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Multi-time quantum correlations with no spatial analog
Martin Ringbauer 1,2,3, Fabio Costa2, Michael E. Goggin2,4, Andrew G. White 2 and Alessandro Fedrizzi 1

Multipartite quantum correlations are a powerful resource that underpins applications from quantum metrology to quantum
computing. While most research has focused on spatial correlations, it is now becoming clear that a sequence of measurements on
a single quantum system at different points in time reveals a similarly rich, yet fundamentally different structure of multipartite
temporal correlations. Here we experimentally observe genuine multi-time correlations in a sequence of three generalized
measurements on a single photon. These correlations, manifest by a simultaneous violation of all pairwise Bell inequalities, cannot
be reproduced by any spatial quantum state of equal dimension. Our work lays the foundation for the exploration of temporal
correlations arising in quantum networks for quantum information applications.
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INTRODUCTION
First studied in the context of macroscopic realism,1 temporal
quantum correlations have become of increasing interest for
fundamental questions,2 and quantum information applications.3–
6 Beyond the simplest scenarios, however, the equivalence
between spatial and temporal correlations breaks down, revealing
a rich structure of correlations in either domain. Comparing the
resources generating these correlations shows that temporal
processes cannot mimic every spatial quantum state, while spatial
measurements are more restricted than their temporal counter-
part.7 Spatial correlations in this regime, in particular genuine
multipartite entanglement, have become an important resource
for foundational questions as well as quantum technologies such
as quantum metrology and quantum computing.
Here we study multi-time correlations between three parties

and observe a form of temporal correlations that cannot be
reproduced by any multipartite quantum state of equal dimen-
sion. These correlations, which are revealed by temporal
measurements that have no spatial analog, manifest in the
simultaneous violation of pairwise Bell inequalities between all
pairs of parties. This is in stark contrast to one of the fundamental
features of spatial correlations—monogamy of entanglement.8,9

The fact that in the spatial scenario, Alice can either violate a Bell
inequality with Bob, or with Charlie, but not both at the same time,
is the basis for the security of entanglement-based quantum key
distribution. Despite being polygamous in this sense, however, we
show that multi-time correlations are still bound by a new
polygamy relation that we derive.

RESULTS
Monogamy of entanglement
Consider first the scenario introduced by John Bell,10 where two
space-like separated observers, Alice and Bob, perform local
measurements on the parts of a shared state of two entangled
two-level systems (qubits) (Fig. 1a). All correlations arising from

classical systems and shared randomness in such a scenario must
satisfy the Clauser–Horne–Shimony–Holt (CHSH)11 inequality,

SABCHSH ¼ A0B0h i � A0B1h i þ A1B0h i þ A1B1h i � 2; (1)

where AxBy
� �

=
P

a;b abPða; bjx; yÞ denotes the joint expectation
value for Alice’s and Bob’s measurements for settings x and y and
outcomes a and b, respectively. This inequality can be derived
from the assumptions of realism, free choice, and no fine-tuning,
which implies that if there is no observable signaling between two
variables, then there should also be no hidden signaling in the
underlying reality. Correlations obtained from entangled quantum
states, however, can violate the CHSH inequality, indicating that
they cannot be reproduced by any classical model without
resorting to additional causal influences which are carefully
hidden from the observable statistics. Spatial quantum correla-
tions that violate a CHSH inequality are then commonly referred to
as Bell-nonlocal.
One of the distinctive features of spatial Bell-nonlocal correla-

tions12 is that a violation of SABCHSH precludes a simultaneous
violation of the CHSH inequality with a third space-like separated
party, Charlie. This is a consequence of monogamy of entangle-
ment,8,9 and is formally captured by the inequality,13

SABCHSH þ SBCCHSH � 4; (2)

and similarly for the combinations (AB, AC) and (AC, BC). Simply
put, for a given set of measurements, Bob’s quantum system can
only violate a CHSH inequality with Alice’s system or Charlie’s
system, but not both at the same time (see Fig. 1c). This is in stark
contrast to classical correlations, which can be shared arbitrarily,
and underpins the security of entanglement-based quantum key
distribution.14

In the corresponding temporal scenario, Fig. 1b, where Alice
and Bob perform unbiased measurements on a single quantum
system at different times, an inequality formally equivalent to the
spatial CHSH inequality, Eq. (1), holds between each pair of
parties.3,7 In contrast to the spatial case, however, temporal
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correlations are not bound to be monogamous. Instead, in a series
of three projective measurements (see Fig. 1d), the monogamy
condition of Eq. (2) can be violated up to a value of 4

ffiffiffi
2

p
, showing

that Bob can at the same time maximally violate the CHSH
inequality with Alice and with Charlie.

Formalizing tripartite temporal correlations
To see this, consider a sequence of measurements Mi on a single
quantum system in the initial state ρ0, which undergoes
Markovian, i.e., memoryless, evolution. To formalize this, we will
use the “process matrix” formalism15 in the rest of the manuscript,
following the treatment of ref. [7]. There is a number of related
formalisms for temporal correlations that would lead to a similar
analysis, up to some differences in conventions and emphasis.16–
20 The crucial feature of these formalisms is that to each instant in
time where a measurement can be performed, a double Hilbert
space is associated, representing the system just before and just
after the measurement. Approaches that assign a single Hilbert
space per instant in time also exist,21–23 but face severe
limitations24 and are unsuitable for the multipartite scenario in
which we are interested.
Formally, the evolution of the system between the measure-

ments is described by completely positive trace-preserving (CPTP)
maps T j , while the measurement with settings x and outcomes a
is in general described by an instrument.25 An instrument
Majx
� �

a is a collection of completely positive, trace non-
increasing maps Majx : AI 7!AO from the input Hilbert space AI,
representing the system before the measurement, to the output
space AO of the system after the measurement, such that

P
a Majx

is CPTP. Following ref. [7] the joint probability distribution for
outcomes a, b, c, in a sequence of three measurements with
settings x, y, z can then be written as:

Pða; b; cjx; y; zÞ ¼ tr MAIAO
ajx �MBIBO

bjx � ECIcjz

� �
�WAIAOBIBOCI

h i
;

WAIAOBIBOCI ¼ ρAI0 � TAOBI
1 � TBOCI

2 ;
(3)

where WAIAOBIBOCI is the so-called process matrix,15 which
represents the resource shared by the three temporally separated
parties. The matrices MAIAO

ajx and TAOBI
1 are the Choi–Jamiołkowski

representation of Majx and T 1, respectively.
7

The general form of W in Eq. (3) and the possible correlations P
(a, b, c|x, y, z) arise from the following assumptions: first, causality,
together with temporal ordering, requires that past outcomes
cannot depend on future settings. This is ensured by the fact that
operations are described by quantum instruments, and that W
satisfies the conditions of a quantum comb,26,27 i.e., that it can be
reproduced as a quantum circuit. Second, we assume that the
process is memoryless, which means that W has to obey the
quantum Markov condition,20,28 leading to the product form of Eq.
(3). Note also that, since the system is discarded after the final
measurement, the output space CO becomes trivial and Charlie’s

instrument MCICO
cjz

n o
c

reduces to a positive operator-valued

measure (POVM) with elements ECIcjz

n o
c
.

In the case where Alice, Bob, and Charlie perform temporally
separated measurements on a single qubit, which is initially in a
maximally mixed state and undergoes trivial evolution between
each measurement, the process matrix in Eq. (3) is given by:

WAOBIBOCI ¼ ½½1��AOBI � ½½1��BOCI ; (4)

where ½½1��XY :¼
P

jl jj i lh jX� jj i lh jY represents the identity map
between Hilbert spaces X and Y. Note that we have discarded the
initial maximally mixed state by replacing Alice’s measurement

MAIAO
ajx with the preparation of a state ρAOajx

� �T
=trρAOajx with

probability PðajxÞ ¼ trρAOajx , where ρAOajx ¼ trAI M
AIAO
ajx .

Within this framework it is now straightforward to compare
temporal to spatial resources for quantum correlations.7 In this
context, the “spatial” character of the resource is defined by the
requirement of no-signaling among the parties, without a direct
reference to their spatio-temporal location. The process matrix of a
no-signaling process only contains input spaces, on which only
local POVM measurements can be performed. In other words, a
non-signaling process is an ordinary multipartite state (output
spaces equal to the identity matrix can also be added to a non-
signaling process, but without any effect on the generated
correlations).
Specifically, since every process matrix is a valid quantum state,

the spatial resource associated with the temporal process matrix
of Eq. (4) is simply the spatial quantum state
ψj iABC¼ ϕþj iAB1 ϕþj iB2C , where ϕþj i ¼

P
j jj i � jj i is a maximally

entangled state. Note that, since Bob’s temporal measurement
acts on two Hilbert spaces, in the spatial analog Bob has to receive
two systems, B≡ B1⊗ B2, while Alice and Charlie receive one each.
This implies that the correlations obtainable in a qubit
entanglement-swapping scenario29 can also be obtained in a
sequence of three projective temporal measurements (see Fig. 2).
However, the converse is not true: the entanglement-swapping
scenario cannot generate all the three-party temporal correlations.
For example, reproducing the temporal violation of the mono-
gamy condition, Eq. (2), in the spatial entanglement-swapping
configuration would require Bob to postselect on equal outcomes
on his qubits. Consequently, a violation is not possible by
exploiting the spatial resource alone.
In general, only the first (Alice) and last (Charlie) measurements

in the above scenario have a spatial analog, since these
measurements have a trivial input and output Hilbert space,
respectively. In contrast, Bob’s intermediate measurement MBIBO

bjy
can be more general and may not have a spatial analog.5,7 For
example, the operation MBIBO ¼ ½½1��BIBO , where B leaves the system
unperturbed in the temporal scenario, is a CPTP map that can be

Fig. 1 Quantum correlations in space and time. a In typical Bell
scenarios, Alice (A) and Bob (B), perform space-like separated
measurements on parts of a shared entangled state ϕþj i. b In the
corresponding temporal scenario, A and B measure the same
quantum system at different times. In both cases, quantum
correlations can violate a CHSH inequality. c For three parties, Alice,
Bob, and Charlie (C), monogamy of entanglement precludes a
simultaneous spatial CHSH inequality violation between A and B and
B and C, respectively. d In the temporal scenario, monogamy of
entanglement can be maximally violated: both, SABCHSH and SBCCHSH can
simultaneously saturate the quantum bound
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performed with unit probability, whereas the corresponding
POVM element in the spatial scenario, EB1B2 ¼ ϕþj i ϕþh jB1B2 , is a
Bell-state measurement that can be implemented only with
probability 1/4.30

A crucial consequence of this observation, as we will show
below, is that Alice, Bob, and Charlie can use the same correlation
resource more effectively in the temporal case than in the spatial
case. Specifically, the process matrix of Eq. (4) is equivalent to a
pair of spatially separated Bell states, yet it gives rise to temporal
correlations that cannot be reproduced in the spatial setting with
systems of equal dimension.

Experimental results
Experimentally we study tripartite temporal correlations on
photonic qubits, using the setup in Fig. 2c. As discussed above,
the first and last measurements in such a multipartite temporal
correlations experiment can be projective, while the intermediate
measurements must be non-projective in order to reveal genuine
multipartite temporal correlations,5,7 which cannot be decom-
posed into bipartite correlations. Alice and Charlie thus perform
standard projective polarization measurements (note that Alice’s
preparation is equivalent to a measurement up to a transpose of
the transformation operator) on the system photon, while Bob
performs a variable-strength polarization measurement. The latter
is implemented using a non-deterministic controlled-not (CNOT)
gate with the system as the control qubit and a meter photon as

the target qubit in the state ψj im =
ffiffiffiffiffiffi
1þκ
2

q
0j i+

ffiffiffiffiffiffi
1�κ
2

q
1j i, where κ

determines the measurement strength (κ= 1 corresponds to a
projective measurement; κ= 0 leaves the system unperturbed). A
measurement of the meter photon in the computational basis
0j i; 1j if g, together with appropriate unitary rotations of the

system qubit before and after the interaction, implements a
measurement of the system in an arbitrary basis31 (note that
Alice’s preparation is equivalent to a measurement up to a
transpose of the transformation operator)32,33 with an average
measurement fidelity of F B ¼ 0:995þ0:002

�0:002 (3σ uncertainty regions)

for small κ and F B ¼ 0:983þ0:01
�0:01 for large κ. This fidelity is primarily

limited by the fidelity of the CNOT gate, and the projective
measurements for Alice and Charlie achieve fidelities of FA ¼
0:9991þ0:0006

�0:0009 and F C ¼ 0:9992þ0:0006
�0:0009, respectively.

To test the temporal CHSH inequality (1), we choose measure-
ment settings in the xz-plane of the Bloch sphere as A0,1=
cosϕAX̂ ± sinϕAẐ for Alice, and similarly for Bob and Charlie (see
Fig. 3a). For κ ~1, where all measurements are projective, and with
ϕA= 0 and 2ϕB= ϕC= ϕ, we observe a simultaneous violation of
the temporal CHSH inequality (1) for Alice-Bob, and Bob-Charlie, of
up to SABCHSH � SBCCHSH ¼ 2:74þ0:03

�0:03. All quoted uncertainties corre-
spond to 3σ-equivalent statistical confidence regions obtained
from Monte-Carlo resampling according to Poissonian counting
statistics. These results clearly indicate the presence of temporal
entanglement and also demonstrate a violation of the monogamy
condition (2) for almost the full range of 0 < ϕ < π (see Fig. 3c). At
the same time we note that the observed correlations factorize
into bipartite correlations, as indicated by the total variation
between P(a, b, c|x, y, z) and P(a, b|x, y)P(b, c|y, z) of 0:027þ0:005

�0:003.
Furthermore, the CHSH inequality between A and C remains
unviolated with a value of SACCHSH ¼ 1:05þ0:03

�0:03.
More surprising results emerge when we consider weak

measurements for Bob. For measurement strengths 0.7≲ κ≲
0.92 and 4π/32≲ ϕ≲ 14π/32, we observe a simultaneous violation
of the CHSH inequality for all pairs AB, BC, and AC (see Fig. 3b). For
nominal values of κ= 0.825 and ϕ= 5π/16, we obtain simulta-
neous values of up to SABCHSH ¼ 2:25þ0:03

�0:03, S
BC
CHSH ¼ 2:18þ0:03

�0:03, and
SACCHSH ¼ 2:14þ0:03

�0:03 (see Fig. 3d). Note that all operations performed
by the three parties are uncorrelated and unbiased in the sense of
ref. 7 and further satisfy no-signaling between every pair.
Therefore, as discussed in ref. [7], a corresponding classical
resource should obey the CHSH inequalities, proving the genuine
quantum nature of the observed correlations.
Importantly, this simultaneous violation of all pairwise temporal

CHSH inequalities demonstrates the presence of a hitherto
unknown form of temporal quantum correlations that cannot be
reproduced in a spatial scenario of equal dimension. This
disconnect is a direct consequence of the larger set of quantum
measurements available in the temporal case. Conversely, it is
known that there are multipartite spatial quantum states, such as
W states, that lead to statistics that cannot be reproduced by a
temporal process of equal dimension.7

Limits of tripartite temporal correlations
Curiously, in contrast to the usual monogamy of entanglement in
Eq. (2), genuine multipartite temporal correlations, even with
arbitrary generalized measurements, cannot achieve the algebraic
maximum joint violation of the three pairwise CHSH inequalities
between Alice, Bob, and Charlie for a single-qubit Markov process.
Indeed, we show in the Methods that the maximal simultaneous
CHSH value Smax for three pairs AB, BC, and AC is bounded by:

Smax <�
2:426; (5)

strictly below the algebraic maximal joint violation of Smax= 10/
3 ≈ 3.33. An important consequence of this observation is that the
set of temporal quantum correlations has a non-trivial structure,
since not all logically valid correlations can be obtained.

DISCUSSION
In the above experiments, we have verified the genuine
multipartite nature of the observed correlations through the
simultaneous violation of all pairwise temporal CHSH inequalities.
While this rules out an explanation in terms of bipartite temporal
correlations, it would be desirable to develop a more specific,
quantitative measure for such genuine multipartite temporal

Fig. 2 Experimental test of tripartite temporal correlations. a A, B,
and C perform temporally separated measurements on a qubit. b
The corresponding spatial correlation scenario resembles an
entanglement-swapping configuration, where Alice and Charlie
receive one particle, while Bob receives two. c Experimental setup
implementing tripartite temporal correlations with weak measure-
ments. Pairs of single photons are produced via spontaneous
parametric downconversion in a β-barium borate crystal. One of
these photons acts as the system on which we perform measure-
ments at three times. The initial preparation (A) and final
measurement (C) of the system photon are projective, while the
intermediate measurement (B) is non-projective. The latter is
realized by partially entangling system and meter photons using a
non-deterministic controlled-NOT gate, based on non-classical
interference in a partially polarizing beam splitter.31 The measure-
ment strength κ can be continuously controlled via the state of the
meter photon
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correlations. Such measures exist for spatial multipartite correla-
tions,34 e.g., the residual tangle. However, they are insufficient for
characterizing the correlations studied here. The reason for this
shortcoming is that these measures charcterize the correlations
that can be extracted from a given resource by means of local
POVMs. In contrast, more general operations are available in the
temporal case, which can extract correlations, such as those in Fig.
3d from a given resource that are inaccessible in the spatial case. It
would further be interesting to attempt a geometric characteriza-
tion of tripartite or more general multipartite temporal correla-
tions as has been done for bipartite correlations.23

In parallel with the study of temporal correlations, a particularly
intriguing question concerns the non-classical nature of multi-
partite temporal correlations.5,35,36 Since all correlations obtained
from the experiment in Fig. 2c obey the no-signaling constraints
between all pairs of parties, one can invoke the no fine-tuning
principle of ref. [7] and derive inequalities that must be satisfied by
a corresponding classical process. A related approach is to find a
classical causal model that satisfies the same conditional
independencies as in the experiment.36 However, the probabilities
arising from such models form a non-convex set, which is very
challenging to characterize already in the simplest cases.
Establishing the non-classicality of these correlations has impor-
tant implications for temporal quantum communication proto-
cols,3,37 temporal quantum computing,5 and future quantum
networks, which inevitably feature both spatial and temporal
correlations.2,38,39

METHODS
Theoretical expectation values
To understand the strong violation of monogamy of Bell-nonlocality
observed in Fig. 3, consider three temporally separated measurements on
a single qubit, a strong measurement A, followed by a weak measurement
B, and a final strong measurement C (with trivial evolution between the
measurements), as illustrated in Fig. 2a. The Choi representation of a weak
measurement in the computational basis, yielding outcome b= ±1, is:

Qbj iiBIBO¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2

r
bj iBI bj iBOþ

ffiffiffiffiffiffiffiffiffiffiffi
1� κ

2

r
�bj iBI �bj iBO ; (6)

a measurement in a different basis, obtained by rotating the qubit with a
unitary U, is given by UT � Uy Qbj iiBIBO . For two measurements along
directions α and β on the Bloch sphere, the bipartite correlations are given
by:

ABh i :¼
X
ab

abP a; bjα;βð Þ: (7)

When A, B, and C perform measurements along direction α, β, and γ,
respectively, then the correlations are given by:

ABh i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

2

r
α � β; (8)

ACh i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2

r
α � γþ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2

r !
α � βγ � β; (9)

BCh i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

2

r
β � γ: (10)

For the CHSH quantity SABCHSH = A0B0h i � A0B1h i þ A1B0h i þ A1B1h i it follows
that:

SAB ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

2

r
Sstrong; (11)

SACβ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2

r
Sstrong þ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2

r !
Sdephβ; (12)

SBC ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

2

r
Sstrong; (13)

where

Sstrong ¼ α0 � β0 � β1ð Þ þ α1 � β0 þ β1ð Þ (14)

is the CHSH value for parties performing strong measurements with
settings αμ, βμ, μ= 0, 1, and

Sdephβ ¼ α0 � β γ0 � β� γ1 � βð Þ þ α1 � β γ0 � βþ γ1 � βð Þ (15)

is the CHSH value for strong αμ, γμ measurements, but linked by a
dephasing channel (i.e., a strong measurement whose outcome is
discarded) along direction β.

Fig. 3 Multipartite temporal CHSH correlations. a Measurement settings illustrated on the Bloch sphere. Alice’s measurements are fixed and
Bob’s measurements enclose an angle ϕ/2 with Alice and Charlie’s measurements. b Experimental CHSH values SABCHSH (blue), SBCCHSH (orange),
and SACCHSH (green), for AB, BC, and AC, respectively, vs. the weak measurement strength, κ, and ϕ (a). The vertical axis is truncated at S= 2, to
highlight the non-classical aspect, and the 3D-ellipsoidal datapoints represent 3σ experimental uncertainties. Error bars for SCHSH are 3σ
statistical uncertainties due to Poissonian counting statistics, while the error bars for κ and ϕ correspond to 3σ confidence regions estimated
from device calibration. c For κ= 1 all parties perform projective measurement, yielding maximal violation of the monogamy condition, Eq.
(2), for AB and BC, while the correlations between AC remain classical. d A cut through the surfaces panel b at κ= 0.825. All data points are
above the classical bound S= 2
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Generalized monogamy condition
Substituting the maximal values Sstrong ! 2

ffiffiffi
2

p
and Sdeph→ 2 in Eqs. (8)–

(10), and finding k that gives them equal value, we obtain:

Smax <�
2:426: (16)

Note that any evolution between measurements other than identity
cannot increase the maximal value achievable by Sstrong and Sdephβ (for any
β), thus the above upper bound remains valid for an arbitrary Markov
process and represents a generalized monogamy relation for three
temporally separated measurements in the configuration considered in
this work.
Although the above upper bound is probably not tight, it indicates that

even with genuine multipartite temporal correlations revealed by weak
measurements, it is not possible to reach the algebraic maximal
simultaneous violation of the CHSH inequality for all pairs. Indeed, the
algebraic joint CHSH maximum is 10/3 > 2.426, which can be seen as
follows: A deterministic outcome assignment can achieve maximal
violation, S= 4, for only two out of three pairs. This is because there are
two combinations of settings, (x, y, z)= (0, 1, 0), (1, 0, 1), for which the
maximal violation would require conflicting measurement outcomes, A=
C= B=−A for (0, 1, 0) and C= A= B=−C for (1, 0, 1). This means that a
deterministic probability distribution which achieves S= 4 for two pairs
will be bounded by S= 2 for the third. In order to achieve an equal CHSH
value for the three pairs, we have to take an equal mixture of three
distributions, where one of the three pairs in turn is limited by the classical
bound. This produces, on average, the value (4+ 4+ 2)/3= 10/3 for each
pair. We finally note that the algebraic upper bound can be reached by
non-quantum correlations that satisfy causality, namely, where future
settings are not correlated to past outcomes. Indeed, we can construct the
desired deterministic vertices (with two maximal CHSH values and one at
the classical bound) by first setting all of Alice’s outcomes (e.g., all to A= 1),
then choosing the outcomes of B as a function of x and y (but not of z) to
get either SAB= 4 or SAB= 2, and finally choosing the outcomes for C, to
reach SAC= SBC= 4 (if we had SAB= 2), or the algebraic maximum for one
of the two CHSH values and the classical bound for the other (if we had
SAB= 4).

Data and code availability
All relevant data and code are available from the authors upon reasonable
request.
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