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intervention in that regard was key.
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fortalecido y espero que siga viva por mucho tiempo.
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ha sido fácil, pero has sido paciente y comprensiva; has permanecido a mi lado pese a mis

(muchos) defectos y a las (demasiadas) veces en que mi trabajo ha interferido en nuestra

vida familiar; has sacrificado tus propias ambiciones personales en pro de nuestro proyecto

común. . . y me has regalado lo mejor que me ha pasado en mi vida, nuestro precioso hijo

Jaime, a quien, juntos, hemos visto crecer, no tan de cerca como habŕıa deseado en mi caso,
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Chapter 1

Introduction

1.1 Effective field theory

1.1.1 What is it?

Problems displaying separation of momentum (or distance) scales constantly appear in

physics. Among many examples of this fact, we could recall that one does not need to

describe how atoms or molecules interact with each other to study the macroscopic prop-

erties of a fluid, nor to have a precise knowledge of what is going on in the atomic nucleus

to make predictions about atomic or molecular systems. Given two theories, A and B, such

that the momentum and energy regimes of the theory A lie far above the ones of the theory

B (the typical distances that concern the theory A are much smaller than the ones of the

theory B, put in other words), the theory B is said to be “less fundamental” than (or to

“emerge” from) the theory A; however, it is clear that, within its own territory, the theory

B is a self-contained, useful theory from where concrete predictions can be made. Putting

it short:

“High-energy details are inconsequential if we stick to a low-energy description of nature.”

(Actually, if this were not the case, physicists could not make any progress in their respective

fields of expertise until some “theory of everything” was finally established.) The effect of the

theory A at large distances may thus be parametrized by the so-called low-energy couplings of

the theory B. Sometimes, the couplings can be derived from the theory A, either explicitly

or by means of numerical calculations (“top-down strategy”); however, often this task is
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1.1. EFFECTIVE FIELD THEORY CHAPTER 1. INTRODUCTION

not feasible and one needs to determine the couplings from the available empirical data

(“bottom-up strategy”).

The ideas above are very powerful, and the effective field theory (EFT) approach (see

Refs. [1–5] for general and pedagogical reviews) exploits them in a systematic way. Indeed,

this last feature of any EFT is essential, and what distinguishes it from models. We say that

an EFT is “systematic” in the sense that, at least a priori, its predictions can be made as

accurate as one wants by going one step further in a power series whose expansion parameter

is usually given by the ratio of two physical scales, such as the typical external momentum

of a physical process amenable to the EFT over the momentum scale at which the EFT

stops working and needs to be replaced by some other EFT that underlies the former. At

the same time, the EFT expansion offers one the possibility of always keeping under control

the uncertainties of its predictions at a given order.

There are two more basic ingredients that one needs to add to cook a proper EFT. These

are renormalization-group (RG) invariance and power counting (PC):

� The emergence of ultraviolet infinities from loop diagrams was discovered several

decades ago, in the context of quantum electrodynamics (QED). Such divergences

may be healed via the introduction of a cutoff Λ that separates “low” and “high” loop

momenta (regularization). But, given the arbitrariness of this separation, the low-

energy couplings of the theory must run with Λ in such a way that all the resulting

predictions of observable quantities exhibit a mild and controlled cutoff dependence,

remaining well-defined in the Λ→∞ limit (renormalization).

� In EFT, any interaction that is not forbidden by symmetry requirements will take

place; consequently, an infinite number of interactions will occur. The role of PC rules

is to discriminate which of these interactions should be used when doing calculations at

a given order in the EFT expansion. These rules also tell us whether a given interaction

term should be taken as non-perturbative (infinitely iterated) or perturbative.

The two key notions above —RG invariance and PC— are not independent of each other,

but actually intimately intertwined. On the one hand, the traditional sense of renormaliza-

tion can be reinterpreted —from “global” to “order-by-order”— thanks to PC, as the latter

guarantees that a finite number of interaction terms suffices to achieve, at a given order in

the expansion, the desired accuracy, thus allowing for a finite number of low-energy couplings

to circumvent cutoff dependence of observables. On the other hand, a consistent PC needs

8



CHAPTER 1. INTRODUCTION 1.1. EFFECTIVE FIELD THEORY

to provide all the necessary low-energy couplings to ensure that the RG invariance principle

is truly satisfied by the EFT. As we will see, this requirement on the PC rules can be quite

delicate sometimes (most particularly, when some of the effective interaction terms are to be

fully iterated).

1.1.2 Why is it useful in nuclear and hadronic physics?

For many years already, it has been established that quantum chromodynamics (QCD) is

the fundamental theory of the strong interaction (see Ref. [6] for a nice review). The pure

QCD Lagrangian is 1

LQCD = ∑
f

q̄ if (iγµDµ
ij −mfδij) q jf − 1

2Tr (GµνGµν) , (1.1)

where q if is the spin-1/2 quark field, with dimension of mass3/2 ([q if ] = 3/2), f standing for

a flavor index that can be u (“up”), d (“down”), s (“strange”), c (“charm”), b (“bottom”),

or t (“top”), and i = r,g,b ≡ 1,2,3 being a color index. Here, the sum over both greek

and latin indices is implied, γµ is a Dirac matrix whose (omitted) indices are contracted

with the spinor indices of the quark fields, and mf is the quark mass. Besides, Dµ
ij =

∂µδij − igAµaT aij ≡ ∂µδij − igA
µ
ij is the covariant derivative matrix element in color space, g

being the strong coupling constant, Aµ1 , . . . ,A
µ
8 being the gluon fields, and T 1, . . . ,T 8 being

the matrix generators of SU(3)color. Finally, Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν] is the gluon

strength tensor.

The strong coupling g is not exactly “constant”, but subject to RG invariance, thus

dependent upon the characteristic energy scale of a given strong process. As the energy is

increased (much above the infrared QCD scale ΛQCD ∼ 300 MeV), the coupling gets smaller

and smaller, implying a very perturbative color interaction (asymptotic freedom). In pertur-

bative QCD, it is convenient to take gluons and quarks as the explicit degrees of freedom

of the theory. Conversely, in the low-energy regime (below ΛQCD) the theory gets highly

non-perturbative, as manifest in the fact that the QCD spectrum cannot be written in terms

of gluons and quarks anymore, but in terms of hadrons —mesons and baryons— into which

those remain tightly bound (confinement).

1All through this work we will use natural units, thus set the reduced Planck constant h̵ and the speed

of light c equal to 1.
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1.1. EFFECTIVE FIELD THEORY CHAPTER 1. INTRODUCTION

The most stable baryons are the nucleons (protons and neutrons), which bind into the

atomic nuclei that, together with the electrons, constitute ordinary matter. Other hadrons,

like pions or hyperons, also interact with each other through the strong force. Nuclear and

hadronic forces can thus be seen as a residual effect of the strong interactions that keep

gluons and quarks confined, much like atomic and molecular forces emerge from the elec-

tromagnetic interactions that combine nuclei and electrons into atoms. Thus, a complete

theoretical understanding of nuclear and hadronic physics demands to bridge their gap with

the underlying QCD. Even though physical models —some of which were posed before the

discovery of QCD— can sometimes reproduce successfully several empirically observed fea-

tures of nuclear and hadronic systems, they miss the connection above. This makes necessary

to look for alternative strategies. Nowadays, among such strategies the most promising are

lattice QCD (LQCD) and EFT:

� In LQCD, one aims at calculating nuclear and hadronic properties directly from QCD,

by means of computationally expensive simulations on a discretized space-time grid.

It is only since a few years that LQCD has started to obtain quantitative properties

of light nuclei, few-nucleon scattering, and other hadronic systems, even though still

for unphysically large quark masses (see e.g. Refs. [7, 8] for overviews and references).

Indeed, LQCD is not yet able to explain the systems above in the physical world, i.e.

for the physical pion mass (mπ ≈ 140 MeV). Still, the current situation invites us to

think that such objective will be reached soon.

� Conversely, the EFT formulation avoids the requirement of complex numerical calcu-

lations by establishing the connection with the underlying QCD in an indirect way

(see Refs. [9–11] for reviews concerning nuclear forces). The basic idea is to exploit

the (either exact or approximate) symmetries of the Lagrangian (1.1), and write down

the most general effective Lagrangian involving the low-energy degrees of freedom (i.e.

hadrons) and preserving such symmetries. In this regard, nuclear and hadronic EFTs

are nothing but the RG evolution of QCD at low, non-perturbative energies.

(The two approaches above are not in contradiction to each other. In fact, they can be seen as

complementary; for example, the so-called chiral extrapolations allow for the determination

of the effective couplings from LQCD results.)

In this work, we will follow the second approach. This can be done thanks to the separa-

tion of scales that is inherent to nuclear and hadronic physics —while hadrons are no longer
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CHAPTER 1. INTRODUCTION 1.2. CHIRAL EFT

valid degrees of freedoms at momenta above a characteristic hard scale MQCD ∼ 1 GeV, most

processes of interest occur at a softer momentum scale Q ∼ 100 MeV or less. Then, PC

rules dictate which terms in the effective Lagrangian (out of an infinite number) are to be

taken into account when computing observables at a given order in an expansion in powers

of the small parameter Q/MQCD. The systematicity of this expansion represents another

important advantage of the EFT method with respect to models when facing nuclear and

hadronic systems. Thanks to the recent development of ab initio methods, which bridge the

gap between nuclear forces and currents on one hand and nuclear structure and reactions on

the other (see Ref. [12] for an overview), nuclear EFT is now better exploited than ever.

In this chapter, we will present two EFTs that are widely used nowadays in the study of

nuclear forces, that is to say chiral EFT (Section 1.2) and pionless EFT (Section 1.3), plus

another EFT which is particularly useful when applied to exotic hadronic systems, namely

heavy-quark EFT (Section 1.4). At the end of the chapter, an outline of the rest of the

present work will be given (Section 1.5).

1.2 Chiral EFT

1.2.1 A brief primer to chiral perturbation theory

Chiral perturbation theory (χPT) is the oldest, best-established example of low-energy EFT

of the strong interaction (see Ref. [13] for a pedagogical introduction). As such, this theory

needs to preserve the same symmetries as QCD does at high energies. To show how χPT

emerges from QCD, let us consider the QCD Lagrangian (1.1) restricted to the two lightest

quark flavors u and d. Taking γ5 = iγ0γ1γ2γ3, decompose the up-quark spinor field as the

sum

u = uL + uR, with uL = 1
2
(1 + γ5)u and uR = 1

2
(1 − γ5)u, (1.2)

and similarly for the down-quark spinor field 2. In the limit of vanishing m̄ = (mu +md)/2,

the QCD Lagrangian will become

LQCD∣m̄=0 = ūLi /DuL + ūRi /DuR + d̄Li /DdL + d̄Ri /DdR − 1
2Tr (GµνGµν) , (1.3)

2To see the physical meaning of these definitions, consider the spin operator S of u and d. If these are

assumed to be massless, i.e. to move with unambiguous three-velocity v (∣v∣ = 1), then uL and dL (uR and

dR) will be eigenstates of S ⋅ v with eigenvalue −1/2 (+1/2).
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1.2. CHIRAL EFT CHAPTER 1. INTRODUCTION

where the color indices were now omitted for simplicity, and we abbreviated /D = γµDµ. As a

consequence of the full decoupling between the right- and the left-handed components of the

quark fields, the massless QCD Lagrangian (1.3) is chirally symmetric, i.e. invariant under

the independent flavor rotations

(uL dL)
T
↦ UL (uL dL)

T
and (uR dR)

T
↦ UR (uR dR)

T
, (1.4)

where “T” refers to the transpose matrix, and UL,R ∈ SU(2)L,R may be parametrized up to

the linear term in ε→ 0 as

UL,R = 1 + iεaL,Rτa, (1.5)

with τ 1, τ 2, τ 3 the Pauli matrices in flavor space. Then, taking

εaV = 1
2 (εaL + εaR) and εaA = 1

2 (εaL − εaR) , (1.6)

Eq. (1.4) yields

(u d)
T
↦ U (u d)

T
with U = 1 + i (εaV + γ5ε

a
A) τa. (1.7)

When εaA = 0 (UL = UR), UV = 1 + iεaV τa belongs to SU(2)V , the group of isospin rotations,

corresponding to the internal symmetry of the nucleon isodoublet N = (pn)T. When εaV = 0

(U �
L = UR), UA = 1 + iγ5εaAτ

a is an axial rotation 3.

If the invariance under SU(2)L×SU(2)R had been fully respected by the massless theory,

then the expectation value of the bilinear operators ūu and d̄d at the ground state —its

so-called vacuum expectation value (VEV)— would have identically vanished. However, as

it has been repeatedly checked in lattice calculations (see e.g. Ref. [15]),

⟨q̄kql⟩ = 2 ⟨(q̄k)L (ql)R⟩ = v3δkl with q1 = u and q2 = d, (1.8)

where the magnitude of v has the same size as ΛQCD. The non-vanishing of the VEV ⟨q̄q⟩, also

known as the chiral condensate, illustrates the spontaneous symmetry breakdown (SSB) of

SU(2)L×SU(2)R by massless QCD (see Appendix A for a short review on SSB) 4. Applying

3Actually, the Lagrangian (1.3) is also invariant under U(1)V , (ud)T ↦ (1 + iεV ) (ud)T (which is an

exactly fulfilled symmetry even away from the massless limit), as a reflection of the baryon number conser-

vation. Finally, its invariance under U(1)A, (ud)T ↦ (1 + iγ5εA) (ud)T, is verified, too; however, this one is

not a true symmetry of the massless theory due to quantum effects known as anomalies [14].
4The Big Bang cosmology accepts that the SSB of chiral symmetry emerged in the very early Universe

(less than a millionth of a second after the bang), when its temperature became ≲ ΛQCD ∼ 1012 K. At this

point, the thermal energy of the sea of quarks was overcome by their binding energies, so quarks could

coalesce into hadrons.
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CHAPTER 1. INTRODUCTION 1.2. CHIRAL EFT

Eq. (1.4) to Eq. (1.8) gives

⟨q̄kql⟩ ↦ (UL)km (v3δmn) (U �
R)nl = v

3 (ULU �
R)kl , (1.9)

from where we see that only for an isospin transformation UV does the chiral condensate

remain invariant; in any other case where εaL ≠ εaR, the chiral transformation will produce a

different VEV which will be degenerate in energy with the previous one —in a word, the

chiral condensate spontaneously breaks G ≡ SU(2)L × SU(2)R down to H ≡ SU(2)V . This

corresponds to the presence of 22 −1 = 3 broken generators, which in virtue of the Goldstone

theorem implies the emergence of three massless Goldstone bosons. These turn out to be

the pion triplet.

Of course, all the discussion up to now has ignored that mu,d ≠ 0. Away from the massless

limit, the term −mkq̄kqk = −mk[(q̄k)L(qk)R + (q̄k)R(qk)L] in the Lagrangian (1.1) mixes the

left- and the right-handed components of the quarks, so the two-flavor theory is not invariant

anymore under Eq. (1.4) —that is to say, chiral symmetry is also explicitly broken. But, as

mu,d/ΛQCD ≪ 1 (mu ∼ 2 MeV, md ∼ 5 MeV [16]), it happens that LQCD is, up to a very good

approximation, invariant under Eq. (1.4). Besides, even though the isospin symmetry is not

manifest at the quark level (as the relative mass splitting ∣mu −md∣ / (mu +md) ∼ 1/3 is not

so small), the relation ⟨ūu⟩ = ⟨d̄d⟩ keeps being very approximately valid.

In the same way, the three bosons emerging from SSB are not truly massless as they would

be in the m̄→ 0 limit, but they are rather light (mπ± ≈ 140 MeV, mπ0 ≈ 135 MeV [16]) when

compared to the hadron masses (∼ 1 GeV), so they go under the name of pseudo-Goldstone

bosons. Again, the smallness of their relative mass splitting is a reflection of the goodness

of isospin symmetry at the hadron level. Actually, neglecting the quark mass splitting, the

non-vanishing squared pion mass can be postdicted, up to a dimensionful proportionality

constant, as the product of the two ways in which chiral symmetry breaks down —explicit

and spontaneous—

m2
π = − 2

f2π
m̄ v3 +O(m̄2), m̄ =mu =md, (1.10)

where fπ ≃ 93 MeV can be empirically measured through the leptonic decay of the pion [17].

This is the celebrated Gell-Mann–Oakes–Renner relation [18], which holds within ∼ 10%

approximation in the real world.

χPT is an EFT for low external momenta (Q ∼mπ) that focuses on the purely pionic sec-

tor, just ignoring all the remaining, heavier modes of QCD. The fields π1(x), π2(x), π3(x)
are the coordinates associated to the Goldstone fields living in the quotient group G/H,

13
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which is itself SU(2), hence spanned by three generators T 1, T 2, T 3. In the defining repre-

sentation, the latter are a triplet of traceless, Hermitian matrices which we choose to obey

the convenient normalization Tr (T aT b) = δab, thus we take T a = τa/
√

2, with τa a Pauli

matrix. This allows us to define the pion matrix Π(x),

Π(x) = πa(x)T a =
⎛
⎝

1√
2
π3(x) 1√

2
[π1(x) − iπ2(x)]

1√
2
[π1(x) + iπ2(x)] − 1√

2
π3(x)

⎞
⎠
≡

⎛
⎝

1√
2
π0(x) π+(x)
π−(x) − 1√

2
π0(x)

⎞
⎠
,

(1.11)

which, according to the chosen normalization, can be inverted through πa(x) = Tr [Π(x)T a].
Then, the unimodular, unitary matrix U(x),

U(x) = e
√

2iΠ(x)/fπ , (1.12)

will transform linearly under G,

U(x) ↦ UL U(x)U �
R. (1.13)

To see how the pion fields should change under some transformation living in G/H, say a

pure axial rotation, expand the exponentials in Eq. (1.13) and truncate both sides at the

linear order in ε or Π(x)/fπ. This yields 1 +
√

2iΠ(x)/fπ ↦ 1 +
√

2i [Π(x)/fπ +
√

2εaτa], or

equivalently, πa(x) ↦ [πa(x) + 2εafπ]. The change in πa(x) is not linear in πa(x), which is

a sign of SSB [19].

The exponential representation (1.12) of the pion fields is not the only valid one; other

commonly used choices include the so-called sigma parametrization

U(x) = σ(x) + iτa π
a(x)
fπ

, σ(x) = [1 − πa(x)πa(x)
f2π

]
1/2
. (1.14)

Of course, predictions of observables can never depend on the chosen representation. This

is explicitly proven by the Callan–Coleman–Wess–Zumino construction [20, 21] —all real-

izations of the chiral group are equivalent to each other up to non-linear redefinitions of the

fields, which do not affect the results for observables.

The analysis performed up to now could have been extended beyond the u and d quark

flavors to include the s quark. In that case, the spontaneous breakdown of chiral symmetry

would have been SU(3)L × SU(3)R → SU(3)V , implying the emergence of 32 − 1 = 8 pseudo-

Goldstone bosons. Everything would have worked out essentially the same way, but the pion

14
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matrix (1.11) would have been replaced by the meson-octet matrix,

Π(x) =
⎛
⎜⎜⎜⎜
⎝

1√
2
π0(x) + 1√

6
η(x) π+(x) K+(x)

π−(x) − 1√
2
π0(x) + 1√

6
η(x) K0(x)

K−(x) K̄0(x) −
√

2
3 η(x)

⎞
⎟⎟⎟⎟
⎠
, (1.15)

where the five new pseudo-Goldstone bosons are significantly heavier than the three old ones

(mK ∼ mη ∼ 500 MeV), as ms ∼ 100 MeV ≫ mu,d [16]. In other words, the explicit breaking

of SU(3)L × SU(3)R is much more severe than the one of SU(2)L × SU(2)R. Consequently,

throughout this Section 1.2 we will stick to u and d as “light” quarks and simply ignore the

strange sector, contrary to what will be done in Section 1.4. There, we will explore as well

how to treat the heaviest quarks (c, b, t), whose mass is much larger than ΛQCD.

On the basis of the transformation rule (1.13), together with the cyclicity of the trace,

one can use U , U �, and their derivatives as building blocks of a chiral-invariant effective

Lagrangian that describes pion interactions in the chiral (massless) limit,

Lπ ∣m̄=0 =
∞
∑
n=0
L[2n]
π ∣m̄=0, (1.16)

where L[2n]
π ∣m̄=0 includes all allowed terms given by a coupling g[2n], [g[2n]] = 4 − 2n, times

an operator O[2n], [O[2n]] = +2n, with n = 0,1, . . . as a consequence of Lorentz invariance.

Since U � = U−1, L[0]
π ∣m̄=0 cannot exhibit any dependence on the fields; it thus represents

a contribution to the cosmological constant with no relevance in this context. Hence, the

lowest contribution to Lπ ∣m̄=0 will be

L[2]
π ∣m̄=0 = g[2] Tr [∂µU(x)∂µU �(x)] . (1.17)

Some other possible terms with two derivatives, e.g. Tr [U(x)∂µU �(x)]Tr [U(x)∂µU �(x)],
will not contribute (as Tr [U(x)∂µU �(x)] = 0), while pieces such as Tr [U(x)∂µ∂µU �(x)] are

actually equivalent to the one given in Eq. (1.17) (as total derivatives can be safely dropped

from the Lagrangian). Expanding Eq. (1.17) at low momenta,

L[2]
π ∣m̄=0 = 1

2∂µπ
a∂µπa + 1

6f2π
[(πa∂µπa) (πb∂µπb) − (πaπa)(∂µπb∂µπb)] + . . . , (1.18)

where the arbitrary normalization of the field was used to fix g[2] = f 2
π/4 so that the kinetic

term is canonically normalized. This result illustrates how the imposed symmetry constrains

all vertices with increasing number of pions in the LO Lagrangian.

15
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The expansion (1.16) can be extended beyond the chiral limit, so that (L[2n]
π −L[2n]

π ∣m̄=0)
includes all allowed terms given by an operator Õ[2n] that contains 2a derivative insertions

and b ⩾ 1 quark-mass insertions, [Õ[2n]] = n + a, multiplied by a coupling constant g̃[2n],

[g̃[2n]] = 4 − n − a. Here we used the restriction a + b = n, due to the fact that one single

power of m̄ is standardly counted in χPT as two powers of mπ (see Eq. (1.10)), i.e. two

powers of p, implying that finite-m̄ effects should enter in L[2]
π already 5. A convenient way of

finding out how they must enter is to treat the quark mass matrixMkl = m̄ δkl as a fictitious

(“spurion”) field that follows the transformation ruleM↦ ULMU �
R under SU(2)L×SU(2)R.

Hence,

L[2]
π − L[2]

π ∣m̄=0 = g̃[2] Tr [MU �(x) +H.c.] . (1.19)

Now, one comes back to the real world where M does not preserve the transformation rule

above due to the non-vanishing of m̄. Then, expanding U �(x) and U(x) up to two pion fields

and fixing g̃[2] = f 2
πm

2
π/(4m̄) = −v3/2 (see Eq. (1.10)) gives (modulo an irrelevant constant)

L[2]
π − L[2]

π ∣m̄=0 = −1
2m

2
ππ

aπa + . . . , (1.20)

which is the canonically normalized pion-mass term.

Combining Eqs. (1.18) and (1.20),

L[2]
π = 1

2
(∂µπ⃗ ⋅ ∂µπ⃗ −m2

ππ⃗
2) + . . . , (1.21)

where π⃗ = (π1, π2, π3), and the dots refer to terms with at least four pion insertions (including

the one appearing in Eq. (1.18)). Coming back to the resummation of the pion fields,

L[2]
π = 1

4f
2
π {Tr [∂µU(x)∂µU �(x)] +m2

π Tr [U(x) + U �(x)] }. (1.22)

The next contributions will enter at L[4]
π . They will include g

[4]
1 Tr [∂µ∂νU(x)∂µ∂νU(x)], as

well as other operators, each of them multiplied by some coupling constant g
[4]
i , containing

either four derivatives, four powers of the pion mass, or two derivatives and two powers of

the pion mass. As we will see, such contributions are parametrically suppressed with respect

to the ones in Eq. (1.22). Consequently, L[2]
π and L[4]

π go under the names of leading order

(LO) and next-to-leading order (NLO) chiral Lagrangians, respectively.

5In Refs. [22, 23] an alternative approach based on the assumption m̄ = O(p) was proposed. However,

after the determination of the S-wave two-pion scattering length from Ke4 decay [24], such an approach was

discarded [25].
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The Feynman diagrams describing two-pion interactions will then arise from the trun-

cated Lπ according to the usual rules of quantum field theory. Take a diagram contributing

to the total amplitude A = i(S − 1), S being the scattering matrix, with L relativistic loop

integrations, Iπ internal pion lines, and Vi vertices of tipe i, each of them associated with di

derivative/pion-mass insertions. These numbers verify the topological relation

L − Iπ +∑
i

Vi = 1, (1.23)

which may be deduced from Euler’s formula relating the number of vertices, edges, and

faces of a convex polyhedron. The diagram can be assigned a chiral power ν such that its

contribution to the amplitude scales as Qν , Q generically denoting the pion momenta and

the pion mass. If each relativistic loop counts as Q4, each relativistic pion propagator counts

as 1/Q2, and each derivative/pion-mass insertion counts as Q, then it follows

ν = 4L − 2Iπ +∑
i

diVi = 2 + 2L +∑
i

∆iVi, ∆i = di − 2, (1.24)

∆ ⩾ 0 being the so-called chiral index of the vertex V .

From Eq. (1.24), one finds out that the chiral power of a four-pion vertex emerging from

L[2]
4π (d1 = 2, V1 = 1, L = 0) is ν = 2, while for a four-pion vertex emerging from L[4]

4π (d1 = 4,

V1 = 1, L = 0) it turns out ν = 4. In particular,

A[2]
4π ∼ Q2/f 2

π and A[4]
4π ∼ g[4]i Q4/f 4

π . (1.25)

But, for the diagram expansion to be consistent, we require

A[4]
4π /A

[2]
4π ∼ (Q/Mhi)2 ⇒ Mhi ∼ (g[4]i )−1/2fπ, (1.26)

where Mhi is the breakdown scale of the expansion, whose size we want to estimate. With

that purpose, consider the diagram of Figure 1.1, whose vertices emerge from L[2]
π (d1 = 2,

V1 = 2, L = 1). Its chiral power turns out to be ν = 4; more precisely,

A[1L]
4π ∼ ∫

Q4

(4π)2
× (Q

2

f 2
π

)
2

× ( 1

Q2
)

2

= 1

(4πf 2
π)2 ∫ Q4, (1.27)

where the replacement Q4/(2π)4 → Q4/(4π)2 has accounted for the integration over the

solid angle. Then, A[2]
4π and A[4]

4π will absorb the two ultraviolet divergences, quadratic and

logarithmic respectively, that result from A[1L]
4π , i.e.

A[1L]
4π ∣quad ∼

Q2

(4πf 2
π)2

Λ2 and A[1L]
4π ∣log ∼

Q4

(4πf 2
π)2

ln(Λ/µ), (1.28)

17



1.2. CHIRAL EFT CHAPTER 1. INTRODUCTION

Figure 1.1: Pion loop.

where µ is some infrared subtraction point. Hence, the renormalized four-pion amplitude at

second order in perturbation theory will be, roughly,

A[2+4]
4π ∼ Q2

f 2
π

+ [ḡ[4](µ) + ln(Q/µ)
(4π)2

] Q
4

f 4
π

, (1.29)

where the renormalized coupling ḡ[4] is given by some combination of the Λ-independent

parts of the g
[4]
i ’s. Now, change the renormalization scale by some factor ϕ = O(1), say

ϕ = e−1. Since A[2+4]
4π needs to remain the same,

ḡ[4](e−1µ)+1 + ln(Q/µ)
(4π)2

= ḡ[4](µ)+ ln(Q/µ)
(4π)2

⇒ (4π)2 [ḡ[4](ϕµ) − ḡ[4](µ)] = O(1). (1.30)

Therefore, it is natural to conclude that

(4π)2ḡ[4](µ) = O(1), (1.31)

as if there was some µ1 such that (4π)2∣ḡ[4](µ1)∣ ≪ 1 or (4π)2∣ḡ[4](µ1)∣ ≫ 1, then there would

be some other µ2, µ2/µ1 = O(1), for which such inequalities could not hold. Combining Eqs.

(1.26) and (1.31) yields finally our guess for the χPT breakdown scale [26],

Mhi ∼MQCD ∼ 4πfπ ∼ 1 GeV, (1.32)

where the characteristic QCD scale MQCD was introduced in Section 1.1.2. Quite consistently,

such a result is not far from the mass of the vector meson ρ (Mρ ≈ 770 MeV), the nucleon N

(MN ≈ 940 MeV), and other non-Goldstone hadrons that are not considered the χPT action.

At the same time, the estimate above anticipates a nice convergence of the EFT expansion,

as Mhi might be ≳ 5 times larger than the pion mass.
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The analysis above can be generalized to yield the so-called naturalness condition, also

known as naive dimensional analysis (NDA) à la Georgi–Manohar [27, 28]: Write a given

term of the Lagrangian as some coupling constant g times an operator O with dimensions

of massd, and let n be the number of strongly interacting fields contained in O. Define the

reduced (dimensionless) coupling constant gR as

gR ≡Md−n−2
QCD fn−2

π g ∼
Md−4

QCD

(4π)n−2 g. (1.33)

The NDA hypothesis consists of assuming that gR has the same size as the product of the

corresponding reduced couplings of the underlying theory. Later we will come back to such

an assumption.

1.2.2 Bringing nucleons into the picture

At this point, we aim at generalizing χPT to include the nucleon field. In order to do so,

first we must give an effective Lagrangian that encodes the coupling between a relativistic

pseudo-Goldstone boson (pion) with momentum O(mπ) and a non-relativistic heavy baryon

(nucleon) with three-momentum O(mπ). It is customary to introduce the auxiliary SU(2)
matrix ξ(x),

ξ(x) = eiΠ(x)/(
√

2fπ) = U1/2(x) (1.34)

(see Eq. (1.12)), whose transformation law under G is easily inferred from Eq. (1.13),

ξ(x) ↦ [ULξ2(x)U �
R]

1/2 = h(x)ξ(x)U �
R = ULξ(x)h�(x), (1.35)

where we introduced the unitary (“compensator”) matrix

h(x) = [ULξ2(x)U �
R]

−1/2
ULξ(x). (1.36)

For a pure isospin rotation, Eq. (1.36) will simply give

h(x) = UV . (1.37)

When εaL ≠ εaR, conversely, h(x) exhibits complicated non-linear dependence on the pion

fields. For instance, if εaL + εaR = 0, Eq. (1.36) will yield

h(x) = U−1/2
A ξ−1(x)U1/2

A ξ(x) ≡ eimA(x), (1.38)
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where, recalling that UA = 1 + iγ5εaAτ
a,

mA(x) ∝ iγ5 [εaAτa,
Π(x)
fπ

] + O (ε2, π2) . (1.39)

Similarly to what we did in the purely pionic sector, we require that the relativistic nucleon

isodoublet Ψ(x) transforms non-linearly under the chiral group G, but linearly under the

isospin subgroup H. Given Eq. (1.37), the transformation

Ψ(x) ↦ h(x)Ψ(x) (1.40)

is manifestly linear for εaL = εaR. Conversely, for some transformation in the coset G/H, say a

pure axial rotation, Eq. (1.39) illustrates that the above rule multiplies the nucleon field by

functions of the pion fields, which reflects the well-known fact that chiral transformations

correspond to the emission/absorption of Goldstone bosons.

Due to the locality of Eq. (1.40), a standard kinetic piece like Ψ̄(i /∂ −MN)Ψ will not be

chiral-invariant in general. The ordinary derivative ∂µ needs to be promoted to a covariant

derivative Dµ = ∂µ + V µ, where

V µ(x) = 1
2
[ξ�(x), ∂µξ(x)] = O(π2) (1.41)

—the so-called vector pion current— transforms under G as V µ ↦ h (V µ + ∂µ)h�, thus guar-

anteeing the invariance of Ψ̄(i /D −MN)Ψ. A term such as Ψ̄γ5 /AΨ (γ5 = −γ5) turns out to be

invariant, too, since

Aµ(x) = i
2
{ξ�(x), ∂µξ(x)} = −1

2 τ⃗ ⋅ ∂µ
π⃗(x)
fπ

+O(π3) (1.42)

—known as the axial-vector pion current— transforms as Aµ ↦ hAµh�. The LO relativistic

pion-nucleon Lagrangian proposed in Ref. [29] with such building blocks reads

L[LO]
πN ∣GSS = Ψ̄ [i /D −MN + gAγ5 /A] Ψ = Ψ̄ [i /∂ −MN − 1

2gAγ
5τ⃗ ⋅ /∂ π⃗

fπ
+ . . . ] Ψ, (1.43)

where gA ≃ 1.26 is the axial coupling constant, and the ellipsis refer to terms with at least

two pion insertions. (Note that the LO contribution to the pure pion Lagrangian (1.21) has

been made implicit.) But MN , unlike mπ, is not small compared to the hard scale MQCD

and does not vanish in the chiral limit. Treating the nucleon as a relativistic field is, thus,

problematic. As an example of this, let us note that we could have included in L[LO]
πN ∣GSS

some other chiral-invariant piece such as the pion-nucleon coupling

L̃πN = Ψ̄ [g̃AM−2
QCDγ

5 /ADµDµ]Ψ = Ψ̄ [− 1
2 g̃AM

−2
QCDγ

5τ⃗ ⋅ /∂ π⃗
fπ
∂µ∂

µ + . . . ] Ψ, (1.44)
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with g̃A = O(1) some dimensionless coupling. The insertion of two negative powers of MQCD

comes with the two extra derivatives, in analogy with what it is done in χPT. But each

time derivative acting on Ψ brings down one positive power of MN , implying that the pion-

nucleon coupling included in Eq. (1.44) has a size of O(M2
N/M2

QCD) = O(1) compared to

the one given in Eq. (1.43), and thus it is not suppressed. This illustrates that there is no

clear way to organize the derivative expansion anymore; such an observation also applies to

contributions from loops enhanced by powers of MN . The moral is that we cannot rely on a

particular hierarchy of terms in the Lagrangian before taking the non-relativistic limit. We

will see that, once this is done, the Lagrangian coming out from L[LO]
πN ∣GSS will appear as LO

in virtue of consistent PC rules.

It is customary to decompose the nucleon four-momentum pµ as

pµ =MNvµ + qµ, (1.45)

where vµ and qµ are the nucleon four-velocity and the nucleon residual momentum, verifying

vµvµ = 1 and vµqµ/MN ≪ 1 respectively. Then, separate out the kinematical dependence on

the nucleon mass exhibited by Ψ,

Ψ(x) = e−iMNv
µxµψ(x), (1.46)

which, once plugged into Eq. (1.43), gives

L[LO]
πN ∣GSS = ψ̄ [i /∂ + (/v − 1)MN − 1

2gAτ⃗ ⋅ (γ5 /∂) π⃗
fπ
+ . . . ]ψ. (1.47)

This can be simplified by introducing the projection operators

P v
± = 1

2(1 ± /v), (1.48)

thus decomposing the four-spinor ψ as the sum

ψ(x) = N(x) + h(x) with N(x) = P v
+ψ(x) and h(x) = P v

−ψ(x). (1.49)

Consider the rest frame of the nucleon, vµ = (1,0). Then, N(x) and h(x) correspond (up

to a phase) to the upper and lower components of the positive-frequency solution of the

free Dirac equation. Neglecting terms suppressed by powers of MN , the upper component

collapses to a bispinor, while the lower one vanishes. Hence, Eq. (1.47) becomes

L[LO]
πN ∣GSS → L[LO]

πN = N � [i∂0 − 1
2gAτ⃗ ⋅ (σ ⋅∇) π⃗

fπ
+ . . . ]N, (1.50)
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where the “→” indicates that pieces proportional to some positive power of 1/MN are not

included anymore as omitted terms labeled as “. . .”. Below, we will see that L[LO]
πN represents

indeed the LO contribution to the pion-nucleon Lagrangian. Being suppressed by MN , the

piece proportional to ψ̄[τ⃗ ⋅ (γ5γ0∂0)π⃗]ψ in Eq. (1.47) needs to be included in L[NLO]
πN , just

like the first correction to the kinetic part of the nucleon. The remaining terms contained in

L[NLO]
πN have, at least, two pion-field or two pion-mass insertions.

Similarly to the purely pionic sector, the full πN coupling gives rise to an infinite series

of Feynman diagrams that, according to their increasing chiral power ν, can be organized

as decreasingly important in the low-momentum regime of the EFT. For a given πN graph

with L loops, If (Iπ) fermion (pion) propagators, and Vi vertices, each of them associated

with di derivative/pion-mass insertions and fi fermion legs,

ν = 4L − 2I + If +∑
i

diVi, I = If + Iπ, (1.51)

since each loop counts as Q4, each fermion (pion) internal line counts as 1/Q (1/Q2), and

each derivative/pion-mass insertion counts as Q. Using

L − I +∑
i

Vi = 1, (1.52)

which generalizes Eq. (1.23), and

1
2∑

i

fiVi − If = 1, (1.53)

which is a consequence of the fact that Vi connects fi nucleon lines in a diagram with two

external nucleon legs, Eq. (1.51) becomes

ν = 1 + 2L +∑
i

∆iVi, ∆i = 1
2fi + di − 2. (1.54)

Then, the only πN term that contains one single pion-field insertion and whose chiral index

is minimized (∆ = 0) is the axial-vector coupling that has been made explicit in Eq. (1.50).

There is a vast literature on the successful application of the χPT approach to the purely

pionic and one-nucleon sectors. For reviews, the interested reader may consult Refs. [30–32].

1.2.3 Chiral EFT of two-nucleon systems

Now, what will come up if a second nucleon enters the scene? From what we have just

seen, in the low-momentum regime Q ≪ MQCD, the nucleon-nucleon (NN) interaction will
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Figure 1.2: Diagrammatic exchange of a virtual pion in a two-nucleon process.

be mediated by the exchange of off-shell (virtual) pions 6. Here, we will first derive in detail

the expression of the one-pion-exchange (OPE) NN potential. (As we will see, interactions

due to the exchange of two or more pions are parametrically suppressed in comparison.) Let

p (p′) be the relative three-momentum of the incoming (outcoming) nucleons. The pion-

nucleon vertex vN→πN is readily obtained from Eq. (1.50) in terms of the three-momentum

q = p′ − p carried by the pion,

vN→πaN = −i gA
2fπ

⟨N ∣N �τ⃗ ⋅ (σ ⋅∇) π⃗N ∣πaN⟩ = −i gA
2fπ

τaσ ⋅ (−iq) = −vπaN→N , (1.55)

while the pion propagator is found from Eq. (1.21),

Pabπ = − δab

qµqµ −m2
π

≈ δab

q2 +m2
π

, (1.56)

as q0 ∼ q2/MN is negligible at LO. The OPE potential in momentum space then reads

VOPE(q) = vN1→πaN1′
Pabπ vπbN2→N2′

= − τ⃗1 ⋅ τ⃗2

g2
A

4f 2
π

σ1 ⋅ qσ2 ⋅ q
q2 +m2

π

(1.57)

(see Figure 1.2). Its coordinate counterpart is recovered through the inverse Fourier trans-

form,

VOPE (r) = ∫
d3q

(2π)3 e
iq⋅r VOPE(q). (1.58)

Introducing the so-called tensor operator,

S12(r̂) = 3σ1 ⋅ r̂ σ2 ⋅ r̂ −σ1 ⋅σ2, r̂ = r
r
, (1.59)

6Funnily enough, this confirms the old proposal by Yukawa, made many years before the discovery of

QCD and χEFT [33].
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together with the dimensionless functions

T (x) = 1 + 3

x
+ 3

x2
and Y (x) = e

−x

x
, (1.60)

it turns out that

VOPE(r) =
g2
Am

3
π

48πf 2
π

τ⃗1 ⋅ τ⃗2 {[S12(r̂)T (mπr) +σ1 ⋅σ2]Y (mπr) −
4π

m3
π

σ1 ⋅σ2 δ(r)}. (1.61)

Integrating S12 over the unit sphere, we compute its projection onto the S wave, which turns

out to be zero, implying that, for transitions with ` = `′ = 0,

V(S)
OPE(r) =

g2
Am

3
π

48πf 2
π

σ1 ⋅σ2 τ⃗1 ⋅ τ⃗2 [Y (mπr) −
4π

m3
π

δ(r)]. (1.62)

(For details associated with transitions between the S and D waves, belonging to the spin-

triplet S = 1, see Appendix B.) But, for a system composed of two nucleons, the intrinsic

spin (isospin) numbers are S1 = S2 = 1/2 (I1 = I2 = 1/2), thus S1,2 = σ1,2/2 (I⃗1,2 = τ⃗1,2/2) for

the corresponding spin (isospin) operators, so that

σ1 ⋅σ2 = 4S1 ⋅S2 = 2 [(S1 +S2)2 −S2
1 −S2

2]

= 2 [S(S + 1) − S1(S1 + 1) − S2(S2 + 1)] = 2S(S + 1) − 3, (1.63)

τ⃗1 ⋅ τ⃗2 = 4 I⃗1 ⋅ I⃗2 = 2 [(I⃗1 + I⃗2)
2 − I⃗ 2

1 − I⃗ 2
2 ]

= 2 [I(I + 1) − I1(I1 + 1) − I2(I2 + 1)] = 2I(I + 1) − 3, (1.64)

in terms of the total spin S (isospin I). Because of the addition rules for angular momenta,

both S and I are either 0 or 1; however, given that nucleons are fermions, we also know that,

for what concerns the S wave, S + I is odd. Hence,

S = 0 ≡ { 1√
2
(∣↑↓⟩ − ∣↓↑⟩)} ⇔ I = 1 ≡ {∣pp⟩ , ∣nn⟩ , 1√

2
(∣pn⟩ + ∣np⟩)} , (1.65)

S = 1 ≡ {∣↑↑⟩ , ∣↓↓⟩ , 1√
2
(∣↑↓⟩ + ∣↓↑⟩)} ⇔ I = 0 ≡ { 1√

2
(∣pn⟩ − ∣np⟩)} , (1.66)

respectively for the spin-singlet (isospin-triplet) 1S0 and the spin-triplet (isospin-singlet) 3S1,

implying that (σ1 ⋅σ2 τ⃗1 ⋅ τ⃗2)1S0
= (σ1 ⋅σ2 τ⃗1 ⋅ τ⃗2)3S1

= −3, i.e.

V(S)
OPE(r) =

4π

MNΛNN

(δ(r) − m3
π

4π
Y (mπr)) , (1.67)
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or, back to momentum space through Fourier transform,

V
(S)

OPE(q) =
4π

MNΛNN

(1 − m2
π

q2 +m2
π

) , (1.68)

where we introduced the characteristic momentum scale of OPE [34, 35]

ΛNN ≡ 16πf 2
π

g2
AMN

≈ 290 MeV. (1.69)

OPE is supplemented by the pure contact part of the NN interaction, consisting of four-

nucleon vertices without pseudo-Goldstone fields. These terms “parametrize our ignorance”,

as they emerge from the short-distance (high-energy) physics that, being inherent to the

nuclear interaction, remains unresolved by our EFT. According to the PC rules we will

discuss later on, the S-wave projected LO NN contact Lagrangian reads [9]

L[LO]
NN ∣(S)ct = N �(i∂0+

∇
2

2MN

)N −C1S0
(NTP⃗1S0

N)� ⋅(NTP⃗1S0
N)−C3S1

(NTP3S1
N)� ⋅(NTP3S1

N),
(1.70)

where the 1S0 (3S1) projector is expressed in terms of the Pauli matrices σ and τ⃗ acting on

spin and isospin space as P⃗1S0
= σ2τ⃗ τ2/

√
8 (P3S1

= τ2σσ2/
√

8). Then, the NN LO potential

becomes

V
(S)

LO (p′,p) = CS −
4π

MNΛNN

m2
π

(p′ − p)2 +m2
π

, CS → CS +
4π

MNΛNN

, (1.71)

with S = {1S0,3 S1}. The bare couplings C1S0
and C3S1

, unknown a priori, must be deter-

mined through fitting to the available low-energy data.

Remarkably, and contrary to what we saw for the one-nucleon sector, the kinetic piece

N �[∇2/(2MN)]N has now been included in the LO Lagrangian, in correspondence to the “in-

frared enhancement” of those NN diagrams containing purely nucleonic intermediate states

—the so-called “reducible” (or iterative) graphs. The infrared enhancement was pointed out

by Weinberg [36, 37] in order to explain the non-perturbative nature of the NN system,

which is manifest in the presence of a loosely bound state (the deuteron) in the spin-triplet

and a very shallow virtual state in the spin-singlet. Explicitly, the LO S-wave scattering

amplitude at the scattering energy E = k2/MN is obtained from the Lippmann–Schwinger

(LS) equation

T
(S)
LO (p′,p, k) = V (S)

LO (p′,p) + ∫
d3l

(2π)3 V
(S)

LO (p′, l)G(±)
0 (l, k)T (S)

LO (l,p, k)

= V (S)
LO (p′,p) + ∫

d3l

(2π)3 V
(S)

LO (p′, l)G(±)
0 (l, k)V (S)

LO (l,p) + . . . , (1.72)
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where the Schrödinger propagator is found from the kinetic term in Eq. (1.70),

G
(±)
0 (l, k) = MN

k2 − l2 ± i0+ = O(4πfπ/Q2); (1.73)

therefore, assuming that the contact part of V
(S)

LO follows the same scaling as its long-range

part,

T
(S)
LO ∼ 1

f 2
π

+ Q3

4π
× 1

f 2
π

× 4πfπ
Q2

× 1

f 2
π

+ ⋅ ⋅ ⋅ ∼ 1

f 2
π

(1 − Q

fπ
)
−1

, (1.74)

which is compatible with the emergence of a (real or virtual) bound state or a resonance at

Q ∼ fπ.

1.2.3.1 Weinberg power counting

Much like it happens in the purely pionic and the one-nucleon sectors, the only restriction

that binds the construction of the χEFT Lagrangian is the preservation of the symmetries

of the underlying QCD. Otherwise, such Lagrangian is the most general one, implying that

it contains an infinite number of terms and thus gives rise to an infinite number of Feynman

diagrams. Hence, again we need, for our approach to be useful, a set of PC rules that tell

us which diagrams should be kept when computing observables at a given order in the EFT

expansion. A series of pioneering works at the early and middle 90s [36–41] postulates that

the full NN effective potential in momentum space, found through the sum of all those

diagrams that are not infrared enhanced —known as “irreducible” graphs—, is amenable to

the decomposition

VNN =
∞
∑
ν=0

V
[ν]
NN ∼M−2

lo

∞
∑
ν=0

cν (Q/Mhi)ν , cν = O(1), (1.75)

where the chiral power ν of a given NN irreducible diagram is found through inserting Eq.

(1.52) and the topological relation

1
2∑

i

fiVi − If = 2 (1.76)

—emerging from the fact that Vi connects fi nucleon lines in a diagram with four external

nucleon legs— into Eq. (1.51),

ν = 2L +∑
i

∆iVi, ∆i = 1
2fi + di − 2. (1.77)
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The generalization of this prescription to the three-nucleon sector and beyond (A ⩾ 3) illus-

trates in a simple way the hierarchical suppression of A-body forces when A is increased.

Even more importantly, for any given ν, there is only a finite number of diagrams giving rise

to V
[ν]
NN :

� Comparing Eqs. (1.71) and (1.75), we identify V
(S)

LO ≡ V [0]
NN . This is so because the

short-range part of V
(S)

LO comes from the four-nucleon vertex without derivative/pion-

mass insertions (L = 0, V1 = 1, f1 = 4, d1 = 0), while its long-range part arises from the

OPE diagram at tree-level (L = 0, V1 = 2, f1 = 2, d1 = 1). According to Eq. (1.77), both

graphs verify ν = 0.

� No NN diagram with ν = 1 is allowed by time-reversal and parity symmetries. NLO

is thus an empty order in Weinberg PC, which is the reason why some authors call

the ν = 2 order “NLO” instead of N2LO (next-to-next-to-leading order). Here we will

refrain from using such terminology, though, and simply adopt as a general rule that

NνLO is the order suppressed by O(Q/Mhi) with respect to Nν−1LO.

� The two-pion-exchange (TPE) interaction emerges at N2LO, as any leading TPE di-

agram entering here has L = 1, f1 = 2, d1 = 1. Besides, if the delta isobar ∆(1232)
—the lowest nucleon resonance, with excitation energy δM∆N =M∆ −MN ≳ 2mπ— is

taken as another degree of freedom of the EFT [9], then it will appear in diagrams with

L ⩾ 1, thus enter at N2LO, too 7. Finally, when diagrams with L = 0, f1 = 4, d1 = 2

are considered, one needs to keep seven contact terms provided with two derivatives,

which contribute in S and P waves, plus two derivative-independent contact terms

proportional to m2
π that affect S waves.

It is useful to note that, for what concerns the scaling of the parameters in the theory, the

Weinberg rules are equivalent to the naturalness condition of the dimensionless coupling gR

(see Eq. (1.33)). To check this, decompose the total effective Lagrangian in the NN sector

as

L(A=2)
eff = Lfree + Lππ + LNπN + LC0 + LC2 + LD2 + . . . , (1.78)

7In terms of PC, the explicit inclusion of the delta amounts to assuming δM∆N = O(Mlo). Conversely,

integrating it out corresponds to the case δM∆N →∞, in which the extraction of the pion-nucleon couplings

contained in L[NLO]
πN will be biased by a relative error O(Mlo/δM∆N). Not being numerically negligible, this

has some significant effect in the nuclear potential [42].
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with

Lfree ∼ 1
MN

N∂2N, LNπN ∼ gA
fπ
N∂πN, Lππ ∼m2

ππ
2,

LC0 ∼ C0N4, LC2 ∼ C2(N∂N)2, LD2 ∼D2m2
πN

4.
(1.79)

From Lfree, LNπN , and Lππ, one confirms

( 1
MN

)
R
∼ M5−4

QCD

(4π)2−2
1
MN

= O(1) ⇒ MN = O(MQCD), (1.80)

(gAfπ )R ∼ M5−4
QCD

(4π)3−2
gA
fπ

= O(1) ⇒ gA = O(1), (1.81)

(m2
π)R ∼ M2−4

QCD

(4π)2−2m
2
π ∼ m̄R ∼ M3−4

QCD

(4π)2−2 m̄ ⇒ m2
π = O(MQCDm̄), (1.82)

where we used that Lqq ∼ m̄q2, while from LC0 , LC2 , and LD2 , one gets

(C0)R ∼ M6−4
QCD

(4π)4−2C0 = O(1) ⇒ C0 = O(f−2
π ), (1.83)

(C2)R ∼ M8−4
QCD

(4π)4−2C2 = O(1) ⇒ C2 = O(M−2
QCDf

−2
π ), (1.84)

(D2m
2
π)R ∼ M6−4

QCD

(4π)4−2D2m
2
π ∼ m̄R = O(m̄/MQCD) ⇒ D2 = O(M−2

QCDf
−2
π ), (1.85)

where we recalled that LD2 breaks chiral symmetry in the EFT Lagrangian in the same

way that Lqq breaks chiral symmetry in the underlying QCD Lagrangian. Hence, NDA

anticipates that

C2Q
2/C0 ∼D2m

2
π/C0 ∼ Q2/M2

QCD, (1.86)

i.e. LC2 and LD2 appear two orders down with respect to LC0 . This indeed matches the

Weinberg assumption.

Once the potential (1.75) is obtained up to some order, the Weinberg program postulates

its insertion into the LS equation to obtain non-perturbatively the corresponding scattering

amplitude, from where one can compute, in turn, predictions for the remaining observables

of the system. The success of this approach comes as no surprise: besides its simplicity, it

seems to achieve nice agreement with the phenomenological evidence (χ2/d.o.f. ∼ 1) [43–45].

1.2.3.2 Amending naive dimensional analysis

When applying the method described above, one implicitly expects that the resulting am-

plitude will obey the same expansion as the potential does,

TNN =
∞
∑
ν=0

T
[ν]
NN ∼M−2

lo

∞
∑
ν=0

c̃ν (Q/Mhi)ν , c̃ν = O(1). (1.87)
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However, it is not clear at all that such an expectation will hold in an intrinsically non-

perturbative problem as the NN one is. The iteration of singular interaction terms (those

that diverge like 1/r2 or quicker in the limit of small r) produces ultraviolet divergences

that are regularized through a momentum cutoff Λ; the cutoff dependence induced on the

low-energy couplings renormalizes the one of observables, up to a small residue that becomes

arbitrarily small when the cutoff is made arbitrarily large (see Section 1.1.1). Unfortunately,

NDA prescribes the presence of a certain number of counterterms at a given order that, in

general, is not sufficient to guarantee that the renormalization condition is properly fulfilled

by the amplitude. As a matter of fact, already at LO NDA does not yield all the necessary

short-range interactions [46–48]; similar issues reappear at higher orders [49–51] and also

affect electromagnetic currents [52]. Given that non-perturbative renormalization can differ

significantly from the perturbative renormalization used to infer NDA, it is perhaps unsur-

prising that a scheme based solely on NDA fails to produce nuclear amplitudes consistent

with renormalization invariance. This poses a serious shortcoming to NDA, since such loop

divergences threaten to destroy the low-energy EFT expansion, thus compromising the very

consistency of the PC. Not only that, the connection with QCD is at risk. This is so because

such an approach does not make for a proper EFT, where one must strive for physical pre-

dictions that are manifestly model-independent —in particular, not affected by the choices

of the cutoff value and the regularization scheme 8.

Actually, cutoff independence of observables contradicts NDA already in the 1S0 channel.

The reason is that NDA prescribes that the only contact term in the LO potential should be

chiral-invariant —according to Eq. (1.86), a chiral-symmetry breaking piece such as D2m2
π

would appear only at N2LO. The emergence of a logarithmic divergence proportional to m2
π

as a result of the iteration of OPE, though, demands that a piece like that be present at LO

[46]. This “chiral inconsistency” motivated Kaplan, Savage, and Wise [34, 35] to propose a

PC where pion exchanges are treated as perturbative corrections starting at NLO. However,

higher-order calculations soon made clear that such an approach is not valid at low momenta

in certain partial waves [55].

Currently it is well-known that one low-energy coupling is required at LO to renormalize

every partial wave where the potential is singular and attractive [47, 48]. Given that the

tensor component of OPE (1.61) diverges as 1/r3 around r = 0 (see Appendix B for an illus-

tration corresponding the 3S1-3D1 channel), the former implies, for example, the promotion

8For an alternative interpretation, see e.g. Refs. [53, 54].
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Figure 1.3: Amplitude of the one-loop OPE over the tree-level OPE, roughly computed using the

usual rules of (non-relativistic) PC.

to LO of the two-derivative contact term of the 3P0 channel [47], which NDA anticipates to

be N2LO. But, in fact, according to NDA there is an infinite number of partial waves where

the LO potential is singular and attractive, as NDA anticipates the non-perturbativity of

OPE in any channel at momenta Q ≳ fπ (see Figure 1.3). In contrast, Refs. [47, 56–62] ad-

vocate the treat of OPE as LO only in the lower waves, where suppression by the centrifugal

barrier is not effective.

As a matter of fact there exists already a consistent version of nuclear EFT [47, 56–62]. It

is renormalizable, can describe the scattering amplitudes for Q <MQCD, converges well and

PC is realized at the level of observables. Its foundation relies on a better understanding of

the renormalization of non-perturbative physics and singular interactions [47, 48, 63–67]. The

key improvements over the original Weinberg proposal are the non-perturbative renormal-

ization of the LO amplitudes and the addition of beyond-LO contributions as perturbative

corrections 9. At LO the main difference with the Weinberg counting lies in the promotion

of a series of P - and D-wave counterterms to LO in triplet partial waves for which the tensor

force is attractive, a change originally proposed in Ref. [47]. At subleading orders there are

more counterterms than in Weinberg counting, for instance in the attractive triplets that

9Actually, the reason not to resum such small corrections, as done in the Weinberg scheme, is again

related to the lack of counterterms. Take for example the Long-Yang PC for the 1S0 wave [61], where a

singular two-derivative short-range interaction enters already at NLO. Such interaction will impact N2LO (at

second order in perturbation theory), thus producing an even more singular contribution to the amplitude,

that must be canceled out by the four-derivative contact term entering at N2LO —only the sum of all N2LO

terms will consistently be cutoff independent and small. In contrast, if we truncated the potential at NLO

and resum both LO and NLO, we would be including diagrams with two (three, four. . . ) insertions of the

NLO term without the necessary four-derivative counterterm. Therefore, it would not come as a surprise if

renormalization was again lost [49, 51].
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already received a counterterm at LO. The convergence of the EFT expansion is acceptable

and the description of the data too, but it has not achieved yet a χ2/d.o.f. ∼ 1 as in the

Weinberg approach. However this is expected if we take into account that the calculations

of Refs. [57–61] are still one order below the most advanced ones in the Weinberg approach.

1.3 Pionless EFT

1.3.1 Motivation

As it was discussed above, the existence of two (respectively real and virtual) bound states

in the S-wave channels suffices to discard a fully perturbative treatment of the NN problem.

But, actually, the binding momenta of the real bound state (≈ 45 MeV) and the virtual bound

state (≈ 8 MeV) turn out to be quite smaller than the OPE scales mπ and ΛNN . This implies

that such states can only be reproduced at LO through some cancelation (fine tuning) in

which the short-range component of the NN interaction is the one to blame. Physics can

then be described simply by another successful, renormalizable EFT, known as Pionless

(or Contact) EFT (/πEFT) [34, 35, 68, 69]. This arises from a simple observation: in the

very-low-momentum regime of nuclear physics, Q≪mπ, pion exchange cannot be resolved.

Consequently, the effective Lagrangian contains interactions of contact type only, just like

Eq. (1.70), with subleading corrections consisting of four-nucleon terms including 2,4, . . .

derivatives.

As usual, the off-shell amplitude is found from an LS equation analogous to Eq. (1.72); for

a spherically symmetric potential, such off-shell amplitude depends only on the magnitudes

of momenta and their scalar products —p′, p, and cos θ = p̂′ ⋅ p̂. Hence, the on-shell T matrix

(p′ = p = k) can be partial-wave decomposed as

t`(k) = ∫
+1

−1
d cos θ T (k, cos θ) P`(cos θ) = − 4π/MN

k cot δ`(k) − ik
= 2πi

MNk
[S`(k) − 1] , (1.88)

where P`(x) is a Legendre polynomial, and S`(k) = exp[2iδ`(k)] represents the corresponding

S matrix, δ`(k) being the phase shift. At sufficiently low energies,

k cot δ`(k) = −a−1
` k

−2` + 1
2r`k

2(1−`) + . . . , (1.89)
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with a` and r` the `-wave scattering length and the `-wave effective range 10. The dots stand

for terms proportional to k2(n−`), n = 2,3, . . . , which we omit here. This is the renowned

effective range expansion (ERE), due to Bethe [70]. But now, contrary to the pionful case,

one can derive closed, analytic expressions linking the ERE parameters to the potential

parameters, which shows in a transparent way how renormalization works out. Here we will

illustrate the last statement for the case of neutron-proton (np) scattering in the 1S0 channel,

where the scattering length is a ≡ a0 ≃ −23.7 fm ≃ −(8 MeV)−1 [71], and the effective range is

r0 ≃ 2.7 fm ≃ (73 MeV)−1 [72].

The part of the Lagrangian density relevant for the 1S0 channel is

L(/π)
1S0

= N �(i∂0 +
∇

2

2MN

)N −C0 (NTP⃗1S0
N)� ⋅ (NTP⃗1S0

N)

+ 1
8C2 [(NTP⃗1S0

N)� ⋅ (∇2NTP⃗1S0
N +NTP⃗1S0

∇
2N) +H.c.] + . . . , (1.90)

the ellipsis referring to terms with at least four derivatives, which we do not make explicit

here. This corresponds to an interaction given by a series in even powers of p′ and p,

V
(/π)
1S0

(p′, p) = C0 + 1
2C2 (p′2 + p2) + . . . , (1.91)

which translates in coordinate space as an expansion consisting of a Dirac delta function

plus its even derivatives. This is a highly singular potential, implying the divergence of the

loop integral in the S-wave projection of the LS equation, thus the need for regularizing it

somehow. Here we use a momentum cutoff Λ in the range Λ ≳ Mhi ≫ k and a regulator

function fR(q2/Λ2), with q the magnitude of the off-shell nucleon momentum, that satisfies

fR(0) = 1, fR(∞) = 0. Hence,

T
(/π)
1S0

(p′, p, k; Λ) = V (/π)
1S0

(p′, p; Λ)+ 1

2π2∫
∞

0
dq q2fR(q2/Λ2)V (/π)

1S0
(p′, q; Λ)G(+)

0 (q, k)T (/π)
1S0

(q, p, k; Λ),
(1.92)

where the cutoff dependence induced on the potential must be such that the amplitude is

well-defined for an arbitrarily large Λ.

Of course, the series (1.91) must be truncated at some point before plugging it into Eq.

(1.92) to find the resulting amplitude. In the following, we will explore a few possibilities in

that regard.

10Despite the names given here, a` and r` only have dimensions of length for ` = 0. In general, [a`] = −2`−1,

[r`] = 2` − 1; for example, a1 verifies [a1] = −3, thus it is commonly called the scattering volume.
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1.3.2 The simplest case

We start by testing the renormalizability of the simplest (non-trivial) scenario, which corre-

sponds to the truncation of Eq. (1.91) at its first term,

V
(/π)
1S0

(p′, p; Λ) ≡ C0(Λ). (1.93)

Once inserted into Eq. (1.92), this gives the simple solution

T
(/π)
1S0

(p′, p, k; Λ) = T (/π)
1S0

(k; Λ) = ( 1

C0(Λ) +
MN

4π
I0(k; Λ))

−1

, (1.94)

with

I0(k; Λ) = 2

π ∫
∞

0
dq fR(q2/Λ2) q2

q2 − k2 − i0+ = ik + θ1Λ + k
2

Λ

∞
∑
n=0

θ−1−2n (
k

Λ
)

2n

, (1.95)

the numbers θn depending on the specific regularization employed. For example, for a sharp-

cutoff prescription with a step function fR(x) = θ(1−x), it turns out that θn = 2/(nπ), while

in dimensional regularization with minimal subtraction we have simply θn = 0; in general,

θn ⩾ 0 when n > 0. The linear divergence present needs to be canceled out by the running of

the counterterm. In particular, for

C0(Λ) = C̄0 [− (θ1aΛ)−1 +O ((aΛ)−2)] , C̄0 =
4π

MN

a, (1.96)

it turns out that

[MN

4π
T

(/π)
1S0

(k; Λ)]
−1

= 1

a
+ ik + θ−1

k2

Λ
+O( k

4

Λ3
) . (1.97)

After taking Λ→∞, the above result gives

S
(/π)
1S0

(k) = −k + iκ
k − iκ, κ = 1

a
, (1.98)

for the corresponding scattering matrix, which exhibits a simple pole lying on the negative

imaginary semiaxis, S
(/π)
1S0

(iκ) → ∞, κ ≃ −8 MeV. This is very close to the well-known virtual

shallow state present in the 1S0 channel. Note that, as the residue of the scattering matrix

evaluated at the pole is

iResS
(/π)
1S0

(iκ) = 2

a
< 0, (1.99)

this state has a non-normalizable wavefunction, as it corresponds to an unbound solution.
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1.3.3 Beyond the simplest case

Now, let us go one step further by truncating the series (1.91) at its second term. Much

like in the pionful theory, a quandary inmediately arises: should the C2 piece be infinitely

iterated, just like the C0 one in Section 1.3.2, or rather be treated as a perturbative correction?

When regular potentials are considered, the difference between fully iterating or not should

not be that significant (if the subleading contributions are truly small); however, in what

follows we will check that is not the case at all when singular interactions, like the ones of

/πEFT, are used.

1.3.3.1 Non-perturbative approach

If we decide to fully iterate the C2 term, then we plug the interaction

V
(/π)
1S0

(p′, p; Λ) ≡
1

∑
i,j=0

vij(Λ)p′2ip2j, v(Λ) =
⎛
⎝
C0(Λ) 1

2C2(Λ)
1
2C2(Λ) 0

⎞
⎠
, (1.100)

into Eq. (1.92) to solve it in a non-perturbative approach. The resulting off-shell amplitude

can be put in the form

T
(/π)
1S0

(p′, p, k; Λ) =
1

∑
i,j=0

tij(k; Λ)p′2ip2j, (1.101)

where Eq. (1.94) has been generalized to give the matrix identity

t(k; Λ) = (v−1(Λ) + MN

4π
I(k; Λ))

−1

, I(k; Λ) =
⎛
⎝
I0(k; Λ) I2(k; Λ)
I2(k; Λ) I4(k; Λ)

⎞
⎠
, (1.102)

with

I2n(k; Λ) = 2

π ∫
∞

0
dq fR(q2/Λ2) q2(1+n)

q2 − k2 − i0+ = k2nI0(k; Λ) +
n

∑
m=1

θ1+2mΛ1+2mk2(n−m). (1.103)

For the runnings

MN

4π
C0(Λ) = θ5

θ2
3

1

Λ

⎡⎢⎢⎢⎢⎣
1 + (8θ2

1

θ3

)
1/2

(− 1

r0Λ
)

1/2
+O( 1

r0Λ
)
⎤⎥⎥⎥⎥⎦
, (1.104)

MN

4π
C2(Λ) = − 2

θ3

1

Λ3

⎡⎢⎢⎢⎢⎣
1 + (2θ2

1

θ3

)
1/2

(− 1

r0Λ
)

1/2
+O((a/r0)1/2

(aΛ)3/2 )
⎤⎥⎥⎥⎥⎦
, (1.105)

the amplitude (1.101) verifies (when on-shell)

[MN

4π
T

(/π)
1S0

(k; Λ)]
−1

= 1

a
+ ik − r0

2
k2 +O(k

4r2
0

Λ
) . (1.106)
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Figure 1.4: Full dibaryon propagator (solid box) resulting from the non-perturbative dressing of

bare dibaryon propagator (plain box) with nucleon bubbles (circles).

But Eqs. (1.104) and (1.105) explicitly show that having r0 > 0 is incompatible with

C0(Λ), C2(Λ) being real functions, i.e. with a Hermitian bare Hamiltonian [73]. This

matches the so-called Wigner bound, derived from general principles for potentials that

vanish identically beyond some radius [74, 75].

Yet the above issue can be bypassed if, following Ref. [76], an auxiliary “dibaryon”

field φ⃗ with quantum numbers of an isovector pair of nucleons is introduced to rewrite the

non-derivative term in Eq. (1.90),

−C0 (NTP⃗1S0
N)� ⋅ (NTP⃗1S0

N) ↔ ∆φ⃗ � ⋅ φ⃗ − g (φ⃗ � ⋅NTP⃗1S0
N +H.c.) . (1.107)

The dibaryon residual mass ∆ and the dibaryon-NN coupling g are such that

C0 = g2/∆, (1.108)

as can be checked if one performs the Gaussian path integral by using ∫
+∞
−∞ ds exp(as2 −

2bxs) ∝ exp(−b2x2/a). The parameter redundancy (1.108) permits the convenient choice

g2 ≡ 4π/MN [77], and the Lagrangian (1.90) may be replaced by

L(φ)
1S0

= N � (i∂0 +
∇

2

2MN

)N + φ⃗ � ⋅ [∆ + c(i∂0 +
∇

2

4MN

)] φ⃗ −
√

4π

MN

(φ⃗ � ⋅NTP⃗1S0
N +H.c.) + . . . ,

(1.109)

where the dots account for relativistic corrections and derivative dibaryon-NN couplings.

The kinetic dibaryon term has been included explicitly 11, c being a normalization (dimen-

sionless) factor. Computing the dibaryon self-energy, i.e. dressing up the bare dibaryon

propagator

Bφ(k; Λ) = [∆(Λ) + c(Λ)k2/MN]−1 ≡ MN

4π
V

(φ)
1S0

(k; Λ) (1.110)

with nucleon loops (see Figure 1.4), yields

Dφ(k; Λ) = [1/Bφ(k; Λ) + I0(k; Λ)]−1 ≡ MN

4π
T

(φ)
1S0

(k; Λ). (1.111)

11Otherwise we would be treating φ⃗ as a static, infinitely massive field.
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Taking

∆(Λ) = 1/a − θ1Λ, c(Λ)/MN = −r0/2 − θ−1/Λ, (1.112)

the inverse amplitude becomes

[MN

4π
T

(φ)
1S0

(k; Λ)]
−1

= 1

a
+ ik − r0

2
k2 +O( k

4

Λ3
) , (1.113)

which coincides with Eq. (1.106) after taking Λ → ∞. However, contrary to the previous

case, the physical condition r0 > 0 does not imply anymore a non-zero imaginary part of

the bare potential. (In contrast, it entails the “wrong” sign of the kinetic part of the bare

dibaryon.) As V
(φ)
1S0

is momentum-independent, the only I2n that enters the calculation is

I0, which makes the renormalization of the amplitude much less involved. At the same time,

the energy dependence of the potential is frequently a downside when one tries to apply it

to the few-body sector, as it is not clear how to define the pair energy on which the pair

potentials would depend.

Note that, when Λ→∞, Eqs. (1.106) and (1.113) allow to write the scattering matrix as

S
(/π,φ)
1S0

(k) = (k + iκ−) (k + iκ+)
(k − iκ−) (k − iκ+)

, κ∓ ≡
1

r0

(1 ∓
√

1 − 2
r0

a
) = 1

r0

{1 ∓ [1 − r0

a
− r2

0

2a2
+O(r

3
0

a3
)]}

(1.114)

(with ∣r0/a∣ ≪ 1), from where we see that there are two simple poles, S
(/π,φ)
1S0

(iκ∓) → ∞. Again,

their nature is linked to the sign of the corresponding residue,

iResS
(/π,φ)
1S0

(iκ∓) = ±2κ∓ (
κ+ + κ−
κ+ − κ−

) = ±2κ∓ [1 +O(κ−
κ+

)] (1.115)

(with ∣κ−/κ+∣ ≪ 1).

� The pole at k = iκ−, κ− = 1/a + r0/(2a2) + O(r2
0/a3) ≈ −8 MeV, is nothing but the pole

at k = iκ of Eq. (1.98), that has been shifted slightly upwards,

κ− − κ
∣κ∣ = 1

2

r0

∣a∣ + O (r
2
0

a2
) ≈ 6%, (1.116)

as a consequence of inputting r0 —of course, its new location keeps being very close

to the one of the physical virtual state. As iResS
(/π,φ)
1S0

(iκ−) < 0, this state has a

non-normalizable wavefunction.
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� The pole at k = iκ+, κ+ = 2/r0 + O(1/a) ≈ 146 MeV, lies on the positive imaginary

semiaxis. It cannot be seen as physical, as it turns out that κ+ ≳ mπ, where mπ is

taken to be the pionless breakdown scale. Anyway, since iResS
(/π,φ)
1S0

(iκ+) < 0, the

condition to produce a normalizable wavefunction is not fulfilled, so this pole cannot

correspond to a bound state, whose wavefunction has finite support in coordinate space.

It is called, thus, a redundant pole [78, 79].

1.3.3.2 Distorted-wave Born approximation

It is much convenient, however, to further exploit the fact that the 1S0 scattering length is

almost ten times larger in magnitude than the 1S0 effective range, which has in turn natural

size, ∣a∣−1 ≪ r−1
0 = O(mπ). Indeed, the value of the inverse scattering length, very close to

the one of the virtual-state binding momentum, poses the emergence of a new (accidental)

momentum scale ℵ ≪ mπ, which should consistently be identified with the typical size of

Q in a process amenable to /πEFT. According to this, the third term in the r.h.s. of Eqs.

(1.106) and (1.113) is parametrically suppressed by O(ℵ/mπ) with respect to the first and

the second one, which suggests not to treat a and r0 on the same footing, but rather to

renormalize a at LO, and r0 at NLO.

When the potential of Eq. (1.100) is considered, the above translates into splitting

C0 → C
[0]
0 +C[1]

0 + . . .
C2 → C

[1]
2 + . . .

⎫⎪⎪⎬⎪⎪⎭
⇒ T

(/π)
1S0
→ T

(/π)[0]
1S0

+ T (/π)[1]
1S0

+ . . . , (1.117)

the dots accounting for beyond-NLO terms. In fact, LO has already been solved in Section

1.3.2. Taking

C
[0]
0 (Λ) = C̄[0]

0 [− (θ1aΛ)−1 +O ((aΛ)−2)] , MN

4π
C̄

[0]
0 = a = O(ℵ−1) , (1.118)

which is enhanced by O(mπ/ℵ) with respect to the NDA expectation, yields

[MN

4π
T

(/π)[0]
1S0

(k; Λ)]
−1

= 1

a
+ ik + θ−1

k2

Λ
+O( k

4

Λ3
) . (1.119)

In the distorted-wave Born approximation (DWBA), such LO amplitude is slightly perturbed
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Figure 1.5: Diagrammatic representation of the distorted-wave Born approximation at first order.

The LO amplitude is depicted as a solid box; the NLO potential (amplitude) is plotted as a box

with thin (thick) black stripes; each bubble represents one loop insertion.

by the NLO potential V
(/π)[1]
1S0

, inducing a small NLO correction T
(/π)[1]
1S0

(see Figure 1.5),

T
(/π)[1]
1S0

(p′, p, k; Λ) = − MN

4π
T

(/π)[0]
1S0

(k; Λ) [C[1]
0 (Λ)I0(k; Λ) + 1

2C
[1]
2 (Λ) (I2(k; Λ) + p2I0(k; Λ))]

− MN

4π
T

(/π)[0]
1S0

(k; Λ) [C[1]
0 (Λ)I0(k; Λ) + 1

2C
[1]
2 (Λ) (p′2I0(k; Λ) + I2(k; Λ))]

+ [MN

4π
T

(/π)[0]
1S0

(k; Λ)]
2

[C[1]
0 (Λ)I2

0(k; Λ) +C[1]
2 (Λ)I2(k; Λ)I0(k; Λ)]

+ [C[1]
0 (Λ) + 1

2C
[1]
2 (Λ) (p′2 + p2)] . (1.120)

Taking

C
[1]
0 (Λ) = C̄[1]

0 [θ−3
1 θ3 +O ((r0Λ)−1)] , MN

4π
C̄

[1]
0 = −r0

2
= O (m−1

π ) ; (1.121)

C
[1]
2 (Λ) = C̄[1]

2 [(θ1aΛ)−2 +O((a2/3r
1/3
0 Λ)−3)] , MN

4π
C̄

[1]
2 = a

2r0

2
= O (ℵ−2m−1

π ) ,(1.122)

it turns out that

[MN

4π
T

(/π)[1]
1S0

(k; Λ)] = [MN

4π
T

(/π)[0]
1S0

(k; Λ)]
2

(r0

2
+ θ−1

Λ
)k2, (1.123)

which, combined with Eq. (1.119) (and neglecting N2LO), yields, as wished,

[MN

4π
T

(/π)[0+1]
1S0

(k; Λ)]
−1

= 1

a
+ ik − r0

2
k2 +O( k

4

Λ3
) . (1.124)

Again, things become computationally simpler when an energy-dependent potential as

the one of Eq. (1.110) is used. Now, instead of Eq. (1.117), we have

∆ → ∆[0] +∆[1] + . . .
c/MN → c[1]/MN + . . .

⎫⎪⎪⎬⎪⎪⎭
⇒ T

(φ)
1S0
→ T

(φ)[0]
1S0

+ T (φ)[1]
1S0

+ . . . , (1.125)

with T
(φ)[0]
1S0

(k; Λ) = T (/π)[0]
1S0

(k; Λ) (see Eq. (1.119)), provided that

∆[0](Λ) = ∆̄[0] − θ1Λ, ∆̄[0] = 1/a = O (ℵ) (1.126)

38



CHAPTER 1. INTRODUCTION 1.3. PIONLESS EFT

(see Eqs. (1.108) and (1.118)). Besides, Eq. (1.120) now reduces to

MN

4π
T

(φ)[1]
1S0

(k; Λ) = −[MN

4π
T

(φ)[0]
1S0

(k; Λ)]
2

[∆[1](Λ) + c[1](Λ)k2/MN] , (1.127)

and the runnings

∆[1](Λ) = 0; c[1](Λ)/MN = c̄[1](Λ)/MN − θ−1/Λ, c̄[1]/MN = −r0/2 = O(m−1
π ) (1.128)

ensure that T
(φ)[0+1]
1S0

(k; Λ) = T
(/π)[0+1]
1S0

(k; Λ) (1.124). Comparing Eq. (1.112) with Eqs.

(1.126) and (1.128), we learn that, actually, ∆(Λ) = ∆[0](Λ) + ∆[1](Λ) and c(Λ)/MN =
c[1](Λ)/MN , as a consequence of the momentum independence of the dibaryon potential.

Note that Eqs. (1.118), (1.121) and (1.122), one one hand, and Eqs. (1.126) and (1.128),

on the other hand, confirm that

C̄
[1]
0

C̄
[0]
0

∼ C̄
[1]
2 Q2

C̄
[0]
0

∼ c̄
[1]Q2/MN

∆̄[0] = O( ℵ
mπ

) , (1.129)

again at variance with NDA, which predicts O(ℵ2/m2
π) for the above ratios. The fact that

Eq. (1.119) includes a residual effective range ∼ 1/Λ fits the need for renormalizing r0 ∼ 1/mπ

already at NLO (not at N2LO), according to the argument employed in Ref. [61]; analogously,

the residual dependence ∼ 1/Λ3 of Eq. (1.124) anticipates that the shape parameter P0,

present in the ERE through the term +P0k4/4, should be renormalized at N3LO. (In the

absence of further fine tuning, it is assumed that P0 ∼ 1/m3
π [34, 35, 68, 69]. Such estimate

indeed works for np scattering in the 1S0 channel, according to the values for P0 obtained in

Refs. [80, 81].)

Finally, at LO both the amplitude and the scattering matrix blow up (after the cutoff

removal) when k = iκ[0] = i/a (see Eq. (1.98)). This pole gets a bit shallower in the imaginary

momentum axis when r0 is perturbatively included, κ[0] → κ[0+1], where the relative shift

can be easily checked to be
κ[1]

∣κ[0]∣ =
r0

2∣a∣ ≈ 5%. (1.130)

Not surprisingly, this result coincides, up to O(ℵ2/m2
π), with the one of Eq. (1.116).

1.3.4 Beyond the NN sector

The richness of low-energy phenomena displayed by the three-nucleon (3N) system is cap-

tured by a Lagrangian whose only degrees of freedom keep being the nucleon fields them-

selves, now including couplings ∼D2n∂2n(NN)3. It is convenient to rewrite such Lagrangian
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through the inclusion of the auxiliary dibaryon field; then, the 3N problem amounts to the

obtention of the nucleon-dibaryon scattering amplitude. And, just like the large value of

the two-body scattering length enforces the non-perturbative iteration of the bare dibaryon

propagator in the NN case (see Figure 1.4), now it becomes necessary to resum all the

nucleon-dibaryon non-derivative diagrams [9], while subleading corrections may, as usual, be

added in perturbation theory.

Again, here we will focus on the S waves —dominant due to the absence of angular-

momentum repulsion— which, for the case of three spin-1/2 particles, may occupate either

the doublet state 2S1/2, like 3H and 3He nuclei, or the quartet state 4S3/2, like quartet

nucleon-deuteron (Nd) scattering:

� Quartet. In this channel, the three spins are aligned, so that the Pauli blocking prevents

the three nucleons from occupying the same point, suggesting that short-range physics

of the full system will not play a protagonist role. Indeed, inputting NN scattering

parameters suffices to obtain a high-quality description of low-energy Nd scattering

[82]. The quartet scattering length is computed in Ref. [83] to be a3/2 = 6.33 fm (at

N2LO), whose relative difference with respect to the experimental value [84] is < 0.5%.

� Doublet. Here the Pauli principle does not forbid the three fermions to touch (the

same happens in the three-boson case), thus a contact 3N force is anticipated to

be relevant. This is confirmed by the fact that, in the absence of such interaction,

the LO zero-energy nucleon-dibaryon amplitude exhibits limit-cycle-type asymptotic

cutoff dependence. Such a behavior enforces the inclusion at LO of a short-range

3N force arising from the Lagrangian coupling ∼ D0(NN)3 [85–87]. It turns out

that D0 = O((4π)2/(MNℵ4)), which is enhanced by O(m4
π/ℵ4) with respect to the

NDA expectation [9]. No three-body derivative short-range force is required at NLO,

although D0 demands a correction proportional to the two-body effective range [88].

Predictions for the three-body sector given by several models, all of them obtained

using the low-energy NN phenomenology as an input, must then be correlated to a

good approximation through the single three-body coupling. Thus, /πEFT provides an

explanation for the correlation displayed by the doublet Nd scattering length versus the

3H binding energy —the so-called “Phillips line” [89]. If D0 is fixed to reproduce the

scattering length, then the binding energy is computed to be B3H = 8.31 MeV in Ref.

[87], in very good agreement with the experimental value (2% of relative difference).
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Concerning the four-nucleon (4N) system, one may inmediately ask whether an operator

∼ E0(NN)4 needs to be promoted to LO in some cases. A crude but intuitive argument

in support of the absence of relevant purely 4N forces is the following. While the kinetic

repulsion is balanced by an attractive two-body potential in the NN sector, when a third

particle is added the kinetic effect is multiplied only by 3/2 and the number of interacting

pairs is multiplied by 3; hence, an extra repulsive 3N force arises to prevent the system

from collapsing. As a fourth body is included, the number of attractive (repulsive) NN

(3N) interactions is multiplied by 2 (4) with respect to the three-body case, thus no new

force is required to avoid the collapse. This intuition is confirmed by the fact that no 4N

force is needed at LO to renormalize the system [90]. The analog of the Phillips line for the

four-body system, known as “Tjon line”, which shows the correlation between the binding

energies of 3H and 4He nuclei [91], is also captured by the theory. In Ref. [90] the three-body

force is tuned to reproduce the experimental B3H, resulting in a LO postdiction of B4He that

is in good agreement (within 10%) with its phenomenological value.

Recently, the possibility of a correlation between the rough features of nuclei (at least the

light ones), on one hand, and one single parameter Λ∗ set by B3H, on the other hand, has been

explored [92]. In this approach, the details of the NN system are not considered as the start-

ing point to decipher the physics of heavier systems (contrary to what has been traditionally

done), but an expansion around unitarity —at whose LO both NN S waves exhibit bound

states right at threshold and where subleading corrections are added as perturbations— is

performed. The convergence pattern shown by this expansion is promising and it opens the

possibility of extending such strategy to atomic and molecular physics.

In conclusion, the applications of /πEFT to nuclear systems with A ⩾ 3, a couple of which

we have briefly reviewed here, are particularly indicative of the power of this theory. In such

a context, RG invariance proves again as the fundamental guideline from where consistent

PC rules are derived.
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1.4 Heavy-quark EFT

1.4.1 Introduction

As mentioned in Section 1.1.2, the QCD coupling will become smaller and smaller at the

same time as the length scale of interest does, thus yielding a more easily tractable theory of

strong interactions from where predictions can be made. Indeed, in an imaginary world where

all quark flavors were heavy enough, i.e. where their Compton wavelengths were sufficiently

small, the properties of heavy hadrons could be directly derived from first principles (if we

were here to do so!). Physics of these systems would then be the strongly interacting analog

of atomic physics governed by the electromagnetic force. Actually, much like the hydrogen

atom is most easily understood in the rest frame of the heavy nucleus, it is very convenient

to approach systems such as heavy mesons, composed of a heavy quark Q (c or b 12) plus

a light antiquark q̄ (ū, d̄ or s̄), by assuming a (close to) static Q. Essentially, this is the

strategy followed by heavy-quark EFT (HQEFT).

Hence, within the heavy meson one distinguishes between the massive color source and

its surrounding cloud. The latter, affectionately known as “brown muck” in the literature

[93], consists of the light antiquark and the associated glue. The brown muck, characterized

by the infrared scale ΛQCD, is for sure too complicated to be explicitly solved. The key point,

however, is that —much like the electronic structure of the isotope of a given element does

not care about how many neutrons the nucleus contains— the brown muck will not see the

physics of the heavy quark (except, of course, its color charge). Such an invariance goes

under the name of heavy-quark symmetry, an old idea that dates back to the beginnings

of quark models themselves [94], and was largely developed in the subsequent years [95–

102]. One needs to differentiate between heavy-quark spin symmetry and heavy-quark flavor

symmetry —in virtue of the former, effects that couple the heavy-quark spin S to the muck

will disappear as MQ →∞; in virtue of the latter, the muck spectrum should not look very

different when the heavy quark is shifted from b to c or vice versa.

Consider the charmed pseudoscalar D mesons and the bottomed pseudoscalar B̄ mesons,

which can be arranged in SU(3) flavor space as the column vectors

(D0 D+ Ds)
T
= (cū cd̄ cs̄)

T
, (B̄− B̄0 B̄s)

T
= (bū bd̄ bs̄)

T
, (1.131)

12The lifetime of the t quark is so short due to its weak decay that we do not expect it to be able to get

confined into hadrons.
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and similarly for the charmed vector D∗ mesons and the bottomed vector B̄∗ mesons. The

correspondences

D(0) ↔ B̄(0), D∗(0) ↔ B̄∗(0), (1.132)

where “0” stands for the rest frame of the heavy quarks, are manifestations of heavy-quark

flavor symmetry.

In a theory with NQ heavy-quark flavors, heavy-quark flavor symmetry is an approximate

SU(NQ) mapping that becomes exact as ΛQCD/MQ → 0. Actually, the fact that the muck

is blind to the orientation of S makes the (spin-flavor) symmetry larger, SU(2NQ) 13. Of

course, this reminds us of the approximate chiral symmetry SU(Nq)L × SU(Nq)R, Nq being

the number of light-quark flavors (see Section 1.2.1), that becomes exact as mq/ΛQCD →
0. And, just like the mass of the s is not that small when compared to the QCD scale

(ms/ΛQCD ∼ 1/3), which worsens the convergence of the chiral expansion at the level of the

strange quark, having ΛQCD/Mc ∼ 1/3 makes the heavy-quark expansion not as clean for the

charm sector as it is for the bottom sector (since ΛQCD/Mb ∼ 1/10).

1.4.2 HQEFT Lagrangian

In this section we will assume a top-down approach in which the starting point is the Dirac

Lagrangian,

LQ = Ψ̄Q(i /D −MQ)ΨQ = ψ̄Q [i /D + (/v − 1)MQ]ψQ, (1.133)

where a large mechanical part of the heavy-quark field ΨQ was separated out analogously as

it was done for the nucleon field in Eq. (1.46),

ΨQ(x) = e−iMQv
µxµψQ(x). (1.134)

Such field becomes (evidently) infinitely massive when MQ → ∞, which would suggest us

to integrate it out from our low-energy theory. But it does not look very useful to directly

eliminate the only degree of freedom present; hence, we need to first rewrite Eq. (1.133)

in a suitable manner. With this purpose, use the projector P v
± defined in Eq. (1.48) to

decompose

ψQ(x) = (P v
+ + P v

−)ψQ(x) ≡ Qv(x)+Bv(x) with

⎧⎪⎪⎨⎪⎪⎩

/vQv = Qv ⇔ P v
+Qv = Qv, P v

−Qv = 0;

/vBv = −Bv ⇔ P v
−Bv = Bv, P v

+Bv = 0.

(1.135)

13This situation is analogous to the one that gives rise to Wigner’s SU(4) symmetry in nuclear physics.
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Using in Eq. (1.135) in Eq. (1.133), expanding the products and simplifying,

LQ = Q̄v (ivµDµ)Qv − B̄v (ivµDµ + 2MQ)Bv + Q̄v (i /D
⊥)Bv + B̄v (i /D

⊥)Qv, (1.136)

with D⊥µ = Dµ − vµvνDν the orthogonal component of the covariant derivative. Equation

(1.136) illustrates the splitting of the heavy-quark field into Qv, which is effectively massless,

and Bv, with effective mass 2MQ. In the rest frame, vµ = (1,0), Qv (Bv) corresponds to the

two upper (lower) components of the four-spinor ψQ. In other words, Qv (Bv) anihilates a

heavy quark (creates a heavy antiquark) of four-velocity v.

Again, the fact that Bv becomes infinitely massive in the heavy-quark limit indicates that

it may be integrated out. On a classical level —i.e. up to O(αs(MQ)) quantum corrections

that can be added in perturbation theory, as αs(MQ →∞) → 0—, Bv can be easily eliminated

from LQ by using the equation of motion

δLQ
δB̄v

= ∂µ
δLQ

δ(∂µB̄v)
⇒ i /D⊥Qv = (ivµDµ + 2MQ)Bv, (1.137)

hence

Bv = (ivµDµ + 2MQ)−1
i /D⊥Qv =

1

2MQ

∞
∑
n=0

(−1)n (iv
µDµ

2MQ

)
n

i /D⊥Qv. (1.138)

Recall that ΛQCD and MQ are the only momentum scales present. Then, in virtue of Eq.

(1.134), we anticipate that each derivative in Eq. (1.138) brings down a soft momentum

∼ ΛQCD, implying that each term in the above sum is suppressed by O(ΛQCD/MQ) ≪ 1

with respect to the inmediately previous one. This guarantees the convergence of the series.

Plugging Eq. (1.138) into Eq. (1.136) allows us to express our effective Lagrangian as the

derivative expansion

Leff = L[0]
eff + L[1]

eff + . . . = Q̄v (ivµDµ)Qv − Q̄v
/D⊥2

2MQ

Qv + . . . , (1.139)

where L[n]
eff contains dimension-(4 + n) operators suppressed by n powers of MQ:

� Of course, the LO term is the only one that survives in the heavy-quark limit. It is noth-

ing but the dominant kinetic piece; in the rest frame, it becomes simply Q̄v (iD0)Qv.
The SU(2NQ) heavy-quark symmetry that was anticipated in Section 1.4.1 is manifest

from this term.
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� Defining σµν = i [γµ, γν] /2, the NLO term may be massaged into

L[1]
eff = − Q̄v

D⊥2

2MQ

Qv + Q̄v
iσµνD⊥µD

⊥
ν

2MQ

Qv, (1.140)

whose first term represents the first kinetic correction to L[0]
eff ; in the rest frame, it

collapses to Q̄v[D2/(2MQ)]Qv. The second term gives rise to the so-called “chromo-

magnetic” interaction, a relativistic effect that represents the most important manifes-

tation of heavy-quark spin symmetry breaking. It is behind the small mass splitting

between, for example, the heavy charmed mesons D (J = 0) and D∗ (J = 1).

The situation with D and D∗ is somehow similar to the one with p and n; then, just

like it is useful to take advantage of the approximate isospin symmetry of nuclear physics

and treat (p, n) as an isodoublet nucleon state, it results convenient to exploit approximate

heavy-quark spin symmetry and combine both heavy mesons in a single “superfield”. In the

following, we will see how this is done.

1.4.3 Heavy-meson chiral Lagrangian

Even though heavy quarks were the only degrees of freedom we dealt with in Section 1.4.2,

what we learned there turn out to be useful in the development of a low-energy EFT that

encodes the coupling of heavy mesons (Qq̄) with light mesons (qq̄). Provided that the

latter carry four-momenta that are soft compared to the chiral breakdown scale (1.32), the

technology introduced in Sections 1.2.1 and 1.2.2 may be exploited to build up the Lagrangian

of such EFT, as we will see.

But, as a first step, we need to construct the heavy-meson states themselves by means

of a consistent formalism [5]. In the following, we will fix Q = c for notation simplicity; this

will not lead to any loss of generality in virtue of heavy-flavor symmetry, though. Call ∣φ(±)⟩
(∣χ(±)⟩) to the spin part of the c (q̄) wavefunction. One may use the representation

∣φ(+)⟩ = (1 0 0 0)T, ∣φ(−)⟩ = (0 1 0 0)T, ∣χ(−)⟩ = (0 0 −1 0)T, ∣χ(+)⟩ = (0 0 0 −1)T,

(1.141)

which make an orthonormal basis of eigenstates of the spin operator S. Let us study sepa-

rately the J = 0 and the J = 1 cases within the rest frame of c (v = 0), for which Eq. (1.48)

becomes

P 0
± = 1

2(1 ± γ0). (1.142)
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� D mesons. As c and q̄ have opposite spins, the pseudoscalar spin part will be propor-

tional to

∣φ(+)⟩ ⟨χ(−)∣ + ∣φ(−)⟩ ⟨χ(+)∣ = P 0
+γ5 (1.143)

(see Eq. (1.142)). The full state will be thus written as

H
(J=0)
a (0) = −P 0

+Daγ5, a = 1,2,3, (1.144)

with D1 =D0, D2 =D+, D3 =Ds (see Eq. (1.131)). This state is normalized to

Tr [γ5(P 0
+)2γ5] = 2. (1.145)

� D∗ mesons. Since these are vector particles, three independent polarization states may

take place. One can choose the polarization basis

ε+ = (0, 1√
2
, i√

2
,0), ε0 = (0,0,0,1), ε− = (0, 1√

2
,− i√

2
,0), (1.146)

which is orthonormal, ε∗jµε
µ
k = −δjk, and subject to the gauge constraint vµε

µ
j = 0. The

respective spin parts will then be proportional to

∣φ(+)⟩ ⟨χ(+)∣ = − 1√
2
P 0
+ /ε+, ∣φ(+)⟩ ⟨χ(−)∣ − ∣φ(−)⟩ ⟨χ(+)∣ = −P 0

+ /ε0, ∣φ(−)⟩ ⟨χ(−)∣ = − 1√
2
P 0
+ /ε−,

(1.147)

and the full state will be written as

H
(J=1)
a (0) = P 0

+ /D∗
a, a = 1,2,3, (1.148)

with D∗
1 =D∗0, D∗

2 =D∗+, D∗
3 =D∗

s . This state is normalized to

Tr [/ε�(P 0
+)2/ε] = 2. (1.149)

In virtue of heavy-quark spin symmetry, both states (1.144) and (1.148) are coupled into

a single superfield Ha. In a reference frame where the c quark has a given three-velocity v,

Ha(v) = P v
+( /D∗

a −Daγ5) (1.150)

(see Eq. (1.48)). Its conjugate field is

H̄a(v) = γ0H�
a(v)γ0 = ( /D∗�

a +D�
aγ5)P v

+ . (1.151)
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The light-meson fields that couple to the heavy-meson fields (1.150) and (1.151) in the

chiral Lagrangian are to be considered as pseudo-Goldstone bosons (see Section 1.2.1). Given

that the heavy-meson fields transform as a triplet under SU(3)V , in what follows we will

make use of Eq. (1.15) in the definition of the unitary matrix U (1.12), so that this will

transform linearly under SU(3)L × SU(3)R,

Uab ↦ (UL)ac Ucd (U �
R)db, (1.152)

where we kept the isospin indices explicit for later convenience. In analogy with what we

imposed for the nucleon field in Section 1.2.2, the heavy-meson field Ha introduced above

and its covariant derivative (Dµ)abHb must transform non-linearly under SU(3)L × SU(3)R,

but linearly under SU(3)V . This is done via the compensator matrix h,

Ha ↦ habHb, (Dµ)abHb ↦ hab(Dµ)bcHc, (1.153)

where we recalled that

ξab ↦ hacξcd(U �
R)db = (UL)acξcd(h�)db, ξacξcb = Uab. (1.154)

The definitions of the vector current (1.41) and the axial-vector current (1.42) will be recov-

ered, too,

(Vµ)ab = 1
2 [ξ�, ∂µξ]ab, (Aµ)ab = i

2 {ξ�(x), ∂µξ(x)}ab. (1.155)

These two objects transform under SU(3)L × SU(3)R as

(Vµ)ab ↦ hac [(Vµ)cd + ∂µδcd] (h�)db, (Aµ)ab ↦ hac(Aµ)cd(h�)db, (1.156)

and the former will be used in the definition of the covariant derivative,

(Dµ)ab = ∂µδab + (Vµ)ab, (1.157)

consistently with Eq. (1.153). With such building blocks, the most general Lagrangian

coupling preserving light-quark and heavy-quark spin symmetries reads [103]

LπH = hTr (H̄aHb /Aabγ5) + . . . , (1.158)

where the traces are computed over Dirac indices, and h is a dimensionless coupling constant

that must be determined through empirical data (see e.g. Ref. [104]). Finally, the ellipses
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account for terms reflecting that both symmetries are only approximate. Being suppressed

by powers of either the heavy-quark mass or the chiral breakdown scale, such terms should

be added as perturbative corrections to our LO theory.

To summarize, for the last four decades HQEFT has been widely applied to the study

of hadron systems in the charm and bottom sectors. Originally, this was done so in parallel

with the development of χPT; in the early 90s, with the seminal work by Wise and others

(see e.g. Ref. [105]), a new synthesis between HQEFT and χPT started to be exploited, thus

opening up several unexplored directions in hadronic physics —semileptonic B and D decays

with emission of a pseudo-Goldstone boson, chiral-logarithmic corrections to heavy-meson

decay constants, composite states of exotic mesons and baryons, etc.

1.5 Outline

In this chapter, we have summarized the most general ideas behind EFT, and explained why

EFT is a convenient tool in the theoretical understanding of nuclear and hadronic systems.

Next, we have introduced χPT as a successful case of low-energy EFT of the A = 0,1 sectors,

as well as derived the corresponding PC rules. We have discussed how such rules turn

out to fail already in the A = 2 sector due to its essential non-perturbative nature, which

implies the need for generalizing the perturbative χPT to the so-called χEFT. We have also

presented /πEFT as a useful theory of few-body nuclear physics in the very-low-energy regime

where the characteristic length scale is large compared to the pion Compton wavelength.

Special emphasis has been made on the applications of this EFT to the A = 2 sector, even

though a comment on more general few-nucleon systems has been included. Finally, a short

introduction to HQEFT and its low-momentum connection with χEFT has been given. The

basic motivation here has been to show how the heavy-meson chiral Lagrangian should be

built up. This will serve us as a starting point in the description of the DD∗
s0(2317) and

D∗D∗
s1(2460) systems.

One of the consequences of applying the χPT PC directly to NN χEFT is the predicted

non-perturbativity of the OPE interaction always, at any partial wave. However, it is well-

known that the centrifugal barrier, present whenever the orbital angular momentum is not

zero, suppresses this interaction, demoting it to a perturbative effect. In Chapter 2 of the
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present work, which is based on Ref. [106], this suppression is quantified for the particular

case of peripheral spin-singlet channels (1P1, 1D2, . . . ), in a way that fits consistently the EFT

approach. To find the demotion of OPE with respect to LO, its strength is rescaled up to

the critical point in which a bound state is produced at threshold; then, the rescaling factor

determines the corresponding expansion parameter of the perturbative interaction. The

results of this “peripheral demotion” may be exploited in few-body calculations, providing

theoretical arguments to neglect partial waves where tree-level one-pion exchange is already

higher-order than the desired calculation itself.

The 1S0 partial wave was excluded from the analysis of Chapter 2, not only because the

centrifugal barrier is not present in it, but also because this particular channel displays some

features that are not completely understood. In particular, it is disturbing that Weinberg’s

prescription for the 1S0 LO interaction predicts a scattering amplitude that exhibits large

discrepancies with partial-wave-analysis results already at moderate scattering momenta k.

In particular, the phenomenological 1S0 amplitude vanishes at k ≈ 340 MeV; since this point

is quite below the assumed breakdown scale of the EFT, we would like the expansion to

converge there, which requires that the amplitude zero be included at LO. This can be

achieved with a two-dibaryon short-range potential. In Chapter 3, based on Ref. [107],

we present a new PC in which OPE is a non-perturbative effect. It is consistent with

renormalization invariance and with the symmetry properties of QCD, and its results up to

NLO show remarkable agreement with phenomenology. We also include a first approach to

the problem in which pions have been integrated out, just like it is done in usual /πEFT,

which allowed us to derive some analytic results that fit phenomenology surprisingly good,

too.

Of course, the EFT philosophy that was exemplified in Chapters 2 and 3 is not exhausted

in the nucleon sector and may be applied to more exotic physical systems, whose quark

content is not the same as for ordinary matter. The opposite intrinsic parity of the D∗
s0(2317)

(D∗
s1(2460)) and the D (D∗) charmed heavy mesons enables them to exchange an S-wave

kaon. The resulting one-kaon-exchange interaction has the coordinate form of an attractive

Yukawa potential that turns out to be unusually strong and long-ranged due to the mass

difference MD∗

s0
−MD. In Chapter 4, based on Ref. [108], we develop an EFT whose degrees

of freedom are the heavy mesons and the light pseudo-Goldstone bosons. The interesting

feature of our proposed PC is that only the Yukawa potential enters at LO, while contact

contributions stemming from four-meson vertices should be taken as perturbative corrections.
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This implies that no non-perturbative regularization/renormalization mechanism is needed,

thus allowing us to make concrete predictions. We find that one-kaon exchange almost

guarantees by itself the existence of a relatively shallow D∗
s0D (D∗

s1D
∗) bound state with

JP = 0− (JP = 0−,2−), whose nature is probably molecular. We also anticipate the existence

of its bottom counterpart Bs0(5730)B (Bs1(5776)B∗). Here, the potential will have the same

structure as before, but it will be even stronger due to the heavier masses of the bottomed

mesons. Consequently, this molecular candidate will be more tightly bound and will exhibit

a richer spectrum that might include an excited S-wave state and even a shallow P -wave

state.

Finally, conclusions of this work are presented in Chapter 5.
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Chapter 2

NN peripheral singlet waves

2.1 Introduction

One prediction of the original Weinberg counting of two-nucleon χEFT is that the OPE

interaction has always LO nature. Nevertheless, pion exchanges have been known for a long

time to be perturbative in peripheral partial waves [109, 110]. This is easy to understand

in terms of the repulsive centrifugal barrier for high angular momenta (` ≫ k/mπ, with k

the center-of-mass momentum and mπ the pion mass), but we will see that, as a matter of

fact, the peripheral demotion already takes place for moderate angular momenta (` ∼ k/mπ).

Even though these phenomena have been discussed in the literature from time to time

[47, 56, 58, 60], it has been done rather as an afterthought, and an explanation in terms of

PC has remained unexplored up to know. This chapter, based on Ref. [106], is devoted to

the task of quantifying the size of the peripheral wave suppression to systematically include

it in EFT calculations.

In those two-body channels where the full iteration of OPE produces short-range diver-

gences, giving an answer to this issue is important, as it would provide a theoretically sound

argument to perform or avoid the non-perturbative regularization and renormalization of

the potential at a given partial wave. However, this is not the case in two-body channels

where the divergences do not appear. Still, solving the issue above would find applications

in few-body calculations, which usually require the inclusion of contributions arising from

two-body partial waves up to a critical value of the orbital angular momentum (typically

` ⩾ 5 or j ⩾ 5 in the three-nucleon system [111]). However, the choice of a maximum angular

momentum is driven by numerical considerations, rather than by the constraints that the
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EFT expansion imposes on the accuracy of physical observables.

We aim at translating the well-known peripheral wave suppression of OPE into the PC

language. This will allow to discriminate, on the basis of PC arguments, which two-body

partial waves are to be kept or ignored, thus improving the systematics of these calculations

or even simplifying them at the lowest orders where probably very few partial waves need

to be included. We will limit ourselves to the spin-singlet waves where OPE is not singular

and thus can be defined without counterterms.

This chapter is structured as follows. In Section 2.2 we will compare the non-perturbative

OPE predictions for the phase shifts in the singlets with their perturbative expansion, al-

lowing us to see up to what extent OPE is perturbative. In Section 2.3 we will provide a PC

explanation for the peripheral demotion of central OPE, which will be checked later against

numerical calculations of the expansion parameter of central OPE. Finally we will present

our conclusions in Section 2.4.

2.2 Perturbative OPE

In this section we will analyze whether the OPE potential is perturbative in the ` ⩾ 1 singlet

waves, i.e. 1P1, 1D2, 1F3, etc. (The ` = 0 singlet wave will be studied in Chapter 3.) With

that purpose, we will compare the amplitudes resulting from the full iteration of OPE with

the perturbative ones. The phase shifts up to fourth order in perturbation theory will be

obtained. The results of these calculations will confirm that the OPE potential is definitely

perturbative in all the singlet waves with ` ⩾ 1. In terms of PC, the above is interpreted

as the beyond-LO nature of OPE in these waves, where LO is reserved for interactions that

are to be infinitely iterated to reproduce the non-perturbative physics that emerges in the S

waves.

The comparison between non-perturbative and perturbative OPE can be done in a

straightforward manner only in the singlets. This is due to the fact that the long-range

part of the OPE potential (1.61) comprises central and tensor pieces. According to Eq.

(1.60), the former is ∝ 1/r when the internucleon distance r is made arbitrarily small,

thereby it is a regular interaction, but the latter gets ∝ 1/r3 in the short-distance regime

and is thus a singular interaction. The tensor part of OPE, while playing a fundamental role

in the triplet waves (see Appendix B for the case of the 3S1-3D1 channel), is vanishing in the

singlet channels. This is what makes possible the simple analysis we pursue in this section.
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2.2.1 Formalism

Here we will first solve the Schrödinger equation with the OPE potential to obtain the

non-perturbative phase shift δ`(k). Next, this will be perturbatively expanded as

δ`(k) = δ[1]` (k) + δ[2]` (k) + δ[3]` (k) + . . . , (2.1)

where the superindices in square brackets indicate the number of insertions of the OPE

potential. Comparing the left- and right-hand sides of the equation above, we can test the

convergence of the perturbative series.

Consider the reduced Schrödinger equation,

[ ∂
2

∂r2
+ k2 −MNV (r) − `(` + 1)

r2
]u`(r;k) = 0, (2.2)

where MN is the nucleon mass, and u`(r;k) and V (r) represent respectively the reduced

wavefunction and the long-range component of the coordinate OPE potential (1.61). In the

singlet channels, for which the tensor operator S12 vanishes and the spin-dependent operator

σ1 ⋅σ2 gives −3, it turns out

V (r) = −τ⃗1 ⋅ τ⃗2
m2
π

MNΛNN

e−mπr

r
, (2.3)

where the isospin-dependent operator τ⃗1 ⋅ τ⃗2 gives +1 for the isovector waves (` = 0,2, . . . ),

for which V (r) is attractive, and −3 for the isoscalar waves (` = 1,3, . . . ), for which V (r)
is repulsive. Also, recall that ΛNN ≈ 290 MeV (1.69), the characteristic momentum scale of

OPE, is such that OPE is naively expected to become non-perturbative only at external

momenta Q ≳ ΛNN (see Figure 1.3 and Refs. [34, 35]). We will check that such hypothesis

does not hold in the peripheral singlets.

We solve Eq. (2.2) with the boundary conditions at the origin

u`(0;k) = 0,
∂

∂r
u`(r;k)∣

r=0
= 1, (2.4)

corresponding to a regular interaction. In virtue of the asymptotic form of the wavefunction

(mπr ≫ 1),

u`(r;k) → ̂`(kr) − ŷ`(kr) tan δ`(k), (2.5)

̂`(x) = xj`(x), ŷl(x) = xy`(x) being reduced spherical Bessel functions, the non-perturbative

phase shifts may be extracted by inputting u` evaluated at the infrared cutoff R = 20 fm.
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In contrast, the perturbative phase shifts will be found through the integral expression

tan δ`(k) = −
MN

k ∫
∞

0
dr u`(r;k)V (r)̂`(kr), (2.6)

which can be easily derived from the reduced Schrödinger equation (2.2) together with its

free version

[ ∂
2

∂r2
+ k2 − `(` + 1)

r2
] v`(r;k) = 0, (2.7)

where the free wavefunction v` satisfies the regularity conditions at the origin,

v`(0;k) = 0,
∂

∂r
v`(r;k)∣

r=0
= 1, (2.8)

and has the asymptotic form

v`(r;k) → ̂`(kr). (2.9)

Indeed, subtracting Eq. (2.7) times u` from Eq. (2.2) times v`, integrating the result between

zero and infinity, using the conditions (2.4), (2.5), (2.8), and (2.9), and recalling the property

̂`(x)ŷ′`(x) − ̂′`(x)ŷ`(x) = 1, Eq. (2.6) is obtained. The integral formula is very useful for a

perturbative calculation: given the wavefunction of order n, the phase shift at order n + 1

can be found.

If the potential is weak enough, the reduced wavefunction may be expressed as the

perturbative sum

u`(r;k) = u[0]
` (r;k) + u[1]

` (r;k) + u[2]
` (r;k) + u[3]

` (r;k) + . . . , (2.10)

with

[ ∂
2

∂r2
+ k2 − `(` + 1)

r2
]u[0]

` (r;k) = 0, (2.11)

[ ∂
2

∂r2
+ k2 − `(` + 1)

r2
]u[n]

` (r;k) = MNV (r)u[n−1]
` (r;k) for n ⩾ 1. (2.12)

This set of differential equations is to be solved iteratively, starting with n = 0 for which we

take u
[0]
` (r;k) = ̂`(kr) (the free solution). Then, expanding the integral expression for the

phase shifts perturbatively, the Born approximation turns out,

δ
[1]
` (k) = −MN

k ∫
∞

0
dr ̂2`(kr)V (r). (2.13)

For n ⩾ 1 the only subtlety is finding a suitable boundary condition for u
[n]
` , which can be

easily done via a perturbative expansion of Eq. (2.5). At first order we find the asymptotic

boundary condition

u
[1]
` (r;k) → −δ[1](k) ŷ`(kr), (2.14)
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from which we can integrate u
[1]
` for arbitrary r. This first correction to the wave function

gives rise to the second order contribution to the phase shift, as seen by inserting u
[1]
` in the

perturbative expansion of Eq. (2.6):

δ
[2]
` (k) = −MN

k ∫
∞

0
dr u

[1]
` (r;k)V (r)̂`(kr). (2.15)

Similarly, the second, third, . . . order corrections to the wavefunction are obtained through

the asymptotic conditions

u
[2]
` (r;k) → −δ[2](k)ŷ`(kr), (2.16)

u
[3]
` (r;k) → −[δ[3](k) + 1

3δ
[1]3(k)] ŷ`(kr), (2.17)

. . . (2.18)

They allow to determine the third, fourth, . . . order contributions to the phase shift:

δ
[3]
` (k) = −MN

k ∫
∞

0
dr u

[2]
` (r;k)V (r)̂`(kr) − 1

3δ
[1]3
` (k), (2.19)

δ
[4]
` (k) = −MN

k ∫
∞

0
dr u

[3]
` (r;k)V (r)̂`(kr) − δ[1]2` (k)δ[2]` (k), (2.20)

. . . (2.21)

2.2.2 Results

As mentioned above, the calculations are always finite and well-defined for the singlet-channel

OPE. Still, on a practical level, the computational expense of doing perturbation theory up

to high orders decreases significantly if a finite cutoff is used. Hence, we have regularized

the potential with a step function,

V (r) → V (r) θ(r − rc), (2.22)

which simply amounts to changing the lower limit of the perturbative integrals from r = 0 to

r = rc, and chosen rc = 0.3 fm as a reference value 1. For this cutoff the perturbative results

1We are using a variable step integration method for the set of coupled differential equations (2.11) and

(2.12). Owing to the number of differential equations involved, the calculation gets increasingly expensive

for small cutoffs when the perturbative order considered is increased; this effect becomes more noticeable

for large values of `, particularly at low momenta. The chosen cutoff is actually on the limit of what we can

compute at fourth order, yet it suffices for a nuclear EFT calculation. Besides, this is significantly below the

standard cutoff ranges employed in previous EFT calculations in coordinate space [57, 58].
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Figure 2.1: Cutoff dependence of the non-perturbative phase shifts for the OPE potential in the

peripheral singlet waves 1P1, 1F3, 1H5. We show the 0.3 ⩽ rc ⩽ 2.0 fm cutoff range for the center-

of-mass momenta kc.m. = 75,150,300 MeV.

have already converged; as a matter of fact, there are only tiny differences in the results for

rc < 1 fm.

In pionless calculations, the equivalence between the coordinate cutoff above and a sharp

momentum cutoff Λ can be analitically derived,

rcΛ = [(2` + 1)!!2 π
2
]

1
2`+1 (2.23)

(see Ref. [112] for details), so that rc = 0.3 fm yields Λ = 1590 MeV for a P wave, Λ =
2127 MeV for a D wave, and higher values for ` ⩾ 3. For checking purposes, in Figure

2.1 we show the cutoff dependence of the non-perturbative phase shifts corresponding to

the isoscalar partial waves —it can be appreciated that, the more peripheral the wave,

the weaker the cutoff dependence. We have chosen to display the cutoff dependence of

the isoscalar channels (` = 1,3,5) because it is for these channels that the potential (2.3)

is strongest, yielding more cutoff dependence. With the exception of the 1P1 channel for

rc ≳ 1 fm (i.e. Λ ≲ 500 MeV, already quite a soft cutoff), the dependence of the phase shifts

on rc ranges from rather mild (1F3) to negligible (1H5).

For rc = 0.3 fm we obtain the phase shifts shown in Figure 2.2, where we see how the per-

turbative expansion is converging extremely quickly even for the 1P1 wave. The perturbative

series is more convergent the higher the partial wave: with the exception of the 1P1 wave,

the tree-level (Born-approximation) phase shifts already match the full (non-perturbative)

ones with a precision of a fraction of a degree. All this indicates that, for the particular case

of the ` ⩾ 1 singlet waves, the convergence parameter of the perturbative-pion expansion is

certainly smaller than that of the EFT.
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Figure 2.2: Convergence of the perturbative expansion of the phase shifts for the OPE potential in

the peripheral singlet partial waves (1P1, 1D2, 1F3, 1G4, 1H5, 1I6). The black solid line corresponds

to the non-perturbative phase shift, while the perturbative ones are displayed at increasing orders,

“T” standing for “tree level”, and “1L”, “2L”, “3L” for the one-, two-, three-loop calculation

(second, third, fourth order perturbation theory). A finite cutoff of rc = 0.3 fm has been used.

2.3 Peripheral demotion

In this section we will discuss the role of the orbital angular momentum in the PC of the

singlet channels. We have just seen that the iteration of the OPE potential is suppressed

in the peripheral waves with respect to the expectations of common PC. This demands the

inclusion of such “peripheral suppression” into the EFT expansion. In the following we will

discuss some ideas in order to quantify an explain the origin of the factor by which the

iteration of the OPE potential is suppressed in the higher partial waves.

2.3.1 Quantum-mechanical suppression

First, let us study the peripheral suppression of a finite-range potential in standard quantum

mechanics. Even though the arguments presented here are relatively well-known, we will

repeat them for the sake of clarity. We anticipate that this type of suppression is apparent

only at momenta well below the inverse of the range of the potential, which is roughly given
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by mπ for nuclear forces. This means that this kind of explanation will be useful in the

context of pionless theories, but its application to pionful theories will be restricted to very

peripheral waves.

We begin by considering the integral expression that allows to find the momentum-space

representation of the coordinate potential V (r),

v`(p, p′) ≡ ⟨p, `∣V ∣p′, `⟩ = 4π

pp′ ∫
∞

0
dr ̂`(pr)V (r)̂`(p′r), (2.24)

which, for p = p′, gives the on-shell scattering amplitude in the Born approximation. Com-

paring v`(k) ≡ v`(k, k) for different angular momenta, we can obtain a baseline estimation

of the peripheral suppression factor. This can be done by calculating the ratio of v` against

a reference partial wave, which is chosen to be the P wave as it is the smallest angular mo-

menta considered in this chapter. There is the complication that even (odd) partial waves

are isovectors (isoscalars), but this can be circumvented by taking into account the isospin

factors τ⃗1 ⋅ τ⃗2 into the definition of the ratio,

R`(k) =
v`(k)/(τ⃗1 ⋅ τ⃗2)`
v`0(k)/(τ⃗1 ⋅ τ⃗2)`0

, (2.25)

where (τ⃗1 ⋅ τ⃗2)` is +1 (−3) if the total isospin is 1 (0), i.e. if ` is even (odd). Also, as `0 = 1,

v`0 = v1P1
and (τ⃗1 ⋅ τ⃗2)`0 = −3. In Figure 2.3, the inverse of this ratio has been displayed.

(The choice of the inverse is aimed at illustrating the suppression in a more transparent

way.) One can see that, as the angular momentum increases, the suppression becomes much

bigger, especially at low energies.

To quantify such an effect, one can use the Taylor expansion of the reduced Bessel

function,

̂`(kr) =
k`+1r`+1

(2` + 1)!! [1 +O(k2r2)] , kr ≪
√
` + 1/2, (2.26)

into the on-shell version of Eq. (2.24). Recalling that the OPE potential (2.3) falls off

exponentially for distances r such that mπr > 1, it will turn out

v`(k) =
4π

(2` + 1)!!2
k2`∫

∞

0
dr r2+2` [1 +O(k2r2)]V (r) (2.27)

for momenta k such that k/mπ ≪
√
` + 1/2. We thus see that the power-law behavior of v`

agrees with naive expectations, as it is consistent with the scaling of the lowest-order `-wave

counterterm in pionless theory (Q2`). Besides, it can be explicitly checked that each term
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Figure 2.3: Ratio of the diagonal, momentum-space potential between the ` = 1 wave and the

` = 2,3,4,5 waves.

in the series above is suppressed by O(k2/m2
π) with respect to the inmediately previous one.

Thus, the expected breakdown scale of the pionless theory is come across.

Can this argument be used to justify the peripheral demotion of OPE? In principle the

answer is positive: for angular momenta ` such that Q/Mhi ≪
√
l + 1/2, the argument applies

over all the range of validity of the pionful theory. Taking Q ∼mπ and Mhi ∼ 0.5 − 1.0 GeV,

this happens for ` ≫ 12 − 50, for which a demotion of OPE similar to the one found for

the pionless theory will begin to show up. Still, this range lies far beyond the point where

the partial-wave expansion is truncated in three-body calculations. This means that we

have to invoke a different type of argument for analyzing the demotion at moderate angular

momenta. We will do this in the next section.

2.3.2 Power-counting suppression

Here we consider the peripheral wave suppression from the PC point of view. The idea

is to find a relationship between the scales of a two-body system and the orbital angular

momentum. The arguments we present are in principle tailored for the particular case of the

OPE potential in the singlet channels, for which the issue of regularization/renormalization

of divergences does not appear.
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The scales that enter into the problem may be conveniently underlined by writing the

OPE potential in the form

v`(p, p′) =
4π

MNΛNN

f`(p/mπ, p
′/mπ), (2.28)

f` being a dimensionless function defined as

f`(x,x′) = − τ⃗1 ⋅ τ⃗2∫
∞

0
dy ye−y ̂`(xy)̂`(x′y). (2.29)

Then, if G0 is the Schrödinger propagator, it turns out on dimensional grounds

⟨p′, `∣V G0V ∣p, `⟩ ∼ ( 4π

MNΛNN

) × (MNQ

4π
) × ( 4π

MNΛNN

) ∼ ( 4π

MNΛNN

) × ( Q

ΛNN

) , (2.30)

Q standing from either k or mπ. We thus see that the decision of iterating OPE or not

depends on the dimensionless ratio Q/ΛNN . In the Weinberg prescription, ΛNN ∼ Q and v`

is to be iterated to all orders; in the Kaplan–Savage–Wise (KSW) scheme, ΛNN ∼Mhi and v`

does not require iteration. The numerical value ΛNN ∼ 300 MeV lies in between of what one

could consider a soft and a hard scale. As a matter of fact, none of the previous conventions

works for all partial waves: on the one hand we have the 3S1 and 3P0 triplets where OPE

is thought to be non-perturbative [47], while on the other we have the peripheral singlets

where, as shown in Section 2.2, OPE is clearly perturbative and probably demoted even with

respect to the ΛNN ∼Mhi scenario.

Actually, the above mismatch between scaling expectations and numerical results lies

in the dimensionless functions and numerical factors in the potential. On a PC level, it

is commonly assumed that these dimensionless factors are of O(1) and do not affect the

counting —but if that were truly the case, then OPE would be either perturbative or non-

perturbative in all partial waves. To have a sense of what is going on here, let us consider

first the `-wave projection of the scattering amplitude resulting from the OPE potential in

the absence of contact-range physics,

t`(k) ≡ ⟨k, `∣T ∣k, l⟩ = ⟨k, `∣V ∣k, l⟩ + ⟨k, `∣V G0V ∣k, l⟩ + . . . , (2.31)

which, according to the naive analysis of Eq. (2.30), yields the expansion

t`(k) =
4π

MNΛNN

∞
∑
n=0

t
(n)
` (k/mπ) ( Q

ΛNN

)
n

, (2.32)

where n refers to the number of loop integrals, and the most obvious or natural expectation

for the `-dependent dimensionless coefficients is t
(n)
` (x) = O(1). If this hypothesis is correct,

60



CHAPTER 2. NN PERIPHERAL SINGLET WAVES 2.3. PERIPHERAL DEMOTION

the convergence radius of the series is independent of `. Conversely, if the convergence

depends on the particular partial wave, then the form of the loop expansion must take the

alternative form

t`(k) =
4π

MNΛNN

∞
∑
n=0

t
′(n)
` (k/mπ) ( Q

b`ΛNN

)
n

, (2.33)

where the coefficients t
′(n)
` are truly O(1), and the factor b` accounts for the different expan-

sion parameter and convergence radius in each partial wave `. Now, Q/ΛNN is not anymore

the relevant ratio to check when discussing the scaling of OPE —it is rather Q/(b`ΛNN).
From complex analysis we know that the radius of convergence of the series above is

given by the amplitude pole that is closest to threshold. However, given that the central

component of the OPE potential is relatively weak, such poles will be far from threshold and

not easy to find. This difficulty may be circumvented by using a different strategy —instead

of finding the amplitude poles for the physical value of ΛNN , we will rescale such physical

value up to the critical point Λ∗
NN(`) where an `-wave bound state emerges at k = 0. The

amplitude t∗` (k) resulting from the resized OPE will thus verify

t∗` (0) =
4π

MNΛ∗
NN(`)

∞
∑
n

t
′(n)
` (0)( mπ

b`Λ∗
NN(`))

n

→∞ ⇒ mπ ∼ b`Λ∗
NN(`). (2.34)

Consequently, at k = 0 the physical amplitude (2.33) becomes

t`(0) ∼
4π

MNΛNN

∞
∑
n=0

t
′(n)
` (0) (Λ∗

NN(`)
ΛNN

)
n

. (2.35)

This analysis can be extended easily to finite momenta k ≠ 0, though the conclusions are not

as clear-cut. Let us explicitly disentangle the Q = {mπ, k} power series in Eq. (2.33),

t`(k) =
4π

MNΛNN

∞
∑
n=0

t
′(n)
` (k/mπ) ∑

r+s=n

c
(r,s)
` mr

πk
s

(b`ΛNN)n , (2.36)

the coefficients c
(r,s)
` distinguishing the contributions that stem from powers of mπ and k,

respectively. But the previous expression may be rewritten by means of Eq. (2.34),

t`(k) = 4π

MNΛNN

∞
∑
n=0

t
′(n)
` (k/mπ) ∑

r

c
(r,n−r)
` ( mπ

b`ΛNN

)
n

( k

mπ

)
n−r

∼ 4π

MNΛNN

∞
∑
n=0

t
′′(n)
` (k/mπ) (Λ∗

NN(`)
ΛNN

)
n

, (2.37)

where the new coefficients t
′′(n)
` (x) are defined as

t
′′(n)
` (x) = t′(n)` (x)∑

r

c
(r,n−r)
` xn−r. (2.38)
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Figure 2.4: Ratio between the physical ΛNN and the critical Λ∗
NN generating an `-wave bound state

at threshold. The ratio has been calculated independently for isoscalar and isovector channels.

Here, the hypothesis c
(r,s)
` = O(1) will amount to assuming that mπ and k always play the

same role in the expansion. Yet, we cannot discard the possibility of relative numerical factors

between the expansions in powers of mπ and k (one could have, for instance, c
(r,s)
` ∼ 2s, giving

a different convergence radius in terms of k than in terms of mπ). Though this makes no

difference at the conceptual level, this effect could have a moderate impact when estimating

the peripheral demotion of OPE. We will briefly discuss this at the end of the section, but

we anticipate that the impact is going to be small. Part of the reason lies in the fact that,

at momenta k ⩾ mπ, OPE becomes very similar to the Coulomb potential, which happens

to be always perturbative except in the very-low-energy regime. This translates into the

coefficients c
(r,s)
` having an extremely suppressed behavior with respect to s (e.g. 1/s!).

The PC demotion will be quantified by comparing the expansion parameter of perturba-

tive OPE with the expansion parameter of pionful EFT,

Λ∗
NN(`)/ΛNN ≡ (Q/Mhi)ν(`) , (2.39)

which means that the order of OPE in the `-wave singlet is not LO (as in the Weinberg

counting) nor NLO (as in the KSW one), but Nν(`)LO. Still, one needs to take into account

that the scale separation in nuclear EFT is not particularly good. Putting Q = mπ and

Mhi ∼ 0.5 − 1.0 GeV, the expansion parameter will be ∼ 1/7 − 1/3. Concrete EFT analyses

[57–61, 113–115] suggest an expansion parameter closer to 1/3 than to 1/7.

The value of Λ∗
NN(`) that produces the bound state at threshold is found numerically

through the asymptotic condition on the zero-energy wavefunction u`(R; 0) = 0, R = 40 fm
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Table 2.1: PC prescriptions for OPE in the singlet partial waves with 1 ⩽ ` ⩽ 11. We show the

critical value of ΛNN that renders the central potential non-perturbative in each of the singlets.

The PC assignment in each partial wave depends on the expansion parameter of nuclear EFT,

which is not known precisely, but expected to lie between 1/7 and 1/3. Using this range of values,

we calculate the OPE demotion in each partial wave.

Isoscalar waves

2S+1`J ΛNN/Λ∗
NN(`) NνLO

1P1 −6.40 N1.0−1.7LO

1F3 −27.9 N1.7−3.0LO

1H5 −64.6 N2.1−3.8LO

1J7 −116.4 N2.4−4.3LO

1L9 −183.3 N2.7−4.7LO

1N11 −265.4 N2.9−5.1LO

Isovector waves

2S+1`J ΛNN/Λ∗
NN(`) NνLO

1D2 45.8 N2.0−3.5LO

1G4 133.1 N2.5−4.5LO

1I6 265.9 N2.9−5.1LO

1K8 444.0 N3.1−5.5LO

1M10 667.4 N3.3−5.9LO

being the infrared cutoff. (Actually, the results are stable already for R ⩾ 10 fm.) In Figure

2.4 we show the ratio ΛNN/Λ∗
NN for the peripheral singlets versus the angular momentum `,

which is taken as a continuous variable; the actual peripheral waves are displayed as discrete

points along the curve. (Note that this ratio is negative in the isoscalar waves, as the OPE

potential is actually repulsive in those channels.) The specific values of the ΛNN/Λ∗
NN are

given in Table 2.1, where the effective order NνLO at which OPE enters in each peripheral

singlet is listed as well. The PC is normalized consistently with the discussion above, i.e.

LO corresponds to a potential that has to be iterated to all orders (such as the lowest-order

contact interaction in the S-wave singlet), while NLO is identified with the size of the OPE

potential in the KSW counting. One can see that OPE is slightly demoted with respect

to KSW even for the 1P1 partial wave. Table 2.1 only shows partial waves whose average

demotion does not go much beyond N4LO, as contributions above this order are unlikely

to enter in any practical EFT calculation in the near future. The chiral nuclear potential

has not been used beyond leading three-pion exchange (or subsubleading TPE) in full EFT

calculations 2. Given that such piece of the potential enters at N4LO in a Weinberg-inspired

2Though recently [116] the chiral potential has been calculated one order further and used in first-order

perturbation theory for peripheral NN scattering.
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counting 3 and at N5LO in a KSW-inspired one, it does not seem necessary to go beyond

that point.

The spread in the demotion emerges from the uncertainty on the expansion parameter:

for each `, the lowest (highest) estimation of ν results from taking the expansion parameter

equal to 1/7 (1/3). (For instance, in the 1P1 case N1.0LO corresponds to 1/7 and N1.7LO

to 1/3.) If we take into account that the actual expansion parameter seems to be closer to

1/3, then the larger estimations for the demotion are expected to be more accurate than

the lower ones. Still, overestimating the demotion can lead to the underestimation of the

theoretical errors in a calculation, so it might be more cautious to use a value in the middle.

Apart from the uncertainty in Q/Mhi, there is a second source of error in Table 2.1,

namely the interplay between the k and mπ expansions that we have previously discussed

qualitatively. Addressing this problem lies beyond the scope of this work, and in fact it

has never been done in the literature for a pionful EFT expansion. Instead of analyzing in

detail the perturbative expansion, we will explore the demotion by means of an alternative

definition of Λ∗
NN(`). We have defined Λ∗

NN(`) as the ΛNN for which a bound state appears

at threshold, so that the ratio Λ∗
NN(`)/ΛNN corresponds to the expansion parameter of the

amplitude at zero energy; however, the emergence of a low-lying virtual state or resonance

also calls for the iteration of the potential, whose strength is now required to be smaller

than in the bound-state case. Therefore one could have introduced the more general scale

Λ∗
NN(`, kpole) as the value of ΛNN for which there is a pole at k = kpole; this pole could be

either a bound/virtual state or a resonance, so it would lie on the momentum complex plane

in general. The new scale would have allowed us to replace the expansion (2.35) by

t`(kpole) ∼
4π

MNΛNN

∞
∑
n=0

t
′(n)
` (kpole/mπ) (Λ∗

NN(`, kpole)
ΛNN

)
n

, (2.40)

thus leading to the definition of an alternative peripheral demotion different from the one of

Eq. (2.39),

Λ∗
NN(`, kpole)/ΛNN ≡ (Q/Mhi)ν

′(`). (2.41)

If we choose the pole to be a bound state away from the threshold, then OPE will need to

be stronger, amounting to a smaller Λ∗
NN and more demotion (ν′ > ν). Conversely, imposing

3This corresponds to N3LO in the traditional notation used in Ref. [45], which skips one order because

in the Weinberg scheme the contribution linear in Q/Mhi vanishes.
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the virtual-state/resonance condition implies a bigger Λ∗
NN ratio and less demotion (ν′ < ν).

Since we are more interested in the possibility that we might have been overestimating the

demotion, we will consider the virtual-state/resonance hypothesis only. We have included

the calculations in Appendix C and checked that the effect of a change in conditions from a

threshold bound state to a resonance is quite small for ν(`), usually of the order of ∣∆ν∣ ∼
0.05 − 0.2. If we compare this change to the uncertainty related to Q/Mhi, which lies in the

range ∣∆ν∣ ∼ 0.5 − 2, we see that corrections to the threshold bound-state condition can be

safely ignored in most partial waves.

2.3.3 The peripheral perturbative expansion revisited

Now that a PC argument for the centrifugal suppression of the singlets has been provided,

we test it against concrete calculations. The approach we find most convenient is the com-

parison of multiple iterations of the OPE potential. The ratio of iterated versus non-iterated

diagrams has been already used in the past as a tool for determining the convergence of

the EFT series [55], but calculations have been usually limited to just a few iterations of

OPE. While this might not be a drawback in S-wave scattering, peripheral waves require

the evaluation of higher orders of perturbation theory in order to get an estimation of the

expansion parameter.

With that purpose, first we will introduce the diagonal matrix element of the n-iterated

OPE potential as

⟨v[n]` ⟩ = ⟨k, ` ∣V G0 . . .G0V´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n insertions of V

∣k, `⟩ = ∫
∞

0
dr u

[0]
` (r;k)V (r)u[n−1]

` (r;k), n ⩾ 1, (2.42)

where u
[0]
` (r;k) = ̂(kr) is the free (regular) wavefunction, while u

[n]
` (r;k) is the solution of

Eq. (2.12), from which

u
[n]
` (r;k) =MN ∫

∞

0
dsG`(r, s;k)V (s)u[n−1]

` (s;k), (2.43)

where the Green’s function, defined by the condition

[ ∂
2

∂r2
+ k2 − `(` + 1)

r2
]G`(r, s;k) = δ(r − s), (2.44)

may be constructed as

G`(r, s;k) =
1

k
[̂`(kr)ŷ`(ks)θ(s − r) + ̂`(ks)ŷ`(kr)θ(r − s)]. (2.45)
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This allows to define the ratio of the n-iterated potential against the (n−1)-iterated one,

R
[n]
` = ⟨v[n]` ⟩ / ⟨v[n−1]

` ⟩ . (2.46)

Then, according to what we saw in Section 2.3.2, the initial expectation is to have

R
[n]
` ∼ Λ∗

NN(`)/ΛNN , n ⩾ 1. (2.47)

In particular, for n = 1 Eq. (2.46) gives

R
[1]
` = MN ∫

∞
0 dr ̂`(kr)V (r) ∫

∞
0 dsG`(r, s;k)V (s)̂`(ks)

∫
∞

0 dr ̂`(kr)V (r)̂`(kr)

= τ⃗1 ⋅ τ⃗2

2` + 1

mπ

22`+1ΛNN

[1 +O (k2/m2
π)] ∼ 2−2`−1, (2.48)

where the low-momentum expansion of ̂`(kr) (2.26) was recalled. But, as ∣ΛNN/Λ∗
NN(`)∣ ≪

22`+1 (as can be seen in Table 2.1), R
[1]
` is actually very suppressed with respect to the

expectation (2.47). Still, this does not necessarily mean that the peripheral demotion was

underestimated in Section 2.3.2 —as we will see, lower-order perturbation theory tends to

exaggerate the effect of the centrifugal barrier. The reasons of the latter are not completely

clear, but it might be related to the interplay between the regular (̂`(kr)) and irregular

(ŷ`(kr)) components of the wavefunction at low energies (k ≪mπ), with the irregular piece

giving a larger contribution and appearing only at higher-order perturbation theory. Be it

as it may, the bottomline is that one needs to evaluate Eq. (2.46) at higher n to reliably

probe the expansion parameter.

The results for 1/R[n]
` , 2 ⩽ n ⩽ 7, are given in Figure 2.5. (The choice of the inverse is

simply because the inverse of the expansion parameter is a more natural indication of the

goodness of perturbation theory: the bigger 1/∣R[n]
` ∣ is, the quicker the expansion converges.)

The plots indicate that, as the perturbative order n gets higher and higher, the expansion

parameters R
[n]
` tend to agree with the results obtained in Secton 2.3.2 through a different

method, thus providing a cross-check for our calculation. In principle, such agreement should

be most clear at low energies (k < mπ), since at moderate energies (k ∼ mπ) one needs to

take into account that the Q/(b`ΛNN) expansion contains powers of both mπ/(b`ΛNN) and

k/(b`ΛNN). The remarkable thing, though, is that the expansion still works rather well at

larger momenta that are not far from Mhi ∼ 0.5 GeV. This might be puzzling from the EFT

perspective but has a natural explanation in terms of the form of the central OPE potential
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Figure 2.5: Inverse ratios 1/R[n]
` (see Eq. (2.46)) in the singlet partial waves with 1 ⩽ ` ⩽ 6. The

value of ΛNN/Λ∗
NN(`) (see Table 2.1), to which the ratios should converge, is shown in the black

solid line.

—for momenta that are large compared to the pion mass, central OPE is almost a Coulomb-

like potential (V ∼ 1/r), which is necessarily perturbative (provided that its inverse Bohr

radius is, roughly, kB ∼m2
π/ΛNN <mπ). However, this is a particular feature of central OPE

that is not expected to happen for other contributions of the EFT nuclear potential.

From the figure we see that the convergence pattern for ` = 1,2,3 is much more evident

than for ` = 4,5,6. In the latter cases, apparently seventh-order perturbation theory is not

enough to stabilize the ratios, which nonetheless seem to converge to the predicted value.

Another interesting feature is that the lower orders of perturbation theory predict actually

a faster convergence than the high orders. The practical implication of this phenomenon is

that results at tree level are more accurate than expected from the expansion parameter of

the series. This might in turn point out towards choosing the higher-order estimates for the

demotion.

2.3.4 Beyond central OPE

At this point a question arises: how should these ideas be extended to TPE? NDA predicts

the LO (N2LO) character of OPE (leading TPE); in other words, leading TPE is naively
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suppressed by Q2/M2
hi with respect to OPE. But, since OPE is probably more demoted than

that for singlet waves with ` ⩾ 2 (see Section 2.3.2), it is natural to expect that a similar

demotion will apply for TPE.

It is worth recalling, however, that the PC argument developed here for the peripheral

demotion in the singlets relies on a particular feature of the central OPE potential: this is

a regular interaction that does not require regularization. Conversely, both TPE and the

non-central part of OPE are badly divergent potentials at short distances and thus require

regularization. As a consequence, the arguments exploited here cannot be applied directly

either to TPE or to OPE in the triplet channels. There are strategies to cope with this,

though they will require serious scrutiny to check whether they work. The most obvious one

is to renormalize these partial waves —after the inclusion of a contact-range interaction, one

might be able to apply the same ideas as before. The drawback of this proposal is that it

mixes short- and long-range physics, as the factor by which TPE needs to be rescaled for

having a bound state at threshold depends on the scattering volume of the channel (before

rescaling TPE), which fixes the contact-range coupling. This would imply that the rescaling

factor is contaminated by the physical scattering volume, which is undesirable. It might

happen, though, that the effect of this contamination is negligible, as it turned out for the

threshold-bound-state versus shallow-resonance condition (see Appendix C).

Still, if one strives for a solution that is manifestly independent of the existence of short-

range physics, two possible alternatives come to mind:

� One can invoke Birse’s approach to tensor OPE [56], which adapts a series of techniques

from atomic physics to study whether tensor OPE is perturbative or not. A limitation

of this program is that it is formulated in the chiral limit, where the range of the OPE

potential diverges and the interaction is similar to the typical potentials of atomic

physics.

� A different strategy is to study the cutoff at which TPE generates deeply bound states.

Deeply bound states are non-physical bound states that occur when attractive singular

interactions, such as tensor OPE and TPE, are considered. As long as their binding

momenta are beyond the range of applicability of EFT, they are physically meaningless,

and techniques to get rid of them have been developed [47]. The point is that the more

peripheral the wave, the harder the cutoff for which deeply bound states emerge. This

might in turn give us quantitative information on the partial wave suppression.
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2.4 Conclusion

In this chapter the EFT approach has been exploited to analyze, for the particular case of the

spin-singlet channels, the common wisdom observation that pion exchanges are perturbative

in peripheral waves. For this we have studied the convergence of the perturbative expansion

of the phase shifts numerically up to fourth order in perturbation theory. This calculation

—which has been done here for the first time up to such an order— indicates that pion

exchanges are indeed perturbative in the peripheral singlets. In fact, the multiple iterations

of OPE turn out to be much more suppressed than expected even in a PC such as KSW, in

which OPE potential is treated as subleading.

To understand this pattern we have made use of a PC argument to determine the actual

demotion of OPE potential with respect to LO. The idea is to rescale the strength of OPE

up to the point in which a bound state is generated at threshold. This critical strength

can be translated into a critical Λ∗
NN —which will be softer than the physical ΛNN— such

that the perturbative expansion diverges. The ratio Λ∗
NN/ΛNN corresponds to the expansion

parameter of perturbative OPE, which turns out to be quickly convergent. We have checked

this prediction against concrete calculations, confirming the EFT argument. Actually, even

the 1P1 partial wave is suppressed beyond NLO, and higher waves may be demoted up to

the point of being less important than subleading TPE in NDA. However, the demotion of

leading and subleading TPE in the peripheral waves is yet to be studied.

The importance of the peripheral demotion is not merely academic, but it has applica-

tions in few-body calculations, where the demotion can be used to improve and optimize

calculations. The way in which this is achieved is by including only the necessary number

of iterations in the peripheral waves and by ignoring partial waves where tree-level OPE

potential is already higher-order than the order of the calculation. In fact this is analogous

to the common practice of ignoring the partial waves with angular momentum larger than a

certain critical value (` ⩾ 5 in most applications). The difference is that here we systematize

this practice in a way that is compatible with the EFT expansion, providing guidelines for

future few-body calculations in nuclear EFT.

Still, this chapter deals only with OPE in the peripheral singlets. For the peripheral

demotion to be useful in few-body calculations, we need to extend the present study to

peripheral triplets and also to TPE. This analysis is underway, though the tools that will be

required are different that the ones we have used here due to the singular nature of tensor
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OPE and TPE interactions. Hence, the calculation of their peripheral demotion will require

the development of more sophisticated arguments that take into account the existence of a

finite cutoff and how it relates to the other scales in the problem.
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Chapter 3

NN S-wave singlet channel

3.1 Introduction

The 1S0 partial wave was not considered in the analysis of Chapter 2. This was so because

this particular channel presents, apart from the renormalization issue that was pointed out

in Section 1.2.3.2, other features that remain not completely captured by the EFT approach.

The understanding of these issues has not improved greatly since the late 90s, despite con-

siderable effort [50, 61, 64, 65, 76, 112, 114, 117–140]. The present chapter, which is based

on Ref. [107], aims to shed some new light in that regard.

A unique feature of this wave, which was recognized early on, is fine tuning in the

form of a very shallow virtual bound state. The OPE potential (1.68) is characterized by

two scales —its inverse range given by the pion mass mπ and its inverse strength given

by ΛNN ≡ 16πf 2
π/(g2

AMN) = O(fπ), with fπ = O(MQCD/(4π)) the pion decay constant,

MN = O(MQCD) the nucleon mass, and gA = O(1) the axial-vector coupling constant (see

Eqs. (1.32), (1.80), and (1.81), respectively). But, at the physical pion mass, mπ ≃ 140 MeV,

the virtual state’s binding momentum ℵ ∼ 10 MeV is much smaller than the pion scales.

It has been argued [64] that such smallness is likely due to a near coincidence between

the physical values of the quark masses and their values that produce a pion attraction just

enough to generate a zero-energy bound state. Be it as it may, in the very-low-energy regime,

Q≪mπ, the virtual state is well-described by an EFT where nucleons are the only explicit

degrees of freedom, namely /πEFT (see Section 1.3). To simultaneously capture the Q ∼mπ

range, however, pion exchange needs to be retained. The perturbative expansion in Q/ΛNN

prescribed by Refs. [34, 35] converges very slowly, if at all, in the low-energy region [64],
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suggesting to identify ΛNN as a low-energy scale Mlo, just as indicated by NDA.

Yet, it is disturbing that the NDA-prescribed LO potential produces 1S0 phase shifts

showing large discrepancies with the Nijmegen partial-wave analysis (PWA) [141] even at

moderate scattering energies. In Ref. [61] it was shown that, differently from what NDA

anticipates, the first correction in this channel appears already at NLO, in the form of a

contact interaction with two derivatives. Still, only about half of the near-threshold energy

dependence exhibited by the phenomenological inverse amplitude is reproduced by LO, so

Ref. [137] went a step further by promoting to LO an energy-dependent short-range inter-

action fixed by the effective range —a generalization of the suggestion made years before in

/πEFT [142]. Even this promotion leaves significant room for improvement when compared

to the Nijmegen PWA. In particular, the empirical 1S0 phase shift, thus the amplitude, van-

ishes at the center-of-mass momentum k0 ≃ 340 MeV. Since k0 is only a bit above ΛNN , it

should be considered as a soft scale where the EFT converges, too. In contrast, we find that

the LO phase shift of Ref. [137] is around 25○ at k = k0 and does not vanish until k reaches

a few GeV. Since higher orders need to overcome LO, convergence at momenta k ∼ k0 will

be at best very slow; besides, LO wil not provide a qualitatively correct description of the

amplitude at momenta that are quite below the expected breakdown scale. This situation

is unsatisfactory from the EFT point of view, and can only be remedied if LO is enforced

to contain the amplitude zero. As pointed out in Ref. [69], a low-energy zero requires a

different kind of fine tuning than the one giving rise to a shallow bound state. When the

zero appears at very low energies, a contact EFT can be devised (the “other unnatural EFT”

of Ref. [69]) which gives rise to a perturbative expansion of the amplitude around k = k0.

Such an expansion was developed in Ref. [124] in the presence of pions.

Here we propose a rearrangement of the short-range part of χEFT that leads to the

existence of the amplitude zero at LO, in addition to the shallow virtual state. The PC

of Ref. [69] is generalized with the purpose of including the non-perturbative region that

contains the virtual state. This is patterned on an idea originally developed for doublet

neutron-deuteron (nd) scattering at very low energies [143], where the amplitude has a

zero at small imaginary momentum, in addition to a shallow virtual state. We develop an

expansion in Q/Mhi for Q ∼ Mlo, which gives an order-by-order renormalizable amplitude.

Following a successful approach to /πEFT [144], the virtual state is assumed to be located

right at threshold at LO and is moved to a binding momentum ∼ M2
lo/Mhi at NLO. We

calculate NLO corrections and show a systematic improvement in the description of the
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phase shift.

A challenging feature of χEFT is that it usually does not yield analytical expressions for

amplitudes. This difficulty may be evaded by exploiting also a version of our proposed PC

for the theory without explicit pions, where we retain k0 ∼Mlo but explore ΛNN →∞. To our

surprise, even though k0 > mπ, this new version of /πEFT also produces a good description

of the empirical phase shifts.

Our approach is in line with Refs. [114, 122], which argued that short-range forces in the

spin-singlet S wave must produce rapid energy dependence. It is a systematic extension of

the potential proposed in Ref. [76], and it resembles the unitarized approach of Ref. [124].

More generally, it can be seen as the EFT realization of Castillejo-Dalitz-Dyson (CDD)

poles [145] in S-matrix theory. Traditional S-matrix tools, such as the N/D method, have

recently received renewed attention in the NN system (e.g. Ref. [146]). The D function

is determined modulo the addition of CDD poles, which result in zeros of the scattering

amplitude. In particular, the momentum k0 may be identified with the position of a CDD

pole in the 1S0 channel [147]. An EFT provides a systematic description of the two-body

CDD pole that can be naturally extended to more-body systems.

This chapter is structured as follows. In Section 3.2 we present an initial approach

(“warm-up”) to the problem on the basis of a modified organization of /πEFT up to NLO.

The proposed PC is discussed in detail, and RG invariance is demonstrated explicitly. In

Section 3.3 we bring OPE into LO; also, we compare with the results of the high-quality

Nijm93 potential [148] before and after the inclusion of the NLO potential in this χEFT.

Conclusions are presented in Section 3.4.

3.2 Pionless theory

Our first approach to the problem will omit explicit pion exchange (as well as electromagnetic

interactions —these are small anyway for momenta k ≳ αMN ∼ 10 MeV, with α ≃ 1/137 the

fine-structure constant— and other small isospin-breaking effects [144]). Since the amplitude

zero appears at a momentum above the pion mass, it is unlikely that an EFT where pions are

not explicit degrees of freedom can reliably describe it. Still, our goal here is to illustrate RG

invariance and PC for a systematically improvable contact theory whose amplitude includes

both a near-threshold pole and a low-energy zero. The great benefit of removing pions is

simply to find analytical results, which cannot be reached if one includes OPE in (fully
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iterated) LO. Such results provide an important guide to the pionful analysis of Section 3.3.

As we saw in Section 1.3, in the absence of explicit pions and nucleon excitations, all

interactions among nucleons are of contact type, and the part of the Lagrangian relevant for

the NN 1S0 channel reads

L(ct)
/π = N �(i∂0 +

∇
2

2MN

)N −C0 (NTP⃗1S0
N)� ⋅ (NTP⃗1S0

N) + . . . , (3.1)

where N is the isodoublet, bispinor nucleon field and the NN 1S0 projector is expressed in

terms of the Pauli matrices σ (τ⃗) acting on spin (isospin) space as P⃗1S0
= σ2τ⃗ τ2/

√
8, while

“. . .” means more complicated interactions and relativistic corrections suppressed by powers

of the breakdown scale of the theory. But, as seen in Section 1.3.3.1, the interaction term in

Eq. (3.1) may be rewritten by means of the isovector dibaryon field φ⃗, so that one can use

the alternative Lagrangian

L(φ)
/π = N �(i∂0+

∇
2

2MN

)N + φ⃗ � ⋅[∆+c (i∂0+
∇

2

4MN

)]φ⃗−
√

4π

MN

(φ⃗ � ⋅NTP⃗1S0
N +H.c.)+ . . . , (3.2)

where ∆ is the dibaryon residual mass, c is a number that normalizes the (explicitly included)

dibaryon kinetic term, and higher-order contact interactions can be systematically added via

the inclusion of derivative dibaryon-NN couplings.

The established PC of /πEFT [34, 35, 68, 69] reproduces the shallow virtual state at LO,

but does not generate as much energy dependence as the phenomenological phase shifts.

A promotion of the dibaryon kinetic term to LO [142] allows for the reproduction of the

derivative of the amplitude with respect to the energy around threshold. However, these

approaches are equivalent to different truncations of the ERE and are unable to generate an

amplitude zero at any finite momentum. This is certainly not a problem in /πEFT, since k0

(numerically larger than mπ) is presumably outside the scope of this theory. But here we

aim at reformulating the theory in a way such that k0 is taken below the breakdown scale,

so as to illustrate the proposed reformulation of the χEFT PC in Section 3.3.

With that purpose in mind, and inspired by an EFT for very-low-energy nd scattering

[143], we generalize the Lagrangian (3.2) for the case of two dibaryon fields, φ⃗1,2,

L(2φ)
/π = N �(i∂0 +

∇
2

2MN

)N + ∑
j=1,2

φ⃗ �
j ⋅ [∆j + cj(i∂0 +

∇
2

4MN

)]φ⃗j

−
√

4π

MN
∑
j=1,2

(φ⃗ �
j ⋅NTP⃗1S0

N +H.c.) + . . . , (3.3)
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Figure 3.1: Full two-dibaryon propagator (solid box) resulting from the non-perturbative dressing

of bare dibaryon-1 (dashed box) and dibaryon-2 (plain box) propagators with nucleon bubbles

(circles).

Such an extension naturally allows us to reproduce the amplitude zero already at LO, greatly

improving the description of the empirical phase shifts.

To illustrate the statement above, we neglect for now the interactions represented by

“. . .” in Eq. (3.3). At momentum k =
√
MNE, where E is the center-of-mass energy, the

on-shell T matrix is written in terms of the S matrix and the phase shift δ as

T (k) = 2πi

MNk
[S(k) − 1] = 4π

MN

[−k cot δ(k) + ik]−1
(3.4)

(recall Eq. (1.88)). As usual, we will regularize loop integrals through a momentum cutoff

Λ in the range Λ ≳Mhi ≫ k and a regulator function fR(q2/Λ2), with q the magnitude of the

off-shell nucleon momentum, that satisfies

fR(0) = 1, fR(∞) = 0. (3.5)

Much like what was done in Section 1.3.3.1 for the single-dibaryon case, here we dress up

the bare two-dibaryon propagator

B2φ(k; Λ) = ∑
j

[∆j(Λ) + cj(Λ)k2/MN]−1 ≡ MN

4π
V (k; Λ) (3.6)

with nucleon loops (see Figure 3.1), giving

D2φ(k; Λ) = [1/B2φ(k; Λ) + I0(k; Λ)]−1 ≡ MN

4π
T (k; Λ). (3.7)

The loop integral I0(k; Λ) was introduced already in Section 1.3.2, but we repeat it here for

convenience,

I0(k; Λ) = 4π∫
d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε = ik + θ1Λ + k

2

Λ

∞
∑
n=0

θ−1−2n (
k

Λ
)

2n

, (3.8)

where the dimensionless coefficients θn depend on the specific regularization employed. We

thus arrive at

[MN

4π
T (k; Λ)]

−1

= [∆1(Λ) + c1(Λ)k2/MN] [∆2(Λ) + c2(Λ)k2/MN]
∆1(Λ) +∆2(Λ) + [c1(Λ) + c2(Λ)]k2/MN

+ik+θ1Λ+θ−1
k2

Λ
+O( k

4

Λ3
) .

(3.9)
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When the momentum k is much smaller than any other scale and the cutoff Λ is large, Eq.

(3.9) reduces to the ERE (see Eqs. (1.88) and (1.89)),

[MN

4π
T (k)]

−1

= 1

a
+ ik − r0

2
k2 − P0

4
k4 + . . . (3.10)

For low-energy np scattering, the scattering length is a ≃ −23.7 fm ≃ −(8 MeV)−1 [71], the

effective range is r0 ≃ 2.7 fm ≃ (73 MeV)−1 [72], the shape parameter is P0 ≃ 2.0 fm3 ≃
(158 MeV)−3 [80], and so on. In addition, Eq. (3.9) allows for a pole at a momentum

k0 ≃ 340 MeV [148], around which the amplitude can be expanded as [69]

MN

4π
T (k) = k

2 − k2
0

k3
0

[z1 + z2
k2 − k2

0

k2
0

+O((k − k0)2

k2
0

)] (3.11)

in terms of dimensionless parameters zn, with ∣zn∣ = O(1) in the absence of further fine

tuning. Such result implies that δ(k) behaves linearly around k = k0,

δ(k ∼ k0) = −
2z1

k0

(k − k0) + . . . (3.12)

From the Nijm93 phase shifts [148] we find z1 ≃ 0.6.

The unnaturally large value of ∣a∣ has long been attributed to some fine-tuning mecha-

nism that results into an extremely shallow virtual bound state, whose very small binding

momentum poses the emergence of a new scale ℵ ∼ 10 MeV. In /πEFT, one standardly as-

sumes that the size of the higher-order ERE parameters is determined by a harder scale

M̃hi, i.e. 1/r0 ∼ 1/P 1/3
0 ∼ . . . ∼ M̃hi. Then, in the Q ∼ ℵ momentum range, the scattering

amplitude is amenable to an expansion in powers of Q/M̃hi, so that M̃hi is the breakdown

scale of the theory. Naively one expects M̃hi ≲ mπ, but there is some evidence that /πEFT

works also at larger momenta. For example, the ground-state binding momenta of systems

with A = 3,4,6,16 nucleons are ∼ 100 MeV, and yet their physics is well described by the

lowest orders of /πEFT (see, for example, Refs. [87, 90, 149, 150]). In fact, it has been

suggested that the characteristic scale of /πEFT is set by these binding momenta through

the LO three-nucleon force, so that ℵ appears only at NLO or higher [92, 144].

Here we exploit the hypothesis of an enlarged range of validity of /πEFT in the 1S0 channel

to illustrate the idea of a low-energy zero, which can be done through the replacement

M̃hi → Mlo. Simultaneously, the smallness of 1/a is accounted for with the replacement

ℵ →M2
lo/Mhi. The phenomenological parameters of the theory will then scale as

1/a = O (M2
lo/Mhi) , k0 ∼ 1/r0 ∼ 1/P 1/3

0 ∼ . . . = O(Mlo), (3.13)
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with Mhi ≫ Mlo. In the Q ∼ Mlo momentum range, the assumption (3.13) will allow us to

expand the amplitude in powers of Q/Mhi. Even though the usefulness of such an expansion

is far from obvious, we will see below that it seems to give good results when compared to

empirical low-energy data. Our prescription includes the correct position of the amplitude

zero at LO, and moves the virtual state very close to its empirical position at NLO. For Q ∼ ℵ
the NLO amplitude is similar to that of standard /πEFT with M̃hi ∼ Mlo. The assignment

ℵ →M2
lo/Mhi is somewhat arbitrary but motivated by the expectations Mlo ∼ 100 MeV and

Mhi ∼ 500 MeV 1.

Quantities in the theory can be organized in powers of the small expansion parameter

Mlo/Mhi. For a generic coupling constant g, we expand formally

g(Λ) = g[0](Λ) + g[1](Λ) + . . . , (3.14)

where the superscript [ν] indicates that the coupling appears at NνLO. The “renormal-

ized” coupling ḡ[ν] —the regulator-independent contribution to the bare (running) coupling

g[ν] (Λ)— is nominally suppressed by O(Mν
lo/Mν

hi) with respect to ḡ[0].

Likewise, the amplitude is written

T (k; Λ) = T [0](k; Λ) + T [1](k; Λ) + . . . , (3.15)

where

T [0](k; Λ) = V [0](k; Λ) [1 + MN

4π
V [0](k; Λ)(ik + θ1Λ + k

2

Λ

∞
∑
n=0

θ−1−2n
k2n

Λ2n
)]

−1

, (3.16)

T [1](k; Λ) = (T
[0](k; Λ)

V [0](k; Λ))
2

V [1](k; Λ), (3.17)

etc., in terms of

V [0](k; Λ) = 4π

MN
∑
j

(∆
[0]
j (Λ) + c[0]j (Λ) k

2

MN

)
−1

, (3.18)

V [1](k; Λ) = − 4π

MN
∑
j

(∆
[0]
j (Λ) + c[0]j (Λ) k

2

MN

)
−2

(∆
[1]
j (Λ) + c[1]j (Λ) k

2

MN

) , (3.19)

1If ℵ were taken to be smaller, say ℵ ∼ M3
lo/M2

hi, a reasonable description of observables at momenta

Q ∼ ℵ would only emerge at N2LO. Conversely, had one taken ℵ ∼Mlo, the very-low-energy region would be

well reproduced already at LO, but it would be more difficult to see improvements at NLO.
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etc. Neglecting higher-order terms, the phase shifts at LO, LO+NLO and so on can be

written as

δ[0](k; Λ) = − cot−1 [ 4π

MNk
Re( 1

T [0](k; Λ))] , (3.20)

δ[0+1](k; Λ) = − cot−1 [ 4π

MNk
Re( 1

T [0](k; Λ) −
T [1](k; Λ)
T [0]2(k; Λ))] , (3.21)

etc. At higher orders interactions in the “. . .” of Eq. (3.3) appear. We now consider the

first two orders of the expansion in detail.

3.2.1 Leading order

From Eq. (3.9) we see that reproducing the amplitude zero at LO with a shallow pole requires

a minimum of three bare parameters. Both residual masses, ∆1(Λ) and ∆2(Λ), must be non-

vanishing, otherwise the resulting inverse amplitude at threshold would be proportional to

Λ, i.e. not properly renormalized. At the same time, at least one of the dibaryon kinetic

terms, which we choose to be c2(Λ), needs to appear at LO, otherwise the amplitude zero

could not be reproduced.

Since the smallness of the inverse scattering length is attributed to a suppression by one

power of the breakdown scale Mhi (see (3.13)), we take

1

a[0]
= 0. (3.22)

In other words, we perform an expansion of the NN 1S0 amplitude around the unitarity limit,

as in Refs. [92, 144]. One of the dibaryon parameters, which turns out to be ∆2(Λ), carries

such an effect, so that its observable contribution vanishes at LO. The regulator-independent

parts of the remaining LO parameters, ∆1 and c2, are assumed to be governed by the scale

Mlo. In a nutshell,

∆̄
[0]
1 = O (Mlo) ,

c̄
[0]
1

MN

= 0, ∆̄
[0]
2 = 0,

c̄
[0]
2

MN

= O( 1

Mlo

) . (3.23)

Because the vanishing of c
[0]
1 was imposed, eliminating dibaryon-1 via Eq. (3.2) generates a

momentum-independent contact interaction. Thus, at LO we obtain the ΛNN → ∞ version

of the model considered in Ref. [76], where a dibaryon (our dibaryon-2) is added to a series

of nucleon contact interactions.
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In order to relate ∆
[0]
1 (Λ), ∆

[0]
2 (Λ), and c

[0]
2 (Λ) —our three non-vanishing LO bare

parameters— to observables, we impose on

F (z; Λ) ≡ Re{[MN

4π
T [0](

√
z; Λ)]

−1

} (3.24)

three renormalization conditions,

F (0; Λ) = 0,
∂F (z; Λ)

∂z
∣
z=0

= −1
2r0, F −1(k2

0; Λ) = 0. (3.25)

The dependence of loops on positive powers of Λ is canceled by that of the bare couplings,

leaving behind only the renormalized couplings and some residual cutoff dependence, which

can be made arbitraly small by increasing the cutoff,

∆
[0]
1 (Λ) = ∆̄

[0]
1 − θ1Λ + . . . , (3.26)

∆
[0]
2 (Λ) = 2θ1

r3
0k

2
0

[θ1 (r0Λ)2 − (1
2r

2
0k

2
0 + 2θ1θ−1) r0Λ + 4θ1θ

2
−1 + . . . ] , (3.27)

c
[0]
2 (Λ)
MN

= c̄
[0]
2

MN

− 2θ1

r3
0k

4
0

[θ1 (r0Λ)2 − (r2
0k

2
0 + 2θ1θ−1) r0Λ + 4θ1θ

2
−1 + . . . ] , (3.28)

where “. . .” stands for terms that become arbitrarily small for an arbitrarily large cutoff.

Equation (3.23) ensures that the non-vanishing renormalized couplings,

∆̄
[0]
1 = 1

2r0k
2
0,

c̄
[0]
2

MN

= −1
2r0, (3.29)

are indeed consistent with Eq. (3.13). Equations (3.26)–(3.29) yield

[MN

4π
T [0](k; Λ)]

−1

= ik − r0

2

k2

1 − k2/k2
0

(1 + 2θ−1

r0Λ

k2

k2
0

) +O( k
4

Λ3
) , (3.30)

which is indeed cutoff independent up to terms that decrease as Λ increases. Although

the scales and the zero location are different, Eq. (3.30) is the same that applies [143] to

near-threshold nd scattering 2.

2Taking A ≡ r0k
2
0/2 ≡ −R, Eq. (3.30) may be rewritten as

[MN

4π
T [0](k; Λ)]

−1

= A + R

1 − k2/k2
0

+ ik +O(k
2

Λ
) ,

which is a form used in early work on nd scattering, such as Ref. [151].
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Many interesting consequences can be extracted from Eq. (3.30). For momenta below

the amplitude zero, our expression reduces to the unitarity-limit version of the ERE (3.10)

but with predictions for the higher ERE parameters, starting with the shape parameter

P
[0]
0 (Λ) = 2r0

k2
0

[1 + 2θ−1

r0Λ
+O( k2

0

r0Λ3
)] . (3.31)

Using the cutoff dependence to estimate the error under the assumption Mhi ∼ 500 MeV, the

LO prediction is P
[0]
0 k2

0/(2r0) = 1.0±0.3. These high ERE parameters are difficult to extract

from data. A careful analysis in Ref. [80] obtains P0k2
0/(2r0) = 1.1, which is well within

our expected truncation error. Yet, values obtained for P0 from the phenomenological np

potentials NijmII and Reid93 [148] are of the same order of magnitude as the value from

Ref. [80], but with a negative sign [81].

We conjecture that, contrary to what happens in standard /πEFT, Eq. (3.30) also applies

at momenta around the amplitude zero, with terms O(Mlo) and corrections O(M2
lo/Mhi).

Around the amplitude zero, the amplitude is perturbative [69, 124]. Indeed, a simple Taylor

expansion of Eq. (3.30) gives a perturbative expansion in the region ∣k − k0∣ ≲ k0, i.e. an

equation of the form (3.11) with LO predictions for the coefficients,

z
[0]
1 (Λ) = 2

r0k0

(1 − 2θ−1

r0Λ
+ . . .) , (3.32)

z
[0]
2 (Λ) = − 2

r0k0

[1 + 2i

r0k0

(1 − 4θ−1

r0Λ
) + . . . ] , (3.33)

etc., where the “. . .” account for O(M2
lo/Λ2). Numerically, these coefficients are z

[0]
1 = 0.4±0.1

and z
[0]
2 = −(0.4 ± 0.1) − i(0.2 ± 0.1), which are indeed of natural size. The former is in fact

reasonably close to z1 ≃ 0.6 extracted from the phenomenological data. Note that we could

have imposed as a renormalization condition that z1 had a fixed value (the phenomenological

one) at any Λ, thus trading the information about energy dependence carried by r0 for that

contained in the derivative of the phase shift at its zero, see Eq. (3.12).

Equation (3.30) interpolates between the two regions, k ≪ k0 where the amplitude is

non-perturbative and ∣k − k0∣ ≪ k0 where it is perturbative. Compared to standard /πEFT,

it resums not only range corrections as in Ref. [142], but also corrections that give rise to

the pole at k = k0. Compared to the expansion around the amplitude zero [69], it resums

the terms that become large at low energies and give rise to a resonant state at zero energy.

The pole structure of the LO amplitude can be made explicit by rewriting Eq. (3.30) as

[MN

4π
T [0](k; Λ)]

−1

= (k − iκ[0]
1 )(k − iκ[0]

2 )(k − iκ[0]
3 )

i(k2
0 − k2) + O(k

2

Λ
) , (3.34)
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with

κ
[0]
1 = 0, κ

[0]
2 = r0k2

0

4
(1 −

√
1 − (4/(r0k0))2) , κ

[0]
3 = r0k2

0

4
(1 +

√
1 − (4/(r0k0))2) . (3.35)

In addition to the amplitude zero, T [0](k0; Λ) = 0, it is apparent that there are three simple

poles, T [0](iκ[0]
j ;∞) →∞. Similarly to the analysis we presented in Section 1.3, their nature

depends on the sign of iResS[0](iκ[0]
j ):

� The pole at k = 0 represents a resonant state at threshold, as it induces the vanishing of

cot δ(0). Given that iResS[0](iκ[0]
1 ) = 0, this state has a non-normalizable wavefunc-

tion. Notice that such a state can be reproduced even with a non-derivative contact

potential —to check this, simply take the unitarity limit in Section 1.3.2.

� The pole at k = iκ[0]
2 , κ

[0]
2 ≃ 190 MeV, lies on the positive imaginary semiaxis. However,

since iResS[0](iκ[0]
2 ) < 0, the condition to produce a normalizable wavefunction is not

satisfied in this case either. Hence, this is a redundant pole —just like the pole at

k = iκ+ considered in Section 1.3.3.1.

� The pole at k = iκ[0]
3 , κ

[0]
3 ≃ 600 MeV, lies deep on the positive imaginary semiaxis.

It represents a bound state because iResS[0](iκ[0]
3 ) > 0. Since no such state exists

experimentally, it would set an upper bound on the regime of validity of the EFT,

Mhi ≲ κ[0]
3 .

Figure 3.2 displays the phase shifts (3.20) resulting from the LO amplitude (3.30) in

comparison with the Nijm93 results [148]. As inputs, we use the empirical values of the

effective range and the position of the amplitude zero. We display the cutoff band for a

generic regulator by taking θ−1 = ±1 and varying Λ from around the breakdown scale (500

MeV) to infinity —as the cutoff increases, our results converge, as evident in Eq. (3.30). This

cutoff band provides an estimate of the LO error, except at low momentum where there is

an error that scales with 1/∣a∣ instead of k. The LO phase shifts are in good agreement with

empirical values for most of the low-energy momentum range, except at very low momenta

where the small but non-vanishing virtual-state binding energy is noticeable. Even though a

plot of k cot δ would confirm that differences at the amplitude level are indeed small, here we

plot the phase shifts to better display the region around the amplitude zero, which our PC

is designed to capture. There, while the phase shifts themselves are not too far off empirical

values, the curvature is not well reproduced. Nevertheless, the agreement is surprisingly
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Figure 3.2: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/MN (in MeV) for

/πEFT at LO in our new PC. The (black) solid line shows the analytical result (3.30) with Λ→∞,

while the (green) band around it represents the evolution of the cutoff from 500 MeV to infinity,

with θ−1 = ±1. The (black) squares are the Nijm93 results [148].

good given the absence of explicit pion fields. In the next section we examine how robust

this agreement is.

3.2.2 Next-to-leading order

As pointed out in Ref. [61], the leading residual cutoff dependence of an amplitude, together

with the assumption of naturalness, provides an upper bound on the order of the next

correction to that amplitude. In standard /πEFT, for example, the LO amplitude has an

effective range r0 ∼ 1/Λ, indicating that there is an interaction at order no higher than

NLO which will produce a physical effective range r0 ∼ 1/M̃hi (see Section 1.3.3.2 and Refs.
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[34, 35, 68, 69]). The leading residual cutoff dependence in Eq. (3.30) is proportional to k4

and of relative order O(Mlo/Λ). Thus, the NLO interaction must give rise to a contribution

P
[1]
0 (Λ) ≡ P0 − P [0]

0 (Λ) = O( 1

M2
loMhi

) (3.36)

to the LO shape parameter (3.31). This correction requires a higher-derivative operator.

Although we could add a momentum-dependent contact operator, here we will make use

instead of an energy-dependent —thus computationally simpler— strategy: we allow for a

non-vanishing c
[1]
1 .

In addition, given Eq. (3.13), some combination of parameters including ∆
[1]
2 must

enforce
1

a[1]
= 1

a
= O(M

2
lo

Mhi

) . (3.37)

We also introduce NLO corrections on top of the two parameters that were not zero at

LO, ∆1 and c2, in order to keep r0 and k0 unchanged. Since NLO interactions must all be

suppressed by M−1
hi , one requires

∆̄
[1]
1 = O(M

2
lo

Mhi

) , c̄
[1]
1

MN

= O( 1

Mhi

) , ∆̄
[1]
2 = O(M

2
lo

Mhi

) , c̄
[1]
2

MN

= O( 1

Mhi

) . (3.38)

This scaling, together with what was learned at LO, is consistent with the imposition of four

renormalization conditions on

G(z; Λ) ≡ −Re{[MN

4π
T [1](

√
z; Λ)] [MN

4π
T [0](

√
z; Λ)]

−2

} , (3.39)

which ensure that a, r0, P0, and k0 are fully Λ independent at NLO:

G(0; Λ) = 1

a
,

∂G(z; Λ)
∂z

∣
z=0

= 0,
∂2G(z; Λ)

∂z2
∣
z=0

= −P
[1]
0 (Λ)

2
, G(k2

0; Λ) = 0. (3.40)

Defining the renormalized parameters

∆̄
[1]
1 = ∆̄

[1]
2 + 3c̄

[1]
1

MN

k2
0,

c̄
[1]
1

MN

= −r0

2
(1 − P0k2

0

2r0

) , (3.41)

∆̄
[1]
2 = 1

a
+ r0k

2
0 (1 − P0k2

0

2r0

) , c̄
[1]
2

MN

= −4
⎛
⎝
c̄
[1]
1

MN

+ ∆̄
[1]
2

2k2
0

⎞
⎠
, (3.42)
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which with Eq. (3.38) give Eqs. (3.13) and (3.36), the cutoff dependence of the bare

parameters that guarantees Eq. (3.40) is

∆
[1]
1 (Λ) = ∆̄

[1]
1 + . . . , (3.43)

c
[1]
1 (Λ)
MN

= c̄
[1]
1

MN

+ . . . , (3.44)

∆
[1]
2 (Λ) = ∆̄

[1]
2 − θ1

r4
0

P
[1]
0 (Λ) [θ1 (r0Λ)2 + (r2

0k
2
0 − 4θ1θ−1) r0Λ − 2θ−1 (r2

0k
2
0 − 6θ1θ−1) ]

− 4θ1

ar2
0k

2
0

(r0Λ − 2θ−1) + . . . , (3.45)

c
[1]
2 (Λ)
MN

= c̄
[1]
2

MN

+ 1

k2
0

(∆̄
[1]
2 −∆

[1]
2 (Λ)) + . . . , (3.46)

where the ellipsis account for terms that disappear when we take Λ→∞.

Using the expressions of the seven up-to-NLO counterterms in Eqs. (3.18) and (3.19),

one finds in virtue of Eq. (3.17) that the NLO contribution to the amplitude verifies

T [1](k; Λ)
T [0]2(k; Λ) = −MN

4π
[1

a
+ r0

2

k4

k2
0 − k2

(1 − P0k2
0

2r0

+ 2θ−1

r0Λ
) +O( k

4

Λ3
)] , (3.47)

which is indeed suppressed by one negative power of Mhi. If we resum T [1](k; Λ) while

neglecting N2LO terms, then

[MN

4π
(T [0](k; Λ) + T [1](k; Λ))]

−1

= 1

a
+ ik − r0

2
k2 − P0

4

k4

1 − k2/k2
0

+O( k6

k2
0Λ3

) , (3.48)

and the ERE (3.10) is reproduced for k < k0 with the experimental scattering length and

shape parameter. Besides, predictions for the higher ERE parameters arise (these are hard

to test given the difficulty of extracting them from phenomenological data, though), and the

zero at k0 remains unchanged due to our choice of renormalization condition. Once expanded

around k = k0 (see Eq. (3.11)), the distorted amplitude (3.48) yields the NLO coefficients

z
[1]
1 (Λ) = z

[0]
1 (∞)(1 − P0k2

0

2r0

) + . . . , (3.49)

z
[1]
2 (Λ) = z

[0]
2 (∞)(1 − i r0k0

2
)
−1

[2(1 − P0k2
0

2r0

) − i

ak0

] + . . . , (3.50)

etc., where “. . .” stands for O(M3
lo/Λ3). NLO contributions are of relative O(Mlo/Mhi) with

respect to their LO predictions z
[0]
1 and z

[0]
2 , consistently with the residual cutoff dependence

displayed in Eqs. (3.32) and (3.33). Since z
[0]
1 (∞) ≃ 0.4 underestimates by ∼ 50% the slope
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of the phenomenological phase shifts around the amplitude zero, a better description of

data requires z
[1]
1 (∞) > 0 and thus, according to Eqs. (3.31) and (3.49), P0 < P

[0]
0 (∞).

The value of P0 given in Ref. [80] leads to a small change ∣z[1]1,2(∞)/z[0]1,2(∞)∣ ≲ 1/10, but

unfortunately it is ∼ 10% larger than P
[0]
0 (∞). Since Ref. [80] provides no error bars it is

difficult to decide whether this is a real problem. We can reproduce the phenomenological

z1 by taking P
[1]
0 (∞)/P [0]

0 (∞) ≃ −0.6, which is still compatible with convergence but not

so small a change with respect to LO. Of course, not all the discrepancy between LO and

phenomenology should be remedied by NLO, but this might indicate that something is

missing. We will return to the shape parameter in the next section.

NLO also shifts the LO position of the poles (3.35) of the S matrix. One can obtain these

shifts reliably by means of perturbative tools only for the two shallowest LO poles, finding

in the large-cutoff limit

κ
[1]
1 = 1

a
, κ

[1]
2 = −k

2
0 + κ

[0]2
2

k2
0 − κ

[0]2
2

⎡⎢⎢⎢⎢⎣

1

a
+ 1

2

r0κ
[0]4
2

k2
0 + κ

[0]2
2

(1 − P0k2
0

2r0

)
⎤⎥⎥⎥⎥⎦
. (3.51)

We see that, as expected, ∣κ[1]
1 ∣ ∼ ∣κ[1]

2 ∣ = O(M2
lo/Mhi), as long as κ

[0]
2 = O(Mlo). As a

consequence:

� The shallowest pole is moved from threshold to k ≃ −8i MeV, and represents the well-

known virtual state. Its new location almost coincides with the physical one.

� The redundant pole is moved from k ≃ 190i MeV to k ≃ 215i MeV, when the value of P0

given in Ref. [80] is used. This represents a shift of relative size ∼ 15% with respect to

LO. Roughly two thirds of this shift are due to the finiteness of the scattering length,

while the other third corresponds to the NLO correction to the shape parameter.

Conversely, if we take the value of P0 that reproduces the phenomenological z1, then

the shape correction overcomes the scattering length and the pole moves down to

k ≃ 155i MeV, still a modest shift.

The LO+NLO 1S0 phase shift (3.21) can now be obtained from Eqs. (3.30) and (3.47),

see Figure 3.3. Now, in addition to the empirical values of r0 and k0, also the values of the

scattering length and the shape parameter from Ref. [80] are input, and the resulting phase

shift has been called δ̄. We show a band around such result corresponding to a variation of

±30% around the P0 value of Ref. [80] to account for its (unspecified) error. Since the cutoff
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Figure 3.3: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/MN (in MeV)

for /πEFT at NLO in our new PC. The (black) line shows the analytical result (3.47) with Λ →∞
and the value of the shape parameter from Ref. [80], while the (green) band around it represents

a ±30% variation in this value. The (black) squares are the Nijm93 results [148].

dependence of the up-to-NLO result (3.48) is very suppressed (∼ 1/Λ3), it has been neglected

in Figure 3.3. The band thus does not reflect the uncertainty of the NLO truncation, but of

the input.

As expected, the physical value of a greatly improves the description of the phase shifts

at very low energies (Tlab ≲ 5 MeV, or k ≲ 50 MeV). However, already at moderate energies

this improvement is much less clear. In particular, as anticipated above, only for a shape

parameter ∼ 30% smaller than in Ref. [80] does δ[0+1](k;∞) get slightly closer to Nijm93

than δ[0](k;∞) (see Figure 3.2). Such a change is within the LO error and, overall, the

reproduction of the phase shifts is very good at NLO. Agreement could be further improved,

particularly around k0, by taking an even smaller shape parameter (in particular, the one that
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reproduces the phenomenological z1); however, even in that case the curvature of the resulting

phase shifts would remain different from empirical at middle energies, which suggests that

our expansion is lacking terms at either LO or NLO.

3.2.3 Resummation and higher orders

The choice of identifying the fine-tuning scale ℵ with M2
lo/Mhi implied a finite scattering

length only at NLO. Alternative choices are possible, leading to slightly different amplitudes

at various orders. When plotting phase shifts, these differences are amplified. For example,

taking ℵ ∼ Mlo would lead to the non-vanishing of 1/a already at LO. Then, the running

and renormalized parameters given above would change by 1/a terms, and the amplitude (or

equivalently its pole positions) would be shifted only slightly. However, in terms of phase

shifts there would appear to be a large improvement around threshold.

Given our previous identification of ℵ with M2
lo/Mhi, the alternative procedure just de-

scribed would amount to a resummation of higher-order corrections. Because the bare pa-

rameter ∆2(Λ) exists already at LO to ensure proper renormalization, this resummation

could be done without harm. However, because some NLO contributions would be shifted

to LO, we would see less improvement when going from LO to NLO. Provided that one has

a PC that converges, this would be just one of many ways in which we can make results at

one order closer to phenomenology while remaining within the error of that order.

Regardless of such resummation, corrections at higher orders are expected to improve

the situation further. The cutoff dependence of Eq. (3.48) suggests that there are no new

interactions at next order, N2LO, which would solely consist of one iteration of the NLO

potential. However, the fact that our pionless phase shifts look too low in the middle range

represents a significant, systematic lack of attraction between nucleons at k ∼mπ. This could

be a reminder to include pions explicitly. Next, we consider our expansion with additional

pion exchange.

3.3 Pionful theory

We now modify the theory developed in Section 3.2 to include pion exchange. This is done

under the assumption that the pion mass, the characteristic inverse strength of OPE, and
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the magnitude of the relevant momenta have similar sizes, not being enhanced or suppressed

by powers of the hard scale,

mπ ∼ ΛNN ∼ Q = O (Mlo) . (3.52)

Such an assumption has been standard in χEFT since its beginnings [36, 37]. In the NN

sector, it underlies the (non-perturbative) LO character of the OPE interaction, as well as

the suppression of multiple pion exchanges by powers of (Mlo/MQCD)2. In this context,

the fact that ΛNN ≃ 290 MeV and the location of the 1S0 amplitude zero k0 ≃ 340 MeV

are numerically close to each other suggests to consider the latter as a low-energy scale as

well. Note that certain spin-triplet channels (in particular, 3S1 and 3P0) also have amplitude

zeros at comparable momenta, but in those waves the tensor OPE suffices for a qualitatively

correct description of the phase shifts already at LO in a PC consistent with RG invariance

[47, 59, 60]. This is not the case of 1S0 [61], where the conventional chiral potential is able

to generate an amplitude zero only for soft momentum cutoffs Λ ∼Mlo [57].

The Coulomb proton-proton (pp) interaction —the dominant electromagnetic effect—

scales as αMN/Mlo ∼ ℵ/Mlo. As we took ℵ = O(M2
lo/Mhi), we should account for the Coulomb

interaction at NLO. (Other isospin-breaking effects, such as the nucleon mass splitting, are to

be accounted for perturbatively, too.) Within the /πEFT framework, the subleading Coulomb

effects were included in an expansion around the unitarity limit (regardless of the amplitude

zero) in Ref. [144]. Since we anticipate no new features here, in this first approach we omit

isospin breaking. Because the expansion is already quite complicated at a fixed value of mπ,

we also ignore the explicit dependence on quark mass.

Pions are introduced in the usual way, by demanding that the most general effective

Lagrangian transforms under chiral symmetry as does the QCD Lagrangian written in terms

of quarks and gluons (see Section 1.2 and Refs. [9–11] for reviews and references). For

the case of one single dibaryon field, this was done in Ref. [76], and the extension to the

two-dibaryon scenario explored in Section 3.2 is straightforward. If π⃗ is the pion isotriplet,

the effective Lagrangian reads

L(2φ)
χ = 1

2
(∂µπ⃗ ⋅ ∂µπ⃗ −m2

ππ⃗
2) +N �[i∂0 +

∇
2

2MN

− gA
2fπ

τ⃗ ⋅ (σ ⋅∇π⃗)]N

+ ∑
j=1,2

{φ⃗ �
j ⋅ [∆j + cj(i∂0 +

∇
2

4MN

)]φ⃗j −
√

4π

MN

(φ⃗ �
j ⋅NTP⃗1S0

N +H.c.)} + . . . , (3.53)

in the same notation as Eq. (3.3). The omitted terms, which include chiral partners of the

terms shown explicitly, are not needed up to NLO.
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Inspired by the pionless theory, we take as the short-range potential of the pionful case

the same dibaryon arrangement as in Section 3.2. After adding the long-range, spin-singlet

projection of OPE, the LO potential is

MN

4π
V [0](p′,p, k; Λ) = − 1

ΛNN

m2
π

(p′ − p)2 +m2
π

+ 1

∆
[0]
1 (Λ)

+ 1

∆
[0]
2 (Λ) + c[0]2 (Λ)k2/MN

≡ MN

4π
(V [0]

L (p′,p) + V [0]
S (k; Λ)) , (3.54)

where p (p′) is the relative momentum of the incoming (outgoing) nucleons, ΛNN is the

inverse OPE strength (see Eq. (1.69)), and the contact piece of OPE has been absorbed in

the short-range potential V
[0]

S through

(1/∆[0]
1 (Λ) + 1/ΛNN)

−1
→∆

[0]
1 (Λ). (3.55)

The long-range part of OPE is the Yukawa potential represented by V
[0]

L . Integrating out

dibaryon-1 we obtain the potential of Ref. [76]. Since TPE enters only at N2LO and higher

[39, 41], at NLO the interaction is entirely short-ranged,

MN

4π
V [1](k; Λ) = − ∆

[1]
1 (Λ) + c[1]1 (Λ)k2/MN

∆
[0]2
1 (Λ)

− ∆
[1]
2 (Λ) + c[1]2 (Λ)k2/MN

(∆
[0]
2 (Λ) + c[0]2 (Λ)k2/MN)

2 . (3.56)

In the limit ∆
[0]
2 → ∞ the potential is an energy-dependent version of the momentum-

dependent LO+NLO interaction of Ref. [61], while the interaction of Ref. [137] emerges in

the limit ∆
[0]
1 →∞.

Because OPE cannot be iterated analytically to all orders, we can no longer show analit-

ically that the amplitude has a zero at LO or that the amplitude is RG invariant. However,

these two features of the pionless theory are expected to be retained by the pionful theory

on the basis that the strength of OPE is known to be numerically moderate in spin-singlet

channels and that V
[0]

L is non-singular. Moreover, we continue to use the scalings (3.23) and

(3.38). Below we confirm through numerical calculations that the EFT obeying such a PC

indeed has an amplitude zero and preserves RG invariance.

3.3.1 Leading order

The off-shell LO amplitude is found from the LO potential (3.54) by solving the LS equation

T [0](p′,p, k; Λ) = V [0](p′,p, k; Λ) −MN ∫
d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε V

[0](p′,q, k; Λ)T [0](q,p, k; Λ),
(3.57)
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with fR(x) a non-local regulator function (3.5). Defining the Yukawa amplitude,

T
[0]
L (p′,p, k; Λ) = V [0]

L (p′,p) −MN ∫
d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε V

[0]
L (p′,q)T [0]

L (q,p, k; Λ), (3.58)

the Yukawa-dressing of the incoming/outgoing NN states,

χ
[0]
L (p, k; Λ) = 1 −MN ∫

d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε T

[0]
L (p,q, k; Λ), (3.59)

and the resummation of NN bubbles with iterated OPE in the middle,

I[0]L (k; Λ) = 4π∫
d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε χ

[0]
L (q, k; Λ), (3.60)

Eq. (3.57) can be rewritten as [46]

[MN

4π
(T [0](p′,p, k; Λ) − T [0]

L (p′,p, k; Λ))]
−1

=
[MNV

[0]
S (k; Λ)/(4π)]

−1
+ I[0]L (k; Λ)

χ
[0]
L (p′, k; Λ) χ[0]

L (p, k; Λ)
. (3.61)

This is the generalization of Eq. (3.7) for LO in the presence of pions. Because V
[0]

L is

regular, the cutoff dependence of the integrals T
[0]
L and χ

[0]
L is suppressed by powers of Λ. In

contrast, just as the I0 in Eq. (3.7), I[0]L has a linear cutoff dependence due to the singularity

of V
[0]

S . Additionally, it exhibits a logarithmic divergence ∼ (m2
π/ΛNN) ln Λ [46] stemming

from the interference between V
[0]

L and V
[0]

S . This cutoff dependence is at the root of one of

the shortcomings of NDA in the NN system.

Compared to Refs. [46, 61, 137], our V
[0]

S has a different k dependence. As in Section

3.2, two dibaryon parameters are needed to describe the zero of the amplitude and its energy

dependence near threshold, while the third parameter ensures the fine tuning that leads to

a large scattering length. These three parameters are sufficient for renormalization, leaving

behind only residual cutoff dependence. Our LO amplitude is analogous to that of Ref.

[124], which results from the unitarization of an expansion around the amplitude zero.

Taking the sharp-cutoff function fR(x) = θ(1 − x), we solve numerically the S-wave

projection of Eq. (3.57), as done in, e.g., Refs. [61, 133]. In order to determine the values

of the three bare parameters at a given cutoff, three cutoff-independent conditions on the

amplitude are needed. We choose them to be the same as in Section 3.2.1,

� unitarity limit, 1/a[0] = 0;

� physical effective range, r0 = 2.7 fm;
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� physical amplitude zero, k0 = 340.4 MeV.

The values of ∆
[0]
1 (Λ), ∆

[0]
2 (Λ), and c

[0]
2 (Λ) in our numerical calculations must be very well

tuned in order to reproduce the required values of 1/a[0], r0, and k0 within a given accuracy.

The need for such a tuning becomes more and more noticeable as Λ is increased [133]. But

the resulting phase shift changes dramatically depending on whether 1/a[0] is very small and

negative (for a shallow virtual state) or very small and positive (for a shallow bound state).

Thus, in order to facilitate the numerical solution of the LS equation, we kept the scattering

length large and negative, a[0] = −600 fm. The difference with the unitarity limit cannot be

seen in the results presented below.

The LO pionful phase shift is obtained from the on-shell, S-wave-projected T matrix

in the usual way (see Eq. (3.20)). The result, presented in Figure 3.4, shows little cutoff

dependence, even though the cutoff parameter is varied from 600 MeV to 2 GeV. It is likely

that a more realistic estimate of the systematic error coming from the EFT truncation is

obtained through varying the input inverse scattering length between its physical value and

zero. We will come back to such an estimate later, when we resum finite-a effects. In any

case, comparing with Figure 3.2 we confirm that pions help us achieve a better description

of phase shifts between threshold and the amplitude zero.

From the results in Figure 3.4 we can extract the LO shape parameter P
[0]
0 (Λ) using our

low-energy results and the unitarity-limit version of the ERE (3.10) truncated at the level

of the shape parameter. Results are shown in Figure 3.5. For Λ large enough, we find

P
[0]
0 (Λ) ≈ P [0]

0 (∞)(1 +QP0/Λ), (3.62)

with P
[0]
0 (∞) ≈ −1.0 fm3 and QP0 ≈ 100 MeV. Unlike the result for the shape parameter given

in Ref. [80], P
[0]
0 (∞) is negative, being reasonably close to P0 = −1.9 fm3, the value extracted

in Ref. [81] from the NijmII fit [148]. The large change in the prediction for P
[0]
0 (∞)

compared to the corresponding pionless result (3.31) is confirmation of the importance of

pions at LO.

3.3.2 Next-to-leading order

As in Section 3.2.2, we can infer the importance of subleading short-range contributions from

the residual cutoff dependence of the LO amplitude. Figure 3.5 shows that the relative cutoff

91



3.3. PIONFUL THEORY CHAPTER 3. NN S-WAVE SINGLET CHANNEL

0 100 200 300

T
lab

[MeV]

-20

0

20

40

60

80

δ 
[d

eg
]

Nijm93

δ[0]
(k,Λ)

Figure 3.4: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/MN (in MeV) for

χEFT at LO in our new PC. The narrow (green) band represents the evolution of the sharp cutoff

from 600 MeV to 2 GeV. The (black) squares are the Nijm93 results [148].

dependence of P
[0]
0 (Λ) is O(Mlo/Λ), implying that at least one extra short-range parameter

needs to be included at NLO. This is represented by the NLO potential V [1] (3.56).

Treating V [1] in distorted-wave perturbation theory, we obtain a separable NLO ampli-

tude,

T [1](p′,p, k; Λ) = χ[0](p′, k; Λ)V [1](k; Λ)χ[0](p, k; Λ), (3.63)

where

χ[0](p, k; Λ) = 1 −MN ∫
d3q

(2π)3

fR(q2/Λ2)
q2 − k2 − iε T

[0](p,q, k; Λ), (3.64)

is defined in terms of the full LO amplitude in analogy with Eq. (3.59) for the long-range

LO amplitude. As in the pionless case, we obtain the pionful LO+NLO phase shift from Eq.

(3.21).
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Figure 3.5: np 1S0 shape parameter P
[0]
0 (Λ) (in fm3) versus inverse cutoff 1/Λ (in GeV−1) for χEFT

at LO in our new PC. The (black) squares are the values obtained numerically in the way explained

in the text; the (green) line represents the linear fit to those results.

The dibaryon parameters are fixed in virtue of four cutoff-independent conditions, which

we choose to be the values of the Nijm93 phase shifts [148] at four different momenta:

� δ[0+1](20.0 MeV; Λ) = 61.1○;

� δ[0+1](40.5 MeV; Λ) = 64.5○;

� δ[0+1](237.4 MeV; Λ) = 21.7○;

� δ[0+1](340.4 MeV; Λ) = 0○.

The LO+NLO phase shifts are shown in Figure 3.6. The narrow band when the cutoff is

varied from 600 MeV to 2 GeV confirms that, as in Figure 3.4, very quick cutoff convergence
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Figure 3.6: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/MN (in MeV) for

χEFT at NLO in our new PC. The narrow (green) band represents the evolution of the cutoff from

600 MeV to 2 GeV. The (black) squares are the Nijm93 results [148].

takes place. The LO+NLO prediction almost lies on the Nijm93 curve, which means that

now the description of the empirical phase shifts throughout the whole elastic range 0 ≲
k ≲

√
MNmπ is much better than at LO. Indeed, the improvement is clear not only in

the very-low-momentum regime (which had been expected considering that now we relaxed

the unitarity-limit condition) but, more importantly from the χEFT point of view, also for

momenta k ∼ mπ. Comparison with the pionless result at NLO (Figure 3.3) confirms that

adding OPE significantly improves predictions in this momentum range.
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3.3.3 Resummation and higher orders

On the basis of the smallness of the virtual-state binding momentum when compared to the

pion scales, so far we took it as an NLO parameter. We were guided by the PC presented in

Section 3.2, whose consistency could be analytically demonstrated. Despite the systematic

improvement and good description of data at NLO, one might be distressed by the unusual

appearance of our LO phase shift (Figure 3.4) at low momentum. Within potential models,

either purely phenomenological or grounded on Weinberg’s prescription, it is customary to

strive for a description of all regions below some arbitrary momentum on the same footing.

As emphasized in Section 3.2.3, plotting phase shifts is misleading when it comes to

errors in the amplitude, which is the observable the PC is designed for; a plot of k cot δ

shows that only a small amount of physics is missed at LO even at low energies. Our

strategy is a consequence of the fact that the PC assumes external momenta Q ∼Mlo, and it

is in principle only in this region that we expect systematic improvement order by order. The

higher the momentum, the smaller the relative improvement with order, till Mhi is reached

and the EFT stops working. In the other direction, that of smaller momenta, the PC may not

capture the relative importance of interactions properly 3. Therefore, the region of momenta

much below the pion mass is not where the convergence of χEFT is to be judged.

Still, it might be of practical interest to improve the description near threshold already at

LO. As in /πEFT, we can account for non-vanishing 1/a already at LO without jeopardizing

renormalization. Again, this is just a resummation of some higher-order contributions into

LO, so that the difference with respect to what we have done earlier in this section has

NLO size. As an example of this, in Figure 3.7 we show LO and LO+NLO results with an

alternative fitting protocol. In the renormalization conditions at LO we replace the unitarity

limit of our original fit with the physical scattering length, that is, we impose the following

cutoff-independent conditions:

� a = −23.7 fm;

� r0 = 2.7 fm;

� k0 = 340.4 MeV.

3A simple example of this is pion-nucleon scattering in χPT, where sufficiently close to threshold the

LO P -wave interaction (stemming from the axial-vector coupling in Eq. (3.53)) becomes smaller than NLO

corrections to the S wave.
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Figure 3.7: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/MN (in MeV) for

χEFT at LO and NLO in our new PC from an alternative fitting protocol. The (green) light and

(red) dark narrow bands represent, respectively, LO and LO+NLO under a cutoff variation from

600 MeV to 2 GeV. The LO and LO+NLO phase shifts from Ref. [61] have also been displayed; the

upper (violet) LO band and the lower (cyan) LO+NLO band come from the same cutoff evolution

as before. The (black) squares are the Nijm93 results [148].

Likewise, at NLO we substitute the lowest Nijm93 phase shift of our earlier fit with the

physical scattering length:

� a = −23.7 fm;

� δ[0+1](40.5 MeV) = 64.5○;

� δ[0+1](237.4 MeV) = 21.7○;

� δ[0+1](340.4 MeV) = 0○.
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As before we vary Λ from 600 MeV to 2 GeV, but the convergence of the phase shifts is

so quick that the cutoff bands cannot be resolved in our plot. The improved description

of the very-low-energy region at LO compared to that seen in Figure 3.4, which is entirely

due to the resummation of the finite scattering length, is evident. Besides, the alternative

LO+NLO phase shifts virtually lie on the the Nijm93 curve, so that this fit is even more

phenomenologically successful than the original LO+NLO of Figure 3.6; still, the difference

between both fits is modest, which attests to the fine-tuning of the 1S0 channel, i.e. to the

relatively low importance of 1/a effects. Finally, the smallness of the improvement shown

by the alternative up-to-NLO curve over the alternative LO one is consequence of having

resummed higher-order contributions into LO.

The 1S0 phase shifts resulting from the PC proposed by Long and Yang for the singlet

waves [61] have also been included, at both LO and NLO, in Figure 3.7. As mentioned before,

the LO of such an arrangement —which, just like the LO of Weinberg’s PC, consists of OPE

supplemented by a short-range, momentum-independent term obtained through inputting

the physical scattering length— manifestly fails in qualitatively reproducing the Nijm93

phase shift already at laboratory energies Tlab ≳ 20 MeV, i.e. center-of-mass momenta k ≳
100 MeV; in particular, the LO phase shift does not cross zero at any finite energy (when Λ ≳
Mhi [57]). In contrast, it can be seen that, once the NLO interaction prescribed by Ref. [61] —

the NLO correction to the LO counterterm, plus a two-derivative contact term determined by

the empirical effective range— is added at first order in distorted-wave perturbation theory,

the resulting phase shift turns out vanish at Tlab ∼ 150 MeV, i.e. k ∼ 250 MeV or about 25%

below its physical location k0. Comparing the phase shifts at LO and NLO of Ref. [61] with

the ones resulting from our new proposal, we confirm that, at the price of the inclusion of

k0 as LO input and the promotion of r0(P0) as (N)LO input, the convergence of the new

results is greatly improved.

Given the importance of OPE, one expects potentially large changes in the position of

the poles of T [0] in χEFT with respect to the /πEFT result (3.35). Yet, the virtual state near

threshold (at k ≃ i/a) is guaranteed by construction, as long as

MN

4π
T [0](k; Λ) ≃ 1

1/a + ik (3.65)

for sufficiently small k. Using the technique described in Ref. [133], one may obtain numeri-

cally the positions of the other two poles. The redundant pole seems to get deeper and deeper

when the cutoff Λ is increased. This is consistent with the point of view that the redundant
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pole accounts in /πEFT for the neglected left-hand cut due to OPE. In contrast, the binding

energy of the deep bound state oscillates with Λ, but we always find it to be ≳ 200 MeV,

which corresponds to a binding momentum ≳ 450 MeV. This is, again, an estimate for the

breakdown scale Mhi.

The LO+NLO result shown in Figure 3.7 is so good that one might worry that higher

orders could destroy agreement with the empirical phase shifts and undermine the consistency

of our expansion. At N2LO and N3LO there are several contributions to account for: TPE

and the associated N2LO counterterms [39, 41] in first-order distorted-wave perturbation

theory, as well as NLO interactions in second- and third-order distorted-wave perturbation

theory. At these higher orders it might be convenient to use the perturbation techniques of

Ref. [152] or to devise further resummation of NLO interactions.

We have tentatively investigated the effects of higher-order corrections by means of an

incomplete N2LO calculation where the long-range component of leading TPE has been in-

cluded in first-order distorted-wave perturbation theory, following the analogous calculation

in Ref. [61]. Since the short-range component of this potential can be absorbed in Eq.

(3.56), there are no new short-range parameters and we impose the same four renormaliza-

tion conditions as in NLO. We have repeated the extraction of the phase shifts and found

a negligible effect on the final result, so that this incomplete N2LO phase shift is at least

as good as the one plotted in Figure 3.7. This might be sign that the effects of leading

TPE in the 1S0 channel can be compensated by a change in the strengths of our up-to-NLO

short-range interactions. Of course, this is not a full calculation of the amplitude at N2LO,

but since the change from LO to LO+NLO is small, we might expect the iteration of NLO

interactions to also produce small effects. We intend to pursue full higher-order calculations

in the future.

3.4 Outlook

Despite its simplicity from the computational perspective, the NN 1S0 channel has proven

remarkably resistant to a systematic expansion. In this chapter we have developed a rear-

rangement of χEFT applied to this wave on the basis of the assumption that the sizes of

the ERE parameters and the position of the amplitude zero are fixed by a single low-energy
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scale Mlo ∼ 100 MeV. By means of two dibaryon fields, we were able to reproduce very well,

already at NLO, the phenomenological phase shifts from threshold to beyond the amplitude

zero at k0 ≃ 340 MeV. The existence of a spurious deep bound state at LO indicates that

the expansion in powers of Mlo/Mhi breaks down at a scale Mhi ∼ 500 MeV.

The new power counting is particularly transparent when pions are decoupled by an

artificial decrease of their interaction strength, in which case a version of contact EFT is

produced. Even in this case LO and NLO fits to empirical phase shifts look reasonable,

although the lack of pion exchange is noticeable in the form of the energy dependence.

The apparent convergence of our LO and NLO results towards the empirical phase shifts

suggests that our PC might be the basis for a new chiral expansion in this channel. Our new

expansion relies only on the identification of the NN amplitude zero as a low-energy scale,

and on the expectation that the EFT should provide a qualitatively correct description

of low-energy observables already at LO. There are other NN channels, such as 3S1 and

3P0, whose phase shifts cross zero at some point; however, the fact that both 3S1 and 3P0

channels are well described already at LO in a PC consistent with RG invariance [47, 57–

60, 62] suggests that the exact location of these zeros, unlike the one in 1S0, can be reached

by small, perturbative corrections.

Before a definite claim of convergence can be made, however, one or two higher orders

should be calculated, where additional long-range interactions appear in the form of multi-

pion exchange. Indications already exist [57, 61, 137] that TPE and its counterterms, which

enter first at N2LO, are amenable to perturbation theory in this channel. However, it is

yet to be checked whether their contributions are small enough not to destroy the excel-

lent agreement obtained at NLO. Doing so would require to add terms resulting from the

treatment of the NLO interaction beyond first order in distorted-wave perturbation theory,

but an incomplete N2LO calculation without those terms suggests that higher orders might

provide only very small corrections. We intend to consider also isospin-breaking corrections

in the future, along the line of what was done in Ref. [144] for Pionless EFT with unitarity

at LO.

If this approach succeeds, then it raises new questions. For instance, can one find an

equivalent momentum-dependent approach, which would be better suited to three-body

calculations and beyond? If the answer is positive, then the idea of imposing the 1S0 zero

at LO should be tested —together with consistent interactions present in other channels—

in future calculations of, e.g., few-body reactions or nuclear structure. Another important
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element that would demand an answer is the role of the quark masses in the PC we propose

here. We have worked at physical pion mass, but it remains to be seen how this new proposal

can be implemented for arbitrary mπ in a renormalization-consistent manner. We intend to

address these issues in future work.
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Chapter 4

D∗
s0(2317)D and D∗

s1(2460)D∗ molecules

4.1 Introduction

Already four decades ago, the existence of hadronic molecules was hypothesized [153, 154]

on the basis of a simple idea: the exchange of light mesons between two heavy hadrons

induces a potential that could bind them. The experimental discovery of the X(3872) by

the Belle group [155] provided a strong candidate for a narrow molecular state near theD0D̄∗0

threshold. Other molecular candidates have been discovered afterwards, among them the

Zc’s [156, 157] (which are conjectured to be DD̄∗ and D∗D̄∗ molecules [158, 159]), the Zb’s

[160, 161] (BB̄∗ and B∗B̄∗ molecules [162, 163]), and the Pc(4450) pentaquark-like state

[164] (a Σ∗
c D̄

∗ [165] or ΣcD̄∗ molecule [166–169], in the later case probably with a sizable

Λc(2590)D̄ component [170, 171]).

Making concrete predictions about hadronic molecules is a challenging task, though,

given that they frequently emerge from the singular component of the hadron interaction. In

particular, the OPE potential —the longest-range piece of the potential between two hadrons,

provided that they contain at least one light quark— includes a tensor piece proportional to

the inverse cube of the small distance (see Appendix B for an illustration corresponding to

the two-nucleon case). Such force, if attractive, gives rise to an ill-defined solution [47, 48].

This is cured by means of some regularization procedure, typically an ultraviolet cutoff Λ,

that renders physical predictions possible. The variation of Λ between the EFT breakdown

scale Mhi and infinity provides an estimate of the systematic error of the theory at a given

order.

However, the richness of the hadron spectrum allows for interactions arising from the
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exchange of a pseudo-Goldstone boson that do not involve the tensor force. In particular,

hadrons with opposite parities are able to exchange an S-wave pion or kaon. Provided that

the hadrons have different masses, the range of the interaction might be unexpectedly large.

Two examples of this have been recently given:

� In the Λc(2590)D̄ → ΣcD̄∗ transition, an attractive 1/r2 force might take place [171].

This is a singular interaction, which makes mandatory the use of counterterms. If the

attraction is strong enough, it will induce discrete scale invariance, hence the emergence

of the so-called Efimov spectrum —a geometrical series of bound states analogous to

the one predicted for the three-boson system in the two-body unitarity limit almost

five decades ago [172].

� In the Λc(2590)Σc and Λc(2590)Σ̄c systems, an attractive 1/r interaction could appear

[173]. As this is a regular potential, now the problem is well-defined in the absence

of counterterms and results do not depend crucially on the cutoff. Still, one expects

short-range physics to have some impact.

A third example, which we deal with in this chapter based on Ref. [108], might be

provided by the DD∗
s0 and D∗D∗

s1 systems, where D∗
s0 ≡ D∗

s0(2317) and D∗
s1 ≡ D∗

s1(2460).
On the one hand, there are the S-wave, thus negative-parity D (JP = 0−) and D∗ (JP = 1−)

mesons; on the other hand, there are the P -wave, thus positive-parity D∗
s0 (JP = 0+) and

JP =D∗
s1 (JP = 1+) mesons. Such opposite parities allow for the exchange of an S-wave kaon

in the DD∗
s0 and D∗D∗

s1 systems. As the mass differences MD∗

s0
−MD and MD∗

s1
−MD∗ lie close

to the kaon mass (only 10% of relative difference), the resulting one-kaon-exchange (OKE)

interaction will have an unusually enlarged range. In addition, we will see that the D∗
s0DK

and D∗
s1D

∗K vertices are proportional to the respective mass differences, thus giving rise to

an exceptionally strong Yukawa potential.

The quark content of the DD∗
s0 and D∗D∗

s1 molecules proposed here is cq̄cs̄ with q̄ = ū, d̄.

(Note that the exchange of a kaon between a D (D∗) with q̄ = s̄ and a D∗
s0 (D∗

s1) would violate

strangeness conservation.) As argued by Manohar and Wise [174], such a configuration is

much more likely to form narrow molecules than compact tetraquarks. LQCD [175, 176] and

quark-model calculations [177–179] seem to indicate that compact Qq̄Qq̄ objects only exist

in the bottom sector, but not in the charm one (with the possible exception of a cūcd̄ state

with I(JP ) = 0(1+)). Consequently, finding a negative-parity cq̄cs̄ object would point to a

molecule.
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This chapter is structured as follows. In Section 4.2 the OKE potential in the DD∗
s0 and

D∗D∗
s1 systems will be derived. In Section 4.3 it will be shown that such a potential is very

likely to keep both systems bound in two shallow molecular states; an EFT analysis of the

results is included. Finally, conclusions are presented in Section 4.4.

4.2 OKE potential

As shown in Eq. (1.131), the pseudoscalar and vector mesons are written in SU(3) flavor

space respectively as Da and D∗a, whose quark content is cq̄a (q̄1 = ū, q̄2 = d̄, q̄3 = s̄); they

can be arranged as the single heavy-quark-symmetric superfield

Ha = 1 + /v
2

( /D∗a −Daγ5) (4.1)

(see Eq. (1.150)). Similarly, the scalar and pseudovector mesons are written as Da
0 and Da

1 ,

so that D3
0 ≡D∗

s0 and D3
1 ≡D∗

s1; they can be combined into the superfield

Sa = 1 + /v
2

( /Da
1γ5 −Da

0) . (4.2)

While the D∗
s0 and D∗

s1 have small widths and are consequently good candidates for being

part of molecules, the Da
0 and Da

1 (a = 1,2) are wide (Γ ∼ 200 MeV) and thus unlikely to

form bound states (except with kaons [180]).

Recall the definition of the axial-vector current (1.155),

Aµab = −
∂µΠab

fπ
, (4.3)

where Π is the meson-octet matrix (1.15), higher pseudo-Goldstone-boson insertions were

omitted, and the pion decay constant was normalized to fπ ≃ 130 MeV 1. Then, the LO

heavy-meson chiral Lagrangian between the S- and P -wave heavy mesons is

L = h
2

Tr (H̄aSb /Aabγ5) +H.c. (4.4)

(see Section 1.4.3 and Ref. [103]). At LO in HQEFT, the four-velocity is vµ = (1,0); hence,

for what concerns the coupling between a non-strange D (D∗) meson and a strange D0 (D1)

meson, the Lagrangian above collapses to

L = h

fπ
(D� ∂0KD∗

s0 +D∗� ∂0KD∗
s1) +H.c. (4.5)

1One could have used the kaon decay constant fK instead, which is ∼ 20% larger than fπ. However, both

constants differ only at NLO in the chiral expansion.
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The coupling constant h may be inferred from the width of the pionic decay D0 →Dπ,

Γ(D0 →Dπ) = Γ(D0 →Dπ0)+Γ(D0 →Dπ±) = 3

2
Γ(D0 →Dπ±) = 3

2

h2

f 2
π

∣pπ ∣
2π

MD

MD0

(MD0−MD)2,

(4.6)

where isospin-symmetry breaking was neglected, and ∣pπ ∣ = [(MD0 −MD)2 −m2
π]1/2 is the

magnitude of the pion three-momentum. An analogous formula may be given for the decay

D1 →D∗π. If the widths of the D0 and D1 are saturated by such decays, it turns out that h

lies somewhere in between 0.5 and 0.9, where the large spread stems from the experimental

uncertainties in the masses and widths of the P -wave heavy mesons, and also because the

result changes according to the particular decay one considers (see e.g. Ref. [104]). There

are also determinations of h from QCD sum rules [181, 182] and LQCD calculations [183]

within the above range; the same is true if h is found from the assumption that the D∗
s0 and

D∗
s1 are molecular [184, 185]. We will give more confidence to the central values within such

an interval by using h = 0.7 ± 0.1 in this chapter.

The D∗
s0D potential is given by the amplitude of the corresponding OKE diagrams at

tree level. In the {∣DD∗
s0⟩, ∣D∗

s0D⟩} basis, it reads

VD∗

s0D
(q) = − 1

qµqµ −m2
K

⎛
⎝
vD→DK vD∗

s0K→D
∗

s0
vD→D∗

s0K
vD∗

s0K→D

vD∗

s0→DK vDK→D∗

s0
vD∗

s0→D
∗

s0K
vDK→D

⎞
⎠
, (4.7)

where qµqµ = q2
0 − q2 is the squared four-momentum carried by the off-shell kaon, with

q2
0 ≈ (MD∗

s0
−MD)2 (as the external three-momenta are much smaller than the masses of the

heavy mesons), and mK ≃ 495 MeV is the kaon mass. But the only non-vanishing vertices

emerging from the coupling (4.5) are

vD→D∗

s0K
= i ⟨D∣L∣D∗

s0K⟩ = i h
fπ

(iq0) = −
h

fπ
(MD −MD∗

s0
)

= −vD∗

s0K→D = −vD∗

s0→DK = vDK→D∗

s0
, (4.8)

so that

VD∗

s0D
(q) = −h

2

f 2
π

(MD −MD∗

s0
)2

µ
(0)2
K + q2

⎛
⎝

0 1

1 0

⎞
⎠
, (4.9)

where µ
(0)
K = [m2

K −(MD∗

s0
−MD)2]1/2 ≃ 206 MeV represents only ∼ 40% of mK . The potential

above is not diagonal, but it may be easily diagonalized by taking the (normalized) linear

combination of states
1√
2
(∣DD∗

s0⟩ + ∣D∗
s0D⟩). (4.10)

104



CHAPTER 4. D∗
S0(2317)D AND D∗

S1(2460)D∗ MOLECULES 4.3. RESULTS

The resulting interaction reads in coordinate space

VD∗

s0D
(r) = −h

2

4π

(MD∗

s0
−MD)2

f 2
π

e−µ
(0)
K r

r
. (4.11)

Everything works out analogously for the D∗
s1D

∗ system —for the combination

1√
2
(∣D∗D∗

s1⟩ + ∣D∗
s1D

∗⟩), (4.12)

the potential

VD∗

s1D
∗(q) = −h

2

f 2
π

(MD∗ −MD∗

s1
)2

µ
(1)2
K + q2

⎛
⎝

0 1

1 0

⎞
⎠
, (4.13)

with µ
(1)
K = [m2

K − (MD∗

s1
−MD∗)2]1/2 ≃ 206 MeV, is diagonal and reads in coordinate space

VD∗

s1D
∗(r) = −h

2

4π

(MD∗

s1
−MD∗)2

f 2
π

e−µ
(1)
K r

r
. (4.14)

One sees that the interactions (4.11) and (4.14) are indeed attractive, unexpectedly long-

ranged due to the effective kaon masses µ
(0)
K and µ

(1)
K , and enhanced by the squared mass

differences (MD∗

s0
−MD)2 and (MD∗

s1
−MD∗)2. As a matter of fact, given that both mass

differences seem to be very close to each other,

MD∗

s0
−MD ≃MD∗

s1
−MD∗ ≃ 450 MeV ≡ ωK , (4.15)

numerically both potentials almost coincide, and we will generically denote them as

V(r;Rc) = −
h2

4π

ω2
K

f 2
π

e−µKr

r
θ(r −Rc), (4.16)

where µK = (m2
K −ω2

K)1/2, and a step-function regulator has been included to investigate the

dependence of the results on the cutoff Rc.

The potential (4.16) is long-ranged, but what about the short-ranged component of the

DD∗
s0 and D∗D∗

s1 interaction? As a first approach, here we will follow the most economic

assumption regarding it, namely that its effect may be neglected. Other possibilities will be

qualitatively discussed, too.

4.3 Results

As in Chapter 2, we solve the reduced Schrödinger equation,

[ ∂
2

∂r2
+ k2 − (2µHV(r;Rc) +

`(` + 1)
r2

)]u(r;Rc;k) = 0, (4.17)
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where the reduced mass µH is MDMD∗

s0
/(MD +MD∗

s0
) ≃ 1.04 GeV for the DD∗

s0 case and

MD∗MD∗

s1
/(MD∗ +MD∗

s1
) ≃ 1.11 GeV for the D∗D∗

s1 case, ` is the orbital angular momentum,

and u is the reduced wavefunction. Yet here, contrary to Chapter 2, we are not studying

the scattering problem, but looking for the bound states of the system; hence, the squared

scattering momentum is written as k2 = −κ2, κ2 ⩾ 0 being the squared binding momentum.

We obtain this with the condition on the bound-state reduced wavefunction evaluated at the

infrared cutoff R̃c = 10 fm ≫ 1/µK ,

uB(R̃c;Rc;κ) = 0, (4.18)

where uB is found through numerical integration of the reduced Schrödinger equation with

regular boundary conditions near the origin,

[− ∂
2

∂r2
+ κ2 + 2µHV(r;Rc)]uB(r;Rc;κ) = 0, uB(Rc;Rc;κ) = Rc,

∂

∂r
uB(r;Rc;κ)∣

r=Rc
= 1.

(4.19)

Here we restricted ourselves to the S wave, as the potential (4.16) is not so strong to overcome

the centrifugal barrier and bind the system for non-vanishing orbital angular momentum.

The dependence of the resulting binding energy B = κ2/(2µH) on the ultraviolet cutoff Rc is

depicted in Figure 4.1. The plot corresponding to the D∗D∗
s1 system is not given here, as it

is identical except that the binding energies are slightly higher due to the increased reduced

mass of the D∗D∗
s1 system.

From the figure one confirms that B is well-defined when the cutoff is removed (Rc → 0),

as it corresponds to a regular interaction like the Yukawa one; not surprisingly, it is in

such limit that B reaches its maximum value at a given h. One can check numerically that,

when the dimensionless parameter µHω2
Kh

2/(2πµKf 2
π) takes a few discrete values (1.68, 6.45,

14.34, . . . ), a bound state at threshold (B = 0) emerges in the Rc → 0 limit; in other words,

the first, second, third, . . . bound states appear in the DD∗
s0 (D∗D∗

s1) system for ∣h∣ ⩾ 0.42

(⩾ 0.41), ∣h∣ ⩾ 0.82 (⩾ 0.79), ∣h∣ ⩾ 1.22 (⩾ 1.18), . . . Given the range of possible values of h,

we conclude that there is probably at least one bound state —the second one is much more

unlikely but still possible, and the third one and beyond can be discarded, at least provided

that the short-range component of this system is neglected in first approximation.

If one fixes h = 0.7+0.1
−0.1 as in the figure and removes the cutoff, a DD∗

s0 (D∗D∗
s1) bound

state with binding binding momentum

κ(Rc → 0) = 290+150
−120 MeV (330+160

−130 MeV) (4.20)
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Figure 4.1: Binding energy of the DD∗
s0 bound state versus the cutoff Rc using a sharp cutoff

regulator in coordinate space. The error band corresponds to the uncertainty in the coupling

h = 0.7 ± 0.1.

appears. It is found that the OKE potential binds for Rc ⩽ 1.3+0.3
−0.3 fm (1.4+0.3

−0.3 fm), from where

the prediction of a bound state is deduced to be robust.

Recalling that D and D∗
s0 have J = 0 while D∗ and D∗

s1 have J = 1, the S-wave heavy-

meson bound states predicted here have spins S = 0 and S = 0,2, respectively. For the latter

case, a bound state with S = 1 is not possible, as it would require to replace the symmetric

spin wavefunction (4.12) by the antisymmetric one

1√
2
(∣D∗D∗

s1⟩ − ∣D∗
s1D

∗⟩), (4.21)

which diagonalizes the potential (4.13) to yield an interaction that, unlike (4.14), is repulsive

and cannot bind the system.

The calculations above correspond to the LO of an EFT whose degrees of freedom are the

heavy mesons and the pseudo-Golstone bosons. In this EFT, the effective kaon mass and the
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heavy-meson external momenta represent soft scales (µK ∼ Q ∼Mlo), while the breakdown is

set by the QCD scale (Mhi ∼MQCD). In analogy with the OPE potential in the NN sector

(see Eqs. (1.68) and (1.69)), we write the OKE potential in momentum space in the form

V (q) = − 2π

µHΛHH

µ2
K

µ2
K + q2

, (4.22)

where

ΛHH = 2πf 2
πµ

2
K

h2µHω2
K

≃ 50+40
−20 MeV ∼Mlo (4.23)

is the natural momentum scale of OKE in the DDs0 and D∗D∗
s1 systems. We conclude that

the OKE potential is enhanced at low energies,

V (q) ∼ 2π

MhiMlo

. (4.24)

As usual, a crude estimate of the EFT expansion parameter Mlo/Mhi may be provided

by the residual cutoff dependence of its LO predictions. One may take

κ (Rc ∼ 1/Mhi) ∼ κ (Rc → 0) (1 − Mlo

Mhi

) . (4.25)

Then, combining the results for the DD∗
s0 (D∗D∗

s1) binding momentum at Rc = (1 GeV)−1 =
0.2 fm,

κ (Rc = 0.2 fm) = 210+90
−90 MeV (230+100

−90 MeV) (4.26)

with the ones of Eq. (4.20), we get
Mlo

Mhi

≲ 1

3
, (4.27)

which is consistent with expectations.

The EFT potential also encodes contact pieces from four-meson vertices. According to

heavy-quark spin symmetry, the dominant contribution from contact interactions is given by

(see Refs. [186, 187] for a detailed explanation)

V
(ct)
DD∗

s0
(q) = C(a)

0 , V
(ct)
D∗D∗

s1
(q) = C(a)

0 +S1 ⋅S2C
(b)
0 , (4.28)

where the low-energy couplings C
(a)
0 and C

(b)
0 , which are to be determined from available

data, can display two types of scaling —natural and unnatural [188]. While the unnatural

scaling requires fine tuning and is thus less probable, for the natural case we have [189]

C
(a)
0 ∼ C(b)

0 ∼ 2π

M2
hi

, (4.29)
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suppressed by O(Mlo/Mhi) with respect to Eq. (4.24). That is, in this PC Yukawa is LO

and contact terms enter only at NLO. This possibility has been discussed in the literature

[56, 189, 190], but there are very few physical realizations of it in hadron physics. From such

a scheme we can deduce that at LO the S = 0,2 D∗D∗
s1 states are degenerate, while at NLO

the contact potential breaks the degeneracy, and there is a small energy splitting among the

different spin states of the D∗D∗
s1 system.

Still, the possibility that the short-range couplings displayed unnaturally enhanced scaling

cannot be discarded a priori. If that is the case, then one should probably keep a soft cutoff

(Rc ∼ 1/Mlo) in the scheme followed above to get a realistic estimate of the binding energy,

but an EFT-consistent prediction would be precluded. However, even in that scenario the

bound states will very probably exist. The Yukawa-plus-contact potential may be regularized

via a delta-shell function,

V̂(r;Rc) = V(r;Rc) +C0(Rc)
δ(r −Rc)

4πR2
c

, (4.30)

C0 being the coupling corresponding to the channel under consideration. In the worst case

scenario, that of a repulsive contact (C0 > 0), the system will bind provided that Rc ⩽ R∗
c with

R∗
c ≳ 1 fm. But since this cutoff is very soft (R∗

c ≫ 1/Mhi), one can be relatively confident

about the binding. As a matter of fact, the light-quark content of these systems —either ūs̄

or d̄s̄— makes unlikely that there is short-range repulsion. If anything, the molecules could

be more tightly bound than predicted in the first part of this section.

When going to subleading orders of the EFT, one needs to consider heavy-quark sym-

metry breaking corrections to the LO Lagrangian (4.4). Those are expected to provide an

expansion in powers of ΛQCD/Mc, with ΛQCD ∼ 300 MeV the non-perturbative QCD scale

and Mc ∼ 1.5 GeV the c quark mass. We can identify two main consequences of this:

� Probably the dominant effect is that the coupling h can differ by ∼ 10% between DD∗
s0

and D∗D∗
s1, but this is likely to be inconsequential given the large uncertainty in h.

� Another effect is the mixing of the D1 and D′
1 mesons. In the heavy-quark limit, the

spin of the c quark decouples from the other quantum numbers. Hence, the P -wave

heavy mesons D1 and D′
1 have definite light-quark angular momentum, JL = 1/2 and

JL = 3/2 respectively. We write

D1 =D(1/2)
1 , D′

1 =D
(3/2)
1 for Mc →∞. (4.31)
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However, beyond the heavy-quark limit, the D1 and D′
1 contain a certain admixture

of the D
(1/2)
1 and D

(3/2)
1 states,

D1 =D(1/2)
1 cos θ +D(3/2)

1 sin θ, D′
1 = −D

(1/2)
1 sin θ +D(3/2)

1 cos θ for Mc finite, (4.32)

where the mixing angle θ is expected to be small if Mc is large. In the non-strange

sector, the Belle group obtained from B →D∗ππ decays that θ = (5.5+2.7
−2.7)○ [191], while

from the widths of the D1 and D′
1 mesons it was found that θ = (12.1+6.6

−4.4)○ [192]. For

the strange case there is no experimental information to constrain the angle, but Ref.

[192] estimates it to be θs ∼ 7○ from a quark-model calculation. This mixing induces a

relative reduction of the strength of the OKE potential,

V → V cos2 θs. (4.33)

As cos2 θs ∼ 0.985, the former implies a negligible 1.5% weakening of the potential.

Due to their double-charm content, probably the most effective way to produce the DD∗
s0

and D∗D∗
s1 molecules in experiments involves heavy-ion collisions. The production yields

for the theoretical Tcc tetraquarks (cq̄cq̄) and other exotic hadrons have been estimated for

electron-positron collisions [193] and heavy-ion collisions [194], and they may be reachable by

the LHC in the future (notice that double-charm baryon production has been very recently

achieved by the LHCb [195]). However, we recall that the production of double charm

molecules is probably different from the estimates above, which refer to the much more

compact Tcc tetraquarks.

The ideas of this chapter may also apply to the bottom sector, where the Bs0 ≡ Bs0(5730)
and Bs1 ≡ Bs1(5776) bottom-strange mesons have been theorized to have a significant molec-

ular component and similar binding energy as the D∗
s0 and D∗

s1 mesons [196–198]; they also

appear in LQCD calculations [199]. However, these are theoretical objects that have not

been experimentally detected yet. In the hypothetical BBs0 and B∗Bs1 molecules, the OKE

potential is analogous to the one obtained in the charm sector, but now the spectrum is

expected to be more tightly bound due to the heavier masses of the bottom mesons. The

comment included here regarding these molecules is much more superficial than the analysis

we developed in the charm sector. Suffice to say that for Rc = 0 we find a BBs0 bound state

at κ = 250+190
−150 MeV, where the prediction for B∗Bs1 is almost identical as its reduced mass

virtually matches that of the BBs0 system. For h = 0.8 an excited shallow S-wave state

will appear. In the P wave there is an additional bound state with κ = 200+200
−200 MeV, which

disappears for h = 0.6.
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4.4 Summary

As we have seen in this chapter, the DD∗
s0 (D∗D∗

s1) system exhibits the interesting peculiarity

that it can interact by means of an attractive, long-range Yukawa potential arising from the

exchange of one virtual kaon. This is so because of the opposite parities and different masses

of the D (D∗) and D∗
s0 (D∗

s1) heavy mesons. It provides an opportunity to predict the

existence of bound states, as short-range physics will not necessarily play a fundamental

role, given the non-singular character of the Yukawa potential.

Two S-wave bound states with binding energies of ∼ 50 MeV are found. They have

respectively S = 0 and S = 0,2, where the spectrum of the latter is spin-degenerate as

a consequence of heavy-quark symmetry. These predictions are likely to represent a LO

calculation within an EFT, from which we can also expect that subleading corrections will

break the spin degeneracy. Even if the arrangement proposed here turns out not to hold

and the short-range potential is non-perturbatively enhanced, we expect the bound states

to survive since the most probable scenario is more binding.

We expect the existence of a similar situation in the bottom sector, namely the emergence

of BBs0 and B∗B∗
s0 molecules. They will be more bound and might have a richer spectrum

than their charm counterparts and there is probably a shallow P -wave bound state and an

excited S-wave state. Unfortunately, however, the Bs0 and Bs1 heavy mesons have not been

observed yet in experiments.
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Chapter 5

Conclusions

The EFT philosophy offers an original and useful perspective in the theoretical comprehen-

sion of a number of very diverse physical problems. It is particularly an appropriate tool

to approach strong-interacting systems in the low-energy regime, and this is so for several

reasons. First, it establishes a manifest connection with the underlying theory by imposing

QCD symmetries on the effective Lagrangian written in terms of effective degrees of freedom.

Second, it exploits the separation of scales exhibited by nuclear and hadronic physics to en-

code power counting as a recipe that hierarchizes the importance of the infinite number of

interactions contained in the effective Lagrangian and allows for an order-by-order improv-

able description of observables. Third, it is articulated in the language of renormalization

that is widely used in quantum field theories and, most particularly, in QCD; it thus allows

to interpret nuclear and hadronic physics as the renormalization-group evolution of QCD at

long distances.

In the introduction to the present work, we reviewed some of the most prominent exam-

ples of EFTs that are extensively used in the modern study of few-body nuclear and hadronic

systems, namely chiral EFT, pionless EFT, and heavy-quark EFT. In Chapters 2 and 3, on

one hand, and Chapter 4, on the other hand, we have presented three detailed case studies

of nuclear and hadronic physics, respectively, where these EFTs are used as guidelines.

The paradigmatic example of a low-energy EFT of strong interactions is chiral pertur-

bation theory. It relies on the (approximate) chiral symmetry of QCD, which is used as

a fundamental constraint on the effective Lagrangian. By means of a power counting that

follows naive dimensional analysis (“naturalness”), chiral perturbation theory describes suc-

cesfully low-momentum processes (below the characteristic QCD scale ∼ 1 GeV) that involve
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one or more pseudo-Goldstone bosons plus one nucleon at most. However, processes with

two and more nucleons are intrinsically non-perturbative, and thus cannot be captured by

chiral perturbation theory, nor by a power counting in full correspondence with naive dimen-

sional analysis. Indeed, already in the two-nucleon sector non-perturbative renormalization

results in the fact that the number of short-range interactions prescribed at a certain order

by the dimensional counting does not suffice in general to render the scattering amplitude

truly renormalized. Chiral (or “pionful”) EFT is the generalization of chiral perturbation

theory to such non-perturbative framework.

Chiral symmetry anticipates that the longest-range component of the nuclear force has

a range roughly given by the inverse pion mass (≳ 1 fm). At distances sufficiently larger,

the only effective degrees of freedom are the nucleon themselves, so that all the interactions

among them are contact-type. This approach is known as contact (or “pionless”) EFT. Simi-

larly to the pionful case, the renormalization-invariance principle is used to derive the correct

power counting. In the two-body sector, where the theory is equivalent to the effective range

expansion of the scattering amplitude, the scaling of the couplings is again not consistent

with natural expectations, which is manifest in the existence of two shallow (respectively

real and virtual) bound states in the nucleon-nucleon S waves.

In Chapter 2, the power counting of two-nucleon peripheral singlet channels —those

waves with zero spin angular momentum and high orbital angular momentum— was studied

in the framework of chiral EFT. We explored perturbation theory up to fourth order, which

allowed us to find that the one-pion-exchange potential is suppressed in these channels by

the EFT expansion parameter raised to some power that grows with the orbital angular

momentum. Such a suppression is, again, in contradiction with dimensional expectations

and, as a matter of fact, in general turns out to be even much stronger than it is in the

Kaplan–Savage–Wise scheme, in which one-pion exchange enters at next-to-leading order.

This opens the door to improve the systematicity and consistency of few-body calculations,

as it provides a theoretically sound guideline to include only the necessary iterations of one-

pion exchange and omit those peripheral channels where the order of the tree-level potential

is higher than the one of the calculation itself.

The two-nucleon 1S0 channel —whose spin and orbital angular momenta are both zero—

was not considered in Chapter 2, since it presents several features that make it quite an

especial partial wave. Again in the framework of chiral EFT, Chapter 3 addressed some

of these features by means of a new arrangement of short-range interactions. This was
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done so in the spirit of reproducing already at leading order the qualitative behavior of the

scattering amplitude all over the momentum range where the EFT is expected to hold. Since

the Weinberg proposal fails to reproduce the low-energy zero exhibited by the partial-wave-

analysis 1S0 amplitude (center-of-mass scattering momentum ≃ 340 MeV), we proposed a

different scheme where such zero is non-perturbatively enforced and subleading corrections

are perturbatively included. Systematic improvement was shown at next-to-leading order,

and we obtained results that fit phenomenological phase shifts remarkably well all the way

up to the pion production threshold. We included as well a new version of contact EFT

in which one-pion exchange was artificially decoupled (even though the momentum location

of the zero lies beyond the inverse range of this interaction), which allowed us to derive

analytic results that also fit phenomenology surprisingly well. From these phenomenological

successes, we believe that the decision of imposing the 1S0 zero at leading order in broader

EFT-consistent calculations is worthwhile, as it may improve the description of observables

in the few-body sector (light nuclei, electroweak reactions. . . ).

Away from the nucleon sector, heavy hadrons are interesting objects by themselves, as

they represent bound states of heavy and light particles. In particular, heavy mesons are

composed of a heavy quark (b or c) plus a light antiquark (ū, d̄ or s̄). If one pushes the mass

of the heavy quark to infinity, then the light quark will become completely insensitive to

the flavor and spin of the former (heavy-quark symmetry). This scenario corresponds to the

leading order of heavy-quark EFT ; effects that break heavy-quark symmetry in the physical

world are to be taken as corrections suppressed by powers of the heavy-quark mass. Also

in this framework one may take advantage of chiral symmetry to construct another version

of chiral EFT where pseudo-Goldstone bosons are kept as explicit degrees of freedom, but

nucleons are replaced by heavy mesons.

Such an approach was used in Chapter 4. In particular, we considered the D and D∗

charmed mesons, on the one hand, and the D∗
s0(2317) and D∗

s1(2460) charm-strange mesons,

on the other hand. The opposite intrinsic parity of the D (D∗) and the D∗
s0 (D∗

s1) mesons

allows them to exchange an S-wave kaon, which induces a Yukawa-type potential between

heavy mesons whose range is unexpectedly long (due to the closeness of their mass difference

to the kaon mass) and whose strength is unusually high (as it is proportional to the square

of such mass difference). This almost guarantees the existence of D∗
s0D and D∗

s1D
∗ bound

states with JP = 0− and JP = 0−,2− respectively, since calculations indicate binding energies

of around 50 MeV. Such results were identified with the leading-order predictions of an
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EFT whose explicit degrees of freedom are the D heavy mesons and the kaons, where the

Yukawa interaction is non-perturbative while heavy-quark-symmetry-breaking contact terms

are accounted for as perturbative corrections. We expect as well the existence of the bottom

counterparts of the above bound states, BBs0 and B∗B∗
s1, which would be more tightly

bound and exhibit a richer spectrum that might include a shallow P -wave state and an

excited S-wave state.

We note that the three works presented respectively in Chapters 2, 3, and 4 use various

theoretical techniques. For example, while Chapter 2 makes use of fully perturbative tools,

Chapters 3 and 4 treat non-perturbatively their respective leading orders; while Chapters 2

and 3 study scattering problems, Chapter 4 is focused on bound states; while Chapters 2 and

4 deal with purely regular interactions, Chapter 3 includes singular terms in the potential.

Still, the content of the three chapters is inspired by low-energy EFTs of strong interactions

—chiral EFT in Chapters 2 and 3; pionless EFT in Chapter 3; heavy-quark (chiral) EFT

in Chapter 4. This gives an idea about the versatility and richness of the EFT approach

applied to nuclear and hadronic systems. We hope that the proposals we have provided in

Chapters 2 and 3 will find applications beyond the two-nucleon sector, as well as that the

predictions of new meson-molecular bound states that we have made in Chapter 4 will be

experimentally accessed in the future.
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Spontaneous symmetry breakdown

In this appendix we will shortly review how SSB works out by studying a few illustrative

examples. First, take a relativistic scalar field theory described by the action

S [φ] = ∫ d4x (1
2∂

µφ∂µφ − 1
2m

2φ2 − λ
4!φ

4 − 3
2λm

4) , (A1)

where φ = φ� is a single field of mass m, λ > 0 is a (dimensionless) coupling parameter, and

the φ-independent term −3m4/(2λ) is an irrelevant “cosmological constant”. This theory

remains invariant under the discrete mapping φ↦ −φ.

If the sign of the mass term is flipped (m2 → −m2), Eq. (A1) becomes

S [φ] = ∫ d4x (1
2∂

µφ∂µφ − V(φ)) , (A2)

with the interaction term

V(φ) = λ
4! (φ − φ+)

2 (φ − φ−)2
, φ± = ±

√
6
λm, (A3)

from where V ′(φ) = 0 for φ = {0, φ±}. Besides, V ′′(0) = −m2 < 0 and V ′′(φ±) = 2m2 > 0,

showing that the theory exhibits an unstable equilibrium at φ = 0 and two degenerate stable

equilibria —two different VEVs 1— at φ = φ±.

1Since φ = φ± are solutions of the equation of motion, classically one expects the field to occupy this value

over all space. Seeing the classical theory as the h̵ → 0 limit of the quantum theory, we find the average

value of the field in the ground state ∣ψ±⟩,

⟨φ⟩ ≡ ⟨ψ±∣φ∣ψ±⟩ = lim
h̵→0
∫ DφeiS[φ]/h̵φ = φ±.

This allows to identify the classical result with a quantum VEV evaluated at tree level.
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Let us reshift the field φ via the introduction of, say, φ̃ = φ − φ+, which has vanishing

VEV. It turns out

S [φ̃] = ∫ d4x [1
2
(∂µφ̃∂µφ̃ − m̃2φ̃2) −

√
λ
12m̃φ̃

3 − λ
4! φ̃

4] , m̃ =
√

2m, (A4)

whose mass term has the proper sign. However, due to the term proportional to φ̃3, the

action is not invariant anymore under the reflection φ̃ ↦ −φ̃ —the symmetry is now hidden.

By definition, such a symmetry takes both VEVs as strictly equivalent; however, the sys-

tem “spontaneously” chooses one of them and thus enforces an asymmetric outcome. The

symmetry exhibited by the action has been spontaneously broken by the ground state of the

theory.

The mechanisms behind SSB are a bit more involved for continuous symmetries. To show

this, consider instead the scalar field theory given by the generic action

S [φ] = ∫ d4x [1
2∂

µφ∂µφ − V(φ)] , φ = {φ1, . . . , φN} , (A5)

which remains invariant under the continuous mapping

φi ↦ φi + δφi, δφi = iεTijφj, (A6)

where ε = {ε1, . . . , εn} is an array of small space-time-independent parameters and T =
{T1, . . . ,Tn} is a set of N × N matrices in flavor space, called generators of the symme-

try. Then, the Noether theorem predicts the emergence of n conserved currents (∂µJµ = 0)

given by

JµA = −i ∂L
∂(∂µφi)

(TA)ijφj, A = 1, . . . , n. (A7)

In particular, one has the conserved-charge operators (Q̇ = 0),

QA = ∫ d3xJ0
A = −i∫ d3xπi(TA)ijφj, πi =

∂L
∂φ̇i

, (A8)

verifying

[QA, φi] = i(TA)ijφj, (A9)

in virtue of the canonical commutation relations between the φ’s and the π’s. Such a result

motivates the introduction of a unitary object U = 1 + iεAQA that allows us to rewrite Eq.

(A6) as a standard unitary transformation on φ,

φ↦ UφU−1. (A10)
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Now, if we assume further that the interaction term V (φ) in Eq. (A5) is (together with

the kinetic term) invariant under Eq. (A6),

V(φ + δφ) = V(φ) + ∂iV(φ)δφi +O(ε2) = V(φ) ⇒ ∂iV(φ)Tijφj = 0, (A11)

where ∂i represents the derivative operator along the φi direction. Call φ0 to the classical

solution of the equations of motion, which must verify

∂iV(φ)∣φ=φ0 = 0, (A12)

∂i∂jV(φ)∣φ=φ0 ⩾ 0. (A13)

Then, if one derives Eq. (A11) with respect to φk and evaluates at φ = φ0, it turns out in

virtue of Eq. (A12)

∂k∂iV(φ)∣φ=φ0 Tij (φ0)j = 0. (A14)

But the potential may be represented as a series expansion in powers of φ̃ = φ − φ0,

V(φ) = V(φ0) + 1
2 ∂i∂jV (φ)∣φ=φ0 φ̃iφ̃j + . . . , (A15)

where the φ̃-independent term is a cosmological constant, and Eq. (A12) was used again

to kill the linear term. The bilinear term is in turn identified with the mass term of the

φ̃-theory,

M2
ij = ∂i∂jV (φ)∣φ=φ0 , (A16)

and Eq. (A13) guarantees thatM2 —the mass-squared matrix in flavor space— is positive-

definite. This allows us to rewrite Eq. (A14) as the matrix equation

M2T φ0 = 0. (A17)

At this point, one must consider two possible, opposite scenarios: either TAφ0 = 0 for any A

(so that Eq. (A17) is trivially fulfilled), or there is some A such that TAφ0 ≠ 0.

� The first possibility is called the Wigner–Weyl realization of the symmetry; according

to Eq. (A6), it implies the invariance of φ0 under the symmetry (Uφ0U−1 = φ0).

Actually, if ∣ψ0⟩ is the ground state of the theory (⟨ψ0∣φ∣ψ0⟩ = φ0), then it follows that

U ∣ψ0⟩ = ∣ψ0⟩, thus

QA ∣ψ0⟩ = 0, (A18)
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i.e. the n conserved charges annihilate the (unique) vacuum. Let us prove further

that the Weyl-Wigner realization implies the emergence of degenerate states in the

energy spectrum. Take the operators φ1 and φ2 ≡ −iT1iφi; these, according to Eq. (A9),

verify [Q,φ1] = −φ2, or equivalently [Q,φ�
1] = φ

�
2, for some conserved charge Q fulfilling

[Q,H] = 0. Assume that both operators φ�
1, φ

�
2 act on the ground state as creation

operators of two states ∣ψ1⟩ , ∣ψ2⟩ with definite energies E1,E2,

φ�
i ∣ψ0⟩ = ∣ψi⟩ , H ∣ψi⟩ = Ei ∣ψi⟩ , i = 1,2. (A19)

Then, it will follow from Eq. (A18)

E2 ∣ψ2⟩ =H ∣ψ2⟩ =Hφ�
2 ∣ψ0⟩ =H (Qφ�

1 − φ
�
1Q) ∣ψ0⟩ =HQφ�

1 ∣ψ0⟩

= QH ∣ψ1⟩ = E1Qφ
�
1 ∣ψ0⟩ = E1 (φ�

1Q + φ�
2) ∣ψ0⟩ = E1φ

�
2 ∣ψ0⟩ = E1 ∣ψ2⟩ , (A20)

thus E1 = E2 —the states ∣ψ1⟩ , ∣ψ2⟩ are degenerate in energy.

� The second possibility is known as the Nambu–Goldstone realization of the symmetry.

Now Eq. (A18) does not apply anymore for a given A, i.e. the vacuum is not left

invariant by the symmetry. Let E0 = ⟨ψ0∣H ∣ψ0⟩ be the minimum energy the system can

occupy. It is easy to see that a rotation of our original ground state, ∣ψ′0⟩ = U ∣ψ0⟩ ≠ ∣ψ0⟩,
is actually another ground state

H ∣ψ′0⟩ =H(1 + iεQ) ∣ψ0⟩ = (1 + iεQ)H ∣ψ0⟩ = E0(1 + iεQ) ∣ψ0⟩ = E0 ∣ψ′0⟩ . (A21)

That is to say, this scenario produces an infinite set of degenerate vacua. Again, the

system needs to “spontaneously” choose one particular ground state, but now (contrary

to the discrete case) the vacuum will smoothly interpolate between neighbor space-

time regions due to low-energy excitations. And, precisely because of the ground-state

degeneracy, such excitations must follow a massless dispersion relation. The presence of

these massless objects is actually reflected by Eq. (A17), as the vector (TA)ij(φ0)j ≠ 0

turned out to be an eigenstate of theM2 operator with zero eigenvalue. Indeed, as the

Goldstone theorem stablishes, each A verifying the previous inequality (in other words,

each broken generator) corresponds to a massless field φi(TA)ij(φ0)j, called Goldstone

boson, whose quantum numbers can be shown [200] to be the same as those of the

broken generators. In particular, provided that the generators are space-time scalars

(as it is the case in most situations of interest), the Goldstone fields need to be spinless.
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The OPE potential in the NN 3S1-
3D1

channel

In the main text, we did not consider the possibility of transitions from the S wave to

higher waves when deriving the OPE potential (1.62). This can always be safely done in the

spin-singlet (1S0) channel. However, for the sake of completeness, here we will extend our

derivation to more general transitions —those that are present in the spin-triplet (3S1-3D1)

channel.

Let ` = 0,2 and S = 1 be the orbital and spin angular momentum numbers, and let

m` = {−`,−`+1, . . . ,+`−1,+`} and mS = {−1,0,+1} be their respective projections along the

z-axis. We will compute the matrix element of the tensor operator S12 between the initial

state ∣`,m`;S,mS⟩ ≡ ∣`,m`;m⟩ and the final state ∣`′,m′
`′ ;S

′,m′
S′⟩ ≡ ∣`′,m′

`′ ;m
′⟩. With that

purpose, rewrite Eq. (1.59) as

S12 = 6 [1
3S

2
1 + 1

3S
2
2 + 2 (S1 ⋅ r̂) (S2 ⋅ r̂)] − 2S2, (B1)

where we recalled that Sj = σj/2 for the spin operator of the nucleon j in terms of its

corresponding Pauli vector, and S = S1 +S2 is the total spin operator. But

(Sj ⋅ r̂)2 = 1
4

3

∑
k,l=1

σkj σ
l
j r̂
kr̂l = 1

8

3

∑
k,l=1

(σkj σlj + σljσkj )r̂kr̂l = 1
4 r̂ ⋅ r̂ = 1

3S
2
j , (B2)

where we used that σkj σ
l
j + σljσkj = 2δkl, and S2

j = Sj (Sj + 1) = 3/4. Hence, Eq. (B1) becomes

S12 = 6 [(S1 ⋅ r̂)2 + (S2 ⋅ r̂)2 + 2 (S1 ⋅ r̂) (S2 ⋅ r̂)] − 2S2 = 6 (S ⋅ r̂)2 − 2S2. (B3)
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Here S is the vector of 3 × 3 spin matrices corresponding to a particle with S = 1,

S1 =
⎛
⎜⎜⎜
⎝

0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞
⎟⎟⎟
⎠
, S2 =

⎛
⎜⎜⎜
⎝

0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

⎞
⎟⎟⎟
⎠
, S3 =

⎛
⎜⎜⎜
⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎟⎟
⎠
, (B4)

from where one may find

(S ⋅ r̂)2 =
⎛
⎜⎜⎜⎜
⎝

2
3 +

√
4π
45Y

(0)∗
2 −

√
4π
15Y

(+1)∗
2

√
8π
15Y

(+2)∗
2√

4π
15Y

(−1)∗
2

2
3 −

√
16π
45 Y

(0)∗
2

√
4π
15Y

(+1)∗
2√

8π
15Y

(−2)∗
2 −

√
4π
15Y

(−1)∗
2

2
3 +

√
4π
45Y

(0)∗
2

⎞
⎟⎟⎟⎟
⎠
, (B5)

where Y(m`)
` (r̂) = ⟨r̂∣`,m`⟩ is a spherical harmonic. Now,

⟨`′,m′
`′ ;m

′∣S12∣`,m`;m⟩ = 6 ⟨`′,m′
`′ ;m

′∣ (S ⋅ r̂)2 ∣`,m`;m⟩ − 4δ`,`′δm`,m′

`′
δm,m′ , (B6)

where S2 ∣`,m`;S,mS⟩ = S(S + 1) ∣`,m`;S,mS⟩ was recalled. But

⟨`′,m′
`′ ;m

′∣ (S ⋅ r̂)2 ∣`,m`;m⟩ = ∫ d2r̂′′∫ d2r̂′Y(m′

`′
)∗

`′ (r̂′′)Y(m`)
` (r̂′) ⟨m′; r̂′′∣ (S ⋅ r̂)2 ∣m; r̂′⟩

= ∫ d2r̂Y(m′

`′
)∗

`′ Y(m`)
` ⟨m′; r̂∣ (S ⋅ r̂)2 ∣m; r̂⟩

= ∫ d2r̂Y(m′

`′
)∗

`′ Y(m`)
` [2

3δm′,m + cm′,mY(m′−m)∗
2 ]

= 2
3δ`,`′δm`,m′

`′
δm,m′ + cm′,m∫ d2r̂Y(m′

`′
)∗

`′ Y(m`)
` Y(m′−m)∗

2 , (B7)

thus Eq. (B6) becomes

⟨`′,m′
`′ ;m

′∣S12∣`,m`;m⟩ = 6cm′,m∫ d2r̂ Y(m′

`′
)∗

`′ Y(m`)
` Y(m′−m)∗

2 , (B8)

where we introduced the constants

c+1,+1 =
√

4π
45 , c+1,0 = −

√
4π
15 , c+1,−1 =

√
8π
15 ,

c0,+1 =
√

4π
15 , c0,0 = −

√
16π
45 , c0,−1 =

√
4π
15 ,

c−1,+1 =
√

8π
15 , c−1,0 = −

√
4π
15 , c−1,−1 =

√
4π
45 .

(B9)

Let us study separately the different particular cases of Eq. (B8):

� ` = `′ = 0. This is of course the simplest scenario,

⟨0,0;m′∣S12∣0,0;m⟩ = 3
2πcm′,m∫ d2r̂Y(m′−m)∗

2 = 0. (B10)
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� ` = 2, `′ = 0. Taking m̃ = {−2,−1,0,+1,+2},

⟨0,0;m′∣S12∣2, m̃;m⟩ = 3√
π
cm′,m∫ d2r̂Y(m̃)

2 Y(m′−m)∗
2 = 3√

π
cm′,mδm+m̃,m′ . (B11)

� ` = `′ = 2. Taking m̂, m̃ = {−2,−1,0,+1,+2},

⟨2, m̃;m′∣S12∣2, m̂;m⟩ = 6cm′,m∫ d2r̂Y(m̃)∗
2 Y(m′−m)∗

2 Y(m̂)
2 , (B12)

from where, using the general result

∫ d2r̂Y(m1)∗
j1

Y(m2)∗
j2

Y(M)
J =

√
(2j1+1)(2j2+1)

4π(2J+1) C(j1,m1; j2,m2∣J ,M)C(j1,0; j2,0∣J ,0),
(B13)

with C(j1,m1; j2,m2∣J ,M) ≡ ⟨j1,m1; j2,m2∣J ,M⟩ a (real) Clebsch–Gordan coefficient,

it turns out

⟨2, m̃;m′∣S12∣2, m̂;m⟩ = −
√

90
7πC(2, m̃; 2,m′ −m∣2, m̂)cm′,m. (B14)

However, the basis of eigenstates of the orbital angular momentum, the spin angular

momentum, and their respective third components, does not correspond to the basis of

eigenstates employed by the usual spectroscopic notation. Let J be the total angular mo-

mentum,

∣2S+1`J⟩M ≡ ∣[`, S]J,M⟩ , (B15)

where M = {−J,−J +1, . . . ,+J −1,+J}, the third component of the total angular momentum,

verifies M =m` +mS. Generically,

∣[`, S]J,M⟩ = ∑
m`,mS

C(`,m`;S,mS ∣J,M) ∣`,m`;S,mS⟩ , (B16)

so that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣3S1⟩−1 (m` = 0,mS = −1),
∣3S1⟩0 (m` = 0, mS = 0),
∣3S1⟩+1 (m` = 0, mS = +1),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣3D1⟩−1 (m` = −2,mS = +1; −1,0; 0,−1),
∣3D1⟩0 (m` = −1,mS = +1; 0,0; +1,−1),
∣3D1⟩+1 (m` = 0,mS = +1; +1,0; +2,−1),

(B17)

become respectively (S = 1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣3S1⟩−1 = ∣0,0;−1⟩ ,
∣3S1⟩0 = ∣0,0; 0⟩ ,
∣3S1⟩+1 = ∣0,0;+1⟩ ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣3D1⟩−1 =
√

3
5 ∣2,−2;+1⟩ −

√
3
10 ∣2,−1; 0⟩ +

√
1
10 ∣2,0;−1⟩ ,

∣3D1⟩0 =
√

3
10 ∣2,−1;+1⟩ −

√
2
5 ∣2,0; 0⟩ +

√
3
10 ∣2,+1;−1⟩ ,

∣3D1⟩+1 =
√

1
10 ∣2,0;+1⟩ −

√
3
10 ∣2,+1; 0⟩ +

√
3
5 ∣2,+2;−1⟩ .

(B18)
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With the ingredients above, the obtention of the matrix element ⟨3`′1∣S12∣3`1⟩ is straight-

forward:

� ` = `′ = 0. In virtue of Eq. (B10), it is clear that

⟨3S1∣S12∣3S1⟩ = 0 (B19)

—here we have provided an alternative, more involved proof of what we had already

shown in the main text.

� ` = 2, `′ = 0; ` = 0, `′ = 2. Take for instance M =M ′ = 0. Using Eq. (B11),

a0 ⟨3S1∣S12∣3D1⟩a0 =
√

27
10π(c0,+1 + c0,−1) −

√
18
5πc0,0 =

√
8. (B20)

The same result can be obtained for M =M ′ = −1,+1, so that

⟨3S1∣S12∣3D1⟩ = ⟨3D1∣S12∣3S1⟩ =
√

8, (B21)

where S�
12 = S12 was used.

� ` = `′ = 2. Take for instance M =M ′ = 1. Given Eq. (B14),

a+1 ⟨3D1∣S12∣3D1⟩a+1 =
√

9
245πc+1,+1 +

√
27

245πc0,+1 +
√

81
980πc0,0

−
√

324
245πc−1,−1 −

√
972

245πc0,−1 −
√

216
245πc+1,−1 = −2. (B22)

The same result can be obtained for M =M ′ = −1,0, so that

⟨3D1∣S12∣3D1⟩ = −2. (B23)

Next, we compute the matrix element of the operator σ1 ⋅σ2 between the initial and the

final state,

aM ′ ⟨3`′1∣σ1 ⋅σ2∣3`1⟩aM = 2 ⟨[`′,1]1,M ′∣ (S2 −S2
1 −S2

2) ∣ [`,1]1,M⟩ = δ`,`′δM,M ′ , (B24)

i.e. (conservation of the third component of the total angular momentum is understood)

⟨3S1∣σ1 ⋅σ2∣3S1⟩ = ⟨3D1∣σ1 ⋅σ2∣3D1⟩ = +1, ⟨3S1∣σ1 ⋅σ2∣3D1⟩ = ⟨3D1∣σ1 ⋅σ2∣3S1⟩ = 0.

(B25)
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Similarly, but now recalling that I = 0 and I1 = I2 = 1/2, the matrix elements of the operator

τ⃗1 ⋅ τ⃗2 turn out to be (spin and isospin conservations are understood)

⟨3S1∣τ⃗1 ⋅ τ⃗2∣3S1⟩ = ⟨3S1∣τ⃗1 ⋅ τ⃗2∣3D1⟩ = ⟨3D1∣τ⃗1 ⋅ τ⃗2∣3S1⟩ = ⟨3D1∣τ⃗1 ⋅ τ⃗2∣3D1⟩ = −3. (B26)

Using Eqs. (B19), (B21), (B23), (B25), and (B26) in Eq. (1.61), we finally get for the

coordinate OPE potential in the 3S1-3D1 channel:

⟨3S1∣VOPE(r)∣3S1⟩ = −g
2
Am

3
π

16πf2π
Y (mπr) + g2A

4f2π
δ(r), (B27)

⟨3S1∣VOPE(r)∣3D1⟩ = ⟨3D1∣VOPE(r)∣3S1⟩ = −
√

2g2Am
3
π

8πf2π
T (mπr)Y (mπr), (B28)

⟨3D1∣VOPE(r)∣3D1⟩ = −g
2
Am

3
π

8πf2π
[1

2 − T (mπr)]Y (mπr) + g2A
4f2π
δ(r).(B29)
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Appendix C

Peripheral demotion and resonances

In this appendix we discuss the different choices for the definition of Λ∗
NN and the effect

they have on the peripheral demotion of the OPE potential. We will see that the impact

of changing the threshold-bound-state assumption by a different condition is rather small.

Consider a bound state with binding energy B ⩾ 0 at kpole = iκB, κB =
√
MNB ⩾ 0. If such

bound state emerges from the OPE potential, we will need to consider three scales (mπ,

Λ∗
NN , and κB) in the EFT expansion. Hence, in this context two opposite options appear:

� By requiring B = 0, we eliminate one of the variables in the problem, leaving only mπ

and Λ∗
NN , which combine by means of a numerical factor to give an expansion parameter

equal to one (see Eq. (2.34)). This scenario is the easiest and most convenient choice

to isolate the scale Λ∗
NN , and thus it was exploited in the main text.

� If B > 0, conversely, the EFT expansion will involve two different ratios, mπ/ΛNN and

κB/ΛNN . The breakdown of the amplitude expansion at a particular ΛNN for k = kpole

does not necessarily mean that ΛNN is the Λ∗
NN we are looking for. There could be a

(probably small) mismatch between the two owing to the different numerical factors

in each subexpansion. If we were able to take these details into account, it might very

well happen that we recovered the original scale generating the threshold bound state.

Yet we will ignore these complications here, and focus instead on checking the robustness

of the estimations we presented in the main text. For that we will consider the case of a

virtual state or resonance, kpole = −iκV or kpole = κR, where κV is real and positive and κR

is complex. This will translate into a new value of the critical Λ∗
NN that depends on the
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Table C.1: Inverse expansion parameter of perturbative OPE and corresponding shift in its periph-

eral demotion if the threshold-bound-state condition is replaced by the shallow-resonance condition.

Isoscalar waves

2S+1`J ΛNN/Λ∗
NN(`,mπ) ∆ν = ν′ − ν

1P1 −4.86 −(0.14 − 0.25)
1F3 −24.9 −(0.06 − 0.10)
1H5 −59.1 −(0.05 − 0.08)

Isovector waves

2S+1`J ΛNN/Λ∗
NN(`,mπ) ∆ν = ν′ − ν

1D2 33.31 −(0.16 − 0.29)
1G4 119.7 −(0.05 − 0.10)
1I6 250.2 −(0.03 − 0.05)

position of the pole, Λ∗
NN = Λ∗

NN(`, kpole), ∣kpole∣ ∼ Q. Proceeding as in the kpole = 0 case, we

define the peripheral demotion as

Λ∗
NN(`, kpole)/ΛNN = (Q/Mhi)ν

′(`,kpole), (C1)

where the ′ distinguishes the new estimations from the old ones (see Table 2.1).

Virtual states and resonances are amplitude poles in the second Riemann sheet of the

complex momentum plane. While they are easy to locate in the case of contact-range po-

tentials, finding them for a finite-range potential is technically more challenging, due to the

difficulty of choosing the second Riemann sheet in a numerical calculation. As we are in-

terested in peripheral waves, the most natural outcome when the strength of the potential

is reduced is that a bound state eventually becomes a resonance. This can be easily traced

because the scattering amplitude saturates the unitarity bound and the phase shift reaches

90○ at some momentum k close to Re[κR]. Therefore, the criterion we are going to use for

Λ∗
NN(`, κR) will be

cot δ`(k =mπ) = 0 , (C2)

which in general will imply ∣κR∣ >mπ, but only by a small amount if the resonance is narrow,

Im[κR]2 ≪ Re[κR]2.

The changes in ν(`) when the resonance condition is imposed are shown in Table C.1. In

general the new condition only entails a tiny change in ν(`) in the −(0.05− 0.2) range. This

change is an order of magnitude smaller than the changes in ν(`) related to the uncertainty

in the EFT expansion parameter Q/Mhi and hence can be safely ignored.
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Résumé en français

La philosophie des théories effectives des champs (EFT, de l’anglais Effective Field Theo-

ries) offre une perspective originale et utile dans la compréhension théorique de problèmes

physiques très divers. Il s’agit d’un instrument particulièrement approprié pour l’étude des

systèmes avec interaction forte à basse énergie, et ceci pour plusieurs raisons:

� Il établit une connexion manifeste avec la théorie plus fondamentale en imposant les

symétries de QCD sur le lagrangien effectif exprimé en termes de degrés de liberté

effectifs.

� Il exploite la séparation des échelles de la physique nucléaire et hadronique au travers du

power counting, une recette qui hiérarchise l’importance du nombre infini d’interactions

contenues dans le lagrangien effectif et permet une description des observables qui est

améliorable ordre par ordre.

� Il est articulé dans le langage de la renormalisation qui est largement utilisé dans

les théories quantiques des champs et, plus particulièrement, dans QCD; il permet

donc d’interpréter la physique nucléaire et hadronique comme l’évolution du groupe de

renormalisation de QCD à longues distances.

Dans l’introduction au présent travail, nous avons passé en revue quelques des exemples

les plus remarquables d’EFT qui sont largement utilisés dans l’étude moderne des systèmes

nucléaires et hadroniques à petit nombre de corps, à savoir l’EFT chirale, l’EFT sans pions et

l’EFT de quarks lourds. Dans les chapitres 2 et 3, d’une part, et le chapitre 4, d’autre part,

nous avons présenté trois études de cas détaillées de la physique nucléaire et hadronique,

respectivement, lorsque ces théories sont utilisés comme lignes directrices.
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L’exemple paradigmatique d’une EFT d’interactions fortes à basse énergie est la théorie

chirale des perturbations. Il repose sur la (approximative) symétrie chirale de QCD, qui

est utilisée comme contrainte fondamentale sur le lagrangien effectif. Au moyen d’un power

counting qui suit une analyse dimensionnelle näıve (≪naturel≫), la théorie chirale des pertur-

bations décrit des processus réussis à faible impulsion (en dessous de l’échelle caractéristique

de QCD, vers 1 GeV) avec un pseudo-boson de Goldstone au minimum plus un nucléon au

maximum. Cependant, les processus avec deux nucléons et plus sont intrinsèquement non-

perturbatifs, et ne peuvent donc pas être capturés par la théorie chirale des perturbations,

ni par un power counting en pleine correspondance avec l’analyse dimensionnelle näıve. En

effet, déjà dans le secteur de deux nucléons, la renormalisation non-perturbative fait que le

nombre d’interactions à courte portée prescrites à un certain ordre par le counting dimen-

sionnel ne suffise pas en général à rendre l’amplitude de diffusion véritablement renormalisée.

L’EFT chirale (ou pionful) est la généralisation de la théorie chirale des perturbations à un

tel cadre non-perturbatif.

La symétrie chirale prévoit que la portée maximum de la force nucléaire est approxima-

tivement donnée par l’inverse de la masse du pion. À des distances suffisamment grandes,

les seuls degrés de liberté effectifs sont les nucléons eux-mêmes, de sorte que toutes les in-

teractions entre eux sont de contact. Cette approche est connue sous le nom de EFT de

contact (ou pionless). De même façon que dans le cas pionful, le principe d’invariance de

renormalisation est utilisé pour dériver le power counting. Dans le secteur de deux nucleons,

où la théorie est equivalente au développement de portée effective, la mise à l’échelle des

couplages n’est pas conforme aux attentes naturelles, ce qui se manifeste par l’existence de

deux peu profonds (respectivement réel et virtuel) états liés dans les ondes S.

Dans le chapitre 2, le power counting des canaux nucléon-nucléon singulets périphériques

—ces ondes avec un moment cinétique de spin nul et un moment cinétique orbital élevé— a

été étudié dans le cadre de l’EFT chirale. Nous avons exploré la théorie des perturbations

jusqu’au quatrième ordre, ce qui nous a permis de constater que le potentiel d’échange

d’un pion est supprimé dans ces canaux par le paramètre d’expansion de l’EFT élevé à une

puissance qui crôıt avec le moment cinétique orbital. Une telle suppression est, encore une

fois, en contradiction avec les attentes dimensionnelles et, en fait, s’avère en général beaucoup

plus forte que dans le schéma de Kaplan–Savage–Wise, dans lequel l’échange d’un pion entre

à deuxième (next-to-leading) ordre. Cela ouvre la porte à l’amélioration de la systématique

et de la cohérence des calculs dans le secteur de quelques corps, car il fournit une ligne
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directrice théorique qui n’inclut que les itérations nécessaires du potentiel d’échange d’un

pion et omet les canaux périphériques où l’ordre du potentiel sans itérations est plus élevé

que celui du calcul lui-même. Toutefois, pour que ces idées soient pleinement rentables, il

faudrait étendre cette analyse à l’échange d’un pion dans les ondes triplets périphériques et

aux interactions d’échange de plusieurs pions.

Le canal nucléon-nucléon 1S0 —dont le moment cinétique de spin et le moment cinétique

orbital sont zéro— n’a pas été considéré dans le chapitre 2, car il présente plusieurs car-

actéristiques qui en font une onde partielle particulière. Dans le cadre de l’EFT chirale,

le chapitre 3 a abordé certaines de ces caractéristiques au moyen d’un nouvel arrangement

d’interactions à courte portée. Cela a été fait dans l’esprit de reproduire déjà à premier

(leading) ordre le comportement qualitatif de l’amplitude sur tout l’interval d’impulsion où

l’EFT devrait se maintenir. Puisque la proposition de Weinberg ne reproduit pas le zéro

présenté à basse energie par l’amplitude de l’onde 1S0 selon l’analyse des ondes partielles

(impulsion du centre de masse ≃ 340 MeV), nous avons proposé un schéma différent où

un tel zéro est imposé de manière non-perturbative et les corrections à ordres supérieurs

sont incluses de manière perturbative. L’amélioration systématique a été montrée jusqu’au

le deuxième ordre, et nous avons obtenu des résultats qui correspondent remarquablement

bien aux déphasages phénoménologiques jusqu’au seuil de production de pions. Nous avons

également inclus une nouvelle version de l’EFT de contact dans laquelle l’échange des pions

était artificiellement découplé (même si la localisation de l’impulsion du zéro se situe au-delà

de l’inverse de la masse du pion), ce qui nous a permis d’obtenir des résultats analytiques qui

reproduisent l’analyse des ondes partielles assez bien aussi. De ces succès phénoménologiques,

nous croyons que la décision d’imposer le zéro du 1S0 à premier ordre dans des calculs plus

générales et aussi cohérentes avec EFT vaut la peine, car ça peut améliorer la description

des observables dans le secteur de quelques corps (noyaux légers, réactions électrofaibles. . . ).

Hors du secteur des nucléons, les hadrons lourds sont des objets intéressants par eux-

mêmes, car ils représentent des états liés de particules lourdes et légères. En particulier, les

mésons lourds sont composés d’un quark lourd (b ou c) plus un antiquark léger (ū, d̄ ou s̄). Si

la masse du quark lourd est pris suffisament grande, alors le quark léger deviendra insensible

à la saveur et au spin du premier (symétrie de quarks lourds). Ce scénario correspond à le

premier ordre de l’EFT de quarks lourds ; les effets qui brisent la symétrie de quarks lourds

dans le monde physique doivent être considérés comme des corrections supprimées par les

puissances négatives de la masse des quarks lourds. Dans ce cadre, on peut utiliser la symétrie
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chirale pour construire une autre version de l’EFT chirale où les pseudo-bosons de Goldstone

sont conservés comme degrés de liberté explicites, mais les nucléons sont remplacés par des

mésons lourds.

Une telle approche a été utilisée dans le chapitre 4. En particulier, nous avons considéré

les mésons charmés D et D∗, d’une part, et les mésons charmés et étranges D∗
s0(2317) et

D∗
s1(2460), d’autre part. La parité intrinsèque opposée des mésons D (D∗) et D∗

s0 (D∗
s1)

leur permet d’échanger un kaon d’onde S, qui induit un potentiel de type Yukawa entre

des mésons lourds dont la portée est étonnamment longue (en raison de la proximité de

leur différence de masse avec la masse du kaon) et dont la force est anormalement élevée

(car elle est proportionnelle au carré de cette différence de masse). Ceci presque garantit

l’existence des états liés D∗
s0D et D∗

s1D
∗ avec JP = 0− et JP = 0−,2− respectivement, puisque

les calculs indiquent des énergies de liaison d’environ 50 MeV. Ces résultats ont été identifiés

avec les prédictions à premier ordre d’une EFT dont les degrés de liberté explicites sont

les mésons lourds et les kaons, où l’interaction de Yukawa est non-perturbative tandis que

les termes de contact qui brisent la symétrie de quarks lourds sont pris en compte comme

corrections perturbatives. Nous envisageons également l’existence des contreparties des états

liés ci-dessus dans le secteur bottom, BBs0 et B∗B∗
s1, qui seraient plus fortement liés et

présenteraient un spectre plus riche qui pourrait inclure un état d’onde P peu profond et un

état d’onde S excité.

Nous notons que les trois travaux présentés respectivement dans les chapitres 2, 3 et 4

emploient diverses techniques théoriques:

� Alors que le chapitre 2 utilise des outils totalement perturbatifs, les chapitres 3 et 4

traitent de façon non-perturbative leurs premiers ordres respectifs.

� Tandis que les chapitres 2 et 3 étudient les problèmes de diffusion, le chapitre 4 est axé

sur les états liés.

� Alors que les chapitres 2 et 4 traitent d’interactions purement régulières, le chapitre 3

inclut des termes singuliers dans le potentiel.

Pourtant, le contenu des trois chapitres est inspiré par des EFT d’interactions fortes à faible

énergie —EFT chirale dans les chapitres 2 et 3; EFT sans pions dans le chapitre 3; EFT

(chirale) de quarks lourds dans le chapitre 4. Cela donne une idée de la polyvalence et de

la richesse de l’approche des EFT appliquée aux systèmes nucléaires et hadroniques. Nous
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espérons que les propositions fournies dans les chapitres 2 et 3 trouveront des applications au-

delà du secteur de deux nucléons, ainsi que les prédictions de nouveaux états liés moléculaires

aux mésons lourds que nous ont fait dans le chapitre 4 seront confirmés à l’avenir.
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[40] C. Ordóñez, L. Ray, and U. van Kolck. Nucleon-nucleon potential from an effective

chiral Lagrangian. Phys. Rev.Lett., 72:1982, 1994.
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[136] S. Szpigel and V.S. Timóteo. Power counting and renormalization-group invariance

in the subtracted kernel method for the two-nucleon system. J. Phys. G, 39:105102,

2012.

[137] B. Long. Improved convergence of chiral effective field theory for 1S0 of nucleon-nucleon

scattering. Phys. Rev. C, 88:014002, 2013.

[138] K. Harada, H. Kubo, T. Sakaeda, and Y. Yamamoto. Convergent perturbative nuclear

effective field theory. arXiv:1311.3063 [nucl-th], 2013.

[139] E. Epelbaum, A.M. Gasparyan, J. Gegelia, and H. Krebs. 1S0 nucleon-nucleon scat-

tering in the modified Weinberg approach. Eur. Phys. J. A, 51:71, 2015.

145



BIBLIOGRAPHY BIBLIOGRAPHY

[140] X.-L. Ren, K.-W. Li, L.-S. Geng, B. Long, P. Ring, and J. Meng. Leading-order

covariant chiral nucleon-nucleon interaction. arXiv:1611.08475 [nucl-th], 2016.

[141] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart. Partial-wave

analysis of all nucleon-nucleon scattering data below 350 MeV. Phys. Rev. C, 48:792,

1993 (http://nn-online.org).

[142] S.R. Beane and M.J. Savage. Rearranging pionless effective field theory. Nucl. Phys.

A, 694:511, 2001.

[143] A. Vaghani, R. Higa, G. Rupak, and U. van Kolck. In preparation.

[144] S. König, H.W. Grießhammer, H.-W. Hammer, and U. van Kolck. Effective theory of

3H and 3He. J. Phys. G, 43:055106, 2016.

[145] L. Castillejo, R.H. Dalitz, and F.J. Dyson. Low’s scattering equation for the charged

and neutral scalar theories. Phys. Rev., 101:543, 1956.

[146] D.R. Entem and J.A. Oller. The N/D method with non-perturbative left-hand-cut

discontinuity and the 1S0 nucleon-nucleon partial wave. arXiv:1610.01040 [nucl-th],

2016.

[147] M.I. Krivoruchenko. Remarks on the origin of Castillejo-Dalitz-Dyson poles. Phys.

Rev. C, 82:018201, 2010.

[148] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart. Construction of

high-quality nucleon-nucleon potential models. Phys. Rev. C, 49:2950, 1994 (http://nn-

online.org).

[149] I. Stetcu, B.R. Barrett, and U. van Kolck. No-core shell model in an effective-field-

theory framework. Phys. Lett. B, 653:358, 2007.

[150] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, and U. van Kolck.

Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless

EFT. Phys. Lett. B, 772:839, 2017.

[151] W.T.H. van Oers and J.D. Seagrave. The neutron-deuteron scattering lengths. Phys.

Lett., 36B:208, 1967.

146



BIBLIOGRAPHY BIBLIOGRAPHY

[152] J. Vanasse. Fully perturbative calculation of neutron-deuteron scattering to next-to-

next-to-leading order. Phys. Rev. C, 88:044001, 2013.

[153] M.B. Voloshin and L.B. Okun. Hadron molecules and charmonium atom. JETP Lett.,

23:333, 1976.
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