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Jelölések jegyzéke

N természetes számok halmaza
Z egész számok halmaza
Q racionális számok halmaza
R valós számok halmaza
C komplex számok halmaza
K számtest (ez esetünkben R vagy C lehet)
i képzetes egység
Ran(f) az f leképezés képtere
λn n-dimenziós Lebesgue-mérték
1A az A halmaz/esemény indikátorfüggvénye
P(A) az A esemény valószínűsége
E(X) az X valószínűségi változó várható értéke
D(X) az X valószínűségi változó szórása
Span({v1, . . . , vn}) a {v1, . . . , vn} vektorok által generált altér
diag(µ1, . . . , µn) diagonális mátrix, melynek diagonálisában a

µ1, . . . , µn számok állnak
dimK(V ) a V vektortér K test feletti dimenziója
Kn×m az n×m-es mátrixokK számtest feletti vektortere
Lin(V,W ) a V vektortérről a W vektortérbe menő lineáris

leképezések halmaza
Msa

n,K az n× n-es önadjungált mátrixok K számtest fe-
letti vektortere

rk(A) az A mátrix rangja
tr(A) az A mátrix nyoma
det(A) az A mátrix determinánsa
σ (A) az A operátor spektruma
LA az A operátorral való balról szorzás operátora
RA az A operátorral való jobbról szorzás operátora
B (X) az X normált tér korlátos lineáris operátorai
A+ az A C∗-algebra pozitív kúpja
Br (X) az origó középpontú r sugarú nyílt golyó az X

normált térben
Volg(M) az (M, g) Riemann-sokaság térfogata (g-t néha

nem írjuk ki)
∂A az A halmaz határa

bizonyítás vége



iv



Bevezetés

A kvantum információgeometria egy viszonylag fiatal tudományterület, mely az 1990-
es évek elején a kvantummechanikából – ezen belül is a kvantum információelméletből – és
a klasszikus információgeometriából fejlődött ki. Tárgyát tekintve – a klasszikus informá-
ciógeometriához hasonlóan – a (kvantum) valószínűségi eloszlások terét Riemann-sokaság
struktúrával ruházza fel és kapcsolatokat keres a modell differenciálgeometriai jellem-
zői és a megfigyelhető fizikai mennyiségek (kvantum valószínűségi változók) között. A
kvantum információgeometria eredményeit többek között a kvantum információelmélet
és a kvantum statisztikus fizika használja fel. Eszköztárát tekintve elmondható, hogy
erőteljesen épít a funkcionálanalízis és differenciálgeometria eredményeire. A klasszikus
valószínűségszámítással szemben lényeges különbség az, hogy a kvantum eseményalgeb-
ra – a klasszikus eseményalgebrával ellentétben – egy tipikusan nemdisztributív, csupán
ortomoduláris háló struktúrával rendelkezik. Ennek a ténynek számos igen fontos hozadé-
ka van a kvantum információelméletre és kvantum információgeometriára vonatkozólag.
A teljesség igénye nélkül említjük meg a határozatlansági relációk és az összefonódott
állapotok létezését, továbbá azt, hogy a klasszikus Fisher-féle információ a kvantumos
esetre rendkívül sokféleképpen általánosítható. A kvantum eseményalgebra szokásos mo-
dellje egy szeparábilis Hilbert-tér projektorhálója. Ebben a dolgozatban csupán véges
dimenziós Hilbert-terekkel leírható kvantummechanikai rendszerek információgeometriai
elemzésével foglalkozunk. Az ehhez nélkülözhetetlen lineáris algebra, mátrixanalízis és
valószínűségszámítás ismereteket a dolgozat végén található tematikusan rendezett füg-
gelékekben foglaltuk össze. Ugyancsak ide kerültek azok a lemmák, amelyek túlzottan
technikai jellegűek vagy amelyek bizonyítása olyan hosszú és szövevényes, hogy annak
nyomon követése túlságosan elvonná az Olvasó figyelmét a lényegről. A tárgyalás során
felbukkanó Riemann-geometriás fogalmaknak Szenthe [81] könyvében lehet utánanézni.

Az első fejezetet előkészítő jellegű fejezetnek szánjuk, melyben a kvantum valószí-
nűségszámítás hálóelméleti vonatkozásaiból kiindulva definiáljuk a kvantum információ-
geometria alapvető objektumát, a kvantummechanikai állapotteret mint differenciálható
sokaságot. Ugyanitt esik szó a Fisher-féle információ lehetséges kvantumos általánosítá-
sairól és a Petz-féle osztályozási tételről. A kvantummechanikai állapotteret a Petz-féle
osztályozási tétel által jellemzett monoton metrikákkal ellátva különböző statisztikus so-
kaságokat kapunk, melyek későbbi vizsgálódásaink tárgyát képezik.

Az első fejezetet követő három jól elkülönülő fejezetben a kvantum információgeomet-
ria bizonyos területein elért újabb eredményeinket mutatjuk be. A második fejezetben
határozatlansági relációkat vizsgálunk. Rövid történeti áttekintés után saját eredménye-
ink ismertetésére térünk rá. Megmutatjuk, hogy a határozatlansági relációk egy igen tág
családja, mely magában foglalja az ún. dinamikai határozatlansági relációkat s ezen be-
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lül a Heisenberg-féle határozatlansági-elv Robertson általi általánosítását, lényegében a
kvantummechanikai állapottéren értelmezett különböző Riemann-metrikák (és az ezeket
indukáló operátormonoton függvények) közötti rendezésre vezethető vissza. Bevezetjük
az antiszimmetrikus és a szimmetrikus kvantum kovarianciákat és megmutatjuk, hogy a
közönséges – már Schrödinger által is vizsgált – kvantum kovariancia ezen utóbbi kovari-
ancia családba sorolható. Megmutatjuk, hogy a szimmetrikus kovariancia család tagjaival
az antiszimmetrikus család felülről becsülhető és bizonyítjuk azt is, hogy a számtani kö-
zéphez és a harmonikus középhez tartozó operátormonoton függvények számtani közepe
által indukált monoton metrika szolgáltatja a lehető legélesebb dinamikai határozatlan-
sági relációt.

A harmadik fejezetben összetett kvantummechanikai rendszereket vizsgálunk. Itt mu-
tatjuk be a dolgozat legfőbb eredményét: a 4 × 4-es valós állapotokra vonatkozó sze-
parábilitási valószínűség meghatározását a közönséges Lebesgue-mértékre vonatkozólag.
Mintegy melléktermékként kapjuk Milz és Strunz sejtésének bizonyítását, mely a 4×4-es
sűrűségmátrixokkal leírható kvantummechanikai rendszerekre kimondja a szeparábilitási
valószínűség redukált állapottól való függetlenségét. Eredményeiket általánosítjuk arra
az információgeometriai szempontból releváns esetre is, amikor az állapotteret a négyzet-
gyök függvény által származtatott monoton metrikával látjuk el. Megmutatjuk továbbá,
hogy a 2n× 2n-es sűrűségmátrixok alkotta állapottér előáll az n× n-es sűrűségmátrixok
alkotta állapottér, az n× n-es önadjungált mátrixokból álló [−I, I] operátor intervallum
és az n×n-es mátrixok egységgömbjének a direkt szorzataként. Ezt az egyébként messze
nem lineáris felbontást használjuk fel arra, hogy geometriai leírását adjuk a 4× 4-es sze-
parábilis állapotoknak. Kiderül, hogy 4×4-es szeparábilis kvantumállapotok pereme egy,
a 2 × 2-es mátrixok egységgömbjén értelmezett függvény grafikonjaként előálló sokaság
feletti triviális nyalábként áll elő. Ezek után bevezetünk egy kongruencia transzformá-
ciókra nézve invariáns távolságfogalmat az állapottéren, amire nézve meghatározzuk egy
tetszőleges összefonódott állapot távolságát a szeparábilis állapotoktól.

A negyedik fejezetet qubit-qubit kvantum csatornák tanulmányozásának szenteljük.
Ezek a csatornák egy qubit időfejlődését valamint a – minden kvantumos számítási eljárás
alapját képező – egy qubiten végrehajtható műveleteket írják le. A Choi-féle reprezen-
tációban a qubit-qubit kvantum csatornák R12 egy kompakt, konvex részsokaságaként
jelennek meg. Erre a sokaságra később mint qubit csatornák terére hivatkozunk. Beve-
zetjük a qubit csatorna klasszikus nyomát mint a qubit csatorna klasszikus (diagonális)
állapotokra történő megszorítottját. Ennek egy 2×2-es sztochasztikus mátrix feleltethető
meg. Ezek után meghatározzuk egy, a qubit csatornák terén egyenletes eloszlású csator-
na klasszikus nyományak az eloszlását. Ezeket az eredményeket felhasználva független
véletlen qubit csatorna sorozat qubitekre gyakorolt hatásával a dekoherenciát előidéző
zajt modellezzük. Ennek a gyakorlati jelentősége abban áll, hogy a kvantumszámító-
gépekben alkalmazott kvantumkapuk sebessége a dekoherencia idejénél gyorsabb kell,
hogy legyen, ezért a dekoherencia sebességének mérése a kvantumszámítógépek megvaló-
sításának szemszögéből nézve kulcsfontosságú. A dekoherencia utáni állapot információ
tartalmát a teljesen kevert állapotra vonatkozó relatív entrópiával, a dekoherencia előtti
állapothoz képesti információ veszteséget pedig a kezdeti állapot dekoherencia utáni ál-
lapotra vonatkozó relatív entrópiájával jellemezzük. A fejezetet és egyben a dolgozatot a
teljesen kevert állapothoz tartás konvergencia sebességének meghatározásával zárjuk.



1. fejezet

Sűrűségmátrixok
információgeometriája

A fejezet célja, hogy az olvasót célorientált módon bevezesse a kvantum információ-
geometria alapvető módszereibe és biztosítsa azt az alapvető fogalmi keretet, melyre a
többi fejezetet építjük majd fel.

A fejezet első felében kvantumlogikai hálóelméleti megalapozásából kiindulva defini-
áljuk a kvantummechanikai állapotteret és a fizikai mennyiségeket. Megmutatjuk, hogy
egy véges dimenziós Hilbert-térrel modellezhető kvantummechanikai rendszer állapottere
sima sokaság struktúrával látható el és jellemezzük ezen sokaság érintőtereit. A téma
fizikai vonatkozásait illetően a [43, 64, 82] művekre és az [50] cikkre utalunk.

A fejezet második felében definiáljuk a különböző kvantummechanikai állapotterek
közötti sztochasztikus leképezéseket és az ún. monoton metrikákat, melyek a klasszikus
Fisher-féle információ kvantumos általánosításának tekinthetők. Röviden összefoglaljuk
az operátor monoton függvényekkel és a belőlük származó közepekkel kapcsolatos alap-
vető ismereteket és kimondjuk Petz híres osztályozási tételét, amely kapcsolatot teremt a
monoton metrika családok és bizonyos operátormonoton függvények között. A témában
további tájékozódási alapként és további tanulmányozásra a [2, 8, 9, 42, 58, 59] és [32]
műveket ajánljuk.

1.1. Kvantum valószínűségszámítási alapok
A kvantumos és klasszikus események leírásábban a háló mint algebrai struktúra és

a hálók reprezentációi központi szerepet játszanak. Többek között ez indokolja, hogy a
tárgyalást egy rövid hálóelméleti bevezetővel indítsuk.

1.1.1. Definíció. Egy (L,≤) részben rendezett halmazt (azaz „ ≤′′⊆ L×L reflexív, tran-
zitív és antiszimmetrikus reláció) σ-hálónak nevezünk, ha az L halmaz megszámlálható
részhalmazainak létezik legkisebb felső és legnagyobb alsó korlátja a L halmazban.

Ha (L,≤) σ-háló, akkor tetszőleges (an)n∈N ⊂ L megszámlálhatóan végtelen sok há-
lóelem legkisebb felső és legnagyobb alsó korlátját szokásos módon rendre a

∨
n∈N

an illetve

a
∧
n∈N

an szimbólumok jelölik. Ha pedig a, b ∈ L, akkor az {a, b} halmaz legkisebb felső

korlátját a ∨ b, legnagyobb alsó korlátját pedig a ∧ b jelöli.
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4 1. FEJEZET. SŰRŰSÉGMÁTRIXOK INFORMÁCIÓGEOMETRIÁJA

1.1.2. Definíció. Az (L,≤,⊥, 0, 1) ötöst ortokomplementumos σ-hálónak hívjuk, ha
(L,≤, 0, 1) korlátos σ-háló 0 és 1 alsó és felső korláttal, azaz

I. ∀a ∈ L : 0 ≤ a és

II. ∀a ∈ L : a ≤ 1 teljesül.

Az ⊥: L → L ortokomplementációnak nevezett művelet pedig a következő tulajdonságokkal
rendelkezik:

i. ∀a ∈ L :
(
a⊥
)⊥

= a

ii. ∀a, b ∈ L : a ≤ b⇒ b⊥ ≤ a⊥

iii. ∀a ∈ L : a ∨ a⊥ = 1 és a ∧ a⊥ = 0.

Az (L,≤,⊥, 0, 1) ortokomplementumos σ-hálót ortomodulárisnak mondjuk, ha min-
den a, b ∈ L elemre, ha a ≤ b teljesül akkor fennáll az

b = a ∨
(
b ∧ a⊥

)
(1.1)

egyenlőség is. Disztributivitásról pedig akkor beszélünk, ha tetszőleges a, b, c ∈ L háló-
elemekre

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (1.2)

teljesül. A c = a⊥ választással az (1.2) egyenletben az ortokomplementáció iii. tulaj-
donságát és az 1 hálóelem felső korlát voltát kihasználva az (1.1) egyenlőséget kapjuk.
Tehát a disztributivitásból az ortomodularitás következik. Megmutatható viszont, hogy
a disztributivitás az ortomodularitáshoz képest valódi megszorítást jelent. Erről a követ-
kező pédán keresztül győződhetünk meg. Tekintsük az 1.1. ábrán látható ún. Hasse-féle
diagrammal adott hálót. Az ortokomplementációt ezen a hálón 0⊥ = 1, a⊥ = b és c⊥ = d

a b c d

0

1

1.1. ábra. Egy ortomoduláris háló, amely nem disztributív.

egyenlőségekkel definiáljuk. Az (1.1) egyenlőség triviálisan fennáll, hiszen a = 0 vagy
b = 1, illetve a = b választás mellett azonosságot kapunk. Másféle módon pedig nem
tudunk egymással rendezési relációban álló elemeket venni ebből a hálóból. A disztribu-
tivitás nem teljesülése pedig az a∨ (b∧ c) = a∨ 0 = a és (a∨ b)∧ (a∨ c) = 1∧ 1 = 1 szá-
molásokból következik. Ezek után az ortomoduláris σ-hálókat eseményalgebrának fogjuk
nevezni, a hálóelemeket pedig eseményeknek hívjuk. Amikor eseményalgebrákról beszé-
lünk a továbbiakban – ha félreértést nem okoz – csak az alaphalmazt (L) írjuk ki. Az
a, b ∈ L események kizárók, ha a ∧ b = 0.
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1.1.3. Definíció. Az L eseményalgebrán egy P : L → [0, 1] leképezést állapotnak hívunk,
ha

i. P(1) = 1 és

ii. ha (an)n∈N megszámlálhatóan végtelen sok egymást páronként kizáró esemény, akkor

P

(∨
n∈N

an

)
=
∑
n∈N

P(an).

Ha a ∈ L, akkor a P(a) mennyiséget az a esemény valószínűségének nevezzük.

Ha (Ω,F ,P) klasszikus Kolmogorov-féle valószínűségi mező, akkor az F σ-algebra a
„⊆” tartalmazásra mint rendezési relációra nézve disztributív σ-háló, a P valószínűségi
mérték pedig egy állapot ezen a hálón. Ezen észrevétel megfordításának tekinthető az
az eset, amikor L egy véges sok elemet tartalmazó disztributív eseményalgebra. Ekkor
ugyanis L Boole-algebra és Stone-tétele szerint L mint háló izomorf valamely Ω véges
halmaz P(Ω)-val jelölt hatványhalmazával, amely a „⊆” tartalmazással mint rendezéssel
disztributív háló. Ebben az esetben az L eseményalgebra állapotainak bijektíven megfe-
leltethetők az Ω feletti diszkrét valószínűségi eloszlások.

A klasszikus fizikai jelenségek modellezésére a disztributív eseményalgebrák elégséges-
nek bizonyultak, a kvantummechanika számára viszont a disztributivitás túlságosan nagy
megszorítást jelent, ezért a disztributív hálók körén túl kell lépni és a kvantummechanika
matematikai modelljét egy sokkal általánosabb, nem disztributív eseményalgebrára kell
felépíteni [64].

1.1.4. Definíció. Legyen H Hilbert-tér és jelölje B (H) a H → H korlátos lineáris ope-
rátorok C∗-algebráját. Egy P ∈ B (H) elemet projekciónak nevezünk, ha P = P ∗ = P 2

teljesül.

Egy H Hilbert-tér projekciói és zárt alterei közt a P 7→ Ran(P ) megfeleltetés bi-
jekciót határoz meg. A H Hilbert-tér projekcióinak halmazán bevezethetünk egy ren-
dezést a következő módon: P és Q projekciók esetén akkor mondjuk, hogy P ≤ Q, ha
Ran(P ) ⊆ Ran(Q). Könnyen ellenőrizhető, hogy a H Hilbert-tér projekcióinak L(H)-val
jelölt halmaza az imént bevezetett rendezésre nézve a P 7→ P⊥ := I −P művelettel mint
ortokomplementációval ellátva ortomoduláris σ-háló, melyben 0 ∈ B (H) és I ∈ B (H)
legnagyobb, illetve legkisebb elem.

A továbbiakban ennél a példánál maradunk és arra az esetre szorítkozunk, amikor aH
Hilbert-tér véges dimenziós. Ezt a matematikai formalizmust használják például spinnel
rendelkező részecskék spin részének leírására nem-relativisztikus esetben [29, 43, 85, 84].
A véges dimenziós esetben az L(H) kvantum eseményalgebra állapotait a következő Glea-
sontól származó tétel jellemzi.

1.1.1. Tétel (Gleason tétele). Legyen H (véges dimenziós) valós vagy komplex Hilbert-
tér. Ha dim(H) 6= 2, akkor tetszőleges, a H Hilbert-tér L(H)-val jelölt projekcióhálóján
értelmezett P : L(H) → [0, 1] állapothoz egyértelműen megadható egy ρ ∈ B (H) egység-
nyomú pozitív operátor, melyre

∀P ∈ L(H) P(P ) = tr(ρP )
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teljesül. Továbbá igaz az is, hogy B (H) minden ρ pozitív, egységnyomú eleme a P 7→
tr(ρP ) hozzárendelésen keresztül egy L(H)→ [0, 1] állapotot határoz meg.

A fenti tétel révén a kvantummechanikai állapottér azonosul a pozitív mátrixok kúpjá-
nak és az egységnyomú mátrixok hipersíkjának a metszetével, ezért ezentúl az n-dimenziós
Hilbert-térrel leírt kvantummechanikai rendszer állapottere alatt

Dn = {D ∈ Kn×n | D ≥ 0, tr(D) = 1} (1.3)

halmazt fogjuk érteni. A Dn halmaz elemeit sűrűségmátrixoknak nevezzük. Ha ki sze-
retnénk hangsúlyozni, hogy mely számtest felett tekintjük az n × n-es sűrűségmátrixok
terét, akkor Dn,K-t írunk, ahol K = R vagy K = C. Könnyen látható, hogy a Dn,K halmaz
azonosítható az Rn+(n2)d lineáris tér egy konvex zárt részhalmazával, ahol d = dimR(K).
A belső szorzás folytonosságából adódóan a Dn halmaz Dn-el jelölt belsejét a szigorúan
pozitív sűrűségoperátorok alkotják.

1.1.5. Definíció. Egy ρ ∈ Dn állapotot akkor hívunk tiszta állapotnak, ha rk(ρ) = 1. A
nem tiszta állapotokat kevert állapotnak nevezzük.

Az, hogy a ρ ∈ Dn állapot tiszta azzal ekvivalens, hogy ρ = v ⊗ v alakba írható,
ahol v a H Hilbert-tér egységvektora, ezért a tiszta állapotokat vektorállapotnak is szokás
hívni. Vegyük észre, hogy a v és ei θv, θ ∈ [0, 2π) egységvektorok ugyanazt ρ = v ⊗ v
állapotot határozzák meg. Fordítva, ha a v és w egységvektorokhoz ugyanaz a tiszta
állapot tartozik, akkor a v és w vektorok egy egységnyi abszolút értékű konstans szorzóban
különböznek. Ez az észrevétel vezet el oda, hogy a tiszta állapotok azonosíthatók a
P (H) = CP dim(H)−1 komplex projektív tér pontjaival.

Világos, hogy az állapottér Dn-el jelölt belsejét csupa kevert állapot alkotja. Az
viszont – a kétdimenziós Hilbert-térrel modellezett kvantummechanikai rendszer esetét
leszámítva – nem igaz, hogy az állapottér ∂Dn peremét csupa tiszta állapot alkotná.
Triviális ellenpéldaként adódik a 1/2 0 0

0 1/2 0
0 0 0

 ∈ ∂D3

sűrűségmátrix, melynek rangja 2, így nem reprezentálhat tiszta állapotot.

1.1.6. Definíció. Azokat az állapotokat, melyeket diagonális sűrűségmátrix reprezentál
klasszikus állapotok nevezzük.

Az alábbi példában a legegyszerűbb, még éppen nem triviális kvantummechanikai
állapotteret elemezzük.

1.1.1. Példa (Bloch-gömb). Legyen H = C2 és tekintsük a D2,C állapotteret. Az A.1.1
Megjegyzés szerint a {I, σ1, σ2, σ3} Pauli mátrixok alkotta rendszer bázis a 2× 2-es önad-
jungált mátrixok vektorterében, ezért minden ρ ∈ D2,C állapot

ρ =
1

2
(I + x.σ) (1.4)
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alakba írható, ahol x ∈ R3 és x.σ =
3∑
j=1

xjσj. Megmutatható, hogy az (1.4) formulával

definiált ρ mátrix pontosan akkor pozitív szemidefinit, ha ||x|| =
√
x2

1 + x2
2 + x2

3 ≤ 1, így
a D2,C állapottér pontjai a B1 (R3) zárt egységgömb pontjainak bijektíven megfeleltethetők.
A D2,C állapottér elemeit qubiteknek hívjuk, az (1.4) előállítást Bloch-reprezentációnak
nevezzük, a Bloch-reprezentáció x vektorát Bloch-vektor, a Bloch-vektorok végpontjai által
lefedett alakzatot pedig Bloch-gömb névvel illetjük. A Bloch-vektor ||x|| hossza a Bloch-
sugár. Az (1.4) előállítást szokás még Stokes-paraméterezésnek is nevezni.

Egyszerű számolással ellenőrizhető, hogy ha x ∈ B1 (R3), akkor a P± = 1
2

(
I ± x

||x|| .σ
)

mátrixok ortogonális projekciókat határoznak meg, melyre P+P− = P−P+ = 0 és P+ +
P− = I teljesül más szóval a {P+, P−} egy teljes eseményrendszer a L(C2) kvantum
eseményalgebrában, ezért az (1.4) formulával adott ρ állapot

ρ =
1 + ||x||

2

1

2

(
I +

x

||x||
.σ

)
+

1− ||x||
2

1

2

(
I − x

||x||
.σ

)
(1.5)

alakban írható fel, ami az x Bloch-vektorral adott qubit spektrálfelbontása is egyben.

Magasabb dimenzióban a kvantummechanikai állapottér meglehetősen bonyolult alak-
zat lehet erre vonatkozóan egy rövid elemzés a [2] dolgozat 104–105. oldalán található.

1.1.2. Tétel. A Dn,K állapottér Dn,K-val jelölt belseje közönséges sima sokaság struktú-
rával látható el.

Bizonyítás. Az állapottér belsejét egyetlenegy térképpel fogjuk lefedni. A koordinátá-
zást komplex állapotokra mutatjuk meg, a valós állapotok koordinátázása hasonlóképpen
történik.

Legyen {ei}ni=1 az n-dimenziós H Hilbert-tér egy ortonormált bázisa és vezessük be az

ek ∨ el = ek ⊗ el + el ⊗ ek és ek ∧ el = − i(ek ⊗ el − el ⊗ ek) (1.6)

(1 ≤ k < l ≤ n) operátokokat és a dk = ek ⊗ ek − en ⊗ en operátorcsaládot, ahol k =
1, 2, . . . , n− 1. Tekintsük a

φ : Dn,C → Rn2−1 ρ 7→ φ(ρ) :=



tr(ρ(e1 ∨ e2))
...

tr(ρ(en−1 ∨ en))
...

tr(ρ(e1 ∧ e2))
...

tr(ρ(en−1 ∧ en))
...

tr(ρd1)
...

tr(ρdn−1)



(1.7)

leképezést. Ellenőrizhető, hogy ez a leképezés kölcsönösen egyértelmű és inverzével együtt
folytonos, tehát homeomorfizmus az Dn,C állapotér és Rn2−1 egy összefüggő nyílt halmaza
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köztött. Az állapottér ezen térképezését kanonikus koordinátázásnak hívják. Megjegyez-
zük, hogy a Dn,R sokaság térképezése φ térképezéstől annyiban tér el, hogy nem szere-
pelnek a ek ∧ el operátorokhoz tartozó komponensek. Tehát a Dn,K halmaz n+

(
n
2

)
d− 1-

dimenziós sima sokaság, ahol d = dimR(K).

A határozatlansági relációkkal kapcsolatos vizsgálódásaink és az állapottér érintőte-
reinek jellemzése nem nélkülözheti a fizikai mennyiség és a fizikai mennyiség várható
értékének a fogalmát. A fizikai mennyiségek absztrakt hálómorfizmusokon keresztül tör-
ténő értelmezése megtalálható a [82] jegyzetben. Itt – terjedelmi korlátok miatt – meg
kell elégednünk a következő definícióval.

1.1.7. Definíció. Egy n-dimenziós Hilbert-térrel modellezett kvantummechanikai rend-
szer fizikai mennyiségei (más néven obeszervábilisei) az n × n-es önadjungált mátrixok.
Az A ∈Msa

n,K fizikai mennyiség várható értékét a ρ ∈ Dn,K állapotban

Eρ(A) = tr(ρA)

módon definiáljuk.

Ha A ∈ Msa
n,K fizikai mennyiség, akkor léteznek P1, . . . , Pn páronként ortogonális

projekciók, melyek összege I (azaz P1, . . . , Pn teljes eseményrendszer), hogy

A =
n∑
i=1

λiPi (1.8)

teljesül valamilyen λ1, . . . , λn valós számoknak, melyeket az A fizikai mennyiség lehetséges
értékeinek hívunk. A fenti spektrálfelbontásból az A fizikai mennyiség várható értékére
az

Eρ(A) =
n∑
i=1

λiPρ(Pi) (1.9)

összeg előállítást kapjuk. A következő tétel a Dn,K sokaság érintőtereit írja le.

1.1.3. Tétel. A Dn,K sima sokaság tetszőleges ρ ∈ Dn,K pont feletti TρDn,K érintőtere
izomorf a zérusnyomú fizikai mennyiségek

(
Msa

n,K(0)
)
valós számtest feletti vektorterével.

Bizonyítás. A bizonyításban a sima sokaság érintőtérének azon ekvivalens meghatározá-
sát vesszük alapul, amely az érintővektorokat a sokaságban haladó sima görbék ekviva-
lencia osztályaiként definiálja, ahol az ekvivalencia reláció az elsőrendű érintkezés.

Legyen γ : (−1, 1)→ Dn,K sima görbe, melyre γ(0) = ρ ∈ Dn,K. A tr művelet lineáris
funkcionál, ezért

tr(γ̇(0)) = lim
t→0

1

t
tr(γ(t)− γ(0)) = 0

teljesül, azaz γ̇(0) ∈Msa
n,K(0). Tehát a TρDn,K érintőtér vektorai (ρ, γ̇(0)) alakú párokkal

reprezentálhatók és minden ilyen párra igaz, hogy a második elem zérusnyomú fizikai
mennyiség, ezért rögzített ρ ∈ Dn,K esetén a TρDn,K érintőtér beágyazható a Msa

n,K(0)
vektortérbe.

Annak belátására, hogy ez a megfeleltetés szürjekció, legyen A tetszőleges zérusnyomú
fizikai mennyiség és tekintsük a t 7→ γ(t) := ρ+ tA sima görbét és a φ (1.7) térképezést.
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A φ (Dn,K) ⊆ Rn2−1 halmaz nyílt, a γ függvény pedig folytonos. Ebből következik, hogy
∃ε > 0, melyre a γ görbe (−ε, ε) intervallumra történő megszorítása teljes egészében az
Dn,K sokaságban halad. A γ : (−ε, ε) → Dn,K affin leképezés, ezért sima, γ(0) = ρ és
γ̇(0) = A. Az Msa

n,K(0) lineáris tér tehát nemcsak beágyazható a TρDn,K érintőtérbe,
hanem izomorf is vele.

A Dn,K sokaságot egyetlen térképpel fedtük, amely felett az érintőnyaláb triviális.
Világos tehát, hogy TDn,K érintőnyaláb mint vektornyaláb a Dn,K × Msa

n,K(0) szorzat
sokasággal izomorf. Más szóval a Dn,K sokaság párhuzamosítható.

1.2. Operátormonoton függvények és monoton metrikák
Most, hogy az állapotteret sima sokaság struktúrával láttuk el és jellemeztük az így

előálló sokaság érintőtereit a következő lépés, hogy információelméleti szempontból re-
leváns Riemann-metrikákat definiáljunk rajta és ezeket jellemezzük. Más területeken is
történtek sikeres próbálkozások az állapottéren értelmezett Riemann-metrikák alkalma-
zására. Balian [12] és Streater [80] a statisztikus fizikában, Tanaka [83] pedig az átlagtér
elméletben alkalmazta őket sikerrel.

Rögtön adódik a kérdés, hogy mit nevezzünk információelméleti szempontból releváns-
nak? Olyan metrikákat keresünk, melyekkel az állapotteret ellátva a kapott Riemann-
sokaság geometriai jellemzőinek vizsgálatán keresztül kvantum információelméleti kérdé-
seket tudunk megválaszolni. Ha a metrikából származó geodetikus távolságot az egyes
állapotok információs távolságával – bármit is jelentsen ez – szeretnénk kapcsolatba hoz-
ni, akkor logikus megkövetelni azt, hogy ha két kvantummechanikai állapottér között
bizonyos speciális tulajdonságú leképezésekkel kapcsolatot létesítünk, akkor a képtérről
visszahúzott metrika a kiinduló terünk állapotait közelebbinek mutassa, mint annak saját
metrikája. Először is tisztázni kell, hogy milyen leképezésekre gondolunk.

1.2.1. Definíció. Egy T : B (H1) → B (H2) lineáris leképezést pozitívnak nevezünk, ha
pozitív elemnek pozitív elemet feleltet meg, azaz T

(
B (H1)+) ⊆ B (H2)+. Akkor mondjuk,

hogy a T leképezés k-pozitív (k ∈ N), ha az

idB(Ck) ⊗ T : B
(
Ck
)
⊗ B (H1)→ B

(
Ck
)
⊗ B (H2)

leképezés pozitív. Ha a T leképezés minden k természetes számra k-pozitív, akkor telje-
sen pozitívnak mondjuk. A teljesen pozitív nyomtartó leképezéseket pedig sztochasztikus
leképezéseknek nevezzük.

Sztochasztikus leképezéseket – másnéven kvantum csatornákat – a 4. fejezetben tár-
gyaljuk majd részletesen.

1.2.2. Definíció. A (gn)n∈N+ metrika családot monoton metrika családnak nevezzük, ha
gn Riemann metrika a Dn állapottéren minden n ∈ N+ esetén, továbbá minden T : Dn →
Dm sztochasztikus leképezésre, minden ρ ∈ Dn állapotra és minden A ∈ TρDn érintőtérbeli
vektorra

(T ∗gm)(ρ)(A,A) = gm(T (ρ))(T (A), T (A)) ≤ gn(ρ)(A,A)

teljesül.
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Ha H Hilbert-tér, akkor a B (H) önadjungált elemein a B (H)+ pozitív kúp parciális
rendezést definiál az alábbi módon

A ≤ B ⇔ B − A ∈ B (H)+ A,B ∈ B (H)sa . (1.10)

A monoton metrika családok a klasszikus információelméletben definiált Fisher-féle in-
formáció kvantumos általánosításai, ezért gyakran kvantum Fisher-információnak hívják
őket. A klasszikus Fisher-információról és a kvantumos esetre történő általánosítással
kapcsolatos kérdésekről a [2] dolgozatban olvashatunk bővebben.

1.2.3. Definíció. Az f : [0,∞) → R függvény n-monoton, ha megtartja Msa
n,C elemein

a fent módon definiált parciális rendezést, vagyis

A ≤ B ⇒ f(A) ≤ f(B) ∀A,B ∈Msa
n,C

teljesül. Akkor mondjuk, hogy az f függvény operátormonoton, ha minden n pozitív
egészre n-monoton.

Egy f : R+ → R operátormonoton függvényt szimmetrikusnak nevezünk, ha ∀x ∈ R+

esetén fennáll az

f(x) = xf

(
1

x

)
egyenlőség. Egy f operátormonoton függvény normált, ha az x = 0 pontra folytonosan
kiterjeszthető és f(1) = 1 teljesül.

A szimmetrikus, normált operátormonoton függvények összességét Fop-al jelöljük. Az
Fop halmaz két fontos részhalmaza

F rop = {f ∈ Fop | f(0) 6= 0} és Fnop = {f ∈ Fop | f(0) = 0}.

Számos monoton növő függvényről kiderül, hogy nem operátormonoton. Az x 7→ x2

függvény például mégcsak nem is 2-monoton. Ennek bizonyítása példával együtt meg-
található a [16] könyvben. Az exp : R →]0,∞[ exponenciális függvény szintén nem
operátormonoton, sőt Wu azt is megmutatta, hogy egy A C∗-algebra A+ pozitív kúpján
az exponenciális függvény pontosan akkor monoton, ha az A algebra kommutatív [86].

1.2.1. Példa. Az alábbi függvények mindegyike szimmetrikus, normált operátormonoton
függvény.

fSM(x) =
1 + x

2

fLA(x) =
2x

1 + x

fGM(x) =
√
x

fKM(x) =
x− 1

log(x)

fWY (x) =
1

4
(
√
x+ 1)2

fWYD(x) =
1− α2

4

(x− 1)2

(1− x 1−α
2 )(1− x 1+α

2 )
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Ezek után kimondhatjuk Petz híres osztályozási tételét, ami a monoton metrika csa-
ládok pontos karakterizációját adja.

1.2.1. Tétel (Petz, 1996). A monoton metrikacsaládok és a szimmetrikus, normált ope-
rátormonoton függvények között kölcsönösen egyértelmű megfeleltetés létesíthető. Ilyen
bijekciót például a következő módon lehet megadni.

(∀f ∈ Fop) (gf )n : Dn,K×Msa
n,K(0)×Msa

n,K(0)→ K (ρ,A,B) 7→ (gf )n(ρ)(A,B) (1.11)

(gf )n(ρ)(A,B) = tr

(
A
(

R
1
2
ρ f(LρR

−1
ρ )R

1
2
ρ

)−1

(B)

)
, (1.12)

ahol Lρ és Rρ ún. szuper operátorok (Bővebben lásd: az A.3. Függelékben). Az így
definiált megfeleltetés egy adott f operátormonoton függvényhez egy jól meghatározott
((gf )n)n∈N+ monoton metrika családot rendel és minden monoton metrikacsalád előállít-
ható ezen a módon egy alkalmas f ∈ Fop operátormonoton függvény segítségével.

Bizonyítás. A tétel bizonyítással együtt az [59] cikkben található meg.

Az A.3. Függelékben található (A.2) azonosítás révén a folytonos függvényszámítás
algebra morfizmus voltát felhasználva a (gf )n Riemann-metrika a

(gf )n(ρ)(A,B) = tr (A(Gf )n(ρ)(B)) A,B ∈Msa
n,K(0)

ekvivalens alakra írható át, ahol

(Gf )n(ρ) = (I ⊗ ρ−1/2)

(
1

f

)
(ρ⊗ ρ−1)(I ⊗ ρ−1/2)

és amiről a tr ciklikusságát kihasználva a metrika

(gf )n(UρU∗)(UAU∗, UBU∗) = (gf )n(ρ)(A,B) U ∈ U(n)

unitér invarianciája azonnal leolvasható.
Rátérünk a (gf )n metrika mátrixának a kiszámítására a Dn,K sokaság az 1.1.2. té-

telben bemutatott kanonikus koordinátázása mellett. A metrika imént belátott unitér
invarianciája miatt egy fix ρ ∈ Dn,K ponthoz választhatunk úgy {ek}k=1...n ortonormált
bázist, hogy ρ =

∑n
k=1 µkek⊗ek alakú legyen, ahol σ (ρ) = {µ1, . . . , µn}. A {ek⊗el}k,l=1...n

szorzat bázisban a

(Gf )n(ρ) = (I ⊗ ρ−1/2)

(
1

f

)
(ρ⊗ ρ−1)(I ⊗ ρ−1/2) =

n∑
k,l=1

1

µlf
(
µk
µl

) (ek ⊗ el)⊗ (ek ⊗ el)

(1.13)
spektrálfelbontást kapjuk.

1.2.2. Tétel. Tegyük fel, hogy a ρ ∈ Dn,K állapot az {ek}k=1...n ortonormált bázisban
ρ =

∑n
k=1 µkek ⊗ ek alakú, ahol σ (ρ) = {µ1, . . . , µn}. Ekkor a (1.12) formulával definiált
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(gf )n monoton metrika „mátrixa” TρDn,K ∼=Msa
n,K(0) 1.1.2. tételben definiált {ek∨el, ek∧

el}1≤k<l≤n ∪ {dk}k=1,2,...,n−1 bázisára vonatkozólag

(gf )n(ρ)(ek ∨ el, ek ∨ el) =
2

µlf
(
µk
µl

)
(gf )n(ρ)(ek ∧ el, ek ∧ el) =

2

µlf
(
µk
µl

)
(gf )n(ρ)(dk, dl) =

1

µn
+

1

µk
δk,l,

ahol minden más kombinációban a báziselemek (gf )n(ρ) által definiált belső szorzata nulla.
A fizikusok által kedvelt „ívelem-négyzetes” felírásban a metrika

ds2 =
∑

1≤k<l≤n

 2

µlf
(
µk
µl

) (( dek ∧ el)2 + ( dek ∨ el)2
)

+
1

µn
( ddk)( ddl)

+
n∑
k=1

1

µk
( ddk)

2

alakba írható.

Bizonyítás. Az (1.13) formulát felhasználva kapjuk, hogy

(Gf )n(ek ∨ el) =
1

µlf
(
µk
µl

)ek ∨ el
(Gf )n(ek ∧ el) =

1

µlf
(
µk
µl

)ek ∧ el
(Gf )n(dk) =

1

µk
ek ⊗ ek −

1

µn
en ⊗ en,

ahol (Gf )n(ek∨el) és (Gf )n(ek∧el) számolásánál az f operátormonotonfüggvény szimmet-
riáját, (Gf )n(dk) kiszámításánál pedig az f normáltságát használtuk. Ebből a metrika
bilinearitását ésMsa

n,K fent említett bázisának ortogonalitását felhasználva rövid számolás
után kapjuk az állítást.

1.2.1. Következmény. A metrika unitér invarianciájából és az 1.2.2 tételből az A.1.4
lemma felhasználásával következik, hogy ha σ(ρ) = {µ1, . . . , µn}, akkor (Dn, (gf )n) Riemann-
sokaság térfogati formája a ρ ∈ Dn pontban

√
det ((gf )n(ρ)) =

1√
det(ρ)

∏
0≤k<l≤n

 2

µlf
(
µk
µl

)
 d

2

, (1.14)

ahol d = dimR(K).

Szükséges még két fontos unitér-invariáns metrikát megemlítenünk az állapottéren.
Az egyik a Hilbert–Schmidt-metrika vagy más néven lapos metrika, melyet a

gHS(ρ)(A,B) = tr(AB) (1.15)
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formula definiál. Ennek előnye, hogy könnyű vele számolni és szemléletes jelentéssel bír:
gHS(ρ)(A,B) egyszerűen az [Ai,j] és [Bi,j] mátrixelemekből alkotott n2-dimenziós vek-
torok standard belső szorzata. Hátránya, hogy semmilyen információelméleti jelentéssel
sem bír.

A normális eloszlás geometriájából származik a

gGM(ρ)(A,B) = tr(Aρ−1Bρ−1) ρ ∈ B
(
Kn×n)+ (1.16)

Thompson-metrika, amire formálisan gGM(ρ)(A,B) = (gfGM )n(ρ2)(A,B) teljesül. Ez
a metrika számos kellemes tulajdonsággal bír. Például nemcsak unitér invariáns, de
kongruencia invariáns is, ami azt jelenti, hogy tetszőleges S ∈ Kn×n mátrixra a

gGM(SρS∗)(SAS∗, SBS∗) = gGM(ρ)(A,B)

egyenlőség teljesül. Ennek fontos következménye, hogy a gGM metrikából származó
geodetikus távolság is kongruencia invariáns. Hátránya, hogy a Dn,K ⊆ B (Kn×n)

+ 1-
kodimenziós részsokaság nem totálgeodetikus részsokaság erre a metrikára nézve, ami
azonnal látható, ha tudjuk, hogy az A,B ∈ B (Kn×n)

+ pontokat összeköző geodetikus a

[0, 1] 3 t 7→ A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2 (1.17)

görbe, a gGM metrikából származó geodetikus távolgág pedig

δ(A,B) =
√

tr
(
log2(A−1/2BA−1/2)

)
, (1.18)

amiről megmutatható, hogy szintén kongruencia-invariáns.
Előrebocsátjuk, hogy a Thompson-metrikára nézve az A,B ∈ B (Kn×n)

+ pontokat
összekötő geodetikus felezőpontja az A és B mátrixok geometriai közepe. A gGM met-
rikáról további információ a [32] könyv 5.1. alfejezetében található. A fenti két metrika
egyike sem monoton metrika, így nem származtathatók szimmetrikus, normált operátor-
monoton függvényekből. A kvantummechanikai állapottér térfogatát a Hilbert–Schmidt-
metrikából származó térfogatra nézve Andai [1] és Życzkowski határozták meg [37].

Jogosan vetődhet fel a kérdés az Olvasóban, hogy eddig miért csak az állapottér
belsejével foglalkoztunk és az állapottér pereméről, valamint a tiszta állapotokról nem
mondtunk semmit sem. A helyzet az, hogy a Dn állapottér peremes sokaság struktúrával
látható el, a tiszta állapotok ∂Dn peremen helyezkednek el. A monoton metrika családok
állapottér peremére történő radiális kiterjeszthetőségét Petz és Sudár vizsgálták [59]. Azt
találták, hogy egy (gf )n monoton metrika pontosan akkor terjeszthető ki tiszta állapotok-
ra, ha a metrikát indexelő f szimmetrikus, normált operátor monoton függvény reguláris,
azaz f(0) 6= 0. Megmutatható az is, hogy a kiterjesztett metrika a tiszta állapotokon
a CP dim(H)−1 komplex projektív térről visszahúzott Fubini–Study metrika számszorosa
lesz.

A fejezet hátralevő részében operátor monoton függvényekből származtatható operá-
torközepekkel, operátor monoton függvények integrál reprezentációival és egyéb, későb-
biekben hasznos operátor monoton függvényekkel kapcsolatos tételekkel foglalkozunk.
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1.2.4. Definíció. Egy (mn)n∈N+ függvénycsaládot mátrixközépnek hívunk, ha

mn : (Msa
n,K)+ × (Msa

n,K)+ → (Msa
n,K)+ ∀n ∈ N+

leképezés, amely a következő tulajdonságokkal rendelkezik

1. ∀A ∈Msa
n,K mn(A,A) = A,

2. ∀A,B ∈Msa
n,K mn(A,B) = mn(B,A),

3. ∀A,B ∈Msa
n,K A ≤ B ⇒ A ≤ mn(A,B) ≤ B,

4. ∀S ∈ Cn×n ∀A,B ∈Msa
n,K Smn(A,B)S∗ ≤ (SAS∗, SBS∗).

Az (mn)n∈N+ függvénycsaládtól megköveteljük továbbá, hogy teljesítse az

∀λ, µ > 0 : mn(λ.idCn , µ.idCn) = m1(λ, µ) n ∈ N+

konzisztencia feltételt.

Megállapodunk, hogy a továbbiakban a mátrixközepek indexelését elhagyjuk, azaz
az (mn)n∈N+ függvénycsalád minden tagját egységesen m-el jelöljük. Ando és Kubo ja-
pán matematikusok megmutatták, hogy az alfejezet elején bevezetett operátor monoton
függvények és a fent definiált mátrixközepek között kölcsönösen egyértelmű megfeleltetés
létesíthető [42].

1.2.3. Tétel (Ando, Kubo). Tetszőlegesm mátrixközéphez egyértelműen megadható olyan
f : [0,∞)→ [0,∞) operátormonoton függvény, melyre ∀t ∈ R+ esetén

f(t)I = m(I, tI) (t > 0)

teljesül, továbbá 0 < A és 0 ≤ B mátrixok esetén az

m(A,B) = A1/2f
(
A−1/2BA−1/2

)
A1/2 = f

(
BA−1

)
A

egyenlőség áll fenn.

Bizonyítás. A tétel bizonyítása a [32] könyv 198–199. oldalán található.

Az f operátor monoton függvényhez asszociált mátrixközepet mf -el jelöljük. Ha egy
pillantást vetünk a monoton metrikák Petz-tételben szereplő (1.12) alakjára, akkor felfe-
dezhetjük, hogy a statisztikai sokaság „görbültségéért” felelős (Gf )n(ρ) szuperoperátor

(Gf )n(ρ) = mf (Lρ,Rρ)
−1 (1.19)

alakba írható. Ez motiválja, hogy bevezessük a cf = m−1
f ún. Cenzov–Morozova függ-

vényt, ami a későbbiekben nagyban egyszerűsíti jelöléseinket. Az elnevezés a monoton
metrikákkal kapcsolatos Cenzov–Morozova-tételből ered, amiről bővebben a [2] dolgozat
114. oldalán olvashatunk.

A következő példa mutatja, hogy sok közismert, pozitív számpárokon értelmezett
közép igazából valamilyen mátrixközép speciális esete.



1.2. OPERÁTORMONOTON FÜGGVÉNYEK ÉS MONOTON METRIKÁK 15

1.2.2. Példa. Az 1.2.1 Példában bemutatott fSM , fGM és fLA operátor monoton függ-
vények rendre a számtani, mértani és harmonikus középnek megfelelő mátrixközepeket
indukálják, melyekre az alábbi jelöléseket vezetjük be

(∀A,B ∈Msa
n,K)+ : A∇B : = mfSM (A,B) =

1

2
(A+B)

(∀A,B ∈Msa
n,K)+ : A#B : = mfGM (A,B) = A

1
2 (A−

1
2BA−

1
2 )

1
2A

1
2

(∀A,B ∈Msa
n,K)+ : A!B : = mfLA(A,B) = 2(A−1 +B−1)−1.

Ando és Kubo igazolták azt is, hogy csakúgy mint a pozitív számpárokon értelmezett
közepeknél a mátrixok számtani közepe a legnagyobb és a mátrixok harmonikus közepe
a legkisebb, azaz

A ≤ A!B ≤ m(A,B) ≤ A∇B 0 ≤ A ≤ B

teljesül mindenmmátrixközépre. Érdemes még itt megemlíteni az A#B geometriai közép
további két figyelemre méltó tulajdonságát. Ha A és B pozitív szemidefinit mátrixok, A
pedig invertálható, akkor a pozitív mátrixok kúpja által definiált részbenrendezésre nézve
a legnagyobb X pozitív mátrix, melyre az(

A X
X B

)
mátrix pozitív éppen az A és B mátrixok A#B geometriai közepe. A geometriai közép
ezen karakterizációjából levezethető, hogy ha P,Q projekciók valamely H véges dimen-
ziós Hilbert-téren, akkor a H projekció hálóban az általunk korábban geometriai úton
értelmezett P ∧Q mennyiség

P ∧Q = P#Q

alakot ölt. További sok érdekes, mátrixközepekkel kapcsolatos tételről a [32] könyv 5.1.
fejezetében olvashatunk.

1.2.4. Tétel. Az f ∈ F rop reguláris operátor monoton függvényhez

f̃(x) =
1

2

(
(1 + x)− (1− x)2 f(0)

f(x)

)
,

összefüggés által rendelt f̃ függvény operátor monoton, az f 7→ f̃ hozzárendelés pedig
bijekció az F rop és Fnop halmazok között. Minden g ∈ Fnop operátor monoton függvény-
hez egyértelműen létezik olyan µg valószínűségi mérték a [0, 1] intervallumon, hogy a g
függvény

x

g(x)
=

∫ 1

0

1 + t

2

(
1

x+ t
+

1

1 + tx

)
dµg(t) x ∈ R+

integrál integrál alakban áll elő, továbbá az

1

fg(x)
=

∫ 1

0
t

1+t

(
1
x+t

+ 1
1+tx

)
dµg(t)∫ 1

0
t

1+t

(
1

1+t
+ 1

1+t

)
dµg(t)

integrállal definiált fg függvény reguláris operátor monoton függvény, melyre f̃g = g tel-
jesül.
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Bizonyítás. A bizonyítás a [23] cikkben található meg.

1.2.1. Megjegyzés. Az szimmetrikus, normált operátor monoton függvények pontonkénti
rendezésére nézve az f(0)

f(x)
7→ f̃(x) hozzárendelés rendezés fordító, ezért a f(0)

f(x)
mennyiség

az f = fSM operátor monoton függvény esetén maximális.

A szimmetrikus normált operátor monoton függvények és a [0, 1] intervallum Borel
σ-algebráján értelmezett valószínűségi mértékek között kölcsönösen egyértelmű megfelel-
tetés létesíthető. Erről szól a következő tétel.

1.2.5. Tétel. Tetszőleges g ∈ Fop operátor monoton függvényhez egyértelműen lézetik µ
valószínűségi mérték a [0, 1] intervallumon, melyre a g függvény reciproka

1

g(x)
=

∫
[0,1]

1 + t

2

(
1

x+ t
+

1

1 + tx

)
dµ(t) x ∈ R+

integrál alakban áll elő.

Bizonyítás. A bizonyítás a [11] és [30] cikkekben található meg.

1.3. Összefoglalás
A fejezet a dolgozat megértéséhez nélkülözhetetlen kvantum információ geometriai

ismereteket tartalmazza.

1. A kvantum valószínűségszámítás hálóelméleti vonatkozásaiból kiindulva bevezettük
kvantum információ geometria alapvető objektumát, a kvantummechanikai állapotte-
ret.

2. Megmutattuk, hogy a véges dimenziós Hilbert-terekkel leírt kvantum mechanikai rend-
szerek állapotterének belseje sima sokaság struktúrával látható el, továbbá ezen soka-
ság érintőterei a zérus nyomú fizikai mennyiségek vektorterével azonosíthatók.

3. Definiáltuk a sztochasztikus leképezéseket és monoton metrikákat.

4. Bevezettük a szimmetrikus, normált operátor monoton függvények családját és ki-
mondtuk Petz híres osztályozási tételét, amely kölcsönösen egyértelmű megfeleltetést
létesít ezen függvénycsalád és a monoton metrika családok között.

5. Végezetül a fejezet végén az operátor monoton függvényekkel és a hozzájuk asszociált
mátrix közepekkel kapcsolatos alapvető ismereteket foglaltuk össze.



2. fejezet

Határozatlansági relációk

A Kolmogorov-féle klasszikus valószínűségszámítás egyX valószínűségi változó szórás-
négyzetét a D2(X) = E(X2)− E(X)2 formulával értelmezi. Ez minden további nehézség
nélkül átvihető kvantumos esetre.

2.0.1. Definíció. Az A ∈ Msa
n,K fizikai mennyiség szórásnégyzetét – más szóval varian-

ciáját – a ρ ∈ Dn,K állapotban

D2
ρ(A) = Eρ(A2)− Eρ(A)2 = tr(ρA2)− tr(ρA)2 (2.1)

módon értelmezzük.

A klasszikus kovariancia fogalom kvantumos általánosítása ennél jóval nehezebb fel-
adat. Klasszikus esetben az X és Y valószínűségi változók kovarianciája Cov(X, Y ) =
E(XY )− E(X)E(Y ). Ennek formális általánosítása kvantumos esetre

Covρ(A,B) = Eρ(AB)− Eρ(A)Eρ(B) A,B ∈Msa
n,K ρ ∈ Dn,K

lenne, ami egymással nem felcserélhető A,B fizikai mennyiségek esetén két problémát is
felvet. Az egyik az, hogy [A,B] 6= 0 esetén AB nem önadjungált, azaz nem fizikai mennyi-
ség, következésképpen Eρ(AB) modellünkből nézve értelmezhetetlen. A másik probléma
az, hogy ha A és B nem felcserélhetők, akkor a fenti formális általánosítás változóiban
egy nem szimmetrikus kovariancia függvényt definiál. Ezen problémák feloldása céljából
Schrödinger 1930-ban bevezette a

Covρ(A,B) = Eρ
(

1

2
(AB +BA)

)
− Eρ(A)Eρ(B) A,B ∈Msa

n,K ρ ∈ Dn,K (2.2)

kvantum kovarianciát [67], amely kvantum valószínűségszámítás keretei között jól defini-
ált, változóiban már szimmetrikus mennyiség.

A Schrödinger által bevezetett kovarianciáról kiderül, hogy a nem felcserélhető fizikai
mennyiségek kovarianciája – több mennyiség esetén pedig a kovariancia mátrix determi-
nánsa – alulról becsülhető olyan mennyiségekkel, melyek a tekintett fizikai mennyiségek
és a rendszert leíró állapot felcserélhetőségét mérik. Az ilyen típusú egyenlőtlenségeket
összefoglaló néven határozatlansági relációknak nevezzük. A határozatlansági relációk lé-
tezése tipikusan nemkommutatív jelenség, mely klasszikus esetben arra a triviális tényre

17
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redukálódik, hogy a klasszikus valószínűségi változók kovariancia mátrixa pozitív szemi-
definit.

A fejezetben a határozatlansági relációk egy speciális típusát az ún. dinamikai hatá-
rozatlansági relációkat tanulmányozzuk. Ezek közös vonása, hogy a kvantum kovariancia
mátrix determinánsát alulról becslő mennyiség világos információgeometriai interpretá-
cióval bír, ugyanakkor maga a kvantum kovariancia mátrix geometriai jelentése ezidáig
tisztázatlan volt. A klasszikus kovariancia különböző lehetséges kvantumos általánosítá-
sait vizsgálva bevezetjük az ún. szimmetrikus kovariancia családot, melynek tagja többek
között a Schrödinger-féle (2.2) kvantum kovariancia is. A szimmetrikus kovariancia csa-
lád tagjai a tekintett statisztikai sokaság geometriájából származtathatók, és a belőlük
származó kovariancia mátrixok determinánsai a dinamikai határozatlansági relációkhoz
hasonló, azoknál általánosabb egyenlőtlenségeket elégítenek ki. A fejezetet ezen egyen-
lőtlenségek tanulmányozásának szenteljük. Az itt bemutatott eredményeinket az [5] és
[4] közleményekben jelentettük meg.

2.1. Történeti áttekintés
Werner Heisenberg a róla elnevezett, azóta híressé vált kvantummechanikai határo-

zatlansági elvet gondolatkísérletekből és a kvantummechanika Bohr-féle posztulátumából
származtatta 1927-ben heurisztikus meggondolások segítségével [31]. A Heisenberg-féle
határozatlansági-elv eredeti formájában kimondja, hogy egy részecske helyét és impulzu-
sát egyszerre nem lehet tetszőleges pontossággal megmérni. Amennyiben ∆x [m] jelöli a
hely mérés bizonytalanságát, ∆p

[
kg·m

s

]
pedig az impulzus mérés bizonytalanságát, akkor

∆x ·∆p ≈ h, (2.3)

ahol h ≈ 6, 626·10−34J·s a Planck-állandó. Fontos kihangsúlyozni, hogy a Heisenberg-féle
határozatlansági-elv ebben a formájában csupán egy fizikai elv és nem precíz matematikai
tétel.

A Heisenberg határozatlansági-elvet még ugyanebben az évben Kennard és Weyl fo-
galmazta meg korrektül és bizonyította be [39]. A Kennard és Weyl által bizonyított
változat (2.4) a hely és impulzus szórásának (σx, illetve σp) szorzatára szolgáltat alsó
becslést.

σx · σp ≥
h

4π
=

~
2

(2.4)

Kennard és Weyl becslését 1929-ben Robertson általánosította tetszőleges fizikai mennyi-
ségekre [60]. A Robertson-féle általánosítás az A és B fizikai mennyiség szórásainak
szorzatára a

D2
ρ(A)D2

ρ(B) ≥ 1

4
|Eρ (i[A,B])|2

becslést adja. A Robertson-féle határozatlansági relációt Schrödinger 1930-ban a követ-
kezőképpen élesítette [67].

2.1.1. Tétel (Schrödinger). Az A,B ∈ Msa
n,K fizikai mennyiségek tetszőleges ρ ∈ Dn,K

állapotban eleget tesznek a

D2
ρ(A)D2

ρ(B)− Covρ(A,B)2 ≥ 1

4
|Eρ (i[A,B])|2



2.1. TÖRTÉNETI ÁTTEKINTÉS 19

egyenlőségnek, ahol Cov a (2.2) formulával definiált kvantum kovariancia.

Bizonyítás. Legyen A,B ∈Msa
n,K tetszőleges fizikai mennyiség, ρ ∈ Dn,K pedig tetszőleges

állapot. Az A,B fizikai mennyiségek

A0 = A− Eρ(A)I

B0 = B − Eρ(B)I

centráltjaira a
|tr(ρA0B0)|2 ≤ D2

ρ(A)D2
ρ(B) (2.5)

Cauchy–Schwartz–Bunyakovszkij-egyenlőtlenség teljesül, hiszen az (A,B) 7→ tr(ρA∗B)
hozzárendelés belső szorzást definiál a TρDn,K érintőtéren. Az kapott egyenlőtlenség bal
oldalán álló mennyiséget kifejtve a

|tr(ρA0B0)|2 = Covρ(A,B)2 +
1

4
|Eρ (i[A,B])|2

alakot kapjuk, amit visszaírva a (2.5) egyenlőtlenségbe és átrendezve azt a

D2
ρ(A)D2

ρ(B)− Covρ(A,B)2 ≥ 1

4
|Eρ (i[A,B])|2

bizonyítandó egyenlőtlenséget nyerjük.

A Schrödinger által bizonyított élesebb határozatlansági reláció

det

(
Covρ(A,A) Covρ(A,B)
Covρ(B,A) Covρ(B,B)

)
≥ det

(
Eρ
(

i
2
[A,A]

)
Eρ
(

i
2
[A,B]

)
Eρ
(

i
2
[B,A]

)
Eρ
(

i
2
[B,B]

) ) (2.6)

átfogalmazásában a bal oldalon az A és B fizikai mennyiségek kovariancia mátrixá-
nak determinánsa jelenik meg. Ezt a megfigyelést felhasználva 1934-ben Robertson a
Schödinger-féle határozatlansági relációt tetszőleges számú fizikai mennyiségre általáno-
sította [61].

2.1.2. Tétel (Robertson). Fizikai mennyiségek tetszőleges (Ak)k=1,...,N ⊂Msa
n,K rendsze-

rére fennáll a

det
(

[Covρ(Ak, Al)]k,l=1,...N

)
≥ det

([
Eρ
(

i

2
[Ak, Al]

)]
k,l=1,...,N

)
ρ ∈ Dn,K (2.7)

determináns egyenlőtlenség.

Bizonyítás. A bizonyítás Robertson [61] cikkében található meg.

A Robertson-féle határozatlansági reláció szembeötlő hátránya, hogy páratlan számú
fizikai mennyiséget véve a (2.7) egyenlőtlenség jobb oldalán nulla szerepel, azaz semmivel
sem kapunk többet, mint klasszikus esetben.
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Gibilisco és Isola 2006-ban publikálta sejtését [26], miszerint fizikai mennyiségek tet-
szőleges (Ak)k=1,...,N ⊂Msa

n,K rendszere teljesíti a

det
(

[Covρ(Ak, Al)]k,l=1,...N

)
≥ det

([
f(0)

2
(gf )n(ρ)(i[ρ,Ak], i[ρ,Al])

]
k,l=1,...N

)
ρ ∈ Dn,K

(2.8)
determináns egyenlőtlenséget, ahol f ∈ Fop operátor monoton függvény. A (2.8) egyen-
lőtlenséget először N = 1-re és néhány speciális operátor monoton függvényre vizsgál-
ták. Az N = 1 és f = fSM valamint f = fWY eseteket (a függvényeket illetően lásd:
1.2.1. Példa) Luo bizonyította [45, 46]. Az N = 1 esetet általános indexelő operátor
monoton függvény mellett Hansen bizonyította be [30]. Röviddel ezt követően – Han-
sentől függetlenül – Gibilisco, Imperato és Isola is bizonyították a sejtést ugyancsak az
N = 1 esetre, de lényegesen különböző technikát használva [25]. Két fizikai mennyiség
esetére az f = fWY függvényből származó Wigner–Yanase-metrika mellett a sejtést Luo,
Q. Zhang és Z. Zhang igazolta [47, 48, 49]. Ugyancsak két fizikai mennyiségre, de az
fβ(x) = β(1−β)(x−1)2

(xβ−1)(x1−β−1)
(β ∈ [−1, 2] \ {0, 1}) Wigner–Yanase–Dyson operátor monoton

függvényből származó metrikával ellátott állapottérre egymástól függetlenül Kosaki [41]
és a Yanagi, Furuichi, Kuriyama [88] hármas bizonyította a sejtést. Két fizikai mennyi-
ség esetére általános monoton metrikával ellátott állapottér mellett Gibilisco, Imparato
és Isola bizonyította a sejtést [25, 26]. Gibilisco és Isola (2.8) sejtését az eredeti formá-
jában, tetszőleges számú fizikai mennyiségre Andainak sikerült bizonyítani [3]. A (2.8)
egyenlőtlenséget az irodalomban gyakran dinamikai határozatlansági reláció névvel illetik
[24], mert az egyenlőtlenség jobb oldala úgy interpretálható, mint az Ak(t) = ei tρAke

− i tρ

k = 1, 2, . . . , n időfüggő fizikai mennyiségek t = 0 időponthoz tartozó érintővektorai által
kifeszített paralellepipedon térfogata.

Gibilisco, Hiai és Petz tanulmányozták először a klasszikus kovariancia Schrödinger-
által bevezetett kvantum kovarianciától eltérő lehetséges általánosításait statisztikai so-
kaságok esetére. Megkövetelték, hogy a fizikai mennyiségek közti kvantum kovariancia
sztochasztikus leképezések hatására monoton módon változzon és az állapottól simán
függjön. Ilyen erős megszorítások mellett kovariancia gyanánt az alábbi, monoton metri-
kákhoz hasonló módon definiált

Covf (ρ)(A,B) = tr(Af(Lρ,R
−1
ρ )Rρ(B)) f ∈ Fop ρ ∈ Dn,K A,B ∈Msa

n,K (2.9)

mennyiségek jöhetnek csak szóba [57], melyeket Petz-féle f -kovarianciáknak fogunk ne-
vezni. Ezekre a kovarianciákra a

det
([

Covf1(ρ)(Ak, Al)
]
k,l=1,...,N

)
≥ det

(
[f1(0)f2(0)(gf2)n(ρ)(i[ρ,Ak], i[ρ,Al])]k,l=1,...N

)
ρ ∈ Dn,K határozatlansági reláció teljesül minden f1, f2 ∈ F rop operátor monoton függ-
vényre és zérusnyomú fizikai mennyiségek tetszőleges (Ak)k=1,...,N ⊂Msa

n,K(0) rendszerére
[24]. A legélesebb egyenlőtlenséget pedig az f1(x) = 1+x

2
választás mellett kapjuk. Mi

egy, a fentitől eltérő általánosítást mutatunk, ahol a határozatlansági reláció bal olda-
lán álló kovariancia determinánsa mátrix a jobb oldalon szereplő mennyiséghez hasonló
geometriai interpretációval bír.
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2.2. Kapcsolat az állapottér geometriájával

A kvantummechanikai állapottereken unitér invariáns metrikák egy tágabb osztályát
definiáljuk, melynek a Petz által bevezetett monoton metrikák valódi részét képzik, a
belőlük származtatott különféle kvantum kovarianciák pedig dinamikai típusú határozat-
lansági relációkat elégítenek ki.

2.2.1. Definíció. Egy c : [0, 1]2 → R+ szimmetrikus függvényt Cenzov–Morozova-függ-
vénynek nevezünk, ha [0, 1]2 ⊂ C2 egy nyílt környezetére mindkét változójában holomorf
függvényként terjeszthető ki. A Cenzov–Morozova-függvények halmazát CM jelöli.

2.2.1. Tétel. Tetszőleges c ∈ CM Cenzov–Morozova-függvény unitér invariáns Riemann
metrikát indukál a Dn,K állapottereken a

gc(ρ)(A,B) = tr (Ac(Lρ,Rρ)(B)) A,B ∈Msa
n,K(0) ρ ∈ Dn,K

hozzárendelésen keresztül, ahol a c(Lρ,Rρ) : Kn×n → Kn×n szuperoperátort a Riesz–
Dunford holomorf függvénykalkulust felhasználva, a

c(Lρ,Rρ) =
1

(2π i)2

∮
Γ

∮
Γ

c(ξ, η)(ξI − Lρ)
−1 ◦ (ηI − Rρ)

−1 dξ dη

formulával értelmezzük. Itt Γ ⊂ C olyan folytonosan differenciálható görbét jelöl, melyre
Ran(Γ)×Ran(Γ) a c függvény holomorf kiterjesztésének értelmezési tartományába esik és
Γ minden σ (ρ)-beli pontot pozitív körüljárással pontosan egyszer kerül meg. Ha a ρ állapot
egy {ek}k=1...,n ortonormált bázisban diagonális σ (ρ) = {µ1, . . . , µn} sajátértékekkel, akkor
a metrika

gc(ρ)(A,B) =
n∑

k,l=1

AklBklc(µk, µl) (2.10)

alakot ölt.

Bizonyítás. Legyen ρ ∈ Dn,K rögzített. AMsa
n,K(0) 3 B 7→ c(Lρ,Rρ)(B) leképezés lineá-

ritása a

c(Lρ,Rρ)(B) =
1

(2π i)2

∮
Γ

∮
Γ

c(ξ, η)(ξI − ρ)−1B(ηI − ρ)−1 dξ dη

egyenlőségről azonnal leolvasható. Ebből rögtön következik, hogy a gc(ρ) leképezés bili-
neáris formamezőt határoz meg a Dn,K állapottéren. Ezen formamező simasága a

gc(ρ)(A,B) =
1

(2π i)2

∮
Γ

∮
Γ

c(ξ, η) tr
(
A(ξI − ρ)−1B(ηI − ρ)−1

)
dξ dη (2.11)

alakról látható leginkább. Ugyancsak a (2.11) egyenlet mutatja a gc bilineáris forma-
mező unitér invarianciáját, amihez persze a nyomképzés ciklikus tulajdonságát is fel kell
használni.
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Legyen {ek}k=1...,n ortonormált bázis, melyben a ρ ∈ Dn,K állapot diagonális σ (ρ) =

{µ1, . . . , µn} sajátértékekkel, azaz ρ =
n∑
k=1

ek ⊗ ek. A (2.11) egyenlőségbe az {Ekl =

ek ⊗ el}k,l=1,...,n mátrix egységeket írva a

gc(ρ)(ei ⊗ ej, ep ⊗ eq) =
1

(2π i)2

∮
Γ

∮
Γ

n∑
k,l=1

c(ξ, η)

(ξ − µk)(η − µl)
tr (EijEkkEpqEll) dξ dη

= δi,pδj,q
1

(2π i)2

∮
Γ

∮
Γ

c(ξ, η)

(ξ − µi)(η − µj)
dξ dη = c(µi, µj)δi,pδj,q

formulát kapjuk, amiből a gc(ρ) forma bilinearitását használva a (2.10) bizonyítandó
egyenlőséget nyerjük. Rögzített ρ ∈ Dn,K állapotban mindig megadható olyan bázis,
melyben a metrika (2.10) alakba írható, amiről a c függvény pozitivitását figyelembe
véve látszik, hogy pozitív definit bilineáris formát határoz meg.

2.2.2. Definíció. Az A ∈Msa
n,K fizikai mennyiség ρ ∈ Dn,K állapotbeli centráltján az

A0 = A− Eρ(A)I

fizikai mennyiséget értjük, ami zérusnyomú fizikai mennyiség s így a A ∈ Msa
n,K(0) ∼=

TρDn,K érintőtér elemének tekinthető.

A dinamikai határozatlansági relációk egytől egyig a következő megfigyelésre vezet-
hetők vissza. A Cenzov–Morozova-függvények között a szokásos pontonkénti rendezés az
ezen függvényekhez asszociált metrikák Gram-mátrixainak determinánsai közt ugyanilyen
irányú egyenlőtlenséget indukál. Erről szól az alábbi tétel.

2.2.2. Tétel. Legyen ρ ∈ Dn,K rögzített állapot, c1, c2 ∈ CM pedig Cenzov–Morozova-
függvények, melyekre a ρ ∈ Dn,K pontban a

c1(µi, µj) ≥ c2(µi, µj) ∀µi, µj ∈ σ (ρ) (2.12)

egyenlőtlenség teljesül. Fizikai mennyiségek tetszőleges (Ak)k=1,...,N rendszerére definiáljuk
a

(Ck)ij = gck(ρ)((Ai)0 , (Aj)0) k = 1, 2

N ×N-es Gram-mátrixokat. Ilyen feltételek mellett a C1 és C2 Gram-mátrixok determi-
nánsaira a

det(C1) ≥ det(C2) + det(C1 − C2) +R(ρ, c1, c2, N) (2.13)

egyenlőtlenség teljesül, ahol

R(ρ, c1, c2, N) =
N−1∑
k=1

(
N

k

)
det(C1)

k
N det(C1 − C2)

N−k
N .

Bizonyítás. A 2.2.1. tételben beláttuk, hogy a Cenzov–Morozova-függvényekből szárma-
zó metrikák unitér invariánsak, ezért feltehető, hogy a ρ ∈ Dn,K állapot diagonális. A C1
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és C2 mátrixok értelmezésükből fakadóan valós elemű szimmetrikus mátrixok. A követ-
kező rövid számolás mutatja, hogy a C1−C2 mátrix pozitív szemidefinit. Legyen x ∈ Cn

tetszőleges és X =
N∑
j=1

xj (Aj)0. Ekkor írhatjuk, hogy

〈(C1 − C2)x, x〉 =
N∑

i,j=1

xixj
(
c1(ρ)((Ai)0 , (Aj)0)− c2(ρ)((Ai)0 , (Aj)0)

)
=

N∑
i,j=1

n∑
k,l=1

(c1(ρ)(µk, µl)− c2(ρ)(µk, µl))xixj [(Ai)0]kl
[
(Aj)0

]
kl

=
n∑

k,l=1

(c1(ρ)(µk, µl)− c2(ρ)(µk, µl))

(
N∑
i=1

xi [(Ai)0]kl

)(
N∑
j=1

xj
[
(Aj)0

]
kl

)

=
n∑

k,l=1

(c1(ρ)(µk, µl)− c2(ρ)(µk, µl))|Xkl|2 ≥ 0

ugyanis a (2.12) egyenlőtlenség értelmében az összeadandók nemnegatívak. Hasonló szá-
molással mutatható ki a C1 és C2 mátrixok pozitív szemidefinitsége is.

Ezek után az A.2.5 Brunn–Minkowski determináns egyenlőtlenséget a C2 és C1 − C2

valós elemű, pozitív szemidefinit mátrixokra alkalmazva a bizonyítandó egyenlőtlenséggel
ekvivalens

det(C2 + (C1 − C2))
1
N ≥ det(C2)

1
N + det(C1 − C2)

1
N

egyenlőtlenséget nyerjük.

2.2.1. Megjegyzés. A 2.2.2. tétel egy gyengített változatát kapjuk, ha a (2.13) egyen-
lőtlenség jobb oldalán szereplő R(ρ, c1, c2, N) tagot elhagyjuk. A későbbiekben többnyire
ezzel az alakkal fogunk dolgozni.

2.3. Szimmetrikus és antiszimmetrikus kvantum kovari-
anciák

Az alábbi definíción keresztül bevezetjük az ún. szimmetrikus és antiszimmetrikus
f -kovarianciákat. Antiszimmetrikus kovarianciákkal már eddig is találkozhattunk a (2.8)
dinamikai határozatlansági reláció jobb oldalán, csak eddig nem neveztük őket így. A
szimmetrikus kovariancia ezzel szemben teljesen új, általunk bevezetett kovariancia típus.

2.3.1. Definíció. Legyen f ∈ Fop operátor monoton függvény, ρ ∈ Dn,K pedig egy rögzített
állapot. Az A,B ∈ Msa

n,K obszervábilisek ρ pontbeli szimmetrikus és antiszimmetrikus f-
kovarianciáját rendre a

Covsf (ρ)(A,B) =
f(0)

2
(gf )n({ρ,A0}, {ρ,B0})

Covasf (ρ)(A,B) =
f(0)

2
(gf )n(i[ρ,A0], i[ρ,B0])

mennyiségekkel definiáljuk, ahol A0 és B0 az A és B fizikai mennyiségek ρ állapotbeli
centráltjai, {ρ,A0} = ρA0 + A0ρ pedig az antikommutátor.
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Mindkét fent definiált kovariancia család világos geometriai tartalommal bír. Az an-
tiszimmetrikus kovarianciák és a belőlük származtatott kovariancia mátrixok geometri-
ai jelentését a határozatlansági relációk történeti áttekintésének végén már tisztáztuk.
A szimmetrikus kovarianciákhoz analóg geometriai jelentés társítható. A Covsf (ρ)(A,B)
szimmetrikus f -kovariancia az A(t) = etρA0e

tρ és B(t) = etρB0e
tρ időfüggő fizikai mennyi-

ségek t = 0 időponthoz tartozó érintővektorai által kifeszített paralelogramma terüle-
te. Ha az f ∈ Fop operátor monoton függvény szinguláris, azaz f(0) = 0, akkor a
Covsf (ρ)(A,B) = Covsf (ρ)(A,B) = 0 triviális esetet kapjuk.

2.3.1. Tétel. Legyen f ∈ Fop operátor monoton függvény, A,B ∈ Msa
n,K fizikai mennyi-

ségek, ρ ∈ Dn,K pedig állapot, melyről feltesszük, hogy diagonális. Ekkor az A és B fizikai
mennyiségek szimmetrikus és antiszimmetrikus f -kovarianciái

Covsf (ρ)(A,B) =
f(0)

2

n∑
k,l=1

(µk + µl)
2

mf (µk, µl)
[A0]lk [B0]kl

Covasf (ρ)(A,B) =
f(0)

2

n∑
k,l=1

(µk − µl)2

mf (µk, µl)
[A0]lk [B0]kl

alakba írhatók, ahol σ (ρ) = {µ1, . . . , µn}, mf pedig az f függvényhez asszociált mátrixkö-
zép.

Bizonyítás. A Cenzov–Morozova-függvény által indukált metrikák (2.10) lokális formájá-
ba az f függvényhez asszociált cf Cenzov–Morozova-függvényt írva kapjuk hogy

Covsf (ρ)(A,B) =
f(0)

2
(gf )n({ρ,A0}, {ρ,B0}) =

f(0)

2

n∑
k,l=1

cf (µk, µl){ρ,A0}kl{ρ,B0}kl

=
f(0)

2

n∑
k,l=1

cf (µk, µl)(µk + µl)
2 [A0]kl [B0]kl =

f(0)

2

n∑
k,l=1

(µk + µl)
2

mf (µk, µl)
[A0]kl [B0]kl

és

Covasf (ρ)(A,B) =
f(0)

2
(gf )n(i[ρ,A0], i[ρ,B0]) =

f(0)

2

n∑
k,l=1

cf (µk, µl)[ρ,A0]kl[ρ,B0]kl

=
f(0)

2

n∑
k,l=1

cf (µk, µl)(µk − µl)2 [A0]kl [B0]kl =
f(0)

2

n∑
k,l=1

(µk − µl)2

mf (µk, µl)
[A0]kl [B0]kl

ami épp a bizonyítandó volt.

A fenti lokális alak felhasználásával ellenőrizhetjük, hogy az fSM(x) = 1+x
2

operátor
monoton függvény éppen a Schrödinger által bevezetett (2.2) kvantum kovarianciát adja
a szimmetrikus esetben, azaz a

Covsf (ρ)(A,B) = Covρ(A,B) A,B ∈Msa
n,K ρ ∈ Dn,K

egyenlőség áll fenn. Tehát a Schrödinger-féle kvantum kovariancia a szimmetrikus kova-
rianciák családjába sorolható be.
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2.3.2. Definíció. Egy f ∈ Fop operátor monoton függvényhez definiáljuk az

fas(x) =
f(0)(1− x)2

2f(x)
és fs(x) =

f(0)(1 + x)2

2f(x)

függvényeket, melyekből a

casf (x, y) =
f(0)(x− y)2

2mf (x, y)
és csf (x, y) =

f(0)(x+ y)2

2mf (x, y)

Cenzov–Morozova típusú függvények

casf (x, y) = xfas

(y
x

)
és csf (x, y) = xfs

(y
x

)
módon származtathatók.

A 2.3.1. és a 2.2.1. tételeket egymással kombinálva és a fent bevezetett segédfüggvé-
nyeket felhasználva az alábbi érdekes következményhez jutunk.

2.3.1. Következmény. Tetszőleges f ∈ Fop operátor monoton függvényre és A,B ∈
Msa

n,K fizikai mennyiségre minden ρ ∈ Dn,K állapotban fennáll az

Covf (ρ)(A,B) = gmf (ρ)(A,B)

Covsf (ρ)(A,B) = gcsf (ρ)(A,B)

Covasf (ρ)(A,B) = gcasf (ρ)(A,B)

egyenlőség, mely jobb oldalán a megfelelő Cenzov–Morozova-függvény által indexelt met-
rika áll, mf pedig az f függvényhez tartozó közép.

2.4. Dinamikai határozatlansági relációk
Legyen f ∈ Fop egy rögzített operátor monoton függvény, ρ ∈ Dn,K pedig tetszőleges

állapot. Fizikai mennyiségek egy A = (Ak)k=1,...,N ⊂Msa
n,K rendszerének szimmetrikus és

antiszimmetrikus f -kovarianciáját a[
Covsf (ρ)(A)

]
ij

= Covsf (ρ)(Ai, Aj)[
Covasf (ρ)(A)

]
ij

= Covasf (ρ)(Ai, Aj)
(2.14)

N ×N -es kovariancia mátrixokkal definiáljuk.
A 2.3.1. következményt és a 2.2.2. tételt felhasználva az alábbi, kovariancia mátrixok

determinánsai közti egyenlőtlenségekkel kapcsolatos tételt kapjuk, ami a (2.8) dinamikai
határozatlansági reláció általánosításának tekinthető.

2.4.1. Tétel. Legyenek f1, f2 ∈ Fop operátor monoton függvények, melyekre az

f1(0)

f1(t)
≥ f2(0)

f2(t)
t ∈ [0,∞) (2.15)
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egyenlőtlenség teljesül. Ekkor fizikai mennyiségek tetszőleges A = (Ak)k=1,...,N ⊂ Msa
n,K

rendszerének kovariancia mátrixaira minden ρ ∈ Dn,K állapotban teljesülnek a

det
(
Covsfk(ρ)(A)

)
≥ det

(
Covasfk(ρ)(A)

)
k = 1, 2

det
(
Covsf1

(ρ)(A)
)
≥ det

(
Covsf2

(ρ)(A)
)

det
(
Covasf1

(ρ)(A)
)
≥ det

(
Covasf2

(ρ)(A)
) (2.16)

determináns egyenlőtlenségek.

Bizonyítás. Az f1 és f2 függvényekre megkövetelt (2.15) pontonkénti majorizáció a csfk és
casfk , k = 1, 2 Cenzov–Morozova-függvények között a

csfk(x, y) ≥ casfk(x, y) k = 1, 2

csf1
(x, y) ≥ csf2

(x, y)

casf1
(x, y) ≥ casf2

(x, y)

egyenlőtlenségeket indukálja, ahol x, y ∈ [0, 1].
A 2.2.2. tétel gyengített változatát (lásd: 2.2.1. megjegyzés) a fenti Cenzov–Morozova-

függvényekkel indexelt metrikákra alkalmazva és a a 2.3.1 következményt figyelembe véve
a bizonyítandó állítást kapjuk.

2.4.1. Következmény. Az 1.2.1. megjegyzés értelmében az t 7→ f(0)
f(t)

hányados, ahol
f ∈ Fop pontosan akkor maximális a szokásos pontonkénti rendezésre nézve, ha f = fSM a
számtani középnek megfelelő operátor monoton függvény. Ezt a 2.4.1. tétellel kombinálva
a

det
(
CovsfSM (ρ)(A)

)
≥ det

(
Covsf (ρ)(A)

)
≥ det

(
Covasf (ρ)(A)

)
f ∈ Fop

egyenlőtlenséget nyerjük, melynek csupán elejét és végét tekintve a bevezetőben említett
(2.8) Gibilisco-féle dinamikai határozatlansági relációt kapjuk vissza.

A fenti következmény szerint egy fix f ∈ Fop operátor monoton függvényhez tartozó
szimmetrikus kovarianciából származó kovariancia mátrix determinánsa mindig majorálja
az ugyanazon függvénynek megfelelő antiszimmetrikus kovarianciából származó kovarian-
ciamátrix determinánsát. A szóban forgó determinánsok közti hézag az fLA harmonikus
középhez tartozó operátor monoton függvényhez tartozó Petz-féle kovariancia kovariancia
mátrixának determinánsával becsülhető. Erről szól az alábbi tétel.

2.4.2. Tétel. Legyen f ∈ Fop rögzített operátor monoton függvény. Ekkor tetszőleges
A,B ∈Msa

n,K fizikai mennyiségekre minden ρ ∈ Dn,K állapotban érvényes a

2f(0)CovfLA(ρ)(A0, B0) ≤ Covsf (ρ)(A,B)−Covasf (ρ)(A,B) ≤ CovfLA(ρ)(A0, B0) (2.17)

becslés, továbbá fizikai mennyiségek tetszőleges A = (Ak)k=1,...,N rendszerét véve az

det
(
Covsf (ρ)(A)

)
− det

(
Covasf (ρ)(A)

)
≥ (2f(0))N det(CovfLA(ρ)(A0)) (2.18)

egyenlőtlenség teljesül, ahol CovfLA(ρ)(A0) azt a kovariancia mátrixot jelöli, melynek ij
eleme [

CovfLA(ρ)(A0)
]
ij

= CovfLA(ρ)
(
(Ai)0 , (Aj)0

)
.
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Bizonyítás. Vezessük be a # : Fop → Fop f(x) 7→ f#(x) = x
f(x)

involúciót (bővebben
lásd: [11] 2.5 Definíció). Tetszőleges g ∈ Fop operátor monoton függvényre teljesül, hogy
fLA(x) = 2x

1+x
≤ g(x), ezért azt kapjuk, hogy

fs(x)− fas(x) =
2f(0)x

f(x)
= 2f(0)f#(x) ≥ 2f(0)fLA(x),

amiből a bizonyítandó (2.17) egyenlőtlenségbeli alsó korlátot nyerjük. Az 1.2.4. tételt
követő 1.2.1 Megjegyzés szerint a

2f(0)x

f(x)
≤ 2x

1 + x
= fLA(x)

egyenlőtlenség teljesül, amiből a bizonyítandó (2.17) egyenlőtlenségbeli felső korlátot kap-
juk.

A 2.2.2. tételt a c1(x, y) = csf (x, y), c2(x, y) = casf (x, y) és a c1(x, y) = csf (x, y) −
casf (x, y), c2(x, y) = 2f(0)mfLA(x, y) függvénypárokra alkalmazva a

det
(
Covsf (ρ)(A)

)
− det

(
Covasf (ρ)(A)

)
≥ det

(
Covsf (ρ)(A)− Covasf (ρ)(A)

)
≥ (2f(0))N det(CovfLA(ρ)(A0))

bizonyítandó (2.18) egyenlőtlenséget kapjuk.

A 2.4.1. következményben szereplő egyenlőtlenség elejét és végét tekintve látható,
hogy az f = fSM operátor monoton függvény globális felső korlátot szolgáltat minden
antiszimmetrikus kovarianciához. Természetesen vetődik fel a kérdés, hogy létezik-e más
olyan f ∈ Fop operátor monoton függvény, melyre

det
(
Covsf (ρ)(A)

)
≥ det (Covash (ρ)(A)) ∀h ∈ Fop (2.19)

teljesül minden ρ ∈ Dn,K állapotban és fizikai mennyiségek tetszőleges A = (Ak)k=1,...,N

rendszerére. Megmutatjuk, hogy létezik ilyen függvény és megadjuk azt az f függvényt,
melyre (2.19) globális felső korlát optimális.

A 2.4.1. tétel értelmében elég találnunk olyan f ∈ F rop operátor monoton függvényt,
melyre az

f(0)(1 + x)2

2f(x)
≥ (1− x)2

2(1 + x)
(2.20)

egyenlőtlenség teljesül. Az 1.2.1 Megjegyzés szerint ez a feltétel az

f̃(x) ≤ 2x

1 + x

[
1 +

(
1− x
1 + x

)2
]

(2.21)

ekvivalens alakra írható át.

2.4.1. Lemma. Jelölje µ azt a valószínűségi Borel-mértéket a [0, 1] intervallumon, melyre
a g ∈ Fop operátor monoton függvény reciproka

1

g(x)
=

∫
[0,1]

1 + t

2

(
1

x+ t
+

1

1 + tx

)
dµ(t) x ∈ R+
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integrál alakban áll elő (lásd: 1.2.5. tétel). Ekkor ha µ({0}) < 1
2
, akkor létezik x > 0,

hogy
1

g(x)
<

1 + x

2x

1

1 +
(

1−x
1+x

)2

teljesül.

Bizonyítás. Ha µ({0}) < 1
2
, akkor válasszunk olyan ε > 0 számot, hogy µ([0, ε]) < 1

2

egyenlőtlenség teljesüljön és tekintsük az alábbi becslést

1

g(x)
=

∫
[0,1]

1 + t

2

(
1

x+ t
+

1

1 + tx

)
dµ(t) ≤ 1 + x

2x
µ([0, ε]) + µ((ε, 1])

(1 + ε)2

2ε
.

A ]0,∞[3 x 7→ 1+x
2x

1

1+( 1−x
1+x)

2 függvény értékkészlete alulról korlátos 1
2
alsó korláttal, amiből

a
1 + x

2x
µ([0, ε]) + µ(]ε, 1])

(1 + ε)2

2ε
<

1 + x

2x

1

1 +
(

1−x
1+x

)2

egyenlőtlenség következik, ha x elég kicsi.

Legyen µ olyan valószínűségi mérték a [0, 1] intervallumon, melyre µ({0}) = µ({1}) =
1
2
teljesül. A µ mértékkel előállított g ∈ Fop operátor monoton függvény reciproka

1

g(x)
=

1

2

(
x+ 1

2x
+

2

x+ 1

)
.

Ha x > 0, akkor

2x

1 + x

[
1 +

(
1− x
1 + x

)2
]
− g(x) =

(1− x)2

(1 + x)(1 + x2)
> 0,

ami azt jelenti, hogy a g(x) függvényt f̃ -nek választva a (2.21) egyenlőtlenségben és az
inverziós formulát (lásd: [23] 6.1. Állítás) alkalmazva az

f(x) =
1

2

(
1 + x

2
+

2x

1 + x

)
függvényt kapjuk, melyre a (2.20) egyenlőtlenség biztosan teljesül.

Másrészt az így konstruált f függvény a (2.19) egyenlőtlenségben optimális felső kor-
látot szolgáltat, hiszen a 2.4.1 Lemma szerint ahhoz, hogy a felső korlát globális legyen a
µ valószínűségi mértékre µ({0}) ≥ 1

2
kell, hogy teljesüljön, a kapott felső korlát pedig ak-

kor lesz a legkisebb s egyben optimális, ha µ({1}) maximális. Eredményeinket az alábbi
tételben foglaljuk össze.

2.4.3. Tétel. Akkor és csakis akkor áll fenn fizikai mennyiségek tetszőleges A = (Ak)k=1,...,N

rendszerére minden ρ ∈ Dn,K állapotban a

det
(
Covsf (ρ)(A)

)
≥ det (Covash (ρ)(A)) ∀h ∈ Fop

egyenlőtlenség, ha az f(t) ≥ fopt(t) t ∈ [0,∞) feltétel teljesül, ahol

fopt =
1

2

(
1 + x

2
+

2x

1 + x

)
.
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Az f = fopt választás mellett a (2.20) egyenlőtlenség bal és jobb oldala közötti kü-
lönbség

q(x) =
fopt(0)(1 + x)2

2fopt(x)
− (1− x)2

2(1 + x)
=

8x2

x3 + 7x2 + 7x+ 1
,

melyre q′(0) = 0 teljesül s ezért semmilyen operátor monoton függvénnyel sem becsülhető
alulról.

2.5. Összefoglalás
Ebben a fejezetben kvantum mechanikai határozatlansági relációkat vizsgáltunk in-

formációgeometriai eszközökkel. A fejezetet egy rövid történeti áttekintéssel kezdtük,
ezután saját eredményeink ismertetésére tértünk rá.

1. Megmutattuk, hogy a határozatlansági relációk egy igen tág családja lényegében a
kvantummechanikai állapottéren értelmezett különböző Riemann-metrikák (és az eze-
ket indukáló operátormonoton függvények) közötti rendezésre vezethető vissza.

2. Bevezettük az antiszimmetrikus és a szimmetrikus kvantum kovarianciákat és meg-
mutattuk, hogy a közönséges –már Schrödinger által is vizsgált– kvantum kovariancia
ezen utóbbi kovariancia családba sorolható.

3. Bizonyítottuk, hogy egy szimmetrikus f -kovariancia segítségével definiált kovariancia
mátrix determinánsa mindig felülről becsüli a megfelelő antiszimmetrikus f -kovarianciá-
hoz tartozó kovariancia mátrix determinánsát.

4. Megmutattuk, hogy a számtani középhez és a harmonikus középhez tartozó operátor-
monoton függvények számtani közepe által indukált monoton metrika szolgáltatja a
lehető legélesebb dinamikai határozatlansági relációt.
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3. fejezet

Összetett kvantummechanikai
rendszerek

A kvantummechanikai rendszerek egyesítése és az összetett rendszerek részekre bon-
tása a kvantumelmélet szempontjából lényeges kérdés [64, 82]. Ezen témakör tárgyalása
során mindenekelőtt az alábbi három kérdésre kell választ adnunk.

1. A különböző Hilbert-terekkel leírt kvantummechanikai rendszerek egyesítettjéhez mi-
lyen Hilbert-teret rendeljünk?

2. Az összetett rendszer állapotának ismeretében a részrendszerek állpota hogyan hatá-
rozható meg?

3. A komponens-rendszerek miként ágyazhatók be az összetett rendszerbe?

A kvantummechanika összetett rendszer képzésre vonatkozó posztulátuma (lásd: [58]
könyv, 9. oldal) kimondja, hogy tetszőleges összetett kvantummechanikai rendszert az
alkotó részrendszerek Hilbert-tereinek tenzorszorzataként előálló Hilbert-tér ír le. Ha ρ
egy n ∈ N komponensből álló összetett rendszer állapota, akkor a k. részrendszer állapo-
tát definíció szerint a trk(ρ) parciális nyommal kaphatjuk meg. Ha ρk a k. részrendszer
egy állapota, akkor a

ρk 7→ ρ :=
I1 ⊗ . . .⊗ Ik−1 ⊗ ρk ⊗ Ik+1 ⊗ . . .⊗ In∏n

j=1,j 6=k dim(Hj)

hozzárendelés az összetett rendszer egy olyan állapotát határozza meg, melyre

tr1 ◦ . . . ◦ t̂rk ◦ . . . ◦ trn(ρ) = ρk k ∈ {1, . . . , n}

teljesül. Ez a hozzárendelés a k. részrendszer egy lehetséges beágyazását szolgáltatja az
összetett rendszerbe.

Ellenőrizhető, hogy ha ρk ∈ B (Hk) k ∈ {1, . . . , n} a részrendszerek sűrűségmátrixai-

nak egy tetszőleges rendszere, akkor a ρ =
n⊗
k=1

ρk tenzorszorzat az összetett rendszer egy

állapota lesz. Az állapottér konvex halmaz, ezért az ilyen, szorzat alakban előálló sűrű-
ségmátrixok konvex kombinációja ugyancsak állapot az összetett rendszerben. Az viszont

31
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nem igaz, hogy az összetett rendszer minden állapota szorzat állapotok konvex kombi-
nációjaként állna elő. Ez a kvantum összefonódás jelensége, melyet Einstein, Podolsky
és Rosen fedezett fel [20]. A szorzat állapotok konvex kombinációiként előálló állapo-
tokat szeparábilis, más szóval klasszikusan korrelált állapotoknak nevezzük. Azokat az
állapotokat, melyek nem állnak elő ilyen alakban összefonódott állapotoknak hívjuk. Er-
win Schrödinger a kvantum összefonódás információelméleti lényegét a következőképpen
ragadta meg: "Best possible knowledge of the whole does not include the best possible
knowledge of its parts.", vagyis az összetett rendszer lehető legteljesebb ismerete nem
jelenti egyben a részek lehető legteljesebb ismeretét [66].

A kvantum összefonódás jelensége teszi lehetővé, hogy bizonyos kvantuminformati-
kai algoritmusok (például sűrű kódolás, kvantum teleportáció) nagyobb hatékonyság-
gal működjenek, mintha csupán klasszikusan korrelált állapotok állnának rendelkezésre
[14, 15, 58]. Többek között ez motiválja az összefonódott állapotok geometriájának ta-
nulmányozását, amely a kvantum információelméleten belül önálló kutatási terület és a
témával kapcsolatban csak az utóbbi öt évben több száz közlemény jelent meg. Pusztán
annak eldöntése, hogy egy kvantumállapot összefonódott vagy szeparábilis bizonyítot-
tan NP-nehéz feladat még akkor is, ha a vizsgált összetett kvantummechanikai rendszer
mindössze két komponensből épül fel [28, 38].

Az összetett rendszer állapotterét egy µ véges Borel-mértékkel ellátva értelmezhető
az összefont állapotok

Pent,µ =
Volµ(Összefonódott állapotok)

Volµ(Teljes állapottér)

µ mértékre vonatkozó geometriai valószínűsége, melyre vonatkozóan a Psep,µ = 1−Pent,µ
szeparábilitási valószínűség komplementer mennyiség. A Pent,µ mennyiséget a µ = λ
Lebesgue-mérték választás mellett Życzkowski, Horodecki, Sanpera és Lewenstein vizs-
gálta először [35, 36]. Az imént elsőként idézett, 1998-ban megjelent cikkben a szerzők
úgy fogalmaznak, hogy a szeparábilitási valószínűség tanulmányozása filozófiai, gyakor-
lati és fizikai jelentőséggel bír. A szeparábilitási valószínűség filozófiai jelentőségét a [36]
cikk szerzői a

"Is the world more classical or more quantum?"

kérdéssel ragadták meg, mellyel jelen dolgozat írója csak részben ért egyet, hiszen a
kvantummechanikai állapottéren nincs kitüntetett mérték. Különösen indokolatlan volna
a Lebesgue-mértéket annak tekinteni, melyet csupán a vele való számolás viszonylagos
egyszerűsége tüntet ki. A szeparábilitási valószínűség gyakorlati haszna abban rejlik, hogy
kvantum összefonódással kapcsolatos kérdéseket sok esetben Monte–Carlo szimulációkkal
vizsgálnak, ahol fontos tudni, hogy átlagosan a generált véletlen állapotok hányad része
szeparábilis illetve összefonódott. A kérdés fizikai jelentősége pedig abból fakad, hogy az
összetett rendszerek szeparábilis állapotait a részleges időmegfordítás fizikai jelentéssel
bíró állapotba képzi [34, 55, 65].

Általános jól kezelhető szeparábilitási kritérium hiányában a szeparábilitási valószínű-
ség meghatározására irányuló próbálkozások köre a qubit-qubit és qubit-qutrit összetett
rendszerek vizsgálatára korlátozódott. Mindazonáltal a szeparábilitási valószínűséget ezi-
dáig senkinek sem sikerült még ezen egyszerű esetekben sem egzaktul kiszámítani.



3.1. KVANTUM ÖSSZEFONÓDÁS 33

A fejezetben igazoljuk Milz és Strunz szeparábilitási valószínűség invarianciájára vo-
natkozó sejtését [51], magát a szeparábilitási valószínűséget pedig egzaktul kiszámít-
juk a valós 4 × 4-es sűrűségmátrixokkal leírt összetett kvantummechanikai rendszerre.
Eredményeinket általánosításaként megmutatjuk, hogy Milz és Strunz sejtése érvény-
ben marad akkor is, ha a D4,K állapotteret az fGM ∈ Fop operátor monoton függvény
által indexelt monoton metrikával látjuk el. Megmutatjuk, hogy a D2n,K állapottér a
Dn,K × En,K × B1 (Kn×n) szorzat sokasággal diffeomorf, ahol

En,K =]− I, I[=
{
A ∈Msa

n,K | −I < A < I
}
. (3.1)

Ezen felbontás birtokában geometriailag jellemezzük a D2n,K állapottér ún. PPT állapo-
tait, melyek az n = 2 esetben a klasszikusan korrelált állapotokkal esnek egybe, n > 2
esetén pedig valódi részhalmazhént tartalmazzák azokat. Kiszámítjuk a (gf )n monoton
metrika mátrixát és térfogati formáját a Dn,K×En,K×B1 (Kn×n) felbontásra vonatkozóan
és az n = 2 esetben az (1.16) Thompson-metrikát véve vizsgáljuk egy tetszőleges összefont
állapot távolságát a szeparábilis állapotoktól. Az itt bemutatott eredmények egy részét
a [44] közleményben jelentettük meg.

3.1. Kvantum összefonódás
A kvantum összefonódás geometriájának megértéséhez vegyünk szemügyre egy két

komponensből álló kvantummechanikai rendszert. Az általánosság megszorítása nélkül
feltehető, hogy egy Kn és Km (m,n ∈ N) Hilbert-terekkel leírt kvantummechanikai rend-
szer egyesítésével előálló összetett kvantummechanikai rendszerrel van dolgunk, melynek
állapottere Dnm,K, a modellező Hilbert-tér pedig Knm ∼= Kn⊗Km. Valós, illetve komplex
számtest feletti vektorterekben az összeadásra és pozitív számmal történő szorzásra zárt
halmazokat pozitív kúpoknak nevezzük. A Knm Hilbert-tér B (Knm)+ pozitív operátorai
ilyen pozitív kúpot alkotnak, de a B (Knm) ∼= B (Kn)⊗B (Km) felbontásnak köszönhetően
természetesen adódik egy másik pozitív kúp is, nevezetesen az, amelyet a

N∑
k=1

Ak ⊗Bk N ∈ N (3.2)

alakú operátorok alkotnak, ahol Ak ∈ B (Kn) és Bk ∈ B (Km) k = 1, . . . , N . Ezt a kúpot
a B (Kn)+ ⊗ B (Km)+ szimbólummal fogjuk jelölni, ami voltaképpen csak jelölés, hiszen
B (Kn)+ és B (Km)+ nem vektorterek. Látható, hogy a B (Kn)+ ⊗ B (Km)+ ⊆ B (Knm)+

tartalmazás teljesül, ami az n = 1 vagy m = 1 triviális eseteket leszámítva valódi.

3.1.1. Definíció. A Dsep
nm,K halmaz elemeit, ahol Dsep

nm,K := Dnm,K∩B (Kn)+⊗B (Km)+ és
m,n > 1 természetes számok szeparábilis állapotoknak hívjuk. A Dent

nm,K := Dnm,K\Dsep
nm,K

halmaz elemeit pedig összefonódott állapotoknak nevezzük.

Nyilvánvaló, hogy egy ρ ∈ ∂Dsep
nm,K állapot pontosan akkor tiszta, ha szorzat állapot,

azaz ρ = ρ1 ⊗ ρ2 alakú, ahol ρ1 ∈ Dn,K és ρ2 ∈ Dm,K. A Dsep
nm,K halmaz konvex zárt

halmaz, a Dsep
nm,K ⊆ Dnm,K tartalmazásból és az állapottér kompaktságából fakadóan

pedig kompakt. Ez az észrevétel vezet el bennünket a következő tételhez.
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3.1.1. Tétel. Ha ρ ∈ Dent
nm,K összefonódott állapot, akkor létezik olyan W ∈Msa

nm,K fizikai
mennyiség és α ∈ R úgy, hogy

Eρ̃(W ) ≥ α

teljesül minden ρ̃ ∈ Dsep
nm,K klasszikusan korrelált állapotra, de Eρ(W ) < α. Az ilyen

W ∈Msa
nm,K fizikai mennyiséget összefonódás tanúnak (entanglement witness) nevezzük.

Bizonyítás. A ρ̃ ∈ Dsep
nm,K szeparábilis állapotok konvex kompakt halmazt alkotnat a

Msa
nm,K vektortérben, a {ρ} ⊂ Msa

nm,K halmaz pedig konvex és zárt. A Hahn–Banach-
tétel elválasztási alakja kimondja, hogy létezik olyan ϕ ∈ (Msa

nm,K)∗ lineáris funkcionál és
α ∈ R szám, melyre

(∀ρ̃ ∈ Dsep
nm,K) ϕ(ρ̃) ≥ α

és ϕ(ρ) < α teljesül. A ϕ funkcionálhoz pedig megadható olyan W ∈ Msa
nm,K fizikai

mennyiség, melyre ϕ(A) = tr(AW ) A ∈ Msa
nm,K teljesül. Ellenőrizhető, hogy az így

konstruált W fizikai mennyiség a kívánt tulajdonságokkal rendelkezik.

A fenti tétel egy ekvivalens alakjára alternatív bizonyítást találhatunk az [58] könyv
57. oldalán, mely konstruktív abban az értelemben, hogy rögzített ρ ∈ Dnm,K össze-
fonódott állapothoz explicit W fizikai mennyiséget definiál, melyről megmutatja, hogy
valóban összefonódás tanú.

Jelölje T : Km×m → Km×m a transzponálást és vezessük be az I ⊗ T : Kmn×mn →
Kmn×mn parciális transzponálás műveletet. Peres figyelte meg és írta le először [56], hogy
a parciális transzponálás szeparábilis állapotot állapotba képez. Ez egyébként a (3.2)
összeg alakról közvetlenül leolvasható. Peres úgy vélte, hogy a parciális transzponált po-
zitivitása nem csak szükséges, de elégséges feltétele is az állapot pozitivitásának. Peres
ezen sejtése később a [33] cikkben ellenpéldán keresztül cáfolatot nyert. Az azonban –
mint ahogyan azt a [33] cikkben is írják – megfigyelhető, hogy a szeparábilis állapotok a
pozitív leképezéseket „nem érzik”, azaz tetszőleges Λ : Km×m → Km×m pozitív leképezést
véve az I ⊗ Λ : Kmn×mn → Kmn×mn leképezés a szeparábilis állapotokhoz B (Kmn)+-beli
elemet rendel. A teljesen pozitív leképezések definíció szerint (lásd: 1.2.1 Definíció) ilyen
tulajdonságúak, ezért nem tesznek különbséget szeparábilis és összefonódott állapotok
között. A pozitív leképezések viszont már alkalmasak a szeparábilis állapotok karakteri-
zációjára, erről szól az alábbi tétel.

3.1.2. Tétel. A ρ ∈ Dnm,K állapot pontosan akkor szeparábilis, ha tetszőleges Λ : B (Km)→
B (Kn) pozitív leképezést véve (I ⊗ Λ)ρ ≥ 0.

Bizonyítás. A bizonyításról csak annyit említünk meg, hogy a [33] cikkben ezt a tételt
úgy bizonyítják, hogy megmutatják azt, hogy ha ρ ∈ Dnm,K összefonódott állapot, akkor
megadható olyan Λ : B (Km) → B (Kn) pozitív leképezés, melyre (I ⊗ Λ)ρ 6≥ 0 teljesül.
Ilyen Λ pozitív leképezés konstruálásában pedig a 3.1.1. tételben bemutatott összefonódás
tanúk segítenek.

Størmer és Woronowicz jellemezte a B (C2) → B (C2) és B (C3) → B (C2) mátrix-
algebrák közötti pozitív leképezéseket [79, 87]. Megmutatták, hogy ezek a leképezések
egységesen

Λ = ΛCP
1 + ΛCP

2 ◦ T (3.3)
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alakúak, ahol ΛCP
k : B (Ca)→ B

(
Cb
)
k = 1, 2 teljesen pozitív leképezések, T : B (Ca)→

B (Ca) a transzponálás és a = b = 2 vagy a = 2 és b = 3. Ezt a 3.1.2. tétellel kombinálva a
qubit-qubit és qubit-qutrit rendszerekre az alábbi szeparábilitási feltételt nyerjük, amit a
positive partial transpose kifejezés után szokás PPT- vagy Peres–Horodecki-kritériumnak
is hívni.

3.1.3. Tétel. Egy ρ ∈ B (C2 ⊗ C2)
+ vagy ρ ∈ B (C2 ⊗ C3)

+ állapot pontosan akkor
szeparábilis, ha a parciális transzponáltja pozitív.

Bizonyítás. Láttuk, hogy a parciális transzponált pozitivitása az állapot szeparábilitásá-
nak szükséges feltétele. Ha Λ B (C2) → B (C2) vagy B (C3) → B (C2) pozitív leképezés,
akkor a (3.3) általános alakból és a ΛCP

k k = 1, 2 leképezések teljes pozitivitásából kö-
vetkezik, hogy ha (I ⊗ T )(ρ) ≥ 0, akkor (I ⊗ Λ)(ρ) ≥ 0 is teljesül tetszőleges Λ pozitív
leképezésre. A 3.1.2. tételt felhasználva a bizonyítandó állítást kapjuk.

3.1.2. Definíció. A Dnm,K állapottér PPT kritériumot kielégítő állapotait PPT álla-
potoknak nevezzük. A Dnm,K állapottér PPT állapotainak halmazára a DPPT

nm,K jelölést
használjuk.

3.2. Szeparábilitási valószínűség a D4,K állapottéren
A D4,K állapottér klasszikusan korrelált állapotai a PPT állapotokkal esnek egyben.

Egy általános ρ ∈ D4,K állapot mátrixa

ρ =

(
D1 C
C∗ D2

)
alakú, ahol C ∈ K2×2 mátrix, D1 és D2 pedig 2 × 2-es önadjungált mátrixok, melyekre
tr(D1 + D2) = 1 teljesül. A PPT-kritérium a ρ állapotra nézve azt jelenti, hogy a ρ
állapot pontosan akkor szeparábilis, ha a

(I ⊗ T )(ρ) =

(
DT

1 CT

(C∗)T DT
2

)
mátrix pozitív definit.

A szeparábilitás kvázi egyszerű tesztelhetősége azt sugallja, hogy a Życzkowski ál-
tal feltett szeparábilitási valószínűségre vonatkozó kérdés a Hilbert–Schmidt-metrikából
származó mérték1 mellett a D4,K K = R,C állapottereken egyszerűen kiszámolható. A
tapasztalat azt mutatja, hogy ez közel sincs így. A témában publikáló kutatók közül
ki kell emelnünk P. Slater nevét, aki [70, 71, 72, 73, 74, 75, 76] cikkeiben sokat foglalko-
zott a rebit-rebit2, qubit-qubit és quaterbit-quaterbit rendszerekben a Lebesgue-mértékre
vonatkozó szeparábilitási valószínűség kérdésével és a szeparábilitási valószínűség nume-
rikus meghatározásával. Slater a [72] cikkében eloszlás-rekonstrukciós és kombinatorikus

1Ez lényegében a Lebesgue-mérték konstansszorosa, ezért a szeparábilitási valószínűség kapcsán lé-
nyegében mindegy, hogy Hilbert–Schmidt-metrikából származó mértékről vagy Lebesgue-mértékről be-
szélünk.

2A qubit mintájára a D2,R állapottér elemeit rebiteknek nevezzük. A kvaternió elemű 2× 2-es sűrű-
ségmátrixokat pedig az irodalom gyakran quaterbit néven említi.
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eszközökkel egy hipergeometrikus függvényeket tartalmazó paraméteres formulához jut
el, amelyről sejti, hogy a paraméter megválasztásától függően rendre a rebit-rebit, qubit-
qubit és quaterbit-quaterbit szeparábilitási valószínűségeket adja. Slater formulája a
rebit-rebit rendszerre 29

64
-et, a qubit-qubit esetre pedig 8

33
-et ad. A formula által szolgál-

tatott értékek helyességét Fei és Joynt [22] valamint Slater és Dunkl [77, 78] numerikus
szimulációkkal támasztotta alá. Itt azonban meg kell jegyeznünk, hogy Slater formulája
nem tekinthető a szeparábilitási valószínűség egzakt meghatározásának, hiszen lényegé-
ben csak egy 7501 momentumot felhasználó eloszlás rekonstrukcióról van szó, ahol a
sorozat véges sok tagjának ismeretében az általános tag képzési szabályát a Mathematica
FindSequence parancsával keresték meg.

A szeparábilitási valószínűséggel kapcsolatban a számunkra kulcsfontosságú előrelé-
pést Milz és Strunz sejtése jelentette [51]. Milz és Strunz D ∈ D2,K állapotokat véve
a

D4,K(D) = {ρ ∈ D4,K| tr2(ρ) = D} (3.4)

halmazokon vizsgálták a szeparábilitási valószínűséget. Milz és Strunz azt sejtette, hogy
a Hilbert–Schmidt metrikából származó térfogatra vonatkozó szeparábilitási valószínűség
a D ∈ D2,K állapot választásától független, a D4,K(D) halmazba eső klasszikusan korrelált
állapotok térfogata pedig a D állapot Bloch-sugarának egyszerű polinomiális kifejezése.
Milz és Strunz sejtésüket ún. X állapotokra egzaktul bebizonyították, az általános esetben
pedig állításukat meggyőző numerikus szimulációval támasztották alá.

3.2.1. Milz és Strunz sejtésének bizonyítása

Az alábbiakban bevezetett χd, ηd : [0,∞)→ [0,∞) d = 1, 2 függvények kulcsszerepet
játszanak a D4,K (K = R,C) állapottéren a Hilbert–Schmidt-metrika és a gfGM monoton
metrika által meghatározott térfogatra vonatkozó szeparábilitási valószínűség kiszámítá-
sában.

3.2.1. Definíció. A χd, ηd : [0,∞) → [0,∞) függvényeket az alábbi integrálokkal defini-
áljuk

χd(ε) =

∫
B1(K2×2)

1||V −1
ε XVε||<1 dλ4d(X), (3.5)

ηd(ε) =

∫
B1(K2×2)

det(I −XX∗)−
3d
4
− 1

21||V −1
ε XVε||<1 dλ4d(X), (3.6)

ahol Vε =

(
1 0
0 ε

)
és d = dimR(K).

Világos, hogy a χd és ηd függvények inverzióra nézve szimmetrikusak, azaz minden
ε > 0 számra χd(1/ε) = χd(ε) és ηd(1/ε) = ηd(ε) teljesül. A χ̃d(ε) = χd(ε)/χd(1) normált
χd függvény azt méri, hogy egy B1 (K2×2) gömbben egyenletes eloszlású pontot a V −1

ε (.)Vε
hasonlósági transzformáció milyen valószínűséggel képez a B1 (K2×2) operátornorma egy-
séggömb belsejébe. A η̃d normált ηd függvény hasonló valószínűségi interpretációval bír,
de később látni fogjuk, hogy ηd(1) = ∞, ezért η̃d(ε) = ηd(ε)/ηd(1) naív definíció helyett
egy határértéken keresztül kell definiálni a normált ηd függvényt. A χ̃d és η̃d függvények
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egyfajta geometriai entrópiaként a
(

1
1+ε

, ε
1+ε

)
valószínűségi eloszlás rendezetlenségét méri.

Ezek a függvények a (0, 1] intervallumon monoton növők, nullában nullát, egyben pedig
egyet vesznek fel értékül.

3.2.1. Lemma. A χ̃1(ε) : [0, 1]→ [0, 1] függvény a

χ̃1(ε) = 1− 4

π2

1∫
ε

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds

=
4

π2

ε∫
0

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds

(3.7)

integrál alakra írható át.

Bizonyítás. Ez a lemma a D4,R állapottéren a szeparábilitási valószínűség meghatározá-
sához szükséges, bizonyítása viszonylag hosszú és túlzottan technikai jellegű ahhoz, hogy
itt közöljük. A lemma bizonyításával a Függelék C.1 pontja foglalkozik.

Egyébként a χ̃1(ε) függvényértéket szolgáltató (3.7) integrál a B.0.2. Definícióban
szereplő polilogaritmus függvények felhasználásával zárt alakra hozható. A 3.1. ábrán a
ε 7→ χ̃1(ε) − ε ε ∈ [0, 1] függvényt ábrázoltuk. Látható, hogy a ε 7→ χ̃1(ε) függvényt a
[0, 1] intervallumon az identitás függvény igen jól közelíti.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ε

χ̃
(ε
)
−
ε

3.1. ábra. Az ε 7→ χ̃1(ε)− ε függvény grafikonja.

A következő rövid szakaszban paraméterezéseket vezetünk be a 2×2-es valós és komp-
lex, valós és komplex önadjungált mátrixokon, illetve a rebitek és qubitek állapotterén.
A {σ1, σ2, σ3} Pauli mátrixok (lásd: A.1.2. Definíció) az I identitásmátrixszal együtt a
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2× 2-es önadjungált mátrixok vektorterének egy ortogonális bázisát alkotják a Hilbert–
Schmidt belső szorzásra nézve (lásd: A.1.1. Megjegyzés). Tekintsük a Msa

2,R és Msa
2,C

vektorterek

R(θ, x, y) =
x+ y

2
I +

x− y
2

(cos(θ)σ1 + sin(θ)σ3), (3.8)

0 < θ < 2π, x, y ∈ R

R(θ, φ, x, y) =
x+ y

2
I +

x− y
2

(cos(θ) sin(φ)σ1 + sin(θ) sin(φ)σ2 + cos(φ)σ3), (3.9)

0 < θ < 2π, 0 < φ < π, x, y ∈ R

koordinátázásait. Ez később azért lesz kényelmes, mert az R(θ, x, y) és R(θ, φ, x, y) mát-
rixok sajátértékei a (3.8) és (3.9) alakokról közvetlenül leolvashatók. Jelölje O(φ) a stan-
dard 2 × 2-es forgatás mátrixot, amely a sík vektorait az origó körül óramutató járással
ellentétesen, φ szöggel forgatja el, továbbá legyen Λ(x, y) = diag(x, y).

Tekintsük az U(2) unitér csoport Mirman [52] könyvének 284–285. oldalán található

U(Θ,Φ, ω, τ) = ei Θ ×

(
e

i(ω+τ)
2 cos Φ

2 i e
i(ω−τ)

2 sin Φ
2

i e−
i(ω−τ)

2 sin Φ
2

e−
i(ω+τ)

2 cos Φ
2

)
0 < Φ < π, 0 < Θ < 2π, 0 < ω, τ < 4π

(3.10)

paraméterezését. A 2 × 2-es komplex mátrixok terét a poláris felbontás segítségével
paraméterezzük.

A 2× 2-es valós és komplex sűrűségmátrixok terének paraméterezésére a

D(θ, r) =
1

2
(I + r(cos(θ)σ1 + sin(θ)σ3)), (3.11)

0 < θ < 2π, 0 < r < 1

D(θ, φ, r) =
1

2
(I + r(cos(θ) sin(φ)σ1 + sin(θ) sin(φ)σ2 + cos(φ)σ3)), (3.12)

0 < θ < 2π, 0 < φ < π, 0 < r < 1

Bloch-paraméterezést vezetjük be.
A 3.1. táblázatban a R2×2, C2×2,Msa

2,R,Msa
2,C, D2,R, D2,C sokaságok paraméterezéseit

és a paraméterezésekhez tartozó térfogati formákat rendszereztük.
A 3.2. Táblázatban pedig a χd és ηd, d = 1, 2 függvények normalizációs konstansait

gyűjtöttük össze.

3.2.1. Példa. A χ2 függvényhez tartozó χ2(1) normalizációs konstans meghatározásához
tekintsük a

χ2(1) =

∫
B1(K2×2)

1||V −1
1 X V1︸︷︷︸

=idC2

||<1
dλ4d(X) =

∫
B1(K2×2)

1 dλ4d(X)
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Sokaság Paraméterezés Térfogati forma

R2×2 O(φ)Λ(x, y)O(θ),
0 < φ, θ < 2π, 0 < x, y

|x2−y2|
2

C2×2 R(θ, φ, x, y)U(Θ,Φ, ω, τ), ahol 0 <
x, y (lásd: (3.9) és (3.10).)

xy(x2−y2)2

64
sinφ sin Φ

Msa
2,R R(θ, x, y) (lásd: (3.8)) |x−y|√

2

Msa
2,C R(θ, φ, x, y) (lásd: (3.9).) (x−y)2

2
sinφ

D2,R D(θ, r) (lásd: (3.11).) r
2

D2,C R(θ, φ, x, y) (lásd: (3.12).) r2 sinφ

2
√

2

3.1. táblázat. A R2×2, C2×2,Msa
2,R,Msa

2,C sokaságok paraméterezései a hozzájuk tartozó
térfogati formákkal.

d = 1 d = 2

χd(1) = 2
3
π2 π4

6

ηd(1) = ∞ ∞

3.2. táblázat. Normalizációs konstans a χd és ηd d = 1, 2 függvényekhez.

integrált. A C2×2 sokaság 3.1 táblázatban szereplő paraméterezését véve írhatjuk, hogy

χ2(1) =

∫
B1(K2×2)

1 dλ4d(X)

= 43π4 ×
1∫

0

1∫
0

π∫
0

π∫
0

xy(x2 − y2)2

64
sinφ sin Φ dφ dΦ dy dx

= 4π4 ×
1∫

0

1∫
0

xy(x2 − y2)2 dy dx =
π4

6
,

ahol használtuk azt, hogy x, y > 0 esetén az R(θ, φ, x, y)U(Θ,Φ, ω, τ) mátrix normája
max(x, y).

Most pedig rátérünk a normalizált ηd függvény kiszámítására. Definiáljuk az η̃d függ-
vényt az alábbi határértékkel

η̃d(ε) = lim
δ→1−0

∫
B1(K2×2)

det(I −XX∗)−( 3d
4
− 1

2)δ1||V −1
ε XVε||<1 dλ4d(X)∫

B1(K2×2)

det(I −XX∗)−( 3d
4
− 1

2)δ dλ4d(X)
.
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Ez a határérték azért létezik, mert a

((1− x2)(1− y2))
− 5δ

4 |x2 − y2|
1∫
0

1∫
0

((1− t2)(1− s2))−
5δ
4 |t2 − s2| dλ2(t, s)

dλ2(x, y)

((1− x2)(1− y2))
−2δ

xy(x2 − y2)2

1∫
0

1∫
0

((1− t2)(1− s2))−2δ st(s2 − t2)2 dλ2(t, s)

dλ2(x, y)

[0, 1]2 Borel σ-algebráján definiált valószínűségi mértékek a gyenge-∗ topológiában az egy-
ségnégyzet {(x, y) ∈ [0, 1]|x = 1∨ y = 1} peremére koncentrált valószínűségi mértékekhez
tartanak midőn δ → 1− 0.

A η̃d(ε) mennyiséget definiáló határértékben szereplő integrálok unitér transzformáci-
óra nézve invariánsak, ezért kijelenthetjük, hogy a

det(I −XX∗)−( 3d
4
− 1

2)δ∫
B1(K2×2)

det(I −XX∗)−( 3d
4
− 1

2)δ dλ4d(X)
dλ4d(X)

valószínűségi mérték által meghatározott eloszlás gyengén konvergál a ∂B1 (K2×2) operá-
tornorma egységgömb felszínén vett egyenletes eloszláshoz, amint δ → 1− 0.

Az alábbi lemma nem kevesebbet állít, mint hogy az imént körülményes módon de-
finiált η̃1 függvény a χ̃1 függvénnyel egyezik meg. Sejtjük, hogy a χ̃2 = η̃2 egyenlőség is
teljesül, de ezt ezidáig nem sikerült egzaktul bebizonyítanunk.

3.2.2. Lemma. A χ̃1 és η̃1 függvények egymással megegyeznek, vagyis a

χ̃1(ε) = η̃1(ε) ε ∈ [0, 1]

egyenlőség teljesül.

Bizonyítás. A lemma bizonyításával a Függelék C.2. pontja foglalkozik.

A rebit-rebit és qubit-qubit rendszerekben a szeparábilitási valószínűség kiszámításá-
hoz tekintsük a D4,K állapottér

ρ(D1, D2, C) =

(
D1 C
C∗ D2

)
paraméterezését, ahol D1, D2 > 0 pozitív mátrixok, D1 +D2 ∈ D2,K állapot és C ∈ K2×2.
Ezen paraméterezés mellett a ρ(D1, D2, C) állapot második részrendszerre vonatkozó par-
ciális nyoma

tr2(ρ(D1, D2, C)) = D1 +D2 (3.13)

módon kapható meg.
Vezessük be a

ρ(D1, D2, C) 7→ T (ρ(D1, D2, C)) = ρ(D1, D2, C
∗) (3.14)
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involúciót, ami lényegében a második részrendszerre vonatkozó parciális transzponálás
és az elemenkénti konjugálás kompozíciója. Az elemenkénti konjugálás egy D4,K → D4,K
pozitív és nyomtartó leképezés, ezért a tárgyalt 4×4-es esetben a szeparábilitás szükséges
és elégséges feltételét jelentő PPT kritériummal ekvivalens annak megkövetelése, hogy egy
állapot T leképezés általi képe állapot legyen. Ebből kifolyólag a 4 × 4-es klasszikusan
korrelált állapotok a

Dsep
4,K = T (D4,K) ∩ D4,K (3.15)

metszetként állanak elő.
Mielőtt kimondanánk a tételünket emlékeztetjük az Olvasót a Milz és Strunz által

vizsgált Dd,K(D) halmaz (3.4) definíciójára. A (D1, D2, C) 7→ ρ(D1, D2, C) paramétere-
zést véve a D2,K(D) halmaz azon sűrűségmátrixokból áll, melyekre D1 +D2 = D teljesül.
Vezessük be a Dsep

4,K(D) = Dsep
4,K ∩ D4,K(D) halmazt. Most már minden technikai kellék

rendelkezésünkre áll, ami a legfőbb eredményünk bizonyításához szükséges.

3.2.1. Tétel. Legyen D ∈ D2,K egy rögzített sűrűségmátrix. A Dsep
4,K(D) halmaz térfogata

a Lebesgue-mértékre vonatkozólag

Vol
(
Dsep

4,K(D)
)

=
det(D)4d− d

2

2

26d

×
∫

]−I,I[

det(I − Y 2)d × χd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y ),

(3.16)

ahol ]− I, I[= {A ∈Msa
2,K| − I < A < I} operátor intervallum, σ(A) pedig az A invertál-

ható mátrix szinguláris érték hányadosa (lásd: A.1.2. Lemma).
A szeparábilis állapotok Dsep

4,K halmazának Lebesgue-mértékre vonatkozó térfogata pedig

Vol
(
Dsep

4,K
)

=

∫
D2,K

Vol
(
Dsep

4,K(D)
)

dλd+1(D) (3.17)

módon fejezhető ki, ahol d = dimR(K) = 1, 2.

Bizonyítás. Rögzített D1, D2 ∈Msa
2,K mátrixokat véve legyen

C(D1, D2) =
{
C ∈ K2×2

∣∣ ρ(D1, D2, C) > 0 & ρ(D1, D2, C
∗) > 0

}
.

A Fubini-tétel szerint írható, hogy

Vol
(
Dsep

4,K
)

= λ6d+3

(
T (D4,K) ∩ D4,K

)
=

∫
D1, D2 > 0

tr(D1 +D2) = 1

∫
C∈C(D1,D2)

1 dλ4d(C) dλ2d+3(D1, D2). (3.18)

A (3.15) metszet formula szerint tetszőleges D1, D2 > 0 2 × 2-es önadjungált mátri-
xokat véve, melyere tr(D1 +D2) = 1 teljesül egy C ∈ K2×2 mátrix pontosan akkor eleme
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a C(D1, D2) halmaznak, ha a
(
D1 C
C∗ D2

)
> 0 és

(
D1 C∗

C D2

)
> 0 relációk szimultán

teljesülnek. Az A.2.3. Lemma szerint ez a feltételrendszer az alábbi ekvivalens alakra
írható át

I >
(
D
−1/2
1 CD

−1/2
2

)∗
D
−1/2
1 CD

−1/2
2 ⇔ ||D−1/2

1 CD
−1/2
2 || < 1

I >
(
D
−1/2
2 CD

−1/2
1

)∗
D
−1/2
2 CD

−1/2
1 ⇔ ||D−1/2

2 CD
−1/2
1 || < 1,

ahol ||.|| a közönséges operátornormát jelöli.
A belső integrál kiszámításához végezzük el a

X = D
−1/2
1 CD

−1/2
2 =

(
L
D
−1/2
1
◦ R

D
−1/2
2

)
(C)

helyettesítést. A függelék A.3. pontjában foglaltakat figyelembe véve kapjuk, hogy a fenti

integrál transzformáció Jacobi determinánsa det
(

L
D
−1/2
1
◦ R

D
−1/2
2

)−1

= det(D1)d det(D2)d.
Ezt felhasználva a (3.18) integrál belső integrálja∫

C∈C(D1,D2)

1 dλ4d(C) = det(D1D2)d
∫

B1(K2×2)

1||(V ∗)−1XV ||<1 dλ4d(X)

alakra írható át, ahol V = D
1/2
2 D

−1/2
1 . Vegyük észre, hogy a kapott integrál csak a

σ(V ) szinguláris érték hányadostól függ. Ha feltesszük, hogy a V mátrix szinguláris
érték felbontása V = U1ΣU2, akkor az operátornorma unitér invarianciáját használva
írhatjuk, hogy ||(V ∗)−1XV || = ||U1Σ−1U2XU1ΣU2|| = ||Σ−1U2XU1Σ||. Továbbá vegyük
figyelembe azt is, hogy az X 7→ U2XU1 leképezés izometria a Hilbert–Schmidt-normára
nézve. Az alfejezet elején tanulmányozott χd függvény itt lép színre, hiszen az előző
gondolatmenetből következik, hogy a

χd(σ(V )) =

∫
B1(K2×2)

1||(V ∗)−1XV ||<1 dλ4d(X)

egyenlőség teljesül. Az A.1.2. Lemma szerint a 2 × 2-es V mátrix szinguláris érték
hányadosa

σ(V ) = e
− cosh−1

(
||V ||2HS

2| det(V )|

)
= e

− cosh−1

(
1
2

√
det(D1)
det(D2)

tr(D2D
−1
1 )

)

módon fejezhető ki. Mindezt a (3.18) integrálba írva a szeparábilis állapotok térfogatára
a

Vol
(
Dsep

4,K
)

=

∫
D1, D2 > 0

tr(D1 +D2) = 1

det(D1D2)df(D2D
−1
1 ) dλ2d+3(D1, D2)

kifejezést nyerjük, ahol f(D2D
−1
1 ) = χd ◦ exp

(
− cosh−1

(
1
2

√
det(D1)
det(D2)

tr
(
D2D

−1
1

)))
.
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Tekintsük az integrációs tartomány alábbi paraméterezését

D1 =
1

2
(D + A)

D2 =
1

2
(D − A),

(3.19)

ahol D a D2,K állapottéren veszi fel értékét, A pedig a −D < A < D egyenlőtlenségnek
eleget tevő önadjungált 2× 2 mátrixok terét futja be3. Ez a paraméterezés azért kézen-
fekvő, mert a (3.13) formula szerint a ρ(D1, D2, C) állapot parciális nyoma éppen D lesz
és ezért a belső integrálban éppen a Milz és Strunz által tanulmányozott mennyiséget
kapjuk meg.

Mátrixok szorzatának nyoma a tényezők ciklikus permutációira nézve invariáns, ezért
az előző integrál

Vol
(
Dsep

4,K
)

=

∫
D2,K

Vol
(
Dsep

4,K(D)
)

dλd+1(D)

alakba írható, ahol

Vol
(
Dsep

4,K(D)
)

=
det(D)2d

26d
×

×
∫

]−D,D[

det(I − (D−1/2AD−1/2)2)df

(
I −D−1/2AD−1/2

I +D−1/2AD−1/2

)
dλd+2(A).

A fenti integrálban végezzül el az Y = D−1/2AD−1/2 = (LD−1/2 ◦ RD−1/2) (A) helyet-
tesítést. Az A.3.1. lemmát követő megjegyzés szerint az ezen helyettesítéshez tartozó
Jacobi-determináns

det (LD−1/2 ◦ RD−1/2)−1 = det(D)2d−d2/2

lesz. Az f
(
I−Y
I+Y

)
= χd ◦ σ

(√
I−Y
I+Y

)
egyenlőséget felhasználva kapjuk, hogy

Vol
(
Dsep

4,K(D)
)

=
det(D)4d− d

2

2

26d

∫
]−I,I[

det(I − Y 2)d χd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y ).

Ezzel a bizonyítás teljes.

Az alábbi következményben igazoljuk Milz és Strunz sejtését (lásd: [51] cikk (23)
egyenlet) a Vol

(
Dsep

4,C(D)
)
mennyiség D redukált állapottól való függésére vonatkozólag.

3.2.1. Következmény. A komplex esetben a Vol
(
Dsep

4,C(D)
)
mennyiség

Vol
(
Dsep

4,C(D)
)

= K1 × det(D)6 = K2 × (1− r2)6

módon fejezhető ki a D ∈ D2,C redukált állapot r Bloch-sugarával, ahol K1 és K2 D
állapottól független konstans.

3Erre a halmazra a ]−D,D[ operátor intervallum jelölést használjuk.
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Bizonyítás. A (3.16) kifejezés d = 2 paraméter választás mellett adja az első egyenlőséget.
AD2,C állapottér (3.12) paraméterezését használva pedig kapjuk, hogy det(D) = 1

4
(1−r2),

ami K2 = K1

46 választás mellett a második egyenlőséget adja.

3.2.2. Következmény. Legyen D ∈ D2,K rögzített sűrűségmátrix. A D4,K állapottéren a
D4,K(D) halmazra vonatkozó, Lebesgue-mérték szerint vett feltételes szeparábilitási való-
színűség a ∫

]−I,I[

χ̃d ◦ σ

(√
I − Y
I + Y

)
dµd+2(Y )

integrállal fejezhető ki, ahol a µd+2 a λd+2 Lebesgue-mértékre nézve abszolút folytonos
valósínűségi mérték

dµd+2(Y ) =
det(I − Y 2)d∫

]−I,I[
det(I − Z2)d dλd+2(Z)

dλd+2(Y ).

Világos, hogy a szóban forgó feltételes szeparábilitási valószínűség a D ∈ D2,K redukált
állapottól független, ami egyrészt igazolja Milz és Strunz feltételes szeparábilitási való-
színűség invarianciájára vonatkozó sejtését [51]. Másrészt pedig lehetővé teszi, hogy a
Psep(K) szeparábilitási valószínűséget a D4,K állapottéren

Psep(K) =

∫
]−I,I[

χ̃d ◦ σ

(√
I − Y
I + Y

)
dµd+2(Y ) (3.20)

alakban fejezzük ki.

Bizonyítás. A 3.2.1. tétel bizonyításában bemutatott utat végigkövetve kiszámíthatjuk
a D4,K(D) halmaz térfogatát, ami

Vol (D4,K(D)) = χd(1)
det(D)4d− d

2

2

26d

∫
]−I,I[

det(I − Y 2)d dλd+2(Y ).

Ebből pedig a szeparábilitási valószínűséget a

Vol
(
Dsep

4,K(D)
)

Vol (D4,K(D))
=

∫
]−I,I[

det(I − Y 2)d χd ◦ σ
(√

I−Y
I+Y

)
dλd+2(Y )

χd(1)
∫

]−I,I[
det(I − Y 2)d dλd+2(Y )

hányadost véve kapjuk. Ezzel a bizonyítás teljes.

A µd+2 mérték és a σ
(√

I−Y
I+Y

)
szinguláris érték hányados ortogonális (komplex eset-

ben unitér) transzformációkra nézve invariáns. Ezt figyelembe véve a (3.20) integrál nagy
mértékben egyszerűsíthető. A χ̃ függvény 3.2.1. Lemmában közölt alakját felhasználva
meghatározhatjuk a rebit-rebit rendszerben a szeparábilitási valószínűséget a Lebesgue-
mértékre vonatkozólag, ami a Slater által megjósolt 29

64
értékkel esik egybe.
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3.2.2. Tétel. A rebit-rebit rendszerben a Hilbert–Schmidt-metrikából származó mértékre
vonatkozó szeparábilitási valószínűség

Psep(R) =
29

64
.

Bizonyítás. A fent említett unitér invarianciát felhasználva a (3.20) kifejezésben szereplő
integrál

Psep(R) =

1∫
−1

x∫
−1

χ̃1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)(1− y2)(x− y) dy dx

1∫
−1

x∫
−1

(1− x2)(1− y2)(x− y) dy dx

egyszerűbb alakba írható, ahol a nevező 16
35
. A számlálóban végezzük el az u = 1−x

1+x
,

v = 1−y
1+y

helyettesítést, melynek Jacobi determinánsa 4
(1+u)2(1+v)2 . Vegyük figyelembe,

hogy a z 7→ 1−z
1+z

involutív leképezés a ]− 1, 1[ intervallumot a ]0,∞[ intervallumra képezi
le. A helyettesítés elvégzése után a számláló

∞∫
0

v∫
0

χ̃1

(√
u

v

)
128uv(v − u)

(1 + u)5(1 + v)5
du dv

alakú lesz. Ismét helyettesítünk, ezúttal legyen u = ts és v = s
t
. Az integráltranszformá-

ció Jacobi determinánsa 2s
t
, az új integrációs tartomány pedig 0 < s <∞, 0 < t < 1 lesz.

A helyettesítés elvégzése után az

∞∫
0

v∫
0

χ̃1

(√
u

v

)
128uv(v − u)

(1 + u)5(1 + v)5
du dv =

∞∫
0

1∫
0

χ̃1(t)
256s4t3(1− t2)

(s+ t)5(1 + st)5
dt ds

alakot nyerjük. A belső integrálban parciálisan integrálva kapjuk, hogy

1∫
0

χ̃1(t)
256s4t3(1− t2)

(s+ t)5(1 + st)5
dt =

64s3

(s+ 1)8
−

1∫
0

64s3t4 (χ̃1)′ (t)

(s+ t)4(1 + st)4
dt.

Ezt beírva a számlálóra kapott kifejezésbe kapjuk, hogy

∞∫
0

64s3

(s+ 1)8
ds−

1∫
0

∞∫
0

64s3t4 (χ̃1)′ (t)

(s+ t)4(1 + st)4
ds dt

=
16

35
−

− 64

3

1∫
0

11(1− t6) + 27t2(1− t2) + 6(1 + t2)(1 + 8t2 + t4) log(t)

(t2 − 1)7
(χ̃1)′ (t) dt,

ahol az utolsó tagban az integrálok sorrendjét felcseréltük.
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A kapott integrál polilogaritmus függvények felhasználásával az alábbi zárt alakba
írható

64

3

∫
11(1− t6) + 27t2(1− t2) + 6(1 + t2)(1 + 8t2 + t4) log(t)

(t2 − 1)7
(χ̃1)′ (t) dt =

= − 1

9π2 (t2 − 1)6

[
9
(
t2 − 1

)6 Li2(1− t) + 9
(
t2 − 1

)6 Li2(−t) +

+ 96
(
t2 + 1

) (
t4 + 28t2 + 1

) (
t2 − 1

)3
tanh−1(t)+

+ 9
(
t8 − 132t6 − 378t4 − 132t2 + 1

) (
t2 − 1

)2
log(t) log(t+ 1)+

+ 2t
(
−57t10 − 1211t8 + 78t6 − 78t4 + 1211t2

)
+

+ 6t
((
−3t10 + 401t8 + 882t6 + 882t4 + 401t2 + 192+

+
(
t9 + t7 − 4t5 + t3 + t

)
log(1− t)− 3

)
log(t) + 57

)]
+ const,

ahol a χ̃ függvény 3.2.1. Lemmában szereplő alakját alkalmaztuk. Ebből a számlálóra
kapjuk, hogy

64

3

1∫
0

11(1− t6) + 27t2(1− t2) + 6(1 + t2)(1 + 8t2 + t4) log(t)

(t2 − 1)7
(χ̃1)′ (t) dt =

1

4
,

amiből a szeparábilitási valószínűségre

Psep(R) =
16
35
− 1

4
16
35

=
29

64

adódik, amivel a bizonyítás teljes.

3.2.2. Általánosítás a (D4,K, gfGM
) statisztikus sokaságra

Az 1.2.1 Követlezményben láthattuk, hogy egy (D4,K, gf ) statisztikus sokaság térfogati
formája √

det(gf (ρ)) =
1√

det(ρ)

(
2(n2)

∏
1≤i<j≤n

cf (µi, µj)

)d/2

(3.21)

alakba írható, ahol d = dimR(K), µ1, . . . , µn a ρ sűrűségmátrix sajátértékei, cf (x, y) =
1

yf(x/y)
pedig az f ∈ Fop operátormonoton függvényhez asszociált Cenzov–Morozova-

függvény v.ö. az (1.14) formulával. Esetünkben n = 4 és f(x) =
√
x, amiből a térfogati

formára a √
det(gf (ρ)) =

23d

det(ρ)
3d
4

+ 1
2

d = 1, 2 (3.22)

kifejezést nyerjük. A (3.22) térfogati forma különleges tulajdonsága, hogy a ρ állapottól
csak annak determinánsán kereszül függ. Ez tesz lehetővé, hogy a 3.2.1. tétel bizonyítá-
sának kismértékű módosítása árán bebizonyítsuk az alábbi tételt.
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3.2.3. Tétel. Legyen D ∈ D2,K rögzített sűrűségmátrix. A
(
Dsep

4,K(D), gfGM
)
sokaság tér-

fogata formálisan

VolgfGM
(
Dsep

4,K(D)
)

= 4 det(D)
5
2
d− d

2

2
−1

∫
]−I,I[

det(I − Y 2)
d−2

4 ηd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y )

alakba írható, a klasszikusan korrelált állapotok
(
Dsep

4,K, g
√
x

)
terének térfogatára pedig for-

málisan
VolgfGM

(
Dsep

4,K
)

=

∫
D2,K

VolgfGM
(
Dsep

4,K(D)
)

dλd+1(D)

adódik, ahol d = dimR(K) = 1, 2.

Bizonyítás. A det(ρ(D1, D2, C)) = det(D1D2) det(I−D−1/2
1 CD−1

2 C∗D
−1/2
1 ) szorzat alak-

ból kifolyólag írható, hogy

VolgfGM
(
Dsep

4,K
)

= 23d

∫
D1, D2 > 0

tr(D1 +D2) = 1

det(D1D2)−
3d
4
− 1

2

×
∫

C∈C(D1,D2)

det(I −D−1/2
1 CD−1

2 C∗D
−1/2
1 )−

3d
4
− 1

2 dλ4d(C) dλ2d+3(D1, D2),

ahol C(D1, D2) a 3.2.1. tétel bizonyítása során definiált halmaz. A X = D
−1/2
1 CD

−1/2
2

helyettesítést elvégezve a belső integrál

det(D1D2)d
∫

B1(K2×2)

det(I −XX∗)−
3d
4
− 1

21||(V ∗)−1XV ||<1 dλ4d(X)

alakot ölt, ahol V = D
1/2
2 D

−1/2
1 . A 3.2.1. tétel bizonyítása során alkalmazott érvelést

megismételve kapjuk, hogy a fenti kifejezésben szereplő második tényező csak a V mátrix
szinguláris érték hányadosától függ és ηd ◦ σ(V ) alakba írható. Ebből a szeparábilis
állapotok térfogatára a

VolgfGM
(
Dsep

4,K
)

=

∫
D1, D2 > 0

tr(D1 +D2) = 1

23d det(D1D2)
d−2

4 ηd ◦ σ(D
1/2
2 D

−1/2
1 ) dλ2d+3(D1, D2)

kifejezést kapjuk. A (3.19) paraméterezést alkalmazva az Y = D−1/2AD−1/2 helyettesí-
téssel a

VolgfGM
(
Dsep

4,K
)

=

∫
D2,K

VolgfGM
(
Dsep

4,K(D)
)

dλd+1(D)

integrálhoz jutunk, ahol

VolgfGM
(
Dsep

4,K(D)
)

= 4 det(D)
5
2
d− d

2

2
−1

∫
]−I,I[

det(I − Y 2)
d−2

4 ηd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y ).
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3.2.3. Következmény. Tetszőleges D ∈ (D2,K, gfGM ) sűrűségmátrixot véve a D4,K(D)
halmazon a (3.22) térfogati formához rendelt valószínűségi mértékre vonatkozó feltételes
szeparábilitási valószínűség az∫

]−I,I[

η̃d ◦ σ

(√
I − Y
I + Y

)
dνd+2(Y ) (3.23)

integrállal fejezhető ki, ahol νd+2 a λd+2 Lebesgue-mértékre nézve abszolút folytonos való-
színűségi mérték:

dνd+2(Y ) =
det(I − Y 2)

d−2
4∫

]−I,I[
det(I − Z2)

d−2
4 dλd+2(Z)

dλd+2(Y ).

Rögtön szembetűnik, hogy – csakúgy mint a Hilbert–Schmidt-metrikából származó mér-
ték esetén – itt is igaz, hogy a D4,K(D) alakú halmazokon a szeparábilitási valószínűség
a D redukált állapottól független. Ez egyrészt azt jelenti, hogy Milz és Strunz szepará-
bilitási valószínűség invarianciájára vontkozó sejtése (D4,K, gfGM ) statisztikus sokaságon
is érvényben marad, másfelől pedig (D4,K, gfGM ) statisztikus sokaságon a szeparábilitási
valószínűség a

Psep,gfGM
(K) =

∫
]−I,I[

η̃d ◦ σ

(√
I − Y
I + Y

)
dνd+2(Y ). (3.24)

integrállal egyezik meg.

Bizonyítás. A 3.2.3. tételt bizonyításában vázolt számolással analóg módon kiszámítható
a D4,K(D) térfogata a gfGM monoton metrikára vonatkozóan, amire végül is

VolgfGM (D4,K(D)) = 4ηd(1) det(D)
5
2
d− d

2

2
−1 ×

∫
]−I,I[

det(I − Y 2)
d−2

4 dλd+2(Y ) (3.25)

adódik. Ezután a Psep,gfGM
(K) =

VolgfGM
(Dsep

4,K(D))
VolgfGM

(D4,K(D))
hányadost véve a bizonyítandó össze-

függést kapjuk.

A 3.2.2. Lemmában bizonyított χ̃1 = η̃1 egyenlőség és a χ̃1 függvény (3.7) exp-
licit alakja lehetővé teszi, hogy meghatározzuk a (D4,R, gfGM ) statisztikai sokaságon a
szeparábilitási valószínűséget. Ez a Hilbert–Schmidt metrikára vonatkozó szeparábilitá-
si valószínűség ismereténél annyiban érdekesebb, hogy míg a gfGM monoton metrikának
világos információgeometriai jelentése van, addig az (1.15) Hilbert–Schmidt metrikához
nem társul információgeometriai kép.

3.2.4. Tétel. A (D4,R, gfGM ) statisztikus sokaságon a szeparábilitási valószínűség

Psep,gfGM
(R) =

1∫
0

8
(
8 (t4 + t2)E

(
1− 1

t2

)
− (t2 + 3) (3t2 + 1)K

(
1− 1

t2

))
π
√
t (t2 − 1)3 χ̃1(t) dt

≈ 0.26223.
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Bizonyítás. A η̃1 = χ̃1 egyenlőséget (lásd: 3.2.2. Lemma és a függelék C.2. pontja)
valamint a (3.24) integrál unitér invarianciáját felhasználva írhatjuk, hogy

Psep,gfGM
(R) =

1∫
−1

x∫
−1

χ̃1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)−

1
4 (1− y2)−

1
4 (x− y) dy dx

1∫
−1

x∫
−1

(1− x2)−
1
4 (1− y2)−

1
4 (x− y) dy dx

,

ahol a nevező 2π
3
. A számláló kiszámításához a Hilbert–Schmidt eset számolásához hasz-

nált stratégiát követjük. Az első helyettesítés után a számláló az alábbi alakot nyeri

∞∫
0

v∫
0

χ̃1

(√
u

v

)
4(v − u)

(uv)
1
4 (1 + u)

5
2 (1 + v)

5
2

du dv.

A második helyettesítés után pedig azt kapjuk, hogy

∞∫
0

v∫
0

χ̃1

(√
u

v

)
4(v − u)

(uv)
1
4 (1 + u)

5
2 (1 + v)

5
2

du dv =

∞∫
0

1∫
0

8s
3
2

√
t(1− t2)χ̃1(t)

(s+ t)
5
2 (1 + ts)

5
2

dt ds.

Az integrálok sorrendjét felcserélve az

1∫
0

16
(
8 (t4 + t2)E

(
1− 1

t2

)
− (t2 + 3) (3t2 + 1)K

(
1− 1

t2

))
3
√
t (t2 − 1)3 χ̃1(t) dt ≈ 0.549213

integrálhoz jutunk, melynek értékét numerikusan tudjuk csak kiszámítani. Itt K és E a
teljes első- és másodfajú teljes elliptikus integrált jelöli (lásd: B.0.3. Definíció).

A nevezővel történő osztás után a szeparábilitási valószínűségre a bizonyítandó

Psep,gfGM
(R) =

1∫
0

8
(
8 (t4 + t2)E

(
1− 1

t2

)
− (t2 + 3) (3t2 + 1)K

(
1− 1

t2

))
π
√
t (t2 − 1)3 χ̃1(t) dt

≈ 0.26223

értéket nyerjük.

3.2.3. Ellenőrző számítások

Ellenőrzésképpen kiszámítjuk a D4,K állapottér térfogatát a Lebesgue-mértékre nézve
és a kapott eredményeket összevetjük az Andai [1] és Życzkowski [37] által kapottakkal.
A 3.2.2. Következmény bizonyításában már találkozhattunk a D4,K állapottér térfogatá-
nak

Vol (D4,K) =

∫
D2,K

Vol (D4,K(D)) dλd+1(D) (3.26)
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alakú kifejezésével, ami

Vol (D4,K) =
χd(1)

26d
×
∫
D2,K

det(D)4d− d
2

2 dλd+1(D)×
∫

]−I,I[

det(I − Y 2)d dλd+2(Y ) (3.27)

módon bomlik szorzattá.

A fenti felbontás tényezői a valós esetben:

χ1(1) =
2

3
π2∫

D2,R

det(D)
7
2 dλ2(D) =

π

2732

∫
]−I,I[

det(I − Y 2) dλ3(Y ) =
25
√

2π

35
.

A komplex esetben a

χ2(1) =
π4

6∫
D2,C

det(D)6 dλ3(D) =
π

2× 32 × 5× 7× 11× 13×
√

2∫
]−I,I[

det(I − Y 2)2 dλ4(Y ) =
210π

32 × 52 × 7

tényezőket kapjuk.

A kapottakat a (3.27) szorzat felbontásba beírva a 4×4-es valós illetve komplex állapottér
térfogatára a

Vol (D4,R) =
π4

√
2× 26 × 33 × 35

Vol (D4,C) =
π6

√
2× 214 × 34 × 53 × 72 × 11× 13

értékeket nyerjük, ami egy kettőhatvány szorzótól eltekintve megegyezik a Życzkowski [37]
és Andai (lásd: [1] dolgozat 1. és 2. tétele) kapottakkal. A kettőhatvány faktor eltérés az
állapottéren Hilbert–Schmidt metrika általunk figyelembe nem vett kettőhatvány alakú
konstans térfogati formájából fakad.

Az Andai által tanulmányozott 2× 2-es esettel ellentétben (lásd: [1] dolgozat 1. Kö-
vetkezmény) a (D4,K, gfGM ) statisztikus sokaság térfogata mind a valós mind a komplex
esetben végtelen, hiszen d = 1, 2 esetén ηd(1) =∞ (lásd: 3.2. táblázat) és a (D4,K, gfGM )
statisztikus sokaság térfogata

VolfGM (D4,K) = 4ηd(1)×
∫
D2,K

det(D)
5
2
d− d

2

2
−1 dλd+1(D)×

∫
]−I,I[

det(I − Y 2)
d−2

4 dλd+2(Y )

(3.28)

módon bomlik szorzattá.
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3.3. A D2n,K állapotterek geometriája
A 2n-dimenziós Hilbert-terekkel leírt kvantummechanikai rendszerekre a K2n ∼= Kn⊗

K2 izomorfizmus révén gondolhatunk úgy is, mint összetett rendszerekre, melyek egy n-
dimenziós Hilbert-térrel leírt kvantummechanikai rendszerből és egy kétdimenziós Hilbert-
térrel leírt rendszeből épülnek fel. Ilyen rendszernek tekinthető az egy fotonból és egy
véges szabadsági fokú kvantummechanikai rendszerből álló összetett rendszer vagy több
qubit együttese, amely egy véges sok qubittel dolgozó kvantumszámítógép kvantum re-
giszterének is felfogható. Korábban szó volt arról, hogy a kvantum összefonódás a kvan-
tumos algoritmusok szempontjából bizonyos értelemben erőforrásnak tekinthető, ami in-
dokolja, hogy a D2n,K állapotterek és ezen belöl a Dsep

2n,K klasszikusan korrelált állapotok
geometriáját tanulmányozzuk.

3.3.1. A D2n,K állapotterek szorzat struktúrája

Ebben a pontban megmutatjuk, hogy a D2n,K állapottér diffeomorf a Dn,K × En,K ×
B1 (Kn×n) szorzat sokasággal, ahol En,K a K test feletti n × n-es önadjungált mátrixok
alkotta (3.1) operátor intervallumot jelöli. Megmutatjuk, hogy a fenti szorzat előállítás-
ban az állapotok második komponensre vonatkozó parciális nyoma az első komponensre
történő projekcióval fejezhető ki, továbbá meghatározzuk tetszőleges gf monoton metrika
alakját ezen szorzat felbontásra vonatkozóan.

3.3.1. Definíció. Az A�B = (A1/2BA1/2)1/2 mátrixot az A és B pozitív definit mátrixok
szemiszimmetrikus szorzatának nevezzük.

Legyen D ∈ Dn,K állapot, Z ∈ En,K és X ∈ B1 (Kn×n) kontrakció. Vezessük be a

φn (D,Z,X) = Sn(D,Z)

[
I X
X∗ I

]
Sn(D,Z) (3.29)

leképezést, ahol

Sn(D,Z) =

[
D � I+Z

2
0

0 D � I−Z
2

]
, (3.30)

valamint a
Πn,K = Dn,K × En,K × B1

(
Kn×n)

jelölést. Megállapodunk abban, hogy a φ és S leképezések indexét nem írjuk ki, ha ez
nem vezet félreértésre.

3.3.1. Tétel. A φ : Πn,K → D2n,K (D,Z,X) 7→ φ(D,Z,X) leképezés diffeomorfizmus, a

Πn D2n,K

Dn,K

φ

pr1

tr2

(3.31)

diagramm pedig kommutatív, ahol tr2 : D2n,K → Dn,K a második részrendszerre vonatkozó
parciális nyom, pr1 pedig a Dn,K állapottérre vonatkozó projekciót jelöli.
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Bizonyítás. A (3.29) alakban a mátrix szorzásokat elvégezve

φ (D,Z,X) =
1

2

[
D1/2(I + Z)D1/2 (D � (I + Z))X(D � (I − Z))

(D � (I − Z))X∗(D � (I + Z)) D1/2(I − Z)D1/2

]
,

adódik, amiből az

(tr2 ◦φ) (D,Z,X) =
1

2

(
D1/2(I + Z)D1/2 +D1/2(I − Z)D1/2

)
= D = pr1 (D,Z,X)

egyenlőséget kapjuk tetszőleges D ∈ Dn,K, Z ∈ En,K és X ∈ B1 (Kn×n) esetén. Ez igazolja
a (3.31) diagramm kommutativitását.

Most pedig a φ leképezés diffeomorfizmus voltának bizonyítására térünk rá. Először
megmutatjuk, hogy φ szürjektív és meghatározzuk az inverzét. Legyen P : K2n → Kn az
első n koordinátára, Q : K2n → Kn pedig az utolsó n koordinátára történő vetítés, azaz

K2n 3 (x1, . . . , x2n)T 7→ P ((x1, . . . , x2n)T ) = (x1, . . . , xn)T

K2n 3 (x1, . . . , x2n)T 7→ Q((x1, . . . , x2n)T ) = (xn+1, . . . , x2n)T .

Egy tetszőleges ρ ∈ D2n,K állapot

ρ =

(
PρP ∗ PρQ∗

QρP ∗ QρQ∗

)
blokk mátrix alakban írható fel. Erről és φ(D,Z,X) alakjából leolvasható, hogy a

D = tr2(ρ)

Z = D−1/2 (PρP ∗ −QρQ∗)D−1/2 = tr2(ρ)−1/2 (PρP ∗ −QρQ∗) tr2(ρ)−1/2

X =

(
D � I + Z

2

)−1

PρQ∗
(
D � I − Z

2

)−1

= (PρP ∗)−1/2PρQ∗(QρQ∗)−1/2

egyenlőségeknek kell teljesülni, amiből a φ leképezés inverzére a

φ−1(ρ) = (tr2(ρ), tr2(ρ)−1/2 (PρP ∗ −QρQ∗) tr2(ρ)−1/2, (PρP ∗)−1/2PρQ∗(QρQ∗)−1/2)
(3.32)

alakot kapjuk. Amint ρ befutja a D2n,K nyílt állapotteret, tr2(ρ) a Dn,K állapotteret futja
be. A ρ ∈ B (K2n)

+ pozitivitás miatt PρP ∗ > 0 és QρQ∗ > 0 egyszerre teljesül, ami Z-re
a I + Z > 0 és I − Z > 0 egyenlőtlenségeket adja, ebből pedig −I < Z < I következik.
Az A.2.3. Lemmában foglalt pozitivitás feltétel szerint a

QρQ∗ −QρP ∗ (PρP ∗)−1 PρQ∗ > 0

egyenlőtlenségnek kell teljesülni, ami az X∗X < I feltétellel ekvivalens. Ez utóbbi fel-
tétel pedig az A.2.4. Lemma szerint ||X|| < 1 alakba írható át. Tehát φ bijekció a
D2n,K állapottér és a Πn,K sokaság között. A φ és φ−1 leképezések lineáris és bilinerás
leképezések, valamint az A 7→ A−1 invertálás és az A 7→ A1/2 operátor négyzetgyök alkal-
mas kompozícióiként állnak elő. Ezek a leképezések pedig az értelmezési tartományukon
differenciálhatók, így kompozíciójuk is az. Ezzel beláttuk, hogy a φ és φ−1 leképezések
differenciálhatók. Tehát φ tényleg diffeomorfizmus a D2n,K és Πn,K sokaságok között.
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A φn és φm diffeomorfizmusok segítségével tetszőleges D2n,K → D2m,K leképezés re-
dukált állapotokra való megszorítása könnyedén előállítható. Ha pedig egy tetszőleges
Dn,K → Dm,K, En,K → Em,K és B1 (Kn×n) → B1 (Km×m) leképezés hármast adunk meg,
akkor ezek segítségével Πn,K → Πm,K leképezéseket definiálhatunk, melyek a φn és φm
diffeomorfizmusok révén leképezéseket indukálnak a D2n,K és D2m,K állapotterek között.
Ezzel a technikával rengeteg nem triviális D2n,K → D2m,K leképezés adható meg.

3.3.1. Következmény. Tekintsünk egy n darab kvantum bitből (rebit, ha K = R és
qubit, ha K = C) álló összetett kvantummechanikai rendszert, melyhez a D2n,K állapottér
tartozik. A 3.3.1. tétel n-szeri alkalmazásával kapjuk, hogy a D2n,K állapottér belső a

n−1∏
k=0

(
E2k,K × B1

(
K2k×2k

))
szorzat sokasággal diffeomorf.

A Πn,K = Dn,K × En,K × B1 (Kn×n) szorzat sokaság érintőtere tetszőleges (D,Z,X) ∈
Dn,K × En,K × B1 (Kn×n) pontban a

TDDn,K × TZEn,K × TXB1

(
Kn×n) ∼=Msa

n,K(0)×Msa
n,K ×Kn×n

direkt szorzattal izomorf. Legyen f ∈ Fop operátor monoton függvény, gf pedig a neki
megfelelő monoton metrika a D2n,K állapottéren. Vizsgáljuk a gf metrika φ leképezés
általi φ∗gf visszahúzottját.

Legyen U ∈ U(K2n) unitér mátrix és definiáljuk a βU : K2n×2n → K2n×2n βU(A) =
U∗AU unitér konjugálást. Ezzel a jelöléssel a gf monoton metrika unitér invarianciája
gf = β∗Ugf ekvivalens alakban írható fel. Ebből kapjuk, hogy

gf = β∗Ugf ⇔ φ∗gf = φ∗β∗Ugf = α∗Uφ
∗gf , (3.33)

ahol αU = φ−1 ◦ βU ◦φ. A φ∗gf = α∗Uφ
∗gf egyenlőség értelmében φ∗gf kiszámításánál fel-

tehető, hogy a tekintett pontot a φ leképezés diagonális állapotba viszi. Ezzel ekvivalens,
hogy a Πn,K sokaság tekintett pontja (D,Z, 0) alakú, ahol D és Z diagonális.

A most következő gondolatmenetben feltesszük, hogy D ∈ Dn,K és Z ∈ En,K diagonális
mátrixok, továbbá D0, D

′
0 ∈ Msa

n,K(0), Z0, Z
′
0 ∈ Msa

n,K és X0, X
′
0 ∈ Kn×n. A φn : Πn,K →

D2n,K leképezés (D,Z, 0) ∈ Πn,K pontbeli deriváltja

dφ(D,Z, 0)(D0, Z0, X0) = S(D,Z)

[
0 X0

X∗0 0

]
S(D,Z)

+ dS(D,Z)(D0, Z0)S(D,Z) + S(D,Z) dS(D,Z)(D0, Z0)

= ( dS2)(D,Z)(D0, Z0) + S(D,Z)

[
0 X0

X∗0 0

]
S(D,Z),

(3.34)

ahol S2(D,Z) = 1
2

[
D1/2(I + Z)D1/2 0

0 D1/2(I − Z)D1/2

]
, melynek deriváltja

( dS2)(D,Z)(D0, Z0) =

[
D1/2 I+Z

2
�I

D1/2�I
(D0) +D1/2 ⊗D1/2(Z0) 0

0
D1/2 I−Z

2
�I

D1/2�I
(D0)−D1/2 ⊗D1/2(Z0)

]
.



54 3. FEJEZET. ÖSSZETETT KVANTUMMECHANIKAI RENDSZEREK

Itt A�B az A és B mátrixok A⊗B+B⊗A Kroenecker-összegét jelöli, mellyel az operátor
négyzetgyök A0 önadjungált mátrix irányú deriváltja egy A pozitív mátrix helyen

(
√
A� I)−1(A0) =

∞∫
0

e−t
√
AA0e

−t
√
A dt

módon fejezhető ki. Végül a D és Z mátrixok felcserélhetőségét felhasználva kapjuk,
hogy

dφ(D,Z, 0)(D0, Z0, X0) =

=
1

2

[
D1/2(I+Z)�I

D1/2�I
(D0) +D1/2 ⊗D1/2(Z0) D1/2(I + Z)1/2 ⊗D1/2(I − Z)1/2(X0)

D1/2(I − Z)1/2 ⊗D1/2(I + Z)1/2(X∗0 ) D1/2(I−Z)�I
D1/2�I

(D0)−D1/2 ⊗D1/2(Z0)

]
.

A φ∗gf visszahúzott metrika a (D,Z, 0) pontban

φ∗gf (D,Z, 0) ((D0, Z0, X0), (D′0, Z
′
0, X

′
0)) = tr

(
(D0, Z0, X0)φ∗Gf (D,Z, 0)(D′0, Z

′
0, X

′
0)T
)

alakba írható, ahol

φ∗Gf (D,Z, 0) = ( dφ(D,Z, 0))∗Gf (φ(D,Z, 0)) dφ(D,Z, 0)

egy [Gij]i,j=1,2,3 szuperoperátorokat tartalmazó 3 × 3-as szimmetrikus hipermátrixszal
adható meg, melynek zérustól különböző elemei

G11 =
1

4

[
cf (LD I+Z

2
,RD I+Z

2
)

(
(I + Z)D1/2 � I

D1/2 � I

)2

+ cf (LD I−Z
2

,RD I−Z
2

)

(
(I − Z)D1/2 � I

D1/2 � I

)2
]

G12 =
1

4

[
cf (LD I+Z

2
,RD I+Z

2
)
(I + Z)D1/2 � I

D1/2 � I
− cf (LD I−Z

2
,RD I−Z

2
)
(I − Z)D1/2 � I

D1/2 � I

]
D1/2 ⊗D1/2

G22 =
1

4

[
cf (LD I+Z

2
,RD I+Z

2
) + cf (LD I−Z

2
,RD I−Z

2
)
]
D ⊗D

G33 =
1

2
cf (LD I+Z

2
,RD I−Z

2
)D(I + Z)⊗D(I − Z),

ahol cf az f ∈ Fop operátor monoton függvényhez asszociált Cenzov–Morozova-függvény.

3.3.2. Tétel. Legyen f ∈ Fop operátor monoton függvény. A φ∗gf visszahúzott metrikával
ellátott Πn,K sokaság térfogati formája egy olyan (D,Z, 0) ∈ Πn,K pontban, melynek φ
általi képe a diag(µ1, . . . , µ2n) diagonális állapot

√
det(φ∗Gf (D,Z, 0)) =

det(D)
d
2

(3n−1) det(I − Z2)
nd−1

2

2(2n
2 ) d2−

1
2

∏
0≤k<l≤2n

 2

µlf
(
µk
µl

)
 d

2

.

Bizonyítás. A szóban forgó térfogati forma a det (( dφ(D,Z, 0))∗ dφ(D,Z, 0)) determi-
náns négyzetgyökének és a megfelelő (1.14) alakú térfogati formának a szorzataként áll
elő. A dφ(D,Z, 0))∗ dφ(D,Z, 0) :Msa

n,K(0) ×Msa
n,K × Kn×n →Msa

n,K(0) ×Msa
n,K × Kn×n
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lineáris leképezéshez asszociált szuperoperátor elemű G szimmetrikus hipermátrix nem
zérus elemei

G11 =
1

4

[(
(I + Z)D1/2 � I

D1/2 � I

)2

+

(
(I − Z)D1/2 � I

D1/2 � I

)2
]

G12 =
1

4

[
(I + Z)D1/2 � I

D1/2 � I
− (I − Z)D1/2 � I

D1/2 � I

]
D1/2 ⊗D1/2

G22 =
1

2
D ⊗D

G33 =
1

2
D(I + Z)⊗D(I − Z).

Ebből

det (( dφ(D,Z, 0))∗ dφ(D,Z, 0)) = det(G) = det(G33) det(G22) det(G11 −G21G
−1
22 G12),

ami

det (( dφ(D,Z, 0))∗ dφ(D,Z, 0)) =

det(2D(I + Z)⊗D(I − Z)) det(2D ⊗D)

4dim(D2n,K)
× det

[(
(I + Z)D1/2 � I

D1/2 � I

)2

+

(
(I − Z)D1/2 � I

D1/2 � I

)2

− 1

2

(
(I + Z)D1/2 � I

D1/2 � I
− (I − Z)D1/2 � I

D1/2 � I

)2
]

=
2dim(Kn×n)+dim(Msa

n,K)

4dim(D2n,K)
det(D(I + Z)⊗D(I − Z)) det(D ⊗D) det(2I)

=
det(D(I + Z)⊗D(I − Z)) det(D ⊗D)

2dim(D2n,K)

alakba írható át. Itt ügyelni kell arra, hogy a D⊗D tenzorszorzatot mintMsa
n,K →Msa

n,K
szuperoperátort kell tekinteni, melynek így determinánsa det(D ⊗ D) = det(D)(n−1)d+2

lesz. A D(I + Z) ⊗ D(I − Z) : Kn×n → Kn×n lineáris leképezés determinánsa pedig
det(D(I + Z)⊗D(I − Z)) = det(D)2nd det(I − Z2)nd lesz.

Ebből kapjuk, hogy

det (( dφ(D,Z, 0))∗ dφ(D,Z, 0)) =
1

22n+(2n
2 )d−1

det(D)(3n−1)d+2 det(I − Z2)nd,

melynek négyzetgyökét a D2n,K sokaság diag(µ1, . . . , µ2n) diagonális állapotbeli térfogati
formájával összeszorozva kapjuk a bizonyítandó formulát.

3.3.2. Következmény. A visszahúzott metrika térfogati formája a Hilbert–Schmidt-
metrika és az fGM ∈ Fop operátor monoton függvény által származtatott monoton metrika
esetében a redukált állapot D és az I − Z2 mátrix determinánsai alkalmas hatványainak
szorzataként fejezhető ki. Rövid számolás után a Hilbert–Schmidt-metrika esetén a√

det(φ∗GHS(D,Z,X)) =

√
n

2n−1
det(D)(3n−1) d

2
+1 det(I − Z2)

nd
2
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térfogati formát kapjuk, az fGM ∈ Fop operátor monoton függvény által származtatott
monoton metrika visszahúzottját véve alapul

√
det(φ∗GfGM (D,Z,X)) =

det(I − Z2)(3n−1) d
2
− 1

2

2(2n
2 )d− 1

2 det(D)(n−1) d
2 det(I −XX∗)(n−1) d

4
+ 1

2

adódik.

3.3.2. PPT állapotok a D2n,K állapottereken

A D2n,K állapottéren is érvényes az a megállapítás, hogy az állapotok mátrix ele-
menkénti konjugálása egy pozitív és nyomtartó leképezés, ennél fogva pedig a Peres–
Horodecki-féle feltétellel ekvivalens annak megkövetelése, hogy egy állapot T általi képe
állapot legyen, ahol T : K2n×2n → K2n×2n a parciális transzponálás. A φ : Πn,K → D2n,K
diffeomorfizmus általi ősképre vonatkozóan mindez azt jelenti, hogy egy φ(D,Z,X) álla-
pot pontosan akkor PPT állapot, ha az X ∈ B1 (Kn×n) komponensre igaz, hogy

|| (V ∗)−1XV || < 1 (3.35)

ahol V =
(
D � I−Z

2

) (
D � I+Z

2

)−1
= (D � (I − Z)) (D � (I + Z))−1. Az alábbi lemma

fontos információt szolgáltat a V mátrix szinguláris érték felbontására vonatkozólag.

3.3.1. Lemma. Legyen D ∈ Dn,K állapot és Z ∈ En,K tetszőleges mátrix, továbbá V =
(D � (I − Z)) (D � (I + Z))−1. Ekkor az A = V ∗V és B = I−Z

I+Z
önadjungált mátrixok

unitér hasonlók.

Bizonyítás. Elég megmutatni, hogy minden k = 1, 2, . . . , n kitevőre a tr(Ak) = tr(Bk)
nyomok közti egyenlőség teljesül. Ebből következik, hogy az A és B pozitív mátrixok
karakterisztikus polinomja egyenlő, ami maga után vonja, hogy az A és B mátrixok
unitér hasonlók. A nyomképzés ciklikusságát felhasználva írható, hogy

tr(Ak) = tr
[(

(D � (I + Z))−1 (D � (I − Z))2 (D � (I + Z))−1)k]
= tr

[
(D � (I + Z))−1

(
D1/2 I − Z

I + Z
D−1/2

)k−1

(D � (I − Z))2 (D � (I + Z))−1

]

= tr

[(
D1/2 I − Z

I + Z
D−1/2

)k]
= tr

[(
I − Z
I + Z

)k]
= tr

(
Bk
)

k = 1, 2, . . . , n.

A fenti lemma következménye, hogy minden D ∈ Dn,K állapothoz és Z ∈ En,K mát-
rixhoz megadhatók olyan U1(D,Z), U2(D,Z) ∈ U(Kn) unitér mátrixok, hogy

V = (D � (I − Z)) (D � (I + Z))−1 = U1(D,Z)Σ

(√
I − Z
I + Z

)
U2(D,Z)
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teljesül, ahol Σ
(√

I−Z
I+Z

)
diagonális mátrix, mely főátlójában az

√
I−Z
I+Z

> 0 mátrix saját-
értékeit tartalmazza csökkenő sorrendben. Ezzel a (3.35) PPT-feltétel

|| (V ∗)−1XV || =

∣∣∣∣∣∣
∣∣∣∣∣∣Σ
(√

I − Z
I + Z

)−1

U2(D,Z)XU2(D,Z)Σ

(√
I − Z
I + Z

)∣∣∣∣∣∣
∣∣∣∣∣∣ < 1

alakot ölt.

3.3.2. Definíció. Vezessük be a Θ = Θn : Πn,K → Πn,K

(D,Z,X) 7→ Θ(D,Z,X) = (D,Z, U2(D,Z)∗XU2(D,Z)∗)

leképezést, amely a Πn,K sokaság diffeomorfizmusa.

A fenti gondolatmenetet követve adódik, hogy egy (D,Z,X) ∈ Πn,K pont φn ◦ Θn :
Πn → D2n,K leképezés általi képe pontosan akkor PPT állapot, ha teljesül, hogy∣∣∣∣∣∣

∣∣∣∣∣∣Σ
(√

I − Z
I + Z

)−1

XΣ

(√
I − Z
I + Z

)∣∣∣∣∣∣
∣∣∣∣∣∣ < 1. (3.36)

Ezzel a Πn,K szorzat sokaság φn ◦ Θn diffeomorfizmus által PPT állapotoknak megfe-
leltetett pontjait lényegében jellemeztük. Eredményeinket az alábbi tételben foglaljuk
össze.

3.3.3. Tétel. Legyen ΠPPT
n,K = (φn ◦Θn)−1(DPPT

2n,K) ⊂ Πn,K. Ekkor

ΠPPT
n,K = Dn,K×

(Z,X) ∈ En,K × B1

(
Kn×n) ∣∣∣∣∣∣1 >

∣∣∣∣∣∣
∣∣∣∣∣∣Σ
(√

I − Z
I + Z

)−1

XΣ

(√
I − Z
I + Z

)∣∣∣∣∣∣
∣∣∣∣∣∣


teljesül.

3.3.3. Következmény. A fenti tétel egyik következménye, hogy egy ρ ∈ D2n,K állapot
teljesíti-e a Peres–Horodecki-féle parciális transzponálási feltételt, nem függ attól, hogy mi
a szóban állapot D2,K részrendszerre vonakozó tr2(ρ) parciális nyoma. Ez a megfigyelés
jelentős mértékben általánosítja Milz és Strunz 4 × 4-es PPT állapotokra vonatkozó [51]
cikkben közölt sejtését.

A (3.36) feltétel bal oldala csupán az
√

I−Z
I+Z

pozitív mátrix sajátértékeinek egymáshoz
viszonyított arányától függ, nem függ azok sorrendjétől és összegétől. Ez az észrevétel
motiválja az r : ∆n−1,≥ × ∂B1 (Kn×n)→ [0, 1]

r(p,X) = min

{
1,

1

||diag(p)−1Xdiag(p)||

}
(3.37)

függvény bevezetését, ahol ∆n−1,≥ = {(p1, . . . , pn) |p1 ≥ . . . ,≥ pn ≥ 0,
∑n

k=1 pk = 1} a
rendezett (n− 1)-szimplex.
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3.3.4. Tétel. A DPPT
2n,K ⊂ D2n,K részsokaság diffeomorf egy Dn,K × Fln,K × R+-nyalábbal,

melynek bázis sokasága az r : ∆n−1,≥ × ∂B1 (Kn×n) → [0, 1] függvény nyílt epigráfja. Itt
Fln,K = U(Kn)/U(K)n az ún. zászló sokaság (flag manifold).

Bizonyítás. Az állítás azonnal következik a 3.3.3. tételből és a ΠPPT
n,K ⊂ Πn,K részsokaság

ΠPPT
n,K =

{(
D,U I−α2.diag(p)2

I+α2.diag(p)2U
∗, βX

)∣∣∣ D ∈ Dn,K, U ∈ Fln,K, α > 0
β ∈ (0, r(p, x)), p ∈ ∆n−1,≥, X ∈ ∂B1 (Kn×n)

}
paraméterezéséből.

A 3.3.2. következményben foglaltakat a PPT-állapotok 3.3.3 tételbeli jellemzésével
kombinálva megkaphatjuk a PPT-állapotok geometriai valószínűségét tetszőleges páros
dimenziós kvantummechanikai állapottéren a Hilbert–Schmidt-metrikából és a gfGM mo-
noton metrikából származó térfogatra vonatkozóan egyaránt. Ez általánosítja a 3.2.2 és
3.2.3 következményekben tett megállapításokat. A 3.1.3. tételben megfogalmazott Peres–
Horodecki-kritérium értelmében az n = 3 esetben K = R esetén a rebit-retrit4, K = C
esetén pedig a qubit-qutrit szeparábilitási valószínűségre kapunk explicit formulát. AD6,K
állapottereken a szeparábilitási valószínűség szintén intenzíven kutatott kérdés, melynek
Slater kvázi-Monte–Carlo szimulációk segítségével tanulmányozott [68, 69].

3.3.5. Tétel. A PPT állapotok geometriai valószínűsége a D2n,K állapottéren a Hilbert–
Schmidt-metrikából származó térfogatra vonatkozóan a

PPPT,gHS(D2n,K) =

∫
En,K

f(Z) dµ(Z)

formulával fejezhető ki ahol dµ(Z) = (I−Z2)
nd
2∫

En,K
det(I−Z2)

nd
2 dλ

n+(n2)d
(Z)

dλn+(n2)d
(Z) valószínűségi

mérték az En,K ⊂Msa
n,K operátor intervallumon és

f(Z) =

∫
B1(Kn×n)

1∣∣∣∣∣∣∣∣Σ(√ I−Z
I+Z

)−1
XΣ

(√
I−Z
I+Z

)∣∣∣∣∣∣∣∣<1
dλn2d(X)

Vol(B1 (Kn×n))
.

A gfGM monoton metrika esetén pedig a

PPPT,gfGM (D2n,K) =

∫
En,K

h(Z) dν(Z)

formulát kapjuk, ahol dν(Z) = det(I−Z2)(3n−1) d2−
1
2∫

En,K
det(I−Z2)(3n−1) d2−

1
2 dλ

n+(n2)d
(Z)

dλn+(n2)d
(Z) és

h(Z) =

∫
B1(Kn×n)

(I −XX∗)−(n−1) d
4
− 1

21∣∣∣∣∣∣∣∣Σ(√ I−Z
I+Z

)−1
XΣ

(√
I−Z
I+Z

)∣∣∣∣∣∣∣∣<1
dλn2d(X)∫

B1(Kn×n)

(I −XX∗)−(n−1) d
4
− 1

2 dλn2d(X)
.

4A 2× 2-es sűrűségmátrixokkal leírt kvantummechanikai rendszerekre használt elnevezésének analóg-
jaiként bevezetjük a 3 × 3-as valós és komplex állapotokkal jellemezhető rendszerekre a „retrit” illetve
„qutrit” elnevezéseket.
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Bizonyítás. A PPT állapotok geometriai valószínűsége egy g unitér invariáns metrikával
ellátott D2n,K állapottéren a

PPPT,g(D2n,K) =
Volg(DPPT

2n,K)

Volg(D2n,K)
=

Vol(φ◦Θ)∗g(Π
PPT
n,K )

Vol(φ◦Θ)∗g(Πn,K)

formulával kapható meg.
A 3.3.2. következményben kapott térfogati formát felhasználva a g = gHS Hilbert–

Schmidt-metrika esetén kapjuk, hogy

PPPT,gHS(D2n,K) =

∫
En,K

det(I − Z2)
nd
2 f(Z) dλn+(n2)d

(Z)∫
En,K

det(I − Z2)
nd
2 dλn+(n2)d

(Z)
=

∫
En,K

f(Z) dµ(Z),

ahol dµ(Z) = (I−Z2)
nd
2∫

En,K
det(I−Z2)

nd
2 dλ

n+(n2)d
(Z)

dλn+(n2)d
(Z) és

f(Z) =

∫
B1(Kn×n)

1∣∣∣∣∣∣∣∣Σ(√ I−Z
I+Z

)−1
XΣ

(√
I−Z
I+Z

)∣∣∣∣∣∣∣∣<1
dλn2d(X)

Vol(B1 (Kn×n))
.

A gfGM monoton metrika választás mellett pedig azt kapjuk, hogy

PPPT,gfGM (D2n,K) =

∫
En,K

det(I − Z2)(3n−1) d
2
− 1

2h(Z) dλn+(n2)d
(Z)∫

En,K
det(I − Z2)(3n−1) d

2
− 1

2 dλn+(n2)d
(Z)

=

∫
En,K

h(Z) dν(Z),

ahol dν(Z) = det(I−Z2)(3n−1) d2−
1
2∫

En,K
det(I−Z2)(3n−1) d2−

1
2 dλ

n+(n2)d
(Z)

dλn+(n2)d
(Z) és

h(Z) =

∫
B1(Kn×n)

(I −XX∗)−(n−1) d
4
− 1

21∣∣∣∣∣∣∣∣Σ(√ I−Z
I+Z

)−1
XΣ

(√
I−Z
I+Z

)∣∣∣∣∣∣∣∣<1
dλn2d(X)∫

B1(Kn×n)

(I −XX∗)−(n−1) d
4
− 1

2 dλn2d(X)
.

Ha például az n = 3, K = C esethez tartozó qubit-qutrit szeparábilitási valószínű-
séget szeretnénk meghatározni, akkor – az n = 2 esethez hasonlóan – a fenti integrálok
unitér invarianciáját felhasználva elég egy „csupán” 21-dimenziós sokaságon integrálni az
eredeti 35-dimenziós D6,K állapottér helyett. Nyilvánvaló, hogy az f és h függvények
csak a beléjük írt mátrixok sajátértékeinek egymáshoz viszonyított arányaitól függnek,
és lényegében a χ̃1,2 és η̃1,2 függvények többdimenziós általánosításainak felelnek meg.
Ezekre a függvényekre egyfajta „geometriai entrópiaként” lehet gondolni, hiszen azt mé-
rik, hogy a hasonlósági transzformációval deformált B1 (K2×2) egységgömbnek mekkora
hányada közös a deformálatlan gömbbel. Szemléletesen mondhatjuk azt, hogy minél
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rendezetlenebb a deformáló pozitív mátrix sajátértékeiből képzett valószínűségi eloszlás,
annál nagyobb lesz a szóban forgó közös rész térfogata. A legrendezetlenebb eset az iden-
titás pozitív számszorosaival történő hasonlósági transzformációhoz tartozik és valóban
f(λ.I) = h(λ.I) = 1 λ > 0 esetén. Mindez egybevág azzal az intuitív képpel, hogy egy
φ(D,Z,X) alakú állapot pontosan akkor szeparábilis, ha ||X|| elég „kicsi”. Azt pedig,
hogy mennyire kell kicsinek lenni ||X||-nek ahhoz, hogy φ(D,Z,X) klasszikusan korrelált
legyen Z mondja meg. Minél nagyobb entrópiájú a

√
I−Z
I+Z

/ tr
(√

I−Z
I+Z

)
sűrűségmátrix

spektruma, annál nagyobbra választható ||X||.
A qubit-qutrit példára vonatkozólag ez azt jelentené, hogy az eredeti „35-ös integ-

rál” hármas integrállá redukálható. Mindazonáltal a kutatás jelenlegi fázisában még a
χ̃2 függvényre sem rendelkezünk kezelhető formulával. A χ̃2 függvény meghatározására
irányuló próbálkozásainkat a függelék D. pontjában gyűjtöttük össze.

3.3.3. Összefonódottság mérése a D4,K és D6,K állapotterken

Egy összefonódott állapot szeparábilitásának mértékét az állapot szeparábilis állapo-
toktól mért távolságával jellemezhetjük. Attól függően, hogy milyen távolság fogalom-
mal dolgozunk, különböző összefonódottságot mérő mennyiségeket (angolul entanglement
measures) kapunk. Mi most ebben a pontban egy lehetséges, természetes módon adódó,
összefonódottságot mérő mennyiséget definiálunk.

Tekintsünk egy φ(D,Z,X) ∈ D2n,K alakú állapotot, ahol (D,Z,X) ∈ Πn,K és vezessük
be a Pα : Πn,K → Πn,K Pα(D,Z,X) = (D,Z, αX) α ∈ [0, 1] leképezést, ami a D2n,K
állapottéren a [

D1 C
C∗ D2

]
7→
[
D1 αC
αC∗ D2

]
α ∈ [0, 1] (3.38)

részleges pinching-nek felel meg. Tetszőleges összefonódott állapotot reprezentáló (D,Z,X) ∈
Πn,K pontot véve az α 7→ Pα(D,Z,X) α ∈ [0, 1] folytonos görbe összeköti egymással a
(D,Z,X) és a szeparált állapotnak megfelelő (D,Z, 0) pontokat. Léteznie kell tehát egy
olyan αopt ∈ (0, 1) paraméter értéknek, melyre φ(Pαopt(D,Z,X)) ∈ ∂Dsep

2n,K teljesül. A
φ(D,Z,X) állapot összefonódottságát a φ(D,Z,X) és φ(Pαopt(D,Z,X)) pozitív mátri-
xok (1.18) Thompson-féle távolságával is jellemezhetjük.

3.3.3. Definíció. Egy ρ ∈ Dent
2n,K összefonódott kvantumállapot Thompson-féle összefonó-

dási mértéke alatt a
TME(ρ) = δ

(
φ ◦ Pαopt ◦ φ−1(ρ), ρ

)
mennyiséget értjük, ahol δ az (1.16) formulával definiált Thompson-távolság.

A a D4,K és D6,K állapotterken a PPT-feltétel teljesülése a szeparábilitással ekviva-
lens, ezért a PPT állapotok előző pontban kapott geometria jellemzését felhasználva a
Thompson-féle összefonódási mértékre a következő eredmény adódik.

3.3.6. Tétel. Egy ρ = φ(D,Z,X) alakú állapot Thompson-féle összefonódási mértéke

TME(ρ) =

[
tr

(
log2

(
I + αopt|X|
I + |X|

))
+ tr

(
log2

(
I − αopt|X|
I − |X|

))] 1
2
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alakba írható, ahol αopt = min

{
1, 1∣∣∣∣∣∣∣∣Σ(√ I−Z

I+Z

)−1
XΣ

(√
I−Z
I+Z

)∣∣∣∣∣∣∣∣
}
.

Bizonyítás. A Thompson-metrika kongruencia invarianciájából fakadóan tetszőleges α ∈
[0, 1] esetén a ρ = φ(D,Z,X) és a φ ◦ Pα(D,Z,X) állapotok Thompson-távolsága a[

I X
X∗ I

]
és
[

I αX
αX∗ I

]
pozitív mátrixok Thompson-távolságával egyezik meg, ami

δ

([
I X
X∗ I

]
,

[
I αX

αX∗ I

])
=

∣∣∣∣∣
∣∣∣∣∣log

([
I X
X∗ I

]− 1
2
[

I αX
αX∗ I

] [
I X
X∗ I

]− 1
2

)∣∣∣∣∣
∣∣∣∣∣
HS

=

∣∣∣∣∣∣∣∣log ◦q
([

0 X
X∗ 0

])∣∣∣∣∣∣∣∣
HS

módon fejezhető ki, ahol q : (−1, 1) → R q(x) = 1+αx
1+x

, ||.||HS pedig a mátrixok Hilbert–

Schmidt-normáját jelöli. A
[

0 X
X∗ 0

]
mátrix spektruma az |X| és −|X|mátrixok spekt-

rumainak egyesítéseként áll elő, ezért

tr

(
log2 ◦q

([
0 X
X∗ 0

]))
= tr

(
log2

(
I + α|X|
I + |X|

))
+ tr

(
log2

(
I − α|X|
I − |X|

))
írható.

A PPT tulajdonság (3.36) jellemzését felhasználva kapjuk, hogy

αopt = min

 1,
1∣∣∣∣∣∣∣∣Σ(√ I−Z

I+Z

)−1

XΣ
(√

I−Z
I+Z

)∣∣∣∣∣∣∣∣
 .

Ezzel a bizonyítás teljes.

3.4. Összefoglalás
Ebben a fejezetben összetett kvantum mechanikai rendszereket tanulmányoztunk.

1. Meghatároztuk a 4 × 4-es valós elemű sűrűségmátrixok alkotta kvantummechanikai
állapottéren a szeparábilitási valószínűséget.

2. Bizonyítottuk Milz és Strunz szeparábilitási valószínűség redukált állapottól való füg-
getlenségére vonatkozó sejtését.

3. Eredményeinket általánosítottuk arra az információgeometriai szempontból releváns
esetre is, amikor az állapottér a négyzetgyök függvény által származtatott monoton
metrikával van ellátva.

4. Megmutattuk, hogy a 2n × 2n-es sűrűségmátrixok alkotta állapottér diffeomorf az
n×n-es sűrűségmátrixok alkotta állapottér, az n×n-es önadjungált mátrixokból álló
] − I, I[ operátor intervallum és az n × n-es mátrixok operátornormára vonatkozó
egységgömbjének a direkt szorzatával.
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5. Ezt a szorzat sokaság reprezentációt használtuk fel arra, hogy geometriai leírását ad-
jam a 4 × 4-es szeparábilis állapotoknak. Kiderül, hogy a 4 × 4-es szeparábilis kvan-
tumállapotok pereme egy, a 2 × 2-es mátrixok egységgömbjén értelmezett függvény
grafikonjaként előálló sokaság feletti triviális nyalábként áll elő.

6. Végezetül bevezettünk egy kongruencia transzformációkra nézve invariáns távolság-
fogalmat az állapottéren, amire nézve meghatároztuk egy tetszőleges összefonódott
állapot távolságát a szeparábilis állapotoktól.



4. fejezet

Kvantum csatornák

A monoton metrikák kapcsán már definiáltuk a teljesen pozitív lineáris leképezése-
ket. A nyomtartó teljesen pozitív leképezések állapotteret állapottérbe visznek. Az ilyen
hozzárendeléseket sztochasztikus leképezésnek hívtuk. A sztochasztikus leképezés szino-
nímája a kvantum csatorna. Ez az elnevezés a következő fizikai képből ered.

A kvantummechanika zárt rendszer időfejlődésére vonatkozó posztulátumának (lásd:
[58] könyv 12–13. oldal) véges dimenziós Hilbert-terekkel modellezett rendszerekre vo-
natkozó megfogalmazása kimondja, hogy ha a rendszeren egy I ⊂ R időintervallumban
nem végzünk mérést, akkor a rendszer időfejlődését leíró (ρt)t∈I statisztikus operátorsereg
különböző tagjai között a

ρt = U(t, s)ρsU(t, s)∗ (t, s ∈ I)

összefüggés áll fenn, ahol U(t, s) az ún. unitér propagátor. Az unitér propagátor unitér
mátrixok egy családja, melynek tagjaira a

(1) ∀t, r, s ∈ I U(t, r)U(r, s) = U(t, s)

(2) „a (t, s) 7→ U(t, s) leképezés folytonos minden (t, s) ∈ I × I pontban”

feltételek teljesülnek.
A nyílt kvantummechanikai rendszerek időfejlődését leírhatjuk oly módon, hogy a

rendszer és környezete által alkotott zárt, összetett kvantummechanikai rendszer időfej-
lődésének eredményeként adódó állapotot a vizsgált nyílt kvantummechanikai rendszer
állapotterére vetítjük. Ez a gyakorlatban egy H Hilbert-térrel leírt kvantummechanikai
rendszerre nézve a következőt jelenti:

1. A ρ0 ∈ B (H)+ kezdeti állapotot a ρ0 7→ ρ :=
ρ0⊗idHE
dim(HE)

hozzárendeléssel a rendszer és
környezete által alkotott zárt, összetett kvantummechanikai rendszer egy állapotának
feleltetik meg, ahol HE Hilbert-térrel a környezetet modellezzük.

2. A zárt rendszer időfejlődését leíró posztulátum értelmében az időfejlődés eredménye-
ként egy olyan állapotot kapunk, ami UρU∗ alakba írható, ahol U ∈ U(H⊗HE) unitér
operátor.

3. Végül az időfejlődés eredményeként adódó ρ1 ∈ B (H)+ állapotot a ρ1 = tr2 (UρU∗)
parciális nyomképzéssel kapjuk meg.

63
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Világos, hogy ha U ∈ U(H ⊗ HE) unitér operátor, akkor a ρ0 7→ ρ1 hozzárendelés egy
B (H)+ → B (H)+ sztochasztikus leképezést határoz meg. Ennek fordítottja is igaz, ezt
általánosítja az alábbi tétel.

4.0.1. Tétel. Legyen T :Msa
n,C →Msa

m,C lineáris leképezés. Ekkor a következő kijelenté-
sek ekvivalensek:

1. T teljesen pozitív.

2. Léteznek olyan Kj : Cn → Cm j = 1, . . . , r lineáris leképezések, melyekkel a T leképezés

T =
r∑
j=1

LKj ◦ RK∗j
=

r∑
j=1

Kj ⊗Kj

módon állítható elő. (Ez az ún. Kraus-reprezentáció.)

3. A T leképezés T = tr2 ◦LU ◦ RU∗ alakban áll elő, ahol egy U : Cn → Cm ⊗ Cr lineáris
leképezés. (Ezt Stinespring-reprezentációnak hívják.)

A fenti feltételek teljesülése mellett T pontosan akkor nyomtartó, ha
∑r

j=1K
∗
jKj = idCn

teljesül. Ezzel ekvivalens az, hogy U izometria.

Bizonyítás. A bizonyítás az [53] jegyzet 5. oldalán található meg.

A kvantum csatornák a kvantum információ feldolgozásban és továbbításban kulcs-
szerepet játszanak, hiszen minden qubiteken végezhető műveletnek kvantum csatornak
feleltehető meg. Ezt a fejezetet véletlen qubit csatornák tanulmányozásának szenteljük.
A fejezetben bemutatott eredmények egy részét a [6] és [7] dolgozatokban jelentettük
meg. A véletlen qubit csatornák vizsgálata több szempontból is érdekes feladat. Egy
kvantum algoritmus lényegében kvantum csatornák egy sorozata, ahol az egyes lépések
hibái a végeredményben kumulálódva jelennek meg. Az egyes lépéseket terhelő hibákat
véletlen kvantum csatornák segítségével modellezhetjük, ezen keresztül pedig az eredmény
hibája kontrollálható. Ugyancsak véletlen kvantum csatornák segítségével modellezhető a
kvantum regisztereket terhelő külső zaj is, mely végső soron dekoherenciához és a regisz-
terben tárolt információ elvesztéséhez vezet. Véletlen kvantum csatornákat alkalmaznak
pszeudo-random kvantum áramkörök szimulációjára is [21, 17].

Véletlen kvantum csatornák spektrális jellemzőinek vizsgálatával Bruzda, Cappellini,
Sommers és Życzkowski [18] foglalkozott. Igazolták a lineáris algebrából ismert Perron–
Frobenius-tétel kvantumos általánosítását és numerikusan vizsgálták speciális kvantum
csatornák iteráltjainak hatását véletlen állapotokon.

4.1. Qubit csatornák reprezentációi
A kvantum csatornák az alábbi tétel értelmében egy kompakt sokaság pontjainak

feleltethetők meg, ami lehetővé teszi, hogy információgeometriai eszközökkel vizsgáljuk
őket.

4.1.1. Tétel (Choi). Egy T : Msa
n,C → Msa

m,C pozitív leképezésre nézve ekvivalensek az
alábbi kijelentések:
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1. T n-pozitív (lásd: 1.2.1. Definíció).

2. A Cn vektortér tetszőleges {ek}k=1,...,n bázisát véve a

CT = (idCn×n ⊗ T )

(
n∑

i,j=1

(ej ⊗ ej)⊗ (ei ⊗ ej)

)
∈ Cn×n ⊗ Cm×m ∼= Cnm×nm

mátrix pozitív definit.

3. T teljesen pozitív.

Bizonyítás. A bizonyítás Choi [19] dolgozatában található meg.

A 4.1.1. tételben szereplő CT ∈ Cnm×nm mátrixot a T leképezés Choi-mátrixának
vagy Choi-reprezentánsának nevezik. Ezek után kvantum csatornák tere alatt a lehetséges
Choi-reprezentánsok által alkotott kompakt sokaságot értjük.

4.1.1. Definíció. Egy T : Dn,C → Dm,C qubit-csatornát egységőrzőnek (más szóval uni-
tálisnak) nevezünk, ha T (idCn) = idCm teljesül.

Tetszőleges n ∈ N esetén az idCnm mátrix egy πn : Dn,C → Dn,C kvantum csatorna
Choi-reprezentánsának felel meg. A Cn vektortér egy rögzített {ek}k=1,...,n bázisából nézve
a πn csatorna az állapotok diagonálison kívüli elemeit kinullázza, ezért a Dn,C állapotteret
a ∆n−1 klasszikus állapotok terére vetíti le.

4.1.2. Definíció. Egy T : Dn,C → Dm,C kvantum csatorna klasszikus nyoma alatt a

PT = πm ◦ T ◦ ιn

hozzárendeléssel definiált PT : ∆n−1 → ∆m−1 klasszikus csatornát értjük, ahol ιn :
∆n−1 → Dn,C a klasszikus n pontra koncentrált diszkrét eloszlások diagonális beágyazása
az állapottérbe.

A Choi reprezentáció egy Q : D2,C → D2,C qubit csatornának egy olyan CQ 4 × 4-es
mátrixot feleltet meg, ami

CQ =

(
Q11 Q12

Q21 Q22

)
Q11, Q12, Q21, Q22 ∈ C2×2 (4.1)

blokk mátrix alakba írható, ahol Qij = Q(ei⊗ej) i, j = 1, 2, {e1, e2} pedig C2 egy rögzített
bázisa. A CQ mátrix pontosan akkor határoz meg qubit csatornát, ha Q11, Q22 ∈ D2,C,
Q21 = Q∗12, trQ12 = 0 és CQ ≥ 0. A mátrixelemekre vonatkozóan ezek a feltételek R12

vektortér egy kompakt konvex részsokaságát jelölik ki, melyet Q-val fogunk jelölni. Az
unitális qubit csatornák Choi reprezentációi a Q11 +Q22 = I feltételt is teljesítik, amiből
következik, hogy az unitális qubit csatornák kölcsönösen egyértelmű megfeleltetésben
állnak az R9 vektortér egy kompakt konvex részsokaságával. Ezt a részsokaságot a Q1

szimbólummal jelöljük.
Közvetlen számolás útján meggyőződhetünk róla, hogy a (4.1) blokk mátrix alakban

adott qubit csatorna klasszikus nyomának a

P =

(
diag(Q11)
diag(Q22)

)
(4.2)
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Markov-lánc átmenetmátrix felel meg.
A Bloch-reprezentációt használva tetszőleges Q : C2×2 → C2×2 nyomtartó lineáris

leképezés

Q

(
1

2
(I + x · σ)

)
=

1

2
(I + (v + Tx) · σ) (4.3)

alakba írható, ahol v ∈ R3 és T egy 3 × 3-as valós mátrix. Ez az előállítás akkor lesz
igazán hasznos számunkra, amikor qubitek véletlen csatornák általi képét vizsgáljuk. A
(4.3) alakról általában nehéz eldönteni, hogy a szóban forgó nyomtartó leképezés teljesen
pozitív-e. Ezt a kérdést Ruskai, Szarek és Werner tanulmányozta [63].

4.2. Eloszlás a klasszikus csatornák felett

A Q és Q1 sokaságokat normált térfogati formákkal ellátva valószínűségi eloszlásokat
adhatunk meg a qubit csatornák és unitális qubit csatornák terén. A Lebesgue-mérték
alkalmas konstansszorosát véve az egyenletes eloszlást kapjuk. A következő lemma köz-
ponti szerepet játszik az egyenletes eloszlású qubit csatornák klasszikus csatornák feletti
eloszlásának a kiszámításában.

4.2.1. Lemma. Legyen T ∈ Msa
n,K pozitív definit mátrix, l ∈ R és µ > 0 valós számok.

Továbbá legyen L egy m-dimenziós altere a Kn vektortérnek, x pedig egy rögzített vektor.
Jelölje az M = T (L) altér ortogonális kiegészítőjére való projekciót PM⊥ és definiáljuk a

ER(T, µ, L, x) = {y ∈ L| 〈x+ y, T (x+ y)〉 < µ} , Tij ∈ R;

EC(T, µ, L, x) = {y ∈ L| 〈x+ y, T (x+ y)〉 < µ} , Tij ∈ C;

integrációs tartományokat. Ekkor∫
ER(T,µ,L,x)

(µ− 〈x+ y, T (x+ y)〉)l dλm(y) =
Fm−1Gm−1,l√

det(T |L)
(µ− ||z0||2)

m
2

+l
+

és ∫
EC(T,µ,L,x)

(µ− 〈x+ y, T (x+ y)〉)l dλ2m(y) =
F2m−1G2m−1,l

det(T |L)
(µ− ||z0||2)m+l

+ ,

ahol T |L a T lineáris leképezés L altérre történő megszorítása és z0 = PM⊥
√
Tx.

Bizonyítás. A lemmát csak a valós esetre bizonyítjuk, a komplex eset bizonyítása hason-
lóan történik. A T mátrixról feltettük, hogy pozitív definit, ezért vehető az ő

√
T pozitív

négyzetgyöke.
Tekintsük a Φ : L→ Rn Φ(y) := 1√

µ

√
T (x + y) leképezést és válasszunk az L altéren

egy tetszőleges e1, . . . , em ortonormált bázist. A Ran(Φ) képtér egy lehetséges paraméte-
rezése

z(y1, . . . , ym) =
1
√
µ

√
T

(
x+

m∑
i=1

yiei

)
,
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a Ran(Φ) képtéren indukált metrika pedig gij =
〈
∂z
∂yi
, ∂z
∂yj

〉
=
〈

1√
µ

√
Tei,

1√
µ

√
Tej

〉
=

1
µ
〈ei, T ej〉, amiből a Φ leképezés Jacobi determinánsának inverzére µ

m
2√

det(T |L)
adódik. Ír-

hatjuk tehát, hogy ∫
ER(T,µ,L,x)

(µ− 〈x+ y, T (x+ y)〉)l dλm(y) =

=
µ
m
2

+l√
det(T |L)

∫
Φ(ER(T,µ,L,x))

(1− ||z||2)l dλm(z).

A Φ(ER(T, µ, L, x)) integrációs tartomány a Ran(Φ) affin altér és a B1 (Rn) origó közép-
pontú golyó metszeteként áll elő (lásd: 4.1. ábra). A Φ(ER(T, µ, L, x)) halmaz pontosan
akkor nem üres, ha a Ran(Φ) affin altér origótól mért távolsága nem nagyobb, mint 1,
azaz d2 := 1

µ
||z0||2 = 1

µ
||PM⊥

√
Tx||2 < 1. A kapott integrált gömbi koordinátarend-

1√
µ
z0

Φ(ER(T, µ, L, x))

z

1

r

Ran(Φ)

4.1. ábra. Integrációs tartomány (vázlat).

szert bevezetve számítjuk ki. A szögek szerinti integrálásokat elvégezve kapjuk, hogy
Fm−1(1− d2)

(m−1)/2
+ , amiből a sugár irányú integrálra

µ
m
2

+l√
det(T |L)

Fm−1(1− d2)
m−1

2
+l

+

√
1−d2∫
0

(
1− r2

1− d2

)l(
r√

1− d2

)m−1

dr

adódik. A u = r√
1−d2 helyettesítést elvégezve a bizonyítandó alakot nyerjük.

4.2.1. Megjegyzés. Ha A ∈ B (Cn)+ egy n × n-es pozitív definit mátrix, L ≤ Cn pedig
egy altér és M =

√
A−1(L), akkor M⊥ =

√
A(L⊥) teljesül, ugyanis

M⊥ = (
√
A−1L)⊥ = ker(PL

√
A−1) =

√
A(L⊥).
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4.2.1. Általános qubit csatornák

Az általános és egységőrző qubit csatornák térfogatának meghatározásánál ugyanazt
a stratégiát követjük. Először egy alkalmas unitér transzformációt választva a Choi rep-
rezentánst számolási szempontból könnyebben kezelhető alakra transzformáljuk. Ezek
után a paraméterteret alacsonyabb dimenziós részekre osztjuk, melyeken a 4.2.1. lemma
felhasználásával integrálva kapjuk a kívánt eredményt.

Tekintsük a Q ⊂ R12 sokaság alábbi paraméterezését

Q =


a b c d
b̄ 1− a e −c
c̄ ē f g
d̄ −c̄ ḡ 1− f

 , (4.4)

ahol a, f ∈ [0, 1] és Q > 0. A fenti Q csatorna klasszikus nyoma a
(
a 1− a
f 1− f

)
2× 2-es

Markov átmenet mátrixszal adható meg. Tekintsük az

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4.5)

unitér mátrixot és definiáljuk az A mátrixot mint a Q unitér konjugáltját

A = U∗QU =


a c b d
c̄ f e g
b̄ ē 1− a −c
d̄ ḡ −c̄ 1− f

 , (4.6)

mely pontosan akkor pozitív definit, ha Q az, ezért A a Q sokaság egy ekvivalens para-
méterezését szolgáltatja.

4.2.2. Lemma. Legyen A egy n×n-es pozitív definit mátrix, T = det(A)A−1, L ≤ Cn egy
altér, x ∈ L⊥ és M =

√
TL. Ekkor ha dim(L⊥) = 1, akkor ||PM⊥

√
Tx||2 = det(A)

〈x,Ax〉 ||x||
4.

Bizonyítás. A 4.2.1. megjegyzés értelmében M⊥ =
√
A(L⊥). Ha dim(L⊥) = 1, ak-

kor {b1 = ||
√
Ax||−1

√
Ax} az M⊥ altér egy ortonormált bázisa, amiből PM⊥ = b1 ⊗ b1

következik. Írhatjuk tehát, hogy

||PM⊥
√
Tx||2 = det(A)

∣∣∣〈b1,
√
A−1x

〉∣∣∣2 =
det(A)

〈x,Ax〉
||x||4.

Ezzel a bizonyítás teljes.

4.2.1. Tétel. Az általános qubit csatornák Q ⊂ R12 terének térfogata a Lebesgue-mértékre
vonatkozóan

Vol(Q) =
2π5

4725
.
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A térfogat eloszlását a klasszikus csatornák felett a

V (a, f) =
27

60
F1F

2
3G3,0G3,1

×


a3f 3[10((1− a)(1− f)− af)2+

15af(1− a)(1− f)− 9a2f 2] if a+ f < 1

(1− a)3(1− f)3[10((1− a)(1− f)− af)2+

15af(1− a)(1− f)− 9(1− a)2(1− f)2] if a+ f ≥ 1.

függvény írja le.

Bizonyítás. A (4.4) paraméterezéshez tartozó térfogati forma 27 dλ12. Egy (4.6) alakban
felírt mátrix pontosan akkor határoz meg csatornát, ha pozitív definit és a, f ∈ [0, 1].
Az A.2.1. lemma értelmében A pozitivitása a det(Ai) > 0 i = 1, 2, 3, 4 bal felső sarokmi-
nor determinánsok pozitivitásával ekvivalens. Tegyük fel, hogy a és f adottak.

Ha az A3 bal felső 3 × 3-as sarokminort rögzítjük, akkor a 4.2.1. és 4.2.2. lemmák
felhasználásával kapjuk, hogy

V (A3) =

∫
EC(T3,(1−f) det(A3),L3,x3)

27 dλ4

=
27F3G3,0

(
(1− f)− |c|2

(1−a)

)2

+
det(A3)2

det(T3|L3)

=
27F3G3,0

(1− a)3

(
(1− a)(1− f)− |c|2

)2

+
det(A3),

ahol L3 = Span{(1, 0, 0)T , (0, 1, 0)T} és x3 = (0, 0,−c)T .
Ha A2 rögzített, akkor

V (A2) =

∫
EC(T2,(1−a) det(A2),C2,0)

V (A3) dλ4 =

=
27F3G3,0

(1− a)3

(
(1− a)(1− f)− |c|2

)2

+

×
∫

EIC(T2,(1−a) det(A2),C2,0)

(1− a) det(A2)− 〈y, T2y〉 dλ4(y)

= 27F 2
3G3,0G3,1

(
(1− a)(1− f)− |c|2

)2

+
det(A2)2

adódik.
A det(A2) > 0 feltételből rögzített a és f mellett kapjuk, hogy

V (a, f) =
27

60
F1F

2
3G3,0G3,1

×


a3f 3[10((1− a)(1− f)− af)2+

15af(1− a)(1− f)− 9a2f 2] if a+ f < 1

(1− a)3(1− f)3[10((1− a)(1− f)− af)2+

15af(1− a)(1− f)− 9(1− a)2(1− f)2] if a+ f ≥ 1
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(lásd: 4.2. ábra), amiből a Q sokaság térfogatára kapjuk, hogy

V (Q) =

∫
[0,1]2

V (a, f) da df =
2π5

4725
≈ 0.129532.
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4.2. ábra. A Vol(Q) térfogat eloszlása a klasszikus csatornák felett.

4.2.2. Egységőrző qubit csatornák

Tekintsük a Q1 ⊂ R9 sokaság alábbi paraméterezését

Q =


a b c d
b̄ 1− a e −c
c̄ ē 1− a −b
d̄ −c̄ −b̄ a

 , (4.7)

ahol a ∈ [0, 1] ésQ > 0. A fenti egységőrző qubit csatorna klasszikus nyoma a
(

a 1− a
1− a a

)
duplán sztochasztikus mátrixszal adható meg.

Tekintsük az

U =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


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unitér mátrixot és definiáljuk az A mátrixot mint a Q unitér konjugáltját

A = U∗QU =


1− a e b −c
ē 1− a c −b
b̄ c̄ a d
−c̄ −b̄ d̄ a

 , (4.8)

mely pontosan akkor pozitív definit, ha Q az, ezért A a Q sokaság egy ekvivalens para-
méterezését szolgáltatja.

Ahhoz, hogy a 4.2.1. lemmát használni majd tudjuk szükségünk lesz az alábbi rész-
eredményre.

4.2.3. Lemma. Jelölje az A mátrix bal felső k × k-as részmátrixát Ak. Ekkor ha L3 =

Span{(0, 0, 1)T} és M =
√
A−1

3 (L3), akkor
√
A−1

3 PM⊥
√
A−1

3 =

(
A−1

2 0
0T 0

)
teljesül.

Bizonyítás. A 4.2.1. megjegyzés szerint M⊥ =
√
A(L⊥). Ha az u1 és u2 L

⊥
3 -beli vektorok

A3-ortogonálisak, azaz 〈ui, A3uj〉 = δij teljesül, akkor a {
√
A3u1,

√
A3u2} rendszer azM⊥

altér ortonormált bázisa lesz. Írható tehát, hogy

PM⊥ =
√
A3u1 ⊗

√
A3u1 +

√
A3u2 ⊗

√
A3u2 =

√
A3(u1 ⊗ u1 + u2 ⊗ u2)

√
A3,

amiből következik, hogy
√
A−1

3 PM⊥
√
A−1

3 = u1 ⊗ u1 + u2 ⊗ u2. Vezessük be a B =(
A2 0
0T 1

)
mátrixot. Könnyen látható, hogy 〈x,By〉 = 〈x,A3y〉 teljesül minden x, y ∈

L⊥3 vektorra. Legyen ui =
√
B−1ei, i = 1, 2, ahol (ei)j = δij, i, j = 1, 2 az L⊥3 altér

standard bázisa. Végül azt kapjuk, hogy u1⊗u1+u2⊗u2 =
√
B−1(e1⊗e1+e2⊗e2)

√
B−1 =(

A−1
2 0
0T 0

)
, mellyel a bizonyítás teljes.

4.2.2. Tétel. Az egységőrző qubit csatornák Q1 ⊂ R9 terének térfogata a Lebesgue-
mértékre vonatkozólag

Vol(Q1) =
2π4

315
.

A térfogat eloszlása a klasszikus egységőrző csatornák felett a

V (a) = 22π4a4(1− a)4

formulával fejezhető ki.

Bizonyítás. A Q1 sokaság (4.7) paraméterezéséhez tartozó térfogati forma 27 dλ9. Egy
(4.8) alakban adott A mátrix pontosan akkor határoz meg unitális csatornát, ha pozitív
definit. Az A mátrix pozitivitásából persze következik, hogy a ∈ [0, 1]. Az általános
eset bizonyításához hasonlóan, a bal felső sarok minorokra vonatkozólag a det(Ai) > 0
i = 1, 2, 3, 4 feltételek teljesülését követeljük meg. Legyen először a ∈ [0, 1] rögzített.
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Az A3 sarok minort rögzítve a 4.2.1. és 4.2.3. lemmákat felhasználva kapjuk, hogy

V (A3) =

∫
EC(T3,a det(A3),L3,x3)

27 dλ2 =

=
26F1

det(A2)

(
a−

〈
x3,

(
A−1

2 0
0T 0

)
x3

〉)
+

det(A3),

ahol L3 = Span{(0, 0, 1)T} és x3 = (−c,−b, 0)T .

Igaz továbbá, hogy
〈
x3,

(
A−1

2 0
0T 0

)
x3

〉
=
〈
y, σ1A

−1
2 σ1y

〉
, ahol y = (b, c)T .

Ha A2 fix, akkor

V (A2) =

∫
EC(T2,adet(A2),C2,0)

V (A3) dλ4 =

= 26F1

∫
EC(T2,a det(A2),C2,0)

(
a−

〈
y, σ1A

−1
2 σ1y

〉)
+

(a−
〈
y, A−1

2 y
〉
) dλ4(y).

Az y =
√
a
√
A2z helyettesítést elvégezve kapjuk, hogy

V (A2) = 26F1a
4 det(A2)

∫
{z:||z||<1}

(1− 〈z, Bz〉)+ (1− ||z||2) dλ4(z),

ahol a B =
√
A2σ1A

−1
2 σ1

√
A2 önadjungált mátrixra det(B) = 1 teljesül. Az imént felírt

integrálban a B mátrixot egy hozzá unitér hasonló mátrixszal helyettesítve az integrál
értéke nem változik, ezért feltehető, hogy B diagonális. Ebből következik, hogy V (A2)

V (A2) = 26F1a
4 det(A2)

×
∫

{z:||z||<1}

(
1− λ|z1|2 −

1

λ
|z2|2

)
+

(1− |z1|2 − |z2|2) dλ4(z)

alakba írható, ahol µ a B mátrix nagyobbik sajátértékét jelöli.
A fenti integrálban az integrációs tartományt két egydimenziós polár koordinátarend-

szer Descartes-szorzatával paraméterezzük. A szögek szerinti integrálokból egy F 2
1 szorzó

tényezőt kapunk, a sugár irányú integrál pedig

V (A2) = 26F 3
1 a

4 det(A2)

∫
R2

+

(
1− µr2

1 −
1

µ
r2

2

)
+

(1− r2
1 − r2

2)+r1r2 dr1 dr2

=
25π3

3
a4 det(A2)

3µ− 1

µ(1 + µ)
.

Elemi mátrixműveletek segítségével a B mátrix nagyobbik sajátértéke

µ = 1 +
2=(e)2

det(A2)
+

√(
1 +

2=(e)2

det(A2)

)2

− 1
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alakban írható fel, amiből a

V (A2) =
25π3

3
a4 det(A2)

(
1 +

2=(e)2

det(A2)

(√
=(e)2

det(A2) + =(e)2
− 1

))

alakot nyerjük.
Ebből egy a térfogat klasszikus unitális csatornák feletti eloszlására a

V (a) =

∫
|e|2≤(1−a)2

V (A2) dλ2(e)

=
25π3

3
a4(1− a)4

×
1∫

0

2π∫
0

1 +
2r2 sin2 φ

1− r2

√ r2 sin2 φ

1− r2 cos2 φ
− 1

 (1− r2)r dφ dr

= 22π4a4(1− a)4

bizonyítandó alakot kapjuk (lásd: 4.3. ábra). A Q1 sokaság térfogatára pedig

V (Q1) = 22π4

1∫
0

a4(1− a)4 da =
2π4

315
≈ 0.61847

adódik.
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4.3. ábra. A Vol(Q1) térfogat eloszlása klasszikus csatornák felett.
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Jogosan vetődhet fel a kérdés, hogy miért csak qubit-qubit csatornákat vizsgálunk. A
választ a fellépő integrálok rohamosan emelkedő komplexitásában kell keresnünk. Ahhoz
pédául, hogy módszerünkkel a Dn,C → Dn,C unitális qubit csatornák terének térfoga-
tát kiszámítsuk, elkerülhetetlen, hogy az n × n-es duplán sztochasztikus mátrixok terén
integráljunk. A Birkhoff–von Neumann-tétel szerint az n × n-es duplán szochasztikus
mátrixok az n × n-es permutációmátrixok konvex kombinációiként állnak elő, ami egy
sokdimenziós politóp, és amit Birkhoff-politópként tartanak számon. Az n×n-es duplán
szochasztikus mátrixok alkotta Birkhoff-politóp térfogata csupán n = 1, 2, . . . , 10 esetén
ismert, általános n-re eddig csak asszimptotikus formulát publikáltak [54].

4.3. Véletlen qubit csatornák
A V (a) és V (a, f) függvények ismeretében lehetőség nyílik arra, hogy tetszőleges qubit

véletlen, egyenletes eloszlású egységőrző vagy általános qubit csatorna általi képének
radiális eloszlását kiszámítsuk a Bloch-gömb belsejében. Ehhez a qubit csatornák (4.3)
Bloch-reprezentációját használjuk fel.

A (4.4) formulában szereplő Q Choi-mátrixszal adott qubit csatorna Bloch-reprezen-
tánsa

v =

 <(b+ g)
−=(b+ g)
a+ f − 1

 T =

 <(d+ e) =(d+ e) <(b− g)
−=(d− e) <(d− e) −=(b− g)

2<(c) 2=(c) a− f

 , (4.9)

amiről leolvasható, hogy egy (0, 0, r) Bloch-vektorral adott qubit Q csatorna általi képé-
nek σ3-irányú komponense (1 + r)a + (1 − r)f − 1. Ha a csatorna egységőrző, akkor a
σ3-irányú komponensre a r(2a− 1) értéket kapjuk.

Egy tetszőleges O : R3 → R3 ortogonális lineáris transzformáció qubit csatornát hatá-
roz meg a Stokes-paraméterezésen keresztül. Megállapodunk abban, hogy az ortogonális
transzformáció és a belőle származó qubit csatorna között jelölésben nem teszünk kü-
lönbséget.

4.3.1. Lemma. Legyen O ∈ R3×3 tetszőleges ortogonális mátrix, O ∈ Q1 pedig a neki
megfelelő qubit csatorna. Ekkor az LO,RO : Q → Q LO(Q) = O ◦ Q, RO(Q) = Q ◦ O
leképezések Jacobi determinánsa 1.

Bizonyítás. A bizonyítás valójában egy Maple segítségével végzett számolás. A program-
kódot és a futási eredményt az E. függelékben közöltük.

A fenti lemma következménye, hogy ha Q akár a Q, akár a Q1 halmazon egyenletes
eloszlású qubit csatorna, akkor tetszőleges ρ0 ∈ D2,C qubit-et véve a Q(ρ0) véletlen qubit
Bloch-vektorának eloszlása gömbszimmetrikus.

4.3.1. Tétel. Legyen Q a Q1 halmazon egyenletes eloszlású qubit csatorna. Ekkor egy
tetszőleges qubit Q általi képének Bloch-sugara a

κ(ρ, r) =
π4

23rVol(Q1)

(
1−

(ρ
r

)2
)3 (ρ

r

)2

1(0,r)(ρ)

sűrűségfüggvény szerinti eloszlást követi, ahol r ∈ (0, 1) az eredeti Bloch-sugár.
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Bizonyítás. Tegyük fel, hogy a transzformációnak alávetett qubit Bloch-sugara r ∈ (0, 1).
A 4.3.1. lemma értelmében feltehető, hogy a kiinduló qubit Bloch-vektora (0, 0, r). Ko-
rábbi megjegyzésünk értelmében a Q általi kép Bloch-vektorának harmadik komponense
r(2a − 1), ahol a a csatorna klasszikus nyomát paraméterezi a (4.7) felírásban. Ebből a
r(2a− 1) mennyiség eloszlására kapjuk, hogy

P(r(2a− 1) < z) = P
(
a <

1

2

(z
r

+ 1
))

=


0, ha z ≤ −r

1
Vol(Q1)

1
2( zr+1)∫

0

V (a) da, ha z ∈ (−r, r)

1, ha z ≥ r.

Innen a σ3 irányú komponens sűrűségfüggvénye

fσ3(z) =
d

dz
P(r(2a− 1) < z) =

 π4

27rVol(Q1)

(
1−

(
z
r

)2
)4

, ha z ∈ (−r, r)
0 egyébként.

Ugyancsak a 4.3.1. lemmát alkalmazva kapjuk, hogy a Q általi kép Bloch-vektora gömb-
szimmetrikus eloszlású. A B.0.4. lemmát felhasználva a Q általi kép Bloch-sugarának
sűrűségfüggvényére kapjuk, hogy

κ(ρ, r) =
π4

23rVol(Q1)

(
1−

(ρ
r

)2
)3 (ρ

r

)2

1(0,r)(ρ).

Legyen Q egyenletes eloszlású unitális qubit csatorna és X egy tetszőleges r ∈ (0, 1)
Bloch-sugarú qubit Q általi képe. Az Y = (X/r)2 valószínűségi változót tekintve írható,
hogy P(Y < y) = P(X < r

√
y), amiből Y sűrűségfüggvényére kapjuk, hogy

fY (y) =
d

dy
P(Y < y) = κ(r

√
y, r)

r

2
√
y

=
π4

24Vol(Q1)
(1− y)3y

1
2 , (4.10)

ami egy β(3
2
, 4) eloszlású valószínűségi változó sűrűségfüggvénye. Kaptuk tehát, hogy

X ∼ r
√
Y , ahol Y ∼ β(3

2
, 4). A fenti gondolatmenetet iterálva az alábbi fontos következ-

ményt nyerjük.

4.3.1. Következmény. Legyen Q1, Q2, . . . független egyenletes eloszlású unitális qubit
csatornák egy sorozata és n ∈ N+. Ekkor egy r ∈ (0, 1) Bloch-sugarú qubit Q1 ◦ . . . ◦Qn

csatorna kompozíció-szorzat általi képének Bloch-sugara egy r
∏n

k=1

√
Yk valószínűségi vál-

tozóval megegyező eloszlású, ahol Y1, Y2, . . . független, azonos β(3
2
, 4) eloszlású valószínű-

ségi változók sorozata.

4.3.2. Tétel. Legyen Q egy Q halmazon egyenletes eloszlású qubit csatorna, ρ0 = 1
2
I ∈

D2,C pedig a teljesen kevert állapot. Ekkor a Q(ρ0) véletlen qubit Bloch-sugarának eloszlása
az

f(r) = 40r2(r − 1)6((r + 2)3 − 6) r ∈ [0, 1]

sűrűségfüggvénnyel adható meg.
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Bizonyítás. A (4.9) Bloch-reprezentációról leolvasható, hogy a Q(ρ0) qubit Bloch-vekto-
rának σ3 irányú komponense a+ f − 1. A σ3 irányú komponens eloszlása szimmetrikus,
ezért feltehető, hogy z ∈ [0, 1]. Ezek után a σ3 irányú komponens sűrűségfüggvényét a

fσ3(z) =

1∫
z

V (a, z + 1− a) da

1∫
0

V (a, z + 1− a) da

= 2(z4 + 7z3 + 17z2 + 7z + 1)(1− z)7

formulával fejezhetjük ki. Ebből a B.0.4. lemma révén a Bloch-sugár eloszlásának sűrű-
ségfüggvényére a

f(r) = 40r2(r − 1)6((r + 2)3 − 6) r ∈ [0, 1]

bizonyítandó formulát nyerjük.

Megfigyelhető, hogy a véletlen klasszikus csatornákkal ellentétben a véletlen qubit
csatornák a teljesen kevert állapotot egy tipikus r > 0 sugárra képezik le (lásd: 4.4.
ábra).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

4.4. ábra. Teljesen kevert qubit kvantum állapot és véletlen qubit (vastag vonal) illetve
klasszikus (vékony vonal) csatorna általi képe közti Hilbert–Schmidt-távolság eloszlása.

4.4. A zaj egy lehetséges modellje
Egy egyetlen qubitből álló hipotetikus kvantum regisztert terhelő egységnyi ideig tar-

tó külső zaj hatása egy véletlen qubit csatornával modellezhető. Azt szeretnénk vizsgálni,
hogy a külső zaj milyen gyorsan rombolja le a qubitben tárolt információt. Az informá-
cióvesztés mérésére a kvantum relatív entrópiát használjuk.
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4.4.1. Definíció. Legyenek ρ, σ ∈ Dn,K tetszőleges állapotok. A ρ állapot σ állapotra
vonatkozó kvantum relatív entrópiája alatt az

S(ρ||σ) = tr(ρ log(ρ))− tr(ρ log(σ))

mennyiséget értjük.

Szemléletesen szólva a S(ρ||σ) mennyiség a ρ kvantum állapot információtöbbletét
méri a σ állapothoz képest.

4.4.2. Definíció. Legyen Q1, Q2, . . . független, egyenletes eloszlású qubit csatornák soro-
zata és ρn = Qn ◦ . . .◦Q1(ρ0), ahol ρ0 rögzített kiinduló qubit állapot. A ρn qubit maradék
információját az R(ρ0, n) = S(ρn||12I) mennyiséggel mérjük, a ρ0 állapothoz képesti in-
formáció veszteséget pedig L(ρ0, n) = S(ρ0||ρn) módon definiáljuk.

Az (1.5) spektrálfelbontást felhasználva közvetlen számolással megmutatható, hogy

R(ρ0, n) =
1 + rn

2
log(1 + rn) +

1− rn
2

log(1− rn) (4.11)

L(ρ0, n) =
1 + r0

2
log

(
1 + r0

2

)
+

1− r0

2
log

(
1− r0

2

)
− 1 + r0 cos(αn)

2
log

(
1 + rn

2

)
− 1− r0 cos(αn)

2
log

(
1− rn

2

)
, (4.12)

ahol r0, rn ∈ [0, 1] a ρ0 és ρn qubitek Bloch-sugara, αn pedig a ρ0 és ρn qubitek Bloch-
vektorai által bezárt szög.

Legyen Q1, Q2, . . . független, egyenletes eloszlású unitális qubit csatornák egy soro-
zata. A log(x) ≤ x − 1, x > 0 egyenlőtlenségből következik az R(ρ0, n) mennyiségre
érvényes R(ρ0, n) ≤ r2

n felső becslés. Ezt felhasználva írhatjuk, hogy

P
(
R(ρ0, n) ≥ 1

n3

)
≤ P

(
r2
n ≥

1

n3

)
≤ n3E(r2

n) = n3r2
0E(Y )n,

ahol Y ∼ β(3
2
, 4) és 0 < E(Y )n < 1. Ebből

∑∞
n=1 P

(
R(ρ0, n) ≥ 1

n3

)
<∞ következik, ami

a B.0.5. Borel–Cantelli-lemmával együtt azt adja, hogy

lim
n→∞

R(ρ0, n) = 0 P−m.b.

Ebből az érvelésből persze következik az is, hogy limn→∞ rn = 0 P−m.b., amiből pedig

lim
n→∞

L(ρ0, n) =
1 + r0

2
log(1 + r0) +

1− r0

2
log(1− r0) P−m.b.

következik. A B.0.6. iterált logaritmus tétel segítségével a megbecsülhetjük a konvergen-
cia sebességét is. A 4.3.1. következmény értelmében rn ∼ r0

∏n
k=1

√
Yk, ahol Y1, Y2, . . .

független, azonos β(3
2
, 4) eloszlású valószínűségi változók sorozata. Írhatjuk, hogy

r0

n∏
k=1

√
Yk = r0e

n
2
E(log(Y ))e

D(log(Yk))

2

√
2n log log(n)ξn ,
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ahol ξn = 1√
2n log log(n)

∑n
k=1

log(Yk)−E(log(Y ))
D(log(Yk))

és a B.0.6. iterált logaritmus tétel szerint

majdnem biztosan igaz, hogy lim infn→∞ ξn = −1 és lim supn→∞ ξn = 1. Közvetlen
számolás után meggyőződhetünk róla, hogy az R(ρ0, n) függvényt a

R(ρ0, n) =
∞∑
k=1

x2k

2k(2k − 1)

[0, 1]-on egyenletesen konvergens, pozitív tagú hatványsor állítja elő. Ebből nekünk most
annyi kell, hogy r2

n

2
≤ R(ρ0, n) ≤ r2

n. Ezt az iterált logaritmus tételes meggondolás-
sal kombinálva kapjuk, hogy tetszőleges ε > 1 választás mellett P − m.b. véges sok n
kivételével igaz az alábbi becslés

r2
0e
nE(log(Y ))e−D(log(Yk))

√
2n log log(n)ε ≤ R(ρ0, n) ≤ r2

0e
nE(log(Y ))eD(log(Yk))

√
2n log log(n)ε.

A ρ0 kiinduló állapothoz képesti információ veszteséget másodrendig Taylor-sorba
fejtve a

L(ρ0, n) =
1 + r0

2
log(1 + r0) +

1− r0

2
log(1− r0)− rnr0 cos(αn) +

r2
n

2
+O(r3), (4.13)

összefüggést nyerjük, amiről leolvasható, hogy a L(ρ0, n) mennyiség az alkalmazott vélet-
len csatornák számával P-m.b. exponenciális sebességgel tart a S(ρ0||12I) relatív entrópi-
ához.

4.5. Összefoglalás
A fejezetben qubit-qubit kvantum csatornákat vizsgáltunk geometriai eszközökkel.

1. Bevezettük a qubit csatorna klasszikus nyomát mint a qubit csatorna klasszikus (dia-
gonális) állapotokra történő megszorítottját.

2. Meghatároztuk egy, a qubit csatornák terén egyenletes eloszlású csatorna klasszikus
nyomának az eloszlását és kiszámítottuk a qubit csatornák terének a térfogatát a
Hilbert–Schmidt metrikára vonatkozólag.

3. Eredményeinket felhasználva független véletlen qubit csatorna sorozat qubitekre gya-
korolt hatásával a dekoherenciát előidéző zajt modelleztük.

4. A dekoherencia utáni állapot információ tartalmát a teljesen kevert állapotra vonatko-
zó relatív entrópiával, a dekoherencia előtti állapothoz képesti információ veszteséget
pedig a kezdeti állapot dekoherencia utáni állapotra vonatkozó relatív entrópiájával
jellemeztük.

5. Végül meghatároztuk a teljesen kevert állapothoz való konvergencia rátáját.
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A. függelék

Lineáris algebra

A.1. Mátrixok
A.1.1. Definíció. Legyen (H, 〈., .〉) Hilbert-tér és x, y ∈ H. Jelölje x ⊗ y azt a H → H
lineáris leképezést, melyet a H 3 z 7→ x⊗ y(z) = 〈z, y〉x hozzárendelés értelmez.

A.1.1. Lemma. Tetszőleges V ∈ Kn×n mátrix előállítható

V = U1ΣU2, (A.1)

alakban, ahol U1, U2 ∈ Kn×n unitér mátrixok és Σ ∈ Kn×n pedig nemnegatív elemű diago-
nális mátrix.

Bizonyítás. A fenti lineáris algebrában közismert felbontást szinguláris érték felbontásnak
nevezik, a bizonyítás Bathia [16] könyvének 6. oldalán található meg.

Az (A.1) felbontásban szereplő Σ mátrix diagonálisának elemeit a V mátrix szinguláris
értékeinek nevezzük. Az (A.1) alakból látható, hogy a V mátrix szinguláris értékei a√
V ∗V mátrix sajátértékeivel egyeznek meg.

A.1.2. Lemma. Legyen A 2× 2-es invertálható mátrix σ1 > σ2 > 0 szinguláris értékek-
kel. Az A mátrix operátornormája és a σ(A) = σ2/σ1 módon definiált szinguláris érték
hányadosa az

||A|| =
√
| det(A)|e

1
2

cosh−1

(
1
2

||A||2HS
| det(A)|

)

σ(A) =
σ2

σ1

= e
− cosh−1

(
1
2

||A||2HS
| det(A)|

)

formulákkal fejezhető ki, ahol ||.||HS a közönséges Hilbert-Schmidt normát jelöli.

Bizonyítás. Ahogy azt korábban is írtuk, az A mátrix szinguláris értékei a
√
A∗A mátrix

sajátérékeiként kaphatók meg, ami

σ1,2 =
√
| det(A)|

 ||A||2HS

2| det(A)|
±

√(
||A||2HS

2| det(A)|

)2

− 1

1/2

=
√
| det(A)|e

± 1
2

cosh−1

(
1
2

||A||2HS
| det(A)|

)
.
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Ebből pedig a kívánt formulákat kapjuk az operátornormára és a szinguláris érték hánya-
dosra.

Jelölje az A n× n-es mátrix bal felső i× i-es részmátrixát Ai, ahol i = 1, . . . , n.

A.1.3. Lemma. Legyen A n×n-es invertálható mátrix és 1 ≤ k ≤ n esetén (A−1)k+1,...,n

jelölje az A−1 mátrixból az első k sor és oszlop törlésével előálló mátrixot. Az (A−1)k+1,...,n

mátrix determinánsa
det((A−1)k+1,...,n) =

det(Ak)

det(A)
.

Az előző lemma a Jacobi-tétel egy speciális esete (lásd: [27].). Az A.1.3. lemmát a
következő ekvivalens alakban használjuk.

A.1.1. Következmény. Ha A n × n-es invertálható mátrix, akkor a T = det(A)(A−1)
mátrix determinánsa

det((T )k+1,...,n) = det(Ak) det(A)n−1−k

módon fejezhető ki, ahol 1 ≤ k ≤ n.

A.1.4. Lemma. Legyen A ∈ Kn×n invertálható mátrix és u, v ∈ Kn. Ekkor az A+ u⊗ v
mátrix determinánsa

det(A+ u⊗ v) = (1 + 〈v, Au〉) det(A)

alakba írható.

Bizonyítás. A bizonyítás a [89] könyvben található meg.

A.1.2. Definíció. A σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
és σ3 =

(
1 0
0 −1

)
mátrixokat

Pauli-mátrixoknak nevezzük.

A.1.1. Megjegyzés. A
{

1√
2
I, 1√

2
σ1,

1√
2
σ2,

1√
2
σ3

}
mátrixok az Msa

2,C altér egy ortonor-
mált bázisát alkotják a Hilbert–Schmidt belső szorzásra nézve.

A.2. Pozitív definit mátrixok
A.2.1. Lemma (Sylvester-féle pozitivitási feltétel). Egy A n× n-es önadjungált mátrix
akkor és csakis akkor pozitív definit, ha sarok minorainak determinánsa pozitív, azaz
det(Ai) > 0 ∀i = 1, . . . , n.

Bizonyítás. A bizonyítás teljes indukcióval történhet. Az n = 1 eset nyilvánvaló. Tegyük
fel, hogy minden n-nél kisebb méretű mátrixra igaz az állítás.

(⇒) Ez a könnyebbik irány. Legyen A tetszőleges n × n-es önadjungált pozitív definit
mátrix. A pozitív definitségből következik, hogy det(A) > 0, a többi principális minor
pozitivitása pedig az indukciós feltevésből adódik.

(⇐) Tegyük fel, hogy az A n× n-es hermitikus mátrix principális minorai pozitív deter-
minánsúak. Az indukciós feltevés szerint a An−1 sarokminor pozitív definit. Ha A nem
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lenne pozitív definit, akkor a det(A) > 0 feltétel értelmében lenne két negatív sajátér-
téke. Jelölje ezeket α > 0 és β < 0, a hozzájuk tartozó sajátvektorokat pedig a és b.
Az A önadjungáltságából a ⊥ b következik. Létezik tehát olyan τ ∈ K konstans, melyre
v = a + τ.b vektor utolsó koordinátája zérus. Egyfelől 〈v, Av〉 = α + |τ |2β < 0, másfelől
pedig az An−1 sarokminor pozitivitása miatt 〈v, Av〉 > 0.

A.2.2. Lemma. Legyen A az n × n-es önadjungált mátrix (aij)i,j=1,...,n elemekkel, az
x vektor pedig álljon az A mátrix utolsó oszlopának első n − 1 eleméből, azaz x =
(a1,n, . . . , an−1,n). Ekkor az A mátrix determinánsa a

det(A) = ann det(An−1)− 〈x, Tx〉

módon fejezhető ki, ahol T = det(An−1)(An−1)−1.

Bizonyítás. Az Amátrix determinánsát az utolsó sor szerint kifejtve a kívánt egyenlőséget
kapjuk.

A.2.3. Lemma. Az alábbi négyzetes blokkokból felépülő hermitikus blokkmátrix

D =

(
D1 C
C∗ D2

)
pontosan akkor pozitív, ha D2 > 0 és D1−CD−1

2 C∗ > 0 vagy D1 > 0 és D2−C∗D−1
1 C > 0.

Bizonyítás. Ez az állítás nem más, mint a blokkmátrixok Schur-komplemenssel megfo-
galmazott pozitivitási feltétele. A bizonyítás a [89] könyv 34. oldalán található.

A fenti lemmában megfogalmazott két feltétel – magától értetődő módon – csak egy-
szerre teljesülhet.

A.2.4. Lemma. Ha X tetszőleges négyzetes mátrix, akkor X∗X pozitív szemidefinit és
X∗X < I pontosan akkor teljesül, ha ||X|| < 1.

Bizonyítás. Az állítás első fele a ∀v ∈ Kn vektorra fennálló 〈v,X∗Xv〉 = ||Xv||2 ≥ 0
egyenlőtlenség egyszerű következménye. Az operátornorma definíciója értelmében pedig
írhatjuk, hogy

||X||2 = sup
{
||Xv||2

∣∣ v ∈ Kn, ||v|| = 1
}
≤ 1

hiszen minden v egységvektorra teljesül az ||Xv||2 = 〈v,X∗Xv〉 ≤ ||v||2 = 1 egyenlőtlen-
ség.

A.2.5. Lemma (Brunn–Minkowski-egyenlőtlenség). Tetszőleges A,B n × n-es pozitív
definit mátrixokat véve a

det(A+B)
1
n ≥ det(A)

1
n + det(B)

1
n

determináns egyenlőtlenség teljesül.

Bizonyítás. A bizonyítás a [13] könyv 70. oldalán található.
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A.3. Szuper operátorok
Egy D ∈ Kn×n mátrix esetén tekinthetjük a D mátrixszal történő bal- és jobbszorzás

operátorát (LD és RD) mint LD,RD : Kn×n → Kn×n lineáris operátorokat, melyek

A 7→ LD(A) = DA

A 7→ RD(A) = AD

módon hatnak. Nyilvánvaló, hogy az LD és RD operátorok pontosan akkor invertálhatók,
ha a D mátrix invertálható. Az LD és RD operátorokat összefoglaló néven szuper ope-
rátoroknak nevezzük. Közvetlen számolással az is igazolható, hogy a szuper operátorok
determinánsaira a

det(LD) = det(RD) = det(D)n

egyenlőség teljesül. A Kn×n ∼= Lin(Kn,Kn) ∼= (Kn)∗⊗Kn kanonikus azonosítást elvégezve
látható, hogy az LD és RD operátorok

LD = D ⊗ I
RD = I ⊗D∗

(A.2)

alakban is felírhatók. Az LD és RD operátorok segítségével definiált integráltranszfor-
mációkban a D mátrixot az R2n ∼= Cn azonosítással 2n × 2n-es valós mátrixként kell
kezelnünk, ezért az LD és RD integráltranszformációk Jacobi determinánsa komplex D
esetén det(D)2n.

Az n×n-es mátrixok vektortere Kn×n =Msa
n,K⊕M̃sa

n,K módon direkt összegre bomlik,

ahol Msa
n,K és M̃sa

n,K rendre a K test feletti önadjungált és anti-önadjungált mátrixok
alterét jelöli. Figyeljük meg, hogy ha D ∈ Msa

n,K önadjungált mátrix, akkor az LD ◦ RD

leképezés a fenti direktösszeg felbontást megőrzi, azaz az LD ◦ RD

(
Msa

n,K
)
⊂Msa

n,K és az

LD ◦RD

(
M̃sa

n,K

)
⊂ M̃sa

n,K tartalmazások teljesülnek. Ebből következik, hogy az LD ◦RD

operátor LD ◦ RD = (LD ◦ RD)|Msa
n,K
⊕ (LD ◦ RD)|M̃sa

n,K
direkt összeg alakban áll elő

det (LD ◦ RD) = det
(

(LD ◦ RD)|Msa
n,K

)
× det

(
(LD ◦ RD)|M̃sa

n,K

)
. (A.3)

A fenti gondolatmenet fontos következménye az alábbi lemma.

A.3.1. Lemma. Ha D ∈Msa
2,K tetszőleges pozitív definit mátrix, akkor a (LD1/2 ◦ RD1/2)|Msa

2,K

megszorított lineáris leképezés determinánsa

det
(

(LD1/2 ◦ RD1/2)|Msa
2,K

)
= det(D)2− d

2 ,

ahol d = dimR K = 1, 2.

Bizonyítás. Valós esetben a 2×2-es anti-önadjungált mátrixok altere M̃sa
2,R = R.

(
0 −1
1 0

)
.

Közvetlen számolással meggyőződhetünk róla, hogy

LD1/2 ◦ RD1/2|M̃sa
2,R

= det(D)1/2.

(
0 −1
1 0

)
,
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amiből

det
(

(LD1/2 ◦ RD1/2)|Msa
2,R

)
=

det (LD1/2 ◦ RD1/2)

det
(

(LD1/2 ◦ RD1/2)|M̃sa
2,R

)
=

det(D)2

det(D)1/2
= det(D)3/2

következik. A komplex esetben pedig a M̃sa
2,C = i .Msa

2,C egyenlőség miatt írhatjuk, hogy

det
(

(LD1/2 ◦ RD1/2)|Msa
2,R

)
=
√

det (LD1/2 ◦ RD1/2) = det(D).

Ezzel a bizonyítás teljes.

Ahogy korábban azt már említettük, az

(LD1/2 ◦ RD1/2)|Msa
2,K

:Msa
2,K →Msa

2,K (A.4)

integrál transzformáció Jacobi determinánsa det(D)2d−d2/2 lesz, mert a D leképezést 4×4-
es valós mátrixszal reprezentáljuk, mely a R4 ∼= C2 vektortéren hat.

A.4. Tenzorszorzat és parciális nyom

Az egyszerűség kedvéért legyen (H1, 〈, 〉1) és (H2, 〈, 〉2) két véges dimenziós Hilbert-tér.

A.4.1. Tétel. Izomorfizmus erejéig egyértelműen létezik olyan H vektortér és b : H1 ×
H2 → H bilineáris leképezés, hogy tetszőleges W vektorteret és L : H1 × H2 → W
bilineáris leképezést véve egyértelműen megadható olyan q : H → W lineáris leképezés,
mellyel a

H1 ×H2 H

W

b

L ∃!q

diagram kommutatív.

Bizonyítás. A tétel egy sokkal általánosabb alakjának a bizonyítása a [62] könyv 79.
oldalán található meg.

A fenti tételben szereplő (H, b) párt a H1 és H2 vektorterek tenzorszorzatának nevez-
zük és – csupán az alaphalmaz jelét kiírva – aH1⊗H2 szimbólummal jelöljük. Tetszőleges
v ∈ H1 és w ∈ H2 vektorokat véve a b(v, w) ∈ H1 ⊗ H2 vektort v ⊗ w szimbólummal
jelöljük. A H1 ⊗H2 tenzorszorzat tér v ⊗ w alakú elemeit, ahol v ∈ H1 és w ∈ H2 elemi
tenzoroknak nevezzük. Tekintsük azt a 〈, 〉H1⊗H2

: H1⊗H2×H1⊗H2 → K szeszkvilineáris
leképezést, amelyet az elemi tenzorokon a

〈v1 ⊗ w1, v2 ⊗ w2〉H1⊗H2
= 〈v1, v2〉H1

〈w1, w2〉H2
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hozzárendeléssel értelmezünk. A 〈, 〉H1⊗H2
szeszkvilineáris leképezéssel ellátott H1 ⊗H2

tenzorszorzat tér Hilbert-tér. Ezt a Hilbert-teret a (H1, 〈, 〉1) és (H2, 〈, 〉2) Hilbert-terek
tenzorszorzatának hívjuk.

Ha ρ a H1 ⊗H2 Hilbert-térrel leírt összetett rendszer egy állapota, akkor az

A 7→ tr ((A⊗ idH2)ρ)

B 7→ tr ((idH1 ⊗B)ρ)

hozzárendelések folytonos lineáris funkcionálokat határoznak meg a komponens-rendszerek
obszervábilisein, ezért a Riesz-féle reprezentációs tétel értelmében egyértelműen léteznek
tr2(ρ) ∈ Ddim(H1) és tr1(ρ) ∈ Ddim(H2) állapotok, melyekre a

tr ((A⊗ idH2)ρ) = tr(tr2(ρ)A) ∀A ∈Msa
dim(H1),

tr ((idH1 ⊗B)ρ) = tr(tr1(ρ)B) ∀B ∈Msa
dim(H2),

egyenlőségek teljesülnek. A tr1(ρ) és tr2(ρ) ún. redukált állapotokat rendre az első, illetve
második komponensre vett parciális nyomnak nevezzük. A parciális nyom a klasszikus
valószínűségszámításbeli marginális eloszlás képzéssel rokon fogalom.



B. függelék

Valószínűségszámítás és speciális
függvények

A következő két lemma a Γ-függvény és β-integrál elemi tulajdonságait foglalja össze.
A Γ-függvényről és β-integrálról a [10] könyvben lehet részletesen olvasni.

B.0.1. Lemma. A Γ :]0,∞[→]0,∞[ függvényt a

Γ(z) =

∫ ∞
0

tz−1e−t dt.

integrállal értelmezzük. A Γ függvény a

Γ(n) = (n− 1)! Γ(1 + z) = zΓ(z) Γ(1/2) =
√
π

Γ(n+ 1/2) =
(2n− 1)!!

2n
√
π Γ(n/2) =

(n− 2)!!

2
n−1

2

√
π

azonosságoknak tesz eleget, ahol n ∈ N+ és z ∈ R+.

Bizonyítás. A Γ(1 + z) = zΓ(z) összefüggés egyszerű parciális integrálással kapható meg:

Γ(1 + z) =

∫ ∞
0

tze−t dt = −tze−t
∣∣∞
t=0

+

∫ ∞
0

ztz−1e−t dt = zΓ(z),

a Γ(1) = 1 azonosság pedig látszik közvetlenül a Γ-függvény definíciójából. A Γ(1/2) érté-
kére vonatkozó összefüggés a Gauss-féle integrál ismeretében helyettesítéses integrálással
határozható meg.

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt =

∫ ∞
0

2e−u
2

du

A további két összefüggés Γ(1/2) és Γ(1) ismeretében a Γ(1 + z) = zΓ(z) rekurziós
összefüggést felhasználva teljes indukcióval igazolható.

B.0.2. Lemma. Az a, b ∈ R+ és t ∈ R+ paraméterekkel az∫ t

0

xa(t− x)b dx = t1+a+bΓ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

Ga,b :=

∫ 1

0

xa(1− x2)b dx =
1

2

Γ(b+ 1)Γ
(
a+1

2

)
Γ
(
a
2

+ b+ 3
2

)
egyenlőségek teljesülnek.
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Bizonyítás. Mindez egyszerű következménye a∫ 1

0

xp(1− x)q dx =
Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)

β-integrálnak.

B.0.1. Definíció. Az X valószínűségi változó β(α, β) eloszlású (jel: X ∼ β(α, β)), ahol
α, β > 0 valós paraméterek, ha sűrűségfüggvénye

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11[0,1](x).

B.0.3. Lemma. Az ∂B1 (Rn) egységgömb felszíne a

Fn−1 =
nπ

n
2

Γ
(
n
2

+ 1
)

formulával fejezhető ki.

Bizonyítás. Az r-sugarú Br (Rn) golyó térfogata

Vn(r) =
rnπ

n
2

Γ
(
n
2

+ 1
) ,

amiből az ∂B1 (Rn) egységgömb felszíne Fn−1 = dVn(r)
dr

∣∣∣
r=1

módon kapható meg.

B.0.4. Lemma. Tegyük fel, hogy X gömbszimmetrikus eloszlású abszolút folytonos va-
lószínűségi változó, továbbá X ∈ {x ∈ R3 : ||x|| ≤ 1}. Ekkor ||X|| sűrűségfüggvénye
a

f||X||(r) = −2rf ′X3
(r) r ∈ (0, 1)

formulával fejezhető ki, ahol fX3 jelöli az X z-irányú komponensének sűrűségfüggvényét,
melyről feltesszük, hogy fX3(1) = fX3(−1) = 0.

Bizonyítás. Az X valószínűségi változó gömbszimmetrikus eloszlású, ezért létezik g :
[0, 1] → R+, melyre fX = g(||x||) teljesül. Igaz tehát, hogy f||X||(r) = d

dr
P(||X|| <

r) = d
dr

4π
r∫

0

g(s)s2 ds = 4πg(r)r2, ahol r ∈ (0, 1). Világos, hogy az X3 komponens

szimmetrikus eloszlású a [−1, 1] intervallumon, ezért elég kiszámítani fX3(y)-at y ∈ (0, 1)
értékekre. Írhatjuk, hogy

fX3(y) =
d

dy
P(X3 < y) = − d

dy
P(X3 ≥ y)

= − d

dy

2π∫
0

1∫
y

arccos( yr )∫
0

g(r)r2 sin(φ) dφ dr dθ = 2π

1∫
y

g(r)r dr,

amiből kapjuk, hogy

f ′X3
(r) = − 1

2r
4πg(r)r2 = − 1

2r
f||X||(r).

A bizonyítás ezzel teljes.
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B.0.5. Lemma (Borel–Cantelli I.). Legyen (Ω,F ,P) valószínűségi mező, (Fk)k∈N ⊂ F
pedig tetszőleges események. Ekkor ha

∑
k∈N

P(Fk) < ∞, akkor P-m.b. csak véges sok Fk

esemény következik be.

Bizonyítás. Az, hogy végtelen sok Fk esemény következik be ekvivalens az
⋂
n∈N

⋃
m≥n

Fm

esemény teljesülésével. Az
( ⋃
m≥n

Fm

)
n∈N

halmazsorozat monoton fogyó, a P mérték

véges, ezért írhatjuk, hogy

P

(⋂
n∈N

⋃
m≥n

Fm

)
= lim

n→∞
P

(⋃
m≥n

Fm

)
≤ lim

n→∞

∑
m≥n

P(Fm) = 0

a
∑
k∈N

P(Fk) <∞ feltétel miatt. Ezzel a bizonyítás teljes.

B.0.6. Lemma (Iterált logaritmus tétel). Legyen (Xk)k∈N f.a.e. valószínűségi változó
sorozat, melyre E(X1) = 0 és D2(X1) = 1 teljesül. Ekkor P-m.b. teljesülnek a

lim inf
n→∞

Sn√
2n log log n

= −1 és lim sup
n→∞

Sn√
2n log log n

= 1

egyenlőségek, ahol Sn =
n∑
k=1

Xk.

Bizonyítás. A bizonyítás a [40] könyv huszonkettedik fejezetében található meg.

B.0.2. Definíció. Az s ∈ C indexű polilogaritmus függvényt a z komplex változó |z| < 1
értékeire a

Lis(z) =
∞∑
k=1

zk

ks
.

hatványsorral definiáljuk.

B.0.3. Definíció. A K,E : (−∞, 1) →]0,∞[ első és másodfajú teljes elliptikus integrá-
lokat a

K(z) =

π
2∫

0

1√
1− z sin2(φ)

dφ és E(z) =

π
2∫

0

√
1− z2 sin2(φ) dφ

formulákkal definiáljuk.
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C. függelék

A χ̃1 és η̃1 függvények

C.1. A 3.2.1. Lemma bizonyítása

Legyen Λδ =

(
1 0
0 e−δ

)
, ahol δ > 0 és vezessük be a

∆(δ) := Vol(B1

(
R2×2

)
)− χ1(e−δ)

defekt függvényt, ami azt méri, hogy a Λδ mátrixszal való hasonlósági transzformáció a
valós 2× 2-es mátrixok operátornorma egységgömbjének hányad részét képezi a gömbön
kívülre. Ennek segítségével a 3.2.1. Lemma az alábbi ekvivalens alakban írható fel.

∆(δ) =
16

3

δ∫
0

cosh t− sinh2 t log

(
et + 1

et − 1

)
dt δ > 0

A fenti formula igazolásához legyen δ > 0 rögzített és tekintsük az R2×2 sima sokaság

A = {X±(r, t, ρ, φ), X±(r, t, ρ, φ)σ3} , (C.1)

paraméterezését, ahol

X±(r, t, ρ, φ) = rY±(t, ρ, φ)

Y±(t, ρ, φ) =

 √
ρ cosφ ±

ρ
2

sin 2φ−1√
| ρ2 sin 2φ−1|

et

±
√∣∣ρ

2
sin 2φ− 1

∣∣e−t √
ρ sinφ

 , (C.2)

t ∈ R, r, ρ > 0 és φ ∈ [0, 2π). Könnyen ellenőrizhető, hogy a Λδ mátrixszal való hasonló-
sági transzformáció a paramétertéren egyszerű eltolásként hat, azaz

(r, t, ρ, φ)
Λ−1
δ (.)Λδ
=⇒ (r, t− δ, ρ, φ).

A metrikus tenzor 10 független komponense

99
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grr = ρ+ 2 cosh 2t
∣∣ρ

2
sin 2φ− 1

∣∣ grt = 2r sinh 2t
∣∣ρ

2
sin 2φ− 1

∣∣
grρ = r

2

(
1 + sin 2φ cosh 2t sgn

(
ρ
2

sin 2φ− 1
))

grφ = rρ cos 2φ cosh 2t sgn
(
ρ
2

sin 2φ− 1
)

gtt = 2r2 cosh 2t
∣∣ρ

2
sin 2φ− 1

∣∣ gtρ = r2

4
sin 2φ cosh 2t sgn

(
ρ
2

sin 2φ− 1
)

gtφ = −r2ρ cos 2φ sinh 2t sgn
(
ρ
2

sin 2φ− 1
)

gρρ = r2

4

(
1
ρ

+ cosh 2t sin2 2φ

2| ρ2 sin 2φ−1|

)
gρφ = r2ρ cosh 2t sin 4φ

8| ρ2 sin 2φ−1| gφφ = r2ρ

(
1 + ρ cosh 2t cos2 2φ

| ρ2 sin 2φ−1|

)
,

a térfogati forma pedig √
det(g(r, t, ρ, φ)) = r3.

Ezek után írhatjuk, hogy

χ1(e−δ) = λ4

(
B1

(
R2×2

)
∩ Λ−1

δ B1

(
R2×2

)
Λδ

)
=

∫
R2×2

1{||X||<1 & ||Λ−1
δ XΛδ||<1} dλ4(X)

= 2

∞∫
−∞

2π∫
0

∞∫
0

∞∫
0

1
r<min

(
1

||Y+(t,ρ,φ)|| ,
1

||Y+(t−δ,ρ,φ)||

)r3 dr dρ dφ dt

+ 2

∞∫
−∞

2π∫
0

∞∫
0

∞∫
0

1
r<min

(
1

||Y−(t,ρ,φ)|| ,
1

||Y−(t−δ,ρ,φ)||

)r3 dr dρ dφ dt.

Nyilvánvaló, hogy Y±(t, ρ, φ) ∈ SL2(R) és a A.1.2. Lemma értelmében

||Y±(t, ρ, φ)|| = exp

(
1

2
cosh−1

(
||Y±(t, ρ, φ)||2HS

2

))

írható, ahol

||Y±(t, ρ, φ)||2HS = 2
(ρ

2
+
∣∣∣ρ
2

sin 2φ− 1
∣∣∣ cosh 2t

)
,

amiből következik, hogy

||Y±(t− δ, ρ, φ)||2HS > ||Y±(t, ρ, φ)||2HS pontosan akkor, ha |t− δ| > |t| ⇔ t < δ/2.

Megfigyeléseinket felhasználva az előző integrálon az alábbi átalakításokat végezzük
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el

∞∫
−∞

π∫
0

∞∫
0

∞∫
0

1

(
r < e

− 1
2

cosh−1 max

(
||Y±(t,ρ,φ)||2HS

2
,
||Y±(t−δ,ρ,φ)||2HS

2

))
4r3 dr dρ dφ dt

=

∞∫
−∞

π∫
0

∞∫
0

e
−2 cosh−1 max

(
||Y±(t,ρ,φ)||2HS

2
,
||Y±(t−δ,ρ,φ)||2HS

2

)
dρ dφ dt

=

δ
2∫

−∞

π∫
0

∞∫
0

e
−2 cosh−1

(
||Y±(t−δ,ρ,φ)||2HS

2

)
dρ dφ dt+

∞∫
δ
2

π∫
0

∞∫
0

e
−2 cosh−1

(
||Y±(t,ρ,φ)||2HS

2

)
dρ dφ dt

=

∞∫
−∞

π∫
0

∞∫
0

e
−2 cosh−1

(
||Y±(t,ρ,φ)||2HS

2

)
dρ dφ dt

︸ ︷︷ ︸
1
2

Vol(B1(R2×2))

−

δ
2∫

− δ
2

π∫
0

∞∫
0

e
−2 cosh−1

(
||Y±(t,ρ,φ)||2HS

2

)
dρ dφ dt

︸ ︷︷ ︸
1
2

∆(δ)

,

ahol az utolsó tagban megjelenő defekt függvény

1

2
∆(δ) =

δ
2∫

− δ
2

π∫
0

∞∫
0

e
−2 cosh−1

(
||Y±(t,ρ,φ)||2HS

2

)
dρ dφ dt

=

δ
2∫

− δ
2

2π∫
0

∞∫
0

e−2 cosh−1(ρ+|ρ sinφ−1| cosh 2t) dρ dφ dt

=

δ∫
0

2π∫
0

∞∫
0

e−2 cosh−1(ρ+|ρ sinφ−1| cosh t) dρ dφ dt

(C.3)

alakba írható.
A belső integrált a felbontjuk az alábbi módon

2π∫
0

∞∫
0

e−2 cosh−1(ρ+|ρ sinφ−1| cosh t) dρ dφ =

π∫
0

∞∫
0

e−2 cosh−1(ρ+(ρ sinφ+1) cosh t) dρ dφ

+

π∫
0


1

sinφ∫
0

e−2 cosh−1(ρ−(ρ sinφ−1) cosh t) dρ+

∞∫
1

sinφ

e−2 cosh−1(ρ+(ρ sinφ−1) cosh t) dρ

 dφ
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és rövid számolás árán kapjuk, hogy

2π∫
0

 ∞∫
0

e−2 cosh−1(ρ+|ρ sinφ−1| cosh t) dρ dφ =

π∫
0

1

1 + cosh t sinφ

∞∫
t

e−2u sinhu du

 dφ

+

π∫
0

 1

1− cosh t sinφ

cosh−1( 1
sinφ)∫

t

e−2u sinhu du+
1

1 + cosh t sinφ

∞∫
cosh−1( 1

sinφ)

e−2u sinhu du

 dφ

= 2

π
2∫

0

(
e−t − e−3t

3
−
(

tan
φ

2
− 1

3
tan3 φ

2

)
cosh t sinφ

)
1

1− cosh2 t sin2 φ
dφ,

ahol is felhasználtuk az exp
(
− cosh−1

(
1

sinφ

))
= tan φ

2
összefüggést.

A tan φ
2

= e−s helyettesítés elvégzése után kapjuk, hogy

2

∞∫
0

(
e−t − e−3t

3
−
(
e−s − e−3s

3

)
cosh t

cosh s

)
1

1−
(

cosh t
cosh s

)2

1

cosh s
ds

=
8

3

∞∫
0

e−t cosh s− sinh2 s

sinh(t+ s)
ds =

8

3

(
cosh t− sinh2 t log

(
et + 1

et − 1

))
.

Ebből a defekt függvényre a bizonyítandó

∆(δ) =
16

3

δ∫
0

cosh t− sinh2 t log

(
et + 1

et − 1

)
dt (C.4)

alakot nyerjük. A bizonyítás ezzel teljes.

C.2. A 3.2.2. lemma bizonyítása
Tekintsük a ∂B1 (R2×2) sokaság

A =

{
Y±(t, ρ, φ)

||Y±(t, ρ, φ)||
,
Y±(t, ρ, φ)σ3

||Y±(t, ρ, φ)σ3||

}
(C.5)

atlaszát, ahol Y±(r, t, ρ, φ) a (C.2) formula által adott és ||.|| jelöli a közönséges operá-
tornormát. A térfogat közvetlen számítása a fenti paraméterezésből túlságosan bonyolult
lenne.

Az nyilvánvaló, hogy a metrikus tenzor ugyanolyan alakot ölt az A atlasz minden
elemén, ezért elég tekinteni a következő paraméterezést

X(t, ρ, φ) =
Y (t, ρ, φ)

||Y (t, ρ, φ)||
,
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ahol Y (t, ρ, φ) := Y+(t, ρ, φ). Tudjuk, hogy Y (t, ρ, φ) ∈ SL2(R) és a A.1.2. Lemma szerint
írható, hogy

X(t, ρ, φ) = f(t, ρ, φ)Y (t, ρ, φ), (C.6)

ahol
f(t, ρ, φ) = exp

(
−1

2
cosh−1

(
||Y (t, ρ, φ)||2HS

2

))
. (C.7)

Az ezen paraméterezéshez tartozó g metrikus tenzor az alábbi alakba írható

1

f 2
gij =

1

f 2
〈∂iX, ∂jX〉 = (∂i log(f)) (∂j log(f)) ||Y ||2HS

+
1

2

(
(∂i log(f))

(
∂j||Y ||2HS

)
+ (∂j log(f))

(
∂i||Y ||2HS

))
+ 〈∂iY, ∂jY 〉 ,

ahol 〈, 〉 a közönséges Hilbert–Schmidt skalárszorzatot jelöli. A láncszabályt alkalmazva
a metrikus tenzort az

g = f 2
(
G+

(
||Y ||2HS

(
h′
(
||Y ||2HS

))2
+ h′

(
||Y ||2HS

))
∇
(
||Y ||2HS

)
∇
(
||Y ||2HS

)T) (C.8)

egyszerűbb alakban is fel tudjuk írni, ahol Gij = 〈∂iY, ∂jY 〉 és h(r) = −1
2

cosh−1
(
r
2

)
.

A mátrix-determináns lemma A.1.4 értelmében írható, hogy

det(g) = f 6 × det(G)

×
(

1 +
(
||Y ||2HS

(
h′
(
||Y ||2HS

))2
+ h′

(
||Y ||2HS

))
∇
(
||Y ||2HS

)T
G−1∇

(
||Y ||2HS

))
ahol már az egyes tényezők kiszámítása egyszerű feladat. A metrikus tenzor determinán-
sára pedig a következőt kapjuk√

det(g) = f 4 = exp

(
−2 cosh−1

(
||Y ||2HS

2

))
. (C.9)

Using the notations introduced in
Az Appendix C.1 pontban bevezetett jelöléseinket használva írhatjuk, hogy

η̃1(e−δ) = 4

∞∫
−∞

2π∫
0

∞∫
0

e
−2 cosh−1

(
||Y (t,ρ,φ)||2HS

2

)
Vol(∂B1 (R2×2))

1||Y (t−δ,ρ,φ)||<||Y (t,ρ,φ)|| dρ dφ dt

=
4

Vol(∂B1 (R2×2))

∞∫
δ
2

2π∫
0

∞∫
0

e
−2 cosh−1

(
||Y (t,ρ,φ)||2HS

2

)
dρ dφ dt

= 1− 4

Vol(∂B1 (R2×2))

δ∫
0

2π∫
0

∞∫
0

e−2 cosh−1(ρ+|ρ sinφ−1| cosh t) dρ dφ dt

︸ ︷︷ ︸
1
2

∆(δ) (See (C.3).)

,

ahol az alábbi összefüggéseket használtuk fel.

Λ−1
δ Y (t, ρ, φ)Λδ = Y (t− δ, ρ, φ)

||Y (t− δ, ρ, φ)|| < ||Y (t, ρ, φ)|| ⇔ t > δ/2
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Ebből kapjuk, hogy

η̃1(ε) = 1− 2Vol(B1 (R2×2))

Vol(∂B1 (R2×2))
(1− χ̃1(ε)) ,

amiből következik, hogy η̃1(ε) = χ̃1(ε) teljesül ε ∈ [0, 1]-re, hiszen η̃1(0) = χ̃1(0) = 0 és
η̃1(1) = χ̃1(1) = 1. A bizonyítás ezzel teljes.



D. függelék

A χ̃2 függvény

A χ̃1 függvény meghatározásának útját követve a komplex esetre szintén definiálhatjuk
a

∆(δ) := Vol(B1

(
C2×2

)
)− χ2(e−δ)

defektus függvényt. Legyen δ > 0 rögzített és tekintsük a 2× 2-es komplex mátrixok

X(r, ξ, t, τ, s, ρ, µ, ν) = rei ξY (t, τ, s, ρ, µ, ν)

Y (t, τ, s, ρ, µ, ν) =

( √
ρes+

µ+ν
2 i ρeµ i−1√

|ρeµ i−1|
et+τ i√

|ρeµ i − 1|e−t−τ i √
ρe−s+

µ−ν
2 i

)

paraméterezését, ahol t, s ∈ R, r, ρ > 0 és ξ, τ, µ, ν ∈ [0, 2π).
A fenti paraméterezés előnye, hogy – csakúgy mint a valós esetben – a Λδ mátrixszal

végzett hasonlósági transzformáció a paramétertéren eltolásként jelenik meg, azaz

(r, ξ, t, τ, s, ρ, µ, ν)
Λ−1
δ (.)Λδ
=⇒ (r, ξ, t− δ, τ, s, ρ, µ, ν).

A paraméterezéshez tartozó térfogati formát Maple komputer algebra rendszer segítségé-
vel számítottuk ki. Azt kaptuk, hogy

√
det (g(r, ξ, t, τ, s, ρ, µ, ν)) = 2ρr7.

Írhatjuk tehát, hogy

µ(δ) = λ8

(
B1

(
C2×2

)
∩ Λ−1

δ B1

(
C2×2

)
Λδ

)
=

∫
C2×2

1{||X||<1 & ||Λ−1
δ XΛδ||<1} dλ8(X)

=

∫
R2

∫
]0,∞[2

∫
[0,2π)4

1
r<min

(
1
||Y || ,

1

||Λ−1
δ

Y Λδ ||

)2ρr7 dλ4(ξ, τ, µ, ν) dλ2(r, ρ) dλ2(t, s).

Világos, hogy Y (t, τ, s, ρ, µ, ν) ∈ SL2(C) és az A.1.2. lemma értelmében ||Y || =

exp
(

1
2

cosh−1
(
||Y ||2HS

2

))
, ahol

||Y ||2HS = 2
(
ρ cosh 2s+

∣∣ρeµi − 1
∣∣ cosh 2t

)
.

Ez pedig azt jelenti, hogy ||Y ||2HS < ||Λ−1
δ Y Λδ||2HS pontosan akkor teljesül, ha a |t− δ| >

|t| ⇔ t < δ/2 egyenlőtlenség áll fenn.
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Eddigi észrevételeinket kiegészítve azzal, hogy az integrandus csupán r, ρ, s, t és µ
függvénye, a fenti integrál

2π3

∫
R\(−δ/2,δ/2)

∞∫
−∞

∞∫
0

2π∫
0

e−4 cosh−1(ρ cosh 2s+|ρeµi−1| cosh 2t)ρ dµ dρ ds dt =

= Vol(B1

(
C2×2

)
)−∆(δ)

alakra hozható, ahol a ∆(δ) defekt függvény

∆(δ) = 2π3

δ∫
0

∞∫
0

∞∫
0

2π∫
0

e−4 cosh−1(ρ cosh s+|ρeµi−1| cosh t)ρ dµ dρ ds dt.

módon fejezhető ki.



E. függelék

A 4.3.1. lemma bizonyítása

> # Determinant of Quantum channel transformations.

> restart;

> with(LinearAlgebra):

> assume(x,real,y,real,z,real,a,real,b1,real,b2,real):
> assume(c1,real,c2,real,d1,real,d2,real,e1,real,e2,real):
> assume(f,real,g1,real,g2,real);

> # A parametric channel:
> A:=Matrix(4,4,[[a,b1+I*b2,c1+I*c2,d1+I*d2],[b1-I*b2,1-a,e1+I*e2,-c1-I*
> c2],
> [c1-I*c2,e1-I*e2,f,g1+I*g2],[d1-I*d2,-c1+I*c2,g1-I*g2,1-f]]);

A :=


a˜ b1˜ + b2˜ I c1˜ + c2˜ I d1˜ + d2˜ I

b1˜− b2˜ I 1− a˜ e1˜ + e2˜ I −c1˜− c2˜ I
c1˜− c2˜ I e1˜− e2˜ I f ˜ g1˜ + g2˜ I
d1˜− d2˜ I −c1˜ + c2˜ I g1˜− g2˜ I 1− f ˜


> # And its submatrices:
> A11:=SubMatrix(A, 1 .. 2, 1 .. 2);
> A12:=SubMatrix(A, 1 .. 2, 3 .. 4);
> A21:=SubMatrix(A, 3 .. 4, 1 .. 2);
> A22:=SubMatrix(A, 3 .. 4, 3 .. 4);

A11 :=

[
a˜ b1˜ + b2˜ I

b1˜− b2˜ I 1− a˜

]
A12 :=

[
c1˜ + c2˜ I d1˜ + d2˜ I
e1˜ + e2˜ I −c1˜− c2˜ I

]
A21 :=

[
c1˜− c2˜ I e1˜− e2˜ I
d1˜− d2˜ I −c1˜ + c2˜ I

]
A22 :=

[
f ˜ g1˜ + g2˜ I

g1˜− g2˜ I 1− f ˜

]
107
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> # Rotation matrices:
> Rotation[1]:=Matrix(3,3,[[cos(alpha),-sin(alpha),0],[sin(alpha),cos(al
> pha),0],[0,0,1]]);
> Rotation[2]:=Matrix(3,3,[[1,0,0],[0,cos(alpha),-sin(alpha)],[0,sin(alp
> ha),cos(alpha)]]);
> Rotation[3]:=Matrix(3,3,[[cos(alpha),0,-sin(alpha)],[0,1,0],[sin(alpha
> ),0,cos(alpha)]]);

Rotation1 :=

 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


Rotation2 :=

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)


Rotation3 :=

 cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)


> # Consider an arbitrary Bloch vector:
> Bv:=Vector(3,[x,y,z]);

Bv :=

 x˜
y˜
z˜


> # The after applying the quantum channel the Bloch vector changes:
> Qa:=1/2*((1+Bv[3])*A11+(1-Bv[3])*A22+(Bv[1]+I*Bv[2])*A12+(Bv[1]-I*Bv[2
> ])*A21):
> xv:=expand(2*Re(Qa[1,2])):
> yv:=expand(2*Im(Qa[1,2])):
> zv:=expand(2*Qa[1, 1]-1):
> ABv:=Vector(3,[xv,yv,zv]);

ABv :=

 b1˜ z˜ + d1˜ x˜− d2˜ y˜ + e1˜ x˜− e2˜ y˜− g1˜ z˜ + b1˜ + g1˜
b2˜ z˜ + d1˜ y˜ + d2˜ x˜− e1˜ y˜− e2˜ x˜− g2˜ z˜ + b2˜ + g2˜

a˜ z˜ + 2 c1˜ x˜− 2 c2˜ y˜− f ˜ z˜ + a˜ + f ˜− 1


> # Let us define the following transformation matrix and vector:
> T:=Transpose(Matrix(3,3,[[coeff(xv,x,1),coeff(yv,x,1),coeff(zv,x,1)],
> [coeff(xv,y,1),coeff(yv,y,1),coeff(zv,y,1)],[coeff(xv,z,1),coeff(yv,z,
> 1),coeff(zv,z,1)]]));
> S:=Vector(3, [b1+g1, b2+g2, a+f-1]);

T :=

 d1˜ + e1˜ −d2˜− e2˜ b1˜− g1˜
d2˜− e2˜ d1˜− e1˜ b2˜− g2˜

2 c1˜ −2 c2˜ a˜− f ˜


S :=

 b1˜ + g1˜
b2˜ + g2˜
a˜ + f ˜− 1


> # Check that the channel acts like Bv -> T.Bv+S:
> simplify(T.Bv+S-ABv);
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

> # CHANNEL’ = ROTATION.CHANNEL
> # Applying the quantum channel after rotating the Bloch vector can be
> described by one new channel.
> # Original channel parameters
> l1list:=[a,f,b1,b2,c1,c2,d1,d2,e1,e2,g1,g2]:
> # New channel parameters
> l2list:=[av,fv,b1v,b2v,c1v,c2v,d1v,d2v,e1v,e2v,g1v,g2v]:
> for ee from 1 to 3 do
> Tm[ee]:=Rotation[ee].T:
> Sm[ee]:=Rotation[ee].S:
> Tn:=Tm[ee]:
> Sn:=Sm[ee]:
> # The parameters of the new channel are the following:
> av:=1/2*(Sn[3]+1+Tn[3, 3]):
> fv:=Sn[3]+1-av:
> b1v:=simplify((Tn[1,3]+Sn[1])*(1/2)):
> b2v:=simplify((Tn[2,3]+Sn[2])*(1/2)):
> c1v:=(1/2)*Tn[3,1]:
> c2v:=-(1/2)*Tn[3,2]:
> d1v:=simplify((Tn[1,1]+Tn[2,2])*(1/2)):
> d2v:=simplify((Tn[2,1]-Tn[1,2])*(1/2)):
> e1v:=simplify((Tn[1,1]-Tn[2,2])*(1/2)):
> e2v:=-simplify((Tn[1,2]+Tn[2,1])*(1/2)):
> g1v:=simplify((-Tn[1,3]+Sn[1])*(1/2)):
> g2v:=simplify((-Tn[2,3]+Sn[2])*(1/2)):
> # The transformation which describes the original channel -> new
> channel map:
> DM:=Matrix(12,12,0):
> for aa to 12 do
> for bb to 12 do
> DM[aa,bb]:=diff(l2list[aa],l1list[bb]):
> end do:
> end do:
> # Let us compute the determenint of this map:
> print("Rotation:",ee," Determinant:",simplify(Determinant(DM))):
> end do:

„Rotation:”, 1, „ Determinant:” , 1

„Rotation:”, 2, „ Determinant:” , 1

„Rotation:”, 3, „ Determinant:” , 1
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> # CHANNEL’ = CANNEL.ROTATION
> # Rotating the Bloch vector and after applying the quantum channel can
> be described by one new channel.
> # Original channel parameters
> l1list:=[a,f,b1,b2,c1,c2,d1,d2,e1,e2,g1,g2]:
> # New channel parameters
> l2list:=[av,fv,b1v,b2v,c1v,c2v,d1v,d2v,e1v,e2v,g1v,g2v]:
> for ee from 1 to 3 do
> Tm[ee]:=T.Rotation[ee]:
> Sm[ee]:=S:
> Tn:=Tm[ee]:
> Sn:=Sm[ee]:
> # The parameters of the new channel are the following:
> av:=1/2*(Sn[3]+1+Tn[3, 3]):
> fv:=Sn[3]+1-av:
> b1v:=simplify((Tn[1,3]+Sn[1])*(1/2)):
> b2v:=simplify((Tn[2,3]+Sn[2])*(1/2)):
> c1v:=(1/2)*Tn[3,1]:
> c2v:=-(1/2)*Tn[3,2]:
> d1v:=simplify((Tn[1,1]+Tn[2,2])*(1/2)):
> d2v:=simplify((Tn[2,1]-Tn[1,2])*(1/2)):
> e1v:=simplify((Tn[1,1]-Tn[2,2])*(1/2)):
> e2v:=-simplify((Tn[1,2]+Tn[2,1])*(1/2)):
> g1v:=simplify((-Tn[1,3]+Sn[1])*(1/2)):
> g2v:=simplify((-Tn[2,3]+Sn[2])*(1/2)):
> # The transformation which describes the original channel -> new
> channel:
> DM:=Matrix(12,12,0):
> for aa to 12 do
> for bb to 12 do
> DM[aa,bb]:=diff(l2list[aa],l1list[bb]):
> end do:
> end do:
> # Let us compute the determenint of this map:
> print("Rotation:",ee," Determinant:",simplify(Determinant(DM))):
> end do:

„Rotation:”, 1, „ Determinant:” , 1

„Rotation:”, 2, „ Determinant:” , 1

„Rotation:”, 3, „ Determinant:” , 1


