archives-ouvertes

Effective field theories of strong-interacting systems in
nucleon scattering and heavy-quark bound states

Mario Sanchez Sanchez

» To cite this version:

Mario Sanchez Sanchez. Effective field theories of strong-interacting systems in nucleon scattering and
heavy-quark bound states. Nuclear Theory [nucl-th]. Université Paris-Saclay, 2017. English. NNT:

2017SACLS419 . tel-01695540

HAL Id: tel-01695540
https://tel.archives-ouvertes.fr/tel-01695540
Submitted on 29 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://tel.archives-ouvertes.fr/tel-01695540
https://hal.archives-ouvertes.fr

® UNIVERSITE

universite PARIS
PARIS-SACLAY P SWD

NNT: Théories effectives des champs
2017SACLS419 - . .

pour systemes avec interaction

forte : diffusion des nucléons et

états lies de quarks lourds

Thése de doctorat de I'Université Paris-Saclay
préparée a I'Université Paris-Sud

Ecole doctorale n°576 — Particules, Hadrons, Energie, Noyau,
Instrumentation, Imagerie, Cosmos et Simulation (PHENIICS)
Spécialité de doctorat : Physique hadronique

Thése présentée et soutenue a Orsay, le 20 Novembre 2017, par

M. Sanchez Sanchez Mario

Composition du Jury :

M. Carbonell Jaume
Directeur de Recherche, IPN, Orsay (France) Président

M. Frederico Tobias
Professeur, ITA, Sdo José dos Campos (Brésil) Rapporteur

M. Hammer Hans-Werner
Professeur, Institut fur Kernphysik, Darmstadt (Allemagne) Rapporteur

M. Pavon Valderrama Manuel
Chargé de Recherche, Université Beihang, Beijing (Chine) Examinateur

M. Soma Vittorio
Ingénieur de Recherche, IRFU, Gif-sur-Yvette (France) Examinateur

M. van Kolck Ubirajara
Directeur de Recherche, IPN, Orsay (France) Directeur de thése

e
(0]
—
@)
e
J
@)

@)
D

o
()
Vs

D

| o=

—







Acknowledgements

In these lines I would like to remark my gratitude towards those who, one way or another,
contributed to make this thesis possible, and also made my life during the last three years
more enjoyable and less tough than it would have been without them.

In particular, I will always be grateful to Bira, my advisor, whose vast knowledge, deep
physical intuition, and strong “EFTism” have been, and keep being, a fundamental inspira-
tion for me. I have learned a lot from enlightening discussions with him —and if I couldn’t
learn more, this was due to my own limitations, which he helped me to overcome during
these years. By the way, talking with him about any topic, no matter whether we coincided
in our viewpoints or not, was always instructive and pleasant. I should also acknowledge his
patience and care in reading the endless drafts of the thesis manuscript.

Heartily thanks also to Manolo for his guidance, patience and generosity, which includes
having been a great host during my stay in China at the very end of my Ph.D. I will never
forget that he taught me much of the physics included in these pages, and supported and
trusted in me when concerns and doubts assailed me.

Thank you to Jerry and Bingwei, with whom it was a pleasure to collaborate, discuss and
start growing as a researcher —I really hope we keep working together for many years—; to
the people in the committee of my thesis defense for their generosity and kindness; to the
members of the Physique théorique and Physique hadronique groups at the IPNO (Michael,
Marcella, Dennis, Elias, Paolo, Giai, Véronique, Bachir..., and the junior researchers as
well) for being there when I needed them with kind and warm words and for those enjoyable
discussions at lunchtime; to my former professors in Murcia for having contributed in the
process that drove me to this Ph.D. adventure, and in particular to José Antonio, whose
intervention in that regard was key.

Pasaré a mi lengua materna para dar las gracias a mis amigos de toda la vida, Pepaco,

Pancho y Edgardo, con quienes tantos momentos entranables, alegrias y penas he compartido



desde que era un crio de la escuela primaria. Mas de una vez en que estaba abrumado por
la cantidad de trabajo o saturado por algin calculo duro de roer, entrar en nuestro grupo
de whatsapp y leer las tonterias que escribian y anadir las mias me ayudoé a desconectar y a
echar unas risas. Me alegra poder decir que nuestra amistad no se ha perdido por el hecho
de que yo tuviera que abandonar la ciudad y el pais donde crecimos juntos, sino que se ha
fortalecido y espero que siga viva por mucho tiempo.

Nunca podré estar lo bastante agradecido a mis padres. Ellos me dieron la vida y jamés
me fallaron. Su apoyo —emocional y financiero— ha sido, es y serd un ingrediente indis-
pensable en todos los éxitos que haya alcanzado o pueda alcanzar en el futuro. Por ello,
deseo corresponderles y trabajar cada dia para que puedan sentirse orgullosos de mi. Gra-
cias también a mi hermana Cristina, que estuvo a mi lado en mas de un momento duro; a
mis tias Consuelo y Maria José, por su bondad desprendida y risuena; a mis abuelos Lorenzo
e Isabel donde quiera que estén.

Y, desde luego, gracias a Uly, mi mujer, por su sacrificio y su amor. Sé que a menudo no
ha sido facil, pero has sido paciente y comprensiva; has permanecido a mi lado pese a mis
(muchos) defectos y a las (demasiadas) veces en que mi trabajo ha interferido en nuestra
vida familiar; has sacrificado tus propias ambiciones personales en pro de nuestro proyecto
comun. .. y me has regalado lo mejor que me ha pasado en mi vida, nuestro precioso hijo
Jaime, a quien, juntos, hemos visto crecer, no tan de cerca como habria deseado en mi caso,
durante los dos tltimos anos, y que tantos momentos de dicha nos ha de regalar todavia. A

tiy a él, os llevo en mi corazén, y a vosotros os dedico cada linea de este trabajo.



A Jaime y Uly






Contents

1 Introduction 7
1.1  Effective field theory . . . . . . . . . .. 7
1.1.1  What isit? . . . . . . . . 7
1.1.2  Why is it useful in nuclear and hadronic physics? . . . . ... ... ... 9

1.2 Chiral EFT . . . .. . 11
1.2.1 A brief primer to chiral perturbation theory . ... ... ... ... ... 11
1.2.2  Bringing nucleons into the picture . . . . ... ... ... ... ... 19
1.2.3  Chiral EFT of two-nucleon systems . . . ... ... ... ... ....... 22

1.3 Pionless EFT . . . . . o 31
1.3.1 Motivation . . . . ... ... 31

1.3.2 Thesimplest case . . . . . ... ... 33
1.3.3 Beyond the simplest case . . . . . ... . ... ... ... .. ..., 34
1.3.4 Beyond the NN sector . . . .. ... . .. ... . . .. ... ... .. ... 39

1.4 Heavy-quark EFT . . . .. ... 42
1.4.1 Introduction . . . ... .. ... ... ... 42

1.4.2 HQEFT Lagrangian . . . . . . . ... ... .. 43
1.4.3 Heavy-meson chiral Lagrangian . . . . . ... ... ... ... ....... 45

1.5 Outline . . . . . . . 48
2 NN peripheral singlet waves 51
2.1 Introduction . . . . . . . .. 51
2.2 Perturbative OPE . . . . . . ... 52
2.2.1 Formalism . . . . . ... . . 53

222 Results . ... 55

2.3 Peripheral demotion . . . . . ... 57



CONTENTS CONTENTS

2.3.1  Quantum-mechanical suppression . . . . . . ... ... ... 57

2.3.2  Power-counting suppression . . . . . ... ... 59

2.3.3 The peripheral perturbative expansion revisited . . . . . . ... ... .. 65

2.3.4 Beyond central OPE . . . . . . ... .. ... 67

2.4 Conclusion . . . . .. . . 69

3 NN S-wave singlet channel 71

3.1 Introduction . . . . . . . . . . .. 71

3.2 Pionless theory . . . . . . .. 73

3.2.1 Leadingorder . .. ... ... ... 78

3.2.2 Next-to-leading order . . . . . ... ... 82

3.2.3 Resummation and higher orders . . . ... ... ... ... ... . ... 87

3.3 Pionful theory . . . . . . . .. 87

3.3.1 Leadingorder . .. ... ... ... 89

3.3.2 Next-to-leading order . . . . . ... ... . 91

3.3.3 Resummation and higher orders . . . ... ... ... ... ... ... 95

3.4 Outlook . . . . 98

4 D:(2317)D and D?(2460)D* molecules 101

4.1 Introduction . . . . . . . . . ... 101

4.2 OKE potential . . . . . . . . . 103

4.3 Results . . . . . 105

4.4 SUmMmMAary . . ... 111

5 Conclusions 113
Appendices

Appendix A Spontaneous symmetry breakdown 117

Appendix B The OPE potential in the NN 3S5;-3D; channel 121

Appendix C Peripheral demotion and resonances 127

Appendix D Résumé en francgais 129



Chapter 1

Introduction

1.1 Effective field theory

1.1.1 What is it?

Problems displaying separation of momentum (or distance) scales constantly appear in
physics. Among many examples of this fact, we could recall that one does not need to
describe how atoms or molecules interact with each other to study the macroscopic prop-
erties of a fluid, nor to have a precise knowledge of what is going on in the atomic nucleus
to make predictions about atomic or molecular systems. Given two theories, A and B, such
that the momentum and energy regimes of the theory A lie far above the ones of the theory
B (the typical distances that concern the theory A are much smaller than the ones of the
theory B, put in other words), the theory B is said to be “less fundamental” than (or to
“emerge” from) the theory A; however, it is clear that, within its own territory, the theory
B is a self-contained, useful theory from where concrete predictions can be made. Putting

it short:
“High-enerqy details are inconsequential if we stick to a low-energy description of nature.”

(Actually, if this were not the case, physicists could not make any progress in their respective
fields of expertise until some “theory of everything” was finally established.) The effect of the
theory A at large distances may thus be parametrized by the so-called low-energy couplings of
the theory B. Sometimes, the couplings can be derived from the theory A, either explicitly

or by means of numerical calculations (“top-down strategy”); however, often this task is

7
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not feasible and one needs to determine the couplings from the available empirical data
(“bottom-up strategy”).

The ideas above are very powerful, and the effective field theory (EFT) approach (see
Refs. [1-5] for general and pedagogical reviews) exploits them in a systematic way. Indeed,
this last feature of any EFT is essential, and what distinguishes it from models. We say that
an EFT is “systematic” in the sense that, at least a priori, its predictions can be made as
accurate as one wants by going one step further in a power series whose expansion parameter
is usually given by the ratio of two physical scales, such as the typical external momentum
of a physical process amenable to the EFT over the momentum scale at which the EFT
stops working and needs to be replaced by some other EFT that underlies the former. At
the same time, the EFT expansion offers one the possibility of always keeping under control
the uncertainties of its predictions at a given order.

There are two more basic ingredients that one needs to add to cook a proper EFT. These

are renormalization-group (RG) invariance and power counting (PC):

e The emergence of ultraviolet infinities from loop diagrams was discovered several
decades ago, in the context of quantum electrodynamics (QED). Such divergences
may be healed via the introduction of a cutoff A that separates “low” and “high” loop
momenta (regularization). But, given the arbitrariness of this separation, the low-
energy couplings of the theory must run with A in such a way that all the resulting
predictions of observable quantities exhibit a mild and controlled cutoff dependence,

remaining well-defined in the A — oo limit (renormalization).

e In EFT, any interaction that is not forbidden by symmetry requirements will take
place; consequently, an infinite number of interactions will occur. The role of PC rules
is to discriminate which of these interactions should be used when doing calculations at
a given order in the EFT expansion. These rules also tell us whether a given interaction

term should be taken as non-perturbative (infinitely iterated) or perturbative.

The two key notions above —RG invariance and PC— are not independent of each other,
but actually intimately intertwined. On the one hand, the traditional sense of renormaliza-
tion can be reinterpreted —from “global” to “order-by-order”— thanks to PC, as the latter
guarantees that a finite number of interaction terms suffices to achieve, at a given order in
the expansion, the desired accuracy, thus allowing for a finite number of low-energy couplings

to circumvent cutoff dependence of observables. On the other hand, a consistent PC needs
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to provide all the necessary low-energy couplings to ensure that the RG invariance principle
is truly satisfied by the EFT. As we will see, this requirement on the PC rules can be quite
delicate sometimes (most particularly, when some of the effective interaction terms are to be
fully iterated).

1.1.2 Why is it useful in nuclear and hadronic physics?

For many years already, it has been established that quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction (see Ref. [6] for a nice review). The pure

QCD Lagrangian is !
Laco = ). 45 (17D = mgdiy) af = 5Tr (GG (1.1)
f

where q; is the spin-1/2 quark field, with dimension of mass3/? ( [q}] =3/2), f standing for
a flavor index that can be u (“up”), d (“down”), s (“strange”), ¢ (“charm”), b (“bottom”),
or t (“top”), and i = r,2,b = 1,2,3 being a color index. Here, the sum over both greek
and latin indices is implied, 7, is a Dirac matrix whose (omitted) indices are contracted
with the spinor indices of the quark fields, and my is the quark mass. Besides, Df;. =
Oro;5 — igAfﬁ;? = 0Mo5 — z'gAfj is the covariant derivative matrix element in color space, g
being the strong coupling constant, Af,..., AL being the gluon fields, and T*,...,7T® being
the matrix generators of SU(3)color. Finally, G = OrAY — OV A* —ig [A*, AV] is the gluon
strength tensor.

The strong coupling ¢ is not exactly “constant”, but subject to RG invariance, thus
dependent upon the characteristic energy scale of a given strong process. As the energy is
increased (much above the infrared QCD scale Aqcp ~ 300 MeV), the coupling gets smaller
and smaller, implying a very perturbative color interaction (asymptotic freedom). In pertur-
bative QCD, it is convenient to take gluons and quarks as the explicit degrees of freedom
of the theory. Conversely, in the low-energy regime (below Agcp) the theory gets highly
non-perturbative, as manifest in the fact that the QCD spectrum cannot be written in terms
of gluons and quarks anymore, but in terms of hadrons —mesons and baryons— into which

those remain tightly bound (confinement).

LAll through this work we will use natural units, thus set the reduced Planck constant i and the speed

of light ¢ equal to 1.
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The most stable baryons are the nucleons (protons and neutrons), which bind into the
atomic nuclei that, together with the electrons, constitute ordinary matter. Other hadrons,
like pions or hyperons, also interact with each other through the strong force. Nuclear and
hadronic forces can thus be seen as a residual effect of the strong interactions that keep
gluons and quarks confined, much like atomic and molecular forces emerge from the elec-
tromagnetic interactions that combine nuclei and electrons into atoms. Thus, a complete
theoretical understanding of nuclear and hadronic physics demands to bridge their gap with
the underlying QCD. Even though physical models —some of which were posed before the
discovery of QCD— can sometimes reproduce successfully several empirically observed fea-
tures of nuclear and hadronic systems, they miss the connection above. This makes necessary
to look for alternative strategies. Nowadays, among such strategies the most promising are
lattice QCD (LQCD) and EFT:

e In LQCD, one aims at calculating nuclear and hadronic properties directly from QCD,
by means of computationally expensive simulations on a discretized space-time grid.
It is only since a few years that LQCD has started to obtain quantitative properties
of light nuclei, few-nucleon scattering, and other hadronic systems, even though still
for unphysically large quark masses (see e.g. Refs. [7, 8] for overviews and references).
Indeed, LQCD is not yet able to explain the systems above in the physical world, i.e.
for the physical pion mass (m, ~» 140MeV). Still, the current situation invites us to

think that such objective will be reached soon.

e Conversely, the EFT formulation avoids the requirement of complex numerical calcu-
lations by establishing the connection with the underlying QCD in an indirect way
(see Refs. [9-11] for reviews concerning nuclear forces). The basic idea is to exploit
the (either exact or approximate) symmetries of the Lagrangian (1.1), and write down
the most general effective Lagrangian involving the low-energy degrees of freedom (i.e.
hadrons) and preserving such symmetries. In this regard, nuclear and hadronic EFTs

are nothing but the RG evolution of QCD at low, non-perturbative energies.

(The two approaches above are not in contradiction to each other. In fact, they can be seen as
complementary; for example, the so-called chiral extrapolations allow for the determination
of the effective couplings from LQCD results.)

In this work, we will follow the second approach. This can be done thanks to the separa-

tion of scales that is inherent to nuclear and hadronic physics —while hadrons are no longer

10
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valid degrees of freedoms at momenta above a characteristic hard scale Mqcp ~ 1 GeV, most
processes of interest occur at a softer momentum scale ) ~ 100 MeV or less. Then, PC
rules dictate which terms in the effective Lagrangian (out of an infinite number) are to be
taken into account when computing observables at a given order in an expansion in powers
of the small parameter Q/Mqcp. The systematicity of this expansion represents another
important advantage of the EFT method with respect to models when facing nuclear and
hadronic systems. Thanks to the recent development of ab initio methods, which bridge the
gap between nuclear forces and currents on one hand and nuclear structure and reactions on
the other (see Ref. [12] for an overview), nuclear EFT is now better exploited than ever.

In this chapter, we will present two EFTs that are widely used nowadays in the study of
nuclear forces, that is to say chiral EFT (Section 1.2) and pionless EFT (Section 1.3), plus
another EFT which is particularly useful when applied to exotic hadronic systems, namely
heavy-quark EFT (Section 1.4). At the end of the chapter, an outline of the rest of the

present work will be given (Section 1.5).

1.2 Chiral EFT

1.2.1 A brief primer to chiral perturbation theory

Chiral perturbation theory (xPT) is the oldest, best-established example of low-energy EFT
of the strong interaction (see Ref. [13] for a pedagogical introduction). As such, this theory
needs to preserve the same symmetries as QCD does at high energies. To show how yPT
emerges from QCD, let us consider the QCD Lagrangian (1.1) restricted to the two lightest
quark flavors u and d. Taking +® = i79y192+3, decompose the up-quark spinor field as the
sum

w=ug+ugp, with wu,=3 (1 + 75) u and up=3 (1 - 75) u, (1.2)
and similarly for the down-quark spinor field 2. In the limit of vanishing m = (m, +mg)/2,

the QCD Lagrangian will become

Lacp|m-o = rilPur, + ugilPug + drilpdy, + dgilpdg - 1Tr (G,,G"), (1.3)

2To see the physical meaning of these definitions, consider the spin operator S of u and d. If these are

assumed to be massless, i.e. to move with unambiguous three-velocity v (Jv| = 1), then uz, and dy, (ug and

dr) will be eigenstates of S-v with eigenvalue —1/2 (+1/2).

11
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where the color indices were now omitted for simplicity, and we abbreviated Ip = YuD*. As a
consequence of the full decoupling between the right- and the left-handed components of the
quark fields, the massless QCD Lagrangian (1.3) is chirally symmetric, i.e. invariant under

the independent flavor rotations

(us dL)THUL(uL dL)T and  (ug dR)THUR(uR dR)T, (1.4)

where “T” refers to the transpose matrix, and Uy g € SU(2), g may be parametrized up to
the linear term in € - 0 as

UL,R: 1+Z‘E%7R7'a7 (15)
with 71,72, 73 the Pauli matrices in flavor space. Then, taking
€} = % (¢ +€5) and €4 = % (e —€%), (1.6)
Eq. (1.4) yields
T T '
(u d) > U(u d) with U =1+ (el +v5¢%) 7% (1.7)

When €4 =0 (Ug = Ug), Uy = 1 +i€%7® belongs to SU(2)y, the group of isospin rotations,
corresponding to the internal symmetry of the nucleon isodoublet N = (pn)T. When €f, =0
(U =UR), Ux = 1 +iv5¢%7% is an axial rotation 3.

If the invariance under SU(2) ., x SU(2) g had been fully respected by the massless theory,
then the expectation value of the bilinear operators @u and dd at the ground state —its
so-called vacuum expectation value (VEV)— would have identically vanished. However, as

it has been repeatedly checked in lattice calculations (see e.g. Ref. [15]),

(Gea) =2((qr) (@) g) = V30, with ¢ =v and ¢ =d, (1.8)

where the magnitude of v has the same size as Aqcp. The non-vanishing of the VEV (gq), also
known as the chiral condensate, illustrates the spontaneous symmetry breakdown (SSB) of
SU(2) xSU(2)g by massless QCD (see Appendix A for a short review on SSB) 4. Applying

3 Actually, the Lagrangian (1.3) is also invariant under U(1)y, (ud)T = (1 +iey) (ud)™ (which is an
exactly fulfilled symmetry even away from the massless limit), as a reflection of the baryon number conser-
vation. Finally, its invariance under U(1) 4, (ud)T = (1 +iy5e4) (ud)T, is verified, too; however, this one is

not a true symmetry of the massless theory due to quantum effects known as anomalies [14].
4The Big Bang cosmology accepts that the SSB of chiral symmetry emerged in the very early Universe

(less than a millionth of a second after the bang), when its temperature became $ Aqcp ~ 102 K. At this
point, the thermal energy of the sea of quarks was overcome by their binding energies, so quarks could

coalesce into hadrons.

12
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Eq. (1.4) to Eq. (1.8) gives

(@ar) = (UL) g (v*0n) (UR),, = 0* (ULUL),, (1.9)

from where we see that only for an isospin transformation Uy does the chiral condensate
remain invariant; in any other case where €} # €%, the chiral transformation will produce a
different VEV which will be degenerate in energy with the previous one —in a word, the
chiral condensate spontaneously breaks G = SU(2); x SU(2)r down to H = SU(2)y. This
corresponds to the presence of 22 — 1 = 3 broken generators, which in virtue of the Goldstone
theorem implies the emergence of three massless Goldstone bosons. These turn out to be
the pion triplet.

Of course, all the discussion up to now has ignored that m, 4 # 0. Away from the massless
limit, the term —mgqrqr = —mi[(Gr)r(qx)r + (Gx)r(gx) ] in the Lagrangian (1.1) mixes the
left- and the right-handed components of the quarks, so the two-flavor theory is not invariant
anymore under Eq. (1.4) —that is to say, chiral symmetry is also ezplicitly broken. But, as
MuafAgep < 1 (my, ~2MeV, my ~5MeV [16]), it happens that Lqep is, up to a very good
approximation, invariant under Eq. (1.4). Besides, even though the isospin symmetry is not
manifest at the quark level (as the relative mass splitting |m,, —mg| / (m, + mg) ~ 1/3 is not
so small), the relation (@u) = (dd) keeps being very approximately valid.

In the same way, the three bosons emerging from SSB are not truly massless as they would
be in the m — 0 limit, but they are rather light (m.+ ~ 140 MeV, m o » 135 MeV [16]) when
compared to the hadron masses (~ 1GeV), so they go under the name of pseudo-Goldstone
bosons. Again, the smallness of their relative mass splitting is a reflection of the goodness
of isospin symmetry at the hadron level. Actually, neglecting the quark mass splitting, the
non-vanishing squared pion mass can be postdicted, up to a dimensionful proportionality
constant, as the product of the two ways in which chiral symmetry breaks down —explicit

and spontaneous—

2
™

m :—f%%mv%@(m?), m=m, =mg, (1.10)

where f; ~93MeV can be empirically measured through the leptonic decay of the pion [17].
This is the celebrated Gell-Mann-Oakes—Renner relation [18], which holds within ~ 10%
approximation in the real world.

XPT is an EFT for low external momenta (@ ~ m,) that focuses on the purely pionic sec-
tor, just ignoring all the remaining, heavier modes of QCD. The fields n!'(x), 72(z), m3(x)

are the coordinates associated to the Goldstone fields living in the quotient group G/H,

13
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which is itself SU(2), hence spanned by three generators 7t 72, T3. In the defining repre-
sentation, the latter are a triplet of traceless, Hermitian matrices which we choose to obey
the convenient normalization Tr (77?) = §%, thus we take 7@ = 7%/v/2, with 7¢ a Pauli
matrix. This allows us to define the pion matrix II(x),
ETRA P A B A
@ rin)] -5 O el

which, according to the chosen normalization, can be inverted through 7%(z) = Tr [II(x)74].

Then, the unimodular, unitary matrix U (z),

U(z) = V2@ I, (1.12)
will transform linearly under G,

U(z) = ULU(x) UL (1.13)

To see how the pion fields should change under some transformation living in G/H, say a
pure axial rotation, expand the exponentials in Eq. (1.13) and truncate both sides at the
linear order in € or II(x)/f,. This yields 1+ 2iIl(z)/f, = 1++/2i [II(z)/fr + V/2e%1%], or
equivalently, 7@(x) ~ [7%(z) + 2¢*f,]. The change in 7¢(z) is not linear in 7%(x), which is
a sign of SSB [19].

The exponential representation (1.12) of the pion fields is not the only valid one; other
commonly used choices include the so-called sigma parametrization

a a a 1/2
Ur) =o(z) +ir T, o(a) = [1- ZEF@ T (1.14)

Of course, predictions of observables can never depend on the chosen representation. This
is explicitly proven by the Callan—Coleman—Wess-Zumino construction [20, 21] —all real-
izations of the chiral group are equivalent to each other up to non-linear redefinitions of the
fields, which do not affect the results for observables.

The analysis performed up to now could have been extended beyond the u and d quark
flavors to include the s quark. In that case, the spontaneous breakdown of chiral symmetry
would have been SU(3), x SU(3)g — SU(3)v, implying the emergence of 32 — 1 = 8 pseudo-

Goldstone bosons. Everything would have worked out essentially the same way, but the pion

14
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matrix (1.11) would have been replaced by the meson-octet matrix,

() + (o) () K+ (x)
(z) = 7 (z) —%7‘(0(1‘) + %n(x) KOx) |, (1.15)
K- (x) K°(z) /2 ()

where the five new pseudo-Goldstone bosons are significantly heavier than the three old ones
(mg ~my, ~500MeV), as m; ~ 100 MeV > m,, 4 [16]. In other words, the explicit breaking
of SU(3), x SU(3)g is much more severe than the one of SU(2), x SU(2)g. Consequently,
throughout this Section 1.2 we will stick to u and d as “light” quarks and simply ignore the
strange sector, contrary to what will be done in Section 1.4. There, we will explore as well

how to treat the heaviest quarks (c, b, t), whose mass is much larger than Aqep.
On the basis of the transformation rule (1.13), together with the cyclicity of the trace,
one can use U, UT, and their derivatives as building blocks of a chiral-invariant effective

Lagrangian that describes pion interactions in the chiral (massless) limit,

Lalmeo = 3 LE |0, (1.16)

n=0

where £ includes all allowed terms given by a coupling ¢l2], [¢[271] = 4 - 2n, times
an operator O2"] [O[2"]] = +2n, with n = 0,1,... as a consequence of Lorentz invariance.
Since Ut = U, ££0]|m:0 cannot exhibit any dependence on the fields; it thus represents
a contribution to the cosmological constant with no relevance in this context. Hence, the

lowest contribution to L|m-0 will be
Lo = ¢ T [0,U (2) Ut ()] (1.17)

Some other possible terms with two derivatives, e.g. Tr[U(z)0,UT(x)] T [U(x)0*UT ()],
will not contribute (as Tr[U(z)9, U (x)] = 0), while pieces such as Tr [U(x)0,0"U(x)] are
actually equivalent to the one given in Eq. (1.17) (as total derivatives can be safely dropped
from the Lagrangian). Expanding Eq. (1.17) at low momenta,

5;2]|m=0 =19, o + #[(W‘l ) (7P r) - (Waﬂa)(auﬂ'bauﬂb)] .., (1.18)

where the arbitrary normalization of the field was used to fix g2l = f2/4 so that the kinetic
term is canonically normalized. This result illustrates how the imposed symmetry constrains

all vertices with increasing number of pions in the LO Lagrangian.
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The expansion (1.16) can be extended beyond the chiral limit, so that (£ - £]. o)
includes all allowed terms given by an operator O[27] that contains 2a derivative insertions
and b > 1 quark-mass insertions, [O[2"]] = n + a, multiplied by a coupling constant (2],
[g?"] = 4 - n - a. Here we used the restriction a + b = n, due to the fact that one single
power of m is standardly counted in yPT as two powers of m, (see Eq. (1.10)), i.e. two
powers of p, implying that finite-m effects should enter in c already ®. A convenient way of
finding out how they must enter is to treat the quark mass matrix My, = m dy,; as a fictitious
(“spurion”) field that follows the transformation rule M - U, M U}; under SU(2), xSU(2)g.

Hence,
£ - £ = g T [ MU (2) + o] (1.19)

Now, one comes back to the real world where M does not preserve the transformation rule
above due to the non-vanishing of m. Then, expanding Uf(z) and U(z) up to two pion fields
and fixing gl?! = f2m2/(4m) = —v3/2 (see Eq. (1.10)) gives (modulo an irrelevant constant)

L2 £ - —dmono s (1.20)

which is the canonically normalized pion-mass term.
Combining Eqgs. (1.18) and (1.20),

P =1 (9,7 "7 -m27%) + ..., (1.21)

2

where 7 = (7!, 72, 73), and the dots refer to terms with at least four pion insertions (including

the one appearing in Eq. (1.18)). Coming back to the resummation of the pion fields,
£ = L2 {7 [0,u(2) 0t ()] + m2 T [U() + U (2)] . (1.22)

The next contributions will enter at £L". They will include 954] Tr [0*0"U(z) 0,0,U(x)], as
(4]

well as other operators, each of them multiplied by some coupling constant g; -, containing
either four derivatives, four powers of the pion mass, or two derivatives and two powers of
the pion mass. As we will see, such contributions are parametrically suppressed with respect
to the ones in Eq. (1.22). Consequently, [,7[3] and L’7[r4] go under the names of leading order

(LO) and next-to-leading order (NLO) chiral Lagrangians, respectively.

°In Refs. [22, 23] an alternative approach based on the assumption m = O(p) was proposed. However,
after the determination of the S-wave two-pion scattering length from K.4 decay [24], such an approach was
discarded [25].
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The Feynman diagrams describing two-pion interactions will then arise from the trun-
cated L, according to the usual rules of quantum field theory. Take a diagram contributing
to the total amplitude A4 =i(S - 1), S being the scattering matrix, with L relativistic loop
integrations, I internal pion lines, and V; vertices of tipe i, each of them associated with d;

derivative/pion-mass insertions. These numbers verify the topological relation
L-I.+) Vi=1, (1.23)

which may be deduced from Euler’s formula relating the number of vertices, edges, and
faces of a convex polyhedron. The diagram can be assigned a chiral power v such that its
contribution to the amplitude scales as @V, ) generically denoting the pion momenta and
the pion mass. If each relativistic loop counts as 4, each relativistic pion propagator counts

as 1/Q?, and each derivative/pion-mass insertion counts as @, then it follows
v=AL-20+ > d;V; =2+2L+ Y AV;, A;j=d;-2, (1.24)

A > 0 being the so-called chiral index of the vertex V.

From Eq. (1.24), one finds out that the chiral power of a four-pion vertex emerging from
ngﬂ (dy=2,V1 =1, L=0) is v =2, while for a four-pion vertex emerging from EE} (dy =4
Vi =1, L=0) it turns out v = 4. In particular,

AT @22 and AL~ QY £ (1.25)
But, for the diagram expansion to be consistent, we require
AL A QM) = M~ (g1) 2 s, (1.26)

where M,,; is the breakdown scale of the expansion, whose size we want to estimate. With
that purpose, consider the diagram of Figure 1.1, whose vertices emerge from E;ﬂ (dy =2,

Vi =2, L'=1). Its chiral power turns out to be v = 4; more precisely,

[1L] Q4 « Q_22X LQ_#
Ais (4m)? (ﬁ%) (Q2) "(47rf3)2/@4’ (1.27)

where the replacement Q*/(27)* - @Q*/(47)? has accounted for the integration over the

solid angle. Then, AE,] and AE} will absorb the two ultraviolet divergences, quadratic and

logarithmic respectively, that result from .Aé[érL], i.€e.

QQ
(47 f2)?

A a ~ ————A2 and A, ~ In(A/p), (1.28)

Q-
(47 f2)?
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Figure 1.1: Pion loop.

where 1 is some infrared subtraction point. Hence, the renormalized four-pion amplitude at
second order in perturbation theory will be, roughly,

[2+4] Q_2 _[4] In(Q/p) Q_4
A47r fz + [g (/“L) + (47T)2 ] f# ’ (]‘29)
where the renormalized coupling gl is given by some combination of the A-independent

parts of the 91[4]78. Now, change the renormalization scale by some factor ¢ = O(1), say
@ =e"l. Since AETM] needs to remain the same,

_[4]( -1 1+In(Q/p) _ 1 In(Q/p)
g(e M)+W—g[](ﬂ)+w

Therefore, it is natural to conclude that

=

(4m)* [g(pp) - g ()] = O(1). (1.30)

(4m)*g () = O(1), (1.31)

as if there was some gy such that (4m)2|gl4 (uy)] < 1 or (47)2|gl* (1 )| > 1, then there would
be some other pg, pa/p1 = O(1), for which such inequalities could not hold. Combining Eqs.
(1.26) and (1.31) yields finally our guess for the yPT breakdown scale [26],

Mhi ~ MQCD ~ 47I'f7r ~1 GeV, (132)

where the characteristic QCD scale Mgcp was introduced in Section 1.1.2. Quite consistently,

such a result is not far from the mass of the vector meson p (M, ~» 770 MeV), the nucleon N

(My ~ 940 MeV), and other non-Goldstone hadrons that are not considered the yPT action.

At the same time, the estimate above anticipates a nice convergence of the EFT expansion,
as My; might be 2 5 times larger than the pion mass.
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The analysis above can be generalized to yield the so-called naturalness condition, also
known as naive dimensional analysis (NDA) a la Georgi-Manohar [27, 28]: Write a given
term of the Lagrangian as some coupling constant g times an operator O with dimensions
of mass?, and let n be the number of strongly interacting fields contained in O. Define the

reduced (dimensionless) coupling constant gg as

Md—4
gr = MER2fr2g ~» —22 g, (1.33)
(4m)

The NDA hypothesis consists of assuming that gz has the same size as the product of the
corresponding reduced couplings of the underlying theory. Later we will come back to such

an assumption.

1.2.2 Bringing nucleons into the picture

At this point, we aim at generalizing YPT to include the nucleon field. In order to do so,
first we must give an effective Lagrangian that encodes the coupling between a relativistic
pseudo-Goldstone boson (pion) with momentum O(m,) and a non-relativistic heavy baryon
(nucleon) with three-momentum O(m,). It is customary to introduce the auxiliary SU(2)

matrix &(x),
£(x) = N@IVEE) 12 ) (1.34)

(see Eq. (1.12)), whose transformation law under G is easily inferred from Eq. (1.13),
§@) = U@L = b(@)E (@)U = Ung () (@), (1.35)
where we introduced the unitary (“compensator”) matrix
() = [0 @)U} Uit (). (1.36)
For a pure isospin rotation, Eq. (1.36) will simply give
b(z) = Uy. (1.37)

When €} # €%, conversely, h(z) exhibits complicated non-linear dependence on the pion

fields. For instance, if €} + €% =0, Eq. (1.36) will yield
h(x) = U326 (@)U () = ™), (1.38)
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where, recalling that Uy = 1 +iy5€9 79,
my(z) o< iy [EZT“,%] +O(€2,7T2). (1.39)

Similarly to what we did in the purely pionic sector, we require that the relativistic nucleon
isodoublet W(z) transforms non-linearly under the chiral group G, but linearly under the

isospin subgroup H. Given Eq. (1.37), the transformation
U(z) = h(z)¥(x) (1.40)

is manifestly linear for €4 = €%. Conversely, for some transformation in the coset G/H, say a
pure axial rotation, Eq. (1.39) illustrates that the above rule multiplies the nucleon field by
functions of the pion fields, which reflects the well-known fact that chiral transformations
correspond to the emission/absorption of Goldstone bosons.

Due to the locality of Eq. (1.40), a standard kinetic piece like ¥ (i@ — My )¥ will not be
chiral-invariant in general. The ordinary derivative 0* needs to be promoted to a covariant

derivative D* = O + V# where

V() = 3 [€1(2),0¢(2)] = O(x*) (L41)

—the so-called vector pion current— transforms under G as V# — b (V# + 0*) ht, thus guar-
anteeing the invariance of W (i - My)W. A term such as U5 AW (75 = —v5) turns out to be

invariant, too, since
Ar(z) = 1{e!(2),0¢(2)} = - 37 - 0 B2 + O(n) (1.42)

—known as the azial-vector pion current— transforms as A* — hA#hT. The LO relativistic

pion-nucleon Lagrangian proposed in Ref. [29] with such building blocks reads
LU ass = U [P - My + gay° A] T =T [z‘a - My - 39477 dE+ .. ] v, (1.43)

where g4 ~ 1.26 is the axial coupling constant, and the ellipsis refer to terms with at least
two pion insertions. (Note that the LO contribution to the pure pion Lagrangian (1.21) has
been made implicit.) But My, unlike m,, is not small compared to the hard scale Mqcp
and does not vanish in the chiral limit. Treating the nucleon as a relativistic field is, thus,
problematic. As an example of this, let us note that we could have included in EELJ\?”GSS

some other chiral-invariant piece such as the pion-nucleon coupling
Lox = U [§aMGioy* AD D! | W = W[ -154MG2pn 7 - £ 0,0+ .| 0, (1.44)
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with g4 = O(1) some dimensionless coupling. The insertion of two negative powers of Mqcp
comes with the two extra derivatives, in analogy with what it is done in yPT. But each
time derivative acting on W brings down one positive power of My, implying that the pion-
nucleon coupling included in Eq. (1.44) has a size of O(M}/Mgqp) = O(1) compared to
the one given in Eq. (1.43), and thus it is not suppressed. This illustrates that there is no
clear way to organize the derivative expansion anymore; such an observation also applies to
contributions from loops enhanced by powers of My. The moral is that we cannot rely on a
particular hierarchy of terms in the Lagrangian before taking the non-relativistic limit. We
will see that, once this is done, the Lagrangian coming out from ﬁ,[:}vo”(;ss will appear as LO
in virtue of consistent PC rules.

It is customary to decompose the nucleon four-momentum p,, as
Pp = Mnvu + gy, (1.45)

where v, and ¢, are the nucleon four-velocity and the nucleon residual momentum, verifying
vhy, = 1 and viq, /My << 1 respectively. Then, separate out the kinematical dependence on

the nucleon mass exhibited by W,
U (z) = e MNv"auy (), (1.46)
which, once plugged into Eq. (1.43), gives
L8ass =i+ (f - 1)My - bga7- (PO E+ ... | (1.47)
This can be simplified by introducing the projection operators
PP =1(1x9), (1.48)
thus decomposing the four-spinor ¢ as the sum
Y(x)=N(x)+h(x) with N(z)=P'(x) and h(x)=P’yY(z). (1.49)

Consider the rest frame of the nucleon, v, = (1,0). Then, N(z) and h(x) correspond (up
to a phase) to the upper and lower components of the positive-frequency solution of the
free Dirac equation. Neglecting terms suppressed by powers of My, the upper component

collapses to a bispinor, while the lower one vanishes. Hence, Eq. (1.47) becomes

L0 g - L8O = Nt [@'80 ~3a7(0-V) £ +. ]N (1.50)
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(13 Y

where the “-” indicates that pieces proportional to some positive power of 1/My are not
included anymore as omitted terms labeled as “...”. Below, we will see that EEFLA(,)] represents
indeed the LO contribution to the pion-nucleon Lagrangian. Being suppressed by My, the
piece proportional to ¥[7 - (7574°0,)7]¢ in Eq. (1.47) needs to be included in EE}IVLO], just
like the first correction to the kinetic part of the nucleon. The remaining terms contained in
EE\EJO] have, at least, two pion-field or two pion-mass insertions.

Similarly to the purely pionic sector, the full 7NV coupling gives rise to an infinite series
of Feynman diagrams that, according to their increasing chiral power v, can be organized
as decreasingly important in the low-momentum regime of the EFT. For a given 7N graph
with L loops, I () fermion (pion) propagators, and V; vertices, each of them associated

with d; derivative/pion-mass insertions and f; fermion legs,

v=AL-20+1;+ Y dVi, I=I;+1 (1.51)

since each loop counts as Q*, each fermion (pion) internal line counts as 1/Q (1/Q?), and

each derivative/pion-mass insertion counts as ). Using

L—[+Zv;=1, (1.52)
which generalizes Eq. (1.23), and

DA (153

which is a consequence of the fact that V; connects f; nucleon lines in a diagram with two

external nucleon legs, Eq. (1.51) becomes
v=1+2L+Y AV, Aj=1ifi+di-2. (1.54)

Then, the only 7N term that contains one single pion-field insertion and whose chiral index
is minimized (A =0) is the axial-vector coupling that has been made explicit in Eq. (1.50).
There is a vast literature on the successful application of the yPT approach to the purely

pionic and one-nucleon sectors. For reviews, the interested reader may consult Refs. [30-32].

1.2.3 Chiral EFT of two-nucleon systems

Now, what will come up if a second nucleon enters the scene? From what we have just

seen, in the low-momentum regime ) << Mqcp, the nucleon-nucleon (NN) interaction will

22



CHAPTER 1. INTRODUCTION 1.2. CHIRAL EFT
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Figure 1.2: Diagrammatic exchange of a virtual pion in a two-nucleon process.

be mediated by the exchange of off-shell (virtual) pions 6. Here, we will first derive in detail
the expression of the one-pion-exchange (OPE) NN potential. (As we will see, interactions
due to the exchange of two or more pions are parametrically suppressed in comparison.) Let
p (p’) be the relative three-momentum of the incoming (outcoming) nucleons. The pion-
nucleon vertex vy_.y is readily obtained from Eq. (1.50) in terms of the three-momentum

q = p’ — p carried by the pion,

UN>sgaN = —Zﬁ<N|NTﬂ (0' V)?TN'T('G‘N>——ZﬁT U'(—Z'q)Z—UWaN%N, (155)
while the pion propagator is found from Eq. (1.21),
ab ab
L (1.56)

gt -m2 @ m2
as qo ~ q?/ My is negligible at LO. The OPE potential in momentum space then reads

- _,9A0'1q0'2q

Vore(@) = U wmony, PRl Uning o, = =71 24f2 @ +m? (1.57)

(see Figure 1.2). Its coordinate counterpart is recovered through the inverse Fourier trans-

form,

e Vopr(q). (1.58)

(2 )
Introducing the so-called tensor operator,

512(72):30'1'7?'0'2'7:—0'1'0'2, 'I’%:z, (159)
r

SFunnily enough, this confirms the old proposal by Yukawa, made many years before the discovery of
QCD and xEFT [33].
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together with the dimensionless functions

T()=1+5+5 and Y(z)=" (1.60)
T x T
it turns out that
Vore(r) = 2m3 {[S (P)T(myr) + 01 - 02]Y (mar) — 4—7Tcr o 5(r)} (1.61)
OPE 18 f2 12 x 1702 w m3 017 -

Integrating S15 over the unit sphere, we compute its projection onto the S wave, which turns

out to be zero, implying that, for transitions with ¢ = ¢' =0,

2,53
_ 9aMmx . -

(For details associated with transitions between the S and D waves, belonging to the spin-
triplet S = 1, see Appendix B.) But, for a system composed of two nucleons, the intrinsic
spin (isospin) numbers are Sy = Sy = 1/2 (I = Iy = 1/2), thus Sy 2 = 015/2 (f1,2 = T12/2) for

the corresponding spin (isospin) operators, so that

o109 :451'52:2[(514-52)2—5%—53]
=2[S(S+1)-51(S1+1)=85(5+1)]=25(S+1) -3, (1.63)

’7’1 '7_:2 =4j1 'fg = 2[(f1 +f2)2—f12—f22]
=2 [I([ + 1) - ]1(11 + 1) - [2(]2 + ].)] = 2]([ + ].) - 3, (164)
in terms of the total spin S (isospin ). Because of the addition rules for angular momenta,

both S and I are either 0 or 1; however, given that nucleons are fermions, we also know that,

for what concerns the S wave, S + I is odd. Hence,

{Ip). Inn) , 5 (lpm) + [np)) } , (1.65)
{Z (o) = Inp))} (1.66)

$=0= {L(t)-I)} = 1=1
S=1= {It).1W), 5 (M) + )} = 1=0

respectively for the spin-singlet (isospin-triplet) 1Sy and the spin-triplet (isospin-singlet) 357,

implying that (o1 0271 -72)15, = (010271 - T2)3g, = =3, i.e.
P& ()= 2T (5(r) _ Ma Y(m,,r)) (1.67)
OPE MNANN 47 ’
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or, back to momentum space through Fourier transform,

47 m?
V) () {__Mx 1.68
where we introduced the characteristic momentum scale of OPE [34, 35]
167f2
Any = ™ ~ 290 MeV. 1.69
NN 931 My e ( )

OPE is supplemented by the pure contact part of the NN interaction, consisting of four-
nucleon vertices without pseudo-Goldstone fields. These terms “parametrize our ignorance”,
as they emerge from the short-distance (high-energy) physics that, being inherent to the
nuclear interaction, remains unresolved by our EFT. According to the PC rules we will

discuss later on, the S-wave projected LO NN contact Lagrangian reads [9]

Loy () _ NT<¢80+ Q;N)N—CISO(NTFASON)T.(NTESON)—CBSI(NTpgslN)T.(NTpgslN),

(1.70)
where the 1Sy (3S1) projector is expressed in terms of the Pauli matrices o and 7 acting on
spin and isospin space as 15150 = 02?72/\/§ (Psg, = Tgaag/\/g). Then, the NN LO potential

becomes

Ar m2 41
LO (p,p) S MNANN (p,_p)2+mgr7 S = S+MNANN’ ( )

with S = {15,251}. The bare couplings Cig, and Csg,, unknown a priori, must be deter-
mined through fitting to the available low-energy data.

Remarkably, and contrary to what we saw for the one-nucleon sector, the kinetic piece
NT[v2/(2My)]N has now been included in the LO Lagrangian, in correspondence to the “in-
frared enhancement” of those NN diagrams containing purely nucleonic intermediate states
—the so-called “reducible” (or iterative) graphs. The infrared enhancement was pointed out
by Weinberg [36, 37] in order to explain the non-perturbative nature of the NN system,
which is manifest in the presence of a loosely bound state (the deuteron) in the spin-triplet
and a very shallow virtual state in the spin-singlet. Explicitly, the LO S-wave scattering
amplitude at the scattering energy E = k2/My is obtained from the Lippmann—Schwinger
(LS) equation

T p,k) =V @, p) + f

_ 1S (o 4
—VLo (pvp) /(2 )3

Véé) (. 1) G W,k T, p, k)

o LV W p)+..., (1.72)
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where the Schrédinger propagator is found from the kinetic term in Eq. (1.70),

+ M
Gy (L F) = 5 or = Onf/Q%); (1.73)

l2

therefore, assuming that the contact part of VL(CS)) follows the same scaling as its long-range

part,

3 -1
ro L, @ L Ak ] 1(1 Q) , (1.74)

+ 4 x — —_— e~ — - =
LO
oA 2@ 2 JERN
which is compatible with the emergence of a (real or virtual) bound state or a resonance at

QNfﬂ-

1.2.3.1 Weinberg power counting

Much like it happens in the purely pionic and the one-nucleon sectors, the only restriction
that binds the construction of the yEFT Lagrangian is the preservation of the symmetries
of the underlying QCD. Otherwise, such Lagrangian is the most general one, implying that
it contains an infinite number of terms and thus gives rise to an infinite number of Feynman
diagrams. Hence, again we need, for our approach to be useful, a set of PC rules that tell
us which diagrams should be kept when computing observables at a given order in the EFT
expansion. A series of pioneering works at the early and middle 90s [36-41] postulates that
the full NN effective potential in momentum space, found through the sum of all those
diagrams that are not infrared enhanced —known as “irreducible” graphs—, is amenable to

the decomposition
Vi = Zngfljl\;”lezcu (Q/My)", ¢, =0(1), (1.75)
v=0 v=0

where the chiral power v of a given NN irreducible diagram is found through inserting Eq.

(1.52) and the topological relation
s fiVi-1I;=2 (1.76)

—emerging from the fact that V; connects f; nucleon lines in a diagram with four external

nucleon legs— into Eq. (1.51),

V=2L+ZAZV;, AZZ%fz-i-dl—Q (177)
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The generalization of this prescription to the three-nucleon sector and beyond (A > 3) illus-
trates in a simple way the hierarchical suppression of A-body forces when A is increased.
Even more importantly, for any given v, there is only a finite number of diagrams giving rise

to V]\[,']/\;:

e Comparing Egs. (1.71) and (1.75), we identify VL(g) = VJE,?\],. This is so because the
short-range part of VL(g) comes from the four-nucleon vertex without derivative/pion-
mass insertions (L =0, V; =1, f; =4, d; =0), while its long-range part arises from the
OPE diagram at tree-level (L =0, V; =2, f; =2, d; =1). According to Eq. (1.77), both

graphs verify v = 0.

e No NN diagram with v =1 is allowed by time-reversal and parity symmetries. NLO
is thus an empty order in Weinberg PC, which is the reason why some authors call
the v = 2 order “NLO” instead of N2LO (next-to-next-to-leading order). Here we will
refrain from using such terminology, though, and simply adopt as a general rule that
NYLO is the order suppressed by O(Q/M,;) with respect to N¥~1LO.

e The two-pion-exchange (TPE) interaction emerges at N2LO, as any leading TPE di-
agram entering here has L = 1, f; = 2, d; = 1. Besides, if the delta isobar A(1232)
—the lowest nucleon resonance, with excitation energy d May = Ma — My 2 2m,— is
taken as another degree of freedom of the EFT [9], then it will appear in diagrams with
L > 1, thus enter at N2LO, too 7. Finally, when diagrams with L =0, f; =4, d; = 2
are considered, one needs to keep seven contact terms provided with two derivatives,
which contribute in S and P waves, plus two derivative-independent contact terms

proportional to m2 that affect S waves.

It is useful to note that, for what concerns the scaling of the parameters in the theory, the
Weinberg rules are equivalent to the naturalness condition of the dimensionless coupling gg
(see Eq. (1.33)). To check this, decompose the total effective Lagrangian in the NN sector
as

£§3§=2) = Efree + £7r7r + ENﬂ'N + ECO + ECQ + EDQ +... (178>

"In terms of PC, the explicit inclusion of the delta amounts to assuming May = O(M,,). Conversely,
integrating it out corresponds to the case §May — oo, in which the extraction of the pion-nucleon couplings
. . A[NLO]
contained in £
has some significant effect in the nuclear potential [42].

will be biased by a relative error O(M),/dMan). Not being numerically negligible, this
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with
Efree ~ MLNNQQN, ENwN ~ ?—‘:N@WN, £7'r7r ~ m72T7r2, (179)
ECO ~ 00N4, £C2 ~ CQ(N@N)27 £D2 ~ ngng4.
From Liee, Lnzn, and L, one confirms
(1) ~Mah 1 _ (1) = My =0(Mgcp) (1.80)
MN R (47{_)2—2 MN N QCD 9 .
M574
(%), ~ b os—0(1) = ga=0(1), (181)
2 MECH o MESH 2 -
(m2)  ~ Gz ~ g ~ gszm = mi = O(Macpm), (1.82)
where we used that £, ~ mq¢?, while from L¢,, L¢,, and Lp,, one gets
MS??‘D -2
(CO)RNWCB:O(D = Co=0(f:"), (1.83)
M8—4
(C2)R ~ ﬁ(k = 0(1) = CQ = O(Mé%Df;2)7 (184)
M6—4 _ _ B B
(D), ~ G5 Dym? ~ i = O(m[Mgcp) = Da = O(Mhy 7). (1.85)

where we recalled that Lp, breaks chiral symmetry in the EFT Lagrangian in the same
way that L, breaks chiral symmetry in the underlying QCD Lagrangian. Hence, NDA
anticipates that

C2Q%|Cy ~ Dym?[Cy ~ Q% | Mep, (1.86)

i.e. L¢, and Lp, appear two orders down with respect to L¢,. This indeed matches the
Weinberg assumption.

Once the potential (1.75) is obtained up to some order, the Weinberg program postulates
its insertion into the LS equation to obtain non-perturbatively the corresponding scattering
amplitude, from where one can compute, in turn, predictions for the remaining observables
of the system. The success of this approach comes as no surprise: besides its simplicity, it

seems to achieve nice agreement with the phenomenological evidence (x?/d.o.f. ~ 1) [43-45].

1.2.3.2 Amending naive dimensional analysis

When applying the method described above, one implicitly expects that the resulting am-

plitude will obey the same expansion as the potential does,
Ty = ZT][\,”]\],~M1;225V (Q/My)”, ¢, =0(1). (1.87)
v=0 v=0
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However, it is not clear at all that such an expectation will hold in an intrinsically non-
perturbative problem as the NN one is. The iteration of singular interaction terms (those
that diverge like 1/r? or quicker in the limit of small ) produces ultraviolet divergences
that are regularized through a momentum cutoff A; the cutoff dependence induced on the
low-energy couplings renormalizes the one of observables, up to a small residue that becomes
arbitrarily small when the cutoff is made arbitrarily large (see Section 1.1.1). Unfortunately,
NDA prescribes the presence of a certain number of counterterms at a given order that, in
general, is not sufficient to guarantee that the renormalization condition is properly fulfilled
by the amplitude. As a matter of fact, already at LO NDA does not yield all the necessary
short-range interactions [46-48]; similar issues reappear at higher orders [49-51] and also
affect electromagnetic currents [52]. Given that non-perturbative renormalization can differ
significantly from the perturbative renormalization used to infer NDA, it is perhaps unsur-
prising that a scheme based solely on NDA fails to produce nuclear amplitudes consistent
with renormalization invariance. This poses a serious shortcoming to NDA, since such loop
divergences threaten to destroy the low-energy EFT expansion, thus compromising the very
consistency of the PC. Not only that, the connection with QCD is at risk. This is so because
such an approach does not make for a proper EFT, where one must strive for physical pre-
dictions that are manifestly model-independent —in particular, not affected by the choices
of the cutoff value and the regularization scheme 8.

Actually, cutoff independence of observables contradicts NDA already in the 1Sy channel.
The reason is that NDA prescribes that the only contact term in the LO potential should be
chiral-invariant —according to Eq. (1.86), a chiral-symmetry breaking piece such as Dym?2
would appear only at N2LLO. The emergence of a logarithmic divergence proportional to m?2
as a result of the iteration of OPE, though, demands that a piece like that be present at LO
[46]. This “chiral inconsistency” motivated Kaplan, Savage, and Wise [34, 35] to propose a
PC where pion exchanges are treated as perturbative corrections starting at NLO. However,
higher-order calculations soon made clear that such an approach is not valid at low momenta
in certain partial waves [55].

Currently it is well-known that one low-energy coupling is required at LO to renormalize
every partial wave where the potential is singular and attractive [47, 48]. Given that the
tensor component of OPE (1.61) diverges as 1/r® around r = 0 (see Appendix B for an illus-

tration corresponding the 35;-3D; channel), the former implies, for example, the promotion

8For an alternative interpretation, see e.g. Refs. [53, 54].
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Figure 1.3: Amplitude of the one-loop OPE over the tree-level OPE, roughly computed using the

usual rules of (non-relativistic) PC.

to LO of the two-derivative contact term of the 3P, channel [47], which NDA anticipates to
be N2LO. But, in fact, according to NDA there is an infinite number of partial waves where
the LO potential is singular and attractive, as NDA anticipates the non-perturbativity of
OPE in any channel at momenta @ 2 f, (see Figure 1.3). In contrast, Refs. [47, 56-62] ad-
vocate the treat of OPE as LO only in the lower waves, where suppression by the centrifugal
barrier is not effective.

As a matter of fact there exists already a consistent version of nuclear EFT [47, 56-62]. It
is renormalizable, can describe the scattering amplitudes for () < Mqcp, converges well and
PC is realized at the level of observables. Its foundation relies on a better understanding of
the renormalization of non-perturbative physics and singular interactions [47, 48, 63-67]. The
key improvements over the original Weinberg proposal are the non-perturbative renormal-
ization of the LO amplitudes and the addition of beyond-LO contributions as perturbative
corrections 9. At LO the main difference with the Weinberg counting lies in the promotion
of a series of P- and D-wave counterterms to LO in triplet partial waves for which the tensor
force is attractive, a change originally proposed in Ref. [47]. At subleading orders there are

more counterterms than in Weinberg counting, for instance in the attractive triplets that

9Actually, the reason not to resum such small corrections, as done in the Weinberg scheme, is again
related to the lack of counterterms. Take for example the Long-Yang PC for the 1S, wave [61], where a
singular two-derivative short-range interaction enters already at NLO. Such interaction will impact N2LO (at
second order in perturbation theory), thus producing an even more singular contribution to the amplitude,
that must be canceled out by the four-derivative contact term entering at N2LO —only the sum of all N?LO
terms will consistently be cutoff independent and small. In contrast, if we truncated the potential at NLO
and resum both LO and NLO, we would be including diagrams with two (three, four...) insertions of the
NLO term without the necessary four-derivative counterterm. Therefore, it would not come as a surprise if

renormalization was again lost [49, 51].
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already received a counterterm at LO. The convergence of the EFT expansion is acceptable
and the description of the data too, but it has not achieved yet a y2/d.o.f. ~ 1 as in the
Weinberg approach. However this is expected if we take into account that the calculations

of Refs. [57—61] are still one order below the most advanced ones in the Weinberg approach.

1.3 Pionless EFT

1.3.1 Motivation

As it was discussed above, the existence of two (respectively real and virtual) bound states
in the S-wave channels suffices to discard a fully perturbative treatment of the NN problem.
But, actually, the binding momenta of the real bound state (» 45 MeV) and the virtual bound
state (v 8 MeV) turn out to be quite smaller than the OPE scales m, and Ayy. This implies
that such states can only be reproduced at LO through some cancelation (fine tuning) in
which the short-range component of the NN interaction is the one to blame. Physics can
then be described simply by another successful, renormalizable EFT, known as Pionless
(or Contact) EFT (#EFT) [34, 35, 68, 69]. This arises from a simple observation: in the
very-low-momentum regime of nuclear physics, () << m, pion exchange cannot be resolved.
Consequently, the effective Lagrangian contains interactions of contact type only, just like
Eq. (1.70), with subleading corrections consisting of four-nucleon terms including 2,4, ...
derivatives.
As usual, the off-shell amplitude is found from an LS equation analogous to Eq. (1.72); for
a spherically symmetric potential, such off-shell amplitude depends only on the magnitudes
of momenta and their scalar products —p’, p, and cosf = p’-p. Hence, the on-shell T" matrix
(p' = p=k) can be partial-wave decomposed as
_ Am[/My  2mi
kcot (k) —ik  Myk

tg(k:):[:ldcose T(k, cos0) Py(cosf) = (S,(k)-1],  (1.88)

where Py(z) is a Legendre polynomial, and Sy(k) = exp[2id,(k)] represents the corresponding
S matrix, d,(k) being the phase shift. At sufficiently low energies,

kcot 8o(k) = —ag k720 + 1rpk? 0 4 (1.89)
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with a, and r, the /-wave scattering length and the /-wave effective range 1°. The dots stand
for terms proportional to k2("=0) n =2 3,..., which we omit here. This is the renowned
effective range expansion (ERE), due to Bethe [70]. But now, contrary to the pionful case,
one can derive closed, analytic expressions linking the ERE parameters to the potential
parameters, which shows in a transparent way how renormalization works out. Here we will
illustrate the last statement for the case of neutron-proton (np) scattering in the 1Sy channel,
where the scattering length is a = ag ~ —23.7fm ~ —(8 MeV)~! [71], and the effective range is
ro ~2.7fm ~ (73MeV)~t [72].
The part of the Lagrangian density relevant for the 1.5, channel is

2

@) _ art(s v
ElSO =N (Zao + 2MN

10, [(NTPig,N)' - (V2NTPig, N + NTBig, v2N) + Hee ]+, (1.90)

)N - Co (NTPig,N)" - (NTPig,N)

the ellipsis referring to terms with at least four derivatives, which we do not make explicit
here. This corresponds to an interaction given by a series in even powers of p’ and p,

VO - Cos 40 (7)o (91

which translates in coordinate space as an expansion consisting of a Dirac delta function
plus its even derivatives. This is a highly singular potential, implying the divergence of the
loop integral in the S-wave projection of the LS equation, thus the need for regularizing it
somehow. Here we use a momentum cutoff A in the range A > My; > k and a regulator

function fr(q2/A2), with ¢ the magnitude of the off-shell nucleon momentum, that satisfies
fr(0) =1, fr(oo) =0. Hence,

T W v ks A) = Vi 0 p A)+#f0°§q ¢ fr( NV W, MG (0, ) TE (g, k: A),

(1.92)

where the cutoff dependence induced on the potential must be such that the amplitude is
well-defined for an arbitrarily large A.

Of course, the series (1.91) must be truncated at some point before plugging it into Eq.

(1.92) to find the resulting amplitude. In the following, we will explore a few possibilities in

that regard.

19Despite the names given here, a, and r, only have dimensions of length for £ = 0. In general, [a,] = -2¢-1,

[re] = 2¢ - 1; for example, a; verifies [a1] = -3, thus it is commonly called the scattering volume.
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1.3.2 The simplest case

We start by testing the renormalizability of the simplest (non-trivial) scenario, which corre-

sponds to the truncation of Eq. (1.91) at its first term,
Vi (¢) A) =Co(A 1.93
(p p;A) = Co(A). (1.93)

Once inserted into Eq. (1.92), this gives the simple solution

-1

1 M
¥ ki A) =T (ki A) = NIkA 1.94
with
A 2 00 ) A2 q2 A k,2 oo k 2n
Zo(k; A) = %fo dg fr(q”/ )m =tk + 0, A+ — 29—1 2n( ) ; (1.95)

the numbers 6,, depending on the specific regularization employed. For example, for a sharp-
cutoff prescription with a step function fr(z) = 6(1-x), it turns out that 6, = 2/(nw), while
in dimensional regularization with minimal subtraction we have simply 6#,, = 0; in general,
6, > 0 when n > 0. The linear divergence present needs to be canceled out by the running of

the counterterm. In particular, for

C()(A) = C’o [— (HlaA)_l +0 ((CLA)_Q)] > C’o = M—CL, (196)
N
it turns out that M E 2 4
After taking A — oo, the above result gives
k + 1K 1
Sk - - 1.98
sok)==3= i o a (1.98)

for the corresponding scattering matrix, which exhibits a simple pole lying on the negative
imaginary semiaxis, S m(m) — 00, K~ -8 MeV. This is very close to the well-known virtual
shallow state present in the 1Sy channel. Note that, as the residue of the scattering matrix

evaluated at the pole is
2
iRes S{F) (ir) = = <0, (1.99)
a

this state has a non-normalizable wavefunction, as it corresponds to an unbound solution.
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1.3.3 Beyond the simplest case

Now, let us go one step further by truncating the series (1.91) at its second term. Much
like in the pionful theory, a quandary inmediately arises: should the C'y piece be infinitely
iterated, just like the Cy one in Section 1.3.2, or rather be treated as a perturbative correction?
When regular potentials are considered, the difference between fully iterating or not should
not be that significant (if the subleading contributions are truly small); however, in what
follows we will check that is not the case at all when singular interactions, like the ones of

1EFT, are used.

1.3.3.1 Non-perturbative approach

If we decide to fully iterate the C5 term, then we plug the interaction

Co(A)  5Ca(A)
105(A) 0o /)

1

Vl(s?t))(plﬁp? A)= 3 o (Mp*p¥, v(A) = (

1,7=0

(1.100)

into Eq. (1.92) to solve it in a non-perturbative approach. The resulting off-shell amplitude
can be put in the form
1 o
ngo)(p’,p,k;/\) = 3ty (ks A)p'p*, (1.101)
i,j=0
where Eq. (1.94) has been generalized to give the matrix identity

-1 To(k; A) Zo(ks A
t(kz;A):(n‘l(A)+%I(k;A)) CZ(en = [P DAY (1.102)
with
A _2 * 2/A2 q2(1+n) _ 1.2n A S 0 AL+2m 2(n-m)
Lon(k; A) = dg fr(@®/N?) 55— = K" To(k; A) + ) Oriom k . (1.103)
m Jo q* —k?-10 =
For the runnings
/2 1/2
My 051 89%1(1)/ (1)
ym Co(A) = 0§A[1+(93 A +0 )| (1.104)
/2 1/2
My 21 262\ 1\ (a/ro) 2
WO T g [“(9—3 () olGmm)] o
the amplitude (1.101) verifies (when on-shell)
My ) ]_1 L, Toa, o k'3
T A == -— . 1.1
[M Desh| =ik 2ol (1.106)

34



CHAPTER 1. INTRODUCTION 1.3. PIONLESS EFT

I - !+1(<)

Figure 1.4: Full dibaryon propagator (solid box) resulting from the non-perturbative dressing of

bare dibaryon propagator (plain box) with nucleon bubbles (circles).

But Eqgs. (1.104) and (1.105) explicitly show that having ro > 0 is incompatible with
Co(A), Co(A) being real functions, i.e. with a Hermitian bare Hamiltonian [73]. This
matches the so-called Wigner bound, derived from general principles for potentials that
vanish identically beyond some radius [74, 75].

Yet the above issue can be bypassed if, following Ref. [76], an auxiliary “dibaryon”
field gg with quantum numbers of an isovector pair of nucleons is introduced to rewrite the

non-derivative term in Eq. (1.90),
~Co(NTPig,N) - (NTBgN) < Agt-G-g(gt-NTPgN+He). (1.107)
The dibaryon residual mass A and the dibaryon-NN coupling g are such that
Co = g°/A, (1.108)

as can be checked if one performs the Gaussian path integral by using f_:o ds exp(as? -
2bxs) o« exp(-b?z?/a). The parameter redundancy (1.108) permits the convenient choice
=4n/My [77], and the Lagrangian (1.90) may be replaced by

2@ _ ntlion + v N+ot-|A+clio,+ v é- in — (¢ NTPig,N + Hec) +.
18, 0 2MN 0 4MN M 1So

(1.109)

where the dots account for relativistic corrections and derivative dibaryon-NN couplings.

The kinetic dibaryon term has been included explicitly ', ¢ being a normalization (dimen-

sionless) factor. Computing the dibaryon self-energy, i.e. dressing up the bare dibaryon

propagator M
By(k; A) = [A(A) + (M) K2/ My] = =X v<¢’>(/<; A) (1.110)
with nucleon loops (see Figure 1.4), yields
M
Dy(k;A) = [1/By(k: A) + Io(k; A)] ™ 4N T (ki A). (1.111)

" Otherwise we would be treating ¢ as a static, infinitely massive field.
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Taking
A(A)zl/a—@lA, C(A)/MNZ—T'Q/Q—Q_l/A, (1112)

the inverse amplitude becomes

My o) a1 o k!
[ETlSO(k’A):I :a'i‘Zk'—?k? +O(F), (1113)

which coincides with Eq. (1.106) after taking A — oco. However, contrary to the previous
case, the physical condition 7y > 0 does not imply anymore a non-zero imaginary part of
the bare potential. (In contrast, it entails the “wrong” sign of the kinetic part of the bare
dibaryon.) As Vl(;:) is momentum-independent, the only Z,, that enters the calculation is
7y, which makes the renormalization of the amplitude much less involved. At the same time,
the energy dependence of the potential is frequently a downside when one tries to apply it
to the few-body sector, as it is not clear how to define the pair energy on which the pair

potentials would depend.
Note that, when A - oo, Egs. (1.106) and (1.113) allow to write the scattering matrix as

(7:9) _ (k+in ) (k+ik,) =l(1 /1_22)_l 1 _@_7‘_(2) 7“_3
Sis, (k)_(k—i/{_)(k—im)’ /ﬁ_ro N a) 1 T a 2a2+0 a’

(1.114)
(with |ro/a] < 1), from where we see that there are two simple poles, ng‘f’)(m;) — oo0. Again,
their nature is linked to the sign of the corresponding residue,
iRes S (ik2) = +2, (”* - H) = 2%+ [1 +0 (i)] (1.115)
0 Ky — K_ Ky

(with |k_/k,| < 1).

e The pole at k =ik_, k. = 1/a+1o/(2a®) + O(ri]a®) ~ -8 MeV, is nothing but the pole
at k =1k of Eq. (1.98), that has been shifted slightly upwards,

k1 2
" “:—@+O(T—°)m6%, (1.116)
k[ 2]al

as a consequence of inputting ro —of course, its new location keeps being very close
to the one of the physical virtual state. As ¢Res ngf)(m_) < 0, this state has a

non-normalizable wavefunction.
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e The pole at k = ik,, ky = 2/rg + O(1/a) ~ 146 MeV, lies on the positive imaginary
semiaxis. It cannot be seen as physical, as it turns out that x, 2 m,, where m, is
taken to be the pionless breakdown scale. Anyway, since i Res Sl(gf)(im) < 0, the
condition to produce a normalizable wavefunction is not fulfilled, so this pole cannot
correspond to a bound state, whose wavefunction has finite support in coordinate space.
It is called, thus, a redundant pole [78, 79].

1.3.3.2 Distorted-wave Born approximation

It is much convenient, however, to further exploit the fact that the 1Sy scattering length is
almost ten times larger in magnitude than the 1S, effective range, which has in turn natural
size, |a|™! «< rgt = O(m,). Indeed, the value of the inverse scattering length, very close to
the one of the virtual-state binding momentum, poses the emergence of a new (accidental)
momentum scale R << m,, which should consistently be identified with the typical size of
@ in a process amenable to #EFT. According to this, the third term in the r.h.s. of Egs.
(1.106) and (1.113) is parametrically suppressed by O(X/m,) with respect to the first and
the second one, which suggests not to treat a and ry on the same footing, but rather to

renormalize a at LO, and rq at NLO.

When the potential of Eq. (1.100) is considered, the above translates into splitting

Co - C(EOJ+C£1]+... }

#) _ pB0] O]
= 7 L @0l pon 1.117
Cy » CM 4. 5o 5o (L117)

15,
the dots accounting for beyond-NLO terms. In fact, LO has already been solved in Section
1.3.2. Taking

My

ClY(A) = P [= (B1an) ™ + O ((ar)2)], -

cll=a=0(x1), (1.118)

which is enhanced by O(m,/R) with respect to the NDA expectation, yields

My o, 7 L K (K
[ETlSO (k’,A)] :a+Zk+9_1K+O(F). (1119)

In the distorted-wave Born approximation (DWBA), such LO amplitude is slightly perturbed
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=g N = -0

Figure 1.5: Diagrammatic representation of the distorted-wave Born approximation at first order.

The LO amplitude is depicted as a solid box; the NLO potential (amplitude) is plotted as a box

with thin (thick) black stripes; each bubble represents one loop insertion.

by the NLO potential Vl(g;)[ ] inducing a small NLO correction T(ﬂ[ ] (see Figure 1.5),

TN p ks A) = MNTW (ks A) [ RV (Ao (ks A) + 3CE (M) (To(ks A) + pZo(k; A) ) |

4
- SO A) R AT (k: A) + 5OSIA) (pPTo (s ) + Tah: )
=[S A)] [CII AT (ks A) + CH () Tahs M) To(ks )]
+ [y + 1) (2 + ). (1.120)
Taking
CiH(A) = Gl 07205 + O ((reh) )], % oi - —% =0(m;');  (1.121)
1(A) = A (Bran) 2 + O (g 0) )] ]Zf g GZO O (x2m:1) (1.122)
it turns out that
[]fNT(?‘) (k: A)] []4”NT<¢> (k: A)] (%Jr%)k? (1.123)

which, combined with Eq. (1.119) (and neglecting N2LO), yields, as wished,

My Lo ]1_1 __2 (k:_4)
[4 T =S rik- 20 ). (1.124)

Again, things become computationally simpler when an energy-dependent potential as
the one of Eq. (1.110) is used. Now, instead of Eq. (1.117), we have

A - AT+ Al 4+
= T -1 TP (1.125)
C/MN g C[l]/MN-i-...

with T(¢) (k;A) = T(ﬁ) (k;A) (see Eq. (1.119)), provided that
OT(A) = AT —g A, AV =1/a=0(xr) (1.126)
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(see Egs. (1.108) and (1.118)). Besides, Eq. (1.120) now reduces to

]fNngg (k: A) = [YNngg (k: A)][ (A) + A2/ My], (1.127)

and the runnings
M(A)=0; (A My = (A My -60_1/A, /My =-rg/2=0(m;') (1.128)

ensure that Tl(gg[OH](k;A) = T(ﬂ [0+1] (k A) (1.124). Comparing Eq. (1.112) with Egs.
(1.126) and (1.128), we learn that, actually, A(A) = ALI(A) + ABRI(A) and c(A)/My =
[(LJ(A)/My, as a consequence of the momentum independence of the dibaryon potential.
Note that Eqgs. (1.118), (1.121) and (1.122), one one hand, and Eqs. (1.126) and (1.128),
on the other hand, confirm that
cl M A My O(i)
C*([)O] Cv(gO] Al0] ’

My
again at variance with NDA, which predicts O(®82?/m2) for the above ratios. The fact that

(1.129)

Eq. (1.119) includes a residual effective range ~ 1/A fits the need for renormalizing ro ~ 1/m
already at NLO (not at N2LO), according to the argument employed in Ref. [61]; analogously,
the residual dependence ~ 1/A3 of Eq. (1.124) anticipates that the shape parameter P,
present in the ERE through the term +Pyk*/4, should be renormalized at N3LO. (In the
absence of further fine tuning, it is assumed that Py ~ 1/m2 [34, 35, 68, 69]. Such estimate
indeed works for np scattering in the 'Sy channel, according to the values for Py obtained in
Refs. [80, 81].)

Finally, at LO both the amplitude and the scattering matrix blow up (after the cutoff
removal) when k = ixl%] =i/a (see Eq. (1.98)). This pole gets a bit shallower in the imaginary
momentum axis when r( is perturbatively included, x[®1 — k[0l where the relative shift

can be easily checked to be

i % 1.1
|/{[0]| m ~5 0. ( . 30)

Not surprisingly, this result coincides, up to O(X?/m2), with the one of Eq. (1.116).

1.3.4 Beyond the NN sector

The richness of low-energy phenomena displayed by the three-nucleon (3N) system is cap-
tured by a Lagrangian whose only degrees of freedom keep being the nucleon fields them-

selves, now including couplings ~ D5, 0?" (N N)3. It is convenient to rewrite such Lagrangian
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through the inclusion of the auxiliary dibaryon field; then, the 3N problem amounts to the
obtention of the nucleon-dibaryon scattering amplitude. And, just like the large value of
the two-body scattering length enforces the non-perturbative iteration of the bare dibaryon
propagator in the NN case (see Figure 1.4), now it becomes necessary to resum all the
nucleon-dibaryon non-derivative diagrams [9], while subleading corrections may, as usual, be
added in perturbation theory.

Again, here we will focus on the S waves —dominant due to the absence of angular-
momentum repulsion— which, for the case of three spin-1/2 particles, may occupate either
the doublet state 2Sij,, like 3H and 3He nuclei, or the quartet state *Ss/y, like quartet

nucleon-deuteron (Nd) scattering:

e (Quartet. In this channel, the three spins are aligned, so that the Pauli blocking prevents
the three nucleons from occupying the same point, suggesting that short-range physics
of the full system will not play a protagonist role. Indeed, inputting NN scattering
parameters suffices to obtain a high-quality description of low-energy Nd scattering
[82]. The quartet scattering length is computed in Ref. [83] to be agj, = 6.33fm (at

N2LO), whose relative difference with respect to the experimental value [84] is < 0.5%.

e Doublet. Here the Pauli principle does not forbid the three fermions to touch (the
same happens in the three-boson case), thus a contact 3N force is anticipated to
be relevant. This is confirmed by the fact that, in the absence of such interaction,
the LO zero-energy nucleon-dibaryon amplitude exhibits limit-cycle-type asymptotic
cutoff dependence. Such a behavior enforces the inclusion at LO of a short-range
3N force arising from the Lagrangian coupling ~ Do(NN)3 [85-87]. It turns out
that Dy = O((47)%/(My®R*)), which is enhanced by O(m2/x?*) with respect to the
NDA expectation [9]. No three-body derivative short-range force is required at NLO,
although Dy demands a correction proportional to the two-body effective range [88].
Predictions for the three-body sector given by several models, all of them obtained
using the low-energy NN phenomenology as an input, must then be correlated to a
good approximation through the single three-body coupling. Thus, #EFT provides an
explanation for the correlation displayed by the doublet Nd scattering length versus the
3H binding energy —the so-called “Phillips line” [89]. If Dy is fixed to reproduce the
scattering length, then the binding energy is computed to be Bsy = 8.31 MeV in Ref.

[87], in very good agreement with the experimental value (2% of relative difference).
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Concerning the four-nucleon (4N) system, one may inmediately ask whether an operator
~ Eo(NN)* needs to be promoted to LO in some cases. A crude but intuitive argument
in support of the absence of relevant purely 4N forces is the following. While the kinetic
repulsion is balanced by an attractive two-body potential in the NN sector, when a third
particle is added the kinetic effect is multiplied only by 3/2 and the number of interacting
pairs is multiplied by 3; hence, an extra repulsive 3N force arises to prevent the system
from collapsing. As a fourth body is included, the number of attractive (repulsive) NN
(3N) interactions is multiplied by 2 (4) with respect to the three-body case, thus no new
force is required to avoid the collapse. This intuition is confirmed by the fact that no 4N
force is needed at LO to renormalize the system [90]. The analog of the Phillips line for the
four-body system, known as “Tjon line”, which shows the correlation between the binding
energies of H and “He nuclei [91], is also captured by the theory. In Ref. [90] the three-body
force is tuned to reproduce the experimental Bsy, resulting in a LO postdiction of Bay, that

is in good agreement (within 10%) with its phenomenological value.

Recently, the possibility of a correlation between the rough features of nuclei (at least the
light ones), on one hand, and one single parameter A, set by Bsy, on the other hand, has been
explored [92]. In this approach, the details of the NN system are not considered as the start-
ing point to decipher the physics of heavier systems (contrary to what has been traditionally
done), but an expansion around unitarity —at whose LO both NN S waves exhibit bound
states right at threshold and where subleading corrections are added as perturbations— is
performed. The convergence pattern shown by this expansion is promising and it opens the

possibility of extending such strategy to atomic and molecular physics.

In conclusion, the applications of #EFT to nuclear systems with A > 3, a couple of which
we have briefly reviewed here, are particularly indicative of the power of this theory. In such
a context, RG invariance proves again as the fundamental guideline from where consistent

PC rules are derived.

41



1.4. HEAVY-QUARK EFT CHAPTER 1. INTRODUCTION

1.4 Heavy-quark EFT

1.4.1 Introduction

As mentioned in Section 1.1.2, the QCD coupling will become smaller and smaller at the
same time as the length scale of interest does, thus yielding a more easily tractable theory of
strong interactions from where predictions can be made. Indeed, in an imaginary world where
all quark flavors were heavy enough, i.e. where their Compton wavelengths were sufficiently
small, the properties of heavy hadrons could be directly derived from first principles (if we
were here to do so!). Physics of these systems would then be the strongly interacting analog
of atomic physics governed by the electromagnetic force. Actually, much like the hydrogen
atom is most easily understood in the rest frame of the heavy nucleus, it is very convenient
to approach systems such as heavy mesons, composed of a heavy quark @ (c or b '?) plus
a light antiquark ¢ (@, d or 5), by assuming a (close to) static ). Essentially, this is the
strategy followed by heavy-quark EFT (HQEFT).

Hence, within the heavy meson one distinguishes between the massive color source and
its surrounding cloud. The latter, affectionately known as “brown muck” in the literature
93], consists of the light antiquark and the associated glue. The brown muck, characterized
by the infrared scale Aqcp, is for sure too complicated to be explicitly solved. The key point,
however, is that —much like the electronic structure of the isotope of a given element does
not care about how many neutrons the nucleus contains— the brown muck will not see the
physics of the heavy quark (except, of course, its color charge). Such an invariance goes
under the name of heavy-quark symmetry, an old idea that dates back to the beginnings
of quark models themselves [94], and was largely developed in the subsequent years [95—
102]. One needs to differentiate between heavy-quark spin symmetry and heavy-quark flavor
symmetry —in virtue of the former, effects that couple the heavy-quark spin S to the muck
will disappear as Mg — oo; in virtue of the latter, the muck spectrum should not look very
different when the heavy quark is shifted from b to ¢ or vice versa.

Consider the charmed pseudoscalar D mesons and the bottomed pseudoscalar B mesons,

which can be arranged in SU(3) flavor space as the column vectors

(po D DS)T=(ca cd c§)T, (B- B BS)T=(ba bd bg)T, (1.131)

12The lifetime of the t quark is so short due to its weak decay that we do not expect it to be able to get

confined into hadrons.
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and similarly for the charmed vector D* mesons and the bottomed vector 5* mesons. The
correspondences

D(0) < B(0), D*(0) < B*(0), (1.132)
where “0” stands for the rest frame of the heavy quarks, are manifestations of heavy-quark
flavor symmetry.

In a theory with Ng heavy-quark flavors, heavy-quark flavor symmetry is an approximate
SU(Ng) mapping that becomes exact as Aqep/Mg — 0. Actually, the fact that the muck
is blind to the orientation of S makes the (spin-flavor) symmetry larger, SU(2Ng) 3. Of
course, this reminds us of the approximate chiral symmetry SU(N,). x SU(N,)g, N, being
the number of light-quark flavors (see Section 1.2.1), that becomes exact as m,/Aqcp —
0. And, just like the mass of the s is not that small when compared to the QCD scale
(ms/Aqep ~ 1/3), which worsens the convergence of the chiral expansion at the level of the
strange quark, having Aqcp/M, ~ 1/3 makes the heavy-quark expansion not as clean for the

charm sector as it is for the bottom sector (since Aqep/M, ~ 1/10).

1.4.2 HQEFT Lagrangian

In this section we will assume a top-down approach in which the starting point is the Dirac
Lagrangian,

Lo=To(il) ~ M)V =g [ilp + (# ~ 1) Mg] v, (1.133)
where a large mechanical part of the heavy-quark field U was separated out analogously as

it was done for the nucleon field in Eq. (1.46),
Uo(x) = e M uyho (1), (1.134)

Such field becomes (evidently) infinitely massive when Mg — oo, which would suggest us
to integrate it out from our low-energy theory. But it does not look very useful to directly
eliminate the only degree of freedom present; hence, we need to first rewrite Eq. (1.133)
in a suitable manner. With this purpose, use the projector PV defined in Eq. (1.48) to
decompose

PQ,=Q, <= PYQ,=9Q,, PYQ,=0;

4B, =-B, < P'B,=B,, P'B, =0.
(1.135)

Yo(x) = (PY+ P*)tpg(x) = Qu(x) + By(x) with {

13This situation is analogous to the one that gives rise to Wigner’s SU(4) symmetry in nuclear physics.
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Using in Eq. (1.135) in Eq. (1.133), expanding the products and simplifying,
Lo =0, (iv"D,) Q, - B, (iv" D, +2Mq) B, + Q, (i0") B, + B, (i) Q., (1.136)

with Dy = D, - v,v”D, the orthogonal component of the covariant derivative. Equation
(1.136) illustrates the splitting of the heavy-quark field into Q,,, which is effectively massless,
and B, with effective mass 2M. In the rest frame, v* = (1,0), Q, (B,) corresponds to the
two upper (lower) components of the four-spinor 1. In other words, Q, (B,) anihilates a
heavy quark (creates a heavy antiquark) of four-velocity wv.

Again, the fact that B, becomes infinitely massive in the heavy-quark limit indicates that
it may be integrated out. On a classical level —i.e. up to O(as(Mg)) quantum corrections
that can be added in perturbation theory, as o (Mg — o0) - 0—, B, can be easily eliminated

from L by using the equation of motion

5£Q (S,CQ et .
=9 _p 2 D' Q, = (iv"D, + 2Mp) By, 1.137
6B,  "6(0,B,) W Qu = (WD, + 2Ma) ( )
hence
_ 1 & ivtD,\"
— (Gt 1. 1 _ _ n W . 1
B, = ("D, + 2Mg) " ilp" Q, g n§=0:( 1) (2 Q) ipQ,. (1.138)

Recall that Aqcp and Mg are the only momentum scales present. Then, in virtue of Eq.
(1.134), we anticipate that each derivative in Eq. (1.138) brings down a soft momentum
~ Aqep, implying that each term in the above sum is suppressed by O(Aqep/Mg) «< 1
with respect to the inmediately previous one. This guarantees the convergence of the series.
Plugging Eq. (1.138) into Eq. (1.136) allows us to express our effective Lagrangian as the

derivative expansion

_lplQ

0 1 A . 3
,Ceff=££ff]+££ﬁ] +... = QU (ZU“Du) QU—QUM

Qu+..., (1.139)

where E(E?f] contains dimension-(4 +n) operators suppressed by n powers of Mg:

e Of course, the LO term is the only one that survives in the heavy-quark limit. It is noth-
ing but the dominant kinetic piece; in the rest frame, it becomes simply Q, (iDg) Q..
The SU(2Ng) heavy-quark symmetry that was anticipated in Section 1.4.1 is manifest

from this term.
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e Defining o =i[y*,+¥] /2, the NLO term may be massaged into

D+2 0.+ 0 z’aWDtDﬁQ 1140
M T T, {1-140)

(- _ 5
Eeﬁ - _QU

whose first term represents the first kinetic correction to ng)f]; in the rest frame, it
collapses to Q,[D?/(2Mg)]Q,. The second term gives rise to the so-called “chromo-
magnetic” interaction, a relativistic effect that represents the most important manifes-
tation of heavy-quark spin symmetry breaking. It is behind the small mass splitting

between, for example, the heavy charmed mesons D (J =0) and D* (J =1).

The situation with D and D* is somehow similar to the one with p and n; then, just
like it is useful to take advantage of the approximate isospin symmetry of nuclear physics
and treat (p,n) as an isodoublet nucleon state, it results convenient to exploit approximate
heavy-quark spin symmetry and combine both heavy mesons in a single “superfield”. In the

following, we will see how this is done.

1.4.3 Heavy-meson chiral Lagrangian

Even though heavy quarks were the only degrees of freedom we dealt with in Section 1.4.2,
what we learned there turn out to be useful in the development of a low-energy EFT that
encodes the coupling of heavy mesons ((gq) with light mesons (qq). Provided that the
latter carry four-momenta that are soft compared to the chiral breakdown scale (1.32), the
technology introduced in Sections 1.2.1 and 1.2.2 may be exploited to build up the Lagrangian
of such EFT, as we will see.

But, as a first step, we need to construct the heavy-meson states themselves by means
of a consistent formalism [5]. In the following, we will fix @ = ¢ for notation simplicity; this
will not lead to any loss of generality in virtue of heavy-flavor symmetry, though. Call |¢(*))

(]x*))) to the spin part of the ¢ () wavefunction. One may use the representation

p™)=(1000)", [p)=(0100)7T, XT)=(00-10)7T, xP)=(000-1)T,
(1.141)
which make an orthonormal basis of eigenstates of the spin operator S. Let us study sepa-
rately the J = 0 and the J =1 cases within the rest frame of ¢ (v = 0), for which Eq. (1.48)

becomes
PB:%(lifyo). (1.142)
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e D mesons. As ¢ and ¢ have opposite spins, the pseudoscalar spin part will be propor-

tional to
[0) (X +[0C)) (X ] = P (1.143)

(see Eq. (1.142)). The full state will be thus written as
HY™9(0)=-P°Dyys, a=1,2,3, (1.144)
with Dy = D%, Dy = D*, D3 = D; (see Eq. (1.131)). This state is normalized to

Tr [v5(P) 5] = 2. (1.145)

e D* mesons. Since these are vector particles, three independent polarization states may

take place. One can choose the polarization basis

ev=(0,4,25,0), 2=(0,0,0,1), = =(0,% -=0), (1.146)

which is orthonormal, 6;#5-3% = —d,i, and subject to the gauge constraint Uuz-:? =0. The

respective spin parts will then be proportional to

0O (= =5 Pl 10D (WO =160 (XD = =P, 6O (XD = - 5P

(1.147)
and the full state will be written as
HY™D(0) =P, a=1,2,3, (1.148)
with Dy = D*0, Dy = D*+, D} = D. This state is normalized to
Tr[#(P2)?%#] = 2. (1.149)

In virtue of heavy-quark spin symmetry, both states (1.144) and (1.148) are coupled into

a single superfield H,. In a reference frame where the ¢ quark has a given three-velocity v,
H,(v) = PY(1D, = Davs) (1.150)

(see Eq. (1.48)). Its conjugate field is
Hy(v) =7 Hi(v)y" = (I, + Dixs) P (1.151)
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The light-meson fields that couple to the heavy-meson fields (1.150) and (1.151) in the
chiral Lagrangian are to be considered as pseudo-Goldstone bosons (see Section 1.2.1). Given
that the heavy-meson fields transform as a triplet under SU(3)y, in what follows we will
make use of Eq. (1.15) in the definition of the unitary matrix & (1.12), so that this will
transform linearly under SU(3), x SU(3)g,

uab = (UL)acucd(U}T%)dba (1152)

where we kept the isospin indices explicit for later convenience. In analogy with what we
imposed for the nucleon field in Section 1.2.2, the heavy-meson field H, introduced above
and its covariant derivative (D,,)qH;, must transform non-linearly under SU(3), x SU(3)rg,

but linearly under SU(3)y,. This is done via the compensator matrix b,
Ha = habHIn (Du)abe = bab(D,u)bcha (1153)
where we recalled that

fab = hac’fcd(U}Tz)db = (UL)acfcd(bT)dby fac’fcb = L{ab. (1154)

The definitions of the vector current (1.41) and the axial-vector current (1.42) will be recov-

ered, too,
(Vidas = 5 (67 0u€as, (A)ab = 5 {€1(2),0"6(2) }ab- (1.155)
These two objects transform under SU(3), x SU(3)x as
(V,u)ab — bac[(v,u)cd’i'auécd] (hT)dba (A,u)ab — bac(Au)cd(hT)dba (1-156)
and the former will be used in the definition of the covariant derivative,
(Dy)ab = Oudab + (Vi) abs (1.157)

consistently with Eq. (1.153). With such building blocks, the most general Lagrangian

coupling preserving light-quark and heavy-quark spin symmetries reads [103]
Lo =hTr (HoHydoyys) + ..., (1.158)

where the traces are computed over Dirac indices, and h is a dimensionless coupling constant

that must be determined through empirical data (see e.g. Ref. [104]). Finally, the ellipses
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account for terms reflecting that both symmetries are only approximate. Being suppressed
by powers of either the heavy-quark mass or the chiral breakdown scale, such terms should
be added as perturbative corrections to our LO theory.

To summarize, for the last four decades HQEFT has been widely applied to the study
of hadron systems in the charm and bottom sectors. Originally, this was done so in parallel
with the development of xYPT; in the early 90s, with the seminal work by Wise and others
(see e.g. Ref. [105]), a new synthesis between HQEFT and xPT started to be exploited, thus
opening up several unexplored directions in hadronic physics —semileptonic B and D decays
with emission of a pseudo-Goldstone boson, chiral-logarithmic corrections to heavy-meson

decay constants, composite states of exotic mesons and baryons, etc.

1.5 Outline

In this chapter, we have summarized the most general ideas behind EFT, and explained why
EFT is a convenient tool in the theoretical understanding of nuclear and hadronic systems.
Next, we have introduced yPT as a successful case of low-energy EFT of the A =0, 1 sectors,
as well as derived the corresponding PC rules. We have discussed how such rules turn
out to fail already in the A = 2 sector due to its essential non-perturbative nature, which
implies the need for generalizing the perturbative xYPT to the so-called YEFT. We have also
presented #EFT as a useful theory of few-body nuclear physics in the very-low-energy regime
where the characteristic length scale is large compared to the pion Compton wavelength.
Special emphasis has been made on the applications of this EFT to the A = 2 sector, even
though a comment on more general few-nucleon systems has been included. Finally, a short
introduction to HQEFT and its low-momentum connection with YEFT has been given. The
basic motivation here has been to show how the heavy-meson chiral Lagrangian should be
built up. This will serve us as a starting point in the description of the DDZ,(2317) and
D*D% (2460) systems.

One of the consequences of applying the yPT PC directly to NN yEFT is the predicted
non-perturbativity of the OPE interaction always, at any partial wave. However, it is well-
known that the centrifugal barrier, present whenever the orbital angular momentum is not

zero, suppresses this interaction, demoting it to a perturbative effect. In Chapter 2 of the
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present work, which is based on Ref. [106], this suppression is quantified for the particular
case of peripheral spin-singlet channels (1 P, 1Dy, ...), in a way that fits consistently the EFT
approach. To find the demotion of OPE with respect to LO, its strength is rescaled up to
the critical point in which a bound state is produced at threshold; then, the rescaling factor
determines the corresponding expansion parameter of the perturbative interaction. The
results of this “peripheral demotion” may be exploited in few-body calculations, providing
theoretical arguments to neglect partial waves where tree-level one-pion exchange is already

higher-order than the desired calculation itself.

The 1S, partial wave was excluded from the analysis of Chapter 2, not only because the
centrifugal barrier is not present in it, but also because this particular channel displays some
features that are not completely understood. In particular, it is disturbing that Weinberg’s
prescription for the 1Sy LO interaction predicts a scattering amplitude that exhibits large
discrepancies with partial-wave-analysis results already at moderate scattering momenta k.
In particular, the phenomenological 1.5y amplitude vanishes at &k ~ 340 MeV'; since this point
is quite below the assumed breakdown scale of the EFT, we would like the expansion to
converge there, which requires that the amplitude zero be included at LO. This can be
achieved with a two-dibaryon short-range potential. In Chapter 3, based on Ref. [107],
we present a new PC in which OPE is a non-perturbative effect. It is consistent with
renormalization invariance and with the symmetry properties of QCD, and its results up to
NLO show remarkable agreement with phenomenology. We also include a first approach to
the problem in which pions have been integrated out, just like it is done in usual #EFT,
which allowed us to derive some analytic results that fit phenomenology surprisingly good,

too.

Of course, the EFT philosophy that was exemplified in Chapters 2 and 3 is not exhausted
in the nucleon sector and may be applied to more exotic physical systems, whose quark
content is not the same as for ordinary matter. The opposite intrinsic parity of the DZ,(2317)
(D:(2460)) and the D (D*) charmed heavy mesons enables them to exchange an S-wave
kaon. The resulting one-kaon-exchange interaction has the coordinate form of an attractive
Yukawa potential that turns out to be unusually strong and long-ranged due to the mass
difference Mp: — Mp. In Chapter 4, based on Ref. [108], we develop an EFT whose degrees
of freedom are the heavy mesons and the light pseudo-Goldstone bosons. The interesting
feature of our proposed PC is that only the Yukawa potential enters at LO, while contact

contributions stemming from four-meson vertices should be taken as perturbative corrections.
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This implies that no non-perturbative regularization/renormalization mechanism is needed,
thus allowing us to make concrete predictions. We find that one-kaon exchange almost
guarantees by itself the existence of a relatively shallow D} D (D}, D*) bound state with
JP =0 (JP =0-,27), whose nature is probably molecular. We also anticipate the existence
of its bottom counterpart By (5730)B (Bs1(5776)B*). Here, the potential will have the same
structure as before, but it will be even stronger due to the heavier masses of the bottomed
mesons. Consequently, this molecular candidate will be more tightly bound and will exhibit
a richer spectrum that might include an excited S-wave state and even a shallow P-wave
state.

Finally, conclusions of this work are presented in Chapter 5.

20



Chapter 2

NN peripheral singlet waves

2.1 Introduction

One prediction of the original Weinberg counting of two-nucleon yEFT is that the OPE
interaction has always LO nature. Nevertheless, pion exchanges have been known for a long
time to be perturbative in peripheral partial waves [109, 110]. This is easy to understand
in terms of the repulsive centrifugal barrier for high angular momenta (¢ > k/m,, with k
the center-of-mass momentum and m, the pion mass), but we will see that, as a matter of
fact, the peripheral demotion already takes place for moderate angular momenta (¢ ~ k/m.).
Even though these phenomena have been discussed in the literature from time to time
[47, 56, 58, 60], it has been done rather as an afterthought, and an explanation in terms of
PC has remained unexplored up to know. This chapter, based on Ref. [106], is devoted to
the task of quantifying the size of the peripheral wave suppression to systematically include
it in EFT calculations.

In those two-body channels where the full iteration of OPE produces short-range diver-
gences, giving an answer to this issue is important, as it would provide a theoretically sound
argument to perform or avoid the non-perturbative regularization and renormalization of
the potential at a given partial wave. However, this is not the case in two-body channels
where the divergences do not appear. Still, solving the issue above would find applications
in few-body calculations, which usually require the inclusion of contributions arising from
two-body partial waves up to a critical value of the orbital angular momentum (typically
¢>5 or j 25 in the three-nucleon system [111]). However, the choice of a maximum angular

momentum is driven by numerical considerations, rather than by the constraints that the
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EFT expansion imposes on the accuracy of physical observables.

We aim at translating the well-known peripheral wave suppression of OPE into the PC
language. This will allow to discriminate, on the basis of PC arguments, which two-body
partial waves are to be kept or ignored, thus improving the systematics of these calculations
or even simplifying them at the lowest orders where probably very few partial waves need
to be included. We will limit ourselves to the spin-singlet waves where OPE is not singular
and thus can be defined without counterterms.

This chapter is structured as follows. In Section 2.2 we will compare the non-perturbative
OPE predictions for the phase shifts in the singlets with their perturbative expansion, al-
lowing us to see up to what extent OPE is perturbative. In Section 2.3 we will provide a PC
explanation for the peripheral demotion of central OPE, which will be checked later against
numerical calculations of the expansion parameter of central OPE. Finally we will present

our conclusions in Section 2.4.

2.2 Perturbative OPE

In this section we will analyze whether the OPE potential is perturbative in the £ > 1 singlet
waves, i.e. 1Py, 1Dy, 1F3, etc. (The ¢ = 0 singlet wave will be studied in Chapter 3.) With
that purpose, we will compare the amplitudes resulting from the full iteration of OPE with
the perturbative ones. The phase shifts up to fourth order in perturbation theory will be
obtained. The results of these calculations will confirm that the OPE potential is definitely
perturbative in all the singlet waves with ¢ > 1. In terms of PC, the above is interpreted
as the beyond-LO nature of OPE in these waves, where LO is reserved for interactions that
are to be infinitely iterated to reproduce the non-perturbative physics that emerges in the S
waves.

The comparison between non-perturbative and perturbative OPE can be done in a
straightforward manner only in the singlets. This is due to the fact that the long-range
part of the OPE potential (1.61) comprises central and tensor pieces. According to Eq.
(1.60), the former is o 1/r when the internucleon distance r is made arbitrarily small,
thereby it is a regular interaction, but the latter gets o< 1/r3 in the short-distance regime
and is thus a singular interaction. The tensor part of OPE, while playing a fundamental role
in the triplet waves (see Appendix B for the case of the 35;-3D; channel), is vanishing in the

singlet channels. This is what makes possible the simple analysis we pursue in this section.
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2.2.1 Formalism

Here we will first solve the Schrédinger equation with the OPE potential to obtain the
non-perturbative phase shift §,(k). Next, this will be perturbatively expanded as

8o (k) = 6 (k) + 61 (k) + 65 (k) + ..., (2.1)

where the superindices in square brackets indicate the number of insertions of the OPE
potential. Comparing the left- and right-hand sides of the equation above, we can test the
convergence of the perturbative series.

Consider the reduced Schrodinger equation,

[5—;+k2—MNV(r)— WTZ 1)]ue(7“;k) =0, (2:2)

where My is the nucleon mass, and wu,(r; k) and V(r) represent respectively the reduced

wavefunction and the long-range component of the coordinate OPE potential (1.61). In the
singlet channels, for which the tensor operator S5 vanishes and the spin-dependent operator
o - 05 gives —3, it turns out

2 —-MnT
ma e T
MNANN r ’

V(r)=-71-7 (2.3)

where the isospin-dependent operator 7 - 75 gives +1 for the isovector waves (¢ =0,2,...),
for which V' (r) is attractive, and —3 for the isoscalar waves (¢ = 1,3,...), for which V (r)
is repulsive. Also, recall that Any » 290 MeV (1.69), the characteristic momentum scale of
OPE, is such that OPE is naively expected to become non-perturbative only at external
momenta @ 2 Ayy (see Figure 1.3 and Refs. [34, 35]). We will check that such hypothesis
does not hold in the peripheral singlets.
We solve Eq. (2.2) with the boundary conditions at the origin
0

ue(0;k) =0, Eue(r; k) e 1, (2.4)

corresponding to a regular interaction. In virtue of the asymptotic form of the wavefunction

(mgr > 1),
we(r; k) = Jo(kr) — go(kr) tan o,(k), (2.5)

Jo(x) = xje(x), gi(x) = zye(x) being reduced spherical Bessel functions, the non-perturbative

phase shifts may be extracted by inputting u, evaluated at the infrared cutoff R =20 fm.
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In contrast, the perturbative phase shifts will be found through the integral expression
M )
tan oy (k) = - f dr g (r; k) (r)30(kr), (2.6)
0

which can be easily derived from the reduced Schrodinger equation (2.2) together with its

free version

where the free wavefunction v, satisfies the regularity conditions at the origin,

[82 e+

0
v(0;k) = 0, Evz(r;k‘)

=1, (2.8)
r=0

and has the asymptotic form
ve(r; k) = Jo(kr). (2.9)

Indeed, subtracting Eq. (2.7) times u, from Eq. (2.2) times vy, integrating the result between
zero and infinity, using the conditions (2.4), (2.5), (2.8), and (2.9), and recalling the property
Je(x)yy(x) = 7,(x)ge(x) = 1, Eq. (2.6) is obtained. The integral formula is very useful for a
perturbative calculation: given the wavefunction of order n, the phase shift at order n + 1
can be found.

If the potential is weak enough, the reduced wavefunction may be expressed as the

perturbative sum

wg(ry k) = ul (s k) + ul s k) + s )+ PO )+ (2.10)
with
0? (0+1
[ﬁ+k2—%]u£0](r;k) = 0, (2.11)
0? (0+1 n e
[W +k? - ( = )]ug k) = MNV(T)UE k) for n> 1. (2.12)

This set of differential equations is to be solved iteratively, starting with n =0 for which we
take ugo](r; k) = 3¢(kr) (the free solution). Then, expanding the integral expression for the

phase shifts perturbatively, the Born approximation turns out,

51 (k) = -% fo " dr 2(kr)V (1), (2.13)

For n > 1 the only subtlety is finding a suitable boundary condition for ugn], which can be

easily done via a perturbative expansion of Eq. (2.5). At first order we find the asymptotic
boundary condition

up (ri k) - =60 (k) g (), (2.14)
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from which we can integrate ugl] for arbitrary r. This first correction to the wave function
gives rise to the second order contribution to the phase shift, as seen by inserting ul[zl] in the

perturbative expansion of Eq. (2.6):
(2] My [ 1], . .
ol (k:):—T/ drul (r; k) (r)je(kr). (2.15)
0

Similarly, the second, third, ... order corrections to the wavefunction are obtained through

the asymptotic conditions

ul(rik) > =02 (k)ge(kr), (2.16)
ul (k) > = [6B(k) + 1613 (k)] gulkr), (2.17)
(2.18)

They allow to determine the third, fourth, ... order contributions to the phase shift:

) = =B [T ardP Vi) - ), (2.19)
(k) = -% [0 T drul o k) () je(kr) - 00 (k)P (k). (2.20)
(2.21)

2.2.2 Results

As mentioned above, the calculations are always finite and well-defined for the singlet-channel
OPE. Still, on a practical level, the computational expense of doing perturbation theory up
to high orders decreases significantly if a finite cutoff is used. Hence, we have regularized

the potential with a step function,
V(r) = V(r)0(r-r.), (2.22)

which simply amounts to changing the lower limit of the perturbative integrals from r = 0 to

r =1, and chosen r. = 0.3fm as a reference value '. For this cutoff the perturbative results

We are using a variable step integration method for the set of coupled differential equations (2.11) and
(2.12). Owing to the number of differential equations involved, the calculation gets increasingly expensive
for small cutoffs when the perturbative order considered is increased; this effect becomes more noticeable
for large values of ¢, particularly at low momenta. The chosen cutoff is actually on the limit of what we can
compute at fourth order, yet it suffices for a nuclear EFT calculation. Besides, this is significantly below the

standard cutoff ranges employed in previous EFT calculations in coordinate space [57, 58].
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Figure 2.1: Cutoff dependence of the non-perturbative phase shifts for the OPE potential in the
peripheral singlet waves 'P;, !F3, ' Hs. We show the 0.3 < 7. < 2.0 fm cutoff range for the center-
of-mass momenta k¢, = 75,150,300 MeV.

have already converged; as a matter of fact, there are only tiny differences in the results for
re. < 1fm.
In pionless calculations, the equivalence between the coordinate cutoff above and a sharp

momentum cutoff A can be analitically derived,
red = [(20+ D)N2 2] (2.23)

(see Ref. [112] for details), so that r. = 0.3fm yields A = 1590MeV for a P wave, A =
2127 MeV for a D wave, and higher values for ¢ > 3. For checking purposes, in Figure
2.1 we show the cutoff dependence of the non-perturbative phase shifts corresponding to
the isoscalar partial waves —it can be appreciated that, the more peripheral the wave,
the weaker the cutoff dependence. We have chosen to display the cutoff dependence of
the isoscalar channels (¢ = 1,3,5) because it is for these channels that the potential (2.3)
is strongest, yielding more cutoff dependence. With the exception of the !P; channel for
re 2 1fm (i.e. A $500MeV, already quite a soft cutoff), the dependence of the phase shifts
on 7. ranges from rather mild (*F3) to negligible (*Hs).

For r. = 0.3 fm we obtain the phase shifts shown in Figure 2.2, where we see how the per-
turbative expansion is converging extremely quickly even for the ! P; wave. The perturbative
series is more convergent the higher the partial wave: with the exception of the 'P; wave,
the tree-level (Born-approximation) phase shifts already match the full (non-perturbative)
ones with a precision of a fraction of a degree. All this indicates that, for the particular case
of the ¢ > 1 singlet waves, the convergence parameter of the perturbative-pion expansion is

certainly smaller than that of the EFT.
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Figure 2.2: Convergence of the perturbative expansion of the phase shifts for the OPE potential in
the peripheral singlet partial waves (1 Py, ' Dy, ' F3, 1G4, 1 Hs, 'Ig). The black solid line corresponds
to the non-perturbative phase shift, while the perturbative ones are displayed at increasing orders,
“T” standing for “tree level”, and “1L”, “2L”, “3L” for the one-, two-, three-loop calculation

(second, third, fourth order perturbation theory). A finite cutoff of r. = 0.3fm has been used.

2.3 Peripheral demotion

In this section we will discuss the role of the orbital angular momentum in the PC of the
singlet channels. We have just seen that the iteration of the OPE potential is suppressed
in the peripheral waves with respect to the expectations of common PC. This demands the
inclusion of such “peripheral suppression” into the EFT expansion. In the following we will
discuss some ideas in order to quantify an explain the origin of the factor by which the

iteration of the OPE potential is suppressed in the higher partial waves.

2.3.1 Quantum-mechanical suppression

First, let us study the peripheral suppression of a finite-range potential in standard quantum
mechanics. Even though the arguments presented here are relatively well-known, we will
repeat them for the sake of clarity. We anticipate that this type of suppression is apparent

only at momenta well below the inverse of the range of the potential, which is roughly given

57



2.3. PERIPHERAL DEMOTION CHAPTER 2. NN PERIPHERAL SINGLET WAVES

by m, for nuclear forces. This means that this kind of explanation will be useful in the
context of pionless theories, but its application to pionful theories will be restricted to very
peripheral waves.

We begin by considering the integral expression that allows to find the momentum-space

representation of the coordinate potential V' (r),
, , 4T e L
wlp )= {p VI, =5 [ ar o)V (n)ide'n), (2.24)

which, for p = p/, gives the on-shell scattering amplitude in the Born approximation. Com-
paring ve(k) = ve(k, k) for different angular momenta, we can obtain a baseline estimation
of the peripheral suppression factor. This can be done by calculating the ratio of v, against
a reference partial wave, which is chosen to be the P wave as it is the smallest angular mo-
menta considered in this chapter. There is the complication that even (odd) partial waves
are isovectors (isoscalars), but this can be circumvented by taking into account the isospin

factors 71 - 7o into the definition of the ratio,

ve(k)/(71-T2)e
Ufo(k)/(?l '712)[0 ’

where (71 - 72)¢ is +1 (-3) if the total isospin is 1 (0), i.e. if £ is even (odd). Also, as ¢y =1,

Ry(k) = (2.25)

vy, = vip, and (71 - T2)g, = —3. In Figure 2.3, the inverse of this ratio has been displayed.
(The choice of the inverse is aimed at illustrating the suppression in a more transparent
way.) One can see that, as the angular momentum increases, the suppression becomes much
bigger, especially at low energies.

To quantify such an effect, one can use the Taylor expansion of the reduced Bessel

function,
Jl+1pl+l

Go(kr) = @ [1+O0(k*r?)], kr < \/t+1/2, (2.26)
into the on-shell version of Eq. (2.24). Recalling that the OPE potential (2.3) falls off
exponentially for distances r such that m,r > 1, it will turn out

47

velh) = i

k:%_/ooodrr?*%[l+(’)(k2r2)]V(r) (2.27)

for momenta k such that k/m, <« /€ +1/2. We thus see that the power-law behavior of v,
agrees with naive expectations, as it is consistent with the scaling of the lowest-order ¢-wave

counterterm in pionless theory (Q?¢). Besides, it can be explicitly checked that each term
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Figure 2.3: Ratio of the diagonal, momentum-space potential between the ¢ = 1 wave and the
£=2,3,4,5 waves.

in the series above is suppressed by O(k?/m2) with respect to the inmediately previous one.
Thus, the expected breakdown scale of the pionless theory is come across.

Can this argument be used to justify the peripheral demotion of OPE? In principle the
answer is positive: for angular momenta ¢ such that Q/My; < \/m, the argument applies
over all the range of validity of the pionful theory. Taking () ~ m, and My; ~ 0.5 -1.0GeV,
this happens for ¢ > 12 - 50, for which a demotion of OPE similar to the one found for
the pionless theory will begin to show up. Still, this range lies far beyond the point where
the partial-wave expansion is truncated in three-body calculations. This means that we
have to invoke a different type of argument for analyzing the demotion at moderate angular

momenta. We will do this in the next section.

2.3.2 Power-counting suppression

Here we consider the peripheral wave suppression from the PC point of view. The idea
is to find a relationship between the scales of a two-body system and the orbital angular
momentum. The arguments we present are in principle tailored for the particular case of the
OPE potential in the singlet channels, for which the issue of regularization/renormalization

of divergences does not appear.
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The scales that enter into the problem may be conveniently underlined by writing the
OPE potential in the form

A
N T pma), 2.28
fe being a dimensionless function defined as
filwa) = =717 [ dyyeiday)ida'y). (2:29)

Then, if Gy is the Schrodinger propagator, it turns out on dimensional grounds

4 My@Q Am An @
v (5 (5 ) s (2.
(P, (lVGoVp, ) MyAny 47 MnAny MnAnn Ann (2:30)

() standing from either k or m,. We thus see that the decision of iterating OPE or not

depends on the dimensionless ratio Q/Ayy. In the Weinberg prescription, Ayy ~ @ and v,
is to be iterated to all orders; in the Kaplan—Savage—Wise (KSW) scheme, Any ~ My; and v,
does not require iteration. The numerical value Ayy ~ 300 MeV lies in between of what one
could consider a soft and a hard scale. As a matter of fact, none of the previous conventions
works for all partial waves: on the one hand we have the 3S; and 3P, triplets where OPE
is thought to be non-perturbative [47], while on the other we have the peripheral singlets
where, as shown in Section 2.2, OPE is clearly perturbative and probably demoted even with
respect to the Any ~ My,; scenario.

Actually, the above mismatch between scaling expectations and numerical results lies
in the dimensionless functions and numerical factors in the potential. On a PC level, it
is commonly assumed that these dimensionless factors are of O(1) and do not affect the
counting —but if that were truly the case, then OPE would be either perturbative or non-
perturbative in all partial waves. To have a sense of what is going on here, let us consider
first the (-wave projection of the scattering amplitude resulting from the OPE potential in

the absence of contact-range physics,
te(k) = (kT |k, 1) = (k,(\V]k, 1) + (k,(|VGV |k, 1) + ..., (2.31)

which, according to the naive analysis of Eq. (2.30), yields the expansion

fo(k) = —2T S (o) (i)n (2.32)

MnAny 520 Ann

where n refers to the number of loop integrals, and the most obvious or natural expectation

for the ¢-dependent dimensionless coefficients is tg”)(x) = O(1). If this hypothesis is correct,
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the convergence radius of the series is independent of ¢. Conversely, if the convergence
depends on the particular partial wave, then the form of the loop expansion must take the

alternative form .
) = g 2 1) (=) 233)

where the coefficients t;(”)

are truly (’)(1), and the factor by accounts for the different expan-
sion parameter and convergence radius in each partial wave £. Now, Q/Ayy is not anymore
the relevant ratio to check when discussing the scaling of OPE —it is rather Q/(byAny).
From complex analysis we know that the radius of convergence of the series above is
given by the amplitude pole that is closest to threshold. However, given that the central
component of the OPE potential is relatively weak, such poles will be far from threshold and
not easy to find. This difficulty may be circumvented by using a different strategy —instead
of finding the amplitude poles for the physical value of Any, we will rescale such physical
value up to the critical point A}, (¢) where an f-wave bound state emerges at k = 0. The

amplitude ¢; (k) resulting from the resized OPE will thus verify

Consequently, at k = 0 the physical amplitude (2.33) becomes
n ¢
te(0) ~ z £ (0) ( Ay ( )) (2.35)
Ann
This analysis can be extended easily to finite momenta & # 0, though the conclusions are not
as clear-cut. Let us explicitly disentangle the @ = {m,, k} power series in Eq. (2.33),
(r s)
4 I(n) mT ks
e r— t (k/m ,
MnANN 7125 fme) X4 (beAww)™

T+s5=n

to(k) = (2.36)

the coefficients cér’s) distinguishing the contributions that stem from powers of m, and k,

respectively. But the previous expression may be rewritten by means of Eq. (2.34),

n kj n-—-r
(ke _ t/(n) L i (ryn-r) ( my ) (_)
(1) = g SO ) T (5 ) (o
Am () A (0) )
o AT SN (ks , 2.37
e WAL >( ol (257
where the new coefficients t;'(n)(x) are defined as

t;,'(")(az) = tg(")(aj) > cy’n%)x”_’". (2.38)
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Figure 2.4: Ratio between the physical Axy and the critical Ay, generating an /-wave bound state
at threshold. The ratio has been calculated independently for isoscalar and isovector channels.
Here, the hypothesis cér’s) = O(1) will amount to assuming that m, and k always play the
same role in the expansion. Yet, we cannot discard the possibility of relative numerical factors
between the expansions in powers of m, and k (one could have, for instance, cy’s) ~ 2%, giving
a different convergence radius in terms of k than in terms of m,). Though this makes no
difference at the conceptual level, this effect could have a moderate impact when estimating
the peripheral demotion of OPE. We will briefly discuss this at the end of the section, but
we anticipate that the impact is going to be small. Part of the reason lies in the fact that,
at momenta k > m,, OPE becomes very similar to the Coulomb potential, which happens
to be always perturbative except in the very-low-energy regime. This translates into the
coefficients ¢! having an extremely suppressed behavior with respect to s (e.g. 1/s!).

The PC demotion will be quantified by comparing the expansion parameter of perturba-

tive OPE with the expansion parameter of pionful EFT,

Ao (O Ay = (Q/ M), (2.39)

which means that the order of OPE in the f-wave singlet is not LO (as in the Weinberg
counting) nor NLO (as in the KSW one), but N*(OLO. Still, one needs to take into account
that the scale separation in nuclear EFT is not particularly good. Putting ) = m, and
My; ~ 0.5 = 1.0GeV, the expansion parameter will be ~ 1/7 — 1/3. Concrete EFT analyses
[57-61, 113-115] suggest an expansion parameter closer to 1/3 than to 1/7.

The value of A%, (¢) that produces the bound state at threshold is found numerically

through the asymptotic condition on the zero-energy wavefunction u,(R;0) = 0, R = 40fm
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Table 2.1:

critical value of Any that renders the central potential non-perturbative in each of the singlets.

PC prescriptions for OPE in the singlet partial waves with 1 < £ < 11. We show the

The PC assignment in each partial wave depends on the expansion parameter of nuclear EFT,

which is not known precisely, but expected to lie between 1/7 and 1/3. Using this range of values,

we calculate the OPE demotion in each partial wave.

ISOSCALAR WAVES ISOVECTOR WAVES

25+1p ANN/A]*VN(E) N*LO 25+1p ANN/A]*VN(E) N*LO
1P1 -6.40 N1L.O0-177,00 11)2 45.8 N2.0-3.5T,0
LFy =279 NL.7-3.0L,0 1G4 133.1 N2-5-4.5T,0
1Hy -64.6 N2-1-381,0 1T 265.9 N2-9-511,0
1J7 ~116.4 N24-4.31,0 1K8 444.0 N31-5.5T,0
ng -183.3 N2.774.7LO 1M10 667.4 N3.375.9LO
lNll -265.4 N29-51T,0

being the infrared cutoff. (Actually, the results are stable already for R > 10fm.) In Figure
2.4 we show the ratio Ayy/A%,y for the peripheral singlets versus the angular momentum ¢,
which is taken as a continuous variable; the actual peripheral waves are displayed as discrete
points along the curve. (Note that this ratio is negative in the isoscalar waves, as the OPE
potential is actually repulsive in those channels.) The specific values of the Any/A%,y are
given in Table 2.1, where the effective order NYLO at which OPE enters in each peripheral
singlet is listed as well. The PC is normalized consistently with the discussion above, i.e.
LO corresponds to a potential that has to be iterated to all orders (such as the lowest-order
contact interaction in the S-wave singlet), while NLO is identified with the size of the OPE
potential in the KSW counting. One can see that OPE is slightly demoted with respect
to KSW even for the 'P; partial wave. Table 2.1 only shows partial waves whose average
demotion does not go much beyond N4LO, as contributions above this order are unlikely
to enter in any practical EFT calculation in the near future. The chiral nuclear potential
has not been used beyond leading three-pion exchange (or subsubleading TPE) in full EFT

calculations 2. Given that such piece of the potential enters at N4LO in a Weinberg-inspired

2Though recently [116] the chiral potential has been calculated one order further and used in first-order

perturbation theory for peripheral NNV scattering.

63



2.3. PERIPHERAL DEMOTION CHAPTER 2. NN PERIPHERAL SINGLET WAVES

counting 3 and at N°LO in a KSW-inspired one, it does not seem necessary to go beyond
that point.

The spread in the demotion emerges from the uncertainty on the expansion parameter:
for each ¢, the lowest (highest) estimation of v results from taking the expansion parameter
equal to 1/7 (1/3). (For instance, in the 'P; case N'OLO corresponds to 1/7 and N*7"LO
to 1/3.) If we take into account that the actual expansion parameter seems to be closer to
1/3, then the larger estimations for the demotion are expected to be more accurate than
the lower ones. Still, overestimating the demotion can lead to the underestimation of the
theoretical errors in a calculation, so it might be more cautious to use a value in the middle.

Apart from the uncertainty in Q/My;, there is a second source of error in Table 2.1,
namely the interplay between the k£ and m, expansions that we have previously discussed
qualitatively. Addressing this problem lies beyond the scope of this work, and in fact it
has never been done in the literature for a pionful EFT expansion. Instead of analyzing in
detail the perturbative expansion, we will explore the demotion by means of an alternative
definition of A3, (¢). We have defined A%, (¢) as the Ayy for which a bound state appears
at threshold, so that the ratio A}, (¢)/Ann corresponds to the expansion parameter of the
amplitude at zero energy; however, the emergence of a low-lying virtual state or resonance
also calls for the iteration of the potential, whose strength is now required to be smaller
than in the bound-state case. Therefore one could have introduced the more general scale
Ay (4, kpole) as the value of Ayy for which there is a pole at k = kpgle; this pole could be
either a bound/virtual state or a resonance, so it would lie on the momentum complex plane

in general. The new scale would have allowed us to replace the expansion (2.35) by

47

o) S R

> (n A* g’k ole "
tz( )(kpole/mW) (M) ) (2.40)

n=0 ANN

thus leading to the definition of an alternative peripheral demotion different from the one of
Eq. (2.39),

Ajon (4 kpote) [ Ann = (Q/Mhi)yl(e)- (2.41)

If we choose the pole to be a bound state away from the threshold, then OPE will need to

be stronger, amounting to a smaller A%, and more demotion (v’ > v). Conversely, imposing

3This corresponds to N3LO in the traditional notation used in Ref. [45], which skips one order because

in the Weinberg scheme the contribution linear in /Mj,; vanishes.
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the virtual-state/resonance condition implies a bigger A%, ratio and less demotion (v < v).
Since we are more interested in the possibility that we might have been overestimating the
demotion, we will consider the virtual-state/resonance hypothesis only. We have included
the calculations in Appendix C and checked that the effect of a change in conditions from a
threshold bound state to a resonance is quite small for v(¢), usually of the order of |Av| ~
0.05-0.2. If we compare this change to the uncertainty related to ¢/My;, which lies in the
range |Av|~ 0.5 -2, we see that corrections to the threshold bound-state condition can be

safely ignored in most partial waves.

2.3.3 The peripheral perturbative expansion revisited

Now that a PC argument for the centrifugal suppression of the singlets has been provided,
we test it against concrete calculations. The approach we find most convenient is the com-
parison of multiple iterations of the OPE potential. The ratio of iterated versus non-iterated
diagrams has been already used in the past as a tool for determining the convergence of
the EFT series [55], but calculations have been usually limited to just a few iterations of
OPE. While this might not be a drawback in S-wave scattering, peripheral waves require
the evaluation of higher orders of perturbation theory in order to get an estimation of the
expansion parameter.

With that purpose, first we will introduce the diagonal matrix element of the n-iterated

OPE potential as

(W) = (e 01V Go. GoV [k 0= [ drul )V ()l k), nx1, (242)
| S —— 0

n insertions of V'

where UEO](’I"; k) = j(kr) is the free (regular) wavefunction, while ugn](r; k) is the solution of
Eq. (2.12), from which

ugn](r;k) =My /Oodng(T,s;k:)V(s)uEn_ll(s;k:), (2.43)
0

where the Green’s function, defined by the condition

0? (0+1
[_87“2 + k% - ( = )]Gg(T,S;]{) =(r-s), (2.44)
may be constructed as
1. . R N
G(r,s;k) = T []g(kr)yg(ks)e(s =)+ Je(ks)ye(kr)0(r — s)] (2.45)
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This allows to define the ratio of the n-iterated potential against the (n—1)-iterated one,
By = (") ] (™). (2.46)
Then, according to what we saw in Section 2.3.2, the initial expectation is to have
R~ Ay (O Ay, n> 1. (2.47)

In particular, for n =1 Eq. (2.46) gives

_ My [, dr je(kr)V (r) [~ ds Ge(r, s;k)V (s)je(ks)
Jo~ dr je(kr)V (r)je(kr)
[1+0 (K*/m2)] ~ 272, (2.48)

R

T1" T2 My
20+1 226+1ANN

where the low-momentum expansion of jy(kr) (2.26) was recalled. But, as [Any/Ajy ()| <
22t+1 (as can be seen in Table 2.1), RE] is actually very suppressed with respect to the
expectation (2.47). Still, this does not necessarily mean that the peripheral demotion was
underestimated in Section 2.3.2 —as we will see, lower-order perturbation theory tends to
exaggerate the effect of the centrifugal barrier. The reasons of the latter are not completely
clear, but it might be related to the interplay between the regular (j,(kr)) and irregular
(9e(kr)) components of the wavefunction at low energies (k << m, ), with the irregular piece
giving a larger contribution and appearing only at higher-order perturbation theory. Be it
as it may, the bottomline is that one needs to evaluate Eq. (2.46) at higher n to reliably
probe the expansion parameter.

The results for 1/ RE”], 2 <n <7, are given in Figure 2.5. (The choice of the inverse is
simply because the inverse of the expansion parameter is a more natural indication of the
goodness of perturbation theory: the bigger 1/ |RE"]| is, the quicker the expansion converges.)
The plots indicate that, as the perturbative order n gets higher and higher, the expansion
parameters REn] tend to agree with the results obtained in Secton 2.3.2 through a different
method, thus providing a cross-check for our calculation. In principle, such agreement should
be most clear at low energies (k < m,), since at moderate energies (k ~ m,) one needs to
take into account that the Q/(b;Ayny) expansion contains powers of both m,/(b;Any) and
k/(beAnn). The remarkable thing, though, is that the expansion still works rather well at
larger momenta that are not far from My; ~ 0.5 GeV. This might be puzzling from the EFT

perspective but has a natural explanation in terms of the form of the central OPE potential
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Figure 2.5: Inverse ratios l/REn] (see Eq. (2.46)) in the singlet partial waves with 1 < ¢ < 6. The
value of Ayn/Ajyy(€) (see Table 2.1), to which the ratios should converge, is shown in the black

solid line.

—for momenta that are large compared to the pion mass, central OPE is almost a Coulomb-
like potential (V' ~ 1/r), which is necessarily perturbative (provided that its inverse Bohr
radius is, roughly, kg ~ m2/Ayn < m,). However, this is a particular feature of central OPE
that is not expected to happen for other contributions of the EFT nuclear potential.

From the figure we see that the convergence pattern for ¢ =1,2,3 is much more evident
than for £ =4,5,6. In the latter cases, apparently seventh-order perturbation theory is not
enough to stabilize the ratios, which nonetheless seem to converge to the predicted value.
Another interesting feature is that the lower orders of perturbation theory predict actually
a faster convergence than the high orders. The practical implication of this phenomenon is
that results at tree level are more accurate than expected from the expansion parameter of
the series. This might in turn point out towards choosing the higher-order estimates for the

demotion.

2.3.4 Beyond central OPE

At this point a question arises: how should these ideas be extended to TPE? NDA predicts
the LO (N2LO) character of OPE (leading TPE); in other words, leading TPE is naively
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suppressed by Q2/Mp? with respect to OPE. But, since OPE is probably more demoted than
that for singlet waves with ¢ > 2 (see Section 2.3.2), it is natural to expect that a similar
demotion will apply for TPE.

It is worth recalling, however, that the PC argument developed here for the peripheral
demotion in the singlets relies on a particular feature of the central OPE potential: this is
a regular interaction that does not require regularization. Conversely, both TPE and the
non-central part of OPE are badly divergent potentials at short distances and thus require
regularization. As a consequence, the arguments exploited here cannot be applied directly
either to TPE or to OPE in the triplet channels. There are strategies to cope with this,
though they will require serious scrutiny to check whether they work. The most obvious one
is to renormalize these partial waves —after the inclusion of a contact-range interaction, one
might be able to apply the same ideas as before. The drawback of this proposal is that it
mixes short- and long-range physics, as the factor by which TPE needs to be rescaled for
having a bound state at threshold depends on the scattering volume of the channel (before
rescaling TPE), which fixes the contact-range coupling. This would imply that the rescaling
factor is contaminated by the physical scattering volume, which is undesirable. It might
happen, though, that the effect of this contamination is negligible, as it turned out for the
threshold-bound-state versus shallow-resonance condition (see Appendix C).

Still, if one strives for a solution that is manifestly independent of the existence of short-

range physics, two possible alternatives come to mind:

e One can invoke Birse’s approach to tensor OPE [56], which adapts a series of techniques
from atomic physics to study whether tensor OPE is perturbative or not. A limitation
of this program is that it is formulated in the chiral limit, where the range of the OPE
potential diverges and the interaction is similar to the typical potentials of atomic

physics.

e A different strategy is to study the cutoff at which TPE generates deeply bound states.
Deeply bound states are non-physical bound states that occur when attractive singular
interactions, such as tensor OPE and TPE, are considered. As long as their binding
momenta are beyond the range of applicability of EFT, they are physically meaningless,
and techniques to get rid of them have been developed [47]. The point is that the more
peripheral the wave, the harder the cutoff for which deeply bound states emerge. This

might in turn give us quantitative information on the partial wave suppression.
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2.4 Conclusion

In this chapter the EFT approach has been exploited to analyze, for the particular case of the
spin-singlet channels, the common wisdom observation that pion exchanges are perturbative
in peripheral waves. For this we have studied the convergence of the perturbative expansion
of the phase shifts numerically up to fourth order in perturbation theory. This calculation
—which has been done here for the first time up to such an order— indicates that pion
exchanges are indeed perturbative in the peripheral singlets. In fact, the multiple iterations
of OPE turn out to be much more suppressed than expected even in a PC such as KSW, in

which OPE potential is treated as subleading.

To understand this pattern we have made use of a PC argument to determine the actual
demotion of OPE potential with respect to LO. The idea is to rescale the strength of OPE
up to the point in which a bound state is generated at threshold. This critical strength
can be translated into a critical A}, —which will be softer than the physical Ayy— such
that the perturbative expansion diverges. The ratio A}, /Any corresponds to the expansion
parameter of perturbative OPE, which turns out to be quickly convergent. We have checked
this prediction against concrete calculations, confirming the EFT argument. Actually, even
the 1P, partial wave is suppressed beyond NLO, and higher waves may be demoted up to
the point of being less important than subleading TPE in NDA. However, the demotion of
leading and subleading TPE in the peripheral waves is yet to be studied.

The importance of the peripheral demotion is not merely academic, but it has applica-
tions in few-body calculations, where the demotion can be used to improve and optimize
calculations. The way in which this is achieved is by including only the necessary number
of iterations in the peripheral waves and by ignoring partial waves where tree-level OPE
potential is already higher-order than the order of the calculation. In fact this is analogous
to the common practice of ignoring the partial waves with angular momentum larger than a
certain critical value (¢ > 5 in most applications). The difference is that here we systematize
this practice in a way that is compatible with the EFT expansion, providing guidelines for
future few-body calculations in nuclear EFT.

Still, this chapter deals only with OPE in the peripheral singlets. For the peripheral
demotion to be useful in few-body calculations, we need to extend the present study to
peripheral triplets and also to TPE. This analysis is underway, though the tools that will be

required are different that the ones we have used here due to the singular nature of tensor
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OPE and TPE interactions. Hence, the calculation of their peripheral demotion will require
the development of more sophisticated arguments that take into account the existence of a

finite cutoff and how it relates to the other scales in the problem.
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Chapter 3

NN S-wave singlet channel

3.1 Introduction

The 1S, partial wave was not considered in the analysis of Chapter 2. This was so because
this particular channel presents, apart from the renormalization issue that was pointed out
in Section 1.2.3.2, other features that remain not completely captured by the EFT approach.
The understanding of these issues has not improved greatly since the late 90s, despite con-
siderable effort [50, 61, 64, 65, 76, 112, 114, 117-140]. The present chapter, which is based
on Ref. [107], aims to shed some new light in that regard.

A unique feature of this wave, which was recognized early on, is fine tuning in the
form of a very shallow virtual bound state. The OPE potential (1.68) is characterized by
two scales —its inverse range given by the pion mass m, and its inverse strength given
by Anny = 167 f2/(¢3Mn) = O(fr), with fr = O(Mqcp/(47)) the pion decay constant,
My = O(Mqep) the nucleon mass, and g4 = O(1) the axial-vector coupling constant (see
Egs. (1.32), (1.80), and (1.81), respectively). But, at the physical pion mass, m, ~ 140 MeV,
the virtual state’s binding momentum R ~ 10MeV is much smaller than the pion scales.
It has been argued [64] that such smallness is likely due to a near coincidence between
the physical values of the quark masses and their values that produce a pion attraction just
enough to generate a zero-energy bound state. Be it as it may, in the very-low-energy regime,
@ < my, the virtual state is well-described by an EFT where nucleons are the only explicit
degrees of freedom, namely #EFT (see Section 1.3). To simultaneously capture the @ ~ m,
range, however, pion exchange needs to be retained. The perturbative expansion in Q/Any

prescribed by Refs. [34, 35] converges very slowly, if at all, in the low-energy region [64],
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suggesting to identify Ayy as a low-energy scale M, just as indicated by NDA.
Yet, it is disturbing that the NDA-prescribed LO potential produces 1Sy phase shifts

showing large discrepancies with the Nijmegen partial-wave analysis (PWA) [141] even at
moderate scattering energies. In Ref. [61] it was shown that, differently from what NDA
anticipates, the first correction in this channel appears already at NLO, in the form of a
contact interaction with two derivatives. Still, only about half of the near-threshold energy
dependence exhibited by the phenomenological inverse amplitude is reproduced by LO, so
Ref. [137] went a step further by promoting to LO an energy-dependent short-range inter-
action fixed by the effective range —a generalization of the suggestion made years before in
#EFT [142]. Even this promotion leaves significant room for improvement when compared
to the Nijmegen PWA. In particular, the empirical 1Sy phase shift, thus the amplitude, van-
ishes at the center-of-mass momentum kg ~ 340 MeV. Since kg is only a bit above Ay, it
should be considered as a soft scale where the EFT converges, too. In contrast, we find that
the LO phase shift of Ref. [137] is around 25° at k = k¢ and does not vanish until & reaches
a few GeV. Since higher orders need to overcome LO, convergence at momenta k ~ ky will
be at best very slow; besides, LO wil not provide a qualitatively correct description of the
amplitude at momenta that are quite below the expected breakdown scale. This situation
is unsatisfactory from the EFT point of view, and can only be remedied if LO is enforced
to contain the amplitude zero. As pointed out in Ref. [69], a low-energy zero requires a
different kind of fine tuning than the one giving rise to a shallow bound state. When the
zero appears at very low energies, a contact EFT can be devised (the “other unnatural EFT”
of Ref. [69]) which gives rise to a perturbative expansion of the amplitude around k = k.

Such an expansion was developed in Ref. [124] in the presence of pions.

Here we propose a rearrangement of the short-range part of YEFT that leads to the
existence of the amplitude zero at LO, in addition to the shallow virtual state. The PC
of Ref. [69] is generalized with the purpose of including the non-perturbative region that
contains the virtual state. This is patterned on an idea originally developed for doublet
neutron-deuteron (nd) scattering at very low energies [143], where the amplitude has a
zero at small imaginary momentum, in addition to a shallow virtual state. We develop an
expansion in Q/My; for Q ~ M,,, which gives an order-by-order renormalizable amplitude.
Following a successful approach to #EFT [144], the virtual state is assumed to be located
right at threshold at LO and is moved to a binding momentum ~ M@/Mhi at NLO. We

calculate NLO corrections and show a systematic improvement in the description of the
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phase shift.

A challenging feature of YEFT is that it usually does not yield analytical expressions for
amplitudes. This difficulty may be evaded by exploiting also a version of our proposed PC
for the theory without explicit pions, where we retain ko ~ M), but explore Ayy — oo. To our
surprise, even though ky > m,, this new version of #EFT also produces a good description
of the empirical phase shifts.

Our approach is in line with Refs. [114, 122], which argued that short-range forces in the
spin-singlet S wave must produce rapid energy dependence. It is a systematic extension of
the potential proposed in Ref. [76], and it resembles the unitarized approach of Ref. [124].
More generally, it can be seen as the EFT realization of Castillejo-Dalitz-Dyson (CDD)
poles [145] in S-matrix theory. Traditional S-matrix tools, such as the N/D method, have
recently received renewed attention in the NN system (e.g. Ref. [146]). The D function
is determined modulo the addition of CDD poles, which result in zeros of the scattering
amplitude. In particular, the momentum ky may be identified with the position of a CDD
pole in the 1Sy channel [147]. An EFT provides a systematic description of the two-body
CDD pole that can be naturally extended to more-body systems.

This chapter is structured as follows. In Section 3.2 we present an initial approach
(“warm-up”) to the problem on the basis of a modified organization of #EFT up to NLO.
The proposed PC is discussed in detail, and RG invariance is demonstrated explicitly. In
Section 3.3 we bring OPE into LO; also, we compare with the results of the high-quality
Nijm93 potential [148] before and after the inclusion of the NLO potential in this YEFT.

Conclusions are presented in Section 3.4.

3.2 Pionless theory

Our first approach to the problem will omit explicit pion exchange (as well as electromagnetic
interactions —these are small anyway for momenta k 2 aMy ~ 10MeV, with « ~ 1/137 the
fine-structure constant— and other small isospin-breaking effects [144]). Since the amplitude
zero appears at a momentum above the pion mass, it is unlikely that an EFT where pions are
not explicit degrees of freedom can reliably describe it. Still, our goal here is to illustrate RG
invariance and PC for a systematically improvable contact theory whose amplitude includes
both a near-threshold pole and a low-energy zero. The great benefit of removing pions is

simply to find analytical results, which cannot be reached if one includes OPE in (fully
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iterated) LO. Such results provide an important guide to the pionful analysis of Section 3.3.

As we saw in Section 1.3, in the absence of explicit pions and nucleon excitations, all
interactions among nucleons are of contact type, and the part of the Lagrangian relevant for
the NN 1S, channel reads

49 = N'(iop + v )N = Co (NTPig,N)" - (NTPig,N) + (3.1)
" 0t Sry 0 So So e :

where N is the isodoublet, bispinor nucleon field and the NN 1Sy projector is expressed in
terms of the Pauli matrices o (7) acting on spin (isospin) space as P S0 = 027T2/\/8, while
“...”7 means more complicated interactions and relativistic corrections suppressed by powers
of the breakdown scale of the theory. But, as seen in Section 1.3.3.1, the interaction term in
Eq. (3.1) may be rewritten by means of the isovector dibaryon field ¢, so that one can use

the alternative Lagrangian

2

AMn

L;¢>=NT(¢(90+ SaTp )N+¢T [A+c(z@0+ )]é- %(&T-NTﬁlsoN+H.c.)+..., (3.2)
N

where A is the dibaryon residual mass, ¢ is a number that normalizes the (explicitly included)
dibaryon kinetic term, and higher-order contact interactions can be systematically added via
the inclusion of derivative dibaryon-NN couplings.

The established PC of #EFT [34, 35, 68, 69] reproduces the shallow virtual state at LO,
but does not generate as much energy dependence as the phenomenological phase shifts.
A promotion of the dibaryon kinetic term to LO [142] allows for the reproduction of the
derivative of the amplitude with respect to the energy around threshold. However, these
approaches are equivalent to different truncations of the ERE and are unable to generate an
amplitude zero at any finite momentum. This is certainly not a problem in #EFT, since kg
(numerically larger than m,) is presumably outside the scope of this theory. But here we
aim at reformulating the theory in a way such that kg is taken below the breakdown scale,
so as to illustrate the proposed reformulation of the YEFT PC in Section 3.3.

With that purpose in mind, and inspired by an EFT for very-low-energy nd scattering
[143], we generalize the Lagrangian (3.2) for the case of two dibaryon fields, ¢y,

£(2¢) NT(ZG " L )N+ Z ¢T [A +cj(280+ )]¢J

N

- > (¢ NTPig,N+He.)+. (3.3)
MN] 1,2
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- o+ o +%+[:C-

Figure 3.1: Full two-dibaryon propagator (solid box) resulting from the non-perturbative dressing

of bare dibaryon-1 (dashed box) and dibaryon-2 (plain box) propagators with nucleon bubbles

(circles).

Such an extension naturally allows us to reproduce the amplitude zero already at LO, greatly
improving the description of the empirical phase shifts.

To illustrate the statement above, we neglect for now the interactions represented by
“...7in Eq. (3.3). At momentum k = /MyFE, where E is the center-of-mass energy, the
on-shell T matrix is written in terms of the S matrix and the phase shift ¢ as

271 4

Mk [S(k)-1] = i [~k cot 6 (k) +ik]™ (3.4)

(recall Eq. (1.88)). As usual, we will regularize loop integrals through a momentum cutoff

T(k) =

A in the range A > My; > k and a regulator function fgr(¢?/A?), with ¢ the magnitude of the

off-shell nucleon momentum, that satisfies

fr(0) =1, fr(co)=0. (3.5)

Much like what was done in Section 1.3.3.1 for the single-dibaryon case, here we dress up

the bare two-dibaryon propagator

Bk ) = 2[5 (A) + e (W) KM = 22V (k) (3.6)

with nucleon loops (see Figure 3.1), giving
1 _ My

T 4r

Doy (k; A) = [1/Bag(k; A) + Zo(k; A)] T(k; A). (3.7)

The loop integral Zy(k; A) was introduced already in Section 1.3.2, but we repeat it here for
convenience,

L0k - ae [0 D) k

kQ ) 2n
=1 A+ — 1-on | = )
(271-)3 q2—k2—i€ Zk+(91 +AT;]91 2n(A) s (38)

where the dimensionless coefficients 6,, depend on the specific regularization employed. We

thus arrive at
My, T [AA) +en(A) B2/ My ] [Ag(A) + o (A) K2/ My] K2 (ke
[_T(k’m] T AL(A) + Ag(A) + [e1 (D) + ea(A)] K2/ My “’“91A+9‘1K+0( )

A3
(3.9)
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When the momentum £ is much smaller than any other scale and the cutoff A is large, Eq.
(3.9) reduces to the ERE (see Eqs. (1.88) and (1.89)),

1
[MN E Lopay (3.10)

y T(k)] = +1ik — —k2 1
For low-energy np scattering, the scattering length is a ~ —23.7fm ~ —(8MeV)~! [71], the
effective range is g ~ 2.7fm ~ (73MeV)~! [72], the shape parameter is Py ~ 2.0fm3 ~
(158 MeV)~3 [80], and so on. In addition, Eq. (3.9) allows for a pole at a momentum
ko ~ 340 MeV [148], around which the amplitude can be expanded as [69]

My k2 — k2 k2 — k2 (k - ko)?
T = = 0 [21+z2 2 0,0 7 (3.11)

in terms of dimensionless parameters z,, with |z,|] = O(1) in the absence of further fine

tuning. Such result implies that 0(k) behaves linearly around k = ko,
5(k ~ ko) = -%(k ko) + (3.12)
From the Nijm93 phase shifts [148] we find z; ~ 0.6.

The unnaturally large value of |a| has long been attributed to some fine-tuning mecha-
nism that results into an extremely shallow virtual bound state, whose very small binding
momentum poses the emergence of a new scale R ~ 10MeV. In #EFT, one standardly as-
sumes that the size of the higher-order ERE parameters is determined by a harder scale
My, i.e. 1/rg ~ 1/P01/3 ~ ... ~ My. Then, in the Q ~ X momentum range, the scattering
amplitude is amenable to an expansion in powers of Q/Mhi, so that Mhi is the breakdown
scale of the theory. Naively one expects Mhi S my, but there is some evidence that fEFT
works also at larger momenta. For example, the ground-state binding momenta of systems
with A = 3,4,6,16 nucleons are ~ 100 MeV, and yet their physics is well described by the
lowest orders of #EFT (see, for example, Refs. [87, 90, 149, 150]). In fact, it has been
suggested that the characteristic scale of fEFT is set by these binding momenta through
the LO three-nucleon force, so that X appears only at NLO or higher [92, 144].

Here we exploit the hypothesis of an enlarged range of validity of #EFT in the 1S, channel
to illustrate the idea of a low-energy zero, which can be done through the replacement
My — M. Simultaneously, the smallness of 1/a is accounted for with the replacement

R — M2 /My;. The phenomenological parameters of the theory will then scale as
Va=0(M2[My), ko~1fro~1/B ~ .. = O(My), (3.13)
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with My; > M,. In the @ ~ M), momentum range, the assumption (3.13) will allow us to
expand the amplitude in powers of @)/ My;. Even though the usefulness of such an expansion
is far from obvious, we will see below that it seems to give good results when compared to
empirical low-energy data. Our prescription includes the correct position of the amplitude
zero at LO, and moves the virtual state very close to its empirical position at NLO. For ) ~ R
the NLO amplitude is similar to that of standard #EFT with My; ~ My,. The assignment
R — M%/Mhi is somewhat arbitrary but motivated by the expectations M, ~ 100 MeV and
My; ~ 500 MeV 1.

Quantities in the theory can be organized in powers of the small expansion parameter

M,/ My;. For a generic coupling constant g, we expand formally
g(A) = g (A) +gt(A) + .. (3.14)

where the superscript [“ indicates that the coupling appears at N*LO. The “renormal-
ized” coupling gl¥] —the regulator-independent contribution to the bare (running) coupling
g1 (A)— is nominally suppressed by O(M} /M) with respect to glol.

Likewise, the amplitude is written

T(k; A) = TOV Ry A) + T (ks A) + (3.15)
where
M , k2 & k20 \1™
TO (K A) = V(K A) l1+T;VV[O](k;A)(zk+91A+XT;)O_l_ZnE)] . (3.16)
TO(k; A) \?
(1 - - |\ (1 -
Tk A) (V[O](k;A) V(K A), (3.17)
etc., in terms of
4T k2 \7!
VIO(kA) = — (AEO] A) + (A —) 1
(k; A) MN; ]()+c]()MN : (3.18)

47 2

(s Pend)

J

VE(k; A)

(AE”(A) + cg”(A)]@—jV) . (3.19)

'If X were taken to be smaller, say & ~ Mff)/M}i, a reasonable description of observables at momenta
Q ~ ® would only emerge at N2LO. Conversely, had one taken & ~ M),, the very-low-energy region would be

well reproduced already at LO, but it would be more difficult to see improvements at NLO.
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etc. Neglecting higher-order terms, the phase shifts at LO, LO+NLO and so on can be

written as
4 1
[01¢ 1.. _ -1
Nk A) = —cot [ T Re (T[O](k:; ) )] : (3.20)
4T 1 T (ks A)
[0+1] (.. _ _ -1 _ ;
STk A) cot [ 7 Re (T[O](k; N TOR(k: A )] ) (3.21)

13

etc. At higher orders interactions in the “...” of Eq. (3.3) appear. We now consider the

first two orders of the expansion in detail.

3.2.1 Leading order

From Eq. (3.9) we see that reproducing the amplitude zero at LO with a shallow pole requires
a minimum of three bare parameters. Both residual masses, A;(A) and Ay(A), must be non-
vanishing, otherwise the resulting inverse amplitude at threshold would be proportional to
A, i.e. not properly renormalized. At the same time, at least one of the dibaryon kinetic
terms, which we choose to be cy(A), needs to appear at LO, otherwise the amplitude zero
could not be reproduced.

Since the smallness of the inverse scattering length is attributed to a suppression by one

power of the breakdown scale My; (see (3.13)), we take
—=0. (3.22)

In other words, we perform an expansion of the NN 1S, amplitude around the unitarity limit,
as in Refs. [92, 144]. One of the dibaryon parameters, which turns out to be Ay(A), carries
such an effect, so that its observable contribution vanishes at LO. The regulator-independent
parts of the remaining LO parameters, A; and cs, are assumed to be governed by the scale

M. In a nutshell,

. 10] . A0 .
AY_omn,), S--o Al-y, M_N:O(Mlo)‘ (3.23)

Because the vanishing of CEO] was imposed, eliminating dibaryon-1 via Eq. (3.2) generates a

momentum-independent contact interaction. Thus, at LO we obtain the Ayy — oo version
of the model considered in Ref. [76], where a dibaryon (our dibaryon-2) is added to a series

of nucleon contact interactions.
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In order to relate AEOJ(A), Ago](A), and cgo](A) —our three non-vanishing LO bare

parameters— to observables, we impose on

My

F(:A) = Re{[ OINE A)] } (3.24)

three renormalization conditions,

OF (z;\)

F(0;A) =0, o

S r. FU(RA) =0, (3.25)

2
z=0

The dependence of loops on positive powers of A is canceled by that of the bare couplings,
leaving behind only the renormalized couplings and some residual cutoff dependence, which

can be made arbitraly small by increasing the cutoff,

Ay = AT _ga+ (3.26)
APp) = 23%2 [01 (roA)? = (3r2K3 +20,0_1 ) roA + 46,67, + ... ], (3.27)

(o] o]
s (A C 20

o) & 3/54 [0, (roA)> = (12K2 + 20,0, ) roA + 40,6%, + ... ], (3.28)
IMN IMN

43 2

where stands for terms that become arbitrarily small for an arbitrarily large cutoff.

Equation (3.23) ensures that the non-vanishing renormalized couplings,
. c
Al = 1Rz, =2 = -1y, (3.29)

are indeed consistent with Eq. (3.13). Equations (3.26)—(3.29) yield

My Ty k2 20, k2 k4
2N plo) k-A] _ipolto R [y 20N (_) .
[47r M) =k e L a2 ) O\ ) (3:30)

which is indeed cutoff independent up to terms that decrease as A increases. Although
the scales and the zero location are different, Eq. (3.30) is the same that applies [143] to

near-threshold nd scattering 2.

2Taking A = rokZ/2 = -R, Eq. (3.30) may be rewritten as

47

My
2N plo
| ;

](k;A)]I:A+ +zk:+(9(k2)

_ R
1-k2/k2

which is a form used in early work on nd scattering, such as Ref. [151].
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Many interesting consequences can be extracted from Eq. (3.30). For momenta below
the amplitude zero, our expression reduces to the unitarity-limit version of the ERE (3.10)

but with predictions for the higher ERE parameters, starting with the shape parameter

1) - 27"0[ ifX*O(erS)]' (3.31)

Using the cutoff dependence to estimate the error under the assumption M; ~ 500 MeV, the
LO prediction is P 0l):2 5/(2rp) =1.0+0.3. These high ERE parameters are difficult to extract
from data. A careful analysis in Ref. [80] obtains Pyk2/(2r¢) = 1.1, which is well within

our expected truncation error. Yet, values obtained for F, from the phenomenological np

potentials NigmII and Reid93 [148] are of the same order of magnitude as the value from
Ref. [80], but with a negative sign [81].

We conjecture that, contrary to what happens in standard #EFT, Eq. (3.30) also applies
at momenta around the amplitude zero, with terms O(M,,) and corrections O(MZ[My;).
Around the amplitude zero, the amplitude is perturbative [69, 124]. Indeed, a simple Taylor
expansion of Eq. (3.30) gives a perturbative expansion in the region |k — ko| < ko, i.e. an

equation of the form (3.11) with LO predictions for the coefficients,

Ol Ay - _2 (1_29— ) 3.32
I (3.32)
LT [1 2 (1—49‘1) ] 3.33
29 (A) roko +T0/€0 oA +..., (3.33)
etc. Where the “...” account for O(MZ /A?). Numerically, these coefficients are z{o] =0.4+0.1
and 22 -(0.4£0. 1) —4(0.2+0.1), which are indeed of natural size. The former is in fact

reasonably close to z; ~ 0.6 extracted from the phenomenological data. Note that we could
have imposed as a renormalization condition that z; had a fixed value (the phenomenological
one) at any A, thus trading the information about energy dependence carried by 7 for that
contained in the derivative of the phase shift at its zero, see Eq. (3.12).

Equation (3.30) interpolates between the two regions, k <« ko where the amplitude is
non-perturbative and |k — ko| << ko where it is perturbative. Compared to standard #EFT,
it resums not only range corrections as in Ref. [142], but also corrections that give rise to
the pole at k = kg. Compared to the expansion around the amplitude zero [69], it resums
the terms that become large at low energies and give rise to a resonant state at zero energy.
The pole structure of the LO amplitude can be made explicit by rewriting Eq. (3.30) as
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with

k=0, K= TOT"% (1 —\/1- (4/(r0k0))2), k) = Tong (1 #y/1- (4/(roko))2) - (3:35)

In addition to the amplitude zero, T1%(kg; A) = 0, it is apparent that there are three simple
poles, T[OJ(mE,O]; 00) — oo. Similarly to the analysis we presented in Section 1.3, their nature
depends on the sign of i Res S[O](imgo]):

e The pole at k = 0 represents a resonant state at threshold, as it induces the vanishing of
cot0(0). Given that :Res S U”(i/cgo]) = 0, this state has a non-normalizable wavefunc-
tion. Notice that such a state can be reproduced even with a non-derivative contact

potential —to check this, simply take the unitarity limit in Section 1.3.2.

e The poleat k = mg)], mgo] ~ 190 MeV, lies on the positive imaginary semiaxis. However,

since 7 Res S [OJ(imgo]) <0, the condition to produce a normalizable wavefunction is not
satisfied in this case either. Hence, this is a redundant pole —just like the pole at

k = ik, considered in Section 1.3.3.1.

e The pole at k£ = mgo], ngo] ~ 600 MeV, lies deep on the positive imaginary semiaxis.

It represents a bound state because i Res S [0](i/<;£0]) > (. Since no such state exists
experimentally, it would set an upper bound on the regime of validity of the EFT,

My S Kgo].

Figure 3.2 displays the phase shifts (3.20) resulting from the LO amplitude (3.30) in
comparison with the Nijm93 results [148]. As inputs, we use the empirical values of the
effective range and the position of the amplitude zero. We display the cutoff band for a
generic regulator by taking 6_; = +1 and varying A from around the breakdown scale (500
MeV) to infinity —as the cutoff increases, our results converge, as evident in Eq. (3.30). This
cutoff band provides an estimate of the LO error, except at low momentum where there is
an error that scales with 1/|a| instead of k. The LO phase shifts are in good agreement with
empirical values for most of the low-energy momentum range, except at very low momenta
where the small but non-vanishing virtual-state binding energy is noticeable. Even though a
plot of k cot § would confirm that differences at the amplitude level are indeed small, here we
plot the phase shifts to better display the region around the amplitude zero, which our PC
is designed to capture. There, while the phase shifts themselves are not too far off empirical

values, the curvature is not well reproduced. Nevertheless, the agreement is surprisingly
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Figure 3.2: np 1Sy phase shift § (in degrees) versus laboratory energy Tiap, = 2k?/My (in MeV) for
#EFT at LO in our new PC. The (black) solid line shows the analytical result (3.30) with A — oo,
while the (green) band around it represents the evolution of the cutoff from 500 MeV to infinity,
with _1 = +1. The (black) squares are the Nijm93 results [148].

good given the absence of explicit pion fields. In the next section we examine how robust

this agreement is.

3.2.2 Next-to-leading order

As pointed out in Ref. [61], the leading residual cutoff dependence of an amplitude, together
with the assumption of naturalness, provides an upper bound on the order of the next
correction to that amplitude. In standard #EFT, for example, the LO amplitude has an
effective range ro ~ 1/A, indicating that there is an interaction at order no higher than

NLO which will produce a physical effective range rq ~ 1/Mhi (see Section 1.3.3.2 and Refs.
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(34, 35, 68, 69]). The leading residual cutoff dependence in Eq. (3.30) is proportional to k*

and of relative order O(M,/A). Thus, the NLO interaction must give rise to a contribution

1
P =P -PYW) =0 (M2 i ) (3.36)
lo 1

to the LO shape parameter (3.31). This correction requires a higher-derivative operator.
Although we could add a momentum-dependent contact operator, here we will make use
instead of an energy-dependent —thus computationally simpler— strategy: we allow for a
non-vanishing cgl].

In addition, given Eq. (3.13), some combination of parameters including AE] must

S O(MZ) (3.37)

enforce

Mhl

We also introduce NLO corrections on top of the two parameters that were not zero at
LO, Ay and ¢, in order to keep ry and kg unchanged. Since NLO interactions must all be

suppressed by M1, one requires

_ M2 ! 1 - M2 elt] 1
A[l] — O lo _ O( ) A[l] — O lo 2 = O( ) . 3.38
! My ) My My )’ 2 My ) My M, ( )

This scaling, together with what was learned at LO, is consistent with the imposition of four

renormalization conditions on
(= A)——Re{[MN (/7 A)H 01(\/Z; A)] } (3.39)

which ensure that a, ro, Fy, and kg are fully A independent at NLO:

1 0G(zA) G (2 A) rPH(A)
G(O;A)=~, —22| =0, —2—~2| =-2>7" G(k3A)=0. 3.40
( ) ) CL’ 6z 0 ) 622 0 2 ’ (07 ) ( )
Defining the renormalized parameters
0 apy 3a&Y al oo Pok?
A Z Al 24 o R et 41
1SS Tyt My - 2T 2 ) (3:41)
_ 1 Pk2 et A Al
All_ Z k21 - 2%% =2 -4 s =2 3.42
R T A My 22 ) (3.42)
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which with Eq. (3.38) give Egs. (3.13) and (3.36), the cutoff dependence of the bare
parameters that guarantees Eq. (3.40) is

Ay = A (3.43)
(1] ~[1]
¢ (M) =l
- ro (3.44)
My My
[1] _ At 272
AQ (A) = AQ - T_P (A) [01 (T()A) + ( 4810_1) ToA - 20_1 (’f‘ok’o - 6010_1)]
0
46,
- T (roA—20_1)+ ..., (3.45)
(1] ~[1]
(N & 1
il (A7 -al@a)) +. (3.46)

where the ellipsis account for terms that disappear when we take A - oo.
Using the expressions of the seven up-to-NLO counterterms in Egs. (3.18) and (3.19),
one finds in virtue of Eq. (3.17) that the NLO contribution to the amplitude verifies

DJ([{ A) MN 1 To k4 P()kQ 29_1 /{4
’ 1-—2+— (—) 3.47
O]Q(k;A) 4t LL i) k2 — k2 279 ’ ro/A +0 A3 (3:47)

which is indeed suppressed by one negative power of My;. If we resum T (k;A) while

neglecting N2LO terms, then

b

o (T A) + T (kA))]1=%+ik——k2—&k—4 0( i ) (3.48)

2 K2/k2 k2A3

and the ERE (3.10) is reproduced for k < kg with the experimental scattering length and
shape parameter. Besides, predictions for the higher ERE parameters arise (these are hard
to test given the difficulty of extracting them from phenomenological data, though), and the
zero at kg remains unchanged due to our choice of renormalization condition. Once expanded
around k = ko (see Eq. (3.11)), the distorted amplitude (3.48) yields the NLO coefficients

Pok?
A0y = 20 )( OTO )+ (3.49)
roko ) LAY
Ay - zgo](oo)(l—z%) l2(1— = ) a—lﬁ)]+ (3.50)
etc., where “...” stands for O(M2/A%). NLO contributions are of relative O(M,,/My;) with

respect to their LO predictions Zgo] and 2501’ consistently with the residual cutoff dependence

displayed in Egs. (3.32) and (3.33). Since z{o](oo) ~ (0.4 underestimates by ~ 50% the slope
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of the phenomenological phase shifts around the amplitude zero, a better description of
data requires z{l](oo) > 0 and thus, according to Egs. (3.31) and (3.49), P < PO[O](oo).
The value of Py given in Ref. [80] leads to a small change |z£12](oo) /z£02](oo)| < 1/10, but
unfortunately it is ~ 10% larger than PgO](oo). Since Ref. [80] provides no error bars it is
difficult to decide whether this is a real problem. We can reproduce the phenomenological
z1 by taking Po[l](oo) /Pgo](oo) ~ —(0.6, which is still compatible with convergence but not
so small a change with respect to LO. Of course, not all the discrepancy between LO and
phenomenology should be remedied by NLO, but this might indicate that something is
missing. We will return to the shape parameter in the next section.

NLO also shifts the LO position of the poles (3.35) of the S matrix. One can obtain these
shifts reliably by means of perturbative tools only for the two shallowest LO poles, finding

in the large-cutoff limit

0]2 0]4
Lol g+ m? LN rony A (3.51)
1 a 2 k’g _ K£0]2 a 2 k(% + K£0]2 2’/“()

We see that, as expected, |l€£1]| ~ |/<;£1]| = O(M}2 /M), as long as /ﬂgo] = O(M,,). As a

consequence:

e The shallowest pole is moved from threshold to k& ~ —-8i MeV, and represents the well-

known virtual state. Its new location almost coincides with the physical one.

e The redundant pole is moved from k ~ 190i MeV to k ~ 215; MeV, when the value of F,
given in Ref. [80] is used. This represents a shift of relative size ~ 15% with respect to
LO. Roughly two thirds of this shift are due to the finiteness of the scattering length,
while the other third corresponds to the NLO correction to the shape parameter.
Conversely, if we take the value of Py that reproduces the phenomenological z;, then

the shape correction overcomes the scattering length and the pole moves down to
k ~ 1551 MeV, still a modest shift.

The LO+NLO 1S, phase shift (3.21) can now be obtained from Eqs. (3.30) and (3.47),
see Figure 3.3. Now, in addition to the empirical values of ry and kg, also the values of the
scattering length and the shape parameter from Ref. [80] are input, and the resulting phase
shift has been called §. We show a band around such result corresponding to a variation of

+30% around the P value of Ref. [80] to account for its (unspecified) error. Since the cutoff
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Figure 3.3: np 'Sy phase shift ¢ (in degrees) versus laboratory energy Ti., = 2k*/My (in MeV)
for #EFT at NLO in our new PC. The (black) line shows the analytical result (3.47) with A - oo
and the value of the shape parameter from Ref. [80], while the (green) band around it represents

a +30% variation in this value. The (black) squares are the Nijm93 results [148].

dependence of the up-to-NLO result (3.48) is very suppressed (~ 1/A3), it has been neglected
in Figure 3.3. The band thus does not reflect the uncertainty of the NLO truncation, but of
the input.

As expected, the physical value of a greatly improves the description of the phase shifts
at very low energies (1., S 5MeV, or k $50MeV). However, already at moderate energies
this improvement is much less clear. In particular, as anticipated above, only for a shape
parameter ~ 30% smaller than in Ref. [80] does §[0+1](k; 00) get slightly closer to Nijm93
than §l9(k;00) (see Figure 3.2). Such a change is within the LO error and, overall, the
reproduction of the phase shifts is very good at NLO. Agreement could be further improved,

particularly around ko, by taking an even smaller shape parameter (in particular, the one that

36



CHAPTER 3. NN S-WAVE SINGLET CHANNEL 3.3. PIONFUL THEORY

reproduces the phenomenological z;); however, even in that case the curvature of the resulting
phase shifts would remain different from empirical at middle energies, which suggests that

our expansion is lacking terms at either LO or NLO.

3.2.3 Resummation and higher orders

The choice of identifying the fine-tuning scale X with M2 /M,; implied a finite scattering
length only at NLO. Alternative choices are possible, leading to slightly different amplitudes
at various orders. When plotting phase shifts, these differences are amplified. For example,
taking X ~ M), would lead to the non-vanishing of 1/a already at LO. Then, the running
and renormalized parameters given above would change by 1/a terms, and the amplitude (or
equivalently its pole positions) would be shifted only slightly. However, in terms of phase
shifts there would appear to be a large improvement around threshold.

Given our previous identification of X with M2 /My, the alternative procedure just de-
scribed would amount to a resummation of higher-order corrections. Because the bare pa-
rameter Ay(A) exists already at LO to ensure proper renormalization, this resummation
could be done without harm. However, because some NLO contributions would be shifted
to LO, we would see less improvement when going from LO to NLO. Provided that one has
a PC that converges, this would be just one of many ways in which we can make results at
one order closer to phenomenology while remaining within the error of that order.

Regardless of such resummation, corrections at higher orders are expected to improve
the situation further. The cutoff dependence of Eq. (3.48) suggests that there are no new
interactions at next order, N2LO, which would solely consist of one iteration of the NLO
potential. However, the fact that our pionless phase shifts look too low in the middle range
represents a significant, systematic lack of attraction between nucleons at k£ ~ m,. This could
be a reminder to include pions explicitly. Next, we consider our expansion with additional

pion exchange.

3.3 Pionful theory

We now modify the theory developed in Section 3.2 to include pion exchange. This is done

under the assumption that the pion mass, the characteristic inverse strength of OPE, and
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the magnitude of the relevant momenta have similar sizes, not being enhanced or suppressed
by powers of the hard scale,
My ~ ANN ~ Q =0 (M]O) . (352)

Such an assumption has been standard in yEFT since its beginnings [36, 37]. In the NN
sector, it underlies the (non-perturbative) LO character of the OPE interaction, as well as
the suppression of multiple pion exchanges by powers of (M),/Mqgcp)?. In this context,
the fact that Ayy ~ 290 MeV and the location of the 1S, amplitude zero kg ~ 340 MeV
are numerically close to each other suggests to consider the latter as a low-energy scale as
well. Note that certain spin-triplet channels (in particular, 3S; and 3Fy) also have amplitude
zeros at comparable momenta, but in those waves the tensor OPE suffices for a qualitatively
correct description of the phase shifts already at LO in a PC consistent with RG invariance
[47, 59, 60]. This is not the case of 1S, [61], where the conventional chiral potential is able
to generate an amplitude zero only for soft momentum cutoffs A ~ M,, [57].

The Coulomb proton-proton (pp) interaction —the dominant electromagnetic effect—
scales as a My /M, ~ R/ M,,. As we took & = O(M2 | My;), we should account for the Coulomb
interaction at NLO. (Other isospin-breaking effects, such as the nucleon mass splitting, are to
be accounted for perturbatively, too.) Within the #EFT framework, the subleading Coulomb
effects were included in an expansion around the unitarity limit (regardless of the amplitude
zero) in Ref. [144]. Since we anticipate no new features here, in this first approach we omit
isospin breaking. Because the expansion is already quite complicated at a fixed value of m,,
we also ignore the explicit dependence on quark mass.

Pions are introduced in the usual way, by demanding that the most general effective
Lagrangian transforms under chiral symmetry as does the QCD Lagrangian written in terms
of quarks and gluons (see Section 1.2 and Refs. [9-11] for reviews and references). For
the case of one single dibaryon field, this was done in Ref. [76], and the extension to the
two-dibaryon scenario explored in Section 3.2 is straightforward. If 7 is the pion isotriplet,

the effective Lagrangian reads

Lo o B, : v? . B
E;w) =3 (3MW-6“7T—m3r7T2) + NT[@(% + I 29%7'- (o- Vﬂ')]N
= . v \1- T - -
+j;2{¢} [+ e (30 + M)]qéj “\ s (6] NTPg,N+He)}b+..., (353)

in the same notation as Eq. (3.3). The omitted terms, which include chiral partners of the

terms shown explicitly, are not needed up to NLO.
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Inspired by the pionless theory, we take as the short-range potential of the pionful case
the same dibaryon arrangement as in Section 3.2. After adding the long-range, spin-singlet
projection of OPE, the LO potential is

MN 1 m2 1 1
—VUO(p p.k;A) = - z = +
A ) Anv (P -p)2+mz AN ADTAY + T (A) k2 My
M ,
= T:(Vﬁo](p,p)Jer[O](k;A)), (3.54)

where p (p’) is the relative momentum of the incoming (outgoing) nucleons, Ay is the
inverse OPE strength (see Eq. (1.69)), and the contact piece of OPE has been absorbed in
the short-range potential VS[O] through

(1721 (4) + 1/Any ) = AW, (3.55)

The long-range part of OPE is the Yukawa potential represented by VL[O]. Integrating out
dibaryon-1 we obtain the potential of Ref. [76]. Since TPE enters only at N2LO and higher
[39, 41], at NLO the interaction is entirely short-ranged,

My 1 0 AN ) + ) k2 My A + S ) B2 My
A =T 0]2 - 3
dm APE(A) (AL + (A) k20

(3.56)

In the limit Ago] — oo the potential is an energy-dependent version of the momentum-
dependent LO+NLO interaction of Ref. [61], while the interaction of Ref. [137] emerges in
the limit AEO] — 0.

Because OPE cannot be iterated analytically to all orders, we can no longer show analit-
ically that the amplitude has a zero at LLO or that the amplitude is RG invariant. However,
these two features of the pionless theory are expected to be retained by the pionful theory
on the basis that the strength of OPE is known to be numerically moderate in spin-singlet
channels and that VL[O] is non-singular. Moreover, we continue to use the scalings (3.23) and
(3.38). Below we confirm through numerical calculations that the EFT obeying such a PC

indeed has an amplitude zero and preserves RG invariance.

3.3.1 Leading order

The off-shell LO amplitude is found from the LO potential (3.54) by solving the LS equation

d*q  fr(*/A?)
(27)3 ¢ — k% —ie

TN p',p, k; A) = VIO (p',p, ks A) - My VI(p', g, k;A) TN g, p, k; A),

(3.57)
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with fr(x) a non-local regulator function (3.5). Defining the Yukawa amplitude,

d%q fR(q2/A )
(27)3 ¢? — i€

' p, ks A) = VI (p', p) - My vil(p' q) T g, p, ks A),  (3.58)

the Yukawa-dressing of the incoming/outgoing NN states,

d*q fR( 2//\2)
(2m)% ¢? '

and the resummation of NN bubbles with iterated OPE in the middle,

d’q fR(qz/Az)
(2m)? ¢?

N,k A) =1 - My “(p,q, kM), (3.59)

TNk A) = 4

(g, ks A), (3.60)

Eq. (3.57) can be rewritten as [46]

[0]/5..
My (o ool S (ks 0)/(4m)] " + T (s )
[M (T (p',p,k:A) - T} (pvp,k,A))] T h) ke ) . (3.61)

This is the generalization of Eq. (3.7) for LO in the presence of pions. Because VL[O] is
regular, the cutoff dependence of the integrals T; IEO] and XE)] is suppressed by powers of A. In
contrast just as the Z in Eq. (3.7), Z (97 has a linear cutoff dependence due to the singularity
of V . Additionally, it exhibits a logarlthmlc divergence ~ (m2/Any) InA [46] stemming
from the interference between VL and VS . This cutoff dependence is at the root of one of
the shortcomings of NDA in the NN system.

Compared to Refs. [46, 61, 137], our VS[O] has a different & dependence. As in Section
3.2, two dibaryon parameters are needed to describe the zero of the amplitude and its energy
dependence near threshold, while the third parameter ensures the fine tuning that leads to
a large scattering length. These three parameters are sufficient for renormalization, leaving
behind only residual cutoff dependence. Our LO amplitude is analogous to that of Ref.
[124], which results from the unitarization of an expansion around the amplitude zero.

Taking the sharp-cutoff function fr(xz) = (1 — z), we solve numerically the S-wave
projection of Eq. (3.57), as done in, e.g., Refs. [61, 133]. In order to determine the values
of the three bare parameters at a given cutoff, three cutoff-independent conditions on the

amplitude are needed. We choose them to be the same as in Section 3.2.1,
e unitarity limit, 1/all = 0;
e physical effective range, ro = 2.7 fm;

90



CHAPTER 3. NN S-WAVE SINGLET CHANNEL 3.3. PIONFUL THEORY

e physical amplitude zero, ky = 340.4 MeV.

The values of AEOJ(A), Ag)](A), and cgo](A) in our numerical calculations must be very well
tuned in order to reproduce the required values of 1/al%, ry, and ko within a given accuracy.
The need for such a tuning becomes more and more noticeable as A is increased [133]. But
the resulting phase shift changes dramatically depending on whether 1/al®! is very small and
negative (for a shallow virtual state) or very small and positive (for a shallow bound state).
Thus, in order to facilitate the numerical solution of the LS equation, we kept the scattering
length large and negative, al% = =600 fm. The difference with the unitarity limit cannot be
seen in the results presented below.

The LO pionful phase shift is obtained from the on-shell, S-wave-projected T matrix
in the usual way (see Eq. (3.20)). The result, presented in Figure 3.4, shows little cutoff
dependence, even though the cutoff parameter is varied from 600 MeV to 2 GeV. It is likely
that a more realistic estimate of the systematic error coming from the EFT truncation is
obtained through varying the input inverse scattering length between its physical value and
zero. We will come back to such an estimate later, when we resum finite-a effects. In any
case, comparing with Figure 3.2 we confirm that pions help us achieve a better description
of phase shifts between threshold and the amplitude zero.

From the results in Figure 3.4 we can extract the LO shape parameter Pgo](A) using our
low-energy results and the unitarity-limit version of the ERE (3.10) truncated at the level

of the shape parameter. Results are shown in Figure 3.5. For A large enough, we find
P(A) ~ B (o0) (1 A 3.62
o (A)~ Py (00) (1+Qp /M), (3.62)

with PO[O] (00) » —1.0fm3 and @ p, » 100 MeV. Unlike the result for the shape parameter given
in Ref. [80], P()[O](oo) is negative, being reasonably close to Py = —1.9fm3, the value extracted
in Ref. [81] from the NigmlII fit [148]. The large change in the prediction for PO[O](oo)
compared to the corresponding pionless result (3.31) is confirmation of the importance of

pions at LO.

3.3.2 Next-to-leading order

As in Section 3.2.2, we can infer the importance of subleading short-range contributions from

the residual cutoff dependence of the LO amplitude. Figure 3.5 shows that the relative cutoff

91



3.3. PIONFUL THEORY CHAPTER 3. NN S-WAVE SINGLET CHANNEL

80 -

. .. Nijm93
A 8N kN)

T,y MeV)

| |
0 100 200 300

Figure 3.4: np 1Sy phase shift § (in degrees) versus laboratory energy Tiap, = 2k?/My (in MeV) for
XEFT at LO in our new PC. The narrow (green) band represents the evolution of the sharp cutoff
from 600 MeV to 2 GeV. The (black) squares are the Nijm93 results [148].

dependence of P()[O](A) is O(M,/A), implying that at least one extra short-range parameter
needs to be included at NLO. This is represented by the NLO potential V11 (3.56).
Treating V[ in distorted-wave perturbation theory, we obtain a separable NLO ampli-
tude,
T, p, k; A) = X (p' k; A) VI (ks A) X (p, k5 A), (3.63)
where
4’ fr(¢*/A?)
(27)3 > — k% —ie
is defined in terms of the full LO amplitude in analogy with Eq. (3.59) for the long-range
LO amplitude. As in the pionless case, we obtain the pionful LO+NLO phase shift from Eq.
(3.21).

X (p,k;A) =1- My T (p, q,k; A), (3.64)
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Figure 3.5: np 1Sy shape parameter P[)[O](A) (in fm?3) versus inverse cutoff 1/A (in GeV~!) for YEFT
at LO in our new PC. The (black) squares are the values obtained numerically in the way explained

in the text; the (green) line represents the linear fit to those results.

The dibaryon parameters are fixed in virtue of four cutoff-independent conditions, which

we choose to be the values of the Nijm93 phase shifts [148] at four different momenta:
o 6[0+11(20.0 MeV; A) = 61.1°;
o 010+11(40.5 MeV; A) = 64.5°;
o 0L0+11(237.4MeV; A) = 21.7°;
o 010+11(340.4 MeV; A) = 0°.

The LO+NLO phase shifts are shown in Figure 3.6. The narrow band when the cutoff is

varied from 600 MeV to 2 GeV confirms that, as in Figure 3.4, very quick cutoff convergence
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Figure 3.6: np 1Sy phase shift § (in degrees) versus laboratory energy Tiap, = 2k?/My (in MeV) for
XEFT at NLO in our new PC. The narrow (green) band represents the evolution of the cutoff from
600 MeV to 2 GeV. The (black) squares are the Nijm93 results [148].

takes place. The LO+NLO prediction almost lies on the Nijm93 curve, which means that
now the description of the empirical phase shifts throughout the whole elastic range 0 <
k < vV Mym, is much better than at LO. Indeed, the improvement is clear not only in
the very-low-momentum regime (which had been expected considering that now we relaxed
the unitarity-limit condition) but, more importantly from the YEFT point of view, also for
momenta k ~ m,. Comparison with the pionless result at NLO (Figure 3.3) confirms that

adding OPE significantly improves predictions in this momentum range.
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3.3.3 Resummation and higher orders

On the basis of the smallness of the virtual-state binding momentum when compared to the
pion scales, so far we took it as an NLO parameter. We were guided by the PC presented in
Section 3.2, whose consistency could be analytically demonstrated. Despite the systematic
improvement and good description of data at NLO, one might be distressed by the unusual
appearance of our LO phase shift (Figure 3.4) at low momentum. Within potential models,
either purely phenomenological or grounded on Weinberg’s prescription, it is customary to
strive for a description of all regions below some arbitrary momentum on the same footing.

As emphasized in Section 3.2.3, plotting phase shifts is misleading when it comes to
errors in the amplitude, which is the observable the PC is designed for; a plot of kcotd
shows that only a small amount of physics is missed at LO even at low energies. Our
strategy is a consequence of the fact that the PC assumes external momenta ) ~ M, and it
is in principle only in this region that we expect systematic improvement order by order. The
higher the momentum, the smaller the relative improvement with order, till My; is reached
and the EFT stops working. In the other direction, that of smaller momenta, the PC may not
capture the relative importance of interactions properly 3. Therefore, the region of momenta
much below the pion mass is not where the convergence of YEFT is to be judged.

Still, it might be of practical interest to improve the description near threshold already at
LO. As in #fEFT, we can account for non-vanishing 1/a already at LO without jeopardizing
renormalization. Again, this is just a resummation of some higher-order contributions into
LO, so that the difference with respect to what we have done earlier in this section has
NLO size. As an example of this, in Figure 3.7 we show LO and LO+NLO results with an
alternative fitting protocol. In the renormalization conditions at LO we replace the unitarity
limit of our original fit with the physical scattering length, that is, we impose the following

cutoff-independent conditions:
e a=-23.7fm;
® 7o = 27fm,

o ky=340.4MeV.

3A simple example of this is pion-nucleon scattering in yPT, where sufficiently close to threshold the
LO P-wave interaction (stemming from the axial-vector coupling in Eq. (3.53)) becomes smaller than NLO

corrections to the S wave.
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Figure 3.7: np 1Sy phase shift § (in degrees) versus laboratory energy Tiap, = 2k?/My (in MeV) for
XEFT at LO and NLO in our new PC from an alternative fitting protocol. The (green) light and
(red) dark narrow bands represent, respectively, LO and LO+NLO under a cutoff variation from
600 MeV to 2GeV. The LO and LO+NLO phase shifts from Ref. [61] have also been displayed; the
upper (violet) LO band and the lower (cyan) LO4+NLO band come from the same cutoff evolution
as before. The (black) squares are the Nijm93 results [148].

Likewise, at NLO we substitute the lowest Niym93 phase shift of our earlier fit with the
physical scattering length:

e a=-23.7fm;

o 50011(40.5 MeV') = 64.5°;
o 010+11(237.4MeV) = 21.7°;
o 510+11(340.4 MeV') = 0°.
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As before we vary A from 600 MeV to 2GeV, but the convergence of the phase shifts is
so quick that the cutoff bands cannot be resolved in our plot. The improved description
of the very-low-energy region at LO compared to that seen in Figure 3.4, which is entirely
due to the resummation of the finite scattering length, is evident. Besides, the alternative
LO+NLO phase shifts virtually lie on the the Nim93 curve, so that this fit is even more
phenomenologically successful than the original LO4+NLO of Figure 3.6; still, the difference
between both fits is modest, which attests to the fine-tuning of the 1Sy channel, i.e. to the
relatively low importance of 1/a effects. Finally, the smallness of the improvement shown
by the alternative up-to-NLO curve over the alternative LLO one is consequence of having
resummed higher-order contributions into LO.

The 1Sy phase shifts resulting from the PC proposed by Long and Yang for the singlet
waves [61] have also been included, at both LO and NLO, in Figure 3.7. As mentioned before,
the LO of such an arrangement —which, just like the LO of Weinberg’s PC, consists of OPE
supplemented by a short-range, momentum-independent term obtained through inputting
the physical scattering length-— manifestly fails in qualitatively reproducing the Nijm93
phase shift already at laboratory energies Ti.;, 2 20MeV, i.e. center-of-mass momenta k 2
100 MeV; in particular, the LO phase shift does not cross zero at any finite energy (when A 2
M,,; [57]). In contrast, it can be seen that, once the NLO interaction prescribed by Ref. [61] —
the NLO correction to the LO counterterm, plus a two-derivative contact term determined by
the empirical effective range— is added at first order in distorted-wave perturbation theory,
the resulting phase shift turns out vanish at Ti., ~ 150 MeV, i.e. k ~250MeV or about 25%
below its physical location kg. Comparing the phase shifts at LO and NLO of Ref. [61] with
the ones resulting from our new proposal, we confirm that, at the price of the inclusion of
ko as LO input and the promotion of ro(F) as (N)LO input, the convergence of the new
results is greatly improved.

Given the importance of OPE, one expects potentially large changes in the position of
the poles of 71 in yEFT with respect to the #EFT result (3.35). Yet, the virtual state near
threshold (at k ~i/a) is guaranteed by construction, as long as

My
e

1

TR = 7R

(3.65)

for sufficiently small k. Using the technique described in Ref. [133], one may obtain numeri-
cally the positions of the other two poles. The redundant pole seems to get deeper and deeper

when the cutoff A is increased. This is consistent with the point of view that the redundant
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pole accounts in #EFT for the neglected left-hand cut due to OPE. In contrast, the binding
energy of the deep bound state oscillates with A, but we always find it to be 2 200 MeV,
which corresponds to a binding momentum > 450 MeV. This is, again, an estimate for the
breakdown scale M.

The LO+NLO result shown in Figure 3.7 is so good that one might worry that higher
orders could destroy agreement with the empirical phase shifts and undermine the consistency
of our expansion. At N2LO and N3LO there are several contributions to account for: TPE
and the associated N2LO counterterms [39, 41] in first-order distorted-wave perturbation
theory, as well as NLO interactions in second- and third-order distorted-wave perturbation
theory. At these higher orders it might be convenient to use the perturbation techniques of
Ref. [152] or to devise further resummation of NLO interactions.

We have tentatively investigated the effects of higher-order corrections by means of an
incomplete N2LO calculation where the long-range component of leading TPE has been in-
cluded in first-order distorted-wave perturbation theory, following the analogous calculation
in Ref. [61]. Since the short-range component of this potential can be absorbed in Eq.
(3.56), there are no new short-range parameters and we impose the same four renormaliza-
tion conditions as in NLO. We have repeated the extraction of the phase shifts and found
a negligible effect on the final result, so that this incomplete N2LO phase shift is at least
as good as the one plotted in Figure 3.7. This might be sign that the effects of leading
TPE in the 1Sy channel can be compensated by a change in the strengths of our up-to-NLO
short-range interactions. Of course, this is not a full calculation of the amplitude at N2LO,
but since the change from LO to LO4+NLO is small, we might expect the iteration of NLO
interactions to also produce small effects. We intend to pursue full higher-order calculations

in the future.

3.4 Outlook

Despite its simplicity from the computational perspective, the NN 1S, channel has proven
remarkably resistant to a systematic expansion. In this chapter we have developed a rear-
rangement of yEFT applied to this wave on the basis of the assumption that the sizes of

the ERE parameters and the position of the amplitude zero are fixed by a single low-energy

98



CHAPTER 3. NN S-WAVE SINGLET CHANNEL 3.4. OUTLOOK

scale M, ~ 100 MeV. By means of two dibaryon fields, we were able to reproduce very well,
already at NLO, the phenomenological phase shifts from threshold to beyond the amplitude
zero at kg ~ 340 MeV. The existence of a spurious deep bound state at LO indicates that
the expansion in powers of M,/ My; breaks down at a scale My; ~ 500 MeV.

The new power counting is particularly transparent when pions are decoupled by an
artificial decrease of their interaction strength, in which case a version of contact EFT is
produced. Even in this case LO and NLO fits to empirical phase shifts look reasonable,
although the lack of pion exchange is noticeable in the form of the energy dependence.

The apparent convergence of our LO and NLO results towards the empirical phase shifts
suggests that our PC might be the basis for a new chiral expansion in this channel. Our new
expansion relies only on the identification of the NN amplitude zero as a low-energy scale,
and on the expectation that the EFT should provide a qualitatively correct description
of low-energy observables already at LO. There are other NN channels, such as 3S; and
3Py, whose phase shifts cross zero at some point; however, the fact that both 3S; and 3R,
channels are well described already at LO in a PC consistent with RG invariance [47, 57—
60, 62] suggests that the exact location of these zeros, unlike the one in 1S5y, can be reached
by small, perturbative corrections.

Before a definite claim of convergence can be made, however, one or two higher orders
should be calculated, where additional long-range interactions appear in the form of multi-
pion exchange. Indications already exist [57, 61, 137] that TPE and its counterterms, which
enter first at N2LO, are amenable to perturbation theory in this channel. However, it is
yet to be checked whether their contributions are small enough not to destroy the excel-
lent agreement obtained at NLO. Doing so would require to add terms resulting from the
treatment of the NLO interaction beyond first order in distorted-wave perturbation theory,
but an incomplete N2LO calculation without those terms suggests that higher orders might
provide only very small corrections. We intend to consider also isospin-breaking corrections
in the future, along the line of what was done in Ref. [144] for Pionless EFT with unitarity
at LO.

If this approach succeeds, then it raises new questions. For instance, can one find an
equivalent momentum-dependent approach, which would be better suited to three-body
calculations and beyond? If the answer is positive, then the idea of imposing the 1Sy zero
at LO should be tested —together with consistent interactions present in other channels—

in future calculations of, e.g., few-body reactions or nuclear structure. Another important
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element that would demand an answer is the role of the quark masses in the PC we propose
here. We have worked at physical pion mass, but it remains to be seen how this new proposal
can be implemented for arbitrary m, in a renormalization-consistent manner. We intend to

address these issues in future work.
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Chapter 4

D?,(2317)D and D7, (2460)D* molecules

4.1 Introduction

Already four decades ago, the existence of hadronic molecules was hypothesized [153, 154]
on the basis of a simple idea: the exchange of light mesons between two heavy hadrons
induces a potential that could bind them. The experimental discovery of the X (3872) by
the Belle group [155] provided a strong candidate for a narrow molecular state near the DO D*0
threshold. Other molecular candidates have been discovered afterwards, among them the
Z.’s [156, 157] (which are conjectured to be DD* and D*D* molecules [158, 159]), the Z,’s
(160, 161] (BB* and B*B* molecules [162, 163]), and the P.(4450) pentaquark-like state
[164] (a X D* [165] or X.D* molecule [166-169], in the later case probably with a sizable
A.(2590)D component [170, 171]).

Making concrete predictions about hadronic molecules is a challenging task, though,
given that they frequently emerge from the singular component of the hadron interaction. In
particular, the OPE potential —the longest-range piece of the potential between two hadrons,
provided that they contain at least one light quark— includes a tensor piece proportional to
the inverse cube of the small distance (see Appendix B for an illustration corresponding to
the two-nucleon case). Such force, if attractive, gives rise to an ill-defined solution [47, 48].
This is cured by means of some regularization procedure, typically an ultraviolet cutoff A,
that renders physical predictions possible. The variation of A between the EFT breakdown
scale My; and infinity provides an estimate of the systematic error of the theory at a given
order.

However, the richness of the hadron spectrum allows for interactions arising from the
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exchange of a pseudo-Goldstone boson that do not involve the tensor force. In particular,
hadrons with opposite parities are able to exchange an S-wave pion or kaon. Provided that
the hadrons have different masses, the range of the interaction might be unexpectedly large.

Two examples of this have been recently given:

e In the A.(2590)D — ¥, D* transition, an attractive 1/r2 force might take place [171].
This is a singular interaction, which makes mandatory the use of counterterms. If the
attraction is strong enough, it will induce discrete scale invariance, hence the emergence
of the so-called Efimov spectrum —a geometrical series of bound states analogous to

the one predicted for the three-boson system in the two-body unitarity limit almost
five decades ago [172].

e In the A.(2590)X. and A.(2590)%. systems, an attractive 1/r interaction could appear
[173]. As this is a regular potential, now the problem is well-defined in the absence
of counterterms and results do not depend crucially on the cutoff. Still, one expects

short-range physics to have some impact.

A third example, which we deal with in this chapter based on Ref. [108], might be
provided by the DD?, and D*D}, systems, where D, = D} (2317) and D = D% (2460).
On the one hand, there are the S-wave, thus negative-parity D (JF =07) and D* (JF =17)
mesons; on the other hand, there are the P-wave, thus positive-parity D}, (JF = 0*) and
JP = D% (J¥ =1%) mesons. Such opposite parities allow for the exchange of an S-wave kaon
in the DD}, and D* D7 systems. As the mass differences Mpx —Mp and Mp+ —Mp- lie close
to the kaon mass (only 10% of relative difference), the resulting one-kaon-exchange (OKE)
interaction will have an unusually enlarged range. In addition, we will see that the D} DK
and D}, D* K vertices are proportional to the respective mass differences, thus giving rise to
an exceptionally strong Yukawa potential.

The quark content of the DD, and D* D7 molecules proposed here is cges with ¢ = 4, d.
(Note that the exchange of a kaon between a D (D*) with ¢ = § and a D, (D) would violate
strangeness conservation.) As argued by Manohar and Wise [174], such a configuration is
much more likely to form narrow molecules than compact tetraquarks. LQCD [175, 176] and
quark-model calculations [177-179] seem to indicate that compact QGG objects only exist
in the bottom sector, but not in the charm one (with the possible exception of a ciicd state
with I(JP) = 0(1*)). Consequently, finding a negative-parity cgcs object would point to a

molecule.
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This chapter is structured as follows. In Section 4.2 the OKE potential in the DD?, and
D~ D% systems will be derived. In Section 4.3 it will be shown that such a potential is very
likely to keep both systems bound in two shallow molecular states; an EFT analysis of the

results is included. Finally, conclusions are presented in Section 4.4.

4.2 OKE potential

As shown in Eq. (1.131), the pseudoscalar and vector mesons are written in SU(3) flavor
space respectively as D% and D**, whose quark content is cg* (¢! = @, ¢ = d, ¢® = 5); they
can be arranged as the single heavy-quark-symmetric superfield
1+ *a "
o= 20 (- peay) (1)

(see Eq. (1.150)). Similarly, the scalar and pseudovector mesons are written as D§ and DY,
so that D3 = D}, and D? = D?}; they can be combined into the superfield

5= 18 (s - ). (1.2)

While the D, and D}, have small widths and are consequently good candidates for being
part of molecules, the D and D¢ (a = 1,2) are wide (I' ~ 200 MeV) and thus unlikely to
form bound states (except with kaons [180]).
Recall the definition of the axial-vector current (1.155),
O g
Al = - 7 (4.3)

where II is the meson-octet matrix (1.15), higher pseudo-Goldstone-boson insertions were

omitted, and the pion decay constant was normalized to f, ~ 130 MeV . Then, the LO

heavy-meson chiral Lagrangian between the S- and P-wave heavy mesons is

h _
L= o) Tr (HoSpAayys) + Hee. (4.4)
(see Section 1.4.3 and Ref. [103]). At LO in HQEFT, the four-velocity is v* = (1,0); hence,
for what concerns the coupling between a non-strange D (D*) meson and a strange Dy (D)

meson, the Lagrangian above collapses to

h
L= T (DY0K D}y + D1 9yK D) + H.c. (4.5)

T

1One could have used the kaon decay constant fx instead, which is ~ 20% larger than f,. However, both

constants differ only at NLO in the chiral expansion.
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The coupling constant A may be inferred from the width of the pionic decay Dy - D,

317 |p«| Mp

3
['(Dy - D) =T'(Dy - Dr°)+T'(Dy - D7*) = §F(D0 - Dr*) = 272 27 M,

(Mp,—Mp)?,
(4.6)
where isospin-symmetry breaking was neglected, and |p,| = [(Mp, — Mp)? — m2]'/? is the
magnitude of the pion three-momentum. An analogous formula may be given for the decay
Dy —» D*x. If the widths of the Dy and D, are saturated by such decays, it turns out that h
lies somewhere in between 0.5 and 0.9, where the large spread stems from the experimental
uncertainties in the masses and widths of the P-wave heavy mesons, and also because the
result changes according to the particular decay one considers (see e.g. Ref. [104]). There
are also determinations of i from QCD sum rules [181, 182] and LQCD calculations [183]
within the above range; the same is true if h is found from the assumption that the D?, and
Dz, are molecular [184, 185]. We will give more confidence to the central values within such
an interval by using h =0.7 £ 0.1 in this chapter.
The D} D potential is given by the amplitude of the corresponding OKE diagrams at
tree level. In the {|DD?%,), |D%,D)} basis, it reads

(4.7)

1 UDp-DK VD* K-D*, VUD-D! K VD! K—-D
Vp:p(q) = - ;

f 2
9”49 — Mk \Vp*,~DK VDK->D*, UD* ~D* K UDK—D

where ¢tq, = ¢2 — q? is the squared four-momentum carried by the off-shell kaon, with
q5 ~ (Mps, — Mp)? (as the external three-momenta are much smaller than the masses of the
heavy mesons), and mg ~ 495MeV is the kaon mass. But the only non-vanishing vertices

emerging from the coupling (4.5) are

. . . h o, h
vpapi = IDILIDLK) =i 4 (igo) = =5 (Mp - Moy,
= ~Up*K-D = ~UD* —~DK = VDK-D;> (4-8)

so that

(4.9)

h? (Mp—-Mp:)? [0 1
Vp:.o(q) =-— = :

E Mgg)z + q? 10
where ug) = [m? - (]\/[D;O — Mp)?]'? ~ 206 MeV represents only ~ 40% of mx. The potential
above is not diagonal, but it may be easily diagonalized by taking the (normalized) linear

combination of states
2 (IDD3) +|D3D)). (4.10)
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The resulting interaction reads in coordinate space

h? (Mps - Mp)?* e i

. = 4.11
pz,(r) = . fﬁ ” ( )
Everything works out analogously for the D¥ D* system —for the combination
11D D3y} + D D)), (4.12)
the potential
B2 (MD*—MD*I)2 01
VD:ID* (q) = _F (1)2 23 (413)
T ,UK +q 1 0

with ,ug(l) = [m% - (Mp+ — Mp«)?]'/? ~ 206 MeV, is diagonal and reads in coordinate space

h2 (Mp: - Mp-)* e “ngr
VD* D* (T) = —E f2 - .

s

(4.14)

One sees that the interactions (4.11) and (4 14) are indeed attractive, unexpectedly long-
ranged due to the effective kaon masses ,u ) and ,u , and enhanced by the squared mass
differences (Mp: - Mp)? and (Mp: — Mp+)*. As a matter of fact, given that both mass

differences seem to be very close to each other,
MD;’O_MD:MD;_MD* z450MeVEwK, (415)

numerically both potentials almost coincide, and we will generically denote them as
h? w? e hK’
V(r;R,) = —— &

where pg = (m?2 —w?2 )12, and a step-function regulator has been included to investigate the
H K~ %K &

Q(T_Rc)a (416)

dependence of the results on the cutoff R,.

The potential (4.16) is long-ranged, but what about the short-ranged component of the
DDy, and D*D}, interaction? As a first approach, here we will follow the most economic
assumption regarding it, namely that its effect may be neglected. Other possibilities will be

qualitatively discussed, too.

4.3 Results

As in Chapter 2, we solve the reduced Schrodinger equation,

€(€T+ 1))]U(T;RC;,€) -0, (4.17)

82
[m-i-l{g (QMHV(T R, )
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where the reduced mass pg is MDMD:O/(MD + MD;O) ~ 1.04GeV for the DD?, case and
MD*MD;/(MD* + MD;) ~ 1.11GeV for the D* D case, { is the orbital angular momentum,
and u is the reduced wavefunction. Yet here, contrary to Chapter 2, we are not studying
the scattering problem, but looking for the bound states of the system; hence, the squared
scattering momentum is written as k2 = —x2, k2 > 0 being the squared binding momentum.
We obtain this with the condition on the bound-state reduced wavefunction evaluated at the

infrared cutoff R, = 10fm > 1/,
up(Re; Re; k) =0, (4.18)

where upg is found through numerical integration of the reduced Schrodinger equation with
regular boundary conditions near the origin,

0? 9 0

[_ﬁ + R+ 2ugV(r; RC)] up(r;Re; k) =0, up(Re; Re; k) = R, EUB(T; R k) o =1.

(4.19)
Here we restricted ourselves to the S wave, as the potential (4.16) is not so strong to overcome
the centrifugal barrier and bind the system for non-vanishing orbital angular momentum.
The dependence of the resulting binding energy B = k?/(2py) on the ultraviolet cutoff R, is
depicted in Figure 4.1. The plot corresponding to the D* D, system is not given here, as it
is identical except that the binding energies are slightly higher due to the increased reduced
mass of the D*D}, system.

From the figure one confirms that B is well-defined when the cutoff is removed (R, - 0),
as it corresponds to a regular interaction like the Yukawa one; not surprisingly, it is in
such limit that B reaches its maximum value at a given h. One can check numerically that,
when the dimensionless parameter pyw? h?/(2muk f2) takes a few discrete values (1.68, 6.45,
14.34, ...), a bound state at threshold (B =0) emerges in the R, — 0 limit; in other words,
the first, second, third, ... bound states appear in the DD}, (D*D%) system for |h| > 0.42
(> 0.41), |h| > 0.82 (> 0.79), |h| > 1.22 (> 1.18), ... Given the range of possible values of h,
we conclude that there is probably at least one bound state —the second one is much more
unlikely but still possible, and the third one and beyond can be discarded, at least provided
that the short-range component of this system is neglected in first approximation.

If one fixes h = 0.7*01 as in the figure and removes the cutoff, a DD}, (D* D7) bound

state with binding binding momentum
k(R.—0) =290"150 MeV (3307153 MeV) (4.20)
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Figure 4.1: Binding energy of the DD}, bound state versus the cutoff R, using a sharp cutoff
regulator in coordinate space. The error band corresponds to the uncertainty in the coupling

h=0.7+0.1.

appears. It is found that the OKE potential binds for R, < 1.3*03 fm (1.473-3 fm), from where
the prediction of a bound state is deduced to be robust.

Recalling that D and D}, have J = 0 while D* and D}, have J = 1, the S-wave heavy-
meson bound states predicted here have spins S =0 and S = 0, 2, respectively. For the latter
case, a bound state with S =1 is not possible, as it would require to replace the symmetric
spin wavefunction (4.12) by the antisymmetric one

55 (D" D) - |D; D)), (4.21)
which diagonalizes the potential (4.13) to yield an interaction that, unlike (4.14), is repulsive
and cannot bind the system.

The calculations above correspond to the LO of an EFT whose degrees of freedom are the

heavy mesons and the pseudo-Golstone bosons. In this EFT, the effective kaon mass and the
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heavy-meson external momenta represent soft scales (ux ~ @Q ~ M), while the breakdown is
set by the QCD scale (My; ~ Mqep). In analogy with the OPE potential in the NN sector
(see Egs. (1.68) and (1.69)), we write the OKE potential in momentum space in the form

2m 13
V q = - 5 422
(@) palNan (13 + q? (4.22)
where o £2,,2
Apr = hfi% ~ 5049 MeV ~ M, (4.23)
K

is the natural momentum scale of OKE in the DDy, and D* D}, systems. We conclude that
the OKE potential is enhanced at low energies,

2

(4.24)

As usual, a crude estimate of the EFT expansion parameter M,,/My; may be provided
by the residual cutoff dependence of its LLO predictions. One may take

Mlo)
My )

k (R~ 1/ My) ~ % (R. > 0) (1 - (4.25)

Then, combining the results for the DD?, (D*D% ) binding momentum at R. = (1GeV)~! =
0.2 fm,
k (R, =0.2fm) = 21079 MeV (2307100 MeV) (4.26)

with the ones of Eq. (4.20), we get

(4.27)

which is consistent with expectations.

The EFT potential also encodes contact pieces from four-meson vertices. According to
heavy-quark spin symmetry, the dominant contribution from contact interactions is given by
(see Refs. [186, 187] for a detailed explanation)

V(Ct) (Q) _ Cféa)7 V(ct) 1((]) _ O(ga) + Sl ) 52 Céb), (428)

DD, D*D?
S S

where the low-energy couplings C’éa) and C’éb), which are to be determined from available
data, can display two types of scaling —natural and unnatural [188]. While the unnatural
scaling requires fine tuning and is thus less probable, for the natural case we have [189]

2

Céa) ~ Co(b) ~—
M

(4.29)
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suppressed by O(M,/My;) with respect to Eq. (4.24). That is, in this PC Yukawa is LO
and contact terms enter only at NLO. This possibility has been discussed in the literature
[56, 189, 190], but there are very few physical realizations of it in hadron physics. From such
a scheme we can deduce that at LO the S = 0,2 D*D}, states are degenerate, while at NLO
the contact potential breaks the degeneracy, and there is a small energy splitting among the
different spin states of the D*D?, system.

Still, the possibility that the short-range couplings displayed unnaturally enhanced scaling
cannot be discarded a priori. If that is the case, then one should probably keep a soft cutoff
(R. ~ 1/M,,) in the scheme followed above to get a realistic estimate of the binding energy,
but an EFT-consistent prediction would be precluded. However, even in that scenario the
bound states will very probably exist. The Yukawa-plus-contact potential may be regularized
via a delta-shell function,

f}(T; R.) =V(r;R.) + Co(R,.) o(r - Re)

—— 4.

Cy being the coupling corresponding to the channel under consideration. In the worst case
scenario, that of a repulsive contact (Cy > 0), the system will bind provided that R, < R} with
R} > 1fm. But since this cutoff is very soft (R > 1/My;), one can be relatively confident
about the binding. As a matter of fact, the light-quark content of these systems —either us
or d5— makes unlikely that there is short-range repulsion. If anything, the molecules could
be more tightly bound than predicted in the first part of this section.

When going to subleading orders of the EFT, one needs to consider heavy-quark sym-
metry breaking corrections to the LO Lagrangian (4.4). Those are expected to provide an
expansion in powers of Aqep/M., with Aqep ~ 300 MeV the non-perturbative QCD scale

and M, ~ 1.5GeV the ¢ quark mass. We can identify two main consequences of this:

e Probably the dominant effect is that the coupling A can differ by ~ 10% between DD,

and D*D,, but this is likely to be inconsequential given the large uncertainty in h.

e Another effect is the mixing of the D; and D} mesons. In the heavy-quark limit, the
spin of the ¢ quark decouples from the other quantum numbers. Hence, the P-wave
heavy mesons D; and D] have definite light-quark angular momentum, J;, = 1/2 and

Jr, = 3/2 respectively. We write
D, =D D =DBP for M, - oo. (4.31)
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However, beyond the heavy-quark limit, the D; and D] contain a certain admixture
of the D;lm and D§3/2) states,

D, = D§1/2) cos ) + D§3/2) sinf, Dj= —D§1/2> sinf + D%B/z) cosf for M, finite, (4.32)

where the mixing angle # is expected to be small if M, is large. In the non-strange
sector, the Belle group obtained from B — D*nr decays that 6 = (5.5737)° [191], while
from the widths of the D; and D} mesons it was found that 6 = (12.1%¢:%)° [192]. For
the strange case there is no experimental information to constrain the angle, but Ref.
[192] estimates it to be 65 ~ 7° from a quark-model calculation. This mixing induces a

relative reduction of the strength of the OKE potential,
V -V cos? b,. (4.33)
As cos? 0, ~ 0.985, the former implies a negligible 1.5% weakening of the potential.

Due to their double-charm content, probably the most effective way to produce the DD},
and D*D}, molecules in experiments involves heavy-ion collisions. The production yields
for the theoretical T,. tetraquarks (cgcq) and other exotic hadrons have been estimated for
electron-positron collisions [193] and heavy-ion collisions [194], and they may be reachable by
the LHC in the future (notice that double-charm baryon production has been very recently
achieved by the LHCb [195]). However, we recall that the production of double charm
molecules is probably different from the estimates above, which refer to the much more
compact T,. tetraquarks.

The ideas of this chapter may also apply to the bottom sector, where the By = B (5730)
and By = B41(5776) bottom-strange mesons have been theorized to have a significant molec-
ular component and similar binding energy as the D%, and D?, mesons [196-198]; they also
appear in LQCD calculations [199]. However, these are theoretical objects that have not
been experimentally detected yet. In the hypothetical BB,y and B* B,; molecules, the OKE
potential is analogous to the one obtained in the charm sector, but now the spectrum is
expected to be more tightly bound due to the heavier masses of the bottom mesons. The
comment included here regarding these molecules is much more superficial than the analysis
we developed in the charm sector. Suffice to say that for R. =0 we find a BB, bound state
at k = 2507129 MeV, where the prediction for B* By is almost identical as its reduced mass
virtually matches that of the BBy, system. For h = 0.8 an excited shallow S-wave state
will appear. In the P wave there is an additional bound state with x = 200*250 MeV, which

disappears for h = 0.6.

110



CHAPTER 4. D},(2317)D AND D}, (2460)D* MOLECULES 4.4. SUMMARY

4.4 Summary

As we have seen in this chapter, the DD, (D*D},) system exhibits the interesting peculiarity
that it can interact by means of an attractive, long-range Yukawa potential arising from the
exchange of one virtual kaon. This is so because of the opposite parities and different masses
of the D (D*) and D%, (D?) heavy mesons. It provides an opportunity to predict the
existence of bound states, as short-range physics will not necessarily play a fundamental
role, given the non-singular character of the Yukawa potential.

Two S-wave bound states with binding energies of ~ 50 MeV are found. They have
respectively S = 0 and S = 0,2, where the spectrum of the latter is spin-degenerate as
a consequence of heavy-quark symmetry. These predictions are likely to represent a LO
calculation within an EFT, from which we can also expect that subleading corrections will
break the spin degeneracy. Even if the arrangement proposed here turns out not to hold
and the short-range potential is non-perturbatively enhanced, we expect the bound states
to survive since the most probable scenario is more binding.

We expect the existence of a similar situation in the bottom sector, namely the emergence
of BBy, and B*B%, molecules. They will be more bound and might have a richer spectrum
than their charm counterparts and there is probably a shallow P-wave bound state and an
excited S-wave state. Unfortunately, however, the By, and Bs; heavy mesons have not been

observed yet in experiments.
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Chapter 5
Conclusions

The EFT philosophy offers an original and useful perspective in the theoretical comprehen-
sion of a number of very diverse physical problems. It is particularly an appropriate tool
to approach strong-interacting systems in the low-energy regime, and this is so for several
reasons. First, it establishes a manifest connection with the underlying theory by imposing
QCD symmetries on the effective Lagrangian written in terms of effective degrees of freedom.
Second, it exploits the separation of scales exhibited by nuclear and hadronic physics to en-
code power counting as a recipe that hierarchizes the importance of the infinite number of
interactions contained in the effective Lagrangian and allows for an order-by-order improv-
able description of observables. Third, it is articulated in the language of renormalization
that is widely used in quantum field theories and, most particularly, in QCD; it thus allows
to interpret nuclear and hadronic physics as the renormalization-group evolution of QCD at
long distances.

In the introduction to the present work, we reviewed some of the most prominent exam-
ples of EFTs that are extensively used in the modern study of few-body nuclear and hadronic
systems, namely chiral EFT, pionless EFT, and heavy-quark EFT. In Chapters 2 and 3, on
one hand, and Chapter 4, on the other hand, we have presented three detailed case studies
of nuclear and hadronic physics, respectively, where these EFTs are used as guidelines.

The paradigmatic example of a low-energy EFT of strong interactions is chiral pertur-
bation theory. It relies on the (approximate) chiral symmetry of QCD, which is used as
a fundamental constraint on the effective Lagrangian. By means of a power counting that
follows naive dimensional analysis (“naturalness”), chiral perturbation theory describes suc-

cesfully low-momentum processes (below the characteristic QCD scale ~ 1 GeV) that involve
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one or more pseudo-Goldstone bosons plus one nucleon at most. However, processes with
two and more nucleons are intrinsically non-perturbative, and thus cannot be captured by
chiral perturbation theory, nor by a power counting in full correspondence with naive dimen-
sional analysis. Indeed, already in the two-nucleon sector non-perturbative renormalization
results in the fact that the number of short-range interactions prescribed at a certain order
by the dimensional counting does not suffice in general to render the scattering amplitude
truly renormalized. Chiral (or “pionful”) EFT is the generalization of chiral perturbation
theory to such non-perturbative framework.

Chiral symmetry anticipates that the longest-range component of the nuclear force has
a range roughly given by the inverse pion mass (2 1fm). At distances sufficiently larger,
the only effective degrees of freedom are the nucleon themselves, so that all the interactions
among them are contact-type. This approach is known as contact (or “pionless”) EFT. Simi-
larly to the pionful case, the renormalization-invariance principle is used to derive the correct
power counting. In the two-body sector, where the theory is equivalent to the effective range
expansion of the scattering amplitude, the scaling of the couplings is again not consistent
with natural expectations, which is manifest in the existence of two shallow (respectively

real and virtual) bound states in the nucleon-nucleon S waves.

In Chapter 2, the power counting of two-nucleon peripheral singlet channels —those
waves with zero spin angular momentum and high orbital angular momentum— was studied
in the framework of chiral EFT. We explored perturbation theory up to fourth order, which
allowed us to find that the one-pion-exchange potential is suppressed in these channels by
the EFT expansion parameter raised to some power that grows with the orbital angular
momentum. Such a suppression is, again, in contradiction with dimensional expectations
and, as a matter of fact, in general turns out to be even much stronger than it is in the
Kaplan—Savage—Wise scheme, in which one-pion exchange enters at next-to-leading order.
This opens the door to improve the systematicity and consistency of few-body calculations,
as it provides a theoretically sound guideline to include only the necessary iterations of one-
pion exchange and omit those peripheral channels where the order of the tree-level potential
is higher than the one of the calculation itself.

The two-nucleon 1Sy channel —whose spin and orbital angular momenta are both zero—
was not considered in Chapter 2, since it presents several features that make it quite an
especial partial wave. Again in the framework of chiral EFT, Chapter 3 addressed some

of these features by means of a new arrangement of short-range interactions. This was
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done so in the spirit of reproducing already at leading order the qualitative behavior of the
scattering amplitude all over the momentum range where the EFT is expected to hold. Since
the Weinberg proposal fails to reproduce the low-energy zero exhibited by the partial-wave-
analysis 1Sy amplitude (center-of-mass scattering momentum =~ 340 MeV), we proposed a
different scheme where such zero is non-perturbatively enforced and subleading corrections
are perturbatively included. Systematic improvement was shown at next-to-leading order,
and we obtained results that fit phenomenological phase shifts remarkably well all the way
up to the pion production threshold. We included as well a new version of contact EFT
in which one-pion exchange was artificially decoupled (even though the momentum location
of the zero lies beyond the inverse range of this interaction), which allowed us to derive
analytic results that also fit phenomenology surprisingly well. From these phenomenological
successes, we believe that the decision of imposing the 1Sy zero at leading order in broader
EFT-consistent calculations is worthwhile, as it may improve the description of observables

in the few-body sector (light nuclei, electroweak reactions. .. ).

Away from the nucleon sector, heavy hadrons are interesting objects by themselves, as
they represent bound states of heavy and light particles. In particular, heavy mesons are
composed of a heavy quark (b or ¢) plus a light antiquark (u, d or 5). If one pushes the mass
of the heavy quark to infinity, then the light quark will become completely insensitive to
the flavor and spin of the former (heavy-quark symmetry). This scenario corresponds to the
leading order of heavy-quark EFT; effects that break heavy-quark symmetry in the physical
world are to be taken as corrections suppressed by powers of the heavy-quark mass. Also
in this framework one may take advantage of chiral symmetry to construct another version
of chiral EFT where pseudo-Goldstone bosons are kept as explicit degrees of freedom, but

nucleons are replaced by heavy mesons.

Such an approach was used in Chapter 4. In particular, we considered the D and D*
charmed mesons, on the one hand, and the D%,(2317) and D}, (2460) charm-strange mesons,
on the other hand. The opposite intrinsic parity of the D (D*) and the D, (D) mesons
allows them to exchange an S-wave kaon, which induces a Yukawa-type potential between
heavy mesons whose range is unexpectedly long (due to the closeness of their mass difference
to the kaon mass) and whose strength is unusually high (as it is proportional to the square
of such mass difference). This almost guarantees the existence of D%, D and D? D* bound
states with J* =0~ and J¥ = 07,2~ respectively, since calculations indicate binding energies

of around 50 MeV. Such results were identified with the leading-order predictions of an
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EFT whose explicit degrees of freedom are the D heavy mesons and the kaons, where the
Yukawa interaction is non-perturbative while heavy-quark-symmetry-breaking contact terms
are accounted for as perturbative corrections. We expect as well the existence of the bottom
counterparts of the above bound states, BBy, and B*BZ, which would be more tightly
bound and exhibit a richer spectrum that might include a shallow P-wave state and an
excited S-wave state.

We note that the three works presented respectively in Chapters 2, 3, and 4 use various
theoretical techniques. For example, while Chapter 2 makes use of fully perturbative tools,
Chapters 3 and 4 treat non-perturbatively their respective leading orders; while Chapters 2
and 3 study scattering problems, Chapter 4 is focused on bound states; while Chapters 2 and
4 deal with purely regular interactions, Chapter 3 includes singular terms in the potential.
Still, the content of the three chapters is inspired by low-energy EFTs of strong interactions
—chiral EFT in Chapters 2 and 3; pionless EFT in Chapter 3; heavy-quark (chiral) EFT
in Chapter 4. This gives an idea about the versatility and richness of the EFT approach
applied to nuclear and hadronic systems. We hope that the proposals we have provided in
Chapters 2 and 3 will find applications beyond the two-nucleon sector, as well as that the
predictions of new meson-molecular bound states that we have made in Chapter 4 will be

experimentally accessed in the future.
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Appendix A
Spontaneous symmetry breakdown

In this appendix we will shortly review how SSB works out by studying a few illustrative

examples. First, take a relativistic scalar field theory described by the action
S[o]= [ dte (30"60,0 - tm*¢* - 36" - fm?), (A1)

where ¢ = ¢! is a single field of mass m, A > 0 is a (dimensionless) coupling parameter, and
the ¢-independent term —-3m*/(2)) is an irrelevant “cosmological constant”. This theory
remains invariant under the discrete mapping ¢ — —¢.

If the sign of the mass term is flipped (m? - -m?), Eq. (Al) becomes

S[o]= [ dt (306,60 - V(@) (A2)

with the interaction term

V() =2 (6-0.)2(9-0-)%, 6u=4/%m, (A3)

from where V'(¢) = 0 for ¢ = {0,¢.}. Besides, V"(0) = -m? < 0 and V"(¢.) = 2m? > 0,
showing that the theory exhibits an unstable equilibrium at ¢ = 0 and two degenerate stable
equilibria —two different VEVs 1— at ¢ = ¢,.

1Since ¢ = ¢, are solutions of the equation of motion, classically one expects the field to occupy this value
over all space. Seeing the classical theory as the A — 0 limit of the quantum theory, we find the average
value of the field in the ground state |1, ),

(9) = (Walofie) = lm [ Do = g,

This allows to identify the classical result with a quantum VEV evaluated at tree level.
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Let us reshift the field ¢ via the introduction of, say, ¢ = ¢ — ¢, which has vanishing
VEV. It turns out

3= [ dta [ (0190,6 - id?) - [ - 30t ]. = am, (Ad)

whose mass term has the proper sign. However, due to the term proportional to &3, the
action is not invariant anymore under the reflection ¢ — —¢ —the symmetry is now hidden.
By definition, such a symmetry takes both VEVs as strictly equivalent; however, the sys-
tem “spontaneously” chooses one of them and thus enforces an asymmetric outcome. The
symmetry exhibited by the action has been spontaneously broken by the ground state of the
theory.

The mechanisms behind SSB are a bit more involved for continuous symmetries. To show

this, consider instead the scalar field theory given by the generic action

- [t [30°60,6-V(9)], 6= {61, .0n), (A5)

which remains invariant under the continuous mapping

Gi = i + 00,  0¢; =ieTi;d;, (A6)

where € = {€,...,€6,} is an array of small space-time-independent parameters and T =
{Ti,..., T} is a set of N x N matrices in flavor space, called generators of the symme-

try. Then, the Noether theorem predicts the emergence of n conserved currents (d,J* = 0)

given by or
Jh=— i, A=1,...,n. A7
A a(au¢z)(7j4) ]¢] n ( )
In particular, one has the conserved-charge operators (Q =0),
3,. 70 : 3 oL
QA=/d $JA=—Zfd xﬂ-i(n)ij¢j> 71'1‘:%, (A8)
verifying

in virtue of the canonical commutation relations between the ¢’s and the n’s. Such a result
motivates the introduction of a unitary object U =1 +ie4Q) 4 that allows us to rewrite Eq.

(A6) as a standard unitary transformation on ¢,
b UU. (A10)
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Now, if we assume further that the interaction term V(¢) in Eq. (A5) is (together with
the kinetic term) invariant under Eq. (A6),

V(6 +09) =V(9) +0iV(9)d; + O(*) =V(¢) = 9V(¢)Tij0; =0, (A11)

where 0; represents the derivative operator along the ¢; direction. Call ¢y to the classical

solution of the equations of motion, which must verify

V()50
00V, >

0, (A12)
0 (A13)
Then, if one derives Eq. (A11l) with respect to ¢, and evaluates at ¢ = ¢g, it turns out in
virtue of Eq. (A12)

8kaiV(¢)|¢:¢o 723' (¢O)j = 0 (A14)

But the potential may be represented as a series expansion in powers of é = ¢ — o,

V() = V(o) + 5 003V (D) gy, i + - - (A15)

where the ¢-independent term is a cosmological constant, and Eq. (A12) was used again
to kill the linear term. The bilinear term is in turn identified with the mass term of the
qg—theory,

M?j = aiajv(¢)|¢:¢0 ) (A16)

and Eq. (A13) guarantees that M? —the mass-squared matrix in flavor space— is positive-

definite. This allows us to rewrite Eq. (A14) as the matrix equation
M?T ¢ = 0. (A17)

At this point, one must consider two possible, opposite scenarios: either T4¢y = 0 for any A
(so that Eq. (A17) is trivially fulfilled), or there is some A such that Ta¢q # 0.

e The first possibility is called the Wigner—Weyl realization of the symmetry; according
to Eq. (A6), it implies the invariance of ¢y under the symmetry (UpoU™t = ¢y).
Actually, if |¢0) is the ground state of the theory ({1o|@|wo) = ¢o), then it follows that
U |tho) = [tho), thus

Qaltho) =0, (A18)
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i.e. the n conserved charges annihilate the (unique) vacuum. Let us prove further
that the Weyl-Wigner realization implies the emergence of degenerate states in the
energy spectrum. Take the operators ¢; and ¢9 = —iT7;¢;; these, according to Eq. (A9),
verify [Q, ¢1] = —¢s, or equivalently [Q, ¢!] = ¢}, for some conserved charge Q fulfilling
[Q,H] = 0. Assume that both operators ﬂ,qﬁ; act on the ground state as creation
operators of two states [1)1), [t)2) with definite energies Ey, Fs,

OF o) = [i), Hi)=E; ), i=1,2. (A19)

Then, it will follow from Eq. (A18)

Eslba) = H ) = Hol [tho) = H (Qo - 61Q) o) = HQ! [tho)
=QH [th1) = ElebI o) = Ey (¢1Q + ¢£) o) = E1¢$ o) = B [1)2), (A20)

thus E; = E5 —the states [¢01),|1s) are degenerate in energy.

The second possibility is known as the Nambu-Goldstone realization of the symmetry.
Now Eq. (A18) does not apply anymore for a given A, i.e. the vacuum is not left
invariant by the symmetry. Let Ey = (10| H|t)g) be the minimum energy the system can
occupy. It is easy to see that a rotation of our original ground state, 1)) = U |1) # [¢b0),

is actually another ground state

H[hg) = H(1 +ieQ) [tho) = (1 +i€Q) H [tho) = Eo(1 +1i€Q) [10) = Ep [1p) - (A21)

That is to say, this scenario produces an infinite set of degenerate vacua. Again, the
system needs to “spontaneously” choose one particular ground state, but now (contrary
to the discrete case) the vacuum will smoothly interpolate between neighbor space-
time regions due to low-energy excitations. And, precisely because of the ground-state
degeneracy, such excitations must follow a massless dispersion relation. The presence of
these massless objects is actually reflected by Eq. (A17), as the vector (74)i;j(¢0); # 0
turned out to be an eigenstate of the M? operator with zero eigenvalue. Indeed, as the
Goldstone theorem stablishes, each A verifying the previous inequality (in other words,
each broken generator) corresponds to a massless field ¢;(74):;(¢o);, called Goldstone
boson, whose quantum numbers can be shown [200] to be the same as those of the
broken generators. In particular, provided that the generators are space-time scalars

(as it is the case in most situations of interest), the Goldstone fields need to be spinless.
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The OPE potential in the NN 35-3D;

channel

In the main text, we did not consider the possibility of transitions from the S wave to
higher waves when deriving the OPE potential (1.62). This can always be safely done in the
spin-singlet (1Sy) channel. However, for the sake of completeness, here we will extend our
derivation to more general transitions —those that are present in the spin-triplet (35;-3D;)
channel.

Let £ = 0,2 and S = 1 be the orbital and spin angular momentum numbers, and let
me={-C,—0+1,...,+0-1,+(} and mg = {-1,0,+1} be their respective projections along the
z-axis. We will compute the matrix element of the tensor operator S5 between the initial
state |(,my; S,mg) = |¢,me;m) and the final state |¢,m},; S’,m%,) = [¢',m};m'). With that
purpose, rewrite Eq. (1.59) as

S1o=6[187 +383+2(8:-7) (S, 7)] - 2857, (B1)

where we recalled that S; = o;/2 for the spin operator of the nucleon j in terms of its

corresponding Pauli vector, and S = S; + .55 is the total spin operator. But

(B2)

where we used that o¥o! +olo¥ = 20% and 8% = S; (S; + 1) = 3/4. Hence, Eq. (B1) becomes
S12=6[(S1-#) + (S 7)? +2(8,-7) (Sy-#)] -28%=6(S -#)* - 28% (B3)
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Here S is the vector of 3 x 3 spin matrices corresponding to a particle with S =1

1 i
0 N 0 0 -7 0 10 0
1 1 1 2 _| i i 3_
S‘EOE’ S“ﬁo_ﬁ’ S*=10 0 0|, (B4)
1 i
0 % 0 0 % 0 0 0 -1
from where one may find
2 (0)* (+1)>(- (+2)>(-

+ —

f—” o f " Q )
8 * in * in .
45

where Y™ (#) = (#]¢,my) is a spherical harmonic. Now,
(0 mb;m/!|Shall, me;m) = 6 (€', mby;m!| (S - 7)€, mg; m) - 460,0/0mymt, O (B6)
where S2 |0, my; S, mg) = S(S +1)|¢,mg; S, mg) was recalled. But
(O '\ (S -7)? [esmem) = [ @ [ & Y Y ) 7 (S ) )
= [ @YY 7 (S -7 s )
= [ @Y (2 + e IS ]
5€€’§mzm 5mm’+cm m[d2 ygr e’) yg(mZ)yQ(m —m)*’ <B7)
thus Eq. (B6) becomes
w,;me;m,’Sle,mES = 6,y m[dQ yzl /r)*y(mz)y(m m)yr (BS)

where we introduced the constants

_ 4 _ 47 _ 87

C+141 = \/ 25> C+10 = \/ 15 Ci1-1 = \/ 15>
_ 4 _ 167 _ 4

Co+1 = \/ 15> Co0 = —\ 15> Co-1 = /15 (B9)
_ 8w _ 47 _ 4w

C1+41 = \/715> C10 = —\/715 C-1-1 = 5

Let us study separately the different particular cases of Eq. (B8):

e (=/{"=0. This is of course the simplest scenario,
(0,0;1/]S15]0,0;m) = 2 ¢ mfd2 m'=me g, (B10)
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e (=2 (' =0. Taking m = {-2,-1,0,+1,+2},
(0,0;m'|S12|2,m; m) cm/ fd2 (m) (m UL %cm/,méerm,m/. (B11)
e (=/("=2 Taking m,m ={-2,-1,0,+1,+2},
(2,7, m|S1]2, 773 ) = 6 f 27 Y ' =mx (), (B12)
from where, using the general result

fd2 y(ml)*y(mQ)*y(M) \/%C(jhml;j%mZ‘jaM)C(jhO;jZ:O'jaO)a

(B13)
with C(j1,m1; Jo, malJ, M) = (j1, m1; jo, ma| T, M) a (real) Clebsch—Gordan coefficient,

it turns out

(2,17 m/|S12]2, 17, m) = —\/22C(2, 103 2, m" = M|2,110) s .- (B14)

However, the basis of eigenstates of the orbital angular momentum, the spin angular
momentum, and their respective third components, does not correspond to the basis of
eigenstates employed by the usual spectroscopic notation. Let J be the total angular mo-

mentum,
|2S+1€J>M = |[€7 S] J7M> ) (B15>

where M = {-J,-J+1,...,+J—1,+J}, the third component of the total angular momentum,

verifies M = my +mg. Generically,

mg,mg
so that
|351>_1 (mZ =0,mg = _1)7 |3D1>—1 (m =-2 yMs = +1 -1,0; Ov—l)a
|351)0 (me =0, mg =0), \3D1)0 (me=-1,mg=+1; 0,0; +1,-1), (B17)
|351>+1 (mg=0, m5=+1), |3D1>+1 (TTLg:O,m5=+1; +1,0; +2,—1),

become respectively (S =1)

?S51), = 10,0;-1), PD1).y = \/§|2,—2;+1)—\/1%|2,—1;0)+\/%|2,0;—1),
?S1)g = 10,0;0), BDy), = \/=l2,-1;+1) \/512 0;0) + /312, +1; -
[#S1),, = 10,0;+1), D), = B 12.0041) -3 12,4 1,0) + /212,42, 1)

B18)
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With the ingredients above, the obtention of the matrix element (3¢]S12/3¢1) is straight-

forward:

o (=("=0. In virtue of Eq. (B10), it is clear that
(331‘512|381> = 0 (Blg)

—here we have provided an alternative, more involved proof of what we had already

shown in the main text.
e (=2 ("=0; =0, =2. Take for instance M = M’ =0. Using Eq. (B11),
0 (3S1|S12* D1 ) g = \/120:2(00,+1 +Co-1) — \/é;grco,o = /8. (B20)
The same result can be obtained for M = M’ =-1,+1, so that
(*S1|S12 D1) = (*D1[S1a*S1) = VB, (B21)
where Si, = Sj5 was used.

e (=/("=2. Take for instance M = M’ =1. Given Eq. (B14),

3 3 _ /.09 / 27 / 81
+1< D1|512| Dl) +1 =\ 325:C+1,+1 T \/ 5257 €0,+1 T \/ 5507 €0,0
324 972 216 _
V2457611 7V 2457 €0,-1 T\ 235, C+1,-1 = 2. (B22)

The same result can be obtained for M = M’ =-1,0, so that

(®Dy|S122Dy) = -2. (B23)

Next, we compute the matrix element of the operator o - o5 between the initial and the

final state,
M! <3€/1|0,1 . U2|3£1>M =2 ([f’, 1] 17 M’| (82 - S% - S;) | [f, 1] 1, M) = 55,(’5M,M’; (B24)
i.e. (conservation of the third component of the total angular momentum is understood)

<351|O'1 . 0'2|381> = <3D1|0'1 . 0'2|3D1> = +1, (381|0'1 . 0'2|3D1) = (3D1|0'1 . 0'2|351> = 0
(B25)
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Similarly, but now recalling that I =0 and I = I, = 1/2, the matrix elements of the operator

71 + T2 turn out to be (spin and isospin conservations are understood)
<351|7il : ?2|351> = <351|7il : ?2|3D1> = (3D1|7il : ?2|351> = <3D1|721 : 7'2|3D1> = —3. (B26)

Using Egs. (B19), (B21), (B23), (B25), and (B26) in Eq. (1.61), we finally get for the
coordinate OPE potential in the 35;-3D; channel:

(*S1[Vorr(r)[S1) = ?g‘T’Z}’JY(mn r)+ 4f25(7“) (B27)
(*S1Vope(r)I’ D1) = (*Di[Vopr(r)[’S1) = fgif}gl" T(mzr)Y (magr), (B28)
<3D1|VOPE("°)|3D1)=—ggAﬂ;'} [5 = T(mar)]Y (mgr) + 4f25(7”) (B29)
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Appendix C

Peripheral demotion and resonances

In this appendix we discuss the different choices for the definition of A%, and the effect
they have on the peripheral demotion of the OPE potential. We will see that the impact
of changing the threshold-bound-state assumption by a different condition is rather small.
Consider a bound state with binding energy B > 0 at kpoe = ikp, Kp = VMyB > 0. If such
bound state emerges from the OPE potential, we will need to consider three scales (m.,
Ay, and k) in the EFT expansion. Hence, in this context two opposite options appear:
e By requiring B =0, we eliminate one of the variables in the problem, leaving only m
and A%, which combine by means of a numerical factor to give an expansion parameter
equal to one (see Eq. (2.34)). This scenario is the easiest and most convenient choice

to isolate the scale A},, and thus it was exploited in the main text.

e If B> 0, conversely, the EFT expansion will involve two different ratios, m,/Ayy and
xp/Ann. The breakdown of the amplitude expansion at a particular Ayy for k = kpole
does not necessarily mean that Ayy is the A}y, we are looking for. There could be a
(probably small) mismatch between the two owing to the different numerical factors
in each subexpansion. If we were able to take these details into account, it might very

well happen that we recovered the original scale generating the threshold bound state.

Yet we will ignore these complications here, and focus instead on checking the robustness
of the estimations we presented in the main text. For that we will consider the case of a
virtual state or resonance, kpole = —iky O kpole = Kr, Where ky is real and positive and kg

is complex. This will translate into a new value of the critical A}, that depends on the
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Table C.1: Inverse expansion parameter of perturbative OPE and corresponding shift in its periph-

eral demotion if the threshold-bound-state condition is replaced by the shallow-resonance condition.

[SOSCALAR WAVES [SOVECTOR WAVES
2 AN Ay (my) | Av=v'—v || 20 | A /Ay (Gmy) | Av =y —v
1p ~4.86 ~(0.14-0.25) || 1D, 33.31 ~(0.16 - 0.29)
LRy -24.9 -(0.06 - 0.10) 1Gy 119.7 -(0.05-0.10)
LHy -59.1 -(0.05-0.08) g 250.2 -(0.03-0.05)

position of the pole, Ay = Ay (€, kpote): [kpote] ~ Q. Proceeding as in the kpoe = 0 case, we

define the peripheral demotion as

(s kpole) [ANN = (Q/Mhi)yl(e’kp°1€)7 (C1)

where the ’ distinguishes the new estimations from the old ones (see Table 2.1).

Virtual states and resonances are amplitude poles in the second Riemann sheet of the
complex momentum plane. While they are easy to locate in the case of contact-range po-
tentials, finding them for a finite-range potential is technically more challenging, due to the
difficulty of choosing the second Riemann sheet in a numerical calculation. As we are in-
terested in peripheral waves, the most natural outcome when the strength of the potential
is reduced is that a bound state eventually becomes a resonance. This can be easily traced
because the scattering amplitude saturates the unitarity bound and the phase shift reaches
90° at some momentum k close to Re[kg]. Therefore, the criterion we are going to use for
Ay (4, kR) will be

cotdy(k=m,)=0, (C2)

which in general will imply |<g| > m,, but only by a small amount if the resonance is narrow,
Im[xr]* < Re[kr]*

The changes in v(¢) when the resonance condition is imposed are shown in Table C.1. In
general the new condition only entails a tiny change in v(¢) in the —(0.05-0.2) range. This
change is an order of magnitude smaller than the changes in v(¢) related to the uncertainty

in the EFT expansion parameter ()/My; and hence can be safely ignored.
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Appendix D
Résumé en francais

La philosophie des théories effectives des champs (EFT, de l'anglais Effective Field Theo-
ries) offre une perspective originale et utile dans la compréhension théorique de problemes
physiques tres divers. Il s’agit d’un instrument particulierement approprié¢ pour 1'étude des

systemes avec interaction forte a basse énergie, et ceci pour plusieurs raisons:

e [l établit une connexion manifeste avec la théorie plus fondamentale en imposant les
symétries de QQCD sur le lagrangien effectif exprimé en termes de degrés de liberté

effectifs.

e Il exploite la séparation des échelles de la physique nucléaire et hadronique au travers du
power counting, une recette qui hiérarchise 'importance du nombre infini d’interactions
contenues dans le lagrangien effectif et permet une description des observables qui est

améliorable ordre par ordre.

e [l est articulé dans le langage de la remormalisation qui est largement utilisé dans
les théories quantiques des champs et, plus particulierement, dans QCD; il permet
donc d’interpréter la physique nucléaire et hadronique comme ’évolution du groupe de

renormalisation de QCD a longues distances.

Dans l'introduction au présent travail, nous avons passé en revue quelques des exemples
les plus remarquables d’EFT qui sont largement utilisés dans ’étude moderne des systemes
nucléaires et hadroniques a petit nombre de corps, a savoir 'EFT chirale, 'EFT sans pions et
I’EFT de quarks lourds. Dans les chapitres 2 et 3, d’'une part, et le chapitre 4, d’autre part,
nous avons présenté trois études de cas détaillées de la physique nucléaire et hadronique,

respectivement, lorsque ces théories sont utilisés comme lignes directrices.
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L’exemple paradigmatique d'une EFT d’interactions fortes a basse énergie est la théorie
chirale des perturbations. Il repose sur la (approximative) symétrie chirale de QCD, qui
est utilisée comme contrainte fondamentale sur le lagrangien effectif. Au moyen d'un power
counting qui suit une analyse dimensionnelle naive («naturel»), la théorie chirale des pertur-
bations décrit des processus réussis a faible impulsion (en dessous de 1’échelle caractéristique
de QCD, vers 1 GeV) avec un pseudo-boson de Goldstone au minimum plus un nucléon au
maximum. Cependant, les processus avec deux nucléons et plus sont intrinsequement non-
perturbatifs, et ne peuvent donc pas étre capturés par la théorie chirale des perturbations,
ni par un power counting en pleine correspondance avec 1’analyse dimensionnelle naive. En
effet, déja dans le secteur de deux nucléons, la renormalisation non-perturbative fait que le
nombre d’interactions a courte portée prescrites a un certain ordre par le counting dimen-
sionnel ne suffise pas en général a rendre I’amplitude de diffusion véritablement renormalisée.
L’EFT chirale (ou pionful) est la généralisation de la théorie chirale des perturbations a un

tel cadre non-perturbatif.

La symétrie chirale prévoit que la portée maximum de la force nucléaire est approxima-
tivement donnée par l'inverse de la masse du pion. A des distances suffisamment grandes,
les seuls degrés de liberté effectifs sont les nucléons eux-mémes, de sorte que toutes les in-
teractions entre eux sont de contact. Cette approche est connue sous le nom de EFT de
contact (ou pionless). De méme facon que dans le cas pionful, le principe d’invariance de
renormalisation est utilisé pour dériver le power counting. Dans le secteur de deux nucleons,
ou la théorie est equivalente au développement de portée effective, la mise a 1’échelle des
couplages n’est pas conforme aux attentes naturelles, ce qui se manifeste par 'existence de

deux peu profonds (respectivement réel et virtuel) états liés dans les ondes S.

Dans le chapitre 2, le power counting des canaux nucléon-nucléon singulets périphériques
—ces ondes avec un moment cinétique de spin nul et un moment cinétique orbital élevé— a
été étudié dans le cadre de 'EFT chirale. Nous avons exploré la théorie des perturbations
jusqu’au quatrieme ordre, ce qui nous a permis de constater que le potentiel d’échange
d’un pion est supprimé dans ces canaux par le parametre d’expansion de 'EFT élevé a une
puissance qui croit avec le moment cinétique orbital. Une telle suppression est, encore une
fois, en contradiction avec les attentes dimensionnelles et, en fait, s’avere en général beaucoup
plus forte que dans le schéma de Kaplan—Savage—Wise, dans lequel ’échange d’un pion entre
a deuxieme (nezt-to-leading) ordre. Cela ouvre la porte a 'amélioration de la systématique

et de la cohérence des calculs dans le secteur de quelques corps, car il fournit une ligne
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directrice théorique qui n’inclut que les itérations nécessaires du potentiel d’échange d’un
pion et omet les canaux périphériques ou l’'ordre du potentiel sans itérations est plus élevé
que celui du calcul lui-méme. Toutefois, pour que ces idées soient pleinement rentables, il
faudrait étendre cette analyse a 1’échange d’un pion dans les ondes triplets périphériques et

aux interactions d’échange de plusieurs pions.

Le canal nucléon-nucléon 'Sy —dont le moment cinétique de spin et le moment cinétique
orbital sont zéro— n’a pas été considéré dans le chapitre 2, car il présente plusieurs car-
actéristiques qui en font une onde partielle particuliere. Dans le cadre de 'EFT chirale,
le chapitre 3 a abordé certaines de ces caractéristiques au moyen d’un nouvel arrangement
d’interactions a courte portée. Cela a été fait dans 'esprit de reproduire déja a premier
(leading) ordre le comportement qualitatif de Pamplitude sur tout I'interval d’impulsion ou
IEFT devrait se maintenir. Puisque la proposition de Weinberg ne reproduit pas le zéro
présenté a basse energie par 'amplitude de I'onde 'S; selon I'analyse des ondes partielles
(impulsion du centre de masse ~ 340 MeV), nous avons proposé un schéma différent oun
un tel zéro est imposé de maniere non-perturbative et les corrections a ordres supérieurs
sont incluses de maniere perturbative. L’amélioration systématique a été montrée jusqu’au
le deuxieme ordre, et nous avons obtenu des résultats qui correspondent remarquablement
bien aux déphasages phénoménologiques jusqu’au seuil de production de pions. Nous avons
également inclus une nouvelle version de 'EFT de contact dans laquelle I’échange des pions
était artificiellement découplé (méme si la localisation de I'impulsion du zéro se situe au-dela
de I'inverse de la masse du pion), ce qui nous a permis d’obtenir des résultats analytiques qui
reproduisent ’analyse des ondes partielles assez bien aussi. De ces succes phénoménologiques,
nous croyons que la décision d’imposer le zéro du 1Sy a premier ordre dans des calculs plus
générales et aussi cohérentes avec EFT vaut la peine, car ¢a peut améliorer la description

des observables dans le secteur de quelques corps (noyaux légers, réactions électrofaibles. . . ).

Hors du secteur des nucléons, les hadrons lourds sont des objets intéressants par eux-
mémes, car ils représentent des états liés de particules lourdes et légeres. En particulier, les
mésons lourds sont composés d'un quark lourd (b ou ¢) plus un antiquark léger (i, d ou 5). Si
la masse du quark lourd est pris suffisament grande, alors le quark léger deviendra insensible
a la saveur et au spin du premier (symétrie de quarks lourds). Ce scénario correspond a le
premier ordre de 'EFT de quarks lourds; les effets qui brisent la symétrie de quarks lourds
dans le monde physique doivent étre considérés comme des corrections supprimées par les

puissances négatives de la masse des quarks lourds. Dans ce cadre, on peut utiliser la symétrie
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chirale pour construire une autre version de 'EFT chirale ol les pseudo-bosons de Goldstone
sont conservés comme degrés de liberté explicites, mais les nucléons sont remplacés par des
mésons lourds.

Une telle approche a été utilisée dans le chapitre 4. En particulier, nous avons considéré
les mésons charmés D et D*, d'une part, et les mésons charmés et étranges D7 (2317) et
D% (2460), d’autre part. La parité intrinseque opposée des mésons D (D*) et D}, (D)
leur permet d’échanger un kaon d’onde S, qui induit un potentiel de type Yukawa entre
des mésons lourds dont la portée est étonnamment longue (en raison de la proximité de
leur différence de masse avec la masse du kaon) et dont la force est anormalement élevée
(car elle est proportionnelle au carré de cette différence de masse). Ceci presque garantit
existence des états liés D%, D et D* D* avec JP =0~ et J¥ =07, 2" respectivement, puisque
les calculs indiquent des énergies de liaison d’environ 50 MeV. Ces résultats ont été identifiés
avec les prédictions a premier ordre d'une EFT dont les degrés de liberté explicites sont
les mésons lourds et les kaons, ou l'interaction de Yukawa est non-perturbative tandis que
les termes de contact qui brisent la symétrie de quarks lourds sont pris en compte comme
corrections perturbatives. Nous envisageons également 1’existence des contreparties des états
liés ci-dessus dans le secteur bottom, BBy, et B*B}, qui seraient plus fortement liés et
présenteraient un spectre plus riche qui pourrait inclure un état d’onde P peu profond et un
état d’'onde S excité.

Nous notons que les trois travaux présentés respectivement dans les chapitres 2, 3 et 4

emploient diverses techniques théoriques:

e Alors que le chapitre 2 utilise des outils totalement perturbatifs, les chapitres 3 et 4

traitent de fagon non-perturbative leurs premiers ordres respectifs.

e Tandis que les chapitres 2 et 3 étudient les problemes de diffusion, le chapitre 4 est axé

sur les états liés.

e Alors que les chapitres 2 et 4 traitent d’interactions purement régulieres, le chapitre 3

inclut des termes singuliers dans le potentiel.

Pourtant, le contenu des trois chapitres est inspiré par des EFT d’interactions fortes a faible
énergie —EFT chirale dans les chapitres 2 et 3; EFT sans pions dans le chapitre 3; EFT
(chirale) de quarks lourds dans le chapitre 4. Cela donne une idée de la polyvalence et de

la richesse de ’approche des EFT appliquée aux systemes nucléaires et hadroniques. Nous

132



APPENDIX D. RESUME EN FRANCAIS

espérons que les propositions fournies dans les chapitres 2 et 3 trouveront des applications au-
dela du secteur de deux nucléons, ainsi que les prédictions de nouveaux états liés moléculaires

aux mésons lourds que nous ont fait dans le chapitre 4 seront confirmés a I’avenir.

133



APPENDIX D. RESUME EN FRANCAIS

134



Bibliography

[1] H. Georgi. Effective field theory. Ann. Rev. Nucl. Part. Sci., 43:209, 1993.

[2] A. Pich. Effective field theory. arXiv:9806303 [hep-ph/, 1998.

[3] D.B. Kaplan. Five lectures on effective field theory. arXiv:0510023 [nucl-th], 2005.
[4] L.W. Stewart. Effective field theory. http://ocw.mit.edu, 2014.

[5] A.A. Petrov and A.E. Blechman. Effective Field Theories. World Scientific Publishing
Co. Pte. Ltd., 2016.

[6] M. Srednicki. Quantum Field Theory. Cambridge University Press, 2007.

[7] S.R. Beane, W. Detmold, K. Orginos, and M.J. Savage. Nuclear physics from lattice
QCD. Prog. Part. Nucl. Phys., 66:1, 2011.

[8] C. Alexandrou. Hadron structure in lattice QCD. Prog. Part. Nucl. Phys., 67:101,
2012.

[9] P.F. Bedaque and U. van Kolck. Effective field theory for few-nucleon systems. Ann.
Rev. Nucl. Part. Sci., 52:339, 2002.

[10] E. Epelbaum, H.-W. Hammer, and U.-G. Meiiner. Modern theory of nuclear forces.
Rev. Mod. Phys., 81:1773, 2009.

[11] D.R. Entem and R. Machleidt. Chiral effective field theory and nuclear forces. Phys.
Rept., 503:1, 2011.

[12] W. Leidemann and G. Orlandini. Modern ab initio approaches and applications in
few-nucleon physics with A > 4. Prog. Part. Nucl. Phys., 68:158, 2013.

135



BIBLIOGRAPHY BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[20]

S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 27:277, 2003.

C.G. Callan, N. Coote, and D.J. Gross. Two-dimensional Yang-Mills theory: A model
of quark confinement. Phys. Rev. D, 13:1649, 1976.

C. McNeile. An estimate of the chiral condensate from unquenched lattice QCD. Phys.
Lett. B, 619:124, 2005.

C. Patrignani and others (Particle Data Group collaboration). Review of particle
physics. Chin. Phys. C, 40:100001, 2016.

J. Gasser and G.R.S. Zarnauskas. On the pion decay constant. Phys. Lett. B, 693:122,
2010.

M. Gell-Mann, R.J. Oakes, and B. Renner. Behavior of current divergences under
SU(3) x SU(3). Phys. Rev., 175:2195, 1968.

S. Weinberg. Non-linear realizations of chiral symmetry. Phys. Rev., 166:1568, 1968.

S.R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological Lagrangians.
I. Phys. Rev., 177:2239, 1969.

C.G. Callan, S.R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological
Lagrangians. II. Phys. Rev., 177:2247, 1969.

N.H. Fuchs, H. Sazdjian, and J. Stern. How to probe the scale of (gq) in chiral pertur-
bation theory. Phys. Lett. B, 269:183, 1991.

M. Knecht, H. Sazdjian, J. Stern, and N.H. Fuchs. A possible experimental determi-
nation of mgs/m from K4 decays. Phys. Lett. B, 313:229, 1993.

S. Pislak and others (BNL-E865 collaboration). A new measurement of K, decay and
the S-wave 77 scattering length aJ. Phys. Rev. Lett., 87:221801, 2001.

G. Colangelo, J. Gasser, and H. Leutwyler. The quark condensate from K., decays.
Phys. Rev. Lett., 86:5008, 2001.

H. Georgi. Weak Interactions and Modern Particle Theory. Dover Books, 2009.

136



BIBLIOGRAPHY BIBLIOGRAPHY

[27]

28]

[29]

[30]

[31]
[32]

[33]

A. Manohar and H. Georgi. Chiral quarks and the nonrelativistic quark model. Nucl.
Phys. B, 234:189, 1984.

H. Georgi. Generalized dimensional analysis. Phys. Lett. B, 298:197, 1993.

J. Gasser, M. Sainio, and A. Svarc. Nucleons with chiral loops. Nucl. Phys. B, 307:779,
1988.

V. Bernard, N. Kaiser, and U.-G. Meifiner. Chiral dynamics in nucleons and nuclei.
Int. J. Mod. Phys. F, 4:193, 1995.

A. Pich. Chiral perturbation theory. Rept. Prog. Phys., 58:563, 1995.
G. Ecker. Chiral perturbation theory. Prog. Part. Nucl. Phys., 35:1, 1995.

H. Yukawa. On the interaction of elementary particles. Proc. Phys. Math. Soc. Japan,
17:48, 1935.

D.B. Kaplan, M.J. Savage, and M.B. Wise. A new expansion for nucleon-nucleon
interactions. Phys. Lett. B, 424:390, 1998.

D.B. Kaplan, M.J. Savage, and M.B. Wise. Two-nucleon systems from effective field
theory. Nucl. Phys. B, 534:329, 1998.

S. Weinberg. Nuclear forces from chiral Lagrangians. Phys. Lett. B, 251:288, 1990.

S. Weinberg. Effective chiral Lagrangians for nucleon-pion interactions and nuclear
forces. Nucl. Phys. B, 363:3, 1991.

M. Rho. Exchange currents from chiral Lagrangians. Phys. Rev. Lett., 66:1275, 1991.

C. Ordénez, L. Ray, and U. van Kolck. Chiral Lagrangians and nuclear forces. Phys.
Lett. B, 291:459, 1992.

C. Ordonez, L. Ray, and U. van Kolck. Nucleon-nucleon potential from an effective
chiral Lagrangian. Phys. Rev.Lett., 72:1982, 1994.

C. Ordénez, L. Ray, and U. van Kolck. The two-nucleon potential from chiral La-
grangians. Phys. Rev. C, 53:2086, 1996.

137



BIBLIOGRAPHY BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[49]

[50]

[51]

[52]

V.R. Pandharipande, Daniel R. Phillips, and U. van Kolck. Delta effects in pion-
nucleon scattering and the strength of the two-pion-exchange three-nucleon interaction.
Phys. Rev. C, 71:064002, 2005.

D.R. Entem and R. Machleidt. Chiral two-pion-exchange at order four and peripheral
nucleon-nucleon scattering. Phys. Rev. C, 66:014402, 2002.

D.R. Entem and R. Machleidt. Accurate charge-dependent nucleon-nucleon potential
at fourth order of chiral perturbation theory. Phys. Rev. C| 68:041001, 2003.

E. Epelbaum, W. Glockle, and U.-G. Meifiner. The two-nucleon system at next-to-
next-to-next-to-leading order. Nucl. Phys. A, 747:362, 2005.

D.B. Kaplan, M.J. Savage, and M.B. Wise. Nucleon-nucleon scattering from effective
field theory. Nucl. Phys. B, 478:629, 1996.

A. Nogga, R.G.E. Timmermans, and U. van Kolck. Renormalization of one-pion ex-
change and power counting. Phys. Rev. C, 72:054006, 2005.

M. Pavén Valderrama and E. Ruiz Arriola. Renormalization of nucleon-nucleon in-

teraction with chiral two-pion-exchange potential: Non-central phases. Phys. Rev. C,
74:064004, 2006. [Erratum: Phys. Rev. C, 75:059905, 2007].

C.-J. Yang, Ch. Elster, and D.R. Phillips. Subtractive renormalization of the chiral
potentials up to next-to-next-to-leading order in higher nucleon-nucleon partial waves.
Phys. Rev. C, 80:034002, 2009.

C.-J. Yang, Ch. Elster, and D.R. Phillips. Subtractive renormalization of the nucleon-
nucleon interaction in chiral effective theory up to next-to-next-to-leading order: S
waves. Phys. Rev. C| 80:044002, 2009.

Ch. Zeoli, R. Machleidt, and D.R. Entem. Infinite-cutoff renormalization of the chi-
ral nucleon-nucleon interaction up to next-to-next-to-next-to-leading order. Few-Body
Syst., 54:2191, 2013.

M. Pavon Valderrama and D.R. Phillips. Power counting of contact-range currents in
effective field theory. Phys. Rev. Lett., 114:082502, 2015.

138



BIBLIOGRAPHY BIBLIOGRAPHY

[53]

[61]

[62]

E. Epelbaum and U.-G. Meifiner. On the renormalization of the one-pion-exchange
potential and the consistency of Weinberg’s power counting. Few-Body Syst., 54:2175,
2013.

E. Epelbaum and J. Gegelia. Regularization, renormalization and ‘peratization’ in
effective field theory for two nucleons. Eur. Phys. J. A, 41:341, 2009.

S. Fleming, T. Mehen, and I.W. Stewart. Next-to-next-to-leading order corrections to

nucleon-nucleon scattering and perturbative pions. Nucl. Phys. A, 677:313, 2000.
M.C. Birse. Power counting with one-pion exchange. Phys. Rev. C, 74:014003, 2006.

M. Pavén Valderrama. Perturbative renormalizability of chiral two-pion exchange in
nucleon-nucleon scattering. Phys. Rev. C; 83:024003, 2011.

M. Pavén Valderrama. Perturbative renormalizability of chiral two-pion exchange in
nucleon-nucleon scattering: P and D waves. Phys. Rev. C; 84:064002, 2011.

B. Long and C.-J. Yang. Renormalizing chiral nuclear forces: A case study of 3F.
Phys. Rev. C, 84:057001, 2011.

B. Long and C.-J. Yang. Renormalizing chiral nuclear forces: Triplet channels. Phys.
Rev. C; 85:034002, 2012.

B. Long and C.-J. Yang. Short-range nuclear forces in singlet channels. Phys. Rev. C,
86:024001, 2012.

Y.-H. Song, R. Lazauskas, and U. van Kolck. Triton and neutron-deuteron scattering
up to next-to-leading order in chiral effective field theory. Phys. Rev. C, 96:024002,
2017.

S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, and U. van Kolck.
Singular potentials and limit cycles. Phys. Rev. A, 64:042103, 2001.

S.R. Beane, P.F. Bedaque, M.J. Savage, and U. van Kolck. Towards a perturbative
theory of nuclear forces. Nucl. Phys. A, 700:377, 2002.

M. Pavén Valderrama and E. Ruiz Arriola. Renormalization of nucleon-nucleon in-
teraction with chiral two-pion exchange potential: Central phases and the deuteron.
Phys. Rev. C, 74:054001, 2006.

139



BIBLIOGRAPHY BIBLIOGRAPHY

[66]

[74]

[75]

[76]

[77]

[78]

M. Pavén Valderrama and E. Ruiz Arriola. Renormalization-group analysis of bound-

ary conditions in potential scattering. Ann. Phys., 323:1037, 2008.

B. Long and U. van Kolck. Renormalization of singular potentials and power counting.
Ann. Phys., 323:1304, 2008.

U. van Kolck. Nucleon-nucleon interaction and isospin violation. Lect. Notes Phys.,
513:62, 1998.

U. van Kolck. Effective field theory of short-range forces. Nucl. Phys. A, 645:273, 1999.
H. Bethe. Theory of the effective range in nuclear scattering. Phys. Rewv., 76:38, 1949.

L. Koester and W. Nistler. New determination of the neutron-proton scattering am-

plitude and precise measurements of the scattering amplitudes on carbon, chlorine,
fluorine, and bromine. Z. Phys. A, 272:189, 1975.

E. Lomon and R. Wilson. Neutron-proton scattering at a few MeV. Phys. Rev. C,
9:1329, 1974.

D.R. Phillips, S.R. Beane, and T.D. Cohen. Non-perturbative regularization and renor-
malization: Simple examples from non-relativistic quantum mechanics. Ann. Phys.,

263:255, 1998.

E.P. Wigner. Lower limit for the energy derivative of the scattering phase shift. Phys.
Rev., 98:145, 1955.

D.R. Phillips and T.D. Cohen. How short is too short? Constraining zero-range

interactions in nucleon-nucleon scattering. Phys. Lett. B, 390:7, 1997.

D.B. Kaplan. More effective field theory for nonrelativistic scattering. Nucl. Phys. B,
494:471, 1997.

H.W. GrieShammer. Improved convergence in the three-nucleon system at very low
energies. Nucl. Phys. A, 744:192, 2004.

S.T. Ma. Redundant zeros in the discrete energy spectra in Heisenberg’s theory of
characteristic matrix. Phys. Rev., 69:668, 1946.

140



BIBLIOGRAPHY BIBLIOGRAPHY

[79]

[30]

[82]

[83]

[84]

[85]

[80]

[87]

[91]

S.T. Ma. On a general condition of Heisenberg for the S matrix. Phys. Rev., 71:195,
1947.

V.A. Babenko and N.M. Petrov. Determination of low-energy parameters of neutron-
proton scattering in the shape-parameter approximation from present-day experimen-
tal data. Phys. Atom. Nuc., 73:1499, 2010.

M. Pavén Valderrama and E. Ruiz Arriola. Determination of low energy parameters
for nucleon-nucleon scattering at next-to-next-to-next-to-next-to-leading order in all
partial waves with j < 5. arXiv:0407113 [nucl-th/], 2004.

P.F. Bedaque, H.-W. Hammer, and U. van Kolck. Effective theory for neutron-deuteron
scattering: Energy dependence. Phys. Rev. C., 58:641, 1998.

P.F. Bedaque and U. van Kolck. Nucleon-deuteron scattering from an effective field
theory. Phys. Lett. B, 428:221, 1998.

W. Dilg, L. Koester, and W. Nistler. The neutron-deuteron scattering lengths. Phys.
Lett. B, 36:208, 1971.

P.F. Bedaque, H.-W. Hammer, and U. van Kolck. Renormalization of the three-body
system with short range interactions. Phys. Rev. Lett., 82:463, 1999.

P.F. Bedaque, H.-W. Hammer, and U. van Kolck. The three-boson system with short-
range interactions. Nucl. Phys. A, 646:444, 1999.

P.F. Bedaque, H.-W. Hammer, and U. van Kolck. Effective theory of the triton. Nucl.
Phys. A, 676:357, 2000.

H.-W. Hammer and T. Mehen. Range corrections to doublet S-wave neutron-deuteron
scattering. Phys. Lett. B, 516:353, 2001.

A.C. Phillips. Consistency of the low-energy three-nucleon observables and the sepa-
rable interaction model. Nucl. Phys. A, 107:209, 1968.

L. Platter, H.-W. Hammer, and U.-G. Meifiner. On the correlation between the binding
energies of the triton and the a-particle. Phys. Lett. B, 607:254, 2005.

J.A. Tjon. Bound states of *He with local interactions. Phys. Lett. B, 56:217, 1975.

141



BIBLIOGRAPHY BIBLIOGRAPHY

[92]

[95]

[96]

[98]

[99]

[100]

[101]

[102]

103]

[104]

S. Konig, HW. GrieBhammer, H.-W. Hammer, and U. van Kolck. Nuclear physics
around the unitarity limit. Phys. Rev. Lett., 118:202501, 2017.

J.M. Flynn and N. Isgur. Heavy-quark symmetry: Ideas and applications. J. Phys. G,
18:1627, 1992.

A. de Rujula, H. Georgi, and S.L. Glashow. Hadron masses in a gauge theory. Phys.
Rev. D, 12:147, 1975.

E. Eichten and F.L. Feinberg. Spin-dependent forces in heavy-quark systems. Phys.
Rev. Lett., 43:1205, 1979.

E. Eichten and F.L. Feinberg. Spin-dependent forces in QCD. Phys. Rev. D, 23:2724,
1981.

M. Suzuki. Spectator theory of final-state spins in semileptonic decays of heavy-flavored
mesons. Nucl. Phys. B, 258:553, 1985.

B. Grinstein, M.B. Wise, and N. Isgur. Weak mixing angles from semileptonic decays
in the quark model. Phys. Rev. Lett., 56:286, 1986.

T. Altomari and L. Wolfenstein. Comment on “Weak mixing angles from semileptonic
decays in the quark model”. Phys. Rev. Lett., 58:1583, 1987.

H.D. Politzer and M.B. Wise. Leading logarithms of heavy quark masses in processes
with light and heavy quarks. Phys. Lett. B, 206:681, 1988.

H.D. Politzer and M.B. Wise. Effective field theory approach to processes involving
both light and heavy fields. Phys. Lett. B, 208:504, 1988.

N. Isgur, D. Scora, B. Grinstein, and M.B. Wise. Semileptonic B and D decays in the
quark model. Phys. Rev. D, 39:799, 1989.

A F. Falk and M.E. Luke. Strong decays of excited heavy mesons in chiral perturbation
theory. Phys. Lett. B, 292:119, 1992.

P. Colangelo, F. de Fazio, F. Giannuzzi, and S. Nicotri. New meson spectroscopy with
open charm and beauty. Phys. Rev. D, 86:054024, 2012.

142



BIBLIOGRAPHY BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

M.B. Wise. Chiral perturbation theory for hadrons containing a heavy quark. Phys.
Rev. D, 45:2188, 1992.

M. Pavén Valderrama, M. Sanchez Sanchez, C.-J. Yang, B. Long, J. Carbonell, and
U. van Kolck. Power counting in peripheral partial waves: The singlet channels. Phys.
Rev. C 95:054001, 2017.

M. Sanchez Sanchez, C.-J. Yang, B. Long, and U. van Kolck. The two-nucleon ampli-
tude zero in chiral effective field theory. arXiv:1704.0852/ [nucl-th/], 2017.

M. Sanchez Sanchez, L.-S. Geng, J.-X. Lu, T. Hyodo, and M. Pavon Valderrama.
Exotic doubly charmed D},(2317)D and D (2460)D* molecules. arXiv:1707.03802
[hep-ph/, 2017.

N. Kaiser, R. Brockmann, and W. Weise. Peripheral nucleon-nucleon phase shifts and
chiral symmetry. Nucl. Phys. A, 625:758, 1997.

N. Kaiser, S. Gerstendorfer, and W. Weise. Peripheral nucleon-nucleon scattering:
Role of Delta excitation, correlated two-pion and vector-meson exchange. Nucl. Phys.
A, 637:395, 1998.

H. Witala, W. Gloeckle, J. Golak, A. Nogga, H. Kamada, R. Skibinski, and J. Kuros-
Zolnierczuk. Nucleon-deuteron elastic scattering as a tool to probe properties of three-
nucleon forces. Phys. Rev. C, 63:024007, 2000.

D.R. Entem, E. Ruiz Arriola, M. Pavén Valderrama, and R. Machleidt. Renormal-
ization of chiral two-pion-exchange nucleon-nucleon interactions. Momentum versus
coordinate space. Phys. Rev. C| 77:044006, 2008.

M.C. Birse. Deconstructing triplet nucleon-nucleon scattering.  Phys. Rev. C,
76:034002, 2007.

M.C. Birse. Deconstructing 'Sy nucleon-nucleon scattering. Eur. Phys. J. A, 46:231,
2010.

K.L. Ipson, K. Helmke, and M.C. Birse. Effective short-range interaction for spin-
singlet P-wave nucleon-nucleon scattering. Phys. Rev. C| 83:017001, 2010.

143



BIBLIOGRAPHY BIBLIOGRAPHY

[116]

[117)

18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

D.R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk. Peripheral nucleon-nucleon
scattering at fifth order of chiral perturbation theory. Phys. Rev. C, 91:014002, 2015.

T.D. Cohen and J.M. Hansen. Systematic power counting in cutoff effective field

theories for nucleon-nucleon interactions and the equivalence with PDS. Phys. Lett.
B, 440:233, 1998.

J.V. Steele and R.J. Furnstahl. Removing pions from two-nucleon effective field theory.
Nucl. Phys. A, 645:439, 1999.

T. Mehen and [.W. Stewart. Renormalization schemes and the range of two-nucleon
effective field theory. Phys. Rev. C) 59:2365, 1999.

T. Frederico, V.S. Timoteo, and L. Tomio. Renormalization of the one-pion-exchange
interaction. Nucl. Phys. A, 653:209, 1999.

J. Gegelia. Nucleon-nucleon scattering and effective field theory: Including pions non-
perturbatively. Phys. Lett. B, 463:133, 1999.

D.B. Kaplan and J.V. Steele. The long and short of nuclear effective field theory
expansions. Phys. Rev. C, 60:064002, 1999.

C.H. Hyun, D.-P. Min, and T.-S. Park. A higher-order calculation of neutron-proton
scattering in cutoff effective field theory. Phys. Lett. B, 473:6, 2000.

M. Lutz. Effective chiral theory of nucleon-nucleon scattering. Nucl. Phys. A, 677:241,
2000.

J.M. Nieves. Renormalization of the one-pion-exchange nucleon-nucleon interaction in

presence of derivative contact interactions. Phys. Lett. B, 568:109, 2003.

J.A. Oller. Nucleon-nucleon interactions from effective field theory. Nucl. Phys. A,
725:85, 2003.

M. Pavén Valderrama and E. Ruiz Arriola. Renormalization of singlet nucleon-nucleon
scattering with one-pion exchange and boundary conditions. Phys. Lett. B, 580:149,
2004.

144



BIBLIOGRAPHY BIBLIOGRAPHY

[128]

[129]

[130]

131]

[132]

[133]

134]

[135]

[136]

[137]

[138]

[139]

M. Pavon Valderrama and E. Ruiz Arriola. Renormalization of nucleon-nucleon scat-
tering with one-pion exchange and boundary conditions. Phys. Rev. C, 70:044006,
2004.

V.S. Timéteo, T. Frederico, A. Delfino, and L. Tomio. Recursive renormalization of

the singlet one-pion exchange plus point-like interactions. Phys. Lett. B, 621:109, 2005.

J-F. Yang and J.-H. Huang. A Padé-aided analysis of non-perturbative nucleon-

nucleon scattering in 1Sy channel. Commun. Theor. Phys., 47:699, 2007.
J. Soto and J. Tarris. Taking dibaryon fields seriously. Phys. Rev. C; 78:024003, 2008.

D. Shukla, D.R. Phillips, and E. Mortenson. Chiral potentials, perturbation theory,
and the 1Sy channel of nucleon-nucleon scattering. J. Phys. G, 35:115009, 2008.

C.-J. Yang, Ch. Elster, and D.R. Phillips. Subtractive renormalization of the nucleon-
nucleon scattering amplitude at leading order in chiral effective theory. Phys. Rev. C,
77:014002, 2008.

K. Harada, H. Kubo, and Y. Yamamoto. Pions are neither perturbative nor non-
perturbative: Wilsonian renormalization-group analysis of nuclear effective field theory
including pions. Phys. Rev. C, 83:034002, 2011.

S.-I. Ando and C. H. Hyun. Effective range corrections from effective field theory with
dibaryon fields and perturbative pions. Phys. Rev. C, 86:024002, 2012.

S. Szpigel and V.S. Timdteo. Power counting and renormalization-group invariance
in the subtracted kernel method for the two-nucleon system. J. Phys. G, 39:105102,
2012.

B. Long. Improved convergence of chiral effective field theory for 1.5; of nucleon-nucleon
scattering. Phys. Rev. C; 88:014002, 2013.

K. Harada, H. Kubo, T. Sakaeda, and Y. Yamamoto. Convergent perturbative nuclear
effective field theory. arXiv:1311.3063 [nucl-th], 2013.

E. Epelbaum, A.M. Gasparyan, J. Gegelia, and H. Krebs. 1Sy nucleon-nucleon scat-
tering in the modified Weinberg approach. Fur. Phys. J. A, 51:71, 2015.

145



BIBLIOGRAPHY BIBLIOGRAPHY

[140]

[141]

[142]

[143]

[144]

[145]

[146)

[147)

148]

[149]

[150]

[151]

X.-L. Ren, K.-W. Li, L.-S. Geng, B. Long, P. Ring, and J. Meng. Leading-order

covariant chiral nucleon-nucleon interaction. arXiv:1611.08475 [nucl-th], 2016.

V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart. Partial-wave
analysis of all nucleon-nucleon scattering data below 350 MeV. Phys. Rev. C, 48:792,
1993 (http://nn-online.org).

S.R. Beane and M.J. Savage. Rearranging pionless effective field theory. Nucl. Phys.
A, 694:511, 2001.

A. Vaghani, R. Higa, G. Rupak, and U. van Kolck. In preparation.

S. Konig, H.W. GrieBhammer, H.-W. Hammer, and U. van Kolck. Effective theory of
3H and 3He. J. Phys. G, 43:055106, 2016.

L. Castillejo, R.H. Dalitz, and F.J. Dyson. Low’s scattering equation for the charged
and neutral scalar theories. Phys. Rev., 101:543, 1956.

D.R. Entem and J.A. Oller. The N/D method with non-perturbative left-hand-cut
discontinuity and the 1Sy nucleon-nucleon partial wave. arXiv:1610.01040 [nucl-th],
2016.

M.I. Krivoruchenko. Remarks on the origin of Castillejo-Dalitz-Dyson poles. Phys.
Rev. C) 82:018201, 2010.

V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart. Construction of
high-quality nucleon-nucleon potential models. Phys. Rev. C,49:2950, 1994 (http://nn-

online.org).

I. Stetcu, B.R. Barrett, and U. van Kolck. No-core shell model in an effective-field-
theory framework. Phys. Lett. B, 653:358, 2007.

L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, and U. van Kolck.
Ground-state properties of *He and 160 extrapolated from lattice QCD with pionless
EFT. Phys. Lett. B, 772:839, 2017.

W.T.H. van Oers and J.D. Seagrave. The neutron-deuteron scattering lengths. Phys.
Lett., 36B:208, 1967.

146



BIBLIOGRAPHY BIBLIOGRAPHY

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163

[164]

J. Vanasse. Fully perturbative calculation of neutron-deuteron scattering to next-to-
next-to-leading order. Phys. Rev. C, 88:044001, 2013.

M.B. Voloshin and L.B. Okun. Hadron molecules and charmonium atom. JETP Lett.,
23:333, 1976.

A de Rujula, H. Georgi, and S.L. Glashow. Molecular charmonium: A new spec-
troscopy? Phys. Rev. Lett., 38:317, 1977.

S.K. Choi and others (Belle collaboration). Observation of a new narrow charmonium-
like state in exclusive B* - K*n*n~J /1 decays. Phys. Rev. Lett., 91:262001, 2003.

M. Ablikim and others (BESIII collaboration). Observation of a charged charmonium-
like structure in e*e™ — p*p~Ji at /s =4.26 GeV. Phys. Rev. Lett., 110:252001, 2013.

Z.Q. Liu and others (Belle collaboration). Study of e*e™ - w*7~J /1) and observation
of a charged charmonium-like state at Belle. Phys. Rev. Lett., 110:252002, 2013.

Q. Wang, C. Hanhart, and Q. Zhao. Decoding the riddle of Y (4260) and Z.(3900).
Phys. Rev. Lett., 111:132003, 2013.

F.-K. Guo, C. Hidalgo-Duque, J. Nieves, and M. Pavéon Valderrama. Consequences of
heavy-quark symmetries for hadronic molecules. Phys. Rev. D, 88:054007, 2013.

A. Bondar and others (Belle collaboration). Observation of two charged bottomonium-
like resonances in Y(55) decays. Phys. Rev. Lett., 108:122001, 2012.

I. Adachi and others (Belle collaboration). Evidence for a ZP(10610) in Dalitz analysis
of T(55) - T (nS)n'7°. arXiv:1207.4345 [hep-ex], 2012.

M.B. Voloshin. Radiative transitions from T(5S5) to molecular bottomonium. Phys.
Rev. D, 84:031502, 2011.

M. Cleven, F.-K. Guo, C. Hanhart, and U.-G. Meifiner. Bound state nature of the
exotic Z, states. Fur. Phys. J. A, 47:120, 2011.

R. Aaij (LHCb collaboration). Observation of J/¢p resonances consistent with pen-
taquark states in AY - J/¢K~p decays. Phys. Rev. Lett., 115:072001, 2015.

147



BIBLIOGRAPHY BIBLIOGRAPHY

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

173]

[174]

[175]

[176]

[177]

R. Chen, X. Liu, X.-Q. Li, and S.-L. Zhu. Identifying exotic hidden-charm pentaquarks.
Phys. Rev. Lett., 115:132002, 2015.

M. Karliner and J.L. Rosner. New exotic meson and baryon resonances from doubly-
heavy hadronic molecules. Phys. Rev. Lett., 115:122001, 2015.

H.-X. Chen, W. Chen, X. Liu, T.G. Steele, and S.-L. Zhu. Towards exotic hidden-
charm pentaquarks in QCD. Phys. Rev. Lett., 115:172001, 2015.

L. Roca, J. Nieves, and E. Oset. LHCb pentaquark as a D*Y.— D*¥} molecular state.
Phys. Rev. D, 92:094003, 2015.

C.W. Xiao and U.-G. Meifiner. J/1(n.)N and Y(n,)N cross sections. Phys. Rev. D,
92:114002, 2015.

T.J. Burns. Phenomenology of Pf(4380), P (4450) and related states. Eur. Phys. J.
A, 51:152, 2015.

L.S. Geng, J.X. Lu, and M. Pavéon Valderrama. Scale invariance in heavy hadron
molecules. arXiv:1704.06123 [hep-ph/, 2017.

V. Efimov. Energy levels arising from resonant two-body forces in a three-body system.
Phys. Lett. B, 33:563, 1970.

L.-S. Geng, J.-X. Lu, M. Pavén Valderrama, and X.-L. Ren. Are there near-threshold
Coulomb-like baryonia? arXiv:1705.00516 [hep-ph/, 2017.

A.V. Manohar and M.B. Wise. Exotic QQqq states in QCD. Nucl.Phys. B, 399:17,
1992.

P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, and M. Wagner. Evidence for the
existence of udbb and the non-existence of ssbb and ccbb tetraquarks from lattice QCD.
Phys. Rev. D, 92:014507, 2015.

A. Francis, R.J. Hudspith, R. Lewis, and K. Maltman. Lattice prediction for deeply
bound doubly heavy tetraquarks. Phys. Rev. Lett., 118:142001, 2017.

J. Carlson, L. Heller, and J.A. Tjon. Stability of dimesons. Phys. Rev. D, 37:744, 1988.

148



BIBLIOGRAPHY BIBLIOGRAPHY

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

188

[189)]

[190]

B.A. Gelman and S. Nussinov. Does a narrow tetraquark cciid state exist? Phys. Lett.
B, 551:296, 2003.

J. Vijande, A. Valcarce, and N. Barnea. Exotic meson-meson molecules and compact
four-quark states. Phys. Rev. D, 79:074010, 2009.

F.-K. Guo and U.-G. Meifiner. More kaonic bound states and a comprehensive inter-
pretation of the D,; states. Phys. Rev. D, 84:014013, 2011.

P. Colangelo, F. de Fazio, G. Nardulli, N. di Bartolomeo, and R. Gatto. Strong coupling
of excited heavy mesons. Phys. Rev. D, 52:6422, 1995.

P. Colangelo and F. de Fazio. QCD interactions of heavy mesons with pions by light
cone sum rules. Fur. Phys. J. C, 4:503, 1998.

D. Becirevic, E. Chang, and A. Le Yaouanc. Pionic couplings to the lowest heavy-light
mesons of positive and negative parity. arXiw:1203.0167 [hep-lat], 2012.

D. Gamermann and E. Oset. Axial resonances in the open and hidden charm sectors.
Fur. Phys. J. A, 33:119, 2007.

A. Martinez Torres, E. Oset, S. Prelovsek, and A. Ramos. Reanalysis of lattice QCD
spectra leading to the D?(2317) and D% (2460). JHEP, 05:153, 2015.

M. Pavon Valderrama. Power counting and perturbative one-pion-exchange in heavy
meson molecules. Phys. Rev. D, 85:114037, 2012.

J.-X. Lu, L.-S. Geng, and M. Pavén Valderrama. Heavy-baryon molecules in effective
field theory. arXiv:1706.02588 [hep-ph/, 2017.

M.C. Birse, J.A. McGovern, and K.G. Richardson. A renormalization-group treatment
of two-body scattering. Phys. Lett. B, 464:169, 1999.

M. Pavén Valderrama. Power counting and Wilsonian renormalization in nuclear ef-
fective field theory. Int. J. Mod. Phys. E, 25:1641007, 2016.

T. Barford and M.C. Birse. A renormalization-group approach to two-body scattering
in the presence of long-range forces. Phys. Rev. C, 67:064006, 2003.

149



BIBLIOGRAPHY BIBLIOGRAPHY

[191]

[192]

193]

[194]

195

[196]

197]

198

[199]

[200]

K. Abe and others (Belle collaboration). Study of B~ — D**0x~ (D**0 - D®)+x-)
decays. Phys. Rev. D, 69:112002, 2004.

H.-Y. Cheng. Hadronic b decays involving even parity charmed mesons. Phys. Rev. D,
68:094005, 2003.

T. Hyodo, Y.-R. Liu, M. Oka, K. Sudoh, and S. Yasui. Production of doubly-charmed
tetraquarks with exotic color configurations in electron-positron collisions. Phys. Lett.
B, 721:56, 2013.

S. Cho and others (ExHIC collaboration). Exotic hadrons from heavy-ion collisions.
Prog. Part. Nucl. Phys., 95:279, 2017.

R. Aaij and others (LHCb collaboration). Observation of the doubly-charmed baryon
=+*. Phys. Rev. Lett., 119:112001, 2017.

—cc

F.-K. Guo, P.-N. Shen, H.-C. Chiang, R.-G. Ping, and B.-S. Zou. Dynamically gen-
erated 0* heavy mesons in a heavy chiral unitary approach. Phys. Lett. B, 641:278,
2006.

F.-K. Guo, P.-N. Shen, and H.-C. Chiang. Dynamically generated 1* heavy mesons.
Phys. Lett. B, 647:133, 2007.

M. Altenbuchinger, L.-S. Geng, and W. Weise. Scattering lengths of Nambu-Goldstone
bosons off D mesons and dynamically generated heavy-light mesons. Phys. Rev. D,
1:014026, 2014.

C.B. Lang, D. Mohler, S. Prelovsek, and R.M. Woloshyn. Predicting positive-parity
B, mesons from lattice QCD. Phys. Lett. B, 750:17, 2015.

S. Weinberg. The Quantum Theory of Fields. Vol. 2: Modern Applications. Cambridge
University Press, 1996.

150



® . (COLE DOCTORALE

universite  PHENIICS

PARIS-SACLAY

Titre : Théories effectives des champs pour systemes avec interaction forte : diffusion des nucléons et

états lies de quarks lourds

Mots clés : théorie effective ; nucléons ; mesons lourds ; renormalisation ; symétrie chirale ; pions

Résumé : Au cours des derniéres décennies, des
théories effectives des champs (TEC) ont été
largement utilisées comme approche de la
physique a interaction forte et a faible énergie
(régimes nucléaires et hadroniques). Dans cette
thése, nous explorons en detail trois

exemples d’application du programme des TEC
au systeme nucléon-nucléon dans 1’état de spin
singulet (onde S et ondes périphériques
respectivement) et aux molécules théorisées de
mésons lourds DDy* et D*D,;*.

Title : Effective field theories of strong-interacting systems in nucleon scattering and heavy-quark

bound states

Keywords : effective theory ; nucleons ; heavy mesons ; renormalization ; chiral symmetry ; pions

Abstract : Effective field theories (EFT) have
been widely used as an approach to strong-
interacting physics in the low-energy region
(nuclear and hadronic regimes). In this thesis,
we explore in detail three examples of

application of the EFT program to the two-
nucleon spin-singlet state (S wave and
peripheral waves, respectively) and to the
theorized heavy meson molecules DDy * and
D*Dg*.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France




