyitds. Az allitas els fele a Vo € K" vektorra fennallo (v, X*Xv) = || Xv||* > 0
egyenlGtlenség egyszert kivetkezménye. Az operatornorma definicioja értelmében pedig
irhatjuk, hogy

I X|* = sup {[| Xv|*|v e K", |Jv]| =1} < 1

hiszen minden v egységvektorra teljesiil az || Xv||> = (v, X*Xv) < ||v||* = 1 egyenl6tlen-
ség. O

A.2.5. Lemma (Brunn-Minkowski-egyenl6tlenség). Tetszdleges A, B n X n-es pozitiv
definit mdtrixokat véve a

det(A + B)n > det(A)r + det(B)x
determindns egyenldtlenség teljestil.

Bizonyitds. A bizonyitéas a [13| konyv 70. oldalan talalhato. O
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A.3. Szuper operatorok

Egy D € K™ matrix esetén tekinthetjiik a D méatrixszal torténd bal- és jobbszorzas
operatorat (Lp és Rp) mint Lp, Rp : K™ — K™*" linearis operéatorokat, melyek

A+ Lp(A) = DA
A Rp(A) = AD

modon hatnak. Nyilvanvalo, hogy az Lp és Rp operdtorok pontosan akkor invertalhatok,
ha a D matrix invertalhatdé. Az Lp és Rp operédtorokat osszefoglalé néven szuper ope-
ratoroknak nevezziik. Kozvetlen szamoléssal az is igazolhatd, hogy a szuper operatorok
determinansaira a

det(Lp) = det(Rp) = det(D)"
egyenlgség teljesiil. A K™ = Lin(K", K") 2 (K")*®K" kanonikus azonositast elvégezve
lathato, hogy az Lp és Rp operatorok

Lp=D®I

A2

alakban is felirhatok. Az Lp és Rp operatorok segitségével definiélt integraltranszfor-
maciokban a D matrixot az R*" = C" azonositassal 2n x 2n-es valés matrixként kell
kezelniink, ezért az Lp és Rp integraltranszforméciok Jacobi determinansa komplex D
esetén det(D)?".

Az n x n-es matrixok vektortere K™" = M} & M3 ?, modon direkt 6sszegre bomlik,

ahol M3 és My rendre a K test feletti onadjungalt és anti-onadjungalt matrixok
alterét jeloli. Figyeljik meg, hogy ha D € M} 6nadjungédlt matrix, akkor az Lp o Rp
leképezés a fenti direktosszeg felbontést megérzi, azaz az Lp o Rp ( fLaK) C M7y és az

LpoRp (M;ﬁ@ C M, tartalmazdsok teljesiilnek. Ebbsl kovetkezik, hogy a7z Lp o Rp

n

operator LpoRp = (Lp o Rp)lj\/lsa]K @ (LpoRp)

| o direkt Gsszeg alakban all el
Mn,K

det (Lp o Rp) = det ((LD o RD)|M23K> x det ((LD o Rp)| g ) . (A.3)

A fenti gondolatmenet fontos kévetkezménye az alabbi lemma.

A.3.1. Lemma. Ha D € M3 tetszdleges pozitiv definit mdtriz, akkor a (Lpij2 o RD1/2)|M;“K
megszoritott linedris leképezés determindnsa ’

det ((LDl/Q o RD1/2>|M§‘1K) = det(D)Z—%,
ahol d = dimg K =1, 2.

. . . . e -1
Bizonyitds. Valos esetben a 2x 2-es anti-6nadjungalt matrixok altere M5% = R. ( (1] 0 ) )

Kozvetlen szamolassal meggy6zédhetiink rola, hogy

0 —1
Ly ORD1/2|/\/A\;§§ = det(D)l/Q. ( 1 0 ) ,
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amibdl

det (Lpi2 o Rpij2)
det <(LD1/2 o Ry ff)

_ det(D)?
~ det(D)'/2

det ((LDl/Q e} RD1/2)|M;aR> =
= det(D)3/?

kovetkezik. A komplex esetben pedig a /\gic = 1.M3c egyenlGség miatt frhatjuk, hogy

det ((LDW o Ry M) — \/det (L2 0 Rpyz) = det(D).
Ezzel a bizonyités teljes. O

Ahogy korédbban azt mar emlitettiik, az
(LD1/2 o) RD1/2)|M§‘:‘K : ;?]K — ;?]K (A4)

integral transzformécié Jacobi determinansa det(D)?*~%*/2 lesz, mert a D leképezést 4 x 4-
es valés matrixszal reprezentaljuk, mely a R* = C? vektortéren hat.

A.4. Tenzorszorzat és parcialis nyom
Az egyszertiség kedvéért legyen (Hy, (,),) és (Ho, (,),) két véges dimenzios Hilbert-tér.

A.4.1. Tétel. [zomorfizmus erejéig eqyértelmiien létezik olyan H vektortér és b : Hy X
Ho — H bilinedris leképezés, hogy tetszdleges W wvektorteret és L : Hi X Hy — W
bilinedris leképezést véve egyértelmien megadhato olyan q : H — W linedris leképezés,
mellyel a

diagram kommutativ.

Bizonyitds. A tétel egy sokkal altalanosabb alakjanak a bizonyitasa a [62] konyv 79.
oldalan talalhaté meg. O

A fenti tételben szerepls (#H,b) part a H; és Ho vektorterek tenzorszorzatanak nevez-
ziik és — csupan az alaphalmaz jelét kifrva — a H; ® Hs szimbolummal jeloljiik. Tetszbleges
v € Hy és w € Hy vektorokat véve a b(v,w) € Hi ® Ho vektort v ® w szimbolummal
jeloljik. A H; ® Ho tenzorszorzat tér v ® w alaku elemeit, ahol v € H; és w € Hy elemi
tenzoroknak nevezziik. Tekintsiik azt a (, )5, o9y, * H1@Ha X H1@Hy — K szeszkvilinearis
leképezést, amelyet az elemi tenzorokon a

(V1 ® W1, Vg @ Wa)yy gpg, = (U1, V2) gy, (Wi, W2) g,
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hozzarendeléssel értelmeziink. A (), o, szeszkvilinedris leképezéssel ellatott Hi @ Hy
tenzorszorzat tér Hilbert-tér. Ezt a Hilbert-teret a (Hy, (,),) és (Ha, (,),) Hilbert-terek
tenzorszorzatanak hivjuk.

Ha p a Hi ® Ho Hilbert-térrel leirt osszetett rendszer egy allapota, akkor az

A = tr (A @ idy,)p)
B tr ((idy, ® B)p)

hozzarendelések folytonos linearis funkcionalokat hataroznak meg a komponens-rendszerek

obszervabilisein, ezért a Riesz-féle reprezentécios tétel értelmében egyértelmtien léteznek
t12(p) € Ddim(r) €8 t11(p) € Ddim(n) dllapotok, melyekre a

(tra(p)A) VA € M),
(tri(p)B) VB € M),
egyenlségek teljesiilnek. A tri(p) és tra(p) Gn. redukdlt dllapotokat rendre az elsd, illetve

méasodik komponensre vett parcidlis nyomnak nevezziikk. A parcialis nyom a klasszikus
valdszintiségszamitasbeli marginalis eloszlas képzéssel rokon fogalom.

tr ((A & lde)p) -

tr
tr ((idy, ® B)p) = tr



B. figgelék

Val6szintiségszamitas és specialis
fliggvények

A kovetkez6 két lemma a ['-fliggvény és S-integral elemi tulajdonsagait foglalja 6ssze.
A T-fiiggvényrdl és S-integralrol a [10] konyvben lehet részletesen olvasni.

B.0.1. Lemma. A T :]0, c0[—]0, o[ fiiggvényt a

['(z) :/ t*te~tdt.
0
integrdllal értelmezzik. A T fiigguény a

L(n)=(n—1! T(1+2)=20(z) T(1/2)= V7
I(n+1/2) = w\/; I(n/2) = %ﬁ

azonossdagoknak tesz eleget, aholn € Nt és z € RY.

Bizonyitds. A T(1+ z) = zI'(z) Osszefiiggés egyszeri parcialis integralassal kaphato meg;:
I'(1+42)= / tretdt = —tze*t‘:io + / 2 et dt = 21(2),
0 0

aT'(1) = 1 azonossag pedig latszik kozvetleniil a I'-fiiggvény definiciojabol. A I'(1/2) érté-
kére vonatkozo Osszefliggés a Gauss-féle integral ismeretében helyettesitéses integraléssal

hatarozhato meg.
FW%I/t”%Mhﬁn%ﬁm
0 0

A tovabbi két Osszefiiggés T'(1/2) és I'(1) ismeretében a I'(1 + z) = 2I'(z) rekurzios
Osszefliggést felhasznalva teljes indukcioval igazolhato. O

B.0.2. Lemma. Az a,b € R" ést € RT paraméterekkel az

/t 29— 1) di — tHaerF(a + )b+ 1)
0 I'(a+0b+2)

1 atl
Gab::/ w1 — a2 dp — SO DL ()
’ 0 2 T(2+b+3)

eqyenldségek teljestilnek.

95
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Bizonyitds. Mindez egyszeri kévetkezménye a
1
r nr 1
/ (1 — )idg = L@ D@+
0 D(p+q+2)
[-integralnak. O

B.0.1. Definicio. Az X wvaldsziniségi valtozo 5(a, ) eloszlasu (jel: X ~ B(a, )), ahol
a, B> 0 valds paraméterek, ha siriségfigguénye

Tla+8) . 8-1
B.0.3. Lemma. Az 0B (R") egységgomb felszine a
nmw?
F,_1=
T

formuldval fejezhetd ki.

Bizonyitds. Az r-sugarta B, (R™) goly6 térfogata

3

Valr) = 7
rE+1)
amibdl az 0B (R™) egységgomb felszine F,,_; = dV:T(T) - moédon kaphaté meg. u

B.0.4. Lemma. Teqgyiik fel, hogy X gombszimmetrikus eloszldsi abszolit folytonos va-
I6sziniségi vdltozo, tovdbbd X € {x € R : ||z|| < 1}. Ekkor ||X]|| striségfiigguénye
a
Six(r) = =2rfx,(r) r€(0,1)

formuldval fejezhetd ki, ahol fx, jeloli az X z-irdnyi komponensének siriségfiigguvényét,
melyrdl feltessziik, hogy fx,(1) = fx,(—1) =0.

Bizonyitds. Az X valoszintiségi valtozd gombszimmetrikus eloszlasi, ezért létezik g :
0,1] — R*, melyre fx = g(||z||) teljesiil. Igaz tehat, hogy fx(r) = LP(||X|| <

r) = 4w [ g(s)s*ds = 4mwg(r)r?, ahol r € (0,1). Vilagos, hogy az X; komponens
0

szimmetrikus eloszlast a [—1, 1] intervallumon, ezért elég kiszamitani fx,(y)-at y € (0,1)
értékekre. Irhatjuk, hogy

Fo(0) = 5 B(Xa < 9) =~ P 20)
on 1 arccos(¥) )
// / r)r?sin(¢) dg dr df = 27r/g(r)rdr,
y
amibdl kapjuk, hogy
Fr(r) =~ Amg(r)r? = — o fix (7).

A bizonyitas ezzel teljes. m
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B.0.5. Lemma (Borel-Cantelli 1.). Legyen (2, F,P) valdszintségi mezd, (Fy)gen C F

pedig tetszdleges események. Ekkor ha Y  P(Fy) < oo, akkor P-m.b. csak véges sok Fj,
kEN
esemény kovetkezik be.

Bizonyitds. Az, hogy végtelen sok F) esemény kovetkezik be ekvivalens az (| | F,
neNm>n

esemény teljesiilésével. Az < U Fm) halmazsorozat monoton fogyd, a P mérték
m2n neN

véges, ezért irhatjuk, hogy

P(ﬂ UFm> :JE&P<U Fm> SJLIQOZIP’(Fm):O

neENm>n m>n

a Y, P(Fy) < oo feltétel miatt. Ezzel a bizonyités teljes. O
keN

B.0.6. Lemma (Iteralt logaritmus tétel). Legyen (Xy)ren f.a.e. wvaldszinidségi vdltozo
sorozat, melyre B(X;) = 0 és D?(X,) = 1 teljesiil. Ekkor P-m.b. teljesiilnek a

Sh ) Sh
lim inf = —1 és limsup

S —— _ =]
n—oo +/2nloglogn nsoo  V/2nloglogn
egyenldségek, ahol S, = > X.
k=1

Bizonyitds. A bizonyitas a [40] konyv huszonkettedik fejezetében talalhatoé meg. O

B.0.2. Definicié. Az s € C indextd polilogaritmus fiiggvényt a z komplex viltozo |z| < 1
értékeire a
Lig(2) = —.
is(2) kz_; "

hatvdanysorral definidljuk.

B.0.3. Definici6. A K, E : (—oo,1) —]0,00[ elsd és mdasodfaji teljes elliptikus integrd-

lokat a . .
- 2 1 / B 2 —
K(z) = 0/ mdqﬁ és E(z) = 0/\/1 22 8in”(¢) d¢

formuldkkal definidljuk.
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C. fuggelék

A x1 és 1y fuggvények

C.1. A 3.2.1. Lemma bizonyitasa

1 0

Legyen A5 = ( 0 o° ), ahol ¢ > 0 és vezessiik be a

A(8) := VoI(By (R**?)) — x1(e~%)

defekt fligguényt, ami azt méri, hogy a As matrixszal valé hasonlosagi transzformacié a
valos 2 X 2-es matrixok operatornorma egységgémbjének hanyad részét képezi a gdbmbon
kiviilre. Ennek segitségével a 3.2.1. Lemma az aldbbi ekvivalens alakban irhato fel.

et +1

16 1>dt 0>0

5
A(9) = /cosht — sinh? ¢ log (
0

3 et —
A fenti formula igazoldsédhoz legyen § > 0 rogzitett és tekintsiik az R?*? sima sokasag
A={X.(rt,p,0), Xs£(r,t,p,d)os}, (C.1)

paraméterezését, ahol

Xi(ra tv P, (b) = TYi@? P (b)
£sin2¢—1 4
\/ﬁCOS¢ ]ﬁsin2¢—1|€
; (C.2)

Y <t7p7¢): Y
’ +4/|2sin2¢ —1le”t  /psing

teR, r,p>0¢és¢el0,2r). Konnyen ellendrizhets, hogy a As matrixszal valo hasonlo-
sagi transzformacié a paramétertéren egyszertd eltolasként hat, azaz

AST()As
(ratap7¢) 6:> (T7t_57:07¢)'
A metrikus tenzor 10 fliggetlen komponense
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Grr = p+ 2cosh 2t ‘gsin2¢ — 1‘ grt = 27 sinh 2¢ ‘gsin2¢ — 1’
Grp =5 (1 -+ sin 2¢) cosh 2t sgn (’5) sin 2¢ — 1)) Gre = TpCos 2¢ cosh 2t sgn (g sin 2¢ — 1)
g = 2r* cosh 2t ’gsin 2¢ — 1| Gtp = % sin 2¢ cosh 2t sgn (g sin 2¢ — 1)

2

gto = —1r*pcos2¢ sinh 2t sgn (£ sin2¢ — 1) Gy =" (% + —;Tsphjgziﬁ)
2

_ 72pcosh2tsindg cosh 2t cos® 2¢

goo =1p 1+ 7

oo = 8] 2 sin 2¢—1] [£sin2p—1] )
a térfogati forma pedig
\/det(g(r7 ta pa ¢)) = TS‘
Ezek utén irhatjuk, hogy
X1(6_6> = )\4 (B1 (R2X2) N A(S_lBl (R2X2) A(;)
= / Liixpi<r & pas xag) <1y dAa(X)
R2><2
oo 2
—2// 1 1 r3drdpdedt
) ’”<mm<\|Y+<t,p,¢>|\’\|Y+<t—6,p,¢>u)
2

Nyilvanvalo, hogy Yi(t, p,¢) € SLa(R) és a A.1.2. Lemma értelmében

Y (t, p, 6)]] = exp (%h (Hﬁ(arf; ¢>rrz3))

irhato, ahol

IVt . 0)lis = 2 (4 + |5 5in 26 — 1| coshi2t)
amibdl kovetkezik, hogy

1YL(t =0, p,0)|I3s > ||Ye(t, p,d)||3s pontosan akkor, ha [t —d| > |t| <t < §/2.

Megfigyeléseinket felhasznalva az el6z6 integralon az alabbi atalakitasokat végezziik
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101
el
T LIER _1cosh*lmax(”yi“””“”%fs HYi(t—é,p,qa)u%,S)
////1 r<e’ ? : 4r3 dr dp de dt
S5 0 0 0
< TR _QCOSh,lmaX(HYi(t,p,wH%,S |\Y¢<t—5,p,¢>ui,s)
///e : : dpdepdt
oo 0 0
I3
/2

T ocosh- (%) T e (Hyi(tw)l\HS
e dpdeodt +
00 :

2 ) dpdedt
6
co m oo o cosh— 1 HYj:(t024>)HHs> —2005h <\|Yi(tp2d>)|\Hs)
/ e dpd¢dt—/ dpdedt,
—o0 0 0 5
A ~ , \2 |
1Vol(B1 (R22)) e
ahol az utolso tagban megjelend defekt fiiggvény
7 —9cosh—1 |\Yi<tp¢)|\HS)
/// ’ dpdeodt
_50 0
2
g 27
= /// —2cosh™!(p+|psin ¢—1| cosh 2t) dpdgbdt (C3)
e
2
§ 2w o©
—///eZCoshl(erpsind)lcosht) dpd(bdt
0 0 0

alakba irhato.

A belst integralt a felbontjuk az alabbi médon
27

//62608h (p+|psin ¢—1| cosht) dpd(b // —2cosh™ ! (p+(psin ¢+1) cosh t) dpd¢
0 0

™ sin ¢>

gt

o\

—2cosh_1(p—(psin¢—1) cosh t) d,O + 6—2cosh_1(p+(psin¢—1)

»—A\g

cosht) dp d¢
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és rovid szamoléas aran kapjuk, hogy

27 oo m oo
—2cosh™!(p+|psin ¢p—1| cosh t) dpdo = / 1 / —2u hud d
/ /e pdo 1 + cosh tsin ¢ ¢ smhudd ¢
0 0 0 t
- coshil(sirluﬁ) o
] (R S PR g
(& S1n u du (& S1n u au
1 — coshtsin ¢ 1 + cosh tsin ¢
0 t coshfl(siiqb)

I
o\
(ME}

—3t
-+ € ¢ 1 3¢ . 1
— — — [tan = — - tan” = ht d
(e 5 (an2 5 an 2)008 Slnqb) T cosh? s o,

ahol is felhasznéltuk az exp (— cosh™ ( L )) = tan 2 Gsszefiiggést.

sin ¢ 2
A tan% = e~ helyettesités elvégzése utan kapjuk, hogy

27 ,oe¥ _, e\ cosht 1 Ly
et —— — e — s
3 3 ) coshs) 1 _ (M)Q cosh s
0

cosh s

inh? |
:§/6_tcoshs—,Sm—sds:§ Cosht—sinthlog ¢t .
3 sinh(t + s) 3 et —1
0

Ebbdl a defekt fiiggvényre a bizonyitandd

P
16 t+1
A(0) = — /cosht — sinh? ¢ log €T dt (C4)
3 et —1
0
alakot nyerjiikk. A bizonyités ezzel teljes. O]

C.2. A 3.2.2. lemma bizonyitasa

Tekintsiik a 9B (R?*?) sokasag

A—{ Y:t<t7p7¢) Y:I:(t7p7¢>o-3 }
||Y:t<t7p7 ¢)||7 ||Y:|:(t7p7 ¢)U3||

atlaszat, ahol Yi(r,t,p,¢) a (C.2) formula altal adott és ||.|| jeloli a kozonséges opera-
tornormat. A térfogat kdzvetlen szamitésa a fenti paraméterezésbdl tilsagosan bonyolult
lenne.

Az nyilvanval6, hogy a metrikus tenzor ugyanolyan alakot 6lt az A atlasz minden
elemén, ezért elég tekinteni a kdvetkezs paraméterezést

_ Y(t,p,0)
X(t,p,¢) = Y p ol

(C.5)
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ahol Y (¢, p, @) := Y, (t, p, ¢). Tudjuk, hogy Y (¢, p, ¢) € SLa(R) és a A.1.2. Lemma szerint
irhato, hogy

X(t,p,0) = f(t;p,d)Y (t, p, 0), (C.6)
e L (Yl
— t? Y
f(t, p, @) =exp <—§ cosh™! ( p2 HS)) : (C.7)
Az ezen paraméterezéshez tartoz6 g metrikus tenzor az alabbi alakba frhato
1
i = f2 <3X 0;X) = (9;log(f)) (9;10g () 1Y ]I7s

+3 ((6% log(f)) (0311 [[izs) + (9;1og(f)) (A:IY |[irs)) + (0:Y.0;Y) ,

ahol (,) a kozonséges Hilbert—Schmidt skalarszorzatot jeloli. A lancszabalyt alkalmazva
a metrikus tenzort az

9= 12 (G+ (IVIBs (0 (IV1is)" + 2 (1Y i) ) ¥ (1Y 1Bs) ¥ (1Y 1Bs)) (C:9)

egyszeriibb alakban is fel tudjuk frni, ahol G;; = (9;Y,9;Y) és h(r) = —1 cosh™" (%).
A matrix-determinans lemma A.1.4 értelmében irhato, hogy

det(g) = f° x det(G)
x (1 (V1 (0 (I 1B))* + 1 (1Y 1Bs) ) 9 (1Y )™ GV (1Y 1))

ahol mar az egyes tényezdk kiszamitasa egyszertd feladat. A metrikus tenzor determinan-
sara pedig a kovetkezot kapjuk

Vdet(g) = f = exp (—2 cosh™ (%)) . (C.9)

Using the notations introduced in
Az Appendix C.1 pontban bevezetett jeloléseinket hasznalva irhatjuk, hogy

50 2T 50 —9cosh— 1 \|Y<tp¢>|\HS)

2
24/// Vol(BB, (RP2)) LIV t=dpali<IYpe)l dpdo dt
—oc0 0 0

et 1 \\Y(tmes)
/e : dpdodt
0

= aim @y | |
0

)

2

6 2w o

-1 —2cosh_1(p+|psin¢—1|cosht)d do dt
Vol@BlRQXQ ///e pdpdi,
0 0

(. 4
v~

%A((S) (See (C.3).)

ahol az alabbi Osszefliggéseket hasznaltuk fel.

A6_1Y<t7pv ¢)A5 = Y(t —0,p, ¢)
Yt =6,p,0)| <IIY(tp,0)]| &t >0/2
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Ebbél kapjuk, hogy

L 2VoI(By (RP2)
(&) = 1= 55mE, ®2))

(1—xa(e)),

amibdl kovetkezik, hogy 71(¢) = x1(¢) teljesiil € € [0, 1]-re, hiszen 7;(0) = x1(0) = 0 és
(1) = x1(1) = 1. A bizonyitas ezzel teljes. O



D. fuggelék
A yo fuggvény

Ay fiiggvény meghatarozasanak utjat kovetve a komplex esetre szintén definialhatjuk

A(8) := Vol(B; (C*?)) — x2(e7%)
defektus fiiggvényt. Legyen & > 0 rogzitett és tekintsiik a 2 x 2-es komplex méatrixok

X(T7 é? t’ T7 87 p? /’I/7 V) = T€I£Y(t7 T? SJ p? M? V)

s+ _petizl ot
Y<t7T757p7N7V): \/ﬁe ’ \/me
\/We*t*” \/ﬁe—s+%i

paraméterezését, ahol t,s € R, r,p > 0 és &, 7, u,v € [0, 27).
A fenti paraméterezés elénye, hogy — csakiigy mint a valos esetben — a Ay matrixszal
végzett hasonloségi transzformacié a paramétertéren eltolasként jelenik meg, azaz

AN
(Ta€7t77787p7:u7]/) - (T,f,t—é,T,S,p,/,L,V).

A paraméterezéshez tartozo térfogati format Maple komputer algebra rendszer segitségé-
vel szamitottuk ki. Azt kaptuk, hogy \/det (g(r,&,t, 7,5, p, p,v)) = 2pr7.
Irhatjuk tehat, hogy

1(8) = As (By (C2*2) N A7 "By (C¥2) Ay)

- / Lijixi<1 &ia;  xag) <1y dAs(X)

C2x2

:/ / / 1 ) 20r7 ANy (€, 7, 11, v) Ao (7, p) dAo(t, 5).
r<m1n(m,m)

R2 10,002 [0,27)%

Vilagos, hogy Y (t,7,s,p,u,v) € SLy(C) és az A.1.2. lemma értelmében ||Y]| =
exp (% cosh™! (—HY!%IS>>, ahol

[Y|[7;s = 2 (pcosh2s + ‘pe’” — 1‘ cosh 2t) .

Ez pedig azt jelenti, hogy ||Y||4s < ||A; 'Y As||% ¢ pontosan akkor teljesiil, ha a |t — 6] >
[t| < t < §/2 egyenl6tlenség all fenn.

105



106 D. FUGGELEK. A %, FUGGVENY

Eddigi észrevételeinket kiegészitve azzal, hogy az integrandus csupan r,p,s,t és
fliggvénye, a fenti integral

oo 0o 27
27T3 / //e—4cosh1<pcosh25+|pe“i—1‘cosh2t)pdu dp dsdt =
R\(~38/2,6/2) —00 0 0
— Vol(By (C¥2)) — A(5)
alakra hozhato, ahol a A(9) defekt fiiggvény

27

0 oo oo
A(6):%3////@4008}11(’“05}“‘*|Pe‘”1|Cosht)pdudpdsdt.
0 0 0

0

modon fejezhetd ki.



E. fuggelék

A 4.3.1. lemma bizonyitasa

> # Determinant of Quantum channel transformations.
> restart;

> with(LinearAlgebra):

> assume(x,real,y,real,z,real,a,real,bl,real,b2,real):

> assume(cl,real,c2,real,dl,real,d2,real,el,real,e2,real):
> assume(f,real,gl,real,g2,real);
> # A parametric channel:
> A:=Matrix (4,4, [[a,b1+I%b2,cl+I*c2,d1+I*d2], [b1-I*b2,1-a,el+I*e2,-cl-I*
> c2],
> [c1-Ixc2,el-I*e2,f,gl+I*g2],[d1-I*d2,-cl1+I*c2,gl-I*xg2,1-f]]);
a” b1~ +b2"1 cl1 4+c2°1 dl™+d2° 1
e b1~ —b2" 1 1—a” el"+e2”°1 —cl™ —c271
Tl el =271 el —e27 1 I gl™+g27 1
di~—d2" 1 —cl™+c2°1 g1~ —g27 1 1—f"
> # And its submatrices:
> Al1:=SubMatrix(A, 1 .. 2, 1 . 2);
> A12:=SubMatrix(A, 1 .. 2, 3 . 4);
> A21:=SubMatrix(A, 3 .. 4, 1 . 2);
> A22:=SubMatrix(A, 3 .. 4, 3 .. 4);
. a” b1~ 4+ 0271
AH'_le—bQT 1 —a” 1

cl”"+c2°1 diI™+d2"71
el"+e2° ] —cl™ —c271
el =c27T elm —e271
ol dlT—d2° T —cl +c271

. f- gl” +g2" 1

Al12 = [
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# Rotation matrices:

Rotation[1] :=Matrix (3,3, [[cos(alpha),-sin(alpha),0], [sin(alpha),cos(al
pha),0],[0,0,111);

Rotation[2] :=Matrix(3,3,[[1,0,0], [0,cos(alpha),-sin(alpha)], [0,sin(alp
ha),cos(alpha)]l]);

Rotation[3] :=Matrix (3,3, [[cos(alpha),0,-sin(alpha)], [0,1,0], [sin(alpha
),0,cos(alpha)]]);

[ cos(a) —sin(a) 0
Rotation, := | sin(a) cos(a) 0
1

Rotations := | 0 cos(a) —sin(«)

Rotations = 0

# Consider an arbitrary Bloch vector:
Bv:=Vector (3, [x,y,z]);

# The after applying the quantum channel the Bloch vector changes:
Qa:=1/2%((1+Bv[3])*A11+(1-Bv[3])*A22+(Bv [1]+I*Bv[2])*A12+(Bv[1]-I*Bv[2
1)*A21):

xv:=expand (2*Re(Qal[1,2])):

yv:=expand (2*xIm(Qal[1,2])):

zv:=expand (2*Qal[1l, 1]-1):

ABv:=Vector (3, [xv,yv,zv]);

b1~ 2" +dl"x” —d2 y +el " z” —e27y —gl 2"+ b1 +gl”

ABv:= | b2 2" 4+dl"y +d2 2" —el "y —e2 a2~ —g2 2~ + 02" + g2~

vV V.V V V

>

a2z +2cl 2" =227y —f 2 +a +f —1

# Let us define the following transformation matrix and vector:
T:=Transpose(Matrix (3,3, [[coeff (xv,x,1),coeff(yv,x,1),coeff(zv,x,1)],
[coeff (xv,y,1),coeff(yv,y,1),coeff(zv,y,1)], [coeff(xv,z,1),coeff(yv,z,
1) ,coeff(zv,z,1)11));
S:=Vector(3, [bl+gl, b2+g2, a+f-1]);
dl”4+el”™ —d2° —e2” b1~ —gl~
T:=| d2°—e2” dI™—el”™ 027 — g2~
2cl” —2c2” a” — f~
b1~ + g1~
S = b2~ + g2~
a  +f -1
# Check that the channel acts like Bv -> T.Bv+S:
simplify(T.Bv+S-ABv) ;
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# CHANNEL’> = ROTATION.CHANNEL

109

# Applying the quantum channel after rotating the Bloch vector can be

described by one new channel.

# Original channel parameters
11list:=[a,f,bl1,b2,cl,c2,d1,d2,el,e2,g1,g2]:
# New channel parameters
12list:=[av,fv,blv,b2v,clv,c2v,dlv,d2v,elv,e2v,glv,g2v]:
for ee from 1 to 3 do

Tm[ee] :=Rotation[ee] .T:

Sm[ee] :=Rotation[ee] .S:

Tn:=Tm[ee]:

Sn:=Sm[ee]:

# The parameters of the new channel are the following:
av:=1/2%(Sn[3]+1+Tn[3, 3]):

fv:=Sn[3]+1-av:
blv:=simplify((Tn[1,3]1+Sn[1])*(1/2)):
b2v:=simplify((Tn[2,3]+Sn[2])*(1/2)):
clv:=(1/2)*Tn[3,1]:

c2v:=-(1/2)*Tn[3,2]:
dlv:=simplify((Tn[1,1]+Tn[2,2])*(1/2)):
d2v:=simplify((Tn[2,1]-Tn[1,2])*(1/2)):
elv:=simplify((Tn[1,1]-Tn[2,2])*(1/2)):
e2v:=-simplify((Tn[1,2]+Tn[2,1]1)*(1/2)):
glv:=simplify((-Tn[1,3]+Sn[1])*(1/2)):
g2v:=simplify ((-Tn[2,3]+Sn[2])*(1/2)):

# The transformation which describes the original channel -> new
channel map:

DM:=Matrix(12,12,0):

for aa to 12 do

for bb to 12 do

DM[aa,bb] :=diff (121ist[aal,11list[bb]):

end do:

end do:

# Let us compute the determenint of this map:

print("Rotation:",ee," Determinant:",simplify(Determinant(DM))):

end do:
,Rotation:”, 1,,, Determinant:”, 1
,Rotation:”, 2, Determinant:”, 1

,Rotation:”, 3, , Determinant:”, 1
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# CHANNEL’ = CANNEL.ROTATION

# Rotating the Bloch vector and after applying the quantum channel can
be described by one new channel.

# Original channel parameters
11list:=[a,f,b1,b2,cl,c2,d1,d2,el,e2,gl,g2]:

# New channel parameters
12list:=[av,fv,blv,b2v,clv,c2v,dlv,d2v,elv,e2v,glv,g2v]:
for ee from 1 to 3 do

Tm[ee] :=T.Rotation[ee] :

Sm[ee] :=S:

Tn:=Tm[ee] :

Sn:=Sm[ee] :

# The parameters of the new channel are the following:
av:=1/2%(Sn[3]+1+Tn[3, 3]):

fv:=Sn[3]+1-av:

bilv:=simplify((Tn[1,3]+Sn[1])*(1/2)):
b2v:=simplify((Tn[2,3]+Sn[2])*(1/2)):
clv:=(1/2)*Tn[3,1]:

c2v:=-(1/2)*Tn[3,2]:
dlv:=simplify((Tn[1,1]+Tn[2,2])*(1/2)):
d2v:=simplify((Tn[2,1]-Tn[1,2])*(1/2)):
elv:=simplify((Tn[1,1]-Tn[2,2])*(1/2)):
e2v:=-simplify((Tn[1,2]+Tn[2,1]1)*(1/2)):

glv:=simplify ((-Tn[1,3]+Sn[1])*(1/2)):
g2v:=simplify((-Tn[2,3]+Sn[2])*(1/2)):

# The transformation which describes the original channel -> new
channel:

DM:=Matrix(12,12,0):

for aa to 12 do

for bb to 12 do

DM[aa,bb] :=diff(121ist[aa],111list[bb]):

end do:

end do:

# Let us compute the determenint of this map:
print("Rotation:",ee," Determinant:",simplify(Determinant (DM))) :
end do:

,Rotation:”, 1, ,, Determinant:”, 1
,Rotation:”, 2, ,, Determinant:”, 1
,Rotation:”, 3,,, Determinant:”, 1



