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Abstract Jet physics is again flourishing as a result of Chandra’s ability to resolve
high-energy emission from the radio-emitting structures of active galaxies and
separate it from the X-ray-emitting thermal environments of the jets. These enhanced
capabilities have coincided with an increasing interest in the link between the
growth of super-massive black holes and galaxies, and an appreciation of the likely
importance of jets in feedback processes. I review the progress that has been made
using Chandra and XMM-Newton observations of jets and the medium in which
they propagate, addressing several important questions, including: Are the radio
structures in a state of minimum energy? Do powerful large-scale jets have fast
spinal speeds? What keeps jets collimated? Where and how does particle accel-
eration occur? What is jet plasma made of? What does X-ray emission tell us
about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate
determined by the central engine?
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1 The stage is set

1.1 Historical perspective

In the 1970s and 1980s, the powerful capabilities of radio interferometry gave
birth to the study of extragalactic radio jets. It became clear that radio jets are
plasma outflows originating in the centres of active galaxies, seen through their
synchrotron emission. After much debate, properties such as the relative one-
sidedness of the jets, and the measurement of apparent superluminal expansion,
by Very Long Baseline Interferometry (VLBI), were accepted as due to the out-
flows having relativistic bulk speeds. Early attempts at unifying source popula-
tions based on special relativity and apparent source properties (e.g., Scheuer
and Readhead 1979) have developed over the years into comprehensive unified
schemes (e.g., Barthel 1989) whereby quasars are explained as radio galaxies
whose jets are at small angles to the line of sight and so are boosted by relativistic
effects.

By the mid-1990s, the study of radio jets had reached something of a hiatus,
and major groups around the world turned their attention to other pursuits such as
gravitational lensing and the study of the Cosmic Microwave Background (CMB)
radiation. A turning point was the sensitivity and high-fidelity mirrors of the Chan-
dra X-ray Observatory (Weisskopf et al. 2000), which resulted in the detection of
resolved
X-ray emission from many tens of well-known extragalactic radio sources (see
Harris and Krawczynski (2006) for a source compilation as of 2006: the number
continues to increase). When combined with X-ray measurements of the ambi-
ent gas made with Chandra and XMM-Newton, and multiwavelength data, many
important questions related to the physics of jets can be addressed. Progress towards
answering those questions is the substance of this review.
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The enhanced capabilities for the X-ray study of jets have coincided with
strong interest from the wider astronomical community in the growth of super-
massive black holes (SMBHs), following the links that have been made between
SMBH and galaxy growth (e.g., Richstone et al. 1998; Gebhardt et al. 2000).
SMBHs (and indeed compact objects of stellar mass) commonly produce jets,
as an outcome of accretion processes responsible also for black-hole growth. It is
also clear that extragalactic jets are capable of transferring large amounts of energy
to baryonic matter in the host galaxies and surrounding clusters at large distances
from the SMBH. The way in which heating during the jet mode of AGN activity
might overcome the problem of fast radiative cooling in the centre of clusters is
now intensely studied in nearby objects (Sect. 7), and heating from ‘radio mode’
activity is included in simulations of hierarchical structure formation (e.g., Croton
et al. 2006). We need therefore to understand what regulates the production of jets
and how much energy they carry. X-ray measurements of nuclear emission probe
the fueling and accretion processes, and those of resolved jet emission and the
surrounding gaseous medium probe jet composition, speed, dynamical processes,
energy deposition, and feedback.

1.2 Radiation processes

The two main jet radiation processes are synchrotron radiation and inverse-Compton
scattering. Their relative importance depends on observing frequency, location
within the jet, and the speed of the jet. The thermally X-ray-emitting medium into
which the jets propagate plays a major rôle in the properties of the flow and the
appearance of the jets. The physics of the relevant radiation processes are well
described in published work (e.g., Ginzburg and Syrovatski 1964; Blumenthal
and Gould 1970; Pacholczyk 1970; Spitzer 1978; Rybicki and Lightman 1979;
Sarazin 1986; Longair 1994), and most key equations for the topics in this review,
in a form that is independent of the system of units, can be found in Worrall and
Birkinshaw (2006).

It is particularly in the X-ray band that synchrotron radiation and inverse-
Compton
emission are both important. X-ray synchrotron emission depends on the num-
ber of high-energy electrons and the strength and filling factor of the magnetic
field in the rest frame of the jet. Inverse Compton X-ray emission depends on
the number of low-energy electrons, the strength of an appropriate population of
seed photons (such as the CMB, low-energy jet synchrotron radiation, or emission
from the central engine), and the geometry of scattering in the rest frame of the
jet. In an ideal world, observations would be sufficient to determine the emission
process, and this in turn would lead to measurements of physical parameters. In
reality, X-ray imaging spectroscopy, even accompanied by good measurements of
the multiwavelength spectral energy distribution (SED), often leaves ambiguities
in the dominant emission process. Knowledge is furthered through intensive study
of individual sources or source populations.
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Fig. 1 Roughly 6.6 kpc (projected) of the inner jet of the z = 0.0165 FRI radio galaxy NGC 315.
Left 5 GHz VLA radio map showing a knotty filamentary structure in diffuse emission. Right
Smoothed Chandra X-ray image of ∼52.3 ks livetime also showing knotty structure embedded
in diffuse emission. The ridge-line defined by the radio structure is shown in white, and indicates
a level of correspondence between the radio and X-ray knots. Figure adapted from Worrall et al.
(2007a)

Fig. 2 The z = 0.458 FRII radio galaxy 3C 200. A smoothed 0.3–5 keV Chandra X-ray image of
∼14.7 ks livetime is shown with radio contours from a 4.86 GHz VLA radio map (Leahy 2000)
(beam size 0.33′′×0.33′′). Both nuclear (Belsole et al. 2006) and extended X-ray emission are
detected. A rough correspondence of some of the extended X-ray emission with the radio lobes
has resulted in the claim for inverse-Compton scattering of the CMB by electrons in the lobes
(Croston et al. 2005), but most of the extended emission over larger scales is now attributed to
cluster gas (Belsole et al. 2007)

1.3 Generic classes of jets

In discussing jets, it is useful to refer to the Fanaroff and Riley (1974) classifi-
cation that divides radio sources broadly into two morphological types, FRI and
FRII. A relatively sharp division between FRIs and FRIIs has been seen when
sources are mapped onto a plane of radio luminosity and galaxy optical luminos-
ity (Ledlow and Owen 1996)—the so-called Ledlow–Owen relation. FRIIs are of
higher radio luminosity, with the separation between the classes moving to larger
radio luminosity in galaxies that are optically more massive and luminous. The
distinct morphologies (e.g., Muxlow and Garrington 1991) are believed to be a
reflection of different flow dynamics (e.g., Leahy 1991).

FRI sources (of lower isotropic radio power, with BL Lac objects as the beamed
counterpart in unified schemes) have broadening jets feeding diffuse lobes or
plumes that can show significant gradual bending, usually thought to be due to
ram-pressure as the source moves relative to the external medium. The jet emis-
sion is of high contrast against diffuse radio structures, implying that the jet plasma
is an efficient radiator. kpc-scale jets are usually brightest at a flaring point some
distance from the active galactic nucleus, and then fade gradually in brightness
at larger distances from the core, although this pattern is often interrupted by
bright knots seen when the jet is viewed in the radio or the X-ray. Such an exam-
ple is shown in Fig. 1.1 The jets are believed to slow from highly-relativistic to
sub-relativistic flow on kpc-scales from entrainment of the external interstellar
medium (ISM), perhaps enhanced by stellar mass loss within the jet. The strong
velocity shear between the jet flow and the almost stationary external medium
must generate instabilities at the interface (Birkinshaw 1991), and drive the flow
into a turbulent state. The physics of the resulting flow is far from clear, although it
can be investigated with simplifying assumptions (e.g., Bicknell 1984, 1986; and
see Sect. 4).

FRII sources (of higher isotropic radio power, with quasars as the beamed
counterpart in unified schemes) have narrower jets that are sometimes faint with
respect to surrounding lobe plasma and that terminate at bright hotspots (Fig. 2).

1 Values for the cosmological parameters of H0 = 70 km s−1 Mpc−1, Ωm0 = 0.3, and ΩΛ0 =
0.7 are adopted throughout this review.
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The jets are often knotty when observed with high resolution, and the jets can bend
abruptly without losing significant collimation (see Sects. 3.1 and 5.3 for exam-
ples). The bending is often large in quasar jets, supporting the conjecture that
quasars are viewed at small angle to the line of sight and that bends are amplified
through projection. In contrast to FRI jets which are in contact with the exter-
nal medium, the standard model for FRII jets is that they are light, embedded in
lobe plasma, and remain supersonic with respect to the external gas out to the
hotspots. The energy and momentum fluxes in the flow are normally expected to
be sufficient to drive a bow shock into the ambient medium. The ambient gas,
heated as it crosses the shock, forces old jet material that has passed through the
hotspots into edge-brightened cocoons. FRII jets are thus low-efficiency radiators
but efficient conveyors of energy to large distances. They are often hundreds of
kpc in length (particularly when deprojected for their angles to the line of sight),
crossing many scale heights of the external medium from relatively dense gas in a
galaxy core to outer group or cluster regions where the external density and pres-
sure are orders of magnitude lower. State-of-the-art three-dimensional magneto-
hydrodynamical simulations that incorporate particle transport and shock acceler-
ation do well at reproducing the essential characteristics of synchrotron emission
from such a source, and suggest that the shock and magnetic-field structures of the
hotspots and lobes are extraordinarily complex and unsteady (Tregillis et al. 2001,
2004).

1.4 Lifetimes and duty cycles

Individual FRI and FRII radio galaxies are thought to live for at most some tens of
millions of years (e.g., Mack et al. 1998; Kaiser 2000). Age estimates are based on
measuring curvature in the radio spectra caused by radiative energy losses of the
higher-energy electrons over the lifetime of the sources (e.g., Alexander and Leahy
1987). In contrast to the relative youth of observed radio structures, present-day
clusters were already forming in the young Universe. Ideas that radio sources have
an important rôle in heating cluster gas (Sect. 7) then require a correct balance
between the duty-cycle of repeated radio activity and heating efficiency as a func-
tion of jet luminosity. The duty cycle can be probed by searching for evidence of
repeated activity from individual sources. Radio sources classified as GHz-Peaked
Spectrum (GPS) or Compact Steep Spectrum (CSS) are small and believed to be
either young or have their growth stunted by the external medium (O’Dea 1998),
and source statistics suggest that if they evolve to kpc-scale sizes they must dim
while so doing (Readhead et al. 1996). VLBI kinematic studies provide convinc-
ing evidence that sources in the Compact Symmetric Object (CSO) subset, at least,
are young, with current ages less than 104 years (Conway 2002). The fact that it is
relatively uncommon to see GPS sources with extended radio emission that may
be a relic of previous activity has been used to argue that periods between sus-
tained activity are generally at least ten times longer than the radiative lifetime of
the radio emission from the earlier activity (Stanghellini et al. 2005). This is con-
sistent with a time between episodes of activity in FRIIs of between about 5×108

and 109 years that is estimated using optical- and radio-catalog cross correlations
coupled with an average source lifetime of about 1.5×107 years from modelling
projected source lengths (Bird et al. 2008). Of course, within the lifetime of an
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individual radio source there might be shorter-term interruptions or variations of
activity (Sect. 8.1).

2 Are the radio structures in a state of minimum energy?

2.1 Calculation of the minimum-energy field

The magnetic field strength and particle spectrum are important for jet physics as
they define the internal pressure. The level of synchrotron radiation depends on
the magnetic-field strength and the number of relativistic electrons and positrons,
but these quantities are inseparable based on the observed synchrotron radiation
alone. To progress further it is usual to assume that the source is radiating such
that its combined energy in relativistic particles and magnetic field is a minimum
(Burbidge 1956). In this situation the energy in the magnetic field is ∼3/4 of the
energy in the relativistic particles, and so this is similar to the condition in which
the two are equal and the source is in ‘equipartition’. A change in any direction of
the ratio of energy density in particles to magnetic field increases the total energy
and pressure in the emitting plasma.

The minimum-energy magnetic field for a power-law spectrum of electrons
producing radiation of a measured flux density at a particular frequency can be
calculated analytically (e.g., Worrall and Birkinshaw 2006), and for more com-
plicated spectra the results can be obtained via numerical integration. Physical
insight can be gained by considering a power-law spectrum where electrons give
rise to a synchrotron luminosity, Lν , at a given frequency ν of the form

Lν ∝ ν
−α . (1)

It is now normally thought preferable to define the spectral limits via a minimum
and maximum Lorentz factor for the electrons in the source frame, γmin and γmax
(e.g., Worrall and Birkinshaw 2006), rather than as synchrotron frequencies in the
observer’s frame (e.g., Miley 1980), since the former is related to acceleration
processes and has the potential for being chosen on a physical basis. Except in
the special case of α = 0.5, the minimum-energy magnetic field strength, Bme, is
given by

Bme =

[
(α +1)C1

2C2

(1+K)
ηV

Lν ν
α

(
γ1−2α

max − γ
1−2α

min

)
(1−2α)

]1/(α+3)

, (2)

where V is the source volume, and C1 and C2 are combinations of fundamental
physical constants and functions of α given by synchrotron theory (for details see
Worrall and Birkinshaw 2006). Following the notation of Miley (1980), K is the
ratio of energy in other relativistic particles to that in the electron and positron
component, and η is the fraction of the volume filled by particles and fields (the
so-called filling factor). The true minimum energy is when the only relativistic
particles are radiating leptons, and the volume is completely and uniformly filled
with radiating particles and fields. Some authors consistently use these assump-
tions when calculating Bme. If K > 0 or η < 1 then Bme is increased. Results
for Bme are more strongly dependent on γmin than γmax, since α > 0.5 for most
observed radio spectra.
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Fig. 3 Effect on the calculated minimum-energy magnetic field if a parameter value is var-
ied from its nominal value (left-hand side of plot). Results are for a power-law electron
spectrum, extending from Lorentz factor γmin to γmax = 105, that gives rise to a synchrotron
spectrum Sν ∝ ν−α with α = 0.6 (solid lines) and α = 1.1 (dashed lines). a increas-
ing γmin from a value of 10, b increasing the ratio of energy in other particles to that in
electrons, K, from a value of zero, c decreasing the filling factor, η , from a value of 1,
d decreasing the angle to the line of sight, and thus increasing the source volume from the
projected size at θ = 90◦

Relativistic beaming of a source affects Bme (as considered later in Sect. 3.2).
Since there is inevitably uncertainty in the value of beaming parameters, Bme is
best measured in components for which bulk relativistic motion is believed to be
small or negligible. Of course, even in the absence of relativistic beaming, the
angle to the line of sight, θ , enters into the calculation via a correction from pro-
jected linear size into true source volume, V . Typical values found for Bme in radio
lobes and hotspots are 2–200 µGauss (0.2–20 nT) (e.g., Kataoka and Stawarz
2005), although a hotspot field as large as 3000 µGauss has been measured (God-
frey et al. 2008).

Figure 3 shows the dependence of Bme on γmin, K, η , and θ , separately for
electrons giving rise to synchrotron spectra with α = 0.6 and α = 1.1. The former
slope is as expected from electrons undergoing highly relativistic shock accelera-
tion
(Achterberg et al. 2001), and the latter where energy losses have steepened the
spectrum. The curves show that Bme changes rather little (within factors of at most
a few) for rather large changes in the input assumptions.

2.2 Using X-rays to test minimum energy

The minimum-energy assumption can be tested by combining measurements of
synchrotron and inverse-Compton emission from the same electron population. If
the inverse Compton process is responsible for most of the X-ray radiation that is
measured, and the properties of the photon field are known, the X-ray flux density
is proportional merely to the normalization of the electron spectrum, κ , if the usual
power-law form

N(rel)
e = κγ

−p (γmin ≤ γ ≤ γmax) (3)

is assumed, where N(rel)
e is the number of relativistic electrons per unit γ . The

upscattered photons might be the CMB, whose properties are well known. Alter-
natively they could be the radio synchrotron radiation itself, in the process known
as synchrotron self-Compton (SSC), or photons from the active nucleus, particu-
larly at infrared through ultraviolet frequencies. Since the available photons range
in frequency, so too do the energies of electrons responsible for scattering them
into the X-ray, and these are rarely the same electrons for which the magnetic field
is probed through synchrotron radiation. Nevertheless, it is usual to assume that
the magnetic field, photons, and relativistic electrons are co-located, with the syn-
chrotron
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photon density proportional to κB1+α . Here α is defined as in Eq. 1, and the-
ory gives α = (p−1)/2. The combination of synchrotron (radio) flux density and
inverse Compton (X-ray) flux density then allows a value for the magnetic field
strength, BSiC, to be inferred and compared with Bme.

Since the modelling requires that the volume and any bulk motion of the emit-
ting plasma be known, the best locations for testing minimum energy are the
radio hotspots, which are relatively bright and compact, and are thought to arise
from sub-relativistic flows at jet termination (but see Georganopoulos and Kazanas
2003), and old radio lobes where the plasma may be relatively relaxed. There is
no reason to expect dynamical structures to be at minimum energy.

It was anticipated that Chandra and XMM-Newton would make important
advances in tests of minimum energy, since already with ROSAT and ASCA there
were convincing detections of inverse Compton X-ray emission from the hotspots
and lobes of a handful of sources (e.g., Harris et al. 1994; Feigelson et al. 1995;
Tashiro et al. 1998), and pioneering work on the hotspots of Cygnus A had found
good agreement with minimum energy (Harris et al. 1994). Chandra and XMM-
Newton have allowed such tests to be made on a significant number of lobes and
hotspots, with results generally finding magnetic field strengths within a factor
of a few of their minimum energy (equipartition) values for K = 0 and η = 1
(e.g., Hardcastle et al. 2001a; Brunetti et al. 2002; Isobe et al. 2002; Comastri et
al. 2003; Bondi et al. 2004; Belsole et al. 2004; Croston et al. 2004; Migliori et
al. 2007). A study of ∼40 hotspot X-ray detections concludes that the most lumi-
nous hotspots tend to be in good agreement with minimum-energy magnetic fields,
whereas in less-luminous sources the
interpretation is complicated by an additional synchrotron component of X-ray
emission (Hardcastle et al. 2004). Considerable complexity of structure is seen
where hotspots are close enough for X-ray images to have kpc-scale or better res-
olution (e.g., Kraft et al. 2007).

For radio lobes, the largest systematic study where it is assumed that all the X-
ray emission is inverse Compton radiation is of 33 FRII lobes, and finds 0.3 <
BSiC/Bme < 1.3 (Croston et al. 2005). Since the asymmetry is on the side of
BSiC < Bme, it is important to recognize that the analysis may not have accurately
taken into account contributions to the lobe X-ray emission from cluster gas, now
commonly detected away from the lobe regions in FRII radio galaxies (Belsole et
al. 2007, and see Fig. 2). However, as seen in Fig. 4, the lobe X-ray emission from
cluster gas would have to be far brighter than that from inverse Compton scatter-
ing to cause BSiC/Bme to increase significantly (e.g., from 0.5 to 1.0), and this is
incompatible with the observation that lobes stand out in X-rays as compared with
adjacent regions.

Better agreement between BSiC and Bme would be achieved if Bme has been
overestimated. Figure 3 shows that decreasing the filling factor or including rela-
tivistic protons that energetically dominate the electrons have the opposite effect.
A decrease in Bme is found if the source has been assumed to be in the plane of the
sky whereas it is really at a small angle, with the structures having more volume.
However, the small angles required to make an appreciable difference would be
inconsistent with random sampling. More promising would be if γmin were higher
than typically assumed, as stressed by Blundell et al. (2006) who claim evidence
for a value of γmin as high as ∼104 in the hotspot of one FRII radio galaxy, with
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Fig. 4 The amount by which the fraction of the total X-ray flux density attributable to inverse
Compton radiation, X-rayiC/X-raytotal, would have to be reduced for a result of BSiC/Bme = 0.5
to be increased. Solid and dashed curves are for α = 0.6 and α = 1.1, respectively

Fig. 5 The ratio of total energy in electrons and magnetic field, computed from combined X-ray
inverse Compton and radio synchrotron measurements, to that calculated for minimum energy,
for the range of BSiC/Bme typically observed. Solid and dashed curves are for α = 0.6 and
α = 1.1, respectively

a lower value of γmin ∼ 103 in the lobes as a result of adiabatic expansion. This
is in line with earlier measurements of spectral flattening at low radio frequencies
in hotspot spectra, suggestive of values of γmin no lower than a few hundred (e.g.,
Leahy et al. 1989; Carilli et al. 1991). Why there might be such a γmin in a hotspot
is discussed by Godfrey et al. (2008).

It is important to stress that finding BSiC/Bme within a factor of a few of unity
does not allow strong constraints to be placed on physical parameters. As shown
in Fig. 3, large changes in input parameters do not change Bme, and thus BSiC/Bme,
by a large amount. It is often pointed out that if the magnetic-field strength is a
factor of a few below Bme, the energy in relativistic electrons must dominate the
magnetic-field energy by orders of magnitude. While this is relevant for under-
standing the state of the plasma, does this really matter from the point of view of
source energetics? The increase in combined electron and magnetic-field energy
over the minimum energy is relatively modest as long as the electron spectrum is
not very steep and the field strength is no less than about a third of Bme (Fig. 5).

In any case, it is clear that application of minimum energy over large regions
is an oversimplification. Three-dimensional magneto-hydrodynamical simulations
that incorporate particle transport and shock acceleration (Tregillis et al. 2001,
2004) find much substructure of particle distributions and fields within the vol-
umes typically integrated over observationally. Complexity on a coarser scale is
seen in some observations (e.g., Isobe et al. 2002; Migliori et al. 2007).

3 Do powerful large-scale jets have fast spinal speeds?

3.1 The impetus from PKS 0637-752

Chandra is central to the current debate concerning jet speed in the powerful radio
jets of quasars. The work was kick-started unexpectedly. Observing quasars was
not initially a high scientific priority for Chandra, as it was recognized that the
cores were bright, and the likelihood of multiple photons arriving between CCD
readouts was high, leading to distorted spectral measurements (so called ‘pileup’).
It was thus fortuitous that a radio-loud quasar was the chosen target for in-flight
focus calibration, since this led to the detection of resolved jet emission from the
z = 0.651 quasar PKS 0637-752 (Schwartz et al. 2000; Chartas et al. 2000, and
see Fig. 6).

Several possible origins for PKS 0637-752’s jet X-rays were considered. The
level of optical emission was too low to explain the X-rays as the synchrotron
radiation from a single population of electrons, and SSC was disfavoured as it
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would require strong dominance of the energy in relativistic electrons over that in
magnetic field, giving a total energy in particles and field that is ∼1000 times that
given by minimum energy (Schwartz et al. 2000). A more promising explanation
allowed the jet to be at minimum energy but required it to have fast bulk motion
(a Lorentz factor of Γ ∼ 20 at θ ∼ 5◦ to the line of sight), in which case it would
see boosted CMB in its rest frame and emit beamed X-rays in the observer’s frame
(Tavecchio et al. 2000b;
Celotti et al. 2001). Although such a speed and angle are consistent with VLBI
measurements on pc scales (Lovell et al. 2000), the fast speed must persist up
to hundreds of kpc from the core (after projection is taken into account) for the
X-rays to be produced by this mechanism, which I will call “beamed iC-CMB”.
This explanation ran counter to the common wisdom of the time, based on radio
data, that the bulk relativistic speed of quasar jets on the large scale is Γ ∼ 2 (e.g.,
Bridle et al. 1994; Wardle and Aaron 1997). To overcome the contradiction, it
was suggested that quasar jets have a fast-moving central spine responsible for
the observed X-rays, and a slower-moving outer region that emits the bulk of the
observed radio emission (Celotti et al. 2001). This follows the same pattern as the
transverse velocity structures, conjectured for FRI jets, that are thought to result
from the entrainment of external material (Sect. 4).

3.2 The dependence of beamed iC-CMB on beaming factors and redshift

In modelling beamed iC-CMB emission, most authors use the approximation that
CMB photons, isotropic in the observer’s frame, are scattered into directions in
the jet frame that are parallel to the instantaneous velocity vectors of the scattering
electrons (e.g., Dermer 1995; Harris and Krawczynski 2002). This has been shown
to be an excellent approximation for calculating the X-ray emissivity as long as
the jet’s bulk motion has Lorentz factor Γ ≥ 2 (Dermer et al. 1997), which is,
in any case, required for the mechanism to be effective at producing strong X-
ray fluxes. The basic physics of the formalism is particularly clearly presented in
Dermer (1995), and here those formulae are presented in a slightly different form
which is independent of the system of units.

We consider a source travelling at speed βc and bulk Lorentz factor Γ towards
the observer at an angle θ to the line of sight, so that the bulk relativistic Doppler
factor, δ , is given by

δ =
1

Γ (1−β cosθ)
. (4)

Fig. 6 The z = 0.651 quasar PKS 0637-752, using data from Schwartz et al. (2000). The plot
shows a smoothed Chandra X-ray image of ∼35 ks exposure with radio contours from an
8.64 GHz ATCA radio map (beam size 0.96′′ × 0.81′′). X-ray emission is detected from the
nucleus and from the western radio jet before it bends north. The bright jet region 7.8′′ (54 kpc)
west of the nucleus is known as Knot WK7.8
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An electron of Lorentz factor γ will scatter a CMB photon that has a charac-
teristic frequency today of νCMB to an observed frequency, ν , given by

ν = νCMBγ
2 δ 2(1+ cosθ)

(1+β )
, (5)

where the spectral redistribution function is approximated as a delta function
(equation 7 of Dermer 1995, written in the notation of this paper). A delta-function
approximation is also used for the synchrotron spectral distribution function such
that an electron of Lorentz factor γ radiates at frequency

ν = γ
2
νg, (6)

where νg is the non-relativistic electron gyrofrequency, which is proportional to
the magnetic field strength, B. Written in SI units, νg = eB/2πme ≈ 30B GHz,
where B is in units of Tesla. For a CMB that is monochromatic at a frequency of
νCMB at redshift equal to zero, then the ratio of inverse Compton to synchrotron
flux density at a fixed frequency in the observer’s frame is simply given by

SiC−CMB

Ssyn
=

3
4

δ
1+α(1+ z)3+α

(
1+ cosθ

1+β

)1+α uCMB

uB

(
νCMB

νg

)α−1

, (7)

where uCMB is the energy-density of the CMB at a redshift of zero and uB is
the energy density in the magnetic field in the rest-frame of the jet. Noting that
uB ∝ B2

int and νg ∝ Bint, where Bint is the intrinsic magnetic-field strength in the
rest-frame of the jet,

SiC−CMB

Ssyn
∝

δ 1+α

B1+α

int
(1+ z)3+α

(
1+ cosθ

1+β

)1+α

. (8)

If the modelling assumes minimum energy in relativistic particles and fields,
then Eq. 2 can be used. The luminosity density can be written in terms of the
observable synchrotron flux density using

Lν δ
(3+α) = (1+ z)α−1 Sν 4πD2

L, (9)

where DL is the luminosity distance. The volume of a radio source can be specified
in terms of its angular component sizes, θx, θy and path length through the source,
d, as

V = θxθy d D2
L/(1+ z)4. (10)

Substituting for Lν and V (Eqs. 9 and 10) in Eq. 2 then gives

Bme =

[
(α+1)C1

2C2

(1+K)
η θxθyd

4π
Sν

δ (3+α) ν
α (1+ z)3+α

(
γ1−2α

max −γ
1−2α

min

)
(1−2α)

]1/(α+3)

,

(11)
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i.e.,

Bme ∝
(1+ z)

δ
. (12)

Substituting for Bint = Bme in Eq. 8 gives

SiC−CMB

Ssyn
∝ δ

2+2α(1+ z)2
(

1+ cosθ

1+β

)1+α

. (13)

Equation 9 (and thus Eqs. 11, 12 and 13) applies to a spherical blob in which
Ssyn ∝ δ 3+α : for a continuous jet where Ssyn ∝ δ 2+α , Bme ∝ 1/δ (2+α)/(3+α), and
Eq. 13 has a slightly more complicated dependence on δ . Also, Eq. 10 adopts
the assumption that the pathlength through the jet is independent of redshift.
Alternative assumptions could be adopted, modifying the redshift dependencies
in Eqs. 11, 12 and 13.

3.3 How is the beamed iC-CMB model faring under scrutiny?

It was obvious that there were important consequences if the beamed iC-CMB
interpretation of the X-ray emission from the resolved jet of PKS 0637-752 is
correct, and holds for other quasar jets. In particular, increasing Γ from the previ-
ously accepted value of ∼2 to Γ ∼ 20 means increasing the jet power by a factor
of ∼100, or more if cold ions are an important contributor to the jet composition
(see appendix B of Schwartz et al. 2006a).

Programs targeting the resolved radio jets of core-dominated quasars with
Chandra followed the work on PKS 0637-752 (Sambruna et al. 2002, 2004; Mar-
shall et al. 2005). The detection success rate of roughly 50 per cent in relatively
short exposures made it clear that PKS 0637-752 is not an outlier. Longer Chan-
dra observations were made of some of the X-ray brightest and morphologically
most interesting sources (e.g., Marshall et al. 2001; Sambruna et al. 2001; Siemigi-
nowska et al. 2002,
2003a,b; Jorstad and Marscher 2004, 2006; Schwartz et al. 2006a,b,c; Tavecchio
et al. 2007). The combination of surveys and long pointed observations have made
it possible to look critically at the application of the beamed iC-CMB model to
these sources.

The high X-ray detection rate of quasar jets in short exposures is notable.
In most Chandra observations of FRII radio galaxies at similar redshifts to the
quasars, the jets (as opposed to the terminal hotspots) are not detected (e.g., Wor-
rall et al. 2001b;
Belsole et al. 2007). This can be understood in the framework of quasar/radio-
galaxy unification with reference to Fig. 7 (based on Eq. 8) which shows that

Fig. 7 Normalized ratio of inverse Compton to synchrotron flux density for a fixed intrinsic
magnetic field strength for different jet angles to the line of sight. The normalization is to the
value for a jet with a Lorentz factor of 15 and α = 1.1 at 0◦ to the line of sight. Solid and dashed
curves are for α = 0.6 and α = 1.1, respectively. Each set has curves for Γ = 15, Γ = 10, and
Γ = 5, in descending order at θ = 0◦. Based on Eq. 8
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Fig. 8 Mean Lorentz factor, γ , of electrons which scatter CMB photons near the black-body
peak to X-ray photons of 1 keV. Results are shown for an emission region at selected angles to
the line of sight over a range of bulk Lorentz factor, Γ . Based on Eq. 5

Fig. 9 The X-ray and radio profiles down the jet of PKS 0637-752 (see
Fig. 6). The X-ray intensity drops before the radio at large jet angles.
1′′ corresponds to a projected linear distance of 6.93 kpc

for jets that are intrinsically the same, the ratio of beamed-iC to synchrotron
radiation strongly decreases with increasing jet angle to the line of sight. The
observed quasar X-ray jet emission is normally one-sided and on the same side as
the brighter radio jet, in support of relativistic beaming. Where two-sided X-ray
emission has been seen, explanations can be found which are not in violation of
fast jet speeds (e.g., Fabian et al. 2003; Kataoka et al. 2008).

In general the jets contain multiple knots that can be fitted independently to the
beamed iC-CMB model with minimum-energy magnetic field strengths of order
10–20 G (1–2 nT) (e.g., Schwartz et al. 2006a). Note, however, that there are
insufficient observational constraints to fit the two free parameters of angle to
the line of sight and bulk Lorentz factor separately, and an assumption must be
made on one of these parameters. It has been common to assume sinθ = 1/Γ

(i.e., δ = Γ ), although this is not particularly sensible for sources where multiple
knots in the same source give different values for Γ , since it can lead to a jet that
bends more erratically than makes physical sense. In some cases the results can
be shown to agree with the estimates of speed and power from simple models for
the pc-scale emission (e.g., Jorstad and Marscher 2006; Tavecchio et al. 2007, and
see Sect. 8.4), although with rather large uncertainties.

There is, however, a major difficulty with the beamed iC-CMB interpretation
that arises from a detailed comparison between radio and X-ray emission. Figure 8
(based on Eq. 5) shows the mean Lorentz factor of electrons that scatter photons
from the peak of the CMB spectrum into the X-ray at 1 keV, for various jet bulk
Lorentz factors and angles to the line of sight. The synchrotron emission from
these electrons will be at a peak frequency of ≈ γ2νg ≈ 30γ2B GHz, where νg is
the gyrofrequency and B is magnetic field strength in Tesla. For a typical field of
2 nT, the radio synchrotron emission from these electrons is at 0.3 MHz if γ = 100,
or 20 MHz if γ = 103, both below the observable radio band. Under the beamed iC-
CMB model, which requires small angle to the line of sight, θ , to be effective, the
X-ray emission thus arises from lower-energy electrons than the radio emission.
These electrons have long synchrotron energy-loss lifetimes. However, observa-
tions sometimes show X-ray emission that weakens relative to the radio towards
the downstream regions of the jets and in some cases in individual knots, indi-
cating that the population of low-energy electrons is being depleted more rapidly
than the population of high-energy electrons, contrary to expectations based on
radiation losses. This was seen in PKS 0637-752 (Schwartz et al. 2000; Chartas
et al. 2000, and see Fig. 9), and such behaviour is also seen strikingly in sev-
eral other sources including 3C 273 (Marshall et al. 2001; Sambruna et al. 2001),
quasar 0827+243 (Jorstad and Marscher 2004), PKS 1127-145 (Siemiginowska
et al. 2002) and PKS 1136-135 (Sambruna et al. 2006). Various suggestions have
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Fig. 10 Normalized ratio of inverse Compton to synchrotron flux density for a fixed jet angle to
the line of sight with decreasing Lorentz factor, Γ . Left with fixed intrinsic magnetic field. Right
with minimum-energy magnetic field. In each panel separately the curves are normalized to the
value of SiC/Ssyn for a jet with a Lorentz factor of 15, α = 1.1, at 5◦ to the line of sight. Solid
and dashed curves are for α = 0.6 and α = 1.1, respectively. Each set has curves for θ = 5◦,
θ = 10◦, and θ = 15◦, in descending value on the y axis at Γ = 15

Fig. 11 The z = 0.72 quasar 4C19.44, using data from Schwartz et al. (2006b). The plot show an
unsmoothed Chandra X-ray image of ∼189.4 ks exposure with radio contours from a 4.86 GHz
VLA radio map (beam size 0.47′′ × 0.43′′). X-ray emission is detected from the nucleus, the
southern radio jet, the northern hotspot and southern radio lobe. The excess X-ray counts in a
line running NE-SW centred on the nucleus are a frame-readout artifact

Fig. 12 The X-ray and radio profiles down the jet of 4C 19.44 (see Fig. 11).
In contrast to PKS 0637-752 (Fig. 9), the radio intensity drops before the X-ray
at large jet angles. 1′′ corresponds to a projected linear distance of 7.23 kpc

been made to overcome the problem within the framework of the beamed iC-CMB
model, but none is uniformly regarded as satisfactory.

It has been suggested that strong clumping in the jets may resolve the prob-
lem through adiabatic energy losses (Tavecchio et al. 2003). However, it is not
clear that the beamed iC-CMB mechanism is then required, since such clump-
ing would increase the SSC yield for a slow jet at minimum energy (Schwartz
et al. 2000). Alternatively, it has been suggested that jet deceleration is important,
perhaps through entrainment of external gas (e.g., Georganopoulos and Kazanas
2004; Sambruna et al. 2006; Tavecchio et al. 2006). A problem with this as a
general solution is that, as shown in Fig. 10 (based on Eqs. 8 and 13), the ratio of
inverse Compton to synchrotron emission only falls for a decelerating jet over par-
ticular ranges of bulk Lorentz factor for jets at an angle of less than about 5◦ to the
line of sight. This means that any source for which the X-ray drops off faster than
the radio with downstream distance would need to be at particularly small angle to
the line of sight or rather slow (but see Georganopoulos and Kazanas (2004) for a
more detailed treatment that includes compression of the magnetic field and thus
relative amplification of the radio synchrotron emission downstream). Jet decel-
eration is potentially testable through looking at the X-ray and radio profiles of
source samples.

A point in favour of the beamed iC-CMB explanation is that the particularly
straight knotty jet in the quasar 4C 19.44 shows one of the most uniform X-ray to
radio ratios over almost a dozen discrete knots in its straightest section (Schwartz
et al. 2006b, and see Fig. 11). In contrast to PKS 0637-752, the radio drops more
rapidly than the X-ray at the end of the straight, well-collimated jet beyond about
15′′ from the nucleus (Fig. 12). This might suggest that drops in the level of X-ray
to radio emission along other jets are the result of the jets bending out of the line of
sight. Since quasar jets are selected for observation based partly on their core radio
emission, any bending downstream is more likely in a direction away from the line
of sight than towards it.
A large change in jet angle could easily produce the typical decreases in X-ray
to radio ratio (a factor of a few to about 10; compare with Fig. 7). However, it is
difficult to understand how a real change in angle of a Γ ∼ 20 flow by more than
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Fig. 13 Spectral distributions from the radio to X-ray. Left: The integrated emission from
Knots A, B and C of M 87, using data from Böhringer et al. (2001) and Berghöfer et al. (2000),
fits a broken power law synchrotron spectrum, although the change of 1.5 in electron spectral
slope is greater than expected from a simple model for synchrotron energy losses. Right: A bro-
ken power-law spectrum does not fit through the emission from Knot WK7.8 of PKS 0637-752
(taken from Chartas et al. 2000) although a synchrotron component with an exponential cutoff
and either a beamed iC-CMB component or a separate synchrotron component with an anoma-
lously high low-energy cutoff can be made to fit the data

about a degree could occur without severe jet decollimation.2 As apparent from
Fig. 7, more than a factor of about two decrease in X-ray to radio ratio is then not
expected from bending alone.

A test that the beamed iC-CMB explanation must pass concerns the redshift
dependency. The increase in CMB energy density with redshift means that the
X-ray to radio ratio should increase with redshift by a factor of something like
(1+ z)2 (Eq. 13: the precise dependence on redshift depends on assumptions con-
cerning minimum energy and whether or not the path length through the source is
redshift dependent). Such a redshift effect is not ruled out (Marshall et al. 2005)
although a larger sample is needed for a more definitive test.

3.4 Synchrotron emission as an alternative

The fast jet speed required for the beamed iC-CMB explanation of quasar X-ray
emission disappears if an alternative explanation can be found for the X-rays. It is
then natural to invoke synchrotron radiation, the mechanism producing the X-rays
in low-power FRI jets (Sect. 5.1). However, whereas for FRI jets the SED can nor-
mally be modelled with a broken power-law spectrum from the radio, through the
optical to the X-ray (e.g., Böhringer et al. 2001; Hardcastle et al. 2001b; Birkin-
shaw et al. 2002), PKS 0637-752 has too little optical emission to allow this, and
a separate population of electrons with an anomalously high low-energy cutoff
would be required (Schwartz et al. 2000). Figure 13 compares the spectral dis-
tribution of the FRI radio galaxy M 87, where a broken-power-law synchrotron
components fits well, with that of the FRII quasar PKS 0637-752.

Most of the several tens of current quasar X-ray jet detections were found
through targeted Chandra programs to observe bright, prominent, one-sided radio
jets. In most cases there was no pre-existing reported optical jet detection, but
there has been reasonable success from follow-up work. The level of such optical
detections often lies below an interpolation between the radio and X-ray spectra,
supporting the idea that synchrotron emission from a single power-law distribution
of electrons is not responsible for all the emission (e.g., Sambruna et al. 2004).

However, the conclusion regarding synchrotron emission is not quite as clear
cut, since a single-component electron spectrum will harden at high energies if
inverse-Compton losses are also important (since this loss process is less effi-
cient in the Klein–Nishina regime), and the consequent spectral hardening in the
synchrotron spectrum might then better match observations (Dermer and Atoyan
2002).

2 Large changes in jet angle in projection are observed in many sources, but Fig. 7 relates to
the true jet angle to the line of sight.
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Fig. 14 The spectrum from the radio to X-ray for the knot in the FRII radio galaxy 3C 346 (see
Fig. 16) fits a broken-power-law synchrotron model

As long as electrons can be accelerated to high energy (and they can be in
FRIs) they will produce synchrotron radiation at some level. Radio galaxies are at
large angle to the line of sight and any iC-CMB emission will be beamed out of the
line of sight of the observer (an extension of Fig. 7 to large angle shows that, even
for the most optimistic case, the ratio of iC-CMB to synchrotron emission drops
three orders of magnitude between θ = 0 and θ = 80◦). Indeed, synchrotron X-
ray emission from knots in the radio jets of nearby FRII radio galaxies is reported
(e.g., Wilson et al. 2001; Worrall and Birkinshaw 2005; Kraft et al. 2005; Kataoka
et al. 2008). When optical detections are also available, the energy distributions
(Kraft et al. 2005; Worrall and Birkinshaw 2005) are of similar simple form to
those in FRIs (Fig. 14), not requiring the complex electron spectral forms gen-
erally needed to explain quasar X-ray emission as synchrotron radiation. Spatial
offsets reminiscent of those seen in FRIs and which are presumably a feature of the
particle acceleration processes (Sect. 5.2) are also seen (Worrall and Birkinshaw
2005; Kataoka et al. 2008).

It remains uncertain as to whether or not in quasars it is necessary to explain
the jet X-ray emission as the synchrotron output of a distorted electron spectrum
(Dermer and Atoyan 2002) or from separate populations of electrons (e.g., Atoyan
and Dermer 2004), as an alternative to the beamed iC-CMB model. In the case of
3C 273, the run of X-ray spectral slope down the jet rules out a simple beamed iC-
CMB interpretation, but a two-zone iC-CMB model with a faster spine, although
disfavoured, cannot be ruled out (Jester et al. 2006). If a synchrotron interpretation
is sought, similar, simple electron spectra in all jet regions do not fit observations
(e.g., Röser et al. 2000; Sambruna et al. 2001; Marshall et al. 2001). A two-zone
model with faster spine has been proposed, where, unlike for beamed iC-CMB in
which the X-rays are from the spine, the X-rays would arise from the shear layer
through electron acceleration to very high energy (Jester et al. 2006).

It is important to understand the primary X-ray emission in quasar jets, and this
remains an observational problem—more work on samples and further detailed,
deep, multiwavelength observations of individual sources are needed. Predictions
for yields at higher energies also differ according to the X-ray emission mecha-
nism, and so there is a prospect that the new Fermi Gamma-ray Space Telescope
will help in finding solutions (e.g., Dermer and Atoyan 2002; Georganopoulos et
al. 2006). Optical polarimetry is potentially a strong discriminant since, unlike for
optical synchrotron emission, the optical emission should be essentially unpolar-
ized if it is a lower-energy extension of X-ray emission that is produced via the
beamed iC-CMB mechanism (e.g., Jester et al. 2007; Uchiyama et al. 2007).

4 What keeps jets collimated?

X-ray measurements of the external medium support arguments that low-power
FRI jets slow through entrainment of this gas.

For the few low-power radio galaxies with heavily studied, straight, radio jets
and counterjets (and so lying relatively close to the plane of the sky and presum-
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ably in relatively relaxed environments), kinematic models have been constructed
to fit the jet–counterjet asymmetry (Laing and Bridle 2002b; Canvin and Laing
2004; Canvin et al. 2005; Laing et al. 2006). Typically, the jets start fast (relativis-
tic) and relatively faint with a small opening angle. Then they go through a flaring
region where they steadily broaden and are typically bright both in radio and X-
ray (Fig. 1), and finally the opening angle changes and the jet becomes fainter,
particularly at X-ray energies (e.g., Worrall et al. 2007a). It is in this final region,
beyond that shown for NGC 315 in Fig. 1, that the jets are modelled as decel-
erating steadily as they collect mass from the external medium or stellar winds
(Komissarov 1994). Buoyancy forces are then important for much of the flow
further downstream, as the jets adjust to changes in the density of the external
medium, causing deflections from straight-line motion.

In ongoing work, these kinematic models are being extended into dynamical
models, based on conservation laws for mass, momentum, and energy (Bicknell
1994a), and are being tested for self consistency with the density and pressure of
the external medium. For one source so far, 3C 31, excellent self consistency has
been found (Laing and Bridle 2002a). This lends confidence to an understanding
of the basic flow behaviour of these sources.

Deceleration via mass entrainment is consistent with a range of observational
evidence at radio frequencies (Laing 1996), and naturally leads to the outer parts of
the jet (sheath) being decelerated before the inner (spine). Applied to more central
regions, the consequence that emission from a slower sheath becomes relatively
more important in jets at larger angle to the line of sight then resolves difficulties
in models that unify BL Lac objects with FRI radio galaxies (e.g., Chiaberge et al.
2000).

It has been known since the Einstein and ROSAT X-ray observatories that the
minimum pressure in low-power FRI jets (calculated without relativistic protons)
is normally below that of the external X-ray-emitting medium (e.g., Morganti et al.
1988; Killeen et al. 1988; Feretti et al. 1995; Worrall and Birkinshaw 2000). The
model for 3C 31 (Laing and Bridle 2002a) demonstrates that entrainment of the
external medium explains the jet dynamics in the deceleration region, and pres-
sure balance can be achieved by adding relativistic protons (with neutrality pre-
served by balancing proton and electron number densities) or extending the elec-
tron spectrum to lower energies (if electron-positron charge balance is enforced).
Recent work (Croston et al. 2008) has claimed a greater pressure imbalance in FRI
jets that are more in contact with external gas (less in contact with the plumes or
lobes of older jet plasma), and speculates that the pressure is balanced by heated
entrained material, with an entrainment rate or a heating efficiency that is higher
where jets are in greater direct contact with the X-ray-emitting atmosphere. This
seems in conflict with the entrainment model for the quasar PKS 1136-135 in the
context of the beamed iC-CMB model, where a standard model would have the
jets heavily embedded in old lobe plasma and yet where the estimated entrainment
rate is an order of magnitude higher than for 3C 31 (Tavecchio et al. 2006).

While the X-ray-emitting interstellar or intergalactic medium can thus be con-
trolling the flow where FRI jets are decelerating, and indeed where buoyancy
forces or an excess of gas pressure dominate (e.g., Worrall et al. 1995, 2007b),
FRI radio jets are highly overpressured in their inner regions close to the nucleus
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(e.g., Laing and Bridle 2002a). Here the X-ray emission has yet to contribute in a
significant way to the collimation debate.

The jets of FRII radio galaxies are not significantly in contact with the external
medium for most of their length, so the external medium is unlikely to control jet
collimation, although entrainment of external gas might be significant over their
long propagation paths (Tavecchio et al. 2006). Current uncertainties in the jet
X-ray emission mechanism, and thus the particle content and energy, make direct
comparison of the internal and external pressures difficult, except in the large-scale
lobes if dynamical effects are ignored.

5 Where and how does particle acceleration occur?

5.1 The link with synchrotron X-ray emission

Chandra found X-ray synchrotron emission to be common in the resolved kpc-
scale jets of FRI radio sources (Worrall et al. 2001a). The X-ray jets are readily
detected in sources covering the whole range of orientation in unified schemes.
The several tens of detected sources range from beamed jets in BL Lac objects
(Birkinshaw et al. 2002; Pesce et al. 2001; Sambruna et al. 2008) to two-sided jets
in radio galaxies (Chiaberge et al. 2003; Hardcastle et al. 2003), with most X-ray
jets corresponding to the brighter radio jet (e.g., Worrall et al. 2001a; Hardcastle
et al. 2001b; Harris et al. 2002; Marshall et al. 2002; Evans et al. 2005; Worrall
et al. 2007a). Several of the observations have been targeted at sources already
known to have optical jets, from ground-based work or HST. However, it’s proved
easier to detect X-ray jets in modest Chandra exposures than to detect optical jets
in HST snapshot surveys, because of better contrast with galaxy emission in the
X-ray band than in the optical (Worrall et al. 2001a).

Inverse Compton models for any reasonable photon field suggest an uncom-
fortably large departure from a minimum-energy magnetic field in most low-
power X-ray jets (e.g., Hardcastle et al. 2001b), although the beamed iC-CMB
model is a contender for the emission from some BL Lac objects (e.g., Sambruna
et al. 2008). Otherwise synchrotron mission from a single electron population,
usually with a broken power law, is the model of choice to fit the radio, optical,
and X-ray flux densities and the relatively steep X-ray spectra (e.g., Böhringer et
al. 2001; Hardcastle et al. 2001b). Given Eq. 6, X-ray synchrotron radiation at
1 keV requires electrons of energy ∼ 1013 eV (Lorentz factor γ ≈ 2×107) if the
magnetic field strength is of order 20 nT (200 grumG; the electron energy scales
as B−1/2). Averaging over pitch-angle distribution, the lifetime of synchrotron-
emitting electrons is given by

τ =
3mec

4σTuBγ
, (14)

where me is the electron mass, σT is the Thomson cross section, and uB is the
energy density in the magnetic field. We thus see that electrons emitting 1 keV
synchrotron radiation in a 20 nT magnetic field have an energy-loss lifetime of
about 30 years (lifetime scales as B−3/2). The electrons must therefore be acceler-
ated in situ, since their lifetimes against synchrotron losses are less than the mini-
mum transport times from the active nuclei, or even from side to side across the jet.
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Fig. 15 A rotated image of a roughly 4.5 kpc (projected) length of the 0.8–3 keV X-ray jet of
Cen A from combining six deep (∼100 ks) Chandra exposures. Image taken from Worrall et al.
(2008)

(This should not be the case if proton synchrotron radiation is important (Aharo-
nian 2002), since lifetime scales as (mp/me)5/2.) Particle acceleration is generally
discussed for the cases of a particle interacting with a distributed population of
plasma waves or magnetohydrodynamic turbulence, or shock acceleration (e.g.,
Blandford and Eichler 1987; Eilek and Hughes 1991; Hoshino et al. 1992; Amato
and Arons 2006).

For electrons, particle acceleration and energy losses are in competition (e.g.,
Heavens and Meisenheimer 1987), no more so than in hotspots of FRIIs (e.g.,
Brunetti et al. 2003), which mark the termination points of the beam. Hotspots
display considerable complexity in the X-ray, with synchrotron components seen
in the less powerful sources indicating that TeV electrons are present (e.g., Hard-
castle et al. 2004; Kraft et al. 2007). It has been suggested that the low-energy
radio spectral-slope change seen in hotspots may mark a transition between elec-
trons that are accelerated through electron–proton cyclotron resonance and those
(at higher energy) that are simply undergoing shock acceleration (e.g., Stawarz et
al. 2007; Godfrey et al. 2008). If in FRIs the far-IR spectral break consistently
maps electrons of a particular energy, it is possible that the break here is also more
related to acceleration than loss processes (Birkinshaw et al. 2006).

Whether or not particle acceleration is required along the jets of quasars depends
on the emission process at high energies. If the beamed iC-CMB model holds, then
the electrons participating in radiation at wavelengths currently mapped are gen-
erally of low enough energy to reach the end of the jet without significant energy
loss, except if a relatively high level of optical emission must be explained as syn-
chrotron radiation. The knotty nature could then be understood as variable output
in the jet (e.g., Stawarz et al. 2004). However, in nearby FRII radio-galaxy jets,
where synchrotron X-ray emission is seen (Sect. 3.4), the need for particle accel-
eration is secure, and similar underlying processes are expected in quasars even
where the synchrotron X-rays might be outshone by beamed iC-CMB emission.

Details of the regions of particle acceleration are best studied in the closest
sources. Cen A (Fig. 15) and NGC 315 (Fig. 1) are particularly good examples of
FRI jets where the X-ray jet emission is resolved across as well as along the jet,
and X-ray knots are embedded in more diffuse structure (Hardcastle et al. 2003;
Worrall et al. 2007a; Hardcastle et al. 2007; Worrall et al. 2008). The fact that
the X-ray emission is not just confined to regions within energy-loss light travel
distances of the knots shows that particle acceleration can occur also in diffuse
regions. The relatively soft X-ray spectrum seen in the diffuse emission in Cen A
has been used to argue that something other than shock acceleration (proposed
for the knots) might be taking place in the diffuse regions (Hardcastle et al. 2007),
although no specific explanation is suggested, and the competition between energy
losses and acceleration may be more important here.
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5.2 Particle acceleration in knotty structures

The model of jet deceleration through entrainment (Sect. 4) leaves unanswered
important questions about the origins of the bright knots that appear in many jets,
particularly FRIs, and that are usually interpreted as the sites of strong shocks.
Radio studies have searched for high-speed knot motions, with apparent speeds
greater than the speed of light having been noted in M 87 (Biretta et al. 1995). A
proper-motion study of the knots in Cen A over a 10-year baseline found that some
knots, and even some more diffuse emission, travel at about 0.5c, indicative of bulk
motion rather than pattern speed (Hardcastle et al. 2003). This motion, coupled
with the jet-to-counter jet asymmetry, suggests considerable intrinsic differences
in the two jets, to avoid the jets being at an implausibly small angle to the line of
sight.

Other knots in Cen A appear to be stationary, which might suggest that they
result from intruders in the flow, such as gas clouds or high-mass stars (e.g.,
Fedorenko and Courvoisier 1996; Hardcastle et al. 2003). Some of these have
emission profiles in the X-ray and radio that are unexpected from a simple toy
model where the electrons are accelerated and then advect down the jet, losing
energy from synchrotron radiation. Instead the bulk of the radio emission peaks
downstream from the X-ray within these knots, leading to suggestions that both
radio and X-ray-emitting electrons are accelerated in the standing shock of a sta-
tionary obstacle, and a wake downstream causes further acceleration of the low-
energy, radio-emitting, electrons
(Hardcastle et al. 2003). The resulting radio-X-ray offsets, averaged over several
knots, could give the radio-X-ray offsets commonly seen in more distant jets (e.g.,
Hardcastle et al. 2001b; Worrall and Birkinshaw 2005; Dulwich et al. 2007).

The knots of Cen A are not highly variable in observations to date (Hardcastle
et al. 2007), but dramatic variability on a timescale of months is seen in a knot in
the jet of M 87, and the X-ray, optical and radio light curves are broadly consistent
with shock acceleration, expansion, and energy losses, although the timeline is
currently too short for strong conclusions to be drawn (Harris et al. 2006).

It is important to study the location of jet knots within the flow, to see if that can
provide a clue as to their nature. A particularly interesting example is NGC 315
(Worrall et al. 2007a). Here the diffuse emission contains a knotty structure in the
radio and X-ray that appears to describe an oscillatory filament (Fig. 1). Although
the structure could be the result of a chance superposition of non-axisymmetric
knots, the level of coherence led to suggestions that the knots might be predom-
inantly a surface feature residing in the shear layer between the fast spine and
slower, outer, sheath plasma. If this interpretation is correct, we might expect the
X-ray spectra of the knots to be similar across the transverse width of the jet.
However, the distinct knotty emission is only about 10% of the total in X-rays and
radio along the∼2.5 kpc of projected jet length over which it is detected, and with
a source distance of ∼70 Mpc the observations did not allow the spectra of the
knot and diffuse emission to be separated.

At 3.7 Mpc, Centaurus A is a much closer example of an FRI radio galaxy
whose knots and diffuse emission are seen over a similar projected linear distance
to that of NGC 315. An X-ray spectral study of Cen A’s knots found a spectral
steepening with increasing lateral distance from the jet axis, disfavouring these
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knots all residing in a shear layer (Worrall et al. 2008). A flatter X-ray spectrum
is seen more central to the flow, and an alternative explanation to acceleration
in stationary shocks is that the knots here might be formed by stronger turbulent
cascades with more efficient particle acceleration. Knot migration under the influ-
ence of the shear flow might then be expected, and proper-motion studies might
then distinguish between this interpretation and stationary shocks from stellar or
gaseous intruders entering the flow (Worrall et al. 2008).

5.3 Incorporating polarization data

There are no current X-ray missions with polarization capabilities. However, the
radio and optical bands probe electron populations responsible for the X-ray emis-
sion, albeit at different electron energies. If the emission is synchrotron, polariza-
tion data provide our best handle on the direction and relative degree of alignment
of the magnetic field. Radio observations show that the fields are relatively well
ordered, although there is much complexity. Broadly, the magnetic fields in FRII
jets tend to be parallel to the jet axis, whereas in FRI jets they are either pre-
dominantly perpendicular, or perpendicular at the jet centre and parallel near the
edges, with the mixed configurations pointing to perpendicular fields associated
with shocks and parallel fields from shear or oblique shocks (Bridle and Perley
1984).

Optical polarization measurements of resolved jet structures have been made
with HST. So far these have mostly concentrated on nearby FRI radio galaxies,
where the optical features are brighter and the emission mechanism is synchrotron
radiation (for an atlas of polarization images see Perlman et al. 2006). Work is
under way to explore optical polarization in the jets of FRII radio galaxies and
quasars. As mentioned in Sect. 3.4, the optical emission should be essentially
unpolarized if it is an extension of a beamed iC-CMB X-ray component, in con-
trast to being of synchrotron origin.

The first jet to be studied in detail in both its radio and optical polarized emis-
sion was M 87, where there is evidence for strong shock acceleration in com-
pressed transverse magnetic fields at the base of bright emitting regions, although
the polarization fraction becomes low at the flux maxima (Perlman et al. 1999).
Significant differences between the polarization structures seen in the optical and
radio suggest that the sites of acceleration are different for different electron ener-
gies, with the strongest shocks, that provide acceleration to the highest energies,
appearing in the most central parts of the jet (Perlman et al. 1999). Detailed work
on 3C 15 shows a jet that narrows from the radio to the optical to the X-ray, show-
ing that acceleration to the highest energies occurs more centrally to the flow, and
a mixture of strong shocks and stratified flows can account for the broad features
seen in the optical and radio polarization (Dulwich et al. 2007).

A third source for which optical and radio polarization data have been impor-
tant is 3C 346 (Fig. 16). Here X-ray emission is associated with a bright radio and
optical knot where the jet bends by 70◦ in projection (the X-ray emission peaks
somewhat upstream of the radio, as seen in other sources), leading to a suggestion
that the bending and X-ray brightening are the result of a strong oblique shock
located in the wake of a companion galaxy (Worrall and Birkinshaw 2005). Polar-
ization data has supported the model by revealing a compressed and amplified
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Fig. 16 3C 346. Upper Schematic showing an oblique shock formed in the wake of the passage
of a companion galaxy to 3C 346, and how it affects the radio jet, from Worrall and Birkinshaw
(2005). Circles are the galaxies and red marks the path of the radio jet. Lower Radio intensity
contours and polarization vectors (rotated through 90◦ roughly to represent the magnetic-field
direction) on a smoothed Chandra X-ray image, indicating compressed field lines aligned with
the proposed shock, from Dulwich et al. (2008)

magnetic field in a direction consistent with that of the proposed shock, in both
the radio and optical (Dulwich et al. 2008, and see Fig. 16).

6 What is jet plasma made of?

Jets are presumed to obtain much of their energy from the infall of matter into a
supermassive black hole. It is then natural to suppose that electromagnetic radia-
tion would carry much of the energy from the system on the smallest scales, since
a plausible mechanism for the extraction of energy is the twisting of magnetic field
linked to the accretion disk (e.g., Lovelace et al. 2002). Fast interactions with the
plasma environment and efficient particle acceleration should load the field with
matter. In the resulting magnetohydrodynamic flow much of the momentum would
be carried by particles, although Poynting flux may carry a significant fraction of
the total energy (Rees 1971; Appl and Camenzind 1993).

Polarized radiation is the signpost to significant energy in relativistic particles
and magnetic fields. Jet plasma must be neutral, on average, to remain collimated,
but this can be achieved by various combinations of relativistic and cold electrons,
positrons, and protons. Alternatively, it has been suggested that some of the energy
is transported in a decaying neutral beam of ultra-high-energy neutrons and γ-rays
(Atoyan and Dermer 2004).

Several quantities are available to help sort out the jet composition.

1. The synchrotron emission. Since the electron rest mass is only 1/1836 that of a
proton, and since synchrotron energy loss rates are proportional to the inverse
square of mass, the observation of synchrotron radiation is usually used to
infer the presence of relativistic electrons (and perhaps positrons), although an
alternative model produces the synchrotron radiation from protons accelerated
to energies greater than ∼1018 eV (Aharonian 2002).

2. The jet power. All the particles, relativistic and thermal, combine with the
magnetic field strength and bulk Lorentz factor to produce this quantity (see
appendix B of Schwartz et al. 2006a). It should be no smaller than the radia-
tive power of the old lobe material (the energy sink), averaged over the life-
time of the source. In cases where jets have excavated cavities in the external
gas, the enthalpy can be estimated as that required to displace the gas (e.g.,
Bı̂rzan et al. 2004; Dunn et al. 2005; Allen et al. 2006).

3. Faraday rotation. The contribution from thermal particles must not be so high
as to exceed constraints placed by Faraday rotation, or by Faraday depolar-
ization for extended regions.

4. The jet pressure. Relativistic particles and magnetic field are thought to dom-
inate this quantity, which is 1/3 of their energy density, and which can be
compared to the external gas pressure. If X-ray inverse Compton emission
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is observed the internal energy density can be estimated using the radio syn-
chrotron and X-ray flux densities (Sect. 2.2). Otherwise it is usual to assume
minimum energy (Sect. 2.1). A difficulty is that relativistic electron-proton
and electron-positron jets give similar pressures with different assumptions
about the least energetic particles, for which observational constraints are
poor at best. The contribution of thermal particles to the pressure is usually
taken to be small.

Radiation drag and observational constraints on Comptonized radiation by cold
electrons and positrons seriously hamper electron–positron jets formed close to
the central black hole (Sikora et al. 1996; Sikora and Madejski 1996). In the
cores of some quasars the radiated power is too large to be met by that con-
tained in a jet of magnetic field and relativistic leptons close to minimum energy,
and observational
constraints on Comptonized radiation limit the density of cold leptons, so that a
significant proton component is required if the energy carrier is indeed particles
(Tavecchio et al. 2000a). Thus, an electron–proton plasma is usually favoured
when jets are
discussed.

The presence of relativistic protons is supported for some FRI radio galaxies:
the lobes, if assumed to be lepton-dominated and radiating at minimum energy
(Sect. 2.2) would collapse under the pressure of the X-ray-emitting medium unless
there is an additional pressure source and, although there are several ways of
boosting the internal pressure in such a situation, magnetic dominance would
make the sources unusual, electron dominance is unlikely from constraints on
inverse-Compton scattering of the CMB, and non-relativistic protons are disfavoured
on grounds of Faraday rotation, leaving a relativistic proton component most
likely (e.g., Croston et al. 2003). However, decreased filling factors cannot be
ruled out (e.g., Dunn et al. 2005), except perhaps where the radio structure has
excavated a clear cavity in the X-ray-emitting atmosphere
(e.g., Bı̂rzan et al. 2008). If indeed the extra pressure is from relativistic protons, it
is uncertain as to how much arises from entrained material accelerated in the shear
layer of the decelerating jet as compared to particles transported from the core
(Sect. 4).

FRII jets transport more energy to larger distances, and thus have more need
than FRI jets for a non-radiating energy carrier with high momentum transport.
Relativistic hydrodynamic simulations find that the key parameter in preventing
jets from strongly decelerating in an external boundary layer is density contrast
with the external medium, in the sense that denser jets can propagate further (Rossi
et al. 2008). A more dominant relativistic proton content could provide this. Pro-
tons are also required if the low-frequency spectral turn-over in hotspots is the
result of cyclotron resonant absorption (e.g., Godfrey et al. 2008). On the other
hand, pressure balance has been used to argue against relativistic protons in some
FRII lobes. It is argued that the presence of relativistic protons is improbable since
(a) the lobe magnetic field based on synchrotron and inverse Compton emission
agrees with that from minimum energy calculated using relativistic leptons alone,
and (b) that, even in the absence of such protons, the source is in pressure balance
with the external medium (e.g., Belsole et al. 2004; Croston et al. 2004). However,
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these calculations ignore possible dynamical effects in FRII lobes, and there are
considerable additional sources of uncertainty (Sect. 2.2 and item 4 above).

In the context of the beamed iC-CMB model for quasar jets (Sect. 3.2), it is
possible to extend an argument limiting the density of cold electron–positron pairs
(Sikora and Madejski 1996) to kpc-scale regions (Georganopoulos et al. 2005). In
the case of PKS 0637-752, upper limits on Comptonized CMB radiation from
Spitzer are sufficiently low to place stringent limits on the mass flux carried by
cold lepton pairs, with the implication that this jet is indeed made electrically
neutral through a strong presence of protons (Uchiyama et al. 2007). However,
this argument relies on the beamed iC-CMB model being correct, with a large
kinematic power being sustained throughout the jet (Sect. 3.3).

Jet composition remains uncertain, and various degeneracies between physical
quantities and observable parameters render it difficult to make watertight argu-
ments. However, X-ray measurements continue to provide important clues to the
puzzle.

7 What does X-ray emission tell us about the dynamics and energetics of
radio plasma/gas interactions?

7.1 Expectations for FRIIs

The energy and momentum fluxes in FRII jets are expected to be sufficient to drive
a bow shock at supersonic speed into the ambient medium (e.g., Leahy 1991).
Ambient gas crossing the bow shock will be heated. For a shock advance speed
relative to the speed of light of vadv/c, the Mach number, M , in monatomic gas
of normal cosmic abundances with thermal energy kT in units of keV, is given by

M ∼ 580(vadv/c)(kT )1/2. (15)

For a non-relativistic equation of state (γ = 5/3), the jump conditions for a non-
radiating shock (e.g., Spitzer 1978) find that pressure, density, and temperature
ratios between gas that has crossed the shock and the ambient medium are

P2/P1 = (5M 2−1)/4 (16)

ρ2/ρ1 = 4M 2/(M 2 +3) (17)

T2/T1 = (5M 2−1)(M 2 +3)/16M 2 (18)

where subscripts 2 and 1 refer to post-shock and pre-shock conditions, respec-
tively. For high advance speed and large Mach number the density contrast reaches
a factor of four, resulting in enhanced X-ray emissivity from shocked gas. The
visibility in observations will depend on the relative volumes of shocked and
unshocked gas along given lines of sight.

Complications apply in reality. Firstly, there is observational evidence that in
supernova remnants the post-shock electrons are cooler than the ions (e.g., Hwang
et al. 2002; Rakowski et al. 2003). Secondly, a bow shock around a lobe is oblique
away from its head, with a consequent change in the jump conditions and the emis-
sivity contrast (Williams 1991). The closer a structure is to a spherical expansion,
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the more normal the shock will be everywhere and the better the applicability of
the above equations.

ROSAT data revealed the presence of X-ray cavities coincident with the inner
parts of the radio lobes of Cygnus A, and these were interpreted as due to the
contrast between undisturbed ambient gas and gas around the lobes that had been
heated in the past but has now expanded and cooled to a low emissivity (Carilli et
al. 1994), although the parameters of the shock are not effectively constrained by
the data. More recent Chandra observations of Cygnus A find gas at the sides of
the lobes to have kT ∼ 6 keV, slightly hotter than the value of 5 keV from ambient
medium at the same cluster radius, but the gas may have cooled after bow-shock
heating, and again the data do not usefully constrain model parameters (Smith
et al. 2002). Evidence of strong shock heating around more distant FRII radio
galaxies has yet to be seen.

CSS and GPS sources have been examined for evidence of shock heating.
These are good places to look as the radio sources are generally considered to be
in an early stage of expansion and they are overpressured with respect to even a
cluster ambient medium (e.g., Siemiginowska et al. 2005). The disadvantage is
that source sizes are small so that even Chandra will have difficulty in separating
emission from the nuclei, radio structures, and ambient medium from that of any
shocked gas. The best evidence for detection of shocked gas thus arises from deep
XMM-Newton spectroscopy, and in particular that of the CSS source 3C 303.1
(O’Dea et al. 2006). The X-ray spectrum contains soft emission (associated with
the ambient galaxy atmosphere) and a hard component. Since nuclear emission
is undetected in the radio, it is reasonable to associate the hard emission with
shocked gas, and a model can be constructed (O’Dea et al. 2006) that has an
expansion velocity consistent with cooling-time arguments for optical emission-
line gas (de Vries et al. 1999).

7.2 Dynamics of FRIs in clusters

Low-power sources are closer and more amenable to detailed study, since the
various components of X-ray emission are more easily separated. The medium
plays an important rôle in the deceleration of the jets, which share momentum and
energy with entrained material (Sect. 4).

The Einstein and ROSAT missions found evidence that the radio lobes of
NGC 1275 have pushed Perseus-cluster gas aside (e.g., Böhringer et al. 1993),
and now many clusters and groups are found to harbour gas cavities containing
radio plasma that originates from active galaxies (e.g., Bı̂rzan et al. 2004). Rather
than expansion at high Mach number, the displacement of the gas appears nor-
mally to create low-density, rising bubbles in rough pressure balance with the sur-
rounding medium (e.g., Churazov et al. 2001). NGC 1275, M 87, and Hydra A are
showcase examples with deep Chandra exposures and complex bubble and cavity
systems (Fabian et al. 2006; Forman et al. 2007; Wise et al. 2007). Radio bubbles
in clusters are sufficiently common that they are an important heat source today,
with enough power to balance the radiative cooling of dense gas in clusters (e.g.,
Dunn et al. 2005; Rafferty et al. 2006), although the total energies and lifetimes
of individual bubbles are considerably uncertain. An issue of particular interest
that follows from this is the potential for the associated heating and cooling to
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Fig. 17 Radio contours on a deep Chandra image of Cen A, showing the core and NE jet
crossed by absorption stripes corresponding to NGC 5128’s dust lanes, the SW lobe, structures
associated with the NE lobe, the position of a merger-related gas discontinuity that shows up
better at lower energies, and many XRBs in NGC 5128 (Hardcastle et al. 2007; Jordán et al.
2008; Worrall et al. 2008; Kraft et al. 2008; Sivakoff et al. 2008)

forge the link between black-hole and galaxy growth. A recent review is available
(McNamara and Nulsen 2007), and so the topic is not dealt in depth here.

It is noteworthy that the luminosity function of radio sources places the ener-
getically dominant population to be roughly at the FRI/FRII boundary (e.g., Led-
low and Owen 1996), rather than within the more numerous but lower power pop-
ulation of FRIs studied in nearby clusters (although there are claims that total jet
power scales slightly less than linearly with radio power (e.g., Willott et al. 1999;
Bı̂rzan et al. 2008)). It thus remains possible that the rather gentle heating around
currently studied sources does not provide us with the complete picture, and vio-
lent shock heating around more powerful sources is energetically important but
currently eluding detection.

7.3 Centaurus A

The best example of supersonic expansion is not in an FRII radio source but asso-
ciated with the inner southwest radio lobe of Cen A (Kraft et al. 2003, and see
Fig. 17 for a more recent, deeper, Chandra image). Cen A is our nearest radio
galaxy, where 1 arcmin corresponds to ∼1.1 kpc. The full extent of Cen A’s radio
emission covers several degrees on the sky (Junkes et al. 1993). Within this lies a
sub-galaxy-sized double-lobed inner structure (Burns et al. 1983) with a predom-
inantly one-sided jet to the NE and weak counter-jet knots to the SW (Hardcastle
et al. 2003) that are embedded in a radio lobe with pressure at least ten times larger
than that of the ambient ISM (Kraft et al. 2003). The lobe should be expanding and
be surrounded by a shock. The associated structure is exquisitely seen in Fig. 17.
Although the capped SW lobe is around the weak counterjet, so it is not evident
that the lobe is being thrust forward supersonically with respect to the external
interstellar medium (ISM) by the momentum flux of an active jet, the high inter-
nal pressure in the radio lobe ensures its strong expansion.

The density contrast between post-shock and pre-shock gas in Cen A inferred
by Kraft et al. (2003) was larger than four, which is not allowed by Eq. 17, and
so straightforward modelling was not possible. New modelling is underway using
results from the new deep observation. However, the conclusion that the lobe’s
kinetic energy exceeds its thermal energy, and the thermal energy of the ISM
within 15 kpc of the centre of the galaxy, is unlikely to change. As the shell dissi-
pates, most of the kinetic energy should ultimately be converted into heat and this
will have a major effect on Cen A’s ISM, providing distributed heating.

Fig. 18 Chandra contours (logarithmic spacing) on a color radio image of 3C 442A, taken from
Worrall et al. (2007b). Bright X-ray emission from the merger atmospheres of NGC 7236 and
NGC 7237 fills the gap between the radio lobes which are no longer fuelled by an active jet
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There is much still to be learned about how gas is displaced by radio structures,
and the processes of heat transfer. A new view will be possible with the high-
resolution spectroscopic capabilities of the International X-ray Observatory cur-
rently under study by ESA and NASA. This will provide the vital ingredient of
useful velocity data, giving a handle also on such issues as turbulence and non-
perpendicular velocities at shocks.

7.4 The effect of galaxy mergers

It is important to understand what triggers radio activity and what causes it to
cease, particularly since radio sources are now recognized as an important heat
source for large-scale structure (Sect. 7.2). It has long been recognized that merg-
ers may be important in triggering radio activity, and this is consistent with the
preference for low-power radio galaxies to reside in clusters and rich groups. For
example, NGC 1275 and M 87 (Sect. 7.2) are the dominant galaxies of the Perseus
and Virgo clusters, respectively. Cen A (Sect. 7.3) is hosted by NGC 5128 which
in turn hosts an inner warped disk suspected to be the merger remnant of a small
gas-rich spiral galaxy (e.g., Quillen et al. 2006).

Mergers leave an imprint on the temperature, density, and metallicity struc-
tures of the gas. Due to good linear resolution it is again Cen A that shows such
effects particularly well, with clear indications that even the hot X-ray-emitting
gas is poorly mixed. The merger appears to be having an important influence on
the evolution of the northeast radio jet and inner lobe (Kraft et al. 2008).

In the more extreme case of 3C 442A (Fig. 18) there is evidence that a merger
may have smothered a previously active jet, leaving a large volume of decaying
radio plasma, while at the same time re-starting jet activity in the nucleus of one
of the galaxies (Worrall et al. 2007b). Here the merger gas has sufficiently high
pressure for the radio lobes to be riding on the pressure front of the merger gas that
is sweeping them apart. The energy in the merger gas will eventually be dissipated
in the outer regions of the group atmosphere—an additional source of heating to
that arising from both the old and new merger-induced radio activity. The radio
spectrum from the old decaying radio lobes is flatter where they are being com-
pressed by the expanding merger gas, suggesting that energy from the gas has a
second effect, in re-exciting relativistic electrons through compression and adi-
abatic heating (Worrall et al. 2007b). While it is undoubtedly true that mergers
produce messy substructures, the example of 3C 442A suggests that there is some
prospect that the switching on and off of radio activity by mergers can be timed
(albeit roughly) using the morphology of the stellar component of the galaxies
and spectral changes in the radio plasma, and that this can be combined with the
measured energy content of the gas and radio plasma to trace the history of radio
outbursts and their effectiveness in heating gas.



28 D. M. Worrall

8 Is a jet’s fate determined by the central engine?

8.1 An evolutionary cycle?

The Ledlow–Owen relation (Sect. 1.3) showed that a galaxy of a given optical
luminosity can host either an FRI or FRII radio source. This resulted in renewed
speculation in the 1990s that there may be an evolution between FRII and FRI
activity controlled by external influences. Such speculation was supported by evi-
dence of FRIIs associated with galaxy mergers (distorted isophotes and higher
amounts of high-excitation ionized gas) and FRIs associated with galaxies in more
relaxed dynamical states (Bicknell 1994b). Evolutionary ideas have also arisen
from the so called ‘fundamental plane’ that places AGN on an extension of the
relationship between inner jet radio power, X-ray luminosity and black-hole mass
found for X-ray binaries (XRBs) (Merloni et al. 2003; Falcke et al. 2004). It has
been suggested that the changes in X-ray spectrum and jet luminosity that accom-
pany changes in accretion characteristics in an XRB could apply to AGN, such
that an individual object may go though transitions between an FRI and FRII, and
indeed to becoming radio quiet (e.g., Körding et al. 2006).

Observationally, kpc-scale jets accompany AGN with accretion flows that in
the extreme are either geometrically-thick and radiatively inefficient or geometrically-
thin and radiatively efficient, with the latter accompanied by high-excitation opti-
cal emission lines. It is possible that an AGN changes over the lifetime of a radio
source, such that the observed kpc-scale radio structures are the result of ejec-
tion from an AGN evolving through different states. Some sort of intermittency
of the central engine over timescales of ∼104–106 years (shorter than the life-
time of radio sources, Sect. 1.4) gains support from observational and theoretical
considerations (e.g., Reynolds and Begelman 1997; Schoenmakers et al. 2000;
Janiuk et al. 2004; Stawarz et al. 2004). Multiple changes to the central structure
over the lifetime of the radio source would be required to reconcile the claim that
a geometrically thick flow is needed to sustain a significant jet (with the most
powerful requiring a spinning black hole) (Meier 2001) with the observation that
many AGN with powerful jets currently show geometrically thin disks and high-
excitation emission lines (see below).

Closer examination is needed of the extent to which the observed powers and
structures of jets relate either to the accretion processes or to large-scale environ-
mental effects. Both appear to play a rôle.

8.2 The rôle played by accretion processes

Broadly, powerful jets of FRII structure are associated with AGN showing high-
excitation optical emission lines, while lower-power jets, normally but not always
of FRI structure, are associated with AGN showing low-excitation lines. This sug-
gests that the central engine has at least some influence on the power and large-
scale structure of the jets (e.g., Baum et al. 1995).

A correlation between the core radio emission and low-energy (∼1–2 keV)
nuclear X-ray output of radio galaxies has been known since the Einstein and
ROSAT missions, and has been used to argue that the soft X-rays arise from pc-
scale jets
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(Fabbiano et al. 1984; Worrall and Birkinshaw 1994; Canosa et al. 1999; Hardcas-
tle and Worrall 1999). An optical core is often seen with HST, and is interpreted as
synchrotron emission from a similar small-scale emitting region (Chiaberge et al.
1999; Hardcastle and Worrall 2000; Capetti et al. 2002; Chiaberge et al. 2002; Ver-
does Kleijn et al. 2002). Such pc-scales jets protrude from any gas and dust torus
invoked by AGN unified models, and so this component should not be greatly
affected by absorption, although relativistic effects will cause jet orientation to
affect the level of X-ray flux observed.

Since jet emission dominates at low X-ray energies, it has been important to
obtain sensitive spectral measurements that extend to the higher X-ray energies
accessible to Chandra and XMM-Newton in order to probe the region closer to the
SMBH and representative of the bolometric power of the central engine. At these
energies any strong emission from the AGN should dominate jet emission even if it
is largely absorbed at lower energies by a gas torus. Results find a number of radio
galaxies showing clear evidence of a hard continuum, sometimes accompanied by
Fe-line emission, and presumed to be emission associated with an accretion-disk
corona (e.g., Ueno et al. 1994; Young et al. 2002; Gliozzi et al. 2003). Both the jet
and central-engine X-ray components can sometimes be distinguished in the same
spectrum (e.g., Croston et al. 2004; Evans et al. 2004; Zezas et al. 2005).

The hard component is more often detected in FRIIs than in FRIs. Of course,
greater absorption from a torus could potentially combine with lower X-ray lumi-
nosity in causing the non-detection of the second component in most FRIs, and
so particular reliability can be placed on the results of a study of nearby (z < 0.1)
radio galaxies that has allowed for absorption in placing upper limits on the lumi-
nosity of undetected nuclear components (Evans et al. 2006). The radiative effi-
ciency of the central engine was then found by correcting the X-ray luminosity to a
bolometric luminosity and combining it with the inferred SMBH mass. In power-
ful FRIIs, radiatively efficient accretion associated with a thin disk surrounded by
an obscuring torus is normally inferred. FRII radio galaxies at z ∼ 0.5 also show
an absorbed X-ray component (Belsole et al. 2006). In contrast, in z < 0.1 FRIs,
all the nuclear X-ray emission can normally be interpreted as jet related, and usu-
ally only upper limits are found for accretion-related emission (Evans et al. 2006).
Any X-ray luminosity associated with a non-jet central-engine component in low-
power sources is normally sufficiently low to support earlier speculations based on
the Ledlow–Owen relation that the physical difference between the two types of
radio source arises from the different nature of their accretion disks and efficiency
of accretion (Ghisellini and Celotti 2001). Further support for these ideas comes
from Spitzer results for the z < 0.1 sample (Birkinshaw et al. 2006) that show an
additional component of hot dust only in FRIIs.

While results at first-look appear quite convincing of a connection between
large-scale radio power and the structure of the central engine, there are sources
which defy the trend. Both Cen A and NGC 4261 have large-scale FRI struc-
tures, and yet contain absorbed, hard, luminous X-ray components characteristic
of the coronae of thin accretion disks seen through an obscuring torus (Evans et
al. 2004; Zezas et al. 2005). This might suggest that something relatively recent
(perhaps the galaxy merger in the case of Cen A (Evans et al. 2006) has pro-
vided additional material for accretion and affected the central engine in a way
that has yet to be reflected in the power and structure of the large-scale radio
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emission. The difficulty is that merger and source-development time scales are
expected to be comparable. A further complication is the tendency for any X-
ray accretion-related components in FRII low-excitation radio galaxies to be less
luminous than those seen in a typical FRII high-excitation radio galaxy (Hardcas-
tle et al. 2006), as was known for the optical continuum (Chiaberge et al. 2002;
Varano et al. 2004). This means that not all FRIIs have equivalent central engines.
However, it is is hard to treat as a coincidence the tendency for the most pow-
erful FRIIs with the least evidence for external disruption to arise from AGN
showing high-excitation optical emission lines and evidence for thin accretion
disks.

In the normally inferred absence of thin radiatively efficient accretion disks in
FRIs, it has been argued in several cases that sufficient X-ray-emitting hot gas is
present in their galaxies and clusters to produce the required jet power through
a geometrically-thick Bondi accretion flow (e.g., Di Matteo et al. 2003; Allen et
al. 2006). Here the jet power is inferred from the energy required to excavate the
cavities observed in the X-ray-emitting gas, i.e., a more direct method than scaling
from radio power (e.g., Willott et al. 1999) as is normal in the absence of other
information. Recent work confirms that the most luminous FRIIs also tend to lie in
luminous X-ray clusters (Belsole et al. 2007), and it is reasonable to assume that
they experience similar or greater supplies of galaxy and cluster hot gas. How-
ever jet powers are also higher (how much so rests on uncertainties in speed and
composition), consistent with requiring an extra energy source in the form of stars
and gas clouds fuelling a thin accretion disk. A major outstanding problem is a
full understanding of the mechanisms which convert gas infall into two different
accretion structures. Jets are expected to be more strongly coupled to the structure
of the host stellar system, and hence to play a more major rôle in feedback, if the
accreting gas originates predominantly from the reservoir contained in the poten-
tial well of the system as a whole, whether it be hot (e.g., Allen et al. 2006) or cold
(e.g., Rawlings and Jarvis 2004) in origin.

8.3 The rôle of the environment

Assuming that jets are genuinely symmetric at production, the environment appears
to be, at a minimum, a strong secondary factor (with jet power being the likely
primary influence) in shaping large-scale jet structure. For example, some radio
sources show what appears to be FRI morphology on one side and FRII on the
other, and this has been used to argue for different environmental effects on the
two sides (Gopal-Krishna and Wiita 2000).

VLBI proper-motion studies find few, if any, differences in the speed or mor-
phology of FRI and FRII radio jets in their initial stages of development from
the central engine (Pearson 1996; Giovannini 2004). However, the radiative pow-
ers are higher in FRIIs, but not in linear proportion to their total radio powers
(Giovannini et al. 1988, 2001), suggesting that on the small scale a radio source
has knowledge of how it will evolve. Particularly compelling evidence that the
environment does have some influence is the recent discovery that quasars, tra-
ditionally the hosts only of FRII structures, can host FRI radio structures, with
evidence that denser, more clumpy, environments at higher redshift are allowing
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this to occur (Heywood et al. 2007). The rôle of the X-ray-emitting environment
in decelerating FRI jets was discussed in Sect. 4.

8.4 Information from beamed sources

The beamed counterparts of radio galaxies (quasars and BL Lac objects) do not
allow the accretion structures to be probed in the X-ray, since the beamed jet emis-
sion swamps all other nuclear components; indeed it is sometimes dominant up to
the TeV band. Multi-wavelength spectral energy distributions and variability time
scales are used to probe the beaming parameters and the physical properties of the
emitting regions (e.g., Ghisellini et al. 1998; Krawczynski et al. 2001; Tagliaferri
et al. 2003). Correlated flares are sometimes measured across wavebands, giving
support to the presence of a dominant spatial region of emission (e.g., Urry et al.
1997; Takahashi et al. 2000), but otherwise uncertainties of size scales, geome-
tries, and parameters for the competing processes of energy loss and acceleration
often force the adoption of oversimplified or poorly-constrained models for indi-
vidual jets. Much is published on the topic, and a review is beyond the scope of this
work. Substantial progress in understanding is anticipated from multiwavelength
programmes associated with the Fermi Gamma-ray Space Telescope.

VLBI radio-polarization studies have found systematic differences between
powerful quasars (beamed FRIIs) and BL Lac objects (beamed FRIs) in core
polarizations, the orientations of the magnetic fields in the inner jets, and in jet
length, although it is difficult to separate intrinsic differences from the possible
influence of the parsec-scale environment, such as the density and magnetic field
contained in line-emitting gas (Cawthorne et al. 1993).

9 Summary and concluding remarks

The last decade has seen massive progress in our understanding of the X-ray prop-
erties of extragalactic radio jets and their environments. Chandra’s sub-arcsec spa-
tial resolution has been of paramount importance in measuring resolved X-ray
emission from kpc-scale jet structures, and in extending studies of X-ray nuclei to
sources other than beamed quasars and BL Lac objects by separating the emission
of weaker nuclei from that of the jets and X-ray emitting environments.

The assumption that radio structures roughly lie in a state of minimum energy
between their relativistic particles and magnetic fields is broadly verified in a few
tens of sources through combining X-ray inverse Compton with radio synchrotron
data (Sect. 2.2). This is the assumption commonly adopted in the absence of other
information, and so its verification is reassuring, although much sub-structure is
likely to occur and there is no reason to expect minimum energy to hold in dynam-
ical structures.

The increase in numbers of known resolved kpc-scale X-ray jets has been
remarkable, from a handful to the several tens of sources that Chandra has mapped
in detail. There are grounds to believe that there are X-rays from synchrotron radi-
ation in sources both of FRI and FRII types (Sect. 5.1), requiring in situ particle
acceleration to TeV energies. The steepening in spectral slope which most com-
monly occurs at infra-red energies may be related more to acceleration processes
than energy losses, but more multiwavelength observational work is required to
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characterize the acceleration sites and support a theoretical understanding. The
fact that X-ray synchrotron emission with an X-ray to radio flux-density ratio,
S1 keV/S5 GHz, between about 10−8 and 10−7 is so common in jets where the bulk
flow is inferred to be relativistic implies that there will be many more X-ray jet
detections with current instrumentation in sufficient exposure time.

The dominant X-ray emission mechanism in resolved quasar jets remains uncer-
tain, but it is likely that beamed emission from scattering of CMB photons is dom-
inant in jets at small angles to the line of sight. This requires that highly relativistic
bulk flows exist far from the cores, contradicting earlier radio studies but possibly
understandable in the context of transverse velocity profiles. The knotty appear-
ance of these jets is then possibly a result of variable output from the nuclei. Much
of the knotty X-ray appearance of FRI jets, on the other hand, likely arises from
spatial variations in the strength of particle acceleration (Sect. 5.2).

Jet theory has had some pleasing successes, such as the agreement between
X-ray pressure profiles and predictions from hydrodynamical models for low-
power jets in the regions where they are believed to be slowed by entrainment
of the external medium or stellar mass loss (Sect. 4).

We are still largely ignorant of jet composition, and this is a difficult problem
to solve since jet dynamics are governed by the energy of the constituent particles
rather than their mass. There is generally growing support for a strong presence of
relativistic protons (Sect. 6).

The observation of bubbles and cavities in cluster gas produced dynamically
by radio structures has renewed interest in the mechanisms by which active galax-
ies introduce heat into gaseous atmospheres. A few nearby bright systems have
been the subject of intense study with Chandra (Sect. 7.2). Although the way in
which energy is deposited on the large scale is still far from clear, information on
morphology and temperature has been used to infer the underlying energetics of
the structures.

An area where work is still in its infancy is that of understanding the triggering
of radio sources, and the possible rôle played here by galaxy and cluster mergers
in promoting or inhibiting radio-source development (Sect. 7.4). The emerging
picture shows that very different accretion structures can host radio jets, with a
tendency for quasar-type nuclei to be associated with more powerful jets. How
jets are powered by these different accretion structures and gas infall, and the
duration of a given mode relative to typical lifetimes of radio sources, remain to
be better understood.

The future is bright. Chandra and XMM-Newton are now mature observatories.
Operational experience is enabling both more ambitious and more speculative pro-
grams to be undertaken. For example, Chandra is completing sensitive exposures
of all 3CRR radio sources within a redshift of 0.1, and a large shallow survey
of quasar jets to study the X-ray-emission mechanism in a statistical sense and
seek out more sources for deep, detailed study. Observations of a somewhat more
speculative nature are also being made, such as observing radio sources of differ-
ent inferred ages, and studying how galaxy and cluster mergers are impacting the
radio-source structures and their influence on the surrounding atmospheres. These
are just examples. At the same time, Suzaku is making spectral measurements of
active-galaxy nuclei, and
testing the spin characteristics of black holes hosting radio sources through search-
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ing for relativistic broadening in Fe lines. We can expect fantastic results from
continuing X-ray work, and many surprises.

New facilities coming on line will enrich the X-ray results. Spitzer has mea-
sured dust, stars, and non-thermal cores in the centres of radio galaxies, placing
constraints on the central structures. It has also detected a number of kpc-scale
jets, helping to tie down the all-important breaks in the spectral distributions of
the synchrotron radiation that are likely to be connected to the process of particle
acceleration. Herschel will continue such work.

The characteristics of the non-thermal emission at energies higher than the
X-ray provide a sensitive test of emission mechanisms and a probe of jet compo-
sition. The Fermi Gamma-ray Space Telescope is providing such data, particularly
for the embedded small-scale jets of highly-beamed quasars and BL Lac objects,
as are ground-based Cerenkov telescopes sensitive to TeV emission.

ALMA will probe the cool component of gas in active galaxies, and provide
information on one possible component of accretion power. Radio measurements
with e-MERLIN and EVLA will probe spatial scales intermediate between pc and
kpc, important in the launching and collimation of jets. They will also provide
improved information on transverse jet structure.

Extending polarimetry to the X-ray, as is under study in the community, will
provide key tests of jet emission and acceleration mechanisms, just as such work
with HST is starting to do in the optical. Most importantly, a future X-ray observa-
tory that has the sensitivity and spectral resolution to probe gas dynamics associ-
ated with radio sources is crucial for confirming and extending source modelling
that is currently in its infancy. Such capabilities will come with the launch of a
new facility such as the International X-ray Observatory currently under study by
ESA and NASA.
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