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Quantum machine learning models have the potential to offer speedups and better predictive accuracy compared to their classical
counterparts. However, these quantum algorithms, like their classical counterparts, have been shown to also be vulnerable to input
perturbations, in particular for classification problems. These can arise either from noisy implementations or, as a worst-case type of
noise, adversarial attacks. In order to develop defense mechanisms and to better understand the reliability of these algorithms, it is
crucial to understand their robustness properties in the presence of natural noise sources or adversarial manipulation. From the
observation that measurements involved in quantum classification algorithms are naturally probabilistic, we uncover and formalize
a fundamental link between binary quantum hypothesis testing and provably robust quantum classification. This link leads to a
tight robustness condition that puts constraints on the amount of noise a classifier can tolerate, independent of whether the noise
source is natural or adversarial. Based on this result, we develop practical protocols to optimally certify robustness. Finally, since this
is a robustness condition against worst-case types of noise, our result naturally extends to scenarios where the noise source is
known. Thus, we also provide a framework to study the reliability of quantum classification protocols beyond the adversarial, worst-

case noise scenarios.
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INTRODUCTION

The flourishing interplay between quantum computation and
machine learning has inspired a wealth of algorithmic invention in
recent years'. Among the most promising proposals are
quantum classification algorithms that aspire to leverage the
exponentially large Hilbert space uniquely accessible to quantum
algorithms to either drastically speed up computational bottle-
necks in classical protocols*™, or to construct quantum-enhanced
kernels that are practically prohibitive to compute classically®'°.
Although these quantum classifiers are recognized as having the
potential to offer quantum speedup or superior predictive
accuracy, they are shown to be just as vulnerable to input
perturbations as their classical counterparts''™'*. These perturba-
tions can occur either due to imperfect implementation that is
prevalent in the noisy, intermediate-scale quantum (NISQ) era',
or, more menacingly, due to adversarial attacks where a malicious
party aims to fool a classifier by carefully crafting practically
undetectable noise patterns that trick a model into misclassifying
a given input.

In order to address these short-comings in reliability and
security of quantum machine learning, several protocols in the
setting of adversarial quantum learning, i.e., learning under the
worst-case noise scenario, have been developed'"'%'%7'8, More
recently, data encoding schemes are linked to robustness
properties of classifiers with respect to different noise models in
ref. '°. The connection between provable robustness and quantum
differential privacy is investigated in ref.'”, where naturally
occurring noise in quantum systems is leveraged to increase
robustness against adversaries. A further step toward robustness
guarantees is made in ref.'® where a bound is derived from
elementary properties of the trace distance. These advances,
though having accumulated considerable momentum toward a

coherent strategy for protecting quantum machine learning
algorithms against adversarial input perturbations, have not yet
provided an adequate framework for deriving a tight robustness
condition for any given quantum classifier. In other words, the
known robustness conditions are sufficient but not, in general,
necessary.

Thus, a major open problem remains that is significant on both
the conceptual and practical levels. Conceptually, adversarial
robustness, being an intrinsic property of the classification
algorithms under consideration, is only accurately quantified by
a tight bound, the absence of which renders the direct robustness
comparison between different quantum classifiers implausible.
Practically, an optimal robustness certification protocol, in the
sense of being capable of faithfully reporting the noise tolerance
and resilience of a quantum algorithm, can only arise from a
robustness condition that is both sufficient and necessary. Here
we set out to confront both aspects of this open problem by
generalizing the state-of-the-art classical wisdom on certifiable
adversarial robustness into the quantum realm.

The pressing demand for robustness against adversarial attacks
is arguably even more self-evident under the classical setting in
the present era of wide-spread industrial adaptation of machine
learning'>'*?°, Many heuristic defense strategies have been
proposed but have subsequently been shown to fail against
suitably powerful adversaries?2 In response, provable defense
mechanisms that provide robustness guarantees have been
developed. One line of work, interval bound propagation, uses
interval arithmetic®?* to certify neural networks. Another
approach makes use of randomizing inputs and adopts techni-
ques from differential privacy®> and, to our particular interest,
statistical hypothesis testing®?’ that has a natural counter-part in
the quantum domain. Since the pioneering works by Helstrom?®
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and Holevo®, the task of quantum hypothesis testing (QHT) has
been well studied and regarded as one of the foundational tasks
in quantum information, with profound linkages with topics
ranging from quantum communication®®3, estimation theory®?,
to quantum illumination®3>*,

In this work, we lay bare a fundamental connection between QHT
and the robustness of quantum classifiers against unknown noise
sources. The methods of QHT enable us to derive a robustness
condition that, in contrast to other methods, is both sufficient and
necessary and puts constraints on the amount of noise that a
classifier can tolerate. Due to tightness, these constraints allow for
an accurate description of noise tolerance. Absence of tightness, on
the other hand, would underestimate the true degree of such noise
tolerance. Based on these theoretical findings, we provide (1) an
optimal robustness certification protocol to assess the degree of
tolerance against input perturbations (independent of whether
these occur due to natural or adversarial noise), (2) a protocol to
verify whether classifying a perturbed (noisy) input has had the
same outcome as classifying the clean (noiseless) input, without
requiring access to the latter, and (3) tight robustness conditions on
parameters for amplitude and phase damping noise. In addition, we
will also consider randomizing quantum inputs, what can be seen
as a quantum generalization to randomized smoothing, a
technique that has recently been applied to certify the robustness
of classical machine learning models®®. The conceptual foundation
of our approach is rooted in the inherently probabilistic nature of
quantum classifiers. Intuitively, while QHT is concerned with the
question of how to optimally discriminate between two given
states, certifying adversarial robustness aims at giving a guarantee
for which two states cannot be discriminated. These two seemingly
contrasting notions go hand in hand and, as we will see, give rise to
optimal robustness conditions fully expressible in the language of
QHT. Furthermore, while we focus on robustness in a worst-case
scenario, our results naturally cover narrower classes of known
noise sources and can potentially be put in context with other areas
such as error mitigation and error tolerance in the NISQ era. Finally,
while we treat robustness in the context of quantum machine
learning, our results in principle do not require the decision
function to be learned from data. Rather, our results naturally cover
a larger class of quantum algorithms whose outcomes are
determined by the most likely measurement outcome. Our
robustness conditions on quantum states are then simply condi-
tions under which the given measurement outcome remains the
most likely outcome.

The remainder of this paper is organized as follows. We first
introduce the notations and terminologies and review results from
QHT essential for our purpose. We then proceed to formally define
quantum classifiers and the assumptions on the threat model. In
“Results”, we present our main findings on provable robustness
from QHT. In addition, these results are demonstrated and
visualized with a simple toy example for which we also consider
the randomized input setting and analyze specifically randomiza-
tion with depolarization channel. In “Discussion” we conclude with
a higher-level view on our findings and layout several related
open problems with an outlook for future research. Finally, in
“Methods”, we give proofs for central results: the robustness
condition in terms of type-ll error probabilities of QHT, the
tightness of this result and, finally, the method used to derive
robustness conditions in terms of fidelity.

RESULTS
Preliminaries

Notation. Let H be a Hilbert space of finite dimension d :=
dim(H) < oo corresponding to the quantum system of interest.
The space of linear operators acting on H is denoted by £(H) and
the identity operator on H is written as 1. If not clear from the
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context, the dimensionality is explicitly indicated through
the notation 14 The set of density operators (i.e., positive
semidefinite trace-one Hermitian matrices) acting on H is denoted
by S(H) and elements of S(H) are written in lowercase Greek
letters. The Dirac notation will be adopted whereby Hilbert space
vectors are written as |¢) and their dual as (p|. We will use the
terminology density operator and quantum state interchangeably.
For two Hermitian operators A, B € L(H) we write A> B (A = B) if
A —B is positive (semi-)definite and A<B (A<B) if A—B is
negative (semi-)definite. For a Hermitian operator A € L(H) with
spectral decomposition A=3AP;, we write {A>0}:=3",, P
(and analogously {A<0} := 3", _,Pi) for the projection onto the
eigenspace of A associated with positive (negative) eigenvalues.
The Hermitian transpose of an operator A is written as A" and the
complex conjugate of a complex number z € C as z. For two
density operators p and o, the trace distance is defined as
T(p, 0) ::%Hp — ol|; where ||-||; is the Schatten 1-norm defined

on L(H) and given by ||Al|, := Tr[|A|] with |A] = VA'A. The
Uhlmann fidelity between density operators p and o is denoted by
F and defined as F(p, o) := Tr[ \/Po\/p ? that for pure states

reduces to the squared overlap F(|g), |¢)) = |(|¢)[. Finally, the
Bures metric is denoted by dg and is closely related to the

Uhlmann fidelity via dg(p, o) = [2(1 — v/F(p, 0))]%.

Quantum hypothesis testing. Typically, QHT is formulated in terms
of state discrimination where several quantum states have to be
discriminated through a measurement?®. In binary QHT, the aim is
to decide whether a given unknown quantum system is in one of
two states corresponding to the null and alternative hypothesis.
Any such test is represented by an operator 0 <M< 14, which
corresponds to rejecting the null in favor of the alternative. The two
central quantities of interest are the probabilities of making a type-|
or type-Il error. The former corresponds to rejecting the null when it
is true, while the latter occurs if the null is accepted when the
alternative is true. Specifically, for density operators o € S('H) and
p € S(H) describing the null and alternative hypothesis, the type-I
error probability is defined as a(M) and the type-Il error probability
as B(M), so that

a(M; o) := Tr[oM|

B(M; p) :=Tr[p(1 — M)] (type-llerror) ()]

In the Bayesian setting, the hypotheses o and p occur with some
prior probabilities 7, and mm; and are concerned with finding a test
that minimizes the total error probability. A Bayes optimal test M is
one that minimizes the posterior probability m, - a(M) + m; - B(M).

In this paper, we consider asymmetric hypothesis testing
(Neyman-Pearson approach)®?, where the two types of errors are
associated with a different cost. Given a maximal allowed
probability for the type-l error, the goal is to minimize the
probability of the type-ll error. Specifically, one aims to solve the
semidefinite program (SDP)

(type-lerror) (m

B;, (0, p) := minimize B(M; p)
s.t. a(M; o) < ao, 3)
0<M< 1y

Optimal tests can be expressed in terms of projections onto the
eigenspaces of the operator p —to where t is a non-negative
number. More specifically, for t>0 let P, ,;:={p —to>0}, P, :={p
—to<0} and Pyp:=1 —P,, —P,_ be the projections onto the
eigenspaces of p — to associated with positive, negative, and zero
eigenvalues. The quantum analog to the Neyman-Pearson
Lemma>® shows optimality of operators of the form

M =P + X, 0 Xp < Prp. (4)
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Fig. 1
to fool the classifier into believing that the mushroom is “edible”

The choice of the scalar t = 0 and the operator X; is such that the
preassigned type-l error probability a, is attained. An explicit
construction for these operators is based on the inequalities

A(Pr(ae)+) < A0 < A(Pr(ag)+ + Pr(a)0) (5)

where ap€(0,1) and t(ap) is the smallest non-negative number
such that a(Pr(g,),+) < Qo, i€, T(ao) :=inf{t >0: a(P:4) < ao}.
These inequalities can be seen from the observation that the
function t — a(P; ;) is non-increasing and right-continuous while t
— a(P, + Pro) is non-increasing and left-continuous. A detailed
proof for this is given in Supplementary Notes 1 and 2. We will
henceforth refer to operators of the form (4) as Helstrom
operators>2.

Quantum classifiers. We define a K-class quantum classifier of
states of the quantum system 7H, described by density
operators, as a map A : S(H) — C that maps states o € S(H)
to class labels ke C={1, ..., K}. Any such classifier is
described by a completely positive and trace-preserving (CPTP)
map £ and a positive-operator valued measure (POVM) {Mi},.
Formally, a quantum state o is passed through the quantum
channel £ and then the measurement {[}, is performed.
Finally, the probability of measuring outcome k is identified
with the class probability y.(0), i.e.,

0= Yi(0) :=Tr[M&(0)]. 6)

We treat the POVM element I, as a projector My = |k) (k| ® 14k
that determines whether the output is classified into class k.
This can be done without loss of generality by Naimark’s
dilation since £ is kept arbitrary and potentially involves
ancillary qubits and a general POVM element can be expressed
as a projector on the larger Hilbert space. The final prediction is
given by the most likely class

A(o) = arg;naxyk(o). )

Throughout this paper, we refer to A as the classifier and to y
as the score function. In the context of quantum machine
learning, the input state o can be an encoding of classical data
by means of, e.g., amplitude encoding or otherwise'®3¢, or
inherently quantum input data, while £ can be realized, e.g., by
a trained parametrized quantum circuit potentially involving
ancillary registers®’. However, it is worth noting that the above-
defined notion of quantum classifier more generally describes
the procedure of a broader class of quantum algorithms whose
output is obtained by repeated sampling of measurement
outcomes.

Quantum adversarial robustness. Adversarial examples are
attacks on classification models where an adversary aims to
induce a misclassification using typically imperceptible modifica-
tions of a benign input example. Specifically, given a classifier A
and a benign input state o, an adversary can craft a small
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Adversarial attack. a A quantum classifier correctly classifies the (toxic) mushroom as “poisonous” b An adversary perturbs the image

perturbation o—p that results in a misclassification, i.e.,
A(p)#A(o). An illustration for this threat scenario is given in
Fig. 1. In this paper, we seek a worst-case robustness guarantee
against any possible attack: as long as p does not differ from o by
more than a certain amount, then it is guaranteed that A(o) =
A(p) independently of how the adversarial state p has been
crafted. Formally, suppose the quantum classifier A takes as input
a benign quantum state 0 € S(H) and produces a measurement
outcome denoted by the «class k& C with probability
Y, (0) = Tr[M&(0)]. Recall that the prediction of A is taken to be
the most likely class ka = arg maxy, (o). An adversary aims to
alter the output probability distribution so as to change the most
likely class by applying an arbitrary quantum operation & :
S(H) — S(H) to o resulting in the adversarial state p = £a(0).
Finally, we say that the classifier y is provably robust around o with
respect to the robustness condition R, if for any p that satisfies R,
it is guaranteed that A(p) = A(0).

In the following, we will derive a robustness condition for
quantum classifiers with the QHT formalism, which provides a
provable guarantee for the outcome of a computation being
unaffected by the worst-case input noise or perturbation under a
given set of constraints. In the regime where the most likely class
is measured with probability lower bounded by p, > 1/2 and the
runner-up class is less likely than pg =1 — pa, we prove tightness
of the robustness bound, hence demonstrating that the QHT
condition is at least partially optimal. The QHT robustness
condition, in its full generality, has an SDP formulation in terms
of the optimal type-ll error probabilities. We then simplify this
condition and derive closed form solutions in terms of Uhlmann
fidelity, Bures metric, and trace distance between benign and
adversarial inputs. The closed form solutions in terms of fidelity
and Bures metric are shown to be sufficient and necessary for
general states and in the same regime where the SDP formulation
is proven to be tight. In the case of trace distance, this can be
claimed for pure states, while the bound for mixed states occurs to
be weaker. These results stemming from QHT considerations are
then contrasted and compared with an alternative approach that
directly applies Holder duality to trace distances to obtain a
sufficient robustness condition. The different robustness bounds
and robustness conditions are summarized in Table 1.

Robustness condition from quantum hypothesis testing

Recall that QHT is concerned with the question of finding
measurements that optimally discriminate between two states. A
measurement is said to be optimal if it minimizes the probabilities
of identifying the quantum system to be in the state o,
corresponding to the null hypothesis, when in fact it is in the
alternative state p, and vice versa. When considering provable
robustness, on the other hand, one aims to find a neighborhood
around a benign state o where the class that is most likely to be
measured is constant or, expressed differently, where the classifier
cannot discriminate between states. It becomes thus clear that
QHT and classification robustness aim to achieve a similar goal,
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Table 1. Summary of results.

Input states Quantum differential privacy Hoélder duality Quantum hypothesis testing

SDP? Fidelity Bures metric Trace distance
No smoothing Pure - Lemma 2° Theorem 1 Theorem 3 Eg. (20) Eq. (16)
Mixed - Lemma 2
Depolarization smoothing Pure Lemma 2 in ref. '’ Eq. (45) Theorem 1 - - Eg. (43) (single-qubit)
Mixed - - -

In this work, we establish a fundamental connection between QHT and the robustness of quantum classification algorithms against adversarial input
perturbations. This connection naturally leads to a robustness condition formulated as a semidefinite program in terms of optimal type-Il error probabilities of
distinguishing between benign and adversarial states (QHT condition: Theorem 1). Under certain practical assumptions about the class probabilities on benign
input, we prove that the QHT condition is optimal (Theorem 2). We then show that the QHT condition implies closed form solutions in terms of explicit
robustness bound on the fidelity, Bures metric, and trace distance. We numerically compare an alternative robustness bound directly implied by the definition
of trace distance and application of Holder duality (Lemma 2 and ref. '®) with the explicit forms of the robustness bounds arising from QHT (Fig. 2). Based on
these technical findings, we provide a practical protocol to assess the resilience of a classifier against adversarial perturbations, a protocol to certify whether a
given noisy input has been classified the same as the noiseless input, without requiring access to the latter, and we derive robustness bounds on noise
parameters in amplitude and phase damping. Finally, we instantiate our results with a single-qubit pure state example both in the noiseless and depolarization
smoothing input scenarios, which allows for numerical comparison of all the known robustness bounds, arising from Holder duality, differential privacy'’, and

QHT (Fig. 5). Tight robustness conditions are indicated in bold font.

PIndependently discovered in ref. 8.

®Robustness condition expressed in terms of type-ll error probabilities 8~ associated with an optimal quantum hypothesis test.

although viewed from different angles. Indeed, as it turns out, QHT
determines the robust region around o to be the set of states (i.e.,
alternative hypotheses) for which the optimal type-Il error
probability 8 is larger than 1/2.

To establish this connection more formally, we identify the benign
state with the null hypothesis o and the adversarial state with the
alternative p. We note that, in the Heisenberg picture, we can
identify the score function y of a classifier A with a POVM {[,},. For
ka = A(0), the operator 1 — Iy, (and thus the classifier .A) can be
viewed as a hypothesis test discriminating between o and p. Notice
that, for p, €0, 1] with y, (o) = Tr[My, 0] > p,, the operator 14 —
Mk, is feasible for the SDP B;_, (o, p) in (3) and hence

ykA (p) = B(Hd - rIkA; p) > ﬁﬁ{—pA(OE p) (8)

Thus, it is guaranteed that ka = .A(p) for any p with
BLP (o, p)>1/2. The following theorem makes this reasoning
concise and extends to the setting where the probability of
measuring the second most likely class is upper-bounded by pg.

Theorem 1 (QHT robustness bound) Let o, p € S(H) be benign
and adversarial quantum states and let A be a quantum classifier
with score function y. Suppose that for ka € C and pp, ps € [0, 1], the
score function y satisfies

Yi,(0) = Pa>pg = maxy,(0). )
#Ka

Then, it is guaranteed that A(p) = A(o) for any p with

Bi_p, (0. p) + B, (0, p)>1 (10)

To get some more intuition of Theorem 1, we first note that for
pg =1 — pa, the robustness condition (10) simplifies to

Bi_p, (0, P)>1/2 (1

with this, the relation between QHT and robustness becomes
more evident: if the optimal hypothesis test performs poorly when
discriminating the two states, then a classifier will predict both
states to belong to the same class. In other words, viewing a
classifier as a hypothesis test between the benign input o and the
adversarial p, the optimality of the Helstrom operators implies that
the classifier y is a worse discriminator and will also not
distinguish the states, or, phrased differently, it is robust. This
result formalizes the intuitive connection between QHT and
robustness of quantum classifiers. While the former is concerned
with finding operators that are optimal for discriminating two
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states, the latter is concerned with finding conditions on states for
which a classifier does not discriminate.

Optimality. The robustness condition (10) from QHT is provably
optimal in the regime of ps+pg=1, which covers binary
classifications in full generality and multiclass classification where
the most likely class is measured with probability larger than
pa> 3 The robustness condition is tight in the sense that,
whenever condition (10) is violated, then there exists a classifier
A* that is consistent with the class probabilities (9) on the benign
input but that will classify the adversarial input differently from
the benign input. The following theorem demonstrates this notion
of tightness by explicitly constructing the worst-case classifier A*.

Theorem 2 (Tightness) Suppose that pa+ pg = 1. Then, if the
adversarial state p violates condition (10), there exists a quantum
classifier A* that is consistent with the class probabilities (9) and for
which A*(p) = A*(0).

The main idea of the proof relies on the explicit construction of a
“worst-case” classifier with Helstrom operators and that classifies p
differently from o while still being consistent with the class
probabilities (9). We refer the reader to “Methods” for a detailed
proof. Whether or not the QHT robustness condition is tight for pa
+ pg < 1 is an interesting open question for future research. It turns
out that a worst-case classifier that is consistent with p, and pg for
benign input but leads to a different classification on adversarial
input upon violating condition (10), if exists, is more challenging to
construct for these cases. If such a tightness result for all class
probability regimes would be proven, there would be a complete
characterization for the robustness of quantum classifiers.

Closed form robustness conditions

Although Theorem 1 provides a general condition for robustness
with provable tightness, it is formulated as an SDP in terms of
type-ll error probabilities of QHT. To get a more intuitive and
operationally convenient perspective, we wish to derive a
condition for robustness in terms of a meaningful notion of
difference between quantum states. Specifically, based on
Theorem 1, here we derive robustness conditions expressed in
terms of Uhlmann’s fidelity F, Bures distance dg, and in terms of
the trace distance T. To that end, we first concentrate on pure
state inputs and will then leverage these bounds to mixed states.
Finally, we show that expressing robustness in terms of fidelity or
Bures distance results in a tight bound for both pure and mixed
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states, while for trace distance the same can only be claimed in
the case of pure states.

Pure states. We first assume that both the benign and the
adversarial states are pure. This assumption allows us to first write
the optimal type-Il error probabilities 8;(p, o) as a function of a
and the fidelity between p and o. This leads to a robustness bound
on the fidelity and subsequently to a bound on the trace distance
and on the Bures distance. Finally, since these conditions are
equivalent to the QHT robustness condition (10), Theorem 2
implies tightness of these bounds.

Lemma 1 Let |¢,), ](/Jp> € 'H and let A be a quantum classifier.
Suppose that for ka € C and pa, pg €10, 1], we have kn = A(p,)
and suppose that the score function y satisfies (9). Then, it is
guaranteed that A(y,) = A(y,) for any @, with

[Walvo) > 5 (14 Valon, pe)), (12

where the function g is given by

9(pa; pg) =1 —pg — pa(1 —2pg) +

2/paps(1 = pa) (T — pg).
(13)

This condition is equivalent to (10) and is hence both sufficient
and necessary whenever pp + pg = 1.

This result thus provides a closed form robustness bound that is
equivalent to the SDP formulation in condition (10) and is hence
sufficient and necessary in the regime pa+ pg=1. We remark
that, under this assumption, the robustness bound (12) has the
compact form

| (Wolwo)|* > =+ v/Pa(1 — Pa)- (14)

Due to its relation with the Uhlmann fidelity, it is straight forward
to obtain a robustness condition in terms of Bures metric. Namely,
the condition

do[0,), 05)) < { 201+ g(pA,pB»T (15)

is equivalent to (10). Furthermore, since the states are pure, we
can directly link (12) to azbound in terms of the trace distance via
the relation T(|y,), [¥,)" =1— (¥, , so that

T([¥,), 1¥o)) < {(1_ g(pAva))]% (16)

is equivalent to (10). Due to the equivalence of these bounds to
(10), Theorem 2 applies and it follows that both bounds are
sufficient and necessary in the regime where pa + pg=1. In the
following, we will extend these results to mixed states and show
that both the fidelity and Bures metric bounds are tight.

Mixed states. Reasoning about the robustness of a classifier if the
input states are mixed, rather than just for pure states, is practically
relevant for a number of reasons. First, in a realistic scenario, the
assumption that an adversary can only produce pure states is too
restrictive and gives an incomplete picture. Second, if we wish to
reason about the resilience of a classifier against a given noise
model (e.g, amplitude damping), then the robustness condition
needs to be valid for mixed states as these noise models typically
produce mixed states. Finally, in the case where we wish to certify
whether a classification on a noisy input has had the same outcome
as on the noiseless input, a robustness condition for mixed states is
also required. For these reasons, and having established closed
form robustness bounds that are both sufficient and necessary for
pure states, here we aim to extend these results to the mixed state
setting. The following theorem extends the fidelity bound (12) for
mixed states. As for pure states, it is then straight forward to obtain
a bound in terms of the Bures metric.
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Theorem 3 Let 0, p € S(H) and let A be a quantum classifier.
Suppose that for ka € C and pa, ps €10, 1], we have kp = A(o) and
suppose that the score function y satisfies (9). Then, it is guaranteed
that A(p) = A(o) for any p with

1
F(p, 0)> 5 (1 + 1/ 9(pa, pB)> =:rF (17)

where g is defined as in (13). This condition is both sufficient and
necessary if pp+pg=1.

Proof To show sufficiency of (17), we notice that y can be
rewritten as

Yi(0) = Tr[Mk&(0)] (18)

= Tr[M(& o Tre)(|o) (W5 )] (19)

where |,) is a purification of o with purifying system E and Trg
denotes the partial trace over E. We can thus view y as a score
function on the larger Hilbert space that admits the same class
probabilities for o and any purification of o (and equally for p).
It follows from Uhlmann'’s Theorem that there exist purifications
;) and |y,) such that F(p, o) = |(W,|w,) | . Robustness at p
then follows from (17) by (18) and Lemma 1. To see that the
bound is necessary when p, + pg = 1, suppose that there exists
some Te<rg such that F(o, p)>Te implies that A(p) = A(o).
Since pure states are a subset of mixed states, this bound must
also hold for pure states. In particular, suppose }(JJP> is such that

7F<|((pp|(po>}2§rF. However, this is a contradiction, since

|((pp|(po>}2 > re is both sufficient and necessary in the given
regime, i.e., by Theorem 2, there exists a classifier A* whose
score function satisfies (9) and for which A*(y,)=A"(y,).
It follows that ¥z > rg and hence the claim of the theorem.

Due to the close relation between Uhlmann fidelity and the
Bures metric, we arrive at a robustness condition for mixed
states in terms of dg, namely

h(p. 0)<|2 201+ alpapa)) | (20

that inherits the tightness properties of the fidelity bound (17). In
contrast to the pure state case, here it is less straight forward to
obtain a robustness bound in terms of trace distance. However, we
can still build on Lemma 1 and the trace distance bound for pure
states (16) to obtain a sufficient robustness condition. Namely,
when assuming that the benign state is pure, but the adversarial
state is allowed to be mixed, we have the following result.

Corollary 1 (Pure benign and mixed adversarial states) Let
0, p € S(H) and suppose that o = |@,)(y,| is pure. Let A be a
quantum classifier and suppose that for ka € C and pa, pg €10, 1], we
have kn = A(o) and suppose that the score function y satisfies (9).
Then, it is guaranteed that A(p) = A(o) for any p with

T(p, 0)<6(pp, Ps) (1 i 6<pA,pB>2) Q1)

1
where &(pa, pg) = [5(1 — g(pa,ps))I’-

We refer the reader to Supplementary Note 4 for a detailed proof
of this result. Intuitively, condition (21) is derived by noting that any
convex mixture of robust pure states must also be robust; thus,
membership of the set of mixed states enclosed by the convex hull
of robust pure states (certified by Eq. (16)) is a natural sufficient
condition for robustness. As such, the corresponding robustness
radius in condition (21) is obtained by lower-bounding, with
triangle inequalities, the radius of the maximal sphere centered at o
within the convex hull. However, the generalization from Lemma 1
and Eq. (16) to Corollary 1, mediated by the above geometrical
argument, results in a sacrifice of tightness. How or to what extent
such loosening of the explicit bound in the cases of mixed states
may be avoided or ameliorated remains an open question. In the
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Fig.2 Comparison between robustness bounds in terms of trace distance. a Difference rq — ry between the pure state bound derived from
QHT rq, given in Eq. (16) and the Hélder duality bound ry from Lemma 2. b Difference ry — Fq between the Hélder duality bound ry and the
bound 7q derived from the convex hull approximation to the QHT robustness condition from Theorem 1 for mixed adversarial states. It can be
seen that the pure state bound rq is always larger than ry which in turn is always larger than the convex hull approximation bound 7q.

following, we compare the trace distance bounds from QHT with a
robustness condition derived from an entirely different technique.

We note that a sufficient condition can be obtained from a
somewhat straightforward application of Holder duality for
trace norms:

Lemma 2 (Holder duality bound) Let o, p € S(H) be arbitrary
quantum states and let A be a quantum classifier. Suppose that for
kn € C and paps€l0,1], we have ka = A(o) and the score
function y satisfies (9). Then, it is guaranteed that A(p) = A(0)
for any p with

1 Pa—P
Sl =olly <522 (22)

Proof Let & := 1[|o — 0||; = supy<p1Tr[P(p — 0)], which follows
from Holder duality. We have that y, (0) —y,,(p) <6 and that
Yi,(0) > pa, hence y,, (0) > pp — 6. We also have, for k' such that

Yi () = Maxik, Y (), that y(p) —ye(0) <6, and that
¥ (0) < ps, hence maxiu,¥i(0) < ps +06. Thus, 1flp—oll,
<P = pp—8>pg +6 = Yy, (0)>Maxkek,Yi(P)- O

We acknowledge that the above robustness bound from Hélder
duality was independently discovered in Lemma 1 of ref.'®, For
intuitive insights, it is worth remarking that condition (22) stems
from comparing the maximum probability of distinguishing o and p
with the optimal measurement (Hélder measurement) with the gap
between the first two class probabilities on o. Since no classifier can
distinguish ¢ and p better than the Hoélder measurement by
definition, (22) is clearly a sufficient condition. However, the Holder
measurement on o does not necessarily result in class probabilities
consistent with Eqg. (9). Without additional constraints on desired
class probabilities on the benign input, the robustness condition
(22) from Holder duality is stronger than necessary. In contrast, the
QHT bound from Theorem 1, albeit implicitly written in the
language of hypothesis testing, naturally incorporates such desired
constraints. Hence, as expected, this gives rise to a tighter
robustness condition.

In summary, the closed form solutions in terms of fidelity and
Bures metric completely inherit the tightness of Theorem 1, while
for trace distance, tightness is inherited for pure states, but partially
lost in Corollary 1 for mixed adversarial states. The numerical
comparison between the trace distance bounds from QHT and the
Holder duality bound is shown in a contour plot in Fig. 2.

Toy example with single-qubit pure states

We now present a simple example to highlight the connection
between QHT and classification robustness. We consider a
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single-qubit system that is prepared either in the state o or p
described by

lo) = 10), (23)

lp) = cos(6y/2)|0) + sin(B/2)e0|1) (24)

with 6, € [0, ) and ¢ € [0, 2m1). The state o corresponds to the
null hypothesis in the QHT setting and to the benign state in the
classification setting. Similarly, p corresponds to the alternative
hypothesis and adversarial state. The operators that are central
to both QHT and robustness are the Helstrom operators (4) that
are derived from the projection operators onto the eigenspaces
associated with the non-negative eigenvalues of the operator
p — to. For this example, the eigenvalues are functions of t>0
and given by

n1:%(1—t)+R>07 (25)

M=3(1-1-R<0 (26)
1 2 2

R:E\/U—t) +4t(1 — yP) (27)

where y is the overlap between ¢ and p and given by
y = cos(6p/2). For t> 0, the Helstrom operators are then given
by the projection onto the eigenspace associated with the
eigenvalue n;>0. The projection operator is given by M, =
Iny){n;] with

Im) = (1= m)A|0) —vAilp) (28)

|A1| 72 = 2R|n; — sin?(60/2)| (29)

where A; is a normalization constant ensuring that (n,|n;) =1.
Given a preassigned probability a, for the maximal allowed type-
| error probability, we determine t such that a(M,) = ao.

Hypothesis testing view. In QHT, we are given a specific
alternative hypothesis p and error probability a, and are
interested in finding the minimal type-Il error probability. In this
example, we pick 6, =m/3, ¢po =1/6 for the alternative state and
set the type-l error probability to ag =1 — pa=0.1. These states
are graphically represented on the Bloch sphere in Fig. 3. We note
that, for this choice of states, we obtain an expression for the
eigenvector |n,) given by

9-+3 2
Iny) = 30 |0) — 3\/;|P>- (30

Published in partnership with The University of New South Wales



- = - A .
By_ps(0. P)

Fig. 3 Example classifier for single-qubit quantum states. The
decision boundary is represented by the gray disk passing through the
origin of the Bloch sphere. The robust region around o is indicated by
the dark spherical cap. States belonging to different classes are marked
with + and - and are color red if not classified correctly. The colorbar
indicates different values for the optimal type-ll error probability
Blpk (o, p). We see that, for the given classifier, the state p is not
contained in the robust region around o since the optimal type-ll error
probability is less than 1/2 as indicated by the colorbar. The state p is
thus not guaranteed to be classified correctly by every classifier with
the same class probabilities. In the asymmetric hypothesis testing view,
an optimal discriminator that admits 0.1 type-l error probability for
testing o against p has type-ll error probability 0.44.

that yields the type-Il error probability
Bi p (0, p) = B(M) =1~ |(n]p)]* ~ 0.44<1/2. (31)

We thus see that the optimal hypothesis test can discriminate o
and p with error probabilities less than 1/2 since on the Bloch
sphere they are located far enough apart. However, since 8
(Mp) # 1/2, Theorem 1 implies that p is not guaranteed to be
classified equally as o by a classifier that makes a prediction on o
with confidence at least 0.9. In other words, the two
states are far enough apart to be easily discriminated by the
optimal hypothesis test but too far apart to be guaranteed to be
robust.

Classification robustness view. In this scenario, in contrast to the
QHT view, we are not given a specific adversarial state p, but
rather aim to find a condition on a generic p such that the
classifier is robust for all configurations of p that satisfy this
condition. Theorem 1 provides a necessary and sufficient
condition for robustness, expressed in terms of 8°, which, for pg
=1—pa and pa > 1/2, reads

Bi_p, (0, P)>1/2. (32

Recall that the probability and p, > 1/2 is a lower bound to the
probability of the most likely class and in this case we set pg =
1 — pa to be the upper bound to the probability of the second
most likely class. For example, as the QHT view shows, for ag =
1 — pa=0.1 we have that BT_pA(c7 p) = 0.44<1/2 for a state p
with 8y =71/3. We thus see that it is not guaranteed that every
quantum classifier, which predicts o to be of class ks with
probability at least 0.9, classifies p to be of the same class. Now,
we would like to find the maximum 6,, for which every classifier
with confidence greater than p, is guaranteed to classify p and o
equally. Using the fidelity bound (17), we find the robustness
condition on 6,

|(plo)|* = cos®(80/2) > 3+ \/Pa(1 — Pa)

(33)
< Bp<2-arccos /34 /Pa(1 —pa).
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In particular, if ppn=0.9, we find that angles 6p<2-
arccos(1/0.8) ~ 0.93<m/3 are certified. Figure 3 illustrates this
scenario: the dark region around o contains all states p for which
it is guaranteed that A(p) = A(o) for any classifier A with
confidence at least 0.9.

Classifier example. We consider a binary quantum classifier 4
that discriminates single-qubit states on the upper half of the
Bloch sphere (class+) from states on the lower half (class-).
Specifically, we consider the dichotomic POVM {Mg,, 1, — Mg 4}
defined by the projection operator Mg, = [Yg ;) (W 4| Where

|We.s) == cos(6/2)[0) + sin(6/2)e”|1) (34)

with 8 = 2 - arccos(1/0.9) =~ 0.644 and ¢ = 7n1/2. Furthermore, for
the rest of this section, we assume that pa +pg =1 so that pg is
determined by pa via pg =1 — pa. An illustration of this classifica-
tion problem is given in Fig. 3, where the decision boundary of .4
is represented by the gray disk crossing the origin of the Bloch
sphere. The states marked with a black + correspond to + states
that have been classified correctly, states marked with a black —
sign correspond to data points correctly classified as — and red
states are misclassified by A. It can be seen that since the state p
has been shown to violate the robustness condition (i.e.,
BTpr(o, p) ~ 0.44<1/2), it is not guaranteed that p and o are
classified equally. In particular, for the example classifier A we
have A(p) = A(0).

In summary, as py, — % the robust radius approaches 0. In the
QHT view, this can be interpreted in the sense that if the type-l
error probability ag approaches 1/2, then all alternative states can
be discriminated from o with type-Il error probability less than 1/2.
As pp — 1, the robust radius approaches 71/2. In this regime, the
QHT view says that if the type-I error probability a, approaches 0,
then the optimal type-Il error probability is smaller than 1/2 only
for states in the lower half of the Bloch sphere.

Robustness certification

The theoretical results in “Closed form robustness conditions”
provide conditions under which it is guaranteed that the output of a
classification remains unaffected if the adversarial (noisy) state and
the benign state are close enough, measured in terms of the fidelity,
Bures metric, or trace distance. Here, we show how this result can be
put to work and make concrete examples of scenarios where
reasoning about the robustness is relevant. Specifically, we first
present a protocol to assess how resilient a quantum classifier is
against input perturbations. Second, in a scenario where one is
provided with a potentially noisy or adversarial input, we wish to
obtain a statement as to whether the classification of the noisy input
is guaranteed to be the same as the classification of a clean input
without requiring access to the latter. Third, we analyze the
robustness of quantum classifiers against known noise models,
namely phase and amplitude damping.

Assessing resilience against adversaries. In security critical applica-
tions, such as the classification of medical data or home
surveillance systems, it is critical to assess the degree of resilience
that machine learning systems exhibit against actions of malicious
third parties. In other words, the goal is to estimate the expected
classification accuracy, under perturbations of an input state
within 1 — € fidelity. In the classical machine learning literature,
this quantity is called the certified test set accuracy at radius r,
where distance is typically measured in terms of £,-norms, and is
defined as the fraction of samples in a test set that has been
classified correctly and with a robust radius of at least r (i.e., an
adversary cannot change the prediction with a perturbation of
magnitude less than r). We can adapt this notion to the quantum
domain and, given a test set consisting of pairs of labeled samples
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T = {(ai, yi)}!;ﬂ], the certified test set accuracy at fidelity 1 — € is
given by
(oy)eT

where rg(0) is the minimum robust fidelity (17) for sample o and 1
denotes the indicator function. To evaluate this quantity, we need
to obtain the prediction and to calculate the minimum robust
fidelity for each sample o€ 7 as a function of the class
probabilities yx(0). In practice, in the finite sampling regime, we
have to estimate these quantities by sampling the quantum circuit
N times. To that end, we use Hoeffding's inequality so that the
bounds hold with probability at least 1 — a. Specifically, we run
the following steps to certify the robustness for a given sample o:

1. Apply the quantum circuit N times to o and perform the

|C|-outcome measurement {I'Ik}f:‘1 each time. Store the
outcomes in variables ny for every k € C.

2. Determine the most frequent measurement outcome k, and
set pp = ng, /N — /—In(a)/2N.

3. If pp>1/2, set py =1—p, and calculate the minimum
robust fidelity rr according to (17) and return (ka, rg);
otherwise abstain from certification.

Executing these steps for a given sample o returns the true
minimum robust fidelity with probability 1 — a, which follows from
Hoeffding's inequality
Pr[% —(M)g > 06| < exp{—2N62} (36)

with A, = £7(My) and setting 6 = \/—In (a) /2N. In Supplementary
Note 6, this algorithm is shown in detail in Protocol 1.

Certification for noisy inputs. In practice, inputs to quantum
classifiers are typically noisy. This noise can occur either due to
imperfect implementation of the state preparation device, or due to
an adversary that interferes with state or gate preparation. Under the
assumption that we know that the state has been prepared with
fidelity at least 1 — € to the noiseless state, we would like to know
whether this noise has altered our prediction, without having access
to the noiseless state. Specifically, given the classification result,
which is based on the noisy input, we would like to have the
guarantee that the classifier would have predicted the same class,
had it been given the noiseless input state. This would allow the
conclusion that the result obtained from the noisy state has not been
altered by the presence of noise. To obtain this guarantee, we
leverage Theorem 3 in the following protocol. Let p be a noisy input
with F(p,0) > 1 — & where o is the noiseless state and let A be a
quantum classifier with quantum channel € and POVM {[,},. Similar
to the previous protocol, we again need to take into account that in
practice we can sample the quantum circuit only a finite number of
times. Thus, we again use Hoeffding's inequality to obtain estimates
for the class probability p, that holds with probability at least 1 — a.
The protocol then consists of the following steps:

1. Apply the quantum circuit N times to the (noisy) state p and

perform the |C|-outcome measurement {I'Ik}k , each time.
Store the outcomes in variables ny for every k € C.

2. Determine the most frequent measurement outcome k, and
set pp = Nk, /N — /—In(a)/2N.

3. If pp>1/2, set pg =1—p, and calculate the minimum
robust fidelity rr according to (17) using p,; otherwise,
abstain from certification.

4. If 1 —e>r, it is guaranteed that A(p) = A(0).

Running these steps, along with a classification, allows us to
certify that the classification has not been affected by the noise,
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i.e., that the same classification outcome would have been
obtained on the noiseless input state.

Robustness for known noise models. Now, we analyze the robust-
ness of a quantum classifier against known noise models that are
parametrized by a noise parameter y. Specifically, we investigate
robustness against phase damping and amplitude damping. Using
Theorem 3, we calculate the fidelity between the clean input o and
the noisy input /(o) and rearrange the robustness condition (17)
such that it yields a bound on the maximal noise that the classifier
tolerates.

Phase damping describes the loss of quantum information
without losing energy. For example, it describes how electronic
states in an atom are perturbed upon interacting with distant
electrical charges. The quantum channel corresponding to this noise
model can be expressed in terms of Kraus operators that are given
by

oy ) 06 5)

where y is the noise parameter. From this description alone, we can
see that a system that is in the |0) or |1) state is always robust
against all noise parameters in this model as it acts trivially on |0)
and |1). Any such behavior should hence be reflected in the tight
robustness condition we derive from QHT. Indeed, for a pure state
|¥) = al0) + B|1), Theorem 3 leads to the robustness condition y <
1ifa=0or =0 and, for any a,#0,

2
—1
1— 0, 14+——
ve (max{ zmm })

where rg = % (14 +/g(pa, pg)) is the fidelity bound from Theorem
3 and pa, ps are the corresponding class probabilit¥ bounds. This
bound is illustrated in Fig. 4 as a function of |a|° and pa. The
expected behavior toward the boundaries can be seen in the plot,
namely that when |a|* — {0, 1}, then the classifier is robust under
all noise parameters y < 1.

Amplitude damping models effects due to the loss of energy from
a quantum system (energy dissipation). For example, it can be used
to model the dynamics of an atom that spontaneously emits a
photon. The quantum channel corresponding to this noise model
can be written in terms of Kraus operators

o) 25 9 %)

where y is the noise parameter and can be interpreted as the
probability of losing a photon. It is clear from the Kraus
decomposition that the |0) state remains unaffected. This again
needs to be reflected by a tight robustness condition. For a pure
state |¢) = a|0) + B|1), Theorem 3 leads to the robustness
condition y< 1 if |a| = 1 and, for any a,#0,

2
N I O la | max{0ss—|af'
y<l La\z—\mz (1 \/1 BT la? )]

where again rp =3 (1++/g(pa, pg)) is the fidelity bound from
Theorem 3. This bound is illustrated in Fig. 4 as a function of |a|* and
pa. It can be seen again that the bound shows the expected
behavior, namely that when |a|> — 1, then the classifier is robust
under all noise parameters y < 1.

We remark that, in contrast to the previous protocol, here we
assume access to the noiseless state 0 and we compute the
robustness condition on the noise parameter based on the
classification of this noiseless state. This can be used in a
scenario where a quantum classifier is developed and tested on
one device, but deployed on a different device with different
noise sources.

37)

(38)

39)

(40)

Published in partnership with The University of New South Wales



a Phase Damping

0.0 02 04 06 08
lal?

1.0

00 02 04 06 038

np)

M. Weber et al.
1.00
0.75
4 0.50
0.25
b Amplitude Dampin
0.00

1.0
lal?

Fig. 4 Robustness against known noise models. Both plots show the maximal noise parameter y for which the classifier A is still guaranteed
to be robust, for (a) phase damping and (b) amplitude damping, when classifying a pure state input |¢) = a|0) + |1). In a, we can see that for
states |0) and |1), the classifier is robust against any y < 1, while for (b) the same holds if the input state is |1).

Randomized inputs with depolarization smoothing

In the previous section, we looked at robustness of quantum
classifiers against certain types of noise, either with respect to a
known noise model, or with respect to unknown, potentially
adversarial, noise. Here we take a different viewpoint, and
investigate how robustness against unknown noise sources can
be enhanced by harnessing depolarization noise. This is led by the
intuition that noise can be exploited to increase robustness and
privacy. We first provide background on randomized smoothing, a
technique for provable robustness from classical machine learn-
ing. We then proceed to present provable robustness in terms of
trace distance that is equivalent to the robustness condition (10)
from Theorem 1 but with depolarized inputs. The bound is then
compared numerically with the Holder duality bound from Lemma
2 and with a result obtained recently from quantum differential
privacy'’.

Randomized smoothing. Randomized smoothing is a technique
that has recently been proposed to certify the robustness and
obtain tight provable robustness guarantees in the classical
setting®®. The key idea is to randomize inputs to classifiers by
perturbing them with additive Gaussian noise. This results in
smoother decision boundaries that in turn leads to improved
robustness to adversarial attacks. In this section, we extend this
concept to the quantum setting by interpreting quantum noise
channels as “smoothing” channels. The idea of harnessing actively
induced input noise in quantum classifiers to increase robustness
has recently been proposed in ref.'” where a robustness bound
with techniques from quantum differential privacy has been
derived. In the following, we take a similar path and consider a
depolarization noise channel and analytically derive a larger
robustness radius for pure single-qubit input states.

Quantum channel smoothing: depolarization. Consider depolar-
ization noise that maps a state o onto a linear combination of itself
and the maximally mixed state

g1 £ (0) == (1 —p)o+§1ld @1)
where pe(0,1) is the depolarization parameter and d is the
dimensionality of the underlying Hilbert space. In single-qubit
scenarios, this can geometrically be interpreted as a uniform
contraction of the Bloch sphere parametrized by p, pushing
quantum states toward the completely mixed state. Analogously
to classical randomized smoothing, we apply a depolarization
channel to inputs before passing them through the classifier in
order to artificially randomize the states and increase robustness
against adversarial attacks. We then obtain a robustness
guarantee by instantiating Theorem 1 in the following way. Let
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o be a benign input state and suppose that the classifier A with
score function y satisfies
Vi, (£7(0)) = pa>pg > maxy, (£, (0)). (42)
Then A is robust at Sgep(p) for any adversarial input state p that
satisfies the robustness condition (10), where 8 is the optimal
type-ll error probability for testing Eﬂep(o) against Egep(p). In
particular, if o and p are single-qubit pure states and in the case
where we have pa+pg=1, the robustness condition can be
equivalently expressed in terms of the trace distance as T(p, 0) <
ralp) with

1 g(p, pa) 14+3(1-p)*

3T 5 0 Pa<, oz

2 T-p 2+42(1—
rolp) = " @3)

p-(2-p)-(1-2p,)° 143-(1-p)°

s-pP (s’ PAZ 202097
where

1 p
- —p)—pn(1-2)). 44

9(p, Pn) =5 (ZPAU Pa) p(1 2)) (44)

A detailed derivation of this bound is given in Supplementary
Note 5.

The Holder bound from Lemma 2 can also be adapted to the
noisy setting. Specifically, since for two states o and p, the trace
distance obeys T(c‘,‘ge"(p), Sgep(o)) =(1—=p)-T(p, 0), Lemma 2
implies robustness given that the trace distance is less than T(p, 0) <
r4(p) where

_2ppy—1

w(p) = 3. s)

It has been shown in ref.!” that naturally occurring noise in a
quantum circuit can be harnessed to increase the robustness of
quantum classification algorithms. Specifically, using techniques
from quantum differential privacy, a robustness bound expressible
in terms of the class probabilities pn and the depolarization
parameter p has been derived. Written in our notation and for
single-qubit binary classification, the bound can be written as

ror (p) :2(1[1;9) (m_ 1)

and robustness is guaranteed for any adversarial state p with T{(p, 0)
< rpp(p). The three bounds are compared graphically in Fig. 5 for
different values of the noise parameter p, showing that the QHT
bound gives rise to a tighter robustness condition for all values of p.

It is worth remarking that although the QHT robustness bounds
can be, as shown here for the case of applying depolarization
channel, enhanced by active input randomization, it already

(46)
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Fig. 5 Robustness bounds with depolarized input states. Compar-
ison of robustness bounds for single-qubit pure states derived from
quantum hypothesis testing rq(p), Holder duality ry(p), and
quantum differential privacy rop(p)'” with different levels of
depolarization noise p.

presents a valid, non-trivial condition with noiseless (without
smoothing) quantum input (Theorems 1, 3, Corollary 1, and Lemma
2). This contrasts with the deterministic classical scenario, where the
addition of classical noise sources to the input state is necessary to
generate a probability distribution corresponding to the input data,
from which an adversarial robustness bound can be derived?®. This
distinction between the quantum and classical settings roots in the
probabilistic nature of measurements on quantum states, which of
course applies to both pure and mixed state inputs.

DISCUSSION

We have seen how a fundamental connection between adversarial
robustness of quantum classifiers and QHT can be leveraged to
provide a powerful framework for deriving optimal conditions for
robustness certification. The robustness condition is provably tight
when expressed in the SDP formulation in terms of optimal error
probabilities for binary classifications or, more generally, for
multiclass classifications where the probability of the most likely
class is greater than 1/2. The corresponding closed form
expressions arising from the SDP formulation are proved to be
tight for general states when expressed in terms of fidelity and
Bures distance, whereas in terms of trace distance, tightness holds
only for pure states. These bounds give rise to (1) a practical
robustness protocol for assessing the resilience of a quantum
classifier against adversarial and unknown noise sources; (2) a
protocol to verify whether a classification given a noisy input has
had the same outcome as a classification given the noiseless input
state, without requiring access to the latter, and (3) conditions on
noise parameters for amplitude and phase damping channels,
under which the outcome of a classification is guaranteed to
remain unaffected. Furthermore, we have shown how using a
randomized input with depolarization channel enhances the QHT
bound, consistent with previous results, in a manner akin to
randomized smoothing in robustness certification of classical
machine learning.

A key difference between the quantum and classical formalism
is that quantum states themselves have a naturally probabilistic
interpretation, even though the classical data that could be
embedded in quantum states do not need to be probabilistic. We
now know that both classical and quantum optimal robustness
bounds for classification protocols depend on bounds provided by
hypothesis testing. However, hypothesis testing involves the
comparison of probability distributions, which can only be
possible in the classical case with the addition of stochastic noise
sources if the classical data are initially non-stochastic. This means
that the optimal robustness bounds in the classical case only exist
for noisy classifiers that also require training under the additional
noise?®. This is in contrast to the quantum scenario. Our quantum
adversarial robustness bound can be proved independently of
randomized input, even though it can be enhanced by it, like
through a depolarization channel. Thus, in the quantum regime,
unlike in the classical deterministic scenario, we are not forced to
consider training under actively induced noise.
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Our optimal provable robustness bound and the connection to
QHT also provide a first step toward more rigorously identifying
the limitations of quantum classifiers in its power of distinguishing
between quantum states. Our formalism hints at an intimate
relationship between these fundamental limitations in the
accuracy of distinguishing between different classes of states
and robustness. This could shed light on the robustness and
accuracy trade-offs observed in classification protocols®® and is an
important direction of future research. It is also of independent
interest to explore possible connections between tasks that use
QHT, such as quantum illumination®® and state discrimination®®,
with accuracy and robustness in quantum classification.

METHODS
Proof of Theorem 1

The proof of this theorem is based on showing that the measurement
operators of the classifier can be viewed as an operator that is feasible for
the SDP (3). Specifically, note that in the Heisenberg picture we can write
the score function y of the classifier A as

¥i(0) = Tr[€1(M)a] = Tr[Aco]

where Ay := £T(M). Since & is a CPTP map, its dual is completely positive
and unital and thus 0< A < 1 and

D A=) &MY =E(1) = 1.
k k

Note that the operator 1 — Ay, is feasible for the SDP BLPA (o, p) since
by assumption

(47)

(48)

a(l = Ag,; 0) =1—y,,(0) <1 —py. (49)
It follows that
Vi (0) = B(L = Aeys ) > By, (0, 0). (50)

Similarly, let k # ka be arbitrary. Then, the operator A, is feasible for the
SDP B, (0, p) since
a(N; 0) =y (0) < pg (51)

and hence

T —yi(p) = B\ p) = By, (0. p) (52)
Since k# kp is arbitrary, it follows that if p satisfies

Bip, (0, P) + B, (0, p)>1 (53)
then it is guaranteed that

Vi (P) > maxy,(p) (54)
and thus A(p) = A(0). O

Proof of Theorem 2

Note that, since pg =1 — pa by assumption, the robustness condition (10)
reads

B (0, p)>1/2.

Let M, be an optimizer of the corresponding SDP such that a(Mj) =
1—pp and

BMyz; p) = Bi_p, (0, p). (56)

Consider the classifier A* with score function y* defined by the POVM
{1 — My, My, 0} where the number of 0 operators is such that y has the
desired number of classes. The score function y* is consistent with the
class probabilities (9) since

(55)

Yk, (0) = a(l = My; 0) =p, (57)

Yk, (0) = a(My; 0) =1 —pa = pg. (58)
Furthermore, if p violates (55), then we have

Vi, (P) = B(My; p) <1/2 (59)

and thus, in particular A*(p) #ka = A*(0). O
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Fidelity robustness condition

Recall that the robustness condition in Theorem 1 is expressed in terms of
the SDP from the Neyman-Pearson approach to QHT. Thus, in order to use
Theorem 1 to obtain robustness bounds in terms of a meaningful distance
between quantum states, we need to connect the optimal type-Il error
with this distance. Here, we look specifically at the fidelity between pure
quantum states and sketch the proof for Lemma 1. We refer the reader to
Supplementary Note 3 for details.

Proof. Proof of Lemma 1 (sketch). The key challenge to proving this result is
connecting the robustness condition (10), written in terms of type-Il error
probabilities, to the fidelity F which, for pure states, is given by the squared
overlap |(W|y,) |. It is well known that optimizers to the SDP (3) are given
by Helstrom operators, M, which can be expressed in terms of the
projection onto the positive and null eigenspaces of the operator p — to.
The first step is thus to solve the eigenvalue problem

(p —to)|n) = nln) (60)

which, for pure states, can be expressed in terms of the squared overlap
|(Ws1w,)|". Given these solutions, one then derives an expression for the
Helstrom operators My and Mg with type-I error probabilities 1 — p, and
pe, respectively. This leads to the robustness condition B(My; p) +
B(Mg; p)>1 being an inequality that can be rewritten as a condition on
the fidelity that takes the desired form (12). O

In a similar manner, one can derive the trace distance bound for
depolarized input states presented in the “Results” section of this paper.
The full proof for the robustness bound in Eq. (43) is given in
Supplementary Note 5.
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